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By using a scattering approach combined with a transformed Hamiltonian theory, fully
non-adiabatic properties of the vibration-rotational levels of the ground electronic state of
the hydrogen molecular cation Hj and its isotopomers, DJ and HD', are studied. For
low vibrational levels a variational method is also used, providing a check on the methods.
The properties considered include the dissociation energies, the bond lengths and the dipole

polarizabilities for all the three cations. Relativistic corrections are studied just for H.

While properties such as bond lengths and dipole polarizabilities are studied through
analytic integration, a numerical integration approach is developed to study the relativistic
corrections, since singular integrands are involved. In addition, a new calculation method

is developed so that the scattering method may be used.

Non-adiabatic dissociation energies and bond lengths are also studied for the tritium

heteronuclear isotopomers HTT and DTT.
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Chapter 1

Overall aim of the project

The hydrogen molecular cation H; and its isotopomers, D;; and HD™, comprising of two
nuclei and one electron, are the simplest molecules; for this reason they represent a good
test to calculate theoretically and in an accurate way some properties and to compare them
with experimental results.

Because of the absence of interelectron interactions, Hj has been used as a model system

to test many different approximations and methods. Even though for Hj and Dg the Born-
Oppenheimer approximation allows the exact solution of the Schrédinger equation, further
calculations (adiabatic and non-adiabatic) are needed to describe the coupling between
electronic and nuclear motions [1]. For HD™, the lack of a centre of symmetry due to the
different nuclear masses, creates difficulties in the theory, as is explained in this work.
Theoretical studies on these small molecules are now so accurate that disagreements with
experiments may be attribuited to the breakdown of the Born-Oppenheimer approximation

while relativistic and radiative corrections have also to be accounted for. Allowance for the

breakdown involves two types of correction: the adiabatic, which is diagonal in the electronic
state and allows for the response of the nuclei to the instantaneous position of the electron,
so that the uniformity of the motion of the centre of mass of the system is maintained;
the non-adiabatic, which is off-diagonal in the electronic state and allows for the lag of
the electron in its attempt to follow the nuclei during vibration and rotation. While the
accurate dissociation energies of many bound and quasibound vibration-rotational levels
have been calculated for Hf [2], DJ [3] and HD' [4] few fully non-adiabatic values of

molecular properties of the hydrogen molecular cation have been calculated.



Extension of the calculation of the non-adiabatic correction to properties such as the
bond lengths, the dipole polarizabilities and the relativistic corrections is the aim of this
work. This is of fundamental academic interest, since the hydrogen molecular cation is the
simplest molecule, for which non-adiabatic effects are supposed to be greatest and since
electron correlation does not confuse the issue. There are, however, other reasons for which
it is desirable to have extremely accurate property values for these ions.

The recent interest in exceedingly accurate non-adiabatic energies, has been prompted
by the possibility of metrologists using very high resolution spectra of Hi in ion traps to
determine the ratio of the proton to the electron mass [5]. Although relatively low vibration-
rotational levels are involved, some of them are difficult to study using a variational method.
In addition, extremely accurate relativistic and radiative effects need to be calculated for
each level and the only feasible way, at present, is to evaluate expectation values of the
relevant operators. Although this has been done [2-4] using Born-Oppenheimer electronic
wavefunctions as a function of internuclear separation and averaging over bond length for
each vibration-rotational level, these estimates are good to no better than 1 x 107%E
(0.0002 cm™!) while at least an improvement to 0.000001 ¢cm™! is needed to be of use to
metrologists.

In addition, the hydrogen molecular cation HJ is supposed to be intimately involved

in the initiation of astrochemistry in the interstellar medium but it has yet to be observed

extraterrestrially, unlike H;

In this work, all the theoretical aspects involved in the study of the properties of the
hydrogen molecular cation and its isotopomers are considered; all the levels of approximation
are described accurately with a particular attention to the transformed Hamiltonian theory
which allows for all the couplings between nuclear and electronic motions. Besides, a detailed
explanation of the calculation methods used and developed is reported.

The non-adiabatic corrections to the dissociation energies and to the bond lengths and
the non-adiabatic dipole polarizabilities for the ground electronic states of the three cations
are discussed. In addition the relativistic correction for Hj is considered. A short chapter

is dedicated to the non-adiabatic dissociation energies and bond lengths for the tritium



cations HTt and DT.

While most of the integrals needed may be evaluated analytically, the study of the rela-

tivistic correction requires numerical integration to evaluate matrix elements with singular

integrands.

The programs used are based on those of Kennedy and Sadler [6] and Leroy [7]; the

original scattering program was written by Balint-Kurti [8].



Chapter 2

Theory

2.1 The full non-relativistic Hamiltonian and

levels of approximation

The Schriodinger equation for the hydrogen molecular ion may be solved at different levels of
approximation. The simplest and most common is the Born-Oppenheimer approximation,

which is defined as the solution for the motion of the electron in the field of the fixed

nuclei. A more accurate approximation is the adiabatic one, which includes only terms of
the coupling between nuclear and electronic motions which are diagonal in the electromnic
state. But the complete solution is the one that includes also the off-diagonal terms of the
coupling between the elctronic states: the non-adiabatic solution.

Because electronic energies are determined at fixed nuclear separation, both Born-
Oppenheimer and adiabatic approaches separate nuclear and electronic motions, leading
to the concept of electronic potential energy curves. This idea has to be abandoned in
searching for the non-adiabatic solutions to allow for the electron following the nuclei dur-
ing vibration and rotation of the molecule.

A system of point charges interacting electrostatically and moving through field-free
space 1s studied. For such a system the complete non-relativistic Hamiltonian can be written

Zi 2
= _}? 5 2.1
' L 2mZ 47rq) Z (2-1)

7
i 3> ij

where all the symbols have their usual meaning and the coordinates refer to the laboratory

frame.



In order to obtain a convenient form of this Hamiltonian for the hydrogen molecular
cation, a change is made from the laboratory frame to one centred on the geometric centre

of the nuclei, applying the transformation

i 1
Tg -3 3 1 1
R |=|-1 1 0 s (2.2)
Row E T To

1
T — A L7 1 Tg
9 — m, {rmy 4571 ) 1 R (23)
M M
e Mn I 1 RCM
M 2M

where M = mq + mg + me and M, = m -+ ro. The coordinate vectors are illustrated in
figure 2.1: ry, 73, r, are the position vectors of the three particles relative to the arbitrary
space-fixed origin O. The new basis vectors are the intermuclear vector R = ry — vy, the
position of the centre of mass relative to the space-fixed origin Rcy and the position of

the electron relative to the geometric centre of the nuclei r,. Applying the transformation

(2.2) to the kinetic energy operators in the Hamiltonian (2.1) leads to

2 2 2 2 2
K2 EJ._ 32 vg R Vg Ve Vr | Viou 2.4
BRI (R LR + (2.4)
p 2m; 2me  2p 0 8u 2 2M
where 2 = - 4 L and L = L —_L The convention to set 71 as the mass of the proton

M ™ms Mo Ha my My’
and my as the mass of the deuteron is chosen in order to have, for HD*, a positive value
for ia-

On the other hand, the electrostatic potential energy between the particles

V=5 [i—iml} (2.5)

is unchanged by transformation (2.2), because it depends only upon the relative positions
of the particles.
The complete Schrodinger equation for the system is then

ofVe VE Ve V,.-Vg Vi
2 [_,.& YR, ‘e, Vg VR, ﬂ_QM] zr}q;f e BT, 2.6
{ ' 2m, + 2 F 81 2t 20M Y ror ot ot (2:6)

ot
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Figure 2.1: Coordinate system for the hydrogen molecular ion: O is the arbitrary space-fixed
origin, C.M. is the centre of mass of the system and G is the geometric centre of the nuclei.



Because the motion of the centre of mass is contained in the ngM term, it can be separated

out to write a solution of the form
Vot (Rom, R, mg) = Aom(Bom)Pmo (R, 7g) (2.7)

that allows the separation of the total Schrédinger equation (2.6) into

Ve Vi Vi V-V
— ]"2 B8 ,#.R_ g ___g___‘g_ 1 ;i—n — . 2.
{ ' [QmQ * 24 + 8 + iy ]+ V}T/" ol = FintPmol (2.8)
and
o V7,
—h —é“]f,}MACM = (Biot ~ Fint)Acm. (2.9)

Equation (2.9) can be easily recognized to be the time-independent Schrodinger equation
for a body of mass M freely moving in space with kinetic energy (Fiot — Fint). In conclusion,
the non-relativistic Hamiltonian, in atomic units, for the internal motion of the hydrogen

molecular ion is

Ve Vi V2 v, 1
H‘im:,h&#y_&_mﬁmww%m,,i”i (2.10)
2 20 81 240y B rie 7o
which can be expressed in a more compact way as
, 1 1
Him, - f”]}}@ “+ ""Had -+ ”“ng (211)
M Ha
where
Y 1
HBO:*‘**E*,L~£~—]-~*—L; (2‘12)
2 R Tie 90
v o V!
Hpg = -2 — & 2.13
ad 9 ) ( )
and
V * VR ¢
'ng - ““_g”“z . (214)

Equation (2.13) and, in the case of HD', (2.14) couple electronic and nuclear motions
making it impossible to find exact eigenfunctions and eigenvalues for equation (2.10); in

order to make the problem tractable some approximations can be made.

~J



2.1.1 The Born-Oppenheimer approximation and its
solution

The Born-Oppenheimer problem is solved by ignoring H,q and H,, in equation (2.8) and
solving the Schrodinger equation for different values of R to generate a potential energy
curve and a wavefunction that depends parametrically on . The Boru-Oppenheimer elec-

tronic equation

(-5+%- - %) be(rg; R) = E(R)u(rg; R) (2.15)

has to be solved. In (2.15) { is the electronic state; this three-dimensional equation represents
the motion of a single electron around two fixed nuclei.

By using prolate spheroidal coordinates, equation (2.15) can be separated into three
one-dimensional equations which may be solved exactly with series expansions [9]. The

prolate spheroidal coordinates are defined as

e Tlet e hh 1< £ < oo,
R
n:w.-«m;?r?‘* with —1<n<1

and x represents the rotation of the electron about the internuclear axis (0 < x < 2x). The

transformation from cartesian to prolate coordinates allows (2.15) to be written as

g  a d
IR RV TG & A

! 1L\ & 2p2 2 ) —
(6’7 . 1)+(1 - n2)/axg+2i€§"“p (6 —7 )} (ﬁi‘({anax,v]{) =0

9
LOE
(2.16)
5 R2 1
where p? = — I [By(R) — ).
In the Hamiltonian operator of equation (2.16) there are no cross-derivatives between

the coordinates, so the solution can be factorized as
Pe(&,m,x; R) = L(& )M (n; R)N () (2.17)

to obtain three one-dimensional equations

—— v) = 2.18)
(52 +47) 00 =0, (2.18)

oo



[8 (€ _1)59*%4& —-ﬁ———ﬂ- 2125—1;252}15(53) =0, (2.19)
I 73 & -1 \ v ’
{a (1 mnz) & +p2n }M(n R)=0 (2.20)
o o T (1-n) ’ ’

where A? and A are the separation constants. Equation (2.18) can be solved analytically

with the result

et X (2.21)

where A =0, +1,42,....

For the solution of equation (2.19) the Hylleraas expansion [9] over associated
Laguerre functions
. 1Al x o R ;
g =@ -n¥et Yy 2l 222

n!
n::f/”

can be used. In (2.22) z = a(£—1) and « is a non-linear variational parameter. Substitution
of this solution in (2.19) leads to a recursion relation between the coefficients g, ().
Equation (2.20) may be solved using an Hylleraas expansion [9] over associated Legendre

functions

M(n;R) = ‘Z FA(R)PLT (). (2.23)

The solution of the electronic Born-Oppenheimer equation is achieved by determining
gn(RR), fs(RR) and E,(R) for a given state at a particular value of R and requiring that
the separation constant A satisfics at the same time both the sct of recursion relations in

gn(R) and fo(R). This condition can be expressed as the matrix cigenvalue equations [10]
Gg = —Ag (2.24)

Ff=Af. (2.25)

Solution of the Born-Oppenheimer equation yields an electronic potential energy curve

U(R) = Ey(R) (2.26)



in which all the couplings between muclear and electronic motions have been neglected. The

radial Schrédinger equation for the nuclear motion is then

g 7 NN+

and its vibration-rotational eigenfunctions and eigenvalues may be found by Numerov-

Cooley integration [11].

2.1.2 The adiabatic approximation

Adiabatic vibration-rotational energies may be obtained by correcting the potential by

adding the expectation values of

1
“‘»Z{ad (2‘28)
H

to the Born-Oppenheimer potential using the Born-Oppenheimer wavefunctions ¢ (ry; 12)
[12]. Following the method suggested by Born and Huang [13], the complete molecular
wavefunction can be expressed as a series expansion over the Born-Oppenheimer solutions

¢y (rg; R) as follows

Ymoi(R, 1) = > Fy(R)dy(ry; R). (2.29)
1

Substituting (2.29) into the Schrédinger equation for the internal motion (2.8), a set of

coupled differential equations for the function /;(R) is obtained

Hiny p  F(R)$i(rg; R) = Bt Y Fi(R)u(rg; ). (2:30)
t

t

This equation can be simplified by premultiplying by ¢%(ry; I2) and integrating over the

electronic coordinate 7y to obtain

, . S v S VS A VI v O ‘
5, (R)Fy(R) + i (res B[ — SR B ,_a,m}y (ro: R)dry = EiiFs(R
F(R)Fy(R) + §t j / gos(rb,z?){ T o L(R) by (7g; B)dr, F5(R)

(2.31)



that can be rewritten as

RARIFAR) + [ 63 )] = 5 ~ 28 = YEZR| Ry (ry; R

In the Born-Oppenheimer equation the nuclei are treated as fixed charged points, so the
wavefunctions ¢,(rg; [2) are either symimetric or antisymmetric with respect to exchange
of nuclei or with respect to electron inversion in the geometric centre of the nuclei; in
the particular case of HD*, the operator Vi is antisymmetric with respect to nuclear
permutation while the operator V, is antisymmetric for electron inversion. For this reason

the following integrals allow the elimination of the coupling term Vg -V, from the diagonal

terms of equation (2.32)

/ G (rg: ) Vn s (ry; R)drg = 0,
/(/’: (rg; ) Vgos(ry; R)dry = 0, (2:33)

/¢:(7‘g;R)Vg - Vros(rg; R)drg =0

so that it becomes

I V£ . v V2 ~ .
{B(m) - e f #ilrei B)| T gﬁ} b (7 )iy | F(2)

. 29 2
5 ool Vi Ve Ve Vml, o
o [ atran]- 35 - 55 - 5 g Ry,

» r Va V,
- [Gram| T

&

|pelrgs )y - Vi b F(R) = By (). (2.34)

In the case of the Born-Oppenheimer approximation, equation (2.34) reduces to

Pl vz Kl nl - it 5
{m(r) — JRrEOmR) = B0 IEO(R). (2.35)

11



Equation (2.34) is a set of coupled differential equations for which it is impossible to find
the exact solution because it would be necessary to calculate the couplings between the
infinite set of functions

Fy(R)¢y(ry; ).
The adiabatic approximation consists in considering just the diagonal coupling in the elec-

tronic state solving only

{F +/(/> T R) == ¢s(rg; R)drg

f ¢ (rg R (/)('rg,R)drﬁ}F‘d(R) Eini F¥(R). (2.36)

The effect of this approximation is that the nuclear motion is now governed by the effective
potential
_ oy \F _ V£

U(R) = Bu(1) = [ 63(rs B) o ulrgs B)dry — [ (s B3 S0l B (257)
which is isotope dependent because it depends on the reduced mass p; on the other hand,
the Born-Oppenheimer potential #,(R) is isotope independent. Substituting (2.37) into
(2.27), xon and FE,y are obtained as solutions of the radial Schrédinger equation for the
nuclear motion.

The adiabatic approximation then, consists in retaining the diagonal correction improv-
ing the approximation given by the Born-Oppenheimer one, even though electronic and
nuclear motions are still separated.

The adiabatic approximation is particularly successful when the choice is made to neglect
the non-adiabatic coupling to the state of interest; namely when the ground electronic state
of a molecule which does not couple with its first excited state, producing non-adiabatic

effects, has to be studied. This is the case for the ground states of Hf and Dy, but not for

HD™; in fact, in this case the

Ve Vr (2.38)



term couples the ground (Zg ) and the first excited (3;]) electronic states. In order to obtain
accurate results for HD'' it is necessary to perform non-adiabatic calculations especially for
high vibrational levels. In fact if the behaviour of the adiabatic potential for these states at
large R is considered, at very large R they have the same dissociation limit even though in
reality the dissociation Hmits Ht +D(1s) and H(1s)+D* are separated by 29.8 em~!'. This

is a degeneracy that can be resolved only by performing non-adiabatic calculations.

2.1.3 The matrix elements of the Hamiltonian

In order to apply the Hamiltonian (2.10) to the hydrogen molecular ion, explicit forms of the
operators that appear in it are needed; these have to be expressed in terms of the internal
coordinates of the system (12, &, ) since the dependence upon y is going to disappear. First,
the angular motion of the nuclei has to be separated and then the resulting matrix elements
have to be expressed in terms of the internal coordinates. The angular motion of the nuclei
is separated by transforming the frame system from the space-fixed axes system (X, Y, Z)
to a frame of rotating molecule-fixed axes (z,y,z); to do it, two Euler angles need to be
defined:

e) ¢, about the initial Z axis with 0 < ¢ < 2m;

o) 0, about the resultant y axis with 0 <0 <«

from which the following transformation is obtained

z { cosdeosl  singcos)  —sind X
y | = —sing cosgp 0 Y |; (2.39)
z _cosgsing  singsing  cosf Z

in (2.39) z,y, z are the new rotating axes. The new coordinates (17,6, ¢) are sufficient to

describe the motion of the nuclel.

The above transformation has to be applied to the differential operators of the Hamil-

tonian (2.10). Applying transformation (2.39) to the nuclear Laplacian operator \7»}){ and

using it in (2.35) and (2.36), the separation of the rotational motion of the molecule [12]

is obtained. In a frame system so defined, the motion of the electron is governed by the



molecule-fixed potential

; 1 1
U<T1(37T20) = ”;_1— - ;_;— (2'4())
e e

so, physically, it is convenient fo transform the operators to a molecule-fixed electron coor-

dinates system referring it to the geometric centre of the internuclear vector. Then

P P
) ) —icosBL, + isinf Ly
s m

op/s 9
8 8 . ,
55).= 99)m (2:41)

d
5= 3

where the subscript s indicates the partial differential operators referring to the electron
coordinates in the space-fixed axes system (X,Y,Z) while the subscript m refers to the
electron coordinates in the molecule-fixed electron coordinate system (R, 8, ¢). From trans-
formation (2.41) a form is obtained for the nuclear Laplacian operator V} that depends
explicitly on the components of the electron angular momentum in the rotating coordinate

system (Lg, Ly, L) through the operators [12]
[F = Ly £l (2.42)

Following the same procedure, the operator coupling electron and nuclear motions V- Vg
may be written as a function of L, L, L, and, moreover, as a function of the components

of the electron’s momentum operator
P =iV, (2:43)
in the molecule-fixed coordinate system through [12]
Pt =p,+ip, (2.44)

The electronic Laplacian and the potential operators

62 @2 692
oy Py Ly "
& 8z2 / i 8y2 m + 922 )’ ( d)

14



(2.46)

are both independent of the Euler angles ¢ and 8.
Now, the forms derived for all the operators of the total Hamiltonian (2.10) allow the
rotational motion of the molecule to be separated. For this purpose the molecular wave-

function is written as

Pmol = Z Qj\\;\,4<g (lba X) U/71v (f« U ‘R) (247)
A
where the functions U} depend on the relative positions of the particles and

Qj},’m:A = ggmﬂ %“‘ng‘ﬁ,w(@) (2.48)

are the normalized symmetric top eigenfunctions; IV is the total angular momentum in the
space-fixed system, My is its component along the space-fixed 7 axis and A is its component
along the rotating molecule-fixed z axis.

The motion of the electron about the 2z axis is described by the angle x

L, = —i—. (2.49)

Substitution of (2.47) into (2.8) leads to the elimination of the Euler angles ¢ and 8. The
matrix elements of the Hamiltonian can be indicated as

(N My A |HINMpyA) = (A'|H|A) (2.50)

since N and My are good quantum mumbers. From the expression of the differential
operators [12] in the total Hamiltonian, the only non-zero matrix elements of H are those

which satisfy the 4 selection rule
A—A =AA=04+1 (2.51)

that is, the only non-zero matrix elements of the Hamiltonian are [12]

.
[y



(A|H|A) = %(A;vgy./m +V - -g%wv;;iw

5? 2 9 1

557 T wan VOV D - AU D+ (AL |

2%{ e+ (Auﬂzr P L'“}A)} (2.52)

(A~ 1HIA) = /(N + AN — 4+ 1){ (A — 1L |A) + (A - upwg,fm}, (2.53)

1 1
21 R? dp R

(A+UH|A) = /(N T A+ (A= N){zplfz? (A 4+ 1)L A — 4: S 1P (259

iait

At this point the total internal Hamiltonian (2.10) does not depend any more on ¢ and 8,
having separated the rotational motion of the nuclei.

The final step is to express the above matrix elements as function of the internal coor-
dinates (R, &,7,x) of the system allowing the elimination of the coordinate y. After some
manipulations the final matrix elements useful to develop non-adiabatic calculations for

A = 0,+1, namely between 2 and II basis functions respectively, are [12]

! 2%, 1 4 P )
(0g1410¢) = Wﬁ+ﬁ{1”(52 _5772)] TR {81{ (RZ()R> R ')X”"NW“)}?
(2.55)
(0ulH[0g) = RQ{ S RR @XD} (2.56)
(gl log) = 2 L0 ED (257

(1, H|0g) = LYV (2.58)

241, 2
where
1 12, 8 (9 9, O A?
) I iy N b PRy £ RS A Bl S 9 5L
d
3” T e o IS — 2 —_— 2. e
{e€ - ngz +n0 - )aﬁ}, (2:60)

16



1 d .
Z = g {ale® ~ 1z + €0 —nD5- (2.61)
,_ VEDI-y,0 0
i 20
_ \/T ~1 (1 - \
B= 2 —p? { §§ 37;} (2.63)

and the subscripts g and u derive from the dependence of the single operators of the Hamil-

tonian on 7; for the diagonal operators even in 7 the rules are

g g, usru, U g (2.64)
while if the diagonal operators are odd in 7 the rules change to

g e g, uss U, Uy (2-65)

on the other hand for the off-diagonal operators in 4, the matrix elements of the even

operators in 7 satisfy (2.65), while those of the odd operators obey (2.64).

2.2 Non-adiabatic calculations

As already mentioned, it is impossible to find the exact solution of equation (2.34) because
it would require the solution of an infinite set of coupled differential equations. One solution
[14] is to try to reduce the problem by just considering the coupling with a finite number of
other states and hope that the Born expansion (2.29) converges rapidly. This method has

been used for the lowest vibrational levels but if there is the will to increase the number of
levels studied, longer Born expansions are needed.
To perform more efficient and accurate non-adiabatic calculations, other techniques have

to be developed.
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2.2.1 Some possible approaches

Variational calculations

Within this method [15, 16] the eigenvalues of the complete Hamiltonian (2.8) are sought

by variational adjustment of the trial wavefunction

7

im  Jm km i‘rn Jm ’gm
T=3" %" Zcmmmk R&Em 4> D> cindun(R.Em). (2.66)
i=0 j=0,2 k=0 i=0 j=1,3 k=0

In (2.66) the first summations are enough to describe an homonuclear molecule and the
second summations have to be added in order to study an heteronuclear system; the basis

functions of the expansion are
Giji(R. &) = e “cosh(fn)¢'n B e 5% Hy(z) (2.67)

where Hy(z) are Hermite polynomials, z = v(R — §), i,7,k are integers and «, f4,7,d are

adjustable non-linear parameters chosen to minimize the energy.

Variational-pertubation calculations

In this method [17-20] the non-adiabatic effects are treated as a perturbation of the adi-
abatic approximation so that the adiabatic wavefunctions can be used as a starting point

for the development of the calculations. An adiabatic Hamiltonian is defined

HAd Z Fad|apady (pad | (2.68)

where E29 are the adiabatic energies and [24) is a complete set of adiabatic eigenfunctions
of the form
i 4 BO . ~ad F 00
W, (H” Tg Pn (Tgv R)f’n (R) <Z§§’)
F24(R) are the solutions of the radial Schrédinger equation with U(R) being the adiabatic

potential (see equations (2.27) and (2.37)).



The total Hamiltonian can now be separated into an adiabatic part and a non-adiabatic

term treated as a perturbation

H = H* 4 g (2.70)
so that
HIgY) = Exflypn) + H™iby) (2.71)
and since
(nd | y5) = B3 (2.72)
the first-order energy correction is
(W ™ i) = 0. (2.73)

To find the second-order energy correction, 99 is treated as the zero-order eigenfunction

and the first-order eigenfunction is written as
Yn = U5 + (2.74)
where 1, satisfies the equation
(H™ — B3, = —H™ g0 (2.75)
The second-order energy correction is given by
B = (g [H" ) = (o, |[H — B3 |yi?). (2.76)

To first-order the ground state couples only to excited % and 1T states. The non-adiabatic

corrections are completely independent for each coupling

B =Y, e
Ao

where A is the projection of the orbital angular momentum on the internuclear axis and «
includes g and u characters. For the homonuclear molecular ions the coupling between states
of different g/u symmetry is zero and this method gives very good results, but for HD? the

results compared with experiments become worse at the approach of the dissociation limit
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because the coupling between 1so, and 2po, states increases at large internuclear distances

and can no longer be treated as a perturbation.

2.2.2 The theory of the transformed Hamiltonian for
HD~+

The electronic part of the Schrodinger equation needs to be solved very accurately in prolate
spheroidal coordinates. When the internal Schrodinger equation is expressed in prolate
spheroidal coordinates, very complicated nuclear motion terms appear (see equations (2.55)
to (2.58)); some of them consist of cross-derivative terms between electronic and nuclear
coordinates. For this reason when non-adiabatic calculations are performed, many problems
arise from the complexity of the equations; theu, it is convenient to simplify the theory being
carefuil not fo lose accuracy in the resulis.

The main theoretical properties to be satisfied from the transformed Hamiltonian theory
are the following:

o) the electronic Schrddinger equation has to be accurately and easily solved;

e) the nuclear motion effects have to be included;

o) all the properties of HDT and its isotopomers have to be calculated accurately for all
the levels of the ground electronic state.

The first condition is complied with by the development of a theory in which the
Schrédinger equation is solved in prolate spheroidal coordinates, but in order to satisfy
the second property a more sophisticated theory has to be used. If the first two conditions

are satisfied also the third will be with high probability.

The transformsed Hamiltonian theory for HD' [21-23] answers all the requirements
listed above. The core of the theory is to transform the Schrédinger equation in such
a way that complicated nuclear motion terms involving cross-derivatives between nuclear
and electronic coordinates do not appear in the transformed Hamiltonian; the new energy
operator is, in this way, able to take account of those terms within a transformed potential

energy operator, which does not contain any derivatives. As a consequence. some mclear
S ] Yy 5
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motion effects which before the transformation appeared as non-adiabatic effects, are now
accounted for in the adiabatic part of the problem.

Because of the different nuclear masses in HD*, the g/u symmetry breaking term

Ve Vi
Ve VR 2.78
o (2.78)

has to be treated to obtain an intermediate transformed Hamiltonian, which is similar
to that for Hi and Dy ; a further transformation is then made to give a final transformed
Hamiltonian. As will be seen, it is possible to choose the intermediate transformation [21,22]

so that the mass asymmetry is mainly accounted for through effective nuclear charges.

The intermediate transformation
The starting point of the transformed Hamiltonian theory is to rewrite the Hamiltonian

(2.10) as

. 1 1 ,
Mm:ﬂ+;Hw+;ﬂ@+V (2.79)

where the kinetic energy operator T, is
T, = —V2, (2.80)

the potential energy operator is

poLt L 1 (2.81)

and the reduced mass constants and the other kinetic operators are defined in section 2.1.

In order to remove the coupling term

L, (2.82)
L

the Schrédinger equation is transformed as

H' = " Hipye ™ (2-83)
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where S is an hermitian operator and the exponentials are to be interpreted as the corre-

sponding power series expansions. The expansion of equation (2.83) gives

/ , 1 1
H = Hint + [/S; Hint} + ?[35, ["S; Hintﬂ + ;;![ZS, ["S [553 Hms”} + .. (284)

The hermitian operator S is given by
S=8;+ 5, (2.85)

where S, and Sy are, respectively, even and odd operators with respect to inversion of the

electron coordinates in the geometric centre of nuclei; they are explicitly given by
iSg = a(R - Vg) + b(ry - V) (2.86)

and

i8Sy = c(ry - Vr) + d(R - V) (2.87)

where a, b, ¢, d are real parameters. The four real parameters are chosen to be [21,22]

1 12 1 5
= 0, =0, c¢=tanh | —r"r——0l d= -~ 2.88
a =0, , €= tan [{Ja(z,&’/ n I)J , d=7 (2.88)

and to the first order in (nuclear mass) ™'

1 1
d

(2.89)

»

The reason for this choice is explained as follows.

Even though there are many transformations able to eliminate the coupling term, this
one avoids having divergent potential energy terms which are uncomfortable to treat. Avoid-
ing such terms decreases the possible choices for the transformation employed. The electron-
nuclear potential energy terms should not be affected by the transformation apart from

multiplicative factors

82’5(M}_> ) (2.90)
Tnc ?‘DC

where n=1,2 and Z, may be scen as effective nuclear charges. A simple condition for this to

happen is that iS5, ri.(= 7y + %R} and o, (=7, — %R} satisfy the following commutation



rules

[’L'S,T'm] = kﬂ”le (2*91)

and

[i.5, 7oc] = ~katae (2.92)

where ki and ko are constants. Taking the general form of ¢S (see equations (2.85), (2.86)

and (2.87)) the commutators become

1 1 1 i
. ! e 11 5o
[i5, 1] (20+b)7‘]f,+(2a+d & 2())R (2.93)
and
1 1 11
iS,790] = —(=¢ — —Catd-—c+-b)R. 2.94)
(8.5, 73] (Zf b)rae + { Sa+d 4c+2b)R (2.94)

The simplest way to satisfy (2.91) and (2.92) is to set
a=0b=0 and d= ];(’

so that ky=ky and a completely odd transformation is chosen. If ¢ = w and d = }Tw, i85 s
chasen to be

i = w(rg- Va) + é(R- V)] (2.95)

which leads to the eliminstion of

Lo, (.96)

Fa

With 48 expressed as (2.95) the explicit form for the transformed Hamiltonian H' [21,22]

can be evaluated to be

o 1 I
H =T, + { [2 + ~} cosh(w) — —sinh(w) — Q}Had
7 ’

Ha

1 1 /
+{ - [2 + —-} sinh{w) + mcosh(w)}Hgn +V (2.97)
2 Ha
from which w must satisly the equation
I, —E . 1 9 (14
- {2 + sinh(w) + —cosh(w) =0 (2.98)
#H Ha



which leads to
1
w = tanh ' ( ~)
P
where

1
= (2 + ”‘)ﬂa
H

Using in (2.97) the properties of the hyperbolic trigonometric functions

1
sinh(w) =
P -1
and
P
cosh(w) =
@)= =

. ! .
the new expression for H is

/ 1 /
H =To+ —Hyg +V
Heff

(2.100)

(2.101)

(2.102)

(2.103)

which is formally similar to the Hamiltonian for Hf and DJ; in (2.103) peq plays the role

of an effective nuclear reduced mass

1 1 1 1 1
S LpTianl o Lio( L),
Hhoff Ha H 4pz Lifiy,
Having eliminated
1
—H,
Ha Bl

(2.104)

(2.105)

multiplying the relative electron position vectors by the same constant, the transformed

potential energy V' [21,22] becomes

‘1 1 Z 7
V o= s 2

JL\/1+25 >+4'7<2f§£ 2} e T2

where

fupsn” 122

1 1 <11

(2.106)

(2.107)



PPl 1 ro(), (2.108)

2 1642 I
w 5 ‘“1 1 1 1
7 =e % = ¢ 3----:1--—~+0( _5) (2.109)
p+1 dpg Hita iy
w Y, 1 1 1 1
Zoy =e2 = ¢ p_f_:l+~—«+0(~—~j—§). (2.110)
p—1 4ty Hita  p2

The entire transformation of the Hamiltonian has been performed in cartesian coordinates
but its expression has to be written in terms of the internal prolate spheroidal coordi-
nates. While T, H,4 and the electron-nuclear potential energy have similar forms as in the
untransformed Hamiltonian (see equation (2.55)), the transformed internuclear potential

energy operator is quite different and it becomes [21]

2 {(zl + Zo) + (Zy — 7 ,)'rz} L (2.111)

- -+ v
& —n BT+ B&n +~(& +17)

5
4

which contains an inseparable term that does not allow the exact solution of the Schrodinger
equation

(To +V )y = By (2.112)
At this stage it is possible to solve the Schriodinger equation associated with the Hamiltonian
(2.103) in the adiabatic approximation [21,22,24]. The transformed Hamiltonian in prolate

spheroidal coordinates for the ¥ states is

; 2
H =

1 (8,0 P . ,
_ X v )2»___ gy Y 2 2 X )
5 Xo ZMRQ{ m(}f 3;;;) 2 B0 =2) X, N(N+1)}+V (2.113)

where Xy and Y are defined in (2.58) and (2.60), the mass dependent constant jier is given

in terms of p and p, (see equation (2.104)) and

i 1
i =1+ —_— (2.114)
s 2pics
In the Schrodinger equation
2 / ,
(w —Xo+V >’l/)0 = Foiby, (2.115)
. wRE



no derivatives with respect to /2 appear and it can be solved variationally for a range of

values of R. Then the adiabatic correction to Ey is given by

o 20 2 y 0 1
By = Y —R+— =2)Xg— 5 N(N+1 2.116
ad HOEQR? RaR 1P 812 5 (f +7°=2) X B (N+D)o)- ( )
Equation (2.113) is not separable because of the presence of the transformed internuclear

- » - - - - ;
potential; a solution could be found in expanding the unseparable term contained in V' as

a Taylor series

1 1 Ir A - P 11
. = == | B+ () |+ 58700 L+ O —5, — ) (2117
Ry/1+ BEn +v(€2 +1?) R{ 2 }_/3677 & )J 85 < } (Mzé M’é) ( )

and developing a variational method that requires only the evaluation of two-dimensional
integrals involving separable integrands, all of which may be evaluated analytically. The

solution of equation (2.113) can be expressed as

o=y i (2.118)

with the ¢; basis functions modelled on the Hylleraas expansion [9] that were used in the
development of the Born-Oppenheimer electronic equation (see section 2.1.1 on page 9).

The new basis functions associated with the ¥ states, which do not depend on R, are

I ete-n
b= o=t T Lo o€~ ]P0, (2.119)

where the convention cﬁﬁiﬁ () = Ly, (z) s used. In (2.119), L, [e(é — 1)] and Py, (n) are
Laguerre and Legendre polynomials respectively of order m; and n;, and « is treated as a
non-linear variational parameter. The subscripts m; and n; are positive integers (m; (n;) =
0,1, 2, ... Mmus (Nmaz)) Such that the combination between m; and n; is unigue for each
value of 7. Using the variational principle for the linear parameters ¢; of the expansion leads
to the matrix equation

(H— FEyS)e =0 (2.1,20)
where

Hyj = /(j)i( Hzxg + V)qﬁjdfr (2.121)
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Sij:/(/)iQdeT, (2.122}

and

T )
dr = Zimzd(g? — n*)dedn. (2.123)

Since the operators in (2.115) are hermitian, H and S are symmetric matrices. The matrix

elements (2.121) and (2.122) may be evaluated analytically in terms of
ges]
/ e L () L () d (2.124)
0

where z = a(¢ — 1) and

o]
/ 1 1" Pen (1) Pra () - (2.125)

In order to compute the vibration-rotational levels in the adiabatic approximation, the

radial Schrodinger equation

L rd?  24d 1 \
I B TG Y RS Fun (R = By Fyn (R (2.126
{ et LZR? TRdr TR (N“)] ‘*“WH)}PN(R) Bon Bore(R) - (2:126)

has to be solved; in (2.126) the adiabatic potential is
W(R) = Eo(R) + Eaa(R), (2.127)
where Fyn(R2) are the radial eigenfunctions and F,n are the energies of the level with

vibrational quantum number v and rotational quantum number N. Substituting

1
Fun(R) = }—ZX@N(R) (2.128)

in (2.126), the following expression for the radial Schrodinger equation is obtained

d? . N(N +1)
{ ~ gz T et [W(R) - Ew\f} + WAR—QM‘}XWN(R) =0 (2:129)

(compare with (2.27)); this can be solved numerically using the Numerov-Cooley algorithm
[11] as implemented by Le Roy [7]. The potential energy curves obtained [21,22,24] are

used later in studying the isotopic dependence of the bond length.
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The final transformation

So far, the non-adiabatic coupling of the states due to the operator

_W{EE(RQEQ) Wzyéﬁégﬁ”(g“kﬁg *2)X0} (2.130)

has been ignored; it contains a term, which is present for HJ and DJ also, formed by
cross-derivatives between electronic and nuclear coordinates, difficult to calculate non-
adiabatically. Another transformation of the Hamiltonian has to be performed. The matrix
elements of the transformed Hamiltonian are formally similar to those reported in (2.55) to
(2.58). Since the

d
2Y —— (2.131

. - “ . / . . « .
term appears in the diagonal matrix elements in A of H , this term is considered in the

form it has in (2.113); H' is rewritten as

y 2p 1 a d J /
H ==Xy~ (R~ 2 R4V 2.132
2 e Lar o) or T (2.132)
where
1
=14 ! (2.133)
m 4ftot
and
p=1+ (@ 4q’—1). (2.134)
et
As before, the Hamiltonian H' is transformed as
H =ePH'e? (2.135)
s0 that the wavefunction 70 becomes
o = et (2.136)

It will be seen that the objective is achieved if @ is chosen to be

0 = —if(p) (RZ% n 3) (2.137)
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with

~

1
7() = ~5np, (2.138)

H" is hermitian and the transformation (2.135) is unitary. The volume element d7 in prolate

spheroidal coordinates is now

[ 0
dgr =2 (5 — n¥)dRd¢dndy. (2.139)

After some manipulations [21,23] the transformed Hamiltonian H  may be expressed in

terms of the first and second derivatives with respect to p, f (p) and f~ (p), as

i 2 1 14 b ! 8
g2 2P s _ _ _ 26l .
H = R e K@f +2p(p—1)f —10p(p —1)(f )" —6(p 1)f>de?
+2 (3pf’ +2p(p — Vf —dplp— D)) +2p f’y) +(1+2p f’)yé%zz (2.140)
i s J
- 2 o 2
~5 (14 40l = DY e Uf) 2 (# o)l +e v
where
Vo = (2.141)

and since @ has no derivatives with respect to £ and 7,

OV o0 — o f )y (2.142)

n (2.140) the cross-derivative term

7} .
Y—R 2.143
OR ( )
is eliminated if
14+2pf (p) = 0 (2.144)

which is a differential equation with solution

1 .
flp) = w;]np + constand. (2.145)

Z
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Choosing the constant of integration to be zero,

; 1
f = “5"9
4

1" 1
= 257

Substituting (2.146) into (2.140) H” becomes

Hﬂ _ 2,02 1 ( 82 5 0

P x 9y 13
2 0 RE( +3) - o Than T }22>+‘/’5

which is hermitian. By making the substitution

W =R g

in

}‘e’ i

H 1 = B 1/)
the new transformed Schrodinger equation
Hygy = By
is obtained where

207 p 3 1 92
=Xy — 2Y +3) e —:
yroR - L U VeV + 812 2o O

Hg:‘*

this Hamiltonian is hermitian if ¢, is normalized using the volume element

1
dr = S(g —n?)dRdédndy.

(2.146)

(2.147)

(2.148)

(2.149)

(2.152)

This form of the Hamiltonian is able to reproduce the correct dissociation energies for

HD™ [21,23]. The diagonal matrix elements for the % states are

20° g 3 1o 17
Hy = ————=Xg—~ — {2V N4 ) :
i mi2 "0 o122 @Y +3)+vpV + Sl 2o OR? + Qe B?

30

N(N+1). (2.153)



In H;, then, there are no cross-derivatives between the bond length coordinate R and the
electronic coordinates £ and n; this means that all the nuclear motion effects, apart from

the non-adiabatic coupling due to

1 0
S (2154)

2perr OR

may be accounted for in the adiabatic approximation.
In conclusion, if the final transformed Hamiltonian is written as
1 o V
Hy = — — 4+ H 2.155

t 2)“@{1” OR? e ( )

the matrix elements used to study the properties of HD™ are the following

; 2p° 0 ' 3 .
0, 41 HelOp n) = — ———(2Y +3 v + e N(N+1), (2.156
(O] HelOg.0) e /Izeﬂ?RZ( +3)+vp +8Meﬁ’f‘32 Qpser I V1), )

2p°
mi?

<i1;;,uIHﬁl Flgu) =

p | ' 3 p
X — ~(2Y +3 14 . [N(N+1)—2],
i HeffR'z( +3)++/p +8/J»e’d‘ Rﬁz%ﬁw[ ( )2

and

<:’Clg,ufHCng,u> = o P v/ IV(N -+ I)B. (2158)

ppep 2
To ensure the hermiticity of H,
: 14 s £n
OpulHol £ 1, 0) = F P /N(N + 1)<B+ ) 2.159)

Since the Hamiltonian has been transformed to remove the g/u coupling from the kinetic
energy part of the problem, the matrix elements between g and u functions only involve the

transformed potential encrgy

<O;,11[Hc{ou.,g> = ﬁvig (2.160)
(Lol Hol £ L) = oV, (2.161)

and
(1 [ Hel0y ) = 0. (2.162)



From equations (2.150) and (2.153) the transformed Schrédinger equation can be solved
in an adiabatic approximation, neglecting the coupling between rotational and electronic

angular momenta. To do this, the equation

1% 3 ’
Xy — 2Y +3) 4 oy =F 2.163
LSOV ) e Y G = Bode (2163)

has to be considered where the potential V' is given by (2.111). Equation (2.163) does not
contain any derivatives with respect to 12 and it is solved variationally for a range of values
of R following the same method explained before (see page 25 to page 27). In calculating
the adiabatic correction F,q, for N > 0 the rotational contribution is approximated by
setting p = 1 for convenience, in solving the vibration-rotational problem. Then, for 4 = 0,

the adiabatic correction is given by

O NN, (2.164)

)
(4 7
Z/Lfo o 8532 R2

Ead:“

The vibration-rotational energies F,n and the vibrational wavefunctions y,n(22) are cal-

culated from the radial equation

L1 o | ;
{ T T ;@?N(N 4+ 1) + 2pee [Eo(f?»} + Faa(R) — ET)[V] }X@»N(H) =0 (2.165)

and solved numerically using the Numerov-Cooley algorithm [11].

Transformed eigenfunctions and transformed properties

Since the Hamiltonian is transformed, as explained before, through
H =¢%H ¢ "® (2.166)
and its eigenvalues remain the same, the eigenvectors are also transformed
P = O (2.167)

For this reason, when calculating properties other than the energy from the transformed

wavefunction, transformed operators have to be used.

Co
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In the case of the bond length, its most general form, namely for HDT in prolate

spheroidal coordinates after the intermediate transformation [21] is

R = Ry/1+ B&n+ +(€ + 1) (2.168)

where 3 and -y are the mass factors indicated in equations (2.107) and (2.108) respectively.

In the specific case of the homonuclear species Hj and Dy, equation (2.168) reduces to
R =R (2.169)
When the final transformation is applied, the form of the transformed bond length is
R =eRe® =efRp=p"17R (2.170)

where p, @ and f(p) are defined respectively in (2.134), (2.137) and (2.138). Starting with
(2.170) it is possible to transform the R dependent part of any other operator of interest.

The electron density at the nuclei is one of the other properties of interest for this
project, since it appears in the expression of the relativistic correction (see chapter 8). In
prolate spheroidal coordinates the expressions for the electron density at the nuclei 1 and
2 are given respectively by

_ 46(E - 1)0(n+ 1)

0(rie) = . 2.171
(TIC) 71’}%5(52 '“772) ’ ( )
466 — 1)o(n — 1)
5(r9) = . 2.172
K () 2172
After the first transformation the following expression arises [21]

/ AZ35(E = 1)o(n £ 1

 (Pue) = nd(€ ~ 1)l 1) (2.173)

R )

where n = 1,2 refers to the puclei and 7, are the effective nuclear charges of equations
(2.109) and (2.110).
Since from equation (2.173) ¢'(ry,.) oc (1/12%), in prolate spheroidal coordinates the second

and final transformation gives

S e e 1 - ’ L 3 1
51 (o) = €98 (rpe)e Y = 6107‘?@@”@5 (rne) B2 = p*126 (r10) (2.174)
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at nuclei 1 and 2 where p is given by (2.134).
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Chapter 3

Calculation methods

3.1 Introduction

In order to perform non-adiabatic calculations, the approach used is, first, a variational
method following the work of Moss and Sadler [6] in which just some levels for v<4 are
studied. Although it might be possible to achieve satisfactory results for higher vibrational
levels, the variational method is limited by the number of basis functions needed. For
this reason a scattering approach is mainly used in this work; this allows the study of
non-adiabatic properties of H. D;f and HD™ for all the vibration-rotational levels. For
HD™" use of the intermediate transformed Hamiltonian (see page 21) to determine adiabatic
corrections for some properties allows a valid comparison with the other two molecules,
avoiding the effect of mass asymmetry.

In addition, as the scattering method does not produce any wavefunctions, the Hutson
method [25] is used to determine the expectation values of the properties of interest.

Even though most of the integrals needed may be evaluated analytically, some of them
require numerical integration for singular integrands; the last section of this chapter is

dedicated to an explanation of this topic.

LA
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3.2 The variational method

The variational calculations use a linear combination of products of electronic and vibra-
tional functions of the form [6]

Yol (€1, B) = D cidi (&, )i (R). (3.1)

1

The electronic part of the solution, ¢;(£, ), includes both £ and 11 functions. From the ma-
trix elements for Hj and DJ in equations (2.55) to (2.58), the dependence on y disappears
and just the variables £, n, R remain with the volume element

RS

dr = ~8—(52 — n?)dédndR. (3.2)

As in [23,24] the electronic functions are modelled on the Hylleraas expansion

Co(g~1)

REVITY LAD 9 «
(€2~ 1) LM [ae - DIPIM (). (3.3)

In [23,24] II functions were not used, that is the coupling of electronic and rotational angular
momenta was not included. There the electronic problem was solved at each value of 12 and
the non-linear parameter « was optimized, so that « was taken as a discrete function of I%.
In [6] IT functions were added to the electronic basis to account for the X — II coupling and
vibrational functions were included, so that a potential energy function was not forthcoming
and a property value at each value of R was not determined; that is averaging over vibration
took place. Single values of the non-linear parameters o5 and ap are used for the ¥ and Ii
electronic functions and they are optimized. For high vibrational levels, where average bond
lengths can be greater than 10 g, the use of single values of ey and ap is not satisfactory.
The number of basis functions needed to allow for this becomes too large for the method
to be reliable. In [6] different values of ax and ap were used as NV increased, but even so
the results were only considered to be acceptable for low vibrational levels.

The vibrational part of the problem is modelled on the Fues-type functions [26]

Gi(R) = —e by &5 ’Cé/j} ) .
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where ,C,E’j ) (y) are associated Laguerre polynomials and

y = €g, 12 (3.5)

with
%:%%&T (3.6)
5:2\/7+N(N+1)+§L- (3.7)

and
=15 (38

As before, p is the reduced nuclear mass and & and § are seen as non-linear variational
parameters. The orders of the associated polynomials m;, n; and k; are integers so that the
combination of them is unique for a particular 4 state. The Fues functions (3.4) are the

solutions of the Schrodinger equation in which the Fues potential appears

where £ is a force constant and R, is the equilibrium bond length; the parameter § may be

interpreted loosely as 1/R,. This potential is more realistic than the harmonic potential

V= i?‘i(R"ReY_ (3.10)

The required electronic matrix elements may be evaluated analytically using the integrals

(2.124) and (2.125), which may be expressed [24] in terms of

(6] . o [
/x%%mmﬁ@mz%ﬁéﬂ (3.11)
G TLL

by using the relation [27]

L8 () = LED (@) — £ED (1), (3.12)

m—1

A
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In particular for the IT — II matrix elements in the £ variable

[ e e @) s (3.13)
with
%M=§@w; (3.14)
7=0
for the ¥ — II integrals
£ (@) = LD(z) - £5), (). (3.15)

For the ¥ — II matrix elements the £ integrals involved, through (3.15), are

/ e 2 L) (az) £ (br)do (3.16)
0

where the arguments of the associated Laguerre polynomials differ because the non-linear
parameters, oy and ap, are different. The two associated Laguerre polynomials of (3.16)
may be expressed as linear combinations of associated Laguerre polynomials with argument

z [28]

m

()¢ mAD! IRe 1
L) (az) ;%7n+1”1 (1—a) L) () (3.17)

which reduces evaluation of integral (3.16) to that of integrals (3.13).

For the integrals involving n
+1
ORI (3.18)

has to be considered, both for IT — IT and % — II. By expressing 7* as a linear combination
of Legendre polynomials, (3.18) may be written in term of integrals of triple products of

Legendre polynomials

.
[¥7awwamnamwn (3.19)
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The integrals over the linear variable R are of the form
o0 ’
/ e L8) (a2) L) (b2)dz (3.20)
0

and they can be analytically evaluated after maunipulations similar to the ones considered
earlier, using more general relations [27,28].

The calculations to solve the non-adiabatic problem are performed by a program solving
the linear variational problem for given values of the vibrational and rotational quantum
numbers. The non-linear variational parameters (table 3.1) ax, oy appearing in the elec-
tronic basis functions, and k£ and ¢ in the vibrational Fues basis functions, were optimized
by trial and error for the vibrationless levels. The number of functions is constrained by
placing maximum values on m;,n; and &; in equations (3.3) and (3.4) and on the sums
(m;+n;) and (m; +n; +k;), the maximum acceptable numbers of electronic basis functions

and total basis functions allowed, respectively.

Cation | ax | ap k )
Hy 3.44 1 3.60 | 0.6855 | 0.77
DS 3.54 | 3.30 | 0.600 | 0.69

HD* 13.50 | 3.47 | 0.650 | 0.70

Table 3.1: Variational parameters optimized by trial and error for the v = 0 levels.

3.3 The scattering method

As already noted, the transformed Hamiltonian for HDT (2.155) is formally the same as the
Hamiltonian for H; and D; apart from the pen which substitutes ps. These Hamiltonians are
similar to the ones used in the scattering problem with R playing the role of the scattering
coordinate. If the matrix elements of (2.155) between the functions (2.119) are considered,
a set of coupled differential equations in /7 is obtained; this set can be used with an inelastic
quantum-mechanical scattering theory.

The scattering method [8] is based on the idea of expanding the dependence of the

wavefunction on all but one of the coordinates (/2), in terms of a complete set of basis

Qo
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functions, in order to form a set of coupled differential equations and imposing the correct
bound state boundary conditions on the solutions. A body-fixed coordinate system rotating
with the molecule is employed. The boundary conditions are different from the usual ones
of scattering theory in which the wavefunction for the scattering coordinate must converge
to zero just for B = 0; here it must go to zero both for B = 0 and R = oc and this is
referred to as ‘closed channels’ in the scattering theory.

The artificial scatterimg method used throughout this work consists of adding two 'cpen’
artificial scattering channels at large R, to the set of coupled channels arising from the
coupled differential equations of the bound state problem. These two extra channels have
lower asymptotic energies than the bound state channel and both correspond asymptotically
to scattering states. The program computes the transition matrix elements 7}; between
these two channels for a given scattering energy. By including artificial potential matrix
elements, the two open channels are forced to notice the closed bound state channels so
that the former are coupled to the latter but they are not to each other. Moreover, the 7};
matrix elements have first order poles as a function of scattering energy; these poles oceur
at the exact bound state energies. Since the behaviour of 7;; is well defined near the bound
state energies, these may be eagily located.

These equations are solved by propagating the solution using a log-derivative method

[29]. Briefly, in a one-dimensional system the log-derivative matrix is defined as

) = o tp(a) = 5 (3:21)

where ¥(z) is the eigenfunction of the matrix Schrédinger equation

d? e
[&5 + sf(x)} P(z) = 0. (3.22

The maftrix Ricatti equation
y (z) 4+ V(z) +y*(z) =0 (3.23)

is obtained by differentiating (3.21) and using (3.22) to eliminate the second derivative

term that cannot be infegrated using numerical techniques for solving differential equations
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because y(x) diverges for some z values. The algorithm has the following form

1 h
yn(J/) == (m))fnwl(‘ﬂ) - ‘:);'u}nﬂn (3.24)

where I is the unitary matrix and A is the spacing between integration points: u, is the

form assumed by the potential according to whether n is odd or even
u, = V(z,) n=20,24...,N

A -1
w, = [H%iv(xn)} Vizn) n=1,35...,N-1

w, = 1 if n=0,N
w, = 2 if n=246. . N-2
w, = 3 if n=1235....N—1
The truncated error is
yv(zy) =yn + Ch* + O (3.25)

where C Is an unknown constant matrix, O(h%) is a matrix of order h®, y(zy) is the
exact value and yy is the approximate value computed by the method. Only at the final
integration point n = /N, the numerical value of y,, is a good approximation to the value
v(zy). By defining the quantity

Zp, = hyn, (326)

the program solves one iteration step; the matrix yu is then recovered in the final calculation
by

vy = N (3.27)

What is obtained as solution of the problem are the transition probabilities of the scattering
channels; these are the matrix elements of the T matrix linked to the scattering matrix 8
by the expression

§=1—T. (3.28)



The T matrix elements have a complicated form [8] but the aspect on which the attention
has to be focused is just ome, the first order pole in the vicinity of every bound state

eigenvalue of the problem

(3.29)

TN, X
AT B R

z

In (3.29) N is the total angular momentum, § and +y are the two artificial channels, B are
the bound states of the problem and F is the eigenvalue of the state of interest. Thus, these
matrix elements can be monitored for different scattering energies and the exact energy of
the state of interest can be studied by making some iterations.

This method was first implemented for HJ (»,0) in [30] and subsequently used for HD™,

H; and Dg.

3.4 The Hutson method

The variational method gives wavetfunctions from which expectation values may be deter-
mined, but the scattering method does not. However, to calculate the expectation value of
an operator W, a method reported by Hutson [25] may be used.

Knowing the solutions of the Schrédinger equation associated with an unperturbed
Hamiltoman

}{(G},{b(ﬂ} . Efi(o)/llljg’(o)v (330)

]

the Hamiltonian H(® ig perturbed to give a new energy operator of the form
H=HO 4 xw (3.31)

associated with the equation

Hapy = Byt (3.32)

where W is the operator corresponding to the property of interest. From the Rayleigh-

Schrodinger perturbation theory the eigenvalues can be written as
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(O)><(}[)<0)1W ,1/} G)\

AN = B 2 @O w ) + ,\ZZ O + O\
i £ Ej
= B 4 AW) + Ak + 0(%) (3.33)

where (W) is the expectation value of the property of interest. A rearrangement of (3.33)
gives

B\ ~ BY

: = (W) + M + O(\?). (3.34)

Linear regression of (F;(\) — E?:(O)) /A on A gives, as the intercept, the desired expectation
value (W). By choosing the values of A used (typically 3) carefully, accurate expectation
values may be found. In the case of the electric dipole polarizability of HY and DJ (see

chapter 7) the expectation value vanishes and it is the coefficient of A? that is of interest;

in that case (F;{A) — E§U) )/ 2% is regressed on A2

3.5 Numerical integration

While the results for the dissociation energy, the bond length and the dipole polarizability
are obtained through analytical integration, the matrix clements of some other properties
reported in this work involve singular and/or non-separable integrands and nimerical inte-
gration is necessary. In particular, a method similar to that proposed in [31] by Carrington
and Kennedy is used where the basic idea is to evaluate the integrals excluding spherical
volumes of smaller and smaller radii, and to extrapolate the results to a spherical volume

of zero radius.

In that work, the integrals were evaluated by double quadrature. As reported in figure
3.1, the range of integration was divided between a sphere of radius 2 (A) corresponding
to 1 < ¢ < 3, an outer region (C) from € = 3 to € = oo and the remaining area between
the sphere and O (B=B;+By+B3). Over the outer region C products of 32-points Gauss-

Laguerre (over £) and 16-points Gauss-Legendre (over ) quadratures were used. Over the
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quadrant region A Carrington and Kennedy used the following transformation
E=1+4 Asiny

7= —1+4 Acosu (3.35)

to improve the convergence of the integrals. This part was further divided into anular
regions and a product of 24-points over A by 16-points over n Gauss-Legendre quadratures
for each region was used. By decreasing of a power of 10 at every step the magnitude
of A (from 2 x 1075 to 2 x 1077), the contribution to the integral over the range from the
innermost value of A to the edge of the excluded sphere with the same X value for y = 0, was
evaluated through an 8&points (A) and 16-points (1) Gauss-Legendre double quadratures.

The remaining region to integrate, B, was divided into the three sub-regions:

1) By, for =1 <7 < (~1++/2) and & varying on the edge of the sphere;

2) By, for 1 < ¢ < (1++/2) and 7 varying on the edge of the sphere;

3) Bs, the remaining square.

Over these three regions was used, respectively, a double Gauss-Legendre quadrature with
§-&-points by 16-n-points, 16--points by 8-n-points and 8-&-points by 8-n-points.

In this work the singularities are also treated but in a different way. The alternative
approach is schematically reported in figure 3.2 in the case of one singularity in the point
(6 = 1,7 = —1) and in figure 3.3 in the case of two singularities in the points (¢ = 1,7 = —1)
and (¢ = 1, = 1). In figure 3.2 the range of integration has been divided between the
following regions:

1) A, upper delimited by the straight line of equation =1 — £ while 1 <& < 2;
2} B, corresponding to 1 — £ <y <land 1 <€ <2

3) C, from £=2 to £€=3;

4) D, from £=3 to £ = cc.

As in the method of Carrington and Kennedy and explained above, multiple-points
Gauss-Laguerre (over ¢) and Gauss-Legendre (over ) are used. On region A, 24-points
double quadratures are used for integration both on 7 and ¢; regions B and C are integrated

with 12-points quadratures and on region D 8-points and 16-points quadratures are used

-
e
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Figure 3.1: Subdivision of the integration range 1 < £ < vo and ~1 < 5 < 1 for the numerical
evaluation of singular integrands (after [31]). The dashed area represents the excluded volume.

respectively on 5 and €.

The convergence of this alternative method was tested and the results obtained with
both the methods are consistent.

In the case of singularities in the points (£ = 1,7 = —1) and (£ = 1,7 = 1) (see figure
3.3) a similar approach is used. In this case the region A is divided in the two sub-regions:
1) A4, corresponding to A in figure 3.2;

2} Aq, which is the mirroved one confined by the straight line 5 = (£ — 1) while 1 < £ < 2.
Now region B is given by (1 —¢) < n < (¢ — 1) while 1 < &€ < 2. For HJ and DJ the
contribution to the integral from region A; is the same as the one from region A, for many

properties, this allowing simplification of program coding.
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Figure 3.2: Subdivision of the integration range 1 < £ < oo and —1 < 5 < 1 for the numerical
evaluation of singular integrands with the approach followed in this work: this is the case of one
singularity In the point (€ = 1,5 = —1). The dashed area represents the excluded volume
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Figure 3.8: Subdivision of the integration range 1 < £ < oo and —1 < g < 1 for the numerical
evaluation of singular integrands with the approach followed in this work: this is the case of two

singularities in the points (£ = 1,7 = —1) and (£ = 1,7 = 1}. The dashed areas represent the
excluded volumes.



3.6 Tests on the accuracy of the results

The accuracy and the convergence of the results reported in this work were tested for
each level. In particular in using the LEVEL program, the attention was focused on the
integration step and in the variational approach, the convergence of the results were tested
by increasing the number of basis functions (up to 748 for ¥ and up to 480 for IT). In using
the scattering method attention was paid not just in the number of basis functions used

(up to 225 for ¥ and up to 84 for II) but also in the step and in the numbers of integration

points.
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Chapter 4

esults: adiabatic and
non-adiabatic dissociation energies

for

4.1 Introduction

Accurate dissociation energies for many bound and quasibound vibration-rotational levels
have been calculated for the ground electronic states of Hy [2], DJ [3] and HD' [4]. Adi-
abatic and non-adiabatic corrections to the dissociation energies have been studied [32,33]
and attempts made to reproduce the dissociation energies using an effective Hamiltonian.
Although the cffective parameters obtained scaled between Hy, D and HD™T according
to their reduced masses [33], scaling of the adiabatic and non-adiabatic corrections to the
dissociation energies was not considercd; this chapter [34] is dedicated to this topic.

While the Born-Oppenheimer and the adiabatic dissociation energies may be generated
straightforwardly using standard programs, the non-adiabatic values for bound levels are
computed through the theory and the calculation methods exposed in the previous chapters.

The results for the dissociation energies are given in wavenumber units; the only funda-
mental constants used are the ratios of the masses of the proton and the deuteron to that
of the electron and the conversion factor from hartree to wavenumber (see table 4.1). For

all the reported results the 1986 constants [35] are used, since earlier work used these.



Constant Value ,
Proton-electron mass ratio (mp/me) 1836.152 701
Deuteron-electron mass ratio (mq/me) 3670.483 014
Hartree (Ey) 219474.630 67 cm ™!

Table 4.1: Values of the fundamental constants used in this work [35].

4.2 The adiabatic correction to the dissociation
energy

The adiabatic corrections to the dissociation energies for Hy D and HD™ are studied using
the LEVEL program [7] which allows the solution of the Schrédinger equation for bound
and quasibound levels. The molecular properties of interest may be studied using potential
energy curves for the three molecules; the same Born-Oppenheimer potential curve is used
for all the three molecules and specific ones for the adiabatic potential for each of them.
In discussing the adiabatic correction, two different approaches have to be recalled: the
standard and the partitioned adiabatic corrections [22,32]. As already noted, the adiabatic
corrections are diagonal in the electronic state and arise because of the finite masses of the
nuclei. They can be seen as the response of the nuclei to the instantaneous position of
the electron; in this way the uniformity of motion of the centre of mass of the three-body
system 1s maintained.

By using the adiabatic potential (2.37) in equation (2.36) the adiabatic approximation
is well determined. For homonuclear cations like Hj and D this approximation does not
give the correct dissociation limit for large values of E; in other words, the energy does not
tend to that of the atom with the appropriate reduced mass for the electron. The adiabatic

correction may be made to vanish in the limit /2 — oo because the expectation values of

& gnd 8

Vi V2
2 8

are the same [36]. Thus, the Hamiltonian at dissociation may be rewritten as

1

Vi oo1r vy v T
H = {H - 5] 4 {w YR D] = HPF 4 ZHo 41
BO 44 o 7 2 8 BO T 7 part (4.1)

Now, for an homonuclear molecule, the electron kinetic energy term involves the electron
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reduced mass

1
s Al B (4.2
m -+ 1 1*5"@

which is correct for a one-electron atom with a nucleus of mass m. A new operator

1
—H.
y part

is introduced, instead of

1
“Had
H

and whose expectation value is equal to zero at the dissociation limit. This approach is
called ’partiiioned adiabatic method’. For HD™ this partitioning may also be made with

the intermediate transformed Hamiltonian to give the correct dissociation limits [21].

The adiabatic and partitioned corrections to the Born-Oppenheimer dissociation ener-
gies are obtained for the ground electronic states of the three molecules. The behaviour
of the correction to the dissociation energies (in cm ') is studied versus the vibrational
quantum numbers to check that the shape is the same apart from a scaling factor due to
the different masses of the cations. The adiabatic correction makes the dissociation energies
decrease; in figure 4.1 the partitioned adiabatic correction to the dissociation energies for
rotationless levels of the ground electronic states of the three isotopomers is plotted against
the vibrational quantum numbers. The behaviour of this correction, which decreases for
low vibrational quantum numbers and then increases, is evident. In order to take into ac-
count the differences in the reduced masses of the molecules, the curve referring to Dy is

scaled by the factor of mg/m, = 2 and the one referring to HD™ is scaled by the factor of

2mg [ (myp +mq) ~ 4/3.

If the plot is against dissociation energies, rather than vibrational quantum numbers,
the three curves are coincident, as shown in figure 4.2. Which dissociation energies are used
is not of importance, since the corrections are insignificant compared with the dissociation

energies themselves.

e
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Note that for HD" use of the intermediate transformed Hamiltonian to give adiabatic
corrections to the dissociation energies would include an extra 14.91 cm ' for all levels
except for those very close to dissociation, since the dissociation limits of the ground and
the first excited states are in reality separated by 29.8 cm™'. This is because inclusion
of g/u symmetry breaking gives the correct dissociation limit of a deuterinm atom plus a
proton, while for both the ground and excited electronic states the Born-Oppenheimer and
the adiabatic approximations give the same dissociation limit of an average of those of the
hydrogen atom and the deuterium atom. The electronic g/u symmetry breaking becomes
significant ounly close to dissociation.

For a nonzero rotational quantum number the curves are similar, but when the scaled
corrections for a constant NV are plotted against dissociation energies, the curves do not
coincide, the difference increasing with & and becoming quite apparent for N=8 (see figure
4.3) and evident for N=16 (see figure 4.4). However, it is possible to mantain the coincidence
by choosing a different N for each isotopomer. For example, the curves for H , N = 8, D,
N =11, and HD*, N = 9, coincide (see figure 4.5), as do Hf , N = 16, DI, N = 23 and
HD* N = 18 (see figure 4.6).

Similar behaviour is observed for levels with the same v but different N when the scaled
corrections to the dissociation energies are plotted against dissociation energies themselves.
For v=0 the curves almost coincide (see figure 4.7), but the differences increase markedly
with v (see figure 4.8), and this can not be remedied by choosing different v for each
isotopomer. [t appears that, in plotting corrections against dissociation energies, isotopic

scaling is completely successful only for levels with N =0 or levels with v=0.
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Figure 4.1: Partitioned corrections (partitioned — BO) for HJ and D and standard adiabatic
correction (standard — BO) for HD? to the dissociation energy for N=0 against vibrational
quantum numbers; a scaling factor of 2 to DY and of 4/3 to HDT is applied.
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Figure 4.2: Partitioned corrections (partitioned — BO) for Hf and DJ and standard adiabatic
correction (standard — BO) for HD™T to the dissociation energy for N=0 against dissociation
energies; a scaling factor of 2 to DI and of 4/3 to HD™ is applied.
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Figure 4.3: Partitioned corrections (partitioned ~ BO) for Hy and Dj and standard adiabatic
correction (standard — BO) for HD™T to the dissociation energy for N=8 against dissociation
energies; a scaling factor of 2 to D and of 4/3 to HD™ is applied.
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Figure 4.4: Partitioned corrections (partitioned — BO) for Hf and Dj and standard adiabatic
correction (standard — BO) for HD™ to the dissociation energy for N=16 against dissociation
energies; a scaling factor of 2 to D} and of 4/3 to HD™ is applied.
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Figure 4.5: Partitioned corrections (partitioned — BO) for Hf and D3 and standard adiabatic
correction (standard — BO) for HD* to the dissociation energy for N=8, N=11 and N=9
respectively against the dissociation energies; a scaling factor of 2 to DI and of 4/3 to HD™ is
applied.
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Figure 4.6: Partitioned corrections (partitioned — BO) for Hf and DJ and standard adiabatic
correction (standard — BO) for HD™ to the dissociation energy for N=16, N=23 and N=18
respectively against dissociation energies; a scaling factor of 2 to D} and of 4/3 to HD™T is applied.
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Figure 4.7: Partitioned corrections (partitioned — BO) for Hf and DJ and standard adiabatic
correction (standard — BO) for HD™ to the dissociation energy for v=0 against dissociation
energies; a scaling factor of 2 to DI; and of 4/3 to HD™ is applied.
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Figure 4.8: Partitioned corrections (partitioned — BO) for Hf and Dj and standard adiabatic
correction (standard — BQO) for HD™T to the dissociation energy for v=4 against dissociation
energies; a scaling factor of 2 to D and of 4/3 to HD™ is applied.
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4.3 The non-adiabatic correction to the disso-

ciation energy

Using the non-adiabatic dissociation energies of the three isotopomers [2-4], the scaled non-
adiabatic corrections (non-adiabatic — adiabatic) to the dissociation energies for rotationless
levels may be plotted against vibrational quantum numbers as reported in figure 4.9.

In the case of HD' the adiabatic dissociation energies are those obtained using the
intermediate transformed Hamiltonian, so that g/u electronic symmetry breaking is not
included in the comparison with Hj and DJ. As for the adiabatic correction, the curves
coincide if dissociation energies are used instead of vibrational quantum numbers (figure
4.10). The exceptions are HD™, v=20, and, in particular, v=21; it is the v=20 level for
which an anomalous bond length correction is found (see chapter 5 and [37]).

For nonzero N and for plots for constant v, similar scaling behaviour to that for adia-
batic corrections is observed for most levels. In general for high lying levels the correction
decreases in magnitude as v and/or N increases, that is as dissociation is approached. Other
HD" levels that do not follow this trend may be recognized from plots similar to that in
figure 4.9 for other values of N (see for example figure 4.11). Those identified are (21,0-3),
(20,0-6) and (19,7-9); details of these results are reported in table 4.2.

An explanation for this anomalous behaviour for HD' non-adiabatic corrections is de-
sirable. It seems unlikely that the fully non-adiabatic energies themselves are at fault, since
they have been used to calculate transition frequencies that agree with experiment and to
predict new transition frequencies that have been observed subsequently [1-4]. The most
likely source of the anomaly wmust then lie in the intermediate transformed Hamiltonian
calculations for HD*. As explicitly reported in [38], in determining the potential energy
curve it was apparent that the g/u symmetry breaking is negligible at bond lengths less
than 10 ag, but by 15 ag almost complete mixing of the g ground electronic state and the
u first excited electronic state has occured (see figure 4.12).

In [38] the g/u symmetry breaking correction was calculated from

AEg ) (R) = Ey(R, Z1, Z3) — Fy(R,1,1) (4.3)
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where (R, 1,1) are the Born-Oppenheimer eigenvalues and Ey(R, Z;, Z,) are the eigen-

values of the zeroth-order Hamiltonian

Vi oz Zy, 1 ,
Hp = b 28 22 7 4.4
’ 2 T1e T2e i R ( )

where Z; and Z; are the effective nuclear charges (2.109) and (2.110), which assume the
values of 0.999 931956 and 1.000 068 044, respectively for HD". Equation (4.4) arises from
(2.103) where the transformed potential operator V' was reduced to 1/R since all the other
terms are considered as perturbations, as is the adiabatic term.

The HD* levels that show anomalies all have significant contributions to their properties
from internuclear separations in this range, 10-15 ap, as can be seen from the vibration-
rotational wavefunctions which become more and more important with large bond lengths
as dissociation is approached (see figures 4.13 and 4.14). A detailed discussion about the
non-adiabatic correction to the bond lengths is given in the next chapter.

It is realized that the intermediate transformed Hamiltonian does not handle the g/u
symmetry breaking as successfully as hoped in the region of rapid change. For the homonu-
clear isotopomers the non-adiabatic corrections are accounted for by the final transformation
of the Hamiltonian and the mixing of electronic states by the (92 /9R?) operator in equation
(2.155). It seems likely that the implicit assumption that for HD T these corrections and the
effects of g/u symmetry breaking are additive is flawed, and the effects of this non-additivity
become prominent in the region of rapid change in g/u mixing. Also g/u symmetry breaking

might not be fully accounted for by the intermediate transformed Hamiltonian.
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Figure 4.9: Non-adiabatic corrections to the dissociation energies (non-adiabatic — adiabatic for
HJ and DY, and non-adiabatic — intermediate transformed adiabatic for HD*) plotted against
vibrational quantum numbers for N=0 levels; the Dy and HD7 corrections are scaled by factors of
2 and 4/3, respectively.
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(v,N) | DEpon_sa/cm ! | ADEpop ag/cm™’
(17,12) 202.883 8 0.5428
(17,13) | 103.3493 0.501 3
(17,14) 8.9271 0.465 1
(18,8) 566.992 0 0.5270
(18,9) 196.857 2 0.499 2
(18,10) 125.091 8 0.472 8
(18,11) 53.987 6 0.4616
(19,0) 292.1172 0.502 2
(19,1) 2842927 0.4997
(19,2) 268.845 8 0.493 8
(19,3) 246.182 4 0.485 4
(19,4) 216.916 3 0.4773
(19,5} 181.878 4 0.4684
(19,6) 142.134 5 (.465 5
(19,7) 99.023 2 0.4772
(19.8) 54.237 6 0.526 6
(19,9) 10.046 6 0.649 6
(20,0) 04.0754 06094
(20,1) 88.998 7 0.6247
(20,2) 79.086 2 0.660 2
(20,3) 64.831 0 0.7220
(20,4) 47.0101 0.8181
(20,5) 26.764 0 0.9480
(20,6) 5.8619 1.0389
(21,0) 10.215 7 11807
(21,1) 8.5525 11165
(21,2) 5.5513 0.963 3
(21,3) 1.836 3 0.6743
22,0) 04309 0.1079
(22,1) 0.1157 0.0587

Table 4.2: HD*: non-adiabatic dissociation energies and non-adiabatic corrections (non-adiabatic
— intermediate transformed adiabatic) for selected vibration-rotational levels of the ground
clectronic state. In general, for high lying levels, the non-adiabatic correction to the dissociation
energy decreases with the approach of dissociation. I this table the levels that do not follow this
trend are reported.
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state of HD™ obtained from the results in [38].
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4.4 Conclusions

In this chapter a study of vibration-rotational levels of the ground electronic states of Hy |
DJ and HD™ is reported with attention confined to the bound levels. It is shown how for
v=0 and/or for N=0 it is possible to predict the adiabatic corrections to the dissociation
energies for D and HD* starting from those of Hy, through scaling factors based on the
relative reduced masses. However, scaling becomes increasingly less successful as v (for
constant N) or N (for constant v) increase. The same comments are true for the non-
adiabatic corrections except for the few high lying levels of HD™ that are found to be
atypical.

Near the dissociation limit, the dissociation energy corrections are expected to reduce
in magnitude as v increases, but out of line are certain levels with dissociation energies
between 99.0 and 1.8 cm™! and bond lengths between 7.9 and 15.7 ag.

These results are perhaps not entirely unexpected; as reported in [37], the Born-Oppenheimer
potential is the same for all the three isotopomers, and the adiabatic correction to the po-
tential is first order and proportional to the inverse of the reduced mass. It is less expected

for the non-adiabatic corrections which mix in excited electronic states.

Although it is not strictly possible to refer to a non-adiabatic potential, it can be argued
[37] that the non-adiabatic correction will increase the dissociation energies for all levels

and, as a consequence, will reduce the bond lengths, as reported in the next chapter.
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Chapter 5

Results: adiabatic and
non-adiabatic bond lengths for H;,

S and HD*

5.1 Introduction

In this chapter the results obtained for the adiabatic and non-adiabatic corrections to the
bond lengths of the ground electronic states of Hi , D3 and HD™ [34] are exposed. As for
the dissociation energies, the scaling of the corrections, both adiabatic and non-adiabatic,
to the bond lengths for the three different isotopomers is considered.

One of the motivations for this work is that an anomalous non-adiabatic correction to
the bond length was previously noted [37] for the v=20, N=0 level of HD" ground electronic
state, in that it was opposite in sign with respect to all the other rotationless levels. The
corresponding corrections to the expectation values (R?) and (22) were also anomalous,
suggesting that the calculations were not spurious. It is here reported that HD' in other
vibration-rotational high lying levels also has corrections to (/2) that are anomalous in
having the unexpected sign, namely v=20, N=1-5 and v=19, N=7-9.

All the results for the bond length are given in atomic units and the fundamental

constants listed in table 4.1 are used.
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5.2 The adiabatic correction to the bond length

Abiabatic corrections to the bond length were considered and previously discussed for rota-
tionless levels [37]. For levels with dissociation energies of more than about 5000 ¢cm ™! they
(adiabatic — Born-Oppenheimer) are positive, but for levels less than that they become
negative, although their magnitude does not become significant until within about

2000 cm ! of the dissociation limit.

The position for bond length corrections is similar to that for dissociation energy correc-
tions (see previous chapter). If for rotationless levels the scaled corrections for D and HD*
are plotted against dissociation energies, the curves coincide with that for Hg’, as shown in
figure 5.1. Note that the bond length corrections for HD' do not allow for g/u symmetry
breaking but, if the intermediate transformed Hamiltonian is used, then the scaled HD™T
curve still coincides with the corresponding scaled curves for the H{ and D, except for
the very highest levels (v >19) where g/u electronic symmetry breaking is significant (see
figure 5.2).

For a given non-zero rotational quantum number the scaled curves are slightly displaced
- from those for N=0, but so long as N is not too high, for example for N=8 (figure 5.3),
those for different isotopomers still coincide. However, for even higher NV, for example 16
(figure 5.4), this is no longer true, although the curves for H , N=16, and D3, N=20, do

as shown in figure 5.5.

For fixed v=0 the scaled curves do not quite coincide (figure 5.6), but for increasing

fixed v the differences become much more pronounced, as explicitly reported in figure 5.7.
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Figure 5.1: Partitioned corrections (partitioned — BO) for Hf and DJ and standard adiabatic
correction (standard — BO) for HD™ to the bond length for N=0 against dissociation energies; a
scaling factor of 2 to Dy and of 4/3 to HD™ is applied.
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Figure 5.2: Partitioned corrections (partitioned — BO) for Hf and Dy and intermediate
transformed adiabatic correction (transformed ~ BO) for HD™ to the bond length for V=0
against dissociation energies; a scaling factor of 2 to D3 and of 4/3 to HD™ is applied.
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Figure 5.3: Partitioned corrections (partitioned — BO) for Hf and Dy and standard adiabatic
correction (standard — BQ) for HD™ to the bond length for N=8 against dissociation energies; a
scaling factor of 2 to D and of 4/3 to HD™ is applied.
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Figure 5.4: Partitioned corrections (partitioned — BO) for Hf and DJ and standard adiabatic
correction (standard — BO) for HD™ to the bond length for N=16 against dissociation energies; a
scaling factor of 2 to DJ and of 4/3 to HD* is applied.
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Figure 5.5: Partitioned corrections (partitioned — BO) for Hf and D] to the bond length for
N=16 and N=20 respectively against dissociation energies; a scaling factor of 2 to D is applied.
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5.3 The non-adiabatic correction to the bond

length

Even confining interest to the bound vibration-rotational levels of the ground electronic
states of the three isotopomers, there are many hundreds, as appears explicit from the grids
of figures 5.8, 5.9 and 5.10; in these grids all the levels are indicated, for which the non-
adiabatic values of the bond length and the relative non-adiabatic corrections are studied.
All the results obtained are explicitly reported in tables 5.1 (H{ ), 5.2 (D) and 5.3 (HDT)
since these were not published and they are not as easily reproduced as the adiabatic onés.

As might be expected, in general the corrections are negative and increase in magnitude
with vibrational and rotational quantum numbers. As for the adiabatic corrections, scaling
works well for low N (see figure 5.11), but for high N (figure 5.12) it is necessary to use
different rotational quantum numbers for the three ions for reasonably successful scaling, as
happens for example by plotting Hzf, N=16 corrections with D;{, N=20, against dissociation
energies (figure 5.13).

In the case of the bond length, the correction will depend on the first order correction
to the wavefunction, proportional to the inverse of the reduced mass. As noted above, the
scaling is less successful with increasing N for constant v (figures 5.14, 5.15 and 5.16) or
increasing v for constant /N, but is presumably a reflection of the different ways in which
rotation and vibration depend on masses and bond lengths.

However, for HD", a number of high-lying levels show anomalies in that the magnitude
of the correction decreases with increasing v and/for N; these include (19,1 - 6), (18,10 - 11)
and (17,14), but it is conceivable that there are other such levels that lie close to dissociation
with higher &V and lower v. In addition there are some levels that show the same anomaly
as v=20, V=0, in that the correction is actually positive rather than negative; these levels
are (19,7 - 9) and (20,0 - §). Figure 5.17 illustrates the behaviour for N=0 levels for all the

three molecules, while details for relevant levels of HD™ are given in table 5.4, as a selection

of the results of the complete tables 5.1 (Hy), 5.2 (D) and 5.3 (HD*).
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Figure 5.8: HJ : non-adiabatic levels studied and reported in this work; the green boxes indicate
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this work. The thick line separates the bound levels from the quasi-bound.
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Table 5.1: H;: non-adiabatic bond lengths and non-adiabatic corrections (non-adiabatic —

partitioned).
(v, N) <R>non~ad/a‘0 (AH>non—ad/a0 (U7 N) <R>non~ad /39 <AR>nonwad/aO
(0,0) 2.063914 -0.000 006 (4,0) 2.640 771 -0.000 061
2.159 449 -0.000 007 (4,8) 2.757 315 -0.000 067
2.410200 -0.000 013 (4,16) 3.074 110 -(.000 087
2.800677 -0.000025 (4,24) 3.619 422 ~0.000 148
3.063 667 -0.000037 (4,30) 4.326 199 -0.000 329
3.359 333 -0.000 056 (5,0) 2.803 481 ~(0.000 080
3.640 960 -0.000 082 (5,2) 2.813 930 -(3.000 081
2.119125 -0.000017 (5,4) 2.838 241 -0.000 082
2.803 642 -0.000037 (5,6) 2.876 266 -0.000 085
2.859 398 -0.000039 (5,8) 2.927 843 -0.000 088
2.917 838 -0.000 042 (5,10) 2.992 878 -0.000 093
2.8979 160 -0.000 045 (6,12) 3.071 433 -0.000 099
3.043 360 -0.000 049 (5,14) 3.163 842 -0.000 107
3.110 836 -0.000 053 (5,28) 4.407 691 -0.000 376
3.181 801 -(.000 058 (6,0) 2.976 383 -0.000 103
3.508 962 -0.000 087 (6,2) 2.987 589 -0.000 104
3.822 150 -0.000 130 (6,4) 3.013 687 -0.000 106
2.339751 -0.000 030 (6,6) 3.054 587 -0.600 109
2.369114 -0.000 031 (6,8) 3.110231 -0.000 114
2.444 200 -(.000 033 (6,10) 3.180 683 -0.000 121
2.562 526 -(.000 037 (6,12) 3.266 254 ~(.000 130
2.637230 -0.000 040 (6,20) 3.784 779 -0.000 205
6.678 416 -0.000 042 (6,24) 4.204 455 -0.000 313
2.722 168 -0.000 044 (6,27) 4.678 420 -0.000 522
2.923 628 -0.000 054 (7,0) 3.161 577 -0.000 131
3.172076 -0.000 070 (7,17) | - 3.801 000 -0.000 223
3.481 996 -0.000 099 (7,19) 3.973 157 -0.000 262
3.670 226 -0.000 124 (7,25) 4.776 479 -0.000 583
4.022 772 -0.000 194 (8,0) 3.361 814 -(.000 166
2.486 624 -0.000 045 (8,8) 3.522 082 -0.000 188
2.686 333 -0.000 053 (8,16) 3.996 314 -0.000 282
2.721 870 -0.000 054 (8,18) 4.182 442 -0.000 333
2.760 207 -0.000 056 (8,20) 4.411 462 -0.000 412
2.801 348 -0.000 058 (8,24) 5.110 488 -0.000 818
3.463 117 -0.000 112 (9,0) 3.580 773 -0.000 211
4.096 677 -0.000 234 (9,22) 5.240 791 -0.000 911

Hy continued




<R>non—a,d /aﬂ

<AR> non-—ad /aO

<R> non—ad /3'0

(AR>non~ad/a0

3.823 507
3.829 052
3.840 160
3.856 870
3.879 242
3.907 365
3.940 364
4.283 227
4.688 851
5.396 382
4.097 166
4.103 559
4.116 378
4.135 693
4.280 936
4.5561 5565
4.748 948
5.006 251
5.879 008
4.412279
4.419 850
4.435 052
4.458 0609
4.528 054
4.575 813
4.632714
4.699 455
4.866 478
5.088 885
5.821 640
6.126 303
4.785 144
4.794 435
4.813122
4.841 429
4.879707
4.928 467
4.988418
5.146 110
5.365 606
5.672 167
6.123 413
6.448 016

-0.000270
-0.000271
-0.000 274
-0.000 277
-0.000 282
-0.000 289
-0.000 297
-0.000 393
-0.000 553
-0.001 029
-0.000 351
-0.000 352
-0.000 356
-0.000 361
-0.000 406
-0.000 504
-0.000 591
-0.000 730
-0.001 523
-0.000 464
-0.000 467
-0.000472
-0.000 481
-0.000 507
-0.000 526
-0.000 550
-0.000579
-0.000 659
-0.000 783
-0.001 391
-0.001 781
-0.000 630
-0.000 634
-0.000 643
-0.000 657
-0.000675
-0.000 700
-0.000 732
-0.000 822
-0.000 966
-0.001 210
-0.001 690
-0.002 165

5.242 768
5.254 737
5.278 878
5.315610
5.365 608
5.429 863
5.607 350
5.867 896
6.524 493
6.884 186
5.834 398
5.850 972
5.884 541
5.935 996
6.006 796
6.099 156
6.363 356
6.782 020
7.516 485
6.664 038
6.689 900
6.742 708
6.824 814
6.940 262
7.095 656
7.301 928
7.578 364
7.963 660
8.560 789
8.014 527
8.066 007
8.173 407
8.347 128
8.607 923
§.999 589
9.639 539
11.174 728
11.382 683
11.869 715
12.909 287
25.243 3
30.457

-0.000 886
-0.000 893
-0.000 909
-0.000 932
-0.000 965
-0.001 009
-0.001 141
-0.001 365
-0.002 151
-0.002 785
-0.001 316
-0.001 330
-0.001 359
-0.001 404
-0.001 470
-0.001 559
-0.001 846
-0.002 414
-0.003 946
-0.002 140
-0.002 172
-0.002 240
-0.002 351
-0.002 514
-0.002753
-0.003 107
-0.003 660
-0.004 627
-0.006 910
-0.004 206
-0.004 319
-0.004 566
-0.004 997
-0.005 730
-0.007 069
-0.010 227
-0.013 755
-0.014 870
-0.017 846
-(.026 680
-0.082 6
-0.173




Table 5.2: DJ: non-adiabatic bond lengths and non-adiabatic corrections (non-adiabatic —

partitioned).

('U, N) (R>non*ad/a() (AR>non~a,d/aO (U7 N) (R>nonf~ad /3»0 (AR>nonf—/ad/a()
(0,0) 2.044 070 -0.000 002 (6,36) 3.767 489 -0.000 087
(0,8) 2.092 042 -0.000 002 (6,37) 3.839877 -0.000 094
(0,16) 2.220 789 -0.000 003 (6,38) 3.917 068 -0.000 103
(0,24) 2.421 988 -0.000 006 (6,39) 3.999 823 -0.000112
(0,32) 2.691 249 -0.000 010 (6,40) 4.089 133 -0.000 124
(0,40) 3.035017 -0.000 017 (6,42) 4.293 268 -0.000 158
(0,48) 3.484 038 -0.000 032 (7,0) 2.770 454 -0.000 038

(0,50) 3.622 374 -0.000 038 (7330) 3.571 232 -0.000 076
(1,0) 2.138 662 -0.000 006 (7,36) 3.972 405 -0.000 115
(1,49) 3.747 789 -0.000 054 (7,37) 4.055 516 -0.000 125
(2,0) 2.235 803 -0.000 010 (7,41) 4.470 493 -0.000 201
(2,20) 2.522 485 -0.000 014 (8,0) 2.890 104 -0.000 046
(2,45) 3.643772 -0.000 054 (8.6) 2.927 919 -0.000 047
(‘2,46) 3.718 026 -0.000 059 (878) 2.954 825 -0.000 048
(2,48) 3.882 013 -0.000 073 (8,16) 3.133 160 -0.000 055
(3,0) 2.335 753 -0.000 015 (8,24) 3.428 791 -0.000 071

(3,40) 3.488 458 -0.000 050 (8,27) 3.576 903 -0.000 082
(3,42) 3.619458 -0.000 058 (8,28) 3.631242 ~0.000 086
(3,43) 3.690 447 -0.000 063 (8,32) 3.881 370 -0.000 109
(3,44) 3.765 808 -0.000 069 (8,39) 4531241 -0.000 219
(3,45) 3.846 266 -0.000 077 (9,0) 3.015 346 -0.000 054
(3,47) 4.026 676 ~0.000 097 (9,25) 3.642 912 -0.000 092
(4,0) 2.438 813 -0.000 020 (9,26) 3.696 566 -0.000 096
(4,8) 2.493 312 -0.000 021 (9,34) 4.268 707 -0.000 169
(4,16) 2.640 941 -0.000 024 (9,38) 4.732 413 -0.000 277
(4,24) 2.876 785 -0.000 029 (10,0) 3.146 993 -0.000 064
(4,32) 3.206 457 -0.000 041 (10,20) 3.574 209 -0.000 091
(4340) 3.666 627 -{1.000 067 (10722) 3.665 537 -0.000 099
(4,41) 3.738 275 -0.000 073 (10,24) 3.768 155 -0.000 108
(4,42) 3.814 463 -0.000 080 (10,27) 3.946 990 -0.000 127
(4,43) 3.895 938 -0.000 088 (10,30) 4.164 060 -0.000 157
(4,44) 3.983 684 -0.000 098 (10336) 4.802 407 -0.000 299
(5,0) 2.545 333 -0.000 025 (11,0) 3.286 033 -0.000 076
(5,39) 3.787 872 -0.000 084 (11,21) 3.795 359 -0.000 116
(5,44) 4.238 039 -0.000 143 (11,25) 4.023 703 -0.000 142
(6,0) 2.655 720 -0.000 031 (11,27) 4.162 520 -0.000 161
(6,20) 2.993 446 -(0.000 041 (11,29) 4.323 076 -0.000 187
(6,32) 3.515 722 -0.000 067 (11,35) 5.036 358 -0.000 380

D;r continued
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(v, N) <R>non~ad/a0 <A-Z’z>non~~ad/a0 (v, N) <R>non~ad/a0 <[-\R>nonnad/a0
(12,0) 3.433 676 -0.000 090 (17,0) 4.370 504 -0.000 224
(12,4) 3.456 597 -0.000 092 (17,2) 4381621 -0.000 226
(12,8) 3.516 404 -0.000 096 (17,3) 4.392 780 -0.000 228
(12,12) 3.613 968 -(.000 104 (17,5) 4.426 517 -0.000 234
(12,16) 3.751 662 -0.000116 (17,8) 4.506 867 -0.000 249
(12,22) 4.046 764 -0.000 150 (17,10) 4.581 760 -0.000 264
(12,24) 4.175 062 -0.000 168 (17,13) 4.730 416 -0.000 296
(12,25) 4.246 410 -0.000 179 (17,25) 6.196 021 -0.000 945
(12,26) 4.323 312 -0.000 192 (18,0) 4.621439 -0.000277
(12,27) 4.406 516 -0.000 207 (18,1) 4.625 683 -0.000 277
(12,28) 4.496 973 -0.000 225 (18,2) 4634191 -0.000 279
(12,32) 4.963616 -0.000 351 (18,3) 4.647 006 -0.000 282
(13,0) 3.591 425 -0.000 107 (18,6) 4.712072 -0.000 296
(13,23) 4.339 895 -0.000 199 (18,11) 4.918 747 -0.000 345
(13,25) 4.499 401 -0.000 230 (18,14) 5.115482 -0.000 401
(13,29) 4.920 438 -0.000 336 (18,17) 5.388 833 -0.000 492
(13,32) 5.402 569 -0.000 530 (18,20) 5.781 321 -0.000661
(14,0) 3.761 169 -0.000 127 (18,23) 6.411 306 -0.001 076
(14,20) 4.374 878 -0.000 210 - (19,0) 4.907 936 -0.000 347
(14,21) 4.444 934 -0.000 223 (19,1) 4912905 -0.000 348
(14,22) 4.520 952 -0.000 238 (19,2) 4.922 875 -0.000 350
(14,26) 4.903 400 -0.000 332 (19,3) 4.937911 -0.000 354
(14,30) 5.511496 -0.000 574 (19,10) 5.199 127 -0.000 428
(15,0) 3.945 326 -0.000 152 (19,15) 5.608 335 -0.000 575
(15,2) 3.954192 -0.000 153 (19,17) 5.858 110 -0.000 688
(15,3) 3.963 075 -0.000 154 (19,21) 6.675 631 -0.001 255
(15,5) 3.989 841 -0.000 158 (20,0) 5.241 898 -0.000 443
(15,18) 4.494 798 -0.000 237 (20,2) 5.259 877 -0.000 448
(15,23) 4.911922 -0.000 336 (20,4) 5.302 422 -0.000 462
(15,28) 5.636 943 -0.000 627 (20,6) 5.371 062 -0.000 484
(16,0) 4.417041 -0.000 184 (20,8) 5.468 520 -0.000 518
(16,2) 4.156 900 -0.000 185 (20,10) 5.599 264 -0.000 567
(16,3) 4.166 786 -0.000 187 (20,11) 5.679 237 -0.000 600
(16,5) 4.196 618 -0.000 191 (20,14) 5.994 764 -0.000 745
(16,8) 4.267 316 -0.000 202 (20,16) 6.294 309 -0.000914
(16,12) 4.414 102 -0.000 227 (20,19) 7.008 460 -0.001 514
(16,16) 4.632 092 -0.000 270 (21,0) 5.641 803 -0.000 582
(16,20) 4.947467 -0.000 348 (21,3) 5.686 892 -0.000 599
(16,24) 5.426 241 -0.000 514 (21,5) 5.756 485 -0.000 627
(16,27) 6.017431 -0.000 847 (21,7) 5.861 562 -0.000672

D; continued




(v, N) U'z)nonv—a,d /3»0 <AR>rnon~ad/aO (?), N) (R)non—ad /a0 <AR>n<)rx~ad /a0
(21,10) 6.100 317 -0.000 785 (24,2) 7.780 776 -0.001 887
(21,13) 6.477 381 -0.001 004 (24,4) 7.946 155 -0.002 059
(21,17) 7.443 184 -0.001 922 (24,6) 8.240 0560 -0.002 405
(22,0) 5.241 898 -0.000 793 (24,7) 8.455 327 -0.002 698
(22,2) 6.167 827 -0.000 807 (24,8) 8.738 595 -0.003 146
(22,4) 6.238 169 -0.000 843 (24,10) 9.715 917 -0.005 659
(22,6) 6.354 223 -0.000 905 (25,0) 9.250 802 -0.003 542
(22,15) 8.045 022 -0.002 654 (25,2) 9.390 110 -0.003 775
(23,0) 6.788 598 -0.001 144 (25,4) 9.759 933 -0.004 480
(23,3) 6.872 549 -0.001 200 (25,7) 11.328 181 -0.008 875
(23.,5) 7.005 945 -0.001 295 (26,0) 12.735 308 -(.008 900
(23,7) 7.217 385 -0.001 462 (26,2) 13.265 901 -(0.011 539
(23,9) 7.537 630 - -(.001 759 (26,4) 15.245 067 -0.022 483
(23,10) 7.757 717 -0.001 998 (27,0) 22.916 403 -0.033 319
(23,12) 8.414 624 -0.002 978 (27,1) 24.183 268 -0.040 453
(24,0) 7.714 110 -0.001 6822 (27,2) 29.012 459 -0.098 853

§6




transformed).

Table 5.3: HD*: non-adiabatic bond lengths and non-adiabatic corrections (non-adiabatic —

(R>n0n—ad/3'0 (AR>non f-ad/a'() ('Uy N) <R>n0n‘ad/aﬂ <AR>non—ad/a’0

2.054 803 -0.000 004 (6,6) 2.880 173 -0.000 065

2.126 609 -0.000 004 (6,8) 2.919 321 -0.000 067

2.316 940 -0.000 008 (6,15) 3.137 080 -0.000 080

2.612 547 -0.000 014 (6,16) 3.178 658 -0.000 083

2.904014 -0.000 022 (6,18) 3.270 190 -0.000 089

3.016 574 -0.000 026 (6,20) 3.373 626 -0.000 098

3.579 16 -0.000 06 (6,22) 3.490 272 -0.000 109

2.171 318 -0.000 011 (6,24) 3.622 136 -0.000 124

3.065 654 -0.000 036 (6,33) 4.556 199 -00.000 336

3.125417 -0.000 038 (7,0) 2.975 361 -0.000 077

3.187 845 -0.000042 (7,15) 3.310 260 -0.000 101

3.393 737 -0.000 054 (7,17) 3.403 508 -0.000 109

3.469779 -0.000 059 (7,19) 3.510 224 -0.000 120

3.828 361 -(.000 095 (7,21) 3.631 824 -0.000 134

2.291782 -0.000019 (7,24) 3.847 951 -{).000 164

2.313492 -0.000 020 (7,26) 4.021 021 -0.000 195

2.337182 -0.000020 (7,28) 4.226 471 -0.000 240

2.369 189 -0.000 021 (7,31) 4.633 273 -0.000 371

3.890 280 -0.000 117 (8,0) 3.134 902 -0.000 095

2.416 706 -0.000 028 (8,8) 3.242 727 -0.000 103

3.295 118 -0.000 066 (8,14) 3.451 074 -0.000 122

4.067 332 -0.000 162 (8,16) 3.546 715 -0.000 133

2.546 701 -0.000 038 (8,18) 3.657 214 -0.000 146

2.631330 -0.000 041 (8,20) 3.784 572 -0.000 164

2.860 154 -0.000 049 (8,22) 3.931 909 -0.000 187

3.027 648 -0.000 057 (8,24) 4.104 186 -0.000 221

3.234 203 -0.000070 (8,26) 4.309 703 -0.000 270

3.282 813 -0.000 074 (8,27) 4.429 208 -0.000 304

3.812470 -0.000 129 (8,30) 4.898 319 -0.000 498

4.131975 -0.000 188 (9,0) 3.305 393 -0.000 117

2.682 507 -0.000 049 (9,15) 3.701 654 -0.000 161

2.844 879 -0.000 056 (9,19) 3.950 716 -0.000 200

2.939413 -0.000 061 (9,21) 4.108 018 -0.000 229

3.055 459 -0.000 067 (9,22) 4,197 201 -0.000 251

( 3.089 087 -0.000 069 (9,23) 4.294 849 -0.000 274
(5 3.194 180 -0.000 076 (9,25) | 4.522223 -0.000 341
(5 3.358 191 -0.000 088 (9,28) 4.992 186 -0.000 544
(5 3.552 539 -0.000 107 (10,0) 3.489 073 -0.000 143
(5, 3.703 389 -0.000 124 (10,2) 3.499 654 -0.000 145
(5 4.331 525 -(.000 251 (10,4) 3.524 382 -0.000 147
(6 2.825024 -0.000 062 (10,6) 3.563 374 -0.000 152
(6 2.851 343 -0.000 064 (10,8) 3.616 872 -0.000 158

HD™ continued
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7U7 N) <R>non~ad/3~0 (AR>n0nwad/aO (v, N) () non-—ad /a0 (AR>non»~ad/a0
(10,14) 3.870 685 -0.000 196 (16,15) 6.592 800 -0.001 624
(10,16) 3.990 839 -0.000 216 (16,16) 6.943 b44 -0.001 879
(10,18) 4.133 105 -0.000 245 (17.0) 5.611218 -0.000 852
(10,20) 4.302 488 -0.000 285 (17.1) 5.622 210 -0.000 858
(10,22) 4.507 312 -0.000 343 (17,2) 5.644 376 -0.000 870
(10,24) 4.762 527 -0.000 435 (17,3) 5.678 086 -0.000 890
(10,26) 5.098 880 -0.000 589 (17,4) 5.723 936 -0.000 917
(11,0) 3.688 871 -0.000177 (17,5) 5.782 788 -0.000 952
(11,3) 3.712 227 -0.000 180 (17,6) 5.855 847 -0.000 999
(11,5) 3.747 431 -0.000 185 (17,7) 5.944 780 -0.001 057
(11,7) 3.798 696 -0.000 193 (17.8) 6.051 894 -0.001 131
(11,10) 3.907 089 -0.000 211 (17,9) 6.180 442 -0.001 225
(11,13) 4.056 889 -0.000 238 (17,10) 6.335 135 -0.001 343
(11,20) 4.627 276 -0.000 389 (17,11) 6.523 102 -0.001 493
(11,25) 5.442 656 -0.000 815 (17,12) 6.755 851 -0.001 670
(12,0) 3.908 691 -0.000 220 (17,13) 7.053 959 -0.001 796
(12‘,2) 3.921 739 -0.000 222 (17,14) 7.461617 -0.001 350
(12,4) 3.952 336 -(.000 228 (18,0) 6.227 343 -0.001231
(12,6) 4.000 882 -0.000 237 (18,2) 6.273 792 -0.001 263
(12,8) 4.068 117 -0.000 250 (18.4) 65.386 776 -0.001 344
(12,16) 4.563 095 -0.000 375 (18,6) 6.579 367 -0.001 481
(12,23) 5.589 463 -0.000 905 (18,7) 6.713 424 -0.001 571
(13,0) 4.153 883 -0.000 277 (18,8) 6.880 131 -0.001 661
(13,3) 4.183 637 -0.000 284 (18,9) 7.089 141 -0.001 705
(13,5) 4228770 -0.000 294 (18,10) 7.356 929 -0.001 520
(13,7) 4.295 134 -0.000 309 (18,11) 7.715 746 -0.000 420
(13,15) 4.823 072 -(.000 472 (19,0) 7.098 863 -0.001 630
(13,21) 5.765 579 -0.001 020 (19,2) 7.712759 -0.001611
(14,0) 4.432 010 -0.000 354 (19.,4) 7.357 593 -0.001 459
(14,2) 4.449 263 -0.000 359 (19,6) 7.692 743 -0.000 567
(14,4) 4.489 935 -0.000 370 (19,7) 7.945 539 0.000 896
(14,6) 4.555 110 -0.000 389 (19,8) 8.292 134 0.004 147
(14,8) 4.646 763 -0.000 417 (19.9) 8.814074 0.008 533
(14,19) 5.980 615 -0.001 170 (20,0) 8.549 765 0.007213
(14,20) 6.281 042 -0.001 477 (20,1) 8.600 817 0.007 878
(15,0) 4.754 204 -0.000 461 (20,2) 8.707 600 0.009 242
(15,3) 4.795 583 -0.000 475 (20,3) 8.881 359 0.011198
(15,5) 4.859019 -0.000 498 (20,4) 9.145 798 0.012673
(15,7) 4.953 852 -0.000 534 (20,5) 9.557 298 0.007 515
(15,10) 5.165 308 -0.000 624 (20,6) 10.320 015 -0.047 758
(15,17) 6.248 575 -0.001 370 (21,0) 12.950 4 -0.3109
(15,18) 6.567 867 -0.001 696 (21,1) 13.272 296 -0.366 0
(16,0) 5.137716 -0.060616 (21,2) 14.019 779 -0.509 9
(16,2) 5.163 213 -0.000 627 (21,3) 15.621 901 -0.9710
(16,4) 5.223 892 -0.000 654 (22,0) 28.603 -2.351
(16,6) 5.322 897 -0.000 701 (22,1) 34.727 840 -6.560
(16,8) 5.466 165 -0.000 775
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Figure 5.11: Non-adiabatic corrections (non-adiabatic — partitioned) for Hj and DJ to the bond
length for N=0 against dissociation energies; a scaling factor of 2 to D is applied.
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Figure 5.12: Non-adiabatic corrections (non-adiabatic — partitioned) for Hf and D3 to the bond
length for N=16 agaiust dissociation energies; a scaling factor of 2 to D?; is applied.
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Figure 5.13: Non-adiabatic corrections (non-adiabatic — partitioned) for Hy and DJ to the bond
length for N=16 and N =20 respectively against dissociation energies; a scaling factor of 2 to Dy is
applied.
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Figure 5.14: Non-adiabatic corrections (non-adiabatic — partitioned) for Hf and D3 and for
HD™ (non-adiabatic — transformed) to the bond length for v=0 against dissociation energies; a
scaling factor of 2 to DJ and of 4/3 to HD™ is applied.
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Figure 5.15: Non-adiabatic corrections (non-adiabatic — partitioned) for HJ and D and for
HD™ (non-adiabatic — transformed) to the bond length for v=8 against dissociation energies; a

scaling factor of 2 to D and of 4/3 to HD™ is applied.
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Figure 5.16: Non-adiabatic corrections (non-adiabatic — partitioned) for Hf and D and for
HD™ (non-adiabatic — transformed) to the bond length for v=16 against dissociation energies; a

scaling factor of 2 to D and of 4/3 to HDT is applied.
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Figure 5.17: Non-adiabatic corrections (non-adiabatic — partitioned) for Hy and D3 and for
HD™ (non-adiabatic ~ transformed) to the bond length for N=0 against dissociation energies; a
scaling factor of 2 to D and of 4/3 to HD¥ is applied.
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('U-:N) <R>non—ad/a'0 (AR')non—ad /&0
(17,12) | 6.755851 ~0.001 670
(17,13) |  7.053956 ~0.001 796
(17,14) | 7461617 —0.001 350
(18,8) 6.880 131 —0.001 661

(18,9) 7.089 141 —0.001 705
(18,10) |  7.356 929 ~0.001 520
(18,11) | 7.715746 —0.000 420

(19,0) 7.098 863 —0.001 630

(19,1) 7.123172 -0.001 626

(19,2) 7.172759 —0.001 611
(19,3) 7.249 711 —0.001 568
(19.4) 7.357 593 —0.001 459
(19,5) 7.502 150 ~(.001 194
(19,6) 7.692 743 —0.000 567
(19,7) 7.945 539 0.000 896

(19.8) 8.202 134 0.004 147

(19,9) 8.814 074 - 0.008 533

(20,0) 8.549 765 0.007 213

(20,1) 8.600 817 0.007 878

(20,2) 8.707 600 0.009 242

(20,3) 8.881 359 0.011 198

(20,4) 9.145798 0.012673

(20,5) 9.557 298 0.007 515

(20,6) 10.320 015 —0.047 758

(21,0) 12.950 4 ~0.3109

(21,1) 13.2723 ~(.366 0

(21,2) 14.0198 —0.509 9
(21,3) 15.6219 ~0.9710
(22.,0) 28.603 —9.351
(22,1) 34.728 —6.560

Table 5.4: HD™: selection from the results reported in table 5.3 of non-adiabatic bond lengths
and non-adiabatic corrections (non-adiabatic — intermediate transformed adiabatic) for
vibration-rotational levels of the ground electronic state. In general non-adiabatic corrections 1o
the bond length are negative and increase in magnitude with the approach of dissociation. In this
table the levels that do not follow this trend are reporfed.
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5.4 Conclusions

It was reported previously [37] that the non-adiabatic correction to the bond length of HD
v=20, N=0 was anomalous. Further levels were found for HD" where the non-adiabatic
corrections are anomalous, in that they do not lie on smooth curves predicted from the
corrections for Hj [32]. As explained in chapter 4, the anomaly occurs in the range of bond
lengths where the g/u syminetry breaking correction arises.

In general corrections to the bond length are negative and increase in magnitude with
v for given N or with NV for given v. However this pattern is disrupted to the extent that
for some levels the correction is positive. These levels have dissociation energies between
99.0 and 10.0 ecm™! and bond lengths between 7.9 and 9.6 ag. If levels for which the
corrections are negative but decrease in magnitude are included, then the dissociation energy
range widens considerably to 270 cm™! at the upper end, while the lower limit of the bond
length range decreases to 7.4 ag.

As noted in the previous chapter, it can be argued that the non-adiabatic corrections
increase the dissociation energies for all the levels and, as a consequence, reduce the bond

lengths as reported in this chapter.
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Chapter 6

Results: non-adiabatic dissociation
energies and non-adiabatic bond

[T and DT

lengths for

6.1 Introduction

The content of the present chapter goes beyond the original aim of the project. Since
Frolov [39, 40] recently published dissociation energies and other properties for the (v=0,
N=0) level of the ground electronic states of T{; , HTt and DT, the idea to compare his
results with those that can be obtained with the mumerical approaches used in this work,
arose. For this reason, non-adiabatic dissociation energies and non-adiabatic bond lengths
are presented with the respective non-adiabatic corrections, for all the rotationless levels
of the ground electronic states of HT' and DT". The procedure used is the same as that

used for HD' and which is explained in detail in chapters 2 and 3.

The main objective is to confirm that the observed anomalous behaviour in the lighter
isotopomer HD™ (see chapters 4 and 5) also occured for HTt and DT™T. According to the
reduced masses of the molecules, the anomaly might be expected to be larger for HT? than

for HD™, but smaller for DT.

The masses used for the nuclei are consistent with those used by Frolov. Even though
Frolov referred to the masses reported in [41], the masses he used were m,=1836.152701
M, Mq=3670.483014 m, and m;=5496.921580 m, [35], the same as those used throughout

this work.
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6.2 Non-adiabatic dissociation energies for HT+

and DT+

The non-adiabatic dissociation energies and the non-adiabatic corrections to the dissociation
energy for the three-body systems HTT and DTT, which contain proton, deuterium and
tritium nuclei, are here reported for all the rotationless levels of these heteronuclear diatomic
molecules; that is the levels studied are v = 0~ 23, N =0 for HT" and v =0-30, N =0
for DT,

A comparison with Frolov’s available results [39,40] is made for the level v=0, N=0
both with the variational and the scattering/transformed Hamiltonian approaches. The
agreement between IFrolov’s results and these obtained with the calculation methods used

in this work, is shown in table 6.1 for the (0,0) level of the ground electronic states of T4,

HT* and DT,

Cation Frolov [39,40] This work/variational | This work/scattering
TZf -0.599506 910 111 54145 -0.599 506 910112 -0.599 506 916 113
HT -(.598 176 134 669 765 7 -0.598 176 134669 7 -0.598 176 134671 0
DTT | -0.599 130662855061 64 | -0.599 130662 8550 -0.599 130 662 856 0

Table 6.1: Comparison between Frolov’s results [39,40] and those obtained with the calculation
methods used in this work for the non-adiabatic dissociation energy (in £y ) of the (0,0) level of the
ground electronic states of T, HT™ and DT™.

Starting from these encouraging results, non-adiabatic dissociation energies for all the
rotationless levels are calculated throngh the scattering/transformed Hamiltonian method;
all the results are reported in table 6.2.

As for HD™ in chapter 4, the behaviour of the non-adiabatic corrections to the dissocia-
tion energy for HTT and DT™ is plotted against the vibrational quantum numbers in figure
6.1; in figure 6.2 the complete behaviour over the whole range of the dissociation energies
is reported, while in figure 6.3 the particular of the anomaly is shown in the range of
0-800 cra !, that is for levels close to dissociation. Due to the ratio between the reduced

masses of these two isotopomers of tritium, a scaling factor of 5/3 to DT is applied.
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T | DEnon_ad/cm " | ADEnon_aq/cm™ " | DTT | DEuon_ad/cm~ ! | ADEqon—ad/cm "
(0,0) | 21567.13068 0.05951 (0,0) | 21776.62540 0.029 40
(1,0) | 1975793095 0.170 35 (1,0) | 20331.24326 0.085 07
(2,0) | 18034.44822 0.27316 (2,0) | 18939.994 18 0.137 56
(3,0) | 16394.24737 0.368 26 (3,0) | 17601.61058 0.186 97
(4,0) | 14835.19096 0.455 82 (4,0) | 16314.94345 0.233 39
(5,0) | 13355.43110 0.535 94 (5,0) | 15078.95925 0.276 88
(6,0) | 11953.404 04 0.608 62 (6,0) | 13892.73746 0.317 46
(7,0) | 10627.82772 0.673 69 (7,0) | 12755.468 96 0.355 14
(8,0) | 9377.70238 0.730 90 (8,0) | 11666.45496 0.389 88
(9,0) | 8202.31423 0.779 82 (9,0) | 10625.106 82 0.421 64
(10,0) | 7101.24255 0.819 88 (10,0) | 9630.946 46 0.450 19
(11,0) | 6074.37057 0.850 32 (11,0) |  8683.60764 0.475 82
(12,0) | 5121.900 54 0.870 17 (12,0) | 7782.83807 0.497 94
(13,0) | 4244.37363 0.878 27 (13,0) | 6928.50238 0.516 50
(14,0) | 3442.695 32 0.873 16 (14,0) | 6120.586 06 0.53123
(150) | 2718.16726 0.853 20 (15,0) | 5359.200 56 0.54183
(16,0) | 2072.526 10 0.816 45 (16,0) | 4644.589 48 0.547 94
(17,0) | 1507.989 66 0.760 77 (17,0) | 3977.136 19 0.549 16
(18,0) | 1027.30799 0.684 02 (18,0) | 3357.37285 0.544.99
(19,0) | 633.80948 0.585 24 (19,0) | 2785.99121 0.534.92
(20,0) | 331.408 98 0.474 27 (20,0) | 2263.85495 0.513 00
(21,0) | 124.52146 0.515 44 (21,0) | 1792.01394 0.49451
(22,0) 19.606 85 1.18120 (22,0) | 137171937 0.46277
(23,0) 1.739 41 0.257 56 (23,0) | 1004.438 50 0.422 33
(24,0) | 691.863 52 0.37241
(25,0) | 435.899 86 0.312 39
(26,0) | 238.586 79 0.243 00
27,00 | 101.77711 0.187 46
(28,0) 25.877 12 0.57156
(29,0) 4.491 47 1.07168
(30,0) 0.16421 0.009 19

Tuble 6.2: HT* and DT+ non-adiabatic dissociation energies and non-adiabatic corrections
(non-adiabatic — intermediate transformed adiabatic) for the rotationless levels of the ground
electronic states.
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Figure 6.1: Non-adiabatic corrections (non-adiabatic — intermediate transformed hamiltonian)
for HTt and DT to the dissociation energy for N = 0 levels plotted against the vibrational
quantum numbers; a scaling factor of 5/3 to DT is applied.
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Figure 6.2: Non-adiabatic corrections (non-adiabatic — intermediate transformed hamiltonian)
for HT* and DT to the dissociation energy for N = 0 levels plotted against the non-adiabatic
dissociation energies; a scaling factor of 5/3 to DT is applied.
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Figure 6.3: Details of the non-adiabatic corrections (non-adiabatic — intermediate transformed
hamiltonian) in the range 0-800 cmn™! (levels close to dissociation) for HT' and DT to the
dissociation energy for V = 0 levels plotted against non-adiabatic dissociation energies; a scaling
factor of 5/3 to DT is applied.
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6.3 Non-adiabatic bond lengths for HT+ and
DT+

The non-adiabatic bond lengths and the non-adiabatic corrections to the bond length are

also computed for the rotationless levels of HTT and DT,
The behaviour of the non-adiabatic corrections to the bond length against non-adiabatic
dissociation energies is plotted in figure 6.4 for levels close to dissociation and all the results

are reported in table 6.3.
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Figure 6.4: Non-adiabatic corrections (non-adiabatic — imtermediate transformed hamiltonian)
for HT™ and DT to the bond length for N = 0 levels close to dissociation plotted against
non-adiabatic dissociation energies; a scaling factor of 5/3 to DT is applied.
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HT* <R>non~ad/30 (AR>non —ad /aD DT+ <R>nonwad /aD (AR>non««ad /aO
(0,0) | 2051457 20.000 003 0,0y | 2039939 20.000 002
(1,00 | 2161124 -0.000 010 (1,0) | 2126124 -0.000 004
(2,0) 2.274 267 -0.000017 (2,0) 2.214 406 -0.000 008
(3,0) | 2391306 -0.000 023 (3,0) | 2304981 -0.000011
(4,0) 2.5612736 -0.000 031 (4,0) 2.398 069 -0.000 014
(5,0) | 2.639150 -0.000 041 (5,0) | 2493921 -0.000 019
(6,0) | 2.771262 -0.000 051 (6,0) | 2.592829 -0.000 023
(7,0) | 2.909935 -0.000 063 (7,0) | 2.695127 -0.000 028
(8,0) 3.056 230 -0.000 076 (8,0) 2.801 205 -0.000 033
(9,0) 3.211 458 -0.000 093 (9,0) 29115619 -0.000 039
(10,0) 3.377 268 -0.000 112 (10,0) 3.026 603 -0.000 047
(11,0) 3.555 759 -0.000 137 (11,0) 3.147 094 -0.000 054
(12,0) 3.749 652 -0.000 168 (12,0) 3.273 748 -0.000 063
(13,0) | 3.962548 20.000206 || (13,0) | 3.407478 -0.000 073
(14,0) | 4.199326 0.000257 || (14,0) | 3.549 394 -0.000 085
(15,0) 4.466 800 -0.000 325 (15,0) 3.700 863 -0.000 100
(16,0) 4.774 850 -0.000 416 (16,0) 3.863 587 -0.000 117
(17,0) 5.138492 -0.000 547 (17,0) 4.039 717 -0.000 139
(18,0) 5.582 051 -0.000 742 (18,0) 4.232 024 -0.000 165
(19,0) 6.148 551 -0.001 039 (19,0) 4.444 139 -0.000 199
(20,0) 6.925 362 -0.001 339 (20,0) 4.680 948 -0.000 242
(21,0) 8.138 887 0.003 156 (21,0) 4.949 212 -0.000 299
(22,0) | 11.11155 -0.089 23 (22,0) | 5.258 638 -0.000 374
(23,0) 19.757 66 -1.068 83 (23,0) 5.623 810 -0.000 479
(24,0) | 6.068012 -0.000 632
(25,0) 6.631 607 -0.000 872
(26,0) 7.393 454 -0.001 255
(27,0) | 8.539 543 -0.000 476
(28,0) | 10.704 323 0.024 855
(29,0) | 15.794 60 1.22415
(30,0) | 265352 -10.3309

Table 6.3: HTT and DT™: non-adiabatic bond lengths and non-adiabatic corrections
(non-adiabatic — intermediate transformed adiabatic) for the rotationless levels of the ground
electronic states.



6.4 Conclusions

In this chapter a study of the rotationless levels of the ground electronic state of HTT and
DTt is reported. In particular the non-adiabatic corrections to the dissociation energy
and to the bond length are studied; new results concerning these pmperties of these two
diatomic species containing a nucleus of tritium are reported.

As expected from the results obtained for the heteronuclear molecule HD™ (see chapters
4 and 5), HTT and DTt show similar anomalies for high vibrational levels. Near the
dissociation limit, the dissociation energy corrections are expected to reduce in magnitude
as v increases, but out of line are the levels v = 21, N _ 0 and v = 28, N = 0 for HT* and
DT respectively; consistent with this observation, while in general corrections to the bond
length are negative and increase in magnitude with v for given V or with NV for given v, this
pattern is not followed for the mentioned levels whose dissociation energies lie between 125.0
and 20 em™! for HT" and 26.0 and 4.5 ecm™' for DT, As expected from considerations
concerning the reduced masses of the molecules, the anomaly is confirmed to be larger for
HT' than for HD*, but smaller for DT, In the case of HDT the range of the anomaly for
the rotationless levels lies between 94.1 and 10.2 cm ™!, so for HT™ the range is wider and
shifted to higher values of the dissociation energy while for DT the range is more narrow

and shifted to lower dissociation energies.

In the case of the non-adiabatic bond lengths, the anomalies for the rotationless levels

lie between 9.5 ans 13.0 ag for HDT, 8.1 and 11.1 ag for HT" and 10.7 and 15.8 ag for DT,
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Chapter 7

esults: non-adiabatic dipole
polarizability for HJ, D and HD™

7.1 Introduction

In this chapter fully non-adiabatic calculations are reported of the electric dipole polariz-

abilities for the N=0 and N=1 levels of the ground electronic states of H;r for v < 16, D;

for v < 24 and HD™ for v < 20.

During the last decade experiments and theoretical calculations have been developed for
the determination of accurate results in particular for Hj (0,0) and Dj (0,0). While earlier
theoretical calculations (sec for example [42-44]) agreed with experiments, recently with
the increase in experimental accuracy, the agreement with theory has been removed [45].

While experimental results on HD™" are still missing, theoretical results are reported in
~ this chapter. After a review about previous experimental and theoretical works, the theory
concerning non-adiabatic calculations of the electric dipole polarizability is explained and

new non-adiabatic results reported and commented [46].
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7.2 'The dipole polarizability: a brief review of
previous studies

Analysis of microwave spectra of Rydberg states of the hydrogen molecular cations has
provided experimental values of molecular properties and in particular Lundeen ef al. have
determined electric dipole polarizabilities [45,47—49]. An early determination of this prop-
erty for Hy (0,1) [47] was followed by more precise values for H (0,0) and D7 (0,0) [48,49],
and yet more recently by even better results for these (0,0) levels [45].

Earlier theoretical calculations [50] using a clamped nuclei approximation did not agree
with experiment for HJ (0,0) and it was emphasized by Lundeen that, in particular, non-
adiabatic effects needed to be accounted for in ab initio calculations. Fully non-adiabatic
calculations, that were not inconsistent with experiment at the time, used a finite element
method [42], a localized variational method [43] and a variational method [44]. A quasi-non-
adiabatic treatment [51], in which the breakdown of the Born-Oppenheimer approximation
due to vibration is accounted for, but in which rotation is averaged classically, also gave
agreement with experiment, although in retrospect [52] this agreement was shown to be due
to neglect of third-order effects, involving the coupling of electronic and rotational angular
moinenta, compensating for the use of classical rotational averaging; that is when quantum
mechanical averaging of rotation is employed, agreement with experiment was only achieved
when third-order effects were included [52], the importance of this being realised also by
Taylor ef al. [44]. Further support for the current theoretical result comes from recent work
on two-photon transition probabilities [53].

However, the recent experimental results for HJ (0,0) [45] have removed the agreement
with theory, although the less precise determination for DJ(0,0) is still consistent. An
estimate of the relativistic effects for Hy (0,0) [54] could only explain about one fifth of
the remaining discrepancy. Another possibility is that fourth-order effects may contribute,
although there was no evidence for them in a calculation for the HJ (0,1) level [55], where
these were implicitly included.

The electric dipole polarizability of the heteronuclear hydrogen molecular cation HD™*
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poses new problems, since electronic g/u symmetry breaking due to the mass asymmetry
removes the simplification that the electric dipole moment operator only connects states of
opposite g/u parity. In particular HD* has a significant permanent electric dipole moment
even in the Born-Oppenheimer approximation [56]. Bhatia and Drachman [57] appear to be
the only authors to have atternpted a calculation. They employed their localized variational
method to determine accurate wavefunctions for excited states as well as the ground state,

and used these in conventional second-order perturbation theory.

7.3 'Theory

7.3.1 The transformed electric field perturbation

operator

As already seen in the case of the non-adiabatic bond lengths (see chapter 5), properties
may be extracted from accurate energies determined with the Hamiltonian for the molecule
perturbed with an appropriate operator (see section 3.4).

The dipole polarizability arises when an external electric field is applied and this mixes

different electronic states. The additional term in the most general case of the Hamiltonian

of HD™ is

7 - (g —ma) R (mg 4+ my + 2) rgJ (7.1)

2(mg +my + 1) (mao +mp + 1)

where the perturbation parameter A is the magnitude of the electric field and n is the unit
vector in its direction; R is the internuclear separation and r, is the position of the electron
relative to the geometric centre of the nuclei. Note that the first term in equation (7.1)
vanishes for the homonuclear species Hy and Dj . The perturbation changes the energy £y

for a level to

1

e 4 5 9

, 1 1
E = FEy— u)— ~2~a:/\2 ~ Eﬁ)@

From equation (7.2), if the dipole moment g and the first hyperpolarizability £ vanish,
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then linear regression of (F — Fg)/A? on A\? gives a determination of the electric dipole
polarizability as the intercept, together with an estimate of the second hyperpolarizability
7; this is the situation for both Hj and Dy and also for HD™*, if molecular rotation is
averaged quantum mechanically, as will be explained. As in the case of the bond lengths,
the values of the parameter A are chosen so that the correlation coefficient determined in
the linear regression is very close to +1; the standard deviations obtained give an indication
of how many figures are justified in the results.

The same calculation methods used to study the non-adiabatic bond lengths are applied
in the case of the dipole polarizability. If the variational method is used, the perturbation
operator is as given in equation (7.1). On the other hand, if a transformed Hamiltonian
is used, the perturbation must undergo the same transformation; as already explained,
the transformation is introduced in two stages, the first relevant only to the heteronuclear
molecule HD™, dealing with the mass asymmetry.

For Hf and DJ the transformation of operators including (7.1), is straightforward since
only the second part of the transformation is relevant. Even for HD' the molecular proper-
ties cénsidered up until now (i.e. bond lengths) have not presented any difficulty, since they
only involve internal coordinates, namely functions of the bond length and the expectation
value of rz, the component of the electron position along the internuclear axis.

In the case of the dipole polarizability, things change since now the external electric field
defines a space-fixed axis, so that perturbation (7.1) implicity contains angular coordinates.
The first part of the transformation, which is only relevant to HD, involves derivatives with
respect to these angular coordinates in addition to the internal coordinates. If the electric
field is along the Z space-fixed axis, then perturbation operator (7.1) may be abbreviated

to

4

H = ~/\(AR7, =+ Brz) (7.3)

where

Ao —(mg — mq) 7 (7.4)
2(mg +m1 + 1)

_ (ma4+m1+2) (75)

B =
(my +my + 1)
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and

uz = ARz + Bry (7.6)
is the Z-component of the electric dipole moment of the molecule. After the intermediate
transformation, the new expression for the perturbed term of the Hamiltonian is

H

1

' 1 ’
o= —A(ARy + Brz)cosh—;‘f +2(Ary + ZBzzz)sfmh—;f = My (7.7)

The hyperbolic functions may now be expressed in terms of the effective nuclear charges Z;

and Z, through equations (2.109) and (2.110) which lead to

cosh = —1—(Z1 + Zs) (7.8)
2 2
and
w1 .
smh—2~ = -2—(Z2 — 7). (7.9)

The second part of the transformation results only in the introduction of the multiplicative

factor p=1/? [23], so that finally the transformed perturbation for HD™ is

; il 1 "
H, = —X\p~1/? 5%+ %) (ARy + Bry) + (Zy — Z3)(Arz + 1BE2)| =~z (7.10)
where
1 2 2
p:1+—--—~—~(4ucﬁ+1)(§ +% - 1) (7.11)
and
Lo Loy gt (7.12)
Heff Ha ’ I

with p as indicated in (2.100).




7.3.2 Matrix elements

For determining matrix elements, the coordinates R, £, 7, # and x may be reintroduced

Rz = Rcosf, (7.13)

rz = %R{&]CGSB — /(€2 = 1)(1 — n?)sinfcosy}. (7.14)

All the matrix elements needed may be evaluated analytically, provided that p— 1/2 in equa-
tion (7.10) is expanded as a power series in 1/y and 1/p,.

As emphasized in [52], when third- and higher-order contributions to the polarizability
are included and the relevant matrix elements arise from different parts of the total Hamil-
tonian, it is most important to use a consistent policy for the angular functions involved.
In particular, care must be taken to use the correct relative signs of the matrix elements
arising from the electric field perturbation and the term in the unperturbed Hamiltonian
that couples rotational and electronic angular momenta. Here the matrix elements of [4,6],
which were taken from [12], are used for the zeroth-order Hamiltonian. The angular parts
of these matrix elements are determined using the definitions and relationships of Kolos and
Wolniewicz [58], and accordingly for consistency they are also used here for the perturbation.

The angular matrix elements depend on A4, N and M. A is the electronic angular
momentum quantum number and takes on the value 0 for ¥ states and =1 for II states;
A and other states with A > 1 are ignored. N is the total angular momentum quantum
number, while M refers to its projection along the space fixed Z axis and is a good quantum
number. In this work only levels with N = 0, 1 are studied, so the only values of M needed
are 0, 1. The relevant matrix elements are given below; note that N = 0 is only possible

for ¥ (4 = 0) states.

For M =0,
1
A=0,N=0{cosO|A=0,N=1) = ——=, 7.15
( | cos 0] ) 7 (7.15)
(A=0,N=1]cosb|Ad =0,N = 2) 2 (7.16)
= U, = 08 = U, = = — 5 .
V15
(A= 21, N =1]cosf|d = £1,N = 2) = — (7.17)

CJ‘!I
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1

(A =0,N=0|—sinfcosx|d =+, N=1) = F—, 7.18
| | ) 7 (7.18)
1
(A=0,N=1]—sinfcosx/Ad =£I,N =2) = F—r, 7.19
| ) 70 (7.19)
1
(A=0,N=2|—sinfcosy|]d =1, N =1) = +—, 7.20
| ) V30 (7.20)
while for M = £1,
(A=0,N=1lcosflA=0,N =2) = ! (7.21)
’ 7 \/5‘7 .
V3
A=21 N =1lcosO|A =1, N =2) = ———, 7.22
( cos ) )= (7.2
. V3
A=0,N=1~-smbcosy|ld =%, N = 2) = F—per, 7.23
{ | s x| , ) Foio (7.23)
1
A=0,N=2|-sinfeosylA=+1, N =1) = . 7.24
( | x| ) =+5m (7.24)
Finally for M = +1,
1
(A==%1,N=1cosf|4 =+, N=1) = :k-i, (7.25)
1
(A:il,N:2!COSHIA::£1,N:2> ::;:’6“, (7.26)
1
A=0,N=1|—sinf A=+1,N =1) = F—=, 7.27
( |~ sin0cos x| ) =55 (7.21)
1
A=0,N =2|—sinflcosy|Ad =+, N =2) = F——. 7.28
( | | ) =F 5z (128
For M = —1 the right hand sides of the last three matrix elements should be multiplied by

—1. In an electric field the energy depends only on ||, so that separate calculations are

not needed for M = +1 and M = —1, although they provide an indication of computational

rounding errors.
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7.3.3 Quasi-non-adiabatic calculations

Although quast-non-adiabatic calculations have now been superseded for Hj and DJ, it is
nevertheless instructive to report results for HD™, particularly as it will be seen that quasi-
non-adiabatic and fully non-adiabatic results are dramatically different. When classical
averaging of rotation is used, as in the quasi-non-adiabatic treatment, the dipole polariz-

ability is given in terms of the parallel and perpendicular components by
1
o= §(a“ -+ 20:.',1,) (7.29)

where, according to the second-order term of a perturbation theory

o = _g !(E;:N - OlﬂzIE;LN = O)lz (7 30)
‘] 3Z+ E(ngN:D)“E(E"T7N:O) .

1

and

2 KZJ}N = 0lptg |y, N = OMQ
o = - - - .
32 B(SJ, N = 0) — B(IT,, N = 0)

(7.31)

In equations (7.30) and (7.31) p, and . are the components of the electric dipole moment
in the molecule-fixed frame system, the factor -2 arises from the definition of polarizability
and the 1/3 is from the rotational averaging. The paralle]l component is found by assuming
the electric field lies along the internuclear space-fixed axis Z, while for the perpendicular
component the field is perpendicular to the axis. In these calculations the coupling between
levels does not depend on the rotational quantum numbers N and M, even to the extent
that for | of (0,0) levels coupling to II states with NV = 0 is implicit, even though N = 0
is not allowed for 1I states.

Note that for HDT the determination of « is less precise, since the electric dipole
moment along the internuclear axis is non-zero, so that in using equation (7.2) allowance
must be made by regressing (F — £y)/A on A and extracting « as a slope. This does not
apply to @, which may be determined as an intercept, just as for both components in the

homonuclear ions and for « in fully non-adiabatic calculations.
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7.3.4 Fully non-adiabatic calculations

In a fully non-adiabatic calculation the rotation is averaged quantum mechanically, so that
even though the mass asymmetry in HD™ is responsible for a charge asymmetry, the ex-
pectation values of the electric dipole moment and the first hyperpolarizability vanish and,
just as for the homonuclear jons, regression of (F — Eg)/A? on A? gives the polarizability o
from the intercept and the second hyperpolarizability v from the slope.

Equations formally similar to (7.30) and (7.31) for a quasi-non-adiabatic approximation

can be written in the case of a second-order fully non-adiabatic approach as

b2 TN = Og B, N = 1P -
=73 ~ B(Zf,N =0) - B(Z,N = 1)

w

and

2 (24, N = 0lpg|ll, N = 1)|?

g

34~ EB(X4,N =0) - B(ll,, N = 1)’

o = (7.33)
In (7.32) and (7.33) pz is the component of the electric dipole moment in the space-fixed
frame system (see equation (7.6)). The other difference with respect to the equations for the
quasi-non-adiabatic approximation is that now the averaging is between N =0 and N =1
levels. This makes the denominator larger and the contribution to the dipole polarizability
smaller in both the components.

For homonuclear ions in the absence of an electric field the total angular momentum N
is a good quantum number and in the absence of nuclear spin states may be labelled g or u.
Coupling of rotational and electronic angular momenta occurs between ¥ and II states for
levels of the same N > 1 and the same g/u electronic parity. An electric field mixes states
with NV differing by 1 and also mixes g and u electronic states, so that in studying a g state
of an homonuclear ion only u basis functions with N differing by 1 need to be considered

and this is illustrated in figures 7.1, 7.2 and 7.3.
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Figure 7.1: The relevant couplings in calculations of the dipole polarizability of the (0,0) (M = 0)
level of the ground electronic states of Hf and D : thick lines indicate the major, second-order

contributions; the dashed lines represent the interaction of electronic and rotational angular
morenta.

Figure 7.2: The relevant couplings in calculations of the dipole polarizability the (0,1) (M = 0)
level of the ground electronic states of Hy and DJ: full lines represent the electric field
perturbation; thick lines indicate the major, second-order contributions; thinner lines are for
couplings involved third- and higher-order interactions; the dashed lines represent the interaction
of electronic and rotational angular momenta.

116



Figure 7.3: The relevant couplings in calculations of the dipole polarizability of the (0,1)

(M = +£1) level of the ground electronic states of Hf and DJ: full lines represent the electric field
perturbation; thick lines indicate the major, second-order contributions; thinner lines are for
couplings involved third- and higher-order interactions; the dashed lines represent the interaction
of electronic and rotational angular momenta.
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However, for HD* the mass asymmetry removes the electronic g/u symmetry and mixing
of g and u functions with the same NV occurs, so that more basis functions are needed. The
modified diagram for HD* for M = +1 is givén in figure 7.4. The other diagrams for HD™*
are not reported since they are the same as the ones in figures 7.1 and 7.2 where now the

g/u characterization has to be removed. It has been found that higher-order contributions

involving these interactions are significant [52, 55].

Figure 7.4: The relevant couplings in calculations of the dipole polarizability the (0,1) (M = £1)
level of the ground electronic state of HDT: full lines represent the electric field perturbation; thick
lines indicate the major, second-order contributions; thinner lines are for couplings involved third-
and higher-order inferactions; the dashed lines represent the interaction of electronic and
rotational angular momenta.

As reported, figure 7.1 describes the situation for the (0,0) level for the ground electronic
of the homonuclear molecules; in the case of HD™, the electric field couples this level with
N =1 levels of > and II states and the nearest level is now (0,1) of the ground electronic
state 1tself, so that this interaction dominates [57]. As will be reported, this explains the
dramatically different polarizability of HD? compared with Hy and DJ, for which the
nearest interacting level is the (0,1) level of the first excited electronic 37 state.

Figure 7.2 scen without the g/u labels illustrates the interactions for the (0,1) level of the

ground electronic state of HD™, for which averaging over M = 0 and M = +1 is necessary.
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For M = 0, the N = 1 level interacts with X+, N = 0 levels and with ¥F and I, N = 2
levels as well as there being mixing with I1, N = 1 levels. There is competition between the
coupling with the 1 ground electronic state (0,0) and (0,2) levels. As might be expected
from a consideration of the energy separation involved, the N = 0 contribution dominates
and the polarizability is negative, as will be seen from the results.

As already mentioned, figure 7.4 differs most from the corresponding figure 7.3 for the
homonuclear ions in that it does not have separate I, and II, states indicated. In addition,
an electric field interaction is included between £, N = 2 and II, N = 2; for HJ, II,,
N = 2 basis functions are not involved. For M = =£1 there are no N = 0 levels with which
to interact so, since (0,1) is the lowest level with M = %1, the polarizability is positive.

Note that figure 7.1 is embedded in figure 7.2 so that the latter is also appropriate for
the (0,0) level of the ion, but includes higher-order interactions. In particular this provides

another opportunity to determine whether these could be responsible for the remaining

discrepancy between theory and experiment for the (0,0) level of Hy .

7.4 Results

The variational method and the transformed Hamiltonian/scattering method give the same
results to at least the figures quoted in this work, so they will not be given separately. In
the case of the variational method the parameters used were taken from [6] and care was
taken that enough ¥ and IT functions were used. For the scattering method the parameters
were as used in [4] and it was confirmed that enough basis functions were included, that
integration was taken out far enough and that the intervals used for 2 were small enough.
The fact that the results from these two quite different methods agree is reassuring.

The calculations involve diagonalization of large matrices in the variational method or
the diagonalization and inversion of smaller matrices many times in the scattering method.
Comparing results for M = +1 and M = —1 calculations indicates that rounding errors
do not affect the results to the precision quoted. Accordingly only joiut results for [M] are

given.
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Care has to be taken in choosing appropriate values of the perturbation parameter A
by monitoring the relative error in « and the correlation coefficient obtained in the linear
regression. [n particular, the second hyperpolarizability v for V = 0 levels of the ions has
major contributions from the N = 2 basis functions (see figure 7.2) and this can affect the
precision of the calculated dipole polarizabilities unless smaller A are used than those that

are satisfactory in calculations ignoring N = 2 (see figure 7.1).

Table 7.1 reports the quasi-non-adiabatic calculations for HD* (0,0). For comparison,
the results for I and DJ are also given; these results are taken from [51] but multiplied
by the homonuclear equivalent of B2, where B is defined by equation (7.5); namely they

are multiplied by (1 + €)? with

1

- == . 7.34
¢ 2m +1 ( 3)

Not surprisingly the vahie for a; lies between those of HQ‘L and D“Q*. This is not true for ¢
or for the rotational average v = 4(ay + 2a1). Neither are determined as well as for oy

becanse of the non-zero electric dipole moment of HD' | which is also given in table 7.1 and

is in agreement with that previously reported in [37].

Cation | oy /e*ad By | o) [2alEy, T [ a = %(au +2c,) ufeaq
H:{ 5.830 354 1.837295 3.168 315 -
HD* 6.012 1.825 695 3.221 —0.342 755
Dy 5.590 746 1.812294 3.071778 -

Table 7.1: Quasi-non-adiabatic polarizabilities (in units of 4wepad or e2a2 ;) for the (0,0) levels
of the ground electronic states of Hy, Dy [51] and HD™; the electric dipole moment (in eag) of
HD™ is also given. The uncertainties are 1 in the last digit quoted.

[t is expected that any comparison with experiment will involve the (0,0) or (0,1) levels.
In addition, the only previous fully non-adiabatic calculation of the polarizability for HDT is
for the (0,0) level [57]. For HD* (0,0) the polarizability is calculated to be 395.306 e2ad Bt

in good agreement with the 395.289 (zga%Eg ! from the localized variational method of Bhatia
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and Drachman [57]. As argued in section 7.3.4 the result for HD* (0,1) M = 0 is negative
(-229.986 e2a3 ;. '), while that for [M] = 1 is positive (120.979 el B 1), giving a rotational
average of 3.991 e?a? F, ! These results are included in tables 7.2 and 7.3.

The second hyperpolarizabilities are also determined in these calculations, but the results
are only good to two significant figures. For HD* (0,0), (0,1) M = 0 and [M| =1 they are
~3.3 x 10, —3.3 x 10° and —2.1 x 108 e‘LagE}?l, respectively.

As already emphasized, the great advantage of the transformed Hamiltonian/scattering
method is that it is not limited to low vibrational levels, although many more basis functions
are needed for the calculation of polarizabilities than for properties that do not involve the
mixing of different N. Accordingly, table 7.2 presents the polarizabilities for many N = 0
levels of Hg D; and HD™; these results include the higher-order contributions from N = 2
basis functions (figures 7.2, 7.3 for the homonuclear species and 7.4 for HD"). Also included
in table 7.2 are the Hilico et al. [53] published values for v < 10, N = 0 levels of Hj and
DY ; although N = 2 basis functions were not included, these were given to ten significant
figures, but the results reported here are not as optimistic and only six figures are quoted.
For these levels the results found in this work are consistent with theirs. Not surprisingly,
plots of polarizability against dissociation energies for Hg and D levels are coincident,
as illustrated in figure 7.5. It has to be noted that the scaling factor due to the different
reduced masses of the cations is not applied here since a comparison between non-adiabatic
values of the property is made; the scaling factor has to be applied when non-adiabatic
corrections to the property of interest are studied.

Table 7.3 reports polarizabilities for N = 1, M = 0 and [M| = 1 levels, together with
their averages. Again, higher levels are not included due to the number of basis functions
needed to study levels so close to dissociation and involving the indicated couplings between
levels of different V. Since the basis functions used are for N = 0, 1 and 2, there are no

higher-order contributions included from basis functions with N differing by 2 from the
N =1 levels of interest. Again, the polarizability for a D; level could be predicted from a

plot of polarizability against dissociation energy for Hi (see figure 7.6).
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(v,0) HY Hy [53] Dy Dy [53] HD*
0 | 3.168726 | 3.168 725803 || 3.071 989 | 3.071 988 696 || 395.306
1 3.89756 | 3.897563360 | 3.55303 | 3.553 025791 || 462.65
2 4.82150 | 4.821500365 || 4.11958 | 4.119581678 || 540.69
3 6.00933 | 6.009327479 || 4.79129 | 4791282711 | 631.4
4 7.56046 | 7.560453090 | 5.59332 | 5.593314877 | 737.3
5 9.62178 | 9.621773445 || 6.55832 | 6.558 318701 || 861.7
6 12.4160 | 12.41599987 || 7.72906 | 7.729 054615 || 1008.
7 16.2910 | 16.290999 14 | 9.16221 | 9.162209589 | 1184
8 21.8095 | 21.80947278 || 10.9339 | 10.93392539 || 1394.
9 29.9203 | 29.920326 97 || 13.1480 | 13.14797683 || 1651.
10 || 42.3063 | 42.30632865 || 15.9481 | 15.94812078 || 1698.
11 || 62.1426 - 19.5372 - 2367.
12 || 95.9080 - 24.207 3 - 2880.

13 | 158.242 - 30.389 2 - 3558.

14 || 287.145 - 38.7355 - 4488.

15 | 603.100 - 50.266 6 - 5822.

16 || 1630.58 - 66.6377 - 7860.

17 - - 90.654 3 - 1128.

18 - - 127.331 - 17950.
19 - - 186.239 - 35 20.

20 287.227 - 126 40.
21 476.191 - -

22 876.264 - -

23 1897.62 -

24 5471.28 .

Table 7.2: Non-adiabatic polarizabilities (in units of 4mepa or e?a? E; ') for rotationless levels of
the ground electronic states of H , DJ and HD*. For comparison the results from [53] are
included. The highest levels, v = 17 — 19, v = 25 — 27 and v = 21 — 22, for HF, Dj and HDT,
respectively, are not included due to the number of basis functions needed to study levels so close
to dissociation and involving the indicated couplings between levels of different N.
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Figure 7.5: Nop-adiabatic dipole polarizability versus non-adiabatic dissociation energies for Hj
and DY, for N =0, M = 0.
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Vel

Hy Dy HD*

(v,1 M=0 | M =11 | Average | M=0 | M =]1] | Average M=0 | M =|1| | Average
0 4.24947 | 2.64272 | 3.17830 | 4.08719 | 2.57129 | 3.07659 | —229.986 | 120.979 3.991
1 5.43571 | 3.14730 | 3.91010 || 4.86295 | 2.90640 | 3.55858 | —268.90 | 141.50 4.70
2 6.97151 | 3.77138 | 4.83809 || 5.79112 | 3.29392 | 4.12632 || —313.87 | 165.29 5.57
3 8.98216 | 4.55624 | 6.03155 | 6.90734 | 8.74559 | 4.79951 || —366.00 | 192.95 6.63
4 11.6486 | 5.56166 | 7.5906 || 8.25728 | 4.27648 | 5.60341 | —426.66 | 225.26 7.95
5 15.2384 | 6.876 08 | 9.6635 | 9.90015 | 4.90613 | 6.57080 | —497.57 | 263.29 9.62
6 20.1570 | 8.63379 | 12.4749 || 11.9135 | 5.66018 | 7.74486 —580.99 | 308.11 11.74
7 27.0373 | 11.0447 | 16.3756 || 14.3999 | 6.57265 | 9.1817 -679.82 | 361.66 14.50
8 36.9072 | 14.4389 | 21.9283 || 17.4976 | 7.68926 | 10.9587 || —737.96 | 426.19 18.14
9 514956 | 19.4230 | 30.1139 || 21.3945 | 9.07239 | 13.1798 | —940.72 | 504.94 23.06
10 73.8775 | 26.9857 | 42.6163 || 26.3511 | 10.8085 | 15.9894 || —1115.5 | 602.48 29.8
11 109.864 | 39.0677 | 62.666 | 32.7349 | 13.0197 | 19.5014 || —1332.8 | 725.55 39.4
12 171.340 | 59.6153 | 96.857 | 41.0755 | 15.8819 | 24.2798 || —1608.3 | 884.41 53.5
13 285.257 | 97.5713 | 160.133 || 52.1538 | 19.6548 | 304878 || —1965.8 | 1095.4 75.0
14 521.919 | 176.238 | 291.465 || 67.1538 | 24.7321 | 38.8727 || —2444.0 | 1386.1 109.4
15 1105.99 | 369.927 | 615.28 | 87.9272 | 31.7297 | 50.4622 || —3108.3 | 1806.4 168.2
16 3029.40 | 1005.36 | 1680.04 || 117.480 | 41.6475 | 66.925 -4079.1 | 2455.8 277.5
17 - - - 160.913 | 56.1818 | 91.092 -5602.4 1 3561.9 507.1
18 - - 227.352 | 78.3677 | 128.029 || -8270.8 | 5765.9 | 1087.0
19 - - - 334.243 | 114.005 | 187.148 | —14046 | 11671 3099
20 517.842 | 175.142 | 289.375 || —39022 | 45104 | 17062
21 862.217 | 289.694 | 480.535 - - -
22 1593.85 | 532.774 | 886.47 - - -
23 3472.18 | 1155.72 | 1927.87
24 10116.6 | 3350.76 | 5606.0

Table 7.3: Non-adiabatic polarizabilities (in units of drepag or e2a3 By, ") for N=1 levels of the ground electronic states of Hf, D and HD™.
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Figure 7.6: Non-adiabatic dipole polarizability versus non-adiabatic dissociation energies for Hy
and D, for N = 1, averaged value between M =0 and |M| = 1.

125



There are at least three fully non-adiabatic calculations that agree to 1 x 1075 ¢?a2 B, !
that the Hy (0,0) polarizability is 3.168 726 ¢*a3F, ! [44,52,53]. The fact that there is still a
discrepancy between these and the experimental value of 3.167 96(15) e2a3 B, ' [45] suggests
that the theoreticians are not calculating the quantity that is observed experimentally.
Korobov [54] has shown that relativistic effects can only account for about 20% of the

difference.

Previous calculations have not accounted for the contribution of N = 2 levels through
fourth- and higher-order corrections. The program used for the HD* (0,1) M = 0 calcula-
tion includes N = 0, 1 and 2 basis functions, so that by targeting N = 0 the higher-order
corrections are accounted for. The result is unchanged at 3.168726 ega%E’g I suggesting
that these corrections only affect at most the sixth decimal place. The difference between
theory and experiment is not resolved. The influence of A electronic states has yet to be
considered, but is unlikely to be significant since the largest contribution is presumably
fourth-order involving 11, N =1 and A, N = 2.

Another possible source of any discrepancy is hyperfine effects. However the HJ (0,0)
level is unaffected by the dominant Fermi contact interaction, as is the nearest interacting
level (X} (0,1)), since they are both in pare nuclear spin states. Hj (0,1) is ortho, but
a back-of-the-envelope calculation of the likely effect on «y, based only on the change in
energy separation between ¥} (0,1) and the nearest interacting levels, Xt (0,0) and (0,2),
suggests that this would only affect the sixth decimal place. This is in the context that a
similar rough estimate of the influence of relativistic effects for Hy (0,0) (as calculated by
Korobov [54]) underestimates by a factor of three while, if radiative effects are included as
well, the combined contribution to the discrepancy is even less.

To conclude, it has to be noted that the second-order hyperpolarizability for HJ (0,0)

is 1.14 x 10* etaf B
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7.5 Conclusions

In this chapter new results for the dipole polarizability of the hydrogen molecular cation and
its isotopomers are reported. Many levels are studied, although levels close to dissociation
will require more effort. Also, if needed, it should be possible to add an extra significant
figure to the results given here. Only levels with N = 0 and 1 are considered, since for a
given N, the (VN + 1) values of | M| must be considered separately, but again other N could

be studied if necessary.

HDT is of particular interest here since only one previous calculation of its polarizability
was reported; the presence of an agymmetric charge distribution provides novelty. The result
obtained for (0,0) is close to the only previous one.

The opportunity was taken to revisit Hy (0,0), but including higher-order contributions
than previous studies has not removed the difference between experiment and theory.

Finally it should be noted that the values of the perturbation parameter used, may be
relevant to experiment. For HJ and D;f they correspond to electric fields of up to

2% 107° Ehe”]agl (1 x 10° Vm™1), while for HD? the corresponding fields are up to

4x 1077 Bpelag! (2 x 10T V1),
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Chapter 8

esults: relativistic correction for

1+
2

8.1 Introduction

In this chapter results concerning the relativistic corrections for the ground electronic state
of the hydrogen miolecular cation H;’ are reported. While fully relativistic calculations
for atoms are common, relativistic corrections for molecules are still estimated from non-
relativistic wavefunctions using perturbation theory. Since high-resolution spectra data are
available, relativistic effects are very important for light species such as HJ, even though in
1

order to have an agreement between experimental and theoretical results to 6.001 cm™" or

better, the radiative correction should also be included.

In the past, tables of the corrections to the potential for the ground state of HJ as
a function of internuclear distance have been published [59] and these have been used to
calculate relativistic corrections for Hf, DJ and HDT. However, those results extended
only to R=10.0 ag while Carrington and coworkers investigated the very highest vibrational
levels of all the three molecules [60-62], levels for which bond lengths greater than
10.0 ag make significant contributions. More recently Kennedy and coworkers [63] extended
the evaluation of the relativistic correction to far beyond R=10.0 ag. They too treated the
nuclei as being fixed, thus assuming that the small non-adiabatic effects did not significantly

influence the relativistic corrections.
In this work the relativistic correction is treated at a non-adiabatic level and the results

reported are obtained, as for the other properties, through the variational and the scattering
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methods. However, as is explained below, analytic evaluation of some of the matrix elements

is not possible and numerical integration (see section 3.5) is used to achieve the reported

results.

8.2 Theory: the Dirac Hamiltonian

In considering relativistic corrections it would be desirable to write down an Hamiltonian for
the two protons and one electron and separate off the overall translation. Unfortunately this
is not possible relativistically. In addition, the corrections are dominated by the electron
motion, so attention is to be confined to the electron in the presence of two nuclei. For this
reason the Dirac Hamiltonian has to be considered

62

(—L + i) (8.1)

Hp :ﬁmcngca«vr—egbzﬂmc2+ca~ﬁ-
Tie  Toe

deg

where

w=p-+eA (8.2)
is the mechanical momentum, ¢ is the scalar potential and f and e« are the Dirac operators
which can be seen as operators representiug a new degree of freedom intrinsic to the electron.
Specifically, in equation (8.2) p is the canonical momentum and A4 is the vector potential.
All the other symbols have their usual meaning. Explicitly, the Dirac operators can be

written in the following forms, known as the standard representation

10 0 0
01 0 0 .
P 8.3
p=a 00 -1 0 (8:3)
00 0 -1
000 1
0010
. 4
e 0100 (8.4)
1000
0 0 0 —i
0 0 i 0
, = 8.5
W0 -0 00 (8.5)
i 0 0 D
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0 0 1 0

0 0 0 —1 ,
=11 0 0 0 (8.6)

0 -1 0 0

It is convenient to rewrite equation (8.1) in dimensionless coordinates in which lengths

are measured in ag and indroducing «, the fine structure constant

1 1
Hp=md®|f+aa-m—a{—+— 8.7
D {ﬁ (T],e T9¢ } ( )
with
o2
a= = 7.29735 x 1073, (8.8)
Zhé()c

The form of equation (8.7) arises from considerations concerning the decoupling between
its positive and negative solutiouns, as is explained later. With any decoupling method, the
Hamiltonian is obtained as a power series (see later) which converges for electrons moving
with velocities much less than the speed of light. Since the largest term in the Dirac
Hamiltonian (8.7) is mc?, it is appropriate to estimate the magnitude of the other terms,

relative to this one.

In the first Bohr orbit, the electron’s speed is

e? 3
T e 22 -9
U Sech cw (8.9)

so now « and v/c¢ are comparable expansion parameters; in addition, the radius of the first

Bohr orbif is

dmeoh’
ag = 0L (8.10)
me
So, classically
coc T~ cmw = meta (8.11)
and
o2
ep ~ - =mce? (8.12)

dregag

from which equation (8.7) arises.
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The Dirac equation is the proper relativistic quantum mechanical equation for the elec-
tron. However, as it is a four-component equation, it involves four-by-four matrices and the
wavefunction is a four-component vector. This is its main difference from non-relativistic
equations, whose wavefunctions have two components corresponding to the two possible
orientations of the electron’s spin.

Besides, the Dirac equation has two negative energy components which are coupled to
the positive energy components. Since just positive energies have to be considered, the
necessity to decouple the positive and the negative energy components arises, to obtain
a two-component equation for the positive energy solutions which is similar to the non-
relativistic equations and can be used in the same way. The Dirac equation is, in this way,

reduced to a non-relativistic form.

The method used to obtain the non-relativistic form of the Dirac equation that is used
to achieve the results reported in this work, is the Foldy-Wouthuysen transformation (see

for example [64]). The starting point is to express the Hamiltonian as a power series in «
. 571 ‘ .
Hp = me* + mea? (:2—@2 + e) + O(mcta*), (8.13)

where

O=0c-p (8.14)

and

€= _(i 4! ) (8.15)

Tie T2e

the components of o being the Pauli spin matrices; note that 8% = p2. The first term
of equation (8.13) is the electron rest energy and is omitted in the rest of this work; the
term oyf order mc?a? corresponds to the non-relativistic energy; the relativistic corrections
that are of interest are the expectation values of the mc?a® terms. Higher order corrections
become increasingly divergent and would present technical problems far beyond the scope

of this work.

Briefly, the Foldy-Wouthuysen transformation consists in performing a series of unitary

transformations by which the coupling terms between the positive and the negative solutions
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are progressively eliminated to obtain the resulting non-relativistic Hamiltonian which is

hermitian. Following the choice of transformation in [65], the result for the correction is

ST S'S GRS PAVR f P 2 6
Hyy = mcta { 8@ 5 [O [O,EH} + O(mc*a®). (8.16)
Substitution of (8.14) gives
- ; 1 i 1 T1c T
— 2.4) .4 0 fape le 2o
Hel = mc o { 8p -+ 5 [5(7%) + 5(7’29)] - 4o' (»wr%e 4+ —mr%) X p}. (8.17)

The spin-orbit coupling term makes no contribution to ¥ molecular states so that the

final form of the relativistic contribution to the non-relativistic Dirac equation used through-

out this chapter is

Hyy = mcgofl{ - —é—p4 + g{é(rm) + 5(7'20)] } (8.18)

8.3 Theory: expectation values and numerical

approaches

8.3.1 Introduction

In order to study the relativistic correction, the expectation value of operator (8.18) has to be
considered; namely the expectation values of the fourth power of the canonical momentum p
and of the electron density at the nuclei 6(r,,.) have to be studied. This section is dedicated
to these topics.

As already done for all the other properties that have been reported in this work, a pre-
liminary comparison between the results obtained with the variational and the scattering
methods is made. As explained in the next section, the expectation values of the electron
density at the nuclei are computed through analytic integration. In section 8.3.3 the ap-
proach adopted to study the expectation value of p* is reported; due to the presence of
singularities in the expression for this operator, the results are achieved through numerical

integration (see 3.5) since singular integrands appear.
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8.3.2 [Electron density at the nuclei

The explicit expressions of the electron density at the nuclei in equation (8.18) are the

following, according to the nucleus they refer to; namely for nucleus 1 (£ = 1, = —1)

5(r1e) = 45&;(25@%1) (8.19)

and for nucleus 2 ({ =1,p=1)

d(rac) = oML, (820

Within the variational method (see section 3.2 for the details) the matrix elements of this

property are computed between the basis functions

_afg-1) 1A , 1 -
Uil B) = em (€ = 1) LGV - DIPIMN ) S (R)  (8:21)
using the volume element
o EE 2 2 9
dr = 3 (&% — n*)dédndR. (8.22)

Operators (8.19) and (8.20) do not depend upon any angular variable, so just matrix ele-
ments between basis functions with same A, N, M have to be taken into account. In addition
only ¥ basis functions are non-zero on the molecular axis, so that matrix elements involv-
ing II, A, ... vanish. Only ¥ — ¥ matrix elements then need to be considered. The matrix

elements for the electron density at nucleus 1 are then

1 ) oo
el li) = 5 (-1 [ g Ry, () (823)
and at nucleus 2
) . J Y A
(15(raosh = 5 | Ry (AR (8.24)
T g

On the other hand, if the scattering and the transforrned Hamiltonian approaches are

to be used, the operator has to be transformed; the transformation leads to the equation
(sec page 32 to page 34)

63(7"“,3) = /)%Zgé(rrm) (825)
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where in the particular case of the choices £ =1 and = +1

p=1+=& (8‘25)
with
1
— - 8.27
" dpeg + 1 ( )

as already indicated (see for example equation (7.11)). Equation (8.26) leads to the final

expression to be used within the scattering method for the electron density at the nucleus

n

8y (Tae) = (1 + #)2 Z35(rne). (8.28)

Within this method, the matrix elements of this property are computed between the basis

functions
(e, R) = e T (€8~ )5 LE[a(¢ ~ 1PN @) (8.29)
using the volume element
dr = é({“ — ?)dédndR. (8.30)

It has to be noted that in equation (8.28) Z, has the meaning of an effective nuclear
charge which is equal to 1 for Hf and Dj but for HD™ is 0.999 931 987 for the proton and

1.000 068 018 for the deuteron, these values arising from equations (2.109) and (2.110).

8.3.3 The expectation value of p*

The general form of the second-power of the canonical momentum is given by
; 4
pP=——Xa (8.31)

where the operator X, is defined in equation (2.59).

Explicitly, for £ — % couplings it leads to

4 )[8

15 d J
Py =~ g = [ge €~ Vo 90~ )5) (8.32)
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and for II — IT to

4 3] 0 0 £2 —p? }

2 T Ny - 2 S Y »
shon = e g Vs T s - @Al 69

Since this operator is hermitian, the study of (p*) can be reduced to (p?¥|p?T) where ¥ is

given by a linear combination of appropriate basis functions.

Variational approach

Once the p? operator is applied to ¥ and IT basis functions within the variational method,

the following expressions arise respectively

_an(g-1)
(o
2

(pz‘lfz')z - Mﬁ%? ~27)2) { [ 44

(€% — 1) — ax(m; + )&+ mi(1 — ax) — ni(n; + 1)}

'ﬁmi [Oﬁz(f - 1)} - miﬁnzi_q [‘WZ(é - 1)}?71,5 (77) (834)

where the convention L0, () = L, (z) is used, and

(p?T) = e (5%1)%{[9‘%(5%1) 2arné —miarr(€+1)+2(mi-+1)—ni(n+1) |
YA £7511 2 (52 . 772) 1, 4 né 128311 i 1
L e (€ = 1)~ 20ms + D)LY Ton(¢ — 1] P (). (835)

Note that here the variational parameters ey and o do not depend upon £ and all the

symbols used have their usual meaning.

The transformation of p* and the scattering approach

When the expectation value of p* has to be studied with the scattering method and the

transformed Hamiltonian theory, the operator has to be transformed; since

¢iSpteiS = (ISP (S pe15), (8.36)



the transformed expression for p? can be used

8x

P= [+ nle = Dl — S o¥ +3) - Ry +3) R0 (837)

where all symbols have their usual meaning and

1

Y:§2—772

d o
&€ - gg +a0 -5 ] (838)

It has to be noted that 3 7 [t could be replaced by (R-Z 5z + 1); the choice for leaving this

term as it is, depends on the fact that the scattering method cannot cope with any term
involving a dependence on R and the form of the vibrational part of the basis functions
used in the variational method (see below).

The terms involving d/JR have to be estimated in some other way, as will be explained
in the next paragraphs. For this reason, in the scattering method, the following expectation

values involving part of the operator (8.37) can be computed
9 8K 5 8K 3.39
(P = 55 (2Y +3)|pp” = 75 (2Y +3)). (8.39)

Tests on the contribution of terms in 2 confirmed that these terms are negligible.

Correction for §/0R with the variational method

The term that cannot be studied with the scattering method in equation (8.37)

;;, (2v + 3) (8.40)

can be treated with the variational method through

J

27 R (8.41)

4
(0 (2Y +3)

since the basis functions (8.21) involve %2—¢ki(R). Note that to obtain the final contribution

to p* arising from the —5%}% term, the results of (8.41) have to be multiplied by (2x).
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However, since the variational method is not expected to be satisfactory for high

vibrational levels, another method has to be adopted; this alternative approach is described

in the next paragraph.

Once the (2Y + 3) term of (8.41) is applied to £ and II basis functions within the

variational method, the following expressions arise respectively

_on{é~-1)
2

(@Y + 3)WiJs = G { [£6 + Dl2mi = an(@ = 1] 4 3(8° — ) — 2mar’]

L [as(§ —1)[Pa;(n) — 2mi(€ + 1) L, [ox(E — D] Pn; () + 2ninLy, (s (€ — 1) Pa;_, (n)}

207 [ (€ = D]Poc, (1) } (), (5.42)
e‘a (5‘1) 1T
(@Y +8)Wiln = Ty { (€ =03 [( = o+ 30(€” — o) + 20 + 1))

L on(€ = DIPY @) - 2manlon( - DIPLL, ()]
+(€ = 1)77 [ (2emma(€ + 1) + 206 ) LD [an(€ — DIPE ()

1
~2an(m: + (€ + VLG [en(§ - DIPD ()] fzwi(R) (8.43)
while the term dependent on R becomes

E%R;%?/’ki (R) = [(kz + g+ 1)_}% _ €k§ﬁ] P, (R) — (ki + 16}%2‘%61_1(3) (8.44)

It has to be remembered here that the 1, (R) basis functions are defined as
1 B+1

b (B) = e iy 7 L)) () (8.45)

where ﬁgs ) (y) are associated Laguerre polynomials. Here

y = e, 10 (8.46)
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where

6 = %fﬁ, (847)
ﬁ:2\/7+N(N+ 1)+i~ (8.48)

and
=" | (8.49)

as usual p is the reduced mass of the nuclei. In the above equations k& and § = 1/
are taken to be non-linear parameters. From equation (8.44) new matrix elements to be

evaluated arise

oo 1 5
J (8.50)

o0 1 5
/D Pk 35k ROARR (8.51)

but, as with other vibrational integrals, analytic formulae can be derived.

Another approach to study the correction for 0/01

As asserted before, the variational method is not expected to be satisfactory for high vi-
brational quantum numbers and another method to study the corrections arising from the
J/8R term has to be used. Namely it consists in determining the corrections as a function
of R and then averaging over R using the LEVEL program [7].

However, this approach does not allow for mixing of ¥ and II states, so the results for
high levels (with N # 0) will present some discrepancies. Nevertheless, this method has the

advantage of producing corrections for all the (v, N) levels in just a few runs of the LEVEL
program.

The basis functions are now

W(E,m R) = (&, ms R)X(R) (8.52)
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with

b(&m; R Zrz(ﬁ $i(&m; R). (8.53)

For the correction as a function of &2, the method described in [23] is used. Note that, in
addition to using a transformed Hamiltonian, the volume element is changed to remove the
first derivative term in d/0R; this must be allowed for since the extra term involves 8/9R.

So now

4x ad 4K o
~ 52 +3) R = ‘}%‘(ZY”)(HR&R) (8.54)

and, since the volume element changes from

dr < R°dR to dr < dR

and the eigenfunctions from

W to R )/2

the term to study is now
%)

=@y +3)( - 3+ =)

2 EE
d]? (8.55)

R?

It is convenient to note at this stage that p? could be partitioned differently; in fact, it
could be separated into a part that can be calculated with the scattering program and a

part that has to be estimated in other ways. Namely the alternative partition would be

o . 8k 4x o)
2 2 S
p? = pp? — 29y 2 ) 56
i = pp 1‘22( +3) + = (2Y +3) - 7 (2Y + 3)( R+ea (8.56)
Chosing a = 3/2 would give the extra term as
K 7]
oy s
AT

while ¢ ~ 1 would minimize the magnitude of the correction. However, tests show that
the calculated corrections do not differ significantly for different partitions and the original

partition is kept.
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Functions ¢;(&,m; R) of equation (8.53) have the usual form being

an(§—1)

$il&,mR)=e 2 L, [as (€~ UTP’% (m) (8‘57)

where the dependence on R is contained in the parameter ax; unlike the variational method,
this parameter has been optimized at different bond lengths and is input. The expectation

values of the extra term to be computed are then

(&, ms ORIV = 5 + BV o6 ms R)x(1)) (8.58)
where
K= —pQ%(Z’Y +3); (8.59)
namely
o] - 25; Ry (R)685) + X )5 2400 gt
+ 3 iRy (RIS + Y alr) RR($K ) A lx(R)). (860

The x(R) functions and the expectation values of (8.60) for each vibration-rotational level

are determined using the LEVEL program. The electronic parts of (8.60) involve

dei(R) d¢;i(R)
“or ™ TR

and they are dealt with using the approach reported in [24]. For the partial derivative of

#i(€,m; R) basis functions with respect to R

0¢;(R) _ O¢i(ax) das
R~ oy OR (8.61)

where das; /IR is calculated from input ax. In [24] it was not recognized that the functions
#i(&,; R) can be taken to be independent of R, namely ax can be considered constant; the
dependence of these functions on R then resides entirely in the ¢;(R) coefficients. In this

case the dc;(R)/OR are significantly different, but the two approaches

80&2 80&2

R =0 and

# 0
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give results that do not differ until the seventh significant figure.

If

Jos

_;éo

then —Q%%Q is needed at each bond length

9¢i(R)  _em-n) [ 1

SE = ~ 5(€ = DLman(E =D+ 7 (Lnifan(e ~ 1]
S ) L (5:62)
and
, —an(£-1)/2
v +920l) Some {ﬁmi{amf )P ) [ 2267 = (% 2m 1)
« 2m m2 2my; 1.1 my
+( 22—%« - )§ +( 5 +2m )§+nz¢7 (g—l—a)+3(§2—n2)(—-f+—+—)}

+Lom;_y [ (€ — 1) P, (n) {Zmz‘fg - 2mi (2m; — 1)52 — Zmz<M - 1) -+ 2mi o2
ay

3m;

—ZE = )] + Lo (€ — D]Pa n) 266 + D)2 (my — 1))
oy ay;

Lo fo(6 ~ 1Py () [min (2 €41)] + Lo forn(€ = DIPcs ()] — 2] }

(8.63)
To summarize, the expectation values of the following quantities are calculated with the
LEVEL program

dax, 5@ .

TR 2 ci(R)e;(RR(GiK 5 ~); (8.64)
S ailR)es (IR (8:K;); (8.65)
——ZCZ(R)CJ N BiKCs); (8.66)
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while a slightly modified version of LEVEL, using a 5-point formula for dy /R is used for

the expectation values of

S e B)es (R R (5.67)
.7

8.4 Results

Before describing the complete results that are obtained with the methods described in the
previous sections, it is convenient to show the agreement between the different approaches
in studying the expectation values of the operator p*.

For this purpose two levels of Hj are chosen, (0,0) as a starting point and (2,25); this
second level is expected to represent an appropriate test both for the variational and the
scattering methods since for v = 2 the former gives reliable results and N = 25 may be a
good test for using the latter, which does not include some X — IT contribution, to study
the vibration-rotational levels of interest, in principle, all of them.

In tables 8.1 and 8.2 the results for (p*) in units of a, *A* for these two levels are reported
respectively; the method used, the main and the 3/8R contributions to (p*), the total result
for (p*) and its value divided by 8 are indicated. This last result is the one of interest in
computing the relativistic corrections.

As explained in the previous section, for high rotational quantum numbers the
descrepancy between the two approaches is more pronounced since the averaging over R
using the LEVEL program cannot deal with the ¥ —II mixing. However, when the numerical
factor 1/8 is introduced, the difference becomes less significant. In addition it has to be noted
that the detailed results from the variational method suggest that the total II contribution
to the expectation value of p*/8 for the level (2,25) is 0.000024.

Optimistically for rotationless and low N levels the agreement is reliable to the sixth
decimal place, while for high N levels the accuracy decreases to the fifth significant figure.

The complete results for the 3/0R contribution obtained with the LEVEL program is

reported in table 8.3. These results have to be multiplied by (2x) to obtained the right
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contributions that have to be added to the main part of the expectation value of {p*)

computed with the scattering method.

Method Main contr. | 8/0R contr. | Total (p%)/a; *A* | ((p%)/8)/ag " h*
Variational - - 6.285 660 0.785708
Scattering + Variational | 6.284 852 0.000 816 6.285 668 0.785709
Scattering + LEVEL 6.284 852 0.000 804 6.285 656 0.785707

Table 8.1: (p*) in units of ag "' for H (0,0): comparison between all the numerical methods
that are approached and tested in this study. The main contribution is obtained with a full
scattering approach, the J/0R contribution both through the variational method and the LEVEL

prograwm. Note that the §/0R contributions include the factor (2r).

Method Main contr. | 8/8R contr. | Total (p*)/ag A% [ ((p")/8)/ay " A"
Variational - - 4.807 958 0.600 995
Scattering -+ Variational | 4.807 945 0.000 300 4.807 945 0.600993
Scattering + LEVEL 4.807 945 0.000 274 4.807919 0.600 990

Table 8.2: (p) in units of aj *A* for HY (2,25): comparison between all the numerical methods
that are approached and tested in this study. The main contribution is obtained with a full
scattering approach, the §/8R contribution both through the variational method and the LEVEL

program. Note that the 8/8R contributions include the factor (2s).
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Table 8.3: HJ: total /R contributions to (p*) in units of a; 1" computed with the LEVEL
program; these results have to be multiplied by the mumerical factor (2x) and be added to the
results for (p!) obtained with the scattering method. Just bounds levels are included.

1476 | 1.470 | 1.459 | 1.443 | 1.421 | 1.395 | 1.364 { 1.330 | 1.292 | 1.252
1.410 | 1.404 | 1.393 | 1.377 | 1.356 | 1.330 | 1.301 | 1.268 | 1.231 | 1.192
1.344 | 1.338 | 1.328 | 1.312 | 1.292 | 1.267 | 1.238 | 1.206 | 1.171 | 1.133
1278 | 1.273 | 1.262 | 1.247 | 1.228 | 1.204 | 1.176 | 1.145 | 1.111 | 1.0O75
1.212 | 1.207 | 1.197 | 1.183 | 1.164 | 1.140 | 1.114 | 1.084 | 1.051 | 1.016
1.147 | 1.142 ] 1.132 | 1.118 | 1.100 | 1.077 | 1.051 | 1.023 | 0.991 | 0.957
1.081 | 1.076 | 1.067 | 1.053 | 1.035 | 1.014 | 0.989 | 0.961 | 0.931 | 0.898
1.014 | 1.010 | 1.001 | 0.988 | 0.970 | 0.950 | 0.926 | 0.899 | 0.870 | 0.838
0.947 | 0.942 | 0.934 | 0.921 | 0.905 | 0.885 | 0.862 | 0.836 | 0.808 | 0.778
0.878 | 0.874 | 0.866 | 0.854 | 0.838 | 0.819 | 0.796 | 0.772 | 0.744 | 0.716
0.808 | 0.804 | 0.796 | 0.784 | 0.769 | 0.751 | 0.729 | 0.705 | 0.679 | 0.651
0.736 | 0.732 | 0.724 | 0.713 | 0.698 | 0.681 | 0.660 | 0.637 | 0.612 | 0.585
0.661 | 0.657 | 0.649 | 0.639 | 0.625 | 0.607 | 0.588 | 0.565 | 0.541 | 0.515
0.582 | 0.578 | 0.571 | 0.561 | 0.547 | 0.531 | 0.511 | 0.490 | 0.466 | 0.440
0.499 | 0.495 | 0.488 | 0.478 | 0.465 | 0.449 | 0.430 | 0.408 | 0.385 | 0.359
0.410 | 0.406 | 0.400 | 0.389 | 0.376 | 0.360 | 0.341 | 0.319 | 0.295 | 0.268
0.313 | 0.309 | 0.303 | 0.292 | 0.279 | 0.262 | 0.241 | 0.218 | 0.190 | 0.156
0.206 | 0.202 | 0.194 | 0.183 | 0.168 | 0.148 | 0.123
0.088 | 0.084 | 0.075 | 0.061
0.015 | 0.011
10 11 12 13 14 15 16 17 18 19
1.210 | 1.166 | 1.121 | 1.075 | 1.029 | 0.983 | 0.937 | 0.892 | 0.847 | 0.804
1.152 | 1.109 | 1.066 | 1.021 | 0.977 | 0.932 | 0.888 | 0.845 | 0.802 | 0.761
1.094 | 1.053 | 1.011 | 0.968 | 0.925 | 0.883 | 0.840 | 0.798 | 0.757 | 0.717
1.037 | 0.997 | 0.956 | 0.915 | 0.874 | 0.833 | 0.792 | 0.752 | 0.712 | 0.674
0.979 | 0.941 | 0.902 | 0.863 | 0.823 | 0.783 | 0.744 | 0.705 | 0.667 | 0.630
0.922 | 0.885 | 0.848 | 0.810 | 0.771 | 0.733 | 0.695 | 0.658 | 0.621 | 0.585
0.864 | 0.829 | 0.793 | 0.756 | 0.719 | 0.682 | 0.646 | 0.610 | 0.574 | 0.540
0.806 | 0.772 | 0.737 | 0.701 | 0.666 | 0.630 | 0.595 | 0.561 | 0.526 | 0.493
0.746 | 0.713 | 0.680 | 0.646 | 0.612 | 0.577 | 0.543 | 0.509 | 0.476 | 0.443
0.685 | 0.654 | 0.621 | 0.588 | 0.555 | 0.522 | 0.489 | 0.456 | 0.423 | 0.391
0.622 | 0.592 | 0.560 | 0.528 | 0.496 | 0.464 | 0.431 | 0.399 | 0.366 | 0.333
0.556 | 0.527 | 0.496 | 0.465 | 0.433 | 0.401 | 0.369 | 0.335 | 0.301 | 0.266

)
,gag:gwmqmm@wm»—ao\g

o
[l

1
-
HSwoo—\zoam»mwwHoE;g;qg;

12 | 0.487 | 0.458 | 0.428 | 0.397 | 0.365 | 0.332 | 0.298 | 0.262
13 10.413 | 0.384 | 0.354 | 0.322 | 0.288 | 0.252

14 | 0.331 | 0.301 | 0.269 | 0.233

15 | 0.237 | 0.203

continued
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o/N| 20 | 21 | 22 | 23 [ 24 | 25 26 | 27 |
0 | 0762 | 0.721 | 0.682 | 0.644 | 0.608 | 0.573 | 0.539 | 0.507
11 0.720 | 0.681 | 0.643 | 0.607 | 0.571 | 0.538 | 0.505 | 0.475
2 1 0.678 | 0.641 | 0.604 | 0.569 | 0.535 | 0.503 | 0.471 | 0.441
3 | 0.636 | 0.600 | 0.565 | 0.531 | 0.498 | 0.467 | 0.436 | 0.407
4 | 0594 | 0.559 | 0.525 | 0.492 | 0.460 | 0.430 | 0.400 | 0.372
5 | 0.551 | 0.517 | 0.484 | 0.452 | 0.421 | 0.391 | 0.362 | 0.334
6 | 0.506 | 0.473 | 0.441 | 0.410 | 0.380 | 0.350 | 0.321 | 0.292
7 | 0.460 | 0.428 | 0.396 | 0.365 | 0.335 | 0.305

8 | 0411|0379 | 0.348 | 0.316 | 0.284

9 | 0.358 | 0.326 | 0.293

10 | 0.299

o/N| 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35

0 | 0.476 | 0.447 | 0.419 | 0.393 | 0.367 | 0.343 | 0.320 | 0.298
1| 0.445 | 0.417 | 0.390 | 0.364 | 0.339 | 0.316 | 0.293

2 | 0.413 | 0.385 | 0.359 | 0.334 | 0.309 | 0.286

3| 0.380 | 0.353 | 0.327 | 0.301

4 |0.344 | 0.318 | 0.291

5 | 0.306
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The complete results for the relativistic corrections for the ground electronic state of
H; for all the vibrational levels for N = 0,1,5 and N = 25 are reported in table 8§.4. As
usual just bound levels are considered.

In figures 8.1, 8.4 and 8.6 the comparison between these results and Kennedy’s reported
in [2] are plotted against non-adiabatic dissociation energies for the rotational levels N =

1

0, N =5 and N = 25 respectively. Detailed plots in the range of 0-3000 cin™" are reported

in figures 8.2, 8.3 and 8.5, for N = 0,1 and N = 5 respectively.
The difference between the results for the relativistic corrections obtained by Kennedy
through an adiabatic approach and the non-adiabatic method of this work is roughly con-

stant over all the vibrational levels; for the rotationless levels this difference (non-adiabatic

— adiabatic) goes from a maximum of 0.0067 cm ™! for v = 0 to a minimum of 0.0062 cm ™ *

for 6 < v < 14. Similar values can be recognised for the other rotational levels that are
reported, namely N = 1 and N = 5. The difference seems to decrease for high rotational
levels being for N = 25 between 0.0058 and 0.0060 cm™!.

In [63] the results for the relativistic correction were reported as a function of R, before
averaging over R. When the variational program is modified to calcnlate (p*), (6(r1.)) and
(Hrer) as a functions of 2, there is agreement to as many significant figures as Kennedy
quoted, up to /2 = 10 ay. Thereafter more and more electronic basis functions are needed
for convergence to agreement; Kennedy’s method works better at large R and is able to
approach the atomic limit.

For N = 0 only v = 17,18,19 levels sample R > 10 ag and there is no evidence that
convergence is not achieved. However, v = 19 results should be treated with caution since
it is only for the very highest vibrational levels that the transitions have been observed and
there is no evidence that Kennedy’s relativistic corrections to transition frequencies are not
reliable [60-63].

To investigate the origin of the discrepancy, only the contribution arising from the
electron dewnsity at the nuclei can be studied, since apart from the relativistic corrections, the
Fermi contact parameter is the only property averaged over R that Kennedy has studied [66].

The results reported from this work seek reassurance from the Fermi contact parameters
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published by Babb and Dalgarno for v = 0 — 9, N = 1 [67]. Electron densities at the
nuclei derived from those results are consistent with the ones here reported to at least five
significant figures; on the other hand they differ from those derived from Kennedy's at
the fourth significant figure and they are consistently higher by 0.00025 ag3. The results
obtained in this work and Kennedy’s derived from his unpublished Fermi contact parameters
for the rotationless levels of H | are reported in table 8.5. Similarly, if a comparison is made
on (p*), Kennedy’s values, extracted from his relativistic corrections and his Fermi contact
parameters, are consistently higher by 0.011 a6'4ﬁ4 than the ones reported in this work.
The electron densities at the nuclei and (p*) differences can then explain the difference of

0.006-0.007 cm ™! in the results of the relativistic corrections.

In addition, in figure 8.7 the behaviour for the rotationless levels of the relativistic
corrections obtained in this work is plotted against the expectation values of the nomn-
adiabatic bond lengths; on the same scale, Kennedy’s results averaged over IZ do not differ
significantly. Also in figure 8.7 are reported Kennedy’s results [63] as a function of R
before averaging over B. When non-adiabatic calculations are performed on the dissociation
energies and (I7), the values of the former increase and as a consequence the values of the
latter decrease (see chapters 4 and 5); in particular for (0,0) the bond length range of
significance about R = 2.0 ag is slightly reduced. It may be seen from the figure that
averaging over a smaller range of 2 will result in a slightly largest result in magnitude.
Presumably this happens to a similar extent for higher levels.

The relativistic corrections reported here, which include non-adiabatic effects, should

be more reliable than Kennedy’s, except perhaps for v = 10.



o [ (Heet)Jem L | (Hyg)/em ™' | (Hea)/em™ | (Hret)/em™

N =10 N=1 N =5 N =25

0 -1.5921 -1.5900 -1.5613 -1.2377

1 -1.5565 9 -1.5563 9 -1.5274 -1.233 8

2 -1.523 4 -1.5216 -1.4970 -1.2330

3 -1.494 5 -1.4928 -1.4701 -1.2355

4 -1.468 7 -1.4674 -1.446 6 -1.2415

3] -1.446 7 -1.4453 -1.426 3 -1.2516

6 ~1.4276 -1.426 3 -1.409 1 -1.266 3

7 -1.4116 -1.4104 -1.3950 -1.286 8

8 -1.3987 -1.3976 -1.3839

9 -1.388 8 -1.3879 -1.3759

10 -1.3820 -1.3812 -1.3711

11 -1.378 3 -1.3777 -1.3694

12 -1.377 8 -1.3773 -1.3709

13 -1.380 5 -1.3802 -1.3759

14 -1.386 7 -1.386 5 -1.3844

15 -1.396 3 -1.396 3 -1.396 6

16 -1.409 6 -1.409 7 -1.4129

17 -1.426 4 -1.426 8 -1.433 4

18 -1.4451 -1.4456

19 -1.4540 -1.454 1

Table 8.4: H;’ . relativistic corrections for all the vibrational bound levels, for N = 0,1,5,2
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Figure 8.1: Hy (v,0): comparison between the results reported in this work and Kennedy’s [2,63]
for the relativistic corrections against dissociation energies.
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Figure 8.3: Hy (v,1): comparison between the results reported in this work and Kennedy’s [2,63]
for the relativistic corrections against dissociation energies in the range 0-3000 cm ™.
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o O e [ G en [ @ e i | o jag
[66] this work [66] this work
0 0.206 988 0.206 737 6.296 589 6.285 656
1 0.201 560 0.201 311 6.135 310 6.124 512
2 0.196 543 0.196 295 5.986 916 5.976 216
3 0.191 910 0.191 663 5.850617 5.839 992
4 0.187638 0.187 399 5.725 741 5.715176
5 0.183 710 0.183 463 5.611712 5.601 184
6 0.180 106 0.179 857 5.508 034 5.497 496
7 0.176 813 0.176 564 5.414 306 5.403 768
8 0.173 818 0.173 567 5.330 175 5.319 632
g 0171112 0.170 860 5.2505 389 5.244 8§24
10 0.168 685 0.168 433 5.189 752 5.179 152
11 0.166 533 0.166 279 5.133 135 5.122 496
12 0.164 651 0.164 395 5.085 488 5.074 808
13 0.163 038 0.162 782 5.046 831 5.036 104
14 0.161 694 (.161 434 5.017257 5.006 488
15 0.160 623 0.160 363 4.996 953 4.986 136
16 0.159 831 0.159 569 4.986 156 4.975 296
17 0.159 329 0.159 069 4.985 105 4.974216
18 0.159 132 0.158 874 4.993014 4.982112
19 0.159 148 0.158 887 4.999 430 4.988 536

Table 8.5: Hf, N = 0 levels: comparison between the results for the expectation values of p’ and
the electron density at the nuclei obtained in this work and Kennedy’s [63] obtained from
unpublished results.
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8.5 Conclusions

In this chapter the relativistic corrections for some vibration-rotational levels of Hj are
reported; however many other levels can be studied. The results are obtained through s
non-adiabatic approach.

After the introduction of the perturbation operator, a detailed exposition of the numer-
ical methods developed and applied to achieve the results is given; the main difficulty is
presented by the expectation values of p* to be studied with the scattering and transformed
Hamiltonian method. Since the transformed form of this operator, p{, introduces a signifi-
cant contribution that depends on d/9R, an alternative method is developed to solve this
problem, since the scattering method cannot deal with operators containing 8/8R.

For this purpose, while the main contribution to the relativistic corrections arising from
(p*) is studied with the scattering method, the LEVEL program is modified to account for
the 9/0R part of the problem; this approach allows the study all the vibration-rotational
levels of interest. Unfortunately this method does not include > —1IT coupling; for this reason
for high rotational levels the results are not expected to be so accurate as for rotationless

and low rotational levels.

An explanation of the constant difference with Kennedy’s results [63] is found through

the investigation of the expectation values of p* and the electron densities at the nuclei.
Reassurance of the reliability of the results reported in this work is found in Babb and
Dalgarno’s Fermi contact parameters [67].

The results reported in this work should be of interest for a comparison with experi-

mental resulfs concerning transition frequencies.
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Chapter 9

Conclusions and further work

After a short introduction about the overall aims of this work, in chapters 2 and 3 the dif-
ferent levels of approximation to solve the Schrédinger equation, the theoretical approaches
and the calculation methods, that have been used in this work to obtain the reported results,
are described in detail. Through two unitary transformations, a transformed Hamiltonian
in which no nuclear motion terms involving cross-derivatives between nuclear and electronic
coordinates appear, may be obtained. This form of the Hamiltonian allows the study of
properties of the ground electronic states of the hydrogen molecular cation and its iso-
topomers to a high level of accuracy. The transformed Hamiltonian is used in a scattering
method. Two different methods have been used; a variational and a scattering method,

the former used mainly as a test for the latter which allows the study of all the vibration-

rotational levels of interest for all the three cations Hy , DJ and HD¥.

Chapter 4 is dedicated to the study of the non-adiabatic correction to the dissociation
energies of the ground electronic states of HJ, DJ and HD'; attention is confined to the
bound levels. It is shown how for v=0 or for N=0 it is possible to predict the adiabatic
corrections o the dissociation energies for D and HD™ starting from those of Hy, through
scaling factors based on the relative reduced masses. However, scaling becomes increasingly
less successful as v (for constant N) or N (for constant v) increase. The same comments
are true for the non-adiabatic corrections except for the few high lying levels of HD' that

are found to be atypical.

In chapter 5 the non-adiabatic correction to the bond lengths for all the three cations



is reported. A previous work by Moss [37] showed that the non-adiabatic correction to the
bond length of HDT v=20, N=0 was anomalous. In this work further levels are found for
HD' where the non-adiabatic corrections are anomalous, in that they do not lie on smooth
curve predicted from the corrections for Hi [32]. While in general corrections to the bond
length are negative and increase in magnitude with v for given IV or with N for given v, for

some levels the correction is positive.

The work contained in chapter 6 goes further than the original aim of this work. Since
Frolov [39,40] has recently published dissociation energies and other properties for the (0,0)
level of the ground electronic states of Tg, HT* and DT, a comparison with his results
is desirable. For this reason, non-adiabatic dissociation energies and non-adiabatic bond
lengths are computed and with the respective non-adiabatic corrections are presented in
this work, for all the rotationless levels of the ground electronic states of HT* and DT,
As expected from the results obtained for the heteronuclear molecule HD' and reported
in chapters 4 and 5, HT" and DT show similar anomalies for high vibrational levels.
As realized for HD™, the intermediate transformed Hamiltonian does not handle the g/u
symmetry breaking as successfully as hoped in the region of rapid change; the g/u symme-

try breaking might not be fully accounted for by the intermediate transformed Hamiltonian.

In chapter 7 new results for the dipole polarizability of the hydrogen molecular cation
and its isotopomers are reported. Many levels have been studied, although levels close to
dissociation will require more effort. Only levels with N = 0 and N = 1 are considered,
since for a given N, the (N +1) values of | M| must be considered separately, but again other
N could be studied if necessary. HD™" is of particular interest here since only one previous
calculation of its polarizability has been reported; the presence of an asyminetric charge
distribution provides novelty. The result here reported for (0,0) is close to the only previous
one. The opportunity is also taken to revisit HJ (0,0, but including higher-order contribu-

tions than previous studies does not removed the difference between experiment and theory.

In chapter 8 the relativistic corrections for some rotational levels of H; are reported.
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After the introduction of the appropriate perturbation operator, a detailed exposition of
the numerical methods developed and applied to achieve the results is given; the main dif-
ficulty is presented by the expectation values of p* when they are to be studied with the
scattering and transformed Hamiltonian method. Since the transformed form of this oper-
ator, p{, presents a significant dependence on 9/9R, an alternative method is developed to
solve this problem, since the scattering method cannot deal with any dependence on /. For
this purpose, while the main contribution to the relativistic corrections arising from (p?)
is studied with the scattering method, a modified LEVEL program [7] is used to solve the
J/0R part of the problem. This approach allows the study of all the vibration-rotational
levels of interest. Unfortunately this method does not allow the inclusion of ¥ —I1 coupling;
for this reason, for high rotational levels, the results are not expected to be so accurate as
for rotationless and low rotational levels. However, the results reported in this work should

be of interest for a comparison with experimental results.

This work may be of relevance for metrologists in improving the accuracy of the determi-

nation of the mass of the proton to the electron mass, but improvements in results concerning
the radiative correction are needed. The hydrogen molecular cation HJ, is thought to be
intimately involved in the initiation of astrochemistry in the interstellar medium and yet it

has not been observed extraterrestrially, unlike H{ Successful observation of interstellar

H will involve knowledge of accurate transition frequencies.

Further work could include the radiative correction, the study of properties for the first
electronic excited state of the homonuclear species of the hydrogen cation and the quasi-

bound levels of the isotopomers.
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