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By using a scattering approach combined with a transformed Hamiltonian theory, fully 

non-adiabatic properties of the vibration-rotational levels of the ground electronic state of 

the hydrogen molecular cation H^ and its isotopomers, D^ and HD"^, are studied. For 

low vibrational levels a variational method is also used, providing a check on the methods. 

The properties considered include the dissociation energies, the bond lengths and the dipole 

polarizabilities for aU the three cations. Relativistic corrections are studied just for Hg . 

While properties such as bond lengths and dipole polarizabilities are studied through 

analytic integration, a numerical integration approach is developed to study the relativistic 

corrections, since singular integrands are involved. In addition, a new calculation method 

is developed so that the scattering method may be used. 

Non-adiabatic dissociation energies and bond lengths are also studied 6)r the tritium 

heteronuclear isotopomers HT"̂  and DT+. 
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Chapter 1 

Overall aim of t h e p ro jec t 

The hydrogen molecular cation and its isotopomers, and HD^", comprising of two 

nuclei and one electron, are the simplest molecules; for this reason they represent a good 

test to calculate theoretically and in an accurate way some properties and to compare them 

with experimental results. 

Because of the absence of interelectron interactions, has been used as a model system 

to test many difkrent approximations and methods. Even though for and the Bom-

Oppenheimer approximation allows the exact solution of the Schrodinger equation, further 

calculations (adiabatic and non-adiabatic) are needed to describe the coupling between 

electronic and nuclear motions [1]. For HD"'", the lack of a centre of symmetry due to the 

diSerent nuclear masses, creates diBculties in the theory, as is explained in this work. 

Theoretical s tudio on these small molecules are now so accurate that disagreements with 

experiments may be attribuited to the breakdown of the Bom-Oppenhehner approximation 

while relativistic and radiative corrections have also to be accounted for. Allowance &)r the 

breakdown involves two types of correction: the adiabatic, which is diagonal in the electronic 

state and allows 5)r the response of the nuclei to the instantaneous position of the electron, 

so that the uniformity of the motion of the centre of mass of the system is maintained; 

the non-adiabatic, which is o@-diagonal in the electronic state and allows for the lag of 

the electron in its attempt to foHow the nuclei during vibration and rotation. While the 

accurate dissociation energies of many bound and quasibound vibration-rotational levels 

have been calculated for Hj" [2], [3] and HD+ [4] few fully non-adiabatic values of 

molecular properties of the hydrogen molecular cation have been calculated. 



Extension of the calculation of the non-adiabatic correction to properties such as the 

bond lengths, the dipole polarizabilities and the relativistic corrections is the aim of this 

work. This is of fundamental academic interest, since the hydrogen molecular cation is the 

simplest molecule, for which non-adiabatic eEects are supposed to be greatest and since 

electron correlation does not confuse the issue. There are, however, other reasons for which 

it is desirable to have extremely accurate property values 6)r these ions. 

The recent interest in exceedingly accurate non-adiabatic energies, has been prompted 

by the possibility of metrologists using very high resolution spectra of in ion traps to 

determine the ratio of the proton to the electron mass [6]. Although relatively low vibration-

rotational levels are involved, some of them are di&cult to study using a variational method. 

In addition, extremely accurate relativiatic and radiative eEects need to be calculated for 

each level and the only fsasible way, at present, is to evaluate expectation values of the 

relevant operators. Although this has been done [2^] using Bom-Oppenheimer electronic 

wavefunctions as a function of internuclear separation and averaging over bond length 6)r 

each vibrationrrotational level, these estimates are good to no better than 1 x 1 0 " ^ ^ 

(0.0002 cm"^) while at least an improvement to 0.000001 cm"^ is needed to be of use to 

metrologists. 

In addition, the hydrogen molecular cation is supposed to be intimately involved 

in the initiation of astrochemistry in the interstellar medium but it has yet to be observed 

extraterrestrially, unlike 

In this work, all the theoretical aspects involved in the study of the properties of the 

hydrogen molecular cation and its isotopomers are considered; all the levels of approximation 

are described accurately with a particular attention to the transformed Hamiltonian theory 

which allows 6)r all the couplings between nuclear and electronic motions. Besides, a detailed 

explanation of the calculation methods used and developed is reported. 

The non-adiabatic corrections to the dissociation energies and to the bond lengths and 

the non-adiabatic dipole polarizabilities for the ground electronic states of the three cations 

are discussed. In addition the relativistic correction for is considered. A short chapter 

is dedicated to the non-adiabatic dissociation energies and bond lengths for the tritium 



cations HT""" and DT+. 

While most of the integrals needed may be evaluated analytically, the study of the rela-

tivistic correction requires mmierical integration to evaluate matrix elements with singular 

integrands. 

The programs used are based on those of Kennedy and Sadler [6] and Leroy [7]; the 

original scattering program was written by Balint-Kurti [8]. 



Chapter 2 

Theory 

2.1 The full non-relativistic Hamiltonian and 

levels of approximation 

The Schrodinger equation for the hydrogen molecular ion may be solved at different levels of 

approximation. The simplest and most common is the Born-Oppenheimer approximation, 

which is defined as the solution for the motion of the electron in the field of the 6xed 

nuclei. A more accurate approximation is the adiabatic one, which includes only terms of 

the coupling between nuclear and electronic motions which are diagonal in the electronic 

state. But the complete solution is the one that includes also the off-diagonal terms of the 

coupling between the elctronic states: the non-adiabatic solution. 

Because electronic energies are determined at fbced nuclear separation, both Bom-

Oppenheimer and adiabatic approaches separate nuclear and electronic motions, leading 

to the concept of electronic potential energy curves. This idea has to be abandoned in 

searching for the non-adiabatic solutions to allow for the electron following the nuclei dur-

ing vibration and rotation of the molecule. 

A system of point charges interacting electrostatically and moving through Geld-Gree 

space is studied. For such a system the complete non-relativistic Hamiltonian can be written 

as 

^ = + (2.1) 

^ iTTEo ^ ^ no-

where all the symbols have their usual meaning and the coordinates refer to the laboratory 

frame. 



In order to obtain a convenient form of this Hamiltonian &)r the hydrogen moleculaj-

cation, a change is made hrom the laboratory hrame to one centred on the geometric centre 

of the nuclei, applying the transformation 

which has as its inverse 

1 
2 

- 1 
mi 
Af m2 

(2.2) 

V 
M 

Mr, 
M 

2M 

1 \ 

1 
1 / 

(2.3) 

where Af = mi + mg 4- me and = mi 4- ^2- The coordinate vectors are illustrated in 

figure 2.1: r i , rg, rc are the position vectors of the three particles relative to the arbitrary 

space-hxed origin O. The new basis vectors are the intemuclear vector R = rg — r i , the 

position of the centre of mass relative to the space-hxed origin AcM the position of 

the electron relative to the geometric centre of the nuclei r^. Applying the transformation 

(2.2) to the kinetic energy operators in the Hamiltonian (2.1) leads to 

2m^ \2mp 
V 
2/̂  

R + Zl 
8/̂  

Vg. V a 
2/̂ a 

+ CM 
2M 

(2.4) 

—̂  and — = The convention to set mi as the mass of the proton 

and m2 as the mass of the deuteron is chosen in order to have, for HD"^, a positive value 

for 

On the other hand, the electrostatic potential energy between the particles 

y 
47rEo 

1 

He 

1 

rgc 
(2.5) 

is unchanged by transformation (2.2), because it depends only upon the relative positions 

of the particles. 

The complete Schrodinger equation lor the system is then 

2mc 
Z i + 3 + V , - v „ 
2/̂  8// 2/̂ a 

YcM 
2M ot tot ^ tot- (2.6) 



m. 
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O 

Figure 2.1: Coordinate system for the hydrogen molecular ion: 0 is the arbitrary space-fixed 
origin, C.M. is the centre of mass of the system and G is the geometric centre of the nuclei. 



Because the motion of the centre of mass is contained in the term, it can be separated 

out to write a solution of the form 

A, rg) — ^CM(AcM)V'niol(-R, Tg) (2.7) 

that allows the separation of the total Schrodinger equation (2.6) into 

and 

= (^tot - ^mt)^CM. (2.9) 

Equation (2.9) can be easily recognized to be the time-independent Schrodinger equation 

6}r a body of mass M Sreely moving in space with kinetic energy (^ot — ̂ int) - In conclusion, 

the non-relativistic Hamiltonian, in atomic units, for the internal motion of the hydrogen 

molecular ion is 

= p.10) 
2 2/̂  2/̂ a ^ rie rgc 

which can be expressed in a more compact way as 

^int = ^BO + —^ad + — ( 2 - 1 1 ) 
At a 

where 

1 1 1 
^BO = ^ + . (2.12) 

2 E Tie r2c' 

\72 
= (2.13) 

and 

(2.14) 

Equation (2.13) and, in the case of HD^, (2.14) couple electronic and nuclear motions 

making it impossible to find exact eigenfunctions and eigenvalues Ibr equation (2.10); in 

order to make the problem tractable some approximations can be made. 



2.1.1 The Born-Oppenheimer approximation and its 

solution 

The Born-Oppenheimer problem is solved by ignoring and in equation (2.8) and 

solving the Schrodinger equation for diSerent values of to generate a potential energy 

curve and a wavefunction that depends parametrically on /Z. The Born-Oppenheimer elec-

tronic equation 

— —^(6t(rg; j() = ^t(j^)<;6f(rg;_R) (2.15) 
\ z Vb /2c'̂  

has to be solved. In (2.15) f is the electronic state; this three-dimensional equation represents 

the motion of a single electron around two fixed nuclei. 

By using prolate spheroidal coordinates, equation (2.15) can be separated into three 

one-dimensional equations which may be solved exactly with series expansions [9]. The 

prolate spheroidal coordinates are defined as 

^ "(^th 1 < ( < oo, 

77 = with - 1 < f? < 1 

and % represents the rotation of the electron about the intemuclear axis (0 < % < 27r). The 

transformation from cartesian to prolate coordinates allows (2.15) to be written as 

(2.1G) 

where = - :^[Et(7() -

In the Hamiltonian operator of equation (2.16) there are no cross-derivatives between 

the coordinates, so the solution can be fa^torized as 

<^^((,'7,%;^) = Z;(^;^)M(77;/?);^(%) (2.17) 

to obtain three one-dimensional equations 

( ^ + ^^)N(%) = 0, (2.18) 



(2.19) 

^ ^ (1 - 7̂ 2) ^ ) = 0 (2.20) 

where and A are the separation constants. Equation (2.18) can be solved analytically 

with the result 

Ar(%) = (2.21) 
V27r 

where vi — 0, j : l , =1:2, — . 

For the solution of equation (2.19) the Hylleraas expansion [9] over associated 

Laguerre functions 

- (^' - g g l ^ / : G / | ) ( 3 ; ) (2.22) 
n—|/l| 

can be used. In (2.22) a; = ai(^—1) and a is a non-linear variational parameter. Substitution 

of tliis solution in (2.19) leads to a recursion relation between the coeGicients gn(/(). 

Equation (2.20) may be solved using an HyHeraas expansion [9] over associated Legendre 

functions 

OO 
M(7/; 7i!) = % ( ; ? ) . (2.23) 

The solution of the electronic Born-Oppenheimer equation is achieved by determining 

gn(^) , /3(^) and ^7t(A) for a given state at a particular value of J? and requiring that 

the separation constant v4 satisSes at the same time both the set of recursion relations in 

gn(_R) and /^(^Z). This condition can be expressed as the matrix eigenvalue equations [10] 

(7g = —Ag (2.24) 

f / = A / . (2.25) 

Solution of the Born-Oppenheimer equation yields an electronic i)otential energy curve 

[/(;%) = (2-26) 



in which all the couplings between nuclear and electronic motions have been neglected. The 

radial Schrodinger equation for the nuclear motion is then 

{ ^ ^ ^ -I ^ = 0 (2.27) 

and its vibration-rotational eigenfunctions and eigenvalues may be found by Numerov-

Cooley integration [11]. 

+1 ) 

2.1.2 The adiabatic approximation 

Adiabatic vibration-rotational energies may be obtained by correcting the potential by 

adding the expectation values of 

(2.28) 

to the Born-Oppenheimer potential using the Born-Oppenheimer wavefunctions i^^(rg;7Z) 

[12]. Following the method suggested by Born and Huang [13], the complete molecular 

wavefunction can be expressed as a series expansion over the Born-Oppenheimer solutions 

i^t(rg;7^) as follows 

rg) = Y ] (2.29) 
t 

Substituting (2.29) into the Schrodinger equation for the internal motion (2.8), a set of 

coupled differential equations for the function ^t(A) is obtained 

= (2.30) 

This equation can be simpliBed by premultiplying by ^*(rg;_R) and integrating over the 

electronic coordinate rg to obtain 

t 

(2.31) 



that can be rewritten as 

K Vg V; - Vr 
2;U 8/̂  2/̂ 2 

+yi / Yi _ 3 _ 
2^-i Su, 2jLiji 

f}(A)^t(rg; 7()(frg = (2.32) 

In the Born-Oppenheimer equation the nuclei are treated as Sxed charged points, so the 

wavefunctions i^t(rg;7Z) are either symmetric or antisymmetric with respect to exchange 

of nuclei or with respect to electron inversion in the geometric centre of the nuclei; in 

the particular case of HD+, the operator is antisymmetric with respect to nuclear 

permutation while the operator Vg is antisymmetric for electron inversion. For this reason 

the fallowing integrals allow the elimination of the coupling term V^, - Vg from the diagonal 

terms of equation (2.32) 

y J^)VR^^(rg; E)(frg = 0, 

<;6l(rs;^)Vg^g(rg;7^)(irg = 0, (2.33) 

^I(rg;^)Vg - VR^Xrg;^)rfrg = 0 

so that it becomes 

^ - / « ( r , i J r ) 
V?1 Vi 
2^ 

Vg. Va 
2^ 8/z 

9^((rg;7^)drg 

VR 
/i 

9^((rg; y^)(frg - V a } j^(A) = Emtf^(A). (2.34) 

In the case of the Born-Oppenheimer approximation, equation (2.34) reduces to 

I ^ X A ) - ^ } ^ r ( A ) = ° (A) . 
2// 

(2.35) 

11 



Equation (2.34) is a set of coupled diSerential equations for which it is impossible to 6nd 

the exact solution because it would be necessary to calculate the couplings between the 

inRuite set of functions 

The adiabatic approximation consists in considering just the diagonal couphng in the elec-

tronic state solving only 

/ <^*(rg;_R)-^<^a(rg;R)drg 

- / ( A ) - (2.36) 

The e&ct of this approximation is that the nuclear motion is now governed by the elective 

potential 

(7(7^) = ^,(7?) - y ^ : ( r g ; B ) ^ ^ , ( r g ; ^ ) c ( r g - ^ : ( rg ;^ )^ ,^Xrg ;7Z) ( f rg (2.37) 

which is isotope dependent because it depends on the reduced mass on the other hand, 

the Born-Oppenheimer potential ^a(jR) is isotope independent. Substituting (2.37) into 

(2.27), and are obtained as solutions of the radial Schrodinger equation for the 

nuclear motion. 

The adiabatic approximation then, consists in retaining the diagonal correction improv-

ing the approximation given by the Born-Oppenheimer one, even though electronic and 

nuclear motions are stiU separated. 

The adiabatic approximation is particularly successful when the choice is made to neglect 

the non-adiabatic coupling to the state of interest; namely when the ground electronic state 

of a molecule which does not couple with its Erst excited state, producing non-adiabatic 

effects, has to be studied. This is the case for the ground states of and Dg , but not 6)r 

HD+; in fact, in this case the 

(2.38) 
2/̂ a 

12 



term couples the ground (2+) and the first excited electronic states. In order to obtain 

accurate results 6)r HD+ it is necessary to per&rm non-adiabatic calculations especially lor 

high vibrational levels. In fact if the behaviour of the adiabatic potential for these states at 

large /Z is considered, at very large they have the same dissociation limit even though in 

reality the dissociation limits H++D(ls) and H(ls)+D+ are separated by 29.8 c m " \ This 

is a degeneracy that can be resolved only by performing non-adiabatic calculations. 

2.1.3 The matrix e lements of the Hamiltonian 

In order to apply the Hamiltonian (2.10) to the hydrogen molecular ion, explicit forms of the 

operators that appear in it are needed; these have to be expressed in terms of the internal 

coordinates of the system (/(, ?;) since the dependence upon % is going to disappear. First, 

the angular motion of the nuclei has to be separated and then the resulting matrix elements 

have to be expressed in terms of the internal coordinates. The angular motion of the nuclei 

is separated by trans&rming the frame system &om the space-fixed axes system (%, Y, ̂ ) 

to a A-ame of rotating molecule-hxed axes (a;, z); to do it, two Euler angles need to be 

dehned: 

#) about the initial axis with 0 < ^ < 27r; 

#) about the resultant ^ axis with 0 < 0 < 7r 

&om which the following transformation is obtained 

cos(^cos^ sinc^cos^ —sin^ 
—sin^ cosi^ 0 ; (2.39) 

cos^sin^ sin^sin^ cos(? 

in (2.39) z, z are the new rotating axes. The new coordinates (7?, î ) are sufRcient to 

describe the motion of the nuclei. 

The above transformation has to be applied to the differential operators of the Hamil-

tonian (2.10). Applying transformation (2.39) to the nuclear Laplacian operator and 

using it in (2.35) and (2.36), the separation of the rotational motion of the molecule [12] 

is obtained. In a 6rame system so defined, the motion of the election is governed by the 

13 



molecule-Hxed potential 

(^()'ie;7'2G) — (2.40) 
rie r2o 

so, physically, it is convenient to transkrm the operators to a molecule-Axed electron coor-

dinates system referring it to the geometric centre of the intemuclear vector. Then 

= 1 ^ ) - zcosgjC^ 4- WnO-La;; 
Oip / s / m 

^ (2.41) 

— = —"1 
9/^/ a m 

where the subscript s indicates the partial diSerential operators referring to the electron 

coordinates in the space-hxed axes system (%, Y, .Z) while the subscript m refers to the 

electron coordinates in the molecuie-fixed electron coordinate system (7Z, 0, (^). Prom trans-

formation (2.41) a form is obtained for the nuclear Laplacian operator that depends 

explicitly on the components of the electron angular momentum in the rotating coordinate 

system through the operators [12] 

= (2.42) 

Following the same procedure, the operator coupling electron and nuclear motions Vg - VR 

may be written as a function of and, moreover, as a function of the components 

of the electron's momentum operator 

f = - i V g (2.43) 

in the molecule-Gxed coordinate system through [12] 

= (2.44) 

The electronic Laplacian and the potential operators 

14 



^ (2.46) 
^ Tie rgo 

are both independent of the Euler angles ^ and 

Now, the forms derived for all the operators of the total Hamiltonian (2.10) allow the 

rotational motion of the molecule to be separated. For this purpose the molecular wave-

function is written as 

V'mo, = (2.47) 
A 

where the functions depend on the relative positions of the particles and 

(0) (2 ,48) 

are the normalized symmetric top eigenfunctions; ^ is the total angular momentum in the 

space-Axed system, Af/y is its component along the space-Sxed axis and is its component 

along the rotating molecule-fixed z axis. 

The motion of the electron about the z axis is described by the angle % 

(2.49) 

Substitution of (2.47) into (2.8) leads to the elimination of the Euler angles ^ and The 

matrix elements of the Hamiltonian can be indicated as 

- (/l ' |^|yl) (2.50) 

since j/V and M/f are good quantum numbers. From the expression of the differential 

operators |̂ 12] in the total Hamiltonian, the only non-zero matrix elements of are those 

which satisfy the ^ selection rule 

y| — vi = Ayi = 0, d:l (2.61) 

that is, the only non-%ero matrix elements of the Hamiltonian are [12] 

i. o 



^ ' "-721 M I T/ ^ / ,11̂ 721 (vi|j:f|yi) = - -Miv^ jv i ) + y -

1 r 2 a 1 
; v ( # + 1 ) - vi(A +1) + j 

+ (2.52) 

M - l |^ |vl) = \ / ( # + v l ) ( ^ - ^ + l ) { ^ M - (2.53) 

(vi + l|J^|vl) = y(7V + vi 4- 1)W - + i l f '+M)}. (2.54) 

At this point the total internal Hamiltonian (2.10) does not depend any more on and 

having separated the rotational motion of the nuclei. 

The hnal step is to express the above matrix elements as fimction of the internal coor-

dinates (^, T/, %) of the system allowing the elimination of the coordinate %. After some 

manipulations the final matrix elements useful to develop non-adiabatic calculations k r 

vi = 0, ±1, namely between 2 and n basis functions respectively, are [12] 

(Ogl^lOg) 
2 % o ^ l 
7̂ ^ Ti! 

1-
((^ - 77̂ ) 

(Oj^lOg) 

-2y 

1 

(2.55) 

(2.56) 

where 

(±lg|^|Og) = - B , 

= 
1 

^2 _ ^2 [ g 
a u 

y 

(2.57) 

(2.58) 

(2.59) 

(2.60) 
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and the subscripts g and u derive from the dependence of the single operators of the Hamil-

tonian on 7y; for the diagonal operators even in yy the rules are 

^ u ^ (2.64) 

while if the diagonal operators are odd in 7/ the rules cliange to 

g <74 g, « u, u g; (2.65) 

on the other hand for the off-diagonal operators in Vl, the matrix elements of the even 

operators in 7/ satisfy (2.65), while those of the odd operators obey (2.64). 

2.2 Non-adiabatic calciilac rns 

As already mentioned, it is impossible to find the exact sohition of equation (2.34) because 

it would require the solution of an infinite set of coupled diSerential equations. One solution 

[14] is to try to reduce the problem by just considering the coupling with a finite number of 

other states and hope that the Born expansion (2.29) converges rapidly. This method has 

been used for the lowest vibrational levels but if there is the wiU to increase the number of 

levels studied, longer Born expansions are needed. 

To perform more e&cient and accurate non-adiabatic calculations, other techniques have 

to be developed. 

17 



2.2.1 Some possible approaches 

Variational calculations 

Within this method [15,16] the eigenvalues of the complete Hamiltonian (2.8) are sought 

by variational adjustment of the trial wavefunction 

Am 

^ 7̂) + ^ ^ Qjk 6 7?)- (2-66) 
2—0j=0,2&=0 i — 0 j = 1 , 3 t = 0 

In (2.66) the first summations are enough to describe an homonuclear molecule and the 

second summations have to be added in order to study an heteronuclear system; the basis 

functions of the expansion are 

C, ^) = e- '^cosh(,8,7)^Y\R' ' / 'e-i^ '^k(2;) (2.67) 

where ^^(3;) are Hermite polynomials, z = '/(A — (̂ ), A are integers and are 

adjustable non-linear parameters chosen to minimize the energy. 

Varlational-pertubation calculations 

In this method [17 -20] the non-adiabatic effects are treated as a perturbation of the adi-

abatic approximation so that the adiabatic wavefunctions can be used as a starting point 

for the development of the calculations. An adiabatic Hamiltonian is deHned 

= ( 2 . 6 8 ) 

71 

where are the adiabatic energies and is a complete set of adiabatic cigenfunctions 

of the jkrm 

V4''(A,rg) = 9)^(7.^; ;Z)f:"(A). (2.69) 

jp^(jR) are the solutions of the radial Schrodinger equation with f7(7Z) being the adiabatic 

potential (see equations (2.27) and (2.37)). 

18 



The total Hamiltonian can now be separated into an adiabatic part and a non-adiabatic 

term treated as a perturbation 

^ (2.70) 

so that 

(2.71) 

and since 

= (2.72) 

the first-order energy correction is 

= (2.73) 

To 5nd the second-order energy correction, is treated as the zero-order eigenfunction 

and the 6rst-order eigenfunction is written as 

V'n = + Vn (2.74) 

where satisdes the equation 

( ^ ^ - (2.75) 

The second-order energy correction is given by 

(2.76) 

To Erst-order the ground state couples only to excited S and II states. The non-adiabatic 

corrections aze completely independent for each coupling 

e " = y , e ' L c m 

/la 

where yl is the projection of the orbital angular momentum on the intemuclear axis and a 

includes g and u characters. For the homonuclear molecular ions the coupling between states 

of different g/u symmetry is zero and this method gives very good results, but for HD"*̂  the 

results compared with experiments become worse at the approach of the dissociation limit 
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because the coupling between Isug and 2p(%̂  states increases at large intemuclear distances 

and can no longer be treated as a perturbation. 

2.2.2 The theory of the transformed Hamiltonian for 

HD+ 

The electronic part of the Schrodinger equation needs to be solved very accurately in prolate 

spheroidal coordinates. When the internal Schrodinger equation is expressed in prolate 

spheroidal coordinates, very complicated nuclear motion terms appear (see equations (2.55) 

to (2.58)); some of them consist of cross-derivative terms between electronic and nuclear 

coordinates. For this reason when non-adiabatic calculations are per&rmed, many problems 

arise from the complexity of the equations; then, it is convenient to simplify the theory being 

careful not to lose accuracy in the results. 

The main theoretical properties to be satisGed from the trans&rmed Hamiltonian theory 

are the following: 

*) the electronic Schrodinger ec^uation has to be accurately and easily solved; 

#) the nuclear motion effects have to be included; 

#) all the properties of HD+ and its isotopomers have to be calculated accurately for aU 

the levels of the ground electronic state. 

The hrst condition is comphed with by the development of a theory in which the 

Schrodinger equation is solved in prolate spheroidal coordinates, but in order to satisfy 

the second property a more sophisticated theory has to be used. If the first two conditions 

are satisfied also the third wiU be with high probability. 

The transformed Hamiltonian theory far HD+ [21-23] answers all the requirements 

listed above. The core of the theory is to transform the Schrodinger equation in such 

a way that complicated nuclear motion terms involving cross-derivatives between nuclear 

and electronic coordinates do not appear in the transformed Hamiltonian; the new energy 

operator is, in this way, able to take account of those terms within a transformed potential 

energy operator, which does not contain any derivatives. As a consequence, some nuclear 
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motion effects which before the transformation appeared as non-adiabatic ejects, are now 

accounted for in the adiabatic part of the problem. 

Because of the diSerent nuclear masses in HD+, the g/u symmetry breaking term 

(2.78) 

has to be treated to obtain an intermediate transformed Ha.miltonian, which is similar 

to that for and D^; a further transformation is then made to give a Snal transformed 

Hamiltonian. As will be seen, it is possible to choose the intermediate transformation [21,22] 

so that the mass asymmetry is mainly accounted for through elective nuclear charges. 

The intermediate transformation 

The starting point of the transformed Hamiltonian theory is to rewrite the Hamiltonian 

(2.10) as 

+ —^gu + y (2.79) 

where the kinetic energy operator 3^ is 

(2.80) 

the potential energy operator is 

L (2.81) 
^ He rgc 

and the reduced mass constants and the other kinetic operators are deSned in section 2.1. 

In order to remove the coupling term 

—^gu, (2.82) 

the Schrodinger equation is transformed as 

(2.83) 
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where 6" is an hermitian operator and the exponentials are to be interpreted as the corre-

sponding power series expansions. The expansion of equation (2.83) gives 

4- [its', -ffint]] + (2.84) 

The hermitian operator 5" is given by 

(2.85) 

where Sg and 5̂ ^ are, respectively, even and odd operators with respect to inversion of the 

electron coordinates in the geometric centre of nuclei; they are explicitly given by 

and 

,̂9g = a ( A . VR) + 6(rg. Vg) 

,-g, = c(rg. VR) + 4 A . V g ) 

(2.86) 

(2.87) 

where o, 6, c, are real parameters. The &)ur real parameters are chosen to be [21,22] 

a = 0, 6 = 0, c = tanh ' 

and to the Erst order in (nuclear mass) 

+ 1) 
d = (2.88) 

2/i,a 
(2.89) 

The reason for this choice is explained as follows. 

Even though there are many transformations able to eliminate the coupling term, this 

one avoids having divergent potential energy terms which are uncomfortable to treat. Avoid-

ing such terms decreases the possible choices for the transformation employed. The electron-

nuclear potential energy terms should not be affected by the trans&rmation apart from 

multiplicative factors 

= — (2.90) 

where n=l ,2 and may be seen as effective nuclear charges. A simple condition for this to 

happen is that zS', r ie(= -|- ^A) and r2c(=^ f'g — ^jR) satisfy the following commutation 

22 



rules 

and 

[%6',ric] = kiric 

rse] ' -kgrgc 

(2.91) 

(2.92) 

where ki and kg are constants. Taking the general form of (see equations (2.85), (2.86) 

and (2.87)) the commutators become 

ricj = + + ^ c - (2.93) 

and 

rge] = - bjrgo + ^ 
1 , 1 1^. ^ 
- o 4- d — - c 4- -61 A. (2.94) 

The simplest way to satis^ (2.91) and (2.92) is to set 

a = 6 = 0 and d — 

so that k] =k2 and a completely odd transformation is chosen. If c = w and is 

chosen to be 

(rg.VR) + ^ ( A . V g ) 

which leads to the elimination of 

-g, gu-

(2.95) 

(2.96) 

With 26" expressed as (2.95) the explicit form lor the transformed Hamiltonian [21,22] 

can be evaluated to be 

2 4- cosh(w) sinh(w) — 2 

2 + 8inh(w) -i co8h(w) j-ffgT] + V 

from which w must satis:^ the equation 

(2.97) 

2 + 
/i 

sinh(a;) 4—-cosh(w) = 0 (2.98) 
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which leads to 

w = tanh (2.99) 

where 

1 

fJ-
p — ^2 + — ( 2 . 1 0 0 ) 

Using in (2.97) the properties of the hyperbolic trigonometric functions 

sinh(w) = , (2.101) 
Vp^I 

cosh(w) == —. ^ (2.102) 

and 

- 1 

the new expression for ^ is 

a-' = TL + — ^ a d + / (2.103) 

which is formally similar to the Hamiltonian for and Dg ; in (2.103) plays the role 

of an elective nuclear reduced m̂ a&s 

= — — 1 — 2 c± — — g l . (2.104) 
/̂ cff //a 4/̂ g 

Having eliminated 

(2.105) 

multiplying the relative electron position vectors by the same constant, the transibrmed 

potential energy F [21,22] becomes 

y ' = ^ — _ f k _ (2J06) 

where 

+ o f — , (2.107) 
_ I 2/̂ a A'a/ 
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p + 1 , 1 1 1 

The entire traus&rmation of the Hajniltonian has been performed in cartesian coordinates 

but its expression has to be written in terms of the internal prolate spheroidal coordi-

nates. While 2^, and the electron-nuclear potential energy have similar forms as in the 

untrans&rmed Hamiltonian (see equation (2.55)), the transformed intemuclear potential 

energy operator is quite different and it becomes [21] 

(^l -|- Zg)^ (^2 — )?) 

J -t- ,8̂ 77 + -7(^2 + 772) 
(2.111) 

which contains an inseparable term that does not allow the exact solution of the Schrodinger 

equation 

(?:, + /)9^* = (2.112) 

At this stage it is possible to solve the Scbrodinger equation associated with the Hamiltonian 

(2.103) in the adiabatic approximation [21,22,24]. The transformed Hamiltonian in prolate 

spheroidal coordinates for the Z states is 

where and F are deEned in (2.69) and (2.60), the mass dependent constant is given 

in terms of // and (see equation (2.104)) and 

1 = 1 + (2.114) 

In the Schrodinger equation 

( - ^ ; ! r o + / ) V ' o = : W o , (2.115) 
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no derivatives with respect to jR appear and it can be solved variationally for a range of 

values of A. Then the adiabatic correction to ^ is given by 

Equation (2.113) is not separable because of the presence of the transformed internnclear 

potential; a solution could be &)und in expanding the unseparable term contained in F ' as 

a Taylor series 

1 1 1 

+ 7-/̂ ) ^ 

and developing a variational method that requires only the evaluation of two-dimensional 

integrals involving separable integrands, aU of which may be evaluated analytically. The 

solution of equation (2.113) can be expressed as 

V'o = (2.118) 

with the basis functions modelled on the Hylleraas expansion [9] that were used in the 

development of the Born-Oppenheimer electronic equation (see section 2.1.1 on page 9). 

The new basis functions associated with the 2 states, which do not depend on are 

el"! = [a(^ - (;?), (2.119) 

where the convention /Z%(:r) = A7i((a:) is used. In (2.119), /2mj[o!(^ — 1)] and 'PnX'?) 

Laguerre and Legendre polynomials respectively of order mi and and a is treated as a 

non-linear variational parameter. The subscripts and are positive integers (m^ (M,) = 

0, 1, 2, . . . (Mmoa:)) such that the combination between and M, is unique for each 

value of t. Using the variational principle for the linear parameters Q of the expansion leads 

to the matrix equation 

(H - .BoS)c = 0 (2.120) 

where 

(2.121) 
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'S'zj = y (2.122) 

and 

(2.123) 

Since the operators in (2.115) are hermitian, H and S are symmetric matrices. The matrix 

elements (2.121) and (2.122) may be evaluated analytically in terms of 

fOO 
/ a;^e'^^/lT^(z)/2n(:r)da; (2.124) 

Vo 

where r = 0!(^ — 1) and 

7̂ f''7̂ m(77)7"T,(;7)(̂ 77. (2.125) 

In order to compute the vibration-rotational levels in the adiabatic approximation, the 

radial Schrodinger equation 

+ 7 ^ " ' " + ' )] + (2^126) 

has to be solved; in (2.126) the adiabatic potential is 

Tf (7i!) = ^o(/Z) + ^ad(;i:), (2.127) 

where ^ / / ( / ( ) are the radial eigenfunctions and are the energies of the level with 

vibrational quantum number r and rotational quantum number # . Substituting 

f^Ar(-R) = ^%«7v(^) (2.128) 

in (2.126), the following expression for the radial Schrodinger equation is obtained 

{ - ^ + 2;,,g [W (̂;Z) - = 0 (2.129) 

(compare with (2.27)); this can be solved numerically using the Numerov-Cooley algorithm 

[11] as implemented by Le Roy [7]. The potential energy curves obtained [21,22,24] are 

used later in studying the isotopic dependence of the bond length. 
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T h e Glial t r ans fo rma t i on 

So &jr, the non-adiabatic coupling of the states due to the operator 

has been ignored; it contains a term, which is present for and also, formed by 

cross-derivatives between electronic and nuclear coordinates, difBcult to calculate non-

adiabatically. Another transformation of the Hamiltonian has to be performed. The matrix 

elements of the trans&rmed Hamiltonian are formally similar to those reported in (2.55) to 

(2.58). Since the 

(2.131) 

term appears in the diagonal matrix elements in A of f f ' , this term is considered in the 

form it has in (2.113); / f ' is rewritten as 

where 

— = 1 + (2.133) 

and 

p = 1 + ^ ( 6 ^ + 77^-1). (2.134) 

As be&re, the Hamiltonian f f ' is trans&rmed as 

j?" = (2.135) 

so that the wavefnnction becomes 

^ (2.136) 

It will be seen that the objective is achieved if 0 is chosen to be 

8 - - 2 7 ( / , ) ( y i A + 3) (2.137) 
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with 

y W = (2.138) 

77 is hermitian and the transformation (2.135) is unitary. The volume element dT in prolate 

spheroidal coordinates is now 

(fT = ^ ( ^ ^ — 77̂ )d-Rd̂ d7/c(%. (2.139) 

After some manipulations [21,23] the transibrmed Hamiltonian may be expressed 

terms of the Arst and second derivatives with respect to / ' (^) and (/)), as 

in 

+2(3/)/ ' + 2/)(/9 - 1 ) / - 4p(/) - l)(/ ')2 + 2 p / y ) + (1 + 2 p / ) y (2.140) 

1 + 4Xp - i)(y Y+4(p - 1 ) / ) A A ) ] } + 
2 

where 

/ (x 1 (2.141) 

and since 6* has no derivatives with respect to ^ and 7/, 

^ e - / W y ' . (2.142) 

In (2.140) the cross-derivative term 

y A j g (2.143) 

is eliminated if 

1 + 2p/ (p) = 0 (2.144) 

which is a diSerential equation with solution 

/ ( p ) = : — - ] n p + co7ig(an,^. (2.145) 
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Choosing the constant of integration to be zero, 

= VP, 

/ - (2.146) 

1 

Substituting (2.146) into (2.140) ^ becomes 

2 ^ ^ f 

which is hermitian. By making the substitution 

^ (2.148) 

in 

77 ^ (2.149) 

the new transformed Schrodinger equation 

(2.150) 

is obtained where 

this Hamiltonian is hermitian if is normalized using the volume element 

dr = ^(^^ — 7y^)<iA(^(f7)(ix. (2.152) 

Tliis form of the Hamiltonian is able to reproduce the correct dissociation energies for 

HD^ [21,23]. The diagonal matrix elements for the Z states are 
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In then, there are no cross-derivatives between the bond length coordinate and the 

electronic coordinates ^ and this means that all the nuclear motion eSects, apart from 

the non-adiabatic coupling due to 

1 

may be accounted for in the adiabatic approximation. 

In conclusion, if the final transformed Hamiltonian is written as 

the matrix elements used to study the properties of HD+ are the Ibllowing 

and 

(2.157) 

=: (2.158) 

To ensure the hermiticity of 

(0...,I'4! ± L , . ) . 

Since the Hamiltonian has been translbrmed to remove the g / u coupling hom the kinetic 

energy part of the problem, the matrix elements between g and u functions only involve the 

transformed potential energy 

= (2.160) 

lu,g) - , (2.161) 

and 

= 0. (2.162) 
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From equations (2.150) and (2.153) the transformed Schrodinger equation can be solved 

in an adiabatic approximation, neglecting the coupling between rotational and electronic 

angular momenta. To do this, the equation 

- " 

has to be considered where the potential V' is given by (2.111). Equation (2.163) does not 

contain any derivatives with respect to and it is solved variationally for a range of values 

of ^ Allowing the same method explained be&re (see page 25 to page 27). In calculating 

the adiabatic correction for ^ > 0 the rotational contribution is approximated by 

setting = 1 for convenience, in solving the vibration-rotational problem. Then, for /l = 0, 

the adiabatic correction is given by 

The vibration-rotational energies and the vibrational wavefunctions %^;v(7() are cal-

culated &om the radial equation 

( - ^ + 1) + 4- E^(;i!) - }%^vv(yi!) - 0 (2.165) 

and solved numerically using the Nimierov-Cooley algorithm [11]. 

Trans fo rmed eigenfunct ions and t rans fo rmed p roper t i es 

Since the Hamiltonian is translbrmed, aa explained before, through 

jft = (2.166) 

and its eigenvalues remain the same, the eigenvectors are also transformed 

(2.167) 

For this reason, when calculating properties other than the energy from the transformed 

wavefunction, transformed o%)erator8 have to be used. 
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In the case of the bond length, its most general form, namely for HD+ in prolate 

spheroidal coordinates after the intermediate transformation [21] is 

+ + + (2.168) 

where and "y are the mass factors indicated in equations (2.107) and (2.108) respectively. 

In the specific case of the homonuclear species and equation (2.168) reduces to 

/Z' = 7?. (2.169) 

When the Enal transformation is applied, the farm of the transformed bond length is 

7i!t - zc (2.170) 

where /?, 0 and /(p) are defined respectively in (2.134), (2.137) and (2.138). Starting with 

(2.170) it is possible to trans&rm the R dependent part of any other operator of interest. 

The electron density at the nuclei is one of the other properties of interest for this 

project, since it appears in the expression of the relativistic correction (see chapter 8). In 

prolate spheroidal coordinates the expressions far the electron density at the nuclei 1 and 

2 are given respectively by 

After the Srst transformation the following expression arises [21] 

(2 .173) 

where n = 1,2 refers to the nuclei and are the effective nuclear charges of equations 

(2.109) and (2.110). 

Since from equation (2.173) <^̂ (rnc) oc (l/VZ'̂ ), in prolate spheroidal coordinates the second 

and 5nal transformation gives 

< t̂(rHo) = e ' ^y( r , c ) f r (r^e)/!^ = //^(^'(^no) (2.174) 
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at nuclei 1 and 2 where /) is given by (2.134). 



Chapter 3 

Calculat ion me thods 

3.1 Introduction 

In order to per&rm non-adiabatic calculations, the approach used is, first, a variational 

method following the work of Moss and Sadler [6] in which just some levels for u<4 are 

studied. Although it might be possible to achieve satisfactory results for higher vibrational 

levels, the variational method is hmited by the number of basis functions needed. For 

this reason a scattering approach is mainly used in this work; this allows the study of 

non-adiabatic properties of Dp and HD+ for all the vibration-rotational levels. For 

HD^ use of the intermediate transformed Hamiltonian (see page 21) to determine adiabatic 

corrections &)r some properties allows a valid comparison with the other two molecules, 

avoiding the effect of mass asymmetry. 

In addition, as the scattering method does not produce any wavefunctions, the Hutson 

method [25] is used to determine the expectation values of the properties of interest. 

Even though most of the integrals needed may be evaluated analytically, some of them 

require numerical integration far singular integrands; the last section of this chapter is 

dedicated to an explanation of this topic. 
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3.2 The variational method 

The variational calculationa use a linear combination of products of electronic and vibra-

tional functions of the form [6] 

(3.1) 

The electronic part of the solution, ?)), includes both S and H functions. Prom the ma-

trix elements k r and in equations (2.55) to (2.58), the dependence on % disappears 

and just the variables ^ remain with the volume element 

(iT = — (^^ - (3.2) 

As in [23,24] the electronic functions are modelled on the Hylleraas expansion 

^z((,77) = e - 1 ) ^ - l)]p(W)(,?). (3.3) 

In [23,24j n functions were not used, that is the coupling of electronic and rotational angular 

momenta was not included. There the electronic problem was solved at each value of and 

the non-linear parameter a was optimized, so that a was taken as a discrete function of TZ. 

In [6] n fimctions were added to the electronic basis to account for the 2 — IT coupling and 

vibrational functions were included, so that a potential energy function was not forthcoming 

and a property value at each value of ^ was not determined; that is averaging over vibration 

took place. Single values of the non-linear parameters aJR used for the 2 and 11 

electronic fimctions and they are optimized. For high vibrational levels, where average bond 

lengths can be greater than 10 «o, the use of single values of (tE and an is not satisiartory. 

The number of basis ftmctions needed to allow for this becomes too large for the method 

to be reliable. In [G] different values of % and an were used as 7/ increased, but even so 

the results were only considered to be acceptable for low vibrational levels. 

The vibrational part of the problem is modelled on the Fues-type functions [26] 

V'i(^) = (3.4) 
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where /zjf^ (;/) are associated Laguerre polynomials and 

= (3.5) 

with 

P = 2yl-l + N ( N + l ) + ' ^ - (3.7) 

and 

7 = ^ . (3.8) 

As before, /i is the reduced nuclear mass and A; and J are seen as non-linear variational 

parameters. The orders of the associated polynomials mi, 7%% and are integers so that the 

combination of them is unique for a particular state. The Pues functions (3.4) are the 

solutions of the Schrodinger equation in which the Fues potential appears 

( 3 . ) 

where 6 is a force constant and /(e is the equilibrium bond length; the parameter J may be 

interpreted loosely as This potential is more realistic than the harmonic potential 

The required electronic matrix elements may be evaluated analytically using the integrals 

(2.124) and (2.125), which may be expressed [24] in terms of 

(3.11) 

by using the relation [27] 
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In particular for the 11 — 11 matrix elements in the ^ variable 

fOO 
/ (3.13) 

Vo 

with 

W = ^ (a;); (3.14) 
J—0 

for the 2 — n integrals 

/ : ^ ^ W = / : M ( 3 ; ) - r ^ L i ( z ) . (3.15) 

For the 2 — 11 matrix elements the ^ integrals involved, through (3.15), are 

yoo 
/ a;^e"^/I^)(aa;)/2^)(6a;)c(z (3.16) 

Vo 

where the arguments of the associated Laguerre polynomials diSer because the non-linear 

parameters, ag and an, are different. The two associated Laguerre polynomials of (3.16) 

may be expressed as linear combinations of associated Laguerre polynomials with argument 

% [28] 

= E -- (3-17) 

which reduces evaluation of integral (3.16) to that of i n t ^ a l s (3.13). 

For the integrals involving 

(3.18) 

has to be considered, both for 11 — 11 and 2 — 11. By expressing as a hneaz combination 

of Legendre polynomials, (3.18) may be written in term of integrals of triple products of 

Legendre polynomials 

r'7't(7?)7'm(//)P»('7)(;(/7. (3.19) 
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The integrals over the linear variable ^ are of the form 

(3.20) 

and they can be analytically evaluated after manipulations similar to the ones considered 

earlier, using more general relations [27,28]. 

The calculations to solve the non-adiabatic problem are perGarmed by a program solving 

the linear variational problem for given values of the vibrational and rotational quantum 

numbers. The non-linear variational parameters (table 3.1) a s , a n appearing in the elec-

tronic basis functions, and A: and in the vibrational Fues basis functions, were optimized 

by trial and error for the vibrationless levels. The number of functions is constrained by 

placing maximum values on and /ci in equations (3.3) and (3.4) and on the sums 

(mi -|- ?ti) and (m^ 4-71,-1- A;,), the maximum acceptable numbers of electronic basis functions 

and total basis functions allowed, respectively. 

Cation a z a n k J 
3.44 3.60 0.655 0.77 

3.30 0.600 0.69 
HD+ i 50 3.47 0.650 0.70 

Tkble 3.1: Variational parameters optimized by trial and error for the = 0 levels. 

3.3 The scattering 

As already noted, the transformed Hamiltonian 6)r HD+ (2.155) is formally the same as the 

Hamiltonian for and apart from the which substitutes /i. These Hamiitonians are 

similar to the ones used in the scattering problem with 72 playing the role of the scattering 

coordinate. If the matrix elements of (2.155) between the functions (2.119) are considered, 

a set of coupled di&rential equations in 72 is obtained; this set can be used with an inelastic 

quantum-mechanical scattering theory. 

The scattering method [8] is based on the idea of expanding the dependence of the 

wavefunction on all but one of the coordinates (72), in terms of a complete set of basis 
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functions, in order to ibrm a set of coupled diSerential equations and imposing the correct 

bound state boundary conditions on the solutions. A body-hxed coordinate system rotating 

with the molecule is employed. The boundary conditions are diSerent hrom the usual ones 

of scattering theory in which the wavefunction for the scattering coordinate must converge 

to zero just for = 0; here it must go to zero both for = 0 and A = oc and this is 

referred to aa 'closed channels' in the scattering theory. 

The artihcial scattering method used throughout this work consists of adding two 'open' 

artiGcial scattering channels at large to the set of coupled channels arising from the 

coupled differential equations of the bound state problem. These two extra channels have 

lower asymptotic energies than the bound state channel and both correspond asymptotically 

to scattering states. The program computes the transition matrix elements between 

these two channels &)r a given scattering energy. By including arti&cial potential matrix 

elements, the two open channels are forced to notice the closed bound state channels so 

that the former are coupled to the latter but they are not to each other. Moreover, the 

matrix elements have hrst order poles as a function of scattering energy; these poles occur 

at the exact bound state energies. Since the behaviour of 2̂ ^ is well deEned near the bound 

state energies, these may be easily located. 

These equations are solved by propagating the solution using a log-derivative method 

[29]. BrieGy, in a one-dimensional system the log-derivative matrix is dehned as 

y(x) == (3.21) 

where is the eigenfunction of the matrix Schrodinger equation 

-t- V(a;) — 0. (3.22) 

The matrix Ricatti equation 

y (z) + V(z) 4- = 0 (3.23) 

is obtained by differentiating (3.21) and using (3.22) to eliminate the second derivative 

term that cannot be integrated using numerical techniques for solving differential equations 
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because y(z) diverges for some a; values. The algorithm has the following form 

y„(rt) - ( i + A y L . w ) ' " - ' " r " " " " 

where I is the unitary matrix and is the spacing between integration points: Un is the 

form assumed by the potential according to whether % is odd or even 

lln = 71 = 0, 2,4, , W 

iin = I + 71= 1 , 3 , 5 , . . . , jV — 1 

and Wn are the weights 

Wn = 1 if M = 0, TV 

Wn = 2 if = 2 ,4 ,6 , . . . , ^ — 2 

Wn = 3 if M = l ,3,5, 1. 

The truncated error is 

y W ) = y # + (3.25) 

where C is an unknown constant matrix, C7(A )̂ is a matrix of order y(a;Ar) is the 

exact value and y// is the approximate value computed by the method. Only at the Snal 

integration point = W, the numerical value of y^ is a good approximation to the value 

y(%2v)- By defining the quantity 

Zft = (3.26) 

the program solves one iteration step; the matrix y;\r is then recovered in the Gnal calculation 

by 

(3.27) 

What is obtained as solution of the problem are the transition probabilities of the scattering 

channels; these are the matrix elements of the T matrix linked to the scattering matrix S 

by the expression 

S = I - %T. (3.28) 
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The T matrix elements have a complicated form [8] but the aspect on which the attention 

has to be focused is just one, the Grst order pole in the vicinity of every bound state 

eigenvalue of the problem 

T l . - , « (3 .29) 

In (3.29) # is the total angular momentum, and 'y are the two artiSciai channels, s j are 

the bound states of the problem and V? is the eigenvalue of the state of interest. Thus, these 

matrix elements can be monitored for diSerent scattering energies and the exact energy of 

the state of interest can be studied by making some iterations. 

This method was Hrst implemented for H^(7;,0) in [30] and subsequently used 6 r HD+, 

Hg and Dg. 

3.4 The Hutson method 

The variational method gives wavefunctiona from which expectation values may be deter-

mined, but the scattering method does not. However, to calculate the expectation value of 

an operator ty, a method reported by Hutson [25] may be used. 

Knowing the solutions of the Sclirodinger equation associated with an unperturbed 

Hamiltonian 

= (3.30) 

the Hamiltonian is perturbed to give a new energy operator of the Ibrm 

77 = + AM/ (3.31) 

associated with the equation 

(3.32) 

where is the operator corresponding to the property of interest. Prom the Rayleigh-

Schrodinger perturbation theory the eigenvalues can be written as 
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- + A(Tf) + Â A + O(A^) (3.33) 

where (If^) is the expectation value of the property of interest. A rearrangement of (3.33) 

gives 

^^(^) - 4 ^ ^ (3 34) 
A 

Linear regression of (^i(A) — f^}'̂ ^)/A on A gives, as the intercept, the desired expectation 

value (I^). By choosing the values of A used (typically 3) carefully, accurate expectation 

values may be found. In the case of the electric dipole polarizability of Hg and (see 

chapter 7) the expectation value vanishes and it is the coeScient of Â  that is of interest; 

in that case (^i(A) — E '̂̂ ^)/A^ is regressed on A .̂ 

3 .5 N u ; ' 9 T i c a ] i n t e g r a t i o n 

While the results for the dissociation energy, the bond length and the dipole polarizabihty 

are obtained through analytical integration, the matrix elements of some other properties 

reported in this work involve singular and/or non-separable integrands and numerical inte-

gration is necessary. In particular, a method similar to that proposed in [31] by Carrington 

and Kennedy is used where the basic idea is to evaluate the integrals excluding spherical 

volumes of smaller and smaller radii, and to extrapolate the results to a spherical volume 

of zero radius. 

In that work, the integrals were evaluated by double quadrature. As reported in Egure 

3.1, the range of integration was divided between a sphere of radius 2 (A) corresponding 

to 1 < ^ < 3, an outer region (C) &om ^ = 3 to ^ = oc and the remaining area between 

the sphere and C (B^Bi^-t-B^+Bj). Over the outer region C products of 32-points Gauss-

Laguerre (over ^) and 16-points Gauss-Legendre (over r/) quadratures were used. Over the 
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quadrant region A Carrington and Kennedy used the ibilowing trans&rmation 

^ = I 4- AatR// 

= —1 -|- Aco,s//( (3.35) 

to improve the convergence of the integrals. This part was further divided into anular 

regions and a product of 24-point8 over A by 16-points over Gauss-Legendre quadratures 

for each region was used. By decreasing of a power of 10 at every step the magnitude 

of A (hrom 2 x 10"^ to 2 x 10"^), the contribution to the integral over the range from the 

innermost value of A to the edge of the excluded sphere with the same A value &)r // = 0, was 

evaluated through an 8-points (A) and 16-points (/j;) Gauss-Legendre double quadratures. 

The remaining region to integrate, B, was divided into the three sub-regions: 

1) Bi , fo r -Tl<77<(—1-k \/2) and ^ varying on the edge of the sphere; 

2) Bg, for 1 < ^ < (1 + V^) and varying on the edge of the sphere; 

3) Bg, the remaining square. 

Over these three regions was used, respectively, a double Gauss-Legendre quadrature with 

8-^-points by 16-7^points, 16-^-points by 8-?;-points and 8-^-points by 8-7/-points. 

In this work the singularities are also treated but in a different way. The alternative 

approach is schematically reported in figure 3.2 in the case of one singularity in the point 

(^ = 1,7/ = — 1) and in Egure 3.3 in the case of two singularities in the points — 1, ?? = — 1) 

and = l,?y = 1). In Sgure 3.2 the range of integration has been divided between the 

following regions: 

1) A, upper delimited by the straight line of equation — 1 — ^ while 1 < ^ < 2; 

2) B, corresponding t o l — ^ < ) y < l and 1 < ^ < 2; 

3) C, from ^=2 to ^=3; 

4) D, from ^=3 to ^ = oc. 

As in the method of Carrington and Kennedy and explained above, multiple-points 

Gauss-Laguerre (over and Gauss-Legendre (over 7̂ ) are used. On region A, 24-points 

double quadratmres are used for integration both on 77 and regions B and C are integrated 

with 12-points quadratures and on region D 8-points and 16-points quadratures are used 
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1 ^ 2 

B2 
B3 

—1+\(^ 
\ 

—1+\(^ 

1 \ C 

A \ 
Figure 3.1: Subdivision of the integration range 1 < ^ < oo and —1 < y; < 1 for the immerical 
evaluation of singular integrands (aAer [31]). The dashed area represents the excluded volinne. 

respectively on and 

The convergence of this alternative method was tested and the results obtained with 

both the methods are consistent. 

In the case of singularities in the points — 1,7/ = —1) and = 1,;; = 1) (see figure 

3.3) a similar approach is used. In this case the region A is divided in the two sub-regions: 

1) Ai, corresponding to A in figure 3.2; 

2) As, which is the mirrored one conAned by the straight line = (^ — 1) while 1 < ^ < 2. 

Now region B is given by (1 — ^) < 7? < (^ — 1) while 1 < < 2. For Hg and Dg the 

contribution to the integral from region Ai is the same as the one &om region A2 for many 

properties, this allowing simplification of program coding. 
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B C D 

a 

Figmre 3.2: Subdivision of the integration range 1 < ^ < oo and —1 < ?) < 1 for the numerical 
evaluation of singular integrands with the approach followed in tliis work: this is the case of one 

singularity hi the point = 1,?) — —1). The dashed area represents the excluded volume. 

^ A2 / 

y u 1 

y B C D 

n 

Figure 3.3: Subdivision of the integration range 1 < ^ < oo and —1 < < 1 for the numerical 
evaluation of singular integrands with the approach followed in this work: this is the caae of two 

singularities in the points (^ = I,?; = — 1) and = 1,7/ = 1). The dashed areas represent the 
excluded volumes. 
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3.6 Tests on the accuracy of the results 

The accuracy and the convergence of the results reported in this work were tested for 

each level. In particular in using the LEVEL program, the attention was focused on the 

i n t ^ a t i o n step and in the variational approach, the convergence of the results were tested 

by increasing the number of basis functions (up to 748 k r Z and up to 480 5)r II). In using 

the scattering method attention was paid not just in the number of basis ftmctions used 

(up to 225 for S and up to 84 for H) but also in the step and in the numbers of integration 

points. 
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Chapter 4 

Results : adiabat ic and 
noK-adiabatic dissociation energies 

for D+ and HD+ 

4.1 Introduction 

Accurate dissociation energies ibr many bound and quasibound vibration-rotational levels 

have been calculated for the ground electronic states of Hj" [2], [3] and HD+ [4]. Adi-

abatic and uon-adiabatic corrections to the dissociation energies have been studied [32,33] 

and attempts made to reproduce the dissociation energies using an eSiective Hamiltonian. 

Although the affective parameters obtained scaled between and HD+ according 

to their reduced masses [33], scaling of the adiabatic and non-adiabatic corrections to the 

dissociation energies was not considered; this chapter [34] is dedicated to this topic. 

While the Born-Oppenheimer and the adiabatic dissociation energies may be generated 

straightforwardly using standard programs, the non-adiabatic values for bound levels are 

computed through the theory and the calculation methods exposed in the previous chapters. 

The results for the dissociation energies arc given in wavemimber units; the only funda-

mental constants used are the ratios of the masses of the proton and the deuteron to that 

of the electron and the conversion factor from hartree to wavenumber (see table 4.1). For 

all the reported results the 1986 constants [35] are used, since earlier work used these. 
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Constant Value 
Proton-electron mass ratio (mp/n%e) 1836.152 701 

Deuteron-electron mass ratio (mj/mg) 3670.483 014 
Hartree (J^h) 219474.630 67 cnr^ 

Table 4.1: Values of the fundamental constants used in this work [35]. 

4.2 The adiabatic correction to the dissociation 
energy 

The adiabatic corrections to the dissociation energies &)r and HD+ are studied using 

the LEVEL program [7] which allows the solution of the Schrodinger equation for bound 

and quasibound levels. The molecular properties of interest may be studied using potential 

energy curves ibr the three molecules; the same BornrOppenheimer potential curve is used 

for all the three molecules and spectGc ones for the adiabatic potential for each of them. 

In discussing the adiabatic correction, two different approaches have to be recalled: the 

gfaWanj and the adiabatic corrections [22,32]. As already noted, the adiabatic 

corrections are diagonal in the electronic state and arise because of the Enite masses of the 

nuclei. They can be seen as the response of the nuclei to the instantaneous position of 

the electron; in tliis way the uniformity of motion of the centre of mass of the three-body 

system is maintained. 

By using the adiabatic potential (2.37) in equation (2.36) the adiabatic approximation 

is well determined. For homonuclear cations like and Dg this approximation does not 

give the correct dissociation limit 5)r large values of Ti!; in other words, the energy does not 

tend to that of the atom with the appropriate reduced mass for the electron. The adiabatic 

correction may be made to vanish in the limit ^ ^ oc because the expectation values of 

-2^ and 

are the same [36]. Thus, the Hamiltonian at dissociation may be rewritten as 

'BO 4/^. 
z: 
8 

y^part- (4.1) 

Now, for an homonuclear molecule, the electron kinetic energy term involves the electron 
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reduced mass 

(4.2) 

which is correct for a one-electron atom with a nucleus of mass m. A new operator 

I f , 
— ̂ part 

is introduced, instead of 

ajid whose eDcpectation value is equal to zero at the dissociation limit. This approach is 

called adiabatic method'. For HD+ this partitioning may also be made with 

the intermediate translbrmed Hamiltonian to give the correct dissociation limits [21]. 

The adiabatic and partitioned corrections to the Born-Oppenheimer dissociation ener-

gies are obtained for the ground electronic states of the three molecules. The behaviour 

of the correction to the dissociation energies (in cm^^) is studied versus the vibrational 

quantum numbers to check that the shape is the same apart from a scaling factor due to 

the diSerent masses of the cations. The adiabatic correction makes the dissociation energies 

decrease; in 6gure 4.1 the partitioned adiabatic correction to the dissociation energies 6)r 

rotationlesB levels of the ground electronic states of the three isotopomers is plotted against 

the vibrational quantum numbers. The behaviour of this correction, which decreases ibr 

low vibrational quantum numbers and then increases, is evident. In order to take into ac-

count the differences in the reduced masses of the molecules, the curve referring to is 

scaled by the factor of « 2 and the one referring to HD+ is scaled by the factor of 

2md/(mp -t- ma) % 4/3. 

If the plot is against dissociation energies, rather than vibrational quantum numbers, 

the three curves are coincidcnt, as shown in figure 4.2. Which dissociation energies are used 

is not of importance, since the corrections are insigniScant compared with the dissociation 

energies themselves. 
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Note that for HD+ use of the intermediate transformed Hamiltonian to give adiabatic 

corrections to the dissociation energies would include an extra 14.91 cm ^ for all levels 

except for those very close to dissociation, since the dissociation hmits of the ground and 

the Grst excited states are in reality separated by 29.8 cm'^ . This is because inclusion 

of g/u symmetry breaking gives the correct dissociation limit of a deuterium atom plus a 

proton, while far both the ground and excited electronic states the Born-Oppenheimer and 

the adiabatic approximations give the same dissociation limit of an average of those of the 

hydrogen atom and the deuterium atom. The electronic g/u symmetry breaking becomes 

significant only close to dissociation. 

For a nonzero rotational quantum number the curves are similar, but when the scaled 

corrections for a constant ^ are plotted against dissociation energies, the cmres do not 

coincide, the difference increasing with # and becoming quite apparent for (see figure 

4.3) and evident far W—16 (see Sgure 4.4). However, it is possible to mantain the coincidence 

by choosing a different JV for each isotopomer. For example, the curves for Hg , TV = g, D^, 

# = 11, and HD+, = 9, coincide (see figure 4.5), as do H^, jV = 16, Dg , # = 23 and 

HD^, # = 18 (see figure 4.6). 

Similar behaviour is observed for levels with the same but di&rent when the scaled 

corrections to the dissociation energies are plotted against dissociation energies themselves. 

For u=0 the curves almost coincide (see figure 4.7), but the diSerences increase markedly 

with w (see Bgure 4.8), and this can not be remedied by choosing different u for each 

isotopomer. It appears that, in plotting corrections against dissociation energies, isotopic 

scahng is completely successful only for levels with #—0 or levels with 
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0 2 10 12 14 16 18 20 22 24 26 28 

H / N=0 

D J # = 0 

M H D # = 0 

A 3.0 

^'^0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Vibrational Quanmm Number 

Figure 4.1: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD"*" to the dissociation energy for A =0 against vibrational 

quantum numbers; a scaling factor of 2 to and of 4/3 to HD"*" is applied. 
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0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 

A 3.0 

* - # H D \^V=0 

' 0 2000 4000 6000 8000 10(X)0 12000 14000 16000 18000 20000 22000 

DE Vcm'^ 
a d 

Figure 4.2: Partitioned corrections (partitioned — BO) for Hj" and Dj" and standard adiabatic 
correction (standard — BO) for HD^ to the dissociation energy for j\r=:0 against dissociation 

energies; a scaling factor of 2 to and of 4/3 to HD+ is applied. 
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0 2000 4000 6000 8000 10000 12000 14000 16000 18000 2(XX)0 

O 3.0 

M e HD Ar=8 

0 2000 4000 6000 8000 lOOOO 12000 14000 16000 18000 20000 22C 

DE^/cm" 

Figure 4.3: Partitioned corrections (partitioned — BO) for and Dj" and standard adiabatic 
correction (standard — BO) for ED+ to the dissociation energy for jV=8 against dissociation 

energies; a scaling factor of 2 to and of 4/3 to HD+ is applied. 
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/V= 1 6 

H D ^ •16 
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8.0 

6.0 

4.0 

8000 10000 12000 14000 16000 18000 

DE /cm'^ 
a d 

10.0 

Figure 4.4: PcLctitioned corrections (partitioned — BO) for ajid Dj" and standard adiabatic 
correction (standard — BO) for ED+ to the dissociation energy for 16 against dissociation 

energies; a scaling factor of 2 to and of 4/3 to HD+ is applied. 
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• 1 

Figure 4.5: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD+ to the dissociation energy for and Ar=9 

respectively against the dissociation energies; a scaling factor of 2 to and of 4/3 to HD"̂  is 
applied. 



2000 4000 6000 8000 10000 12000 14000 16000 

A^=16 

A/=23 

2000 4000 6000 8000 lOOOO 

1 

12000 14000 

DE^ycm 

Figure 4.6: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD+ to the dissociation energy for 7\r=16, Ar=23 and ^̂ ^=18 

respectively gainst dissociation energies; a scaling factor of 2 to and of 4/3 to ED"^ is applied. 
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Figure 4.7: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD+ to the dissociation energy for u=0 against dissociation 

energies; a scaling factor of 2 to and of 4/3 to HD""" is applied. 
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Figure 4.8: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD+ to the dissociation energy for i;=:4 against dissociation 

energies; a scaling factor of 2 to Dj" and of 4/3 to HD+ is applied. 



4.3 The non-adiabatic correction to the disso-

ciation energy 

Using the non-adiabatic dissociation energies of the three isotopomers [2-4], the scaled non-

adiabatic corrections (non-adiabatic — adiabatic) to the dissociation energies for rotationless 

levels may be plotted against vibrational quantum numbers as reported in Sgure 4.9. 

In the case of HD+ the adiabatic dissociation energies are those obtained using the 

intermediate trans&rmed Hamiltonian, so that g/u electronic symmetry breaking is not 

included in the comparison with and As &)r the adiabatic correction, the curves 

coincide if dissociation energies are used instead of vibrational quantum numbers (hgure 

4.10). The exceptions are HD+, u—20, and, in particular, «=21; it is the i;=20 level 5)r 

which an anomalous bond length correction is found (see chapter 5 and [37]). 

Bbr nonzero JV and for plots for constant w, similar scaling behaviour to that for adia-

batic corrections is observed for most levels. In general for high lying levels the correction 

decreases in magnitude as u and/or JV increases, that is as dissociation is approached. Other 

HD+ levels that do not follow this trend may be recognized from plots similar to that in 

Agure 4.9 for other values of AT (see for example figure 4.11). Those identiEed are (21,0-3), 

(20,0-6) and (19,7-9); details of these results are reported in table 4.2. 

An explanation for this anomalous behaviour 6)r HD ̂  non-adiabatic corrections is de-

sirable. It seems unlikely that the fuUy non-adiabatic energies themselves are at fault, since 

they have been used to calculate transition frequencies that agree with experiment and to 

predict new transition frequencies that have been observed subsequently [1-4]. The most 

likely source of the anomaly must then he in the intermediate transformed Hamiltonian 

calculations for HD^. As explicitly reported in [38], in determining the potential energy 

curve it was apparent that the g/u symmetry breaking is negligible at bond lengths less 

than 10 Go, but by 15 oo almost complete mixing of the g ground electronic state and the 

u iSrst excited electronic state has occured (see Egure 4.12). 

In [38] the g/u symmetry breaking correction was calculated from 

A;^'g/,(A) = ^o(;Z, -g-i, ^2) - J%(A, 1,1) (4.3) 
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where 1,1) the Born-Oppenheimer eigenvalues and are the eigen-

values of the zeroth-order Hamiltonian 

^2 1 _ 
Ho — — — — —— —j— — (4.4) 

2 r ie r2e 

where and Z2 are the effective nuclear charges (2.109) and (2.110), which assume the 

values of 0.999 931956 and 1.000068044, respectively 6)r HD+. Equation (4.4) arises &om 

(2.103) where the transformed potential operator y ' was reduced to 1 / ^ since aH the other 

terms are considered as perturbations, as is the adiabatic term. 

The levels that show anomahes all have signihcant contributions to their properties 

from intemuclear separations in this range, 10-15 ao, aa can be seen from the vibration-

rotational wavefunctions which become more and more important with large bond lengths 

as dissociation is approached (see hgures 4.13 and 4.14). A detailed discussion about the 

non-adiabatic correction to the bond lengths is given in the next chapter. 

It is realized that the intermediate trans&rmed Hamiltonian does not handle the g/u 

symmetry breaking as successfully as hoped in the region of rapid change. For the homonu-

clear isotopomers the non-adiabatic corrections are accoimted fbr by the hnal transformation 

of the Hamiltonian and the mixing of electronic states by the (8^/^A^) operator in equation 

(2.155). It seems likely tliat the implicit assumption that for HD+ these corrections and the 

eS^ects of g/u symmetry breaking are additive is Hawed, and the e%cts of this non-additivity 

become prominent in the region of rapid change in g/u mixing. Also g /n symmetry breaking 

might not be fully accounted for by the intermediate transformed Harniltonian. 
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Figure 4.9: Non-adiabatic corrections to the dissociation energies (non-adiabatic — adiabatic for 
and D^, and non-adiabatic — intermediate transformed adiabatic for HD+) plotted against 

vibrational quantum numbers for levels; the and HD"*" corrections are scaled by factors of 
2 and 4/3, respectively. 
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Figure 4.10: Non-adiabatic corrections to the dissociation energies (non-adiabatic — adiabatic for 
and Dj", and non-adiabatic — intermediate transformed adiabatic for ED+) plotted against 

dissociation energies for Ar=0 levels; the and HD+ corrections are scaled by factors of 2 and 
4/3, respectively. 
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F i g T i r e 4 . 1 1 : N o n - a d i a b a t i c c o r r e c t i o n s t o t h e d i s s o c i a t i o n e n e r g i e s ( n o n - a d i a b a t i c — a d i a b a t i c f o r 

a n d D ^ , a n d n o n - a d i a b a t i c — i n t e r m e d i a t e t r a n s f o r m e d a d i a b a t i c f o r H D + ) p l o t t e d a g a i n s t 

d i s s o c i a t i o n e n e r g i e s f o r ^ = 4 l e v e l s ; t h e a n d E D " * " c o r r e c t i o n s a r e s c a l e d b y f a c t o r s o f 2 a n d 

4 / 3 , r e s p e c t i v e l y . 
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DEnon—ad/ cm ADEii0u _ ad / 
202.883 8 0.542 8 

(17,13) 103.349 3 0.5013 

(17,14) 8.2271 0.465 1 

(18,8) 266.992 0 0.5270 
(18,9) 196.857 2 0.499 2 

(18,10) 125.091 8 0.472 8 
(18,11) 53.9876 0.461 6 

(19,0) 292.1172 0.502 2 
(19,1) 284.292 7 0.499 7 
(19,2) 268.845 8 0.493 8 
(19,3) 246.182 4 0.485 4 
(19,4) 216.916 3 0.4773 
(19,5) 181.878 4 0.468 4 
(19,6) 142.134 5 0.465 5 
(19,7) 99.023 2 0.4772 
(19,8) 54.2376 0.526 6 
(19,9) 10.046 6 0.649 6 
(20,0) 94.075 4 0.609 4 
(20,1) 88.998 7 0.6247 
(20,2) 79.086 2 0.6602 
(20,3) 64.831 0 0.722 0 
(20,4) 47.010 1 0.8181 
(20,5) 26.7640 0.948 0 
(20,6) 5.8619 1.038 9 

(21,0) 10.215 7 1.180 7 
(21,1) 8.552 5 1.1165 
(21,2) 5.551 3 0.9633 
(21,3) 1.8363 0.6743 

(22,0) 0.430 9 0.1079 
(22,1) 0.1157 0.058 7 

Ikble 4.2: HD+: non-adiabatic dissociation energies emd non-adiabatic corrections (non-adiabatic 
— intermediate transformed adiabatic) for selected vibration-rotational levels of the ground 

electronic state. In general, for high lying levels, the non-adiabatic correction to the dissociation 
energy decreases with the approacli of dissociation. In this table the levels that do not follow this 

trend are reported. 
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Figure 4.12: Symmetry breaking correction arising &om equation (4.3) for the ground electronic 
state of HD'̂  obtained 6om the results in 
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F i g u r e 4 . 1 3 : H D + : details of the vibrational wavefunctions for the well-behaved level ( 1 8 , 0 ) and 
the anomalous level (20,0); the latter curve has significant amplitude in the region of the g/u 

S}Tnmetry breaking ( 1 0 - 1 5 a^) as do the wavefunctions for ( 0 , 0 ) and ( 1 , 0 ) of the first excited state. 
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F i g u r e 4 . 1 4 : HD+: details of the vibrational wavefunctions for the anomalous levels (21,0) and 
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4.4 Conclusions 

In this chapter a study of vibration-rotational levels of the ground electronic states of Hg , 

and HD^ is reported with attention conGned to the bound levels. It is shown bow k r 

and/or k r Ar=0 it is possible to predict the adiabatic corrections to the dissociation 

energies 6)r and HD+ starting from those of through scaling factors based on the 

relative reduced masses. However, scaling becomes increasingly less successful as w (for 

constant or AT (kr constant increase. The same comments are true 6)r the non-

adiabatic corrections except for the few high lying levels of HD+ that are found to be 

atypical. 

Near the dissociation hmit, the dissociation energy corrections are expected to reduce 

in magnitude as u increases, but out of line are certain levels with dissociation energies 

between 99.0 and 1.8 cm^^ and bond lengths between 7.9 and 15.7 ag. 

These results are perhaps not entirely unexpected; as reported in [37], the Bom-Oppenheimer 

potential is the same for all the three isotopomers, and the adiabatic correction to the po-

tential is Erst order and proportional to the inverse of the reduced mass. It is less expected 

for the non-adiabatic corrections which mix in excited electronic states. 

Although it is not strictly possible to re&r to a non-adiabatic potential, it can be argued 

[37] that the non-adiabatic corrcction will increase the dissociation energies 6)r all levels 

and, as a consequence, will reduce the bond lengths, as reported in the next chapter. 
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Chapter 5 

Resul ts : adiabat ic and 

non-adiabat ic bond lengths for H^ , 

D.r and H D 

5.1 Introduction 

In this chapter the results obtained for the adiabatic and non-adiabatic corrections to the 

bond lengths of the ground electronic states of and HD+ [34] are exposed. As &)r 

the dissociation energies, the scaling of the corrections, both adiabatic and non-adiabatic, 

to the bond lengths 5)r the three diOerent isotopomers is considered. 

One of the motivations for this work is that an anomalous non-adiabatic correction to 

the bond length was previously noted [37] for the i;=:20, # = 0 level of HD+ ground electronic 

state, in that it was opposite in sign with respect to all the other rotationless levels. The 

corresponding corrections to the expectation values (72 )̂ and were also anomalous, 

suggesting that the calculations were not spurious. It is here reported that HD+ in other 

vibration-rotational high lying levels also has corrections to that are anomalous in 

having the unexpected sign, namely i;=20, # = 1 - 5 and # = 7 - 9 . 

All the r^u l t s for the bond length are given in atomic units and the fundamental 

constants hsted in table 4.1 are used. 
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5.2 The adiabatic correction to t h e bond length 

Abiabatic corrections to the bond length were considered and previously discussed for rota-

tionless levels [37]. For levels with dissociation energies of more than about 5000 cm'^ they 

(adiabatic — Born-Oppenheimer) are positive, but &)r levels less than that they become 

negative, although their magnitude does not become signiGcant until within about 

2000 cm"^ of the dissociation hmit. 

The position for bond length corrections is similar to that for dissociation energy correc-

tions (see previous chapter). If for rotationless levels the scaled corrections for Dg and HD^ 

are plotted against dissociation energies, the curves coincide with that for as shown in 

Egure 5.1. Note that the bond length corrections for do not allow far g/u symmetry 

breaking but, if the intermediate transformed Hamiltonian is used, then the scaled HD^ 

curve still coincides with the corresponding scaled curves for the Hj" and D^, except for 

the very highest levels (« >19) where g/u electronic symmetry breaking is significant (see 

Ggure 5.2). 

For a given non-zero rotational quantum number the scaled curves are slightly displaced 

from those 6)r # = 0 , but so long as is not too high, for example for (hgure 5.3), 

those for diEerent isotopomers still coincide. However, for even higher for example 16 

(Agure 5.4), this is no longer true, although the curves for H^, Ar=16, and D^, jV—20, do 

as shown in figure 5.5. 

For hxed ti=0 the scaled curves do not quite coincide (Sgure 5.6), but for increasing 

6xed w the differences become much more pronounced, as explicitly reported in hgure 5.7. 
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Figure 5.1: Partitioned corrections (partitioned — BO) for and and standard adiabatic 
correction (standard — BO) for HD+ to the bond length for Ar=0 against dissociation energies; a 

scaling factor of 2 to and of 4/3 to HD"̂  is applied. 
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Figure 5.2: Partitioned corrections (partitioned — BO) for and Dj" and intermediate 
transformed adiabatic correction (transformed — BO) for HD^ to the bond length for JV—0 

against dissociation energies; a scaling factor of 2 to and of 4/3 to HD"*" is applied. 
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5.3 The non-adiabatic correction to the bond 

length 

Even conGning interest to the bound vibration-rotational levels of the ground electronic 

states of the three isotopomers, there are many hundreds, as appears explicit &oni the grids 

of Sgures 5.8, 5.9 and 5.10; in these grids all the levels are indicated, ibr which the non-

adiabatic values of the bond length and the relative non-adiabatic corrections are studied. 

AH the results obtained are explicitly reported in tables 5.1 (H^), 5.2 (D^) and 5.3 (HD+) 

since these were not published and they are not as easily reproduced as the adiabatic ones. 

As might be expected, in general the corrections are negative and increase in magnitude 

with vibrational and rotational quantum numbers. As for the adiabatic corrections, scaling 

works well for low AT (see figure 5.11), but for high # (figure 5.12) it is necessary to use 

different rotational quantum numbers for the three ions for reasonably successful scaling, as 

happens for example by plotting Hg , 16 corrections with Dj", 7V=20, against dissociation 

energies (Egure 5.13). 

In the case of the bond length, the correction will depend on the 5rst order correction 

to the wavefunction, proportional to the inverse of the reduced mass. As noted above, the 

scaling is less succ^ fu l with increasing # for constant « (Egures 5.14, 5.15 and 5.16) or 

increasing ti 6)r constant # , but is presumably a rejection of the diEerent ways in which 

rotation and vibration depend on masses and bond lengths. 

However, for HD+, a number of high-lying levels show anomalies in that the magnitude 

of the correction decreases with increasing u and/or AT; these include (19,1 - 6), (18,10 - 11) 

and (17,14), but it is conceivable that there are other such levels that lie close to dissociation 

with higher # and lower In addition there are some levels that show the same anomaly 

as f=20, 7V=0, in that the correction is actually positive rather than negative; these levels 

are (19,7 - 9) and (20,0 - 5). Figure 5.17 illustrates the behaviour for # = 0 levels for all the 

three molecules, while details for relevant levels of HD+ are given in table 5.4, as a selection 

of the results of the complete tables 5.1 (H^), 5.2 (D^) and 5-3 (HD+). 
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"Rible 5.1: : non-adiabatic bond lengths and non-adiabatic corrections (non-adiabatic 
partitioned). 

(^)non—ad/^0 («,#) (^)non—ad/ &0 (Ai2)ijoi]_ad/^0 
(0,0) 2.063914 -0.000006 (4,0) 2.640 771 -0.000061 
(0,8) 2.159449 -0.000007 (4,8) 2.757 315 -0.000 067 

(0,16) 2.410 200 -0.000013 (4,16) 3.074 110 -0.000 087 
(0,24) 2.800677 -0.000025 (4,24) 3.619 422 -0.000 148 
(0,28) 3.053 667 -0.000037 (4,30) 4.326 199 -0.000329 
(0,32) 3.359333 -0.000056 (5,0) 2.803 481 -0.000080 
(0,35) 3.640960 -0.000082 (5,2) 2.813 930 -0.000081 
(1,0) 2.119125 -0.000017 (5,4) 2.838 241 -0.000082 

(1,21) 2.803 642 -0.000037 (5,6) 2.876 266 -0.000 085 
(1,22) 2.859398 -0.000039 (5,8) 2.927 843 -0.000 088 
(1,23) 2.917838 -0.000042 (5,10) 2.992 878 -0.000 093 
(1,24) 2.979100 -0.000045 (5,12) 3.071433 -0.000099 
(1,25) 3.043360 -0.000049 (5,14) 3.163 842 -0.000 107 
(1,26) 3.110836 -0.000053 (5,28) 4.407 691 -0.000 376 
(1,27) 3.181801 -0.000058 (6,0) 2.976 383 -0.000 103 
(1,31) 3.508 962 -0.000087 (6,2) 2.987589 -0.000 104 
(1,34) 3.822 150 -0.000 130 (6,4) 3.013 687 -0.000 106 
(2,0) 2.339 751 -0.000030 (6,6) 3.054 587 -0.000109 
(2,4) 2.369114 -0.000031 (6,8) 3.110 231 -0.000 114 
(2,8) 2.444200 -0.000033 (6,10) 3.180 683 -0.000 121 
(2,12) 2.562 526 -0.000037 (6,12) 3.266 254 -0.000 130 
(2,14) 2.637230 -0.000040 (6,20) 3.784 779 -0.000 205 
(2,15) 6.678416 -0.000042 (6,24) 4.204455 -0.000 313 
(2,16) 2.722168 -0.000044 (6,27) 4.678 420 -0.000 522 
(2,20) 2.923628 -0.000054 (7,0) 3.161577 -0.000 131 
(2,24) 3.172 076 -0.000070 (7,17) 3.801 000 -0.000223 
(2,28) 3.481996 -0.000099 (7,19) 3.973 1 57 -0.000 262 
(2,30) 3.670226 -0.000124 (7,25) 4.776 479 -0.000 583 
(2,33) 4.022 772 -0.000194 (8,0) 3.361814 -0.000166 
(3,0) 2.486 624 -0.000045 (8,8) 3.522 082 -0.000 188 

(3,11) 2.686333 -0.000053 (8,16) 3.996 314 -0.000 282 
(3,12) 2.721 870 -0.000 054 (8,18) 4.182 442 -0.000 333 
(3,13) 2.760207 -0.000 056 (8,20) 4.411462 -0.000412 
(3,14) 2.801 348 -0.000058 (8,24) 5.110488 -0.000 818 
(3,25) 3.463117 -0.000112 (9,0) 3.580 773 -0.000 211 
(3,31) 4.096677 -0.000234 (9,22) 5.240 791 -0.000911 

Hg continued 
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(10,0) 
(10,1) 
(10,2) 

(10.3) 
(10.4) 
(10.5) 
(10.6) 

(10,12) 
(10,16) 
(10,20) 
(11,0) 
(11,1) 
(11,2) 
(11,3) 

(11,7) 
(11,11) 

(11.13) 
(11.15) 
(11,19) 
(12,0) 
(12,1) 
(12,2) 
(12,3) 
(12.5) 
(12.6) 

(12.7) 
(12.8) 

(12,10) 
(12,12) 
(12.16) 
(12,17) 
(13.0) 
(13.1) 
(13.2) 
(13.3) 
(13.4) 
(13.5) 
(13.6) 
(13,8) 
(13,10) 
(13,12) 
(13.14) 
(13.15) 

(^)noii—ad/^O 
3.823 507 
3.829 052 
&840160 
&856 870 
&879 242 
3.907365 
3.940364 
4^83 227 
.L688 851 
&396 382 
/L097166 
<^103 559 
.1116 378 
/L135 693 
'L280 936 
/L551S55 
4.748948 
5.006 251 
5.879 008 
4.412 279 
4.419 850 
4.435 052 
4.458009 
4.528 054 
/L575 813 
4.632 714 
4.699455 
4.866478 
5.088 885 
5.821640 
6.126 303 
4.785144 
4.794435 
.1813 122 
4.841429 
4.879 707 
4.928 467 
4.988 418 
5.146 110 
5.365606 
&672167 
6.123 413 
6.448 016 

ad/^O 
-0.000270 
-&000271 
-&000274 
-&000277 
-&000282 
-0.000289 
-0.000297 
-0.000 393 
-&000553 
-&001029 
-&000351 
-0.000352 
-&000356 
-&000361 
-0.000406 
-0.000504 
-&000 591 
-&000730 
-&001523 
-&000464 
-&000467 
-&000472 
-0.000481 
-&000507 
-&000526 
-&000550 
-&000579 
-&000659 
-&000783 
-&001391 
-&001781 
-&000630 
-&000634 
-&000643 
-&000657 
-&000675 
-&000700 
-&000732 
-&000822 
-&000966 
-&001210 
-&001690 
-&002165 

(%,A0 
(14.0) 
(14.1) 
(14.2) 
(14.3) 
(14.4) 
(14.5) 
(14,7) 
(14,9) 

(14.12) 
(14.13) 
(15.0) 
(15J) 
(15.2) 
(15.3) 
(15.4) 
(15.5) 
(15,7) 
(15,9) 

(15,11) 
(16,0) 
(16.1) 
(16,2) 
(16.3) 
(16.4) 
(16.5) 
(16.6) 
(16.7) 
(16.8) 
(16,9) 
(17.0) 
(17.1) 
(17.2) 
(17.3) 
(17.4) 
(17.5) 
(17.6) 
(18,0) 
(18,1) 
(18,2) 
(18,3) 
(19.0) 
(19.1) 

(A) non—ad /ao 

7 

5.242 768 
5.254 737 
5.278 878 
5.315 610 
5.365 608 
5.429 863 
5.607 350 
5.867 896 
6.524493 
6.884186 
5.834398 
5.850972 
5.884 541 
5.935 996 
6.006 796 
6.099 156 
6.363 356 
6.782 020 

.516 485 
664038 
689 900 
742 708 
824814 
940262 
095 656 
301 928 
578 364 
.963 660 

8.560 789 
8.014527 
8.066 007 
8.173407 
8.347128 
8.607 923 
8.999 589 
9.639 539 
11.174 728 
11.382 683 
11.869 715 
12.909 287 
2^2433 
30.457 

7. 
7. 
7. 
7. 

{ -̂R)non—ad/̂ O 
-0.000886 
-0.000893 
-0.000909 
-0.000932 
-0.000965 
-0.001009 
-0.001141 
-0.001365 
-0.002151 
-0.002 785 
-0.001316 
-0.001330 
-0.001359 
-0.001404 
-0.001470 
-0.001559 
-0.001846 
-0.002414 
-0.003946 
-0.002140 
-0.002172 
-0.002240 
-0.002 351 
-0.002 514 
-0.002 753 
-0.003107 
-0.003660 
-0.004627 
-0.006910 
-0.004206 
-0.004319 
-0.004566 
-0.004997 
-0.005 730 
-0.007 069 
-0.010227 
-0.013 755 
-0.014870 
-0.017846 
-0.026680 

-0.082 6 
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I k b l e 5 . 2 : D ^ : non-adiabatic bond lengths and non-adiabatic corrections (non-adiabatic 
part i t ioned) . 

(0,0) 
(0,8) 

(0,16) 
(0,24) 
(0,32) 
(0,40) 
(0,48) 
(0,50) 
(1,0) 
(1,49) 
(2,0) 
(2,20) 
(2.45) 
(2.46) 
(2,48) 
(3,0) 
(3,40) 
(3.42) 
(3.43) 
(3.44) 
(3.45) 
(3.47) 
(4,0) 
(4,8) 
(4,16) 
(4,24) 
(4,32) 
(4.40) 
(4.41) 
(4.42) 
(4.43) 
(4.44) 
(5,0) 
(5,39) 
(5,44) 
(6,0) 
(6,20) 
(6,32) 

(fl)non—ad /^Q 
2.044070 
2.092 042 
2.220 789 
2.421988 
2.691249 
3.035 017 
3.484038 
3.622 374 
2.138662 
3.747789 
2.235 803 
2.522485 
3.643 772 
3.718026 
3.882 013 
2.335 753 
3.488 458 
3.619458 
3.690447 
3.765 808 
3.846266 
4.026 676 
2.438 813 
2.493312 
2.640941 
2.876 785 
3.206457 
3.666 627 
3.738 275 
3.814463 
3.895 938 
3.983 684 
2.545 333 
3.787872 
4.238039 
2.655 720 
2.993446 
3.515 722 

(•̂ -R)non—ad / ̂ 0 
-0.000 002 
-0.000 002 
-0.000 003 
-0.000 006 
-0.000010 
-0.000 017 
-0.000032 
-0.000 038 
-0.000 006 
-0.000054 
-0.000 010 
-0.000 014 
-0.000 054 
-0.000 059 
-0.000 073 
-0.000 015 
-0.000 050 
-0.000 058 
-0.000 063 
-0.000 069 
-0.000 077 
-0.000097 
-0.000020 
-0.000 021 
-0.000 024 
-0.000029 
-0.000 041 
-0.000 067 
-0.000073 
-0.000 080 
-0.000 088 
-0.000 098 
-0.000 025 
-0.000084 
-0.000 143 
-0.000031 
-0.000 041 
-0.000067 

(«,Ar) 
(6.36) 
(6.37) 
(6.38) 
(6.39) 
(6.40) 
(6,42) 
(7,0) 
(7,30) 
(7.36) 
(7.37) 
(7.41) 
(8,0) 
(8,6) 
(8,8) 

(8,16) 

(8.24) 
(8.27) 
(8.28) 
(8,32) 
(8,39) 
(9,0) 
(9.25) 
(9.26) 
(9,34) 
(9.38) 
(10,0) 

(10,20) 
(10,22) 

(10.24) 
(10,27) 
(10,30) 
(10,36) 
(11,0) 

(11,21) 

(11.25) 
(11,27) 
(11,29) 
(11,35) 

non-ad /ao 
3.767489 
3.839 877 
3.917068 
3.999 823 
4.089 133 
4.293 268 
2.770454 
3.571232 
3.972405 
4.055 516 
4.470493 
2.890104 
2.927919 
2.954 825 
3.133 160 
3.429 791 
3.576 903 
3.631 242 
3.881 370 
4.531241 
3.015 346 
3.642 912 
3.696 566 
4.268 707 
4.732 413 
3.146 993 
3.574209 
3.665 537 
3.768 155 
3.946 990 
4.164060 
4.802407 
3.286 033 
3.795 359 
4.023 703 
4.162 520 
4.323 076 
5.036 358 

(AJ?)non -ad/^O 
-0.000 087 
-0.000 094 
-0.000103 
-0.000 112 
-0.000 124 
-0.000 158 
-0.000 038 
-0.000 076 
-0.000115 
-0.000125 
-0.000201 
-0.000 046 
-0.000 047 
-0.000048 
-0.000055 
-0.000 071 
-0.000 082 
-0.000 086 
-0.000 109 
-0.000219 
-0.000 054 
-0.000 092 
-0.000096 
-0.000 169 
-0.000277 
-0.000064 
-0.000091 
-0.000099 
-0.000 108 
-0.000 127 
-0.000 157 
-0.000 299 
-0.000 076 
-0.000 116 
-0.000 142 
-0.000 161 
-0.000 187 
-0.000 380 
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(12,0) 
(12.4) 
(12,8) 

(12,12) 
(12,16) 
(12,22) 
(12.24) 
(12.25) 
(12.26) 
(12.27) 
(12.28) 
(12,32) 
(13,0) 

(13,23) 
(13.25) 
(13.29) 
(13,32) 
(14,0) 
(14.20) 
(14.21) 
(14.22) 
(14.26) 
(14.30) 
(15,0) 
(15.2) 
(15.3) 
(15.5) 

(15,18) 
(15.23) 
(15,28) 
(16,0) 
(16,2) 
(16,3) 
(16,5) 
(16,8) 

(16,12) 
(16,16) 
(16,20) 
(16.24) 
(16.27) 

{-^^)non—ad/^O 

3.433 676 
3.456 597 
3.516404 
3.613968 
3.751662 
4046 764 
^4175 062 
/L246410 
^^323 312 
4406516 
.^496 973 
4963 616 
3.591425 
4339895 
4.499401 
4.920438 
5.402 569 
3.761169 
4.374878 
4.444934 
/L520952 
4.903400 
!%511496 
3.945326 
3.954192 
3.963075 
3.989841 
4.494 798 
JL911922 
5.636 943 
.4417041 
.^156 900 
4.166 786 
ZL196 618 
<L267316 
<L414102 
<L632092 
4.947467 
5.426 241 
6.017431 

(A^)non—ad/^O 
-&000090 
-&000092 
41000096 
-0.000104 
-&000116 
-&000150 
-&000168 
-&000179 
-&000192 
-0.000 207 
-&000225 
-&000351 
-&000107 
-&000199 
-&000230 
-&000336 
-&000 530 
-&000127 
-&000210 
4X000223 
-&000238 
-&000332 
-0.000 574 
-0.000 152 
-&000153 
-&000154 
-0.000158 
-&000237 
-&000336 
-&000627 
41000184 
41000185 
41000187 
-0.000191 
41000202 
41000227 
41000270 
-0.000348 
41000514 
41000847 

(%,#) 
(17.0) 
(17.2) 
(17.3) 
(17.5) 
(17,8) 

(17.10) 
(17.13) 
(17,25) 
(18,0) 
(18.1) 
(18,2) 
(18,3) 
(18.6) 

(18.11) 
(18.14) 
(18,17) 
(18,20) 
(18,23) 
(19.0) 
(19.1) 
(19.2) 
(19.3) 

(19.10) 
(19.15) 
(19,17) 
(19,21) 
(20,0) 
(20,2) 
(20.4) 
(20,6) 
(20,8) 

(20,10) 
(20.11) 
(20,14) 
(20.16) 
(20,19) 
(21,0) 
(21,3) 
(21.5) 
(21,7) 

(j() non—ad /ao 
4.370 504 
4.381621 
4.392 780 
4.426 S17 
4.506 867 
4.581 760 
4.730416 
6.196 021 
4.621439 
4.625 683 
4.634191 
4.647006 
4.712 072 
4.918 747 
5.115 482 
5.388 833 
5.781321 
6.411 306 
4.907936 
4.912 905 
4.922 875 
4.937911 
5.199 127 
5.608 335 
5.858 110 
6.675 631 
5.241 898 
5.259 877 
5.302 422 
5.371 062 
5.468 520 
5.599 264 
5.679 237 
5.994764 
6.294 309 
7.008 460 
5.641 803 
5.686 892 
5.756 485 
5.861 562 

( '̂R)non—ad/^O 
-&000224 
-0.000226 
-0.000228 
-0.000234 
-0.000249 
-0.000264 
-0.000296 
-0.000945 
-0.000277 
-0.000277 
-0.000279 
-0.000282 
-0.000296 
-0.000345 
-0.000401 
-0.000492 
-0.000661 
-0.001076 
-0.000347 
-0.000348 
-0.000350 
-0.000354 
-0.000 428 
-0.000575 
-0.000688 
-0.001255 
-0.000 443 
-0.000448 
-0.000462 
-0.000484 
-0.000518 
-0.000567 
-0.000600 
-0.000745 
-0.000914 
-0.001514 
-0.000582 
-0.000599 
-0.000627 
-0.000672 
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(^)non—ad/&0 (^^)non—ad/^O ({,,#) (^)non—ad / &0 (A^)non—ad/&0 

(21,10) &100317 -0.000785 (24,2) 7.780 776 41001887 

(21,13) 6.477381 4h001004 (24,4) 7.946 155 -0.002 059 

(21,17) 7.443 184 41001922 (24,6) 8.240 050 -0.002405 

(22,0) 5.241898 -0.000793 (24,7) 8.455 327 41002 698 

(22,2) 6.167827 -&000807 (24,8) 8.738 595 -0.003 146 

(22,4) &238169 41000843 (24,10) 9.715 917 -0.005659 

(22,6) 6.354223 -0.000905 (25,0) 9.250 802 -0.003542 

(22,15) 8.045 022 41002654 (25,2) 9.390 110 -0.003775 

(23,0) (X788 598 -0.001144 (25,4) 9.759 933 -0.004480 

(23,3) 6.872 549 -0.001200 (25,7) 1L328181 41009875 

(23,5) 7.005 945 41001295 (26,0) 1&735 308 41009900 

(23,7) "^217385 -0.001462 (26,2) 1&265 901 -0.011539 

(23,9) 1^537630 41001759 (26/^ 15.245067 4).022 483 

(23,10) 7.757717 41001998 (27,0) 22.916 403 -0.033 319 

(23,12) 8.414624 -0.002 978 (27,1) 24183268 -0.040453 

(24,0) 1^714110 41001822 (27,2) 29.012459 -0.099853 



I^ble 5.3: HD+: non-adiabatic bond lengths and non-adlabatic corrections (non-adiabatic 
transformed). 

(-R)non—ad/S'O ('^-R)non~ad/^0 (^,Ar) (i?)non—ad/^-O ( A i ? ) non—ad / ̂ 0 

(0,0) 2.054803 -0.000004 (6,6) 2.880 173 -0.000 065 
(0,8) 2.126 609 -0.000004 (6,8) 2.919 321 -0.000 067 
(0,16) 2.316 940 -0.000008 (6,15) 3.137 080 -0.000 080 

(0,24) 2.612 547 -0.000014 (6,16) 3.178 658 -0.000 083 
(0,30) 2.904014 -0.000022 (6,18) 3.270 190 -0.000 089 

(0,32) 3.016574 -0.000026 (6,20) 3.373 626 -0.000 098 

(0,40) 3.57916 -0.000 06 (6,22) 3.490 272 -0.000 109 

(1,0) 2.171318 -0.000011 (6,24) 3.622 136 -0.000 124 

(1,30) 3.065 654 -0.000036 (6,33) 4.556 199 -0.000336 

(1,31) 3.125417 -0.000038 (7,0) 2.975 361 -0.000077 

(1,32) 3.187845 -0.000042 (7,15) 3.310 260 -0.000 101 

(1,35) 3.393 737 -0.000054 (7,17) 3.403 508 -0.000 109 

(1,36) 3.469 779 -0.000059 (7,19) 3.510 224 -0.000 120 

(1,40) 3.828361 -0.000095 (7,21) 3.631824 -0.000 134 

(2,0) 2.291 782 -0.000019 (7,24) 3.847951 -0.000 164 

(2,4) 2.313492 -0.000020 (7,26) 4.021 021 -0.000 195 

(2,6) 2.337182 -0.000020 (7,28) 4.226 471 -0.000 240 

(2,8) 2.369 189 -0.000021 (7,31) 4.633 273 -0.000 371 

(2,38) 3.890280 -0.000117 (8,0) 3.134 902 -0.000 095 

(3,0) 2.416 706 -0.000028 (8,8) 3.242 727 -0.000 103 

(3,28) 3.295 118 -0.000066 (8,14) 3.451 074 -0.000 122 

(3,37) 4.067332 -0.000 162 (8,16) 3.546 715 -0.000 133 

(4,0) 2.546 701 -0.000038 (8,18) 3.657214 -0.000 146 

(4,8) 2.631330 -0.000041 (8,20) 3.784 572 -0.000164 

(4,16) 2.860154 -0.000049 (8,22) 3.931 909 -0.000 187 

(4,20) 3.027648 -0.000057 (8,24) 4.104 186 -0.000 221 

(4,24) 3.234203 -0.000070 (8,26) 4.309 703 -0.000270 

(4,25) 3.292 813 -0.000074 (8,27) 4.429 208 -0.000 304 

(4,32) 3.812470 -0.000129 (8,30) 4.898 319 -0.000498 

(4,36) 4.131975 -0.000188 (9,0) 3.305 393 -0.000 117 

(5,0) 2.682 507 -0.000049 (9,15) 3.701 654 -0.000 161 

(5,11) 2.844879 -0.000056 (9,19) 3.950 716 -0.000 200 

(5,14) 2.939413 -0.000061 (9,21) 4.108 018 -0.000 229 

(5,17) 3.055459 -0.000067 (9,22) 4.197 201 -0.000 251 

(5,18) 3.099087 -0.000069 (9,23) 4.294 849 -0.000 274 

(5,20) 3.194180 -0.000076 (9,25) 4.522 223 -0.000 341 

(5,23) 3.358 191 -0.000 088 (9,28) 4.992 186 -0.000 544 

(5,26) 3.552 539 -0.000 107 (10,0) 3.489 073 -0.000 143 

(5,28) 3.703 389 -0.000 124 (10,2) 3.499 654 -0.000 145 

(5,34) 4.331525 -0.000251 (10,4) 3.524 382 -0.000 147 

(6,0) 2.825 024 -0.000 062 (10,6) 3.563 374 -0.000 152 

(6,4) 2.851 343 -0.000 064 (10,8) 3.616 872 -0.000 158 
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(10.14) 
(10,16) 
(10,18) 
(10,20) 
(10,22) 
(10.24) 
(10,26) 
(11,0) 
(11.3) 
(11.5) 
(11.7) 

(11,10) 
(11,13) 
(11,20) 

(11.25) 
(12,0) 
(12,2) 

(12.4) 
(12.6) 
(12.8) 
(12,16) 
(12,23) 
(13,0) 
(13.3) 
(13.5) 
(13.7) 

(13.15) 
(13,21) 
(14,0) 
(14.2) 
(14.4) 
(14.6) 
(14.8) 
(14.19) 
(14.20) 
(15,0) 
(15.3) 
(16.5) 
(15.7) 
(15,10) 
(15.17) 
(15.18) 
(16,0) 
(16,2) 

(16.4) 
(16.6) 
(16.8) 

(̂ )non—adZ&O ad/̂ -O (%,#) (-R)non—ad /&0 (AA)non—ad/% 
3.870685 41000196 (16,15) 6.592 800 -0.001624 

3.990839 -0.000216 (16,16) 6.943 644 -0.001879 

4.133 105 -0.000245 (17,0) 5.611218 -0.000852 

4.302 488 -0.000285 (17,1) 5.622 210 -0.000858 

4.507 312 -0.000343 (17^0 5.644 376 -0.000870 

4.762 527 -0.000435 (17,3) 5.678 086 -0.000890 

5.098 880 -0.000599 (17/0 5.723 936 -0.000917 

3.688871 -0.000177 (17,5) 5.782 788 -0.000952 

3.712 227 -0.000180 (17,6) 5.855 847 -0.000999 

3.747431 -&000185 (17,7) 5.944 780 -0.001 057 

3.798 696 41000193 (17,8) 6.051 894 -0.001131 

3.907089 -0.000211 (17^) 6.180442 -0.001225 

4.056 889 -0.000238 (17,10) 6.335 135 -0.001343 

/L627276 -0.000389 (17,11) 6.523 102 -0.001493 

5.442 656 41000815 (17,12) 6.755 851 -0.001670 

3.908 691 -0.000220 (17,13) 7.053 959 -0.001796 

3.921739 -0.000 222 (17,14) 7.461617 -0.001350 

3.952 336 -0.000 228 (18,0) 6.227343 -0.001231 

4.000882 -0.000237 (18,2) 6.273 792 -0.001263 

4.068 117 -0.000250 (18,4) 6.386 776 -0.001344 

/L563 095 -0.000375 (18,6) 6.579 367 -0.001481 

5.589463 -0.000905 (18,7) 6.713 424 -0.001571 

4153 883 -0.000277 (18,8) 6.880 131 -0.001 661 

&183 637 -0.000284 (18,9) 7.089 141 -0.001705 

4.228 770 -0.000294 (18,10) 7.356 929 -0.001520 

4^95134 41000309 (18,11) 7.715 746 -0.000 420 

4.823 072 -0.000472 (19,0) 7.098 863 -0.001630 

5.765 579 -0.001 020 (19,2) 7.712 759 -0.001611 

4L432 010 41000354 (19/1) 7.357 593 -0.001 459 

4.449 263 -0.000359 (19,6) 7.692 743 -0.000567 

.1489 935 -0.000370 (19,7) 7.945 539 0.000896 

4^55110 -0.000389 (19,8) 8.292 134 0.004147 

4.646 763 -0.000417 (19,9) 8.814074 0.008533 

&980515 -0.001170 (20,0) 8.549 765 0.007213 

6.281042 -0.001477 (20,1) 8.600 817 0.007878 

4.754204 -0.000461 (20,2) 8.707 600 0.009242 

.^795 583 -0.000475 (20,3) 8.881359 0.011198 

4.859 019 -0.000498 (20,40 9.145 798 0.012 673 

/L953 862 -0.000 534 (20,5) 9.557298 0.007515 

5.165 308 -0.000624 (20,6) 10.320 015 -0.047758 

6.248 575 41001370 (21,0) 12.9504 -0.3109 

&567867 -0.001696 (21,1) 13.272 296 -0.3660 

5.137716 -0.000 616 (21,2) 14.019 779 -0.5099 

5.163213 41000627 (21,3) 15^^1901 -0.9710 

5.223 892 41000654 (22,0) 28.603 -2.351 

5^22 897 -0.000 701 (22,1) 34.727 840 -6.560 

5.466165 41000775 
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Figure 5.12: Non-adiabatic corrections (uon-adiabatic — part i t ioned) for and to the bond 

length for against dissociation energies; a scaling factor of 2 t o Dj" is applied. 
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Figure 5.13: Non-adiabat ic corrections (non-adiabatic — par t i t ioned) for and to the bond 

length for # = 1 6 and 7V=20 respectively against dissociation energies; a scaling factor of 2 to is 
applied. 
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Figure 5.14: Non-adiabatic corrections (non-adiabatic — partitioned) for and and for 
HD+ (non-adiabatic — transformed) to the bond length for i;=0 against dissociation energies; a 

Bcaling factor of 2 to and of 4/3 to ED+ is applied. 
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F i g u r e 5 . 1 5 : Noii -adiabatic corrections ( i ion-adiabatic — par t i t ioned) for and and for 

E D + (non-adiabatic - transformed) to the bond length for f= :8 against dissociation energies; a 

scaling factor of 2 t o and of 4 / 3 to E D + is appl ied. 
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Figure 5.16: Non-adiabatic corrections (non-adiabatic — partitioned) for and and for 
HD^ (non-adiabatic — transformed) to the bond length for i;=16 against dissociation energies; a 

scaling factor of 2 to Dj" and of 4/3 to HD+ is applied. 
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Figure 5.17: Non-adiabatic corrections (non-adiabatic — partitioned) for and and for 
HD+ (non-adiabatic — transformed) to the bond length for #—0 against dissociation energies; a 

scaling factor of 2 to Dj" and of 4/3 to HD+ is applied. 



ad/s-O ( AR,)irioii--ad / % 
(17,12) 6.755 851 -0.001 670 
(17,13) 7.053 956 -0.001 796 

(17,14) 7.461 617 -0.001350 

(18,8) 6.880 131 -0.001661 
(18,9) 7.089 141 -0.001 705 

(18,10) 7.356 929 -0.001520 

(18,11) 7.715 746 -0.000420 

(19,0) 7.098 863 -0.001 630 

(19,1) 7.123 172 -0.001 626 

(19,2) 7.172 759 -0.001611 

(19,3) 7.249 711 -0.001568 

(19,4) 7.357593 -0.001459 
(19,5) 7.502 150 -0.001194 

(19,6) 7.692 743 -0.000 567 
(19,7) 7.945 539 0.000 89G 
(19,8) 8.292 134 0.004 147 
(19,9) 8.814 074 0.008 533 

(20,0) 8.549 765 0.007213 
(20,1) 8.600 817 0.007878 
(20,2) 8.707600 0.009 242 

(20,3) 8.881 359 0.011198 
(20,4) 9.145 798 0.012 673 
(20,5) 9.557298 0.007515 
(20,6) 10.320015 -0.047 758 

(21,0) 12.9504 -0.3109 
(21,1) 13.272 3 -0.366 0 
(21,2) 14.019 8 -0.509 9 
(21,3) 15.6219 -0.9710 

(22,0) 28.603 -2.351 

(22,1) 34.728 -6.560 

l^ble 5.4: HD+: selection from the results reported in table 5.3 of non-adiabatic bond lengths 
and non-adiabatic corrections (non-adiabatic — intermediate transformed adiabatic) lor 

vibration-rotational levels of the ground electronic state. In general non-adiabatic corrections to 
the bond length are negative and increase in magnitude with the approach of dissociation, in t ns 

table the levels that do not follow this trend are reported. 
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5.4 Conclusions 

It was reported previously [37] that the non-adiabatic correction to the bond length of HD+ 

i;=20, Ar=0 was anomalous. Further levels were foimd &)r HD+ where the non-adiabatic 

corrections are anomalous, in that they do not lie on smooth curves predicted from the 

corrections for [32]. As explained in chapter 4, the anomaly occurs in the range of bond 

lengths where the g/u symmetry breaking correction arises. 

In general corrections to the bond length are negative and increase in magnitude with 

w for given ^ or with JV for given However this pattern is disrupted to the extent that 

for some levels the correction is positive. These levels have dissociation energies between 

99.0 and 10.0 cm"^ and bond lengths between 7.9 and 9.6 ag. If levels ibr which the 

corrections are negative but decrease in magnitude are included, then the dissociation energy 

range widens considerably to 270 cm^^ at the upper end, while the lower limit of the bond 

length range decreases to 7.4 ao. 

As noted in the previous chapter, it can be argued that the non-adiabatic corrections 

increase the dissociation energies 6)r all the levels and, as a consequence, reduce the bond 

lengths as reported in this chapter. 
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Chapter 6 

Resul ts : non-adiabat ic dissociation 
energies and non-adiabat ic bond 

lengths for HT"^ and DT"*̂  

6.1 Introduction 

The content of the present chapter goes beyond the original aim of the project. Since 

liYolov [39,40] recently published dissociation energies and other properties 6)r the (t;=0, 

0) level of the ground electronic states of Tg , HT+ and DT+, the idea to compare his 

results with those that can be obtained with the numerical approaches used in this work, 

arose. For this reason, non-adiabatic dissociation energies and non-adiabatic bond lengths 

are presented with the respective non-adiabatic corrections, for aU the rotationless levels 

of the ground electronic states of HT+ and DT^. The procedure used is the same as that 

used for HD+ and which is explained in detail in chapters 2 and 3. 

The main objective is to conGrm that the observed anomalous behaviour in the lighter 

isotopomer HD+ (see chapters 4 ajid 5) also occured for HT+ and DT+. According to the 

reduced masses of the molecules, the anomaly might be expected to be larger for HT+ than 

for HD+, but smaller far DT+. 

The masses used for the nuclei are consistent with those used by Frolov. Even though 

Frolov referred to the masses reported in [41], the masses he used wore T»p=1836.152701 

TMc, md=:3670.483014 mg and mt=5496.921680 me [35], the same as those used throughout 

this work. 
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6.2 Non-adiabatic dissociation energies for 

and DT+ 

The non-adiabatic dissociation energies and the non-adiabatic corrections to the dissociation 

energy k r the three-body systems HT"*" and DT+, which contain proton, deuterium and 

tritium nuclei, are here reported for all the rotationless levels of these heteronuclear diatomic 

molecules; that is the levels studied are ?; = 0 — 23, JV = 0 for HT+ and w = 0 — 30, W = 0 

for DT+. 

A comparison with Frolov's available results [39,40] is made Ibr the level «=0, # = 0 

both with the variational and the scattering/translbrmed Hamiltonian approaches. The 

agreement between Frolov's results and these obtained with the calculation methods used 

in this work, is shown in table 6 1 for the (0,0) level of the ground electronic states of T^, 

HT+ and DT+. 

Cation Frolov [39,40] This work/variational This work/scattering 
rr+ 
^2 -0.S99 506 91011154145 -0.599 506910112 -0.599 506 910113 

HT+ -0.598 176 134 669 765 7 -0.598 176134669 7 -0.5981761346710 
DT+ -0.599130 662855 06164 -0.599 130662 855 0 -0.599 130662 856 0 

"Ikble 6.1: Comparison between Frolov's results [39,40] and those obtained with the calculation 
methods used in this work 6)r the non-adiabatic dissociation energy (in ^h) of the (0,0) level of the 

ground electronic states of T^, HT+ and DT+. 

Starting from these encouraging results, non-adiabatic dissociation energies 6)r all the 

rotationless levels are calculated through the scattering/transformed Hamiltohian method; 

all the results are reported in table 6.2. 

As for in chapter 4, the behaviour of the non-adiab&tic corrections to the dissocia-

tion energy for HT+ and DT+ is plotted against the vibrational quantum numbers in hgure 

6.1; in Egure 6.2 the complete behaviour over the whole range of the dissociation energies 

is reported, while in figure 6.3 the particular of the anomaly is shown in the range of 

0-800 cm ^, that is for levels close to dissociation. Due to the ratio between the reduced 

masses of these two isotopomers of tritium, a scaling factor of 5/3 to DT+ is applied. 
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HT+ 

(0,0) 
(1,0) 
(2,0) 
(3,0) 
(4,0) 
(5,0) 
(6,0) 
(7,0) 
(8,0) 
(9,0) 

(10,0) 
(11,0) 
(12,0) 
(13,0) 
(14,0) 
(15,0) 
(16,0) 
(17,0) 
(18,0) 
(19,0) 
(20,0) 
(21,0) 
(22,0) 
(23,0) 

DE^ -ad /cm" 
21567.130 68 
19 757.93095 
18 034.448 22 
16 394.247 37 
14835.19096 
13 355.431 10 
11953.40404 
10627.827 72 
9 377.702 38 
8202.31423 
7101.242 55 
6 074.37057 
5121.900 54 
4 244.373 63 
3442.695 32 
2718.16726 
2 072.526 10 
1507.989 66 
1027.30799 
633.809 48 
331.408 98 
124.52146 
19.606 85 
1.739 41 

ADEnon—ad/ Cm 
0.059 51 
0.170 35 
0.273 16 
0.368 26 
0.455 82 
0.535 94 
0.608 62 
0.673 69 
0.730 90 
0.779 82 
0.819 88 
0.85032 
0.870 17 
0.878 27 
0.873 16 
0.853 20 
0.81645 
0.760 77 
0.684 02 
0.585 24 
0.47427 
0.51544 
1.18120 
0.25756 

DT+ 

(0,0) 
(1,0) 
(2,0) 
(3,0) 
(4,0) 
(5,0) 
(6,0) 
(7,0) 
(8,0) 
(9,0) 

(10,0) 
(11,0) 
(12,0) 
(13,0) 
(14,0) 
(15,0) 
(16,0) 
(17,0) 
(18,0) 
(19,0) 
(20,0) 
(21,0) 
(22,0) 
(23,0) 
(24,0) 
(25,0) 
(26,0) 
(27,0) 
(28,0) 
(29,0) 
(30,0) 

DB 'non —ad /cm" 
21776.62540 
20331.243 26 
18 939.99418 
17601.61058 
16 314.94345 
15078.95925 
13 892.73746 
12 755.468 96 
11666.45496 
10625.106 82 
9630.94646 
8683.60764 
7782.83807 
6 928.502 38 
6120.586 06 
5 359.200 56 
4644.58948 
3 977.136 19 
3357.372 85 
2785.99121 
2 263.85495 
1792.013 94 
1371.719 37 
1004.438 50 
691.863 52 
435.899 86 
238.586 79 
101.77711 
25.87712 
4.49147 
0.16421 

ADB 'non—ad /cm^" 
0.02940 
0.08507 
0.13756 
0.186 97 
0.233 39 
0.276 88 
0.31746 
0.355 14 
0.389 88 
0.42164 
0.45019 
0.475 82 
0.497 94 
0.516 50 
0.53123 
0.54183 
0.54794 
0.549 16 
0.54499 
0.53492 
0.51300 
0.49451 
0.462 77 
0.422 33 
0.37241 
0.31239 
0.243 00 
0.18746 
0.57156 
1.07168 
0.009 19 

Ihble 6.2: HT+ and DT+: non-adiabatic dissociation energies and non-adiabatic corrections 
(non-adiabatic - intermediate transformed adiabatic) for the rotationless levels of the gionnd 

electronic states. 
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Vibrational Quantum Number 

Figure 6.1: Non-adiabatic corrections (non-adiabatic — intermediate transformed hamiltonian) 
for HT"̂  aJid DT+ to the dissociation energy for ^ = 0 levels plotted against the vibrational 

quantum numbers; a scaling Victor of 5/3 to DT+ is applied. 
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Figure 6.2: Non-adiabatic corrections (non-adiabatic — intermediate transformed hamiltoniaa) 
for HT^ and DT+ to the dissociation energy for # — 0 levels plotted against the non-adiabatic 

dissociation energies; a scaling factor of 5/3 to DT+ is applied. 
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Figure 6.3: Details of the non-adiabatic corrections (non-adiabatic — intermediate transformed 
hamiltonian) in the range 0-800 cm"^ (levels close to dissociation) for HT+ and DT+ to the 

dissociation energy for # = 0 levels plotted against non-adiabatic dissociation energies; a scaling 
factor of 5/3 to DT+ is applied. 



6.3 Non-adiabatic bond lengths for HT+ and 

DT 
The non-adiabatic bond lengths and the non-adiabatic corrections to the bond length are 

also computed for the rotationless levels of HT+ and DT+. 

The behaviour of the non-adiabatic corrections to the bond length against non-adiabatic 

dissociation energies is plotted in Hgiire 6.4 for levels close to dissociation and aH the results 

are reported in table 6.3. 
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F i g u r e 6 . 4 : Non-adiabat ic corrections (noii-adiabatic — intermediate t rans ibmied hamiltoni&n) 
for H T + and D T + to the bond length for # — 0 levels close to dissociation p lot ted against 

non-adiabatic dissociation energies; a scaling factor of 5 / 3 t o DT"^ is applied. 
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HT+ (^)iion—ad/^ (AIl)noT) -ad/ '̂O DT+ (^)non—ad/s-O (AR)non—ad/®'0 

(0,0) 2.051457 -0.000 003 (0,0) 2.039 939 -0.000 002 

(1,0) 2.161124 -0.000010 (1,0) 2.126 124 -0.000004 

(2,0) 2.274267 -0.000017 (2,0) 2.214406 -0.000008 

(3,0) 2.391 306 -0.000023 (3,0) 2.304 981 -0.000011 

(4,0) 2.512 736 -0.000031 (4,0) 2.398 069 -0.000014 

(5,0) 2.639150 -0.000041 (5,0) 2.493 921 -0.000019 

(6,0) 2.771262 -0.000 051 (6,0) 2.592 829 -0.000023 

(7,0) 2.909 935 -0.000063 (7,0) 2.695 127 -0.000028 

(8,0) 3.056 230 -0.000 076 (8,0) 2.801205 -0.000033 

(9,0) 3.211458 -0.000 093 (9,0) 2.911519 -0.000 039 

(10,0) 3.377268 -0.000112 (10,0) 3.026 603 -0.000047 

(11,0) 3.555 759 -0.000 137 (11,0) 3.147094 -0.000054 

(12,0) 3.749 652 -0.000168 (12,0) 3.273 748 -0.000063 

(13,0) 3.962 548 -0.000206 (13,0) 3.407 478 -0.000073 

(14,0) 4.199326 -0.000257 (14,0) 3.549 394 -0.000085 

(15,0) 4.466 800 -0.000 325 (15,0) 3.700 863 -0.000 100 

(16,0) 4.774850 -0.000416 (16,0) 3.863 587 -0.000117 

(17,0) 5.138492 -0.000 547 (17,0) 4.039 717 -0.000139 

(18,0) 5.582 051 -0.000 742 (18,0) 4.232 024 -0.000 165 

(19,0) 6.148591 -0.001 039 (19,0) 4.444 139 -0.000199 

(20,0) 6.925 362 -0.001339 (20,0) 4.680 948 -0.000242 

(21,0) 8.138 887 0.003 156 (21,0) 4.949 212 -0.000299 

(22,0) 11.11155 -0.08923 (22,0) 5.258 638 -0.000 374 

(23,0) 19.757 66 -1.068 83 (23,0) 5.623 810 -0.000479 (23,0) 
(24,0) 6.068 012 -0.000 632 

(25,0) 6.631 607 -0.000872 

(26,0) 7.393 454 -0.001255 

(27,0) 8.539 543 -0.000476 

(28,0) 10.704 323 0.024 855 

(29,0) 15.794 60 -1.224 15 

(30,0) 26.535 2 -10.3309 

I h b l e 6 . 3 : H T + and D T + : non-adiabat ic bond lengths and n o n - a d i a b a t i c corrections 
(non-adlabatic — intermediate t ransformed adiabat ic) for the rotat ionless levels of the ground 

electronic states. 
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6.4 Conclusions 

In this chapter a study of the rotationless levels of the ground electronic state of HT+ and 

DT+ is reported. In particular the non-adiabatic corrections to the dissociation energy 

and to the bond length are studied; new results concerning these properties of these two 

diatomic species containing a nucleus of tritium are reported. 

As expected from the results obtained for the heteronuclear molecule HD'*' (see chapters 

4 and 5), HT^ and DT+ show similar anomalies 6)r high vibrational levels. Near the 

dissociation Umit, the dissociation energy corrections are expected to reduce in magnitude 

as « increases, but out of line are the levels w = 21, TV = 0 and u = 28, TV = 0 for HT"*" and 

DT+ respectively; consistent with this observation, while in general corrections to the bond 

length are negative and increase in magnitude with w for given # or with TV for given this 

pattern is not Allowed for the mentioned levels whose dissociation energies lie between 125.0 

and 20 cm"^ for HT+ and 26.0 and 4.5 cm'^ for DT+. As expected from considerations 

concerning the reduced masses of the molecules, the anomaly is con&rmed to be larger 6)r 

HT+ than &ir HD+, but smaller 6)r DT+. In the case of HD+ the range of the anomaly &)r 

the rotationless levels lies between 94.1 and 10.2 cm' '^ so for HT''^ the range is wider and 

shifted to higher values of the dissociation energy while for DT^" the range is more narrow 

and shifted to lower dissociation energies. 

In the case of the non-adiabatic bond lengths, the anomalies for the rotationless levels 

lie between 9.5 ans 13.0 ao for HD+, 8.1 and 11.1 ao for HT+ and 10.7 and 15.8 ao for DT+. 

106 



Chapter 7 

Results : non-adiabat ic dipole 

'2 polarizabil i ty for Hit, D.j' and H D 

7.1 Introduction 

In this chapter fiiUy non-adiabatic calculations are reported of the electric dipole polariz-

1+ for 1, < 16, abilities for the # = 0 and levels of the ground electronic states of for < 16, 

for u < 24 and HD+ for u < 20. 

Diuing the last decade experiments and theoretical caJculations have been developed &)r 

the determination of accurate results in particular for Hg (0,0) and Dg (0,0). While earher 

theoretical calculations (see for example [42-44]) agreed with experiments, recently with 

the increase in experimental accuracy, the agreement with theory has been removed [45]. 

While experimental results on HD^ are still missing, theoretical results are reported in 

this chapter. After a review about previous experimental and theoretical works, the theory 

concerning non-adiabatic calculations of the electric dipole polarizability is explained and 

new non-adiabatic results reported and commented [46]. 
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7.2 The dipole polarizability: a brief review of 

previous studies 

Analysis of microwave spectra of Rydberg states of the hydrogen molecular cations has 

provided experimental values of molecular properties and in particular Lundeen have 

determined electric dipole polarizabilities [45,47-49]. An early determination of this prop-

erty &)r Hg (0,1) [47] was followed by more precise values for and D^(0,0) [48,49], 

and yet more recently by even better results for these (0,0) levels [46]. 

Earlier theoretical calculations [50] using a clamped nuclei appraximation did not agree 

with experiment for H^(0,0) and it was emphasized by Lundeen that, in particular, non-

adiabatic effects needed to be accounted far in calculations. Fully non-adiabatic 

calculations, that were not inconsistent with experiment at the time, used a dnite element 

method [42], a locahzed variational method [43] and a variational method [44]. A quasi-non-

adiabatic treatment [51], in which the breakdown of the Born-Oppenheimer approximation 

due to vibration is accounted &)r, but in which rotation is averaged classically, also gave 

agreement with experiment, although in retrospect [52] this agreement was shown to be due 

to neglect of third-order efkcts, involving the couphng of electronic and rotational angular 

momenta, compensating for the use of classical rotational averaging; that is when quantum 

mechanical averaging of rotation is employed, agreement with experiment was only achieved 

when third-order eEects were included [52], the importance of this being realised also by 

Taylor ef [44]. Further support for the current theoretical result comes to rn recent work 

on two-photon transition probabihties [53]. 

However, the recent experimental results &)r Hg (0,0) [45] have removed the agreement 

with theory, although the less precise determination for D^(0,0) is stiU consistent. An 

estimate of the relativistic effects 6)r H^(0,0) [54] could only explain about one hfth of 

the remaining discrepancy. Another possibihty is that kurth-order effects may contribute, 

although there was no evidence for them in a calculation for the H^(0,1) level [55], where 

these were implicitly included. 

The electric dipole polarizability of the heteronuclear hydrogen molecular cation 
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poses new problems, since electronic g/u symmetry breaJdng due to the mass asymmetry 

removes the simplifcation that the electric dipole moment operator only connects states of 

opposite g/u parity. In particular has a signiEcant permanent electric dipole moment 

even in the Born-Oppenheimer approximation [56]. Bhatia and Drachman [57] appear to be 

the only authors to have attempted a calculation. They employed their localized variational 

method to determine accurate wavefunctions for excited states as well as the ground state, 

and used these in conventional second-order perturbation theory. 

7.3 Theory 

7.3.1 The transformed electric field perturbation 

operator 

As already seen in the case of the non-adiabatic bond lengths (see chapter 5), properties 

may be extracted &om accurate energies determined with the Hamiltonian for the molecule 

perturbed with an appropriate operator (see section 3.4). 

The dipole polarizability arises when an external electric ^eld is applied and this mixes 

different electronic states. The additional term in the most general case of the Hamiltonian 

of HD+ is 

(ma - mi) ^ ^ (ma 4- zMg + 2) ^ 
2(m2 + 771] + 1) (77̂ 2 + TTlp + 1) ^ 

(7.1) 

where the perturbation parameter A is the magnitude of the electric 5eld and n is the unit 

vector in its direction; jR is the internuclear separation and rg is the position of the electron 

relative to the geometric centre of the nuclei. Note that the first term in equation (7.1) 

vanishes &r the homonuclear species and D^. The perturbation changes the energy _Bo 

5)r a level to 

^ = Eo - /̂ A - ^aA^ - l^A^ - ^-yA^ + 0(AG). (7.2) 

From equation (7.2), if the dipole moment ^ and the Arst hyperpolarizability vanish. 
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then linear regression of (E — Eo)/A^ on gives a determination of the electric dipole 

polarizability as the intercept, together with an estimate of the second hyperpolarizability 

'y; this is the situation for both and Dg and also for HD+, if molecular rotation is 

averaged quantum mechanically, as will be explained. As in the case of the bond lengths, 

the values of the parameter A are chosen so that the correlation coe@cient determined in 

the hnear regression is very close to ±1; the standard deviations obtained give an indication 

of how many figures are justihed in the results. 

The same calculation methods used to study the non-eidiabatic bond lengths are applied 

in the case of the dipole polarizability. If the variational method is used, the perturbation 

operator is as given in equation (7.1). On the other hand, if a transformed Hamiltonian 

is used, the perturbation must undergo the same transformation; as already explained, 

the transformation is introduced in two stages, the first relevant only to the heteronuclear 

molecule HD+, dealing with the mass asymmetry. 

For and the transformation of operators including (7.1), is straightforward since 

only the second part of the trans&rmation is relevant. Even &)r HD+ the molecular proper-

ties considered up until now (:.e. bond lengths) have not presented any di&culty, since they 

only involve internal coordinates, namely functions of the bond length and the expectation 

value of the component of the electron position along the intemuclear axis. 

In the case of the dipole polarizability, things change since now the external electric field 

de&nes a space-Exed axis, so that perturbation (7.1) imphcity contains angular coordinates. 

The 6rst part of the trans&rmation, which is only relevant to HD^^, involves derivatives with 

respect to these angular coordinates in addition to the internal coordinates. If the electric 

Held is along the Z space-5xed axis, then pertm-bation operator (7.1) may be abbreviated 

to 

= -A(^ j^z + Brg) (7.3) 

where 

2 ( m a + m i + l ) ' 

13 = + " l + ^) (7.5) 
(m,2 4- mi + 1) 
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and 

(7.6) 

is the Z-component of the electric dipoie moment of the molecule. After the intermediate 

transformation, the new expression 6)r the perturbed term of the Hamiltonian is 

= - A + Br^)cosh^ + 2(v4rz + ^B72^)sinh^ — — A/i^. (7.7) 

The hyperbolic functions may now be expressed in terms of the e^sctive nuclear charges 

and Zg through equations (2.109) and (2.110) which lead to 

cosh^ = ^(^1 + ^2) (7.8) 

and 

sinh— — g (^2 — ^i) (7.9) 

The second part of the transformation results only in the introduction of the multiplicative 

factor [23], so that Snaily the trans&rmed perturbation for HD"*̂  is 

- (Z [ + Z2)(ARx + Br^) + (Zg — Z'i)(Ar;^ 4- — — — (7.10) 

where 

/) — 1 + 
(4//cg + 1) 

( r + 77 - 1 ) (7.11) 

and 

with p as indicated in (2.100). 

(7.12) 

AHARV 
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7.3.2 Matrix e lements 

For determining matrix elements, the coordinates 7;, ^ and % may be reintroduced 

= ;i!cosg, (7.13) 

= -B{^77Cos^ — — 1)(1 — 77^)sin0co8%}. (7-14) 

All the matrix elements needed may be evaluated analytically, provided that in equar 

tion (7.10) is expanded as a power series in 1//^ and l//fa. 

As emphasised in [52], when third- and higher-order contributions to the polarizability 

are included and the relevant matrix elements arise from diEerent parts of the total Hamil-

tonian, it is most important to use a consistent policy for the angular functions involved. 

In particular, care must be taken to use the correct relative signs of the matrix elements 

arising &om the electric Geld perturbation and the term in the unperturbed Hamiltonian 

that couples rotational and electronic angular momenta. Here the matrix elements of [4,6], 

which were taken from [12], are used &)r the zeroth-order Hamiltonian. The angular parts 

of these matrix elements are determined using the definitions and relationships of Kolos and 

Wolniewicz [58], and accordingly for consistency they are also used here for the perturbation. 

The angular matrix elements depend on vl, and M. ^ is the electronic anguW 

momentum quantum number and takes on the value 0 for 2 states and ± 1 for H states; 

A and other states with yi > 1 are ignored. is the total angular momentum quantmn 

number, while Af re&rs to its projection along the space fixed ^ axis and is a good quantum 

number. In this work only levels with AT = 0, 1 are studied, so the only values of M needed 

are 0, ±1. The relevant matrix elements are given below; note that Â  — 0 is only possible 

for S (vi = 0) states. 

For M = 0, 

(yl =: 0, = 0| cos = 0, AT = 1) = (7-^5) 
v 3 

(vl = 0, Â  — 1| cos ^|yl = 0, A = 2) = — ( 7 - 1 6 ) 
V15 

(vl = =1=1, = 1| cosOjvl = ±1, AT = 2) = (7.17) 

112 



(vi = 0, = 0| - sing cos x|yl = ±1, ^ - 1) = (7.18) 
V6 

(vl = 0, JV = 1| — sing cos %|vi = d:l, AT = 2) = :p , (7.19) 
vlO 

(vl = 0, jV = 2| — sing cos %|vi = ±1, JV = 1) = d: y_ , (7.20) 
v s o 

while for M = ±1, 

(^ — 0, W = 1| cos g|vi = 0, N = 2) = (7.21) 

/ l 
(A = ±1, jv = 11 cos g|yl = d:l, JV = 2) — (7.22) 

2 v 5 

(vi = 0, JV = 1| — sing cos %|yi — d:l, ^ = 2) = ^2 \7 ro ' (7.23) 

(yl = 0, TV = 2| — sing cos %|vl = =1:1,^ = 1) = d:—1=-. (7.24) 
2vlO 

Finally 6)r M — 4-1, 

(vi = ±1, AT = 1| cos g|yl = ±1, AT = 1) = (7.25) 

(vi = d:l, jV = 2| COS g|^ = ±1, AT = 2) = ±—, (7.26) 

(vi = 0, JV = 1| — sing cos x|vl = ± 1 , # = 1) = ^ 2 \ / 2 ' (7.27) 

(^ = 0,Ar = 2|-singcos%|vi = j : l , # = 2> (7-28) 

2v6 

For Af = — 1 the right hand sides of the last three matrix elements should be multiplied by 

—1. In an electric Seld the energy depends only on |Af|; so that separate calculations are 

not needed for Af = +1 and Af = — 1, although they provide an indication of computational 

rounding errors. 
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7.3.3 Quasi-non-adiabatic calculations 

Although quasi-non-adiabatic calculations have now been superseded &)r H2 D^, it is 

nevertheless instructive to report results for HD+, particularly as it will be seen that quasi-

non-adiabatic and fully non-adiabatic results are dramatically diEerent. When classical 

averaging of rotation is used, as in the quasi-non-adiabatic treatment, the dipole polariz-

ability is given in terms of the parallel and perpendicular components by 

(7.29) 

where, according to the second-order term of a perturbation theory 

a,I - ^ = = 
'I = = 

and 

2 ^ | ( 2 + , # - 0 | / / , K , # = 0)|2 

In equations (7.30) and (7.31) and are the components of the electric dipole moment 

in the molecule-Gxed frame system, the factor -2 arises from the definition of polarizability 

and the 1/3 is from the rotational averaging. The parallel component is found by assuming 

the electric held hes along the internuclear space-fixed axis while for the perpendicular 

component the field is perpendicular to the axis. In these calculations the coupling between 

levels does not depend on the rotational quantum numbers and Af, even to the extent 

that for of (0,0) levels coupling to 11 states with # = 0 is implicit, even though AT =? 0 

is not allowed for II states. 

Note that for HD^ the determination of 0!|| is less precise, since the electric dipole 

moment along the internuclear axis is non-%ero, so that in using equation (7.2) allowance 

must be made by regressing (jB — ^o)/A on A and extracting a!|| as a slope. This does not 

(ipply to which may be determined as an intercept, just as &)r both components in the 

homonuclear ions and for a in fully non-adiabatic calculations. 
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7.3.4 Fully non-adiabatic calculations 

In a fully non-adiabatic calculation the rotation is averaged quantum mechanically, so that 

even though the mass asymmetry in HD+ is responsible for a charge asymmetry, the ex-

pectation values of the electric dipole moment and the first hyperpolajizability vanish and, 

just as for the homonuclear ions, regression of (jB — on gives the polarizability o; 

&om the intercept and the second hyperpolarizability 'y &om the slope. 

Equations formally similar to (7.30) and (7.31) for a quasi-non-adiabatic approximation 

can be written in the case of a second-order fuUy non-adiabatic approach as 

|(E^,W = 0|y2[S+.W = l ) | ' 

"" ^ - E ( E j , W = 0) - E(5;J.iV = 1) 

and 

3 ^ E ( 2 + j V = 0 ) - E ( n « , A r = l ) ' 

In (7.32) and (7.33) is the component of the electric dipole moment in the space-fixed 

frame system (see equation (7.6)). The other diSierence with respect to the equations 5)r the 

quasi-non-adiabatic approximation is that now the averaging is between # = 0 and ^ = 1 

levels. This makes the denominator larger and the contribution to the dipole polarizability 

smaller in both the components. 

For homonuclear ions in the absence of an electric Held the total angular momentiun # 

is a good quantum number and in the absence of nuclear spin states may be labelled g or u. 

Coupling of rotational and electronic angular momenta occurs between E and 11 states for 

levels of the same # > 1 and the same g/u electronic parity. An electric 6eld mixes states 

with AT differing by 1 and also mixes g and u electronic states, so that in studying a g state 

of an homonuclear ion only u basis functions with JV diSering by 1 need to be considered 

and this is illustrated in Ggures 7.1, 7.2 and 7.3. 
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Figure 7.1: The relevant couplings in calciilations of the dipole polarizability of the (0,0) (M = 0) 
level of the ground electronic states of and D^: thick lines indicate the major, second-order 

contributions; the dashed lines represent the interaction of electronic and rotational angular 
momenta. 

Figure 7.2: The relevant couplings in calculations of the dipole polarizability the (0,1) (M = 0) 
level of the ground electronic states of and D^: full lines represent the electric Geld 

perturbation; thick lines indicate the major, second-order contributions; thinner lines are for 
couplings involved third- and higher-order interactions; the dashed lines represent the interaction 

of electronic and rotational angular momenta. 
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Figure 7.3: The relevant couplings in calculations of the dipole polarizabllity of the (0,1) 
(M — ±1) level of the ground electronic states of and D^: full lines represent the electric Aeld 

perturbation; thick lines indicate the major, second-order contributions; thinner lines are for 
couplings involved third- and higher-order interactions; the dashed lines represent the interaction 

of electronic and rotational angular momenta. 
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However, k r HD+ the mass asymmetry removes the electronic g /n symmetry and mixing 

of g and u functions with the sajne # occurs, so that more basis functions are needed. The 

modified diagram for HD+ for M = ±1 is given in hgure 7.4. The other diagrams for HD+ 

are not reported since they are the same as the ones in figures 7.1 and 7.2 where now the 

g/u characterization has to be removed. It has been found that higher-order contributions 

involving these interactions are significant [52,55]. 

11 TV =2 

Figure 7.4: The relevant couplings in calculations of the dipole polarizability the (0,1) (M = ±1) 
level of the ground electronic state of HD+: fuU lines represent the electric Geld perturbation; thick 
lines indicate the major, second-order contributions; thinner lines are for couplings involved tliird-

and liigher-order interactions; the daahed lines represent the interaction of electronic and 
rotational angular momenta. 

As reported, Ggure 7.1 describes the situation for the (0,0) level for the ground electronic 

of the homonuclear molecules; in the case of the electric field couples this level with 

# = 1 levels of Z and II states and the nearest level is now (0,1) of the ground electronic 

state itself, so that this interaction dominates [57]. As will be reported, this explains the 

dramatically different polarizability of HD''" compared with and D^, for which the 

nearest interacting level is the (0,1) level of the first excited electronic state. 

Figin-e 7.2 seen without the g/u labels illustrates the interactions for the (0,1) level of the 

ground electronic state of HD"*", for which averaging over = 0 and Af =: JLl is necessary. 
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For M = 0, the Af = 1 level interacts with Z''", # = 0 levels and with 2^" and H, AT — 2 

levels as well as there being mixing with H, AT = 1 levels. There is competition between the 

coupling with the 2+ ground electronic state (0,0) and (0,2) levels. As might be expected 

from a consideration of the energy separation involved, the AT — 0 contribution dominates 

and the polarizability is negative, as will be seen &om the results. 

As already mentioned, figure 7.4 diSers most from the corresponding Sgure 7.3 for the 

homonuclear ions in that it does not have separate Eg and H;, states indicated. In addition, 

an electric Eeld interaction is included between AT — 2 and II, Â  = 2; for H2 ? ^g, 

JV = 2 basis functions are not involved. For M = ±1 there are no AT = 0 levels with which 

to interact so, since (0,1) is the lowest level with M = ±1, the polarizability is positive. 

Note that Ggure 7.1 is embedded in Bgure 7.2 so that the latter is also appropriate &)r 

the (0,0) level of the ion, but includes higher-order interactions. In particular this provides 

another opportunity to determine whether these could be responsible for the remaining 

discrepancy between theory and experiment for the (0,0) level of H^. 

7.4 Results 

The variational method and the trans&rmed Hamiltonian/scattering method give the same 

results to at least the Egures quoted in this work, so they will not be given separately. In 

the case of the variational method the parameters used were taken from [6] and care was 

taken that enough Z and 11 functions were used. R)r the scattering method the parameters 

were as used in [4] and it was confirmod that enough basis functions were included, that 

integration was taken out far enough and that the intervals used for J? were small enough. 

The fact that the results &om these two quite different methods agree is reassuring. 

The calculations involve diagonahxation of large matrices in the variational method or 

the diagonalization and inversion of smaller matrices many times in the scattering method. 

Comparing results for Af = -t-1 and Af = — 1 calculations indicates that rounding errors 

do not affect the results to the precision quoted. Accordingly only joint results &)r are 

given. 
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Care has to be taken in choosing appropriate values of the perturbation parameter A 

by monitoring the relative error in a and the correlation coe&cient obtained in the linear 

regression. In particular, the second hyperpolari%abiIity for # = 0 levels of the ions has 

major contributions &om the # = 2 basis functions (see Egure 7.2) and this can a&ct the 

precision of the calculated dipole polarizabilities unless smaller A are used than those that 

are satis&ctory in calculations ignoring AT = 2 (see Ggure 7.1). 

Ikble 7.1 reports the quasi-non-adiabatic calculations for HD+ (0,0). For comparison, 

the results for and are also given; these results are taken from [51] but multiplied 

by the homonuclear equivalent of where .8 is defined by equation (7.5); namely they 

are multiplied by (1 + e)^ with 

1 
6 = (7.34) 

2m + 1 

Not surprisingly the value for ajL lies between those of and D^. This is not true for a!|| 

or for the rotational average a = ^(a|| + 2a!^). Neither are determined as well as 6)r a j , 

because of the non-xero electric dipole moment of , which is also given in table 7.1 and 

is in agreement with that previously reported in [37]. 

Cation i(a:|| +2o!_L) ^/eoo 
5.830 354 1.837295 3.168 315 -

HD+ 6.012 1.825 695 3.221 -0.342 755 
5.590 746 1.812 294 3.071778 -

TDable 7.1: Quasi-non-adiabatic polarizabilities (in miits of 47reoaQ or )̂ for the (0,0) levels 
of the ground electronic states of [51] and HD"*"; the electric dipole moment (in eog) of 

HD+ is also given. The uncertainties are 1 in the last digit quoted. 

It is expected that any comparison with experiment will involve the (0,0) or (0,1) levels. 

In addition, the only previous fully non-adiabatic calculation of the polarizability &)r is 

fbr the (0,0) level [57]. For HD+ (0,0) the polarizability is calculated to be 395.306 

in good agreement with the 395.289 from the localized variational method of Bhatia 
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and Drachman [57]. As argued in section 7.3.4 the result for HD+ (0,1) M = 0 is negative 

(-229.986 ^ w h i l e that for |M| == 1 is positive (120.979 giving a rotational 

average of 3.991 These results are included in tables 7.2 and 7.3. 

The second hyperpolarizabilities are also determined in these calculations, but the results 

are only good to two signiScant Sgures. For HD^ (0,0), (0,1) Af = 0 and |M| = 1 they are 

—3.3 X 10^, —3.3 X 10^ and -2 .1 x 10^ respectively. 

As already emphasized, the great advantage of the transformed Hamiltonian/scattering 

method is that it is not limited to low vibrational levels, although many more basis functions 

are needed for the calculation of polarizabihties than far properties that do not involve the 

mixing of different AT. Accordingly, table 7.2 presents the polari^abilities for many # = 0 

levels of Hg , and HD+; these results include the higher-order contributions from # = 2 

basis functions (figures 7.2, 7.3 k r the homonuclear species and 7.4 fbr HD^). Also included 

in table 7.2 are the Hilico ef af. [53] published values &)r %; < 10, AT = 0 levels of Hg and 

D^; although AT = 2 basis functions were not included, these were given to ten significant 

figures, but the results reported here are not as optimistic and only six Sgures are quoted. 

For these levels the results found in this work are consistent with theirs. Not surprisingly, 

plots of polarizability against dissociation energies fbr and levels are coincident, 

as illustrated in figure 7.5. It has to be noted that the scaling factor due to the different 

reduced masses of the cations is not applied here since a comparison between non-adiabatic 

values of the property is made; the scaling factor has to be apphed when non-adiabatic 

corrections to the property of interest are studied. 

Table 7.3 reports polarizabilities for # = 1, Af = 0 and | = 1 levels, together with 

their averages. Again, higher levels are not included due to the number of basis functions 

needed to study levels so close to dissociation and involving the indicated couplings between 

levels of different TV. Since the basis functions used are for ^ — 0, 1 and 2, there are no 

higher-ordei contributions included from basis functions with differing by 2 from the 

W — 1 levels of interest. Again, the polarizability fbr a level could be predicted from a 

plot of polarizabihty against dissociation energy fbr (see figm e 7.6). 
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(«,0) H+ [53] [53] HD+ 

0 3.168 726 3.168 725 803 3.071 989 3.071988 696 395.306 
1 3.89756 3.897563 360 3.55303 3.553 025 791 462.65 
2 4.821 50 4.821500 365 4.119 58 4.119 581678 540.69 
3 6.009 33 6.009 327479 4.79129 4.791 282 711 631.4 
4 7.56046 7.560453 090 5.593 32 5.593 314877 737.3 
5 9.62178 9.621 773 445 6.558 32 6.558 318 701 861.7 
6 12.4160 12.415 999 87 7.72906 7.729 054 615 1008. 
7 16.2910 16.290 999 14 9.162 21 9.162 209 589 1184. 
8 21.809 5 21.809 472 78 10.933 9 10.933 925 39 1394. 
9 29.9203 29.920 326 97 13.1480 13.147976 83 1651. 
10 42.306 3 42.306 328 65 15.9481 15.948 120 78 1698. 
11 62.142 6 - 19.5372 - 2367. 
12 95.908 0 - 24.2073 - 2880. 
13 158.242 - 30.3892 - 3558. 
14 287.145 - 38.7355 - 4488. 
15 603.100 50.2666 - 5822. 
16 1630.58 - 66.6377 - 7860. 
17 - - 90.6543 - 1128. 
18 - 127.331 - 17950. 
19 - - 186.239 - 3520. 
20 287.227 - 12640. 
21 476.191 - -

22 876.264 -

23 1897.62 " 

24 5471.28 _ 

Ikble 7.2: Non-adiabatlc polarizabilities (in units of 4?r6oaQ or for rotationless levels of 
the ground electronic states of and BD+. For comparison the results A-om [53] are 

included. The highest levels, = 17 — 19, t; = 25 — 27 and i; = 21 — 22, for and HD+, 
respectively, are not included due to the number of basis functions needed to study levels so close 

to Association and involving the indicated couplings between levels of diEerent 2V. 
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Figure 7.5: Non-adiabatic dipole polarizability versus non-adiabatic dissociation energies for 
and for AT = 0, M = 0. 
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H+ HD+ 
(TJ,!) M=0 Af = |1| Average M=0 M = |1| Average M=0 Af = |1| Average 

0 4.249 47 2.642 72 3.178 30 4.08719 2.571 29 3.076 59 -229.986 120.979 3.991 
1 5.435 71 3.14730 3.91010 4.862 95 2.906 40 3.558 58 -268.90 141.50 4.70 
2 6.971 51 3.771 38 4.838 09 5.791 12 3.293 92 4.126 32 -313.87 165.29 5.57 
3 8.98216 4.556 24 6.03155 6.907 34 3.745 59 4.799 51 -366.00 192.95 6.63 
4 11.648 6 5.56166 7.590 6 8.25728 4.27648 5.603 41 -426.66 225.26 7.95 
5 15.2384 6.876 08 9.663 5 9.900 15 4.906 13 6.570 80 -497.57 263.22 9.62 
6 20.157 0 8.633 79 12.474 9 11.9135 5.660 18 7.744 6 -580.99 308.11 11.74 
7 27.0373 11.044 7 16.375 6 14.399 9 6.572 65 9.1817 -679.82 361.66 14.50 
8 36.9072 14.438 9 21.928 3 17.497 6 7.689 26 10.958 7 -737.96 426.19 18.14 
9 51.495 6 19.423 0 30.113 9 21.394 5 9.072 39 13.179 8 -940.72 504.94 23.05 
10 73.877 5 26.985 7 42.616 3 26.351 1 10.808 5 15.989 4 -1115.5 602.48 29.8 
11 109.864 39.0677 62.666 32.734 9 13.019 7 19.5914 -1332.8 725.55 39.4 
12 171.340 59.615 3 96.857 41.075 5 15.8819 24.279 8 -1608.3 884.41 53.5 
13 285.257 97.571 3 160.133 52.153 8 19.654 8 30.487 8 -1965.8 1 095.4 75.0 
14 521.919 176.238 291.465 67.153 8 24.732 1 38.872 7 —2 444.0 1386.1 109.4 
15 1105.99 369.927 615.28 87.927 2 31.729 7 50.462 2 -3108.3 1806.4 168.2 
16 3029.40 1 005.36 1680.04 117.480 41.647 5 66.925 - 4 079.1 2 455.8 277.5 
17 - - - 160.913 56.1818 91.092 - 5 602.4 3 561.9 507.1 
18 - - - 227.352 78.367 7 128.029 - 8 270.8 5 765.9 1087.0 
19 - - - 334.243 114.005 187.148 -14046 11671 3099 
20 517.842 175.142 289.376 - 3 9 022 45104 17062 
21 862.217 289.694 480.535 _ 
22 1593.85 532.774 886.47 — 

23 3472.18 1155.72 1 927.87 
24 10116.6 3 350.76 5 606.0 

l ^ b l e 7 . 3 : N o n - a d i a b a t i c p o l a r i z a b i l i t i e s ( i n u n i t s o f 4 7 r e o a g o r ^ = 1 l e v e l s o f t h e g r o u n d e l e c t r o n i c s t a t e s o f D + a n d H D + . 
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Figure 7.6: Non-adiabatic dipole polarizability versus non-adiabatic dissociation energies for Hj" 
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There are at least three fully non-adiabatic calculations that agree to 1 x 10^^ 

that the (0,0) polarizability is 3.168 726 [44,52,53]. The f ^ t that there is still a 

discrepancy between these and the experimental value of 3.16796(15) [45] suggests 

that the theoreticians are not calculating the quantity that is observed experimentally. 

Korobov [54] has shown that relativistic effects can only account 6)r about 20% of the 

difference. 

Previous calculations have not accounted for the contribution of # = 2 levels through 

fourth- and higher-order corrections. The program used k r the (0,1) M = 0 calcular 

tion includes # = 0, 1 and 2 basis functions, so that by targeting TV = 0 the higher-order 

corrections are accounted for. The result is unchanged at 3.168 726 suggesting 

that these corrections only aSect at most the sixth decimal place. The diHisrence between 

theory and experiment is not resolved. The inEuence of A electronic states has yet to be 

considered, but is unlikely to be signiScant since the largest contribution is presumably 

fourth-order involving IT, AT = 1 and A, W = 2. 

Another possible source of any discrepancy is hyperGne eSiscts. However the (0,0) 

level is unafkcted by the dominant Fermi contact interaction, as is the nearest interacting 

level (Z+ (0,1)), since they are both in nuclear spin states. Hg (0,1) is orfAo, but 

a back-of-the-envelope calculation of the likely effect on o!||, based only on the change in 

energy separation between (0,1) and the nearest interacting levels, Ej" (0,0) and (0,2), 

suggests that this would only affect the sixth decimal place. This is in the context that a 

similai" rough estimate of the inSuence of relativistic ejects for Hg (0,0) (as calculated by 

Korobov [54]) underestimates by a factor of three while, if radiative effects are included as 

well, the combined contribution to the discrepancy is even less. 

l b conclude, it has to be noted that the second-order hyperpolarizability for (0,0) 

is 1.14 X 10^ 
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7.5 Conclusions 

In this chapter new results for the dipole polarizability of the hydrogen molecular cation and 

its isotopomers are reported. Many levels are studied, although levels close to dissociation 

will require more eSbrt. Also, if needed, it should be possible to add an extra signiGcant 

figure to the results given here. Only levels with W = 0 and 1 are considered, since for a 

given jV, the ( # +1) values of |M| must be considered separately, but again other JV could 

be studied if necessary. 

HD+ is of particular interest here since only one previous calculation of its polarizability 

was reported; the presence of an asymmetric charge distribution provides novelty. The result 

obtained for (0,0) is close to the only previous one. 

The opportunity was taken to revisit (0,0), but including higher-order contributions 

than previous studies has not removed the diSerence between experiment and theory. 

Finally it should be noted that the values of the perturbation parameter used, may be 

relevant to experiment. For and they correspond to electric fields of up to 

2 X 10"^ (I X 10^ Vm^^), while for HD+ the corresponding Eelds are up to 

4 X 10-G (2 X # Vm-^). 
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Chapter 8 

Results : relativist ic correct ion for 
H + 

8.1 Introduction 

In this chapter results concerning the relativistic corrections &)r the ground electronic state 

of the hydrogen molecular cation are reported. While fully relativistic calculations 

for atoms are common, relativistic corrections for molecules are still estimated 6rom non-

relativistic wavefunctions using perturbation theory. Since high-resolution spectra data are 

available, relativistic eSects are very important for light species such as even though in 

order to have an agreement between experimental and theoretical results to 0.001 cm^^ or 

better, the radiative correction should also be included. 

In the past, tables of the corrections to the potential k r the ground state of Hg as 

a function of internuclear distance have been published [59] and these have been used to 

calculate relativistic corrections for Hg , and HD+. However, those results extended 

only to R=10.0 ao while Carrington and coworkers investigated the very highest vibrational 

levels of all the three molecules [60-62], levels for which bond lengths greater than 

10.0 ao make signiScant contributions. More recently Kennedy and coworkers [63] extended 

the evaluation of the relativistic correction to far beyond R=10.0 ag. They too treated the 

nuclei as being Gxed, thus assuming that the small non-adiabatic e%cts did not significantly 

inBuence the relativistic corrections. 

In this work the relativistic correction is treated at a non-adiabatic level and the results 

reported are obtained, as for the other properties, through the variational and the scattering 
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methods. However, as is explained below, analytic evaluation of some of the matrix elements 

is not possible and numerical integration (see section 3.5) is used to achieve the reported 

results. 

8.2 Theory: the Dirac Hamiltonian 

In considering relativistic corrections it would be desirable to write down an Hamiltonian far 

the two protons and one electron and separate o:^ the overall translation. Un6)rtunately this 

is not possible relativistically. In addition, the corrections are dominated by the electron 

motion, so attention is to be conGned to the electron in the presence of two nuclei. For this 

reason the Dirac Hamiltonian has to be considered 

+ ca TT — Ca TT — 
e" / 1 

, . - ) 47rEo\ric r2c/ (8.1) 

where 

TT = p + eA (8-2) 

is the mechanical momentum, is the scalar potential and ^ and o: are the Dirac operators 

which can be seen as operators representing a new degree of freedom intrinsic to the electron. 

Specifically, in equation (8.2) p is the canonical momentum and A is the vector potential. 

All the other symbols have their usual meaning. Explicitly, the Dirac operators can be 

written in the fallowing forms, known as the gfaniiarff 

= ao = 

/ 1 0 0 0 \ 

0 1 0 0 

0 0 - 1 0 

\ 0 0 0 -- 1 / 

/ 0 0 0 1 \ 

0 0 1 0 

0 1 0 0 

1 1 0 0 0 / 

(8.3) 

(8.4) 

/ 0 0 0 —% 

0 0 i 0 
0 —* 0 0 

\ ' 0 0 0 / 

(8.5) 
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/ 0 0 1 0 \ 
0 0 0 - 1 
1 0 0 0 

\ 0 - 1 0 0 / 

(8.6) 

It is convenient to rewrite equation (8.1) in dimensionless coordinates in which lengths 

are measured in aq and indroducing a, the Ene structure constant 

% = mc 6 + a a TT — oi I — 
rie rsc 

1 1 
(8.7) 

with 

a = 7.29735 X 10- (8.8) 

The ibrm of equation (8.7) arises &om considerations concerning the decoupling between 

its positive and negative solutions, as is explained later. With any decoupling method, the 

Hamiltonian is obtained as a power series (see later) which converges for electrons moving 

with velocities much less than the speed of light. Since the largest term in the Dirac 

Hamiltonian (8.7) is it is appropriate to estimate the magnitude of the other terms, 

relative to this one. 

In the Grst Bohr orbit, the electron's speed is 

2^0 
= CCK (8.9) 

so now a and u/c are comparable expansion parameters; in addition, the radius of the Erst 

Bohr orbit is 

So, classically 

and 

do = o -
me'' 

coc TT cm?; = mc a 

47reoao 
9 9 

mc CK 

(8.10) 

(8.11) 

(8.12) 

&om which equation (8.7) arises. 
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The Dirac equation is the proper relativistic quantnm mechanical equation &)r the elec-

tron. However, as it is a four-component equation, it involves fbur-by-fbm- matrices and the 

wavefunction is a four-component vector. This is its main di@erence from non-relativistic 

equations, whose wavefunctions have two components corresponding to the two possible 

orientations of the electron's spin. 

Besides, the Dirac equation has two negative energy components which are coupled to 

the positive energy components. Since just positive energies have to be considered, the 

necessity to decouple the positive and the negative energy components arises, to obtain 

a two-component equation for the positive energy solutions which is similar to the non-

relativistic equations and can be used in the same way. The Dirac equation is, in this way, 

reduced to a non-relativistic form. 

The method used to obtain the non-relativistic form of the Dirac equation that is used 

to achieve the results reported in this work, is the Foldy-Wbuthuysen transformation (see 

for example [€4]). The starting point is to express the Hamiltonian as a power series in a 

'1 

where 

and 

(2 (8.13) 

8 = cr - p (8.14) 

6 = - ( — + — ) (8.15) 
r2e/ 

the components of cr being the Pauli spin matrices; note that The Hrst term 

of equation (8.13) is the electron rest energy and is omitted in the rest of this work; the 

term of order corresponds to the non-relativistic energy; the relativistic corrections 

that are of interest are the expectation values of the terms. Higher order corrections 

become increasingly divergent and would present technical problems far beyond the scope 

of this work. 

BrieHy, the Foldy-Wbuthuysen transformation consists in performing a series of unitary 

transformations by which the coupling terms between the positive and the negative solutions 
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are progressively eliminated to obtain the resulting non-relativistic Hamiltonian which is 

hermitian. Following the choice of trans&rmation in [65], the result for the correction is 

(8.16) 

Substitution of (8.14) gives 

grcl = ^ |<^(rie) + ^(r2e) -cr He 
3 
le 

(8.17) 

The spin-orbit coupling term makes no contribution to 2 molecular states so that the 

hnal form of the relativistic contribution to the non-relativistic Dirac equation used through-

out this chapter is 

^rel — a V + f <5(rie) 4- J(r2e) (8.18) 

8.3 Theory: expectat ion values and numerical 

approaches 

8.3.1 Introduction 

In order to study the relativistic correction, the expectation value of operator (8.18) has to be 

considered; namely the expectation values of the 6)urth power of the canonical momentimi p 

and of the electron density at the nuclei < (̂rne) have to be studied. This section is dedicated 

to these topics. 

As already done for aU the other properties that have been reported in this work, a pre-

liminary comparison between the results obtained with the variational and the scattering 

methods is made. As explained in the next section, the expectation values of the electron 

density at the nuclei are computed through analytic integration. In section 8.3.3 the ap-

proach adopted to study the expectation value of p"* is reported; due to the presence of 

singularities in the expression 6)r this operator, the results are achieved through numerical 

integration (see 3.5) since singular integrands appear. 
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8.3.2 Electron density at the nuclei 

The explicit expressions of the electron density at the nuclei in equation (8.18) are the 

following, according to the nucleus they refer to; namely for nucleus 1 l,?y = — 1) 

and for nucleus 2 = 1 , = 1) 

Within the variational method (see section 3.2 for the details) the matrix elements of this 

property are computed between the basis functions 

^i(^,77,^) = (8-21) 

using the volume element 

(fr = (8.22) 
y 

Operators (8.19) and (8.20) do not depend upon any angular variable, so just matrix ele-

ments between basis functions with same A, M have to be t a ten into account. In addition 

only % basis functions are non-zero on the molecular axis, so that matrix elements involv-

ing n . A,... vanish. Only Z — 2 matrix elements then need to be considered. The matrix 

elements for the electron density at nucleus 1 are then 

1 
(2|<^(ri3)|;) - ^ V'A,(A)V ;̂k, (^)(^^ (8-23) 

and at nucleus 2 

1 Z'"" 
(^'^(rzc)!;) = (8.24) 

On the other hand, if the scattering and the transformed Hamiltonian approaches are 

to be used, the operator has to be transformed; the transformation leads to the equation 

(see page 32 to page 34) 

4 ( r n c ) - P ^ ^ ^ ' 5 ( r , , ) (8.25) 
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where in the particular case of the choices ^ = 1 and — ± 1 

p = 1 + K (8.26) 

with 

38 aheady indicated (see 6)r example equation (7.11)). Equation (8.26) leads to the hnal 

expression to be used within the scattering method k r the electron density at the nucleus 

n 

4(rne) = (1 + K)^Z^I^(rne). (8.28) 

Within this method, the matrix elements of this property are computed between the basis 

fimctions 

^^(^,7?; j^) = - l ) ^ r ^ l ) [ a ( ( - l)]7^&:̂ ')(r7) (8.29) 

using the volume element 

(fT ^ ^(^^ — (8.30) 
O 

It has to be noted that in equation (8.28) has the meaning of an effective nuclear 

charge which is equal to 1 for and but for HD^ is 0.999 931987 for the proton and 

1.000068018 for the deuteron, these values arising kom equations (2.109) and (2.110). 

8.3.3 The expectat ion value of 

The general 6)rm of the second-power of the canonical momentum is given by 

/ = (8.31) 

where the operator is deSned in equation (2.59). 

Explicitly, for Z — 2 couphngs it leads to 

^ ( ^ ^ — 1 ) ^ + ^ ( 1 " (8.32) 
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and for 11 — H to 

.,2 
•Pn-n - - ^ ,,2) [ ^ K - ' ) ^ + ^ ( l ~ " ) ^ - ^ 2 _ i ) ( i ^ , „ 2 ) J - (8-33) 

Since this operator is hermitian, the study of (p^) can be reduced to where ^ is 

given by a linear combination of appropriate basis functiona. 

Variational approach 

Once the operator is applied to Z and 11 baais functions within the variational method, 

the following expressions arise respectively 

= - ^ ^ ^ 2 _^2) { - 1) - - % ) - + 1) 

— 1)] — — 1) W : (8.34) 

where the convention is used, and 

— 1)] — - 1)] W)- (8.35) 

Note that here the variational parameters % and an do not depend upon and all the 

symbols used have their usual meaning. 

The transformation of p^ and the scattering approach 

When the expectation value of has to be studied with the scattering method and the 

transformed Hamiltonian theory, the operator has to be transformed; since 
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the trans&rmed expression for can be used 

— [1 + 4- — l)lp^ — + 3) — ^ ( 2 ^ + ^ (8.37) 

where all symbols have their usual meaning and 

y = ^ (8.38) 

It has to be noted that could be replaced by ( ^ ^ + 1); the choice for leaving this 

term as it is, depends on the ^ t that the scattering method cannot cope with any term 

involving a dependence on A and the form of the vibrational part of the basis functions 

used in the variational method (see below). 

The terms involving have to be estimated in some other way, as will be explained 

in the next paragraphs. For this reason, in the scattering method, the following expectation 

values involving part of the operator (8.37) can be computed 

+ 3)|W^ - + 3))- (8.39) 

Tests on the contribution of terms in conGrmed that these terms are negligible. 

Correction for with the variational method 

The term that caimot be studied with the scattering method in equation (8.37) 

- | ( 2 y + 3 ) A B (8.40) 

can be treated with the variational method through 

2, 4 a ( p " | ^ ( 2 y + 3 ) ^ j ^ > (8.41) 

since the basis functions (8.21) involve ^ote that to obtain the Snal contribution 

to arising from the term, the results of (8.41) have to be multiplied by (2^). 
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However, since the variational method is not expected to be satisfax^tory for high 

vibrational levels, another method has to be adopted; this alternative approach is described 

in the next paragraph. 

Once the (2y + 3) term of (8.41) is applied to Z and 11 basis functions within the 

variational method, the Allowing expressions arise respectively 

e a 
[(2y + 3)^^]s - - 1)] + 3(^" - 77") - 27,,/," 

+271^77/:fn([a2(( - 1)]P»(_: (7?)}^V'i(^), (8.42) 

e 2 [(2y + 3)^i]n — ^̂ 2 _ ^2^ — 1) 2 ^ — On + 3o!(^^ — fy )̂ + 2(77̂  + l)^;^^ 

- 1)]'P^)(?7) - 2Ti^?7/:S[«n(6 - (??) 

+(e^ - 1)"^ [(2anm^(^ + 1) + 2 a ^ ) r W [ a n ( ( - l)]r(j)(77) 

- 2 a n ( m , + !)(( + l ) r g _ , [an(^ - 1)]7^(!)(77)] (8-43) 

while the term dependent on jR becomes 

2 V 
V"*: (^) — (̂% + (A)- (8.44) 

It has to be remembered here that the (^) basis Amctions are deGned as 

(8.45) 

where (y) are associated Laguerre polynomials. Here 

(8.46) 
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where 

= 2k. Z + V 

P = 2 j i + N ( N + 1 ) + ^ (8.48) 

and 

7 = f ; (8.49) 

as usual /i is the reduced mass of the nuclei. In the above equations A and = l/YZe 

are taken to be non-linear parameters. From equation (8.44) new matrix elements to be 

evaluated arise 

fOO 1 
^ (8.50) 

roo 1 

but, as with other vibrational integrals, analytic formulae can be derived. 

Another approach to study the correction for 

As asserted before, the variational method is not expected to be satisfactory for high vi-

brational quantum numbers and another method to study the corrections arising jGrom the 

term has to be used. Namely it consists in determining the corrections as a function 

of ^ and then averaging over 72 using the LEVEL program [7]. 

However, this approach does not allow 5)r mixing of Z and 11 states, so the results for 

high levels (with AT ^ 0) will present some discrepancies. Nevertheless, this method has the 

advantage of producing corrections for aU the («, # ) levels in just a few runs of the LEVEL 

program. 

The baxis functions are now 

= (8-52) 
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with 

= (8.53) 
% 

For the correction as a function of the method described in [23] is used. Note that, in 

addition to using a transformed Hamiltonian, the volume element is changed to remove the 

first derivative term in this must be allowed for since the extra term involves 

So now 

- ^ ( 2 y + = - ^ ( 2 y + 3) ( l + (8.54) 

and, since the volume element changes 6-om 

dr oc to (fT oc 

and the eigenfunctions from 

^ to 

the term to study is now 

- ^ ( 2 ^ + 3 ) ( - ^ + J ^ ^ ) . (8.55) 

It is convenient to note at this stage that could be partitioned differently; in fact, it 

could be separated into a part that can be calculated with the scattering program and a 

part that has to be estimated in other ways. Namely the alternative partition would be 

Pt = w " - ^ ( 2 y + 3) + a ^ ( 2 y + 3) - ^ ( 2 y + 3) ( ^ 7 ^ + a ) . (8.56) 

Chosing 0 = 3/2 would give the extra term as 

+ 3 ) 7 ! ^ , 

while o 1 would minimize the magnitude of the correction. However, tests show that 

the calculated corrections do not diSer significantly 6)r different partitions and the original 

partition is kept. 
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Functions 7/;^) of equation (8.53) have the usual form being 

A) = - l)]7^;i,(,7) (8.57) 

where the dependence on is contained in the parameter ag; unHke the variational method, 

this parameter has been optimized at diSerent bond lengths and is input. The expectation 

values of the extra term to be computed are then 

(V'i((,T7; A)%(B)|X:( - ^ (8.58) 

where 

2 4M 
/G — —p + 3); (8.59) 

namely 

+ ^ Q ( j ( ) c j ( j ^ ) j Z ( ^ , X : ^ > + gQ(B)cXA)A(,;6,X:,^j>^|x(A)>. (8.60) 
w 

The %(A) functions and the expectation values of (8.60) 5)r each vibration-rotational level 

are determined using the LEVEL program. The electronic parts of (8.60) involve 

aci(jZ) % ( ^ ) 
and 

and they are dealt with using the approach reported in [24]. For the partial derivative of 

^:(& ^ ) basis functions with respect to A 

(8.61) 

where is calculated &om input ag . In [24] it was not recognized that the functions 

^ ) c&ii be taken to be independent of namely a s can be considered constant; the 

dependence of these functions on A then resides entirely in the Ci(A) coeGScients. In this 

case the ^Ci(A)/^^ are signiGcantly diSerent, but the two approaches 

^ = 0 and ^ / O 
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give results that do not difFer until the seventh signiGcant Sgure. 

If 

7̂  0 

then is needed at each bond length 

2(6 — - 1)] + - 1)] 

—A7i(_i[o:2(^ — 1)] ) W (8.62) 

and 

(2y + 3; & m . [ « z g - 1)1T'«.{'7) - ( T + 

2m: 2mi 

a s 
1 . 1^1!^ 

a s 

2m;^^ — ^ ^ ( 2 m i — — 2m; 
a s 

f ^ " " ~ ' - + i ) 
\ av / 

2m,i 
I ( 1" ^ ) "I 

AE / a g 

+ An(_2[a:i:(6 — l ) ] ^ n i N 
CK2 J ^ CKE 

+Ani[o%(^ — W W 
2mi 

a s 
-Mi)?] j -

(8.63) 

To summarize, the expectation values of the fbllowing quantities are calculated with the 

LEVEL program 

(8.64) 

w 

(8.65) 

^c,(A)cXA)(,^,/C9^,-); (8.66) 

w 

141 



while a slightly modiGed version of LEVEL, using a 5-point 6)nnula for 9%/^^ is used &)r 

the expectation values of 

(8.67) 

8.4 Results 

Before describing the complete results that are obtained with the methods described in the 

previous sections, it is convenient to show the agreement between the diSierent approaches 

in studying the expectation values of the operator 

For this purpose two levels of are chosen, (0,0) as a starting point and (2,25); this 

second level is expected to represent an appropriate test both for the variational and the 

scattering methods since for t; = 2 the krmer gives reliable results and ^ = 25 may be a 

good test for using the latter, which does not include some E — 11 contribution, to study 

the vibration-rotational levels of interest, in principle, all of them. 

In tables 8.1 and 8.2 the results A)r (p^) in units of 6)r these two levels are reported 

respectively; the method used, the mAin and the contributions to (p^), the total result 

for (p^) and its value divided by 8 are indicated. This last result is the one of interest in 

computing the relativistic corrections. 

As explained in the previous section, far high rotational quantmm numbers the 

descrepancy between the two approaches is more pronounced since the averaging over A 

using the LEVEL program cannot deal with the Z—11 mixing. However, when the numerical 

factor 1/8 is introduced, the diSerence becomes less signiScant. In addition it has to be noted 

that the detailed results &om the variational method suggest that the total 11 contribution 

to the expectation value of p^/8 for the level (2,25) is 0.000024. 

Optimistically for rotationless and low ^ levels the agreement is reliable to the sixth 

decimal place, while for high JV levels the accuracy decreases to the Sfth signiGcant Egure. 

The complete results for the contribution obtained with the LEVEL program is 

reported in table 8.3. These results have to be multiplied by (2K) to obtained the right 
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contributions that have to be added to the main part of the expectation value of 

computed with the scattering method. 

Method Main contr. 9 / J A contr. Total 
Variational 

Scattering + Variational 
Scattering 4- LEVEL 

6.284 852 
6.284 852 

0.000816 
0.000804 

6.285 660 
6.285668 
6.285 656 

0.785708 
0.785709 
0.785 707 

" I k b l e 8 . 1 : ( p ' ' ) i n i i n i t s o f f o r ( 0 , 0 ) : c o m p a r i s o n b e t w e e n a l l t h e n u m e r i c a l m e t h o d s 

t h a t a r e a p p r o a c h e d a n d t e s t e d i n t h i s s t u d y . T h e m a i n c o n t r i b u t i o n i s o b t a i n e d w i t h a f u l l 

s c a t t e r i n g a p p r o a c h , t h e c o n t r i b u t i o n b o t h t h r o u g h t h e v a r i a t i o n a l m e t h o d a n d t h e L E V E L 

p r o g r a m . N o t e t h a t t h e c o n t r i b u t i o n s i n c l u d e t h e f a c t o r ( 2 ^ ) . 

Method Main contr. contr. Total ((p4)/8)/a^^A4 
Variational 

Scattering 4- Variational 
Scattering + LEVEL 

4.807945 
4.807945 

0.000300 
0.000 274 

4.807958 
4.807945 
4.807919 

0.600995 
0.600993 
0.600990 

T a b l e 8 . 2 : ( p ' ' ) i n u n i t s o f f o r ( 2 , 2 5 ) : c o m p a r i s o n b e t w e e n a l l t h e n u m e r i c a l m e t h o d s 

t h a t a r e a p p r o a c h e d a n d t e s t e d i n t h i s s t u d y . T h e m a i n c o n t r i b u t i o n i s o b t a i n e d w i t h a f u l l 

s c a t t e r i n g a p p r o a c l i , t h e 8 / c o n t r i b u t i o n b o t h t h r o u g h t h e v a r i a t i o n a l m e t h o d a n d t h e L E V E L 

p r o g r a m . N o t e t h a t t h e 9 / 9 ^ c o n t r i b u t i o n s i n c l u d e t h e f a c t o r ( 2 K ) . 
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Ikble 8.3: Hj": total contributions to (p'̂ ) in units of a,, computed with the LEVEL 
program; these results have to be multiplied by the numerical factor (2K) and be added to the 

results for (p^) obtained with the scattering method. Just bounds levels are included. 

0 1 2 3 4 5 6 7 8 9 

0 1.476 1.470 1.459 1.443 1.421 1.395 1.364 1.330 1.292 1.252 

1 1.410 1.404 1.393 1.377 1.356 1.330 1.301 1.268 1.231 1.192 

2 1.344 1.338 1.328 1.312 1.292 1.267 1.238 1.206 1.171 1.133 

3 1.278 1.273 1.262 1.247 1.228 1.204 1.176 1.145 1.111 1.075 

4 1.212 1.207 1.197 1.183 1.164 1.140 1.114 1.084 1.051 1.016 

5 1.147 1.142 1.132 1.118 1.100 1.077 1.051 1.023 0.991 0.957 

6 1.081 1.076 1.067 1.053 1.035 1.014 0.989 0.961 0.931 0.898 

7 1.014 1.010 1.001 0.988 0.970 0.950 0.926 0.899 0.870 0.838 

8 0.947 0.942 0.934 0.921 0.905 0.885 0.862 0.836 0.808 0.778 

9 0.878 0.874 0.866 0.854 0.838 0.819 0.796 0.772 0.744 0.716 

10 0.808 0.804 0.796 0.784 0.769 0.751 0.729 0.705 0.679 0.651 

11 0.736 0.732 0.724 0.713 0.698 0.681 0.660 0.637 0.612 0.585 

12 0.661 0.657 0.649 0.639 0.625 0.607 0.588 0.565 0.541 0.515 

13 0.582 0.578 0.571 0.561 0.547 0.531 0.511 0.490 0.466 0.440 

14 0.499 0.495 0.488 0.478 0.465 0.449 0.430 0.408 0.385 0.359 

15 0.410 0.406 0.400 0.389 0.376 0.360 0.341 0.319 0.295 0.268 

16 0.313 0.309 0.303 0.292 0.279 0.262 0.241 0.218 0.190 0.156 

17 0.206 0.202 0.194 0.183 0.168 0.148 0.123 

18 0.088 0.084 0.075 0.061 
19 0.015 0.011 

« / # 10 11 12 13 14 15 16 17 18 19 

0 1.210 1.166 1.121 1.075 1.029 0.983 0.937 0.892 0.847 0.804 

1 1.152 1.109 1.066 1.021 0.977 0.932 0.888 0.845 0.802 0.761 

2 1.094 1.053 1.011 0.968 0.925 0.883 0.840 0.798 0.757 0.717 

3 1.037 0.997 0.956 0.915 0.874 0.833 0.792 0.752 0.712 0.674 

4 0.979 0.941 0.902 0.863 0.823 0.783 0.744 0.705 0.667 0.630 

5 0.922 0.885 0.848 0.810 0.771 0.733 0.695 0.658 0.621 0.585 

6 0.864 0.829 0.793 0.756 0.719 0.682 0.646 0.610 0.574 0.540 

7 0.806 0.772 0.737 0.701 0.666 0.630 0.595 0.561 0.526 0.493 

8 0.746 0.713 0.680 0.646 0.612 0.577 0.543 0.509 0.476 0.443 

9 0.685 0.654 0.621 0.588 0.555 0.522 0.489 0.456 0.423 0.391 

10 0.622 0.592 0.560 0.528 0.496 0.464 0.431 0.399 0.366 0.333 

11 0.556 0.527 0.496 0.465 0.433 0.401 0.369 0.335 0.301 0.266 

12 0.487 0.458 0.428 0.397 0.365 0.332 0.298 0.262 

13 0.413 0.384 0.354 0.322 0.288 0.252 

14 0.331 0.301 0.269 0.233 
15 0.237 0.203 

continued 
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u/7/ 20 21 22 23 24 25 26 27 

0 0L7G2 0L721 0.682 Oj^4 Ojm8 0.573 0.539 0.507 

1 0^-20 OjWl O j ^ 0.607 O^^l 0.538 0^W5 0.475 

2 OjWB 0^141 OjW4 0.569 0^25 0.503 0.471 0W41 

3 0.636 0.600 0.565 o ^ a i owa8 0.467 0UW6 0JW7 

4 0.594 0^159 0.525 0UW2 o.4ao 0^30 0.400 OjJ2 

5 o^a i 0.517 0.484 CL452 c u a i 0.391 0.362 0^34 

6 0.506 0.473 CL441 OUlO 0.380 0^50 OjWl 0.292 

7 0.460 CWL28 0.396 0.365 0^35 0^05 

8 0.411 o j ^g 0^48 0.316 0J#4 

9 0.358 0^26 0.293 
10 0.299 

28 29 30 31 32 33 34 35 

^ 0 0^=76 CL447 0L419 0^83 0^67 Oji43 0^20 Oj#8 

1 0.445 0.417 0.390 0.364 0^39 0^116 0.293 

2 0J^3 0.385 0.359 0.334 0^09 Oj#6 

3 0.380 0^153 Oja7 O^Wl 
4 0.344 0.318 O^Wl 
5 0.306 
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The complete results for the relativistic corrections for the ground electronic state of 

for all the vibrational levels &)r W = 0,1,5 and JV = 25 are reported in table 8.4. As 

usual just bound levels are considered. 

In Egures 8.1, 8.4 and 8.6 the comparison between these results and Kennedy's reported 

in [2] are plotted against non-adiabatic dissociation energies for the rotational levels = 

0, # = 5 and 7/ = 25 respectively. Detailed plots in the range of 0-3000 cm"^ are reported 

in figures 8.2, 8.3 and 8.5, for TV = 0,1 and AT = 5 respectively. 

The dijSerence between the results for the relativistic corrections obtained by Kennedy 

through an adiabatic approach and the nonr-adiabatic method of this work is roughly con-

stant over all the vibrational levels; for the rotationless levels this diSerence (non-adiabatic 

— adiabatic) goes from a maximum of 0 0067 cm"^ for = 0 to a minimum of 0.0062 cm '^ 

for 6 < u < 14. Similar values can be recognised for the other rotational levels that are 

reported, namely JV = 1 and = 5. The diSerence seems to decrease 6)r high rotational 

levels being for AT = 25 between 0.0058 and 0 0060 cm^^. 

In [63] the results for the relativistic correction were reported as a ftmction of 72, before 

averaging over _R. When the variational program is modihed to calculate (p'*), (J(rie)) and 

as a functions of /Z, there is agreement to as many significant Agures as Kennedy 

quoted, up to 72 = 10 ag. Thereafter more and more electronic basis functions are needed 

for convergence to agreement; Kennedy's method works better at large and is able to 

approach the atomic limit. 

For = 0 only — 17,18,19 levels sample 72 > 10 ao and there is no evidence that 

convergence is not achieved. However, — 19 results should be treated with caution since 

it is only 6)r the very highest vibrational levels that the transitions have been observed and 

there is no evidence that Kennedy's relativistic corrections to transition frequencies are not 

reliable [60-63]. 

T) investigate the origin of the discrepancy, only the contribution arising from the 

electron density at the nuclei can be studied, since apart from the relativistic corrections, the 

Fermi contact parameter is the only property averaged over 72 that Kennedy has studied [66]. 

The results reported 6om this work seek reassurance from the Fermi contact parameters 
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published by Babb and Dalgarno for !; = 0 — 9, A r = : l [67]. Electron densities at the 

nuclei derived from those results are consistent with the ones here reported to at least 5ve 

signiGcant figures; on the other hand they diEer from those derived &om Kennedy's at 

the &)urth significant Ggure and they are consistently higher by 0.00025 a^^. The results 

obtained in this work and Kennedy's derived &om his unpublished Fermi contact parameters 

for the rotationless levels of are reported in table 8.5. Similarly, if a comparison is made 

on , Kennedy's values, extracted from his relativistic corrections and his Fermi contact 

parameters, are consistently higher by 0.011 â ^A"̂  than the ones reported in this work. 

The electron densities at the nuclei and (p^) dif&rences can then explain the diSerence of 

0.006-0.007 cm"^ in the results of the relativistic corrections. 

In addition, in Sgure 8.7 the behaviour for the rotationless levels of the relativistic 

corrections obtained in this work is plotted against the expectation values of the non-

adiabatic bond lengths; on the same scale, Kennedy's results averaged over 72 do not diSer 

signijGcantly. Also in figure 8.7 are reported Kennedy's results [63] as a function of ^ 

before averaging over When non-adiabatic calculations are perkrmed on the dissociation 

energies and (72), the values of the former increase and as a consequence the values of the 

latter decrease (see chapters 4 and 5); in particular for (0,0) the bond length range of 

signiGcance about 72 = 2.0 ag is slightly reduced. It may be seen &om the Ggure that 

averaging over a smaller range of 72 will result in a slightly largest result in magnitude. 

Presumably this happens to a similar extent for higher levels. 

The relativistic corrections reported here, which include non-adiabatic eSects, should 

be more reliable than Kennedy's, except perhaps for u = 19. 
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V (arel)/cm ^ (E^rcl)/cm ^ 
AT = 1 N = 5 N = 25 

0 -1.592 1 -1.5900 -1.5613 -1.2377 

1 -1.555 9 -1.553 9 -1.5274 -1.233 8 

2 -1.523 4 -1.5216 -1.497 0 -1.233 0 

3 -1.4945 -1.492 8 -1.470 1 -1.235 5 

4 -1.468 7 -1.4674 -1.446 6 -1.2415 

5 -1.446 7 -1.445 3 -1.426 3 -1.2516 

6 -1.427 6 -1.426 3 -1.409 1 -1.2663 

7 -1.411 6 -1.4104 -1.395 0 -1.286 8 

8 -1.398 7 -1.3976 -1.383 9 
9 -1.388 8 -1.3879 -1.375 9 

10 -1.382 0 -1.3812 -1.3711 

11 -1.378 3 -1.3777 -1.369 4 

12 -1.3778 -1.3773 -1.370 9 

13 -1.380 5 -1.3802 -1.375 9 

14 -1.386 7 -1.386 5 -1.3844 

15 -1.396 3 -1.3963 -1.396 6 

16 -1.409 6 -1.409 7 -1.412 9 
17 -1.426 4 -1.426 8 -1.433 4 

18 -1.445 1 -1.4456 
19 -1.454 0 -1.4541 

"Ikble 8.4: H^: r e l a t i v i s t i c correc t ionG f o r a l l t h e v i b r a t i o n a l b o u n d levels , f o r JV — 0,1,5,25. 
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Figure 8.1: H (̂%;,0): comparison between the results reported in this work and Kennedy's [2,63] 
for the relativistic corrections against dissociation energies. 
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Figure 8.2: H^(i;,0): coinparison between the results reported in this work and Kennedy's [2,63] 
for the relativistic corrections against dissociation energies in the range 0-3000 cm"^. 
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V {6(rie)>/Oo^ 
[66] this work [66] this work 

0 0.206 988 0.206 737 6.296 589 6.285656 
1 0.201560 0.201311 6.135 310 6.124512 
2 0.196 543 0.196295 5.986 916 5.976 216 
3 0.191910 0.191663 5.850617 5.839 992 
4 0.187638 0.187399 5.725 741 5.715 176 
5 0.183 710 0.183463 5.611712 5.601184 
6 0.180106 0.179857 5.508 034 5.497496 
7 0.176 813 0.176564 5.414305 5.403 768 
8 0.173 818 0.173 567 5.330175 5.319 632 
9 0.171 112 0.170860 5.255 389 5.244824 
10 0.168685 0.168433 5.189 752 5.179 152 
11 0.166533 0.166 279 5.133135 5.122496 
12 0.164651 0.164395 5.085488 5.074 808 
13 0.163 038 0.162 782 5.046 831 5.036 104 
14 0.161 694 0.161434 5.017257 5.006488 
15 0.160 623 0.160363 4.996 953 4.986 136 
16 0.159 831 0.159 569 4.986 156 4.975 296 
17 0.159 329 0.159069 4.985 105 4.974216 
18 0.159 132 0.158 874 4.993 014 4.982 112 
19 0.159 148 0.158 887 4.999430 4.988 536 

Ikble 8.5: jV = 0 levels: comparison between the results for the expectation values of and 
the electron density at the nuclei obtained in this work and Kennedy's [63] obtained from 

unpublished results. 
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8.5 Conclusions 

Tn this chapter the relativistic corrections for some vibration-rotational levels of Hg are 

reported; however many other levels can be studied. The results are obtained through a 

non-adiabatic approach. 

After the introduction of the perturbation operator, a detailed exposition of the numer-

ical methods developed and applied to achieve the results is given; the main di@culty is 

presented by the expectation values of to be studied with the scattering and transformed 

Hamiltonian method. Since the transformed form of this operator, , introduces a signifi-

cant contribution that depends on an alternative method is developed to solve this 

problem, since the scattering method cannot deal with operators containing 

For this purpose, while the main contribution to the relativistic corrections arising t o m 

is studied with the scattering method, the LEVEL program is modiGed to account 6)r 

the part of the problem; this approach allows the study all the vibration-rotational 

levels of interest. Unfortunately this method does not include Z —11 coupling; &)r this reason 

for high rotational levels the results are not expected to be so accurate as for rotationless 

and low rotational levels. 

An explanation of the constant diSerence with Kennedy's results [63] is found through 

the investigation of the expectation values of and the electron densities at the nuclei. 

Reassurance of the reliability of the results reported in this work is 6)und in Babb and 

Dalgarno's Fermi contact parameters [67]. 

The results reported in this work should be of interest for a comparison with experi-

mental results concerning transition ^equencies. 
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Chapter 9 

Conclusions and fu r the r work 

After a short introduction about the overall aims of this work, in chapters 2 and 3 the dif-

ferent levels of approximation to solve the Schrodinger equation, the theoretical approaches 

and the calculation methods, that have been used in this work to obtain the reported results, 

are described in detail. Through two unitary transformations, a transformed Hamiltonian 

in which no nuclear motion terms involving cross-derivatives between nuclear and electronic 

coordinates appear, may be obtained. This form of the Hamiltonian allows the study of 

properties of the ground electronic states of the hydrogen molecular cation and its iso-

topomers to a high level of accuracy. The transformed Hamiltonian is used in a scattering 

method. Two diSerent methods have been used; a variational and a scattering method, 

the former used mainly as a test for the latter which allows the study of all the vibration-

rotational levels of interest for all the three cations H^, and HD"*". 

Chapter 4 is dedicated to the study of the non-adiabatic correction to the dissociation 

energies of the ground electronic states of H^, and HD"̂  ; attention is conGned to the 

bound levels. It is shown how for u=0 or 6)r jV=0 it is possible to predict the adiabatic 

corrections to the dissociation energies for and HD^" starting from those of H^, through 

scaling factors based on the relative reduced masses. However, scaling becomes increasingly 

less successful as (for constant or # (for constant increase. The same comments 

are true %r the non-adiabatic corrections except for the few high lying levels of HD+ that 

are found to be atypical. 

In chapter 5 the non-adiabatic correction to the bond lengths for all the tliree cations 
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is reported. A previous work by Moss [37] showed that the non-adiabatic correction to the 

bond length of HD+ «=20, ^ = 0 was anomalous. In this work further levels are found k r 

HD+ where the non-adiabatic corrections are anomalous, in that they do not lie on smooth 

curve predicted &om the corrections for [32]. While in general corrections to the bond 

length are negative and increase in magnitude with for given # or with # for given w, for 

some levels the correction is positive. 

The work contained in chapter 6 goes further than the original aim of this work. Since 

Prolov [39,40] has recently published dissociation energies and other properties for the (0,0) 

level of the ground electronic states of Tg , HT+ and DT+, a comparison with his results 

is desirable. For this reason, non-adiabatic dissociation energies and non-adiabatic bond 

lengths are computed and with the respective non-adiabatic corrections are presented in 

this work, k r all the rotationless levels of the ground electronic states of HT^ and DT^. 

As expected hrom the results obtained for the heteronuclear molecule HD+ and reported 

in chapters 4 and 5, HT^ and DT^ show similar anomalies 5)r high vibrational levels. 

As realized for HD"*", the intermediate transformed Hamiltonian does not handle the g/u 

symmetry breaking as successfully aa hoped in the region of rapid change; the g/u symme-

try breaking might not be fully accounted ibr by the intermediate transformed Hamiltonian. 

In chapter 7 new results for the dipole polarizability of the hydrogen molecular cation 

and its isotopomers are reported. Many levels have been studied, although levels close to 

dissociation wiU require more eSbrt. Only levels with # = 0 and ^ = 1 are considered, 

since 6)r a given the (AT-j-1) values of | must be considered separately, but again other 

could be studied if necessary. HD+ is of particular interest here since only one previous 

calculation of its polarizability has been reported; the presence of an asymmetric charge 

distribution provides novelty. The result here reported &)r (0,0) is close to the only previous 

one. The opportunity is also taken to revisit (0,0), but including higher-order contribu-

tions than previous studies does not removed the diEerence between experiment and theory. 

In chapter 8 the relativistic corrections for some rotational levels of are reported. 
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After the introduction of the appropriate perturbation operator, a detailed exposition of 

the numerical methods developed and applied to achieve the results is given; the main dif-

hculty is presented by the expectation values of when they are to be studied with the 

scattering and transformed Hamiltonian method. Since the transformed form of this oper-

ator, presents a signiAcant dependence on 6/^A, an alternative method is developed to 

solve this problem, since the scattering method cannot deal with any dependence on For 

this purpose, while the main contribution to the relativistic corrections arising from (p'̂ ) 

is studied with the scattering method, a modified LEVEL program [7] is used to solve the 

part of the problem. This approach allows the study of all the vibration-rotational 

levels of interest. Unfortunately this method does not allow the inclusion of Z —11 coupling; 

for this reason, for high rotational levels, the results are not expected to be so accurate as 

for rotationless and low rotational levels. However, the results reported in this work should 

be of interest for a comparison with experimental results. 

This work may be of relevance for metrologists in improving the accuracy of the determi-

nation of the mass of the proton to the electron mass, but improvements in results concerning 

the radiative correction are needed. The hydrogen molecular cation H^, is thought to be 

intimately involved in the initiation of astrochemistry in the interstellar medium and yet it 

has not been observed extraterrestrially, unlike Successful observation of interstellar 

will involve knowledge of accurate transition hrequencies. 

Further work could include the radiative correction, the study of properties 6)r the Grst 

electronic excited state of the homonuclear species of the hydrogen cation and the quasi-

bound levels of the isotopomers. 
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