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ABSTRACT 
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Doctor of Philosophy 

SOME ESTIMATION AND BIAS ISSUES IN BUSINESS SURVEYS 

by Dan Erik Hedlin 

This thesis discusses some sources of bias in business surveys, why bias arises and how 
the bias can be estimated or, in some cases, ameliorated. In practical business statistics 
there are many bias issues not yet resolved. 

The introduction of new businesses on a business frame is subject to reporting delays, 
that is, there are delays between the time when they have started trading and the time 
when they appear on the frame. Reporting delays cause undercoverage. The thesis 
provides methodology to predict the undercoverage, exploiting some links to AIDS 
research and actuarial science. 
Another issue addressed is the bias that will arise if the knowledge of overcoverage 

gained in sample surveys is mistreated. It is usually discovered in the data collection 
phase of a survey that some units in the sample are ineligible even if the frame 
information has indicated otherwise. This information may be fed back to the frame and 
used in subsequent surveys, thereby making forthcoming samples more efficient by 
avoiding sampling ineligible units. The thesis investigates what effect on survey 
estimation the process of feeding back information on ineligibility may have, and derives 
an expression for the design-bias that can occur as a result of feeding back. 
Although asymptotically design-unbiased, widely used GREG estimators may produce 

bad estimates. The thesis examines the behaviour of GREG estimators when the 
underlying model is misspecified. A diagnostic for whether a GREG estimate is 
reasonable is discussed. A common justification for the use of GREG estimators is that, 
being asymptotically design unbiased, they are relatively robust to model choice. 
However, this work shows that the property of being asymptotically design unbiased is 
not a substitute for a careftil model specification search. 

The thesis raises the question of what the desirable properties of an estimator are and 
explores several point estimators in a simulation study. Special consideration is given to 
how prone an estimator is to produce large errors. This property is particularly important 
in official statistics where the publication of bad estimates may sometimes lead to great 
losses for society and may also be detrimental to the reputation of the producer. 
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Chapter 1 

Introduction 

1.1 Business surveys 

In this chapter a brief overview of business survey methods and a general literature 

review are given. I will also give an outline of the following chapters. They address 

some special issues germane to business surveys and each chapter includes a literature 

review of the particular area that the chapter is about. 

Business surveys (often also called establishment surveys) are defined through the 

population unit. 'Business' is here used as a very broad term. My use of the term 

business surveys is extended to economic activities of institutions and governmental 

bodies, as opposed to 'social surveys', which are concerned with people. There are 

surveys that can be viewed as either 'social' or 'business surveys'. For example, a 

survey of small family businesses may be concerned with both people and, say, 

turnover. Surveys that are neither 'business' nor 'social' surveys include 

'environmental' surveys, e.g. surveys aiming at estimating carbon dioxide emission 

and wildlife abundance. I will use the term business loosely. For the purposes of this 

thesis we do not need a precise definition of the units under study. For a formal 

definition of business surveys, see Cox and Chinnappa (1995, p. 3), and for business 

units, see European Union (1993, Sec. III). 

Dutka and Frankel (1991) distinguish between two types of business survey: 

1. 'Enumerative surveys'. For example, the aim may be to estimate the total sales by 

industry. 'Descriptive surveys' is an often used synonym. 

2. 'Analytical surveys'. Here the aim is market analysis, for example to assess customer 

satisfaction, or receptivity towards new products. 



This thesis pertains to enumerative surveys. The overall goal of enumerative business 

surveys is to provide information on structure and development of economical 

activities within industries, regions or in the nation as a whole through estimation of 

parameters that are closely associated with the finite population of businesses. 

Most major business surveys are conducted by National Statistical Institutes (NSIs), 

for example, the UK Office for National Statistics (ONS). There are typically two 

general types of business survey carried out by NSIs; 

» Annual surveys. These have often very large sample sizes or are censuses above 

some threshold in terms of business size. The aim is 'structural' information such as 

business production, employment and finances, often for small domains. 

® Subannual surveys. These are far smaller in terms of sample size and number of 

variables than the annual surveys and are aimed at estimating change and trend as 

well as population or domain totals. Timeliness is particularly important for 

subannual surveys. 

Business surveys in terms of use and content can broadly be classified into five groups: 

" Sample surveys, annual or subannual, that collect information on characteristics 

such as stocks, turnover, employment and production. The parameters of interest 

are typically totals, or differences between totals, by industry. 

" Price index surveys: consumer price index, producer price index, etc. Price index 

surveys pose special statistical problems. It is, for example, a non-trivial problem to 

define the target population parameter (Leaver and Valliant 1995). 

" Ongoing register surveys that are used for updating the fi-ame. The term proving 

refers in this context to the checking of activity status, and sometimes also to 

industry classification. 

® Economic censuses. 

• Economic cycle forecasting: surveys that ask about the investment plans of 

businesses. 

The ONS conducts some 100 business surveys on a regular basis, many of which are 

small. However, 17 of these have sample sizes larger than 10,000 a year (broken down 

into smaller chunks for subannual surveys). Several submit more than 100,000 



questionnaires a year. Table 1 in Smith, Pont and Jones (2003) lists the ten most 

important ONS business surveys. 

I shall discuss business surveys from two different perspectives. Firstly, I outline a 

general methodology framework for business surveys. Secondly, I discuss differences 

between business surveys and social surveys. In the last section of Chapter 11 give 

short summaries of the following chapters. In both section 1.2 and section 1.3 I 

highlight the connections to the following chapters. This structure will lead to some 

repetition but I found it useful to separate methodology from the discussion of special 

features of business surveys. 

1.2 A methodological framework for business surveys 

The main reference on business surveys is Cox et al. (1995). There is a rather limited 

number of other texts that specifically address issues with business survey 

methodology; they include College (1989), Edwards and Cantor (1991), Hidiroglou 

and Srinath (1993). There is also the ICES II conference proceedings Kovar (2000). 

Hidiroglou and Laniel (2001) provide an account of modem business survey 

methodology, while Smith et al. (2003) describe the development of ONS business 

survey methodology since 1995. 

Sample surveys are the main means for meeting the aims of enumerative surveys. A 

goal of such a sample survey is to estimate some target population parameter, which is 

a function on the target population U. More specifically, a business survey target 

population consists of a finite number of labelled units (elements) U= {1, 2,..., 

where N is usually unknown. There is an associated study variable vector 

y'k = (yit, yik^ ) and usually also an auxiliary variable vector 

X* = ) for each unit k eU. Skinner, Holt, and Smith (1989, pp. 14-15) 

discuss the nature of auxiliary information. 

Like Samdal, Swensson and Wretman (1992), I use the symbol ^ to indicate a sum 

taken over all units in the set s. The terms will usually be indexed by k. The by far most 

common types of target population parameter to be estimated are totals. The total of 

3 



one scalar study variable y' = (jf, , 3̂ 2»• • •' t / is defined as ^ . The 

change is also important, often defined as the difference or ratio of the totals 60m 

consecutive periods or two periods twelve months apart. 

Most business survey samples are taken from a frame, which in this context is a list of 

enterprises, businesses and in some cases also local units and other units that are part 

of businesses. Throughout the thesis I assume that the population units, frame units and 

the sample units are of the same type, in short referred to as businesses. There are, 

however, business surveys where these units are different; for example, the population 

units may be kind of activity units and the frame may consist of whole businesses only. 

Units belonging to the target population but not present on the frame constitute the 

undercover age. There is nearly always overcoverage as well: businesses that have 

ceased trading but still are on the firame. While undercoverage may lead to bias, the 

consequence of overcoverage is a waste of part of the sample and hence loss of 

precision. 

The frame is the hub of a business survey. The sources used to build up and maintain a 

business frame are typically tax registers. Multiple administrative sources for updating 

the frame may lead to duplication of units. Alternatively, one source could be used as 

the main source and the other sources to estimate the undercoverage only (Colledge 

1989, 1995). The ONS uses the former approach. 

It is reasonable to believe that in most industrialised countries, all businesses, except a 

small minority operating entirely within the black market, will eventually come on to 

the administrative records system and hence have their details subsequently passed on 

to the NSI. Therefore, the main reason for undercoverage of the population as a whole 

is reporting delays. For a subpopulation (for example an industry) misclassification 

may be an even more serious problem, i.e. the circumstance that some businesses have 

incorrectly been put in another subpopulation than the one they belong to according to 

the definition of the subpopulation. There may be a considerable time lag between the 

detection of births, industry classification of the new units, and their inclusion on the 

frame. Chapter 2 proposes a way of estimating this type of undercoverage. There is a 

similar problem for deaths. In some cases, the dead unit is not taken off the frame until 



an annual update. In the UK the reporting delays tend to be long, and deaths show even 

longer reporting delays than the birth delays, mainly due to the fact that a business is 

formally in existence until all outstanding claims that the state may have are settled. 

The sample surveys themselves are another source of information relevant to frame 

maintenance. If it is found in a sample survey that a certain business has ceased 

trading, this information may be passed on to the frame. However, this may lead to 

bias in forthcoming surveys. This issue is discussed in Chapter 3. 

The sampling design (or just design) is a function p{ • ) that gives the probability p{s) 

of selecting sample 5 out of the set S of all possible samples from U. Naturally, I 

assume that p(s) is a well-defined probability measure. Furthermore, I assume that p{s) 

may depend on Xi, X2, ... Xn, but not on any y ,̂ k eU. Having said that, there is a 

subtle form of association between p(s) and the y* in the application discussed in 

Chapter 3. 

Since most business frames used by NSIs are believed to be largely satisfactory as 

sampling frames, the design of business surveys is usually single-stage. The most 

common business survey design is stratified simple random sampling without 

replacement (STSI). The population is partitioned into subpopulations sometimes 

called pre-strata, for example industries, and in each subpopulation a predetermined 

number of size strata are created. Denote the number of size strata in a subpopulation 

by H, although this number often varies over subpopulations. The size strata 

Ai,A2,... are determined by a scalar auxiliary variable Xk, k = l,2,...,N, and 

stratum boundary points 6, <62 <... < : 

A = 2 ,3 , . . . f f -1 , (1.1 ) 

where Xk,k= \,2, ...,N,\s the stratification variable. At the ONS, employment is used 

as the single stratification variable. The size strata are at the ONS usually referred to as 

sizebands. 



There is a considerable literature on the problem of univariate stratification, i.e. how to 

set the boundary points. Sigman and Monsour (1995) give an overview. Hedlin (1998, 

2000) extends classical stratification techniques (Cochran, 1977, Sec. 5A.7). 

Under the STSI design a simple random sample without replacement (SI) is drawn 

from each stratum independently of samples of other strata. The design SI is defined as 

the sample selection scheme that attaches the same selection probability to all samples 

of some predetermined size. The only sampling designs that feature in the thesis are the 

STSI and SI designs. Although possibly suboptimal, I have taken the stratification 

already done for the surveys as given. 

Size stratum H is in most business surveys completely enumerated, that is, all frame 

units in the size stratum are included in the sample. I will use the abbreviation 'CE 

stratum 

A sample is taken and (x^, y*)is ideally observed for all units k es . The sample 

may exhaust the known part of the target population in which case the survey is a 

census. Often the study variable cannot be observed for some selected units. These 

units are called nonrespondents. More often than not the study variable can be 

observed only with some measurement error. 

An estimate of the target population parameter is computed through a rule referred to 

as an estimator. The Horvitz-Thompson estimator of the population total ty (HT-

estimator; Horvitz and Thompson, 1952) is 

fy* = , ( 1.2 ) 

where ŵ . = and = Pr(/^ = l) with 4 taking the value 1 if unit k is in the 

sample and 0 otherwise. I will refer to an estimate obtained with ( 1.2 ) as an HT-

estimate. The n^. is called the inclusion probability of unit k. With an STSI design 

specialises to the expansion estimator with for a unit k that belongs to 

stratum h, where Nh is the number units in the part of the frame that belongs to stratum 

h and n^ is the size of the sample taken from stratum h. 



The generalised regression (GREG) estimator is a wide class of estimators that 

together with the HT estimator covers the vast majority of all estimators used in 

practice in business surveys. The GREG is defined as 

where the sample-dependent gj^^ are the g-weights, to use a term coined by Samdal, 

Swensson and Wretman (1989). These weights are defined as 

gk = l + k (1 .4) 

where tx and are vectors of the auxiliary variable population totals and HT-

estimates of them, and the q^s are some additional weights. I shall discuss GREG 

estimation in detail in Chapter 4. 

There are two main approaches to inference in finite population sampling. First, the 

randomisation or design-based approach adopts the view that the values of the study 

variable and the auxiliary variable are fixed (i.e. non-random). The properties of an 

estimator are evaluated with respect to the set S of all possible samples under the given 

sampling design. For example, an estimator of ty is design-unbiased if E^y )=fy, 

where the expectation is defined with respect to all possible samples under the design, 

that is, E{^y^='^iy^p{s) where I write to emphasise that the estimator is evaluated 
ssS 

for the particular sample j'. 

The other main approach to inference in finite population sampling, the prediction or 

model-based approach, views the values (x&, y^), A: e 5 , as a result of a stochastic 

process and the estimators are evaluated with respect to a conceptualised infinite 

sequence of realisations of the stochastic variables (X^, Yj.\ k eU, under a 

superpopulation model. However, the auxiliary variable vector is typically treated as 

fixed. The model-assisted approach, as described by Samdal et al. (1992), is essentially 

design-based. A superpopulation model is adopted to guide the choice of estimator but 

the evaluation is based solely on design-based principles. Other frameworks for survey 



sampling have been put forward, see Thompson (1997, p. 156) and VaUiant, Dorfinan, 

and Royall (2000, p. 7) for further references. 

Finite population sampling differs &om many other areas of statistics in that the target 

population exists physically. Especially for business surveys, there is a compelling 

notion of study variables representing true characteristics of real-world entities. 

Therefore, it is natural to make inference about the target population parameters, as 

opposed to (only) model parameters. This seems to support the design-based approach, 

which in practice is by far the more common of the two approaches. There is however 

an ongoing discussion about this topic, see e.g. Valliant et al. (2000) and Smith (1997). 

Finite population sampling theory has a different tradition than the body of statistical 

theory (Smith 1994, 2001, and Brewer 1994). 

It is convenient to regard the outcome of some survey process as 'random' if our best 

understanding of the process leaves us with uncertainty that is best explained by some 

probabilistic model (cf. Dembski's 1998 first explication of the concept of 

randomness). There are four potential sources of randomness in this sense in business 

surveys under the framework outlined here: 

1. There may be an underlying process assumed to be generating the true values of 

the population units (a superpopulation model). 

2. The mechanism by which population units come onto the frame. 

3. The mechanism by which sample units are selected to be observed (often called 

'response mechanism'). 

4. The method used to obtain the measurements for the observed units 

('measurement process'). 

There is also a sample selection procedure: 

5. The mechanism by which fi-ame units are included in the sample (sampling 

design). 

The actual drawing of the sample is often a list-sequential drawing, that is, the fi-ame 

list is gone through with a Bernoulli experiment being performed for each unit which 

decides whether the unit should be included in the sample or not. In many official 

business statistics systems, the sample selection procedure involves an algorithm for 

constructing pseudo-random numbers and another algorithm for the selection of a 



sample according to the prescribed sampling design, given the distribution of the 

pseudo-random numbers. Fan, Muller and Rezucha (1962) give an algorithm for 

drawing a fixed-size SI sample with only one pass through the frame. Two other 

examples of sampling procedures are Atmer, Thulin, and Backlund (1975) and Ohlsson 

(1998). It may be problematic to regard this type of sample selection procedure as a 

random process (cf. Dembski's 1998 second explication of the concept of randomness: 

'pseudo-randomness'), but to pursue this interesting topic further would take this 

introduction to far. Suffice to say that two different conditional approaches, model-

based and design-based inference, that address points 1 and 5 have been mentioned 

above. With few exceptions, the only sources of randomness I recognise in this thesis 

are the second and the fifth one, although superpopulation models will in a sense be the 

focus of Chapter 4. 

There are many other practical and methodological issues that need to be addressed for 

a business survey to be conducted successfully. These include 'profiling', to use a term 

coined at Statistics Canada, which refers to the delineation of units (Pietsch 1995). 

Also, the target population units must be classified in a number of ways, for example 

by industry, see Nijhowne (1995). The act of checking and correcting respondent data 

in surveys is usually referred to as editing. Since business surveys are often heavily 

edited and the benefit of the editing has often been shown to be meagre (Granquist and 

Kovar 1997), more effective methods have been sought. With selective editing 

techniques, responses are prioritised according to believed impact on estimates. 

Discussions of selective editing include Lawrence and McKenzie (2000) and Hedlin 

(2002a, 2003). Overviews of editing include Granquist and Kovar (1997) and 

Bethlehem and van de Pol (1998). Another issue still is the storage and utilisation of 

the results. The production, documentation and storage of microdata and metadata in 

databases are increasingly important both for business statistics and other types of 

official statistics (e.g. Fellegi and Wolfson, 1999, Colledge 1999). The organisation 

and evaluation of survey processes have attracted the attention of many NSIs in recent 

years; see e.g. Biemer and Caspar (1994), Bethlehem (1997), Morgenstein and Marker 

(1997), and Keller (1999). Cox et al. (1995) and Lyberg et al. (1997) provide extensive 

overviews of practical and theoretical issues that arise in surveys, although only the 

former is specifically concerned with business surveys. 



In any country, business survey data are protected by confidentially regulations and 

practices. One special circumstance in the UK is that the UK Statistics of Trade Act 

1947 prohibits disclosure of any microdata, even if the microdata are anonymised and 

there is no way of identifying the unit. Since most results in this thesis are supported by 

real data, gratefully obtained from the ONS, I have been obliged to adhere to the UK 

Statistics of Trade Act. One consequence is that I cannot attach the real values to the 

axes of scatter plots if these show real data. 

1.3 What's special about business surveys? 

There are clear differences between business and social surveys, see Cox and 

Chinnappa (1995) and Riviere (2002). Cox and Chinnappa (1995, p. 1) note that 

'unlike the situation for social surveys, economic surveys [business surveys in my 

terminology] have too few commonly accepted, practiced, and published 

methodologies'. However, business and social surveys are also similar in many 

respects, and sometimes actual or alleged differences are used as an excuse not to go 

against the rather rigid tradition of business surveys in many countries (Dillman, 

2000). The general methodology is the same. An often repeated myth is that business 

surveys are more 'factual' than social surveys. Apart fi-om the important aim of some 

social surveys to measure attitudes, social surveys are no less focused on facts that any 

other surveys. The units in business and social surveys are per definition different, 

although, as I pointed out above, there is some overlap. Clearly, the interplay between 

the survey organisation and the respondent is in general different for business and 

social surveys. This has of course implications for the data collection (Dillman, 2000; 

Eldridge, Martin, and White, 2000; and Edwards and Cantor, 1991). I will, however, 

focus on some other differences that are highly relevant to the thesis. It is these special 

features of business surveys that give rise to the issues addressed in the thesis. 

Business populations are volatile in terms of variable values, units and population. 

Typical for elements in business statistics is that they change fairly rapidly; they "die", 

and they merge and split. There is a lively stream of new businesses coming onto the 

fi^ame more or less continuously, albeit with a skewed reporting delay distribution, 

which can be estimated (Chapter 2). Also, the rapid turnover in the frame combined 

with the frequent use of samples over time that overlap makes the information on 
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newly dead units gleaned from the samples especially valuable. However, too 

simplistic a use of this information can create bias (Chapter 3). 

In business surveys, subpopulations are often more interesting than the whole 

population. The subpopulations are often rather small. The sampling design is often 

highly stratified, and stratum samples sizes can be very small indeed. Stratum sample 

sizes of 5 are not uncommon in practice. Estimation theory relies to a large extent on 

large sample results, but it is not clear whether these are applicable to business surveys 

(Chapters 4 and 5). 

Business variable distributions tend to be extremely skewed. Often a few units 

dominate. Furthermore, the values of the study variable often contain a large 

proportion of zeroes. The skewed distributions may make design-based inference more 

problematic for business surveys than for social surveys, or, as Kalton (2002, p. 130) 

says: 'The situation is somewhat different for establishment surveys [as opposed to 

social surveys] because of the highly skewed distributions of many of the variables of 

interest, leading to small numbers of establishments dominating the survey estimates. 

Furthermore, the sampling frames for establishment surveys often contain auxiliary 

variables related to the sizes of the establishments that can play an important role in 

estimation. Although design based inference is still the generally preferred mode for 

establishment surveys, the case for model-dependent methods is stronger in this area 

[than in social surveys]' (Chapters 4 and 5). 

One of the most important, or the most important, recipient for official business 

statistics is the national accounts of the nation (Lewington, 1995). The output from the 

surveys is combined, adjusted and complemented with output from other sources and 

goes into the national accounts. Most systems of national accounts cannot use 

estimates of mean squared errors or confidence intervals because only fiinctions of the 

estimated totals are inserted into the supply and demand tables. In theory, but probably 

not in practice, two estimates corresponding to the end-points of a confidence interval 

rather than the single number that is the point estimate could be inserted to allow for a 

sensitivity study. However, for the large number of point estimates that are combined 

to form the national accounts (literary thousands every quarter) the vast number of 

combinations of end-points will be infeasible to handle. This fact makes properties of 
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interval estimates less important than those of point estimates, as, for example, design-

bias (Chapter 5). 

1.4 Aim of the thesis and a summary of Chapters 2 to 5 

This thesis is about 'real-world' problem solving. The topics are methodological issues 

that have arisen in my work as a consultant for some NSIs. The general aim of the 

thesis is to clarify the nature of a number of these issues to explore the sources and 

consequences of various problems and to investigate ways of avoiding the negative 

consequences. I discuss some sources of bias in a general sense in business surveys, 

why bias arises and how the bias can be estimated or, in some cases, ameliorated, hi 

practical business statistics there are many bias issues not yet resolved. 

One of the imperfections of a sampling frame is miscoverage caused by delays in 

recording real-life events on the frame. New units generally appear on the frame some 

time after they were 'bom' and units that have 'died' are not removed from the frame 

immediately. Chapter 2 provides methodology for predicting the undercoverage due to 

reporting delays, whereby links to AIDS research and actuarial science are explored. 

Generalised hnear models are fitted to historical data and used to predict future data. 

The approach presented here is novel in a business survey context. As a special case, I 

also predict the number of new-bom units per month. The methodology is applied to 

the business register in the UK, maintained by the Office for National Statistics. 

Chapter 3 addresses the bias that will arise if the knowledge of overcoverage gained in 

sample surveys is mistreated. It is usually discovered in the data collection phase of a 

survey that some units in the sample are ineligible even if the frame information has 

indicated otherwise. For example, in many business surveys a nonnegligible proportion 

of the sampled units will have ceased trading since the latest update of the frame. This 

information may be fed back to the frame and used in subsequent surveys, thereby 

making forthcoming samples more efficient by avoiding sampling nonnegligible units. 

I investigate what effect on survey estimation the process of feeding back information 

on ineligibility may have, and derive an expression for the design-bias that can occur 

as a result of feeding back. The focus is on estimation of the total using the expansion 
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estimator. An estimator that is nearly design-unbiased in the presence of feed back is 

obtained. 

Although asymptotically design-unbiased, GREG estimators may produce bad 

estimates. Chapter 4 starts with a summary of GREG estimation theory and goes on to 

examine the behaviour of GREG estimators when the underlying model is 

misspecified. It shows how an efficient GREG estimator was found for a business 

survey that posed some problems. The work involved data exploration in several steps, 

combined with analyses of g-weights, residuals and standard regression diagnostics. 

An important concept introduced is the 'g-weight function', which also serves as a 

diagnostic for whether a GREG estimate is reasonable or not. I take an in-depth look at 

some design-based estimators and ask the question whether model considerations are 

superfluous in the design-based context once the estimator has been determined. A 

common justification for the use of GREG estimators is that, being asymptotically 

design unbiased, they are relatively robust to model choice (of. Samdal et al. 1992, 

Sec. 6.7). However, the property of being asymptotically design-unbiased is not a 

substitute for a carefiil model specification search, especially when dealing with the 

highly variable and outlier prone populations that are the focus of many business 

surveys. 

Chapter 5 discusses estimation of the total for some study variables in two business 

surveys conducted by the ONS. I ask what the desirable properties of an estimator are 

and explore several point estimators in a simulation study. Special consideration is 

given to how prone an estimator is to produce large errors. This property is particularly 

important in official statistics where the publication of bad estimates may sometimes 

lead to great losses for society and may also be detrimental to the reputation of the 

NSI. Some widely used design-based estimators (and one or two less widely used 

ones) are contrasted with a model-based estimator that explicitly draws on the special 

structure of a business population. Sections 5.1-5.3 are based on Hedlin (2002b). 

There is a concluding discussion in Chapter 6 in which I debate the practical use of the 

main findings of the thesis. 
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This thesis draws on collaborative research, especially with the ONS, where a 

substantial part has been my own original work. Chapter 2 is based on research with 

Trevor Fenton, John W. McDonald, Mark Pont, and Suojin Wang. This research has 

generated a separate manuscript, with myself as the first author. Part of this work is 

reported in Hedlin, Pont, and Fenton (2000). It was Mark Pont of the ONS who 

brought our attention to the problem discussed in this chapter and it was Dr 

McDonald's idea to look at AIDS research for methods that could be transferred to the 

business survey problem discussed here. Dr McDonald and Professor Wang assisted 

me with the log-linear modelling and prediction issues. An ONS report, Fenton, 

Hedlin, Perry, and Pont (1999), was mainly written by Trevor Fenton, who also 

produced a CD with SAS files that I have been using. The ONS report contains some 

of the results presented in Chapter 2. When I noticed that a similar problem is 

addressed in actuarial science I made use of some results from this area in our research. 

Chapter 3 is based on research with Suojin Wang and is closely related to the paper 

Hedlin and Wang (2002). I have taken the lead in this research, but Professor Wang 

has assisted me throughout the research. In particular, it is fair to say that we have 

made equal contributions to the derivation of the inclusion probabilities reported in 

Chapter 3. 

Chapter 4, except for the first section on GREG estimation theory, draws heavily on 

Hedlin, Falvey, Chambers, and Kokic (2001). Hannah Falvey, then a member of staff 

at the ONS, did all the rather heavy work of getting the data into a form that we could 

use. She also computed the vast majority of the estimates that are reported in the paper 

using the Canadian software GES, results that I have compared with those of the 

Swedish software CLAN. This has been reported in Falvey and Hedlin (1999). 

Professor Chambers, who also is one of my supervisors, assisted me throughout the 

research that eventually produced the paper Hedlin et al. (2001). Dr Kokic also made 

valuable contributions. 

Other research areas that I have contributed to during work on this thesis include 

selective editing. Appendix 1, which is not formally part of the thesis, provides an 

introduction to Hedlin (2003). 
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Estimating the Undercoverage of a 
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2.1 Introduction 

Most sample surveys draw their samples from a frame. More often than not, part of the 

target population is not accessible from the frame; the survey will suffer from 

undercoverage. A reporting delay or, using an equivalent term, a birth lag is defined as 

the time from birth (for a frame of businesses, the day when the business began to 

trade) to frame introduction (when the business came onto the frame). Conversely, the 

death lag, causing overcoverage, is the time between cessation of activity {death) and 

the business being removed from the frame. It is believed that for the business surveys 

run by the ONS, reporting delays are the most important source of undercoverage of 

the population as a whole. As was mentioned in Chapter 1, for a subpopulation (e.g. 

industry) misclassification may be an even more serious problem. In this chapter, I 

estimate the number of businesses that have started trading but have not yet come onto 

the frame. This number is an important frame quality indicator. I will also provide 

methodology for estimating the bias that may follow from reporting delays. 

Most information on births and deaths is updated as soon as it is received in the ONS. 

However, some information relating to births and deaths is held back pending further 

information or investigation. When the size information indicates that the new unit has 

employment of 20 or more, and the unit cannot be matched against existing frame 

units, the recording of the unit is further delayed pending proving of the information 

about the unit. The lengths of birth lags form a highly skewed distribution. Some 

businesses report to the relevant authority in the UK as soon as they are set up, 

resulting in short lags. Others may have been operating for years below the level of 

annual turnover above which registration is compulsory, i.e., before their growth 

necessitates their registration. In these cases the lag may be very long indeed. Some 
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businesses report to an administrative body in advance of their launch, sometimes 

resulting in a negative birth lag. Figure 2.1 shows the distribution of the number of 

births over non-negative birth lags. The vast majority of new businesses (85%) have 

come onto the ONS frame within four months of their birth. About 10% have longer 

birth lags than five months. 

250 

Birth lag in months 

Figure 2.1. Number of observed births (in thousands) against birth lag (months). 

The aim of this chapter is to devise a method for estimating the undercoverage that is 

caused by birth lags. The approach is to fit a generalised linear model (see, e.g., 

McCullagh and Nelder 1989) to historical frame records for which both birth dates and 

reporting delays have been recorded. The model will then be used for predicting 

forthcoming births. I have not attempted to accommodate economic cycles as the 

usable data go back only to 1995. Businesses that never come onto the frame, for 

example, very small businesses or businesses operating entirely within the black 

market, are ignored. 

It is not in general possible to tell at the ONS whether a dead business has been closed 

because of a genuine death, or because it has been part of a merger, takeover etc. 

Information that precedes the start of a business in legal terms is not recorded. The net 

number of births may therefore be more interesting than the total number of births. 
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Deaths are reported through the same administrative bodies and the resulting reporting 

delays will be similar to birth lags, although they tend to be longer. The net number of 

births can be estimated as the difference between the predicted gross numbers of births 

and deaths. While I focus on birth lags, the same methods could be applied to death 

lags. 

Table 2.1 indicates the birth lag distribution for businesses bom between January 1, 

1995 and March 22, 1998. The rows of the table represent the numbers of businesses 

that were bom in each month. The month a business started operating is referred to as 

its birth month. The columns are birth lags measured in months. For example, 5444 

businesses started operating in January 1995 and came on to the frame within one 

month, which is counted as a zero lag. 

Table 2.1. Number of observed births per lag (in months) and birth month. 

Partially unobservable cell counts are indicated with a > symbol, totally 

unobserved cell counts with a dash. 

Birth lag 
0 1 2 38 >38 Total 

Jan, 95 5,444 /k982 1,910 ... ^6 16,054 
Feb, 95 5^33 4,069 1J80 • • • — 13/G5 

• 

Jan, 98 7,783 4J.02 ^1,341^ • • • 
— — 13;%1 

Feb,98 7,075 ^3,087, ... — - 10J62 
Mar, 98 ^5,888 — — — 5,888 

Total 226^^2 156,517 6L346 ... 6 - 549,386 

The business registers of the ONS were merged in 1993 and the Interdepartmental 

Business Frame (IDBR) was created. Before 1995 the IDBR was in a state of 

considerable flux as data from the two previous registers were being matched. Hence I 

only use data from 1 January 1995. 

The administrative sources that the IDBR is built upon are mainly HM Customs and 

Excise and Inland Revenue. HM Customs and Excise provides the ONS with 

information relating to Value Added Tax (VAT)-registered legal units weekly. These 

indicate new registrations, and any units that have deregistered. Inland Revenue 

provides a file of all Pay As You Earn (PAYE) employer records each quarter. In the 

PA YE scheme employers pay the employees' income tax and national insurance 

17 



contributions. From these notifications, new registrations and deregistrations can be 

detected by comparison with the file fi-om the previous quarter. Because the ONS is not 

notified continuously, fi-ame introductions tend to be clustered in time. The total 

number of businesses on the IDBR was around 1998 about 1.8 million (in addition to 

the data analysed here there were a large number of businesses that went unchanged 

through a period starting in 1995 and ending in February 1998). 

With the observation window spanning the period January 1995 -March 1998 the 

longest observable birth lag is 38 months. The count of the rightmost cell in the first 

row of Table 2.1 is unobservable (unless we gain access to data that go beyond the 

final date in the data currently available). Adhering to common terminology, cells with 

unknown counts are referred to as structural zeroes (see e.g. Agresti 1990); their 

unknown counts are represented in Table 2.1 with dashes. The term structural zero is 

conventional but in this case 'unobservable counts' might have been more telling. With 

structural zeroes, the table is an incomplete contingency table. The rightmost diagonal 

of the upper triangle containing observed counts is partially unobservable. Another 

way of expressing the fact that we cannot observe new businesses that have not yet 

been introduced on the sampling fi-ame is to say that the data are right-truncated (as 

distinct fi-om the term censoring, which refers to units whose existence are known but 

cannot be observed). The problem of estimating the undercoverage due to birth lags is 

equivalent to estimating the number of businesses that have been subjected to right-

truncation. On March 31, 1998, the undercoverage is the sum of the unknown counts in 

the lower triangle of Table 2.1, ignoring longer birth lags than 38 months. As a special 

case, the row totals can be predicted; they correspond to the number of births per 

month. Note that it is the column sums of Table 2.1, excluding partially truncated cells, 

that are graphed in Figure 2.1. 

There is surprisingly little literature on reporting-delay induced undercoverage of a 

frame used for sample surveys, considering the importance of the problem and the fact 

that there is research on similar issues in other areas. The approach presented here to 

estimate the number of unobservable businesses is akin to and was inspired by 

estimation of the incidence of cases of AIDS in the presence reporting delays, see 

Wang (1992), Sellero et al. (1996) and references therein. However, my application is 
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different; the dataset and the contingency tables are very large. There is also a structure 

to the data that needs to be accommodated. 

An extension to the problem of predicting the population size is to predict the 

population total of some variable. Most businesses in transition between start and 

frame introduction are part of the target population and hence their absence from the 

sampling frame will result in a negative bias in estimated totals if these are based 

solely on samples from the frame. I propose a method of estimating this bias. A similar 

estimation problem is addressed in actuarial science. Insurance companies need to 

estimate the net sum of claims that have been made but not yet been settled; see e.g. 

Haberman and Renshaw (1996). 

Section 2 explores the data behind the incomplete contingency table and the table 

itself In Sections 3 and 4 Poisson regression models are fitted to the upper triangle of 

Table 2.1 to predict the unobservable cell counts in the lower triangle. In Section 5 the 

precision of each model is assessed by a cross-validation type of study. Section 6 

addresses the problem of bias in estimates of the total in the presence of reporting 

delays. Chapter 2 concludes with a discussion. 

2.2 Exploring Data 

It is usefiil to start with an in-depth data exploration. In addition to measuring the 

overall length of birth lags, I have also examined lags by industry classified by the 

Standard Industrial Classification 1992 (SIC92) and by region. There is little to choose 

between most of the different industries. However, it is clear that Health and Social 

Work has longer birth lags than any other industry. Most regions have very similar 

average lags except for Northern Ireland, which stands out as having greater than 

average lags. I do not take differential reporting delays in industries and regions into 

account in this chapter. 

As the focus is on undercoverage due to birth lags, the businesses of interest are those 

which came onto the frame after they were bom. In addition to this stipulation I 

selected for further analysis only those businesses with birth between January 1, 1995, 

and Feb 28, 1998, to exclude the rightmost partly truncated diagonal in Table 2.1. 
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Table 2.2 and Figure 2.2 show some aggregates of births and the distribution of births. 

Except for the truncation effect clearly visible from November 1997 in Figure 2.2, the 

curve is astonishingly regular over time. Note that this curve represents the row sums 

of Table 2.1 apart from partially truncated cells. Note also that the scales of Figures 2.1 

and 2.2 are very different: there is far more variability in counts between lags, 

especially short lags, than between birth months. 

Table 2.2. Number of observed births per year and monthly average. 

Bom in year Number Average per month 

1995 174,300 14,500 

1996 172,600 14,400 

1997 17L300 14,200 

1998 (Jan and Feb) 19,000 &,500 

Total 537,200 14J00 
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Figure 2.2. Number of observed births per birth month. 
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The longest birth lag we can folly observe is 37 months. Longer lags are entirely 

negligible as only 15 out of the 16,000 businesses that were bom in January 1995 have 

37 months birth lag; only 48 out of 30,000 bom in either January or February 1995 

have 36 months birth lag or more. 

5096-

30% 

10% 

nHnnl^nnnnn^nHnnnnnnnnnnn^nnn hnnnnnnnHnnnnnnnnnnnnnnnnnnnnn 

Aprils only other months 

Figure 2.3. Percent of observed births per day of the month. 

Figure 2.3 displays number of births by day for births in 1995 - 1997. The two panels 

contrast the distribution of birthday for Aprils with that of other months, hi Aprils 38% 

of all new businesses started trading on the first of the month, in other months the 

proportion was even higher. The eye-catching peak at April 6 in Figure 2.3 is due to 

this day being the start of the taxation year in the UK. hi practice, owing to differing 

interpretation of what constitutes the start of a business, it is frequently hard to fix on 

one day as the actual birthday for a business. The first of the month is often perceived 

as a convenient date for administrative purposes, both for the business managers and 

for the administrative bodies. Moreover, the first month of the taxation year, i.e. April, 

is a convenient month for administrative purposes, which seems to explain the higher 

birth rate in those months (see Figure 2.2). Also, there is some heaping visible in 

Figure 2.3 in that most of the bars for dates like 10, 15 and so forth are slightly taller 

than most other bars. Therefore, month seems to be the smallest viable unit in the 

classification of number of births; it does not seem meaningfiil to split months into 

smaller units. 
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The birth lags in months were computed as follows. The average length of a month 

was set to 30.4 days and the birth lag was set to the integer part of the ratio of the birth 

lag in days to 30.4. Since the frame infroduction dates seem uniformly distributed over 

the days of the month, there is little risk of non-negligible approximation effects in the 

computation of the birth lags in months. 

Figure 2.4 gives a contour plot of Table 2.1 with partly truncated cells excluded. The 

area with the largest counts is to the far left, and then the counts fall as we proceed to 

the right. The contour levels are 3, 21,148 and 1096 (equal distances on a log scale), 

so area 1 consists of cells with counts greater than or equal to 1096. A couple of the 

'islands' in area 4 are counts smaller than 3. The scarcity of islands in all areas 

indicates a large degree of homogeneity. The dashed horizontal lines mark Aprils. 

Areas 2 and 3, in particular, jut out along the dotted lines indicating areas with 

relatively large counts that are stretched to the right. This is partly due to the fact that 

there are more births in the month of April, partly due to a more skewed lag 

distribution for businesses bom in April (the average birth lag is 2.5 months for 

businesses bom in April and 1.6 months for businesses bom in other months). There is 

also a diagonal pattern emerging in areas 2 and 3 above the horizontal line that 

indicates April 1996. The diagonals correspond approximately to frame introduction 

months; that is, businesses that came onto the frame in the same month are located 

along one or two diagonals mnning from right to left in the contingency table. It 

appears likely that what produces these diagonal ridges visible in Figure 2.4 is the 

reporting of births from Inland Revenue. Since this is done in a roughly quarterly basis, 

the notifications of new businesses come in sizable batches. 

2.3 Models 

The number of businesses in transition between birth and frame infroduction can be 

viewed as a stochastic process over time. The process is not stationary since Figure 2.4 

indicates among other things that birth lags tend to be longer for businesses bom in 

April than for businesses bom in any other time of year. 
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In this section I fit models to the upper triangle of the contingency Table 2.1, excluding 

partially truncated cells. It is convenient to confine the class of models to generalised 

linear models. A generalised linear model has a random component, which identifies 

the probability structure of a response variable 7, a link function which specifies the 

relationship between the expected value [jl of the response and the systematic 

component, which in turn defines a linear function of the explanatory variables (e.g. 

McCullagh and Nelder 1989). The systematic component can rather easily 

accommodate the seasonality and the non-stationary structure we have observed. 

Another advantage with generalised linear models is that they are useful even if the 

parametric assumption underlying the model is ill-fitting, since the ML estimation of 

parameters uses only the link function, choice of covariates and the variance function 

V(ju), where V{y) = ^V{ju) and (j) is known as the overdispersion parameter (Davison 

and Hinkley 1997, Ch. 7). Thus my approach is essentially semi-parametric. 
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Figure 2.4. A contour plot of the contingency table, Table 2.1. Levels for number 

of frame introductions. 
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Let r be the number of rows in the table and let my be the expected number of 

businesses that were bom in month z, z = 1, 2, . . r , and that were introduced on the 

frame in month d = i + j - I , that is with a birth lagj,y =\, ... c, where c is the 

maximum birth lag we can observe. For convenience, renumber the index j to start at 1 

rather than at 0. We have seen that the birth rate is higher in some months, such as 

Aprils, than in other months. It seems plausible that a higher (or lower) birth rate for 

certain months should give roughly proportionally larger (or smaller) counts of new 

businesses for all birth lags, as opposed to an additive structure where the extra amount 

of births for Aprils, say, would be distributed equally over birth lags. Hence it seems 

more plausible that birth months, birth lags and other effects that potentially could be 

part of the systematic component are multiplicative than additive. This leads us to the 

following type of log-linear model: 

)==w t W(w), ( 2.1) 

for z = 1, 2, ..., r, y = 1, 2, ..., c - z + 1, where wis an intercept and is a parameter 

for cell z and j in the fully observed triangle in Table 2.1, with total number of rows r 

and columns c = r, here r - 38. Hence the link function is the logarithmic function, 

which conveniently converts multiplicative effects on the original scale to additive 

effects on the log scale. The variance function V{jS) = nxy is reasonable even if the cell 

counts are not independent and Poisson distributed, since the overdispersion parameter 

can account for discrepancies between the variance of the response and the variance 

function (albeit only discrepancies that are constant over all cells). 

One of the most parsimonious models (i.e. with fewest parameters) that we may be 

interested in is a log-linear model with just birth lag effects with where 

is a parameter associated with birth lag j only. Considering Figures 2.1 and 2.2, 

which show that the range of number of births is 0 to 250,000 across birth lags and 

only 5,000 to 21,000 across birth months, the lag effect should be far more important 

than a birth month effect. The latter effect may perhaps even be dropped altogether. 

Although this may be an oversimplification, the model with a lag effect only is 

interesting as a reference model. Under this model all cells in a column have the same 

expected value. Another log-linear model arises from the assumption that the expected 
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cell counts are separable into quasi-independent row effects and column effects with 

"(y) = b̂irthmonth(i) + " ^66 McDonald (1998) for a definition of quasi-independence 

and ML estimation for incomplete tables. Since the underlying stochastic process is not 

stationary, there is in fact an interaction between birth months and lags, which the 

quasi-independence model fails to capture. 

Another model still is one with a seasonal effect and a lag effect. The underlying 

assumption is that some of the rows of the contingency table show a repetitive pattern 

in that their effects are the same and do not depend on year. Figure 2.2 suggests that all 

Januaries are similar, and so forth. It seems reasonable to examine a model with twelve 

'season' parameters, as opposed to 38 birth month parameters. The model is 

) = w + , (2.2 ) 

z = 1, 2, ..., 38, 7 = 1, 2, ..., 38 - / +1, k = i (modulo 12). 

When this model is fitted to the fully observed counts in Table 2.1, the residuals show 

a clear diagonal pattern, a pattern that is visible in Table 2.1 itself Recall that 

businesses that came onto the frame in the same month are located along one diagonal 

and that reports from the PA YE source are obtained by the ONS on a roughly quarterly 

basis. Hence, the businesses whose births are reported from this source will tend to 

appear in ridges in the contingency table, fi-om right to left, approximately three 

months apart. For example, 4,982 + 5,333 businesses in Table 2.1 came onto the frame 

in February 1995, 4,982 of which were bom in January the same year (hence with one 

month's birth lag) and 5.333 in February 1995 (with no birth lag). Therefore, a 

diagonal effect can be added to the model to obtain a better fit. Further, an 'April 

effect' can accommodate part of the observed longer lags for businesses with births in 

April: 

Iog(/»..) = M = 4), ( 2.3 ) 

with i,j and k defined as for the model in ( 2.2 ), d = i + 7 — 1, o; is a parameter and 

/ ( • ) is an indicator function taking value 1 if the argument is true, 0 otherwise. 

The models above were fitted to the fully observed upper triangle of Table 2.1 using 

ML estimation. The usual likelihood ratio test statistic (the 'G^ statistic') and the 

Pearson chi-squared test statistic gave very similar results. The estimation of 

parameters was done with Proc Genmod in the SAS System® version 8.02 for 
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Windows, see Zelterman (2002). To ensure that the Genmod procedure gives correct 

results, it was run on some well-known datasets with structural zeroes. To check the 

numerical stability for the very large table analysed, the order of columns was changed, 

likewise the order of the rows for the model + ̂ iag(j), but the results 

remained the same. 

Table 2.3 gives the values of test statistics for four models. The p-values are not given 

in the table below; all are miniscule. The G^-values in Table 2.3 are extremely large 

due to the very large cell counts and the large number of cells. It is not meaningful in 

this application to use G^-values for significance tests since any useful model would be 

rejected. We can, however, use G^-values for the comparison of models without formal 

tests. Another general strategy for dealing with large counts in a contingency table is to 

look for non-random patterns among residuals for different models. I will also study 

how well the models predict future observations. 

Table 2.3. Goodness of fit for Models 1—4. 

Model # para- Degrees of G^ Decrease in Knoke-Burke-
meters freedom ratio 

1. Lags only 38 703 49,323 
2. Lags and 49 692 3&259 11,064 22% 
seasons 
3. Lags and birth 75 666 36,888 12/85 25% 
months 
4. Lags, seasons. 87 654 21,829 27,494 56% 
diagonals and 
April effect 

The Knoke-Burke ratio (Knoke and Burke 1980) is 1 - , where is the 

value of the test statistic under a reference model (here Model 1, lag effect only) and 

Gin under an alternative model that includes the reference model as a special case. 

Note that if the alternative model is the saturated model then the Knoke-Burke ratio 

attains its maximum, 100%. Knoke and Burke (1980) suggest that this ratio may be 

used for very large datasets; a large value indicates that the alternative model is 

satisfactory. I shall refer to the models using the order number in Table 2.3. Clearly, 

Model 4 gives the best fit. It is the addition of the diagonal effect that accounts for the 

major part of the reduction in G^. Adjusted residuals from Model 4 are large but show 
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no clear pattern. While at least some reduction in is expected with an increasing 

number of parameters, it will be shown later on that this reduction is not entirely 

reflected in extra strength in prediction power when it comes to prediction of the lower 

part of Table 2.1. 

There are other modelling approaches in the AIDS diagnoses literature. Harris (1990) 

and Wang (1992) discuss parametric and non-parametric methods, respectively, to 

estimate the size of the population. Davison and Hinkley (1997, examples 7.4 and 

7.12) contrast what here is termed Model 3 with a generalised additive model which 

gives smoother predictions of nonobservable counts in a register of English and Welsh 

AIDS patients. Generalised additive models is a class of models that includes 

generalised linear models (Hastie and Tibshirani 1986). The link function in these 

models is a sum of nonparametric curve components. In my problem I could take 

\og{my]=u + + u{j) with u{j) being some nonparametric curve describing the 

marginal relationship between cell counts and birth lags. Figure 2.1 suggests that the 

flat part of the curve may not need a different parameter for each birth lag, as they have 

in Models 1 - 4 . 1 leave this idea for future research. 

2.4 Predicting Number of Births 

The models fitted to the upper triangle of the contingency table in Table 2.1 are now 

used for predicting counts in the lower triangle. To fix notation I first give a brief 

general account of Poisson log-linear models with 'matrix notation'. The contingency 

table has r rows, c columns and rc = a cells. A general log-linear model is 

l()g(in) ==:x:p K Ip, (2 .4) 

where m = is a vector of the expected cell counts, with the cells 

labelled 6om left to right starting with the first row, P is a parameter vector and the 

design matrix X specifies the model. The quantity //is a parameter and 1 is a vector of 

ones. In order not to burden the notation I let the dimension of 1 be given by the 

context. Let o be the number of cells that are not structural zeroes (o for 'observed', a 

for 'all'). I denote the set of the fully observed cells by O and the set of all cells by^L 

The difference between A and O is denoted by S, which includes both partially 
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observed cells and cells with structural zeroes. I distinguish quantities that are defined 

for O only by a star. In the presence of structural zeroes the rows in (2.4) that 

correspond to them would not be included in the model. What remains of m and X 

after omission of rows that correspond to structural zeroes is denoted by m* and X . 

For example, consider a two-way table with r = c = 2 and without structural zeroes. 

Then a model with a row factor and a column factor and no interaction would have 

/ I 0 1 0^ 

X 
1 0 0 1 

0 1 1 0 

0 1 0 1 

If the fourth cell is a structural zero then 

r i 0 1 0^ 

X = 1 0 0 1 

0 1 1 0 

If, for example, the cell a in a table with a cells is a structural zero the model is 

log(m')=X'p + l / / , (2.5) 

with m* = { m l , m l , ) and X adjusted accordingly. In general, I have 

m = *, where p* = (p,, z ? ; , i s the vector of true probabilities under the 

Poisson distribution and «o is the sum of the cell counts in O. Note that for a model 

pertaining to O only, p is not defined outside O. Thus 

n„p* = exp(x*P + l/x). (2 .6) 

Since the elements of p add up to unity, we obtain by summing over the columns of 

each side of (2 .6) 

= r exp (x ' p + l//). ( 2.7 ) 

and 

p' =exp(x'p)/[l'exp(x'p)] . ( 2 8 ) 

The estimator of p* is 

p = expl (x"p)/[l'exp(x'p) (2 .9) 
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and that of // is 

// = log(Mj-logl'exp(x'p) . (2.10) 

where the parameter vector (3 is estimated with, e.g., maximum likelihood estimation. 

Let T = T^+T^, where To and Ts are the sum of observable and unobservable cell 

counts, respectively. Then it is natural to predict 7 by f = T^ +7^ , where is a 

predictor for T̂ . Under the natural assumption that (2.5 ) can for Models 1-3 be 

extended to model ( 2.4 ) by replacing X with X we have for cell i 

m,. = exp(X|.p + //), (2.11) 

where and X'. is the zth row of X. Thus X'. corresponds to the zth cell in the 

contingency table. The parameters p and ju, which in (2.5 ) are defined for O only, will 

for Models 1-3 remain the same for with the predictor for cell i in S 

/%,== exp(x;p-k//). (2.12) 

Hence the sum of the cell counts in the set S is predicted by 

(2-13) 

For Model 4 it is assumed that the diagonal pattern observed for the last 12 months can 

be extrapolated periodically; that is, to predict cells along a diagonal d' in the part of 

the lower-right triangle where c + l < ( i ' < c + 12,the parameter associated with 

diagonal d' -12 in the upper-left triangle is used. To predict cells along a diagonal in 

the next band of twelve consecutive diagonals, c +13 < " < c + 24, the parameter 

associated with diagonal d" -2A is used, and so on. Thus, only the rightmost band of 

12 diagonals in the observed triangle is used for prediction. While this may seem to 

underutilize the information, there does not seem to exist a periodic model for the 

diagonal effects that uses all observed diagonals and gives smaller prediction errors 

than the model just described that only uses the last 12 observed diagonals. 

Table 2.4 gives the number of births aggregated to year levels. As seen in the table the 

observed count in 1997 is about 8-9% less than the predicted count. The difference 

between the sum of the predicted counts under Model 4 and the observed count is 
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570,000-542,000 = 28,000. Hence, in terms of number of businesses the 

undercoverage due to reporting delays is about 1.6% (28,000 on 1.8 million). 

Table 2.4. Observed number of births per year and the ratio predicted counts to 

observed counts. 

Ratio predicted count to observed count 

Year Observed 

number of 

births 

Model 1 Model 2 Model 3 Model 4 

1995 175,898 1.00 LOO LOO 1.00 

1996 174,013 1.01 LOl LOl LOl 

1997 172,570 1.09 L08 L09 L08 

1998 19J03 L75 L74 1.92 1.69 

% 
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Figure 2.5. Predicted number of births per month under Models 2-4. The 

observed counts are graphed with a dashed line. 

Figure 2.5 shows the observed and predicted number of births per month for Models 

2-4, as numbered in Table 2.3. The dashed curve in Figure 2.5 is the same one as in 

Figure 2.2. Judging from Figure 2.5 there is little to choose between the prediction 
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methods with only Model 3 being somewhat separated from the others. There is a 1% 

truncation effect as early as September 1995 that each model captures. 

2.5 Prediction error 

To assess the prediction error, we can turn the clock backwards, for example to the end 

of May 1995, and pretend that all observed businesses bom afterwards are unknown. 

Hence there will be a 5x5 square subtable with observed counts in the upper-left 

triangle and 'missing' counts in the lower-right triangle. A natural estimate of the error 

is obtained by estimating parameters for the upper triangular subtable and basing the 

prediction error on the difference between the observed and predicted counts in the 

lower-right triangle. Using this approach. Figure 2.6 shows the number of births per 

month for data cut off at the end of April 1997. The dashed curve is the number of 

births per month obtained from the frill original table (that is, it is the same curve as in 

Figure 2.2). Models 3 and 4 are indistinguishable while Model 2 predicts the rise in 

births in April rather better than the other models. 

1 
2 

2&000-I 

20,000-

15,000 

IDflOO 

5,000 

Model 2 

Models 3 and 

I I I I I r~i I I I I I I I r 
July J<m JnSy 

1995 1996 

Figure 2.6. Predicted number of births based on data up to 30 April 1997: Models 

2-4 and observed counts as at Feb 28 1998 (dashed line). 
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Thus the ends of the soHd curves in Figure 2.6 show the predicted number of births for 

the month that corresponds to the last row of the particular triangular subtable which 

has been obtained by cutting the Ml table off at the end of April 1997. Figures 2.7 and 

2.8 exhibit the prediction errors for a series of subtables, jfrom the one obtained by 

cutting off at the end of December 1995 to the one where data after December 1997 

were discarded. Li Figure 2.7 the final-month errors are shown, defined as the 

difference between the predicted number of births in the last month of the subtable and 

the observed number of births in the same month in the part of the original table 

covered by the subtable. The part of Figure 2.7 to the right of July 1997 is clearly 

influenced by the bias resulting from truncation of the original series. In the beginning 

of the series the error is as expected large due to the fact that in the beginning of the 

series there is less data for the estimation of parameters. It seems reasonable to forego 

the prediction errors before July 1996 and after July 1997. 

5000 

-5000-1 

Figure 2.7. Difference between predicted and observed number of births for the 

final month in successive subtables. The months along the jc-axis represent the 

final month in each subtable. Three models: Model 2 (thick), Model 3 (dashed), 

and Model 4 (thin). 

As seen in Figure 2.7, Model 2 gives smaller final-month errors than Model 3 for each 

month in this interval. This may seem paradoxical since Model 3 has more parameters 
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and gave a better fit to the upper triangle of the contingency table (Table 2.3). 

However, the models play two roles here. One is to fit counts in the upper triangle of 

the contingency table. The other is to be a tool for prediction. Good performance in one 

of these roles does not necessarily imply good performance in the other. Model 3 does 

not draw on the seasonal pattern. Stated somewhat loosely. Model 2 borrows strength 

from similar months in previous years. With Model 3, the predictions depend 

completely on single rows of the table and are much more variable. Model 2 has the 

additional advantage over Model 3 that it allows prediction beyond February 1998. As 

seen in figure 2.7, Model 4 often gives smaller errors than Model 2, but certainly not 

always. 

Im 
I 

-ID 

July 

1997 

Figure 2.8. Difference in 1000s between the sum of predicted number of births 

and observed number of births in successive subtables. The months along the x-

axis represent the final month in each subtable. Three models: Model 2 (thick), 

Model 3 (dashed), and Model 4 (thin). 

The difference between the sum of monthly predictions and observations is a measure 

of error more directly connected to the estimation of the undercount. These differences 

for a sequence of subtables are displayed in Figure 2.8. In the beginning of the series 

the difference is negative because the predictions for 1995 are too low. The difference 

becomes positive when the truncation effect in the original series becomes pronounced. 
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Figure 2.8 makes it clear that Model 4 is better than Model 2. As seen in Figure 2.8, 

the largest prediction error in absolute terms for Model 2 in the interval July 1996 -

July 1997 is less than 10,000. For Model 4 the largest error is less than 6,000. 

2.6 Bias Resulting from Reporting Delays 

The undercoverage will lead to a negative bias in an estimate of the total. Suppose the 

aim is to estimate the total ty = ^ of a study variable y' = (yi, >'2, • • • > ) on a 

population U with unit labels {l,2,..., 7V}. Let Uyhe the population of businesses with 

birth month i and reporting delay j. The total of the unseen part of the population, tus, is 

the sum of ^ jx* over the not fully observed cells (J.J) in Table 2.1, each of 

which holds the population Uy. 

While the available reporting delay data do not contain any study variable, the variable 

turnover at frame introduction was stored for the businesses whose counts are reported 

in Table 2.1.1 will perform the numerical analysis on this auxiliary variable. To 

estimate the bias with respect to a study variable, for example capital expenditure, one 

approach would be to model the relationship between this variable and turnover at 

frame introduction. I leave this for future research. 

I draw on actuarial science to find a method for predicting tus, which is in that context 

interpreted as, for example, the sum of incurred but not reported (IBNR) losses for 

which the clients are insured. The chain ladder method is widely used in insurance 

practice. For this method transferred to the current issue, consider an auxiliary variable 

Xk,k= 1,2,.. .N, and let Cy - be the cumulative totals of the auxiliary variable 

! = ! 

for businesses with birth month i and birth lag not longer than j. Introduce the 

development factors 
fr-y+l r-j+1 \ ^ 

= 

V i=i J 

where j <r and r = c is the total number of rows (columns) in the table. The 

development factors are applied to the largest observed cumulative total in row /, that 
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is Ci_r4+\ to give an estimate of the cumulative total for the subsequent columns in row 

i: 

Q,r-i+2 ~ î,r-i+l'̂ r-i+2 ' 

Q.r-y+3 ~ ^i,r-i+l\-i+2'^r-i+3 ' 

and so on. Hence the assumption, for simplicity expressed here for unobservable cell 

(2,c) only, is that 

Q,c-i Qc 

Mack (1991) and Renshaw and Verrall (1998) show that the chain ladder technique 

necessarily gives the same cell predictions as the quasi-independence model, which is 

labelled Model 3 in this chapter. An extension of the chain ladder technique is thus to 

apply my Models 2 and 4 to observed totals of some frame variable to predict non-

observed cell totals of this variable. 

There are other approaches in actuarial science. In the widely used Bomhuetter-

Ferguson technique (Bomhuetter-Ferguson 1972), the C,c are taken as though they 

were known constants obtained from some external source and the only free 

parameters are the lag parameters. Using an argument from credibility theory. Mack 

(2000) discusses the approach where the final predictions are linear combinations of 

the Bomhuetter-Ferguson predicted values and the predictions obtained through the 

chain-ladder method. Overviews of the IBNR prediction problem are given by England 

and Verrall (2002) and De Vylder (1996, Ch. 7). It is usual to assume stationarity for 

IBNR prediction. 

Alternatively, one can fit a model to the frame variable to obtain an estimate of the 

expected value in each cell and multiply this with the predicted number of units in that 

cell. Klugman, Panjer, and Willmot (1998, p. 292) argue that modelling counts and the 

continuous variable separately has some advantages in the IBNR losses context. In my 

situation it is useful to compare the distribution of the study variable for different birth 

lags with that of the counts. Also, to investigate the impact of legal and procedural 

changes (for example if the VAT threshold for mandatory reporting to the relevant UK 

authority changes or if new proving processes are introduced at the ONS) it is helpful 

to model the distribution of the counts and the study variable separately to avoid 

confounding. I will not pursue this approach here. 
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Figure 2.9. Average turnover in £000 at frame introduction against birth lag. 

35 38 

Birth bg in months 

Figure 2.10. Total turnover at frame introduction in £biIlion against birth lag 

(months). 

Figure 2.9 exhibits the fact that businesses that are very large in terms of turnover 

when they come onto the frame tend to have long birth lags. It is believed that few of 
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these large businesses are genuinely new; they are results of mergers and other types of 

restructuring. To avoid duplication large businesses that are reported as new are 

subjected to an often lengthy proving process which can not usually be done without 

the help of the business itself However, there is little information stored on the frame 

on the history of a business. 

Jan 1995 

April 1995 

Apnl 19^ 

April 1997 

Jan 1998 

Birth lag 

Figure 2.11. A contour plot of levels for total turnover at frame introduction. The 

levels are 54,1000, 22000 and 1.2m (all in £1000). 

Figures 2.10 and 2.11 show the distribution of total turnover at frame introduction 

against birth lag and birth month. The similarity of these to Figures 2.1 and 2.4 

suggests that it may be possible to model the cell totals of turnover with the methods 

applied to the counts. Cross-validation errors that parallel those of Figure 2.7 are 

displayed in Figure 2.12 . The estimated total undercoverage is 2.400 £billion (1000 

million). Unfortunately, the prediction errors displayed in Figure 2.12 are of similar 

size as the point estimate of the error caused by reporting delays. The large businesses 

with long lags, clearly visible in the contour plot but also in Figure 2.10, make 
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prediction intrinsically difficult. They enter the frame irregularly and produce large 

variation in total turnover per birth month. 

I 
I 
I 
•K 
•2 

July 

1997 

Figure 2.12 . Difference in £bn between predicted and observed number of births 

for the final month in successive subtables. The months along the jc-axis represent 

the final month in each subtable. Three models: Model 2 (thick), Model 3 

(dashed), and Model 4 (thin). 

2.7 Discussion 

Undercoverage is arguably the most important type of frame imperfection. I believe 

that the work initiated here provides a useful measure of frame quality. A time series of 

the undercoverage as estimated each month in terms of number of businesses is a 

useful tool for monitoring frame quality. For example, a long-term increase will spur 

questions about what developments in the processes causes the changes in the 

reporting delay distribution. 

I have predicted gross totals with a log-linear model. The prediction error was 

estimated with a non-parametric method that has considerable natural appeal. At the 
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end of February 1998 the undercount was 28,000 businesses, or 1.6% of all registered 

businesses. The error of this estimate was predicted to be less than 6,000. 

The sum of the turnover of the unobservable businesses was not possible to predict 

with any accuracy due to a heavy tail in the reporting delay distribution. The heavy tail 

is due to the fact that many businesses that are very large when they enter the frame are 

not genuinely new businesses. Since the history of businesses is currently not stored on 

the business register of the ONS, it has been proposed to create a new life status 

variable that will store more complete information about changes to businesses. This 

will be a log of events that have occurred in the life of the business and allow the 

separation of genuinely new businesses from businesses that are new only in a legal 

sense. 
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Chapter 3 

Feeding Back Information on Ineligibility 

Î ircMii 5)2i:n])l4e SSumferys to tlif* Î iraiiiit; 

3.1 Introduction 

To facilitate estimation of change, consecutive samples in many repeated survey are 

overlapping. If several surveys draw samples from the same frame, it is often desirable to 

spread the response burden by making sure that samples for different surveys are not 

overlapping to a greater extent than necessary. This is particularly desirable if the frame is 

moderately large and used for many continuing surveys, which is a situation that many 

national statistical institutes face when conducting business surveys. Stratified simple 

random sampling is a very common design for business surveys. The skewed distributions 

of business study variables call for large sampling fractions in many strata, which 

aggravate the response burden for medium size and large businesses. Both response 

burden issues and estimation of change are of paramount importance in official business 

statistics. Therefore, sampling systems have been constructed that allow the organisation 

to co-ordinate samples, either positively or negatively (i.e. to create overlap or to make 

sure that there is little overlap). 

For example, the ONS uses the Permanent Random Number (PRN) technique, which is a 

widely used method for drawing samples from lists. A PRN, drawn from the uniform 

distribution on [0,1], is attached to each frame unit independently of each other and 

independently of the unit labels and any variables associated with the units. The units can 

be plotted on a line starting at 0 and ending at 1 and I refer to this line as the PRN line. To 

draw a simple random sample without replacement, an SI, with a predetermined sample 

size n, a point is selected (randomly or purposively) on the PRN line and the n units to the 
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right, say, are included in the sample. For overviews and further details see Ohlsson 

(1995) and Ernst, Valliant and Casady (2000). Table 3.1 shows starting points of sampling 

intervals of some of the business surveys the ONS conducts on a regular basis. 

Table 3.1. Starting points of the PRN sampling intervals of some of the business 

surveys the ONS conducts 

Survey Starting point 

of sampling 

interval 

The Monthly Inquiry for the Distribution and Services 
Sector, and other monthly surveys covering other 
sectors of the business population 

0 

The Quarterly Capital Expenditure Inquiry 

The UK Survey of Products of the European 
Community 

0J75 

The Inquiry of Stocks 0.5 

The Annual Business Inquiry 0,625 

The Annual Employment Survey (175 

Samples for repeated surveys can also be selected with a panel technique where the 

sample at the first wave of the survey is partitioned into a set of rotation groups. At the 

second wave one, say, of the groups is replaced with a new sample of the same size as the 

outgoing sample and the other groups are retained in the sample. 

There are in principle two main sources of data that are used to maintain a frame: 

administrative ones and surveys. As was described in Chapter 2, various administrative 

bodies send tapes to the ONS on a regular basis with information of, e.g., births and deaths 

of businesses. While these tapes are sent in to the ONS very frequently, the distribution of 

the time it takes for a new unit or an alteration of one old unit to be registered on the frame 

is highly skewed. Due to frame maintenance procedures, there is also very often a 

considerable difference in time between the actual and formal termination of a business. 

Therefore, most of the business surveys at the ONS share the information on deaths they 

obtain through their samples with other business surveys to speed up the information 
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process. In this chapter, I examine the effects of using sample surveys to update a frame 

that is used for repeated surveys. This is in principle how information of dead units is 

treated in business surveys at the ONS and some other national statistical institutes. 

It would seem natural that this new information should be made available to other sample 

surveys, which otherwise may include the dead units in their samples and therefore lose 

precision. However, as has been pointed out by Srinath (1987) among others, such a 

procedure may cause bias. I refer to this as feed back bias, which results whenever the 

sampling mechanism is not independent of the feed back procedure. For example, consider 

a situation where all dead units in the sample are deleted at the first wave of a panel 

survey. If no further deaths have occurred up to the second-wave observation of the panel 

units, the second-wave sample contains only live units. Without knowledge of the total 

number of live units in the population at the time of the second wave, an unbiased 

estimator of the total cannot be constructed. While more information about the population 

has been gathered when the deaths were recorded at the first wave, there is actually less 

information in the second wave-sample on the proportion of live units in the population. 

While the existence of feed back bias has been long recognised, little study has been made 

of the size of the feed back bias. I show how an estimate of the number of live units in the 

population can be used to construct an approximately unbiased estimate of the population 

total. 

A safe recommendation would be that no information on deaths firom sample surveys, 

other than &om completely enumerated strata, may be used to update the fi-ame when 

samples are co-ordinated over time (cf Ohlsson 1995, p. 168, and Colledge 1989, p. 103). 

However, to prohibit feeding back seems to deny oneself the use of all available 

information. I obtain an expression for the size of the feed back bias and show that the 

feed back bias can be estimated and used to adjust conventional estimators. 

Schiopu-Kratina and Srinath (1991) adjust the sampling weights to counter an expected 

too low proportion of dead units in the rotating sample of the Survey of Employment, 

Payroll and Hours conducted by Statistics Canada. Hidiroglou and Laniel (2001) discuss 

the feed back issue briefly. A general discussion of frame issues is given by Colledge 

(1995) and overviews of issues associated with continuing business surveys include 
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College (1989), Hidiroglou and Srinath (1993), Srinath and Carpenter (1995), and 

Hidiroglou and Laniel (2001). 

Instead of the terms 'eligible' and 'ineligible' I use the more emotive words dead and live, 

although my reasoning does cover all kinds of ineligibility. The discussion is confined to 

the estimation of the total 

== ( 3 1 ) 

of some study variable y' = {yi,y2Ja? ) on a population U with unit labels 7V}. 

When the sampled units are observed, I assume that all dead units in the sample are 

correctly classified as dead and the frame is updated with this information. This may be 

difficult in practice. In some surveys, however, eligibility of all nonresponding units can 

be correctly identified. 

Section 3.2 introduces the necessary notation and concepts and gives an expression for the 

feed back bias when estimating a total. Section 3.3 discusses three strategies that may be 

used in the presence of feed back and compares these in a simulation study. Chapter 3 

concludes with a discussion. 

3.2 An expression for feed back bias 

I assume throughout that a dead unit is always out of scope and that the value of the study 

variable of a dead unit is always zero. (It is conceivable that dead units are eligible in 

some surveys; for example, a business survey collecting data on production may have 

defined businesses that were alive at least a part of the reference period as eligible.) I 

adopt the design-based view that the study variable values are fixed and non-stochastic at 

any given point in time. The situation addressed is as follows. One or more samples are 

drawn firom the frame which comprises the original survey population, Uorig- For 

convenience it is assumed that the frame units and population units are of the same type. 

The updated frame, where all dead units that have been included in samples firom Uorig 

have been excluded, is referred to as the current survey population, Ucurrent- For example, 

two surveys may simultaneously work with a sample each, and after they have fed back, 
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Uorig has shrunk to Ucurrent- In this chapter I disregard births of new units and other deaths 

than those deleted through samples from Uorig-1 also disregard undercoverage, 

nonresponse and measurement errors. In practice, administrative sources will provide 

information on deaths. They work independently from the sampling procedures employed 

by the statistical agency and will therefore not contribute to feed back bias. These units are 

dead by administrative sources. We can think of these dead units as being excluded from 

the population. While the sampling design is here assumed to be SI, it can readily be 

extended to stratified simple random sampling. 

Let Ud and Ui be the two subsets of the current survey population, Ucurrent = U^^Ui, that 

consist of dead and live units, respectively. All units in Ud and Ui are assumed to be 

flagged on the frame as live. Units that are flagged as dead but for which the independence 

of detection and the sampling mechanism cannot be assured are called dead by sample 

survey sources. In our set-up, these are the dead units detected in samples taken from Uorig-

Let the set of these units be denoted by Usd, and we have the relationship 

^orig = ^ ^sd ' L^t N with 3 propcT subscrfpt be the size of each population, 

respectively. Then Ncurrent = Ni + Nd, and Norig -Ni + Nd + Nsd- At the time when samples 

are drawn from Ucurrent, Ncurrent and Nsd are known numbers, whereas Ni and Nd are 

unknown. Moreover, Nsd, Nd and Ncurrent could be viewed as random quantities depending 

on feed back results, while N; is fixed. Following principles of Durbin (1969) and more 

recently in Thompson (1997), we would in many situations prefer to condition on Nsd- For 

example, if it is seen that Usd is in fact empty, then it does not seem appropriate to include 

in the inference the possibility that Nsd could have been large. However, to analyse the 

development of the feed back bias over a series of waves in a panel survey when planning 

the survey, unconditional analysis would be preferable. An expression for the 

unconditional feed back bias is also obtained below. 

Denote by Unodeads the part of Ucurrent that was covered by the previous sample(s) drawn 

from Uorig, see Figure 3.1. Clearly, Unodeads is a random set depending on previous 

samples. Since Unodeads is winnowed from dead units we have c . The 
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complement in Ucurrem to Unodeads, denoted by Uwuhdeads, encompasses all of Ud and a part of 

Uf. we have 

^nodeads ^ ^withdeads ~ ^I ^ ^d ~ Ucurrent-

The only sets introduced so far that are non-random are Uong, Ui, and Uwuhdeads- The latter 

is viewed as non-random since it is assumed that U^ - U ^ ^sd , i s. the part of Uorig 

covered by previous samples taken from Uorig (subscriptp for 'previous'), have a total 

sample size determined by design. 

Figure 3.1. The original survey population, Uorig, and its subsets 
Uorig Uwithdeads ^ Unodeads ^ Ugd* ThC Sample frOm Ucurrent Uyrig Usd COnslstS of tWO 
sample parts, Sg and sj. 

To derive the feed-back bias I will first obtain the inclusion probabilities. To do this, it is 

useful to consider a sample of size n with a sample part Sa of size ria taken from Unodeads 

through PRN sampling or a panel sampling technique, and the remaining part Sb is taken 

from Uyvithdeads- If the sampling is done with a panel technique, the sample parts Sa and st 

are the old and new rotation groups, respectively. If the sample is drawn with PRN 

sampling, Sa and Sb consist of units with PRN's that fell, or did not fall, in the samples 

from Uorig, respectively. Whether the sample was drawn through PRN sampling or a panel 

sampling technique, the sample parts can be viewed as two fixed size samples, each drawn 

with the SI design from their respective subpopulation. I will condition on the outcome of 

ria and rib throughout. With the notation e a,) I refer to the event that a unit is first 
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included in the first-wave sample fi-om Uorig and then in the second-wave sample taken 

from what remains of the first-wave sample after dead units have been taken out. The 

notation (^6 5^) is analogous. Let l{k € 5^) = 1 when unit k is included in Sa, otherwise 

Recall that y,. =0 if A: is a dead unit and that Ucurrent = ^ w . Thus we have 

^ J = ) and, assuming that A// > 0, 

Pr[A: e | ^ , since a sample of size tia is effectively selected from a population 

of size Ni with the SI design (through an SI sample from Uong followed by an SI sample 

from Unodead)- Notc that a unit k in Sa must be alive since Unodeads consists solely of live 

units and only live units can be included in Sa-

To derive the overall bias it is convenient to analyse the biases from the sample parts Sa 

and Sb separately. I derive an expression for each of these, and they will be amalgamated 

in ( 3.10) below. Denote the bias of an estimator 0 for the parameter 0 by b{^, ^]. Then 

with respect to the population total = the bias of a general linear estimator 

iy''̂  = 2]^ based on Sa, with any given 's, is 

yk 

V , 

(3.2) 

For the sample part Sa, the naive expansion estimator that ignores the feed back bias would 

have weights Wk = Ncun-eJna- From ( 3.2 ) we see that the bias of this estimator, 

'(s„) _ ^current 

& 

IS 

(3.3) 
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Alternatively, the sampling of Sa can be seen as a two-phase sampling scheme, where the 

first phase is the set Unodeads being 'selected' from Uong- The first phase inclusion 

probabilities are 

G 1 ^ alive, TV,̂  ] = Pr(A: e , A: alivej)/Pr(^ a l i v e j ) 

( 1 4 ) _ ^nodeads / ^ I ^nodeads 

Thus, 

Pr[t e J,|vV,j]|:= ==:̂ 2-. (3.5 ) 

Note that (and thus cancels out. The probability of (kss^) depends on the 

feed back process to have taken place but not on the size of Usd-

Next, to derive the bias for the sample part % of size rib taken from Uwuhdeads, first note that 

is the sauiie evtait as (A sS&f,), v/tware 

Pf[*e C/waAdad,! JV,,] = FY|t 2C/,| -A/,,,] = - ( 3.6) 

ong ohg 

This conditional probability again does not depend on the relative sizes of Unodeads and Usd-

On the other hand, the probability of including a unit in Sb given that feed back has 

occurred is 

= (3.7) 
withdeads 

From ( 3.7 ) we obtain that the conditional expected value of is 

^ I ^nodeads 

The second equation above is due to the fact that given , all live units in U a r e 

equally likely to be in , which has - l̂ ôdeads live units. Therefore, the 

conditional bias of is 
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4 T ' ' . ' , K ) = Z , '^arig I M N, 
k b / nodeads | 

J 

\ 

Vk 

V ^withdeads N, Vk ( 3 ^ 0 

For the naive expansion estimator with weights the bias is 

where 

( 1 9 ) 

B ^oxjjent ^ I ^nodeads j ^current C"^/ ^nodeads } ^ I cuirent ^nodeads } 

^ withdeads ^ I 

^ d ^nodeads 

N,{N^-N) 
The bias is always non-positive since 5 < 0. It is easy to see that B is an increasing 

AuKfkmofjVd^ amce =JVwmM*6-̂ ^d^0,T^h%%^Vm%^bMkisdKGxedinHnberofaH 

dead units in Uorig- It is also readily seen that the maximum of jB is attained when Usd 

encompasses all dead units in Uorig, that is, when Nsd - Ntotaideads-

Combining ( 3.9 ) with ( 3.3 ) we obtain the overall bias of iy = to be 

N„ \ 

-2 _y* — t. 
N„ current 

K.yA+^ . . . y J j -4 

n V 

N. 
CT̂rrgMf 

V 

and hence 

^b ^ nodeads 

n n N, 
(3.10) 

withdeads J 

The bias in the expansion estimator is really down to not knowing the correct population 

size. In ( 3.3 ) the bias stems from multiplying the sample average over live units with 

Ncurrent rather than the unknown Ni. The bias from the sample parts Sa and st will in 
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absolute terms be less than ( 3.3 ) and ( 3.9 ), respectively, if some of the dead units in the 

samples from Uorig have not been identified as dead and therefore have not been weeded 

out. This would happen, for example, if the status of nonresponding units is difficult to 

determine. 

An unconditional analysis in the presence of feed back can be obtained directly by taking 

expectation of ( 3.10 ) with respect to . Thus, unconditionally, we have 

E (W7WU 
V / 

n, -E(NJ 

N, nNI 
(3.11) 

where E{N^j) = and V{N,,) = . 

Lavallee (1996) took an interesting approach to a similar problem with panel survey data. 

In that paper, the problem of firame update using a panel design with rotation is addressed 

among other issues. My approach is different &om the approach of that paper in that I 

consider the two conditional probabilities Pr[A: alive, ] and Pr[it e ̂ ^ ] 

separately. 

3.3 Three simple strategies 

A strategy, which is referred to as Strategy 1 here, is to feed back, delete the set Usd from 

the frame and accept the feed back bias. However, the size of the bias is seldom known. 

The estimator for Strategy 1 is f = where scurrent is a sample taken from 
n 

Ucurrent- This estimator can also be viewed as the common estimator of a domain total, 

where the domain here is the set of live units (Cochran 1977, formula 2.54). To obtain 

Strategy 2, note that if consistent estimates of and 'Ni are available these may be 

plugged into (3.10) or (3.11 ) and an estimator with favourable properties is obtained: 

f ; == fy(l + c)-', ( 3.12 ) 
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N H ft ^ sd 

where c = — — for both the conditional and unconditional cases 

since the term n , / { N i n (3.11 ) is negligible. The estimates and 

Ni of the sizes of the domains Ud and Ui can be obtained from a sample from the 

original or current survey population with 

Jl, if unit k e {N; ), 

[O, otherwise. 

As the following argument shows, we do not expect the bias of ( 3.12 ) to be large: 

E(T;)=E[iXl*cy] »£(f,)(l + c)- '=i,(l + c)(l+c)-' 

Another strategy, here denoted by Strategy 3, is to feed back the information that certain 

units are dead, but to retain them on the frame and allow them to be sampled. The 

resulting estimator is unbiased, but the disadvantage of this strategy is that the precision 

will suffer as part of the sample is lost on ineligible units. The estimator of Strategy 3 is 

^ . It is shown in Appendix 2 that Strategies 2 and 3 are the same if Me 

n^/n = 0, =Nj +N, and if N, is estimated as Norig times the proportion live units 

found in the samples covering Up, that is, TV; = 

3.4 A simulation study 

A simulation study may shed some light on which of the Strategies 1-3 is to be preferred. 

As was mentioned in Chapter 1, in business surveys estimates for subpopulations 

(industries) are often more interesting than the whole population. To simulate a 

subpopulation, a frame consisting of 1000 units was created to form the original survey 

population. A gamma distributed value, Yl, was associated with each unit. I used the same 

gamma distribution as the one that generated Population 12 in Lee, Rancourt, and Samdal 

(1994, p. 236). The coefficient of variation (population standard deviation divided by the 

mean) was 0.57. Another study variable, Y2, was created by performing independent 
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Bernoulli trials, one for each population unit, which obtained value 1 with probability 

equal to 0.5 and value 0 otherwise. Unlike in Lee et al. (1994), some of the units were 

dead. Each unit was independently of other units classified as dead with a probability 

Pdead- All dead units were assigned zero values for both Y1 and Y2. A set of Y1 and Y2 

were simulated for each of four values of Pdead- 0.03, 0.05, 0.2, and 0.5. These sets 

contained 29, 54, 201 and 494 dead units, respectively. Having Pdead = 0.50 is not 

unrealistic; there are situations where there may be 50% ineligible units or more. 

A PRN was attached to each unit and the units were laid out along a PRN line. The first 

sample, si, was drawn by identifying the 500 units with the smallest PRNs. All dead units 

in were flagged as 'dead by sample survey sources'. Hence, Up covered approximately 

the first half of the PRN line. The frame with the units flagged as dead by sample survey 

sources excluded made up the current survey population. The estimates ofNd and Ni used 

in Strategy 2 were based on si. A second sample, denoted by S2current, was drawn by taking 

100 units to the right of a starting point, start 2, disregarding units dead by sample survey 

sources. Another sample of 100 units was selected from start 2, but units dead by sample 

survey sources were this time allowed to be included in this sample. Hence, this sample 

was drawn from Uong, and we denote it by S2orig- Figure 3.2 shows the PRN intervals and 

the study variable Y1. 

The procedure described in the preceding paragraph was repeated 1000 times. That is, for 

each of the values of Pdead mentioned above and for each of three starting points of 52, to 

be defined, 1000 sets of PRNs were generated and attached to the units. The frame was 

reordered for each new set of PRNs, and three samples were drawn for each reordering (si, 

S2current, and S2orig)- Two values of Start 2, 0.0 and 0.7, were chosen so as to make the 

proportion of S2current that fell in Unodead 100% and 0%, respectively. That is, njn was set to 

100% and 0%. Further, to make njn on average 50% under each of the chosen Pdead, 

appropriate values of start 2 were derived. They are 0.448, 0.447, 0.438, and 0.4 for the 

Pdead values 0.03, 0.05, 0.2, and 0.5, respectively. 
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Figure 3.2. A plot of one of the simulated populations, the study variable Y1 against 

the PRNs, with Pdead - 0.20. The dots are units included in S2current (the sample from 

the current survey population); the triangles are units that are dead by sample 

survey sources and squares represent units belonging to the current survey 

population but are not included in the sample from this population. The PRN 

interval for 5i (the 500 units in the first sample from the original survey population) 

is (0, 0.51) and the one for S2current is (0.44, 0.55). 

In summary, the population and samples sizes, the study variables Y1 and Y2, and which 

of the units that were dead were held fixed in this study. For twelve combinations of Pdead 

and njn^ the reordering of the units on the PRN Une through the simulation of new PRNs 

made the following factors vary: 

• which of the units that were included in Ji, sjcurrem, and S2orig\ 

" how many and which of the dead units that were dead by sample survey sources; 

» which of the units that belonged to Unodeads and Uwuhdeads-
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Thus the quantities N^d, Nd and Ncurrent vary in the simulations. It seems practical to let 

them do so rather than to control them in an experiment with more factors than Pdead and 

Table 3.2. Bias, % of total of Yl. The first entry in each cell is the bias under 

Strategy 1, the second is the bias under Strategy 2. 

Average of njn 

Pdead 0% 50% 100% 

0.03 -1.6 -0.1 0.4 0.4 1.5 0.0 

0.05 -2.8 0.0 0.4 0.4 2.9 0.0 

020 -10.2 -&2 1.5 0.4 127 0.1 

OJO -24.6 0.2 12j 0.3 4&0 0.2 

Table 3.2 shows the empirical relative bias of Strategies 1 and 2, computed as the straight 

average of the 1000 differences between the estimate and the parameter in terms of the 

percentage of the total obtained in the simulation. Strategy 3 is unbiased and is therefore 

not included in Table 3.2. The bias of Strategy 3 that nevertheless appeared in the 

simulations reflects the simulation error; it was at most 0.5%. As seen in Table 3.2, 

Strategy 2 is virtually unbiased as well. Note that the simulated bias under Strategy 1 is 

what (3.11 ) predicts (with allowance for simulation error). This bias is appreciable in 

nearly all cases and if the proportion of dead (or ineligible) units is high the bias can be 

very severe indeed. Figure 3.3 shows the conditional bias given Nsd for Pdead = 0.50 and 

Mg/n = 0% . Note that the bias given by ( 3.9 ) is locally well described by the regression 

line in the figure defined by the OLS fit of the conditional bias on Nsd- For example, if 

Nsd = 220, then both and )/(^ong ~^p) equal 0.56 andB = -0.31. With 

= 250, ^ = -0.25. 

53 



' ! ' : : i : : i ; 

Nsd 

Figure 3.3. The simulated conditional bias plotted against the number of units dead 

by sample survey sources, Nsd, for Pdead = 0.50 and jn — 0%. An OLS regression 

line shows the general trend of the conditional bias as a function ofTV ĵ. 

To assess the bias it helps to look at the coverage probabilities. Table 3.3 shows the 

empirical coverage probabilities, based on symmetric 'confidence intervals' with a width 

of two times the simulated empirical variance of each side of the point estimate. While 

Strategy 2 gives in all cells coverage probabilities close to the targeted 95%, Strategy 1 

achieves that in general only for the population with 3% dead units. The coverage 

probability under Strategy 1 tends also to be acceptable for populations with a larger 

proportion of dead units, if half of the sample is taken from the part of the PRN line where 

dead units have been weeded out, and the other half from the part of the PRN line where 

the original proportion of dead units has been retained, as the negative bias from the first 

half of the sample tends to cancel out the positive bias from the second half. 
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Table 3.3. The coverage probability in percentage for estimating the total of Yl. The 

first entry in each cell is the under Strategy 1, the second is the coverage probability 

under Strategy 2. 

Average of njn 

Pdead 0% 50% 100% 

0.03 94^ 94J 94.6 94.8 94J 95.1 

0.05 93.3 95.2 94.4 93.9 90.8 95.0 

&20 65^ 9 4 j 93.8 94.8 46^ 94.6 

OJO :21.2 !95.1 78.4 94.7 0.0 94.8 

Tables 3.4 and 3.5 show the variance of the estimated totals of Yl and Y2, respectively, 

under Strategies 2 and 3 relative to that of Strategy 1, which in all cases gives a smaller 

variance than Strategy 3. Hence, considering the extra complexity of Strategy 2, the feed 

back strategy may be preferable for populations with a small proportion of ineligible units, 

say 3% or less. If this proportion is larger than, say, 5%, the bias of Strategy 1 may cause 

poor coverage probabilities and misleading estimates. The variance of Strategy 2 is no 

worse than that of Strategy 3; in most cases Strategy 2 is superior. The non-monotone 

variance ratios in the bottom row of Table 3.4 is due to the estimation of % and Ni 

combined with the specific details of the simulation. 

3.5 Discussion 

I have derived conditional and unconditional expressions for the feed back bias when the 

total is estimated with the expansion estimator and I have shown that the feed back bias 

can be large. With as little as 5% ineligible units on the frame, feeding back information of 

these from sample surveys can result in about 2-3% bias. However, a small-scale 

simulation study indicates that if the proportion of ineligible units is 3% or less, the feed 

back strategy does not seem to create problems in terms of bias and variance. Having said 

that, the bias-variance trade-off is rather more complicated in business surveys than in 

social surveys for reasons discussed in Chapter 1. 
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Table 3.4. Variance ratio of the estimator of the total of Yl. The first entry in each 

cell is the variance under Strategy 2 relative to that of Strategy 1, the second is the 

variance under Strategy 3 relative to Strategy 1. 

Average of njn 

Pdead 0% 50% 100% 

0.03 1.04 1.04 1.00 1.06 (198 L08 

0.05 1.08 1.08 0.98 1.14 0.95 1.15 

OJW L28 1J# &85 L27 0^3 1.46 

0^0 1.85 1.85 &52 L34 &58 224 

Table 3.5. Variance ratio of the estimator of the total of Y2. The first entry in each 

cell is the variance under Strategy 2 relative to that of Strategy 1, the second is the 

variance under Strategy 3 relative to Strategy 1. 

Average of njn 

Pdead 0% 50% 100% 

0.03 1.03 1.03 1.00 1.03 0.97 1.03 

0.05 1.06 1.06 0.99 1.04 0.95 1.06 

OJW 1.25 1.25 0.92 1.15 &80 1.19 

OJO IjW L81 0.65 1.40 &50 L36 

I have also derived a virtually unbiased estimator. The simulation study shows that this 

estimator compares favourably in terms of variance with the alternative strategy of 

retaining ineligible units on the frame and letting them be included in further samples. 

This estimator relies on the availability of consistent estimates of the number of eligible 

and ineligible units in the population. 
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In order to facilitate the theoretical development, I have made simplifying assumptions. 

The most important of these is the assumption that all dead units, or more generally all 

ineligible units, have been found in earlier sample surveys and have been fed back to the 

frame. We have envisaged a frame with one 'white' area, where all ineligibles have been 

flagged as such, and one 'black' area, where no ineligibles have been touched. In practice, 

this is not likely to happen. If the frame is moderately large and used for many continuing 

surveys, some of which may feed back to varying intensity, the frame will turn 'grey' 

rather than 'black and white'. Clearly, the feed back bias will then in general be smaller 

than in the 'black and white' situation. It has not, however, been in the scope of this thesis 

to quantify the bias for a 'realistically grey' frame. In this sense, what has been examined 

here is a worst case scenario. 
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Chapter 4 

][)o42!s itlbiiE f lo ir 

Business surveys often pose a variety of data problems that can be very difficult to 

resolve simultaneously. For example, the study variable(s) may be highly skewed, 

there may be a large proportion of zero responses, some negative values and there may 

be several auxiliary variables that can be used to improve estimation but these may 

include some extreme values. 

Till recently, simple survey estimation techniques such as classical ratio or regression 

estimation have been sufficient for the business surveys carried out by many National 

Statistical Institutes, such as the ONS. However, the wider use of more sophisticated 

estimation methods, the growing use of a greater amount of auxiliary information in 

estimation, and the pressure to substantially reduce sample sizes or to produce accurate 

estimates for small domains has increased the importance of recognising and dealing 

with the data issues mentioned above. Chapter 4 illustrates methods for addressing 

some of these issues in a real business survey, with an emphasis on the importance of 

model choice in model-assisted GREG estimation. I will illustrate these methodologies 

using data from the quarterly survey of capital expenditure (the CAPEX survey) 

carried out by the ONS. 

Section 4.1 reviews some GREG theory. Section 4.2 introduces the CAPEX Survey. In 

Section 4.3 a relationship is shown between the g-weight of a sample unit and its 

DEBET A, a well-known measure of the influence of a sample unit on the slope of a 

regression line. In Section 4.4 the result of applying different GREG estimators to the 

CAPEX survey data is reported. This leads to some rather surprising outcomes, and in 

Section 4.5 we explore these data to reveal particular features that underpin these 

outcomes. Section 4.6 offers an explanation of the behaviour of the GREG estimators 

in the light of this analysis. Section 4.7 reports on an attempt to get around these 

problems. In Section 4.8 the findings are discussed. 
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4.1 A summary of the theory for the generalised regression estimator 

The aim of many business surveys is to estimate totals and differences between totals. 

In this section I review the literature on design-based linear methods of estimating the 

total ty = ^ ŷ . of a study variable y' = ( j , , J2' • • • ) on a population U where the 

units have the labels {l,2,...N], The issue is how to use auxiliary information 

effectively. My main focus in Section 4.1 is on results that will be referred to in the 

remainder of Chapter 4 and also in Chapter 5. A far-reaching exposition of sample 

survey theory and philosophy can be found in Thompson (1997). Valliant et al. (2000) 

contrast design-based estimation with model-based estimation. Recent overviews of 

sample survey theory, in particular regression estimation, include Rao (1997) and 

Fuller (2002). I concentrate on single-study variable estimation. Multivariate study 

variable estimation issues are discussed, among others, by Bethlehem and Keller 

(1987) and Chambers (1996). 

I assume that there is a known auxiliary vector x'̂  = ^pk) each 

element in U. This assumption is unnecessarily strong for most estimators I study, but 

more often than not, x* is indeed available for all units on the frame in actual business 

survey systems. A sample 5 of size n is taken and (x^, ^ \ ) i s assumed to be observed 

for all units k in the sample, hi Chapters 4 and 5, nonsampling errors, that is 

nonresponse, measurement and coverage errors are disregarded. 

Before defining and showing why the GREG is reasonable, I start with the more 

elementary Horvitz-Thompson estimator. 

4.1.1 The Horvitz-Thompson estimator 

Consider estimation of the population total . It is easy to see that there is for a 

general sampling design and a general configuration of y' = ( j i , ' • • • ) only one 

design-unbiased estimator of the form 
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where is a constant and Ik is an indicator function that takes the value 1 if unit k is 

in the sample and 0 otherwise. The unbiased estimator requires the weights w^to equal 

the inverse of the first-order inclusion probabilities = Pr(/^ = l). As was mentioned 

in Chapter 1, this estimator is usually called the Horvitz-Thompson estimator (HT-

estimator; Horvitz and Thompson, 1952). Following Samdal et al. (1992), I will denote 

the HT estimator by iy^ and write 

with w,. = n f . 

The variance of the HT-estimator is ^ , where 

- K^nI with = Pr(/^. = = l) being the second order inclusion 

probability. The most common variance estimator is ^aykyJ^k^i ' where 

= {71,̂1 • For & fixed sample size and measurable design (i.e. all 

Ki.1 > 0), another unbiased variance estimator is the Yates-Grundy-Sen variance 

estimator (Yates and Grundy 1953, and Sen 1953): 

The HT-estimator does not use any auxiliary information other than through the choice 

of inclusion probabilities, which are controlled by the survey statistician. 

The design-unbiased property is regarded at most national statistical institutes as highly 

desirable. However, the explicit use of auxiliary information in the estimator is also 

regarded as extremely important. In business statistics, the perceived main reason for 

this is that auxiliary information will usually increase precision considerably. It may 

also reduce nonsampling errors. In fact, in household surveys this may be the most 

important benefit of using auxiliary information, traditionally through post-

stratification (Jayasuriya and Valliant, 1996). Bethlehem (1988), Lundstrom and 

Samdal (1999, 2001) and Fuller (2002) discuss the use of generalised regression 

estimation to reduce nonresponse bias. Skinner (1999) discusses calibration as a means 

of reducing both nonresponse bias and effects from measurement error. 

60 



The linear form of any estimator, such as (4.1 ), is also considered very important 

since it helps computation. Another reason for wanting a linear estimator is the nice 

interpretation it offers; the form of the estimator reflects the view that a sampled 

element can be seen as representing co,. - 1 nonsampled units in addition to itself and 

thus has a strong intuitive appeal. Brewer (1999, p. 36) calls this the Representative 

Principle and points out that good design-based inference rests on the compliance to 

this principle. The most common compromise between these conflicting goals is to 

only require approximate design-unbiasedness and hence allow for a wider class of 

estimators. I shall continue the discussion of the benefits of the linear form of an 

estimator in Chapter 5. 

4.1.2 The calibration estimator 

The calibration estimator can be written as 

where the weights are derived as is described in the following paragraphs. The 

calibration estimator constitutes a class of linear estimators that satisfy the following 

constraint for any realisation of Ik,k = I, 2, ... ,N\ 

(4 .3) 

where t^ = is a vector of known auxiliary variable totals (often referred to as 

benchmarks or control totals) and are appropriate weights that may be sample 

dependent. With the terminology of Deville and Samdal (1992), an estimator that 

satisfies ( 4.3 ) is calibrated on the known population totals t^. This class of estimators 

includes all of the most widely used business survey estimators of the total that 

explicitly use auxiliary information. The totals t̂  are often published in tables or 

elsewhere. Often the publications contain also estimates of tx either explicitly or 

available as, for example, a sum of domain estimates. Consistency between these is a 

concern for both statistics users and producers. Hence, the property of an estimate 

being calibrated on some population totals is highly desirable in official statistics. 

Also, it is reasonable to regard a discrepancy between known totals t;̂  and 

corresponding estimates as an indication of survey error in the study variables. 
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The idea of Samdal's and Deville's calibration estimator technique is to find a linear 

estimator that satisfies ( 4.3 ) exactly and makes the weights 'as close as possible' 

to the weights . One way of making the latter requirement operational is to 

minimise the design-expectation of the sample sum of the distances between w'̂  and 

, where the distance is measured by some reasonable distance function ) • 

Thus, the that minimises (w^, w'̂  )] over all samples 5 under (4.3 ) is 

sought. This is, in principle, an easy exercise of the Lagrange multiplier technique; 

however, if the solution exists and is unique depends on the exact form of the distance 

function. The resulting estimator is ( 4.2 ). 

The simple form of (4.2 ) is attractive from a practical point of view. Of a particular 

note is that the same set of weights can be used for different study variables. However, 

the calculation of the weights may pose numerical problems for some distance 

functions for which there is no explicit solution. There are many possible distance 

functions, the only restriction being some general mathematical properties. See Deville 

and Samdal (1992), Bardsley and Chambers (1984), Singh and Mohl (1996), 

Thompson (1997) and references in the latter for a discussion of different distance 

fLmctions. It is not clear why any of them should be preferred to the others. Simulation 

studies by Singh and Mohl (1996) do not indicate large differences. Estevao and 

Samdal (2000) argue that the distance functions studied by Deville and Samdal (1992) 

and Singh and Mohl (1996) are so similar that the estimators should be similar at least 

for large samples. However, from a theoretical point of view there is a particularly 

interesting distance function that leads to the GREG estimator. 

4.1.3 The GREG estimator 

Let 

, (4^4) 

where qk is some additional set of weights yet to be specified. With this distance 

function the general form of the calibration estimator becomes 
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where = Sks^k- As was said in Chapter 1, the sample-dependent gks, k= 1,2,... n, 

are known as the 'g-weights' and are defined as 

gk + (4.6) 

Thus the 'total' weight in ( 4.5 ) is partitioned into a purely design-

dependent weight Wk and a weight that forces the estimator to be calibrated on t̂ ;. 

Note that we do not need to know values of auxiliary variable for individual non-

sample units, only tx, to compute ( 4.6 ) and (4.5 ). 

The estimator ( 4.5 ) is widely known as the generalised regression (GREG) estimator. 

It is a special case of the calibration estimator. From the calibration property it follows 

that . Note that ( 4.5 ) is reminiscent of a HT-estimator of , 

although this is not a proper population parameter since the are sample dependent. 

Nevertheless, this shows that if the g-weights for a particular sample are far away 

from 1 then we might be estimating something that is very different from ty. 

Another derivation of the GREG estimator is obtained by starting from the difference 

estimator, 

fydr = +It],*"* (y* --j/f)' (4-7) 

where is a non-random proxy fbrjyt- It is readily seen that this estimator is design-

unbiased no matter the y l . Since ^ ~ y l ) is the HT-estimator for 

k - variance of (4 .7) is )= X)"' " -

Thus, the better the proxy, the smaller the variance, and hence a good estimator in 

terms of variance will be obtained if the proxies are computed via a good prediction 

rule. Standard linear regression may provide the prediction rule. However, in the 

model-assisted GREG a version of standard linear regression that uses inclusion 

probabilities is preferred. To motivate the GREG on the basis of ( 4.7 ), a 

superpopulation model M is assumed: 
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Model M 

1. are realisations of the independent random variables 

2. = 

3. P ^ k ) = o-^,A:=l ,2 , . . . ,# 

4. CoV;)f(]^,}})=0fbrA^3^Z, 

where the moments are taken over the model and P and cxl ,k=\,2, ...,N,zxq 

unknown parameters. 

Samdal et al. (1992, pp. 226-227 and pp. 238-239) discuss the role of the model in 

model-assisted theory. They focus on design-bias and design-variance and say that the 

GREG is asymptotically design-unbiased no matter what model has been chosen but in 

terms of design-variance there may be a big gain over the HT-estimator in choosing the 

best model. They go on to say on p. 239 that 'if the population is not well described by 

the model, the improvement on the tt estimator [i.e. the gain of using a GREG rather 

than the HT estimator] may be modest, but the regression estimator still guarantees 

approximate unbiasedness'. As we shall see, this statement is rather optimistic. 

The quantity qk is in the context of the general calibration estimator seen as an extra, 

unspecified weight. In the context of GREG estimation, erf = and erf is seen as a 

model parameter. The introduction of an explicit model into the reasoning is a 

fundamental difference between the 'calibration view' and this 'model assisted' view. 

A finite population parameter vector B is envisaged: 

B = (x2:-'x')r'x2:-'Y, 

using the same notation as in standard regression theory. The parameter B, referred to 

as the 'census fit' by Samdal (1982), can be viewed a hypothetical weighted least 

squares estimate of the superpopulation parameter vector p . The census fit B, in turn, 

is estimated using HT-estimators for (XE~'X') ' and XL"'Y, respectively. Thus the 

estimator of B is 

where is the diagonal matrix of the first-order inclusion probabilities for the units 

in 5, and subscript 5 indicates that the quantities are based on the sample only. The 
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estimator B is approximately design-unbiased for large samples (Samdal 1980). Using 

= x^B in (4.7 ) the following well-known form of the GREG is obtained. 

f.__ = (y* --j/*). ( 4.8 ) 

It is not necessary to have HT-estimators in the GREG, as is noted by Samdal et al. 

(1992, p. 230), although this is in practice the by far most common alternative. 

The estimator ( 4.8 ) is algebraically equivalent to ( 4.5 ). Furthermore, if cjI can be 

expressed as linear combination of the components of the auxiliary vector for any unit 

k, i.e. if the following condition holds for some constant p-vector l e , 

erf , ( 4.9) 

for all for all k eU, then (proof in Samdal et al, 1992, p. 231). The 

simplified form ^ j)* may be called the projective form of the GREG. 

Assume for a moment that the model contains only one auxiliary variable and no 

intercept. If aj =a^ >0 then (4 .9) is not satisfied, since cr^ for all real-

valued X and for a general configuration of the auxiliary variable Xk,k= 1,2, ...,N. If, 

on the other hand, erf =a^ >0 and x'̂  = (l ), we can define k' = o ) and we 

have cr̂  = . 

Even if the GREG is confined to cases where the projective form is valid, it comprises 

a large class of estimators. As an example, consider a special case of model M. Let the 

G 

population be partitioned into G groups, U =[jUg and let the model be an ANOVA 

model with a constant expectation and variance of Yk within the groups (poststrata). 

Assume that unit k belongs to group g and let be a vector with 1 in the gth position 

and zeroes elsewhere. Then the model is 

) = <Jg,foTkeUg. Condition ( 4.9 ) is satisfied with 

k = [a^ ,..., (Tg,..., cTp ) . Here B is constant within groups with the estimator 

= Z , / E , sample part r. f , so 
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G G 

' Tvtwere A ,̂is theiiuniber ctFimitsin TTiG 
s=i ' g-i 

estimator is now called since this is the widely used poststratified estimator 

(e.g. Cochran 1977). Thus the poststratified estimator is a special case of the GREG. 

Other special cases of the GREG are discussed by Samdal (1982) and Samdal et al. 

(1989,1992). 

Note that the g-weights depend on both model and design. Hence the role of the g-

weights is to formally bring the survey statistician's beliefs, expressed in a model, into 

the estimator. For an amusing illustration consider Basil's elephants. In a blatant 

breach with what Brewer later called the Representative Principle, Basu (1971) gives 

an example of a design with the worst possible connection between the inverse of the 

inclusion probabilities and the number of units a sampled unit can be thought of 

representing. The elephant Sambo (unit /) is known to have a study variable value, yt, 

close to the average of the population. Sambo is selected with a design close to a 

judgement sample (or with what has later been called a balanced sample) and the very 

reasonable estimator of ty is rejected in favour of the HT-estimator (4.1 ). Li an 

attempt to impose some inclusion probabilities on the design that in effect dictates that 

unit i should be selected, this units is given inclusion probability 99/100. Since the 

inclusion probabilities in Basil's example are silly, the HT weight w. = % 1 

attached to the selected unit i makes it represent far from itself plus N-I nonselected 

units. The GREG (4.5 ), however, recovers the Representative Principle if x* is taken 

as a scalar that always takes the value 1, and if Ej^{Y^) = (3, and = . Then 

the g-weight is N n f and the GREG is Nyi. Here the 'model-adjustment' that is 

implicit in the g-weights is drastic, since they make the inclusion probabilities vanish 

altogether. Another example of the role of the g-weights is the ratio estimator where 

the g-weights are t̂  / , which is a straightforward adjustment for sample imbalance 

with respect to the auxiliary variable. In both these examples the g-weights are 

constant over k, which is not in general true. 
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It is convenient at this stage to recall some asymptotic properties of the GREG. Let 

subscript t index a sequence of populations and associated parameters and estimators. 

In all frameworks deployed to explore asymptotic properties of estimators in finite 

population sampling, the population IJ is thought of as being embedded in a sequence 

of populations, % r = 1, 2, 3, .... The size M grows indefinitely as ^ ->oo, that is 

> CO , while the structure of the population remains the same. In the asymptotic 

framework of Isaki and Fuller (1982), « without restriction on the relative pace 

of the increase of 'Nt and rif A sample St is taken from Ut using the sampling design 

p, (5,). The sequence of estimators of the Ut -total is said to be asymptotically 

design-unbiased if lim(£'(f^)- ) = 0, where the expectation refers to the p, {s,) 

distribution. Similarly, the sequence of estimators i is said to be design-consistent if 

/ 

lim Pr 
V f—MO 

J y 

=0, Vg>0 . 

What is meant when one says that 'an' estimator has some asymptotic property may 

not be entirely clear, but for the purposes of the thesis we do not need to go into great 

detail here. 

Under certain regularity conditions, the GREG is design-consistent and asymptotically 

design-unbiased (Isaki and Fuller, 1982, Robinson and Samdal, 1983, Wright 1983). 

The former property implies the latter under mild conditions. There are slight 

differences in the definitions of the asymptotic framework, the regularity conditions 

and the asymptotic properties, but these differences 'do not seem to be consequential' 

(Samdal and Wright 1984, p. 148). 

Although being asymptotically design-unbiased, the GREG is certainly not (exactly) 

unbiased. The bias of the GREG is (Samdal 1980) 

Z c o v t i v A j ' j J 
y=i 

where ly is a /-vector of ones and is theyth component of . This expression 

shows that high-leverage points may cause bias. 

Next, I consider the Godambe-Joshi lower bound (Godambe and Joshi 1965). To 

define it we need the concept of anticipated variance (Isaki and Fuller 1982), which is 
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the variance of Ty, - Ty, under the joint distribution of a superpopulation model ^ and 

the sampling design p{s), i.e. (f^ ^ ). ^ • The Godambe-

Joshi lower bound of the anticipated variance for any estimator that is unbiased under 

the joint distribution, that is, 

IS 

r 
_ L _ i 

Under model M, the variance of the GREG attains the Godambe-Joshi lower bound 

asymptotically (e.g. Wright 1983, Samdal et al. 1992, p. 453). 

4.1.4 Estimating the variance of the GREG 

Let E^=y i^ - x^B be the 'census fit residuals'. It is straightforward to show (e.g. by 

modifying the proof of Samdal et al. 1992, p. 231) that under (4.9 ) 

ty = y,. = x'^B. Using the calibration property 

ty = t^B = ^ is obtained. Hence, under (4.9 ), the error of the GREG is 

fyn* 

This result suggests that the g-weights should appear in the variance as well as in the 

variance estimator. Through Taylor linearisation an approximate expression for the 

variance is obtained; Av(ty^^g)= Ei^EJtCj^tc^ (Samdal et al. 1992, Sec. 6.6). 

Hence a natural variance estimator, akin to the HT-variance estimator, is 

, ( 4.11 ) 

where - x^B are the 'sample fit residuals'. 

Since there are no g-weights in (4.11 ), Samdal (1982) proposes that the g-weights are 

put back in the variance estimator. Thus, the suggested variance estimator is 

- (4.12 ) 
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Samdal et al. (1989) show that if ( 4.11 ) is design-consistent then so is ( 4.12 ). Both 

of them are approximately design-unbiased for see Samdal (1982), although 

A ) tends to be smaller than the exact variance. However, if (4.9 ) holds, then 

(4.12 ) is approximately model-unbiased with respect to M, which is in general not 

true for (4.11), see Samdal et al. (1989). As a consequence of this, (4.12 ) specialises 

to more appealing formulae than does (4.11). Some of these have also been shown 

superior in simulation studies. Let us now take a look at two examples. 

Example 1: The poststratified estimator 

G 

Recall that the poststratified estimator is defined as , where 
g=i 

j'Yjs • Under simple random sampling without replacement, SI, 

G 

fwm, vrKb beuystbestnughtrneaifbrdiegfA 

poststratum. Using the variance estimator ( 4.11 ), it is shown in Appendix 3 that the 

variance estimator of the poststratified estimator 

is 

(4.13) 

- \2 

where = — and rig is the number of units in f , . This is not a very 

natural estimator. One problem with ( 4.13 ), stemming from the fact that it is not 

conditional on the realised values of the random variables «i, W2, is that the 

weights of the estimated poststratum variances are proportional to %. Assuming 

that are estimated without error, we see that in (4.13 ) poststrata that happened to 

get a smaller than expected sample size will give a smaller contribution to the variance 

than expected. Also the variance estimator that follows from Cochran's (1977, p. 135) 

variance formula suffers from a similar conditional shortcoming: this one is insensitive 

to the outcome of the poststratum sample sizes. Holt and Smith (1979) and Samdal 

et al. (1989) argue that this is counterintuitive. Note that the g-weights 

= N^n/Nn^ are constant within poststratum g. With these in (4.12 ) we 

obtain the variance estimator 
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, ( 4.14) 
V Vg-I 

M_—1 
where s^ = — ; . Unlike ( 4.13 ), the estimator (4.14) has the appealing 

property of inflating the variance for poststrata with small sample sizes and letting 

large sample poststrata be more stable. A similar argument can be made about 

Bernoulli sampling, which is a design with a stochastic overall sample size. See 

Samdal et al. (1989, Ex. 4.2; 1992, Ch. 7.10.1). 

Example 2: The ratio estimator 

The variance estimator ( 4.12 ) for a ratio estimator for simple random sampling is 

(4.15) 
t 

X7I J V 

where is the (constant) g-weight squared. This variance estimator has in 

simulation studies been shown to be better than the corresponding estimator without g-

weights (Wu and Deng, 1983). 

Software has been developed for the computation of (4.12 ). Fuller (2002) gives a list 

of relevant computer implementations although his list is already slightly outdated. 

Fuller also discusses other variance estimation methods such as the jack-knife. 

4.1.5 Problems with the GREG estimator 

The GREG is very flexible in that it comprises a large number of different estimators, 

some of which are widely used. There is no limit to what auxiliary variables that can be 

used apart from some mathematical restrictions such as the non-singularity of the 

matrix . The auxiliary variables may be qualitative or quantitative; and 

they may be associated with units of different level, e.g. company and local unit. 

Furthermore, since the GREG is derived for a general set of inclusion probabilities it 

can be specialised to any sampling design. 
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The GREG estimator has received a lot of attention the last decades, in particular after 

the publication of the book Samdal et al. (1992), which is now widely regarded as part 

of the standard literature in survey sampling. One reason for the popularity of the 

GREG is undoubtedly its flexibility in spite of its simple linear form, which is 

attractive both from a conceptual and computational point of view. Also, the model-

assisted approach provides explanation in two ways: the model explains why some 

estimators work better than others in a particular situation and the models in general 

show how various estimators are interrelated. In a classical design-based account (e.g. 

Cochran, 1997) different estimators tend to be jumbled up together. Model-assisted 

theory has certain elegance. Chalmers (1982, Ch. 6) argues that elegance does play a 

major role for the survival chances of a theory. 

However, the GREG estimator has some serious downsides, some of which have not 

yet been fully explored. First, one well known drawback is that the GREG can, and 

often will, give negative weights. This may lead to poor estimates. The estimate may 

even be negative for a variable that cannot take negative values. 'In practice, negative 

weights are rare...', Stukel et al (1996, p. 119) write. This maybe true outside the 

realm of business surveys. However, I will give an example based on real business data 

where the estimate for a very reasonable model is close to zero due to the adjustment 

term discussed above in conjunction with (4.8 ) and (4.9 ). As noted by Chambers 

(1996) and as will be discussed ftirther below, negative weights is symptomatic of 

deeper estimation problems and model misspecification. I also discuss a popular 

method of restricting the g-weights to, for example, positive values. 

Second, the fact that design-weights and the calibrated weights are 'as close as 

possible' does not necessarily mean that they are similar. In fact, as will be shown 

later, the supremum of the distance between the two sets of weights is arbitrary large 

(infinite) in some situations. Hence the Representative Principle will be upset. 

Third, while it is true that the g-weights tend to be close to 1 in large samples (Samdal 

1982), we will see that they can be very far away from 1 in either direction for 

moderate size samples and for data that are not 'pathological' in any way. It is often 

mentioned that the calibrated weights for the raking ratio estimator, which is another 
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class of calibrated estimators, can be very large, but the same behaviour of the GREG 

weights has not yet been analysed. 

Fourth, as we will see in an example based on real data, the variance can be so large 

that the point estimate is useless, even if the model is the one that fits the data best -

that is, within the GREG class of models. 

4J%Trhe CvLPlEX Siunngf 

The Office for National Statistics is responsible for the lion's share of UK's official 

statistics output. Many subaimual and other surveys are carried out simultaneously in 

streamlined, repetitive production processes. The surveys are coordinated through strict 

stratification rules to facilitate estimation of change and trend and, at the same time 

reduce the response burden on individual businesses. The data, both the auxiliary and 

the study variables, have passed through an extensive edit and validation process, in 

which virtually all businesses that fail a validation check are called back. Apart from 

this substantial editing effort, performed by a separate division, time constraints make 

it hard for the analysts and methodologists to inspect all data for potential problems, 

e.g. outliers. For any proposed method or process, the gain of extra complexity will 

have to be balanced against the cost in terms of implementation resource, production 

time and human factors such as the learning curve of new staff. In Chapter 4 I work 

within this context. In particular, I accept the stratification as 'given'; I also accept the 

correctness of the data values, and the just mentioned requirements for the production 

process. 

At the time of writing, the CAPEX survey collects data from approximately 16,000 

private sector businesses. The main study variables are acquisitions and disposals, and 

their difference is referred to as net capital expenditure. The results fi"om the survey 

contribute to the estimates of gross domestic fixed capital formation, one of the 

expenditure components of the gross domestic product in the national accounts. 

Estimates fi-om the survey account for about one half of the total gross domestic fixed 

capital formation, which in turn makes up about one sixth of the gross domestic 

product. 
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Estimates of totals are required at a fairly fine industry group level. A stratified random 

sample design is employed, with two levels of stratification. The first level consists of 

47 industry groups corresponding to important study domains. At the second level, 

each domain is divided into size strata, where size is measured by the register variable 

employment, here abbreviated to BMP. There are typically four size strata within a 

domain. We refer to a cell within the cross-classification of domains by size strata as a 

design stratum. A sizeband corresponds to the collection of design strata with the same 

range of size values, where sizeband 4 (20 < EMP < 49) and sizeband 1 (BMP >300) 

comprise the smallest and the largest units respectively. Sizeband 1 is completely 

enumerated, although some nonresponse occurs. 

Currently, estimation in the capital expenditure survey is based on the combined ratio 

estimator (see e.g. Cochran, 1977) within a domain with register employment EMP as 

the auxiliary variable. Apart firom register employment there is another important 

potential auxiliary variable, register turnover (TO), which currently is not used in the 

CAPEX survey. The combined ratio estimator is defined by combining design strata in 

sizebands 2, 3 and 4 within the domain. Design strata from sizeband 1 are not 

combined, see Table 4.1. From a model assisted point of view, a regression line with 

no intercept is fitted through the scatter of points in a plot of the study variable against 

the auxiliary variable. The line can be fitted separately for each stratum or to data that 

are combined from several strata. The two types of model give rise to the separate and 

the combined ratio estimator (see Samdal et al. 1992). If the model is relaxed other 

types of estimator will result. For example, if an intercept is allowed, the resulting 

estimator is the regression estimator. If the variance of the population scatter about the 

regression line is the same no matter what the value of the auxiliary variable, then the 

model is homoscedastic; as opposed to a heteroscedastic model in which the variance 

changes with the auxiliary. Different degrees of heteroscedasticity result in different 

estimators. All of these estimators are collectively called GREG estimators. 
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Table 4.1. Current sampling and estimation strategy in a domain 

Design strata Strategy 

(employment sizebands 

within the domain) 

1 A completely enumerated stratum + the 

separate ratio estimator to account for 

nonresponse 

2 

3 

4 

Genuine sampling strata + 

combined ratio estimator 

In what follows, I show both theoretically and with a practical example what may 

happen if univariate linear regression models are fitted to data that are not readily 

amenable to linear modelling. The class of univariate linear models I consider covers 

the vast majority of the models (and associated estimators) that are used for business 

surveys at national statistical institutes. There may, however, be other models and 

estimators that may ameliorate model misspecification. For example, the observation 

that a large proportion of the values of the CAPEX survey study variables are zero is 

not exploited in the models here. Karlberg (2000) uses a lognormal-logistic mixture 

model for a scalar variable that can take exact values with nonzero probability and is 

continuously distributed otherwise, which I utilise in Chapter 5. 

When analysing the data we also devote considerably more time to the fitting of the 

models and their diagnostics than would generally be possible in a production process 

at a national statistical institute, thereby gaining insight into the properties of GREG 

estimators, and indeed into the nature of model assisted theory. 

4.3 Influence on the GREG Estimator 

Let % be the value of a scalar auxiliary variable that determines the heteroscedasticity 

in the regression of yj^ on x^, and let 7 be the heteroscedasticity coefficient defined by 

the specialisation of the variance function in model M: 
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For most survey populations, 1</ <2, and for business survey populations particular, 

yis often about 1.5 (Brewer 2002, p. 58). 

Let 

be the GREG estimate of the finite population parameter B. The definition of will 

depend on the model; for example = (l ) if the model contains an 

intercept and two auxiliary variables. In general, I take the term 'auxiliary variable' to 

mean a 'proper' variable as opposed to an intercept (which, incidentally, Jean-Claude 

Deville has called an 'auxiliary variable free of charge'). 

The second term in (4.8 ) is a weighted sum of the residuals. This term is necessarily 

zero under all models we consider, except some of those involving heteroscedasticity. 

Recall that the general condition for the weighted sum of the residuals to vanish is 

(4.9). The function of this term is to make the GREG asymptotically design-unbiased 

(Wright, 1983; see also Samdal et al, 1992, sec. 7.3.4). 

Next I derive a relationship between the g-weight of a sample unit and its influence on 

the value of the GREG estimate of B. The most common measure of the influence of a 

sample unit is its DFBETA (Cook and Weisberg, 1982). This is defined by the change 

in the estimate of B when the unit is excluded firom the sample data used to estimate B. 

In the context of the regression model underlying GREG, the vector DFBETA for unit 

k is defined as 

DFBErA,=(Z,XjX',./z;}-

where 

e 'k 

J 
( 4 J ^ ) 

is the leverage of unit k, and can be thought of as a measure of the remoteness of that 

unit from the rest of the sample points. 
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From ( 4.6 ) and ( 4.16 ) we see that for equal probability sampling with weights Wk= a 

for all k, 

= 1 + - I k - 1 , j DfggZk. . (4.17) 
a 

Recall that is a vector whose elements are the population totals of the auxiliary 

variables defining Xk and is the corresponding vector of Horvitz-Thompson 

estimates of these population totals. For example, under equal probability sampling and 

with a model consisting of an intercept and one auxiliary variable we have 

JVx,), (4.18) 

where is the sample mean of the auxiliary variable. We will use the DFBETA in 

Section 4.6 to identify influential sample units. 

4.4 Comparing estimates based on different models 

As part of a review of the methodology used in the CAPEX survey, a study of different 

estimation methods for the survey was carried out in 1998. The estimators that were 

considered in this study are listed in Table 4.2. All of them are GREG estimators. Note 

that C/Rat in this table is the estimator currently used in the CAPEX survey 

(Table 4.1). Note also that all of them except S/Reg/1.5 and S/Reg/2.0 satisfy condition 

(4.9 ). Throughout we assume nonresponse in the survey is ignorable conditional on 

the stratified design. 

The auxiliary variable Xk,k=l,2,... ,N, defining the separate regression estimators 

does not need to be scalar. We considered situations where is bivariate, being made 

up of the two auxiliaries, register employment and turnover, BMP and TO, with or 

without intercept. Furthermore the heteroscedasticity auxiliary z* is often a scalar 

component of i*. We considered both TO and EMP as z& = z*. 

hi classical design-based theory the two main properties of an estimator are its design 

variance and its design bias. The ratio and regression estimators in Table 4.2 are 

usually believed to be approximately design unbiased if the sample sizes within strata 

are fairly large, as is the case in the CAPEX survey. This may not be true if the model 
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does not fit data well. However, going along with the not too uncommon approach of 

essentially ignoring the risk of model misspecification, we prefer a more parsimonious 

model (and hence a computationally simpler estimator) to a more complex one, unless 

the gain in terms of variance from use of the latter is considerable. It would therefore 

seem reasonable to consider each of the estimation methods listed in Table 4.2, apply it 

to the CAPEX survey data for a number of quarters, estimate the design variances of 

the resulting estimates of total net capital expenditure, and choose the method that 

leads to an appropriate trade-off between low overall estimated design variance and 

parsimony. 

Table 4.2. The estimators considered in the CAPEX survey review 

S/E The stratified expansion estimator. 

C/Rat The combined ratio estimator. Combined ratio estimates based on the 

scalar auxiliary Xk without intercept, are calculated by combining 

sizebands 2-4 within each domain, see Table 4.1. 

S/Rat The separate ratio estimator based on Xk without intercept. 

S/Reg/0.0 The separate regression estimator. This is based on fitting a separate 

homoscedastic linear regression model to the study variable in terms of 

the auxiliary x* = (l within each design stratum (Samdal et al., 

1992, Sec. 7.8). 

S/Reg/1.0 As above, but now based on fitting a separate heteroscedastic linear 

regression model to the study variable in terms of the auxiliary x*, 

within each design stratum, with heteroscedasticity proportional to the 

unit power of a positive-valued scalar auxiliary variable z*,. 

S/Reg/1.5 As above, but with heteroscedasticity proportional to the 1.5 power of 

the auxiliary variable z*,. 

S/Reg/2.0 As above, but with heteroscedasticity proportional to the square of the 

auxiliary variable 

Table 4.3 shows what happens when this approach is applied within one domain of one 

of the quarters (waves) of the CAPEX survey. For confidentiality reasons we cannot 

give details that may help identify units; for this reason we refer to this domain as 

domain Ffrom now on. The columns in this table show the estimate of total net capital 
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expenditure, its estimated variance, the CV (square root of the estimated variance 

divided by the estimate of total) and the variance ratio (the estimated variance of the 

total estimate divided by the estimated variance of the stratified expansion estimate). 

Register turnover and employment were used as auxiliary variables. The variance 

estimation software packages CLAN (Andersson and Nordberg, 1998) and GES 

(Estevao, Hidiroglou, and Samdal, 1995) were used for these computations. They gave 

very similar results. All variance estimation makes use of g-weights as in ( 4.12 ). 

From the results set out in Table 4.3 the simple regression estimator S/Reg/0.0 with 

EMP as auxiliary seems preferable. The more complex bivariate regression estimator 

based on EMP and TO does offer some gain in terms of increased efficiency. It also 

shows stability over the different versions of S/Reg, and, as we shall see, this may be 

more important than increased efficiency. However, for the practical reasons indicated 

in Section 4.1, both in reality and here the attention was focussed on relatively simple 

univariate GREG estimators. Judging firom Table 4.3, EMP seems more efficient than 

TO as an auxiliary variable. This was rather surprising. In the majority of other 

domains the reverse situation had been observed. Furthermore, the general experience 

at the Office for National Statistics is that within design strata there is a higher 

correlation between net capital expenditure and TO than between net capital 

expenditure and EMP. 

4.5 Exploration of model problems 

The strange results obtained in the previous section called for a more in-depth 

evaluation of the situation in domain V. Standard statistical procedures were therefore 

used to explore the fit of a variety of models for the study variable net capital 

expenditure in domain V, with the aim of identifying a "best" model (and hence 

estimator). This is in line with the ideas underlining the model-assisted approach to 

survey estimation (Samdal et al, 1992). 

As a first step it was necessary to determine whether a linear model was adequate to 

describe the relationship between net capital expenditure and the auxiliary variable TO. 

This was assessed using a method proposed by Sen and Srivastava (1990, p. 198). The 

range of TO was divided into three parts, representing a compromise between having 
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an equal number of points in each part and dividing the whole range of TO into 

intervals of equal length. Median net capital expenditure and median TO were then 

determined in each part. Lines joining these median points, as in Figure 4.1, give an 

impression of the underlying relationship between net capital expenditure and TO in 

domain V. The boundaries between the 3 parts shown in Figure 4.1 correspond to the 

67'̂  and 90"' percentiles of TO in domain V. For confidentiality reasons we are not 

allowed to show the true scales of the axes. It should be noted that the linearity 

displayed in this plot is not sensitive to definition of these boundaries - when they 

were moved around the impression of linearity remained. 

Table 4.3. Estimates for domain V 

-ith 

Method X Z Estimate Variance 
+ 10̂  

CV Variance 
ratio, % 

S/E 120,84 2.9 &14 lO&O 

C/Rat/B TO TO 97,62 4.3 (121 15&5 
S/Rat TO TO 9&,54 4.3 (121 14&7 

C/Elat/B BMP BMP 117,92 2.7 0J4 93J 
S/Rat BMP BMP 117,25 2.9 0^4 92.0 

S/Reg/0.0 TO 117,62 2.7 0J4 93^ 
S/Reg/LO TO TO 108,32 3.2 OJ^ 109J 
S/Reg/1.5 TO TO 9&,62 8.5 OJO 295j 
S/Reg/2.0 TO TO 7L45 35.3 &83 1220 

S/Reg/0.0 BMP 118,46 2.5 0J3 87.2 
S/Reg/1.0 BMP TO 122,13 2.8 0J4 982 
S/Reg/1.5 BMP TO 124,96 3.1 OJ^ 107j 
S/Reg/2.0 BMP TO 126,88 3.3 0^4 114.4 

S/Reg/0.0 TO,BMP 114,66 2.3 0J3 79.7 
S/Reg/1.0 TO,BMP TO 109,51 3.2 0^6 IILO 
S/Reg/1.5 TO,BMP TO 94JJ 12.1 &37 419.7 
S/Reg/2.0 TO,BMP TO 4%J9 97.6 2J3 3381 

S/Reg/0.0 TO,BMP 114,66 2.3 0J3 79.6 
S/Reg/1.0 TO,BMP BMP 115^7 2.3 OJJ 7&5 
S/Reg/1.5 TO,BMP BMP 115/^ 2.3 0J3 79.9 
S/Reg/2.0 TO,BMP BMP 115,80 2.3 OJJ 80.6 
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Figure 4.1. Relationship between net capital expenditure and turnover in domain 

V. Both axes are truncated. 

There is a low correlation (0.12) between net capital expenditure and turnover in 

domain V. A model where the only auxiliary information is the number of units in 

domain V should therefore be kept in mind. Such a model leads to the expansion 

estimator. 

Visual inspection of scatterplots of net capital expenditure against TO indicated 

substantial heteroscedasticity. We estimated the degree of this heteroscedasticity by 

fitting a model of the form 

Var(y^)ocx^. (4.19) 

Residuals and predicted values were computed, defined by the OLS fit of net capital 

expenditure against TO. An estimate of ywas then obtained as the slope of the OLS fit 

of the logarithms of the absolute values of these residuals against the logarithms of the 

predicted values. This estimate turned out to be about 1.7. It remained about the same 

even after deleting the five units with the smallest absolute residuals whose logarithms 

were very small. (Recall Brewer's (2002) remark that y »1.5 for most business 

surveys). 

Standard diagnostics tools revealed that the residuals generated by all the models 

underlying the estimators in Table 4.2 were significantly non-normal. Furthermore, 

more detailed investigations indicated the presence of a number of influential points in 
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the sample data. These points were not only associated with very small and very large 

values of the auxiliary variables but also with moderate values of these variables 

combined with large values for net capital expenditure. That is, there were a number of 

outliers, defined both with respect to net capital expenditure and with respect to TO 

and BMP. Consequently it was not surprising that there were problems with fitting 

many of the linear models underlying the estimators in Table 4.2 to the data from 

domain V. hi what follows we refer to observations with extreme values of TO or BMP 

as outliers in x-space and observations with large net capital expenditure values as 

outliers in y-space. 

It is also worth noting at this stage that the sample from domain V was substantially 

unbalanced with respect to TO. In particular, the stratified expansion estimate of the 

total for TO in domain V was 30% larger than the known total of this quantity (taken 

from the population register). At the population level, over all domains, this estimate 

was 17% larger than the register value. 

Following investigation of the anomalous behaviour of the GREG estimators in Table 

4.2, we identified one particular design stratum in domain V, called sizeband 3 in what 

follows, as an important contributor to this behaviour. This stratum gave vastly 

different estimates depending on the assumption of the degree of heteroscedasticity in 

the model underlying the GRBG. In fact, it was this stratum that caused most of the 

differences between the estimates in Table 4.3. 

To start, we note some basic facts about sizeband 3. There were 743 units in this 

stratum, of which 112 were sample respondents. The structure of the sample data for 

the stratum is displayed in Figure 4.2. There is one extreme TO value as well as large 

net capital expenditure values associated with fairly low values of TO. It would have 

been better if this unit were included in the completely enumerated sizeband 4 rather 

than in the sampled sizeband 3. In Chapter 5,1 suggest a diagnostic that could identify 

this unit before the sample was drawn. 
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Figure 4.2, Respondents in sizeband 3 in domain V. The scale for turnover is 

fictitious for confidentiality reasons. 

Figures 4.3a and 4.3b show regression lines fitted to the data in sizeband 3. The 

regression models underlying these lines are denoted E (mean model, E{y) = /? ), C 

(linear regression, homoscedastic), XI (linear regression, y= 1.0, see (4.19 )), X3/2 

(linear regression, y= 1.5) and X2 (linear regression, / = 2.0). By definition E is 

insensitive to the auxihary variable. The high-leverage point (the extreme TO value) 

controls the regression line for model C. The outliers in y-space increase in importance 

as one moves from C to XI to X3/2 to X2. Table 4.4 shows the GREG estimates of 

total net capital expenditure for sizeband 3 obtained under the different models. The 

resulting estimates of total net capital expenditure decreased monotonically fi-om 

model E, through models C, XI, X3/2 to X2. From experience with other surveys at 

the ONS it was clear that the estimate produced by model X2 was far too low. 

Comparing the estimates for model C with those for model X2 we see that the point 

estimate is higher for model C and the variance estimate is lower. As we will see, the 

reason for this is the presence of the outlier in x-space and the outliers in y-space. For 

comparison, the numbers in brackets in Table 4.4 are the estimates obtained after 

replacing the very large TO value by the median TO value, leaving net capital 

expenditure unchanged. Note the large differences in the estimates of total net capital 

expenditure generated by the estimates based on models C, XI , X3/2 and X2. Under 
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model E, of course, the estimates are unchanged. Table 4.4 also shows the parameters 

of the regression lines 

500,000 1000,000 

Turnover 

Figure 4.3 a. Regression lines fitted to the data in Figure 4.2 under the models E, 

C, XI, X3/2 and X2. The area within the small rectangle is shown in more detail in 

Figure 4.3b. 

20,000 

Figure 4.3b. Detail of Figure 4.3a. Models C and X2. 

40,000 

Turnover 

defined by the modified value of TO. Note that the line for X3/2 with original TO 

values almost coincides with the line for XI defined by the modified values. This does 
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not imply that we get the same estimates. In fact, the estimate of total net capital 

expenditure was more than 100% higher for the new data under model XI than for the 

original data under model X3/2. The reason for this is the presence of the residual 

correction term in the GREG. This will be discussed further below. 

Table 4.4. Estimates for sizeband 3 in domain V. Turnover (TO) is the auxiliary 

variable. The figures in parentheses are obtained when the extreme TO value in 

sizeband 3 is replaced by the median TO value for the stratum 

Estimator Model Estimate of total 
net capital 
expenditure / 
1000 

Standard 
deviation of 
total estimate / 
1000 

Intercept Slope X 1000 

S/E E 55^ 1&4 74.8 0 
S/Reg/0.0 C 52^ (6L3) 9^(1L5) 65.4 (16.3) 0.74 (9.1) 
S/Reg/1.0 XI 41.6 (60.0) 9.8 (11.3) 31T ^a^) 3.42 (7.2) 
S/Reg/1.5 X3/2 28.8 (60.5) 24.5 (11.3) 26.6 (26.4) 6.55 (8.0) 
S/Reg/2.0 X2 3.2 (64.1) 57.1 (12.3) 23.7 (23.7) 12.8 (13.7) 

Table 4.5. Distribution of g-weights for sizeband 3 in domain V (extreme TO 

value not modified) 

Model g-weights, 
low - high 

The g-weight of the 
outlier in x-space 

Median of 
g-weights 

Proportion of 
nonpositive g-
weights 

E 1 - 1 LOO 1.00 anT2 
C 0.14-1.02 0T4 LOl on i2 
XI 0.54-13.9 &54 0.60 0^T2 
X3/2 -1.3-58.6 0.92 0T2 25^12 
X2 -22.8 - 245.9 0.99 CXOl 57/112 

4.6 A diagnostic for GREG estimation 

In an effort to explain why such widely different estimates were obtained in Table 4.4, 

we computed the g-weights (4.6 ) generated under the different models. Table 4.5 

shows the distribution of these g-weights. 

Under all models considered here the unit with the lowest TO value attained the largest 

positive g-weight. Under model C and XI the outlier in x-space attained the lowest g-
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weight. Under model C all units except the outlier in x-space had g-weights close to 

unity. The outlier in x-space was the only point with which model C could not cope. 

Under models X3/2 and X2 on the other hand, the smallest units all had g-weights with 

large absolute values. These models (which standard diagnostics indicated as the most 

appropriate regression models for the stratum) effectively moved the estimation 

problem from the outlier in x-space to the outliers in y-space. The reason for this can 

be seen when one considers how the g-weights under the different models change as a 

function of the auxiliary variable. 

Table 4.6. The g-weight functions under simple random sampling 

Model g-weight function 

C 1 + Aj — A2X 

XI 1 — + B2/X 

X3/2 1-C;/Vx-kCz/̂ xVx) 
X2 1 - D i / x + D2/x^ 

For a given sample we can view the g-weights as function of x = It is shown in 

Appendix 4 that for models C, XI, X3/2 and X2 under simple random sampling these 

functions are as in Table 4.6. We refer to these functions as GC, 01, G3/2 and G2 

below. The functions Gl, G3/2 and G2 are shown in Figure 4.4. The constants 8%, 0% 

and Di in Table 4.6 are defined by different values of % their general form is 

n 

Also, and Dj = where n and iVare the sample and 

population size respectively, and is the weighted average: 

— 
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In sizeband 3 the values of were approximately 13,000, 800, 140, and 57 for y - 0, 

1.0, 1.5, and 2.0 (models C, XI, X3/2, and X2), respectively. 

1000 10000 100000 1000000 

Turnover 

Figure 4.4. The g-weight functions Gl, G3/2 and G2 for sizeband 3, as a function 

of turnover. The horizontal line represents model E. 

As can be seen in Figure 4.4 and Table 4.6 the g-weights show undesirable behaviour 

for some ranges of % i.e., g-weights smaller than 1 or very large g-weights. These 

ranges are listed in Table 4.7. 

Table 4.7. Range oixj^ for which the g-weights show undesirable behaviour 

g-weight function Range 

GC Large 

Gl Very small and large x^ 

G3/2 From the origin to and slightly beyond 

G2 From the origin to and slightly beyond 2xj^^ 

The function GC decreases without bound as x increases. The slope of this function is 

- 4 = - " 
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Suppose the sample is overbalanced, as is the case in sizeband 3. Then is large 

and positive. In the case of sizeband 3 this term is 9.5 - 5.4 = 4.1 million, which can be 

compared to the estimated total of net capital expenditure for this stratum which is 

roughly 50,000 for most of the estimators we consider here. Although the slope might 

not be very large if the estimated stratum x-variance 

is large, it is clear that the g-weights of units with very large values of xĵ  will be low. 

This confirms the behaviour of model C g-weights noted in Table 4.5. 

The function G1 converges to 1 - Bi as x increases, where Bi can be large (it is 0.45 in 

sizeband 3). In contrast, the functions G3/2 and G2 tend to 1 as % increases. That is, 

under the models X3/2 and X2 sample units with large values of the auxiliary variable 

tend to be essentially "inverse x -weighted". 

The functions G3/2 and G2 have local minima at ^xf^^ and 2xf^ respectively. The 

latter minimum is closer to the origin if the % that define and are positive. 

Note that the range of possible g-weights generated by any of the models C, XI, X3/2 

and X2 is determined by the range of their corresponding g-weight functions. All three 

g-weight functions shown in Figure 4.4 are unbounded at zero. Consequently it is 

possible to obtain arbitrarily large g-weights for values of xĵ  close to zero under any of 

these models. Observe that near zero G2 increases faster than G3/2, which in turn 

increases faster than Gl. Consequently we expect g-weights obtained under X2 to be 

most sensitive to small values of the auxiliary variable. This confirms the behaviour 

noted in Table 4.5. Furthermore we can see that negative g-weights are also possible 

under all three models, but their values are bounded from below. In particular, the 

smallest g-weight possible under X3/2 is defined by the minimum of G3/2, which is 

2Q 
1 

3 ^ (3/2) 

In contrast, the smallest g-weight possible under X2 is the minimum value of G2: 

1 - - ^ 
45c;') ' 
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In the case of sizeband 3, Figure 4.4 shows that the minimum value for G2 is 

considerably less than that of G3/2 or Gl. 

Under simple random sampling the usual estimator of the design variance of a GREG 

is 

= (4.20) 

where ^ is a constant and and are averages of the g-weights and residuals 

(Samdal et al., 1992, Ch. 6). That is, the products of g-weights and residuals are the 

essential ingredients in the estimated variance. Given the sensitivity of the g-weights 

and the residuals associated with Models X3/2 and X2 to the influential points in the 

particular stratum we have considered, sizeband 3, it is not surprising that the variance 

estimates in Table 4.4 for the estimators S/Reg/1.5 and S/Reg/2.0 were extremely 

large. 

Table 4.8a shows the residuals obtained in Sizeband 3. For all models, except model C, 

the lowest residual is associated with the outlier in x-space. The smallest residual for 

model C is generated by the sample unit with lowest net capital expenditure. As can be 

seen in the last two columns of Table 4.8a, the sums of residuals under models X3/2 

and X2 are very large compared to either the corresponding sum of predicted values or 

to the estimates of total net capital expenditure (Table 4.4). Only a minor part of these 

large residual sums is accounted for by the residual associated with the outlier in x-

space. The a-weights (inverse tt) for sizeband 3 are all equal to 743/112. The weighting 

of every data point with l / i m p l i e d by models X3/2 and X2 makes the outlier in x-

space less important. However, the influence of the outliers in y-space increases, 

compared to models C and XI, forcing the fitted regression model away from the bulk 

of the data. This can be seen in Figure 4.3b. 

Table 4.8b shows the residuals with the TO value for the outlier in x-space replaced by 

the median TO. The only model that now differs considerably from the others is X2. 

The effect of the weighted sum of the residuals is the main reason why, even though 

the regression lines were similar, the estimate for total net capital expenditure for 

model X3/2 based on the original data was so much lower than that for model XI with 

the outlier in x-space replaced by the median TO (Table 4.4). 
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Table 4.8a. Distribution of residuals in sizeband 3 in domain V. 

Model Residuals, 
low - high 

Residual 
of lowest 
TO 

Median Proportion 
of positive 
residuals 

Sum of 
residuals 
+ 1000 

Ratio of the 
absolute 
value of the 
sum of 
residuals to 
the sum of 
predicted 
values 

C -77.6-1081.3 -47.4 -49.5 26/112 0 0 
XI -1922.5 -1085.2 -13.2 -31.0 3&qi2 0 0 
X3/2 -4151.5-1054.5 -8J -39.1 27^12 -26.2 0.48 
X2 -8637.3 - 986.4 -6.1 -68.9 18/112 -83.5 0.96 

Table 4.8b. Outlier in x-space replaced by median TO 

Model Residuals, 
low - high 

Residual 
of lowest 
TO 

Median Proportion 
of positive 
residuals 

Sum of 
residuals 
^1000 

Ratio of the 
absolute 
value of the 
sum of 
residuals to 
the sum of 
predicted 
values 

C -260.9-1035.8 1.4 -41.3 2&1T2 0 0 
XI -214.1-1045.3 -11.0 -43.1 26/112 0 0 
X3/2 -235.9-1038.7 -&6 -44.7 24412 -2.0 &03 
X2 -408.0 - 976.6 -6.0 -72.6 19^T2 -27.3 030 

The link between a sample point's DFBETAk value and its g-weight was shown by 

(4.17 ). Here we use this relationship to identify influential points in sizeband 3. A 

standardised value of DFBETAj^ is obtained by dividing this quantity by the residual 

variance computed without unit k. This measure is called DFBETASj^ (Cook and 

Weisberg, 1982). Note that under stratified random sampling the first co-ordinate of 

in the regression estimators considered here is necessarily zero. The second 

co-ordinate of DFBETASk therefore serves as a measure of the influence of unit k. For 

simplicity, we let the term DFBETASk refer to the second co-ordinate in what follows. 

Figure 4.5 shows the values of this second co-ordinate plotted against the logarithm of 

TO under the model X3/2 with TO as the auxiliary. Belsley, Kuh and Welsch (1980) 

suggested that DFBETASk with absolute values larger than should be marked for 
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further examination. The value of is about 0.19 in sizeband 3 (the dotted 

reference lines in Figure 4.5). As might be expected, the sample units in sizeband 3 

that fall on or outside these boundaries are all associated with small or large values of 

TO. We observed the same pattern in all other strata as well. 

DFBETASk 
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Figure 4.5. Influential points in sizeband 3 in domain V for Model X3/2 

4.7 Using poststratification to minimise the impact of influential 

points 

The idea here is to use the regression estimator S/Reg/1.5 (since we found in Section 

4.5 that model X3/2 gave a better fit to the data than the other models), but only in that 

part of the stratum where there is little impact from outliers and influential points. To 

start, based on the observation that the influential points tended to be those with small 

or large values of TO, we partitioned sizeband 3 into three poststrata on the basis of 

TO. Estimation for sizeband 3 was then carried out using a method not influenced by 

outliers in x-space (expansion estimation) in poststrata 1 and 3, and using regression 

estimation based on S/Reg/1.5 in poststratum 2. Model X3/2 still gave the best fit in 

this subset of sizeband 3. The regression estimator generated an estimated variance 

about two thirds of the estimated variance of the expansion estimator for the 

poststratum. For sizeband 3 overall the poststratified procedure resulted in an estimated 
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variance that was 78% of the expansion estimator for the stratum. For comparison, 

regression estimation based on other models was conducted in poststratum 2. As 

shown in Table 4.9, the estimates are now very stable over the regression models, as 

opposed to the estimates given in Table 4.4. 

Table 4.9. Poststratified estimates for sizeband 3 in domain V. TO is the auxiliary 

variable 

Estimator Model Estimate of total Standard Intercept in Slope X 1000 

net capital deviation of poststratum 2 in 

expenditure / total estimate / poststratum 2 

1000 1000 

S/E E 53j2 930 59.07 0 

S/Reg/0.0 C 52^4 916 41.11 &84 

S/Reg/1.0 XI 52.63 9JJ 41.13 9.96 

S/Reg/1.5 X3/2 52.63 &17 4L14 laoo 
S/Reg/2.0 X2 52.63 9.17 4114 lOIG 

Choice of poststratum boundaries was subjective under this approach, but is advised by 

the need to make poststratum 2 as large as possible (to maximise the gains from 

regression estimation) while at the same time ensuring that the "outlier poststrata" 1 

and 3 are not so small that variance estimation becomes problematic. I adhered to the 

common "rule" that there should be at least 20 units in every poststratum (see for 

example Samdal et al., 1992, p. 270). In fact, I picked exactly 20 units each for the two 

extreme poststrata. 

An alternative to poststratification is GREG estimation based on restricted g-weights. I 

therefore computed restricted versions of S/Reg/1.5 and S/Reg/2.0 for sizeband 3 with 

the g-weights restricted to the interval (0.001, 8). This was done using Statistics 

Sweden's software CLAN (Andersson and Nordberg, 1998), which uses a method 

proposed by Deville and Samdal (1992). For the estimators S/Reg/1.5 and S/Reg/2.01 

obtained variance ratios of 314% and 467%, respectively, compared with the simple 

expansion estimator S/E. Other ranges for the g-weights were explored by trial-and-

error, but either the algorithm did not converge, or worse variance ratios were 
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obtained. Thus, restricted g-weights gave considerably lower variances than 

unrestricted g-weights, but higher than poststratification. A total of 93 of the 112 

observations in sizeband 3 got g-weights equal to the lower limit (0.001) for the 

estimator S/Reg/2.0. 

As discussed in Section 4.1.2, an alternative to the GREG is to use some other distance 

function ,w^). The distance function that may be most common in practice 

apart from (4.4), which leads to the GREG, is probably 

This distance function has especially been discussed in the context of raking ratio 

estimation, that is, when estimates for a cross-classification are calibrated on marginal 

totals. See Samdal et al. (1992, Section 7.9.2). With this distance function, positive 

weights are guaranteed but, as Deville and Samdal (1992) point out, these may be 

extreme. 

4.8 Discussion 

In the context of stratified simple random sampling I have explored the behaviour of 

some GREG estimators when the underlying models are misspecified due either to the 

presence of outliers in x-space or outliers in y-space (or both) in the sample data. I 

have shown a diagnostic for whether a GREG estimate is reasonable or not, a 

diagnostic which draws on the observation that for a given sample the g-weights can be 

seen as a function of the auxiliary variable. These g-weight functions can be graphed 

and inspected visually. 

The g-weight of a sample unit is connected to its DFBETA, which is the change in the 

estimate of B when the unit is excluded from the sample data used to estimate B. Here 

I have used this measure of influence to identify a strategy which enabled us to keep 

the outliers away from the sensitive regression estimator. The strategy is to poststratify 

and use the expansion estimator for poststrata with highly influential units and a more 

efficient estimator, for example a regression estimator, for other poststrata. 
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The diagnostic and the following poststratification may seem impractical in official 

business statistics where large, often highly stratified data sets must be processed 

quickly. However, it should not be overwhelmingly onerous to produce and inspect g-

weight functions and sums of residuals. Instead of graphs of g-weight Amotions lists of 

extreme g-weights can be produced. The poststratification may constitute an additional 

task for the survey statistician since the poststratum boundaries are in our approach 

determined on an ad-hoc basis. In the following chapter I will suggest a different 

approach. 

The business survey example of Chapter 4 shows, for a set of real data, how important 

good modelling practice is. Different GREG estimators produced wildly different 

results. One regression estimator gave an estimated total which was less than 10% of 

the ordinary expansion estimate. All estimators we have explored are, at the first look, 

entirely reasonable. The difference between them lies entirely in model choice. The 

fact that the sample was considerably imbalanced against the auxiliary variable 

exacerbated the problem. 

In conclusion I therefore reiterate the point made earlier on. It is just not true that 

GREG estimators are relatively robust to model choice. The fact that they are 

asymptotically design unbiased is not a substitute for a careful model specification 

search, especially when dealing with the highly variable and outher prone populations 

that are the focus of many business surveys. 
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Chapter 5 

A Comparison of Some Alternative 

Estimators of Totals for UK Business 

Surveys 

5.1 Introduction 

Since business data are skewed, outlier prone and often contain a large proportion of 

zeroes, it is not obvious that traditional methods of using auxiliary data, e.g. ratio and 

regression estimation, have the properties they often are believed to have, such as 

being virtually free from bias and have competitive variance, hi fact, we saw in the 

previous chapter an example of GREG estimates with large errors. I study in this 

chapter whether the total can be estimated more accurately and/or more robustly by 

either robustifying these instances of the GREG estimator or by relying more explicitly 

on a model. 

Most surveys at the ONS are multipurpose with customers who use the statistics in 

different ways. As was pointed out in Chapter 1, the estimated totals for business 

surveys are particularly important as they are input to the National Accounts. 

What properties of an estimator of the total are vital? One could think of, e.g., small 

variance, negligible bias, good confidence intervals or minimum risk of obtaining 

estimates with large error; or versatility or ease of implementation. In this chapter, I 

report on a simulation study in which several GREG estimators are compared with a 

not widely used local regression estimator and a robust regression estimator that is 

novel in a design-based context. The former is similar to the GREG but has the ability 

to accommodate local departures from the underlying linear model. 

For many estimators there is a choice of model groups to be made (Samdal et al. 1992, 
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Sec. 7.5). For example, a ratio model can be fitted within strata (leading to the separate 

ratio estimator) or across strata (the combined ratio estimator), where strata coincide 

with model groups in the former case while in the latter case the model group 

comprises the strata across which the model underlying the combined ratio estimation 

is fitted. There is little research on how to choose model groups. Silva and Skinner 

(1997) minimise the mean squared error to find the optimal set of auxiliary variables 

and thereby also model groups. I have simulated three types of model group partition 

and computed five criteria for each combination of estimator and type of model group 

partition. Two of the criteria are rather non-traditional. 

Many of the business surveys at the ONS use a stratified simple random sampling 

design with four size strata within industry, three of which are genuine sampling strata 

and the one with the largest units is a completely enumerated (CE) stratum. There are 

two interval scaled variables on the fi-ame: register employment and turnover. 

Industries are important domains of study. There are typically four size strata 

(sizebands) within a domain, see Figure 4.1. Sizeband 4 comprises the largest units and 

is completely enumerated, although some nonresponse occurs. I will, however, assume 

full response and ignore measurement errors and incomplete coverage of the target 

population. 

In Section 5.2 the model groups and estimators used in the simulation study are 

defined, whose results are reported in Section 5.3. A simple way of ameliorating the 

effect of outliers in x-space is proposed in Section 5.4. Chapter 5 ends with a 

discussion. 

5.2 Estimators 

5.2.1 Aim 

The set-up is similar to that of previous chapters. The aim is to estimate the total 

ty = of a study variable y ' = (^i, = • • •' ) on a population U. It is assumed 

that there is a known auxiliary variable {Nx p) matrix with 

X* = ... Xpj.) in row k. A sample 5 of size n is taken and (x^, y*)is 
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observed for all units k in the sample. Let stratum quantities and sets be indexed by h. 

For example, Nh and Sh refer to stratum size and the sample that is taken from stratum 

h. The populations of interest are industries. I assume that all units are correctly 

classified to industries before the sample is drawn. The terms domain (industry) and 

population, and the terms sizeband and stratum, will be used interchangeably. 

5.2.2 Model groups 

I use subscript g to index model groups in the partitioning that defines the G model 

G 

groups (subsets) within each of which the model is to be fitted, U= \JUg. Three types 

g=i 

of model group partition are studied: 

a) groups coincide with strata; 

b) one group consists of all genuine sampling strata and another group of the CE 

stratum within the industry (Figure 4.1); 

c) all strata within an industry, including the CE stratum, constitute one group. 

I refer to Case b as 'ONS model groups', since this is the type of partition the ONS 

use for many business surveys. Cases a and c are labelled 'within strata' and 'over all 

strata'. 

5.2.3 Point estimators 

General form of point estimators 

Many estimators used in practice are of the form 

--jPy), (5 .1) 

keU jes 

where is a weight vector and cô  a scalar, neither dependent on y, and 

y J = (y,, 3̂ 2' • • •' J'b ) • The weights &^ and % may be sample dependent. Often it is 

natural to interpret o^y^ as a predicted value = m^y^ . Then (5 .1) consists of a 

'model-based' or 'synthetic' term plus a 'bias adjustment' or 'correction' term. We can 

refer to an estimator that can be written on the form ( 5.1 ) as a projective bias adjusted 

estimator ('projective' because the predicted values are projected to non-sample units 

or all population units). The Horvitz-Thompson estimator is a rather degenerate special 
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case of ( 5.1 ) with cOj =0, V/', and = (tTj say, and =0 for A:> 1. Let 

Xj be the (n x p) matrix that is the sample version ofX#. For the estimators I study, 

x'̂  = (l ) or = Xj.. To see that the GREG can be written in the form ( 5.1), 

take = ;r:' and X,Z;'n;', where and H, and Z, are 

diagonal matrixes with tc,^ and the residual variance in position {k, Ic), 

respectively. 

It can readily be shown that (5.1) is a linear estimator (Appendix 7), i.e., it can be 

written as a sample sum of the products of the yk and some weights that do not depend 

on y. This property is highly desirable from a national statistical institute's point of 

view. The main reason is practical: for example, it was mentioned in Chapter 4 that the 

weights can be thought of as 'grossing factors', stored in one column in a file and be 

applied in a simple way to all study variables without recomputation (Bethlehem and 

Keller 1987). Also, a linear estimator is internally consistent in the sense that if is an 

estimator for a variable i, then fj + 2̂ = U + 2 fo'" the sum of the variables. Theoretical 

arguments do not abound, but one reason put forward by Sugden and Smith (2002), is 

that if the population parameter to be estimated is a single sum of a function of the 

population units (most parameters of practical interest are) then the estimator must 

have the same form if it is going to reduce to the parameter when n=N. 

What the weight vectors are and how ŷ . is computed may depend on the sampling 

design and the way the model is fitted. For example, the predicted values may be 

obtained with a least squares fit or with a model-assisted approach involving the 

inverse inclusion probabilities as weights. If to^ has zeroes in positions 'far' 60m 

position k then only elements in the vicinity of k in will contribute to the predicted 

value . Thus there is a trade-off between using as many observations as possible to 

predict and not letting possibly less relevant observations far away from k play a 

role. Also, there is a decision to make about the exact impact of units in the vicinity of 

k and that of those further away. 

For some estimators the bias adjustment term always is zero (e.g. S/Rat, C/Rat and the 

regression estimators S/Reg/0.0 and S/Reg/1.0 in Table 4.2), for some other estimators 
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it will take whatever value to achieve some overall property. Consider Model M 

defined in Section 4.1.3. Regression estimators corresponding to a heteroscedastic 

regression model with (Tj.) = cr̂  proportional to ^ or xl (those estimators are 

labelled S/Reg/1.5 and S/Reg/2.0 in Table 4.2) are asymptotically design-unbiased if 

and only if the bias adjustment is allowed to be unbounded. As we saw in Chapter 4, 

this can lead to extremely poor performance for these estimators. Also, in a model-

based setting the bias adjustment term can explicitly be regarded as an estimate of the 

bias due to model misspecification (Chambers, Dorfinan, and Wehrly 1993). If a 

model M*, y^. = , say, is correct and t is based on another, working model 

M** (perhaps a simpler model than M*) then the bias is ^ , where Vk denotes the 

non-observed residuals - w(x^,) for non-sample points. ̂  . (v ,̂) can be estimated 

from the observed residuals/}•: = X with some 
k&V-s keU-s jes yes 

appropriate weights. Hence ^ can be viewed as an estimate of the bias due to 

jes 

model misspecification and a special case of the bias adjustment term in ( 5.1 ). In a 

design-based fi-amework such as GREG estimation, the second term of ( 5.1) may be 

estimates -
Jbs V IceU J k€U 

In general, there is an interplay between the choice of and . The bias 

adjustment term should normally be far smaller than the 'model-based' term. If not, 

there is an indication of model misspecification or a dysfunctional relationship 

between the structure of the data and what you do with them. As was shown in 

Chapter 4, the ratio of the bias adjustment term to is an important diagnostic 

for some GREG estimators, where a large value indicates model problems. However, 

not all estimators offer flexibility in the choice of weights iHk and % . For those 

estimators, once the estimator has been chosen one has to accept the weights that the 

estimator prescribes. 

Winsorisation is one way of curbing the influence of outliers that is not included in this 

study. Winsorisation is a value-modification strategy where the value of a sampled unit 

is adjusted downwards if it is larger than a predefined cut-off (Kokic and Bell 1994). 
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Value modification could be viewed as artificial and hence it may run the risk of not 

gaining public acceptance. Furthermore, the main argument for Winsorisation is that of 

minimum mean squared error, even if it comes at the expense of a large bias. 

Minimum MSE may be strong argument for some surveys but less so for others. Many 

other outlier-robust estimators have been proposed, in particular model-based ones. 

Overviews include Chambers and Kokic (1993), Lee (1995), Valliant, Dorfman, and 

Royall (2000, Ch. 11) and Brewer (2002, Ch. 14). 

Below follows a detailed description of the estimators used in the simulations. 

The Horvitz-Thompson estimator 

Let 

~ ^sg ^kyk ( ) 

be the expansion estimator for the group total e g) , where 

l{k e g) = 1 if unit k belongs to group g, and 0 otherwise. Here Sg is the part of the 

sample that falls in group g and is the sampling weight for unit k. Let be 

the expansion estimator for the total ty in U (i.e., the sum of the group estimates ). I 

shall use the label for the expansion estimator in what follows. 

GREG estimators for model groups 

The ratio estimator for some set of model groups is (Samdal et al. 1992, Sec. 7.7): 

t yrat Z-i xg - ' v / 
g=\ ^XgK 

where % denotes an auxiliary scalar. The label for this estimator will be 'Rat\ With a 

slight change of the notation used in Chapter 4,1 do not use the leading characters S 

and C in this chapter to label the separate and combined ratio estimator since I 

combine strata in two different ways: 'ONS model groups' and 'over all strata'. The 

Rat estimator for the ONS type of model group is the estimator the ONS uses for many 

business surveys, including the CAPEX survey. 
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The GREG estimator (4.8 ) can be written for model groups as 

fynqg ( 5.4 ) 

where , and X,g is a matrix with 

in the kth row (two special cases to be given shortly). The data are assumed to 

follow a superpopulation model M for which (Tj,) = x^p^ and (Y^ ) = (?*, 

k= 1,2, ...,N, where the moments are taken over the model. The Rat estimator ty^^t is 

a special case of ( 5.4 ) with x̂ ^ = l(k e g)x^ and (}^ ) = ,k= 1,2, 

The estimator is another special case with x̂ ^ = l{k %*). For 'Reg/1.0' 

we assume , and Gar '.Rgg/7. J' (}^ ) = c r . 

The choice of variance function that gives the best fit to the data used in simulations 

reported below is , as is the case for many business surveys. Hence, 

we would expect good performance for Reg/1.5. 

Local and robust regression estimators 

The predicted values in ( 5.4) can be replaced with some other predicted values 

that makes the estimator less sensitive to outliers and a nonlinear relationship between 

the study and auxiliary variable. Breidt and Opsomer (2000) use a local polynomial 

regression estimator weighted with inverse inclusion probabilities to produce 

predictions m .̂ that in many cases will be close to . The estimator, here referred to 

as Local, is 

ff/oc = ( 5.5 ) 

Chambers et al. (1993) and Dorfinan (2000) suggest similar but model-based 

estimators. A bandwidth bk and a smoothing window {x̂ . —b^, Xj^+bj^) is defined. To 

predict yk only observations whose auxiliary variable values are within the smoothing 

window are used. A weight function, referred to as the Kernel function, assigns the 

largest weights to units with auxiliary variable values close to Xk- A somewhat less 

general estimator than Breidt's and Opsomer's is 

A. =e ; ,„ (D;W,D.) -D;W . y , , t= l ,2 , . . . ,A ' , (5 .6 ) 
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where is a (i-vector with 1 in the jth position and Os otherwise, ^ = 1, 

2, are M X 2 matrices, each with [l )] in the jth row,7 = 1, 2, .. 

Wt, for A: = 1, 2, are n x M diagonal matrices with ] in cell 

( j j ) with A'(-) and bk being the kernel function and the bandwidth, respectively. 

Apart from the presence of the sample weight Wk=7vl̂  in W*, the prediction m̂ . is 

standard in the literature on local linear regression (e.g. Loader 1999). For a fixed 

bandwidth, Breidt and Opsomer prove that the sample weights in W* and in ( 5.5 ) 

make asymptotically design-unbiased. Their estimator has several other desirable 

theoretical properties. For example, the anticipated variance attains the Godambe-Joshi 

lower bound asymptotically. Like Breidt and Opsomer I use the Epanechikov kernel 

jk) ~ nmx 0, — (1 - ) ( 5 J ) 

Chambers (1996) uses a bandwidth with fixed minimum length. For a fixed minimum 

length, however, the minimum bandwidth has to be longer than the longest distance 

between two consecutive x-values, which for skewed populations would prohibit truly 

local regression. Therefore, I use two types of nearest neighbour bandwidth. The first 

one is 

— y V 
-̂ 4+20 -**-20) (5-8) 

where Xk-io and Xk+20 are units in the sample file, sorted by Xk in ascending order. Note 

that K{;Ujk)= 0 if = [xj - x̂  > 1. Hence the kernel defines a window around 

unit k outside which units will not contribute to the prediction of rhj^. The window 

slides across stratum boundaries including the CE stratum (sizeband 4). Note that 

will cancel out in the CE stratum in ( 5.5 ). Even so, the 20 smallest units in terms of 

the auxiliary variable in the CE stratum will be used in prediction of units in sizeband 

3. If A: is so small that Xk-20 does not exist, Xk.20 is taken as the minimum x-value and 

similarly for Xk+2Q- No adjustment has been made for these boundary effects. 

For the other type of nearest neighbour bandwidth, 

= :%*+4o -- :K*_4o, ( 5 9 ) 

Xk+40 and %t-40 are taken from the frame sorted by in ascending order. The number of 
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sample units in the window will vary with the for parts of the frame with small 

sample fractions the local regression fit will tend to be more 'wiggly' than in more 

densely sampled areas. It seems reasonable that a point in a lightly sampled stratum 

should be given more influence. Care must be taken so that is not singular. 

The local regression estimators with bandwidths ( 5.8) and (5.9) are labelled 

Local/s20 and Local/f40, respectively. 

The prediction {5.6) can be rewritten as 

MS* ==.yA*,t + — f — : : — t r - (^ lo ) 

where the qjk are diagonal elements in the W* , ^ ^ qĵ . 
Jes \ Jes 

and 

f 

^ioc,k 

v-1 
. Note that ^ is what would have been obtained with 

local constant prediction without the x-variable in 5.10. Formulation ( 5.10 ) shows 

that the local linear prediction is plus a term that counteracts effects stemming 

from the local slope of the data and the conditional bias that the predictor m̂ . = 

would have exhibited in some neighbourhood of the boundary point x\. 

Let j and k index sample and population units, respectively. Note that ( 5.5 ) can be 

written 

t * = H , ^jyj + t ® 

= Z + E I E [ l - s 'K]e ;2„ (d ;W,D.r d ; W . e , . , , k (5.11) 
j'es j&s IteU J 

that is, ^locjsyj is a linear estimator with weights 

(5.12) 

ksU 

The subscript 5 reminds us that the weights are sample dependent. To continue the 

analogy with the GREG estimator, the local regression estimator weights can be 

partitioned into sampling weights wj and 'local g-weights' 

g,„,, = l + ̂ { l ; J l - / ( i s 5 K ] 4 ) , ( D ; W , D , r D ; w J e , . „ (5.13) 

102 



The Local/f40, Local/s20 and the E estimators are the only estimators in Chapter 5 that 

do not depend on the partitioning of the population into model groups. The Local 

estimators are of the projective bias adjustment form (5.1 ). They are flexible in that 

for a long bandwidth they will be similar to the GREG, and for a shorter bandwidth 

they will capture local model departures. Different kernels will give different 

distributions of weights within the window. The main difference between my and 

Briedt's and Opsomer's versions is my use of variable bandwidths. 

Another estimator, here called RobReg/f40, was inspired by Welsh and Ronchetti 

(1998) and Kuk and Welsh (2001). One difference is that I take a design-based 

approach. In ( 5.6 ), is replaced with r ' = ) , where the tilde indicates a 

robust fit obtained with bounded-influence estimation (to be specified shortly), to 

produce a smoothed value ml. The advantage of projecting r ' = ) to each 

frame unit k is to allow for an asymmetric distribution of the residuals. Hence I 

robustify in two dimensions, first horizontally through the bounded-influence 

regression, then vertically through the smoothing of each separately. Here the 

bandwidth 6^^ in ( 5.9 ) was applied. It is conjectured that RobReg is approximately 

design-unbiased. 

The bounded-influence method utilises the DFFITSk of each observation k, which is a 

well known measure of how much the prediction for this observation's x-value would 

change in terms of standard deviations of the predicted value if the regression line is 

refitted without observation k. Welsch (1980) suggests the use of the inverse DFFITSk 

as regression weights, a method analysed by Ryan (1997, Ch. 11). Belsley, Kuh and 

Welsch (1980) suggest as a rule of thumb for univariate regression that observations 

with larger absolute value of DFFITSk than , n being the number of observations, 

should get special attention. The regression weights proposed by Welsch are 

1 if|Dff775*|<2M-0-S 
( 5 J ^ ) 

The regression parameters are estimated with weighted least squares with the weights 

5 . The residuals are 
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y . = ^ ' (5.15) 

RobReg is robust to outliers. However, it is not of form (5.1) . It is not linear and it 

has not the internal consistency property. Theoretical properties such as bias will be 

developed elsewhere. 

Mixture model estimators 

The Karlberg (2000) estimator can be seen as a transformation-retransformation 

estimator. It is based (model-based) on a mixture model. First I define a model M to 

which a lognormal assumption will be added later on. Let be the logarithm of the 

study variable Yk > 0. Assume that are realisations of the random 

variables , and, conditional on the auxiliary variable, 

k 1^ > 0) = //g = (z* |}̂  > 0) = o-j where = l(A: e ), with 

X2k being the logarithm of the auxiliary variable, provided that X2k > 0. The parameter 

Pg is estimated through OLS regression applied to the logtransformed data. The model 

M differs from that of Karlberg (2000) in that I allow for different model groups but 

not heteroscedasticity in the logscale. Not to burden the notation, subscript g is 

suppressed fi-om now. Let X be the matrix with x'̂  in the Ath row, and let subscript s 

indicate the corresponding sample entity. To estimate the total of the nonsampled 

units on the original scale, the sum of the back-transformed predicted values of the 

study variable are multiplied by a bias correction factor. Let Ukk be the diagonal 

elements in a matrix X , which is rather similar to the 'hat matrix', with 

s+ indicating that the matrix is restricted to positive sample values of the study 

variable. Let Z^ be the predicted value for unit k on the logscale, i.e. Z^ = x^p. It is 

reasonable to assume that Z^ is approximately normally distributed, and hence that 

exp(z^) follows a lognormal distribution. Then exp(z^ )] = exp(u + a,̂ <7̂  j l ) , 

(see e.g. Casella and Berger, 1990, for the mean of a lognormal distribution, and e.g. 

Sen and Srivastava, 1990, for the variance of Z^). Hence exp(z^ ) is a biased estimator 

of Yk on the original scale. Under the additional assumption that Yk follows a lognormal 

distribution with mean and variance given by M , so that (y .̂ ) = exp(// + <7^/2), 
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Karlberg derives a approximately model-unbiased predictor; 

4 =exp(Z& lexp 
2 4%+ 

( 5 J ^ ) 

where n+ is the number of positive elements in the model group and 

- 2 ) . (5.17) 
" + - 2 i=l 

with eu being the residuals on the logscale. If «+ < 2, then the denominator of ( 5.17 ) 

is set to 1; this happened only once in the simulations. The Logn/pr estimate of a total 

for a model group g is 

(5^^) 

where > O) is the sample proportion of units with positive value of the 
ksh 

study variable in the sizeband h unit k belongs to. Alternatively, a logistic model is 

fitted within each sizeband to obtain an estimated probability {x) for a unit with a 

certain x-value to have a positive j;-value. This estimator is labelled Logn/log. 

hi the simulations it often happened that the two groups defined by whether the study 

variable is zero or not were completely separated in a sense that is best explained by an 

example: if all x-values for zero study variable values are smaller than those of the 

positive study variable values, then the groups are completely separated. Then no ML 

estimates of the parameters of the logistic model exist. In this case, (x) was set to 

one for x-values greater than the average of the largest and smallest of the sample x-

values on either side of the separation point, and zero otherwise. For the rather more 

unlikely contingency that the groups were completely separated apart from one shared 

sample x-value ('quasi-complete separation'), p^(x) was set to for the shared point. 

If the sample x-values overlap the ML estimates exist and are unique. Overlap, 

complete and quasi-complete separation partition the space of data configurations 

(Albert and Anderson 1984). 

The mixture model estimators are sensitive to errors in . Therefore, RLogn/pr is 

obtained by replacing (5.17 ) in Logn/pr with a robust estimate of the variance, . 

105 



The beta coefficient was computed through a regression relationship within model 

groups oflog(yt) on log(xt), with homoscedastic errors and weights (5.14). The 

estimate cr̂  was taken as 1.4826 times the median absolute deviation of the residuals 

yk ~ their median. The constant 1.4826 is chosen so as to make 

consistent if the residuals were standard normal. 

The mixture model estimators are attractive in their relative simplicity, but they are not 

in general design unbiased. They cannot be written on the form (5.1). Transforming 

to log scale makes many business survey datasets nicely linear, apart from the zero-

valued observations. The flipside is the need to estimate the potentially influential 

parameter cr^ and, as a consequence of the lognormal model assumption, the need to 

estimate the propensity for a unit to have a zero value. The partition of the sample data 

into positives and zeroes makes the effective sample data set smaller. 

5.2.4 Variance estimators 

Although Chapter 5 focuses on point estimation, I have computed coverage 

probabilities and hence variance estimates. The variance estimators below account for 

the original stratification through the inclusion probabilities. It is shown in Appendix 5 

that a g-weighted variance estimator (4.12 ) for f for the three types of model 

group combined with stratified simple random sampling (STSI) is 

h=\ . ̂ xgn J ^h J^h ^ (5 19) 

t 
v/hans e* = jy* Tvith tbegs-weifrhts are jg*, //fxg* -

For example, for ONS model groups, ( 5.19 ) is 

\}x\k j h=\ 
N' 

_1 l_ 1 

"a - 1 (5jW) 
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where the totals in group g = 1 (all genuine sampling strata h = 1,2, and 3) are 

h=\ h=\ 

It is also shown in Appendix 5 that the g-weighted variance estimator for the group 

regression model is 

h=\ 
n: 

1 \_ 

1"* 

1 

"A ( 5 2 1 ) 

where = yj^-x*B with Bg defined above, and 

gt, + ( 5 2 2 ) 

The g-weights for regression models were studied in great detail in Chapter 4. 

The variance estimator used here for Local is 

h=\ 
J l_ 

"A 

2 

»/2 
( 5 2 3 ) 

where ^ 
nj^-l 

Breidt and Opsomer (2000) show that ( 5.23 ) is for a fixed bandwidth a consistent 

estimator (in the finite population sense described in Chapter 4) of an approximate 

variance 

M y J s - . < 5.24) 

where Tj^= being the smoothed values one would get with ( 5.6 ) based 

on the whole population, and with Ttĵ  being the probability that both 

units k and I are included in the sample. The expression ( 5.24 ) has the same form as 

the usual approximate variance of the GREG, see Chapter 4. The local g-weights 

(5.13 ) could be inserted into (5.23 ). The estimator (5.23 ) was used for RobReg as 

well with - m] replacing 

I have not computed variance estimates for the mixture model estimators. While 

Karlberg (2000) suggests a rather complicated variance estimator for her estimator, we 

shall see that there are bias problems with the mixture model estimators that make 

them less appealing, whether the variance can be estimated accurately or not. 
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5.3 Simulations based on MIDSS and CAPEX data 

Some domains of the Quarterly Survey of Capital Expenditure (CAPEX) and the 

Monthly Inquiry for the Distribution And Services Sector (MIDSS), both conducted by 

the ONS, provided data for a simulation study. The sampling design for both surveys is 

reported in Figure 5.1. The study variable is turnover for the MIDSS. Here net capital 

expenditure was used as the CAPEX study variable. For the purposes of this study, the 

auxiliary variable for both the MIDSS and the CAPEX was turnover as recorded on the 

frame, which is the frame variable that correlates most strongly with either of the study 

variables. 

Figures 5.2 to 5.6 show scatter plots of three MIDSS and two CAPEX domains on 

logscale. For confidentiality reasons the scales of the axes are suppressed. Note that the 
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Figure 5.1. MIDSS, domain A. Log of the study variable against log of the 

auxiliary variable, with unity added to both variables 
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Figure 5.2. MIDSS, domain B. Log of the study variable against log of the 

auxiliary variable, with unity added to both variables 
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Figure 5.3. MIDSS, domain C. Log of the study variable against log of the 

auxiliary variable, with unity added to both variables 
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Figure 5.4. CAPEX, domain U. Log of the study variable against log of the 

auxiliary variable, with unity added to both variables 
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Figure 5.5. CAPEX, domain V. Log of the study variable against log of the 

auxiliary variable, with unity added to both variables 
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CAPEX domains U and V are very different from the MIDSS domains A, B and C. 

Note in particular that the largest value of the auxiliary variable in domain V is in 

sizeband 3, i.e. a sampled sizeband. The proportion zero values for the study variable 

is rather small for the MIDSS. For the CAPEX it is about 40% and 20% for domains U 

and V respectively. 

Domain V is the domain studied in Chapter 4. Unlike in Chapter 4, in this chapter I 

draw subsamples from the original set of respondents to simulate a sample survey. 

In the simulations below I have used the existing strata but allocated the sample on the 

frame variable turnover, with the exception of CAPEX domain V where 'even' sample 

sizes were chosen. Sample sizes used in simulations are shown in Tables 5.1 to 5.5. 

The columns labelled by Nh contain the original number of respondents. Here they are 

considered population sizes. One thousand samples were drawn from each domain. 

Table 5.1. Sample sizes for the 

simulated samples, MIDSS domain A 

Table 5.2. Sample sizes for the 

simulated samples, MIDSS domain B 

Size- Nh nh Size- Nh 

band % band % 

1 39 9 23 1 73 5 7 

2 33 19 57 2 51 28 54 

3 52 32 62 3 88 67 77 

4 43 43 100 4 74 74 100 

Sum 167 103 62 Sum 286 174 61 

Table 5.3. Sample sizes for the Table 5.4. Sample sizes for the 

simulated samples, MIDSS domain C simulated samples, CAPEX domain U 

Size- Size- Nh 

band % band % 

1 206 59 29 1 254 25 10 

2 129 13 10 2 107 24 21 

3 305 128 42 3 133 51 38 

4 213 213 100 4 393 393 100 

Sum 853 413 48 Sum 887 493 56 

111 
/eg 

LIBRARY 

% 



Table 5.5. Sample sizes for the simulated samples, CAPEX domain V 

Size- Nh 

band % 

1 40 10 25 

2 33 10 30 

3 112 30 27 

4 202 202 100 

Sum 387 252 65 

5.3.1 Properties of an estimator 

I am interested in the following measures. 

1. Coefficient of variance (CV). The ratio of the standard deviation of the simulated 

point estimates to the true total. 

2. Bias. The mean of the errors of the simulated estimates divided by the true total. 

3. Coverage probability. The 95% confidence intervals computed as ± 1.96 times the 

square root of the variance estimates ( 5.19 ) - ( 5.23 ). 

4. What proportion of the point estimates that are further away from the true total 

than 0.675 times the standard error of the point estimates. The constant 0.675 is so 

chosen that if the estimates are normally distributed then 50% will be Non-

centred. 

5. The maximum of the absolute differences between the 95% and 5% percentile and 

the true total, divided by the true total. This has the flavour of a minimax criterion 

with the survey error, i.e. the difference between estimate and population 

parameter, as loss function. This criterion is labelled Large Error. 

Unfortunately, there is no hard and fast rule about which properties to prioritise. The 

first three measures are the traditional properties that together with the MSE often are 

taken as the guiding rule. Despite the strong position of the MSE, there is some 

arbitrariness in using squared error loss as the one and only loss function (see also 

Robert, Hwang, and Strawderman, 1993, in particular the discussion that follows the 
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paper). Although there is not likely to be any other loss function that is less arbitrary 

than squared error loss, this loss function is not sacrosanct in any way. Based on the 

statistical adage that most sampling distributions are 'normal in the middle', we might 

expect close to 50% of the estimates to be Non-centred. The fifth measure. Large 

Error, is particularly important in official statistics where the publication of bad 

estimates may sometimes lead to great losses for society and may also be detrimental 

to the reputation of the national statistical institute. I would argue that the criterion 

Large Error is easier to understand and explain to the public than are the CV or the 

MSB. 

5.3.2 Simulation results 

Tables 5.6 to 5.10 report on the CV and the other measures for five domains. Table 

5.11 shows the biases of the variance estimators. In the tables, the type of model group 

is indicated by a number: 1 for 'within strata', 2 for 'ONS model groups' and 3 for 

'over all strata'. For example, as seen in Table 5.6, the estimator most widely used in 

ONS business survey estimation, here called Rat_2, gives poorer CV than does the 

expansion estimator, E, for four out of five domains. Some other observations are 

listed in connection to each table. Boxplots of the point estimates are shown in 

Appendix 8. 

Comments to Table 5.6: 

1. The Logn and RLogn estimators fitted within strata broke down for several 

domains. The reason that Logn and RLogn 'within strata' broke down for three 

domains is that few units are sampled from sizeband 1 (Tables 2, 4 and 5), many of 

which may be zero. As all three mixture model estimators only use positive values 

of the study variable to fit a lognormal model, the fit will be very unstable for 

small samples. However, these estimators fitted over all strata performed well. 

2. Among design-based estimators it is E that gives the smallest CV for several 

domains. The reason is poor correlation between study and auxiliary variables. 

This lack of correlation arises either through outliers (domain B, Figure 5.2) or 

through overall weak association (domains U and V, Figures 5.5 and 5.6). 

3. For weak-association and outlier-prone domains (such as U and V) larger groups 

give smaller CV. The opposite is true for the MIDDS domains. 

4. In terms of CV, RobReg is among the worst estimators for several domains, 
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including domain V for which estimation is particularly challenging. 

5. Local is among the best design-based estimators for the CAPEX, and not far worse 

than Rat and Reg/1.0 for the MIDSS (between 5% and 24% higher CV than the 

best Rat or Reg/1.0). 

6. In domain V, Figure 5.5, the extreme-leverage observation in sizeband 3 causes 

extrapolation far beyond the sample range for all samples without this observation. 

The result is unstable estimates for most estimators. 

7. Reg/1.5 is worse than Reg/1.0 throughout, and far worse for domain V. This is 

rather surprising considering that the model underlying Reg/1.5 fits data better than 

that of Reg/1.0. 

Table 5.6. Per cent coefficient of variation (CV) for five domains. 

MIDSS CAPEX 

A B C U V 

E 242 0.92 1.61 113 6.62 

Rat_1 1.51 1 j g 1.05 1.24 1546 

Rat_2 1.74 i j g 1M6 1M5 15.6 

Rat_3 1^8 1.34 1.17 1.14 24.83 

Reg/1.0_1 1^2 1^8 143 1.42 14.01 

Reg/1.0_2 1.72 1.28 1.15 1M6 14.2 

Reg/1.0_3 1^3 1.34 116 1.14 7.94 

Reg/1.5_1 1.7 1.38 1.07 1.4 21.74 

Reg/1.5_2 178 1.21 1.41 42.11 

Reg/1.5_3 1^3 141 1.2 1JW 19.35 

Local/f40 1^7 136 119 113 642 

Local/s20 1^3 1.36 107 1.14 6.69 

RobReg/f40_1 1.87 149 106 1.19 19^W 

RobReg/f40_2 1.83 1.37 1.17 127 45.85 

RobReg/f40_3 1.82 1.42 1.17 1.13 1&24 

Logn/pr_1 1.59 362619 0.96 8E44 

Logn/pr_2 1.26 1.09 102 049 6.95 

Logn/pr_3 0.77 0.81 0.58 0.33 447 

Logn/log_1 1.71 379092 0.98 1E45 

Logn/log_2 1 j # 1.1 1.05 0.51 741 

Logn/log_3 1.03 0.82 0.6 0.38 4.57 

RLogn/pr_1 1.67 525230 0.85 8E44 

RLogn/pr_2 1.45 1.16 0.8 0.58 11^3 

RLogn/pr_3 &86 0.87 0.46 0.26 6.04 
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Table 5.7. Bias for five domains (per cent of true total) 

MIDSS CAPEX 

A B C U V 

E 0.06 -0.05 -0.01 -0.01 0.07 

Rat_1 0.42 0.22 0.11 -0.02 9.91 

Rat_2 0 12 0.09 0 4 6 -0.01 9.20 

Rat_3 0.04 -0.01 0.01 -0.01 7.41 

Reg/1.0_1 0 ^ 2 &27 0 4 7 -0.22 4.93 

Reg/1.0_2 CMS &09 0 4 6 -0.04 -2 80 

Reg/1.03 0.04 -0.01 0.01 -0.01 0 4 8 

Reg/1.5_1 0.25 a i 2 0 4 5 -&16 1 4 2 

Reg/1.5_2 0.09 0.01 0.04 -0.10 -2.82 

Reg/1.5_3 0.05 -0.01 0 4 2 -0.02 0 2 3 

Local/f40 0.04 0.01 0 4 7 -0.01 -1.90 

Local/s20 0 0 6 (102 0.07 0 -3.04 

RobReg/f40_1 0.04 0 0 4 2 -0.06 0 4 7 

RobReg/f40_2 0.03 -0.02 0.02 4345 4 4 0 

RobReg/f40_3 0.03 -0.02 0.01 4)41 1.04 

Logn/pr_1 1.11 14700 -0,04 2E43 3E167 

Logn/pr_2 1.27 0.90 1.42 3.39 7 4 3 

Logn/pr_3 1.72 1.19 1.10 3.72 3&2 

Logn/log_1 1 4 8 13300 0M3 4E43 3E167 

Logn/log_2 1.19 0.97 1.65 3.46 7.59 

Logn/log_3 1.65 1.27 1^2 3.98 3 5 4 7 

RLogn/pr_1 4 4 0 19900 -1.07 2E43 3E167 

RLogn/pr_2 0.1 0U9 -0.05 3.32 9.75 

RLogn/pr_3 0.74 0.51 -0.6 3.32 33.34 

Comments to Table 5.7: 

1. The bias can be very large for weak-association populations with extreme-leverage 

points, such as domain V displayed in Figure 5.5. This is particularly true for Rat 

applied to a population that calls for a positive intercept. For other populations, 

linear or not, or outlier prone or not, the bias is negligible for the design-based 

estimators, including RobReg. 

2. Logn/pr and Logn/log tend to give positive bias. This is in accordance with 

Karlberg's (2000) empirical findings. Rlogn/pr seems rather better in this respect. 

Consequently, Logn does not perform well in terms of root MSB (not shown here). 
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The reason for the poor performance does not seem to be lack of lognormality, see 

Appendix 6. Logn breaks down in terms of bias for the same reason as stated for 

the CV above. 

3. The bias is often slightly larger for small model groups but still negligible for all 

domains but one. 

Table 5.8. Coverage probability, in per cent, for five domains. 

MIDSS CAPEX 

A B C U V 

E 89 0 9Z7 9&6 91.5 8 A 9 

Rat_1 7 3 8 6&9 9 0 8 8&6 7&6 

Rat_2 8&6 6&1 91 j 8&2 6&8 

Rat_3 7 9 9 64.7 9&2 8&9 31.7 

Reg/1.0_1 72.7 6 3 7 91.1 8&6 84.8 

Reg/1.0_2 8&6 65.1 91M 92M 8&3 

Reg/1.0_3 80.0 64.7 9 3 3 85.9 90.2 

Reg/1.5_1 8&6 65.3 9 1 2 9 2 5 90.1 

Reg/1.5_2 81.1 65.5 9 ia 9&3 85.0 

Reg/1.5_3 8&2 64.7 93 1 8&0 &A4 

Local/f40 79.4 64.7 9 3 7 85.3 79.4 

Local/s20 7 8 9 64.7 94.4 85.2 75.5 

RobReg/f40_1 7&4 64.6 9 2 4 84.2 55.2 

RobReg/f40_2 80.0 64.7 9&8 81.7 36.9 

RobReg/f40_3 80.2 64.7 93.4 85.5 63.7 

Comments to Table 5.8: 

1. The coverage probability is poor in many cases. No estimator except the E 

estimator gives acceptable coverage for all domains. The reason is the non-

normality of the estimates for many domains, in particular B. The sample 

distribution is bimodal for this domain. The main reason for this to happen is the 

high leverage point in sizeband 3 visible in Figure 5.2. 

2. If the population is linear (such as the MIDSS domains, Figures 5.2 to 5.4), then 

'within stratum' model groups seem worse than larger model groups, in terms of 

coverage probability. This makes the lower CV for 'within stratum' a moot point. 

3. The variance estimator for RobReg seems unreliable. 
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Table 5.9. Per cent Non-centred estimates for five domains. 

MIDSS CAPEX 

A B C U V 

E 52 47 51 36 53 

Rat_1 55 62 51 34 61 

Rat_2 56 64 51 36 67 

Rat_3 57 71 50 36 80 

Reg/1.0_1 52 58 52 27 48 

Reg/1.0_2 56 63 51 35 47 

Reg/1.0_3 57 71 50 36 54 

Reg/1.5_1 55 67 53 33 55 

Reg/1,5_2 56 70 50 35 40 

Reg/1.5_3 56 71 51 36 45 

Localf40 56 68 50 36 56 

Local/s20 58 68 49 37 57 

RobReg/f40_1 54 66 51 36 39 

RobReg/f40_2 56 72 51 37 27 

RobReg/f40_3 56 72 50 36 46 

Logn/pr_1 57 0 49 0 0 

Logn/pr_2 68 41 76 100 62 

Logn/pr_3 94 74 89 100 100 

Logn/log_1 56 0 50 0 0 

Logn/log_2 64 42 81 100 63 

Logn/log_3 86 79 93 100 100 

RLogn/pr_1 51 0 78 0 0 

RLogn/pr_2 59 57 51 100 46 

RLogn/pr_3 66 39 78 100 100 

Note: a point estimate is Non-centred if it is further away from the true total than 0.675 

times its standard error. 

Comments to Table 5.9: 

Percentages far away from 50 in Table 5.9 indicate a sampling distribution that is far 

from normal. Numbers less than 50% indicate that the estimates are more tightly 

centred, and hence have smaller error, than what would be expected if they were 

normally distributed. 

1. The distributions of the estimates are clearly non-normal for domains B, U, and V. 

2. Most of the design-based estimators are similar in terms of the Non-centred 

criterion. However, E and RobReg stand out, giving equal or better performance. 
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Table 5.10. Per cent estimates with Large Error for five domains. 

MIDSS CAPEX 

A B C U V 

E 4.1 1.5 2.7 1.2 11.5 

Rat_1 2.9 2.3 2 1.2 34.8 

Rat_2 2.9 2.2 2.1 1.2 33.7 

Rat_3 2.8 2.1 1.9 1.2 33.5 

Reg/1.0_1 2.9 2.4 1.9 1.2 29 .5 

Reg/1.0_2 2.8 2.1 2.1 1.2 17 

Reg/1.0_3 2.8 2.1 1.9 1.2 13.7 

Reg/1.5__1 3 2.3 1.9 1.6 3 3 ^ 

Reg/1.5_2 2.8 2.2 2.1 1.7 8 9 ^ 

Reg/1.5_3 2.8 2.2 2 1.2 36 

Local/f40 2.8 2.1 2 1.2 8.8 

Local/s20 2.7 2.2 2 1.2 25 

RobReg/f40_1 2.8 2.2 1.9 1.2 8.1 

RobReg/f40_2 2.8 2.2 1.9 1.2 8.1 

RobReg/f40_3 2.8 2.2 1.9 1.2 8.1 

Logn/pr_1 3.9 2.7 1.6 3.9 31.9 

Logn/pr_2 3.4 2.8 3.2 4.2 19.7 

Logn/pr_3 3 2.5 2.1 4.3 42.5 

Logn/log_1 3.9 2.7 1.9 4.1 25.7 

Logn/log_2 3.4 3 3.4 4.3 20 2 

Logn/log_3 3.1 2.6 2.3 4.7 42.5 

RLogn/pr_1 3.2 3.4 0.5 4.6 374.7 

RLogn/pr_2 2.4 2.1 1.3 4.3 33M 

RLogn/pr_3 2.1 1.9 0.2 3.8 43.8 

Note: Large Error is defined as the maximum of the absolute differences between the 

95% and 5% percentile and the true total, divided by the true total. Hence, a small 

value of this measure indicate a small risk for obtaining an estimate with a large error. 

Comments to Table 5.10: 

1. In terms of the Large Error criterion, RobReg is the best estimator for domain V 

and no worse than any other estimator for other domains. Local/f40 also performs 

well. 

2. The Large Error and Non-centred criteria combined show that the distribution of 

'within stratum' estimates are both more peaked and fat-tailed than the distribution 
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for larger model groups. Again, this makes the lower CV for 'within stratum' a 

moot point. 

Table 5.11. Bias of variance estimates, in per cent, for five domains. 

MIDSS CAP EX 

A B C U V 

E 3.8 4.2 3.4 3.1 2.5 

Rat_1 -54.2 -5ia -1&1 -14.9 -38.9 

Rat_2 -18.9 -28.4 -15.7 -9.3 -29.9 

Rat_3 -1.4 0.2 -5.8 -6.1 -22.1 

Reg/1.0_1 -55.8 -5&9 -14.8 -13.1 -29.4 

Reg/1.0_2 -18.3 -27.5 -14.3 -9.4 -29.9 

Reg/1.0_3 -1.2 0.5 -5.4 -4.2 -18.4 

Reg/1.5_1 -34.7 -16.7 -12.8 -13.5 

Reg/1.5_2 -3.6 -2.9 -8.7 -3.6 -9.7 

Reg/1.5_3 -2.0 1.3 -5.8 -1.1 2.1 

Local/f40 1.3 1.8 -7.3 5.3 4.3 

Local/s20 5.6 0.8 14.1 2.2 1.5 

RobReg/f40_1 1.3 -16M 7.0 8.2 -5.3 

RobReg/f40_2 5.5 -0.7 -8.1 1.7 -6.8 

RobReg/f40_3 7.4 -7.2 -8.4 5.7 -3.0 

Note: Variance estimates were computed using formulae in Section 5.2.4 

Comments to Table 5.11: 

1. The bias is negative and with very large absolute value in many cases, in particular 

for 'within stratum' for GREGs. Wu and Deng (1983) also found that the variance 

estimator used here for Rat gave large negative bias. While the large biases 

contribute to an explanation of the poor coverage probabilities, it is not the only 

reason; note the weak correlation between the coverage probabilities in Table 5.8 

and the bias in Table 5.11. The boxplots in Appendix 8 show lack of normality of 

point estimates. 

2. For GREGs, the bias decreases with size of model groups. 

3. The variance estimator for the Local estimators is gives reasonable results in terms 

ofbias. 
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Conditional properties 

In classical design-based inference conditional properties are not given much attention. 

However, most official statistics users would agree that if the sample is severely 

imbalanced in terms of an auxiliary variable that is believed to have some 'explanatory 

power', then properties such as design-unbiasedness that hold only as an 'summary 

measure' over all possible samples are less appealing than they would have been with 

a balanced sample - unless the estimators have been shown to have good properties 

conditional on the estimate of the auxiliary variable. To give one simple example: if a 

properly drawn random sample from a domain turns out to contain mostly larger-than-

average businesses in terms of a frame variable and if the estimated total of the study 

variable for the domain is higher than last year, no informed user would believe in this 

estimate. This argument is formalised by Thompson (1997, Ch. 5). 

Scatter plots of the estimated total of the study variable against the estimated total of 

the auxiliary variable for MIDSS domain A are shown in Figures 5a-c, with one plot 

per type of model group. It is reasonable to plot against the estimated auxiliary variable 

total or the difference between this estimate and the population parameter since either 

alternative gives a measure of the imbalance in the sample. Here the estimates for the 

study variable are plotted against the expansion estimate of the auxiliary total, . A 

loess curve (Cleveland 1979) was fitted to the 1000 pairs of study variable and 

auxiliary variable estimates for each of the estimators E, Rat, Reg/1.0 and 1.5, 

Local/s20 and f40, RobReg, Logn/pr and log, and Rlogn/pr. The loess curve was fitted 

with the SAS procedure Proc Loess with the smoothing parameter set to 0.20 which 

makes the bandwidth comprise 20% of the units, see SAS Institute (2000). The 

distance from the dotted horizontal line, which indicates the true total, and the fitted 

value gives an impression of the conditional bias. This is essentially the same type of 

plot Valliant (1987) produced for an STSI design, although he focuses on variance 

estimation and use a different smoother. 

As seen in Figures 5,7 a-c, the expansion estimator E has the largest conditional bias, 

apart from the region 280,000 < < 285,000 where is close to the population 

total. We would expect this conditional bias to disappear in the GREG type of 

estimators since they are designed to cope with this type of imbalance. Indeed, this is 
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the case for 'within stratum' model groups (Figure 5.6 a), but, interestingly, the other 

model groups overadjust for the imbalance (Figures 5.7 b and c). For these model 

groups the GREGs are similar to the Local regression estimators and RobReg. With 

the unconditional bias deducted, the estimators with the smallest conditional bias for 

regions outside 280,000 < < 285,000 are the mixture model estimators. In terms of 

conditional bias (adjusted for the unconditional bias) Logn/pr, Logn/log, and RLogn/pr 

are all similar, and this for all modelgroups. The difference discemable from Figures 

5.7 a-c is that RLogn has smaller unconditional bias. 
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Figure 5.6 a) Domain A, model groups: within strata 
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Figure 5.6 a-c. The estimated total of the study variable against the estimated 

total of the auxiliary variable. Loess curves indicate the conditional bias; 

horizontal and vertical lines indicate the true totals. 
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Figure 5.7. Domain B, 'over all strata' model group. The estimated total of the 

study variable against the estimated total of the auxiliary variable. Loess curves 

indicate the conditional bias, with one curve per estimator. They are from top to 

bottom, Log/pr and log (almost indistinguishable), RLogn/pr (dashed), and all 

other estimators tightly together in one group. The dots represent the outcome for 

1000 simulated Reg/1.0 estimates. 

In principle, the conditional bias for the other domains, conditional on , showed the 

same pattern, although there was one conspicuous feature in MIDSS domain B and 

Capex domain V; the scatter of points are almost entirely separable into two clusters. 

See Figure 5.7 for domain B. If a sample contains the high-leverage point in sizeband 

3 visible in Figure 5.2, the estimate belongs to the cluster towards the lower-right 

comer in Figure 5.7, otherwise it belongs to the other cluster. Furthermore, as can be 

deduced from Figure 5.7, the sampling distribution of the estimated study variable total 

is bimodal. This explains the very poor coverage probabilities in Table 5.8. 
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5.4 A pre-sample diagnostic 

In Chapter 4 the g-weight function was suggested as a diagnostic for a GREG 

estimator that can be applied after the sample has been drawn. Now the focus is on pre-

sample diagnostics. If a 'difficult' frame unit can be identified before that sample is 

drawn, it can be moved out of the stratum where it first appeared and put in a 

completely enumerated (CE) stratum and thus obviate the need for 'outlier treatment'. 

Hence, we need to find some rule that detects all awkward units but ideally no unit that 

needs no special treatment. 

Clearly, a pre-sample diagnostic cannot flag units with frame characteristics that are 

close to the average in the group they belong to. When such a unit is observed in a 

sample it may turn out to be an outlier if its value of the study variable or the 

combination of the study and auxiliary variables is very different from neighbouring 

units. Once the sample is drawn and observed the estimation process needs to 

accommodate outliers that cannot be seen prior to the sampling process. 

The advantage of detecting outlying units before they are sampled is not only practical; 

it is also a matter of accuracy. With modem robust estimation techniques outliers may 

not always be as bad a problem as they once were, but robust methods come with a 

price in terms of increased variance. Outlier treatment used in the past implicitly 

removed units fi-om their original stratum and put them in a special poststratum, 

usually with weight 1. 

There are in principle two ways of constructing pre-sample diagnostics: either they are 

solely based on what is known about the auxiliary variables or on some assumed 

model for the relationship between the study variable and the auxiliary variables. 

My main approach is to look for high-leverage points. One situation when such points 

will appear with high probability is when a business survey is conducted with one 

stratification variable but another auxiliary variable is used in estimation. For example, 

at the ONS, most business surveys use a common stratification variable and conmion 

strata boundaries. At estimation stage many of the surveys will use a different auxiliary 

variable to gain accuracy. In general, with improved registers and the ever increased 

use of more complex estimation techniques there will often be additional auxiliary 
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information that can be used in estimation, but it would be impractical or impossible to 

use all of them at the sampling stage. For example, for a set of business surveys 

coordinated through a Permanent Random Number system (Ohlsson 1995), if not all or 

at least the vast majority of surveys do not use the same stratification variable and the 

same stratum boundaries the system will be hard to implement (Kokic and Brewer 

1996, p. 5). 

5.4.1 Diagnostics based on the normal distribution 

Note that both ( 5.4 ) and ( 5.5 ) can be written as the expansion estimators plus a term 

(5.25) 

where 

^ forGREGs 

^ for Local 

In the kind of applications we are interested in, « (o ) , where Bg\ is some 

number, and hence (5.25 ) for GREGs expresses the balance of the sample, - Kgn, 

times Bgi, where is a scalar component of . There is little risk that ~'̂ xg7t will 

turn out large in relation to ) if Xg is such that central limit theorem applies to the 

estimate . Therefore, one approach is to base a pre-sample diagnostic on some 

diagnostic for the goodness of the approximation of the sampling distribution of 

to the normal distribution. Cochran (1977, p. 42) gives a rule of thumb for simple 

random sampling that relates the smallest sample size necessary to achieve a coverage 

probability of at least 0.94 to 25 times the square of the skewness coefficient Gi of the 

study variable: 

» > 25G," 

deviation of the study variable. 

|3 
3 where G, = — and cr̂  is the third power of the population standard 

Sugden, Smith, and Jones (2000) discuss the precise meaning of this rule and suggest 

an improved version, 

M>28 + 25G7 
' 1 (5.26) 
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which adds on 28 as penalty for not knowing the exact variance of . Their formula 

( 4.4 ) extends ( 5.26 ) to situations with non-negligible finite population correction 

and positive kurtosis. 

For the Local estimator, ( 5.25 ) expresses the balance in terms of local regression 

predictions, . In view of the robustness of Local, this error should be smaller 

than — t^gji. 

One approach is therefore to approximate G; with the skewness of x (rather than the 

unknown y) and see if the planned sample size n is indeed larger than the right hand 

side of ( 5.26) or the corresponding expression given by the extension proposed by 

Sugden et al. (2000), which also involves the coefficient of skewness. However, both 

rules are very conservative. For a business survey population stratum the skewness is 

often 3 or (far) larger, so the minimum sample would by ( 5.26) be at least 253, which 

is a large sample size to take from each stratum or even between the genuine sampling 

strata in an ONS domain. For example, the lower quartile, median and upper quartile 

of the skewness coefficient for turnover in 36 MIDSS domains are 5.2, 7.2 and 9.8, 

respectively. The reason why (5.26) and other similar rules indicate large sample 

sizes is that they are designed to cover all possible distributions. The conclusion is 

therefore that this approach is not very useful in a business survey context. 

5.4.2 Diagnostics based on measures of influence of observations 

Another approach is to base diagnostics on some measure of the influence an 

observation may have on estimation. Since ^ '^kiyk ~ y k ) ' with 

the second term often approximately or exactly equal to zero, GREGs are sensitive to 

the estimation of Bg through . Hence a measure of the influence of one or 

several sample units on B^ indicates also influence on the corresponding GREG. I 

focus on single-case measures. Again, I will make use of the DFBETAi ( 4.16 ), which 

for unit i is B - B ,̂), where B̂ ,.) is the estimate obtained with unit i deleted. 
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An observation whose removal results in a large value of B^, - for a group g' 

may have a small impact though, if the point is sampled in a stratum with small units. 

Therefore, the impact /(/) of an observation i in group g' can be defined as the 

approximate relative change: 

, (5.27) 
g 

where is population group g' with unit i removed. Alternatively, one could 

relate By - to some knowledge of the variance, for example the variance for 

some previous period of the survey. 

For given x-values, the smallest or largest DFBETAi we might expect is (4.16 ) with e, 

replaced with ± , where pa is a suitable constant. If the distribution of the 

residuals were normal with zero expectation and variance , we could choose pa 

by looking at a percentile of the standard normal distribution. However, knowing that 

the tails of the actual distributions are likely to be thicker than those of a normal 

distribution, I have chosen a large percentile, a = 99.9, which makes 3.1.1 also 

put Zk = Xk. The maximum and minimum 'feared' DFBETAi, divided by a, is 

therefore 

r 1 (fx28) 

As been pointed out a couple of times, yis often about 1.5 for business survey 

populations. One approach is therefore to set 7= 1.5 in ( 5.28 ) and list the units with 

the largest absolute value of the second component of R/, denoted by Ri. Some of these 

units will be moved prior to the sampling to either some completely enumerated 

stratum or to other genuine sampling strata where the units are of a size that matches 

the units removed. This process can be repeated. 

I shall now motivate the definition of Risk of impact that will be defined as ( 5.30 ) 

below. Since the impact ( 5.27 ) cannot be used as a pre-sample diagnostic, it needs 
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some modification. In ( 5.27 ), By - is replaced with R,, and the B^ 's in the 

denominator are replaced with reasonable numbers based on previous experience. We 

focus on the second component of - B^ .̂) only. Suppose the second components 

of the Bg's are roughly the same over groups and denote the common value by Bq. 

Then we have the Risk of impact 

«?( ' )=„ y V V ( 3 3 0 ) 

Note that ( 5.30 ) gives, up to a constant o, an indication of the relative change in the 

estimate that can be expected if the observation i is deleted. To put the pre-sample 

diagnostic ( 5.30 ) into practical use, Bq will have to be assigned a value based on 

experience or subject-matter considerations. In my experience, this can always be 

done. As shown in next section, ( 5 3 0 ) can be readily applied as a pre-sample 

diagnostic. 

5.4.3 Application 

The diagnostic (5.30) was applied to domain B of the MIDSS survey, plotted in 

Figure 5.2. The constant Bq was set to 1 since both the survey variable and the 

auxiliary variable are measures of turnover, albeit taken from different sources and 

time periods. Some measures are listed in Table 5.12 for the ten units with the largest 

risk of impact in each sizeband. There is one unit, the one in sizeband 3, that has a risk 

of impact that stands out. 

I repeated the simulation study to be able to compare sample survey estimates with 

and without the unit in sizeband 3 with the relatively large risk of impact. Table 5.13 

shows the effect of moving this unit to a CE stratum. When it was removed the sample 

size was reduced with one unit. As can be seen in Table 5.13, all of the measures CV, 

coverage probability and large error improved dramatically for all estimators except 

for the HT estimator (E). It is interesting to note that the improvement is as large for 

the Local/s20 regression estimator as for the others: not even this estimator can cope 

with the point with extreme leverage. 
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Table 5.12. Diagnostics for the 10 units in each sizeband 1-3 with largest risk of 
impact 

a) Sizeband 1. 
U n i t L e v e r a g e Second Second R i s k o f 

c o o r d i n a t e c o o r d i n a t e i m p a c t 

o f DFBETA X of ( 5 . 2 8 )x 

100 100 

1 0 . 0 4 6 - 8 . 3 4 5 . 5 0 . 0 2 

2 0 . 0 4 2 - 7 5 . 1 3 8 . 4 0 . 0 2 

3 0 . 0 2 7 - 8 . 3 1 5 . 7 0.01 
4 0 . 0 2 7 - 5 . 8 1 5 . 1 0 . 0 1 

5 0 . 0 2 3 - 3 . 4 1 1 . 1 0 . 0 0 

6 0 . 0 2 1 3 . 6 9 . 0 0 . 0 0 

7 0 . 0 2 0 - 4 . 0 8 . 7 0 . 0 0 

8 0 . 0 2 0 - 9 . 5 8 . 6 0 . 0 0 

9 0 . 0 2 0 - 0 . 2 8 . 6 0 . 0 0 

10 0 . 0 2 0 - 9 . 8 8 . 2 0 . 0 0 

b) Sizeband 2. 
U n i t L e v e r a g e Second 

c o o r d i n a t e 

o f DFBETA X 

100 

Second 

c o o r d i n a t e 

of ( 5 . 2 8 )x 

100 

R i s k of 

i m p a c t 

1 0 . 0 4 3 1 1 . 0 3 2 . 6 0 . 0 6 

2 0 . 0 3 5 - 1 2 . 9 21 . 8 0 . 0 4 

3 0 . 0 3 2 0 . 2 1 8 . 0 0 . 0 3 

4 0 . 0 2 6 8 . 7 1 2 . 0 0 . 0 2 

5 0 . 0 2 6 - 3 . 7 1 1 . 3 0 . 0 2 

6 0 . 0 2 5 7 . 0 1 0 . 8 0 . 0 2 

7 0 . 0 2 4 - 5 . 4 9 . 6 0 . 0 2 

8 0 . 0 2 3 - 2 . 0 9 . 4 0 . 0 2 

9 0 . 0 2 3 2 . 2 9 . 4 0 . 0 2 

10 0 . 0 2 3 - 0 . 6 9 . 0 0 . 0 2 
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c). Sizeband 3. 
U n i t L e v e r a g e Second 

c o o r d i n a t e 

of DFBETA X 

100 

Second 

c o o r d i n a t e 

of ( 5 . 2 8 ) x 

100 

R i s k of 

i m p a c t 

1 0 . 0 4 6 - 1 9 5 . 2 5 ^ 4 0 ^ 2 

2 0 . 0 2 1 - 0 . 9 1 1 . 7 0 . 0 9 

3 0 . 0 2 1 - 1 . 6 1 1 . 4 0 . 0 9 

4 0 . 0 2 0 0 . 5 1 0 . 1 0 . 0 8 

5 0 . 0 2 0 - 9 . 8 9 . 9 0 . 0 8 

6 0 . 0 1 8 - 3 . 1 8 . 2 0 . 0 6 

7 0 . 0 1 8 1 . 5 8 . 1 0 . 0 6 

8 0 . 0 1 7 -1 . 2 7 . 4 0 . 0 6 

9 0 . 0 1 7 1 2 . 5 7 . 1 0 . 0 5 

10 0 . 0 1 7 6 . 6 7 . 0 0 . 0 5 

Table 5.13. CV, Coverage Probability (Cov) and Large Error (LE) for MIDSS 
domain B. The first column for each measure is based on the full sample (Tables 
5.6,5.8 and 5.10), the second on the full sample with the unit in sizeband 3 that 
has a relatively large risk of impact removed. 

CV Cov LE 

Full Reduced Full Reduced Full Reduced 
E 0.92 OjW 92.7 92.9 1.5 1.5 

Rat_1 1.29 0 ^ 8 63.9 88.0 2.3 1 

Rat_2 1.29 0.50 65.1 9 3 8 2.2 0.8 

Rat_3 1.34 0.51 64.7 94.2 2.1 0.8 

Reg/1.0_1 1.28 0.66 6 3 7 8&2 2.4 1.1 

Reg/1.0_2 1.28 0.50 65.1 9 3 a 2.1 0.8 

Reg/1.0_3 1.34 0.51 64.7 94.2 2.1 0.8 

Reg/1.5_1 1.38 0.64 6&3 8 7 ^ 2.3 1.1 

Reg/1.5_2 1 J 6 0.51 6 5 5 9 3 8 2.2 0.8 

Reg/1.5_3 1.41 0.52 64.7 93.8 2.2 0.9 

Local/s20 1 J 6 0.53 64.7 92.4 2.2 0.9 

For CAPEX domain V there was again one unit with a higher risk of impact than the 

others: this is the high-leverage unit in sizeband 3 visible in Figure 5.5. Its risk of 

impact is 1.55, the second largest in any of sizebands 1-3 is 0.07.1 repeated the 

simulations for domain V without this unit; the CV, coverage probability and the Large 

Error are reported in Table 5.14. For this domain it also of interest to see the bias is 
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greatly reduced for all estimators that suffered from bias in the original population, see 

Table 5.15. 

Table 5.14. CV, Coverage Probability (Cov) and Large Error (LE) for CAPEX 
domain V. The first column for each measure is based on the full sample (Tables 
5.6,5.8 and 5.10), the second on the full sample with the unit in sizeband 3 that 
has a relatively large risk of impact removed. 

CV Cov LE 

Full Reduced Full Reduced Full Reduced 
E 6.62 6^2 73.6 8 3 7 1 1 ^ 1&8 

RaL1 1&46 6.25 6 8 a 8 6 7 34.8 1&6 

Rat_2 15.6 6M5 31.7 85.5 3 3 7 10.4 

Rat_3 24^3 621 84.8 8 7 ^ 33 5 1&6 

Reg/1.0_1 14.01 6.38 86.3 8&6 2 9 5 11.6 

Reg/1.0_2 142 6.58 9 0 2 83 1 17.0 11.5 

Reg/1.0_3 7.94 6.22 9&1 84.0 13.7 10.7 

Reg/1.5_1 21.74 6.61 8&0 8&5 3 3 7 12.3 

Reg/1.5_2 42M1 7.84 8 7 4 84.9 8 9 4 13M 

Reg/1.5_3 1&35 6.57 7&4 84.0 36 0 11.1 

Local/f40 6 ^ 2 6M8 7&6 8 4 2 8.8 10.3 

Table 5.15. Bias for CAPEX domain V. The first column for each measure is 
based on the full sample (Table 5.7), the second on the full sample with the unit in 
sizeband 3 that has a relatively large risk of impact removed. 

Bias 

Full Reduced 
E 0.07 -1.31 

Rat_1 9.91 -0.96 

Rat_2 9.20 -1.24 

Rat_3 7 j ^ -1.27 

Reg/1.0_1 4.93 -1.8 

Reg/1.0_2 -280 -1.52 

Reg/1.0_3 0^8 - 1 2 7 

Reg/1.5_1 1^2 -1.88 

Reg/1.5_2 -Z82 -1.34 

Reg/1.5_3 0 2 3 -1.13 

Local/f40 -1.90 -1.31 
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Figure 5.8. The g-weight functions Gl, G3/2 and G2 for sizeband 3 in CAPEX 

domain V as a function of turnover. The horizontal line represents model E. 

We now leave the simulation study and return to the g-weight functions studied in 

Chapter 4. It is interesting to see what effect deleting one large-risk-of-impact point 

may have on g-weight functions. These functions for sizeband 3 in domain V are 

shown in Figure 4.4. The unit with the large risk of impact was deleted from the 

sample, so the original sample of businesses was reduced from 112 units to 111, with 

the population reduced accordingly. The re-calculated g-weight functions are graphed 

in Figure 5.8. The shapes are, in principle, the same but the minimums for G3/2 and 

G2 are larger. This has great practical importance (see Section 4.1.5) since now there 

are no negative g-weights. 

5.5 Discussion 

I have conducted a simulation study of estimation in business surveys and contrasted 

GREGs with a local regression estimator and a robust regression estimator. I evaluated 

each estimator with three types of model grouping, where relevant, against five 

criteria. Three of the criteria are conventional (bias, variance and coverage 

probability), whereas the other two measured aspects of the absolute error: the 
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proportion of the estimates that were close to the true value and the proportion that 

where very far from the true value, histead of using the MSB as one criterion, I have 

looked at bias and variance separately. In my opinion, an estimator with non-negligible 

design-bias is not a good estimator, no matter what its variance or MSB is. 

Some general conclusions are: 

1. There is no estimator that is the best. It all depends on the use of the estimates and 

on the population. Different criteria will be more important for different uses. The 

users, however, should not decide what estimators are being used. The users may 

change but the national statistical institute cannot afford to flit (cf Holt's 1998, 

pp. 17-19, discussion on measuring inflation). 

2. The estimators that have the best unconditional properties across all populations 

are the expansion estimator, Reg/1.0 fitted across all strata and the Local regression 

estimators. In particular, there seems to be no reason to prefer the ratio estimator 

to Reg/1.0. 

3. The standard way of constructing confidence intervals (1.96 times the standard 

error, estimated with formulas such as those in Sec 5.2.4) often gives poor 

coverage. If the main aim is good confidence intervals then the expansion estimator 

is preferable, although the price to pay will be wide intervals. 

4. For design-based estimators, fitting models within strata (leading to estimators 

such as the separate ratio or regression estimator) tends to give small CVs, but 

fitting models across strata tends to make estimates more robust. 

Other conclusions that concern specific estimators are: 

i. The choice of nearest neighbour bandwidth for local regression estimators does not 

seem overly sensitive. 

ii. The robust regression estimator and one of the local regression estimators are 

superior if the aim is to minimise the proportion of estimates that are very far firom 

the true value in absolute terms. This is particularly important in official statistics. 

These estimators have reasonably small conditional bias, although GREGs fitted 

within strata have smaller conditional bias. 

iii. The model-based mixture model estimator is bias prone and will give poor 

estimates for some populations. Robust estimation of the variance parameter seems 

to be an approach that reduces some of the problems. Robust estimation of the 
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slope parameter on the logarithmic scale is an option which I leave for future 

research. Also, if the model is fitted across strata, including the completely 

enumerated stratum, the parameter estimation tends to be more reliable. However, 

like the robust regression estimators, this estimator is not linear, nor has it the 

internal consistency property. 

iv. The regression estimator that is associated with the best model (with variance 

about the regression line proportional to the auxiliary raised to 1.5) is more erratic 

than the regression estimator modelled on a variance proportional to the auxiliary. 

The reason was seen to be variance in the bias adjustment term, i.e., the second 

term in ( 5.1) and ( 5.4 ). This term is non-zero only for the former estimator. 

High leverage points need to be addressed. Li Chapter 4 I suggest post-stratification 

where the expansion estimator is applied to the 20 or so units with the largest values of 

the auxiliary and that e.g. some GREG estimator that does use auxiliary information is 

applied to post-strata without high leverage points. Here I have proposed a pre-sample 

diagnostic. For units with particularly large value of the diagnostic action can be taken 

before the sample is drawn. They can, for example be moved to a CE stratum, or, if 

misclassification the reason why they appear in a stratum where the auxiliary variable 

values are in general smaller, they can be re-classified and moved to the stratum where 

they rightly belong. As the discussion above shows, this can be done in a fully 

automated way. There will be no bias incurred by the re-classification. Also, if the 

allocation is based on the variance of the auxiliary variable, moving inordinately large 

units before the allocation is done will give more reasonable sample sizes. 

The units that will obtain a large value of the diagnostic tend to have large leverage 

and could readily be spotted with a simple graph. However, a numerical measure to 

guide actions is helpful since the interpretation of a graph relies on subjective decisions 

and hence to some extent on the experience of the staff making the decisions. 

Furthermore, at many national statistical institutes there is an ever-increasing pressure 

to make the survey process more efficient and a numerical pre-sample diagnostic is a 

key ingredient in a semi-automatic screening of the population. Note that the 

transparency of this diagnostic is vital; in my experience it is very hard to introduce 

methodology at an NSI if staff do not feel that the methods proposed in their view 

carry a natural interpretation. 
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Chapter 6 

Concluding Discussion 

In this thesis I have addressed some issues that are of concern in official business 

statistics. Each of Chapters 2 - 4 ends with a discussion, which will not be repeated 

here. In this final chapter I shall endeavour to discuss if and in what way any of the 

results of the research presented here can become part of every-day processes at NSIs. 

This thesis is about 'real-world' problem solving and it would be disappointing if the 

main findings were 'interesting' rather than useful. 

We have seen that reporting delays of the registration of new businesses can cause a 

non-negligible bias. How large the bias is depends crucially on the frame maintenance 

processes at the NSI. The size of this bias is probably unknown at most NSIs, and -

given the lack of literature in this area - even the awareness of the consequences of 

reporting delays may be absent. I have highlighted the existence of some research in 

other areas that can be used to address the problem caused by reporting delays. The 

prediction methodology proposed in Chapter 2 is practical and fits reasonably well into 

existing structures at most NSIs. To use this to predict and monitor the reporting-delay 

induced undercount should not pose any great practical problems. To predict the 

negative bias of estimates of the population total caused by reporting delays proved 

difficult due to very long reporting delays for large businesses. It is not clear at this 

stage whether the long reporting delays are peculiar to fr^ame maintenance processes at 

the ONS or if other NSIs that update their business registers from more than one 

administrative source face the problem of long delays due lengthy cross-checking and 

proving processes. For the ONS, the solution to the problem of estimating the bias 

requires new administrative procedures that allow separation of genuinely new 

businesses from those that are new only in legal terms. With these procedures in place, 

refitting the models may indicate whether the methods in Chapter 2 are adequate or if 

there is a need for further research into modelling extreme events (that is, a few large 

businesses having long reporting delays). 
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Feeding back information on ineligibility obtained in sample surveys to the frame is 

generally discouraged. However, as there is no quantification of the feed back bias 

published in a refereed journal, my theoretical expressions for the bias accompanied 

with small-scale simulations does constitute a contribution to our shared knowledge of 

survey sampling methodology. Further research of feed back bias may involve unequal 

probability sampling designs and assessment of the bias in situations where the 

eligibility of sampled units may be misclassified. 

We have seen that there are problems with GREG estimation, and that the model-

dependence of model assisted estimators cannot be ignored. This point may well be 

one of the most important results of the thesis. The g-weights continue to play a rather 

mysterious role in model assisted theory. They are clearly useful, but also potentially 

problematic since they are not bounded to some finite interval in the set of positive real 

values. Like GREG estimation, calibration has become very popular during the last 

decade, both as an idea and as part of methodologists' every-day work. Again, this 

technique is useful but the very strict constraint it imposes on estimates is problematic. 

There are research results on 'relaxed' calibration constraints, in the sense that some 

discrepancy between estimates of auxiliary variable parameters and their population 

counterpart is allowed (Bardsley and Chambers 1984). This idea has not yet been 

explored in a model assisted context. 

I have suggested some diagnostics that can help the practitioner to pin down those of 

the mass of estimates produced by an NSI that are likely to be very inaccurate. In my 

experience, diagnostics provide a way of thinking that is not often made use of in 

design-based survey sampling. This is puzzling considering the rather prominent role 

diagnostics have in other areas of statistics. In my opinion, the pre-sample diagnostic is 

the one of the diagnostics I have suggested that has the by far best chances of ever 

being used in practice. This is because it fits readily into common official statistics 

processes and thinking. The idea of g-weight functions may attract interest as 

something that sheds light on the nature of g-weights, but it is not likely to become part 

of the methodologist's toolkit. This is because regression estimation seems to continue 

to play the second fiddle to ratio estimation (which has constant g-weights) and 

because the g-weight functions require manual intervention to be assessed. 

Poststratification, as it is proposed at the end of Chapter 4, also requires manual 
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intervention. There is also the additional problem of the difficulty of assessing the 

contribution of the intervention to the overall uncertainty. How do we account for 

having chosen to poststratify after we have seen the data? 

Finally, I have explored some GREGs and other estimators that can be used to estimate 

a population total. The result was - as expected - rather inconclusive, although the 

design-based local linear regression estimators came out well. I have also raised the 

question what we want to achieve when we choose estimators; what are the most 

important properties of an estimator? I believe that the traditional approach to focus on 

design-bias and design-variance only will give way for a wider outlook where 

properties conditional on the realised sample will attract more interest among 

practitioners at NSIs than has been the case in the past. I believe also that practitioners 

will include some minimax type of property in their range of quality components when 

assessing strategies (but not necessarily the Large Error property discussed in 

Chapter 5). 

Although providing some new insights. Chapters 4 and 5 have the limitation of dealing 

with only one variable at a time. Official statistics involve a large system of many 

variables and many surveys. How to make use of the information different surveys can 

provide to each other may be one of the more important future research areas in official 

statistics. 
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Appendix 1. Selective editing 

The act of checking and correcting respondent data in surveys is usually referred to as 

editing. Many national statistical institutes use a 'micro-editing' approach for business 

surveys. Micro-editing (also called input editing) focuses on the individual record or 

questionnaire, as opposed to macro-editing where checks are used on aggregated data, hi 

micro-editing, the respondent data are passed through edits (edit rules, checks) that 

typically aim at detecting unusual item responses. For example, many repetitive business 

surveys use ratio edits whereby a response from a business is compared to its prior 

response. If the relative movement is more than, say, a% or less than b%, the incoming 

datum point fails the edit, and the questionnaire will be inspected manually. The business 

may be called back. As business data are volatile, a sizeable proportion of the respondents 

will confirm reported large movements. Thus, micro-editing will lead to many false 

signals, unless the edits have been carefully designed (Thompson and Sigman, 1999). 

Since editing is one of the most time consuming processes in the production of official 

statistics (Granquist and Kovar, 1997, p. 418), more efficient methods have been 

discussed and implemented for many surveys. With selective editing the incoming units 

are prioritised, and those that have been given priority are selected for editing. The 

prioritisation step often involves the computation of a score for each datum point that 

reflects the importance of investigating this datum point. Some types of score can be 

computed for all data, others only for those that have failed at least one edit. A score may 

be computed for each item on the questionnaire, and the item scores may be combined to 

a unit score. Questionnaires with unit scores above a predetermined threshold are 

inspected manually; other units are left unattended or passed on to another process, for 

example, some other type of editing or automatic imputation. Alternatively, there may be 

more than two levels of priority, with a high threshold defining the highest priority, and so 

on. The set of scores for one item can be viewed as the range of a score function of the 

unedited data and the background data, such as past edited data. 

Hedlin (2002a, 2003) defines two types of score function; one estimate-related method 

that prioritises by the predicted impact a suspect value will have on particular estimates, 

and one edit-related method that is explicitly based on specified edits and prioritises 

suspect values by the Mahalanobis distance (e.g. Krzanowski 1990) of the magnitude of 

edit failures. Hedlin (2003) also discusses how to measure the effectiveness of a score 
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function, and what it is that makes this method effective at reducing manual editing. It is 

interesting that both methods proved effective, although they are based on very different 

rationales. Somewhat surprisingly, the former method was seen to work rather better for a 

wide range of different estimates, apart from the estimates it targeted. 

In many situations it is useful to specify a threshold that splits the responses into two 

groups where manual editing is directed at responses with scores above the threshold. 

Hedlin (2003) suggests a simple graphical tool that allows the analyst to assess the 

threshold. The paper also suggests some graphs that will help to understand an editing 

process. 

One of the two types of score function has been implemented for the Monthly Inquiry for 

the Distribution and Services Sector (MIDSS) conducted by the ONS and been subjected 

to pilot studies for several other business surveys at the ONS (Underwood 2001). About 

50% of the editing effort could be spared for the MIDSS. 
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Appendix 2. Equivalence of Strategies 2 and 3 

Note that y,. . Therefore, if n^/n = Q and 

- I 

(A2.1) 
N 

Strategies 2 and 3 are the same. We will find for what estimate (A2.1) holds. 

Since = N ^ + N , by assumption, the left-hand side of ( A2.1 ) is 

f l , k „ i , - N , ) - - N , ) (w , - N , , ) 

^ - i v j 

^!^^ris~^p^currcn!-^^!d ^^ur^n, ~ ^i) 

1 n , ( N , „ ^ - N J ) 

N 
currgMf n , - ( N - N J 

(A2.2) 

Define 

d= . (A2.3) 

If D = iV^„ ,̂ the right-hand side of ( A2.2 ) equals I^current Strategies 2 and 3 

are the same. 

From (A2.3 ), 
d(n,-n„) 

iV,= 
(d-n„,^ +n,) 

N -TV 
Hence d = and nj = — — are equivalent statements. 

^ p 
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Appendix 3. A variance estimator for the poststratified estimator 
of the total 

Let subscript g refer to poststratum g. The sample residual for a unit k in poststratum g is 

= J)'* - with Bg = for the sample part n f . 

For a simple random sample without replacement (SI), 
Wj = N/n, 

where is the straight mean in Sg. 

Recall that A*, = {n:̂ , - )/;r^ and = Pr(/^ = / , = l). So for an SI 
« ( # - « ) 

A*, 7 z ( / z - # ) A r ( A r - l ) r j v y ^ 

TTi^TT, N^{N-1) n{n-\)\nj {n-i)n^ 

Using the Yates-Grundy-Sen variance estimator, we have 

) = Z 2 

Hence for an SI, 

1 ( ^ y - ^ 

W 
j g rt — 1 ^ 

n A n-l g-l 

where ^ = and is the number of units in Sg. 
^ 7Z. - 1 
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Appendix 4. G-weight functions 

Let = cal, a[ = {yv^K^)"' and = (l x^) . With we will refer to the sum of 

the quantities vk,i=l,2,...,k, ..|s|, with |s| being the number of elements in 5 and k the 
summation index. With the summation sign operating on a series of matrices A,, A?, 
A t , . . . A|ji, we refer to 

X i - I X j -̂ 'Jk },••' i-G., the sums of the matrix elements ,k = 1,2,..., |s|. 

The g-weights are 

-.1 1 

W; 

where 
f * * A 

t - = (2;. = 
1 

with * representing some numbers. For designs for which N = N (e.g. simple random 
sampling) we have 

. - ! ) 
Let )(X!̂  )~' and note that 

Z , k - = E , Z , Z , = Z . Z , -

Then 

For simple random sampling, which is assumed in what follows, we have a[ = N{nw^ 

Let xj") = ( Z , X Z , ) " ' with M/* = . 

For Model C we have y = 0 and = c and 

= 1 + k - L ) j y = 1 + - 4%, . , 

where A2 = and A, = . Note that = % for Model C. 

For Model XI we have / = 1 and = cx^ and 
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with 

^1 = 

and B2 = B^xP. 

The function / ( x ) = l -B^ + B^x'^ does not have a minimum value but its infimum is 

1 - B i . 

Repeating this for Model X3/2, we obtain = cx^ and 

c »(L -^ ) 

and Q = 

The derivative of the function / ( x ) = l - C , x + Q x is 0.5C,x ^'^(l-3xj''^& ' ) 

which takes zero value at x = 3xj''^\ The extreme value at this point (minimum if Q >0) 

is 
"x 3 ^ 

(1.5) 

Finally, for Model X2 we have y = 2 and = cx^ and 

g ' 

Sa - > + k - L ) ' j ( , L - 1 - A * , " ' + . 
A ' Z / . ' k - v ' ) 

g " f c , -',) 

and D; = . 

The derivative of the function / ( x ) = 1 - DjX~̂  + D^x ^ is D,x ^ (l - Ix f^x ' ) which takes 

zero value at x = 2xj^^. The extreme value at this point (minimum if Di >0) is 

/ ( 2 J W ) = 1 -
4x (2) 
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Appendix 5. Derivation of ratio and regression estimators for the 
group ratio model 

I will use subscript k unit and g for group. The group ratio model is defined as 

= G, (A5.1) 

and the group regression model as 

- (A5.2) 

where I confine choice of 7to 1 or 1.5. 

The design is fixed size stratified simple random sampling with independent samples 
taken firom the strata (STSI). 

Let the Horvitz-Thompson estimator for the total of y for group g be 

hg^ ~ S ^Sgh (A5.3 ) 
h=\ 

where Sgh is the sample in the intersection of stratum h and group g and = Nj^nl^. 

Samdal's et al. (1992) general expression for an approximate variance of a regression 
estimator for a design with a fixed sample size is 

(A5.4) 

where, for distinct units k and I no matter what group, 

^kl ~ ^kl ~ 

- -

n, 
1 1 

^ if ^ / e stratum h 
n}^-1 

Q if k and I belong to different strata ( A5 5 ) 

and Eĵ  = and, 

Bg = for the group ratio model. 

For the group regression model, 

Bg = ^regg - , Pg) with c% and defined by the weighted least squares fit of the 

regression of y on x in group g. 

From (A5.4 ) and ( A5.5 ), 
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^ ^stsi i^eg ) ~ 

1 H 

X 
' A=1 

H 
s 
h=\ 

N, 

n: 

1 1 

^hj 

^ 1 1 

# A - 1 

(A5.6) 

where 
- 1 

is not necessarily zero. 

The variance estimator with g-weights, 

^(^reg)~ ^ sks^ksls^l l^k^l ' (A5.7) 

where = y,. and A;̂ / = ^ki I^ki • For STSI K^-i = ^ for k and I in 
^h\^h ~1) 

stratum h, and for the group ratio model gj^ = f . Comparing ( A5.4) with ( A5.7 ) 

we get from (A5.6 ) 

h=\ V L 

n: 
1 1 1 

1 
where e* = , and ^ 

"A 
ratg 

For the group regression model, 

F, W'Z 
h=\ 

1 1 

"A 

1 

(A5.8) 

(A5.9) 

where regg and 

Sks ' + L - L ) ' ( Z . i X ' k K ) . (A5.10) 
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Appendix 6. Log-normality tests 

In this section it is investigated whether lognormal models can be fitted to the data in the 

MIDSS domains A to C. The QQ-plots in Figures A6.1-A6.3 suggest that a logarithmic 

transformation of both the study and auxiliary variable will help to restore linearity and 

reduce the residuals. Taking logs can be seen as a special case of Box-Cox 

transformations (Box and Cox 1964). The transformation in this family that reduced the 

residuals the most was actually found to be the logarithmic transformation. See Sen and 

Srivastava (1990, p. 204-208) for the objective function that was minimised to find the 

optimal transformation. 
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D 1 I j 
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b) Domain divided into two model groups; 'ONS model groups'. 
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c) The whole domain constitutes one model group. 
Figure A6.1 a-c. MIDSS, domain A. QQ-plots of the standardised logarithms of the 
study variable against theoretical quan tiles from the standard normal distribution. 
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c) The whole domain constitutes one model group. 
Figure A6.2 a-c. MIDSS, domain B. QQ-plots of the standardised logarithms of the 
study variable against theoretical quan tiles from the standard normal distribution. 
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c) The whole domain constitutes one model group. 
Figure A6,2 a-c. MIDSS, domain C. QQ-plots of the standardised logarithms of the 
study variable against theoretical quantiles from the standard normal distribution. 

Next, I test the lognormality of the population by computing the test statistic 

y/ = max(z; -z^js^ , 

where z, is the log of the positive study variable, z and Sz are the mean and the standard 

deviation of the z, in the model group (zero values excluded). This statistic measures the 

maximum distance from the mean, which is of particular interest as the largest values will 

contribute most to the total (cf Thorbum 1991). For each model group, a set of 1000 

values of i/' was generated from 1000 populations of the same size as the model groups, 

consisting of normally distributed random variables. The observed MIDSS test statistics 

were compared to the 2.5"^ and 97.5* percentiles in these lists. Table A6.1 compares 

means based on the log scale and original scale, as well as test statistics compared with 

2,5* and 97.5* normal percentiles. Only Domain C is shown as an example. Table A6.2 

summarises the results for Domains A-C. No association between lack of log-normality 

and simulated bias can be seen in this table. The conclusion is that although there are 

indications of some model problems, it is not these that cause the bias the mixture model 

estimation shows in Table 5.7. 
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Table A6.1. MIDSS, domain C 
a) Model groups equal to strata, genuine sampling strata only 

Model Number 

group of units 

Superpop 

mean based 

on lognormal 

model 

Arithmetic 

population 

mean on 

original 

scale 

Ratio mean 

on logscale 

to orig 

scale 

206 

129 

305 

1 4 . 5 

9 3 . 0 

2 8 6 . 3 

2 3 . 5 

8 3 . 0 

279M 

0.6 
1 . 1 

1 .0 

Model 

group 

Test 
statistic 

2 . 5 

percentile 

9 7 . 5 

percentile 

5 . 1 

2 . 2 

3 . 3 

2 . 3 

2.1 
2 . 4 

3 . 9 

3 . 6 

3 . 7 

b) ONS model groups, group consisting of genuine sampling strata only 

Model 

group 

Number 

of units 

Superpop 

mean based 

on lognormal 

model 

Arithmetic 

population 

mean on 

original 

scale 

Ratio mean 

on logscale 

to orig 

scale 

1 640 2 4 0 . 6 1 4 7 . 8 1.6 

Model 

group 

Test 

statistic 

2 . 5 

percentile 

9 7 . 5 

percentile 

1 2 . 5 2 . 7 4 . 0 

c) The whole domain constitutes one model group 

Model 

group 

Number 

of units 

Superpop 

mean based 

on lognormal 

model 

Arithmetic 

population 

mean on 

original 

scale 

Ratio mean 

on logscale 

to orig 

scale 

1 853 1 1 0 6 . 5 7 6 8 . 9 1 . 4 

Model 

group 

Test 

statistic 

2 . 5 

percentile 

9 7 . 5 

percentile 

1 2 . 8 2 . 8 4 . 0 
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Table A6.2. Results of lognormality tests and simulations, MIDSS domains 
Domain Type of model 

group 
Model mean too 
large (+), to small 

(-), or within 
confidence interval 
(0) 

Simulated bias, %; 

First number is bias 
for Logn/pr and 
Logn/log, second 
number in brackets 
is bias for RLogn/pr 

A Within strata, 
Stratum 1 0 1 (4) 
Stratum 2 0 
Stratum 3 0 

ONS groups 0 1 (0) 
Over all strata 0 2 cn 

B Within strata, 
Stratum 1 0 Very large 
Stratum 2 0 
Stratum 3 0 

ONS groups + 1 (0) 
Over all strata 0 1 (&5) 

C Within strata. 
Stratum 1 - 0 (-1) 
Stratum 2 0 
Stratum 3 0 

ONS groups 0 1.5(0) 
Over all strata 0 1 

Note; the first column of results compares superpopulation mean with observed mean. 
The second column reproduces some of the simulated bias results reported in Table 5.7. 
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Appendix 7. The projective bias adjusted estimator is linear 

First note that 

k^U j€s 

*e(/ 

By definition ^, Yi = k,^'2, - - , ) for some vector . Hence 

- >• z_/ i y 
jes l^keU 

= Z +Z Z & - ^ 
jes KksU 

-Zk + L -L&v, 
j^s 

where = Z ^ ^ = Z ^ * ^ ^ . 
*€(/ tej 
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Appendix 8. Simulation results, boxplots 

Figure A8.1 and AS.2 show box plots for the point estimates for the MIDSS domains A-C 

and the CAPEX domains U and V. The estimator RobReg is denoted by R/f40. The scale 

of the y-axis is the same for the figures in the same panel, but it will not be the same 

between panels. The design-unbiased estimators produce, as they should, estimates with 

the arithmetic average (a star) on or near the true total. Dot plots are added to the box 

plots for MIDSS domain B to highlight the bimodal distribution of the point estimates for 

this domain. The box plots indicate that the estimators fall into three groups: Lognorms, 

the HT and the others. 
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H T R a t /1.0 / I S / f 4 0 R / f 4 0 h i Q / p r o p /Log R 
I I I : I I I I I i 

'Over all strata' 

Keg Local Lognonti 
H T R a t / l O / I S / f 4 0 K/ f40 / s 4 0 / p r o p / l o g R 

'ONS Model groups' 
a) MIDSS, domain A. 

mil? 
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b) MIDSS, domain B. Lognorm 'within strata' are taken out not to swamp the other 
box plots. The top set of 3 graphs shows box plots, the bottom set jittered dot plots 
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Figure A8.1. Box plots of point estimates for MIDSS domains A-C. The averages of 
the estimates are marked with a star. The horizontal dotted lines show the true total 
of the populations. The scale of the y-axes is the same for all three graphs within a 
panel. 
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Figure A8.2. Box plots of point estimates for CAPEX domains U and V. The 
averages of the estimates are marked with a star. The horizontal dotted lines show 
the true total of the populations. The scale of the y-axes is the same for all three 
graphs within a panel. 
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