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Networks of cheap, readily available processors provide an increasingly common solution to the 

ever-increasing demand for computational resources. Massively parallel computers are now in com-

mon use in a wide variety of applications, including many areas of signal and image processing, 

automotive and aerospace engineering, and scientific research. The concurrent development of 

suitable programming environments is essential to the eScient exploitation of these parallel com-

putational architectures. This thesis addresses this problem, and describes the design, imple-

mentation, and utilization of a programming library for the efficient exploitation of computational 

parallelism on homogenous and heterogenous workstation clusters. 

The analysis of computational parallelism is complicated by a number of factors. The state 

space is increased, parallel programs may exhibit non-deterministic characteristics, and it is fre-

quently impossible to decompose an algorithm executed in parallel into simple, composable logic 

elements. This may lead to erratic, unpredictable, and irreproducible behaviour in the execution 

of such programs because any errors incorporated into a code my be dependent on the precise se-

quence in which they are executed. Formal mathematical analysis is, however, sufficiently powerful 

to prove that a program is correctly structured, and is a valuable approach in establishing the 

expected behaviour of a program where it is too complex to be accessible to inspection alone. The 

use of formal mathematical methods in the analysis of computational parallelism plays a central 

role in this thesis. 

It is proven in the first section of this thesis that a simplified communication scheme, defined 

as the MP parallel programming language[30], is deadlock free. This key result is established 

using the process calculus CSP[15], providing a precise description of the components which would 

otherwise be liable to subtle ambiguities of interpretation if presented in seemingly 'plain English'. 

In particular, it is shown that the CSP design adopted here guarantees freedom from deadlock, 

provided that all input and output operations are performed simultaneously and an infinitely 

readable 'external input' is provided. 

A library which closely follows the CSP design has been implemented and is presented in 

detail. This presentation describes both the construction of the library and the syntax required 

for its use. The correctness of the implementation is then demonstrated using illustrative ex-

amples. An exhaustive analysis of a common sorting algorithm is presented which is sufficiently 

simple that the flow of data in the program may be traced in detail. The second, more complic-

ated example is drawn from an important problem commonly occuring in atomic, molecular and 

nuclear physics, and which is a significant consumer of computational resources worldwide; the 

Hartree-Fock approximation. The atomic Hartree-Fock method is investigated using the mpkern 

parallel programming library in both task parallel and data parallel forms. An analysis is also 

performed which examines the efficient distribution of the most computationally intensive tasks 

in the Hartree-Fock method across a heterogeneous network of nodes, achieving close-to-linear 

scaling in the cases tested. The performance and potential uses of the library are discussed in the 

concluding section of the thesis. 
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Chapter 1 

In t roduc t ion 

Parallelism is often used to make feasible the implementation of computationally intensive tasks 

which would otherwise be beyond reach. Scientific and technological applications of large-scale 

parallel computing are now frequently used to construct realistic physical models or to perform 

simulations of complex phenomena which may evolve in time. Notable areas of application to phys-

ical processes include computational fluid dynamics, in particular meteorology and aerodynamic 

simulations, financial modelling, the simulation of solid- and liquid-state properties in materials 

science, and the electronic structure and chemical reactivity of atoms and molecules in many areas 

of chemistry, physics and molecular biology. 

The increasing the speed of processors in the last 10 years has made many of the problems 

that used to require parallel systems feasible on a single processor. There are still applications, for 

example weather forecasting, for which the speed of current single processor systems is insufficient. 

Large scale numerical problems also arise in computational fluid dynamics, quantum physics and 

chemistry, finite element analysis and image processing. Many of these applications can exploit 

parallel processing, which is the simultaneous use of multiple processors to attack a problem. 

Unfortunately the use of parallel processing introduces the possibility of race conditions and 

deadlock, which only affect concurrent systems. The complexity of analysis is also significantly 

increased by parallel processing. 

Race conditions occur when one processor manipulates shared data that is in an inconsistent 

state because another processor is in the process of updating it. Examples include a processor 

reading the value of a shared number before another processor has updated it. 

Deadlock occurs when no processor can make progress because they are all waiting for another 

processor to do something. This situation frequently occurs because all the processors want to 

send data to a processor that is unwilling to receive it. Deadlock can also occur when a race 

condition causes an inaccurate value of a counter which indicates the number of processors that 

have reached a synchronisation point. 

Testing a parallel program is difficult because bugs may be exposed only by specific timing, 

which is almost impossible to reproduce reliably. Thus there is no guarantee that a program that 

passes a test will always operate correctly. The only alternative is to locate and eliminate bugs by 

analysis of the program. 

Sequential programs are frequently analysed by making statements about their state at par-

ticular points. Analogous statements about parallel programs using p processors must take into 

account the code being executed by all p processors at a given moment, which may result in an 
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Figure 1.1: Task parallel network of components that computes — 4ac 

exponential growth in the number of states that have to be examined. This makes global analysis 

of any significant program impractical. The need to take account of mutual exclusion devices, 

used to prevent race conditions, increases the complexity of global analysis. 

Various design restrictions have been used to reduce the complexity of the analysis required 

to verify a parallel program, for example algorithmic parallelism. Algorithmic parallelism, also 

known as task parallelism, avoids race conditions by eliminating shared data. The program is 

broken up into a series of components which transform their inputs into outputs which are sent to 

appropriate destinations. Composable logic applies to task parallel programs; the overall effect of 

several components can be simply deduced from the processing performed by each component. It 

is usually assumed that a message can only be sent if the destination is willing to receive it. 

Figure 1.1 illustrates a task parallel method of computing — 4ac. The arrows represent the 

direction of data flow, the multiply components compute a product of their inputs and the minus 

component subtracts its right input from its left input. If sufficient resources are available then 

both the multiply components can operate in parallel. In practice the example in figure 1.1 would 

be much slower than a sequential solution on most hardware, due to the cost of communication. 

The same design can be applied to larger problems using computationally expensive components. 

Unfortunately task parallel programs can still deadlock for several reasons. The usual example 

is a cycle of components all trying to send a message. All the components in such a cycle are blocked 

because the intended recipient is not willing to receive a message until it has sent its message, 

and thus no further progress is possible. Similar situations can arise due to aggregating several 

components into a single thread of control, which may be necessary for an efficient implementation 

of a task parallel program. 

This thesis introduces two styles of task parallel programming which merge the input and 

output stages into a single parallel input and output stage. This eliminates many of the problems 

of cycles because all components that wish to send an input must be willing to accept one. Two 

types of systems are analysed; synchronous programs and asynchronous programs. 

Synchronous programs are arbitrary networks of synchronous components, which read an input 

from all their inputs and send an output via all their outputs before entering their compute phase. 

All inputs are readable before the first cycle. Deadlock is impossible for such a system and a 

property relating the number of cycles completed by two indirectly connected components can be 

proved. 

Asynchronous programs, which are networks of asynchronous components, are much more 

flexible than synchronous programs. Asynchronous components can maintain state and choose 

which, if any, of their outputs to use. However an asynchronous component must be willing to 

accept one value from any input that has been used. If an asynchronous component is unable to 



enter its compute phase due to an unfinished output it might be required to read a single value 

from more than one input. An asynchronous component must enter its compute phases when all 

its outputs, generated in the previous cycle, have completed and one or more input has been read. 

This thesis presents a proof that any network of asynchronous components is deadlock free, 

provided that at least one infinitely readable external input is available and the computation phase 

of all the components always terminates. The "rules" used to determine which outputs are used 

and how the components are connected do not matter. The communication network connecting 

the components can contain arbitrary cycles. Attractions of the design include 

0 the absence of restrictions on the way the components are connected. 

o the ability to exercise none of a component's outputs. 

» lack of global synchronisation. 

« guaranteed deadlock freedom without any analysis of the way the components are connected. 

A library implementing the asynchronous design, without the external inputs and designed for 

a batch processing environment, is presented. Benchmark results of a real application indicate 

the library is efficient and the design should be scalable. The library supports components with 

(private) state, which can be different for each component even if they share the computation 

phase implementation. Termination is implemented by a mechanism unrelated to the task parallel 

program design. The only possible reason for deadlock is that no component can read any of its 

inputs and this is easy to avoid. For example, it is easy to see that the minus component in figure 

1.1 will receive both the inputs it requires. 

1.1 Outline of this document 

Chapter 3 briefly describes CSP, the process calculus used to analyse the behaviour of synchronous 

and asynchronous programs. Terminology such as the precise meaning of "deadlock free" and a 

few simple results are proved in this chapter for later use. 

Chapter 4 shows that synchronous programs, where every component is obliged to send a 

message to every output and accept a communication from every input in every cycle, are deadlock 

free. A brief analysis of the strength of synchronisation in a synchronous program is also included. 

Chapter 5 proves the more surprising result that asynchronous programs, which only require 

components to be willing to read a value from one or more inputs per cycle, are also deadlock 

free. Both deadlock freedom proofs postulate a trace after which deadlock occurs and deduce 

contradictions about it. 

FDR, a CSP based verification tool, can only be used to analyse specific instances and thus 

was not appropriate. FDR was used to show that a 5 node complete graph (5 components with a 

direct, bi-directional connection between all pairs of components) is deadlock free. This result is 

powerful because it also applies to any 5 node program that uses a subset of the connections and 

does not depend on the rules that determine which connections are used. 

Since even a 5 node complete graph has many thousands of states a large and complex network, 

for example the task parallel Hartree-Fock program below, could have too many states to analyse 

using FDR or a similar tool. The proof eliminates this problem because it analyses a network of 

components without reference to the number of components or how they are connected. 



Chapter 6 describes how to use a library for implementing programs which are almost identical 

to asynchronous programs. The timing guarantees, high level details of the implementation and 

programming interface are described. Methods for dealing with pathological timing, and the 

functions included in the library to simplify this task, are documented. 

A simple programming language, called eg, for generating the required list of components and 

connections between them is described. An implementation of sample sort, a popular parallel 

sorting algorithm, is used as a simple example. 

Chapter 7 describes the implementation of the library. The implementation of eg is also 

described briefly. The claim that the library is a correct implementation of the model is a strong 

claim because the library is single threaded and the programming model uses many threads. It 

is obviously important to show that the use of the library cannot introduce deadlock; the two 

examples in chapter 2 show that this can happen if multiple, separate, components are merged 

into a single thread. 

The description of the library internals includes sufficient detail to discuss why the library 

implementation is a correct implementation of the described model. A complete proof of this 

assertion is outside the scope of this thesis. Among other things, a complete proof would have 

to demonstrate the maintenance of several invariants involving variables omitted from chapter 

7. Chapter 8 describes some of the missing details and argues that some of the most important 

invariants are maintained. 

Chapter 9 applies the library to a simple version of a "real world" large scale numerical prob-

lem, the atomic, closed shell, Hartree-Fock problem. Large instances of the molecular Hartree-Fock 

problem are often solved on supercomputers. The implementation of a task parallel and data par-

allel version of the problem, both using the mpkern library, is briefly described and the performance 

of the resulting programs measured. 

Finally chapter 10 draws some conclusions and indicates some of the possible areas for further 

work. 



Chapter 2 

Paral lel p rogramming models 

Parallel programming involves the solution of a wide range of problems on a wide range of systems. 

The cost of accessing remote memory, where it is supported, depends on how the shared memory 

is implemented. Accessing globally flat shared memory costs the same on all processors and is 

usually inexpensive. Large scale shared memory supercomputers often have distributed shared 

memory with non-uniform access times which depend on where the memory is located—access to 

"local" memory is much faster than access to "remote" memory. 

An increasing popular design is a cluster; multiple networked commodity computers, which 

are relatively cheap due to the economies of scale, used only for parallel computation tasks. The 

network that connects the nodes of a cluster is usually a lot slower, and cheaper, than the networks 

used by supercomputers. The nodes on a cluster do not share any memory. Message passing is 

usually used on clusters, but software simulation of shared memory is possible (albeit expensive). 

This diversity of hardware has lead to the development of various models of parallel program-

ming that can be implemented on a range of parallel systems. The performance of these models 

on any given hardware can usually be described by a relatively small set of statistics. For example 

vector machines are described by parameters including the throughput when all the stages of the 

pipelined vector processors are in use, and the vector length which is required to achieve half this 

performance. 

Source compatible implementations of some models are available on a wide range of systems, 

allowing a program that is used to solve large instances of a problem on a supercomputer to 

be developed and tested, using small examples, on relatively inexpensive and widely available 

hardware. The program can then be recompiled, without any changes, for use on a supercomputer. 

It is worth examining a problem before deciding to use parallel computation. The improvement 

possible on some problems is small and it may be cheaper, and easier, to use a faster computer 

instead. Amdahl thought the impact of parallel computing would be relatively modest due to the 

serial portions of jobs which cannot be done more quickly on multiple processors. 

2.1 Amdahl ' s Law 

Problems that can be decomposed into completely independent elements, for example, rendering 

many frames in a film, scale linearly—p processors do the job p times faster. However many 

problems have portions which can be done in parallel and portions which must be done serially. 

If Tp{n) is the time taken to solve an instance of size n using p processors, Ts{n) is the portion 



that mmt be done serially and is the time taken for the portion that can be parallelised 

then 

Ti(n) = TS{N) + TC{n). The best performance that can be achieved using p processors is 

TS{N) + TC{n)/p and thus 

rp(») - + r c ( n ) / f ^ 

This is known as Amdahl's law and dates back to 1967. Problems that scale linearly, or almost 

linearly, mentioned above, have a negligible serial time, TS{n), for all n. Parallelisation, and 

communication, often has significant costs so very few programs achieve the speed up permitted 

by Amdahl's law. 

Fortunately large numerical problems often have a small Ts{n)/Tc{n) and TC{n)/Ts{n) -)• 0 

as n -y oo, so if parallelism is used to solve larger cases the impact of Amdahl's law is significantly 

reduced. Choosing scalable algorithms, which might be less efficient on a single processor, reduces 

the impact of the serial time in many cases. 

2.2 Programming models 

Different sorts of parallel systems and hardware have different characteristics. The wide variety 

of parallel systems has led to the development of a number of programming models that describe 

parallel systems. The challenges involved in parallel programming include: 

» A parallel program has many more possible states than a sequential program. Analysing 

all the possible states, to ensure correctness, whether formally or informally, is likely to be 

intractable. Simplifying design restrictions can reduce this problem. 

8 Bugs in parallel programs can depend on very particular timing, which is not necessarily 

reproducible, even if it is known. Adding tracing might perturb the timing sufficiently to 

avoid the bug. System features, for example buffering, might prevent the bug from occurring 

in small test cases. 

® Hardware can include components of various ages, and as a result nodes of a mixture of 

speeds. The time required to compute a complex expression may be a complex function of 

the processor type and speed, making dividing a task into equal cost portions difficult. 

* Poor load balancing can cause inefficient use of resources due to different processors arriving 

at a synchronisation point at different times. Dynamic load balancing algorithms attempt to 

redistribute the load in the light of actual performance, at the cost of using processor time 

for an activity that does not advance the computation. 

One of the significant differences between different parallel programs is the granularity. A 

fine grained program is broken into many small operations, which are combined frequently. A 

coarse grained program is broken into a few large jobs, which synchronise less frequently. Fine 

grained programs can, in some cases, exploit more parallelism but may be slower due to the cost of 

synchronisation. Communication on clusters is usually much slower than computation, so clusters 

are inappropriate for fine grained parallel programming. 



2.2.1 Shared memory 

If the number of processors is moderate it is feasible to construct parallel computers with globally 

shared memory, to which all processors have uniform access. This often referred to as globally flat 

memory. Multi-processor x86^ servers are a widely available example of this sort of system. The 

hazards , on these machines are race condifiona and (feadfocA. 

Many data structures, for example hash tables, are expected to satis^ Gxed facts, called mT/on-

ants. A state which satisfies appropriate invariants is a consistent state, and all other states are 

inconsistent states. Some operations involve the data temporarily being in an inconsistent state. 

A nice con&'fiom occurs if another processor examines the data when in it is in an inconsistent 

state. 

MufuoJ devices, henceforth mufezes, prevent race conditions by allowing at most one 

processor access at any time. Acquiring a mutex is a single, indivisible operation; all such opera-

tions are said to be ofomic. If more than one processor tries to acquire a mutex simultaneously 

exactly one of them succeeds. Sections of code that require exclusive access to information are 

called and kept as short ag possible. 

Dead/ocA is possible if two or more processes require an overlapping set of mutexes. A minimal 

example is just two processes (A and B) both needing two mutexes & and If A holds a and is 

waiting for while B holds and is waiting for a then both processes block, waiting for a mutex 

to become available. The program never progresses beyond this point. 

5'emapAorea are low-level devices for controlling access to criticEil sections. Two operations are 

supported: UP Increments a semaphore atomically and DOWN decrements a semaphore atomic-

ally, unless it is 0. If a semaphore is zero all DOWN caUs are suspended until an UP occurs, when 

exactly one DOWN call will proceed. 

14] are higher level mutual exclusion devices and provide protected access meth-

ods for accessing a shared data object. Race conditions are impossible because only one monitor 

method, for one process, is active at any time. Operations that cannot be completed may be 

suspended within the monitor and resumed later. 

2.2.2 Message passing 

An alternative model of parallel computing is meaaage poaging. This model avoids race conditions 

by viewing each process as having a completely separate a set of resources. Processes share 

information by sending messages to each other. Deadlock is still possible, for example if processes 

A and B are waiting for a message from each other. 

Deadlock occurs in a message passing system when it reaches a situation m which every in-

dividual process can communicate, but those with which it wishes to communicate block the 

communication. General results, for example those in Roscoe and Dathi's 1986 paper[34], can be 

used to prove with minimal effort that a large set of communication patterns are deadlock free. 

Message passing scales to much larger numbers of processors than globally Sat shared memory 

because there are no resources that must be shared globally. The model is easily implemented on 

multiple networked workstations, which many organisations already have. Some message passing 

libraries, for example MPI[40], are supported on a wide variety of hardware, mcludmg massively 

parallel machines. 

generic name for 80386, 80486, pentium, pentium II, etc microprocessors 



2.3 The complexity of parallel programming 

The conditions that lead to errors in parallel programs due to violation of mutual exclusion, 

deadlock and other problems caused by multiple threads of control can be very complex. Adding 

debugging, for example including verbose messages about the progress of a computation, can make 

it impossible to replicate the conditions required for a bug to manifest itself. 

Structured programming and object-orientated programming address complexity problems in 

sequential systems. Debugging is simplified by simplifying flow control; for example loops can be 

clearly identified. Improved modularity allows the implementation of an object to be analysed 

separately from its use. The additional complexity of parallel systems is not considered. 

Two fundamental techniques have been applied to simplify the construction of parallel sys-

tems: simplification and analysis. Simplification avoids the problems that occur in complex cir-

cumstances by using simple communication and coordination structures, for example data parallel 

programming, SPMD (single program multiple data), BSP[21] (bulk synchronous parallel) and 

process farming. Analysis provides techniques to detect possible deadlocks and similar problems. 

Many analysis techniques are sufficiently general to prove properties of whole classes of commu-

nication patterns. 

2.3.1 Analysis techniques 

This subsection describes various common techniques used to analyse sequential imperative pro-

grams and then describes approaches to extending them to handle parallel systems. 

Sequential program analysis 

A common method of analysing sequential programs proves properties of pieces of programs and 

then composes the results to prove statements about larger pieces of the program. This is often 

called assertional reasoning because it asserts facts about the state of a program at specific places. 

Analysis of loops usually proves by induction a statement that the conditions at the top of a loop 

still apply after an iteration. Termination is usually proved by demonstrating an integer function 

that strictly decreases each iteration with a lower bound. The facts proved are usually based on 

the reasons the program is believed to work. 

A related form of reasoning is Hoare logic which represents sequential programs as a sequence 

of Hoare triples, {P} c {Q} where P is a precondition, c is some code and Q is a postcondition. 

If P applies before c is executed the Q will applied afterwards. 

A calculus allows Hoare triples to be combined, using rules like {P} ci{Q}; {Q} c-i {i2} implies 

{P} ci; C2 {P}. This rule states that if ci starts establishes Q given P and cg establishes R given 

Q then ci followed by ca establishes R given P, under the usual interpretation of the notation. 

The analysis would apply equally to any interpretation of the same symbols. 

A similar calculus applies to precondition, postcondition pairs. Using [P, Q], where P is a pre-

condition and <5 is a postconditions, one rule allows [P, Q] to the transformed into [P. iZ]; [P, Q]. 

As with Hoare triples there is a conventional interpretation of the notation but the analysis applies 

however the symbols are interpreted. 

Extensions to parallel programs 

Shared objects in parallel programs may be changed by several processes, which invalidates the 

assumptions that data not modified by an operation stays the same implicit in the methods of 



analysis described in the previous subsection. This removes simple rules for composing established 

facts about the effect of sections of a program, except in severely circumscribed circumstances. 

A simple example is that if one section of code establishes X and another establishes Y given X, 

then joining them in a parallel environment is not reliable if another thread might make X false 

before Y is established. 

Considering the activities of all threads together allows assertional reasoning to be applied 

to parallel systems[2, 36]. This can be prohibitively complex, especially if the processes are not 

synchronised (the usual case). Assertional reasoning does have the advantage that it is completely 

general and can prove more than just mutual exclusion, but also deadlock freedom, liveness, 

etc[l, 27]. 

Owicki and Gries provide an extension Hoare logic to cover parallel programs [26], allowing 

parallel composition subject to non-interference properties. Each thread is broken into a series of 

atomic steps with conditions with stated conditions between them, and it must be verified that 

the actions of other threads will not interfere with these properties. Thus exponential explosion 

of what has to be proved is remains, although the Owicki-Gries notation might make it easier to 

automated this analysis. 

The rely/guarantee approach[6]that are relied upon and guaranteed during the operation to 

pre and post conditions. This allows analysis of what level of mutual exclusion is required in which 

places. It also simpler than Owicki-Gries and avoids many of the problems—combinations pre, 

rely, guarantee and post conditions can be combined and this can be used to combine threads in 

groups. 

The dining philosophers problem[15, section 2.5, page 75]̂  shows that an entire parallel system 

must be analysed; both forks and philosophers are deadlock free and removing any component 

makes the remainder of the system deadlock free. Despite this the complete dining philosophers 

system is not deadlock free. 

Message passing avoids shared data, and thus race conditions and mutual exclusion require-

ments, but can be subject to subtle synchronisation problems if the communication pattern is 

complex. Assertions can be used to reason about these systems but process calculi are likely to 

yield the same results more simply. 

2.3.2 Process calculi 

There are several different process calculi, for example LOTOS[39], CCS[23], CSP[15, 33] and the 

7r-calculus[24, 35]. All are defined in mathematical terms, use an idealised model and only analyse 

the pattern of communication. Most process calculi can theoretically be extended to analyse the 

value of variables too, albeit at the expense of reducing the tractability and ease of automating 

the analysis. 

Very few systems actually implement the idealised models assumed by process calculi. For-

tunately it is fairly easy to model more realistic models within the idealised model, and often 

possible to argue that the differences do not affect the validity of a result. All process calculi can 

be used to specify systems which are not deadlock free and can be used to analyse the possible 

causes of deadlock in systems which are not deadlock free. 

All process calculi allow one to compose components in a relatively simple manner. The 

definition of a process almost always includes sufficient information to deduce that the dining 

^This version of the dining philosophers problem does not include the butler, who prevents deadlock. 



philosophers[15, 12, page 75] problem with one of the components removed is deadlock free, but 

the entire system can deadlock. Further they can show that the butler^ prevents deadlock. 

Process calculi allow one to analyse all the possible behaviours of a model for problems, in-

cluding deadlock and live lock (also known as divergence). Extensions to the process calculi for 

handling time[7, 29] allow one to verify that programs meet deadlines. Process calculi have been 

used to prove bus negotiation protocols and that a fault tolerant railway signalling system meets 

safety criteria[4]. 

The unambiguous meaning, powerful analysis and proof techniques that process calculi provide 

make them useful for the specification, design and analysis of parallel programs. A. W. Roscoe 

and Dathi[34] use CSP to prove that a large class of communication patterns are deadlock free and 

a more systematic presentation with some further results can be found in The theory and practice 

of concurrency by A .W. Roscoe[33]. Automatic model checkers based on process calculi, such as 

the concurrency workbench[5], have solved many of the tractability problems of process calculi. 

2.4 Simplified programming schemes 

A large application, for example large scientific codes, can be millions of lines long and have very 

complex data dependencies. A number of approaches simplify parallel programming by restricting 

the design. Parallelising compilers, analogous to vectorising compilers, often automatically detect 

and exploit opportunities for data parallelism in existing programs. 

2.4.1 Non-imperative programming languages 

A number of programming languages, some of them for parallel systems, are not imperative 

programming languages. Parallel implementations of these languages avoid most of the well known 

problems by not supporting the problematic constructs. 

A functional program is composed of function definitions for example square x=x * x. Re-

cursion is used instead of loops, and only the values required are computed. There are no variables 

or control flow, so race conditions are impossible and mathematical analysis is simplified because 

there is no persistent state. 

A UNITY program [3] consists of a state and set of guarded assignment statements which 

manipulate the state. Other systems that implement something similar include spreadsheets (when 

you change an input those cells that depend on that input are updated automatically). 

At each step in a UNITY program one of the assignment statements is selected, and if its 

guard is true the state changes as specified by the assignment statement. A fairness condition 

states that in any infinite execution each assignment is chosen infinitely often. Since at most one 

assignment statement is selected at each step it could be argued that unity does not support parallel 

programming. The state stops evolving when a fixed point is reached when all the assignment 

statements do not change the state. Among other things UNITY supports the statement of 

invariants the state should satisfy after each step. 

Neither functional programming languages nor UNITY are obviously readily implementable 

on conventional hardware without an interpreter or suitable frameworks for analysing imperative 

parallel programs. Even if the problem of adding control flow to programs without it is solved, 

which is still a research problem for functional programming languages, UNITY'S global state 

makes efficient parallel implementation difficult. 

®the butler only allows 4 of the 5 philosophers to reach the table at any time, preventing deadlock. 
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As a result neither UNITY nor functional programming languages are widely used for problems 

where performance is critical, for example computation fluid dynamics and the Hartree-Fock prob-

lem (which is discussed in chapter 9), which require a level of performance that is only available 

from imperative programming languages on conventional hardware. 

2.4.2 Data parallelism 

Data parallel programming languages, for example HPF[13, 37], model a single thread of control 

with statements applying to multiple data items (which are often implemented by distributing 

them across multiple processors). Methods of reasoning about sequential programs, for example 

claims about the values of variables at specific points, can be applied directly. Related methods 

of debugging, for example printing intermediate results to check their values, also work. 

Automatically parallelising compilers, for example SUIF[9, 18], detect and exploit opportun-

ities for data parallelism, often using techniques originally designed for vector machines. Hand 

parallelisation often produces better results because people can perform more extensive transform-

ations than computer programs. 

Vector machines use highly pipelined arithmetic—when the first operand has reached the 

second stage the next pair of operands is passed to the first stage. If there are n stages and 

the vectors are long then this is almost n times as fast using much less than n times the hardware. 

The low volume of vector hardware makes vector supercomputers very expensive. Some recent 

higher volume hardware, including the pentium 4, have pipelined floating point arithmetic. 

Similar problems are tackled on clusters in a data parallel program by dividing the data between 

the n processors, as evenly as possible. If the expression is complex then the cost may be a complex 

function of the processor type and speed. Thus it is difficult to make effective use of multiple 

processors with a range types and speeds. One approach to this problem is to use dynamic load 

balancing algorithms which redistribute the load in the light of measured performance. The major 

disadvantage of these algorithms is that they use resources for a purpose which does not directly 

contribute to the desired result. 

2.4.3 Bulk synchronous parallel 

A bulk synchronous parallel program, henceforth BSP, proceeds in a series of supersteps each 

terminated by a global synchronisation. Communication takes place only at the end of a super-

step. Deadlock is completely eliminated and the result is fairly efficient for a broad variety of 

applications. 

BSP solves potential complexity problems by having no shared data within a superstep and 

making it easy to know what code each CPU is executing within each superstep. This allows one 

to analyse each superstep on a per processor basis, combine them for a complete analysis of a 

single superstep and compose supersteps simply[12]. 

2.4.4 Restricted communication patterns 

Per Br inch Hansen et al have proposed the use of frameworks[10, 11] for various styles of ap-

plication, for example n-body problems. The communication pattern of a template is fixed, and 

verified to be correct, for example using one of the formal methods discussed above. A new prob-

lem with the same communication requirements as the n-body problem can be implemented by 

just changing the details of the calculation. 
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Figure 2.1: Deadlock scenario for an acyclic set of components due to aggregation on two nodes. 

New programming languages, or libraries, which restrict the communication patterns to a 

class proved to have desirable properties are based on similar reasoning. Analysis of a fixed 

communication graph, a set of nodes and edges (pairs of nodes), does not suffice for these systems— 

instead a whole class of communication patterns has to be analysed. 

Some languages allow the specification of a system which can deadlock and use static analysis 

to detect deadlock at compile time. The determination that a program is deadlock free is almost 

always definitely correct, albeit at the cost of not detecting the deadlock freedom of some deadlock 

free programs and computationally expensive analysis. 

Common techniques for proving classes of systems are deadlock free include constructing a 

parameterised system that describes the behaviour of at most a few components, and then showing 

that adding a component to it results in another instance of the same system, usually with different 

parameters. It then suffices to show that this system has the claimed properties (for example, 

deadlock freedom). 

2.4.5 Task parallelism 

Algorithmic parallelism, sometimes called task parallelism, passes data among a network of pro-

cesses which perform specific, and sometimes unique, transformations and integration of the in-

coming data. There is no shared data between components, although components can have private 

state. The components of a task parallel program can be analysed separately and simply composed 

to deduce an overall behaviour of the program, provided it is deadlock free. 

The communication structure can be represented as a graph, with the nodes representing 

processes and an arc from node A to node B if node A sends a message to node B. It is frequently 

assumed there is no buffering between any pair of nodes-a destination node must be listening 

before a message can be sent. If a node is not listening then the sending node blocks until the 

message can be sent. 

In this case the communication graph must be carefully designed to avoid a cycle of depend-

encies, which cause deadlock (all the nodes in the cycle are attempting to send a message, and 

all fail as result). Unless the deadlock freedom can be proved by reference to general results, for 

example one of the results in [34], a specific proof is required. This requires global analysis of the 

network, including possibly complex analysis to show that any cycles in the network are deadlock 
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Figure 2.2: Deadlock scenario for two deadlock free cycles, adapted from [20]. 

free (the task parallel Hartree-Fock program, presented in chapter 9, necessarily contains several 

cycles). 

Even if the network is deadlock free, aggregating multiple components into a single thread of 

control can introduce deadlock. The circles represent components and arrows the direction of a 

communication. A label on an arc represents an undeliverable message. 

The communication structure of components A, B, C, D and E in figure 2.1 is acyclic and 

thus deadlock free[34]. Unfortunately this no longer applies when it is distributed on nodes 0 and 

1 as shown in figure 2.1. Node 1 is trying to send message ml, which blocks because node 0 is 

trying to send message m2, and vice versa. Hence the system is deadlocked. This assumes the 

implementation is a loop that reads a message, processes it with the appropriate component body 

and then sends the results. 

Buffers allow messages to be sent even if they cannot be delivered immediately, for example 

because the destination node is attempting to send a message, provided the storage requirements 

do not exceed their capacity, which is usually finite. A buffer capable of storing ml on node 0, or 

m2 on node 1, would prevent the deadlock in figure 2.1. 

If the buffer capacities are not carefully chosen, deadlock due to aggregation of components is 

still possible. In figure 2.2 neither the top cycle, processing elliptical jobs, nor the bottom cycle 

processing rectangular jobs, can deadlock in isolation due to the provision of sufficient buffering. 

Despite this neither ml nor m2 can be delivered, because their destination buffers are full. Thus 

the overall system is deadlocked. 

This problem can be avoided by careful choice of the buffer capacities, for example using the 

linear programming method in Liebeherr and Akyildiz's 1995 paper[20], which is intractable for 

some networks. Liebeherr and Akyildiz also present an efficient solution that works for a worst case 

subclass for their general solution. Unfortunately in many environments implementing carefully 

chosen buffer sizes is difficult, especially if the message sizes are not known in advance. 

2.4.6 The design presented in this document 

This document presents two variations on components with a slightly different design from input, 

process, output components. The input and output stages of an algorithmic parallel program 
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component are merged into a single parallel input and output phase. This avoids problems with 

cycles-all the outputs succeed because an output cannot prevent an input from occurring. The 

more subtle problems that arise due to the aggregation of components are also eliminated because 

they also depend on outputs preventing inputs from happening, which is not possible with a 

parallel input and output phase. 

The model does not require centralised timing or synchronisation between more than two 

processes (as provided by synchronous communication channels). The language specified in [30] 

eliminates the need to add explicit communication to programs. The library described in chapter 

6, and whose implementation is described in chapter 7, is a C library implementing the same 

design, allowing the use of established languages, libraries and sophisticated optimising compilers. 

A program is composed of components that cycle continuously. Each component is structured 

in pseudo code as 

y = yo 

forever 

Output y and read new x in parallel. 

Compute y = fix) 

Separate components can be analysed using the same techniques that are used for sequential 

programs. The tractability, simplicity and generality of these techniques, in the absence of the 

complexities of parallelism, make it fairly easy to prove the correctness of individual components 

and chains of components. , 

Two different kinds of programs are permitted: synchronous programs and asynchronous pro-

grams. Components in both types of program must listen to all their inputs after completing the 

calculation phase. At most one value may be read from any channel in any cycle. Given any input 

the computation phase must terminate within a finite time. 

A synchronous program is multiple synchronous components in parallel. Synchronous com-

ponents must read from all their inputs and write to all their outputs in any cycle. This allows 

one to argue that they satisfy certain synchronisation properties. 

Asynchronous programs are multiple asynchronous components in parallel. Asynchronous 

components are only required to output to a (possibly empty) subset of their outputs and read 

from at least one input on any cycle. An asynchronous component must be prepared to read one 

input from any number of input channels before re-entering the computation phase. The subset 

of outputs used can vary from one cycle to another. 

Both synchronous and asynchronous programs with any communication topology are deadlock 

free, without the need for any fairness condition. Deadlock is impossible because no component 

can refuse input or output unless it is busy calculating. The non-existence of pathological ex-

amples, where deadlock might occur only when very specific and unlikely timing applies, is proved 

in chapters 4 and 5 using CSP, which is a process calculus. The lack of restrictions on the be-

haviour components, and the unrestricted communication graph, suggests that there is no simple 

description of the behaviour of a set of components that is preserved when a component is added 

to it. 

The deadlock freedom of a large class of programs over a general communication topology is 

valuable for embedded systems and other cases where correctness is of paramount importance. The 
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deadlock freedom of asynchronous programs is particularly significant because they are similar to 

programs composed of traditional input, process, output components. These are subject to many 

causes of deadlock that are difficult to eliminate in complex cases. 
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Chapter 3 

C S P 

Process calculi are usually used to analyse only the communication pattern of a parallel program. 

While process calculi can also be used, at least theoretically, to analyse the value of variables, this 

is usually intractable and unnecessary. 

Process calculi are frequently used to analyse an entire class of communication patterns rather 

than a single program. If this is done the next step is usually to argue that a program, or programs 

implementable using a construction technique, have some property. Deadlock freedom is a common 

property to prove in this manner. 

CSP (communicating sequential processes) is a process calculus that describes a concurrent 

system as a collection of interacting sequential processes. In CSP the term process covers both 

a single sequential process and the parallel composition of multiple sequential processes. CSP 

defines processes solely in terms of their observable behaviour, and this simplifies the proof. The 

term CSP in this document refers specifically to the process calculus defined in [15] and adopts 

the same notation. 

3.1 Observable propert ies of processes 

Each process has a finite alphabet, which is the set of events that it can influence. The alphabet 

of the process P is written aP. The behavior of a process is defined in terms of events, which 

occur singly. The trace of a process P is the sequence of events that P has engaged in. Traces 

can be written as a list of events in angle brackets, for example (ei, 62, . . . , e„) where ei, . . . , e„ 

are events. 

If the alphabet of a process is not obvious from context then the alphabet is written as a 

subscript, for example RUNQ-p is RUN with the same alphabet as P . The alphabet of a process 

P may also be specified explicitly by a statement, for example aP = {a, b, c} states that the 

alphabet of P is {a, b, c}. 

If T is a trace after which P can engage in an infinite number of events all within a set of 

events S C aP then T is a divergence of P§ , the process P with all the events in S rendered 

invisible. 

The failures and divergences model of CSP allows one to observe a process refusing to engage in 

sets of events and diverging. The following three sets completely describe a process[15, Definition 

1)0]. 

1. The alphabet of P, aP, which is the set of events which P can influence. 
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2. Pairs of traces T and sets of events £ that P might refuse to engage in after engaging in T. 

Pairs (T, £) are failures. The failures of a process P is written as failures ( f ) . 

3. traces T after which P can diverge. The divergences of a process P is written as divs(P) 

below. 

Sets of events £ such that P might refuse to engage in as a first event are refusals of P. Showing 

that P and P' have the same alphabet, failures and divergences is a complete proof that P = P'. 

It is usually more convenient to use higher level proof rules, for example for P || P = P for any 

process P, to prove that pairs of processes are equal. 

3.2 Basic Processes 

CSP defines complex processes in terms of simpler processes. A sufficient set of basic process for 

constructing divergence-free processes is STOP and RUN. Proving that processes implemented in 

terms of themselves are well defined is not covered here, for details see section 3.9 of [15]. 

3.2.1 STOP 

STOP refuses to engage in all events in its alphabet and has no divergences. If P can evolve into 

STOP them it is not deadlock free. 

3.2.2 lUUN 

RUN never diverges and will engage in any event after any trace. The deadlock freedom proofs 

model the external inputs and outputs of a program as RUN processes which, by results below, 

have no effect and are therefore eliminated from the analysis. 

3.3 Combining Processes 

3.3.1 After 

P / T for some trace T and process P behaves like P after P has engaged in the trace T. If T is 

not a trace of P then P / T is not defined. 

3.3.2 Prefixing 

The process e ->• P engages in the event e and then behaves like P. A process which is defined 

recursively without any prefix can refuse any set of events after any trace and diverge after any 

trace (this is the global minimum of an appropriate interpretation of < ). 

3.3.3 Internal choice 

The processes P n Q behaves like either P or Q non-deterministically. The environment has no 

control over whether the process behaves like P or Q. This can be used to model unpredictable 

processes, for an output of an asynchronous component. 
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3.3.4 External Choice 

The process P • Q is willing to engage in a first event ep o f f and then behave like P / e p or a first 

event eg of Q and then behave like Q/CQ . The environment of P • Qis allowed to control this 

choice. Given any event e in the possible first events of P and Q then ( P • Q)/(e) = (P/(e)) Fl 

(Q/{e)), i.e. a non-deterministic choice between P and Q occurs. 

3.3.5 Synchronised Concurrency 

The process P l\ Q engages in the events in aP if allowed to do so by P and the events in a Q if 

Q allows it. Given any event e in aP HaQ then P \\ Q can engage in e if and only if both P and 

Q allow e to occur. 

3.3.6 Re-labelling 

Any process can be re-labeled by applying an invertible function / that renames the entire alphabet 

of P (to the same name or a different name). / ( P ) behaves exactly like P except that all the 

events are transformed by / . 

3.3.7 Filtering a trace 

If T is a trace and 5 is a set of events then T \ S is the trace T with all events not in S. removed. 

This operation is useful for making statements about the occurrence of a restricted set of events. 

3.3.8 Joining two traces 

If 71 and T — 22 are traces then 71 ̂  Ti is 7i followed by Tz • This operation is used in statements 

like, if P is a deterministic process, T is a trace, e an event and (e) is a trace of P then P / T 

cannot refuse e. 

3.3.9 The length of a trace 

If T is a trace then # T is the number of events in T. This operation is often used in combination 

with filtering to write the number of times an event has occurred (if e is an event and T a trace 

then #{T f {e}) is the number of times e occurs in T). 

3.3.10 Other operators 

CSP also provides operators to send and receive messages, hide events, run P and Q in parallel 

without synchronisation (an event which can be accepted by P or Q is performed by either P or 

Q and not both). These operators are not used in this document. 

3.3.11 The last occurrence in a trace 

For any trace T = (ei, 62,...) and event e define 

0 
, r . , . _ . 

max {« I gj = e} otherwise 
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The indicies of the trace elements begin at 1 so l{{e), e) = 1. The main results in this thesis 

show that 1{T, e) < 1{T, e) for a specific event e if a collection of synchronous or asynchronous 

components are deadlocked after a trace T-

3.3.12 Parameterized templates 

The analysis uses processes templates with parameters; substitution of specific parameters is 

required to convert these into specific processes as defined in [12]. Identically named parameters 

are assumed to remain the same within a proof; thus these parameterized templates are shorthand 

for specific processes. (These templates are not standard in CSP). 

Example 1 

m y r u n ( 5 ) = e myrun(5 ' ) is equivilent to RUNg for any set of events S . Simply 

renaming events does not allow the choice of an arbitary number of events and thus there is no 

equivalent formulation in terms of renaming events. 

If 5" = {a, b} then myrun(5) , as defined above and renamed to M is M = (a^M) • (b-^M). 

3.4 Refinement and Deadlock freedom 

If a process P refines a process Q if the behaviour of P is a subset of the behaviour of Q. Formally 

define P = (/p, dp^ ap) where f p = failures(P), dp = divs(P) and ap is the alphabet of P. P is a 

refinement of Q = (/g, dQ,aQ) if and only if ap = ag, f p C fg and dp C dg. 

If P is a refinement of Q then it is possible that P / T can refuse an event e if and only if Q/T 

can do so too. In particular if P can not refuse an event e then ((), aP) ^ failures(P) and thus P 

is not refined by STOP. 

A process P is deadlock free[34] if and only if such that P / T is refined by STOP. An 

equivalent formulation states that 

P is deadlock free if and only if tT such that (T, aP) E failures(P). 

3.5 Additional propert ies of R U N 

This section proves two results about RUN processes that are used in the proof itself. These 

results are simple extensions of the standard results about RUN processes and the proof is largely 

mechanical. 

Result 1 (Combination of R U N processes) 

RUNq II RUNj = RUNou6 

Proof. 

Using the rules in [15] calculate the alphabet, failures and divergences of RUNQ || RUNb and RUNgub-

Observe that both processes have the same sets of failures, divergences and alphabet, and thus are 

identical. 
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a(RUN<, II RUNb) = (o U 5) 

= aRUNauft 

divs(RUNa II RUNt ) = j a "" ( | f E (o U 6) ' 

A ^((s f a) e 0 A (s [• &) e 6*) 

V ( ^ r 6 ) E 0 A ( 3 r o ) 6 a 3 

= { 5 i I i G (a U 6)* 

A ((false A true) V (false A true))} 

= | s ^ i I falsej = 0 

= divs(RUNau6) 

fail(RUN. II RUNb) = (a, U F) | 3 e (a U 6)' 

A (a r 0,-% )̂ 6 {a,0 I g E a* } 

A ^ r a , y ) e { ^ 0 | a E 6 * } } 

= { ^ ^ r u l O | 3 e ( a U & r A ( 3 r a ) e o ' A % = 0 

A ^ ^ 6 ) E & ' A y = 0} 

= {s, 0 I s 6 (a U &)* A true A true} 

= {s,0 I s € (a U 6)*} 

== &ul(R.Uff,ut) 

Thus RUNQ II RUN(, and RUNaut have the same alphabet, failures and divergences. These sets 

completely specify a process[15, Definition DO]. Thus RUNa || RUN5 — RUNoub- O 

The next result shows that any process P is unaffected by synchronation with a RUN process 

whose alphabet is any subset of the alphabet of P. This result combined with the previous result 

makes it easy to eliminate the RUN processes. 

Result 2 (Generalisation of P || RUNqp = P) 

For all processes P and S C aP P || RUNs = P 

Proof. 

Using the rules in [15] calculate the alphabet, failures and divergences of P jj RUNg and P. Observe 

that both processes have the same sets of failures, divergences and alphabet, and thus are identical. 

div8(f II RUNg) 

a ( f | | R U N s ) = ( a f U ^ ) 

= aP {S C aP so aP U 5 = aP) 

{f E div8(f) I (f E traces(RUNg)} 

U { ( 6 divs(RUN5 5') j {t f aP) E t races(P)} 

{( E div8(P) I (t r E 5"} 

U { f E 0 | f E traces (P)} 
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= {t e divs(P) I true} U 0 

= divs(F) 

f a i l ( f | | R U N g ) = { ( g , ( ^ u y ) ) | a E ( a f U ^ ) ' 

A (a e f a i l ( f ) 

A(3 y ) e { ( w , 0 ) | « e 5 " } } 

= {a, ( Z U y ) I a E ( a f U g ) ' A (a ^ a f , A") 6 ) 

A y = 0} 

= {(a, %) I a e a f ' A (a, X ) 6 ) } 

{X \J$ = X and S C aP so a.P U 5 = aP) 

= fail(f) 

Thus if 5" C a f then f || RUNg = f . O 

3.6 Environment 

The environment of a program consists of its input channels (keyboards, in-bound network con-

nections, etc) and its output channels (displays, out-bound network connections, etc). An input 

channel is always prepared to allow reading and an output channel is always prepared to engage 

in an output. 

Since events make no distinction between input and output for any event e the process repres-

enting an external input, in(e), and an external output, out(e), can be defined as 

in(e) = out(e) = inout(e) — e inout(e) = RUN^gj 

Since timing and the order of events is not used by the analysis the possible need to wait is 

irrelevant—the ability to perform another event is sufficient. 

3.7 Summary 

The elements of CSP used in the next two chapters have been presented. A process was defined 

and used to prove a couple of extensions to standard results about RUN. 
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Chapter 4 

Synchronous programs 

4.1 Modeling a single synchronous process 

A synchronous program is a number of synchronous processes operating in parallel. The component 

processes must operate as described in description 1 

Description 1 

A synchronous process is a process that 

® Reads a value from all its input channels before starting a cycle 

» Writes a value to all its output channels before starting a cycle 

8 Finishes its computation step within a finite time 

The process code may then be written as 

I = % 

while (global termination condition not met) 

compute y = f{x) 

output y using all output channels 

and read next x using all input channels in parallel 

or any equivalent construction. The details of the calculation and I /O depends on the 

environment, problem and programming language. 

The synchronization requirements are surprisingly loose as shown by result 4 below. Keyboards, 

displays and so forth are treated as external sources of infinitely readable inputs, or infinitely 

writable outputs. 

Input and output on any channel must be synchronized and this is where the possibility of 

deadlock arises. Proof that deadlock is impossible requires a precise description of a synchronous 

program and thus a synchronous component. A synchronous component is defined as the S{I, 0) 

process in 4.1, where I is the set of input channels, and 0 is the set of output channels. 

o(c) = c ->• s -> o(c) ao(c) = {c, s} 

:(c) = c - ^ a - 4 i ( c ) = o ( c ) a:(c) = {c ,a} 

II o(c) a^(Z,0) = 7 U O U { g } 
c e / u o 
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Here i{c) inputs on channel c and o(c) outputs on channel c. All the events in I correspond 

to reading an input and all the events in 0 to writing an output. Since input and output are both 

compulsory and represented as an event input and output processes are identical. 

S{I, O) is a cyclic process. In each cycle 5(1, 0) first reads an input from all the inputs in 

I and writes an output to all outputs in 0. Then it engages in s, it performs a calculation (not 

modelled) and then the cycle starts again. After the compute stage all the o(c) processes return 

to their initial state and thus a new cycle begins. 

Lemma 1 (Acceptance of a communication) 

S{I, 0)/T accepts e if and only if 1{T, e) < 1{T, s) for all traces T of S{I, O) and events e G luO. 

Proof. 

o(e) = e -)• s o(e) is the only component of S{I, 0) with e in its alphabet. Thus it is sufficient 

to consider o(e) after the trace T' — T \ {e, s}, the trace T restricted to ao{e). Clearly S{I, 0)/T 

accepts e if and only if o{e)/T' accepts e and 1{T, e) < 1{T, s) if and only if 1{T', e) < 1{T', s). 

If T ' = 0 then l{T',e) = l(T',s) = 0 and o{e)/T' = o(e) which accepts e (and refuses s) as 

required by the result. 

Otherwise since T' is composed only of s and e events if and only if 1{T', e) < 1{T', s) the last 

event of T ' is s and thus o{e)/T' accepts e (and refuses s). If 1{T', e) > 1{T', s) then the last event 

of T'T is e and thus o(e)/T' refuses e (and accepts s). Equality is clearly impossible if T' ^ (). 
• 

Corollary 2 (Refused implies used) 

If S{I, 0)/T refuses e e I U 0 then e £ T 

Proof. 

If e ^ T then 1{T, e) = 0 and thus l(T, e) < l(T,s) which implies that S ( I , 0)/T accepts e by 

lemma 1. • 

4.2 A Synchronous Program is deadlock free 

The simplest explanation of why a synchronous program must be deadlock free is that initially 

every process must engage in a synchronised send on its output and read from its input channels. 

This must succeed because the internal output channels are connected to other synchronous pro-

cesses that must be trying to read from them. External channels are assumed to be readable or 

writable as appropriate; if this is not true then the system is obviously liable to deadlock. The 

same argument applies on subsequent cycles. 

CSP[15] can be used to prove the absence of deadlock. If the synchronous processes are 

Si,... ,S„ they share s so special measures must be taken to prevent them from synchronising on 

s, which is meant to be internal to each process. The method adopted here is to apply a relabelling 

function /i(e) to the process so each components has a different s event. Define fi as 

/.(.)={'' T ' 
L e otherwise 

and a synchronous program as 5P = ||._ fi{Si). fi refers to this specific function in the 

results in this section. Define J, as the input channels and Oi as the output channels of the zth 
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process. Since /j transforms the alphabet of Si as well as the events a{fi{Si)) = Ij U O, U {si} and 

thus fi{Si) and f j ( S j ) can only synchronise on channels that they share for any i ^ j. 

Lemma 3 (Deadlock requires all components to be blocked by another) 

If SP IT is re£ned by STOP, where SP is as defined above and T is any trace of SP, then for all 

i there exists j ^ i and an event e € aSi fl aSj such that Si IT f aSi accepts e and SjIT \ aSj 

refuses e. 

Proof. 

Define an event e as shared if 3i,j such that i ^ j and e E aSi and e 6 aSj . Any event 

e which is not shared is unshared. Assume for a contradiction that SP jT is refined by STOP and 

S[ = SilT [• OiSi and fi{o{e))IT \ {e, Si} = s, -)• /i(o(e)) for all shared events e. 

Let e' e aSi be any unshared event such that fi{o{e'))IT f {e ' ,S i } refuses Sj . If no such e' 

exists then the component processes of S[ accept a, and thus so does SP IT . Otherwise the only 

component of SPIT with e' in its alphabet is fi{o{e))IT f {e ' jS j } which accepts e' and thus SP 

accepts e'. • 

Lemma 4 (Deadlock requires a cycle) 

If SPIT is refined by STOP then 3 , % - i such that there exists e; G aSm n aSmg^^ such 

that accepts e and S^.^^ refuses e for all i where Sj — SjIT 1" aSj and © is addition modulo 

k. 

Proof. 

Define a path of length t i n a directed graph G = ( F , £ ) as a sequence of nodes vo,vi,..., Vk-i (not 

all necessarily distinct), such that (%,, « i+ i ) € E for all Q < i < k. 

Let G = ( V , E) be the directed graph where node i represents the Si component of SP, for 

all 0 < j < n and {i,j) 6 E, an edge from node i to node j , if and only if there exists an event 

e G aSi DaSj such that S- accepts e and S- refuses e, where Sj. = SkIT f aSk- A cyclic path in G 

corresponds to a cycle of blocked processes as required by the result. 

Claim by induction that for all A: > 0 there is a path length k in G. Paths of length 1 consist of a 

single node and so clearly exist. 

For all i there 3 j ^ i such that {i,j) e E by lemma 3. Thus if wo , . . . , Vk-i is a length k path, 

which exists by the induction hypothesis, there 3v' e V such that v ^ Vk-i and % _ i , v' is a 

length k + 1 path in G. 

Thus by induction there exists a length n + 1 path uq, . . . , v „ . Since there are only n nodes 3i < n 

such that Vn = Vi- % % , . V n - i , Vi is a cyclic path in G. • 

The existence of a cycle of components that each prevent the progress of the next component in 

the cycle means it is sufficient to show that such a cycle can not exist to prove deadlock freedom. 

The main theorem of this section shows that no such cycle can exist and thus SP is deadlock free. 

Theorem 3 (A synchronous program is deadlock free) 

is deadlock free. 

SP =11 fi{Si) where Si,... ,S„ are independent synchronous processes, as defined above, 
I I I— 1 . . . . . 71 
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Proof. 

Assume for a contradiction that T is a trace of SP such that SP/T is refined by STOP. 

Define S- = fi{Si)/{T f afi{Si)), i.e. component Si after SP has engaged in T. In a deadlocked 

situation all SI must refuse Si for all i and therefore must be waiting for either at least one input or 

output. 

Lemma 4 shows that there is at least one cycle of components n o , . . . , n&_i and corresponding 

events e, e afmiSm) H a / „ ;g i J such that S^.^^ prevents S^. from engaging for all i, where 

® is addition modulo k. 

Thus if SP/T is refined by STOP then SP/T contains a cycle of components such that each 

blocks the next one. Deriving a contradiction from the assumption that T does this clearly proves the 

result. 

Assume without loss of generality, by renumbering components if required, that n o , . . . , n* = 

0 , - 1 and thus Sn̂  = Si and Ŝ .̂ = SI for all i. The fact that SP/T is refined by STOP 

implies that Ci eT for all i (otherwise S-^i could not refuse e,). 

Thus the acceptence of a by 5- shows that l{T,ei) < l{T,Si) and the refusal of ei by 

shows that Z(T, Sigi) < l(T,ei). Together these imply that / ( T , Sjei) < l{T,Si) and the analysis 

obviously applies for all i. Hence, formally by induction, 1{T, SQ) < 1{T, 5o) therefore no blocked cycle 

is possible. Since a trace T such that SP/T is refined by stop requires a blocked cycle no such trace 

can exist. • 

4.3 A synchronous program is live 

This section proves a liveness property of synchronous programs; here, liveness means that a 

synchronous program must output something eventually, provided at least one component has an 

external output. This is proved by showing a bound on the number of cycles computed by two 

components, whether they are connected directly or indirectly. If a synchronous component with 

an external output must have completed a cycle, then an output must have been generated. 

It is easy to determine limits on the number of cycles performed by two directly connected 

processes; induction suffices to prove bounds for indirectly connected processes. 

For the benefit of the results in this section define 

cycles(5i,7") = #(7" f {sj}) where T is the trace of the synchronous program containing 5,. 

Since a synchronous component Si engages in s, at most once in any cycle cycles(5i, T) is the 

number of cycles Si has completed after SP has engaged in T. 

Lemma 5 (Cycle count bounds for directly connected processes) 

If Si and S2 are two synchronous processes connected by a channel c and the synchronous pro-

gram, SP, containing them has engaged in the trace T then cycles(52,7") — 1 < cycles(S'i, 7^ < 

cycles {S2,T) + 1. 

Proof. 

The only components of Si and % with e in their alphabet are Oi — e-^s i—^Oi and O2 = e->S2-> O2, 

and thus the problem can be reduced to the behaviour of Oi || O2. The rules in [15] show that 

Oi \\ 02 = P where P = e (si ->• S2 -> -P) CI (s2 ->• si ^ f )• 

Formally by induction, if T' ^ (e), where T ' is a trace of P and e E aP is an event, then 

#(9- r {ai}) = #(7- r {ag}). 
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A direct consequence of this is that if T' = T" ^ (e, s,), where T" is a trace of P, then # ( T ' \ 

{ a i } ) = # ( 7 " ' r {sz}) - 1 and P/T' will refuse any event except s + 2. Similarly if T' = T" ^ (e, %), 

where T" is a trace o f f , is a trace of P then # ( T ' f { s i } ) = # (?" ' t {52}) + ! and P/T' will refuse any 

event except si. Thus if V is a trace of P then # ( T ' f {ag}) - 1 < #(7" ' t { s i } ) < # (7 " ' t { % } ) + ! . 

If T is a trace SP then T \ a{Oi || O2) must be a trace of Oi || O2 = P because SP is a parallel 

composition of many processes including Oi and Og. Thus # ( T ' f {gg}) - 1 < # ( T ' f { s i } ) < 

# ( T ' f { % } ) + 1 proves the result. • 

Result 4 (Cycle count bounds for indirectly connected processes) 

If the shortest route for Si to Sj involves k communications and the synchronous program, SP, 

containing them has engaged in the trace T then 

cyc\es{Sj,T) - k < cycles(5i,7^ < cycles(5),T) + k 

Proof. 

This result is proved by induction on k. 

Induction step 

Assume by induction that the result holds for k — n. If Sj is n + 1 communication events away from 

Si then there exists Sm such that 

« 5m is A: communication events away from Si 

® Sm sends a result to Sj over channel c. 

By the induction hypothesis cycles{Sm,T) - n < cyc les(5: ,7 ] < cyc les(6"^;T) + n. Lemma 5 

shows that cyc les (5^ ,71 — 1 < cyc\es{Sj,T) < cycles(5m,7^ + 1. Thus 

cyclea(^m, 7 ] - n < cycle8(5'i,71 < cycles(5'm, 71 + n 

=>cycles(5^, 71 - n - 1 < cycles(5i, T) < cycles(5^, 71 + l + n 

Base case 

If /; = 1 the result is lemma 5. Thus the result follows by mathematical induction. • 

Result 4 proves that a synchronous program is live. If an external input I is connected to a 

component Si, an external output 0 is connected to So, and there is a path involving n commu-

nications from Si to So then result 4 requires at least one output before the n + 2nd input from 

J is read. This guarantee of an output given sufficient input is a liveness property, because it 

guarantees that something good will happen. 

The bounds are tight, which means they can actually be achieved. A single example, which 

can be scaled to any value of n, that achieves the stated bound suffices to prove this result. 

Result 5 (Tightness of upper bound) 

The upper bound of result 4 is tight. 

Proof. 

This can be shown by manipulating the number of inputs read from the external input channels. The 

external output © is assumed to the always writable and the source © always readable. 

For any ^ > 1 an example of a process that achieves the maximum stated in result 4 looks like 
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where © is an input channel which has been read n times. The synchronous program is the Pi 

processes in the box in the figure. 

Claim 1 Claim that Pj has cycled exactly j times provided sufficient input was readable from 

Pj-i 

P r o o f o f C l a i m . On each cycle P j must read a value from I j and thus has cycled a maximum of 

j times. For j > 2 assume by the induction hypothesis that cycles j — 1 times. Since Pj-i 

completes j — 1 cycles it must send j - 1 values to Pj and be willing to send a jth values to Pj. This 

proves the induction step. 

The base case, j = 1, is trivial because 0 always accepts input. The claim follows by mathematical 

induction. 

Claim 2 Claim that Pj+i will receive j + 1 messages from Pj. 

P r o o f o f C l a i m . For any j < k assume by the induction hypothesis that Pj has received j + 1 

messages from Pj+i- Since this is enough input claim 1 states that Pj wil l cycle exactly j times. Thus 

Pj-i will receive j values from Pj (it can do this by claim 1). This proves the induction step. 

The base case of the claim j = k \s trivial because the source 0 is always readable. The claim 

follows by mathematical induction. 

Given any j <1 claim 1 implies that it will cycle j times given enough input and claim 2 implies 

it will receive enough input. 

Thus, in particular, Pj will cycle j times and P j will cycle once. The number of communication 

steps between Pj and P i is j — 1 thus the upper bound on the number of cycles claimed by result 4 

is j - 1 + 1 = ; cycles. Since this is achieved the upper bound stated is t ight . • 

Corollary 6 (Tightness of lower bound) 

The lower bound of result 4 is tight. 

Proof. 

If 7~ is a trace of a synchronous program 5P such that there exists components i and j separated 

by n communications such that c y c l e s ( P i , T ) = c y c l e s ( P j , T ) + n, which is possible by result 5, it 

also satisfies the lower bound because cycles (P.,, 7 3 — cyc les (Pi , T ] — n and the direction of the 

communications involved is irrelevant. • 

The tightness of the upper and lower bounds shows how loose the synchronisation in a syn-

chronous program is in reality-two components of a synchronous program may have completed 

significantly different numbers of cycles, provided they are sufficiently separated. 

Once the limits are reached the synchronous program is unable to make any progress until the 

components that are preventing further progress perform another cycle. This effect might lead to 

the components being "clocked" by the component with the longest cycle time, which could be due 

to its need to read from a particular slow external input, for example a keyboard. Asynchronous 

programs, discussed in the next chapter, avoid this problem by insisting on only a single input 

before a cycle can begin. 

4.4 Summary 

A tighly synchronised, and very limiting, parallel program design was presented and shown to 

have deadlock freedom and liveness properties. The liveness properties can lead to a state where 
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the system is unable to proceed until a given event, which could be a serious problem in a system 

which must degrade gracefully. 
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Chapter 5 

Asynchronous programs 

An asynchronous program is a connected, finite collection of components. Each component outputs 

to some, possibly empty, subset of its output channels and reads input from at least one input 

channel before entering the computing phase. No fairness condition is required for the deadlock 

freedom result. A program must have a least one infinitely readable external input. This rules 

out programs that require a stimulus before anything happens and can never receive one, which 

are deadlocked. 

A component is described in English as 

Description 2 

An asynchronous component is a component that 

8 Reads a value from one or more of its input channels before starting a cycle 

* Can start a cycle based on one value from any non-empty subset of its inputs. 

9 Writes a value to all of a subset of its output channel before starting a cycle 

» Finishes its computation step within a finite time 

Each component is structured in pseudo code as 

y = yo 

0 = OO 

forever 

output y using channels in o 

and read x using at least one input channel in parallel 

compute {y, o) = f{x) 

The details of the calculation are implementation dependent and not analysed here. A 

component must be willing to read all of its inputs in each cycle-a component is not 

allowed to choose some subset of its inputs and only react to their readability. If receiving 

inputs and sending outputs is not performed in parallel the deadlock freedom result does 

not apply. 

These programs operate reliably because a component can only ignore a message for a finite 

time before reading it, unless another message is available. Since it only takes one message to start 

a new cycle the system will continue to cycle indefinitely. Many fairness conditions will ensure all 

messages are read within a finite time. 
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5.1 Environment 

The environment of a program consists of its input channels (keyboards, in-bound network con-

nections, etc) and its output channels (displays, out-bound network connections, etc). An input 

channel is always prepared to allow reading and an output channel is always prepared to engage 

in an output. 

Since events make no distinction between input and output for any event c, representing an 

external communication, an external input, in(c), and external output, out(c), can be defined as 

in(c) = out(c) = inout(c) = c inout(c) = RUN^^y 

5.2 Modelling a single component 

An asynchronous component is defined as A{I, 0) in (5.1), where I is the set of inputs, 0 the 

set of outputs available. The process is cyclic and can use a different selection of outputs in each 

cycle. 

f(c) = c a f(c) n s f(c) a!f(c) = {c, a} 

i{c) = c-^ s :(c) • s -> i{c) ai{c) — {c, s} 

f(/) = O c /'(/) a;(7) = Z U {a} 
ce/ (5.1) 

/'(/) = O c r(7) O a f(Z) af'(/) = f U {a} 
ce/ 

A(Z, O) = II ,(c) II f(c) II f(f) av4(/, 0 ) = / U O U {a} 
cel c£0 

((c) is an output via channel c and i{c) possibly reads a value from channel c. Outputs choose 

whether or not to perform an output and inputs are required to accept an input if one is sent. 

/( /) implements the one or more condition, as explained below, and A{I, 0) is the component. 

The computation phase only affects the timing, which is not incorporated into the model, and is 

assumed to occur between the s event and the start of the next cycle. Why does A{I, 0) satisfy 

the requirements of description 2? 

If an output is not being used t{c) engages in s, which marks the end of the communication 

phase of a cycle. If an output is in use t{c) does the output and then engages in s. The use of 

a non-deterministic choice allows the compute phase to choose which behaviour will occur in the 

next cycle. 

The one or more input condition is implemented here by using a lock (the 1{I) process). Until 

an input has been read 1{I) prevents all A{I, 0) from engaging in s. Thus ^4(1, 0) cannot complete 

the communication phase, by engaging in s, until an input has been read. Reading one input from 

channel c causes 1{I) to turn into l'{I) which is willing to engage in any input event or s, allowing 

the A[I, 0) to enter its compute phase. 

It is impossible to input or output more than one value on any channel per cycle because the 

input and output processes insist on engaging in s before performing another input or output. 

After engaging in s, and finishing the computation, the components of A{I, 0) are in their initial 

state and the cycle begins again (with possibly different internal choices about which outputs to 

use). 

Lemma 7 {A{I, 0) is cyclic) 

v4(Z, O)/?- = X(7, O) if 3 a trace T ' E (7 U 0)* such t W T = T (a^). 
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Proof. 

All the components of A{I, O) return to their original state after engaging in s. • 

5.3 An asynchronous program is deadlock free 

A program is deadlock free because no message can be refused indefinitely by any component, 

unless another message is read. The conditions require external channels to complete input or 

output (depending on the direction of the channel) in a finite time. Thus every message will be 

delivered within a finite time. The proof derives a contradiction about any trace leading to a 

deadlocked state of an asynchronous program. 

Since only one message is required for a component to begin a cycle this shows that the compute 

phase can be entered in response to a message within a finite time. Thus programs are deadlock 

free. The CSP analysis derives a contradiction from deadlock. 

If the components are j4i, . . . , j4„ they share s so special measures must be taken to prevent 

them from synchronising on this event, which is meant to be internal to each component. The 

method adopted here is to apply a relabelling function rj(e) to the components to differentiate 

each components' s event. Define r, as 

Si if e = s 

e otherwise 
n(e) = 

and a program as 

= 

i=l 

i=l. 

i=l, 

r i { A i ) II inout(c) 
cEexternai channels 

II f^UNgxternal channels t)y resuit 1 

ri(Ai) by result 2 

(5.2) 

Theorem 6 (Deadlock freedom of AP) 

There does not exist a trace T such that AP IT is reSned by STOP. 

Proof. 

For all traces T and i , component i in AP IT must be in one these of 3 states 

1. able to engage to a,. 

2. waiting for an input from any of its inputs. 

3. waiting for an output to complete (and possibly an input too). 

Assume for a contradiction that T is a trace such that AP IT is refined by STOP. Since AP IT is 

refinded by STOP no components can be in state 1 after T because AP IT must refuse Si for all i. If 

all components are in state 2 then any one of them which has an external input, of which there must 

be at least one, can accept an event from that input and thus AP IT is not refined by STOP. 

Thus there must be at least one component in state 3, say component no- Let OQ be the event 

corresponding to any blocked output of component % and component % ^ no be the destination of 

output oq. Component % cannot be in state 1 because if so AP IT' ^ S T O P . Similarly component 

ni cannot be in state 2 because if so AP IT' cannot refuse oq. Thus component must be in state 

3. 
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Similarly there must %, % , etc such that for all i at least output of component n j _ i is blocked by 

component n, (and therefore component n j _ i must be in state 3). Since there is only a finite number 

of components there must be at least one cycle of components. 

Thus if AP/T is refined by S T O P then it contains a cycle of components that mutualy block each 

other and it is therefore sufficient to show that AP/T does not contain such a cycle. 

Assume wi thout loss of generaltiy, by renumbering componetns if required, that one of the blocked 

cycles in AP jT consists of components no, - - - , " m - i = - 1 and component rii has a 

blocked output to component for all i, where ® is addition modulo m. Define o, is a blocked 

communication event from component i to component i ® 1 for all i. 

The event oq must have occurred because r i ( / ( o o ) ) could not refuse i t after T' otherwise. Since oq 

has occurred and component 0 and component wishes to engage in the event again the SqO event must 

have occurred after the oq event (otherwise r o ( 0 ( o o ) ) would refuse the event oq). Thus 1{T, oq) < 

l{T,so). The 5i event cannot have occurred after the oo event, because otherwise r i ( I ( o o ) ) , which 

is part of component 1, would not refuse oq- Thus l{T,si) < 1{T,OQ). Thus / ( T , s i ) < 1{T,OQ) < 

i (r ,ao). 

Similarly 1{T, S je i ) < f ( T , o«) < 1{T, s,) for all i. Thus by induction around the cycle of blocked 

components l{T,so) < l{T,so) and therefore no blocked cycle is possible. Since a trace T such that 

AP jT is refined by stop requires a blocked cycle no such trace can exist. • 

This result shows that a simple and implementable component design can guarantee deadlock 

freedom without imposing significant synchronisation requirements. The mpkern parallel program-

ming library, described in the next chapter, is an implementation of the asynchronous program 

design with the infinitely readable inputs removed and a (separate) shutdown mechanism. Using 

the mpkern parallel programming library eliminates almost all causes of deadlock by the deadlock 

freedom proof above. 

5.4 Summary 

A loosely synchronised and flexible model of parallel program design subject to a powerful deadlock 

freedom result has been described. Only pairwise synchronisation is required and the model can 

be efficiently implemented. Chapter 9 presents a high performance solution of a "real world" 

problem built with the implementation described in chapter 6. 

The main limitation of asynchronous programs is the need to analyse the data flow, which can 

be a time consuming process, and high memory consumption if multiple components need a copy 

of a large object (a shared memory or data parallel environment might allow a single copy to be 

shared). 
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Chapter 6 

Using T h e mpkern Library 

The asynchronous programs presented in chapter 5 are a flexible design with guaranteed deadlock 

freedom. Implementing the model in a conventional imperative programming language requires 

a significant amount of run time support due to its lack of control flow and parallel input and 

output. Imperative programming languages are languages where the program explicitly tells the 

computer what to do—unlike functional programming languages like LISP, which evaluate things 

only if they are needed to evaluate the expression they are asked to compute, for example. 

This section describes how to use the mpkern library, a lightweight run time system for imple-

menting asynchronous programs with the addition of termination and removal of the external 

input sources, which are not available in many parallel programming environments. An infin-

itely readable external input is unrealistic for some problems, especially batch problems that are 

expected to terminate. Many clusters and supercomputers do not allow interactive use. 

Fortunately it is easy to void the states where the proof relies on an infinitely readable external 

input, namely the (otherwise deadlocked) state no active components and no unread messages. 

An infinite readable external input can be relied upon to do something in this state unless the 

component it is connected to prevents it, which is impossible. 

A program using the library does whatever initialisation it requires and then calls the library 

function which implements the main loop. The main loop performs all the communication and 

calls user-provided functions that implement the computation phase of components. This allows 

these functions to be implemented in an existing programming language which can be compiled 

using sophisticated optimising compilers. 

The library also handles termination and provides various features that some components are 

likely to require, for example queues that collect an argument from all inputs of a component. 

These queues are useful for implementing barriers and components which fuse data from multiple 

sources. A trivial example of such a component would be a component which computes a — b, 

where a and b are its inputs. 

The library is designed as a set of core functions and a set of transport specific functions which 

implement the communication. The differences between the requirements of different commu-

nication schemes also put the main loop and shutdown logic in the transport specific functions. 

The TCP+ transport, which uses TCP connections to communicate between nodes and pointer 

manipulation to transmit data between two components on the same node, is supplied with the 

library. 

This chapter only describes the API (application programming interface) which is implemented 
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entirely by the core functions and will remain unchanged if another set of transport specific 

functions is used instead of the TCP+ transport. An overview of the programming model and 

implementation in sufficient detail to use the library can be found in this chapter. Further details 

of the implementation and correctness of the TCP+ transport can be found in chapters 7 and 8, 

both of which assume some familiarity with the high level description of the implementation in 

this chapter. 

6.1 A library for writing asynchronous programs 

A program using the mpkern library provides a list of components, connections between them, 

a set of initial inputs and the component bodies. The body of each component is invoked when 

a message is delivered to one or more of its inputs. The library provides functions that allow 

a component to send messages to other components, via any of the component's outputs. The 

bodies of the destination components will be instantiated as a result. 

The mpkern library is designed to implement coarse grained data driven algorithmic par-

allelism where the task is split into discrete pieces that process their inputs and pass their outputs 

to other components. Command line arguments are easily handled and the resulting programs are 

self contained—there is no need for a command like mpirun, which might require you to choose 

counter intuitive switches to avoid those that the launch program "understands". 

The main features of the library include 

e built in buffer management. 

® formally proved almost complete deadlock freedom. The only possible cause of deadlock is 

no active components and no messages in transit, which is easily avoided. 

® support for per node usage statistics. 

9 efficient use of network bandwidth. 

9 compatibility with tools for debugging sequential programs. 

9 no restrictions on how the components are connected. 

9 program elements that can be composed simply. 

Local analysis suffices to prove deadlock freedom. The only difference from the asynchronous 

programs analysed above is the absence of external and always infinitely readable inputs and 

support for (possibly violent) termination, the details of which can be found in the mpkern internals 

documentation. Thus the only possible deadlock scenario is a situation where no component can 

fire and no messages are in transit, which is easily avoided. The proof in chaper 5 eliminated this 

scenario by insisting on at least one infinitely readable input. In practice this scenario is easy to 

avoid. 

6.2 Da t a driven programs 

A program based on the library is expected to do the bulk of its computation in data driven 

components. A component fires when data for it becomes available and it has no incomplete 

outputs. A special injection operation makes data available from one or more sources initially 
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Figure 6.1: Conceptual picture of a mpkern program 

before any component has fired. After this the execution is completely data driven. There is no 

conventional control flow between components. 

Programs using the library specify how the components are distributed, the connections 

between components and one or more initial inputs. There is no way a component can send 

a message, do some processing and then check for a reply. Furthermore, no actual communica-

tion will occur until the component has returned to the library. Instead the reply must either be 

received in a new instance of the same or another component. This style of programming can, 

at least theoretically, make efficient use of the available parallelism by starting to process data as 

soon as it is available, avoiding assumptions about the timing of a parallel system. 

A seven component program might be distributed on three nodes as shown in figure 6.1; in the 

figure components 1 and 2 run on node 0, components 3 and 4 run on node 1, and components 5, 

6 and 7 run on node 2. Data is read from the input, enabling component 1 to fire. Component 

1 may communicate with no components, component 2, component 3, or both as a result. Any 

component that component 1 communicates with will fire as a result and may cause further 

components to fire by sending them a message. Any component may perform output using the 

usual system facilities. 

The implementation in the mpkern library is markedly different from the model presented above 

and is illustrated in figure 6.2. Each node is a separate single threaded process, with the main 

loop in the library. The main loop on node p', which is part of the library, invokes the body of 

fireable components which runs on node p', and communicates on their behalf. Any message that 

has to travel from one node to another must be transmitted via an interprocess communication 

facility, for example a connected TCP socket. 

The mpkern library is divided into some core functions (mpkern core) and transport functions 
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Figure 6.2: Implementation of a mpkern program, for n components and p + 1 nodes. Single 

headed arrow show control flow. The main loop is part of the mpkern library. 

(mpkern transport), which implement the message delivery, including sending messages via the 

interprocess communication facility when required. It is possible to build the library with any set 

of transport functions that satisfy the requirements. 

The processes representing the nodes may be distributed across multiple processors on mul-

tiple computers, provided the transport layer supports it. The supplied TCP/ IP and in-memory 

transport, refered to as the T C P + transport, supports distribution across multiple computers. 

The current implementation of the main loop in the T C P + transport^ has a communication 

phase, in which data is sent and received, and then a computation phase which calls the bodies 

of the fireable components. No component fires more than once in the computation phase of any 

cycle of the main loop. No communication with other nodes takes place until all the components 

in the list of fireable components have been fired. This allows the library to aggregate all the 

messages for each remote node, which makes more efficient use of the network bandwidth and uses 

less CPU time than sending the messages individually, especially if many small messages are sent. 

6.3 Distr ibuting the load 

The TCP+ transport implements two transport mechanisms. The in memory transport only works 

within a node, because it is based on pointer manipulation. Across node boundaries there is no 

shared memory, so a simple protocol over a TCP connection is used instead. 

Groups of components which transfer a lot of data between themselves should share a node 

provided the serialisation involved is acceptable. The Hartree-Fock application has data aggreg-

ation components and components that processes the aggregated data which reside on the same 

node. 

^The main loop is transport specific, to simplify handling the differing requirements of different transport 

mechanisms. 
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A set of components that do not have large communication requirements, but do use a lot 

of processor time and could operate in parallel should be spread across several nodes to avoid 

serialisation^. 

6.4 Timing 

Due to the separate communication phase and aggregation of messages, the latency and bandwidth 

experienced by any given message is a complex function of many factors that are hard to predict 

for a complex program. The only guarantees on timing are 

o Messages are received singly and completely. 

® Messages will always be successfully delivered. 

o Messages sent over a channel are recieved once and in the order they were sent. 

Otherwise the timing may be arbitrary, so if a is sent via A and then /? is sent via B five 

minutes later, then fi may arrive before a. The library provides support for various types of 

message storage queues to simplify correctly handling pathological timing. 

The library has a verbosity level, which controls how much information about the firing of 

components and other events is reported. Higher verbosity levels report everything reported 

by lower levels and some additional information. Verbosity level 10 and above report detailed 

information about the library internals, which is only useful for debugging the library. 

The following verbosity levels are likely to be useful for debugging programs. All verbosity 

levels above 0 can generate a large volume of output, which might affect the timing, and are not 

recommended for large instances. 

» verbosity level 0 is the default and prints no messages. 

8 verbosity level 1 adds when components fire. 

8 verbosity level 2 adds when components fire return. 

8 verbosity level 3 adds the size and destination of messages sent and received. 

8 verbosity level 5 adds the state of queues used to gather complete sets of arguments. 

8 verbosity level 9 shows when all of a message for another node has been accepted by the 

interprocess communication facility. 

The time on a node is zero when the node passes through the global barrier that prevents entry 

to the main loop until all the data connections have been established. Unfortunately time is not 

exactly the same on all nodes and thus times are not directly comparable. The timer resolution 

is nominally microseconds of wall time^ but may be coarser in reality. 

^Serialisation might be better than sharing a processor because the latter also uses processor time for context 

switching. 
^tirne as measured by a clock on the wall, which might be different from CPU t ime. 
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6.5 The main program 

The public interface of the mpkern library is declared in the header file mpkern. h. The file declares 

the public data structures and public functions, both of which all begin with mp_. Programs that 

wish to ensure compatibility with future versions of the library should avoid type and function 

names beginning with mp_ and —mp— Functions and global variable names beginning with 

—mp— are used for library internals used in more than one source file, for example the local node 

number, which is needed only by the library's internal logic—how a correct program is distributed 

only affects its performance, not correctness. 

Many of the functions provided return void * pointers. These point to data structures that 

programs using the library should not attempt to "understand" or manipulate, except by using 

the library functions provided^. The details of these structures might change in arbitrary ways 

between different versions of the library. 

The library points to inputs using void * pointers, for the same reason—the data sent is a 

matter for the program and not something the library should attempt to interpret. Components 

running somewhere on a homogeneous cluster should not have the library insist on converting 

the data to and from an external format, which might have a significant impact on the overall 

performance. 

A program based on the library is structured as 

1. # include <mpkern.h> 

2. mp_maxprocs (optional) 

3. mp_init 

4. optional program specific initialisation 

5. mp- in jec t 

6. mp_mainloop 

Once the program calls mp_mainloop the rest of the computation is executed by component 

bodies. All components on all nodes are terminated, violently if need be, when any component 

calls exit(3). The list of components, which nodes they run on, and the connections between 

them are usually fixed in advance. 

The way components are distributed across the nodes only affects the timing and perform-

ance of the program, provided it is sufficiently robust to cope with any timing that satisfies the 

guarantees above. Thus a program can be debugged using existing tools, for example source level 

debuggers, by setting the number of nodes to 1, 

Each component has a globally unique name, a body, or work function, which it may share with 

other components, an assigned node number, and a pointer for the component's private data. The 

body processes the component's inputs and computes outputs. A component can choose whether 

or not to use all of its outputs individually every cycle. 

Components communicate via connections, which connect exactly one source component out-

put to exactly one destination component input. Each connection has a unique name, a source 

component name, a source index, a destination component name, and a destination index and 

size. A variable of size 0 accommodates variable size messages, including empty messages (which 

''hence the use of pointers to void. 
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have a size of 0). The source component name nowhere represents external input sources, and is 

useful for injecting problem parameters and other initial stimuli. 

6.6 S t a r tup 

mp_maxprocs(int nprocs) sets the maximum number of nodes to nprocs, which is initially the 

largest possible integer (about 2.1 x 10® on 32 bit systems). The number of nodes used is the 

number of nodes listed in the list of nodes or the maximum number of nodes, whichever is the 

smaller. 

mp_init(int *argc, const char **argv) starts the remote processes, using a remote shell 

command. The arguments argc and argv are adjusted to remove the effect of any extra arguments 

added by the library, which the library uses to identify remote nodes started by mp_init. 

A program that wants n nodes given only m < n nodes runs all the processes on node n' > m 

on node n' mod m. The component and connection list can, at least in principle, be constructed 

after calling mp_ini t but before calling mp_mainloop, which allows it to take the number of nodes 

into account. 

mp_inject(const mp_var *var, void *data, size_t size) injects a copy of the data at data 

with size size into the destination of the connection var. This only works if it is called before 

mp_mainloop. 

The requirement for at least one input before a component can fire makes at least one injected 

value mandatory. Some concurrency control devices, for example a barrier component that pre-

vents data reaching a compute component until it has notified the barrier that it can accept it, 

require an initial injection. 

After mp_jnainloop has been called the library invokes the component bodies until a component 

calls exi t (3) . The control never returns to the function that called mp_niainloop. Deadlock is 

only possible if there are no messages in transit. 

6.7 Specifying the connection graph 

The components of a program and their connections are described as a directed graph. The 

communication graph might not be acyclic. Each component corresponds to a node. A commu-

nication channel with source component a and destination component b is an arc from a to &. 

The implementation depends on the underlying transport. The components are specified as a list 

of mp_component structures, terminated by a mp_component with the name set to NULL. The 

structure is defined as 

typedef struct 
{ 

const char *name; /* Name */ 

int proc; /* Processor # */ 

/* The body parameters are 

* Parameters: 

private: For the body's own use. 

handle: For passing to gater_allargs if used. 

ina pointer to n input, either NULL or pointer to passed data 

* Returns: 
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pointer to new private data. 

*/ 

void *(*body)(void *private, void *handle, void **in); /* Body */ 

void *data; 

} mp_component; 

The name element declares a name, different from the names of all other components, proc 

the processor number and body is a pointer to a function that implements the processing phase 

of the component. The d a t a member is an initial pointer to void that the body can use to store 

persistent state. The library does not interpret the private data or content of messages sent by 

one component to another. 

The connections are specified by a list of mp_var structures, terminated by a mp_var with 

name, source component name, and destination component name NULL. The structure is defined 

as 

typedef struct 

const char *naine; /* Name */ 

size_t size; /* Size */ 

const char *from; /* Sending component name */ 

int from_idx; /* Sending index */ 

const char *to; /* Recipeint component name */ 

int to_idx; /* Recipient index */ 

} mp_var; 

The name element contains a name, different from all other mp_vars, tha t is used by the library 

in error and debugging messages. Setting the name component of mp_var to NULL is unsafe. The 

size is a fixed message size or 0, which allows variable size messages. Fixed size messages are a 

little more efficient than variable size messages. 

The from and from-idx give a source component name and output index number for the 

source component. The special component name nowhere corresponds to inputs with no source. 

The from-idx of connections from nowhere is ignored. Program parameters can be injected into 

connections from nowhere to fire an initialisation component. 

The to and to-idx specify a destination component and input index, which must correspond 

to an existing component. There are no special destination names. 

A component with n inputs and m outputs supports input index numbers from 0 to n — 1 and 

output indices from 0 to m —1. Index numbers are better, and computationally more efficient, than 

names because they make some common jobs much easier, for example distributing n generated 

data sets to n components that perform further processing on their piece (in parallel, if they all 

reside on different nodes). 

6.8 Component body invocation 

A component body is a function provided by the programmer and matches the C prototype void 

*foo(void * state, void * handle, void **in). 

state is a pointer that the function can use to store component specific state information. 

handle points to an opaque internal library data structure, referred to as a component handle 
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below, which is used by many library functions, in points to a list of pointers to input data. If 

and only if the nth argument is supplied then * ( in+n) is not NULL and points to the input data, 

even if the size of the supplied data is 0. The library does not process or attempt to interpret the 

message data. 

The value that the body returns is used as the value of s t a t e with which the component body 

will be called when the component fires again, s t a t e is a per component value. 

6.9 Message information 

If n is a used input ( *(in + n) is not NULL) then mp_msg_size(void *handle, int n) returns 

the size of the message, where handle is the opaque handle passed to the component and n is the 

input number. The result is undefined if an input n has not been used. 

rrip_freemsg(void * handle, int n) frees the storage associated with input number n. This call 

should not be used if the message might be referenced after the call, for example storing it on an 

argument queue (described in subsection 6.13.1). 

6.10 Sending a message 

A component that wishes to communicate over a shared variable does this by calling int mp_output 

(void * handle, int index, void *data, size_t size), handle is the opaque pointer passed to the 

body, index the index number of output shared variable, data a pointer to the data, and size the 

size of data. The library will transmit the message without processing it or attempting to interpret 

its content. Only one message per invocation can be sent via a single shared variable. 

Sending a message of the wrong size, via a fixed size shared variable, prints a message on the 

standard error and does not send anything. There is no compulsion on the transport to transmit 

the message immediately. For example, the main loop of the TCP/ IP and in-memory transport 

has distinct firing and communication phases—any communication to a component on another 

node will be delayed until the next communication phase and no component will fire more than 

once in each firing phase. 

6.11 Input and Outpu t 

No input and output functions are provided. Components can use the standard error and standard 

output for console output and read and write files as usual (saving some state might be required). 

Components should avoid using the standard input, because it is used by the library internally. 

Operations that block for a significant amount of time should be avoided. The local components 

cannot communicate or otherwise use the time a component is blocked. This might cause the 

operating system's buffers to fill and therefore delay components on other nodes, for example by 

preventing the library from communicating on their behalf. 

6.12 Shutdown 

Shutdown occurs when the e x i t (3) function is called on any node. The other nodes are terminated 

immediately, violently if need be. Any processing that is happening on a node when a shutdown is 
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Figure 6.3: Two possible states of an argument queue 

initiated will be terminated immediately. Per node usage statistics can be generated by arranging 

for a call to mp_usage_report, which protects itself from interruption, when exit(3) is invoked. 

6.13 Queues 

Components that fuse data from multiple sources frequently need to temporarily store messages 

for later processing. The library provides 3 varieties of queues to simplify implementing this. 

• Argument queues collect arguments from multiple sources into complete sets. 

• Serial number queues handle data with associated serial numbers, which can be used to refer 

to the data. 

• Message queues store messages at the request of the application. 

6.13.1 Argument queues 

Components that implement computations that require a value from all their inputs cannot assume 

that all the values will be supplied when their body is invoked. It is possible, and in some cases 

probable, that the body will be invoked several times with several sets of supplied inputs, which 

together supply at least one value for all the inputs. 

Concurrency control barriers can be implemented using argument queues and an argument 

that indicates that some processing components can accept a new data set. Connections used for 

this purpose are likely to require a value injected into them to prevent the first data set being 

stopped at the barrier. 

Argument queues collect all the first messages, all the second messages, etc into sets that can 

be processed together. Messages without a corresponding message from all the other inputs are 

stored for later processing, when corresponding messages from the other sources are available. 

The shaded area in figure 6.3(a) is implemented by the argument queue. The dashed box is a 

separate argument vector which contains no values. Component x has sent two values, a and b in 

that order. Component y has sent a single value c. 

If component z sends a value, d, then all arguments will have a value, so the first value of every 

queue is removed from the queue and placed in the argument vector. This results in the state in 

figure 6.3(b). Further arguments from each components x, y and z will be processed in the order 

sent when there is an argument from each component available. 

An argument queue is constructed by mp_new_argqueue(void *h, void *q). h is the handle 

passed to the component, and is stored in the queue. If q is NULL a new queue is allocated an 

(opaque) pointer to its state returned, otherwise the value of q is returned. This is intended to 

allow code lines of 
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state->qp=new_axgqueue(handle, s ta te->qp) 

where s t a t e ->qp is initially NULL and subsequently points to the queue. Argument queues 

cannot be constructed outside components because the data pointed by h is not allocated until 

mp-mainloop has been called. 

Input data is registered with an argument queue by mp_gather_al largs (void *q, void **in), 

which returns either NULL or a void ** pointer to a vector of values for all the arguments, g is a 

queue and in the inputs. If in has been manipulated or any of the messages have been freed with 

mp_freemsg the behaviour is undefined. 

If mp_gather_al largs returns a non NULL value then mp_argq_msgsize(void *qp, int n), 

where qp points to the queue, returns the size of the nth component, for 0 < n < inputs, of 

the returned vector of pointers. If mp_gather_al largs returned NULL the result of calling 

mp_argq_msgsize is undefined. 

6.13.2 Serial number queues 

Serial number queues are useful for referencing large data sets shared between several invocations 

of the body of a component, which come from another source. Requests can include a serial 

number instead of the data, thus saving complexity and bandwidth, which can be used to find the 

appropriate data. Serial numbers are used for this purpose in the beta_worker component of the 

task parallel Hartree-Fock program discussed in chapter 9. 

A serial number in this context is a non-negative 32 bit integer, between 0 and 2®̂  - 1, with 

a<b if a = b + n mod 2^^ for some n < 2® .̂ This definition of < allows a larger serial number 

to be generated by adding a small number to an existing one, without special handling of the case 

when integer arithmetic overflows. 

The function mp_new_serialq(void *handle, const char *name) creates a new serial number 

queue and returns a void * pointer which can be used to refer to the queue. The handle is the 

handle passed to the component and name is a name that need not be unique and is used in a 

number of messages, which are generated at high verbosity levels. 

mp_seek_serial(void * queue, unsigned int serial) and mp_f i n d _ s e r i a l ( v o i d *queue, int 

serial) returns either NULL or a pointer to the value in queue associated with the serial number 

serial, or NULL if no such data is available. mp_seek_serial removes entries with small serial 

numbers, and mp_f i n d _ s e r i a l leaves outdated entries in place. 

mp_add_serial(void *g, int idx, unsigned int serial) adds inputs idx to the serial queue q, 

with the serial number serial. 

mp_f i l t e r _ s e r i a l q ( v o i d *g, int (*A:eep)(void *)) selectively deletes entries from a serial 

queue. The function pointed to by keep is called with each message in the serial queue and the 

item is removed if, and only if, the function returns 0. 

6.13.3 Message queues 

Message queues provide general purposes message queues which store messages as directed by the 

application. Their uses include storing requests for processing that require a data set with a serial 

number that is not yet available. The beta_worker component in task parallel be r tha (chapter 

9) uses a message queue to store jobs that request a basis set, via a serial number, that has not 

yet been delivered. 
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inp_new_msgq(void) creates a new message queue and returns an opaque pointer to it. The 

queue is initially empty. mp_msgq_add(void *q, void * handle, int idx), where handle is the 

component's handle, adds input number idx to the message queue q. mp_jnsgq_deltop(void *q) 

deletes the first entry of the serial queue q. mp_msgq_empty(void *g) returns 1 if the message 

queue q is empty and 0 otherwise. mp_msgq_topsize(void *g), where g is a non empty message 

queue, returns the size of the top message and inp_msgq_topmsg(void *g) returns a pointer to its 

content. 

6.14 eg: A connection generation language 

It is possible to generate the connections using a general purpose programming language, as the 

sample sort example does in C, the amount of code required indicates that this is impractical for a 

complex program like the task parallel Hartree-Fock program in chapter 9. Thus a special purpose 

programming language, called eg, which is explicitly designed for creating lists of components and 

connections is provided. Components and connections are created using component and connect 

primitives. 

The output of a eg language program is the mp_var and mp_comp arrays for a fixed number of 

nodes. The eg language syntax is primarily, although not exclusively, based on C. The keywords 

are reserved words and may not be used as function names, variable names or unquoted strings. 

There are no global variables, references, or pointers but almost all their uses can be implemented 

using output parameters. 

Unlike C the eg language is not general purpose because it lacks the ability to read and 

write files, and many other operations that a general purpose programming environment must 

provide. Other facilities are restricted to an extent that would be intolerable in a general purpose 

programming language, for example it is only possible to send output to the standard output. The 

lack of structured data types also limits the usability of eg for general purpose programming. 

The main advantages of the language are 

» Compact specification of components and connections between them. 

» Numbers can be combined with strings without explicit type conversion (this is useful for 

generating component names like fooO, bar2, baz42, etc). 

» Built in checking that the connections specified satisfy the rules, so one does not inadvertently 

call a component nowhere, use output indices 0 and 2 from a component but not 1, etc. 

® There is no need to compute the number of components or connections in the graph. 

The primary disadvantages are 

e eg cannot be used to construct the graph on the basis of an external file, or many other 

factors accessible in a language Uke C. 

a eg output does not produce a program that adapts itself to the number of nodes available. 

A parallel program using the structure generate by eg for n processors might suffer severe 

load imbalance when run on m < n processors. The work of processor n' > mis added to the 

load of processor n' mod m by the library, which could double the load on some processors 

and but not others (assuming all the program is well balanced on n indentical processors). 
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• Depending on the C compiler, initialisation might be less flexible than generating the graph 

in a general purpose programming language. 

These differences can be illustrated by comparing connect . c, the C code that generates the 

list of nodes and connections in the sample sort application, and s o r t - g e n . eg, a eg program for 

generating the same components and connections. The components and connections of the sample 

sort application, for 3 nodes, are shown in figure 6.4 on page 51. The eg grammar can be found 

in appendix A. 

8 s o r t - g e n . eg is much shorter (only 61 non-blank lines, where the C version has 221 non 

blank lines). 

9 connec t . e explicitly constructs the component names in strings, which are then duplicated 

when constructing the component and shared variables data structures, s o r t - g e n . eg makes 

extensive use of adding numbers to strings which does the same thing much more compactly. 

For example, one of the connections in the C version, connect . c, is constructed using 

/* Phase 0 to phase 1: generate to sort */ 

sprintf(vnam, "dist%d", i); 

sprintfCdst, "sort%d", i); 

(v+var_idx)->name=strdup(vnam); /* Name */ 

(v+var_idx)->from="generate"; /* Source is generate */ 

(v+var_idx)->froin_idx=i; /* Source index */ 

Cv+var_idx)->to=strdup(dst); /* Destination in sort<nmn> */ 

(v+var_idx)->to_idx=0; /* Input index */ 

(v+var_idx)->size=0; /* Variable size */ 

var_idx++; 

The eg equivalent of this is connect generate(i+1) to "sort"+i(0) via "dist"+i;. If 

a size other than 0 was desired it would be necessary to insert with size size before the 

semicolon. 

8 connect . c allows the user to specify a maximum number of nodes on the command line. 

This cannot be possible with code generated from s o r t - g e n . e g . 

8 connect . c computes the number of components and connections between them, which would 

be error prone in complex cases leading to obscure bugs, s o r t - g e n . eg computes neither. 

8 connect.e adapts to the number of processing nodes available. Code generated from 

sort-gen. eg would not do this. 

8 Using connect.c one cannot verify that the connections it specified fit the rules, except by 

run time testing or mathematical analysis of the code, probably using a formal method. The 

simple connection structure of sample sort make it fairly easy to see that the structure is 

correctly generated in this instance. 
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6.14.1 Overview of a eg program 

A eg program is composed of functions, which do not nest. Spaces, tabs, and new lines are not 

significant except inside strings or as separators. Any source text between / * and */ is a comment, 

which is lexically equivalent to a space. 

The interpreter starts a eg program by calling the function main, which has no parameters and 

no arguments. The eg programming language includes special syntax for generating components 

and connections between them. The eg interpreter inserts the list of components and list of 

connections at appropriate points in a template after the eg program's main function returns. 

A constant is any expression involving only constant terms. The number of nodes is a constant 

called nodes. Thus 2*nodes+l is a constant number and "foo"+nodes is a constant string, for 

example. 

6.14.2 Basic types 

eg has only 3 types of variables: integers, strings and taps. 

® a num, which can be called an in t , is an integer. Numbers can be expressed in any format 

C understands, preceded by an optional sign, namely 

- Ox followed by hexadecimal digits (0 to 9 and a to f). 

- 0 followed by octal digits (0 to 7) 

- Decimal digits (0 to 9) not starting with a leading 0. 

» a s t r i n g is a null terminated sequence of characters. A letter followed by an arbitrary 

number of letters or digits not recognised as a keyword, variable or function name is a 

string. 

Anything enclosed in double quotes is also a string. Multiple strings in double quotes sep-

arated by only white space are concatenated and considered to be a single string®. The 

characters following the symbol \ that ANSI C understands are also understood and repres-

ent the same characters. 

« a t ap is an input or output of a component. 

A variable is either a single basic type or (a possibly multiple dimensional) array of values of 

a basic type. There are no pointers, references or structured types, at least some of which are 

usually available in general purpose programming languages. 

6.14.3 Expressions 

String expressions 

There are two operations defined on strings. 

8 string + string concatenates two strings. If either, but not both, is not a string then it is 

converted to a string. 

9 string [ numhevi t o number2 ] is characters numberi to number2 of string. The first 

character of string is character 0. If numberi > number2 then the value is the empty string. 

®This is also true in ANSI C. 
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Concatenating strings and numbers using + is a convenient way of generating names for groups 

of components sharing the same body, for example the sortn components in the sample sort 

example described in section 6.16. 

6.14.4 Numeric expressions 

Relation Operators and Boolean operators 

All the comparison operators <, >, <=, >=, == (equal) and != (not equal) are 1 if true and 0 if 

false. The result is a number for any type of operand. && is a boolean and operator, which stops 

evaluating the conditions when it encounters one which is false (equal to 0). The I I operator is a 

boolean or operator, which stops evaluating the conditions when it encounters one which is true 

(not equal to zero). Both the && and | | operators evaluate the conditions left to right. 

Arithmetic operators 

The arithmetic operators are ** (exponentiation), / (division), * (multiplication), % (modulus), + 

(addition) and - (subtraction). ** has the highest precedence followed by *, / and %, followed by 

+ and - . The fractional part of the result of a division is discarded. All these operators have a 

slightly higher precedence when applied to a pair of constants. The * and / work as if the 

associated left to right, thus f oo-3-2 is the same as foo-5 and f o o / 3 / 2 is the same as foo/6. 

The result is sometimes different for expressions like foo*80/100 and foo/2*6. foo*80/100 is 

interpreted as f oo* (80/100), which integer arithmetic turns into f oo*0, which is not the excepted 

result. foo/2*6 is replaced by foo*3, which is different from ( foo/2)*6 using integer arithmetic 

if f 00 is an odd number. This problem can be solved by using brackets. 

Bitwise operators 

The bitwise operators are " (exclusive or), I (logical or) and & (logical and). All have equal 

precedence, above comparisons (<, >, etc) and below arithmetic operators (+, - , *, / , etc). 

6.14.5 Statements 

A statement is either a simple statement or any number of statements enclosed in curly brackets 

({. . .}), which is called a compound statement. Simple statements are variable declarations, as-

signments, control flow statements, component, connect or p r i n t statements, or calls to functions 

which return no value. Functions which return a value can only be called in a context where their 

return value can be used, for example an assignment statement. 

The print statement 

The p r i n t statement prints the value of a single number, string or tap on the standard output. 

Multiple values can be printed by using string concatenation, for example p r i n t a+" "+b+"\n"; 

will print 42 69, and a newline, if a is a number set to 42 and b is a number set to 69. 

Variable declarations 

A variable can be declared in any context that a statement is valid. The syntax is type name 

dimensions-, where type is one the basic types above, name is a constant string, different from 
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r e s u l t , and dimensions is zero or more dimensions, which are constant numbers, sometimes 

related to the constant nodes, in square brackets. 

Creating components and connections 

The component name body C function name on node; statement creates a component called 

name with a body of the C callable function name that runs on node node. A component must exist 

before taps representing its inputs or outputs and connections to or from it can be created. Connec-

tions between components are created by connect source t o destination connect-options, where 

source and destination are connection endpoints. A connection endpoint is component (index), a 

tap or nowhere, nowhere is only allowed as a source, connect-options is 0 or more of the following 

® s i z e number specifies the message size in bytes 

8 type string specifies the name of the data type of the messages, for example a connection 

that transmits an integer can be specified with type i n t . 

o v i a string specifies the name of the connection. 

• name string is a synonym for via string. 

8 constant string is a name to #def ine to the number of this connection, which is useful for 

injecting a message into the connection before calling mp_jnainloop. 

Assignments 

An assignment has the form variahle=value. Special syntax applies for taps, which are references 

to communication endpoints and cannot be manipulated meaningfully. If tapvar and tapvar2 

are taps then the allowed forms are 

» tapvar=from component (index), which makes tapvar a reference to output index of com-

ponent component. A component named component must have been created before this 

statement. 

8 tapvar=to component(index), which makes tapvar a reference to input index of component 

component. A component named component must have been created before this statement. 

8 tapvar=nowhere which sets tapvar to a connection from the phantom component nowhere. 

Input, for example problem parameters or dummy input to make a component fire, can be 

injected into connections from nowhere. 

8 tapvar=tapvar2 which makes tapvar a reference to the same endpoint as tappvar2. An 

error occurs if tapvar2 has not been set to an endpoint before it is assigned to another tap. 

6.14.6 Control flow statements 

eg provides conditionals, while loops and f o r loops similar to those found in many programming 

languages, eg has no goto statement, abrupt loop exit (like the break statement in C or java) or 

exception handling. 
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Condit ionals 

Conditionals have the syntax i f (number) then statementi e l se statement2. The e l se state-

ment2 is optional and part of the closest previous i f statement in otherwise ambiguous cases. If the 

which ceiii be an expresBion, is not 0 then atatementi is executed; otherwise statementz 

is executed. 

while loops 

while loops have the syntax while {number) statement The while statement first evaluates 

number, which should be an expression, and if it is not 0, executes and reevaluates the 

murniAer. This cycle continues until becomes 0. 

f o r loops 

for loops execute a statement with a numeric variable set to each value in an arithmetic sequence. 

The syntax is f o r vmi.able=numberi to number-i by number 3 statement All three numbers can 

be expressions. The by muTTiZiers is optional and the step size defaults to 1. The loop executes 

statement with variable set to numkri 4- numbers, numberi + 2 x immtera, etc. 

The loop terminates when the variable exceeds the mfm6er2, if the step size is positive, or 

becomes smaller than it, if the step size is negative. Due to implementation details a f o r loop 

with a step of 0 never terminates, but does not generate an error message. 

for loops evaluate number 1, and mum&rg once before entering the loop, and never 

re-evaluate them. Thus the loop termination t^ t in ii=a to b { b^b-1; } compare n to the 

value of b before the loop body is executed, despite the loop body changing the value of b. 

Note that f o r loops in eg do the test before executing the loop body. Thus for i=2 to 1 

{ p r i n t "now i="+i+"\n"; } never executes the p r i n t "now i="+i+" \n" ; statement. Simil-

arly f o r i=3 to 7 s tep -2 { p r i n t "now i="+i+ . \n" ; } never executes the loop body. 

6.15 A comparison with M P I 

The purpose of this section is to contrast the features of MPI and the mpkern library. The facilities 

provided by MPI are useful for implementing data parallel programs but little use for other types 

of parallel program, where MPI can act as thick layer preventing access to useful system facilities. 

6.15.1 Deadlock freedom 

MPI requires the programmer to ensure deadlock freedom and there are many possible causes of 

deadlock. MPI's poorly documented, or "implementation deEned" and often completely undocu-

mented, behaviour in some delicate cases can make avoiding deadlock much more difficult. 

If the timing is complex, or poorly understood, then imposing any fixed safe timing could 

seriously limit performance. The complexity of MPI could make the only reliable alternative, 

formal deadlock freedom analysis of a specrBc solution, very complex. Further each design change 

might require a complete reanalysis. Simplifying the design, and accepting any performance 

penalty attached, is more common than attempting formal analysis of a complex MPI program. 

The mpkern library avoids these problems because it restricts the communication pattern to 

a class which is the subject of a deadlock freedom result. It is usually relatively simple to show 
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barriers get all the data required, and thus the no messages in transit and no active component 

scenario is impossible, even in complex examples like the task parallel Hartree-Fock program^. 

6.15.2 Control flow 

A programmer can write any style of message passing parallel program in MPI, at least in theory. 

MPI is designed for data parallel programming and offers convenient functions for performing 

collective operations. The underlying facilities used by MPI are sometimes more suitable for 

implementing infrastructure for other types of parallel program than MPI—the mpkem hbrary 

relies on features of se lec t (2) that are hard to emulate using MPI, for example. 

The mpkern library is much more restrictive. The main loop is part of the mpkern library and 

there is no control Bow across component boundaries. In particular it is not possible to send a 

message and wait for a response, instead separate "request" and "response" components must be 

used. 

6.15.3 Synchronisation 

A MPI program can use a broadcast followed by a barrier to ensure that all nodes have the same 

version of some global data, for example the density matrix estimate in the Hartree-Fock problem. 

All such data will be visible everywhere on a node, so a sophisticated analysis of the data Sow is 

not required. 

Components of mpkern programs have much more restricted access to data—if a component 

needs some shared data then it must have its own copy (another component's copy cannot be used 

instead). It could be argued that this simpli&es maintenance because there is no need to worry 

about data no longer being available when the problem is redistributed. 

The mpkem hbrary has no support for global barriers because there is no Sow control between 

components. Specihc versions of data can be referred to using aerial numbers or aU the data 

required can be sent in a single composite message. The Hartree-Fock example uses serial numbers 

to refer to data with a longer lifetime and composite messages for groups of data with the semie 

lifetime. 

6.16 A simple example: Sample sort . 

This section uses the library to implement sample sort. The algorithm implemented in this section 

is slightly modified to handle very small instances correctly. The communication graph of sample 

sort is acyclic, unlike the Hartree-Fock program presented in chapter 9. 

Sample sort is a parallel sorting algorithm. Initially the data is distributed across p nodes. 

The algorithm in outline is 

1. All nodes sort local data 

2. All nodes select — 1 sphtters and send them to node 0 

3. Node 0 selects p — 1 global sphtters, from the sphtters selected in the previous step, and 

sends them to all nodes 

®The Hartree-Fock problem is a large scale numerical problem with many "real world" applications 
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Figure 6.4: Communication structure of sample-sort with 3 nodes 

4. All nodes split the local data using the global splitters, sending data between the «th and 

i + 1th splitter to node i. 

5. All merge their data. 

This falls into sort, split and merge components on every node and a global sample selection 

component. Adding a data generator that feeds the sort component and something to print the 

data out at the end makes a complete program. The selection of the global splitters, splitting the 

sorted data and merging all require a complete set of inputs. Argument queues have the behaviour 

required. The sort components could sort multiple sets of data at once (while one set of data is 

merged another can be split and a third set locally sorted and sampled). 

If there are three nodes available the communication structure looks as shown in figure 6.4. 

niuns is an external trigger into which a value is initially injected. The unshaded components 

implement sample sort. The sortn stages do local sorting and local sampling, sample extracts 

global splitters, the splitn stages do global splitting and the mergen stages do the final merging. 

The generate component reads the number passed in via nums, generates a random problem of 

that size and distributes it to the sort components and prints them to the standard output. The 

output component returns unless it has a value of all the parameters, collected using an argument 

queue. Once all the values are available the output components checks they are in order, the total 

number of results is input size, which is sent to it by generate, and prints them on the standard 

error. After printing the result output terminates the program by calling e x i t (3). 

How the components are distributed is not important for the correctness of the program, 

but there are some sets of components that can be expected to run concurrently. Other sets of 

components have dependencies and cannot run concurrently. In the case of the sample sort an 

obvious partitioning scheme is to run sortn, splitn and mergen on node n. 

The generate, sample and output components could run on any node without major effects on 

the performance. The code presented runs them on node zero?. 

6.16.1 The main program 

The main function, which contains the body of the sample sort program (in C) is mildly unusual for 

a program using the library. A typical, and much simpler, example is found as the main function 

'^This avoids network trafBc for output on the standard output and standard error in some configurations. 
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of the Hartree-Fock program. The extra complexity is largely because the sample sort program is 

designed for testing the library. The details of the unusual sections have been minimised. 

The most prominent unusual features of the sample sort program are that 

» The number of nodes and verbosity level can be specified on the command line. 

o The list of components and connections is generated to suit the number of nodes, instead of 

being fixed in advance. 

The former makes it possible to see the internals of mp_ini t , provided the debugging level is 

sufficient. The latter allows a single program to work well on any number of nodes and is feasible 

due to the simplicity of the way the components are connected. 

Generating the component and variable list at run time requires the number of components 

and connections between them to be computed first. gene ra t e_procs generates the component 

list and gene ra t e_va r s generates the list of connections. Every node generates the same list of 

components and connections independently. 

beginning o/main elided 

node=mp_init(&argc, argv); /* If remote process argc 

and argv adjusted */ 

procs=mp_procs(); /* Get processor count */ 

nproc=procs*3+5; /* Number of components */ 

comp=alloca(nproc*sizeof(mp_component)); /* Allocate components */ 

generate_procs(procs, comp); /* Generate components */ 

nv=procs*(procs+5)+3; /* Number of variables */ 

v=alloca(nv*sizeof(mp_var)); /* Allocate variables */ 

generate_vars(procs, v); /* Generate variables */ 

The sample size, which is in a variable called n due to a section of main not shown here, is 

injected into the first connection, which is the input of the generate component. The mp_mainloop 

is called with the list of components and nodes, which makes the required connections between 

nodes and performs the processing using the supplied components. The mp_mainloop function 

should never return. 

mp_inject(v, &n, sizeof(n)); /* Inject message */ 

mp_mainloop(comp, v); /* Main loop */ 

fputs("Fatal error. mp_mainloop returnedXn", stderr); /* Bug trap */ 

exit(EXIT_FAILURE); / * Die Y 

} 

All single and multiple input components are implemented in a similar manner, except for the 

processing they perform. The processing is not discussed in this section because the focus here is 

on how a real program uses the library functions. The similarity between the bodies of mpkern 

components and the bodies of input, process and then output components is a design feature of 

the library—the main difference is that a collection of mpkern components deadlock in far fewer 

situations. 
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Only the sortn component, all of which have the same body, and sample component are de-

scribed here. All other components differ from either the sortn or the sample component only in 

the details of the processing. All of the sortn component body is shown here, in pieces, to illustrate 

the structure of a complete component body. 

6.16.2 A single input component 

The sortn and generate components both have a single input. This section describes the sort 

component. The generate component is similar, except for the processing and different connections, 

which are used in a similar manner. 

The sortn components has a single, variable size, input. This input is definitely supplied when 

the component body is instantiated because without at least one input the component could not 

fire. Sorting is qsort(3), called with an appropriate comparison function. The sort component 

does not have any state. 

The pointer at *in is read and assigned to buf (cast to i n t *, which is the message format 

that generate sends). The number of numbers is computed from the message size. All of the sortn 

component body is shown here, in pieces, to illustrate the structure of a complete component 

body. The processing in the sample component is elided. 

/* Phase 1: Quick sort the sample. 

Input: sample 

Output: sorted buffer, samples 

V 
void *sort_sample(void *ign, void *h, void **in) 

{ 
int i, j, size; 

int ^samples, *buf; 

ign=ign; /* Avoid compiler warning */ 

buf=(int *) (*in); /* Only one input, thus must be present */ 

size=mp_msgsize(h, 0)/sizeof(int); /* Compute #nums */ 

An empty sample (s ize equal to 0) is only possible for very small examples. This code 

communicates no samples and an empty sorted sample if the sample is empty. Otherwise it 

attempts to allocate memory for storing the local splitters and exits immediately if no memory is 

available. 

if (size==0) 

{ 
/* Normal sample sort does not need size 0 handling here */ 

mp_output(h, 0, buf, 0); /* No data */ 

mp_output(h, 1, buf, 0); /* No samples */ 

return NULL; 

} 

if ((samples=xmalloc(sizeof(int)*mp_procs()))==NULL) 

exit(EXIT_FAILURB); / * Die y 
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The next section of code uses the C library function qsort(3) to sort the data and extracts 

regularly spaced local splitters, numcomp compares the integers pointed to by two pointers. 

/ * y 

qsort(buf, size, sizeof(int), numcomp); 

for (i=0, j=0; i<mp_procs(); i++, j+=(size/mp_procs())) 

{ 
samples[i]=bufp]: 

} 

The final section of the body sends the sorted input buffer to the split component on the 

same node (via output 0) and the samples to the sample component, which selects the global 

splitters (via output 1). The code works even if fewer than the desired number of splitters could 

be extracted, which is only possible for very small examples. 

/* Output results */ 

mp_output(h, 0, buf, size*sizeof(int)); 

mp_output(h, 1, samples, i*sizeof(int)); 

free(samples); /* Free memory */ 

return NULL; 

6.16.3 A multiple input component 

Generating the global splitters, splitting, merging and producing the final output components 

all have multiple inputs and require all of them. The sample component is described here, and 

implemented by m e r g e _ s p l i t t e r s which generates the global splitters. All the other multiple 

input components with one or more outputs are similar—all use argument queues, with their 

private data holding the opaque pointer to void which mp_aew_argqueue returns. 

Computing the global splitters requires samples from all the sort components but is otherwise 

not history sensitive®. The private data pointer is the opaque pointer that inp_new_argqueue 

returns. The initial value of the private data pointer is NULL. 

This section allocates a new argument queue, unless one has already been allocated, and uses 

it to gather a complete set of arguments. The persistent state is the opaque pointer returned by 

mp_new_argqueue. 

/* Phase 2: Compute global splitters 

Input: samples from everyone else 

Output: set of global splitters 

*/ 
void *merge_splitters(void *d, void *mp_h, void **in) 

{ 
heap h; 

int i, j, k, tmp, nprocs; 

merge_source *srcs; 

®The results of a history sensitive function depend on some state, which depends on the previous invocations 

of the function, in addition to the parameters. A mechamism to save the state is required to implement a history 

sensitive function. 
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int *splits; 

void **args; 

d=mp_new_argqueue(mp_h, d); 

args=mp_gather_allargs(d, in); 

if (args==NULL) 

return d; 

mp_gather_al largs returns NULL unless an input has been read from all the inputs. Values 

are stored in the argument queue for later processing if it cannot be processed immediately. If the 

component does not return here then d points to an array of void * pointers, none of which are 

NULL, which point to a list of splitters from all the sortn components. 

Merging the splitters is performed by a heap based merge. The details of the merging and 

selection of the global splitters are not presented here. Finally the splitters are sent to all the local 

splitting stages. The state pointer is the opaque pointer returned by mp_new_argqueue above, 

nprocs is the number of nodes, as returned by mp_procs. 

for (i=0; i<nprocs; i++) 

mp_output(mp_h, i, splits, (nprocs-l)*sizeof(int)); 

return d; 

} 

The output component collects a complete set of inputs using an argument queue in the same 

manner as merge_sp l i t t e r s . Given a complete set of outputs it checks that the outputs are sor-

ted, and that the length of the sorted list is the same as that of the generated list. If the list contains 

under 400 elements it prints them to the standard output, which is easily retrieved in many batch 

processing environments. Once this has been done the program is terminated by calling exit(3). 

6.16.4 Generating the sample sort connections using eg 

The eg language described in section 6.14 it makes much simpler to generate the list of components 

and connections between them for the sample sort program, described in section 6.16. Extensive 

use is made of adding numbers to strings and output parameters. This example generates the 

components and connections shown in figure 6.4, if the number of nodes is set to 3. 

The oneproc function generates the sortp, splitp and mergep components that exist on all 

components and returns an output tap that returns the final sorted result (the only output of 

mergep). Output parameters are used to return taps for sending the local sample, receiving the 

global splitters, sending the splitters and receiving the data from the splitp stages. The output 

parameters source, out samp, insamp, o u t s p l i t s and i n s p l i t s represent the only inputs of 

the sortp components, an output for sending the local sample, an input for receiving the global 

splitters, outputs for sending the splitn data to the mergen stages, and inputs for receiving data 

from the splitn stages, respectively. 

/* s o r t and sample, s p l i t and merge */ 

t ap oneproc(in num p, out t ap source, out t ap outsamp, out t a p insamp, 

out t ap o u t s p l i t s [ n o d e s ] , out tap i n s p l i t s [ n o d e s ] ) 
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/* First make some components */ 

component "sort"+p body "sort_sample" on p; 

component "split"+p body "split_data" on p; 

component "merge"+p body "merge_data" on p; 

/* Connect them togther */ 

source=to "sort"+p (0); 

connect "sort"+p(0) to "split"+p(0) via "data"+p; 

/* Export appropiate taps */ 

outsamp=from "sort"+p(l); /* An output tap */ 

insamp=to "split"+p(l); /* An input tap */ 

num i; 

for i=0 to nodes-1 
{ 

outsplits[i]=from "split"+p(i); 

insplits[i]=to "merge"+p(i); 

} 

result=from "merge"+p(0); /* result is the result returned */ 

} 

The s o r t function connects together components created by oneproc, returning nodes inputs, 

for input data, and output, for reading the results. The fact that o u t s p l [ i ] is a one dimensional 

array of size nodes (because o u t s p l is a nodes x nodes array) simplifies the function. 

void s o r t ( i n num n , out t a p inp [nodes ] , out t ap ou tp [nodes ] ) 

{ 

t a p insamp, outsamp, o u t s p l [nodes][nodes] , i n s p l [ n o d e s ] [nodes] ; 

component "sample" body " m e r g e _ s p l i t t e r s " on 0; 

num i ; 

f o r 1=0 t o n - 1 
{ 

o u t p [ i ] = o n e p r o c ( i , i n p [ i ] , outsamp, insamp, o u t s p l [ i ] , 

i n s p l [ i ] ) ; 

connect outsamp t o sample( i ) v i a "insamp"+1; 

connect sample( i ) t o insamp v i a "outsamp"+i; 

} 
num j ; 

/ * Connect t he s p l i t and merge s t ages */ 

f o r i=0 t o n -1 

f o r j=0 t o n -1 

connect o u t s p l [ i ] [ j ] t o i n s p l [ j ] [ i ] v i a " s p l i t " + i + " - " + j ; 

> 
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/* note: result is not defined for void functions */ 

} 

The main function, which is the body of the program, generates a sample sort network using 

the s o r t function and connects it to a number generation and result verification component. 

void mainO 
{ 

tap output[nodes], input[nodes]; 

component "generate" body make_testdata on 0; 

sort(nodes, input, output); /* Generate main sort */ 

/* Wire it up to test rig */ 

component "print" body print_output on 0; 

connect nowhere to generate(0) via "nums" type int constant SIZE; 

connect generate(0) to "print"(nodes) via "sample_size"; 

num i; 

for i=0 to nodes-1 
{ 

connect generate(i+1) to input[i] via "feed"+i; 

connect output[i] to "print"(i) via "out"+i; 

} 
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The generated output for 2 nodes is 

/* These structures are for 2 nodes */ 

#define SIZE 5 

mp_var mprog_mp_vars[]= 

{ 

{"outl", 0, "mergel", 0, "print", 1}, 

{"feedl", 0, "generate", 2, "sortl", 0>, 

{"outO", 0, "mergeO", 0, "print", 0>, 

{"feedO", 0, "generate", 1, "sortO", 0}, 

-["sample_size", 0, "generate", 0, "print", 2}, 

{"nums", sizeof(int), "nowhere", 0, "generate", 0}, 

{"split1-1", 0, "split1", 1, "mergel", 1}, 

{"split1-0", 0, "splitl", 0, "mergeO", 1}, 

{"splitO-1", 0, "splitO", 1, "mergel", 0>, 

{"splitO-0", 0, "spIitO", 0, "mergeO", 0}, 

{"outsampl", 0, "sample", 1, "splitl", 1}, 

{"insampl", 0, "sortl", 1, "sample", 1}, 

{"datal", 0, "sortl", 0, "splitl", 0>, 

{"outsampO", 0, "sample", 0, "splitO", 1>, 

{"insampO", 0, "sortO", 1, "sample", 0}, 

{"dataO", 0, "sortO", 0, "splitO", 0}, 

{ NULL, 0, NULL, 0, NULL, 0 } 

} ; 

mp_component mprog_mp_comps[]= 

{ 

{"print", 0, &print_output, NULL}, 

{"mergel", 1, &merge_data, NULL}, 

{"splitl", 1, &split_data, NULL}, 

{"sortl", 1, &sort_sample, NULL}, 

{"mergeO", 0, &merge_data, NULL}, 

{"splitO", 0, &split_data, NULL}, 

{"sortO", 0, &sort_sample, NULL}, 

{"sample", 0, &merge_splitters, NULL}, 

{"generate", 0, &make_testdata, NULL}, 

{ NULL, 0, NULL, NULL } 

}; 

Passing these values of mprog_mp_vars and mprog_mp_comps to the mp_mainloop function 

generates a 2 processor instance of the sample sort network. The SIZE constant is the connection 

number into which the input problem size should be injected before calling mp_mainloop. 

The C connection generation function is designed so that the problem size connection is always 

the first connection. This avoids the need to calculate the connection number into which the 

problem size should be injected, which might otherwise depend on the number of nodes. Using 

fixed connections and components, generated in advance, obviously avoids this problem. 
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6.17 Summary 

A new parallel library was described, brieSy compared with MPI and used to implement a simple 

example. A small special purpose programming language, called eg, is provided for generating 

the required data structures. The performance of this library is assessed using the Hartree-Fock 

problem in chapter 9. 
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Chapter 7 

mpkern Library Internals 

This section describes the implementation of the mpkern library, which was described in chapter 6. 

The library is designed to efficiently exploit moderate size clusters of homogeneous systems, largely 

because of their widespread availability. The aims of the implementation are 

® Correctness: The implementation should not deadlock, or diverge, for any timing, given 

any correct program. 

« EfHciency: The implementation should operate efficiently for both small and large systems 

and programs. 

8 Scalability: The reliance on centralised control and other unscalable features should be 

minimised. 

® Flexibility: It should be easy to add support for another transport mechanism, for example 

a light weight protocol or low latency networking technology. 

« Simplicity: The implementation should be as simple as possible consistent with the other 

goals. 

8 Portability: The implementation should work on a range of systems without any changes. 

This goal was not that onerous due to the similarities between different unix variants. 

7.1 Design 

Each node is represented by a single threaded process which covers all the components whose 

bodies are executed on that node. This is safe because it only affects the timing, which does not 

matter as shown in the proof in chapter 5, provided the message transmission and reception can 

happen in parallel. The latter can be implemented using non-blocking I /O, or asynchronous I/O. 

Sending a message between two components on different nodes requires the message to be sent 

from one process to another, which requires some sort of interprocess communication. This requires 

some sort of underlying interprocess communication facility, for example TCP[28] connections. 

To minimise the restrictions on the interprocess communication mechanism, and implement-

ation of communication between components on the same node, the library is divided into core 

functions and transport dependent functions. Assumptions about the interface to the interprocess 

communication facility are minimised by putting the main loop in the transport dependent portion 

of the library. The library core functions implement 
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data 

message 
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Figure 7.1; Simplified view of the relationships between the major data structures and functions 

in the mpkern main loop, which is part of the library. The rectangles are data structures and 

boxes with round corners are important functions or groups of functions. 

o the public interface (all the mp_* functions, most of which are documented in chapter 6). 

» starting remote processes, using a remote shell command. 

o mapping component names to destination numbers during startup. 

® building a list of local components, and counting their inputs and outputs. 

® injecting the initial inputs into the system. 

« invoking a component body. 

A simplified view of the main functions, or groups of functions, and data structures in the main 

loop is shown in figure 7.1. The heavy dashed lines show the divisions between the application, 

core and transport specific components. The boxes with square corners are data structures and 

boxes with round corners major functions, or groups of the functions. 

The dotted arrows show the direction of pointers. A double headed arrow connecting function 

F to data structure S indicates that F processes the data structure S. The heavy solid arrows 

indicate control flow. There is no requirement that the main loop calls the functions in the order 

suggested, only that it does not deadlock given any set of components that would be deadlock free 

if executed in parallel, and all messages are delivered in an order consistent with the guarantees 

given in chapter 6. 
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Clearly the mp component structure, which is constructed by a core function before the 

main loop is entered, is the most important structure. There is one __jnp component structure 

for each local component. All the public functions for use in component bodies, the mp_* functions 

in figure 7.1, invoking a component body and communication all manipulate the mp component 

structure. The opaque handle passed to a component body is actually a pointer to the component's 

mp component structure and mp_output, mp_msgsize, etc depend on this fact. 

The transport delivers a message by adjusting the non-private portion of the mp component 

structure to reflect the presence of the message. The mp f i re_body function, which fires a 

component will determine the presence of the message by examining the __mp component data 

structure and pass it on to the component body. 

When the control returns to the main loop the main loop examines the mp component to 

determine which outputs were used and takes transport specific steps to transmit them. Trans-

mission is likely to use some of the private data. 

7.2 W h y a single thread? 

The CSP description has many concurrent components, and requires parallel input and output; 

the implementation is single threaded. A major reason for both choices is simplicity. A range of 

designs with multiple threads could have been chosen instead, without sacrificing much portability 

due to the broad support for POSIX threads. 

It would, in principle, be possible to add support for a compute phase and for it to control 

whether or not the outputs are used to the CSP model, by adding appropriate events. It could then 

be shown that the two systems are the same when the added events are hidden, using appropriate 

laws of CSP. The expanded version of the CSP process could then be implemented directly using 

the same number of threads and a parallel programming toolkit. 

Unfortunately the performance of such a design would probably be very poor—the vast number 

of threads could act as "bacteria" and consume a large amount of CPU time context switching, 

the process the operating system uses to maintain the illusion that each process has the CPU to 

itself. The cost of synchronising the threads would also be significant (partly because each system 

call involves two context changes). 

The only solution to the problem of many threads acting as "bacteria" and consuming vast 

amounts of processor time synchronising and context switching is to reduce the number of threads. 

One thread per component is fairly easy to implement using existing system facilities and parallel 

libraries. This design entails connections where n is the number of components and experiments 

indicate this leads to poor performance. 

Using only 1 thread only affects the timing, which the deadlock freedom proof shows is irrel-

evant, and reduces the number of connections to p — 1 connections on each node, where p is the 

number of nodes. The amount of context switching and synchronisation requirements are also 

drastically reduced. 

A single thread was chosen to simplify the implementation and maximise performance. Some of 

the optimisations, for example the aggregation of many small message with the same remote des-

tination and local message delivery by pointer manipulation, would be very difficult to implement 

if more threads were used instead. 

However the requirement to show that the implementation matches the CSP description in-

creases as the distance between the implementation and CSP model it is supposed to implement 
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increases. Chapter 8 states the most important invariants, and argues that they are maintained 

using assertional reasoning. These invariants and a progress property are then used to argue that 

sending a message will cause the destination component to fire with tha t the message as an input. 

That sending a message will causing the destination to fire with the message as an input is 

sufficient to establish that cycles of components all blocking each other are impossible. Thus the 

correctness analysis shows enough to prove the deadlock freedom result. The only exceptions is 

cases in which deadlock would occur without an external input, which is not implemented, as 

stated in chapter 6. Fortunately these cases are easy to avoid and not guaranteed to be deadlock 

free by the library. 

7 . 3 T h e T C P + t r a n s p o r t 

The library is supplied with the TCP+ transport, which uses fast pointer manipulation transport 

between two local components (the in-memory transport) and sends data to components on other 

nodes via a TCP connection. TCP connections provide a simple reliable bidirectional byte stream 

connection between two points via a potentially unreliable network, usually an IP (Internet Pro-

tocol) network^. There is no concept of messages or message boundaries associated with a TCP 

connection. 

7.3.1 Connections 

Each node in a mpkern program, which corresponds to a process in a unix-like environment, linked 

with the TCP+ library has two classes of connections. Every node has a single data connection 

to every other node and a control connection to node 0. Node 0 has control connections to every 

other node. The control connections are used to communicate before the data connections are set 

up and implement a centralised barrier during shutdown and before entering the main loop. 

The barrier protocol involves every node, except node 0, sending a message to node 0 when 

it reaches the barrier. When node 0 has reached the barrier and received messages that indicate 

that all other nodes have reached the barrier, it sends them all a message and passes through the 

barrier. Nodes other than node 0 pass through the barrier when they receive the message node 0 

sent to them. 

7.3.2 The main loop 

The TCP+ transport's main loop has a separate communication phase, in which it communicates 

with the other nodes, and a computation phase in which it fires the local fireable components. 

The communication phase reads messages, or parts of them, from any node and sends messages 

to writable destination nodes. Components can receive messages, or parts of them, even if they 

are unable to fire because they have an unsent message. 

The T C P + transport solves the lack of message boundaries by interpreting the data from a 

TCP connection as a stream of destination numbers followed by message data. The destination 

number identifies the destination of a message and the connection. If the connection in use carries 

variable length messages the size of the message is sent as part of the message data. 

The sharing of a single TCP connection between all the connections from a component on 

processor i to processor j makes it difficult to control the destination to which messages are sent. 

^IP packets may be delivered in a different order from which they are sent, more than once or not at all. 
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Instead of implementing any control of this the T C P + transport allows multiple messages to be 

delivered to all destinations and ensures the component fires once due to every queued message. 

The presence of buffering does not undermine the deadlock freedom result, because buffering 

could be implemented by replacing a direct connection with one via an appropriate asynchronous 

component. 

All connections are non-blocking, eliminating the need to worry about blocking during trans-

mission or reception. This decision makes it possible to receive one or more messages in fragments. 

The interpretation of a byte stream is not affected by how it is fragmented. The transmission and 

reception processes maintain state and use it to handle fragmented messages. The amount of an 

input that has been received and an output that has been sent is stored in the elements of the 

mp component's message queues. 

The transport specific data attached to each mp component maintains a list of components 

with an unsent message, a list of components to fire, and a list of components to fire in the next 

round. The private data, and balanced tree mapping input indices to an __mp component, suffice 

to maintain these lists without enumerating the local components. 

The initial list of components to fire is generated by examining all the local components, which 

might be slow if there are many local components. This is acceptable as it only has to be done 

once. 

7.3.3 Shutdown 

Shutdown occurs when any node receives a fatal signal, presumably due to a bug, or calls exit (3), 

which invokes special shutdown code attached using a t ex i t (3 ) . The shutdown code terminates 

all the other nodes, using violence if required. 

If this happens on a slave node then the slave node closes all data connections and then sends 

the master node urgent data over the control connection, which interrupts whatever the master 

node is doing and delivers SIGURG to the master node. When the master node catches SIGURG 

it closes all data connections and then sends urgent data to all slaves before exiting. When the 

slaves catch SIGURG they close all data connections and then exit. 

Shutdown due to a signal or e x i t (3) on the master node is the same, except that the first 

step, sending urgent data to the master node, is omitted. These events happen without any error 

handling because closing all data connections might cause some nodes to have initiated shutdown, 

so that they may have terminated by the time the master node at tempts to send them urgent 

The violent nature of the shutdown process makes it easy to limit the program's wall clock 

running time, on systems similar to unix, by calling exi t (3) at a given time in the future, for 

example using the alarm(2) system call and a signal handler that calls ex i t (3 ) . 

7.4 CG implementation 

A eg program is excuted in three phaes; first the program is translated into a stack machine 

langauge, then the stack machine language is interpreted and finally the generated components 

and conections are inserted into a template. Inserting the results of processing the input is also 

used by the yacc parser generator. 

A stack machine was chosen as the intermediate format because stack machines are easy to 

implement and relatively efficient. Performance is not critical in eg because eg is not involved in 
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the execution of a parallel program. 

The component and connect primitives add a component or connection, respectively, to a list 

which is used in the third phase when the list of components and connections is inserted into the 

template. It would be significantly more complex to generate a C from eg instead of inserting its 

results into a template. 

7.4.1 The target machine 

The target machine is a stack machine with local variables and a global stack. Arguments and 

results are passed by value via the stack. There are five possible types of value on the stack and 

fifteen instructions, which are shown in figure 7.2. The available operators are shown in figure 7.3. 

Each item on the stack is one of the following 

8 A dimension 

" Aninb^^r 

» A string 

» A communication endpoint (tap) 

e A variable reference 

Each instruction is one of the following: 

8 Call an operator (1 instruction). 

« Push a basic data type, that is a number, string or tap (3 instructions). 

® Duplicate the element n from the top of the stack and push it on the top of the stack (1 

instruction) 

8 Move the element n from the top of the stack to the top of the stack (1 instruction) 

« Pull a number from the stack and jump if it is, or is not, 0 (2 instructions). 

® Perform an unconditional relative jump (1 instruction) 

• Enter or leave a group of instructions some of which may be skipped (2 instructions). 

8 Call a function and terminate a function (2 instructions) 

® Change the line number or function name (2 instructions). 

All functions are expected to start by setting the function name and finish with an end instruc-

tion. The call an operator function is used for all computation, comparison, creatation of variables, 

and reading and writing variables. All variables are automatically freed when the function in which 

they are defined returns. 
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Instruction Stack level change Parameter Description 

operator Variable Operator Call an operator 

number +1 Number Push a number 

s t r i n g + 1 String Push a string 

t ap + 1 Tap Push a t ap 

dup +1 Number Duplicate items 

topmove 0 Number Move item to top of 

c a l l Variable Number Call a function 

zjiunp - 1 Number Pull n and jump if n = 0 

nzjump - 1 Number Pull n and jump if n 7̂  0 

jump 0 Number Unconditional 

en te r 0 None Enter group 

leave 0 None Leave group 

end 0 None Terminate 

linenum 0 Nunber Set line number 

funcnam 0 String Set function name 

Figure 7.2: Stack machine instructions 

7.4.2 Variables 

Variables are created and referenced and their values read and written, using operators. The valid 

variable names in any context are stored in an ordered splay tree. Calling a function creates a 

new empty context; returning destroys the current context and restores the previous context. A 

function's prologue creates the local variables and pulls input parameter values off the stack and 

its epilogue pushes output values on the stack. 

Reading and writing a variable takes place in two stages. Reading the value of a variable first 

pushes the details on the stack and converts this into a variable reference. The second stage reads 

or writes the variable. 

Defining and resolving variables 

The state of the top of the stack (with no dimensions if n = 0) when the addvar operator is called, 

is: 

<dimension 1> . . . <dimension n> n <name> <type number> 

All values are numbers except <name>, which is a string. The operator pulls the type number, 

variable name and dimensions off the stack. It adds an entry to the table of local variables 

recording this information and allocates storage for the values. Input parameters might have some 

dimensions set to 0, which will result in the assignment operator setting that dimension from the 

parameter value. 

The top of the stack when resolving a variable when the vreso lv operator is called, with no 

indices if n = 0, is: 

<indexi> . . . <index„> n <name> 

All values are numbers except <name>, which is a string. The name is looked up in the table 
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Operator Pulls Pushes Overall Description 

nop 0 0 0 Do nothing. 

blackhole Variable 0 < - 1 Pull n and pop n elements. 

print 1 0 — 1 Print top element on stack 

add 2 1 - 1 Add 

sub 2 1 - 1 Subtract mul 2 1 - 1 Multiply 

div 2 1 - 1 Divide mod 2 1 - 1 Compute modulus 

pow 2 1 - 1 Exponentiate 

neg 1 1 0 Unary minus land 2 1 - 1 Bitwise and 

lor 2 1 - 1 Bitwise or 

Ixor 2 1 - 1 Bitwise xor 

It 2 1 - 1 Less than Iteq 2 1 - 1 Less or equal 

gt 2 1 - 1 Greater than gteq 2 1 - 1 Greater than or equal 

eq 2 1 - 1 Equal 

neq 2 1 - 1 Not equal 

ssand 1 0 or 1 0 or 4-1 Short circuit or 

ssor 1 0 or 1 0 or + 1 Short circuit and 

concat 2 1 — 1 Concatenate two strings 

substr 3 1 - 1 Extract substring 

stringcmp 2 1 - 1 Compare strings 

strindex 2 1 - 1 Extract character from string 

strlen 1 1 0 String length 

string 1 1 0 Convert number to string 

tapstr 1 1 0 Convert tap to string 

tapify 3 1 0 Convert direction, number and string to tap 

camp 4 0 —4 Create component 

connect 5 0 —5 Create connection 

addvar Variable 0 < - 3 Create variable 

vresolv Variable 1 < - 1 Resolve variable reference 

value 1 1 0 Fetch variable value 

assign 2 0 -2 Set variable value 

Figure 7.3: Stack machine operators 

of local variables and an error occurs if the top of the stack is not a string or a valid variable 

name. Both conditions should be impossible, because the former indicates a serious bug in the 

code generator and the latter a bug in the lexical analyser, which distingishes between key words, 

variable names and other strings during the compilation phase. 

The result contains 

n. 9 The number of dimensions supplied, 

s The offset n"= i (index, x n ] = i dimension(<name>,i 

» A pointer to the variable's information. 
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If too many indices are supplied or if any index is less than 0 or greater than or equal to the size 

of the corresponding dimension, an error occurs. 

Reading and writing values 

Reading a value is simpler than assignment because it cannot affect the dimensions of the variable. 

Multiplication of the offset by the remaining index values is performed by the value and assign 

operators, to simplify handling of arrays with one or more unspecified dimensions. 

The value operator multiplies together any remaining dimensions to compute the number of 

values in the result. The offset is computed as the offset computed above multipled by the number 

of values. ensure_space is called to ensure that enough space is available on the stack and then 

the values are pushed onto the stack, with the value in the highest location pushed first. The 

dimensions of the result, if any, are then pushed, the dimension with the highest index first. The 

resulting stack state is 

<value„ > . . . <valuei> <dimension&> . . . <dimensioni> 

A scalar is represented by a single value and no dimensions. 

The ass ign operator might have to allocate memory and adjust unspecified dimensions of the 

variable. The value must have the right number of dimensions; otherwise the compilation phase 

reports a type error. This requires the number of values calculation to be able to adjust the 

variable's unspecified dimensions and compute the appropriate amount of space. It is simpler to 

calculate separately the number of values, nv, and the overall size, if they are needed. 

varv — 1 

nv = 1 

ad = variable reference's dimension + 1 

o f f s e t = variable refenece's offset 

f l a g = FALSE 

while {nd < variable's dimensions) 

dim = pop dimension 

o f f s e t = o f f s e t x dim 

nv = nv X dim 

if (variable's nth dimension = 0) 

variable's nth dimension = dim 

f lag = TRUE 

if (variable's nth dimension ^ dim) 

Run time error 

nd = nd + 1 

if ( f lag) 

nd = 0 

varv = 1 

while (nd < variable's dimensions) 

varv = varv x variable's nth dimension 

Allocate space for varv items 

Initialise varv items 
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This works by calculating the number of values and offset using the value as the accurate 

information, updating the variable if necessary. Incompatible values are prevented by type checking 

in the compiler and the test to ensure that the dimensions match, which will fail if a value tries to 

update a non-zero dimension. If a variable's dimensions are altered the flag is set, the total size 

calculated and data allocated. 

The present implementation only adjusts dimensions of input parameters, because unspecified 

dimensions are only allowed for input parameters. The unspecified dimensions of parameters are 

represented by dimensions of size 0. 

7.4.3 Control flow 

All control flow statements are implemented with conditional and unconditional jump instructions. 

The comparisons are operators which either push 0 or 1, depending on whether the comparison 

was true or false. 

Conditionals 

There are two types of conditionals: those with an else clause and those without. The implement-

ation of both is straightforward. The code generated is 

compute test 

conditional jump to no 

code if true 

jump to out 

no code if false 

out 

If the e l s e clause is empty then there is no code if false and the jump to out at the end of the 

code if true is eliminated. There is no attempt to predict the most probable outcome of the test 

or to analyse how the result of a test affects the results of other tests. 

Loops 

Loops are implemented as 

initialisation 

top compute test 

conditional jump to out 

loop body 

jump to top 

out cleanup 

while have empty initialisation and clean up sections, f o r loops are more complicated because 

the variable, bounds and step size must be computed once at the beginning of the loop, f o r loops 

with a specified step are implemented slightly differently from f o r loops without a specified step 

size. Whether or not a step size is specified, f o r loops terminate when (value — endvalue) x s tep 

is greater than 0. If the step size is 1 this is simplified to value > endvalue. 
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The initialisation step of f o r loops without a step size assigns the loop variable to the starting 

value and leaves the stack containing r e f e r ence t o va r iab le , end value . The test duplicates 

both values and then invokes the > operator, and exits the loop if the result is not zero. The 

clean up section pops the variable reference and end value off the stack. 

f o r loops with a specified step size are similar except that the stack contains var iab le 

r e fe rence , end value, s t ep s i ze after the initialisation and more duplication is required. The 

clean up step pops ail three items stored on the stack when the loop terminates. 

7.5 Summary 

An overview of the design of the mpkern library and the implementation of the eg programming 

language is described. Programs based on the mpkern library have 3 distinct layers: the application 

layer, the library core and the transport layer (the last two layers are part of the library). The 

library core provides little except a public interface to the transport layer. 
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Chapter 8 

Correctness of mpkern l ibrary 

The correctness of the library requires a more detailed analysis of the library than was presented 

in the preceding chapter. This chapter concentrates on the implementation of the main loop in 

the TCP+ transport, because this is where most of the opportunities for deadlock and violations 

of the design rules arise. The main loop is responsible for only firing components when they have 

no unfinished output and have at least one readable input. 

This chapter analyses a single instance of a single threaded process, with no shared data. 

A parallel program based on the mpkern library is a network of these processes, usually one per 

processor. Thus atomicity is not an issue because no data will change or be examined unexpectedly. 

This simplifies the design and avoids the CPU time consumed by context switching. 

The focus will be on more complex requirements, for example that if a message is sent to a 

component it will fire with that message as one of the used inputs. The simpler facts can be proved 

by induction. For example, the accuracy of the queued message counter can be established by 

noting that the operations that add and remove queued messages adjust the counter as required, 

and it is initially correct. Queued messages are covered in more detail below. 

The argument presented here uses assertional reasoning, which asserts things about the state 

at particular points in the algorithm. A number of invariants, facts which the code can always 

rely on, are used to simplify the analysis. 

The state is required to satisfy the invariants before and after eve ry statement, and many 

operations inside the main loop rely on these properties for their correctness. For example the 

correctness of "deliver message to component d ' \ which is a single statement within the main loop, 

relies upon all components being on at most one of outlist, Erelist and n£relist, all components of 

the state described below. If the properties where only guaranteed at the beginning and end of 

an iteration of the main loop then correctness could not be established. 

A more formal analysis could use Hoare Triples or derive a program from the specification. 

The level of detail given here might be insufficient for that task, especially about the operations 

like "deliver message to component d" which in reality involves several steps and takes about 

100 lines of C. The operation relies upon the truth of and maintains several invariants involving 

variables not documented in this thesis. 

It would also be theoretically possible to describe TCP sockets and the main loop in CSP 

and show that it is a refinement of the CSP description (possibly by showing they are both 

refinements of a third system). This would be very complex due to the extensive amount of state 

and complexity of the operating system interface, even if the model of TCP is simplified to a buffer 
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with finite capacity. 

8 . 1 I n p u t a n d o u t p u t p a r a l l e l i s m 

The algorithm used by the implementation, described in detail below, appears to have district 

input and output phases. The purpose of this section is to analyse the impact of the buffering 

provided by TCP sockets has on this apparent distinction. The discussion has been deliberately 

simplified by ignoring a number of options not used in by the library, for example socket options 

and the sendmsg(2) system call. 

Each connected TCP socket is modelled as a receive and transmit buffer on both hosts. If there 

is space in the reception buffer then data can be received from a remote host, whether or not the 

application has called read(2), or one of the other system calls that read data from a socket, for 

example recv(2), that can be used to read data from a socket. The read(2) system call transfers 

data from the receive buffer into user space and allows further data to be received. 

The buffering of data to be transmitted allows data to be sent even if the remote node's receive 

buffer is full. Unless special measures are taken the write(2) system call will return immediately if 

all the data will fit in the buffer, even if the data can not be transmitted immediately. The amount 

written is used to determine which messages where sent. The __mp component structures of the 

appropriate components are updated. If a component's last output has been sent and it has 

received an input then it is added to the list of processes to be fired in the next compute phase. 

When the space is available on the remote node the data will be transmitted, possibly while 

the sending host is doing something else (especially with higher specification networking hardware, 

which can do some of the required processing itself). 

If the free buffer space is insufficient, or enough data can not be read, then the default is to 

perform as much as possible and then block until the operation be resumed. The library uses 

non-blocking 1 /0 which returns an amount read or written even if it is less than the requested 

amount instead of blocking. This requires the library to maintain enough state to resume the 

transmission at an appropriate point. 

The library always reads all the data available and delivers it, attaching multiple messages, or 

partial messages, to a single input if required. This ensures that neither the transmission nor the 

reception buffer remains full. The use of non-blocking I /O avoids the problems associated with 

suspended read(2) or write(2) system calls. 

Thus there is no reason why data should not be sent during the reading phase or received 

during the writing phase. The buffering provided and use of non-blocking I /O results in the 

parallel input and output required by the CSP model. The serialisation of outputs to components 

on the same node only affects the timing, due to the buffering of messages on component's inputs. 

As the proof in chapter 5 shows networks of asynchronous components are deadlock free for any 

possible timing. 

The select(2) system call is used to efficiently wait for data to be readable from inputs and 

space to be available for sending data via relevant outputs. The se l ec t (2 ) system call adjusts 

its arguments, which specify which file descriptors the caller is interested in, to reflect which file 

descriptors are readable and writable. An output is relevant if, and only if, there is unsent data 

destined for a component on the node at the other end of the output. 
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8 . 2 A b s t r a c t m o d e l o f t h e s t a t e 

If c is a component and o an element of its state then c.o represents element o of component c's 

state. The data is modelled using abstract data types which have a 1 to 1 correspondence with 

the concrete implementation of the state. 

Each component c has 

» inputs c.i{n), each of which is a, possibly empty, list of input messages. c.i(O) is the first 

input, c.i(l) the second input, etc. 

® outputs c.o(n) each of which is a list with length < 1 of output messages. The index n 

determines the destination component and input index. 

® nwrite, the number of outputs that have not been completely sent 

e nread, which counts the number of read inputs if the component is unable to fire. A com-

ponent with at least one read input will fire in the next computation phase unless it has an 

unseat output {c.nwrite > 0). 

Each node also has a single instance of each of the following: 

« A function / that maps destination numbers to a component and input index. 

® A list of components, outlist, with an unsent output. 

® A list of components, Grelist, of components to fire. 

e A list of components, nErelist, of components to fire in the next cycle 

® A list of at most two components, msg. 

® A list of at most one component, active. 

The most important invariants, many of which can be verified by simple induction, are 

1. No component appears more than once on Srelist, outlist or nfirelist. 

2. outlist n firelist = 0, outlist fl nfirelist = 0 and Rrelist PI nfirelist = 0, where the intersection 

of two lists is defined as the set of elements on both lists. 

3. For all components c ^ msg, c.nwrite = #{ra ) length{c.o(n)) > 1}. 

4. For all components c, c € Erelist V c 6 nfirelist c.nwrite = 0 

5. For all components c ^ msg, c.nread > 0 =» c 6 firelist V c E nfirelist V c E outlist. 

6. For all components c, c £ outlist => c.nwrite > 0. 

7. For all components c ^ activeU msg, c.nread — # { n | length(c.«(n)) > 1}. 

8. For all components c ^ active U msg, c E outlist c.nwrite > 0. 

These invariants hold before and after every statements. Much of the main loop relies on one or 

more of these facts—if they were not true when delivering a message, for example, the assignment 

on line 59 might cause the invariant to be violated, and thus the invariant could not be relied 
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upon anywhere. The lists active and msg are used to exempt components from some of the facts 

temporarily. 

The active variable contains the active component, for which the last two facts may be tem-

porarily false. The msg variable contains message endpoints, for which some of the facts are also 

briefly false due to the separation of message delivery and adjustment of the variables. Lines 41 to 

55 arrange for, or perform, message delivery and lines 56 to 57 perform the additional processing 

to take account of queued messages and restore the penultimate condition. 

Since active and msg are only used by the analysis neither is required in an implementation 

in a conventional programming language. 

8.3 The main loop 

The algorithm used by the TCP4- transport main loop is shown below. Termination is achieved 

by a method that is sufficiently violent that there is no need to handle it in the main loop. 

1. msg = 0 

2. active = () 

3. Grelist = ( c | c E local components A c.nread > 0) 

4. nRrelist = () 

5. outlist = 0 

6. forever 

7. if Grelist ^ () 

8. timeout = 0 

9. else 

10. timeout = oo 

11. wait for an input from any (remote) node, a writable relevant node or timeout 

12. for each readable TCP connection from a remote node 

13. read the data available 

14. n — desintation number of input 

15. c=f(n) 

16. msg = (c) 

17. Store data in appropriate input of component c 

18. if an input has been read 

19. c.nread = c.nread + 1 

20. if c.nwrite = 0 A c ^ Grelist 
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21. Brelist = (c) firelist 

22. mgg = 0 

23. for each writable TCP connection to a relevant remote node 

24. while the connection can accept more data 

25. c = first element of outlist with an unseat output to relevant node 

26. msg = (c) 

27. send as much of the data as possible 

28. if the message was sent completely 

29. c.nwrite = c.nwrite - 1 

30. if c.nwrite = 0 

31. outlist = outlist \ { c } 

32. if c.nread > 0 

33. iireiist = (c) ^ Srelist 

34. msg = 0 

35. nRrelist — {) 

36. for each component c E firelist 

37. active = (c) 

38. c.nread = 0 

39. Brelist = firelist \ {c} 

40. invoke component body (using a library core function) 

41. for each used output 

42. if it is sent to a component on another node 

43. if c ^ outlist 

44. outlist = outlist ^ (c) 

45. else 

46. d = destination component 

47. msg = (c, d) 

48. deliver message to component d 

49. c.nwrite = c.nwrite — 1 

50. if c ^ nfirelist and c.nwrite = 0 
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51. nfirelist = (c) ^ nGrelist 

52. d.nread = d.nread + 1 

53. ii d ^ Srelist U nGrelist U outlist 

54. nBrelist = (d) ^ nfirelist 

55. = ( ) 

56. if any queued messages exist and c.nwrite = 0 

57. nBrelist = (c) ^ niirelist 

58. active = () 

59. Erelist, nErelist = nGrelist, () 

The last line is a single, atomic, operation which changes both firelist and nSrelist to the 

value of nErelist immediately before the statement and the empty sequence respectively. The 

firelist = firelist \ {c} removes all items of firelist equal to c. On line 39 the statement removes 

the first item of Rrelist and no other items. The ^ operator concatenates two lists. 

This algorithm should be scalable to a large number of components per node, because there is 

no global scanning of the component hst involved. Two or more nodes can share a single processor 

on a unix-like system, because the waiting is implemented using a system call that blocks until 

one of the specified events occurs. 

Scalability to a large number of nodes is less clear, because the entire list of components that 

need to communicate via TCP is scanned in order to collect the message to send to each node 

via TCP. If the number of nodes is large then each pass might examine many inactive outputs 

and outputs for other destinations that are not relevant. It would be more scalable to handle the 

outputs to use per destination message lists, or to send all messages in a single pass through the 

list of components with unsent messages. 

8.4 f i r e l i s t , n f i r e l i s t and o u t l i s t are disjoint 

Initially, firelist is non-empty on at least one node and both nfirelist and outlist are empty, and 

thus initially all three lists are disjoint. 

Line 21 preserves the property because nfirelist = () at this point, by induction, and line 20 

ensures that c.nwrite = 0 and thus c ^ outlist. 

Line 33 preserves the property because it only adds components, c, to firelist which statement 

31 removed from outlist. Similarly statement 57 is also safe because any component added to 

nfirelist has been removed from firelist by line 39. 

Line 44 is safe because it the component it adds to outlist was removed from Erelist by line 

39. Line 54 preserves the disjointedness because it only adds a component to nGrelist if it is not 

in any of Grelist, nGrelist and outlist. 

Line 51 preserves the disjointness because invariant 6 implies that c ^ outlist and due to the 

context c 0 Grelist. The latter is due to c being the active component, which implies that c has 

been removed from Grelist by line 39. 

The disjointness is preserved by line 59 because the statement assigns the empty sequence to 

nGrelist, in addition to copying its contents prior to the assignment to Grelist. In practice it is safe 
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to just assign Brelist to nRrelist because the value of nBrelist is not used again until after line 35, 

which sets nSrelist to the empty sequence. 

8.5 For all components c ^ msg, c.nread > 0 => c 6 Brelist V 

c G DLGreJist V c E oudist. 

Initially some components, possibly all of which are on other nodes, have inputs which are the 

initial stimuli injected into the system and no components have outputs. Statement 3 inserts 

these components into Srelist in any order. During the brief period during message delivery 

when invariants 3, 5, 7 and 8 would be false the components affected are exempted from them 

by membership of msg. If the main loop used multiple threads these regions would be critical 

sections where the state might be temporarily inconsistent. 

When lines 14 to 21 are executed active = () and thus c.nwrite > 0 4* c 6 outlist. Formally 

by induction, at this point n&relist = () and thus c.nread > 0 A c.nwrite = 0 => c E firelist. Thus 

if c ^ outlist in line 21 adds c to Grelist if line 19 increased c.nread. 

Any component c removed by line 31 with c.nread > 0 is added to Grelist by line 33. Lines 53 

and 54 ensures that any component c that has its nread increased by line 52 is on Grelist, n&relist 

or outUst. 

Lines 48 and 49 deliver a message from the active component c and adjust c.nwrite accordingly. 

If c.nwrite is reduced to 0 and c.nread > 0 then lines 50 and 51 add c to nSrelist. Disjointness is 

addressed in section 8.4 above. 

If line 56 makes c.nread > 0 after component c has fired then either c.nwrite > 0 and therefore 

c 6 outlist, or c is added to nfirelist by line 57. 

To summarise, invariant 5 remains true because every action that alters any component's nread 

or nwrite is matched by a statement that maintains the truth of invariant 5, by appending the 

component to outlist or prepending the component to firelist or nfirelist when this is required. 

The affected components are exempted from some of the requirements during these operations by 

membership of msg. 

8.6 Line 58 preserves the invariants 

Line 58 sets active to the empty sequence, which preserves the invariants only if 

8 For all components c.nread = # { n | length(c.?(n)) > 1}. 

e For all components c E outlist 4=> c.nwrite > 0. 

This requires a demonstration that the state has been adjusted to take account of the compon-

ent body's activity. The library function that invokes a component's body returns with nwri te 

set to the number of outputs in use; thus invariant 5 is preserved. After component c has fired 

c.nread = 0 so invariant 8 is also true. 

After component c has fired c cannot be a member of firelist, nfirelist or outlist. Since the 

component was a member of hrelist before it fired it cannot be a member of either nfirelist or 

outlist. Line 39 removed the component from Brelist. 

If the component body sent a message using mp_output then c.nwrite > 0 and c is not a 

member of outlist. There are two ways of restoring the invariant; reducing c.nwrite by sending 
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the messages or adding the component to c.outlist. The library adopts the former stratagem for 

messages to local components and the latter for messages sent to components on other nodes. 

This maximises the effective network bandwidth by the aggregation of multiple small messages 

into a single large one. 

If c sends a component to a remote node then c.wnrite > 0 at line 58 because lines 43 and 44 

ensure that c £ outlist. This prevents c being added to niirelist by lines 51 and 57. Otherwise 

either line 51 or 54 adds c to outlist if c is now fireable, presumably because it sent a message to 

itself. 

Any components which become fireable as result of the delivery of a local message are added 

to nfirelist, unless they are in Erelist or nSielist already. Correctly handling a component that 

sends a message to itself and no remote messages requires adding the source component to the list 

of fireable components if sending a message reduces its nwrite to 0 and its nread > 0. 

Thus after the loop from line 41 to 54 for all components c, cE outlist 4* c.nwrite > 0. nread 

starts at 0 and is increased by 1 for every message delivered to an unused input. Lines 56 to 

57 inclusive move all queued messages forward and adjust nread to take account of the dequeued 

messages. Thus when line 58 is reached for all components c, c.nread = # { n | length(c.«(«)) > 1}-

8.7 If a message is sent the destination will fire with the 

message as an input 

That a message sent to a component will cause the component to fire with that message as 

input, and that it will have no unsent messages when it does so, is a fundamental feature of the 

programming model and therefore must be verified. This depends on several of the properties 

above, in particular that a component with one or more readable inputs, i.e. nread > 0, is either 

in fireiist, nfireiist or outlist. 

This requires showing that a component on any of the lists will become the first member of 

Grelist within a finite time. In the firing phase, implemented by lines 36 to 57, no component is 

added to Rrelist and all components of Srelist are fired. Thus it suffices to show the existence of a 

firing phase with the component in Rrelist. If the component is in firelist there is nothing to prove 

and if the component is in nfirelist then line 59 transfers it to firelist. 

A component on outlist will be transferred to firelist when all its outputs are sent if its nread > 

0. Proving that this will happen requires showing that the relevant T C P connection will accept 

enough data to transfer the entire message, however large it is and the component will become 

the first member of outlist within a finite time. 

Provided sufficient memory is available then each TCP connection can be modelled as a sep-

arate buffered connection^. Progress is guaranteed because the remote node will always read the 

available data, and deliver messages contained in it, when it enters its communication phase. The 

fact that the mpkern library always reads data from a readable TCP connection during the com-

munication phase ensures that the TCP connection's internal buffers will not remain full, possibly 

preventing further progress. 

The fact that components are added to the end of outlist ensures tha t a component on outlist 

will reach the front of outlist within a finite time, and therefore its outputs will be sent within a 

finite time. Adding components to the beginning of outlist would make it difficult to make the 

^If insufBcient memory is available for this to apply then it is probable that mpkern. library will kill the job due 

to an error it cannot handle or memory allocation failure. 
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bytes received independent of the amounts that can be written in each cycle and make it hard to 

show that a component in outlist will reach the front in a finite time. 

Queued messages are guaranteed to be processed because they contribute to a component's 

nread after the previous element of the queue on the corresponding input has been processed. 

A component with a queued input is added to nSrelist if it has no unseat outputs preventing it 

from firing. A component with queued inputs that cannot fire due to one or more unseat outputs 

becomes a member of outlist with nread > 0, which will fire when the unsent outputs are sent; 

this must happen within a finite time due to the properties above. 

8.8 Summary 

A detailed description of the main loop of the TCP+ transport, the most important invariants 

stated and assertion reasoning used to argue that these invariants are maintained. The same facts 

would support a more formal approach, which would require further details in some areas. The 

invariants and a progress property were combined to argue the most important property of the 

CSP model, that if a message is sent the destination component will fire with it as an input, is 

also a property of the implementation. 
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Chapter 9 

Per fo rmance analysis: T h e 

Har t ree-Fock problem 

9.1 The Hartree-Fock procedure 

This chapter reports the performance of a real application using the mpkern library. As explained 

above the library's main loop consists of a computation and communication phase, so band-

width and latency are not appropriate measures of performance. The time between a request to 

send something and the actual communication depends on how soon the communication phase is 

entered. For real applications bandwidth is similarly complicated by the effects of aggregation of 

a (possibly unpredictable) number of messages, which might have unpredictable sizes. 

This section avoids these problems by using a real large scale numerical problem, the closed 

shell atomic Hartree-Fock problem, which retains most of the features of the molecular Hartree-

Fock problem. The molecular Hartree-Fock problem has many "real world" applications and large 

instances are usually solved on supercomputers. 

9.2 Overview 

In order to demonstrate the performance and utility of the mpkern library, a representative ap-

plication has been selected from quantum chemistry; the solution of the electronic Hartree-Fock 

equations. The self-consistent field theory embodied in the Hartree-Fock equations plays an im-

portant role in many areas of chemistry, atomic and molecular physics, molecular biology, solid 

state physics and nuclear physics. It is the purpose of this chapter to demonstrate the performance 

and features of the mpkern library, rather than to review the details of computational quantum 

chemistry, which may be found elsewhere[19, 22, 38]. 

A simple example of the Hartree-Fock method is investigated here, which is restricted to the 

solution of the equations for atomic systems. This choice facilitates the detailed tracing of the flow 

of data around a program of managable complexity while performing computationally intensive 

numerical tasks which are representative of those which are found in computer packages which 

solve the molecular Hartree-Fock equations. 
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9.2.1 Matrix Hartree-Fock equations 

The Hartree-Fock method is an independent-particle approximation which is widely used as a 

model of the electronic structures of atoms, molecules and solids, or as the basis for more elab-

orate models which correct the short-comings of the independent-particle model by including the 

correlation of the electronic motions. The spatial solutions of the Hartree-Fock equations for atoms 

or molecules are called orbitals, {ipi{r)}, which are known as spin-orbitals if a label denoting the 

spin degree of freedom is appended to the function. For molecules the solutions are almost always 

obtained by the Rayleigh-Ritz method, according to which each orbital is expanded in a finite 

basis set of square-integrable functions, {%&(r)}, so that 

N 

^ (9.1) 
k~l 

where the quantities {c^} are expansion coefficients, which are real in the present case. The 

dimension of the representation is denoted by TV. 

Roothaan[31, 32] was the first to obtain the matrix form of the Hartree-Fock equations for 

systems constructed from closed electronic shells, by minimising the total electronic energy of the 

system with respect to variations in the expansion coefficients. This leads to the solution of a 

generalized matrix eigenvalue equation of the form 

Fc = ESc (9.2) 

where F is the Fock matrix, S is the overlap (or Gram) matrix, E is a diagonal matrix containing 

the orbital eigenvalues, and c is a matrix whose columns contain the expansion coefficients of the 

orbitals. It is convenient to define the density matrix, D, by 

0-=! 

where the sum over a includes all spin-orbitals which are regarded as being occupied by an electron. 

The specification of D depends on the current values of the expansion coefficients, and so the 

Hartree-Fock method is an iterative procedure. The procedure is repeated until the change in the 

expansion coefficients is less than a specified tolerance measured with respect to some appropriately 

defined criterion. 

The elements of the Fock and overlap matrices are defined by 

f".'; = (9.4) 
kl 

= (: I ; ) (9 5) 

where 

( y | W ) = (9.6) 
J FI - RGJ 

(* I ; ) = y %( r ) j r (9.7) 

gu(r) = %'(r)xy(r). (9.8) 

The one-electron integrals, hy , involve only the kinetic energy and the external electrostatic fields 

of the nuclei, and do not depend on the density matrix. These do not change from iteration to 
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iteration and may be pretabulated if required. Similarly, the integrals {i | j) are just the elements 

of S and depend only on the choice of basis set. 

The two-electron integral {ij | kl) represents the electrostatic Coulomb interaction energy 

between the charge density Qijivi) of electron 1, and the charge density of electron 2, 

where the overlap charge densities are determined by the basis functions. 

If the number of basis functions is iV, then the number of integrals of the form {ij | kl) 

which may be formed from them scales as O(iV^), with a cost per integral which depends on the 

definitions of the basis functions labelled by the set {i,j,k,l}. In principle one could calculate 

these once and store them, but this is not feasible even for moderate values of N, in which 

case they are recalculated as they are needed in the construction of F . In large-scale molecular 

calculations the number of integrals actually calculated may be reduced significantly by exploiting 

the eightfold permutational symmetry of the indices, by the use of point group symmetry, and 

by the use of integral economization algorithms. These algorithms evaluate integrals only if they 

make a significant contribution to F, using estimates based on strict upper-bounds to the value 

of the integral weighted by the elements of D with which it is multiplied. The implementation 

here exploits index and point group symmetry, but does not include any integral economization 

algorithms, and thus all integrals are recalculated when required in each iteration. 

9.2.2 Methodology 

The computational cost in each of the examples presented in this chapter , is controlled by the 

selection of the system, and the accuracy with which the Hartree-Fock equations were solved. 

Light elements, such as neon, involve s-type and p-type atomic orbitals for which the computational 

complexity of the resulting two-electron integrals is low. In comparison, a heavy element, such as 

mercury, involves orbitals of s-, p-, d- and f-type, involving integrals of far greater complexity. The 

accuracy with which the equations are solved depends both on the specification of the elements 

of the basis set, {% — k) and on the dimension, N. 

For purely technical reasons involving the evaluation of two-electron integrals, the almost 

universal choice of basis function in quantum chemistry is a Gaussian amplitude, which is the 

choice adopted in this study. Each orbtial is approximated by a finite linear combination of 

spherical Gaussian-type basis functions 

r] = exp(- r^) y?) (9.9) 

where is a spherical harmonic function, and and are real parameters. 

The cost per integral over Gaussian-type basis sets is almost independent of the choice of the 

exponent value which defines the elements of the basis set, but depends strongly on the angular 

quantum number, I. The value of N for each of the s-, p-, d- and f -type functions, Ni, can be 

varied to control the computational load in the integral evaluation stages of the procedure. 

Two versions of the program have been developed in order to investigate the characteristics of 

the problem. A data parallel version of the program which exhibits simple and predictable timing 

for the various parts of the Hartree-Fock procedure is compared in this chapter with a task-parallel 

version in which the timing is considerably more complex. 
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B{a,b-,x)= f f ^(1 — ^ dt 
Jo 

9.2.3 Module description 

The most computationally intensive part of the solution of the Hartree-Fock equations using basis 

sets involves the evaluation of the two-electron integrals, defined by equation 9.6. If Gaussian basis 

sets are employed, these integrals may be reduced to intermediate functions involving elementary 

quantities, which are evaluated in batches which are as large as is practicable. The two most 

significant operations involve the evaluation of the incomplete beta function, B(a, &; x), defined 

(&10) 

for 0 < z < 1, and powers of the composite Gaussian exponent = A-+ Â -, where A- and 

A define a pair of Gaussian exponents involved in the construction of , equation 9.8. The 

incomplete beta functions, referred to as /3-functions throughout the text, are evaluated in calls to 

the routine incomplete_beta, while the required powers of A - are evaluated in k l i n i t , with some 

minor initialisation of the data performed in module k l s e t . These intermediates are combined 

together in module nre2cl to form the two-electron integrals (ij | kl). 

The elements of the Fock matrix are constructed in module nrf ock according to the prescription 

defined by equation 9.4, by multiplying the integrals by the current values of the elements of the 

density matrix, D. All other operations involved in the construction of F, and the subsequent 

diagonalization of the representation, represent an insignificant part of the computational effort 

and will be ignored in the analysis which follows. 

9.3 Parallelisation target 

The profile of an efficient serial version of the Hartree-Fock problem, applied to a mercury atom, 

shows that the bulk of the computing time is spent computing incomplete /3 functions. The 'self 

numbers reflect the time spent in the function, excluding functions called within the function. 

The total numbers reflect the time spent in a function including any functions invoked within the 

function. Details can be found in the gprof documentation[8]. 

% se l f se l f t o t a l 

time seconds c a l l s s / c a l l s / c a l l name 

73.60 2528.22 8788392 0.00 0.00 incomplet e _bet a 

21.26 730.17 189000 0.00 0.02 k l i n i t 

4.67 160.40 189000 0.00 0.00 nre2cl 

0.44 15.23 288 0.05 11.93 nrfock 

0.01 0.42 288 0.00 0.00 k l s e t 

All other functions in the profile combined consume 0.02% of the computing time and thus 

have no significant effect on the running time of the computation. All the functions listed, except 

nrfock, are called only from nrf ock. Thus nrf ock, which computes blocks of the Fock matrix, 

uses almost all the time and nr fock is a sensible target for a coarse grained parallel implementa-

tion of the Hartree-Fock procedure. A finer grained parallelisation strategy might parallelise the 

computation of incomplete P functions. 

Two approaches to a coarse grained parallel version of nr fock are presented here, task paral-

lelism and data parallelism. Task parallelism breaks the problem into a number of independent 

computations, which can be performed in parallel—each processor executes a different section of 
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the code, which implements its portion of the computation. Data parallelism executes the same 

code, or similar code, on all nodes each of which processes a different fraction of the data. 

Neither version parallelises anything other than nrf ock, because the cost of the rest of the 

problem, including diagonalisation of matrices of small dimension, is not significant. 

9.4 Task parallel ber tha 

The task parallel implementation of ber tha breaks nrfock into pieces that can be computed 

separately. When two results have to be combined this is carried out by a separate component. 

The task graph is based on a careful analysis of the data flow in nr fock . Each matrix, set 

of normalisation constants, sets of beta coefficients, etc is computed separately. The complex 

communication graph makes the guarantees of correctness provided by the mpkern particularly 

valuable. 

The task parallel version of be r tha has two types of node. Node 0 is the master node and 

does little apart from maintaining queues, and run components which must respond quickly to 

efficiently exploit the possible parallelism. The fact that the library is single threaded makes this 

incompatible with any computation which might take a significant amount of time. 

All the other nodes are worker nodes which do almost all the processing, with only limited 

reference to the master node. This design obviously makes it impossible to achieve more than a 

speed up of n - 1 on n nodes. 

Figure 9.1 shows a simplified diagram of the components of the task parallel nr fock implement-

ation, which shows the structure of the Hartree-Fock procedure. All the components are shown 

and every component shown is a separate component. Connections missing from the figure send 

long lived data from entry barrier, if the barrier is passed, to many of the compute components. 

The shaded nodes are only involved once in each invocation of n r fock and the unshaded ones are 

involved more than once. The remainder of the components are very similar to the data parallel 

implementation. 

Many of the components have a significant amount of persistent state, often long lived data 

with an attached serial number. Compute jobs can refer to the data they want by serial number 

and thus avoid the duplicate network traffic involved in sending it with every request. The top of 

loop component can only handle a single instance of nrfock. The entry barrier component queues 

up Fock matrix requests that cannot be serviced immediately and distributes appropriate portions 

of instances, with a fresh serial number, to the compute components. 

The data fusion algorithm depends on monotonically increasing job serial numbers. A serial 

number queue maintains the long lived data and a general purpose queue maintains a list of jobs. 

When the component is fired any job included is added to the work queue. The first element of the 

work queue is processed, provided the required data is available. If the work queue is non-empty 

the component sends itself an empty message so it fires again, and can process the remainder of 

the queued jobs. Serial number queues, with built in handling for arithmetic overflow, and the 

more general queues used to implement the work queue are features of the mpkern library. 

The collect coulomb and collect exchange components gather complete sets of ^S-function values 

and send them all in a single message to the coulomb integral and exchange integral components 

respectively. The /^-function results have routing information, passed on without processing by 

the beta worker components, that identify the appropriate place to store the result. 

B o t h t h e collection coulomb and coulomb integral componen t s , a n d collect exchange a n d exchange 
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Figure 9.1: Simplified diagram of task parallel nrfock (for 5 nodes). Node numbers are shown in 

blue beside components. Note that this is an inefficient distribution on 5 cluster nodes. 
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Figure 9.2; The communication graph of 4 node data parallel be r tha 

integral components run on the same node and so the collected results can be transfered using in 

memory transfer. 

9.5 Da ta parallel ber tha 

Data parallel be r tha parallelises nrf ock by dividing the work into portions which can be computed 

largely independently with little duplication. A small amount of the calculation is duplicated to 

reduce the complexity of the design and reduce the communication requirements. All the nodes, 

including node 0, do a significant portion of the task: there is no need for a master node to 

coordinate the activities of the other nodes. All the components except the nrfockn components 

run on node 0. The nrfockn components run on node n; for example nrfock2 runs on node 2. The 

dotted lines show the special case of hydrogen, which does not require any iterations to arrive at 

the correct solution because only one electron is involved. 

The cost of distributing the jobs and collecting the results is not significant, largely because 

the portion of the computation performed by the nrfockn components takes 99.98% of the time 

in the serial version. Each nrfockn component is stateless—no information is retained between 

instances of nrfockn. There is none of the complexity involved in tracking serial numbers and the 

communication requirements are significantly reduced. All the parameters are sent in a composite 

message, including the area that the component should compute. The computation can take a 

significant amount of time, especially for larger matrices. 

This design requires a well balanced distribution to be computed in advance, because once the 

nrfockn components have been started the program can only wait for them all to complete. The 

computational cost of a matrix element is a complex function of many factors. 

The work distribution used here can be characterised by p — 1 boundaries, bi to 6p_i, where 

p is the number of nodes. nrfockO computes elements 0 to &i — 1, nrfockl computes elements 6% 
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to 62 — 1, . . . , nrfockp — 1 computes elements 6p_i to — 1 where m is the size of the matrix 

being computed (with elements numbered 0 to - 1). There are two methods of selecting the 

boundaries illustrated here, namely fixed boundaries and movable boundaries which are adjusted 

to reduce load imbalances. 

9.5.1 The fixed strategy 

The fixed strategy distributes Nfi elements to node i, where N is the number of matrix elements, 

fi = t~^/ and ti is the time required to compute a matrix element on node i. Given 

n identical nodes all the fi are 1/n and the same number of elements is assigned to each node. 

Allowing boundaries anywhere in a matrix, not just at the start of a row, improves the load 

balance. 

The fixed strategy works well for the tested instances of the Hartree-Fock problem when using 

identical nodes. The fixed strategy, using speed estimates derived from the wall time^ taken to 

compute a standard set of Fock matrix elements, generates the distribution used in iteration 2 of 

figures 9.4 to 9.8. The slow node, which corresponds to the red markers, clearly finishes ahead of 

the fast nodes in iteration 2. 

A better result can be obtained by adjusting the boundaries so the slow node computes more 

elements, as shown in the later iterations of figures 9.4 to 9.8, which shows the effect of adjusting 

the boundaries using the boundary adjustment algorithm below. 

9.5.2 Fixed boundary selection 

The purpose of this section is to justify computing Nfi elements on processor i when using p 

nodes that take times sq, . . . , Sp_i to compute No Fock matrix elements respectively. Fock matrix 

elements are used instead of microbenchmarks, which measure a single aspect of a machine's 

performance, because of the complexity of computing the cost of Fock matrix elements from 

microbenchmark results. Only the relative values of sq, . . . , Sp_i matter. This analysis also 

determines an upper bound on the maximum possible speed up using a collection of nodes with 

known, differing, speeds. 

The analysis makes the simplifying assumption that all the elements of a Fock matrix cost 

exactly the same amount to compute, which is not strictly accurate. All the measured times are 

scaled, using SQ, . . . , Sp_i to estimate the time required on node 0. If no estimates are available 

then So, . •., Sp_i are all taken to be equal. 

Any data parallel solution computes a N element Fock matrix by computing no, .. ., Up-i 

elements on nodes 0 to p — 1 respectively. The best balanced solution, which might require one 

or more nodes to compute fractions of an element, satisfies 

^ 1 /"O 11\ 
% ^ ^ 

and X)J=o = N. Together these imply that P — 1 

LiiCDC LiitLL 

JV/a 
- i (9J12) 

^time as measured by a clock on a wall 
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and the speed up of the distribution computed using (9.12), assuming the fastest node in the 

cluster is used to compute the serial time, is 

p—1 
mm 1 S; 

j=0 0<i<p-l \ Sj 

9.5.3 The adjustable strategy 

The adjustable boundary strategy estimates the time required to compute the ith element, 

using wall time differences measured on the node that computes the element in question, and 

computes new boundaries assuming the estimates are the true cost in the next iteration. If the 

ith elements costs exactly c, in the next iteration then the new boundaries are optimal. It might 

be theoretically possible to do better by using non-contiguous ranges, which would take longer to 

compute. In practice, after a few iterations the boundaries fluctuate around a stable distribution 

and well balanced distribution. 

The costs of the elements are estimated from measurements of the wall time differences within 

the nrfockn components. If the nodes are not identical then the times measured on node i are 

scaled by so/si, where the s„ is the wall time, as measured by the difference between two calls to 

gettimeofday(2), to compute a fixed set of matrix elements on node n. The measurement of the 

Sn times can be conveniently carried out in the first iteration, where there is no need to compute 

a submatrix of the Fock matrix. 

After the end of each iteration a new set of boundaries is computed using element costs es-

timated from the measurements in that iteration. The boundary adjustment algorithm presented 

here is based on which is the time, in jUs, required to compute elements 0 to n — 1 using 

nodes 0 to p. The time taken for a standardised set of Fock matrix elements on node i is s,, for 

0 < i < p — 1. If all nodes are supposedly identical then the benchmark is not performed and all 

Si values are assumed to be equal. 

The time to compute no elements on nodes O t o p , bp , k obviously 0. The time required to 

compute elements 0 t o n on node 0, (^0, is Q- For all n > 1 and p >1 

tnp = - ^o) x gp/ao)) (914) 

where s„ is the time required to compute an element on node n. 

An optimal set of boundaries can be computed from where n is the number of nodes 

and r the number of rows of the submatrix of the Fock matrix. The boundary 6p_i should be the 

value of J that minimises tr^ „_i. 6p_2 should be computed in the manner applied to computing 

elements 0 to 6p_i — 1 using n — 1 nodes and so on until all the boundaries have been determined. 

The remainder of this section discusses efficiently computing the values of t„ p. For all 0 < a < 

m^, tao is easily computed given the costs, c;. Given tao and ta n-i, for all 0 < a < then all 

the tkn values can be computed by computing max(^ p_i, {tko - tjo) x sp/so) for all values of j 

from 0 to k, and selecting the best. This alogrithm takes 0{m'^p) time and O^m^p) space for p 

processors and an m x m portion of the Fock matrix. 

The time can be reduced by analysis of fyp. The first lemma shows an obvious, but important, 

fact that is used in the second lemma to show that 

/n — max(t(^ p —l;(^nO ^rfo) ^ ^p/^o) 

decreases monotonically to a minimum and then increases monotonically. Exploiting this fact 



reduces finding the best split point to C(log m) and thus reduces the t ime complexity of computing 

an optimal set of boundaries to 0{m?\og{m)p). 

Lemma 8 {tnp is increasing) 

top, tpi, . ..tm^p is increasing for all p. 

Proof. 

Define a > 0 as the cost of computing the zth element of the m x m matrix on any node. 

Base Case 

If p = 0 then there is only one node, so tno = Q- Thus 4)o, f i o , • • •, is a monotone 

increasing sequence. 

Induction step 

Assume by induction the result holds for tnp' for all n < and p' < p. Clearly it suffices to 

show that tnp < tn+ ip for all n < m^. 

Let S be an optimal way of computing the first n + l elements of the mxm Fock matrix on nodes 

0 to p, which takes tn+i p time. The design above shows that S computes elements 0 to D on nodes 

0 to p — 1 and elements D to n + 1 on node p. Either D < n or D = n. 

\f D < n then computing elements 0 to D on nodes O t o p - 1 and n — D — 1 elements on node 

n takes at most and thus tnp < W i p -

Otherwise D = n and tn+ip = tn+ip-i- Computing no elements on node p and the first n 

elements on nodes 0 to p - 1 takes < t n + i p - i by the induction hypothesis. 

Thus tnp < tn+ip for all n < m^. The result follows by induction. • 

Lemma 8 can be used to prove the times as function of the split point is decreasing and then 

increasing. 

Lemma 9 {tnp is v-shaped) 

There for all n and p there exists 0 < D < n such that /np(0), /np(l), • • •, FNP{D) is monotone 

decreasing and f„ P(D + 1), . • •, FNP{n) is monotone increasing, where 

fn pi^^ — max(^£f p_X) 0 o) X ^pf ^q) 

Proof. 

Lemma 8 implies that (tno- ho) x %,/%, (tno- ho) x %,/%, . . . is monotone decreasing and iop-i. 

tip-i, . . . is monotone increasing. 

fnp{0) = max(0, i „ o ) = 4io and thus there is exists some D such that for s\\ d < D ( i „ o -
tdo) X sp/so > tdp-i- \f d < D then / „ p ( d ) = {tno- tdo) x sp/so and therefore/ „ p(0), / n p ( l ) . . . •, 

FNP{D) is monotone decreasing. 

For all > D tdp-i > top-i and (i!„o - tdo) x Sp/so < ( i „o - too) x Sp/SQ. Thus d > D 
t hen / „p ( r f ) = i d p - i and t h u s / „ p ( i ? + 1) FNP{n) is monotone increasing. • 

Lemma 9 shows that the following algorithm finds an optimal boundary 

miii=0 

max=M 

while min < max 

probe= [(min + max)/2j 

If fn p (probe), . . . , / „ p (max) is increasing then 
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Figure 9.3: Time to compute the first Fock matrix in the "light" instance of mercury with one 

slow node, with the code assuming equal speed nodes. 

max=probe 

else 

min=probe+l 

where fnpid) = max{td p- i , ((»o —(do) x Sp/so). This alogrithm works by determining which slope 

of the V-shaped function fnp{d) probe lies on and adjusting min and meix accordingly. 

The algorithm terminates because max —min is integral, strictly decreasing and bounded below 

by 0. The loop body's guard implies that max > min + 1 and thus min < probe < max — 1. 

Therefore both assignments decrease max — min. 

The estimates are based on experimental results, namely two calls to gett imeofday(2), and 

thus are subject to a small amount of noise, due to random factors, for example the time required 

to transmit a network packet and the amount of CPU time used by background jobs on the node. 

Fortunately noise is not a critical problem. Rebalancing can produce a good result because if a 

node is slower than its estimated speed then the costs for its portion are inflated and thus the size 

of its portion is reduced. The time estimates are only based on the previous iteration. 

This decision leads to noisier split points but limits the impact of inaccurate adjustments to 

take account of the speed differences between different nodes. The conversion is accomplished 

by multiplying by a constant, based on a single speed measurement, which might be subject to 

noise and could be too simple to be realistic. The benchmark used is the Hartree-Fock density 

matrix element computations. The boundary selection algorithm is designed to counteract the 

deficiencies of the simple cost model. 

An illustration of the robustness of the algorithm can be seen in figure 9.3. Figure 9.3 shows 
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the time to compute the first Fock matrix, for the "light" instance of a mercury atom^, without 

taking account of the node speeds, using 6 nodes with node 5 about 1/4 the speed of the other 

nodes. This inflates the cost estimates of the elements computed on node 5 by about a factor of 4, 

The unrebalanced results above suggest that all elements have similar computational cost. When 

some of those elements computed on the slow node are transfered to another node as a result of 

their high cost elements, their cost estimate falls by about a factor of 4. The balance in iteration 

5 and above in figure 9.3 is very good, despite it being based on inaccurate cost estimates. 

9.6 Results 

Two sets of data were used to assess both parallel versions of the Hartree-Fock problem. A "heavy" 

instance and a "light" instance of a model of a mercury atom. The "light" instance uses atomic 

basis sets of size 32, 26, 22 and 21. The "heavy" instance uses larger sets of atomic basis functions, 

size 40, 38, 29 and 25, and therefore requires more computation. The only difference between the 

two instances is the amount of computation required (and possibly the accuracy of the computed 

solution). Henceforth, the less computationally intensive version of the model is referred to as 

the "light" instance, and the more computationally intensive model is referred to as the "heavy" 

instance. The program is called be r tha for historical reasons. 

All the timing data is based on wall time as reported by gettimeof day(2). The timer resolution 

is nominally 1 microsecond but might in reality be coarser. Since both data and task parallelism 

introduce processing that is not required for a serial implementation, the 1 node case is taken to 

be the performance of an efficient serial version. The serial version was a clean C version based 

on an original FORTRAN version, which had a lot of globals, supplied by Dr. H.M.Quiney (who 

also supplied the input data). The serial version takes 1309.2s (21 minutes 49.2 seconds) for the 

light instance of a mercury atom and 3940.3s (65 minutes 40.3 seconds) for the heavy instance. 

These are the numbers to which the parallel versions are compared. 

The tabulated results show the time, speed up and per node idle percentages. The "% time 

idle" column, which is computed as (wall time — cpu t ime)/wal l time, shows the fraction of the 

time each node is idle, with node 0 at the top left, node 1 at the top right, node 2 at the left of the 

second line, etc. Summary statistics show the minimum, maximum and average of these figures. 

A solution to the same problem based on MP I would be sufficiently different to make the results 

of very limited value for comparison purposes. The purpose of this chapter is not to compare 

mpkern with other libraries, just to assess the efficiency of the mpkern library. 

9.6.1 Hardware 

The hardware used for testing the implementation was a cluster of 6 900MHz athlons, all with a 

large amount of memory and local hard disc, connected by a dedicated switched lOOMb/s ethernet 

network. All the systems used the linux operating system. During the testing a slow node, about 

1/4 of the speed of the other nodes, was added and this was used for testing the adaptive load 

balancing algorithm used in the heterogeneous system data parallel results. 
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Nodes Wall time 
Speed 

Up 

% time idle 
Idle % Nodes Wall time 

Speed 

Up min avg m a x 
Idle % 

1 21 min 43.28 (1303.28)' 1.00 0.0 0.0 0.0 0^% 

2 54min 21.68 (3261.6s) 0.40 1.9 4&5 95.0 95.0% 1.9% 

3 49 min 47.3a (2987.3s) 0.44 2.6 3&5 92.0 92.0% 23.8% 

&6% 

4 47 min 12.08 (2832.08) 0.46 4.1 4&3 90.4 90.4% 67.2% 

35.7% 4.1% 

5 44 min 27.28 (2667.2s) 0.49 1L2 8&3 88.3% 69.5% 

73.6% 46.9% 

11.2% 

6 60 min 38.5s (3638.5s) 0.36 2&9 70.1 8&4 88.4% 57.1% 

23.9% 81.6% 

85.7% 84.0% 

*time taken by efficient serial version 

Table 9.1: Task parallel b e r t h a results for the "light" instance of a mercury atom 

Nodes Wall time 
Speed 

Up 

% time idle 
Idle% Nodes Wall time 

Speed 

Up min avg max 
Idle% 

1 65 min 40.38 (3940.3s)' i^m 0.0 0.0 0.0 0.0% 

2 165 min 35.3s (9935.3s) 0.40 1.3 48.5 95.8 95.8% 1.3% 

3 152 min 30.28 (9150.28) 0.43 3.1 42.3 93.6 93.6% 30.3% 

&1% 

4 141 min 52.2s (8512.28) 0.46 3.7 49J 90.7 90.7% 68.3% 

36.0% 3.7% 

5 146 min 53.7s (8813.7s) 0.45 9.9 5&6 8&1 89.1% 71.2% 

74.3% 48.3% 

&9% 

6 176 min 36.6s (10596.6s) &37 2&5 70.1 8&1 89.1% 56.4% 

22.5% 82.3% 

85.8% 84.3% 

*time taken by efScient serial version 

Table 9.2: Task parallel b e r t h a results for the "heavy" instance of a mercury atom 
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9.6.2 Task parallel results 

The performance of the task parallel implementation of ber tha , as shown in table 9.2 and 9.1, is 

disappointing, taking significantly longer than the serial time. In practice, the concurrency control 

requirements and cost of frequent communication between the master and compute nodes are too 

large and expensive to efficiently exploit the available parallelism. The problem is not much less 

severe for larger Fock matricies, despite their higher computation to communication ratio. 

Methods of attacking this problem, all of which increase the computation to communication 

ratio, include 

» combining several components into a single component, which would reduce the communic-

ation and synchronisation requirements (and increase the computation to communication 

ratio). 

® redistributing, and possibly redesigning, the components to reduce the communication re-

quirements between components on different nodes should improve performance, provided 

the opportunities for parallelism were not reduced too much. 

8 the complex logic used to handle computing several elements simultaneously in the present 

implementation is not very scalable. Redesigning it to cost less and scale better should 

improve the performance. 

9 exploiting the fact that the same data, thinly disguised by different serial numbers, is sent to 

the compute components many times. If instead, components stored this data or sufficiently 

few results computed from it^, then the communication requirements would be reduced. 

Combining all the components into a single component that computes a portion of the Fock 

matrix, and dividing the Fock matrix between such jobs, results in a data parallel program. 

However taking some of these strategies to their logical limit need not result in a data parallel 

program. Instead it might result in a program that can attack portions of several Fock matrices 

in parallel, which would not be possible in a data parallel program. 

9.6.3 Data parallel results 

Identical speeds 

The data parallel approach works much better when split points are not tied to row boundaries, 

especially when using a moderate number of nodes. The results when processor boundaries are 

tied to row boundaries are shown in table 9.3. The improved results in table 9.4 were obtained by 

allowing processor boundaries at any element. 

The 1 node line shows the statistics of the serial version which is CPU bound. In table 9.3 an 

m row Fock matrix is computed on p nodes by making the first m mod p nodes compute [m/p j -t-1 

rows and the remaining nodes compute [rn/p] rows each^. As shown in table 9.3 the idle time 

steadily increases as the number of nodes increases. Nodes 0 and 1 are always the most heavily 

used nodes. In no case does any node except nodes 0 and 1 have less than 10% idle time. 

As shown in table 9.4 the performance can be improved by allowing the node boundaries 

to appear at places other than row boundaries. This reduces the differences in the number of 

"light" and a more computationally intensive "heavy" instance were used as benchmarks. 
^This would exclude, for example, the storage of all integrals used to compute an element. 

m is a multiple of p all nodes compute the same number of rows 
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Nodes Wall time 
Speed % time idle 

Idle % Nodes Wall time 
Up min avg max 

Idle % 

1 21 min 43.28 (1303.28)* 1.00 0.0 0.0 0.0 oa% 

2 10 min 7.4s (607.4s) 2J^ 0.8 1.5 2.1 0.8% 2.1% 

3 7 min 13.3s (433.38) 3.02 1.8 5.5 11.2 I.8% 3.4% 

II.29% 

4 5 min 29.3s (329.38) 3.98 0.9 7.6 12.8 0.9% 4.7% 

12.1% 12.8% 

5 4 min 41.4s (281.4s) 4.65 0.6 1&2 18.9 0.6% 9.5% 

18.6% 18.9% 

18.4% 

6 4 min 15.0s (255.0s) 5J3 9.3 1&5 2&3 9.4% 9.3% 

18.4% 23.8% 

28.3% 27.9% 

*time taken by efficient serial version 

Table 9.3: Data parallel b e r t h a performance for "light" instance of a mercury atom, with processor 

boundaries restricted to row boundaries 

Nodes Wall time 

21 min 43.28 (1303.28)' 

10 min 9.7s (609.7s) 

6 min 49.2s (409.2s) 

5 min 17.6s (317.68) 

4 min 8.0s (248.0s) 

Speed 

Up 

% time idle 
Idle% 

Speed 

Up min avg max 
Idle% 

1.00 0.0 0.0 0.0 0.0% 

2U4 0.7 0.7 0.7 0.7% 0.7% 

3Ja 0.8 1.2 1.9 0.9% 1.9% 

0.8% 

4^0 1.4 3.4 5.2 1.4% 3.9% 

3.1% 5.2% 

1.5 2.1 3.1 2.0% 2.2% 

1.796 3.19% 

L5% 

*time taken by efficient serial version 

Table 9.4: Data parallel b e r t h a performance for "light" instance of a mercury atom, with processor 

boundaries at arbitrary elements 

94 



elements computed by each node to a single element, at most, rather than a whole row. All results 

below are obtained with code that allows split points at any element without reference to the row 

boundaries. 

After this change, in no case does any node have more than 5.2% idle time and the idle 

percentages do not necessarily increase as the number of nodes increases. The improvement in the 

results suggests that forcing split points to be at row boundaries is too inflexible for effective load 

balancing with more than a small number of nodes. 

Similar performance is also observed with a larger problem, the "heavy" instance of a mercury 

atom, which is used to generate table 9.5, which takes one node a little over an hour. 

Nodes Wall time 
Speed 

Up 

% time idle 
Idle% Nodes Wall time 

Speed 

Up min avg max 
Idle% 

1 65 min 40.38 (3940.38)* LOO 0.0 0.0 0.0 &0% 

2 30 min 55.9s (1855.9s) 2.12 1.4 1.5 1.7 1.7% 1.4% 

3 20 min 44.4s (1244.4s) 1.4 2.1 3.0 1.9% 1.4% 

&0% 

4 15 min 37.2s (937.2s) 4.20 1.7 2.3 2.8 2.39G 1.796 

2.5% 2.8% 

5 12 min 27.58 (747.58) &27 1.8 2.3 3.1 2.4% 1.8% 

2.196 3.196 

24% 

'time taken by efficient serial version 

Table 9.5: Data parallel b e r t h a performance for "heavy" instance of a mercury atom 

The times taken for the "light" and "heavy" instances of a mercury atom on identical nodes 

with rebalancing enabled are shown in table 9.6 and 9.7. The cost of individual elements is 

estimated by timing each row of the Fock matrix and dividing by the number of elements of the 

row that is computed by the associated node. These measurements indicate that the cost of the 

rebalancing for larger cases which are already well balanced outweighs the small benefit that is 

possible by adjusting the split points. 

Mixed speeds 

Performing a Hartree-Fock benchmark in the first iteration, namely computing the first NQ ele-

ments of the matrix on each node is worthwhile where the speed of the processors varies widely 

because the timing allows a much more efficient distribution in iteration 2. Further benefits accrue 

from the code responsible for the load balancing having a more realistic cost estimate for each 

element—if a node is a lot slower then it will not inflate cost estimates because the benchmark 

will determine an appropriate correction. 

The distribution computed from the speeds is used in the second iteration in figures 9.4 to 9.8 

using equation (9.12). The data in the figures indicates this gives too many elements to fast nodes 

and too few elements to slow ones. The boundaries computed by rebalancing produce a more 

evenly balanced distribution. The results in tables 9.8 and 9.9 show an indication of the observed 

overall performance. The theory numbers are computed using measured speeds and equation 

(9.13). As a result the estimated theoretical maxima vary between runs of the same problem 
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Nodes Wall time 
Speed 

Up 

% time idle 
Idle% Nodes Wall time 

Speed 

Up min avg max 
Idle% 

1 21 min 43.28 (1303.28)* LOO 0.0 0.0 0.0 0.0% 
2 10 min 29.7s (629.78) 2.07 0.3 0.3 0.4 0.4% 0.3% 
3 7 min 3.0s (423.0s) 3.08 0.7 1.0 1.2 1.29% 1.19% 

0.7% 
4 5 min 16.4s (316.4s) 4J2 0.8 1.2 1.4 0.8% 1.2% 

1.4% 1.3% 

5 4inin 16.38 (256.38) &08 1.0 1.7 1.9 1.0% 1.8% 

1.9% 1.8% 

L9% 

6 3 min 34.9s (214.9s) 6.06 1.5 2.5 3.0 1.5% 3.0% 

2.9% 2.8% 

2.4% 2.6% 

*time taken by efficient serial version. 

Table 9.6; Data parallel be r tha performance for "light" instance of a mercury atom with rebal-

ancing on identical nodes 

Nodes Wall time 
Speed 

Up 

% time idle 
Idle % Nodes Wall time 

Speed 

Up min avg max 
Idle % 

1 65 min 40.38 (3940.38)' 1.00 0.0 0.0 0.0 0.0% 

2 31 min 47.88 (1907.8s) 2.07 1.4 1.4 1.4 1.4% 1.4% 

3 21 min 25.0s (1285.08) 3.07 1.5 1.7 1.8 1.5% 1.8% 

1.796 

4 15 min 59.5s (959.5s) 4J1 1.7 1.8 2.0 1.7% 2.0% 

1.8% 1.9% 

5 12 min 56.98 (776.98) 5.07 2.1 2.3 2.5 2.1% 2.4% 

2.19% 2.59% 

24% 

6 10 min 48.1s (648.1s) 6.08 2.1 2.6 2.8 2.1% 2.8% 

2.5% 2.8% 

2.7% 2.7% 

*time taken by efficient serial version. 

Table 9.7: Data parallel be r tha performance for "heavy" instance of a mercury atom with rebal-

ancing on identical nodes 

using the same hardware. 

9.6,4 Summary of results 

The task parallel implementation of the Hartree-Fock procedure, which has complex timing, was 

too fine grained to effectively exploit the cluster. The guarantees provided by using the library 

are very valuable for such a complex non-acyclic network of components. 
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Figm-e 9.8: First Fock matrix generation times for both "light" (left) and "heavy" (right) instances 

of a mercury atom for 5 fast and 1 slow node. Iteration 2 is highlighted by a blue background. 
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Nodes Wall time 
Speed Up % time idle 

Idle % Nodes Wall time 
Theory Real min avg max 

Idle % 

1 21 min 43.2s* 1.00 LOO 0.0 0.0 0.0 &0% 
2 16 min 23.0s IjW L33 0.7 0.8 0.8 0.7% 0.8% 
3 9 min 17.5s 2.34 1.7 1.9 2.1 1.79% 2.19& 

ia% 
4 6 min 19.7s &43 1.8 2.1 2.4 1.8% 2.4% 

2.3% 2.0% 

5 4 min 53.4s 4jW 4.44 2.0 2.6 3.0 2.09% 3.09% 

6 4 min 4.2s 5.34 3.3 4.1 4.6 3.4% 4.6% 

4.6% 4.3% 

4.6% 3.3% 

*time taken by efficient serial version 

Table 9.8: Data parallel ber tha for "light" instance of a mercury atom using 1 slow node 

Nodes Wall time 
Speed Up % time idle 

Idle % Nodes Wall time 
Theory Real min avg max 

Idle % 

1 65 min 40.3s* 1.00 LOO 0.0 0.0 0.0 0.0% 

2 49 min 49.0s I j f L32 0.6 0.6 0.6 0.6% 0.6% 

3 28 min 4.1s 2jW 2.34 1.4 1.5 1.6 1.4% 1.6% 

1.4% 

4 19 min 0.2s 3jK 3.46 1.3 1.5 1.6 1.3% 1.5% 

1.6% 1.4% 

5 14 min 39.6s 4jG 4.48 1.6 2.0 2.2 1.69& 2.19& 

2.296 2.19& 

L8% 

6 12 min 27.7s 5^5 &27 2.3 3.3 3.6 2.3% 3.6% 

3.5% 3.6% 

3.696 3.19& 

*time taken by efficient serial version 

Table 9.9; Data parallel ber tha for "heavy" instance of a mercury atom using 1 slow node 

The data parallel results show that data parallelism is an efficient way of attacking the Hartree-

Fock problem and that the implementation of the mpkern library is efficient for a small number of 

processors. 

The results with one slow node indicate that the different performance characteristics of slower 

processors, even older processors of the same series, can be sufficiently different for simple cal-

culations to produce an inefficient data distribution. The load redistribution algorithm based on 

lemma 9 on page 89 effectively solves this problem. Use of this algorithm to adjust the data 

distribution could allow large instances of many data parallel algorithms to make effective use of 

nodes of a range of different ages and speeds. 
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Chapter 10 

Conclusion and Fur the r Work 

Two variations on task parallel programming have been described and proved to be deadlock free. 

A close relative of the more flexible variation is implemented by the mpkern library. The mpkern 

library's efficiency was measured using both a (fine grained) task and a (coarse grained) data 

parallel implementation of the atomic, closed shell, Hartree-Fock problem. 

A technological application of parallel computing which is likely to be of increasing importance 

is the real-time visualisation of the data generated by simulations, and in the commercial exploita-

tion of high-speed computer graphics. The mpkern library might be appropriate for implementing 

interactive parallel programs if the ability to fire components due to external inputs, for example 

mouse clicks was added (this would not require any major changes to the present implementation 

of the library). 

The programs modelled are composed of components, which fire when input is available. Com-

ponents only communicate with each other via a fixed set of synchronised, directed connections. 

A component cannot send a message unless the destination is willing to receive one. Input and 

output is done in parallel eliminating problems with cycles—all the communications in a cycle suc-

ceed, avoiding deadlock. Parallel input and output also prevents the aggregation of components 

introducing deadlock, as illustrated in figures 2.1 and 2.2 in chapter 2. 

Given an arbitrary communication graph, distributed on multiple processors in an arbitrary 

manner, the need for global analysis is almost completely eliminated by the deadlock freedom 

guarantees. This simplifies the implementation of programs with a complex communication graph, 

for example the task parallel Hartree-Fock program. It is sufficient to show that data passes 

through any concurrency control barriers and that the correct data is processed. 

The mpkern library is appropriate in situations where the order of events is hard to predict, or 

event driven parallel programming is appropriate. The library might also be appropriate in cases 

where correctness is critical, even if the problem is not naturally event driven. In hard real time 

environments^, which require responses within a strict deadline, the supplied implementation of 

the library is not appropriate. 

The results of the data parallel implementation of the Hartree-Fock program indicate that the 

mpkern library is efficient. A program using the mpkern library efficiently can compete with a 

similar program written using another library, for example MPI, or in a parallel programming 

language, for example HPF (high performance fortran). 

^examples of these environments include fly-by-wire controls on aircraft, chemical plant process control and 

nuclear power station controls 
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The problem of obtaining a well balanced distribution for mixed speed nodes in the data 

parallel Hartree-Fock problem was effectively solved by dynamically adjusting the boundaries, in 

response to the time required in the previous iteration. Since the adjustment algorithm is not 

specific to the Hartree-Fock problem, it is reasonable to conclude that dynamic load balancing 

allows data parallel programs to make effective use of heterogeneous resources. 

1 0 . 1 E v a l u a t i o n o f t h e l i b r a r y i m p l e m e n t a t i o n 

The mpkern library implementation's goals are correctness, efficiency, scalability, flexibility and 

simplicity. This section attempts to evaluate how well the library core linked with the TCF+ 

transport meets these goals. The coverage is not exhaustive and mentions a few implementation 

details that are not mentioned elsewhere in this document. 

The performance and applicability of the library for a real parallel program was demonstrated 

in chapter 9, using a simple version of the Hartree-Fock problem. The task parallel solution 

performed poorly, probably due to being too fine grained to exploit effectively the (linux) cluster 

but the data parallel version performed well. 

» Correctness: The main reasons the library is believed to be correct are 

- The use of non-blocking 1 /0 prevents deadlocks due to blocking during input or output. 

Thus a node can always enter the computation phase and fire a fireable component. 

- The fact that each component fires at most once during the computation phase ensures 

that the computation phase of a fireable component will be entered within a finite time, 

provided that all component bodies are correctly implemented. 

- The buffering provided by TCP implementations and the reading of data from all 

readable sources ensure that no TCP connection is permanently unwritable (and that 

messages sent via a TCP connection will be delivered). 

- As explained in the correctness section, an input will always cause a component to fire 

and progress on sending messages is guaranteed. 

• Efficiency: Good points of the library when linked with the T C P + transport, in addition 

to those listed under scalability, are 

- direct use of relatively simple operating system facilities, avoiding potentially expensive 

abstraction layers. 

- aggregation of messages makes efficient use of the network and reduces context switch-

ing. 

- use of a small number of large transmissions, efficiently exploiting the buffering in most 

TCP/IP implementations. This allows the writev(2) system call to return before the 

data has been sent (which happens in the background, during the computation phase). 

- batching of many messages into a single transmission allows aggressive minimum delay 

options to be used (Nagle[25] disabled, minimum delay in the IP type of service field) 

without generating a large number of small, high overhead, packets. 

- that messages to components on the same node are sent by pointing the destination's 

data structure at the message, instead of via an interprocess communication mechanism, 

minimising the cost of these messages. 
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- not processing the contents of messages, thus avoiding the cost of converting data into 

an external format and back again, which just wastes processor cycles in a homogeneous 

environment. 

- that a node waiting for the ability to read data from another node, or send it to another, 

only wakes up due to events that allow progress. 

- that no features of the library implementation included to improve scalability obviously 

reduce performance on small systems. 

Bad points of the library, when linked with the TCP+ transport, are 

- that the separate communication phase can lead to significant delays between a request 

to send a message and actual transmission. 

- that very large messages, which cannot be completely transmitted in a single commu-

nication phase, can cause severe delays to messages sent after them to other components 

on the same remote node. 

• Scalability; The design features of the library that enhance scalability include 

- that all the nodes are essentially identical, except during start up and shut down. Thus 

no node can be a bottleneck in a well distributed program. 

- the examination of only active components after the first list of fireable components 

has been generated. 

- mapping of a destination number to a component and input index is based on an efficient 

balanced tree structure. 

- a single threaded design, avoiding context switching when many components run on a 

node. 

- per destination message counts, which are inexpensive to maintain, make building the 

list of nodes which need to be contacted very fast. 

9 Flexibility: Linking the core with a transport substantially reduces its flexibility, because 

it fixes the initial phases, main loop and termination routines, all of which are part of the 

transport specific code. However some flexibility remains including that 

- any remote shell command and file name of the host list can be used. If the defaults 

are wrong then setting appropriate environment variables will override them. 

- programs are self contained and can thus process the argument list in any way they see 

fit, provided they are robust enough to cope with the arguments added by the library 

on the remote nodes, for example by calling mp_init , before processing them. 

- the library only reserves one argument, which entirely consists of non-ASCII characters, 

for its own use^. Programs are free to interpret any other arguments in any way they 

see fit. 

- a program can specify the maximum number of nodes to use or, albeit with difficulty, 

construct a list of components and connections between them based on the number of 

nodes supplied. Programs designed for a fixed number of nodes always work on fewer 

nodes, albeit not necessarily efficiently. 

^Even this argument will be passed to the program unless it is in the position the library expects to find it. 

102 



- the existing support for multiple protocols, and both deferred and immediate transport 

mechanisms, in the TCP+ code should make it relatively simple to add support for 

other protocols. 

a Simplicity: The library has some subtle points but it could be much more complex. The 

design decisions that simplify the library include; 

- A single threaded implementation avoids the concurrency control that would be required 

in a multiply threaded implementation. 

- The implementation uses relatively simple and low level communication facilities. This 

avoids the complexities that would arise if a complex, and probably expensive, abstrac-

tion layer was used. 

- All the data structures are relatively simple and well understood. 

- The library just passes messages between components. This avoids all the processing 

required to convert data into a predetermined format before transmission, and reversing 

the process when a message is received. 

- The adoption of a format independent of how much data can be sent at any time, and 

the absence of any "negotiation" about the available messages and which of them the 

receiver has resources in place to handle. 

> Portability: The library builds with no changes on solaris and linux. This requires the build 

system to provide ine t_a ton on solaris but not on linux, where it is part of the standard 

library. 

- The conf igure script, generated using autoconf, uses only portable shell features and 

determines determines the existance of functions, header files and probes for other 

system and compiler features required. 

- Implementations are provided for most functions which might not be provided, for 

example ine t_a ton and a l loca . These functions are used automatically on systems 

on systems that require them. 

- The library is built using l i b t o o l , which knows how to build both shared and unshared 

library on a wide range of unix variants. 

1 0 . 2 F u r t h e r w o r k 

The Hartree-Fock example only solves simple cases of the Hartree-Fock problem and does 

nothing with the result. It should, at least in principle, be easy to extended it to an efficient 

solution of the molecular Hartree-Fock problem and add appropriate processing of the results 

for a range of applications. 

At present the mpkern library fails to take advantage of shared memory on multiple processor 

nodes, which should be a lot faster than the complex TCP protocol, which is designed for a 

possibly unreliable network. Other missing features include 

- special support for fast response components. The current implementation cannot 

support slow components and components that must respond quickly on a single node. 

This can make it difficult to achieve high performance implementations of some designs, 

103 



for example a process fanning implementation using the spare processing power of the 

farmer's node for computation. 

- starvation deadlock detection (no other form of deadlock is possible, by the proof in 

chapter 5). 

- limiting the number of messages sent to a specific input. At present stopping and 

restarting sending messages to an input is not implemented, making it possible for the 

messages queued on an input to use an unbounded amount of memory. 

- the ability to send multiple messages per cycle via a given output. This is eqmvalent 

to inserting buEers between two components and thus the analysis above still apphes. 

- semi-automatic load balancing. The library provides no load balancing—the load is 

only well balanced if the programmer distributed the components in a way that is well 

balanced. Semi-automatic load balancing, either static or dynamic, would be a useful 

extension. 

- the ability to 6re a component when an external input becomes readable. This could, 

for example, be used to implement parallel programs with a graphical user Interface. If 

such an input could be reasonably regarded as infinitely readable the deadlock &eedom 

result above would imply deadlock freedom. 

- compact statistics generation. While it is possible to generate statistics from the output 

generated by a high verbosity level this involves reducing a large amount of information. 

Given the programming model it should be possible to record the total time spent in 

each component, and similar overall statistics, in a compact format. 

It is also worth noting that lemma 9 in chapter 9 should apply to many data parallel situ-

ations. It should therefore be possible to apply the dynamic load balancing algorithm de-

scribed in chapter 9 to many data parallel problems. A parallelising compiler could apply 

the algorithm automatically to suitable loops that are not paraHelisable, for exEimple control 

loops in iterative programs. This would have the added benefit of allowing the resulting 

executable to make e@cient use of nodes 'mith a range of speeds and architectures. 

1 0 . 3 A v a i l a b i l i t y 

Stable releases of the mpkern library described above, and the latest development version 

which might include unstable changes, are both available. If a stable release is downloaded 

please also download and check the separate PGP signatures to ensure your copy does 

not include unauthorised modiScations. All packages include reference documentation, an 

automatic conGguration script for unix-like systems, and the sample sort and Hartree-Fock 

examples. The mpkern library's home on the world wide web is ht tp: //www. sourcef or-

ge.ne t /pro jec ts /mpkern . Programs may be linked to the mpkern library without any 

restrictions; however changes to the mpkern library itself must be made freely available or 

not distributed at all. The programs and mpkem library have only been tested using x86 

linux systems, but should work in other similar environments. 

The author's (1024 bit) PGP public key, available from PGP public key servers, has a finger-

print of A5 71 00 EA 8D 64 04 69 5B D2 00 24 EE 28 22 3A. The increasing comput-

ing power of single processor systems has resulted in the author creating a longer (1536 bit) 
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P G P pub l ic key wi th t h e fingerprint D2BA 046C 9385 BF2D F0A7 3323 86D6 BSOD BB3E 

F l A l . B o t h these keys will normal ly be used to sign releases of m p k e r n . 
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Appendix A 

eg g r a m m a r 

This appendix shows a simplified grammar for the eg language. The only change is that 

the complex precedence manipulaton and grammar rules that implement constant folding 

during parsing have been eliminated. The grammar presented here will accept an non-

constant value where constant-number or constant-string appears, which will cause a parse 

error in the current eg implementation. 

It would be simpler to implement constant folding in the actions, which are performed 

when a reduction via a rule is performed by the parser, and later phases where this is not 

possible. Performing constant folding in the grammar adds significant complexity to the 

grammar (especially the rules and precedence mapulation used to ensure that foo-3-5 is 

implemented as foo-8). 

Operator precedence is implemented using precedence declarations rather than being built 

into the grammar. These declarations are not shown in the grammar here. The dangling 

e l s e ambiguity, which i f the e l s e in if . . . then . . . i f . . . then . . . e l s e . . . is 

part of, is resolved by associating the e l s e with the closest previous i f . The format of 

the grammar here is based on the input format required by yacc, a popular LALR (look 

ahead left to right) parser generator and the C grammar in the back of The C programming 

Language[n]. 

The words in italics are non-terminal symbols. A flush left non-terminal symbol followed by 

a ; introduces the definition of a non-terminal. An indented line is a sequence, or sequences, 

of terminal and non-terminals that can be reduced to the closest preceding non-terminal 

introduced. Alternatives are separated by new lines of |. Thus the first four lines of the 

grammar describe a program as a program followed by a function-declaration, a program 

followed by a constant-declaration, or the empty string (e). 

The words and symbols in typewr i t e r are terminals given literally. The words in sans-serif 

are other terminals, for example explicit-string is a terminal which matches both "I am a 

s t r i n g " and "I am a lso a s t r i n g " , e represents the empty sequence of tokens. 

program: 

program function-declaration 

program constant-declaration 
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constant-declaration: 

fix nodes = constant-number 

fix ntim exp\\dt-str\ng=consant-number 

fix string eKp\\c\t-stnng=constant-string 

function-declaration: 

function-type constant-string(parameters) function-body 

function-type: 

void I tap I num | int | string 

parameters: 

void 

parameters, parameter-decl 

parameter-decl: 

parameter-direction var-type explicit-string parameter-dimensions 

parameter-direction: 

direction 

parameter-direction direction 

direction: 

in I out 

var-type: 

string I num ( int | tap 

parameter-dimensions: 

parameter-dimensions iconstant-numberl 

parameter-dimensions [ ] 

var-dimensions: 

var-dimensionsiconstant-numberl 

function-body: 

statement 

statement: 
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{ statement-list} 

basic-statement 

statement-list: 

statement-list statement 

statement 

basic-statement: 

type explicit-string var-dimensions; 

if {number) then statenent 

if (number) then statenent else statement 

for numvar index=number to number statement 

for numvar index =number to number by number statement 

while (number) statement 

tapvar index=tap; 

strvar =string; 

numvar =number-, 

print number-, 

print string-, 

print tapvar; 

print strvar; 

print numvar-, 

void-function far^s j ; 

connect endpoint to endpoint connect-options; 

component string body constant-string on number component-options; 

endpoint: 

string (number) 

tapvar index 

tap-function nowhere 

nowhere 

connect-options: 

connect-options size number 

connect-options type string 

connect-options via string 

connect-options name number 

connect-options constant string 

e 

component-options: 

with data string 

e 

tap: 
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tapvar index 

from string (number) 

to string (number) 

ta p-function (args) 

nowhere 

string: 
It I I 

explicit-string 

(string) 

string-function (args) 

stringinumher to number"] 

string + string 

string + number 

string + tap 

number + string 

tap + string 
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number: 

comparison 

calculation 

comparison: 

string < string 

string > string 

string == string 

string <= string 

number < number 

number > number 

number == number 

number >= number 

number <= number 

number >= number 

calculation: 

explicit-number 

nodes 

number-function (ar^s) 

-number 

•^number 

(number) 

number | I number 

number kk number 

number | number 

number & number 

number + number 

number - number 

number % number 

number / number 

number * number 

number ** number 

args: 

org 

args, arg 

e 

ary; 

number 

numvar index 

string 

strvar index 
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tap 

tapvar index 

index: 

indexlnumber} 

constant-number: 

number (with no non-constant terms) 

constant-string: 

string (with no non-constant terms) 

The following rules summarise the lexical tokens 

- All keywords and operators are lexical tokens. 

- Strings and numbers are explicit-string and explicit-number respectively. 

- A function declared that returns void is a void-function. 

- A function declared that returns a number is a number-function. 

- A function declared that returns a string is a string-function. 

- An integer variable is a numvar. 

- A string variable is a strvar. 

- A tap variable is a tapvar. 

- A declared number constant is an explicit-number. 

- A declared string constant is an explicit-string. 

The following restrictions apply 

- A tapvar is only an endpoint if it is a single tap (not an array of taps) 

- A tap must be assigned to either an explicit reference or another tap before its value is 

used. 

- The number and types of arguments must match the parameter, including the sizes and 

numbers of dimensions of arrays. 

- nowhere is only allowed as a source. 

- The dimension [], which is only allowed in arguments, matches a single argument 

dimension of any size. 

- The left hand side of an assignment must be a single value. Only output parameters 

can assign whole arrays, or array slices. 

- The valid range of an index is 0 to n — 1, where n with the size of the dimension. Thus 

if f 00 is declared num foo[3] [5] then its second index must be from 0 to 4. 

- A slice of an m > n dimensional array can be passed to an n dimensional output 

parameter by specifying the first m — n indices. The dimensions of the array slice are 

the unspecified dimensions of the array. 

I l l $ 
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A program must define the function main, which must take no arguments and return 

void. 

A function must be declared before it is referenced and all the definitions must match. 

Using just ; as the function body declares a function exists. A function of the same 

name with the same arguments with a body must appear later in the eg program. 
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