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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Towards a Performance Theory of Robust Adaptive Control 

by Ahmad Sanei 

The main contribution of this thesis is to establish a comparative theory of robust 

adaptive control designs. We consider dead-zone and projection based robust adaptive 

controllers for scalar systems, relative degree one, minimum phase linear systems of 

known high frequency gain, and nonlinear systems in the form of integrator chain. We 

compare their performance with respect to a worst case non-singular transient cost 

functional penalising the norm on the state, control and control derivative. If 

a bound on the £°° norm of the disturbance is known, it is shown that the dead-

zone controller outperforms the projection controller if the a-priori information on the 

uncertainty level is sufficiently conservative. The complementary result shows that the 

projection controller is superior to the dead-zone controller when the a-priori information 

on the disturbance level is sufficiently conservative. 

A secondary contribution is to present an alternative solution to the problems of robust 

adaptive control, due to right hand side discontinuity of adaptive law, by developing the 

so-called hysteresis dead-zone method and showing that the sliding motions are avoided 

and chattering effects can be mitigated. 
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C h a p t e r 1 

Introduction 

1.1 Control of Uncer ta in Dynamics 

Control theory attempts to improve the behaviour or performance of physical systems 

by gathering and exploiting knowledge about the system's operation. Usually this 

knowledge is encoded as a descriptive mathematical model of the physical plant from 

which the controller design is derived. Theoretically, building an exact mathematical 

model of a physical system is possible if and only if the relations between all its internal 

components and the effect of a/Z external or environmental components on the system are 

precisely known. Obtaining such complete system knowledge is not practical, hence the 

mathematical model will not precisely reflect a true physical system; moreover accurate 

mathematical models generally contain high order complex dynamic equations for which 

designing an appropriate controller is practically inappropriate or even impossible. So, 

in constructing a mathematical model, one must consider the trade-off between the 

simplicity of the model and the conservatism of the results. 

The art of modeling is thus to gain a perspective representative view of the actual 

system by selecting a set of physical quantities of interest and defining the relationships 

between them such that they reflect the behaviour of the actual system dynamics. In one 

method, which is referred to as state space modeling, the mathematical representation 
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of a physical system is given as a set of first order diEerential equations: 

z =/(a; , If), 2;(0) = zo E R", 
(1.1) 

3/ =/i(3:). 

where a:() is the state vector, l o the initial condition, 'u(') is the control input and ^() 

is the measured output. 

Given such a mathematical representation, we are interested in designing a controller 

u{-) to achieve some objectives such as stability (convergence of state/output to some 

equilibria) or output tracking of some reference signal. Typically for robustness reasons, 

the control u(-) is realised as a dynamic feedback of measured variables. 

^From a system dynamics point of view, control theory can be divided into two main 

categories; linear and nonlinear systems, the dynamic features of which can be either 

depended on time or time invariant. Historically, the simplest form, Linear Time 

Invariant (LTI) systems, formed the foundation for analysis and control of models in 

the form of (1.1) i.e. 

X =Ax + Bu, x{0) = xq E K", 
(1.2) 

y =Cx + Du, 

where A € e e R""""' aad %f(.) € R',%/(-) G R"". Thousands 

of text books and many pioneering works made LTI systems in the centre of attention for 

decades. However, physical systems are not generally linear time invariant. To extend 

the coverage of linear systems, for which analysis and control are well understood, to 

nonlinear systems, we often use an approximate linear model by taking a linearisation 

action around some operating points and reducing the dimension of the model by 

ignoring the additional dynamics beyond the frequency range of interest [76]. The 

result is a locally linear model of the corresponding nonlinear system, which can be 

controlled using linear techniques. A direct consequence of this approach is so-called 

modeling error which is generally defined as the difference between the true system and 

linearised model. Modeling error can be seen as a member of a larger set, referred to 

as uncertainty A, consisting of imperfect knowledge of the physical system dynamics, 

existence of unknown or uncertain system parameters, approximation of a complex plant 
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by a straightforward model, etc. 

A drawback of linearisation is that there are a large class of physical systems that either 

have strong nonhnearity (e.g. the nonhnearity /(•, •) may have rapid nonlinear growth) 

or are not even linearisable. Linear approximation of the strong nonlinearities may lead 

to a control design which performs very poorly. Linear approximation is impossible for 

systems having so-called 'hard nonlinearities' such as friction, backlash, hysteresis, and 

other non smooth or discontinuous nonlinearities. These factors have made linearisation 

impotent in many applications, resulting in the development of completely different 

techniques for the control of classes of nonlinear systems. For a recent survey see [31]. 

An intuitive approach in control of nonlinear systems is to cancel nonlinear terms. As an 

example consider the scalar system S ( / ) described by the following differential equation: 

Z( / ) : z; — / ( z ) + 1/ a;(0) = a;o E R. (1.3) 

If /(•) is an exactly known nonlinear function, then it can be canceled by a simple control 

law of the form: 

H : u = —f{x) — x, (1.4) 

resulting in a stable closed loop. Unfortunately this simple method and some other 

earlier results in nonlinear control (see eg. [28] and references therein) require exact 

knowledge of the system dynamics (ie. the function /(•))• In reality, however, /(•) is 

not usually known exactly. As we will see in section 3.3, neglecting uncertainties and 

designing controllers for the ideal case can lead to a wide range of problems ranging 

from performance degradation to eventual loss of stability. 

Despite its importance, uncertainty had long been considered a 'side' issue. Classically, 

feedback control was used as an efficient tool to minimise the undesirable effect of 

disturbances. In 1960s, a few attempts [29, 19, 47, 48] of considering small disturbances 

by studying 'perturbed motion' based on Lyapunov's direct method resulted in the 

concepts of 'uniform asymptotic stability' and 'exponential stability'. These works 

gradually brought uncertainty to the core of modern control research. 

Uncertainties can be classified in two main categories: structured (or parametric) un-
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certainties A^, and unstructured uncertainties A^. Loosely speaking, structured un-

certainties occur when some parameters of the system may not be precisely known in 

advance or the parameters may be slowly time-varying. Unstructured uncertainties are 

mostly due to unmodeled dynamics which arise from the inability to precisely model the 

high frequency behaviour of any physical system [27]. In this dissertation we focus on 

structured uncertainty. A typical relationship between Ag and the plant described in 

(1.3) is as follows: 

/ = /o + Ag, (1.5) 

where /o denotes the nominal or modelled part of the plant which can be either linear 

or nonlinear. 

Although, by its nature, it is impossible to express the exact nature of Ag, some general 

knowledge of uncertainties can usually be obtained in terms of some known bounds. 

Defining the following set 

= { / I 11/ - /oil < //}, (1.6) 

for some known function /i, we observe that S(A(/o,/i)) := {S( / ) | / E A(/o,/i)} 

represents a family of perturbed systems centred at the nominal system S(/o). It is a 

common interest to design a controller S(/o) such that; firstly, the corresponding closed 

loop (E(/o), S(/o)) meets the control objective (stability, performance) for the nominal 

system, and secondly, 2(/o) has the ability to produce the required stability/performance 

for all members of the family S(A(/o,/ /)) , i.e. any closed loop (E( / ) ,S( /o) ) for all 

/ € A(/o,yu) meets (up to some degree) the control objective. In order to construct 

such a controller, 2(/o) must be designed to be robust to the uncertainty Ag. Such a 

controller is called robust and provides a 'robustness margin' {ji) in which it can control 

every member of the family A(/o,//). 

Controlling uncertain dynamics began a new era in modern control theory. Numerous 

algorithms have been proposed, which can basically be classified into two main classes: 

robust control and adaptive control. 



Chapter 1 Introduction 

1.1.1 R o b u s t Control 

Robust control achieves its goal in the 'worst case' scenario; given A(/o,;u), find a 

controller S which meets the control objective /or oZ/ / E A(/o,/i). One of the earliest 

approaches was sliding mode control (SMC), first studied in 1960's [75]. Here, /o is 

used to deSne a lower order, 'sliding surface' in the state space for which controllers 

are designed which constrain the system trajectory to lie within a neighbourhood of the 

sliding surface. A decision mechanism constraints the system state to the shding surface 

by switching to the appropriate feedback law at any time instant. By this choice the 

closed loop response becomes insensitive to some uncertainties. 

The first, and perhaps most severe, drawback of SMC is chattering due to the discon-

tinuities introduced by the switching function. In theory, the system 'slides' on the 

shding surface by 'infinitely fast' switching activity of the decision mechanism. However 

in practice, physical constraints prevent an infinite switching rate and high frequency 

chattering results. This phenomenon will be discussed in detail in section 1.2. 

Another drawback of the SMC is that, in general, it only applies to the uncertain systems 

which satisfy the matching condition i.e. where the uncertainty and the control appear 

in the same equation. 

Robust control has seen extensive development in the past two decades leading partic-

ularly to optimal control. Numerous text books and papers cover the topics of robust 

control. However, by its worst-case design philosophy, SMC requires reliable knowledge 

of uncertainty i.e. the design results in 'high gain' controllers if the uncertainty set 

description is conservative. It has been shown [10] that adaptive control outperforms 

robust control when the actual uncertainty level is sufficiently high and the a-priori 

known uncertainty level is sufficiently conservative. The focus of this thesis is adaptive 

control, so for more detail on robust control we refer the interested reader to the relevant 

books (see for example [85] and the references therein). 
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1.1.2 A d a p t i v e Contro l 

Adaptive control is a suitable choice for systems having only parametric uncertainty. In 

particular suppose / = where ^ is unknown constant and ^(') is a known function. 

It follows that the system (1.3) can be rewritten as follows: 

T,{6) : X = 9(f) + u. (1.7) 

The role of adaptive control is thus to find a suitable controller which satisfies the 

control objectives and is applicable for any unknown constant 9. This can be achieved by 

defining a parameter estimator function 6{-) in the controller and tuning it appropriately 

in response to changes in the dynamics of the process. We will explain this method 

extensively later in section 3.3 by using a simple example. The beauty of adaptive 

control is that no a-priori knowledge of the plant parameters is required. 

Over the years there have been many attempts to define adaptive systems; in 1957 

Drenick and Shahbender [5] inspired by the biological definition of adaptation^, in-

troduced the term adaptive system to represent a control system that monitors its 

own performance and adjust its parameters in the direction of better performance. 

By monitoring different system characteristics and taking different control actions, a 

large number of algorithms were proposed. This resulted in a number of definitions for 

adaptive systems from different points of view. These definitions were collected in the 

survey papers of Aseltine et al. (1958) [1] and Stromer (1959) [71]. However, as yet there 

is no universally accepted definition of adaptive systems. 

Most early adaptive control designs were heuristic and focused on the performance issue, 

i.e how to adjust the controller parameters to minimise a performance index, without 

rigorous consideration of stability. In 1966 Parks [59] demonstrated that gradient-based 

adaptive systems, such as MIT rule-based adaptive control, could be unstable. Also 

he showed that an adaptive control design based on the Lyapunov method could make 

a class of systems globally stable. Research then concentrated on the stability issue. 

The first stability results appear in the late 1970s for LTI systems [39, 54, 70]. They 

^Biological systems cope easily and efficiently with changes in their environments. 
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established the boundedness of all signals in the control loop and the convergence of 

the plant output to a desired value, providing the reference signal is bounded and the 

following so-called WeoZ-caae assumptions hold: 

(i) upper bounds on the degrees of the numerator and the denominator are known. 

(ii) there are no external disturbances. 

(Hi) the plant is minimum-phase. 

(w) the sign of the high-&equency gain is known. 

The first two assumptions are clearly not realistic since systems are usually more com-

plicated than the mathematical models used in control design and almost all practical 

controllers have to take disturbances into account. Many people soon discovered that the 

adaptive controllers derived for the ideal-case had serious robustness problems. Egardt 

[6] showed that even small bounded disturbances could cause the parameter error to 

grow without bound, destabilising the system. Rohrs et al. [64] also demonstrated by 

simulation that other perturbations, such as time-varying parameters and unmodeled 

dynamics, could lead to instability. Since then the robustness problem has been a focus 

of research in adaptive control and led to a body of work referred to as the robust 

adaptive control theory. 

1.1.3 R o b u s t A d a p t i v e Control 

The earliest work in robust adaptive control involved the relaxation of assumption 

(ii), i.e. the control of plants in the presence of bounded disturbances. Two distinct 

approaches have been used to achieve robustness: (o) using em appropriate reference 

input, and (&) modifying the adaptation law. 

It was realised in the 1960s [2] that certain conditions, generally referred to as persistent 

excitation (PE) conditions, are necessary to achieve parameter convergence. Narendra 

and Aimaswamy [53] demonstrated that if the degree of persistent excitation is su@-

ciently large compared to the norm of disturbance signals, then all signals in the closed 

loop are bounded. Unfortunately, this method is not practical for most applications 

(such as output tracking) since the reference input (or desired output trajectory) is 

specified by the task and normally does not satisfy the PE condition. 
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Several approaches were proposed which modify the adaptation law to achieve robustness 

in the presence of bounded disturbance. The three most popular methods are: 

1. Switch off the adaptation when the output/error signal is not distinguishable from 

the disturbances. There are several ways to determine when the estimator should 

be switched oE. Egardt [6], Peterson and Narendra [60], Samson [66], and Praly 

[63] introduced a dead-zone in the estimator and defined a switching controller to 

turn the adaptation off when the estimation error is inside the dead-zone. The 

result is that all closed loop signals remain bounded and the system trajectory 

converges to the dead-zone boundary. 

2. Modify the algorithm so that the parameters are projected into a given compact 

convex set containing the true parameter vector. Egardt [6], and Kreisselmeier 

and Narendra [33] used this method to show the global boundedness of all signals 

in the closed-loop system in the presence of bounded disturbance. Typically 

convergence of output/error is only established if the disturbance vanishes, when 

the output/error will tend to zero. A smooth version of parameter projection was 

introduced by Pomet and Praly [62] so as to avoid discontinuity in the control law. 

3. Add a leakage term to the adaptation law such that the parameter estimate is 

driven toward a compact region containing origin when it is far from it. This 

method which is referred to as a-modification, proposed by loannou and Kokotovic 

[25], guarantees the boundedness of closed loop signals. However, if the disturbance 

is not present the error no longer tends to zero and asymptotic stability is lost. 

All the modification approaches, however, require some appropriate a-priori knowledge. 

For example, to construct the size of the dead-zone requires a-priori information about 

the size of disturbance. The projection method requires some a-priori knowledge on 

unknown constant 0 to define the compact convex parameter set in such a way that 

the actual value of 6 lies within the set. We will study the dead-zone and parameter 

projection modification methods extensively in this thesis. 
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1.2 Switching Control lers 

The dead-zone and projection modification methods can be interpreted as defining a 

decision mechanism which chooses the right adaptation law at the right time. In fact 

these methods can be claasiGed aa members of the larger class of aWkAmg con(roZZers. 

Switching phenomena were first studied from a dynamical systems point of view by 

Filippov[8], and from a control theory perspective by Utkin[75]. Switching controllers 

are widely used in the control literature. In fact, the history of switching controllers 

began in the 1960's when Utkin established the sliding mode control scheme. 

In the area of adaptive control, switching algorithms have been used for different pur-

poses. Attempting to relax the required a-priori knowledge of the sign of high-frequency 

gain motivated the idea of switching utility. Nussbaum [56] proposed a switching control 

scheme which did not require the sign of high frequency gain to be known a-priori. 

Extending the idea of Middleton et al. [45], Morse et al. [51] suggested that one way 

to adaptively control a wider class of process models is to use an algorithm consisting 

a finite family of controllers with an online switching algorithm capable of selecting 

between candidate controllers based on their prediction error. This idea has been applied 

to robust adaptive control by defining switching adaptive laws to enhance robustness 

of the systems, assure boundedness of some estimates and prevent certain signals from 

approaching undesired regions [26, 18, 54]. 

Due to their discrete nature, switching control schemes lead to differential equations 

with a r.h.s. discontinuity. This presents a number of theoretical and practical problems 

when dealing with such systems: 

1. The ambiguity in the meaning of solution of such differential equations. In fact 

the classical Caratheodory solutions (C-solutions) defined for ordinary differential 

equations some times are not valid (cf. the first example in chapter 2.3.2). So we 

have to define the solution in some other sense. For example Filippov solutions 

(F-solutions) arise from considering an appropriate differential inclusion^. 

^Differential inclusions are generalisation of differential equation x = f{x) where /(•) is a set valued 
function. 
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2. Proving the wMzgugTieas and jecfneas of solutions to this system is not straight-

forward, indeed, the solutions may not be unique. 

3. Theoretically, a controlled system can operate by switching inEnitely fast between 

two control signals on the switching surface. However, the means of switching 

in real world, sensors and actuators, cannot operate instantaneously. Therefore 

system trajectories travel back and forth within a neighbourhood of the switch-

ing surface at high frequency, leading to the undesirable phenomenon known as 

chattering. Chattering is often harmful as it may excite unmodeled high-frequency 

dynamics of the system [84]. Note that having a perfect sliding motion is desirable 

in sliding mode control, so we try to convert chattering to a perfect sliding motion. 

In contrast, sliding motion and consequently chattering are undesirable in robust 

adaptive control and we aim to eliminate them. 

4. Simulating such a system is difficult due to the stiff differential equations which are 

difficult to investigate numerically. Runge-Kutta is commonly used for integrating 

discontinuous systems as it is less sensitive to discontinuities in the r.h.s. of 

differential equations [84] than multi-step or extrapolation methods. However, 

switching at an infinite rate in sliding motion forces the fixed step-size Runge-

Kutta integrator to limit its step-size resulting in consuming considerable time to 

simulate the behaviour of the system at the discontinuity surface and the high 

frequency chattering close to the switching surface which do not provide any 

significant information from the design point of view. 

5. By definition, any adaptive control scheme contains some on-line learning part 

which is updated in real-time. The time consumption of conventional dead-zone 

algorithm arisen from the discontinuity of the controller is a bottleneck from the 

implementation point of view. 

To overcome some of the above problems, there were some attempts to smooth the 

switching activity. So-called 'soft projection' method introduced by Pomet et al. [62] is 

a case in point. Some other efforts were made to define several switching surfaces and 

build a safe switching mechanism between them [61]. 
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An alternative solution is to add a hysteresis effect to the switching mechanism. In 

the domain of adaptive control, this was first proposed by Middleton of. [45]. In 

connection with the problem of adaptive pole placement, they designed an adaptive 

algorithm which had a finite number of parameter estimators in parallel and used a 

hysteresis switching mechanism to decide which candidate should be put in feedback 

with the process at any time. This prevents changing controllers too quickly. This idea 

was extended by Morse et al. [51] to a much broader class of problems. Lozano et 

al. [42] used a transformation on estimated parameters involving a form of hysteresis 

to avoid division by zero in the control law in their model reference adaptive control 

scheme. A typical requirement for MRAC algorithms to be successful for multivariable 

systems is to assume that the zero structure at infinity and the high frequency gain 

matrix are known. Waller and Goodwin [79] considerably weakened these assumptions 

and extended the result of Morse et al. to minimum phase multivariable linear systems. 

They built a hysteresis dead-zone into the switching mechanism so that the switching 

between candidate estimators occurred only when a differential index was exceeded some 

threshold. 

In the area of robust adaptive control, the idea of hysteresis dead-zone was used by 

Brogliato and Neto [3] for stabilising a class of nonlinear systems. Under some restrictive 

assumptions, they proved the boundedness of the estimate and ultimate boundedness of 

the state of the system. In this thesis, proposing a rigorous proof, we extend the idea 

of hysteresis dead-zone for the class of nonlinear systems in the form of an integrator 

chain. 

1.3 Pe r fo rmance 

The ultimate goal in control theory is to design control laws which achieve good perfor-

mance for any member of a speciEed class of systems. Robust and adaptive controllers 

attempt to achieve good performance in different ways for the class of systems which 

are members of their family[45]. 

Performance of a closed loop is measured by a cost functional of some measurable 
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signals (state/output/input). For example if system trajectory a:() G is available 

for measm-ement, we de&ne a smguZar cost fmictional 

(L8) 

penalising the system trajectory. A Tion-smgwZor cost functional is defined when we take 

control eSort into account also. That is 

(1.9) 

where U is the function space representing the input signal space. 

Consider a system S € <S that belongs to a set of all admissible systems. The performance 

of a controller S 6 C is defined either in average case or worst case. For example a 

singular average case performance can be defined as follows: 

P X C P ( S , S ) ^ l j ^ ' ^ J ( z ( t ) ) A (1.10) 

for some T > 0. The worst case singular performance is formulated as a supremum of 

the cost functional over T , where T is a set which contains all parameters (e.g. initial 

values, uncertainty, solutions of the closed loop, etc.) that distinguish one system from 

another^: 

? : f (J) X C R+, P(S , S) = sup J(.), (1.11) 
T 

where P(S) is the power set of S. 

As well as the average case, two other classes of performance measure can be de&ned, 

namely asymptotic and transient performance. Roughly speaking, asymptotic perfor-

mance shows the ultimate behaviour of a system, while transient performance monitors 

its behaviour in time. There is no specific definition for these costs and in general any 

measurement that satisfies above can be used as a cost function. For example, suppose 

the control objective is the stability of the system. Then the singular transient cost 

functional 
fOO 

J(a;()) = / 2;(t)^(ft, (1 12) 
Jo 

more precise definition e.g. for E ( / ) defined in (1.3) would be ' P ( E ( / ) , S ) = sup^g^ J(-). 
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can be used to penalise the response of system. As an example of the asymptotic 

performance, the singular cost functional 

—limsup |a:(^)| (113) 
(—*oo 

can be used to analyse the ultimate behaviour of the closed loop. 

Having a bounded cost functional is a primary goal of any control design. Note that 

any stable system should have a Gnite cost. Particularly, we are interested in an 

asymptotically stable system for which (1.13) should converge to zero. Most adaptive 

control schemes satisfy some asymptotic performance criteria, e.g. their tracking error 

converges to zero. However this is not true for robust adaptive controllers. For example, 

we will see that the goal of dead-zone based robust adaptive controllers is merely 

convergence to some neighbourhood of origin rather than asymptotic stability. Another 

example is the projection based scheme for which the desired asymptotic performance 

is not guaranteed. 

Transient performance is often more important. Particularly in practical applications, 

the question is most likely to be how fast a controller achieves its goal. Analytical 

quantification and systematic improvement of transient performance are open problems 

in adaptive control [35]. The ultimate objective of transient performance is to determine 

the cost value a-priori by setting the initial conditions and closed loop parameters. 

For traditional adaptive linear control, even singular performance bounds such as f xit)'^dt 

are hard to quantify a-priori, and there is no systematic way to improve them. In fact, 

it was shown in [82] that poor initial parameter estimates may result in unacceptable 

transient behaviour. The design of adaptive controllers with improved transient perfor-

mance is a current research topic. Among the others, Fu [15, 14] modified the single-input 

single-output MRAC scheme by a variable structure design (VSD), resulting in faster 

response, hence improving the transient performance. However, VSD suffers from r.h.s. 

discontinuity - complicating its analysis as leading to chattering problem. Narendra 

and Boskovic [55] attempted to combine the advantages of direct, indirect and VSD 

methods to improve the transient performance of robust adaptive control. The direct 

and indirect component guaranteed stability, while the variable structure component 
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improved transient response. Other eSorts include the use of Exed compensators [72, 

4] to depress the eSect of estimation error, and imposing a passive identiEer with 

'higher order tuners' [50, 57, 77]. However, in all of these controllers, only parametric 

uncertainties were considered and robustness was not discussed. 

The adaptive backstepping design proposed by Krstic oZ. in [36, 37] guaranteed 

good bound on transient performance in the ideal case. The dependence of these 

bounds on design parameters and initial conditions presented a systematic way for 

transient performance improvement [38, 35]. Recently a certainty equivalence adaptive 

controller has been proposed for linear adaptive control by Zhang and loannou [83] by 

combining backstepping designs with a normalised adaptive law. The resulting adaptive 

controller guarantees stability and transient performance without introducing higher 

order nonlinear terms or extra parameter estimates. 

The transient cost funct ional used in all the above research are singular, i.e. they 

depend only on state x{-) or output y{-), ignoring the control input u{-). The necessity 

of taking control input w(-) into account is obvious; it represents the cost which has to 

be paid to achieve the control objectives and it is an important factor in any application 

which cannot be unlimited both practically and financially. The financial constraint 

on input is well-known and does not need any example to clarify! Some examples of 

practical constraints include saturation (||w(-)||z:°° ) or saturation rate(])u(-)||£oo ). Since 

all actuators (the physical device that produces the control signal) have some level of 

saturation, this affects the 'actual' transient performance [13]. Another example of a 

practical constraint is the fuel consumption ( J u(t)'^dt) of a typical mechanical controller. 

However, despite their importance, none of these effects would be indicated directly in 

singular transient performance. So, it is particularly important to consider non-singular 

costs in the performance index. 

The first work taking non-singular transient performance for adaptive control was by 

French et al. [11, 12, 10]. They presented a constructive bound on a-priori determined 

non-singular transient performance. They used the following non-singular quadratic cost 

functional: 

J ( z ( ),%/( )) = y + (114) 
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where (T = t > 0 | a:(t) 0 do kr some residual set Qo containing the origin. 

represents a penalty on the deviation of the state a: from the origin with Q the weighting 

matrix, and the term kv? is a weighted cost of control. 

In this thesis as in [67, 68] we will consider bounds on the non-singular transient 

performance cost which penalises the C°° norm of state, control effort and control 

derivative, i.e. 

J{x{-),u[-)) = ||a:(-)||£oo -f ||u(-)||£oo -|- ||t[(-)||£oo. (1.15) 

1.4 Mot iva t ion and Cont r ibu t ions of t he Disser ta t ion 

As noted above, the discontinuous switching activity of the dead-zone and projection 

modifications leads to some potential problems such as possible loss of uniqueness of 

solutions and chattering. Motivated by the relatively old idea of hysteresis switching, 

we developed an alternative for dead-zone modification. We will prove the uniqueness 

and boundedness of solutions, and robustness of the system with respect to bounded 

disturbance. We also compare hysteresis dead-zone with conventional dead-zone and 

address its advantages. For example, in this method sliding motions are avoided and 

the chattering effect can be mitigated. 

The main body of this dissertation is motivated by the fact that each of the designs 

mentioned in section 1.1.3 have different advantages and drawbacks. For example, 

dead-zone modifications require a-priori knowledge of the disturbance level, and only 

achieve convergence of the output to some pre-specified neighbourhood of the origin 

(whilst keeping all signals bounded). In particular if the disturbance vanishes, then 

the dead-zone controller does not typically achieve convergence to zero, the convergence 

remains to the pre-specified neighbourhood of the origin. On the other hand, projection 

modifications generally achieve boundedness of all signals, and furthermore have the 

desirable property that if no disturbances are present the output converges to zero. 

However, an arbitrarily smaU disturbance can completely destroy any convergence 

of the state. 

This illustrates that in the case of asymptotic performance, there are some known 
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characterisations of good and behaviour. However, there are many situations in which 

we cannot definitively state whether a projection or dead-zone controller is superior 

even when only considering asymptotic performance. This motivates the need for a 

comparative theory to choose the best alternative, which is the main subject of this 

thesis. 

There are two main challenges in developing any comparative results: firstly we must 

identify a problem domain in which both dead-zone and projection designs can be 

meaningfully compared, secondly we must identify a suitable criteria of comparison. The 

transient performance cost functional is a good comparison criteria as it is meaningful 

(as noted in 1.3) and analytical results can be derived. 

We will develop a set of results which allow analytical comparisons to be made between 

two robust adaptive designs. In particular, we will compare dead-zone and projection 

based adaptive controllers with respect to transient performance. The transient per-

formance measure will be nonsingular i.e. penalise both state and control effort. Two 

rigorous results are presented demonstrating situations in which the dead-zone controller 

is superior to the projection controller and vice versa. 

These results will be extended to minimum phase linear systems with relative degree 

one and also nonlinear systems in the form of integrator chain. We also show that the 

results are applicable for hysteresis dead-zone controllers. 

1.5 S u m m a r y of Contents 

This dissertation is divided into six chapters among which chapters 3,4, and 5 contain 

the new results. These chapters follow almost the same structure as they seek the same 

goals for different systems. Every chapter starts with some well-known concepts required 

for the proof of the main results. 

In chapter 3, we start with the well-known concept of adaptive control. The necessity 

of taking disturbance into account is illustrated with a simple example. Then the 

idea of robust adaptive control is explained in detail. Next, we explain the dead-zone 

and projection modifications, prove their robustness and discuss their advantages and 
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drawbacks. Next, the idea of hysteresis dead-zone and how it can deal with the problems 

arising from the r.h.s discontinuity of the differential equations will be illustrated briefly. 

We defer the formal definition and the complete proof of stabihty until chapter 5. 

In the rest of chapter 3 we also build a frame-work for transient performance comparison 

between the dead-zone and projection methods. Theorem I / Ia show the situation 

under which a dead-zone/hysteresis dead-zone based controller is superior to that of 

a projection based controller with respect to transient cost. Theorems I l / I I a are 

the complementary result. In order to generate a systematic procedure, we will first 

prove these theorems for our simple example. This enables us to avoid any restrictive 

assumptions whilst expressing the idea simply. 

The result of chapter 3 will be extended to minimum phase linear systems with relative 

degree one in chapter 4. First, the well-known concept of non-identifier-based high-

gain adaptive control is introduced. Based on this, the dead-zone and projection based 

controllers for such systems will be analysed. Finally, the results of Theorems I, II will 

be established for minimum phase linear systems with relative degree one. 

In chapter 5, we aim to extend the main results to that of nonlinear systems in the form 

of integrator chain. Following the same structure as chapters 3 and 4, we will define the 

system and explain the adaptive design very briefly. Next we examine the properties 

of dead-zone and projection based controllers for such systems. The formal definition 

and stability analysis of hysteresis dead-zone proposed in chapter 3 will be given next. 

Comparing this method to conventional dead-zone, we will address the advantages of 

such controllers. 

In order to generalise Theorems I, la, II, and I la to nonlinear systems, we consider 

the case of scalar nonlinear systems and integrator chain separately. The reason being 

the technicalities involved in nonlinear systems and the need to make some assumptions 

a-priori. We will see that these assumptions become more restrictive when considering 

integrator chain. 

We conclude by indicating the directions for future work. 



C h a p t e r 2 

Preliminaries 

2.1 In t roduc t ion 

In this chapter, we briefly review some necessary elements of mathematical analysis 

which are used in this dissertation. First, we give some definitions and basic facts 

from elementary analysis. Second, the concepts of the existence and uniqueness of the 

solutions in a system of differential equations with right hand side discontinuity will be 

discussed. Such systems will occur widely in this thesis. Finally we briefly review some 

necessary stability theorems. The presentation of the material on this chapter closely 

follows [27, 34, 35] for section 2.2 and [30, 8] for sections 2.3-2.4. 

2.2 Fundamen ta l Prel iminar ies 

2.2 .1 N o r m e d Space 

We start with definitions of normed spaces and several useful technical lemmas: 

Definition 2.1. A vector space X over the field R is a set of vectors together with two 

operations - addition and scalar multiplication by real numbers, such that the following 

properties hold: 

e For any vector z,;/, z E A:", the sum z + is defined, a; + 3/eA:', a; + ?/ = 2/ + a:, 

18 
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(a; + 3/) + z = a; + (?/ + z), there exists a zero vector 0 E ^ such that for all i E /f , 

a; + 0 = X, and for any x ^ X there exists a unique element denoted by —x such 

that x + (—x) = 0. 

• For any numbers a, /? G M, scalar multiplication ax is defined, ax E X, I • x = x, 

(o!/3)z = = /^(az), (a + = 012; + and + 1/) = a r + a;/. 

Associating a length to each object in a vector space, we have a normed vector space; 

Definition 2.2. A vector space A' is a normed vector space if to each vector x e X, there 

is a real-valued norm \\x\\p^ which satisfies; 

• ||a:||_y > 0 for all x 6 A', with ||a;||^ = 0 if and only if z == 0, 

• ||az||_y = |a | | |z| |^, for all a E K and x E X, 

• 11:%: + ^ I k l l ^ r + a l l z , ?/ E / f . 

We define 'signal' as a time domain real valued function i.e. / ; R+ —» M". All inputs, 

states, outputs in control systems are signals which are typically belong to a 'space of 

signals', which is often taken as a normed space of functions 

The CP norm of a signal x : M+ —> R" is defined by 

00 
| 3 : ( ) t | / :p :=(^ |3:(T)|PdT^ , l < p < o o , (2.1) 

and 

||2;(-)||/:oo ;= sup |a:(i)|, p — 00. (2.2) 
t>o 

where the right hand side norms is the Euclidean norm on M" where the integral (2.1) 

is defined in the sense of Lebesgue^. If ||a;(-)||rp < 00, we say that x{-) E The 

following lemmas show some useful properties of spaces. 

^Throughout this dissertation, all integrals are defined in the sense of Lebesgue. 
^Or more precisely, [%(-)] G C where [•] denotes the equivalence class of signals which differ only on 

a set of measure zero. In common with s tandard practice we will not distinguish further between x{-) 
and [z(')]. 



Lemma 2.1. (Holder ' s Inequality) I f p > 1 and 1/p+l/q = 1 then /(•) G jCP , g(-) e 

implies that / ( ) g ( ) E and 

< ll/( )ll/:p l|g( (2.3) 

If p = 2, then q = 2 and lemma 2.1 yields the Cauchy-Schwartz inequality: 

ll/(')a(')ll/:i < ll/( )ll/:2 Ila( (2.4) 

Lemma 2.2. (Minkowski's Inequality) For p > 1, / ( ),g( ) 6 implies that /(•) + 

g ( ) E and 

\\f + g\\cp < WfWcp + WdWcp (2.5) 

In particular Lemma 2.2 is the triangle inequality required to show that is a normed 

vector space, for p > 1. 

2.2.2 Properties of Functions 

Let us start with some basic definitions. Since most of the functions we consider have a 

real-valued time domain, we restrict our definitions to the domain R+. 

Definition 2.3. A function / : R+ R" is continuous on R+, if and only if Vtg E 

given G > 0 there is J(E,to) > 0 such that |( —to| < (̂ŝ , to) implies that | / (() —/(fo)| < s. 

A function f{t) is uniformly continuous if S is only dependant on s, i.e. Ve > 0 35(e) > 

0 g.t. |( — to| < ^(s) => | /(t) — /(<o| < / ( t ) is said to be piecewise continuous if / ( t ) 

is continuous on any finite interval [to, ti] C M+ except for a finite number of points. 

Definition 2.4. A function / : [a, fe] —> M is absolutely continuous on [a, b], if and only if 

for all £ > 0 there is <5 > 0 such that for any finite collection of sub intervals {ai,/3i) of 

[a, 6] for which we have (/(a^) - /(/)i)| < 6. 

Definition 2.5. A function /(•) is bounded with respect to if and only if there is a 

positive number c such that | | /( )||p < c. By the expression ' / ( ) is bounded', we mean 

/(•) is bounded with respect to £°°. 
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Remark. Note the following facts which are frequently used in the analysis of adaptive 

schemes. 

• if / ( ) is absolutely continuous on domain [a,b], then / ( ) is diSerentiable almost 

everywhere (a.e.)^ in [ 0 , 6 ] . 

• limt__»oo f{i) = 0 does not imply that f ( t ) has a limit as t 00. 

• limi^oo f i t ) = c for some constant c € M does not imply that f ( t ) —» 0 as ( —> 00. 

• A function /(•) € may not be bounded and, conversely, a bounded function 

need not belong to However, if /(•) 6 n £ ° ° , then /(•) € for 1 < ^ < 0 0 . 

• /(•) G jC.^, 1 < p < 00 does not imply that f{t) —> 0 as ^ » 00. This is not even 

true if f{t) is bounded, but see Lemmas 2.3 and 2.5 below. 

Lemma 2.3. (Barbalat's Lemma) If f ( t ) is a uniformly continuous function, such 

that JQ f{T)dT exists and is finite, then 

/ ( ( ) ^ 0 as t 0 0 

Proof. See Lemma 3.2.6 in [27]. • 

Note that if /(•) € C°° then f{t) is uniformly continuous on M+, hence an easy sufficient 

condition for the uniform continuity of f{t) is the boundedness of /(•). 

Corollary 2.1. If /(•) € £°°, and /(•) e D' for some p G [1,00), then f{t) —> 0 as 

t —> 0 0 . 

Lemma 2.4. Consider nonnegative scalar functions / : M+ —̂  M+, g : R+ —>• M+. If 

f{i) < g{t) Vt > 0 and g{-) 6 jC-P, then /(•) E for all p> 1. 

Lemma 2.5. Suppose / ; R+ —>• M" is any absolutely continuous function. Suppose 

/ ( ) E 00) for some p e [1,00) and / ( ) e 00) for some g G [1,00]. Then 

(i) / ( ) E 0 0 ) for all j E [p, 0 0 ) 

(«) limf_oo / ( t ) = 0. 

Proof See Lemma 2.1.7 in [22]. • 

property of Q is said to hold almost everywhere if the set of points in Q where this property 
fails had measure zero. 
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2 .2 .3 Se t s and Se t -va lued Funct ions 

Let M be a subset of R". A point p is said to be a pomt of M if there is a divergent 

sequence {6^} of distinct members of M such that for all e > 0 there exists > 0 such 

that \\hk — p|| < 6 for all k > K. A set M is said to be dosed if it contains all its limit 

points, compact if it is closed and bounded in M", and convex if for any two of its points 

a and 6, all the points of a segment joining a and b also belong to M, i.e. given any 

a,b E M, we have 7 a + (1 — 7) 6 G M for all 0 < 7 < 1. Given a set M in a vector 

space L, there exist convex (closed) sets which contain M. Among them, the smallest 

convex (closed) set is called the convex hull {convex closure) and is denoted by conv M 

{conv M). Such a set always exist, and is the intersection of all convex (convex closed) 

sets containing M. 

If for each point p of a set D C there corresponds a non-empty closed set F{p) C R", 

then F is a set-valued function. Let F(M) denote the image of the set-valued function 

on a set M, i.e. F{M) = UpeM f (p)- The norm of a set-valued function on a set M is 

defined as follows: 

\\F{M)\\ = sup sup |x|. (2.6) 
p€M x^F(p) 

A set-valued function F is bounded on a set M, if | |F(M)|| < 00. 

Throughout this thesis we define m{M) the measure of a set M in the sense of Lebesgue. 

Specifically we note that the Lebesgue measure of a countable set is zero and m([a, b]) = 

b — a 

2.3 Existence and Uniqueness 

We will consider systems which can be represented by a state equation: 

2 : i = /(a:,t), r(to) = a;o- (2.7) 

where x G R". We expect that starting from a given initial state, the system S will 

evolve and its state will be defined in the (at least immediate) future time t > to. That 
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is the local existence of a solution for system S. Moreover, with deterministic system, 

we expect that repeating the same experiment in the same conditions yields to the same 

result i.e. the uniqueness of the solution. This is the question of existence and uniqueness 

which is addressed in this section. 

2.3.1 Piecevi^ise Continuous Differential Equations 

Let us denote the set of continuous and k time differentiable real valued functions on 

domain fi by C(Q),C^(n) respectively. We start with continuous differential equations: 

Definition 2.6. Let Jt = {i | to < t < T} for some T > to- A continuous function 

a; : J y —> M" is said to be a solution of (2.7) over an interval Jt if z( ) € C^(R+), 

x{to) = xq and x = / (x , t) for all t e Jt-

For the case that the right hand side of (2.7) is piecewise continuous in t, there may be 

a finite set of points of time for which the solution x{t) is not differentiable. We rewrite 

the differential equation (2.7) in its equivalent Caratheodory (integral) form: 

a;(t)=a;o+ / /(a;(T),T)(fT (2.8) 
Jto 

Definition 2.7. A function a; : J j - —> M" is a Caratheodory solution (C-solution) of 

(2.7) if x{to) = xq, x(-) is absolutely continuous on each compact subinterval of Jt and 

X = f{x, t) is satisfied a.e. on Jt-

The existence and uniqueness of the solution of a piecewise continuous differential 

equation can be investigated using the locally Lipschitz condition. 

Lemma 2.6. A function / : K" x [to, ii] —̂  K" is said to be locally Lipschitz on a domain 

(open and connected set) D C K" if for any compact subset Dq <Z D there exists a 

Lipschitz constant L such that 

||/(a;, )̂ - /(?/, () II < I,||a; - 2/11 Va;,;/ E Do, Vt e (2.9) 

The Lipschitz property is by default assumed to be uniform in 1 A definition for semi-

globally Lipschitz function follows by requiring inequality (2.9) to hold uniformly (with 
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the same constant i,) for a;, 1/ 6 D. If (2.9) holds uniformly for all z, 3/ € R" then / ( i , t) 

is in a;. 

The following lemmas demonstrate the relation between Lipschitz property and contin-

uous differentiability: 

jLemma 2.7. Let / ( r , () be continuous on D x [fo, ti] for some domain D E R". If the 

Jacobian matrix exists and is continuous on D x [<o, 1̂], then / ( z , is loceilly 

Lipschitz in x on D x 

Lemma 2.8. In addition to above, if [df /dx] is uniformly bounded on D X [to,Zi], then 

f{x, t) is semi-globally Lipschitz in x. f{x, t) is globally Lipschitz in x if this holds on 

R " X 

Theorem 2.1. Let f(x,t) be piecewise continuous in t and locally Lipschitz in r on a 

domain D C M". Then there exists some f > 0 such that the state equation (2.7) has a 

unique C-solution over Js := [<o, 0̂ + ^ C Jt-

Proof. See theorem 2.2 in [30]. • 

Theorem 2.1 is a local theorem since it guarantees existence and uniqueness only over 

an interval J5, where S may be very small. It is possible to extend Js to a maximal 

interval of existence Jm by repeating Theorem 2.1 as follows; Start with xq = x(to) and 

apply the theorem to establish a unique solution over Js = [io, where 5 is depend 

on xq. Now denote = to + ^ and take xi = x{ti) as new initial state. If all conditions 

of the theorem satis^ at (r((i), (%) then there exist 1̂2 > 0 depend on such that the 

unique solution exists over [ii, ti +62]. Concatenating the time pieces yields to a unique 

solution over Js+s2 = [to,to + <^+^2]- The procedure can be repeated until the conditions 

of Theorem 2.1 cease to hold. 

Corollary 2.2. There is a maximum interval := [to, to + m) where the unique solution 

starting at (â o, to) exists^. 

Still it is possible that C Jt- The solution can be extended further only if we have 

additional knowledge of its behaviour. The following theorem is a case in point: 

See [46] for the proof. 
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Theorem 2.2. Let f{x,t) be piecewise continuous in t and locally Lipschitz in x on 

domain D C R". Let W be a compact subset of D and suppose the initial point 

(3:0,̂ 0) E X Suppose it is known that every solution of (2.7) lies entirely in 

W. Then, there is a unique solution that is defined over J^q := [to, 00). 

froo/. By Theorem 2.1 there exist a unique solution over Ja- Since the solution never 

leaves W, the condition of Theorem 2.1 holds for ever. So the solution can be extended 

indefinitely by repeated application of the theorem. • 

The above results imply that if f{x,t) is locally Lipschitz in x, then either a unique 

C-solution of (2.7) exists globally, i.e. in the interval J^o, or there exists a finite time 

Tf such that as t —s- T f , the trajectory x(-) leaves any compact set. If the latter occurs, 

then the solution is said to have a finite escape time. 

Seen from the control systems point of view, the existence and uniqueness of a solution 

resulting in the following definitions: 

Definition 2.8. The system S given by (2.7) is said to be well-defined at xq = z(^o) if 

there exists a solution of (2.7) on [to, 00) in the sense of Caratheodory for the initial 

state xq 6 R". If the solution is unique, S is said to be well-posed at xq. The system S 

is well-posed if it is well-posed at every initial state xq € K". 

2.3.2 Discontinuous Differential Equations 

As we mentioned in section 1.1, switching schemes are common methods in robust 

adaptive control theory. This results in a set of differential equations with discontinuous 

right hand sides for which, the definition, existence and uniqueness a of solution does 

not follow from the classical theory of differential equations. 

The definition of a solution, given in 2.7, as an absolutely continuous function satisfying 

the equation almost everywhere is not always applicable for the discontinuous case. 

This is due to the inadequacy of the C-solution to properly define the trajectory on the 

discontinuity surface. Here is an example: 
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a: Sliding motion b: Chattering (2-D, magnified (a)) 

H -oj 

Figure 2.1: Sliding motion and chattering 

Example 2.1. Consider the following differential equation system; 

X = —2x — sgn(z) x(0) = xo, 

y = -3/ 3/(0) = 2/0. 

(2.10) 

(2.11) 

Note that the equation (2.11) has a unique C-solution y(t) — yoe~*, and we only add 

(2.11) to the system for clarity of presentation of Fig. 2.1. For z > 0, where sgn(x) = 1, 

the solution of (2.10) is given hy x{t) = —1/2 + ci while for x < 0 we have that 

sgn(x) = —1 and the solution is x{t) = 1 / 2 + C2 Fig. 2.1-a demonstrates the results 

for a specific initial value. As t increases, each solution reaches the surface z = 0. The 

direction vector x = —2x — sgn(x) is negative if x is positive, i.e. x+ < 0, and positive if 

X is negative i.e. > 0 which means that when we are on the surface of discontinuity 

z==0 , the vector fields prevent the solution from leaving this surface either upward or 

downward. So any meaningful solution to this equation has to slide on this surface. On 

the other hand, the function x(t) = 0, as a solution, does not satisfy the differential 

equation (2.10) since x{t) = 0 implies that x = 0 while the right hand side of (2.10) has 

the value - sgn(x) = — 1 ^ 0 for x{t) = 0; Hence the C-solution does not exist. 

Remark on E x a m p l e 2 .1 Theoretically, the sliding motion causes infinite rate 

switching. However, in practice, there would be some small delay in the switching 

operation. This delay causes the trajectory of x(-) to go back and forth between the two 

regions with a high frequency. This behaviour is known as chattering (Fig. 2.1-b). 

There are several definitions of generalised solutions for the differential equation with 
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discontinuous right hand side [40]. One possibility would be to interpret solutions in 

terms of diSerential inclusions. In particular, we consider solutions in the Filippov sense. 

Let a physical system be described outside the & neighbourhood of a set of discontinuity 

M by the differential equation (2.7) where / is assumed to be deGned on the domain 

G := M" x R+ consists a finite number of sub-domains in each of which / is continuous 

up to the boundary^ and a set M of measure zero consists of boundary points of these 

sub-domains. The set of points of discontinuity M often consists of a finite number of 

hyper surfaces. 

Definition 2.9. A function a; : J t M" is a Filippov solution (F-solution) of (2.7) if 

x{0) = xq, x(t) is absolutely continuous on each compact subinterval of Jt and x(t) 

satisfies the differential inclusion: 

xEF{x,t)=^ P i Wfw f{Bs(x,t) - M ,t) (2.12) 
5>0 Tn(m)=0 

almost everywhere on Jt- The set-valued function F{x,t) is the smallest closed convex 

set containing all limit values of / (y , t) as y ^ x, t — const. Approaching x, y spans 

almost the whole neighbourhood ( except for the set of measure zero) of the point x. 

The negligence of sets M of measure zero, is the crucial point in definition (2.12) since 

it allows the solution to ignore possible misbehaviour of / on these sets [61]. The ball 

B^lx, t) of radius 5 is introduced in order to provide space for this concept to work and 

is ultimately annihilated by taking J —» 0 via the first intersection in (2.12). 

The solution of a typical discontinuous right hand side differential equation can behave 

in different ways, namely regular or sliding motion, as we illustrate in following: 

Consider the case where M consists of a smooth surface S = {(x, t) E M \ ip(x, t) = 0}. 

The surface S partitions the G space into two domains and G+ (Fig. 2.2). Let 

f^{x, t) and /+(%, t) be the limit values of function / (y , t) as y approaching x from G~ 

function is continuous in the domain up to the boundary if, when its argument approaches the 
boundary, the function tends to finite limit, possibly to different limits for different boundary points. 
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Figure 2.2: Filippov's solutions 

and G+ respectively 

/ (z, () = lim /(i/, 
(y,t)eG+ ,y^x 

(2.13) 

Let M. be the plane tangential to S and Ns{x) be the normal to the surface S at the 

point X directed toward . We denote the projections of the vectors f~{x,t) and 

/+(x , t) onto Ns{x) by f^{x,t) and f^(x,t) respectively: 

/, N 
V y , - / (2;,t) Vy, . / + ( ! , ( ) 

IVft 
(2.14) 

The set F{x, t) thus can be defined by (2.12) as a linear segment joining the end points 

of the vectors f~{x,t) and f'^{x,t). For to < t* < ti, if this segment lies on one 

side of M. x* = x{t*), then both f^{x*,t*) and f^{x*,t*) point in the same region 

i.e. > 0, and therefore the solution approach S on one side and leave S on the 

other side. In this case, which is referred to as regular motion, the f-solution and the 

C-solution are equivalent. 

If this segment intersects the plane M, that is, > 0, < 0 and ( / ^ — / ^ ) > 0, then 

both f~{x*,t*) and f^{x*,t*) are directed towards the surface S forcing the trajectory 

to remain on S. This behaviour is referred to as sliding motion. In this case the C-

solution does not exist. The intersection point of the segment F{x, t) and tangent plane 

M. is the endpoint of the vector f°{x*, t*) which determines the velocity of motion along 

the surface S in the x space: 

i = / ° (z , ( ) = a / + ( a ; , t ) - | - ( l - a ) / (z,^), 0 < a < l , (2.15) 
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which means that the function x(t) satisfying (2.15) is assumed to be a solution of 

equation (2.7) in the sense of deGnition 2.9. a is calculated such that the trajectory 

remains on the surface 6". 

The existence and continuation of the solution requires (Theorems 4,5 of [8]) that 

/+(a;, t),y"(a:,f) be locally Lipschitz in a; away from 5" (i.e. in G" and G+). For 

uniqueness of the solutions (see Lemma 2 and Theorem 2 in [8]) the case when trajec-

tories point away from S along both / + and f~ (i.e. < 0 , / ^ > 0) needs to be 

disallowed. 

It can be shown [8, 69] that a system with a step discontinuity at S has a unique 

F-solutions if at each point (x*, t*) 6 5 at least one of the inequalities 

/;(^(a;*,r)<0, or / ; ^ ( z * , r ) > 0 (2.16) 

is satisfied. Therefore, if f'(x,t) and f~^(x,t) are locally Lipschitz in x in the regions 

G~ and G+ respectively, the uniqueness of the F-solution guarantees if (2.16) hold. 

2.4 Lyapunov Stabil i ty of Dynamic Systems 

In this section we briefly review some well known theorems regarding to the Lyapunov 

stability which are used in this thesis. The proof of theorems are well known and can 

be found in almost all text books in nonlinear control (see e.g. [30]). The systems that 

we are consider in this section have autonomous dynamics represented in the following 

form: 

z(^) = /(z(<)), a;(0) = zo, (2.17) 

where f : U R" is a vector field of class on U C. R" which is taken to be locally 

Lipschitz. Let us start with reviewing some key concepts: 

Definition 2.10. The origin 5 = 0 is called an equilibrium point of (2.17) if /(O) = 0. 

The equilibrium point at the origin is said to be stable if given xq close to origin, the 

trajectory x(t) remains in a neighbourhood of origin thereafter. More precisely: 
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Definition 2.11. The equilibrium point x = 0 of (2.17) is said to be stable if given e > 0, 

there exists (̂ (e) > 0 so that 

||zo|| < ^(e) lk(^)|| < 6 , Vt > 0. (2.18) 

^ = 0 is asymptotically stable if (z) z = 0 is stable and (ii) i = 0 is attractive i.e. can 

be chosen such that 

||zo|| < 5 = > ^lim |x(t)| = 0. (2.19) 

Definition 2.12. A function 7 : [0, r) M+ belongs to class K, if it is continuous, strictly 

increasing, and 7(0) = 0. It is said to belong to class /Coo if r = 00 and j(s) —> 00 as 

5 —» 0 0 . 

Definition 2.13. A continuous function V : U M+ is called a positive semidefinite 

function, if there exists a continuous function 7 : » E+, 7(-) > 0 on ?7, such that 

y(0) = 0, ^"(3;) > 7(||a:||), Vz 6 (2.20) 

V{-) is called positive definite if 7(-) € /C, and is positive definite and radially unbounded 

if 7( ) G /Coo- V{-) is negative semidefinite or negative definite if —V(-) is positive 

semidefinite or positive definite, respectively. 

Theorem 2.3. (Lyapunov ' s Theorem) Consider the dynamical system (2.17) and let 

X = 0 € [/ be an equilibrium point. Suppose there exists a continuously differentiable 

positive definite function V(x) : U —^'R. and denote 

a y a y 

the time derivative of V(-) along the trajectories of (2.17). Then the equilibrium point 

at the origin is stable if V(x) is negative semidefinite and it is asymptotically stable if 

y(3:) is negative definite. 

In the case of a negative semidefinite V, more can be said. This is given by LaSalle's 

Invariance Theorem: 

Definition 2.14. Let x{t) be a solution of (2.17). By an invariant set of (2.17) we mean 
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a set M such that if the trajectory belongs to M at some time instant it remains in 

M for all future and past time, i.e. Vt € R 

z(ti) E M = > E M. (2.22) 

If (2.22) is true only for all future time t >ti, we say M is positively invariant set. 

Theorem 2.4. (LaSalle's Theorem) Let £t be positively invariant set of (2.17). Con-

sider y : (1 —» R of class such that V{x) < 0 , Vx G fi. Let £" = {x G | V{x) = 0}, 

and let M be the largest invariant set in E. Then every solution x{t) starting in Q. 

approaches M as t ^ oo. 

The following corollary addresses a situation in which asymptotic stability can be guar-

anteed: 

Corollary 2.3. Consider the dynamical system (2.17) and let 5 = 0 be an equilibrium 

point. Suppose there exists a positive definite function F : D R of class such that 

V{x) is negative semidefinite in a neighbourhood D of origin. Let E = {x ^ D \ V{x) = 

0}, and suppose that no solution other than x{t) = 0 can stay forever in E. Then 5 = 0 

is asymptotically stable. 

The above results are true globally if we let domains U,D,fl = K" and replace V by a 

continuously differentiable, positive definite, radially unbounded function. 

Finally the following lemma is useful in bounding V from V: 

Z/emmo 2.9. Suppose / ( ) E C(E+) and y ( ) E C^(R+) and a, /) be Enite positive 

constants. Then 

y(^) < - a y ( t ) 4- /)/(t)^, V( > to > 0, 

implies that 

y(t ) < ;"(<o) + /? /" /(T)"dT, Vt > to > 0. 
Vto 

Moreover, if / ( ) E then y ( ) E and 

| i m i l / : i < ^ M 0 ) + m/ ( ) | |^2) 

Proof. See Appendix B in [35]. • 



C h a p t e r 3 

Adaptive Control: Robustness 

and Performance 

3.1 In t roduc t ion 

The first step in control design is building a sufficiently accurate mathematical model 

of the plant. The term 'sufficiently accurate' has been used since, apart from very 

simple systems, having an exact mathematical model of a physical plant is almost 

impossible and even so, the implementation is practically inappropriate [27]. So by 

modeling, we adequately capture essential features of the plant for analysis and control 

synthesis. This abstraction introduces the system uncertainty phenomenon which is 

the difference between the nominal mathematical model and the actual physical plant. 

System uncertainty generally includes other concepts such as the imperfect knowledge 

of the system dynamics, and unknown or uncertain system parameters. 

As we mentioned in section 1.1, system uncertainties, by their nature, cannot be mod-

elled in general, and therefore can lead to a wide range of problems, from performance 

reduction to eventually loss of stability. Hence, any effective control system should be, 

up to some degree, robust against uncertainties. Robust control is the specific area in 

control theory that address the control of these uncertainties. When the uncertainties 

appear only in system parajneters, they can be addressed by the area of 

32 
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contro/. In addition to system uncertainty, an applicable adaptive controller must be 

capable of dealing with such as noise and other (bounded) 

disturbances. That is the subject of our interest: con̂ roZ. 

The contents of this chapter have been arranged into two parts. In the Hrst part, 

we will briefly review the idea of adaptive control by a simple example. Then we 

will illustrate the necessity of considering robustness in adaptive control schemes by 

showing how fragile the design is when bounded disturbances are present. Amongst 

the proposed modifications to achieve robustness, we will examine two well known 

methods, namely dead-zone [66] and projection [33] based controllers. Stating the 

properties of dead-zone and projection modifications, we will notice that these two 

mechanisms, like other switching schemes, suffer from the difficulty of coping with 

differential equations with discontinuous right hand sides. Our contribution to this 

part is offering an alternative solution, so-called hysteresis dead-zone, to overcome this 

problem. The hysteresis algorithm enables us to replace the discontinuity of the adaptive 

law in state x by a piecewise continuity in time, whose solution can be interpreted 

classically by section 2.3.1. The same approach can be used for projection controllers 

though there is a well known simpler method referred to as 'smooth projection' 

Alongside the hysteresis algorithm, our goal is to elucidate the advantages and drawbacks 

of dead-zone and projection methods. We will observe that both methods require 

appropriate a-priori knowledge of unknown factors, i.e. a-priori knowledge is required 

of either the: 

• Maximum disturbance level for dead-zone modification, dmax-

• Maximum parametric uncertainty level for projection modification, ^max-

Therefore, the accomplishment of each method directly depends on the quality of our 

knowledge of the uncertainty. For example, consider a perturbed physical system with 

poor a-priori information about an unknown parameter 6, and suppose we want to use 

a projection based controller. We will show in section 3.4.3 that in order to construct 

such controller, we need to define a convex set 11 based on 9max (the a-priori known 

upper bound for |6'|). We also need to make sure that 0 € 11. Therefore, if the a-priori 

0ma,x leads us to a wrong decision about the size of 11 in such a way that 0 ^ U, then 
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practically we prevent the parameter estimator ^ from reaching its desired value The 

same sort of conclusion can be made with dead-zone modihcation when, based on poor 

(or unreliable) information (fmax, the size of the dead-zone has been chosen wrongly. So, 

rehable a-priori information is essential. Note that the two types of controller require 

different information. 

On the other hand, with regards to asymptotic performance, the behaviours of these 

two controllers are different. Dead-zone controllers only achieve convergence of the 

state/output/error to some pre-specified neighbourhood of the origin (whilst keeping all 

signals bounded). In particular if the disturbance vanishes, then the dead-zone controller 

does not typically achieve convergence to zero: the convergence guarantee remains 

only to the pre-specified neighbourhood of the origin [54]. Projection based controllers 

generally achieve only boundedness of all signals, but have the desirable property that 

if no disturbances are present, then the state/output/error converges to zero, however, 

an arbitrarily small £.°° disturbance can completely destroy any convergence of the 

output [27]. 

This illustrates that in the case of asymptotic performance, there are some circumstances 

under which it can be clearly stated as to which adaptive controller is superior. However, 

there are many situations in which we cannot definitively state whether a projection or 

dead-zone controller is superior even when only considering asymptotic performance. 

In the second part of this chapter, we will establish a general frame-work for a compara-

tive theory to choose the best alternative with respect to a cost functional. We will define 

a tmzwient peTyormonce coat /unctzonaZ (7 )̂ as our criterion of comparison. Moreover, 

in contrast with the most results in adaptive control which are confined to singular 

performances, the transient performance measure will be nonsingular, i.e. penalise 

both the state {x) and the input {u) of the plant. We will identify circumstances in 

which a dead-zone based adaptive controller is superior to the projection based adaptive 

controller with respect to V, and vice versa. 

A simple scalar system has been used to develop the results and illustrate the trade-offs 

between the designs in the simplest manner. Finally, a structural procedure is proposed 

to develop the idea for the more complex systems described in later chapters. 
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3.2 Sys tem Descript ion and Basic Design 

Consider the following SISO system 

2(^0,0, d( )) : z(t) = /(3;(t), g, d(t)), z(0) = % 

2/(t) = /i(z(t)), 
(3.1) 

where x(-) € K" is the state, u{-),y(-) G M are the control and output respectively, d{-) 

belongs to a class of bounded disturbance signals V, and 9 represents the parametric 

uncertainty of the system. We assume / , h are continuous and u, d are piecewise 

continuous. 

Equation (3.1) represents a set of systems for different choices of 6. As explained in 

section 1.1.2, the objective of an adaptive control design is to provide a single controller 

that can be applied to any member of family (3.1). That is, defining a controller 

S : t/(t) = z(t)) (3.2) 

^(t) = g(g(t),z(t)), ,9(0) e R , (3.3) 

consisting of a feedback law j(9, z) which, in turn, depends on a tuning parameter 6(-) 

generated by adaptive law (3.3). We require for all choices of 6, d(-) 6 V that this 

controller fulfills some or all of the following objectives: 

Gl . Existence (and uniqueness) of the solution of the closed loop (^(xo, 9, d{-)), H). 

G2. Boundedness of closed loop signals x(-),0(-),u(-). 

G3. Asymptotic stability of the system state/output. 

The function z(-) is defined based on the control strategy. If the state vector x is 

measurable, we let z(t) := r(t). For the output feedback systems z(t) := ^(t). 

In order to achieve G1-G3, we need to specify functions / and h. From now on we 

assume / belongs to some known class of linear/nonlinear systems for which there exists 

an adaptive controller in the form of (3.2)~(3.3), such that the disturbance free (V = {0}) 
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closed loop system satisfies G1-G3. Particularly, we are interested in minimum phase 

linear systems with relative degree one (chapter 4), and nonlinear systems in the form 

of integrator chain (chapter 5). 

In the following we explain the idea of robust adaptive control by using a simple example. 

3.3 A Simple Example 

Let us define the system (3.1) in the following form: 

2(10,0, d( ) ) : i ( t ) = 6%(t) + 'u(t) + d(t), a;(0) = To 
(3.4) 

2/(t) = z(t). 

Suppose y(-) € M is available for measurement and 0 6 M is an unknown constant. Let 

V = {0} and suppose the design objective is to asymptotically stabilise the system i.e. 

to find a controller so that x{t) ^ 0 as t ^ 00. 

We start designing the controller H in (3.2) by choosing a feedback law 

u{t) = —ax(t) — 9{t)x{t), (3.5) 

for some constant a > 0. This yields to the following differential equation: 

z(t) = —az(t) + ^(t)z(t), z(0) = zo, (3.6) 

where 9{t) •= 9 — 9{t). Defining the Lyapunov function 

= (3.7) 

we observe that 

y(2;(t), g(t)) = -aa;(t)^ + g(t) ^a:(t)^ - ^(t)^ , (3.8) 

which can be made negative semi-definite by choosing the adaptive law 

g(t) = z(t)^, g(0) E R. (3.9) 
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It follows by LaSalle's theorem 2.4 that a;( ) 6 /2°°, and a;(t) —» 0 as t —> oo. 

So, we have given an adoptzi/e co?i(n)ZZer S which is a uan/mg feedback contain-

ing a parameter estimator which is updated on-line such that the closed loop system 

asymptotic stability is preserved: 

= —aa;(() — 

g(() = g(0) = 0. 
(3.10) 

3.3.1 Parameter Drift 

It is well known that even a small C°° disturbance may cause a drift of the parameter 

estimates 9{-), (see eg. [6]). The following example illustrates this phenomenon. 

Example 3.1. Consider the closed loop system (Yl{xQ,6,d{-)),E) defined by (3.4), (3.10) 

respectively where xq = 2,a = 1 and d{t) = 1 for all t. The graph of the system 

trajectory x{t) and parameter estimator 6{t) are shown in Fig. 3.1. 

8 1 0 x 1 0 0 8 10x10' 

Figure 3.1: Parameter drift 

As it has been shown in Fig. 3.1 the simulation illustrates 6{t) —> oo as ( oo. This 

can be proved analytically (see proposition 3.1 later in section 3.5.3). An interesting 

point in Figure 3.1 is that, despite the drift in 0(t), the asymptotic stability of system 

trajectory T() has been achieved, i.e. lim(_^oo3;(<) = 0 (see the proofs of theorems 4.1 
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and 5.1 in later chapters). That is, the singular transient performance (1.12) or the 

singular aaymptotic performance (1.13) are bounded. 

20 21 200000 

-5 0 

20 21 200000 

Figure 3.2: u{t) and u{t) for example 3.1 (constant disturbance) 

One of our main goals in this thesis is to explicitly pinpoint the problem caused by 

parameter drift. We show that these problems will be highlighted, if we take non-singular 

transient performance into account. By non-singular, we mean considering the transient 

performance of both state x(-) and control u(-). The result is not straightforward since, 

surprisingly, even the control u(-) behaves well under some circumstances. For instance, 

it has been shown in Fig. 3.2 that for the above example ||%/( )||z:°° < 6 and u(t) 1 

as t oo. In fact, one can prove that if limf^oo u{t) exists for such systems, then 

lim(_»oo ^(^) = d (see Lemma A.l in appendix). From this, for this example one 

may reach to the following conclusion; §{•) is only a virtual parameter which has no 

correspondence in real physical system and therefore it is possible that it can drift to a 

very large value without any 'bad' effect on 'system performance'. 

However, taking {[(t) into account, we can show that even a small step change on 

disturbance d{-), can cause some problem (Fig. 3.3). This motivates the introduction of 

the control derivative into cost functional. 
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Figure 3.3: u(t) and u(t) for example 3.1 (step disturbance) 

Once we have shown the effect of bounded disturbances on transient performance of the 

robust adaptive control systems, the need to consider non-singular transient performance 

will be clarified. 

3.4 Modified Algor i thms 

As we have mentioned in section 1.1.3, the adaptation law is often modified to avoid 

parameter drift. However, it is important to note that the modification algorithms 

are a trade-off between robustness and the ideal properties G1-G3. In the following 

sections, we brieGy describe two popular methods, i.e. the dead-zone and projection 

modifications. 

3.4.1 Dead-zone Modification 

The idea of the dead-zone modification [6, 60, 66] is to divide the state/output space into 

two mutually exclusive regions by a smooth switching surface, and modify the adaptive 

law in (3.3) so that the adaptive mechanism is 'switched off' when measurable signal z(-) 

(state x{-) or output y(-)) lies inside a region fio where the disturbance has a destabilising 

effect on the dynamics. A-priori knowledge of the size of the disturbance is typically 
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used to deGne the size of the dead-zone. Let dmax be the a-priori known of the upper 

bound of the disturbance level, i.e. dmax > l|(̂ ( k r all d( ) E D. For scalar systems 

(3.4), the dead-zone region no(dmax) can be simply defined by l̂o(((max) = 

where % = p(dmax) &nd p : R""" —R""". For higher order systems with measurable state 

vector z , the dead-zone region f2o((4iiax) is de&ned aa follows: 

^o('^max) — {x \ x Px < g((^max) }, (3.11) 

where P is an appropriate symmetric positive definite matrix. 

We modify the adaptive law (3.3) by 

g(t) = Dn,(j^^)(z) g(g((), z(t)), g(0) = 0, (3.12) 

where D^{z) := 0 if z € $ and D$(z) := 1, elsewhere. Consequently the dead-zone 

controller 2f,(dniax) is deSned by 

SD((Lax) : t((t) = ;(^(t), z(t)) 

e(t) = Dno(d^_)(z) g(g(t), z(t)), g(0) = 0 , 770 = e(dmax), 

We will study the robustness of the closed loop (S(xo, 6*, <i(-))) ̂ ^('^max)) for linear and 

certain nonlinear systems and for various choices of j(-, -),g(-, -) in the following two 

chapters. We will prove that: 

Dl) The closed loop solution exist (but it is not necessary unique). 

D2) All closed loop signals a:( ),^( ),'u() are bounded. 

D3) The state/output z{t) converges to Qq as t ^ 00. 

The following theorem analyses the stability of the closed loop in the form of example 

3.3, for which the dead-zone controller is defined as follows: 

SD((4nax) : " (4 = -aa:(t) - g(t)3:(t) 

* 
9(t) — x{t) , 0(0) — 0, r]o :— g((fmax) 

We will delay the complete proof to chapter 5 in which the stability of more complex 
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systems will be examined. 

T/ieorem 3.1. Consider the closed loop system (Z(ro, d()) , deEned by (3.4), 

(3.14), where (f() E vC°°. Suppose dmax is such that dmax ^ I M ( D e f i n e continuous 

function 
1 1 

li)(T0, (fmax) := ^ max(a;o, 7;g) + -6" .̂ (3.15) 

Then for any zo G R, 

Dl. The solution (x(-),§(-)) : M+ exists. 

D2. x(-),u{-),9(-) are uniformly bounded as continuous functions of Vo{xo,9, dma.x)-

D3. x(t) —+ f^o as t —> oo. 

Proof. This is a simple application of Theorem 5.2. To bypass the technical difficulties 

arising from discontinuous r.h.s. differential equations and avoid repetition, we defer 

proving D1,D3 until then (see Theorem 5.2). An outline proof of D2 (which is directly 

required later in this chapter) is as follows: Define the Lyapunov function 

y(3:(t) , ,9(<))- lz(()^ + ^g(t)". (3.16) 

Considering different situations of xq inside, outside, or on the boundary of the dead-zone 

(1o((̂ max), eventually yield to y(a;(t),^(t)) < Vo(a:o,^, dmax) for all t > 0 (see Theorem 

5.2). From this and (3.16),(3.14) one can easily bound x(-), 0(-), u(-) uniformly as a 

continuous function of Vq ;= Vo{xo, 9, dmax)-

| z ( t ) | < V ^ , | 6 ( t ) | < 2 \ / ^ , M t ) | < a \ / ^ + 4Vb. (3.17) 

• 

Figure 3.4 illustrates the result for the example 3.1. 

Remark 3.1. The right choice of the size of dead-zone fio(<^max) = [—%, %] is the 

crucial point in this design. We have assumed that the disturbance d{-) belongs to a 

class of bounded disturbances T>. However, the actual disturbance level is not known. In 

fact the upper bound c/max is assumed to be the only available a-priori information about 
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Figure 3.4: Dead-zone modification for example 3.3 

the disturbance d{-). Therefore, it seems to be logical if we rely on this knowledge and 

define % as a function of <imax (see the discussion in section 3.5.5). As we have shown 

in Theorem 3.1, a suitable choice of % = c^max/a assures the boundedness of signals and 

converges x{t) to fio- However, by this choice, the control design is directly dependent on 

the reliability of a-priori dmax- Observe that |0o| —> oo as dmax oo i.e. 6{t) = 0 for all 

t E [0, w), w -4 oo. In other words, the most conservative information yields to the least 

adaptation (9(t) = 0). We will discuss this matter extensively in section 3.5 by showing 

that how conservative information potentially degrades the transient performance of the 

closed loop (Theorem II). 

Remark 3.2. Due to the switching nature of the dead-zone modification, the differential 

equations governing the closed loop have discontinuous r.h.s. for which, the classical 

definition of a solution is not valid. We, therefore, consider solutions in the Filippov 

sense. However, as we mentioned in chapter 2.3.2, there is a possibility of loss of 

uniqueness as well as sliding motion, or practical chattering. To overcome these problems 

we introduce so-called 'hysteresis dead-zone'. 

3 .4 .2 H y s t e r e s i s D e a d - z o n e 

Although the sliding motion is essential in sliding mode robust control, it is an undesir-

able phenomenon from the adaptive control point of view. In practice, sliding motions 
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cause chattering and also may lead to a theoretical loss of uniqueness of solutions. 

To overcome this problem one should avoid the circumstances which cause sliding 

motion, i.e. the conditions we explained in section 2.3.2. One method is to modify 

the differential equations in such a way that the right hand side discontinuity is replaced 

by piecewise continuity in time. This can be implemented by adding a 'hysteresis' 

eSect to the switching mechanism [45, 51, 79]. Motivated by this relatively old idea, we 

developed an alternative for dead-zone modification. Hysteresis dead-zone controllers, 

firstly introduced by Brogliato and Neto [3], have some important analytical as well as 

practical advantages over conventional dead-zone based controllers. We leave the formal 

definitions and stability analysis to chapter 5. In this section we simply illustrate the 

idea. 

Consider the dead-zone region Qo in (3.11). Let us define another region Oi: 

Hi = { z I jzl < % }, (3.18) 

where 771 = (1 -(- /))% for some small /? > 0. We also define 'switching' time sequences 

{tj}, 'storing' sequence {if}, and 'restoring' time sequence {t[}. We replace operator 

by its hysteresis version % o , ni , and define hysteresis dead-zone controller on the 

interval t\ < t < iov i > 0 as follows: 

Sg(dm&x) : 'u(t) = j(^(t), z(t)) 

g(t) = %o,ni (z) g(g(t),z(t)), g(0) = 0 , % = g(G(max), m = (1 + /))970, 

0(t^) = 6(tj) <1 < ( < % > 0 

(3.19) 

where %o,ni represent the axztion described in Fig. 3.5. Similar to dead-zone, dmax 

represents the a-priori knowledge of the upper bound of the disturbance level. The 

proper definition of tj, tf, and will be given in section 5.3.2. 

The operating procedure has been shown in Fig. 3.5. Let us start outside Oi. When 

the trajectory hits the boundary of at time t | , the value of the parameter estimator 

is stored, but the adaptation still continues until the trajectory reaches fio at time t*. In 

this stage, the adaptation is switched off and remains off until the trajectory passes the 
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H = 0 

Figure 3.5: Hysteresis dead-zone 

dead-zone Oo and hits the boundary again at time At this point, the saved value 

of parameter estimator is restored and the adaptation turns on. 

This delay in switching is the essential property of the hysteresis and results in eliminat-

ing the possibility of sliding motion. In fact the system trajectory either has a regular 

motion or oscillate back and forth across the switching surface at a finite frequency, 

which is controllable by some parameters such that etc. This ensures piecewise 

continuous right hand side differential equations for which the sufficient condition for 

the uniqueness of the C-solutions always hold, and the solution is well-defined. 

The following theorem shows the properties of the closed loop system of example 3.3 

and the controller: 

^(0) = 0, % 
6^ 

^ > 0 . 

/ ) > 0 

(3.20) 

TTieorem 3.2. Consider the closed loop system (E(a:o, Sg(dmax)) defined by (3.4), 

(3.20), where d( ) E Assume that dmax is such that dmax > lt(̂ ( De&ne the 
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continuous function 

Vo{xo, 0, 0?max) •— + —0̂  + (/?^ + 2(3)7]^. (3.21) 

Then for any a;o E R, 

HI. The solution (z(-), 6{-)) : R+ exists and is unique. 

H2. a;( ),u( ) , 0 ( ) are uniformly bounded aa continuous functions of %(ro,^,(fmax). 

H3. x{t) —> Qi as i —> oo. 

Proof. This result is a special case of Theorem 5.3 in section 5.3.2, and we defer the 

proof of HI, H3 until then. In order to proof H2, it can be shown (see Theorem 5.3) 

that 

y(r(t) , g(()) := < ^(^o, 0) + := ^(zo, 0,770). (3.22) 

Therefore, similar to (3.17) each closed loop signal z(-), 0(-), «(•) can be made uniformly 

bounded as a continuous function of Vq := ^ ( z o , 9, dmax): 

k ( ( ) | < - \ / ^ , I ^ ( ( ) | < 2 \ / ^ , M t ) | < a y ^ + 4%. (3.23) 

• 

Remark 3.3. In addition to the above properties, the hysteresis dead-zone has some 

other analytical and practical advantages. The system can be analysed using simpler 

regular piecewise continuous differential equations, and the simulation is faster as the 

usual integrator methods can be used rather than stiff ODE solvers. We will address 

these matters in more detail in chapter 5. 

3.4.3 Parameter Projection 

Projection is an alternative method to eliminate parameter drift by keeping the param-

eter estimates within some a priori deHned bounds [6, 33]. Let be the o-p7ior% 
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of the parametric uncertainty level, which is deGned as the upper bound of 

|0|. Define the convex set 

n(gmax) = # W e R - I (gW) < 0}, (3.24) 

where ) ^ ^ R is considered as a smooth function that represent the surface 

S : = 0, for all t. As an example 

:= - ^max, (3.25) 

Denote n°(^max), 8n(^max), the interior and the boundary of n(0max) respectively and 

observe that represents an outward normal vector at 0 € 811 (^max)- Consider 

the unmodified adaptive law (3.3) 

<̂ (t) = p(g((),z(t)), g(0) G R. (3.26) 

The idea behind this method is to project g{-, •) on the hyperplane tangent to 8n(gmay) 

at §(t) when §{t) is on the boundary dn(5niax) and g{-, •) pointing outward (Fig. 3.6). 

f (g) = 0 

Figure 3.6: Projection operator 

For compactness we drop the functions' arguments from our notation. In order to 

evaluate the Proj n(8msx) )' observe that for some a G M, 

V g f ^ Proj (g, ^) = 0, (3.27) 

g = a V g f + Proj 28) 
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Substituting (3.27) in the multiplication of (3.28) by V^P^, we have 

therefore the operator Proj : R"" x n R"", (g, Proj n(8max) defined 

85 follows 

f 9, 4 e r r or V g f ^ < 0 

I'roj n(%max)(9,(0 == / _ (3.30) 
jr-- 9 4 E'Sn sLod 0. 

The modified adaptive law is taken to be 0 = Proj {g,0), 0(0) = 0. Consequently the 

projection controller E!p(0max) is defined by 

(̂ max) : = j(#(Z),z(t)) 
(3 3̂ " 

g(t) = Proj (g, ^), <9(0) = 0. 

For the scalar systems where 0 G K, a simplified version of parameter projection can 

be obtained by defining n((9mav) := [—^max, ^max]- Then, (3.30) is reduced to a simple 

switching mechanism: 

9i 1^1 ^ ^max or ^5^0 
= i . (3.32) 

0, |g| = gmax and gg > 0. 

The robustness of the closed loop (E(xo, 6̂ , (i(-)), Sp(6'inax)) for linear and certain non-

linear systems will be discussed in the next two chapters. It will be proven that in 

the presence of bounded disturbances, (i) the solution {x{-),9{-)) exists, and {ii) all 

closed loop signals x{-),6{-),u(-) are bounded. Note that the projection method does 

not guarantee asymptotic stability. 

For scalar system as in section (3.3), the projection controller is 

S f (̂ max) : = -aa;(t) - g(t)z;(() 
(3.33) 

g(t) = P r o j n ( e _ . ) M ( ) ' ) , # = 0. 
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The monotonicity of 0(t) indicates that starting from ^(0) = 0, ^ increases until it hits 

the boundary ^max aJid remains constant thereafter. That is n(^max) — [0, ̂ max] 

6(0) = 0, VtE[0,7:»], 
(3.34) 

^(()=^max, VtE[7;n,00), 

where 2 ^ = inf{t > 0 | ^(t) = ^max}- Observe that (3.34) easily satisfies (3.32) and 

(3.33). The following theorem examines the properties (i)-(ii) for example 3.3: 

TAeorem 3.3. Consider the closed loop (Z(z;o,^, (f( )),Sf(^niax)) defined by (3.4),(3.33). 

Assume 0mex is such that |6| < 0max- Then, for any zo E R: 

PI . The solution {x{-),9(-)) : R+ —» exists. 

P2. x(-),u(-),9{-) are uniformly bounded as a continuous function of x q , | | ( i | | , ^ m a x -

Proof. Again to avoid repetition we defer the proof of P I to later chapters (see Theorem 

5.4). The proof of P2 is as follows: Defining the Lyapunov function 

y(T(t), l9(t)) ^ ^a;(t)^ + ^^(t)^ (3.35) 

we observe that 

y(2;(t), g(t)) = -oa:(t)^ + z(t)d(t) + g(t)2;(t)^ - g(t)Proj 36) 

It can be easily shown from (3.34) and (3.32) that 

- g(t)Proj (a;(()^) < -i9(t)a:(t)^. (3.37) 

Therefore 

z(()2 1 / d ( t ) y (f(t)2\ 
y(a;(t), g(t)) < -oa;(t)^ + a;(t)d(t) = a f ^ ^a:(t) - + 

2o2 

2 

2 ' 2a^ 7 " 2 ' 2o 

(3.38) 
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Adding and subtracting A;y(a:(t),^(t)) for some A: > 0 yields 

y(3;(t), ^(t)) < — A:y(2;(t), ^(t)) "I" ^ ^ 

< — — ( g — A ) | a ; ( ^ ) | ^ + g ^ ( t ) ^ + —||d(t)||^ (3.39) 

Choosing A; < o/2, the second term in (3.39) is negative. Note that by (3.34) ^(t) < ^max-

We also have, by assumption, that |g| < ^max- Define 

V (&max, IMII) •= 2^max + '2ka^ (3.40) 

and observe that 

y(a:(t), 8(t)) < -A:(y(a:(t), g(t)) - 7*) (3.41) 

which implies that, V{x{t), 9(t)) < 0 for all V > V*. It follows that 

y(a:(t), 0(t)) < ^ ( l o , t|d||, 0max) := max{y(a:o, 0), y*(0max, IM|t)}, Vt > 0. (3.42) 

The uniform boundedness of x(-),w(-) as a continuous function of V '̂(a:o, |M||, ^max) 

follows from (3.35),(3.34), (3.42) and (3.33): 

|^(t)| < ^max, |a;(()| < |l/(()| < (a + ^max)\/2V^. (3.43) 

• 

Figure 3.7 illustrates the result for the example 3.3. 

Remark 3.4. Projection modification relies upon the a-priori information 6'max- In fact 

|0| < Omax is a necessary condition in Theorem 3.3. This can be clarified by a simple 

system i = A:*a; + it, u = —0a:. If n(0max) — [—^max, ^max] such that A:* — ^max > 0, then 

the best that can happen to the closed loop is i = (k* — Omax)^ resulting in x{t) —> oo. 

The reliability of 6'max is vital in defining n(gmax)- We will show in proof of Theorem 

I of section 3.5 (Proposition 3.3) that for sufficiently conservative ^maxi the behaviour 

of a projection modification tends to that of the unmodified design, hence parameter 

drift. Theorem I demonstrates the eff'ect of such a choice on transient performance of 
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Figure 3.7; Projection modification for example 3.3 

the closed loop system. 

Remark 3.5. Projection has also some switching activity on the boundary of H leading 

to r.h.s. discontinuity of differential equations. However, one can avoid the discontinuous 

switching by modifying (3.30) to so-called smooth or 'soft-projection' [62] for which the 

classical theory of differential equations is valid. 

3.5 Pe r fo rmance Compar i son 

As we mentioned in section 3.1, choosing the 'best' alternative for robust adaptive control 

is only possible if we have some rich a-priori information for one method and poor a-priori 

knowledge for the others. By 'rich' information, we mean enough reliable, and relevant 

knowledge. For example, consider a system for which we have very good reliable a-priori 

knowledge about the behaviour of the disturbances d( ), and little unreliable information 

about the uncertain system parameter 9. In such case, we have no doubt that dead-

zone controller is the best alternative in robust adaptive design. On the other hand, 

intuitively, the 'projection' controller is the best alternative^ if we have rich information 

about the system parameter 6 and poor knowledge about disturbance d{-). 

However, there is some grey margin between these two cases where one cannot easily 

^Note that in this thesis we only compare dead-zone and projection based controllers. So, in all 
s tatements we simply ignore all other modification methods. 
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decide which method is more eSicient. This motivates the idea of generating a decision 

algorithm by building an analytical theory for comparing these modiScations. 

The foundation of any comparative theory is built on some measurable meaningful 

criteria of comparison. All methods to be compared must rely on these criteria. Further-

more, the comparative theory must give answers to the so-called 'black and white cases' 

without any ambiguity. Dead-zone and projection modification deal with disturbances 

from different points of view. So, as a criterion of comparison, one should choose a 

feasible common ground which illuminates the strength and weakness of each method. 

The remarks 3.1 and 3.4 show that the 'a-priori information' upon which the robust 

adaptive controllers are designed (ĉ max for dead-zone and 0max for projection) would be 

a good choice as we have shown above that the answer to the 'black and white' cases 

are unambiguous. 

We are interested in the worst case scenario and we choose a non-singular transient per-

formance cost functional since it is meaningful for either methods and analytical results 

can be derived. Note that we are not concerned with the comparison of asymptotic 

performance, as it has been studied previously, see eg. [54] and the references therein. 

In this section, we build a general framework for the rest of dissertation. First, a 

transient performance cost functional V will be defined. Then, two theorems will be 

introduced to identify circumstances in which a dead-zone based adaptive controller is 

superior to the projection based adaptive controller with respect to P , and vice versa. 

We will develop the results by considering a simple scalar system and finally a structural 

procedure will be proposed to extend the idea to the more complex systems considered 

in later chapters. 

3.5.1 Cost Functional 

Consider a generic class of SISO system-controller interconnection (S,H) with initial 

condition xq, unknown parameter 0, bounded disturbance d{-), and control input u(-). 

We will compare the performance of the controllers with respect to the following worst 
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case non-singular transient cost functional: 

?(Z(;tb(7) ,A((^) ,D(6)) ,2)= sup sup sup(| |z() | | / :°° + ||2i(-)||z:«, + ||i:[(-)||/:°°) 
io€A'o('7) eEA(a) dEDM 

(3 4^1 

where 

{(̂ ( ) I l|(̂ ( ^ 

A ( , ^ ) : = { g | M < 6 } , (3.45) 

'%(?) := {% I ||a:o|| < ?} 

for some €,S > 0 and 7 > 0. 

It is important to note that all the forthcoming theorems have established the compar-

ative results based on the a-priori information dmax and 0max- So, we will consider the 

(natural) assumption that any change in c/max affects the size of dead-zone fio(dmax), 

and also n(^max) is not independent of ffmax-

In the following, we will establish the main results for the scalar system described in 

section 3.3. This will help us to build a structural framework for developing the results 

for more complex systems in the later chapters. 

3.5.2 Main Results 

T h e o r e m I. Consider the system Ti(xo,9,d(-)) defined by (3.4) and the dead-zone and 

projection controllers 2%)(dmax) ci'nd S f (̂ max) defined by (3.14), (3.33) respectively. 

Consider the transient performance cost functional (3.44). Then for all dmax > there 

P(2(A'o(7),A((^),Z)(6)),Sp(gmax)) > ?(2(^o(7),A(<^),D(e)),22)((fmax)). (3.46) 

This theorem can be interpreted as stating that if the a-priori knowledge of the paramet-

ric uncertainty level ^max is sufEciently conservative (̂ max > %ax); then the deeid-zone 

based design will out-perform the projection based design. 

Similar result can be obtain with respect to hysteresis dead-zone as follows: 
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Figure 3.8: Statement of Theorems I, la 

T h e o r e m la . Consider the system E(zo, 0, d{-)) defined by (3.4) and the hysteresis 

dead-zone and projection controllers '^nidmax) o-'^d Sp(^max) defined by (3.20), (3.33) 

respectively. Consider the transient performance cost functional (3.44). Then for all 

(Lax > e, (Aeyie eiistg ^ ^ t/iot /or oZf gmax > ^Ziax, 

> P(2(;fo(7),A(f),D(e)),Sj^(dmax)). (3.47) 

In fact, as it has been shown in Fig. 3.8, we will prove the stronger results that the ratio 

between the two costs can be made arbitrarily large (Fig. 3.8). That is, for dead-zone 

controller: 

P ( 2 (^"0(7), A(6), D(6)), S f (gmax) ) 

P ( S (;fo(7), A((^), D(6)), 2D(dmax) ) 

Alternatively, for hysteresis dead-zone controller we have 

P ( 2 (;fo(7), A(6), D(6)), (gmax) ) 

oq as ^max ^ oo, v^max — 

? ( S (Aro(7), A(g), D(€)), S^(dmax) ) 

The complementary results are as follows: 

0 0 as ^max ^ QÔ  ^^max ^ 

(3.48) 

(3.49) 

T h e o r e m II . Consider the system S(xo, 0,d(-)) defined by (3.4) and the dead-zone and 

pmjection controZZers ^^(dmax) S f (̂ max) 6?/ (3.14), (3.33) reapectiweZ?/. 

Consider the transient performance cost functional (3.44). Then 3<5 > 0 such that 
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v^max > > 6 SUcA Vc^ax > 

P(Z(;fo(7),A(J),D(6)),SDWmax)) > P(Z(A'o(7),A((^),D(e)),Sp(gm^)). (3.50) 

Theorem Ila. Consider the system T,{xo,0,d{-)) defined by (3.4) and the hysteresis 

(feod-zone onj projechon con^ro/Zers S^((fmax) (0max) (fe/zneff 6y (3.20), (3.33) 

CoTiaWer (/le peT/ormance coa^ /ifMĈ zoTiaZ (3.44). TTien 3^ > 0 

SUCA V0max > 3(̂ max ^ ^ Vdmax > Ĉ âx, 

P(Z(Aro(7),A(<^),2)(6)),2^((fmax)) > 7^(2(A'o(7),A(,^),D(e)),Sf(gm^)). (3.51) 

These theorems can be interpreted as stating that above a certain uncertainty level 

5, if the a-priori knowledge d^ax of the disturbance level is sufficiently conservative 

(ĉ max > ĉ max)) then the projection design will out-perform the dead-zone/hysteresis 

dead-zone design (Fig. 3.9). 

V 

DZ./Hyst. DZ. 

Proj. 

Figure 3.9: Statement of Theorems II, Ila 

As we have shown in Fig. 3.9, we will prove that the ratio between the two costs can be 

made arbitrarily large i.e. for Theorem II: 

P( Z (;k'o('Y), A(6), D(6)), SD((fmax) ) 
P( E (^-0(7), A((^), D(6)), S f (gmax) ) 

OO as dmax ^ OO, V0jfiax ^ (3.52) 
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and for Theorem I la 

? ( E (A'o('Y), A(5), D(e)), (4nax) ) 
oo as ĉ max ^ oo, ^^max ^ ^3.53^ 

P(2(A'o(7),A((^),2)(6)),2p(gmax)) 

3.5.3 Proof of Theorems I, la 

In order to prove theorem I, la, we use the following procedure; 

1. Firstly, we will prove that S, the unmodified controller (3.10) causes parameter 

drift whilst the state trajectory converges. That is, for any xq € ^0(7), 9 e A(5) 

and for d = e € T>{e), we have 

|0(t)| ^ 00, |x(t)| —> 0 aa t —» 00. (3.54) 

2. From this we prove that 

P ( S (;kb(7), A((^), 2) = 00. (3.55) 

3. The projection modification design, Sp(6'max) is shown to have the property that 

P ( 2 (Ab('7), A(6), D(6)), S f (gmax)) -^00, as gmax CX3. (3.56) 

4. Finally the proof will be completed by showing that for dead-zone controller 

? ( 2 (;k'o(7), A((^), D(6)), 2D(dm^)) < 00, V(4nax > 6- (3.57) 

Alternatively, for hysteresis dead-zone controller: 

? ( S (Aro('-y), A(g), D(e)), 2 :̂̂ (dmax)) < 00, Vd^ax > e, (3.58) 

Let us follow the procedure by establishing some propositions; 

3.1. Consider the closed loop system (S(a;o,^, (f( ) ) ,S) defmed by (3.4), 
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(3.10). Let d{-) = e for some e > 0. Then 

|a;(t)|—1^0, |^(t)|—»oo ast—^oo. (3.59) 

Proof. The proof closely follows the examples 8,9 in [16] and [17]: Defining ( : R —» 

R, ^(t) I—> ^ —^(t) — o, the closed loop (Z(To, 0, (f()), S) can be rewritten in the following 

form: 

a;(t) = e + ((^(t))a;(t), z(0) = a:o, (3.60) 

6(t) = x(t)^. (3.61) 

( i ) 6{t) —» oo aa t —» oo. Seeking a contradiction. Assume there exists Mi > 0 such 

that 6{t) < Ml for all t. Then by (3.61) x{-) € £^[0, oo). Since ({§) is continuous, 

there exists Mg > 0 such that ((§) < M2 for all t. Therefore by (3.60) 

/ (x(t) — e)'^dt < M | M i , Vt. (3.62) 
/o 

Hence 

MgMi > / x{T)'^dT — 2e / x{T)dT + e^t > —2e{x{t) — xq) + eH. (3.63) 
Vo Vo 

It follows that 

It contradicts the assumption x{t) 6 vC^[0, 0 0 ) ; Hence 0(t) —> 0 0 as t ^ 0 0 . 

{2) x{t) 0 as t —> 00. Denote a{t) = —({d{t)) and observe that «(•) is continuous 

monotonically non-decreasing and «:(() —» 00 as t —+ 00. DeSne 

t' = [ a{t)dr =: K{t). (3.65) 
Vo 

K(t) is monotonically increasing on [to, 00) for some to > 0 for which oi(to) > 0. 

Changing the argument t to t' and noting x{t') := z;(K^^(f)), and dt' = a{t)dt, 
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equation (3.60) becomes 

(3.66) 

Observe that /x(t') —s- 0 monotonically as t' oo. Let fg = K{to) and define 

= |&(to)| and 62 = |^(^o)|- Then for > (g 

e * +*o:r(to) + f e *'+'^//(T)dT 
JtL 

< e-" +̂ 0(̂ 1 + ,̂ 2. (3.67) 

Now we claim that x{t') 0 as t ' —> 00, i.e. given any (3 > 0 there exists t'l such 

that | z ( f ) | < [3 for all t' > To see this, choose I'q so that 82 < /3/2 and choose 

'̂1 = 0̂ + ln(25i//?) if 25i//3 > 1, otherwise, choose t'-̂  = This ensures that for 

any 

|&(̂ 3I < + (̂ 2 < e-*i+*o6i + 2̂ < /). (3.68) 

It follows that |z(t) | < [3 for all t > K''^{t'i) which completes the proof. 

• 

R e m a r k 3.6. The above proof is limited to this particular example and cannot be 

straightforwardly generalised. We will provide an alternative more general proof (see 

propositions 4.2, 5.1, and 5.10) in later chapters. 

Proposition 3.2. The closed loop system {Yl{xo,0,d{-)),E) defined by (3.4), (3.10) has 

the following property: 

7^(2 (A'o(7),A(,^),D(6)),S) = oo. (3.69) 

Proof. For ease of the notation let us denote lim sup by lim. We choose d{-) = e ^ 0 
f—»oo 

and let a;o E '%(')'), ^ 6 A(6). 

Suppose for contradiction 7^(Z(zo,^, o(( ) ) ,S) < 00. Consider a;(t). There are two cases 

either 1. lim |z(<)| = 00 or 2. lim | i ( i ) | < 00; 

1. Suppose lim |a;(^)| = 00, i.e. lim | — o2;(() + (^ — g(t))a;(t) + 6| = 00. Since a:(() —> 0 
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by Proposition 3.1, therefore lim |^(t)a;(t)| = oo. It follows that 

^ = oo, (3.70) 

1.eV = oo, which is a contradiction. 

2. Suppose lim | i(t) | < oo. Considering hm%f(t), by applying (3.59), we observe that 

lim {u{t) — (^6{t)x{t) — e j j 0 as t ^ oo. (3.71) 

Now there are two possibilities: either 1) 6{t)x{t) ^ e (including the possibility 

that limt^oo 0{t)x{t) does not exist), or ii) hm^^oo 0{t)x{t) = e 

(a) Suppose \imt-^oo6{t)x{t) does not exist or 9{t)x{t) y4 e. It follows by (3.59) 

that ||u(-)||£°° = oo; hence contradiction. 

2.b. Suppose limf_oo ̂ (()a:(t) = e. By (3.59) we have that 

vg* > 0 s r > 0 g.t. Vf > r g(t) > g*. (3.72) 

Now we choose ^2(0 as follows 

e /: < T 
d2(t) = { (3.73) 

-e t > T 

Note that d2{t) = d(t) for all t < T. With this choice, by continuity and 

causality, we have that 

Hm a;(t) = a;(r), lim e(t) = g(r) (3.74) 

where lim^^y+ denote It follows that 

^^lim^ i^(t)^ - 'u(r) = 2(a + g(r))e > 2(a + g*)6. (3.75) 

By choosing a suitable §*, it follows that §{T) can be made arbitrarily large 

and hence the difference (3.75) is arbitrarily large. Then either u{T) is large 
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or is large, therefore ||'u( )||r°° can be made arbitrarily large 

hence contradiction. 

Therefore at least one component of (3.44) diverges, i.e. 7^(2(3:0,0, (^()), S) = oo; hence 

P ( 2 (;fo(7), A(6), I'(e)), 2) > ?(2(a;o, g, 4 )), S) = oo. (3.76) 

n 

Propogi^ion 3.3. The closed loop system (2(a;o, c(()), (^max)) deHned by (3.4), (3.31) 

has the following property: 

? ( 2 (Ab('-y), A(^), D(e)), Sp(0max)) oo, as ^max oo. (3.77) 

Proof. It is convenient to define 

^[o,r] (^(3:0,^, (^(')),-) = (lk(')ll/:°°[o,T] + lk(')ll/:°°[o,r| + (3.78) 

Now let M > 0. By Proposition 3.2 there exists xq e Xq, d{-) E D(e), 0 E A{5) so that 

7"[o,oo)(S(a:o, g, 4 )), 2) > 2M. (3.79) 

It follows that 3T > 0 s.t. P[o,t] (S(a;o, G, (Z()), S) > M . Since ^max diverges, by choosing 

gmax = 2g(r), (3.80) 

we have that > ^(3^), i G- the unmodified and the projection designs are identical 

on [0, T], i.e 

^[o,r](^(3:0, c(()), S f (^max)) = 7 [̂0,r](%(a:o, c(()), s ) > M. (3.81) 

Therefore 

?(2(A'o(7),A(<^),D(6)),Sf(gmax)) > ?[o,n(2(:ro,g,4 ) ) , S f ( W ) > M. (3.82) 

Since this holds for all M > 0, this completes the proof. • 
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PmpositzoM 3.4. The closed loop system (2(a;o, Sf)(dmax)) defined by (3.4), (3.13) 

has the following property: 

^^(S ('%(!'), A((^), D(e)), S2)(dmax)) < OO, Vdmax > 6. (3.83) 

Proo/. Let 2:0 E 'tb('Y), ^ € A(< )̂ and d E I)(e). The uniform boundedness of signals 

z( ),^( ) , t f() as a continuous function of Vo(a:o,^, dmax) follow directly by property D2 

of Theorem 3.1. Therefore by (3.17) and (3.6) 

|a;(t)| < 6% + o \ / 2% + e. (3.84) 

It follows 

l'u(t) I ^ (o + |0(f) I) | i ( t ) I + |a:(() < (14% + + 2e) \/2Vo + (i(10Vo + e), (3.85) 

i.e. u(-) is uniformly bounded in terms of a continuous function of Vo(xo,0,dynax)- It 

follows that 

'P(2(zo, d()) , SD(dmax)) < M (Vb(a:o, (Lax)) , (3.86) 

for some continuous M(Vo(a;o, 0, dmax)) < 00. Taking the supremum over system pa-

rameters xo,9,d implies that for all dmax > e, 

7)(i:(;tb(i'),A((^),D(6)),SD(dmax))< sup sup supM(V^(a;o,6',dniax))<oo. 
a:o£^o(7) d&A{5) de'D{e) 

(3.87) 

• 

Pmposztzon 3.5. The closed loop system (S(3:o, (^()), Sjf (dmax)) dehned by (3.4), (3.19) 

has the following property: 

? ( 2 (A^(i'), A(^), 2)(e)), Sg(dmax)) < 00, Vdmex > e. (3.88) 

Proof. Let xq € ^0(7), 0 E A(6) and d G T>{e). The uniform boundedness of signals 

a;( ),0( ) ,u( ) as a continuous function of %(io,^, ĉ max) defined by (3.21) follow by 

inequalities (3.23). The claim of proposition follows by replacing Vo(a:o, rfmax) by 

%(a:o, dmax) in the proof of Proposition 3.4. O 
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Following the procedure 3.5.3, the above propositions suSce to establish the Theorem 

I, l a as follows: 

Proof of Theorem I. 

This is a simple consequence of Proposition 3.3 and Proposition 3.4. • 

Proof of Theorem la. 

The proof follows by Proposition 3.3 and Proposition 3.5. • 

3.5.4 Proof of Theorem II, I la 

Proposition 3.6. Consider the closed loop system {'L{xo,0,d{-)),Ep{6max)) defined by 

(3.4), (3.33). Consider the transient performance cost functional defined in (3.44). Then 
?(E(;fo(7) ,A(6) ,D(6)) ,Sf(gmax))<00, Vgmax>& (3.89) 

Proof. Let xq € ^0(7), & E A(6) and d G D(e). By Theorem 3.3, x{-),§{-),u{-) are 

uniformly bounded as a continuous function of Vq{xo, ||c?||, ^max)- Therefore by (3.43) 

and (3.6), 

|i:(i)| < (a + S^max) \ J + e. (3.90) 

It follows that 

1 (̂̂ )1 < ((a + 20max)^ + 2V '̂) \J'2Vq + (a + ^max)^, (3.91) 

i.e. u{-) is uniformly bounded as a continuous function of Vq{xo, ||d||,^max)- It follows 

that 
7)(2(2;o, g, d( )), (dm^)) < M (Vb(3:o, K||, ^max)) , (3.92) 

for some continuous M(Vo(zo, ||(f||, ̂ max)) < 00. Taking the supremum over system 

parameters a:o, implies that for all ^^ax > 

P(Z(;tb('7),A((^),D(6)),2g(<imax))< sup sup supM(l/b(a:o, ||d||,gmax))<oo. 
XQ^^oi'y) OG^{6) 

(3.93) 

• 
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ffioposition 3.7. Consider the closed loop system (S(zo,^, (Z( )),2c((fmax)) de&ned by 

(3.4), (3.14). Then 3^ > 0 such that 

? ( Z (;tb(l'), A(^), D(6)), ^^((fmax)) oo, 85 dmax OO. (3.94) 

fmo/ . Note that by choice of % := g(c(max) = (^max/o we have that |Do| oo as 

dmax —̂  OO. Let xo G <^0(7), 9 G A(S) and d G D(e). Suppose xq G fio- We define r as 

follows: 

{0 0 if a;(t) 6 Do Vt > 0 

(3.95) 

inf{t > 0 I x(t) G 5fio}, otherwise 

and observe that d(t) = 0 for all t G [0, r ) i.e. 0 = 0 since 0(0) = 0. Therefore 
a;(t) = (^ — a)a:(t) + ii(t) Vt e [0, -r) (3.96) 

By (3.45), 3^ > 0 for which 9 > a. Hence if d = e, then |r(t)| > e for all t G [0, r ) . Now 

we claim that r < oo. To prove this, suppose for contradiction that r = oo. It follows 

that |a;(t)| > e for all f > 0, i.e. |z(t)| —» oo as t —» oo i.e. a;(t) hits the boundary 

in finite time. Hence contradiction, therefore r < oo. It follows that 

lk(-)||/:°° > |3:(T)| = (3.97) 

If Xo ^ fio therefore ||a;(-)||£oo > |a;o| > |5fio|- The proof is completed by taking 

dmax oo i.e. |fio| oo. It follows that 

?^(^ (;tb(7), A(^), ^(() ) , SD((^max)) > 7^(2(a:o, 4 )), SD((fmax)) = OO. (3.98) 

• 

fToposztzon 3.8. Consider the closed loop system (Z(3:o,^, (:f( )),2j:^(o(max)) deEned by 

(3.4), (3.20). Then 35 > 0 such that 

P(2(;tb(7),A(^),D(6)),Sj:f(dmax))-»00, as dmax^OO. (3.99) 

Proof. See the proof of Proposition 3.7. • 
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Proof of Theorem II. 

This is a simple consequence of Proposition 3.7 and Proposition 3.6. • 

Proof of Theorem Ila. 

From Proposition 3.8 and Proposition 3.6 the claim of theorem follows. • 

The proof of above theorems are heavily based on the very natural assumption that the 

size of dead-zone is a divergent function of a-priori information on disturbance level. 

In particular, Tyo := ^max/o imphes that 7:'(Z(;tb(7),A(6),D(e)),Sf)(dma%)) ^ oo as 

dmax —> oo. In the following section we show that the other choices of % also yield the 

same result. 

3.5.5 Choices of Dead-zone 

Suppose d{-) = e for some e > 0 and let fio = [—%, %], where % = g{d^ax)- The choice 

of p(dma^) encounters the following possible cases^: 

(i) rio := g{djnax) ^ oo as d^ax —» oo. Therefore V = oo hy Proposition 3.7. 

(a) rjo := g{dinax) —» 0 as d^ax —̂  oo. By shrinking the dead-zone, we have a sequence 

of modified controllers Sf)(dniax) tending to unmodified controller E. It follows 

that as dmax —» oo, the performance of the sequence of modified closed loops 

7^(E (^0(7), A{5),V{e)), Sg(dmax)) tends to the performance of that of unmodified 

closed loop ^ ( E (^0(7), A(5), I?(e)), S) for which by Proposition 3.2, "P = 00, 

therefore 

7)(S(Ab(7),A(^),D(6)),Sz)((fmax))-^00, 88 (fmax-^OO. (3.100) 

( m ) % : = g(c(max) < C as (fmax OO. Recall the closed loop ( E ( T o , ^ , ( f ( ) ) , 2 D ( ( f m a x ) ) 

defined by (3.4), (3.14). We have shown in Theorem 3.1 that the choice of r]Q = 

dmax/a suggested by Lyapunov theory suffices to establish D1-D3. However, it is 

^Other cases such as oscillatory but bounded g(-) can be handled suitably by considering monotonic 
subsequences. 



Chapter 3 Adaptive Control: Robustness and Performance 64 

well known that Lyapunov method provides only a sufficient condition for stability 

and in fact there are systems for which » Ho — [—c, c] where c < T/g. Note 

that even if x(t) ^4 fig, it remains bounded since by proof of Theorem (4.2), 

|a;(t)| > yields a negative semi-definite Lyapunov function. Let us Rearrange 

(3.4) to 

a;(() = —0(t)2:(t) + (0 — a)a;(<) + d((). (3.101) 

Suppose for contradiction x(t) fio- Then there must exists a positive divergent 

sequence {tk}k>i such that x(tk)'^ > c^. There are two possible cases: either (1) 

lim |z(t)| = oo or (&) lim |z(^)| < M < oo. 

1. Suppose lim |z(<)| = oo i.e. lim | — 9{t)x(t) + (0 — a)x{t) + d{t)\ = oo. It 

follows that 6(t) ^ oo as i —̂  oo since x(-), d(-) are bounded, it follows that 

there exist t* > 0 such that for all t > t* the negative term —0(t) dominates 

the other (possibly positive) terms in (3.101) resulting in x(t) —» 0 ag t > oo, 

hence contradiction. 

2. If hm | i ( i ) | < M < oo, then x(t) is uniformly continuous, i.e. for e = c/2 

3a; > 0 s.i. Vr G [Ojw], Vt > 0, \x{t) — x(t + T)\ < ^. (3.102) 

Therefore \x{tk) — x{tk + t ) | < c/2 and since |a;(tt)| > c, we have that 

\x{tk + t ) | > c/2 i.e. |z(()| > c/2 for all t G + w]. With no loss 

of generality, we may assume t^+i — tk > u). It follows that 

0{tk + i-^)= / 6{T)dT = / x {T)dT >-—kuj. (3.103) 
Jo Jo 4 

Therefore ^((t + w) —» oo as A; oo, i.e. ^(() —̂  oo as ^ > oo, hence 

contradiction. 

It follows that by choice of rjo = c, property D2 of Theorem 3.1 holds also for 

system (3.4) for all t > t*. Hence V < oo. 

However in the following, we will illustrate that this is not true if the controllers 

generalised for tracking problems. Consider system (3.4) and define e(t) := a;(t) — 

3:re/(() where 3;re/() is a reference signal. The objective is for i:() to approximately 
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track the reference signal a;re/(), i e. e(t) —» f2o ^ ^ oo. Let us deEne the 

following tracking controller: 

u(t) — —oe(() — + Zre/(t), (3.104) 

g(t) = Dno(e)z;(t)e(t), ^(0) = 0, (3.105) 

Observe that given Xref = 0, the tracking controller is identical to the dead-zone 

controller (3.14), i.e. stabilisation can be considered as a special case of tracking 

where Xref = 0. In the presence of disturbances, a routine calculation yields to 

e(t) = —ae{t) + {9 — 6{t))x{t) + d{t). (3.106) 

The choice of % := c^max/a is suggested by Lyapunov analysis and implies e{t) 

fio as t > do. However, inspired by the above explanation one may choose % := c. 

The following example illustrates the closed loop response to such a choice. 

Example 3.2. Consider the closed loop (2(a;o, B, d(-)), Sg(dmax)) defined by (3.101), 

(3.14), where 

a = 1, 0 = 2, d( ) = 100, c = 10, Xj-Qf = lOsin(i). (3.107) 

The behaviour of the closed loop signals have been shown in Fig. 3.10. 

As it has been shown in Fig. 3.10, the parameter estimator 6{-) drifts. Comparing 

this situation with that of unmodified controller Fig. 3.1, and Fig. 3.3, one can 

easily build a similar setup as Proposition 3.2 to achieve V = oo. Therefore, this 

provides a motivation for the choice of dead-zone '̂(dmax) = (4nax/a. 

Another alternative method for tracking is A-tracking [24] whose aim is 'practical 

tracking' i.e. e{t) —̂  A as t —i- oo, where A > 0 represents 'prescribed accuracy'. 

The A-tracking controller is given by: 

i/(f) = -e ( t )e ( t ) , (3.108) 

^(t) = D^^(e)|e(t) | , (3.109) 
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100 

ICQ 

100 

Figure 3.10; Tracking for example 3.2 

where 'smooth' dead-zone function D ^ ( e ) = 0 if e G Oo, (e) = |e| — A 

elsewhere. A routing substitution yields the following error equation: 

e(() = - ^(t))e(() + d(() + (3.110) 

Loosely speaking, the difference between these two methods is that the normal 

tracking drives the rendered error e(t) to (lo by canceling the unwanted terms 

while A-tracking achieves its goal by dominating the unwanted terms, (see control 

input u{-) in (3.104) and (3.108)). As it has been shown in Fig. 3.11, A-tracking 

achieves better closed loop response on this particular example. 

However, there are some situations in which the A-tracking controller results in 

an arbitrarily large cost. Let Xref be constant and d(-) = 0. Note that even if 

no disturbances are present, we still need to define the dead-zone. Since e{t) 

[0, A] as t » oo, then there exists > 0 such that e((*) < 2A and ^^e(t*)^ = 

e(t*)e(t*) < 0. It follows by (3.110) that, (^(t*) — ^) > ^a;re/(t*)/(2A). From this, 
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Figure 3.11: A-tracking for example 3.2 

one can easily show that the parameter estimator 6{-) in this design is of order 

\xrefi-)\/^- So, 6(t) can be made arbitrarily large by increasing accuracy (A —» 0). 

Once a large parameter 6 has been obtained, a similar approach as Proposition 

3.2 can be used to show that V can be made arbitrarily large. Consider d'{t) ;= 

iref — Oxref as a bounded disturbance, and choose Xrefit) £ a.e. so that d'(T) 

has a step change of sign similar to (3.73), where T is the time at which 9{T) is 

sufficiently large. Such reference signals are quite common in applications, e.g. 

Xref can be considered as the output (current/voltage) of an RC/LC circuit with 

step input. Renaming ' e' in (3.108)^(3.110) into ' x' and following the procedure 

explained in proof of Proposition 3.2 implies that V can be made arbitrarily large. 

Note that if d = 0, then the adaptive law (3.105) in dead-zone tracking controller 

is identical to that of standard tracking controller resulting in convergence of error 

to zero and boundedness of all closed loop signals, i.e. lim^g^o V < oo. 
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Finally, as we have mentioned in different point of this thesis, we emphasis that the basis 

of all comparative results established by theorems I, la, II, and I la is founded on the 

quality of the corresponding arpriori information. 

3.6 S u m m a r y and Discussion 

This chapter introduced the main concepts of this dissertation by exploring the motiva-

tions behind the ideas on a very simple scalar system. 

Firstly, we briefly reviewed some known concepts in the robust adaptive control literature 

including dead-zone and projection based controllers. Then we introduced the idea of 

hysteresis dead-zone and listed its advantages compared to the conventional dead-zone. 

Deferring the technicalities until chapter 5, we showed that the hysteresis dead-zone 

solves the major problems of the conventional dead-zone in the sense that the solution 

of the closed loop system is unique, the sliding motions are avoided and chattering effect 

can be mitigated. 

Secondly, we have established two rigorous results demonstrating situations in which 

we can compare projection and dead-zone based adaptive controllers with respect to a 

worst case non-singular transient cost functional. We have shown that 

• The dead-zone/hysteresis dead-zone controller outperforms the projection con-

troller when the a-priori information on uncertain system parameter 6 is sufficiently 

conservative. 

• The projection controller outperforms the dead-zone/hsysteresis dead-zone con-

troller when the a-priori information on disturbance level is sufficiently conserva-

tive. 

Our results are based on the a-priori information dmax and ^max- We showed that 

the other choices of controllers independent of a-priori information such as A-tracking 

controllers can be driven to the same conclusions. 
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The subject of next chapters is to generahse the results of this chapter to minimum phase 

linear systems with relative degree one, and nonlinear systems in the form of integrator 

chain. 



C h a p t e r 4 

Robustness and Performance 

Comparison: Linear Systems 

4.1 In t roduc t ion 

As discussed in the previous chapters, adaptive control is suitable for physical systems 

whose mathematical model contains an uncertain parameter 6. A common feature of 

adaptive designs is the construction of a time varying parameter 6{t) whose value is 

controlled by an adaptive Jaw. So, any adaptive controller consists of two parts: a 

feedback law and an adaptive law. There are two approaches in designing an adaptive 

controller namely: identifier-based and non-identifier-based. 

The role of the adaptive law in an 'identifier-based' or 'indirect' adaptive controller is to 

attempt to 'identify' or 'estimate' the parameter 9. Once we have enough information 

such that 9(t), which is referred to as the 'parameter estimator', reaches its desire value 

0, the system can be regulated by means of the feedback law, which is often constructed 

via certainty equivalence. 

In contrast to the above method, the objective of a 'non-identifier-based' or 'direct' adap-

tive control is simply to control the unknown plant. In this method no plant parameter 

estimation takes place. Instead the adaptation strategy uses certain information about 

the plant to find suitable methods of system regulation. In other words, the adaptive law 

70 
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has no interest in learning or estimating but merely attempts to seek out a stabilising 

value of This idea was initially proposed in ISSO's by Morse [49] and Nussbaum 

[56]. Their idea has been developed since 1985 into two frameworks; that of Martensson 

[43], and that of Willems and Byrnes [80]. These form the foundation of the theory of 

'universal adaptive control'. Additional contributions have been made by Ilchmann [22], 

Hicks [20] and Townley [73, 74] in the area of linear systems, Ryan [65], and Martensson 

[44] in nonlinear systems, and Logemann [41] in distributed parameter systems. 

With regards to extending the results of chapter 3 to finite dimensional linear systems, we 

explain the concept of high-gain non-identifier-based adaptive control design first. Then 

we show that the dead-zone and projection modifications are appropriate solutions to 

the problem of robustness when linear systems are perturbed by bounded disturbances. 

Finally, the results of theorems I and II in the previous chapter will be extended to 

relative degree one, minimum phase linear systems. 

4.2 Sys tem Descr ipt ion 

Consider a class of SISO linear time invariant plant described by 

bms"^ + ^ + • • • + &o 
a" + + ao 

y= " - i - . . (4.1) 

where ai ,bj e R 0 < i < n — 1, 0 < j < m are unknown constants and d(-) belongs 

to a class of bounded disturbances V C £°°[0, oo). We assume that only output y(-) is 

available for measurement. A minimal state space realisation of the plant in canonical 

observer form can be obtained as follows: 

Z(a;o, (^()) : = vlz(t) -I- a;(0) = ro, 
(4.2) 

3/(t) = 
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in which x{-), B, e I r , e B and 

— Un-l 1 0 . . . 0 ' o ( p - l ) 

— 0 1 0 0 b-m 

A = , B = 

—ai 0 0 . . . 1 bi 

-Go 0 0 . . . 0 bo 

c 1 0 . . 0 , ( 4 j ) 

where p = n — m is the relative degree of the system. We emphasise that by non-

identifier-based control, we are not estimating the unknown parameter 6. However, for 

the sake of compatibility with the general system notation used in other parts of this 

thesis, we let 

9 = (ctO) • • • ) 1) ^0) • • • ) (4.4) 

We aim to extend the result of the previous chapter to the linear system (4.2) of relative 

degree one. So, for the rest of this chapter we assume the following hold: 

01. The plant is minimum phase i.e. b{s) = hmS^ + + 1- feo is Hurwitz. 

02. The plant order n is known, p = 1, and bm = 6^-1 > 0. 

4.2.1 High-Gain Control Design 

In this section, we introduce the well known concept of 'high-gain controllers'. The 

presentation of the material on this section closely follows [22]. 

Lemma 4.1. Consider the system S(xo, 0, (i(-)) defined by (4.2), where C1,C2 hold. 

Suppose d[t) = 0. Define the controller: 

(4.5) 

where k : R+ — » R i s a piecewise continuous function. Suppose there exists t* E R+, 

and A* E R such that A:(t) > A* for Eill t > t*. Then for suGciently large, the closed 

loop system (S(a;o, 9, d{-)), S) is exponentially stable. 
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Proo/. Substituting (4.5) into (4.2) yields 

i ( ( ) = (^ — A:(t)BC) T(t). (4.6) 

Following the High-Gain Lemma in [22], let us define coordinate transformation matrices 

5", 5""̂  as follows: 

^ : = [ g ( C B ) - \ r ] , = 7V=:[(6__i/6^...6o/6^)^;7(^_i)].(4.7) 

where T € R"x(n-l) (denotes a basis matrix of ker C. Observe that 3,3"^ depend 

continuously on 9. Transfering the coordinate of (4.6) by (4.7), we have 

0 0 
= 

ai a2 

A3 
(4.8) 

where oi G R, ^2 ,^3 € R" ^ and A4 E R(" Let us denote 

z(t) := (i/(t),z(t)^)^ = g"^z(t), 

and substitute (4.9) in (4.6). By (4.8) we have that 

(4.9) 

z(t) 

01 - 6;n/:(t) ^2 

-̂ 3 ^ z(t) 
(4.10) 

Since 6^ > 0 and A:(t) > /c* V( > t*, for suGicient large A:*, we have that 

oi — b;nA:(() < 0 Vt > (*. (4.11) 

Now we show that A4, is also stable. To this end, we apply Schur's formula to (4.10) 

and observe that \/X ^ ai — bmk{t) 

\XIn — A k(t)BC\ — (A — ai + bmk[t)) |AJ„_i — A4 — ^A(^)|, (4.12) 
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where 

Note that 

•Ca • R —̂  ^ I—1. _/lg(A — ai -\- b^k) A2. (4.13) 

lim ||^A(^)|| — 0, VA e R, (4.14) 
t—»oo 

i.e. the term A/„_i — A4 — ^x{k) in (4.12) can be interpreted as a combination of a fixed 

part \ I n - i — -A4 and a vanishing part ^a(^)- Therefore as fc ^ 00, the coefficients of 

the polynomial in A of \XIn-i — -A4 — Ca(^)| converge to the coefficients of polynomial 

of \XIn-i — A4\. It follows by (4.12) that for all k{t) > k* for sufficiently large k*, the 

eigenvalues of A — k{t)BC are approaching a set including the eigenvalues of A4. 

(7 {A — k(t)BC^ —> {(%! — bjnk(t^y U (7(74.4). (4.15) 

The classical theory of LTI control (e.g. a root locus argument) indicates that there 

exists 6,//* > 0 such that if // > //*, then Rea{A — jiBC) < —e. Hence, there exists 

t* > 0 such that k{t) > k* = fi* for all t>t*, so the time varying spectrum of A—k{t)BC 

satisfies 

Rea{A — k{t)BC) < —e. (4.16) 

Hence by (4.15), A4 is stable^. 

Therefore there exists a symmetric positive definite matrix R such that 

RA4 + A^R = —In—I- (4.17) 

Now we define the Lyapunov function 

1 
y(2/(t),z(t)) = - 3 / ( t ) + z ( t ) A z ( t ) , Vb:=y(2/(0),z(0)). (4.18) 

^Note tha t showing that a time-varying linear system with time varying spectrum with eigenvalues 
whose real parts are less than — e does not necessary imply exponential stability 
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The time derivative of y(2/(t), z(t)) is 

z(t)) = 2/W ((«! -

+ z(t^'^ R + RA4)z(t) 

= + 3/W (^2 + z(t) -
(4.19) 

where M := |ai | + (11^21| + 2||i2|| | |^3| |)^/2. We choose k* such that bmk* — M > 1/2. 

Since by assumption there exists t* such that k(t) > k* > t*, we observe that 

y(3/(t), z(t)) < -a:y(i/((), z(()) > t*, (4.20) 

where a = min{l, 1/A(i?)}. It follows that V(y{t), z{t)) < Vqe for all t > t*, therefore 

by (4.18) and (4.9) that x{t) is exponentially stable. Thus completing the proof. • 

Later in this chapter we frequently use the same Lyapunov function (4.18). A compact 

notation of the above calculations are given in the following corollary: 

Corollary 4.1. Denote 

D(A:) = Vl - A;BC, (4.21) 

for some A; > 0, and let D = S^^DS. Then 

D(t* )^f + f D(&*) < - Q (4.22) 

where the symmetric positive definite matrices P and Q are 

(4.23) 

O R 0 În—l 

and R is defined by (4.17). 

Lemma (4.1) can be used to establish a 'non-identifier-based adaptive control' design by 

1 0 1 0 
p = , Q = 

0 R 0 f-^n-1 
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defining ^ : R+ —> R as the tuning function of the controller 

^(0) = 0-
(4.24) 

The stability of the closed loop system where V = {0} can be achieved by the following 

theorem: 

Theorem 4.1. Consider the closed loop (T,{xo,9,d(-)),E) defined by (4.2) and (4.24), 

where C1,C2 hold. If d{t) = 0 then the closed loop (T,{xo,0,d{-)),E) is asymptotically 

stable. 

Proof. Replacing k{t) with S{t) in (4.10), we have that 

^(t) = (ai-6m^(t))?/(t)+^2z(t) (4.25) 

z(() = v44z(^) + ^33/(^) (4.26) 

First, we show that 5(-) E £°°. Suppose for contradiction 5{t) diverges, then by Lemma 

4.1, y{t) exponentially decays, so y(-) E hence 

rt poo 

^(^)= / 3/(a)^ds< / 2/(g)'̂ dg = ||i/(.)||^2<oo, (4.27) 
Jo Jo 

hence contradiction. Therefore 5 E C°°. Now since S(t) is monotonic, either (i) there 

exists E R"*", A;* E R such that J(t) > k* for all t or (%%) J(() < A:* for aU ( > 0. 

The first case satisfies the conditions of Lemma 4.1 and the claim of lemma follows. 

If 6{t) < k* for all t > 0, then by the second equation in (4.24) 

roo 
/ 3/(g)^d5 < (4.28) 

Jo 

i.e y{-) E Since A/^ is stable, (4.26) can be considered as an £? input y(t) to a stable 

system z{t) = A4z{t), which follows that z{-) E Since 5{-) is bounded, it follows by 

(4.25) that ^(.) E and by (4.26) that z(.) E Hence by Lemma 2.5, y(() —̂  0, 

z{t) 0. Thus completing the proof. • 
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If d(t) 7̂  0, we need to modify the adaptive law as we discuss in the next section. 

4.3 Modified Control lers 

4.3.1 Dead-zone Based Controllers 

Based on the definition of the dead-zone modification described in section 3.4.1 and 

theorem 4.1, the corresponding parameters j(-), g{-), Qq for system (4.2) are as follows: 

^o(^max) vo p((^max), j 9 • (4.29) 

Therefore similar to (3.13), the dead-zone controller for linear system (4.2) is 

5{t) = (3/) 3 / ^ ( 0 ) = 0 , 770 = Ĉmax 

where 

{0, y € ^o(ĉ max) 

(4.31) 
1, y ^ ^o{dmax) 

In order to examine properties D1-D3 explained in section 3.4.1, we note that since 

definition (4.31) introduces a r.h.s. discontinuity in differential equation (4.30), we must 

deSne the solution (a;( ), J( )) in a meaningful sense e.g. Filippov, and also, we need 

to consider the possibility of loosing the uniqueness of the solution. However, in this 

section we take the advantages of so-called 'smooth dead-zone' defined by 

0) y ^ ^o(^max) 

Iz/I - 2/0 ^o(dmax) 

We slightly modify the controller (4.30) into: 

'̂ g((̂ max) • ^(t) = 

^(t) = IZ/WI) ^(0) = 0 , % = (Liax, 
(4.33) 
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Then the existence and uniqueness of the solution of the closed loop follows directly 

from the classical theory of differential equations. The following theorem establishes the 

properties of such controllers: 

T/ieorem 4.2. Consider the closed loop system (S(a;o, (^()), defined by (4.2), 

(4.33), where C1,C2 hold and d() is bounded. Assume that (fmax is such that ||d(')||/:oo < 

dmax- Then for any z;o G R", the following properties hold: 

Dl. There exist a unique solution (x(-),<5(-)) : R+ —> 

D2. The closed loop signals x{-), S(-),u{-) are uniformly bounded as a continuous func-

tion of a;o,̂ ,dniax-^ 

D3. y(t) —^Qoast-^oo. 

Before we give the proof, we first present a preliminary Lemma: 

Lemma 4.2. Suppose M is an stable matrix. Let the positive definite matrix G be the 

solution of the Lyapunov equation 

CM + M^C = - 7 . (4.34) 

Then there exist A;, fci > 0 such that 

||e^*|| < /cie & := 1/A(C), Ai := y (4.35) 

Proof. Define the Lyapunov function V{t) := V{s{t)): 

y(a(()) = g(t)^Ca(t), (4.36) 

where s(t) = is the solution of the differential equation 

s(^) = Mg((), So = 5(0) € R". (4.37) 

^The function has domain R " x <S x [0,oo), where <S := {0 | Ti{xo,9,d(-)) satisfies C1,C2}. 
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Observe that by (4.37),(4.34), 

y ( t ) = s(t)^(GM + M^G)s(t) = -s(t)^a(t). (4.38) 

The general inequality 

A(G)||g(t)||^ < g(t)3'Gg(t) < A(G)||g(t)||^, (4.39) 

together with (4.36), (4.38) implies that 

y(t ) < - k y ( t ) , A := 1/A(G), (4.40) 

which has the solution 

y( t ) < (4.41) 

From this and (4.36),(4.34) one can obtain 

|a(t)|| < Aillaolle Ai := J ( 4 . 4 2 ) 

Substituting g(t) — goe into (4.42) yields 

° '' < (4.43) 
11̂ 0 II 

Finally by taking the supremum over so of both sides, by definition of the induced norm 

of a matrix M, we have 

II Q II 
||e^*|| = sup — - — J < (4.44) 

Nllfo l|5o|| 

• 

We now give the proof of Theorem 4.2. Despite their different objectives, this proof is 

derived from the technique used in the proof of 'A-tracking' based on [22] but with a 

significant extension to obtain property D2. 
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proof of Theorem J^.2. The continuity of implies by classical result of differential 

equations that there exists a unique solution (x(-),S(-)) over its maximal interval of 

existence [0,w) for some w > 0. Using the transformation deEned by (4.7), we obtain 

^(t) = - 6m^(()] 3/(t) + '42z(() + &m(f(t), 3/(0) = Ca;o, (4.45) 

z(t) = ^32/(^) + A42i(f), z(0) = jVa;o, (4.46) 

(̂̂ ) = ^(0) = 0 (4.47) 

Define the function 

^(2/(t)) := < 1 
i/(t) G fio('^max)) 

|3/(̂ )l - 3/(t) 0 Oo((fmax), 
(4.48) 

and observe that 

^(3/(()) = C(^)3/(t) Vt € [0, w), (4.49) 

where the continuous function ( : is 

((() := 
0, 

(1̂ (̂ )1 - % ) 
y(i) 

i2/(^)r 

y(t) 6 ^o{dr] 

?/(() 0 %((^ 
(4.50) 

Note that by (4.33) 

^(t) = C(t)2/(t) = |C(t)| |!/(()|, (4.51) 

and by the continuity of (4.50), |y(t)| \C{t)\ > % |C(t)|, or 

K(()| < % ^|((t)| |2/(()| = % ^ (̂̂ )- (4.52) 

Substituting (4.45) in (4.49), we have for all t 6 [0, w), 

^(3/(^)) = ((̂ 1 - ('m<^(())!/(f)((t) + ^2Z(()((() + 6md(()C(t) 

< (ai — bmS{t))5(t) + &m|M(')IU°° IC(̂ )| + ||z(t)|| |C(OI 

< ( M l - 6 ^ J ( # ( ( ) +11.4211 ||z(t)||K(t)|, (4.53) 
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where Mi denotes the continuous function Mi(^, dmax) := |oi| + OUroo- Note 

that the continuous dependency of Mi on Q follows from definition (4.4) and transfor-

mation (4.8) which also depends continuously on Q. Mi is also a continuous function of 

ĉ max by deEnition (4.33). 

Now we derive a relation between the second part of (4.53) and ^(t). Rewrite equation 

(4.46) as 

z{t) — A4_z{t) + + h{t), (4.54) 

where 

Note that since 

/i(t) := A3(3/(t) - C(t)). (4.55) 

3/, l!/| < % 
3 / - ( = < ^ (4.56) 

TTor-T' Iz/I ^ % 
l%/l 

we have that \h{t)\ < ryojlAsH. Since A4 is exponentially stable, by Lemma 4.2, 

M 2 e - ^ * > | | e ^ ' | | , M2:=M2(g) = ^ / ^ , / / : = X ^ ) = l / % . (4.57) 

M2 and /i depend continuously on 0 since a4 depends continuously on 9, hence r and 

its eigenvalues are continuously dependent on 9. Therefore by equation (4.54), we have 

||z(t)|| < Mge-^^'llzoll + Mz /'%-^(*-)(||^3|| |C(s)| + |/^(s)|)(fs 
Jo 

< Mze-^^llzoll + Ms 11̂ 3II / e-''(^-^)|C(s)|(fa + M2||v43||77o//-^(l - e"^*) (4.58) 
Jo 

< M3 ^ e-''("-")|((g)| dgj , 

where M3 := M3(zo, 9, rfmax) := M2 [||zo|| + The dependency of continuous 

function M3 to ||a:o||, 0 follows from the continuous dependency of fx and Mg on 9. 

From inequality (4.58) it follows that 

/ lk(^)I IK(^)M^^M3 / |((s)| + M3 / |((a)| / e^^(^"^)|((T)|dT(fa. (4.59) 
Jo Jo Jo Jo 
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Using the Cauchy-Scbwartz inequality (2.4), we have that 

/K(s) | /e^(^'") |C(T) |dTds<| | ( ( - ) | | / :2(o, ( ) ' / e''(''')|C(T)|d 
Jo Jo Jo 

An application of the following inequality [76] 

/:2(o,f) 
(4.60) 

( ( T ) | d T ^ < /^"'IK(-)llr2(o,t), (4.61) 

and the fact that |(^(()| < % ^^(t) by (4.52), yields by (4.59), (4.61), 

|z(a)| | |((a)|(fa<M4 / | ( (8 ) |+( ( s )^ds 
Jo 

< M4 / (1 + % 
Jo 

< M5a(f), 

(4.62) 

where M4 := M4(a;o,0,dmax) := ^3(1 + ^ ^), M5 : M5(zo,^,dmax) ^4(1 + %^). 

Now, we can calculate V{-) in terms of 5(-) by integrating (4.53) over [0, i] 

(4.63) 
;"(!/(t)) < ^(2/(0)) + / (Ml - 6_^(s)) ^(s)ds + M2||M56(t) 

< % + M6(^(()-^<^(t)", 

where Vb ;= F(y(0)), and Me := Meixo,0,dyaax) •= Mi + IIA2IIM5. The positive 

definiteness of V(y{t)) implies that 

- + M6J(t) + > 0. (4.64) 

Solving the quadratic inequality (4.64) along 5(t), we have that 

Mg — M7 i Me + mr 
7 < '̂ (t) < r , (4.65) 

where My := M7(a:o,0, (fmax) -\/M^ + 26^1% > Ms. We discard the negative lower 

bound of (4.65) due to the fact that by (4.47), 5(0) = 0 and S{t) is non decreasing. 

Therefore 

J(t) < 
me + My 

(4.66) 



Chapter 4 Robustnegs and Per&rmance Comparigon; I,mear Systemg 83 

The continuous dependency on zo, dmax of M4-M7 is a consequence of the continuous 

dependency of M^^ji and the coordinate transformation (4.8). We now define V* := 

y*(a;o, (̂ max) = Vo + M6(M6 + M7)/6m which is continuously dependent on To, 

Then 

^(2/W) < Vte [0,w], (4.67) 

The uniform boundedness of y(-) in terms of V* on [0, w) follows from (4.48), (4.67). 

Therefore by (4.50), ((-) is uniformly bounded in terms of a continuous function of 

v*{xo,6,dmax) on [0, w). Hence by (4.58), z( ) is uniformly bounded as a continuous 

function of y*(a:o,^, (Liax) on [0,w). It follows by (4.9) that a;() G ;C°°(0,w) uniformly 

as a continuous function of y*(zo, (fmax) on [0, w). The continuity of the closed loop 

equations (4.45)-(4.47) and the boundedness of the solution (x(-), 6( )) implies that to = 

oo. Finally the uniform boundedness of w(-) as a continuous function of v*{xq^ 6, d^ax) 

follows from (4.33). Thus establishing D1-D2. 

In order to prove D3, we observe that by (4.51),(4.52) and the boundedness of z ( ) 

M2II lk(t)ll!((()! < % ^M2|| lk(^)||^(t) := M8^(t). (4.68) 

Substituting (4.68) in (4.53) and defining Mg := maxt>o{Mi — bmS(t) + Ms}, we have 

that 

y(3/(t)) < (Ml - 6^,;(t) + M8)^(t) < - j ( t ) + (Mg + l)^(t). (4.69) 

Now, we deEne W(2/(t),^(t)) := y(3/(t)) — (Mg + l)J(t) and observe that 

Ty(3/(t), ^(t)) < -^(()) := -D^,(3/) |z/(t)| < 0. (4.70) 

Therefore by LaSalle's theorem 2.4, the solution {x(t),5{t)) approaches the largest 

invariant set in { ( a ; , 6 ) G | |y(i)| < rjo} as t —>• 0 0 , hence proving D3, and 

completing the proof. • 
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4.3.2 Projection Based Controllers 

For a SISO linear output feedback system, the convex set n(^max) in (3.24) can be simply 

defined by n(^max) := [0,6max] where is a strict upper bound for and 

5g = inf{ (5 > 0 I — 6BC is Hurwitz V5 > 5}. (4.71) 

Let Tm be the first time instance that S hits the boundary ^max̂  

= inf{( > 0 I ^(t) = ^max}. (4.72) 

Then the projection controller is simply defined as follows: 

S f (6niax) : 1l(t) = - 6 ( < ) 2 / ( ( ) 

^(() = 2/(t)^ # = 0, Vte[0,7;^], (4.73) 

<^(() = <^max, Vt e [7;^, CX3). 

We denote the respective closed loop system by (S(a:o, 0, d()) , '^p{Smax))- The stability 

of the closed loop is examined in the following theorem. 

Theorem 4.3. Consider the closed loop system (2(zo, 0, d{-)),Ep{5^sx)) defined by (4.2), 

(4.73), where C1,C2 hold and d{-) G £°°. Assume that is such that 5q < ^max-

Then for any xq 6 M", the following properties hold: 

PI . The solution (a;(), S(-)) : R+ —> exist. 

P2. all closed loop signals x{-), 5{-), u(-) are uniformly bounded as a continuous function 

of Xq, 0-, ||d||, <̂ max-

Proof. Since the right hand side of the differential equations (4.2) and (4.73) are locally 

Lipschitz, an absolutely continuous local solution exists. Let (z(-), 6(-)) denote a so-

lutions of {Ti(xo,0,d{-)),Ep{Siaax)) on a maximum interval of existence [0, w) for some 

ll) e [0, oo). 

The function has domain R " x 5 x [0, oo), where <S := {0 | E(a:o, 0, d(-)) satisfies C1,C2}. 
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By definition of projection modification (4.73), 5{t) < for all t > 0. Choose k* 

defined in Lenuna 4.1 such that A;* = (̂ max + ^@)/2 and observe that A;* e n(Jma%)- The 

monotonicity of ^(t) implies that either (%) ^(t) < A:* for all t > 0, or (n) there exists 

t* > 0 such that 5(t) > k* for all t > t*. 

(i) If ^(t) < /u* < m̂ax for ail t E [0, w) then by (4.73) J(t) = 3/(t)^ for all t E [0, w). It 

follows by the same argmnent as Theorem 4.1 that %/() 6 /2^[0,w) and by (4.46), 

z(-), i(-) € jc'^[0,lu). An explicit bound on ||z||^2 can be obtained as follows: 

lkll/:2[o,w) ^ lkll/:2[o,oo) ^ —^-^3||_^^||3/'||/:2[o,oo), (4.74) 

where 

f 2/(t), 0 < t < w 
y(t) = (4.75) 

0, w < t < oo 

Note that since y(-) € w) and A4 is exponentially stable, by Lemma 4.2, there 

exists Mo, v such that 

Moe- '^> | | e^ ' | | Mo:=Mo(g) = Y ^ , i/::/(g) = l/A(A), (4.76) 

Therefore 

k||z:2[o,w) < - ^ 6 '^||zo|| + ||(a7 — VI4) ^A3||j;̂ |̂|3/||/:2[o,w) 

< Mqc '^||zo|| + ll(sJ — A4) Â̂ Wĵ  Vk*. 
(4.77) 

A uniform bound on z ( ) is also required to show the boundedness of z(-). Applying 

(4.76) to the solution of (4.46), we have that and 

|z(t)|| < Moe-'^||zo|| + Mo / |2/(a)Ma 
Jo 

< Ml ^1 + e-''(*-')|%/(s)| dgj , 

° (4.78) 

where Mi ;= Mi(||a;o||,0) •= Mo(||zo|| + ll^slD- It follows that z{-) is uniformly 

bounded as a continuous function of ||a;o||, ^max- It remains to show y(-) G 
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£°°[0,tj). To this end, consider (4.45) and define a Lyapunov function: 

^(3/W) := ^ [0'^)- (4-79) 

We let Vi(t) denote Vi(y(t)). The time derivative of (4.79) is 

^ ( t ) = (oi - + ^2z(()2/(t) + 

= + (^1 + + A2z(t)%/(t) - ^^(<)^ + 6m4^)i/(t) 

< — Vi(t) + (oi + l)2/(()^ + ^2z(t)^(() + -^| |d( )||̂ oo (4.80) 

where (4.80) follows from the Young's inequality and noting that bm5{t) > 0 

for all t > 0. In order to obtain Vi(lj), Let us define the continuous function 

M2(0, ||d||) ;= %'|M(')||^oo and denote 

F i : = { t e [ 0 , w ) | V l ( t ) > M 2 ( g , | | 4 ) } . (4.81) 

Note that m{Fi) < w. Fi can be written as the union of all maximal disjointed 

connected intervals Ga = i-G- ^ Resorting G^'s on an 

increasing sequence 

An := {a E A I m(Ga) > 1/n}, (4.82) 

one can rewrite Fi := Un>i Uaeyl„ Not that, as m{Fi) < oo, the cardinality 

of each an is finite. Let us define the function ; M ^ M as 

= (4.83) 
o-^art 

where the characteristic function '̂̂ .(t) = 1 if i G cr, Xa[t) = 0 elsewhere. Observe 
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that Vn < Vn+i almost everywhere for each n, and also observe that 

ae/lT. " 
_ 

< (oi + 1) / !/(a) ds + / yl2'Z(s)3/(g)ds 

^ ^ill2/(')ll^2[o,w) + 11̂ 2II ||2/(-)||r2[o,w) lk(')ll/:2[o,w) 

^ °l|l3/(')llr2[o,w)+ tl3/( )||/:2[o,w)(^0^ " Îkoll + V^ | | ( s7 - ^4)"^^3||;f^^ 

< (^max + 11^211 ^afoe '^^||'zo|| + ||(sf — ^4) 

= 0, (^max)-

(4.84) 

The continuous dependency of Mg on 6 follows by the continuity of the trans-

formation (4.8), and the continuity of \\(sl — A4)^^A3\\jf^ on the entries of the 

matrices ^ 3 , ^ 4 [85]. 

Inequality (4.84) implies that sup„ J Vn < 00. Therefore by the Monotone Con-

vergence Theorem [78] 

V^(t)d(= lim / ^(t)dt<M3(a;o,^,<^max). (4.85) 
n-,00 y u 

o-san 

Now we can calculate y{uj) as follows: 

1 
3/(w)^ := V^(w) = Vi(0) -I- / l^(T)(fT -I- / Vi(T)dT 

VFi V[0,w)\fi 

< y(0)^ + m3{xq, 0, 5max) + m2(0, ||rf||)-

(4.86) 

That is ?/(•) is uniformly bounded on [0, w) in terms of a continuous function of 

xo,0, ||(i||,5max- It follows by (4.78), (4.9) that x{-) is uniformly bounded on [0, w) 

as a continuous function of xo,0, ||d||, ^max-

(n) Suppose there exists t* > 0 such that ^(t) > A:* for all t > t*. DeHne the Lyapunov 

function 

V^(^(()) = z(t)^fT(^), VtG[0,w) (4.87) 
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where are defmed by (4.9) and (4.23) respectively. Denoting 

5 := ( f + f ^)g, (4.88) 

the time derivative of V(t) := V{x{t)) is 

V2(̂ ) = z ( t ) ^ f A(() + A(t)^f a(t), 

= i ( t ) ^ f (D(^(t))z(() + Bd(t)) + (D(a)^ + g 4 t ) ) ^ f z ( t ) , 

=±(t)^ ( f D(,5(()) + D^(6( t ) ) f ) a(t) + i(t):^f g(f(t) + (f(t)g^f z(t) 

=T(t)^ ( fD(J( t ) ) + D^(J( t ) ) f ) z(t) + T(t)^6(f(t). 

(4.89) 

Let 

l|(̂ ll) := IN 114 (4.90) 

then /i is continuously depend on 6 by definition (4.88) and the continuity of the 

transformation (4.8). Applying Corollary 4.1, we observe that 

T^(t) < -a(()^Qi(t)+z(()^5d(() , (4.91) 

< - U ( Q ) - - ^ p | 6 | | | < i ( 0 | U - , j | | x ( t ) | | 2 . (4.92) 

- ( ' -

where (4.92) follows from the general inequality 

A(r)||z(t)||^ < a;(():̂ rz(t) < A(r)||a;(t)f, (4.94) 

where F is a symmetric positive definite matrix. Inequality (4.93) for all t > t* 

implies that l^(z(t)) < 0 for all V2(() > /z(^, ||(f||)^, i.e. 

y(z(( ) )<y'(r ,g , | |d | | ) :=max{V2(&*), / / (0 , | | ( f | | )^} V O f , (4.95) 

where x* := Therefore, by (4.87), x{-) is uniformly bounded on [t*,oo) in 
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terms of V'(x*,6, ||d||). A uniform bound on x(-) on [0, t*) and a bound on the 

end point x{t*) as a continuous function of xo,9, ||d||, follows directly by the 

argument of part (%) where for all ( E [0, t*). Hence by the 

continuity of the transformation (4.8), a;() is uniformly bounded on [0,u) as a 

continuous function of xq, 0, ||d||, jmax-

The boundedness of x{t) over [0, w) implies that a;(-) cannot have a finite escape time. 

J(') is also known, by definition (4.73), that never leave the set n(Jmax)- Hence by 

Corollary 2.2, co = oo i.e. the solution (x(-),<5(-)) exists for all t 6 [0, oo) and is 

uniformly bounded as a continuous function of zo, ||d||, Finally, the uniform 

boundedness of u{-) as a continuous function of xq, 0, ||d||, is followed by (4.73). 

• 

4.4 Pe r fo rmance Compar i son 

We will investigate theorems I and II of the last chapter for the linear system described 

in (4.2). Define 

A(5) = I A — SBC is Hurwitz and CI, C2 hold}, 6 > 0, (4.96) 

where 9 is given by (4.4). Let A be any compact subset of A(5). Define Xo{'y),T>{e) as 

in (3.45) by 

D(e) := {d(.) | ||d(-)||/:oo < e}, 6 > 0, 
(4.97) 

Ab('-y) := {zo | ll̂ oH < ?}, 7 > 0. 

The cost functional is now taken to be 

P(i:(Ab('Y),A,D(e)),S)= sup sup sup(||a;(-)||^oa+||?i(.)||/:=x,+||tt(.)||/:cx=). (4.98) 
zoEA'o('Y) O&A deV{e) 

There are elements on the boundary of A (5) which do not satisfy C1,C2 and for which 

the closed loop is not stable, hence generating an infinite cost. Therefore the second 

supremum cannot be taken over A(5), This is reflected in the bounds obtained in 
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theorems 4.2 and 4.3 which depend on: 

1. 1/6^: = 0 corresponds to violating the relative degree one aasumption C2 

(see inequality (4.66)). 

2. cr(A): = 0 corresponds to R not being positive deHnite, ie. not 

being Hurwitz, ie. the system not being minimum phase CI (see (4.57) and the 

dependency of Mg, M4 on /x~^). 

3. ||(g7 — (II(sJ — ^ 4 ) ^ ^ . 4 3 = 00 corresponds to A4 not being 

Hurwitz, which again corresponds to violating the minimum phase behaviour CI 

(see relations (4.77)). 

4.4 .1 T h e o r e m I 

Theorem I. Consider the system T,{xo,6,d{-)) and the controllers S^(dmax) and 

Sf ((^max) defined by (4.2), (4.33) and (4.73) respectively, where C1,C2 hold. Let K C 

A{6) be compact. Consider the transient performance cost functional (4.98). Then 

Vdmax > e, > 6 suc/t mot Vgmax > 

P ( Z ( A b ( 7 ) , A , 2 ) ( e ) ) , S p ( W ) >MS('fo(7) ,A,D(6)) ,2^(dmax)) . (4.99) 

In order to follow the procedure used in section 3.5.3, we give an alternative proof for 

Proposition 3.1 as follows: 

Lemma 4.3. Consider the system i = f{z) where / is continuous. Then hmf^oo z{t) = z* 

implies that z* is an equilibrium point. 

Proof, z* is an equilibrium if and only if f{z*) = 0. So for a contradiction, suppose 

without loss of generality that f{z*) > 0. Since / is continuous, there exist a set V of 

neighbourhood zero such that /(a:) > e = |/(z*)/2|, Vz E V. Since z(t) —+ z* as t » 00, 
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it follows that there exists a time instant T = sup^^Q{z(t) 0 V}. Therefore 

roo roo 
z(oo) — sup |z| = / zdT > / e c(T = CX3, 

zeV Vr 

hence contradiction. 

• 

Proposition 4.1. Consider the closed loop system (S(xo, 6', <i(-)), S) defined by (4.2), 

(4.24), where 01,C2 hold and d{t) = e for some e ^ 0. Then 

||a;(t)|| —» 0 88 t —> oo 4=^ » oo as t » oo. (4.100) 

Proof. —» ) Suppose for contradiction 5{t) ^4 oo. Then 6{t) S* < oo, since S(t) is 

monotonic by (4.24). Therefore {x(t),S(t)) = (0, <5*) is an equilibrium point of 

closed loop (T,(xo,9,d(-)),E) by Lemma 4.3. Hence (0,6*) must be a solution of 

the following equations: 

3:2(()-On-ia:i(t) + ('m(e-^(()a;i(t)) = 0, 

%(()-(4,-23:1 (() + 6m-i(c-^(t)a;i(t)) = 0, 

-aoa:i(^) + 6o(^-^(t)a:i(^)) = 0, (4.101) 

3:1 (̂ )̂  = 0. 

But bo ^ 0 since the system is minimum phase. We also have e ^ 0. Therefore 

(x(t),6{t)) = (0,(5*) cannot be a solution of (4.101), hence contradiction. 

) DeEne the Lyapunov function 

y(z( t ) ) == z ( ( ) ^ f r((), (4.102) 

where x{t), P are defined by (4.9) and (4.23) respectively. Denote B = and 
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6 = ( f + f D e 6 n e 

:= D(6(t) - A:*) + ) a;(t). (4.103) 

The time derivative of V{x{t)) is: 

y(z(t)) = &(̂ )̂  ( f D(A:*) + D^(A;*)f) z(() + T(()^f Be + a(^) + y,(() 

< -z(t)^Qz(t) + i(t)^56 + y?(t), (4.104) 

< -A(Q)||^(<)ll'^ + ||^(t)|| |6| Ml + y)((), 

s -

where equation (4.104) follows from (4.22), and inequality (4.105) follows from 

Young's inequality. Therefore y(-) is decreasing if 

Now, we claim the convergence of x{-): if ||z(()|| 0 as t —̂  oo then either 1. 

liminf ||S(t)|| > 0 or 2. liminf ||x(i)|| = 0: 
t—^OO t—+00 

1. Suppose liminf ||x(t)|| > 0. Then there exists e' > 0 s.t. ||z(t)|| > e' Vt. It 

follows by (4.103) that yi(t) ^ —oo as ^(t) —̂  oo, hence by (4.104), y —+ —oo 

as t •—> oo, i.e. 

VM > 0 3 r > 0 V( > T y(r(t)) < —M, (4.107) 

which implies that V{x{t)) —oo as t oo. This contradicts the positive 

definiteness of V{-). 

2. If liminf | | i(t) | | = 0, then there exists e' > 0, and a positive divergent 

sequence such that y(r(tk)) > 0 and ||z(tt)|| > c'. Since by (4.103), 

y((t) —̂  —oo as A: —» oo, it follows that (4.106) holds at time tt, hence 

contradiction. 

Therefore ||z(()|| —̂  0 as i ^ oo; hence x{t) —» 0 by (4.9). 
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• 

Pmpos%(%on 4.2. Consider the closed loop system (2(z;o,^, defined by (4.2), 

(4.24), where C1,C2 hold and d(t) = e for some e ^ 0. If a;(t) is uniformly continuous, 

then as t —» oo 

||3;(t)|| —y 0, ^(t) —» oo. (4.108) 

Proof. Firstly we show that y(t) —i- 0 as t ^ oo. From this we will prove that 5(t) oo 

and finally by Proposition 4.1, we conclude that ||x(t)|| —y 0 as t —» oo. Suppose for 

contradiction y{t) 0. Then there must exists a positive divergent sequence {tk}k>i 

for which y{tk) > M for some M > 0 i.e. 

3 M > 0 3{tk}A:>i, g.t. i / ( t t ) > M . (4.109) 

y{t) is uniformly continuous since, by assumption, x{t) is uniformly continuous i.e. for 

6 = M/2 

3w > 0 s.t. Vr e [0,w], Vt > 0, |^(t) — ^(t + T)| < (4.110) 

Therefore 

| 3 / ( t & ) - 3 / ( 4 + T ) | < y , (4.111) 

and since 3/(tt) > M, we have that {/(tt 4- T) > M/2 i.e. 

M 
y { t ) > — , \/t E [tk,tk + Lu], (4.112) 

Hence, 
ftk+ui W-2 
/ i / ( T ) d T > - — w . (4.113) 

ji-k 

With no loss of generality, we may assume — > w. It follows by (4.24) and (4.113) 

J
rtk+'^ ; j'i-k+^ /\/2 

5{T)dr = / y'^(T)dT > kw, (4.114) 
0 Vo 4 

so 5{tk + w) —> oo as fc —> oo. It follows by Proposition 4.1 that ||z(f)|| —> 0 as t —i- oo, 

therefore y(t) —y 0 by (4.2), hence contradiction. 
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Now we have i/(f) = ^ 0 and we claim J(t) —̂  oo. Suppose for contradiction 

J(t) oo. Then ^(t) —̂  < oo, since ^(t) is monotonic by (4.24). Substitute this into 

(4.2), we have 

a;i(t) = 372(t) - (on_i + ,^*6m)zi(t) + (4.115) 

3:2(̂ ) = 3=3(t) - (On-a + 1̂* 6m-l)z;i(t) + 

:Cm-i(^) = Z n ( t ) - ( a i + ^*6i)zi(t) + 6i6, (4.116) 

= - ( a o + ^*6o)a:i(^) + 6oe, (4117) 

where by minimum phase property of system, bi€ ^ 0, i G [0, m]. As xi(t) —>• 0, equation 

(4.117) implies that Xn(t) —> 00, since x{-) is uniformly continuous. It follows by (4.116) 

that Xn-.i{t) —> 0 0 , and cascading the argument yields to a;i(t) —> 0 0 as t —̂  0 0 , hence 

contradiction. Therefore 5(t) —> 00. From this and Proposition 4.1, the claim of the 

proposition follows. 

• 

Proposition 4.3. Consider the closed loop system (2(a;o, 0, (f( ) ) ,2) defined by (4.2), 

(4.24) where C1,C2 hold. Let A C A(^) be compact. Consider the transient performance 

cost functional (4.98). Then 

P (Z( ; fo (7 ) ,A ,D(6 ) ) , 2 )=oo . (4.118) 

The proof is slightly more complicated than that of Proposition 3.2. Fig. 4.1 shows the 

procedure. 

Proof. Let xq e ^0(7), 9 E A, and choose d(t) = e ^ 0. Denote lim sup by lim . Suppose 
t—>00 

for contradiction 'P{Ti{xo,0,d{-)),E) < 00. Consider x{t). There are two cases either 1. 

lim | |i(t)| | = 00 or 2. lim ||z(t)|| < 00: 

1. Suppose lim | | i(t) | | = 00, i.e. hm ||Az(t) + Bu{t) + Be\\ = 00. Therefore either 
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< oo 
Z IS n e t s 

lim x> • 

< oo 

^ 

K((), %f(() 

X 6 C°° => z —> 0, & —» oo i.e. yt > T 5 > 5* 

€, t < T 6(2 = .̂  6(2 = .̂  
— t ^ T 

{/(t) — u(T') > 2(̂ *6 

Figure 4.1: Proof of Proposition 4.3. 

(a) lim ||a;(t)|| = oo, which implies that ||a;(-)||£oo = oo, hence contradiction, or 

(b) lim ||z(f)|| < oo, therefore lim u{t) = oo i.e. ||w(-)|U°° = oo. Hence contra-

diction. 

2. Suppose lim | | i(t) | | < oo i.e. x{-) is uniformly continuous. Therefore by Proposi-

tion 4.2 

||a:(t)||—*^0, J(t)—»oo as (—^oo. (4.119) 

Considering lim-u(t), we observe that 

lim {((t) = lim — j - (4.120) 

Note that CB ^ 0 since the relative degree p = 1- Now there are two possible 

cases, either a) 6(t)3/(t) e (including the possibility that limf_»oo^(t)3/(t) does 

not exist), or b) hmf_»oo S{t)y{t) = e 

(a) Suppose limt-^oo ^(t)i/(t) does not exist or f(t)2/(t) e as t —» oo. It follows 
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by (4.119) that ||tt(-)||/:oo = oo; hence contradiction. 

(b) Suppose lim(_^oo^Wz/(() = e. By (4.119) we have that 

V 6 * > 0 3 r > 0 s.t. % ) > ^ * V t > T . (4.121) 

Now we choose 1̂ 2 ( ) as follows 

e t <T 
d2(t) = { (4.122) 

-e t > r 

Note that d2{t) = d{t) for all t < T. With this choice, by continuity and 

causality, we have that 

l i ^ a;(() = z(!r), f(t) = 6(!r) (4.123) 

where limj^y+ denote limf_»T,f>r- It follows that 

^^lim ii(^)^ - i}(T) = 26(r)CgE > 2,̂ *6^6. (4.124) 

By choosing a suitable 5*, it follows that 5{T) can be made arbitrarily large 

and hence the difference (4.124) is arbitrarily large. Then either u(T) is large 

or limj^y+•u(i) is large, therefore ||ii(-)||/:c» can be made arbitrarily large. 

Hence contradiction. 

Therefore at least one component of (4.98) diverges, hence 

P ( 2 (;kb(7), A, D(e)), S) > P(2(3:o, 4 )), S) = 00. (4.125) 

• 

4.4. Consider the closed (S(zo, (f( )),Sf(<^niax)) de&aed by (4.2), (4.73) 

where C1,C2 hold. Let A C A(5) be compact. Consider the transient performance cost 
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functional (4.98). Then 

7^(2 (^(-y), A, D(e)), Sp(^max)) oo as m̂ax -> oo. (4.126) 

Proof. The proof is simply followed by replacing Omax by 5max in the proof of Proposition 

3.3. O 

4.5. Consider the closed loop (Z(a;o, d( )),Sj)((fmax)) deAned by (4.2), 

(4.33) where C1,C2 hold. Let A C A(5) be compact. Consider the transient performance 

cost functional (4.98). Then 

P(Z (^"0(7), A, D(e)), S^((fmax)) < 00, Vdmax > 6. (4.127) 

Proof. Let xq E 0 E A and d E 'D(e). A direct application of Property P2 of 

Theorem 4.2 guarantees the uniformly boundedness of as a continuous 

function of V*{xo, 9, dmax)- It follows that 

^(t) = -D^|2/(()|2/(t)2 - J(t)C - a ( t )Bc) z(t) + g ^ t ) ) , (4.128) 

is uniformly bounded in terms of a continuous function of V*(xo, 0, dmax)- Therefore 

P(i:(3;o, 4 )), S^((4nax)) < M(y*(zo, (Lax)), (4.129) 

for some continuous M(V*(xo,9,dyaax) < oo. It follows by the same argument of 

Proposition 3.4 that for all dmax > E, 

'P(S(A^('Y),A,D(e)),2j)(dmax))< sup sup sup M(y*(a;o,^,dmax))<oo. (4.130) 
loGA'o('y) 9&A d^'D{e) 

• 

The above propositions suffice to prove Theorem I: 

Proof of Theorem I. 

This is a simple consequence of Proposition 4.4 and Proposition 4.5. • 
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4.4 .2 T h e o r e m I I 

T h e o r e m II . Consider the system T,{xo^9,d{-)) and the controllers S^(c?max) o,nd 

Sf(i5max) deyZnecf b?/ (4.2), (4.33) ond (4.73) regpectweZy w/ie/ie /loW. Z/ct A C 

A(^) 6e compact CorisWer t/ie (nz/wzenf pez/ormance coa( (4.98). T/zeyi 

3(̂  > 0 auc/l Vl̂ âx > > e aWcA (Aot Vdmax 2 Ĉ max; 

P(2(A'o(7),A,D(6)),S^(dmax)) > P(2(;fo(7),A,D(6)),2f(Jmax)). (4.131) 

Proposition 4.6. Consider the closed loop system (Z(zo, 6*, 2^(<imax)) defined by 

(4.2), (4.33) where C1,C2 hold. Let A c A(5) be compact. Consider the transient 

performance cost functional (4.98). Then 35 > 0 such that 

P(2(;tb('y),A,D(e)),S^((fniax))-+cx3, aa (Lax-^oo- (4.132) 

Proof. Note that by choice (4.33), ||f]o|| —» oo as dmax —̂  oo (c.f. to the discussion in sec-

tion 3.5.5). Similarly to the proof of Proposition 3.7, we start with yo G do (i.e. 7 < %) 

and define 

I 0 0 if y(t) G fio Vi > 0 
r = ^ (4.133) 

inf{i > 0 I y(t) 6 9%} , otherwise. 

Note that by dead-zone definition (4.33), S(t) = 0 for all t € [0, r ) i.e. 5(t) = 0 for all 

t E [0, r ) since J(0) = 0. Therefore 

x{t) = Ax{t) + Bd{t) Vt E [0,r). (4.134) 

Now by (4.96) there exists 0 G A for which A is not stable. Hence if d(t) = e, then 

||i(t)| | > e for all t G [0,r) i.e. the output y{t) := xi{t) hits the boundary dQ,o in finite 

time, hence r < 00. It follows that 

lk( )||/:«. > |3/(T)| = |af%o|. (4.135) 

If yo = 2:1(0) ^ Qo then we are naturally outside the dead-zone i.e. again ||a:(')||/:°° > 

I2/0I > |9no|. The proof is completed by taking (fmax —̂  00 i.e. |Do| —» 00. Hence 
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P(2(a;o, 0, G(()), 2_D((fmax)) = oo, therefore P ( 2 (A:b(7), A, 5D(dmax)) = oo- O 

Proposition 4.7. Suppose C1,C2 hold. Let A C A(<5) be compact. Then the closed loop 

(2(a;o,^, ) ) , 5 f ((̂ max)) defined by (4.2), (4.73) has the property 

P(Z(;fo('y),A,2)(E)),2f((^max))<00, (4.136) 

Proof. Let xq G -^0(7); ^ € A, d E D(e). A direct application of Theorem 4.3 guar-

antees the uniform boundedness of signals x(-), S{-), u{-) of the closed loop system 

(S(xo, 0, d(-)), Sp(Smax)) as a continuous function of xq, 6, ||d||, 5max- It follows that 

u(t) = —y{t)^ — 5(t)C {Ax(t) + B{u(t) + d(t))) (4.137) 

is uniformly bounded in terms of a continuous function of xq, 9, ||d||, 5max, hence 

?(i:(a;0, 4 )), S f (6max)) < M(zo, ||d||, ^mâ ) < oo, (4.138) 

where M is continuous. The claim of proposition follows by taking the supremum over 

system parameters xo,9,d as in (4.97) on both sides of (4.138), and observing that by 

uniform boundedness, the right hand side remains bounded for all • 

Proof of Theorem II. 

This is a simple consequence of Proposition 4.6 and Proposition 4.7. 

• 

4.5 S u m m a r y and Discussion 

We extended the results of the last chapter to minimum phase linear systems with 

relative degree one. We introduce the concept of high-gain adaptive control first. Then, 

we defined dead-zone and projection modified controllers when bounded disturbances 

present. In the stability proof for dead-zone modification, we used the so-called smooth 

dead-zone and benefited from the proof of A-tracking theorem. Finally we extended the 
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result of Theorem I and II for minimum phase, relative degree one linear systems by 

following the procedure explained in chapter 3. 

Propositions 4.3-4.7 are proved by extensions of the emalogoiis proofs in chapter 3, 

however Proposition 4.2 was proved by a new technique^. 

In the next chapter, we extend the results of Theorems I, la, II, and I la to nonlinear 

systems in the form of integrator chain. 

An alternative proof of Proposition 4.2 due to A. Ilchmann [21] is given in Appendix A. 



Chapter 5 

Robus tness and Per formance 

Comparison: Nonlinear Systems 

5.1 In t roduc t ion 

Producing a mathematical model of a physical system often requires dealing with dif-

ferent types of physical laws. Nonlinearity is an intrinsic part of almost all physical 

systems. Therefore, the resulting mathematical model is most likely nonlinear. No 

systematic mathematical tools yet exist to help find necessary and sufficient conditions 

to guarantee the stability and performance of nonlinear systems in general form [31]. 

Therefore we usually consider some classes of nonlinear plants for which the stability and 

performance problem is solvable. The class of nonlinear system we are considering in 

this chapter is known as an 'integrator chain' which encompass a large class of physical 

systems. 

An intuitive approach to achieve stability in nonlinear systems is to apply a feedback 

control which exactly cancels the nonlinear terms appearing in the input-output map. In 

theory, this renders the closed loop system linear, but in many practical situations the 

uncertainty of the system prevents the nonlinear term being cancelled 'exactly', so some 

nonlinearities remain. The necessity of considering these uncertainties in the control 

design motivates the idea of nonlinear adaptive control. Like their linear cousins, the 

101 
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resulting nonlinear adaptive controllers are susceptible to phenomena such as parameter 

drift when small disturbances are present. The idea of modifying the adaptive law 

described in chapter 3 can be extended to nonlinear systems to assure robustness in the 

presence of bounded disturbances. 

We will extend the topics of previous chapters to integrator chain nonlinear systems. 

First, we introduce the nonlinear adaptive control scheme. Then, we develop the 

dead-zone and the projection based controllers to achieve robustness when bounded 

disturbances are present. The concept of hysteresis dead-zone, introduced in section 

3.4.2, will be mathematically synthesised in section 5.3.2. Finally the results of theorems 

I, l a and II, I la will be extended to integrator chain in section 5.4. 

5.2 Sys tem Descr ipt ion and Adap t ive Design 

By an 'integrator chain', we mean the following SISO nonlinear system; 

i:(ro, g, d()) : 1 < 2 < n - 1 

+ d(t) (5.1) 

3/(t) = 

where the state vector a:() E R" is available for measurement, 0 is unknown 

constant parameter and ^ : R" —> M*" is a known smooth function. 

Suppose the control objective is to asymptotically stabilise the system, that is, to find 

a control law that guarantees the boundedness of all closed loop signals and forces the 

system trajectory to converge to zero asymptotically. Define the feedback law 

:= (5.2) 
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where a = [a i , . . . , is chosen such that the matrix: 

A (5.3) 

0 1 0 0 

0 0 1 0 0 

0 0 0 1 

—di —0.2 —(̂ 3 • • • — 

is Hurwitz. Let P, Q be symmetric positive definite matrices satisfying the Lyapunov 

equation: 

ylf'jP 4- f A = --C2, (5.4) 

and define the weighting vector h := {P + P'^)B where 5 := (0 , . . . , 0,1)^. 

The signal 6 : M+ —i- in (5.2) represents the adaptive estimator of 9 and is updated 

by the onhne adaptive law: 

^(t) = a!r(t)^6^(a:(t)), 0(0) = 0, (5.5) 

where a > 0 is the adaptation gain. Thus, the controller S consists the control law and 

the adaptive law as follows: 

u{t) = —a^x{t) — 6{t)^ (j){x{t)) 

0(t) = a!a;(t)^6<^(a;(t)) 0(0) = 0. 
(5.6) 

We denote the respective closed loop systems by (Z(a;o, 0, d( )), 2) defined by (5.1), (5.6). 

We frequently use the following compact combination of (5.1),(5.2): 

i ( t ) = Aa;(t) + B( (6 — @(t))^<^(a;(t)) + d(t)), a;(0) = a;o- (5.7) 

The following well known theorem [35] establishes the stability of the closed loop system 

(2(zo,0, d( )),S) where d() E D = {0}. 

Theorem 5.1. Consider the closed loop {Ti{xo, 0, d(-)), S) defined by (5.1) and (5.6), where 

d() = 0. Then (i) the closed loop is well-posed, (ii) all closed loop signals a;( ),'u(), 0 ( ) 
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are bounded and (ni) a;(t) —̂  0 as t » oo. 

fmo/. Since the right hand side of the closed loop (Z(a;o,0, d( )) ,S) is continuous and 

locally Lipschitz, the existence and uniqueness of the solution (x(-),0(-)) follows by 

theorem 2.1 once the boundedness of solution has been shown. Let 9(t) = 6 — 9{t) and 

define the Lyapunov function 

(5.8) 
zck 

The time derivative of V(x(t), 0(t)) is 

= x{t)^P (^Ax{t) + B6{tY^(j){x 

+ (5.9) 

= —a;(()^Qa;(t) + a;(()^6 0(t)^<^(z(t)) 

— ̂ 0(()^{oiz(t)^6<^(a:(())}, (5.10) 

= ~x{t)^Qx{t) (5.11) 

< -A(Q)||a;(t)f. (5.12) 

Inequality (5.12) implies that V{t) = V{x{t),§(t)) E vC°°, therefore x{-),§(-) G £°°. 

The boundedness of tt(-) then follows from (5.6). Finally, the asymptotic stability of the 

state 3;(t) is followed by LaSalle theorem 2.4 and the fact that by (5.12), y(t) is negative 

semideBnite. O 

Similar to previous chapters, we use the dead-zone and projection modification of the 

adaptive law 5.5 to achieve robustness when d() ^ 0. We Eire interested in the following 

features: 

(i) The existence and uniqueness of the closed loop solution (a;(-), §{•)), 

(ii) The boundedness of closed loop signals x(-),0{-), u{-), 

(in) The system asymptotic stability i.e. convergence of a;(t) to a small 

neighbourhood of origin. 
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5.3 Algor i thm Modif icat ion 

5.3.1 D e a d - z o n e M o d i f i c a t i o n 

Based on the description of the dead-zone modification described in chapter 3.4.1 and 

Theorem 5.1, we define the dead-zone region £lo(cZmax): 

ô(c(max) = { a: I z^Pz < ?7o }, (5 13) 

where 

\ / w 
VO '•— Q{dmax) — A(Q) (5.14) 

Therefore, the dead-zone controller is defined as follows: 

SD((fmax) : «(^) = -o^z(t ) - g(t)^^(a:(t)) 

g(t) = Dno(j^^)(T)a!a;(t)^69!)(a;(t)), <9(0) = 0, 
(5.15) 

The respective closed loop system {t,{xq, 9, d{-)),ed{djaax)) is given by equations (5 .1) , 

(5.15). The following theorem examines the properties for the closed loop 

system (2(a;o,^,d( )),2z)((fmax)): 

TTzeorem 5.2. Consider the closed loop system (S(To, d()), ^^((^max)) deEned by (5.1), 

(5.15), where d(-) E c°° and % defined by (5.14). Define 

Vb(a;o, g, dmax) max(a;o Pro, )7o) + 

Assume that dmax is such that ||ci(-)||/;oo < dmax- Then for any xq g M", the following 

properties hold: 

Dl. The solution (x{-), §{•)) : M+ exists. 

D2. All closed loop signals x{-),u{-),6(-) are uniformly bounded as a continuous func-

tion of %(zo,^,cLax). 

D3. x{t) —> fio as t —> oo. 
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Proof. Due to the r.h.s. discontinuity of dead-zone controller (5.15), the solution of the 

closed loop is considered in FiUppov's sense. The complete proof has been established 

in [11]. A sketch of the proof is as follows: Let 

Ti = {t > 0 I e R"" \ (5.17) 

and define the Lyapunov function 

y(a:(t), ^(t)) = z;(t)^f a;(̂ ) + ^^(()^^(t). (5.18) 

It has been shown that if 

(i) V{x{t), 9(t)) < 0 for all t E 7i , 

(a) the left hand derivative D P x { t ) = 0 and D^V(x(t),6(t)) < 0 for all t > 0 

such that x{t) E OQq, then the solution (x{-),6{-)) exists for all t > 0 and V{x{t), 9{t)) < 

^^(zo, d m a x ) for all ( > 0. 

In order to verify condition (i), observe that for all t E Ti, 

A(P)||a;(t)||^ > x{t)'^Px{t) > rjQ. (5.19) 

Substituting condition (5.14) in (5.19) and noting that ||<i|| < dmax, we have 

A(f)||z(<)||" > v^ETi, (5.20) 

therefore 

A(Q) > i r & K M II' vt E Ti. (5.21) 

A similar calculation as (5.9)-(5.10) shows that for all t E T\\ 

y(a;((),0(t)) = -a;(t)^Qz(() + a;(^)^6d(t) < - ^A(Q) - iW^II4^) l l l lk(^)f - (5.22) 
V ll^lvll / 

Hence by (5.21), y(T(<), ^(t)) < 0 on 7i. 

Condition {ii) is established as follows: On the boundary <90o, D-x{t)'^ P x{t) = 0 
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since = z/g . Therefore by (5.10) 

0 = — , (5.23) \T 

or 

T(t) 60(t) (^(z(t)) = a;(t) Qa;(() —a;(t) 6d(t). (5.24) 

In order to calculate D^V{x(t),9(t)), we note that by the definition of the solution at 

the point of discontinuity [8], for some A = X{t) e [0,1], we have §{t) = Xax{t)'^b(f){x{t)). 

Hence by (5.24) and (5.22) 

D-^V(x{t),9{t)) = —Xx(t)'^b9(t)(p{x{t)) = A {—x{t)^Qx{t) + x(t)'^bd{t)) < 0, (5.25) 

thus satisfying condition (ii). It follows that the solution exists for all t > 0; hence Dl. 

A uniform bound over signals x{-), 6{-) can be obtained as a continuous function of 

Vb := Vb(a;o, cfmax) since y(3:(t), ^(t)) < for all t > 0. 

Ik(t)|| < \ /%/A(P) , ||g(t)|| < 2 ^ ^ . (5.26) 

Finally the uniform boundedness of tt(-) in terms of a continuous function of V()(xo, 6, dmax) 

follows from (5.6) and the continuity of < (̂-). 

The proof of D3 is similar to H3 of the next section. To avoid repetition and to 

represent a complete proof for hysteresis dead-zone, we omit the proof of D3 here and 

refer the reader to the proof of H3 in next section. 

• 

5.3 .2 H y s t e r e s i s D e a d - z o n e 

In this section, we establish a mathematical description of the hysteresis dead-zone 

mentioned in section 3.4.2. Given the stability analysis, we address the advantages of 

this method compared to conventional dead-zone. 
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5.3.2.1 Definition 

The idea behind hysteresis dead-zone is to define a switching function such that the 

'switching on' and 'switching off' operations of the adaptive law do not both occur 

simultaneously on the switching surface. Let us denote Z, the history of the system 

trajectory on a specific time: 

Z := W E C(R+,R") x E+ | = tg}. (5.27) 

Definition 5.1. The hysteresis dead-zone function H : Z {0,1} is defined by: 

{1, if x{t) € M" \ 

0, if a;(t) 6 f^o(rfmax) (5.28) 

5'(t), if a;(t) E \ no((fmax) 
where 

^o((^ax) = { a: I a; < )7o } # , (5.29) 

= {x \ x'^Px < rji} cW^, (5.30) 

and 

1 if ( = 0 and ro E \ flo(dmax), 
S{t) = ^ (5.31) 

, T-) elsewhere, 
t^t-

where by we mean limT-»f,T<f. Note that T/o = g(((max) is chosen based on the 

a-priori knowledge cfmax, and rji is defined such that rji > rjo- We let % = (1 + (3)r]o for 

some small /? > 0 since we will see that the system trajectory asymptotically converges 

to Oi. 

For the compactness of notation we denote -ffno(dmax),ni by H{t). We also define 

the time instances where the system trajectory is on the boundary of Hi and also time 
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periods where we switch off the adaptation: 

109 

= { ( > 01 e } 

%o = {^ > 01 = 1 , = 0 } 

(5.32) 

(5.33) 

Finally, using the above sets, we define a 'switching' sequence a 'storing se-

quence' and & 'restoring' sequence (see Fig. 5.1) aa follows: 

ti = inf t % > 1, 
t > t-i-l , t £ Tqq 

sup t i>l, 
t<ti , t€Tgn-

inf t %>1, 

to = 0, 

tg = 0, 

to = 0-

(5.34) 

Now we define the modified adaptive controller ^Hidmax) on the interval t\ <t < 

h = 0 

FIGURE 5.1: Hysteresis dead-zone 

for i > 0, /? > 0; 

:N(dmax) : u(t) = -a^a:(t) - g(^)^<^(a;(t)) 

0(t) = ax{t)^bH{t)(l){x[t)), 0(0) = 0, r]o = g(dmax), 771 = (1 + l3)f]Q, 

g(tn = g(tf) (' < t < ([+1, % > 0 
(5.35) 

Consequently, we denote the respective closed loop system by (Z(zo, d()), 2g(dmax))-
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5.3.2.2 Stability Analysis 

We show the properties of the closed loop system by the following theorem: 

T/ieorem 5.3. Consider the closed loop (2(a:o,^, de&ied by (5.1), (5.35) 

where d() E Assume that dmajc is such that ||d( )||/:oo < dmax- Suppose 

DeHne 

'?0 • ff('^max) — X(̂ Q̂  1̂1 ^max- (5.36) 

^ T^(zo, cfmax) = f a;o + + (̂ 71 - 7̂0)- (5 37) 

Then for any xq E M" the followings hold: 

HI. The solution {x(-),d{-)) : R+ —> ]R"+™- exists and is unique. 

H2. All closed loop signals x{-),u{-), §{•) are uniformly bounded as a continuous func-

tion of V^(ro,^,4nax)-

H3. a:(() —> as t —» oo. 

Proof. We prove HI by induction. Suppose zo E R" \ fio(c^max)- Observe that this 

includes rco € R" \ in which H{0) = 1 by (5.28) and the case where xq E \ 

f2o in which again H{0) = 1 by definition (5.31). Since the r.h.s. of the closed 

loop (^(zo,^, ((( )),SD(dmax)) is locally Lipschitz, by corollary 2.2, a unique solution 

(a;( ) ,^()) exists on its maximal interval of existence [0, w) for some w > 0. DeEne a 

Lyapunov function 

y(z(t) , 0(t)) = a;(t)^Pa;(t) + ;^0(t)^8(t). (5.38) 
zck 

and by an abuse of notation we denote V{x{t), §{t)) by V{t). We take: 

a) ^(() < Ti), ti < f < 
Ji = { (5.39) 

b) y(() < y(0) t or < ^ < tf+i 
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to be the inductive hypothesis. Consider the induction step Let us spht the 

case into several time intervals: 

1. Suppose < f: < ^i+i. Calculating y(t) in the same manner as (5.9)-(5.10) 

yields 

y(t ) = — 6 d(t) 

— 6 fr(t) <^(3:(t))} (5.40) 

= —x{t)'^Qx{t) + x{t)'^ b d{t). 

Note that by (5.35), the adaptation is 'On' in this interval, i.e. H{t) = 1. It follows 

that 

m < - I ' m ) - (^-41) 

Since x{t) € R " \ 0 o ; by (5.29) and the same inequality as (5.19)-(5.21), we observe 

that by (5.36), y ( f ) < 0 on < f < (i+i, i.e. 

;^(t<+i) < y(() < :'(tf+i) < y(0), (5.42) 

where the last inequality follows from b) of statement Jj. 

2. Suppose ti+i <t< The adaptation is 'Off' {H{t) = 0) and we have 

y(t ) < y(ti+i) + T?! - 7?o. (5.43) 

But y((() < y(0) by (5.42), so 

y(t) < ^ (5.44) 

3. Suppose <t< Note that by (5.35) 

:r(tr+i) = ,7i = :r(tf+i) (5.45) 

as a;(t[_|_i), a;(if+i) E dflo and 0(t[_,_i) = 0(t|_|_i). It follows that 

(5.46) 
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In same manner as step 1, we can show that y( t ) < 0 for ^ Thus 

^((f+2) < < ;^(0), (5.47) 

where again the last inequality follows from b) of statement J;. 

The result of the above steps shows that by assuming J, is true, we have proved Jj+i: 

Ji+i = < ( 5 . 4 8 ) 

[ b) y( ( ) < y(0) t or 

is true. The case Jq is also true, since by ( 5 . 3 4 ) , = tg = IG = 0 and for 0 < i < if 

we have H{t) = 1 and by the same argument as in step 1, V{t) < 0 i.e. V{t) < y(0), 

therefore Jq is true. Hence, by induction, ( 5 . 3 9 ) is true for all i > 0 . Therefore by ( 5 . 3 8 ) , 

x{t), §{t) are bounded for all t <ti. 

In order to prove well-posedness, i.e. w = oo, we consider the two cases ITqqI < oo, and 

|Thol = oo, i.e. the cases of whether %o has a maximal element or not: 

(a). Suppose ti is the largest element in i.e the switching is stopped for all t > tj. 

The boundedness of x{-), §{•) on [0, tj] follows from the induction. For the interval 

[t/, oo) either x(t) remains in fii for all t > t j or there exists t > tj such that 

a:(i) E 

(i). If z(t) E for all t > tj then §{t) remains constant by (5.35) since H{t) = 0 

for all t e [tj,oo). It follows that remain bounded. 

(m). If there exists > tj such that z(t}) E 5 0 i , then H{t) = 1 for all t 6 [tJ, oo). 

It follows by the same argument as step 1 that V(t) < 0 for all t > hence 

the closed loop signals x(-),0(-) remain bounded. 

(b). Suppose Tqq does not have a maximal element. For well posedness, it suffices to 

show that t, = +oo. To this end, let t = limj-^oo^i- Observe that i(-) 

is bounded on [0, i) since all signals appearing on the r.h.s. of equation (5.7) are 
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bounded on [0, t). It follows that 

77? ̂  
> m ({t I a:(<) E Hi \ %}) H [0, ^ —> oo ag % —» oo, (5.49) 

sup 

where z/(() = a;(t). So, boimdedness is global. 

Looking at the system in each interval [ti, t[], [t[, tj+i], and [t/, oo), we have two contin-

uous differential equations, either of which has a unique solution by theorem 2.1, since 

there is no finite escape time. Therefore the solution is unique; hence HI. 

If xq G Oo then either x{-) remains in fio forever, in which the solution exists, is 

unique and bounded and the conclusions hold. Otherwise a similar argument as step 2 

guarantees the boundedness of V{t) until the system trajectory hits the boundary of 

dQi. Let t* be the first time instant in which x{t*) E 8(11 (i.e. x{t*) E M" \ fio) and 

define Xq = x{t*). Then the system T,{xo,6, d(-)) can be considered as Yl{xo,6,d(-)) for 

all 0 < t < t* and S(zo, 6, d{-)) for all t > t* either of which holds HI. Note that due 

to regular motion on the boundary Q,\, the closed loop is well behaved on transition at 

t = t*. Hence HI hold regardless of initial conditions. 

The property H2 directly follows form the fact that V(t) < Vq{xq, 6, dmax) for all t >0. 

It follows by (5.38) that x{-), §(•) are uniformly bounded as a continuous function of 

VQ(a;o,(fmax)- Therefore by (5.1), (5.35), K( ) is uniformly bounded in terms of a 

continuous function of l^(zo, 0, (fmax)-

In order to prove property H3, let us define the function 

^ : R""" ^ R, 11-* (a:(()^f a;(t) — 7)i) 'tTi(t), (5.50) 

where Ti = {t > 0 \ x{t) E M" \ fii} and the characteristic function A^(t) = 1 if t E w, 

A^(t) = 0 elsewhere. Then 

OO p 
|^(t)| dt = / {x{tY'Px{t) — rjl) dt 

0 jti 

< / z ( t ) ^ f z ( t ) G ( t < A ( f ) / ||r(t)||^dt (5.51) 
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where w = Note that by (5.36), for all t G Ti, 

m a x M < < A(Q), (5.53) 
(1 + /))% (l + / 3 ) y A ^ 

since /? > 0. It follows that the coefficient of the integral in (5.52) is bounded. In order 

to calculate the integral term of (5.52), we use (5.46) to construct a telescopic sum: 

JL rt: 

'̂ 1 i=i •"•i-i i=i i=i 
= E / / = E ) = E 

= y(tg) - y((}) 

< y((g) = y(o) 

Applying (5.54) to (5.52) yields 

(5.54) 

roo 

/O 
|^(t)| < CX3. (5.55) 

We also observe that ^(•) 6 JC.°°, since x(-),x(-) 6 £°°. Therefore, using the Barbalat's 

lemma (2.3), ^(i) -h> 0 as i —> oo; hence property H3. • 

5.3.2.3 Hysteresis Dead-zone vs Dead-zone 

A comparison between the conventional dead-zone and hysteresis dead-zone can be 

summarised as follows; 

(i.) Like the normal dead-zone, the hysteresis dead-zone also defines two exclusive 

regions (inside and outside fii) in the state space, but, with hysteresis, switching 

from one mode to another does not occur on the switching surface, but rather after 

the system trajectory has traveled a further distance of ||f)i||p — ||(1o||p- This means 

there is no point that can be forced by two vector fields / + and simultaneously 

in time. In fact the right hand side discontinuity of D(x) in dead-zone is replaced by 

a piecewise continuity H{t, x) in t, which behaves well as we explained in section 
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2.3.1. Hence, the sliding motion (or chattering with some high uncontrollable 

frequency) does not happen. Inequahty (5.48-b) shows that the speed of traveling 

between two switching modes ('on' and 'off') is not 'infinitely fast', in other words, 

for some > 0, V% > 0, hence is countable. So, the trajectory 

'oscillate' back and forth across the switching surface with a finite frequency which 

is controllable by parameters such as 77i, etc. 

(a.) In contrast with the normal dead-zone, the hysteresis dead-zone is well-posed. This 

is a consequence of eliminating the counteracts simultaneity vector fields 

on switching surface, which guarantees a 'regular switching motion'; hence the 

uniqueness of the solution. 

(iii.) Since the fast dynamics due to chattering does not exist in control systems defined 

by hysteresis dead-zone, the dynamic equations are not stiff. Therefore using the 

normal integration method, one can simulate such a system in a much shorter time 

compared to normal dead-zone. 

(iv.) The stability analysis is considerably simplified. The reason is that we do not 

need to deal with different possible situations at the point of discontinuity. The 

sufficient condition for the uniqueness of the C-solutions always holds, and the 

solution is well-defined. 

5.3 .3 P r o j e c t i o n Modi f i ca t ion 

Following the definition described in section 3.4.3, we modify the adaptive law (5.1) as 

follows: Similar to (3.24), we define 

n(gmax) = {^(f) e R - I fe_,(<9(t)) < 0}. (5.56) 

Recall the modified adaptive law 

e(t) = Proj n(em«) W' ^)- (^ 57) 
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where the argument of the projection operator is the unmodihed adaptive law, and 

g, ae: 

7 - ^ I g g E an(gmax) ajid 9 > 0. 

(5.58) 

Accommodating (5.57) by the adaptive law in (5.6), we have 

(̂ max) : ^/(() = -a^a:(t) -
. _ (5.5^1 
l9(t) = Proj n(e^^) (« a:(t)'^ 6 , ^(0) = 0-

Consequently, we denote the respective closed loop system by (S(xo, 0, d(-)), E!p(0^ax))-

Lemma 5.1. The following consequences of the projection operator are important. For 

the compactness of notations, we denote Proj (•, •) := Proj n(0max)('' ')• 

LI: Let F be a symmetric matrix, then Proj (F (g, §)) = F Proj {g, §). 

L2: Proj (g, g)^Proj (g, g) < V0 e n(gniax). 

L3: Assume g,§ E Then, on its domain of definition, §{t) remains in n(^max). 

L4: - ( g - g ) : r g ) < _(g _ 0)g, Vg, g G n(gmax). 

Proof. 1. When 0 is inside n(^max) or g pointing inward, we have Proj {g, 0) = g and 

LI trivially holds. Otherwise by (5.58) we have 

Proj (P (g, g)) = ^7 - j r g. (5.60) 

Since V g f ^ is symmetric, we have that ^ P = F V g f V g f There-

fore Proj (P (g, 0)) = P Proj (g, 0). 
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2. For the part that Proj {g,6) = g, L2 trivially holds by equality. Otherwise by 

(5.58) we have 

Proj (s, S f Proj (9,6) = ( s " I f p T y ^ p 

t . , g^VgPVij-P^ViPVjP^g 

V;P:rVaP 

(5.61) 

V^P g 

3. Since Proj {g, 6) is one of the vectors in the tangent hyperplane, and by orthog-

onality of the normal vector VgP with any vector in the tangent hyperplane, we 

observe. 

^Gn°(gmax) or V g P ^ 9 < 0 
V ^ P P r o j ( g , g ) = { " - (5.62) 

g e an(gmax) and VaP^g > 0 

which means that the vector Proj (g, d) either points inside n(0max) or is tangential 

to the hyperplane of ^n(6'mav) at 6. Therefore 6{t) remains in n(6'max) as far as 

the solution exists and 0(0) E n(^max)-

4. When Proj (g, 6) = g, L4 holds with equality. On the boundary c?n(0niax) we have 

(0 — 8)^V^P < 0 since 0 € n(^max) and n(0max) is convex. Also observe that by 

definition, V^P^g > 0 on the boundary dU(9ma.x)- Hence 

Proj (g, g) = - ( g - g)-' g + 
(5.63) 

<_ (g_g)7^g . 

• 

The following theorem show the robustness of the closed loop system. 
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T/ieorem 5.4. Consider the closed loop system (E(a;o, c(()), Sp(^max)) defined by (5.1), 

(5.59) where d{-) G vC°°. Suppose 0niax is such that \9\ < g^ax- Then for any xq € M", 

the following properties hold; 

PI. The solution (a:(), i^()) : E""" —» exist. 

P2. All closed loop signals x{-), 0{-),u{-) are uniformly bounded as a continuous func-

tion of Zo, | | d | | , ^ m a x . 

Proof. In order to prove the existence of the solution, let us map the situation to that of 

section 2.3.2. We observe that the boundary 5n(0rnax) defines the switching surface S. 

The convexity of n(^max) enables us to define G~ by n(0max), the normal vector N by 

V^P, and the vector field f~ by g (see Fig. 2.2, and Fig. 3.6). Note that /"•" = 0. Now 

since the right hand side of differential equations (5.1) and (5.59) are locally Lipschitz 

on an absolutely continuous local solution exists. Suppose {x{-)^9{-)) is one of 

the solutions of (S(zo, (f()), S f (^^ax)) on its maximum interval of existence [0, u) for 

some UJ E [0, oo). We define the same Lyapunov function 

y(a;(t), ^(t)) = a;(^)^fz;(() + ^ ^(t)^^(t) Vt e [0, w) (5.64) 

and by the same argument as (5.9)-(5.10), the time derivative of V{x{t),6{t)) is 

y(2;((), 0(t)) = —2;(t)^Qa;(t) + z(()^6 0(t)^^(a;(^)) + z(t)^ 6 ij(t) 

^ / 
(5.65) 

0(t)-'Proj (o!a:(t) b^(i(t))). 
a 

Observe that by properties LI and L4 in Lemma 5.1: 

^ ^(()^Proj (o!a;(t)^ 6 ̂ (a;(())) = —g(t)^Proj (z(t)^ 6 <^(a;(t))) 
a (5.66) 

< —a;(t)^6^(t)^i^(a:(t)). 

Therefore for all t 6 [0, w), 

y(a;((), 0(t)) < -a:(()^Qa;(() + ^(t)^ 6 d(t) < -A(Q)||3;(t)||^ + a;(t)^W(t). (5.67) 

Let bi denote the elements of vector b and apply the completion of squares to (5.67) 
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• S « ( - T - K - > - S r ) " * - S f ) , 

i=l 

< + 7114 )̂11 ,̂ 

where 'y = (|6|^)/(2A(Q)). Therefore 

y(2:(t) ,g(t) )<—=|^| |z(t ) | |^ + 'y||(f(t)||^, Vt€[0,w). (5.69) 

Adding and subtracting the term kV(x{t), 9{t)) for some k > 0, we have 

+ k ^x(t)'^Px{t) + (5.70) 

< -ty(z(t) , ,9(t ) ) - j ||%(t)f 

+ ^ 1 9 ^ % +7114^)11^. (5.71) 

Choosing A; < A(Q)/2A(f), the second term in (5.71) is negative. The boundedness of 

§(•) directly follows from property L3 in Lemma 5.1, therefore 

0 ( t ) % < (g - D ^ ( ^ - L ) , (5.72) 

where 

Defining 

= SUp^(t), T = {( > 0 I ^(t) E ^n(0niax)}' (5.73) 
fST 

y* : = y * ( | | 4 , W := L ) ^ ( ^ - L ) + ^NIl', (5-74) 
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implies that by (5.71), 

i9(t)) < -A; g(t)) - , vt e [o,w), (5.75) 

which implies that y(T((),^(t)) < 0 for all V > y*. It follows that for all t E [0,w), 

y(a;(t), g(^)) < V^(zo, Kll, 0max) := max{ y(a;o, 0), y'(||d||, gmax) }- (5.76) 

The uniform boundedness of on [0, w) in terms of Vq implies that x{-),6{-) 6 

£°°(0, w) uniformly as a continuous function of Vq. Therefore equation (5.7), the 

boundedness of d{-) and continuity of ^(•), imply that x{t) cannot have a finite escape 

time and thus by Corollary 2.2, w = oo, i.e. the solution {x{-),6{-)) exists for all t 6 

[0, do) and in uniformly bounded as a continuous function of Vq{xq, ||(i||, ^max)- Finally 

the uniform boundedness of u{-) in terms of a continuous function of Vq{xo, ||<i||, ̂ 'max) 

follows from the uniform boundedness of x(-),§{-) and (5.59). Thus completing the 

proof. • 

Remark 5.1. The uniqueness of the solution can potentially be lost due to the discon-

tinuity of the projection operator. Recall that if at any point on the switching surface 

the trajectories point away from S along both / + and f~ (i.e. < 0 , / ^ > 0), then 

the uniqueness of solution ceases to hold. In our case we have 

/w = » . / « = < »• (5^77) 

Suppose the solution is on the boundary 9n(0max)- In shows that the solution either 

remains on the tangential hyperplane M, or returns inside n°(0max), while f ^ = 0 shows 

that the solution remains on M.. Therefore every solution reaching the boundary 511 

has two possible paths and therefore uniqueness cannot be guaranteed. 

5.4 Pe r fo rmance Compar i son 

In order to generalise theorems I, la, II, and I la to nonlinear systems of form (5.1), some 

assumptions have to be made to establish parameter drift. We believe that starting with 
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a simple scalaz nonlinear system helps to gain a better understanding of the assumptions. 

5 .4 .1 Scalar Case 

Consider the following class of SISO scalar nonlinear system 

= + + z(0) = z;o, (5.78) 

where ^(-) is a known smooth real valued function which is assumed to satisfy some or 

all of the following conditions at various points in this section: 

a) 1 = 0 -4=^ <^(x) = 0, 

b) >0, 
x=0 

(5.79) 

c) inf 
,;6(z) 

> ; 9 > 0 . 

Note that the equivalent results subject to a sign change in (5.79)-b also hold, i.e. 

where ^=o < 0. We will use assumptions a) and b) to establish parameter drift in 

Theorems I, la, and assumption c) in Theorem II, Ila. 

We will consider the unmodified controller: 

if(t) = —oa;(() — 0(()(^(z(()) 

g(t) = a:a:(()^(a;(t)), 0(0) = 0, 
(5.80) 

the dead-zone controller: 

:D((4i]ax) : ^/(t) ^ -OT(t) - 0(t)<^(z(()) 

g(t) = Q!Dno(j__)(a;) a;(t)<;6(a;(t)), g(0) = 0, 7;o 
(5.81) 
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the hysteresis dead-zone controller on the interval < t < for % > 0, /3 > 0: 

Sg(dma]() : «(t) 

g(t) = aE^(t) 0(0) = 0, % = 7̂^ = (1 + 
a 

< ^ < ^I+i, % > 0. 

(5.82) 

and the projection controller: 

(̂ max) : «(t) = -a3;(t) - g(t)<^(3:(t)) 
. . (583) 
l9(t) = aProj n(e^_) (a;(t)<7)(a;(t))), l9(0) = 0, 

where dmax, ^max are the a-priori knowledge of disturbance level and parameter uncer-

tainty level respectively. 

The transient performance cost functional (3.44) is defined by 

P(2(A:b(7) ,A(a),D(6)) ,S)= sup sup sup(||z()||/:oo + ||u(.)||/:oa + ||u(.)||^oo) 
zoEAbW eeA(6) jeD(e) 

(5.84) 

where 7 < 770, and A(5),P(e) are defined in (3.45) 

5.4.1.1 Theorem I, l a 

Following the procedure explained in section 3.5.3, we give the following propositions: 

Proposition 5.1. Suppose <^() satisfies conditions 5.79-a, 5.79-b. Consider the closed 

loop (E(rco, 6*, (i(-)), S) defined by (5.78), (5.80), where d{-) = e for some e ^ 0. Then as 

t —> 00 the followings hold: 

i. z;(t) —̂  0 0(t) —> 0 0 . 

ii. If x{t) is bounded and uniformly continuous then x{t) —» 0, 0(t) —+ 00. 

Proof. The immediate consequence of 5.79-a, 5.79-b implies that 0{-) is monotonically 

increasing. The proof is in the same manner as Propositions 4.1, 4.2: Suppose x{t) —> 0. 

Seeking a contradiction leads to the existence of an equilibrium point (0,0*) for some 0*. 
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It contradicts the fact that, given 6 ^ 0 and aasmnption 5.79-a, the closed loop has no 

equilibrium point. The proof of the sufficient part of (i) follows by defining Lyapunov 

function y(3;(t)) = a;(t)^/2 and observing that 

y(T(t)) = —oz(t)^ + ez;(t) + y(t), (5.85) 

where in the interest of brevity we have denoted 

yp(t) := y;(a;, ,;6, g) = (g - g(t))a:(t)9l»(z(t)) (5.86) 

It follows that V{x(t)) is decreasing if 

aa;(t)^/2 - y;(t) > 6^/2o, (5.87) 

which is similar to inequality (4.106). The rest of the proof of part (i) follows from a 

similar argument as in Proposition 4.1. 

We prove part (ii) by contradiction: Suppose x{t) 0 as t > oo. Replacing y(t) by 

x{t) in Proposition 4.2, we observe that the relations (4.109)-(4.112) hold for x{t), i.e. 

x(t) >—, VT € [ T F C ) + ^]- ( 5 .88 ) 

Now by (5.79), the boundedness of a;(), and the continuity of ^() , we have that 

^(a;(t)) > /) > 0 for some i.e. 

37V > 0 s.t. a!2;(t)^(a;(t)) > ]V, Vt € (5.89) 

It follows that 
rtk+s 

/ a!a:(T)<^(a;(r))<jT>Ar& (5.90) 
jtk 

The rest of the proof is as the same as Proposition 4.2. • 

Proposition 5.2. Suppose 4>{-) satisfies conditions 5.79-a and 5.79-b. Consider the closed 

loop (I](zo, 0, d(-)), H) defined by equations (5.78), (5.80) and the transient performance 
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cost functional P ( 2 (/IbW, S). Then 

P ( 2 (^oh) , D(e)), S) = oo. (5.91) 

Proof. The spirit of the proof is similar to Propositions 3.2 and 4.3. Let xq E ^ 0 ( 7 ) , 6 € 

A(^), and choose d(t) = e ^ 0. Suppose for contradiction 7^(Z(a:o, d( )),S) < 00. 

Consider x{t). There are two cases: either 1. lim = 00 or 2. limx(t) < 00. The 

proof of the first case is similar to before. Suppose l imi( t ) < 00 i.e. x{t) is uniformly 

continuous. Again, there are two possibilities: either a) lim x(t) = 00, or b) lim x{t) < 

00. The former yields to ||a;(-)||£oo = 00, hence contradiction. The latter follows the 

boundedness of ), therefore by Proposition 5.1 

x{t) -4 0, 6{t) — > 0 0 as t » 0 0 . (5.92) 

Applying (5.92) to lim tt(f), we observe that 

lim u{t) = hm z(t)) - f a + (̂̂ ) 
dx 

(5.93) 

Now there are two possibilities: either i) 9{t)4>{x{t)) y4 e (including the possibihty that 

lim0(t)<^(a;(t)) does not exist), or ii) lim0(t)<^(a;(t)) = e: 

1. Suppose limt_KX)^(^)^(3:(t)) does not exist or ^(t)(^(a;(^)) ^4 e. Since 

a + ^(( )—^^ —^00 as a;(t) —» 0, 0(t) —» 00, (5.94) 

it follows by (5.79-b) that ||'u(-)||£oo = 00; hence contradiction. 

2. Suppose 9(t)4>{x(t)) = e. By the smoothness of ^(•) and the same argument 

as Propositions 3.2 and 4.3, there exists T > 0 such that §(T) > 0*. So by choosing 

d(-) similar to (3.73) we observe that, 

(,lim u(t)) - u{T) = 2e(a + £. (5^95) 

Considering assumption 5.79-b, choosing a suitable 6*, can make the difference 
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(5.95) arbitrarily large. Then either {((T") is large or limt_,2i+ ^(t) is large, therefore 

||^( )||/:°° can be made arbitrarily large hence contradiction. 

The proof is completed since P(S(A:b(7),A(^),D(e)),2) > P(Z(To,^, d( )),S) == oo. 

• 

Pmj)ogitzon 5.3. Suppose ^ ( ) satishes conditions 5.79-a, 5.79-b. Consider the closed 

loop (^(ro, )),Sp(^niax)) deHned by equations (5.78),(5.83). Then 

P ( 2 (;kb(7), A(^), D(e)), S f (^max)) oo as gmax oo. (5.96) 

Proof. See the proof of Proposition 3.3 and Remark 3.4. • 

Proposition 5.4. The closed loop {T,{xo,6,d(-)),ED(dmax)) defined by (5.78), (5.81) has 

the property 

P(2(Ab('-y),A(^),D(6)),Sf)((fniax))<oo, Vdmax>e. (5.97) 

Proof. Let xq g <%(?), d E A(6) and d E D(e). The uniform boundedness of signals 

x(-),6{-),u{-) as a continuous function of Vo{xo,9,djna.x) defined by (5.16) follow from 

Theorem 5.2. A similar calculation as Proposition 3.4 on (5.78) implies the uniform 

boundedness of x(-) in terms of a continuous function of Vo{xo, 6, dmax)- So 

«(t) = —oi(t) — ^ ( t ) ^ ^ ^ z ( t ) — a!Dno2;(t)<^(3:(t))^, (5.98) 

is uniformly bounded in terms of a continuous function of Vo{xo,6, dyns.x)- That is 

P(E(To, (f( )), ^^((fniax)) < M(%(i;o, (fmax)), (5.99) 

for some M{Vo(xo, 0, dmax)) < oo. The proof is completed by taking the supremum over 

system arguments zo, d: 

P ( E (^0(7), A(^), D(e)), 2D(dmax)) < 00, Vdmax > C- (5.100) 

• 
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fn)posi<%o?% 5.5. The closed loop (2(a:o,^, ((( )), de&ned by (5.78), (5.82) has 

the property 

P ( 2 (;tb(7), A((^), D(e)), 2^(dmax)) < oo, VcLax > 6. (5.101) 

f roo/. Replace Vo(a;o, ((max) with ^^(zo, dmax) deRned by (5.37) and follow the proof 

of Proposition 5.4. • 

T h e o r e m I. Suppose 4>[-) satisfies conditions 5.79-a, 5.79-h. Consider the system 

Z(a;o, o(( )) controZfers 2r)((Li.Tr) oWSp(gmax) (fe/ined by (5 78), (5.81) and 

(5.83) respectively. Consider the transient performance cost functional (5.84). Then 

Vdmax > e, 36*̂ â  > gUcA Vg^ax > 

r(2(A'o(7),A(^),I'(E)),Sf(gmax)) > P ( 2 ( ^ o ( 7 ) , A(6),D(6)),S^(dmax)). (5.102) 

Proof. The proof is followed simply from propositions 5.3 and 5.4. • 

T h e o r e m l a . Suppose ^(•) satisfies conditions 5.79-a, 5.79-h. Consider the system 

E ( z o , i j ( ' ) ) and the controllers '^H{dmax) omd 2f(^niax) defined by (5.78), (5.82) and 

(5.83) respectively. Consider the transient performance cost functional (5.84). Then 

Vdmax > E, ^ V n̂iax > %ax; 

? ( 2 (^-0(7), A((^), D(6)), S f (gmax) ) > P( s (;fo(7), A(6), D(e)), S^(dmax) ). (5.103) 

Proof. The proof is a simple consequence of Propositions 5.3 and Proposition 5.5. • 

5.4.1.2 Theorem II, I l a 

Again, we refer the reader to the discussion on the possible choices of dead-zone in 

section 3.5.5. 

Proposition 5.6. Suppose <̂ ( ) satisfies condition 5.79-c. Consider the closed loop system 

(S(a;o,^, (f( )),2f)((fmax)) defined by (5.78), (5.81). Then > 0 such that 

P(i:(Ab('-y),A((^),D(e)),SD((fmax))-^oo, as dmax^oo. (5.104) 
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fmo/. Let zo > 0 and replace equation (3.96) by 

a;(t) = —a3;(t) + 0^(z(t)) + d(t) Vt E [0,T). (5.105) 

A direct consequence of 5.79-c is 

< M < oo. (5.106) sup 
a; 

Therefore there exists 5 = 2aM such that if 0 = 5, then Vx(i) > 0, 

— or + g</i(a:) = ["̂ (a:)! > aM|,^(a;)| > 0, 

(5.107) 

The rest of the proof is followed by Proposition 3.7. • 

Proposition 5.7. Suppose satisfies condition 5.79-c. Consider the closed loop system 

(E(a;o, g, (f( )),2g(c(niax)) deEned by (5.78), (5.82). Then 3^ > 0 such that 

? ( Z (A:b(7), A((^), D(e)), 2ff (cfmax)) ^ oo, aa cfmax -> oo- (5.108) 

Proof. See proof of Proposition 5.6. • 

Proposition 5.8. The closed loop {T,{xo,0,d{-)),Ep{6^8x)) defined by (5.78), (5.83) has 

the property 

P ( 2 (^0(7), A(,^), D(e)), S f (gmax)) < 00, Vgma. > & (5.109) 

Proof. See the proof of Proposition 3.6. • 

T h e o r e m I I . Suppose (j){-) satisfies condition 5.79-c. Consider the system S ( z o , d{-)) 

and the controllers Sf)(dmax) o-nd'Ep[6^g^) defined, by (5.78), (5.81) and (5.83) respec-

tively. Consider the cost functional (5 .84) . Then 35 > 0 such that V^max > ^ 3i^max ^ ^ 

SMcA t/iat Vdmax > (fmax, 

?(2(;k'0(7),A(,^),D(6)),S^((fmax)) > P ( ^ ( ^ o ( 7 ) , A((^),D(6)),Ef(gmax)). (5.110) 
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Proof. This is a simple consequence of Proposition 5.6 and Proposition 5.8. • 

T h e o r e m I l a . Suppose satisfies condition 5.79-c. Consider the system E ( z o , 0, d(-)) 

and t/ie controZZers (dmax) S f (̂ max) de/ineff 61/ (5.78), (5.82) and (5.83) /lespec-

tively. Consider the cost functional (5 .84) . Then 3 5 > 0 such that V^max > ^ ^ ^ 

suc/l t/iot Vdmax > ( ^ a x , 

P(S(;fo(7), A ( J ) , D ( 6 ) ) , 2 ; f ( W ) > P(Z(A'o(7),A((^),D(e)),Sp(emax)). (5.111) 

Proof. This is a simple consequence of Proposition 5.7 and Proposition 5.8. • 

5.4 .2 Chain of In tegrators 

Suppose 0 G K in system (5.1). It follows by (5.7) that 

x{t) = Ax(t) + {B{0 — §{t))(^{x{t)) + d(t)), x{0) = xq. (5 .112) 

Let : R" —+ R be such that some or all of the following conditions satisfied at various 

points in this section 

a) a; = 0 < (̂z) = 0, 

b) 2:̂ 61̂ (1;) > 0, 

>0, 
9<̂ (a;) (5.113) 

d) 

5.4.2.1 Theorem I, l a 

Proposition 5.9. Suppose 0 G R and ^(•) satisfies conditions 5.113-a, 5.113-b. Consider 

the closed loop (2(a;o, d(-)),S) de&ned by (5.1), (5.6), where d() = e for some e ^ 0. 
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Then 

||2;(t)||—^0 85 t—»oo4=>0(t)—>oo as (5.114) 

Proof. 

—> ) Seeking a contradiction. If 6(t) ^4 oo then by 5.113-a, 5.113-b, 9{t) —> 0*, i.e. by 

Lemma 4.3 (0,0*) is an equilibrium point for some 9*. This contradicts the fact that 

the given e ^ 0 and assumption 5.79-a, the closed loop system 

-oFx + {6 — + E — 0 

ax^ h(j){x) = 0 

(5.115) 

has no equilibrium point. 

H- ) Defining the Lyapunov function 

V{x{t)) = x{t)'^Px{t), (5.116) 

yields 

V{t) = —x{t)'^Qx{t) + x{t)'^b({6 — 6{t)) + €) (5.117) 

< —A((5)||x(t)||^ + ||a;(i)|| 1̂ 1 |e| + <^(t) (5.118) 

where 

(^(t) = a;(t)^6 (^ — ^(t))(^(a;(t)). (5.119) 

Note that condition 5.113-b implies that as 9{t) —» oo we have (f{t) —» —oo for all 

x{t) ^ 0. The claim of the proof then follows using the same argument as in Proposition 

4.1, replacing :r(-) with a;( ) and 5{-) by 6{-). 

• 

Proposition 5.10. Suppose 0 G M and satisfies conditions 5.113-a, 5.113-b. Consider 

the closed loop (S(a:o, 0, d(-)), S) defined by (5.1), (5.6), where d{t) = e for some e ^ 0. 
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If x{-) is bounded and uniformly continuous then as t ^ oo 

^ 0, oo. (5.120) 

Proof. The proof is divided into two parts: 

(z) Firstly we show that z(t)^6 —+ 0 as ( —> oo. 

(n) Then we prove that d(t) oo which implies by Proposition 5.9 that x{t) —> 0. 

( i ) . Replacing y{t) by x{t)'^b in proof of Proposition (4.2) and following (4.109)-(4.112) 

yields 

x{t)'^b>—, Vt G + w]. (5.121) 

The boundedness of z( ) implies that 

||3:(')||/:°° < A" < oo. (5.122) 

By (5.113-b), the fact that x{t)'^b ^ 0 =>a;(t) ^ 0 and the negation of (5.113-a) we 

see that 

9!,(3;(())>^, (5.123) 

where 

O<;0 = inf '̂ < (̂a;(t)) | ||a;(t)||<A!' and z ( t ) ^ 6 > ^ ^ . (5.124) 

It follows that 

> 0 s.t. a!z(^)^6i^(T(t)) > Vt € +w] . (5.125) 

So 
flk-l-w ^ 

/ 6{T)dT > LUN. (5.126) 
Jtu 'tk 

With no loss of generality, we may assume — tk > uj. It follows that 

§{T)dT > kuN, (5.127) 
0 
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so +w) —+ oo as A: —̂  oo, hence ^(t) —̂  oo as t —» cx3. Therefore by Proposition 

5.9 ||z;(t)|| ^ 0, i.e. ^ 0, hence contradiction. 

(2). Suppose for contradiction ^^4 00. Then 0(t) —» ̂ * < oo, since is monotoni-

cally increasing by 5.113-a, 5.113-b. Note that x{t)'^b —> 0 => ^p{t) 0. Adding 

and subtracting for A: < A(Q)/A(f) to (5.118), we have that 

T e^v,(T)(fT. (5.128) 
Jo 

Consider the integral term in (5.128). There are two possibilities: either it is 

uniformly bounded, or not: 

(a). Suppose the integral term in (5.128) is uniformly bounded, then 

3 M > 0 s.t. 
t 

e tT 
0 

l/?(T)(fT < M, Vt > 0. (5.129) 

Therefore aa t —> oo, the term dominate the integral and therefore, 

limj^oo V{x{t)) = 0, i.e. x{t) —» 0 by (5.116); hence contradiction by Propo-

sition 5.9. 

(b). Suppose the integral term in (5.128) is not uniformly bounded, then the 

integrand e^^y(^) is either bounded or unbounded: 

(i). Suppose for all i > 0, we have |e^*y?(^)| < N for some N > 0. Then 

hm y(z(()) < lim (Vbe"':* + = 0, (5.130) 
t—MX) t-^OO 

hence by positive definiteness of V(-), we have limt^oo V(x{t)) = 0, hence 

contradiction. 

(w). The last caae is where both integrand e*'*y(t) and the integral are un-

bounded. In this case, as t —̂  oo, (5.128) is of indeterminant form. 

Applying L'Hopital's rule, we observe that 

lim e-*:* /%'=^(^(T)dT= lim ^ ^ 
t-*oo _/Q t-̂ oo (-*oo & 

So 
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lim y m < lim ^ ^ 0, (5.132) 

hence contradiction. 

Therefore ^ ^ oo and by Proposition 5.9, z —» 0. Thus completing the proof. 

• 

Proposition 5.11. Suppose 9 E R and ^(•) satisfies conditions 5.113-a,b,c and consider 

the closed loop (E{xo,6,d{-)),E) defined by (5.1),(5.6). Consider the transient perfor-

mance cost functional (5.84). Then 

P( 2 (;kb('7), A((^), I)(6)), 2) = oo. (5.133) 

Proof. Let xq E Xoil), & G A(6), and choose d(t) = e ^ 0. Suppose for contradiction 

V{'E{xo,0,d{-)),E) < oo. Replace the scalar x(t) by ||a;(i)|| and repeat the argument in 

Proposition 5.2 until (5.92). Therefore either V = oo or x{t) is bounded and uniformly 

continuous. The first case is a contradiction. The second case implies by Proposition 

(5.10) that 

||a;(t)|| —» 0, (̂<) —» oo. (5.134) 

It follows that x{t)'^b —> 0 and by 5.113-a that (j){x) —> 0. Applying these limits to 

limu(t), we have that 

lim u(t) = lim - ^(t) 

- lim ^ j a;̂ +l(̂ ) 

n—1 

= lim (g(t)(;6(a;(()) - e)G» + ^(t) ^^^(g(t)<?!'(a;(t)) - e) + ^ ^^^2;i+i ( t ) j , 

(5.135) 

but by (5.134), 

lim -—Xi+i = 0. (5.136) 
t^co ^ dXi %=1 

Therefore 

lim ii(t) = lim ^6(t)^(a:(()) — + 9 ( t ) ^ ^ , (5.137) 
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which is similar to (5.93). The rest of the proof is similar to Proposition 5.2 by 

considering condition 5.113-c and replacing by 8^(2:)/9a;n. O 

Prorogation 5.12. Suppose ^ E R and i^() satisEes conditions 5.113-a,b,c. Consider the 

closed loop (2(10, ^,(f( defined by equations (5.78),(5.83). Then 

P(Z (;tb(''Y), A(^), D(e)), (gmax)) oo as -> oo. (5.138) 

Proof. See the proof of Proposition 3.3 and Remark 3.4. • 

Proposition 5.13. Suppose 0 G R. The closed loop (E(a:o, d(-)), S£)((imax)) defined by 

(5.1), (5.15) has the property 

7^(2 (^0(7), A(J), D(6)), 2D(dmax)) < 00, > C- (5.139) 

Proof. Let xq E <%(?), ^ E A (J) and d E D(e). The uniform boundedness of closed loop 

signals a:( ), 6 ( ) , 'u() as a continuous function of Vo(a:o, cL.v) deGned by (5.16) follows 

directly from Theorem 5.2. Therefore by (5.7), x{-) is uniformly bounded in terms of a 

continuous function of Vo{xq, 6, dmax)- Hence 

tt(t) = -ana;n(<) - ^(^) ^ ^ 3=̂ +1 (t) - a;(t)^6(^(z(t))^, 

(5.140) 

is uniformly bounded as a continuous function of Vb(3;o, (̂ max)- Therefore 

:P(S(T0, g, 4 )), SD(dmBLx)) < M(Vb(a:o, dm«^)), (5.141) 

for some M(%(a;o, ĉ max)) < oo; hence P ( 2 (/tb(7), A((^), D(e)), Sf)(dmax)) < oo- O 

Proposition 5.14. Suppose 0 E M. The closed loop (E(xo, t^(-))!—-ffC^max)) defined by 

(5.1), (5.35) has the property 

? ( E (;tb(7), A(^),2)(6)),2j:f(dmax)) < oo, Vdm&x > 6. (5.142) 

Proof. Replace Vo{xq, 6, dmax) with V^(zo, 0, rfmax) defined in (5.37) and follow the proof 

of Proposition 5.13. • 
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Proof of Theorem I. 

The proof is a consequence of Proposition 5.12 and Proposition 5.13. • 

Proof of Theorem la. 

This is a simple consequence of Proposition 5.12 and Proposition 5.14. • 

5.4.2.2 Theorem II, I l a 

Proposition 5.15. Suppose 0 G M and 0(-) satisfies condition 5.113-d. Consider the closed 

loop system (Z(ro, 6*, 2f)((^max)) defined by (5.1), (5.15). Then 3 f > 0 such that 
A(6), D(e)), 2z)(dma%)) oo, as dmax ^ oo. (5.143) 

Proof. Condition 5.113-d implies that 

|a^a;| < ||a||||a;|| < (5.144) 

Choosing d{-) = e > 0, and 5 = M||a| | . Replace equation (5.105) by 

:rn(t) — —a^r(t) -{- 0(̂ (a;(t)) -)- <i(() Vt E [0, T), (5.145) 

and observe that if 0 = i5, then in(t) > 0, Va;(f) > 0. It follows by cascading the result 

alongside the chain of integrators (5.112) that ||z(t)|| —» oo as ^ oo. The rest of the 

proof is the same as Proposition 3.7. • 

Proposition 5.16. Suppose 0 G M and (^(•) satisfies condition 5.113-d. Consider the closed 

loop system (I](a:o,^, <̂ ( )),Sj:f(dmax)) deGned by (5.1), (5.35). Then 3^ > 0 such that 

? ( ! ] ('%('-y), A(J), D(e)), Sjf (dmax)) oo, as dmax oo. (5.146) 

Proof. See the proof of Proposition 5.15. • 
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5.17. Suppose 0 € R. The closed loop (S(3;o,^, )),Sp(^max)) deSned by 

(5.1), (5.59) has the property 

P ( 2 ( A ' o ( ^ ) , A((^), D(e)), S f ( g m a x ) ) < oo, V g m a x > (5.147) 

fmo/ . Property P2 of Theorem 5.4 guarantees the uniform boundedness of a;(), ^() 

and w() in terms of l/b(a:o, ||(^||,^max) dehned in (5.76) for all zo E /tb(i'), ^ E A(J) and 

d E T>{e). It follows by (5.112) that Xn(-) is uniformly bounded in terms of a continuous 

function of Vo{xq, ||<i||, ^max)- The continuity of ^ ( ) together with (5.135) implies that 

u{-) is uniformly bounded as a continuous function of Vo{xo, ||d||, 0max)- It follows that 

P(I](ro, (f()), S f (0max)) < M(Vo(a;o, ||d||, ^max)), (5.148) 

where continuous function M(Vb(2:o, ||c |̂|, 6'max)) < oo. Taking the supremum over 

system arguments xq, 6, d implies that for all 9max > S, 

P ( 2 (;%(?), A(j) , D(e)), S f (gmax)) < oo. (5.149) 

• 

Proof of Theorem I I . 

The proof is a consequence of Proposition 5.15 and Proposition 5.17. • 

Proof of Theorem Ila. 

This is a simple consequence of Proposition 5.16 and Proposition 5.17. • 

5.5 S u m m a r y and Discussion 

In this chapter we investigated robust adaptive control designs for the integrator chain 

class of nonlinear systems. We showed how a typical adaptive design stabilises such 

systems when no disturbances are present. The Dead-zone and Projection modification 

have been defined to assure robustness of adaptive systems in the presence of bounded 

disturbances. 
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Next, we de&ied and analysed the hysteresis dead-zone modiGcation for such nonlinear 

systems. Comparing this method and conventional dead-zone, we discussed the advan-

tages of hysteresis dead-zone e.g. uniqueness of solution, controllable Enite frequency 

chattering, and efficiency of the algorithm with respect to complexity and simulation. 

Application of hysteresis switching schemes are still an interesting line of research in the 

adaptive control literature, see e.g. [32, 52, 58] and references therein. 

Generalising Theorems I, la, II, and I la to the chain of integrators was discussed. 

Some assumptions have been made to ensure that parameter drift occurs. We started 

with a simple first order nonlinear system and showed that the assumption become more 

restrictive when considering higher order systems. 



C h a p t e r 6 

Concluding Remarks 

In this final chapter, we conclude by summarising the contributions of this dissertation 

and indicating some directions for future work. 

6.1 Cont r ibu t ion of This Disser ta t ion 

6.1 .1 P r i m a r y Contr ibut ions 

By considering a non-singular performance cost functional for a variety of systems (scalar 

systems, minimum phase linear systems with relative degree one and nonlinear systems 

in the form of integrator chain), we have established two rigorous results comparing the 

performance of the dead-zone and the projection based robust adaptive control systems: 

• The dead-zone based controller outperforms the projection based controller when 

the a-priori information on the uncertainty level is sufficiently conservative. 

• The projection controller outperforms the dead-zone controller when the a-priori 

information on the disturbance level is sufficiently conservative. 

These are the first analytical performance comparison results in robust adaptive control 

literature which take control effort into account The methodology is based on the a-

137 
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priori information available for each design and the novelty of analysis is to employ 

non-singular cost to formulate the problem. 

This case study has shown that a quantitative cost based approach can be utilised to 

assess relative benefits of different robust adaptive controllers. 

6.1 .2 S e c o n d a r y Contr ibut ion 

Motivated by a relatively old idea, an alternative for dead-zone modification has been 

developed. Hysteresis dead-zone controllers have some important analytical as well as 

practical advantages over to conventional dead-zone based controllers. For example, 

the solution of the closed loop is unique, sliding motion is mitigated, and the efficiency 

of the algorithm has been improved with respect to complexity and simulation. The 

comparative analysis was also applied to hysteresis dead-zone controllers. 

6.2 Recommenda t ions for F u t u r e Work 

There are a number of directions in which the results can be fruitfully generalised, for 

example: 

• Relaxing the assumptions 5.113-b appeared in the proof of integrator chain. Cur-

rently the proof relies on the assumption x'^b(f)(x) > 0 which restricts the choices 

of So, further generalisations of the current approach requires Ending less 

restrictive assumptions to ensure parameter drift. 

• Generalisation of the results to the minimum phase linear system with relative 

degree n. One possible method proposed by French [9] is motivated as follows: 

Denote En the relative degree n plant satisfying CI, C2 of section 4.2 ( except 

p = 1), and note that there exists a controller Si for which the closed loop (Si, Si) 

is well posed. Let us explain the idea for n = 2. Define z(s) := b'^s and observe 

that z(s)I]2 = ^1, i-e. (z(a)Z2,2i) is well posed. The equivalency of (z(g)Z2, Si) 

and (S2, z(g)Si) implies the well posedness of the latter. However, z{s)Ei is not 
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proper, so we add a filter term to obtain the proper controller M / ( s + M) z{s)'Ei. 

Now, we need to show that the Hlter term is small in some meajiingful sense. 

If (^(z(g)22, M/ ( s + M) z(a)22) — 0 85 M -+ oo, where J(', ) denotes the gap 

metric between two plants [81, 7], then (22, -z(s)Si) is well posed. A generalisation 

of Theorems I, II may be possible by similar reasonings. 

• Generalisation of the result to strict feedback systems, via backstepping controllers. 

• Establishing whether the same results can be given for the alternative costs, for 

example, V = ||a;(-)||£oo + ||tt(-)||£oo. 

• Whilst we have given our result in an setting, we expect that many meaningful 

generalisations are possible with different signal norms. In particular, generalisa-

tion to LQ performance of control and state transient performance remain the 

subject of future work. 

• The techniques developed in this thesis can be extended to comparison of many 

other modified algorithms e.g. cr-modification, relative dead-zone, etc. In fact, 

similar comparisons could be made for all manner of controller pairs, see e.g. [10]. 



A p p e n d i x A 

Lemma A.l . Consider the closed loop (E(a:o, 0, S) defined by (3.4),(3.10), where 

d{-) = e,. Suppose there exists X 6 M such that lim^_,oo ^{t) x{t) = L. Then L = e. 

Proof. Let g and g' be defined as follows: 

^ V _ dt^ 

A relationship between g, g' can be obtain as follows: 

+ (A.2) 

therefore 

(A.3) 
' " i l l 

Now since there exist L s.t. limt_^oo g = L then by considering the Taylor series of g, g' 

(these exist since the r.h.s. of the equations (3.4),(3.10) are analytic, hence the solutions 

are analytic.) we have limt_»ooy = hm(_*oo9 = i G hmf_»ooy/g = 1. It follows that 

lim 9 = lim f + + A ^ lim,-.,„(^ax + fe + 6) ^ ! (A.4) 

Note that by Proposition 3.1, hm^^oo = 0 . Hence 

L = lim 9x = lim g = e. (A.5) 
(—»oo t^ao 

• 

140 



Appendix A 141 

A.l. Suppose , 0 = 1 and C1,C2 hold. Consider the closed loop system 

(E(a:o, (^()), S) defined by (4.2), (4.24), where d(t) = e for some e ^ 0. Then as t ^ oo 

||z(^)|| —0, ^(t) —̂  oo. (A.6) 

Proof {A. Ilchmann [21]). Consider (4.2) in the equivalent form 

y(t) = (^ai — CB5(t)^ y(t) + A2z{t) + CBe 

z(() =^3!/(^) + ^ z ( ( ) , (A.7) 

J(t) 

(i) limt_oo 0(t) = oo. 

Seeking a contradiction, assume ^(t) —̂  6 R aa ( —» oo. Then (A.7) yields 

y E vC (̂0, oo) and invoking asymptotic stability of A^ and (A.7) again gives z E 

£^(0, oo). We may rewrite the first equation in (A.7) as 

= -!/(() + V'(̂ ) + CBc, (A.8) 

where 

' 0 ( i ) : = [1 + a i — CB6{t)]y{t) + A2z(t). (A .9) 

Since E £^(0, oo), by an application of Lemma 4.1 in [23] ,̂ we conclude 

l im y ( t ) = l i m \e~^y{Q)+ [ + CBe]ds \ = CBe, (A .10) 

t-»oo f-^oo L Vo J 

which contradicts 3/ E £^(0,00). 

(n) lim(_*oo z(() = 0 
This follows from Proposition 4.1. 

• 

^The convolution of an exponential with an £^-function gives a function which leads to 0. 
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