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Decfico esae ao meu meZAor omigo, ;i9eu Armamdao. 



Caw - e AonaMo 

Para quern quer se soltar 

Invento o cais 

Invento mais que a solidao me da 

Invento lua nova a clarear 

Invento o amor 

E sei a dor de encontrar 

Bu queria ser feliz 

Invento o mar 

Invento em mini o sonhador 

Para quern quer me seguir 

Eu quero mais 

Tenho o caminho do que sempre quis 

E um saveiro pronto pra partir 

Invento o cais 

E sei a vez de me langar 



^ Terceim MaTgem do - Guimaraea 

Nosso pai era homem cumpridor, ordeiro, positive; e sido assim desde mocinho e 

menino, pelo que testemunharam as diversas sensatas pessoas, quando indaguei a in-

formagao. Do que eu mesmo me alembro, ele nao figurava mais esturdio nam mais triste 

do que os outros, conhecidos nossos. So quieto. Nossa mae era quern regia, e que ralhava 

no diario com a gente - minha irma, meu irmao e eu. Mas se deu que, certo dia, nosso 

pai mandou fazer para si uma canoa. 

Era a serio. Encomendou a canoa especial, de pau de vinhatico, pequena, mal com 

a tabuiiiha da popa, como para caber justo o remador. Mas teve de ser toda fabricada, 

escolhida forte e arqueada em rijo, propria para dever durar na agua por uns vinte ou 

trinta anos. Nossa mae jurou muito contra a ideia. Seria que, ele, que nessas artes nao 

vadiava, se ia propor agora para pescarias e cagadas? Nosso pai nada nao dizia. Nossa 

casa, no tempo, ainda era mais proxima do rio, obra de nem quarto de legua: o rio por 

ai se estendendo grande, fundo, calado que sempre. Largo, de nao se poder ver a forma 

da outra beira. E esquecer nao posso, do dia em que a canoa ficou pronta. 

Sem alegria nem cuidado, nosso pai encalcou o chapeu e decidiu um adeus para a gente. 

Nem falou outras palavras, nao pegou matula e trouxa, nao fez a alguma recomendagao. 

Nossa mae, a gente achou que ela ia esbravejar, mas persistiu somente alva de p^da, 

mascou o beigo e bramou: - "Ce vai, oce fique, voce nunca volte!" Nosso pai suspendeu a 

resposta. Espiou manso para mim, me acenando de vir tambem, por uns passos. Temi a 

ira de nossa mae, mas obedeci, de vez de jeito. O rumo daquilo me animava, chega que 

um proposito perguntei: - "Pai, o senhor me leva junto, nessa sua canoa?" Ele so retornou 

o olhar em mim, e me botou a bengao, com gesto me mandando para tras. Fiz que vim, 

mas ainda virei, na grot a do mato, para saber. Nosso pai entrou na canoa e desamarrou, 

pelo remar. E a canoa saiu se indo - a sombra dela por igual, feito um jacare, comprida 

longa. 

Nosso pai nao voltou. Ele nao tinha ido a nenhuma parte. So executava a invengao 

de se permanecer naqueles espagos do rio, de meio a meio, sempre dentro da canoa, para 

dela nao saltar, nunca mais. A estranheza dessa verdade deu para estarrecer de todo a 

gente. Aquilo que nao havia, acontecia. Os parentes, vizinhos e conhecidos nossos, se 

reuniram, tomaram juntamente conselho. 

Nossa mae, vergonhosa, se portou com muita cordura; por isso, todos pensaram de 

nosso pai a razao em que nao queriam falar: doideira. So uns acliavam o entanto de poder 

tambem ser pagamento de promessa; ou que, nosso pai, quern sabe, por escrupulo de estar 

com alguma feia doenga, que seja, a lepra, se desertava para outra sina de existir, perto e 

longe de sua familia dele. As vozes das noticias se dando pelas cert as pessoas - passadores, 

moradores das beiras, ate do afastado da outra banda - descrevendo que nosso pai nunca 
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se surgia a tomar terra, em ponto nem canto, de dia nem de noite, da forma como cursava 

no rio, solto solitariamente. Entao, pois, nossa mae e os aparentados nossos, assentaram: 

que o mantimento que tivesse, ocultado na canoa, se gastava; e, ele, ou desembarcava e 

viajava s'embora, para jamais, o que ao menos se condizia mais correto, ou se arrependia, 

por uma vez, para caaa. 

No que num engano. Eu mesmo cumpria de trazer para ele, cada dia, um tanto 

de comida furtada: a ideia que senti, logo na primeira noite, quando o pessoal nosso 

experimentou de acender fogueiras em beirada do rio, enquanto que, no alumiado delas, 

se rezava e se chamava. Depois, no seguinte, apareci, com rapadura, broa de pao, cacho 

de bananas. Enxerguei nosso pai, no enfim de uma bora, tao custosa para sobrevir: so 

assim, ele no ao-longe, sentado no fundo da canoa, suspendida no liso do rio. Me viu, 

nao remou para ca, nao fez sinal. Mostrei o de comer, depositei num oco de pedra do 

barranco, a salvo de bicho mexer e a seco de chuva e orvalho. Isso, que fiz, e refiz, sempre, 

tempos a fora. Surpresa que mais tarde tive: que nossa mae sabia desse meu encargo, so 

se encobrindo de nao saber; ela mesma deixava, facilitado, sobra de coisag, para o meu 

conseguir. Nossa mae muito nao se demonstrava. 

Mandou vir o tio nosso, irmao dela, para auxiliar na fazenda e nos negocios. Mandou 

vir o mestre, para nos, os meninos. Incumbiu ao padre que um dia se revestisse, em praia 

de mar gem, para esconjurar e clamar a nosso pai o dever de desistir da tristonha teima. 

De outra, por arranjo dela, para medo, vieram os dois soldados. Tudo o que nao valeu 

de nada. Nosso pai passava ao largo, avistado ou diluso, cruzando na canoa, sem deixar 

ninguem se chegar a pega ou a fala. Mesmo quando foi, nao faz muito, dos liomens do 

jornal, que trouxeram a lancha e tencionavam tirar retrato dele, nao veneer am: nosso pai 

se desaparecia para a outra banda, aproava a canoa no brejao, de leguas, que ha, por 

entre j uncos e mato, e so ele conhecesse, a palmos, a escuridao, daquele. 

A gente teve de se acostumar com aquilo. As penas, que, com aquilo, a gente mesmo 

nunc a se acostumou, em si, na verdade. Tiro por mim, que, no que queria, e no que nao 

queria, so com nosso pai me achava: assunto que jogava para tras meus pensamentos. 

0 severo que era, de nao se entender, de maneira nenhuma, como ele agiientava. De 

dia e de noite, com sol ou aguaceiros, calor, sereno, e nas friagens terriveis de meio-do-

ano, sem arrumo, so com o chapeu velho na cabega, por to das as semanas, e meses, e 

OS anos - sem fazer conta do se-ir do viver. Nao pojava em nenhuma das duas beiras, 

nem nas ilhas e croas do rio, nao pisou mais em chao nem capim. Por certo, ao menos, 

que, para dormir seu tanto, ele fizesse amarragao da canoa, em alguma ponta-de-ilha, no 

esconso. Mas nao armava um foguinho em praia, nem dispunha de sua luz feita, nunca 

mais riscou um fosforo. O que consumia de comer, era so um quase; mesmo do que a 

gente depositava, no entre as raizes da gameleira, ou na lapinha de pedra do barranco, ele 
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recolhia pouco, nem o bastavel. Nao adoecia? E a const ante forga dos bragos, para ter 

tento na canoa, resistido, mesmo na demasia das enchentes, no subimento, af quando no 

lango da correnteza enorme do rio tudo rola o perigoso, aqueles corpos de bichos mortos e 

paus-de-arvore descendo - de espanto de esbarro. E nunca falou mais palavra, com pessoa 

alguma. Nos, tambem, nao falavamos mais nele. So se pensava. Nao, de nosso pal nao 

se podia ter esquecimento; e, se, por um pouco, a gente fazia que esquecia, era so para se 

despertar de novo, de repente, com a memoria, no passo de outros sobressaltos. 

Minha irma se casou; nossa mae nao quis festa. A gente imaginava nele, quando 

se comia uma comida mais gostosa; assim como, no gasalhado da noite, no desamparo 

dessas noites de muita chuva, fria, forte, nosso pal so com a mao e uma cabaga para ir 

esvaziando a canoa da agua do temporal. As vezes, algum conhecido nosso achava que 

eu ia ficando mais parecido com nosso pal. Mas eu sabia que ele agora virara cabeludo, 

barbudo, de unhas grandes, mal e magro, ficado preto de sol e dos pelos, com o aspecto 

de bicho, conforme quase nu, mesmo dispondo das pegas de roupas que a gente de tempos 

em tempos fornecia. 

Nem queria saber de nos; nao tinha afeto? Mas, por afeto mesmo, de respeito, sempre 

que as vezes me louvavam, por causa de algum meu bom procedimento, eu falava: - "Foi 

pal que um dia me ensinou a fazer assim..."; o que nao era o certo, exato; mas, que era 

mentira por verdade. Sendo que, se ele nao se lembrava mais, nem queria saber da gente, 

por que, entao, nao subia ou descia o rio, para outras paragens, longe, no nao-encontravel? 

So ele soubesse. Mas minha irma teve menino, ela mesma entestou que queria mostrar 

para ele o neto. Viemos, todos, no barranco, foi num dia bonito, minha irma de vestido 

branco, que tinha sido o do casamento, ela erguia nos bragos a criancinha, o marido dela 

segurou, para defender os dois, o guarda-sol. A gente chamou, esperou. Nosso pai nao 

apareceu. Minha irma chorou, nos todos af choramos, abragados. 

Minha irma se mudou, com o marido, para longe daqui. Meu irmao resolveu e se foi, 

para uma cidade. Os tempos mudavam, no devagar depressa dos tempos. Nossa mae 

terminou indo tambem, de uma vez, residir com minha irma, ela estava envelhecida. Eu 

fiquei aqui, de resto. Eu nunca podia querer me casar. Eu permaneci, com as bagagens 

da vida. Nosso pai carecia de mim, eu sei - na vagagao, no rio no ermo - sem dar razao de 

seu feito. Seja que, quando eu quis mesmo saber, e firme indaguei, me diz-que-disseram: 

que constava que nosso pai, alguma vez, tivesse revelado a explicagao, ao homem que 

para ele aprontara a canoa. Mas, agora, esse homem ja tinha morrido, ninguem soubesse, 

Gzesse recordag^, de nada mala. So aa falsas conversaa, sem senso, como por ocasiao, 

no comego, na vinda das primeiras cheias do rio, com chuvas que nao estiavam, todos 

temeram o Em-do-mundo, diziam: que nosso pai fosse o avis ado que nem Noe, que, por 

tanto, a canoa ele tinha antecipado; pois agora me entrelembro. Meu pai, eu nao podia 
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malsinar. E apontavam ja em mim uns primeiros cabelos brancos. 

Sou homem de tristes palavras. De que era que eu tinha tanta, tanta culpa? Se 

o meu pal, sempre fazendo ausencia: e o rio-rio-rio, o rio - pondo perpetuo. Eu sofria 

ja o comego de velhice - esta vida era so o demoramento. Eu mesmo tinha achaques, 

ansias, ca de baixo, cansagos, perrenguice de reumatismo. E ele? Por que? Devia de 

padecer demais. De tao idoso, nao ia, mais dia menos dia, fraquejar do vigor, deixar que 

a canoa emborcasse, ou que bubuiasse sem pulso, na levada do rio, para se despenhar 

horas abaixo, em tororoma e no tombo da cachoeira, brava, com o fervimento e morte. 

Apertava o coragao. Ele estava la, sem a minha tranqiiilidade. Sou o culpado do que nem 

sei, de dor em aberto, no meu foro. Soubesse - se as coisas fossem outras. E fui tomando 

ideia. 

Sem fazer vespera. Sou doido? Nao. Na nossa casa, a palavra doido nao se falava, 

nunca mais se falou, os anos todos, nao se condenava ninguem de doido. Ninguem e 

doido. Ou, entao, todos. So fiz, que fui la. Com um lengo, para o aceno ser mais. Eu 

estava muito no meu sentido. Esperei. Ao por 6m, ele apareceu, ai e la, o vulto. Estava 

ali, sentado a popa. Estava ali, de grito. Chamei, umas quant as vezes. E falei, o que me 

urgia, jurado e declarado, tive que reforgar a voz: - "Pai, o senhor esta velho, ja fez o 

seu tanto... Agora, o senhor vem, nao carece mais... 0 senhor vem, e eu, agora mesmo, 

quando que seja, a ambas vontades, eu tomo o seu lugar, do senhor, na canoa!..." E, assim 

dizendo, meu coragao bateu no compasso do mais certo. 

Ele me escutou. Ficou em pe. Manejou remo n'agua, proava para ca, concordado. 

E eu tremi, profundo, de repente: porque, antes, ele tinha levantado o brago e feito um 

saudar de gesto - o primeiro, depois de tamanhos anos decorridos! E eu nao podia... Por 

pavor, arrepiados os cabelos, corri, fugi, me tirei de la, num procedimento desatinado. 

Porquanto que ele me pareceu vir: da parte de alem. E estou pedindo, pedindo, pedindo 

um perdao. 

Sofri o grave frio dos medos, adoeci. Sei que ninguem soube mais dele. Sou homem, 

depois desse falimento? Sou o que nao foi, o que vai 6car calado. Sei que agora e tarde, 

e temo abreviar com a vida, nos rasos do mundo. Mas, entao, ao menos, que, no artigo 

da morte, peguem em mim, e me depositem tambem numa canoinha de nada, nessa agua 

que nao para, de longas beiras: e, eu, rio abaixo, rio a for a, rio a dentro - o rio. 
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The Use of ERS-1 Synthetic Aperture Radar for Measurement and Modeling of 

the Directional Wave Spectrum 

by Nelson Violante-Carvalho 

The study presented in this work examines the use of Synthetic Aperture Radar (SAR) 
onboard the first European Remote Sensing Satellite (ERS-1) for the measurement of wind 
waves and discusses its applications such as wave data assimilation and inverse modeling. 
Since the launch of ERS-1 in 1991 the directional wave spectrum became available with 
high spatial and temporal global coverage. With the subsequent launch of its successors 
ERS-2 and EN VIS AT millions of SAR wave mode (SWM) imagettes have been and are still 
being acquired providing a unique data set for the improvement of the understanding of the 
dynamics of surface gravity waves. 

Over four years of directional measurements acquired by a heave-pitch-roll buoy moored 
in tropical deep waters around 150 km offshore are employed to investigate the mechanisms of 
SAR wave imaging and the retrievals of wave spectra from SAR images. A new approach for 
the partitioning of the frequency spectrum is implemented and applied to isolate the wind sea 
from the swell contaminated spectra. Specifically the influence of swell on wind sea growth is 
analyzed in terms of their direction of propagation and separation in frequency space, with 
direct connection on how long waves modulate short ones. The relatively poorly understood 
Hydrodynamic and Tilt Modulation Transfer Functions (MTF) are discussed in the light of 
the findings. 

For the first time the most widely implemented Max-Planck Institut (MPI) SWM re-
trieval scheme was assessed through detailed statistical intercomparisons and selected quali-
tative validations against directional buoy data and against the third generation wave model 
WAM data—which was used as first guess to the inversion. The MPI scheme deteriorates the 
first guess increasing the bias and the error of the retrievals of significant wave height, mean 
wave length and mean direction of propagation of short waves. Nevertheless for waves longer 
than 225 m—the part of the spectrum directly mapped onto SAR images—the performance 
of the retrieval scheme is superior to the wave model. The directional spreading retrieved 
by the MPI scheme is also investigated with results in close agreement with the spreading 
obtained from the Fourier coefficients directly measured by the buoy. The performance of the 
WAM model, the ECMWF Atmospheric Model and of the Maximum Entropy Method for the 
retrieval of the buoy directional spectrum are also discussed through several cross-validation 
exercises. 



RESUMO 

Uso de Radar de Abertura Sintetica para Medigoes e Modelagem do Espectro 

de Ondas Direcional 

O presente trabalho examina o uso de Radar de Abertura Sintetica (Synthetic Aperture 
Radar SAR da sigla em ingles) a bordo do primeiro Satelite Europeu de Sensoriamento 
Remote (ERS-1) para medigoes de ondas superficiais de gravidade e suas aplicagoes como por 
exemplo em assimilagao de dados e em tecnicas de modelagem inversa. Medigoes do espectro 
direcional de onda com elevada cobertura espacial e temporal estao agora dispom'veis desde 
o langamento do ERS-1 em 1991. Com o subsequente langamento de sens sucessores BRS-2 
e EN VIS AT milhoes de imagens SAR no mo do onda (SAR wave mode) foram e ainda estao 
sendo aquisitadas gerando uma oportunidade unica para o aperfeigoamento da compreensao 
da dinamica de ondas superficias de gravidade. 

Medigoes direcionais aquisitadas por uma boia do tipo heave-pitch-roll fundeada em agua 
profunda compreendendo mais de quatro anos de dados sao empregadas na investigagao 
dos mecanismos de imageamento de ondas por SAR e na extragao do espectro direcional de 
ondas. Uma nova abordagem e desenvolvida e aplicada para o particionamento do espectro de 
freqeuncia para possibilitar a separagao da vaga do resto do espectro contendo ondulagao. Em 
particular a influencia da ondulagao no desenvolvimento das vagas e analizada em termos das 
suas diregoes de propagagao e separagao em frequencia, estando diretamente relacionado em 
como ondas mais longas modulam ondas relativamente mais curtas. A relativamente pouco 
compreendidada Fungao de Transferencia de Modulagao Hidrodinamica e de Inclinagao (Tilt) 
saa discutidas bageadas nos resultados obtidos. 

Pela primeira vez o amplamente difundido esquema de extragao do Max-Planck Institut 
(MPI) e avaliado atraves de detalhadas intercomparagoes estati'sticas com dados da boia e com 
dados do modelo de ondas de terceira geragao WAM—que foi usado como primeira estimativa 
para a inversao. O esquema MPI deteriora a qualidade do dado do modelo usado como entrada 
para a inversao aumentando o erro e a tendencia (bias) da altura significativa de onda, diregao 
media de propagagao e frequencia media das ondas relativamente mais curtas. Contudo 
para ondas mais longas que 225 m—a parte do espectro diretamente mapeado nas imagens 
SAR—o esquema MPI nao deteriora o espectro usado como estimativa inicial, com resultados 
comparando com a boia tao bem quanto o modelo WAM. O espalhamento direcional calculado 
pelo esquema MPI tambem e investigado com resultados proximos com o espalhamento obtido 
dos coeficientes de Fourier diretamente medidos pela boia. O desempenho do modelo de 
ondas WAM, do modelo atmosferico do ECMWF e do Metodo de Maxima Entropia para a 
recuperagao do espectro direcional da boia sao tamb^m discutidos atraves de v&rios execicios 
de intercomparagao. 
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Chapter 1 

Introduction and Objectives 

1.1 Overview 

The launch of the first European Remote Sensing Satellite (ERS-1) in 1991 was a turning 

point for the investigation of the climatology and for the continuous observation of the detailed 

spectral properties of the wind waves. For the first time the two-dimensional directional wave 

spectrum became available with high spatial and temporal coverage over all oceanic baaing 

through the wave mode of the Synthetic Aperture Radar (SAR). With the subsequent launch 

of its successors ERS-2 and EN VIS AT, over ten years of global measurements and millions of 

SAR wave mode (SWM) imagettes have been and are still being acquired in quasi-real time 

yielding a unique opportunity for the improvement of our understanding of the mechanisms 

that govern the growth and evolution of waves. 

The potentialities of such data are enormous. The better estimation through numerical 

simulations of the wave field using past forcing winds to compute the climatologies (hindcasts) 

or for wave forecasts has practical importance such as for ship routing, offshore activities, 

coastal management and fisheries among several others. To achieve such improvements wave 

models have to rely on detailed spectral measurements which are available, on such a spatial 

and temporal coverage, only from sensors onboard satellites. 

The interest in this field of research is, however, not only limited to the economic and 

engineering concerns. Wind waves are the interface between the ocean and the atmosphere 

and are therefore closely connected to the exchange processes like for example transfer of 

mechanical energy, momentum, sensible and latent heat and gases (Donelan, 1990; Komen 

et al., 1994; Csanady, 2001). Energy is transferred from the atmosphere to the ocean driving 
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the circulation of the upper ocean. Energy from the ocean, on the other hand, is fed back 

to the atmosphere affecting the atmospheric circulation and the climate. The wind drag 

coefficient is affected by the wave age and by the wave spectrum but there is still, however, 

considerable uncertainty on how to model its dependency on the sea state. A better descrip-

tion of air-sea interaction and its consequences, for example on the the world climate, has to 

take into account the role played by the waves on the fluxes across the interface. The studies 

using sophisticated numerical climate simulations considering the couphng between ocean 

and atmosphere and its interface using wave models are increasingly expanding. This is a 

field of exciting possibilities and several forecasting centers are investigating the feasibility of 

combining such models. 

Over the last 30 years major research efforts have been made and we now have suitable 

parameterizations of the source terms that describe the dynamics of wind waves. This has 

been reflected in the development of advanced third generation wave models such as WAM, 

Wave Watch and SWAN that compute the directional spectrum by direct integration of the 

energy balance equation based on the structure of the terms that describe the input of en-

ergy from the wind, the nonlinear interaction among wave components and the dissipation of 

energy due to whitecapping. Although their performances have already been demonstrated 

by several validation tests (see for example the comparisons of the WAM estimates against 

buoy and satellite measurements in Komen et al., 1994) these wave models have room for 

improvement where their main deficiencies lay in: 1. the numerical resolution; 2. the numer-

ics, such as the propagation schemes and the integration of the nonlinear interactions; 3. the 

physical representation of the terms of input and dissipation of energy. 

Advances in our understanding of surface processes translating into better estimates 

through numerical simulations will necessarily require improvements in satellite remote sens-

ing retrievals and more comprehensive schemes for the assimilation of this information into 

wave models. Present operational methods are still based on the relatively simple optimal 

interpolation schemes (Lionello et al., 1992; Hasselmann et al., 1997; Voorrips et al., 1997). 

So far only significant wave heights obtained from altimeters have been assimilated opera-

tionally into wave models. However with positive impact the use of an integral parameter 

such as .ffg imposes severe limitations since the averaged energy has to be distributed some-

how over the entire spectrum. The use of more sophisticated methods (such as the Green's 

Function Method proposed by Bauer et al., 1996) that take advantage of the detailed spectral 

information yielded by SAR have not yet been implemented operationally but have already 
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shown the potentialities of the technique. Variational methods are able to track back in time 

and space swell components and correct the forcing wind at a time preceding the available 

observations which would reflect into better forecasts in coupled atmosphere-ocean models. 

More advanced methods using the adjoint technique and the Kalman filter should be further 

explored although their feasibility has already been demonstrated (de las Heras et al., 1994; 

Voorrips et al., 1999). 

The high spatial and temporal variability of surface processes needs to be properly con-

sidered in any investigation of the dynamics of wind waves. High resolution models combined 

with detailed spectral satellite data seem to offer the best opportunity to provide global anal-

ysis and predictions. The use of wave spectra retrieved from ERS-1 SAR wave mode and 

the WAM wave model together with in situ measurements are the main constituents of the 

present study. 

1.2 Descript ion of t h e D a t a Used 

1.2.1 ERS-1 S A R Wave M o d e Spectra 

SAR is the only instrument that has been so far deployed from satellites that is capable of 

measuring the full directional wave spectrum and therefore allowing the complete characteri-

zation of a sea state. In SAR image mode the instrument acquires 100 x 100 km images with 

resolution around 30 x 30 m but due to onboard storage limitations it can be operated only 

with a ground station in sight. The SAR wave mode (SWM) was introduced to overcome 

this coverage limitation since the much smaller 10 x 5 km imagettes are storage onboard and 

transmitted once per orbit to ground stations. With similar resolution to the image mode, 

SWM are acquired every 30 seconds yielding an along track resolution of 200 km and a cross 

track resolution of 1000-2000 km with a total of around 15 hundred images collected every 

day. 

The retrieval of the directional wave spectrum from SAR images is not, however, a trivial 

exercise. There are two main limitations in the SAR ocean wave imaging mechanisms. Firstly 

there is a 180° directional ambiguity observed in frozen images. This problem has been solved 

with the launch of ENVISAT carrying the Advanced Synthetic Aperture Radar (ASAR) 

which computes two successive images resolving the propagation direction. In second place 

the SAR imaging mechanism is strongly nonlinear due to the vertical orbital movements 

induced by the waves which causes a Doppler offset in the image plane with smearing and 
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loss of information beyond a high wavenumber cut-off. These limitations impose the use 

of additional information, in general a first guess wave spectrum from a model, to solve 

the ambiguity and to augment the spectral information in the high wavenumber part of the 

spectrum. 

Several schemes to extract the wave spectrum from SAR images have been proposed (Has-

selmann and Hasselmann, 1991; Krogstad et al., 1994; Hasselmann et al., 1996; Mastenbroek 

and de Valk, 2000), however the breakthrough in the retrieval of ocean wave spectra from 

SAR was the work by Hasselmann and Hasselmann (1991). Since the imaging mechanisms 

are reasonably well understood (Hasselmann et al., 1985), K. Hasselmann and S. Hasselmann 

realized that the mapping of a wave spectrum into a SAR image spectrum can be numeri-

cally computed. Furthermore they proposed a computationally efficient way of inverting the 

mapping relation in order to extend the missing information in the high wavenumber band 

and to solve the directional ambiguity. An improved algorithm developed at the Max-Planck 

Institut (MPI) was later implemented (Hasselmann et al., 1996) which is the version used in 

the present work. For the 6rst time a retrieval algorithm will be statistically validated against 

directional buoy data allowing the assessment of the directional and spectral capabilities of 

the SAR measurements. 

1.2.2 T h e W A M Model 

In the present study a workstation version of the wave model WAM cycle 4 is run to yield the 

first guess for the MPI scheme. WAM is a third generation wave model and has been so far 

the most validated model running operationally at several forecasting centers (see the 'WAM 

book' for more details about the validation exercises and the model characteristics: Komen 

et al., 1994). The version of the WAM model that runs operationally at the European 

Centre for Medium-Range Weather Forecasts (ECMWF) has been assimilating significant 

wave heights obtained from altimeters continuously since August 1993. 

Since we are also comparing the estimates of the wave model used as first guess to the 

retrieval against buoy measurements, the possible influence of the assimilation on the final 

results of the retrieval could be assessed using in addition spectra from the ECMWF WAM. 

However in our period of interest the only data set including 2D spectra is the ERA (ECMWF 

Re-analysis) but currently only the year 1993 has been validated and released. Although the 

investigation of the influence of the assimilation on the MPI retrievals comparing runs with 

and without assimilation would be of great value, the use of the results of the WAM model 
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without any sort of modification on the estimates of significant wave height (SWH) has an 

extra appeal. If one seeks to search for deficiencies in the numerical model through detailed 

spectral comparisons against buoy measurements the spurious influence of the assimilation 

of altimeter data would make the interpretation of the discrepancies more complicated. 

1.2.3 In Si tu Measurements 

Campos Basin, in the coast off Rio de Janeiro, is the most important petrolic basin in Brazil. 

Tens of platforms are located in this area responsible for over 75% of the oil produced by the 

country with several offshore operations taking place daily. In addition the surrounding area 

holds a high urban concentration with strong commercial and industrial activities. Due to the 

remarkable importance of this region, the Brazilian Oil Company PETROBRAS carried out 

an extensive experiment to study the main meteo-oceanographic features of Campos Basin 

deploying a heave-pitch-roll buoy—in addition to mooring lines—during a period of more 

than four years in a depth over 1000 m around 150 km offshore. 

This data set yields a unique opportunity to investigate the mechanisms of ocean wave 

SAR imaging and the retrievals of wave spectra from SAR images. In the first place directional 

buoy measurements in deep water are scarce. The buoys under the supervision of the National 

Oceanic and Atmospheric Administration (NOAA) are located mainly in relatively shallow 

waters and are almost all omni-directional. The location of buoys in shallow waters imposes an 

additional complication to any sort of analysis due to the spatially high gradients of the wave 

parameters compared to the more homogeneous situations encountered in the open ocean. 

The other well known source of wave measurements is the network deployed in relatively 

shallow waters in the North Sea which are in their majority directional buoys. Nevertheless 

when passing over this region the ERS SAR is often switched to image mode which yielded 

only a few SWM imagettes during the several years of SAR measurements (Mastenbroek and 

de^KUk, 2000). 

Another interesting characteristic of the wave measurements used in this work is their 

geographical location. Right under the hne of the Tropic of Capricorn Campos Basin is 

strongly affect by swell all the year round with the low frequency band containing most of 

the spectral energy measured by the buoy. As pointed out by Voorrips et al. (2001) the larger 

the energy in the part of the spectrum unobserved by SAR the more difficult the retrieval 

schemes have in estimating the low-frequency swell. Consequently one would expect a better 

performance of the retrieval in this area. 
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Thirdly the data set shows the ubiquitous presence of a young swell component propa-

gating closely in direction and frequency with the wind sea (in range direction), as well as 

a much longer, opposing swell propagating in azimuth direction. These characteristics are 

ideal for the study of the influence of swell on wind sea growth in the open sea, with direct 

connection on how short waves are modulated by longer ones. 

1.3 Object ives 

The interest in the energy balance of short gravity waves has increased substantially in the 

last 20 years. These decimetric waves play an important role in small scale air-sea inter-

actions that aze responsible for the exchange processes through the interface. Furthermore 

the electromagnetic waves emitted by microwave instruments interact with the short ocean 

gravity waves in a process called Bragg resonance (see for example Robinson, 1985, chap-

ter 12) responsible for the modulation of the radar backscatter and therefore for the imaging 

mechanisms. The Real Aperture Radar (RAR) modulation, composed by the Hydrodynamic 

and Tilt modulation, is particularly sensitive to the behavior of the Bragg (ripple) waves. 

Just for a brief description, the Tilt Modulation Transfer Function (MTF) assumes that these 

Bragg waves are represented by a high frequency tail proportional to the wave number vector 

k to the power of -4. The Hydrodynamic MTF, on the other hand, describes the modulation 

of the ripples by the phase of the longer waves. 

The question that arises is how the investigation of waves propagating in the open ocean 

will contribute to the understanding of the modulation mechanisms, since they are in general 

much longer than the decimetric Bragg waves. As pointed out by Komen (1988), for low wind 

speeds and at early stages of development, the Bragg waves are within the spectral range 

analyzed by Komen et al. (1984) and consequently the energy balance in the equilibrium 

range described by the interaction of the source functions applies. Likewise, the results of 

the investigation of the influence of swell on wind sea waves can be extrapolated to shorter 

waves thus contributing to the discussion. 

Several experimental studies have been presented aimed at a better understanding of the 

processes of modulation of short wind waves generated in tanks by longer, paddled waves 

(see a review of such experiments in Hanson and Phillips, 1999). Nevertheless the evidence 

for the influence of longer (swell) waves on wind waves in the open ocean is difficult to 

demonstrate, partially due to the need for reliable spectral methods to isolate the wind sea 
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from the swell contaminated spectra. Some spectral methods have been proposed lately, 

from the pioneering JONSWAP to the more sophisticated methods for the partitioning of the 

directional spectrum (Gerling, 1992). The high frequency spectral tail is, however, sensitive 

to the spectral width of the directional spectrum (as demonstrated by Banner and Young, 

1994) and the reconstruction of the 2D spectrum from heave-pitch-roll buoy measurements 

is subject to a degree of uncertainty. As a consequence we believe that the results from 

the partitioning of the frequency spectrum—yielded directly from the heave measurements 

without any assumption about the directional spreading—are more robust. 

One of the main issues addressed in this work therefore is the influence on short waves 

by longer waves in the open ocean. To attain this goal we propose a new method for the 

partitioning and adjustment of the spectral parameters of the frequency spectrum. This 

method is applied to a large data set of buoy measurements obtained in a tropical region 

where the influence of swell on wind sea waves is investigated in terms of their direction of 

propagation and in terms of their distance in frequency space. 

The second main ingredient in our study is the retrieval of wave spectra from SAR im-

ages. The MPI scheme is the most widely used retrieval algorithm which runs operationally 

at several forecasting centers, many of them developing techniques for the assimilation of 

the directional spectrum retrieved from the inversion—as for example the ECMWF (Janssen 

and Bidlot, 2001) and the British Met Office (Jim Gunson, personal communication). Sur-

prisingly, however, the statistical validation of the algorithm against directional buoy mea-

surements has not been done yet. As discussed earlier one of the main reasons is the lack of 

continuous directional buoy wave measurements, in particular in deep waters. 

A comprehensive intercomparison of the directional wave spectra retrieved from the MPI 

scheme, estimated by the WAM wave model and measured by a heave-pitch-roll buoy is 

carried out for a period of one year using over one hundred spectra. When possible the 

strength of one method is used to assess the performance of the others, pointing out their 

weakness. Thus, for example, the linearly mapped swell components from SAR measurements 

are used to check the quality of the Maximum Entropy Method in the reconstruction of the 

directional spectra from buoy measurements and in addition to validate the estimation of long 

waves by the model. Moreover the wind sea components measured by the buoy can assess 

the quality of the model estimates in more complicated conditions, such as turning winds or 

on early stages of development when the performance of the approximation of the nonlinear 

interactions and the numerical resolution of the model, respectively, can be analyzed. 



Introduction and Objectives 

Since the advent of satellite oceanography the field of wave data assimilation has ex-

perienced a fast development. So far only SWH from altimeters have been assimilated by 

operational forecasting centers but with the improvement of the schemes for the retrieval of 

the wave spectrum from SAR images the natural trend is that this picture is going to change. 

The cumbersome task of redistributing the energy from an integral parameter like SWH over 

the spectrum seems pointless since reliable global estimates of the full directional spectrum 

are becoming available. With this picture in mind we present a review of the techniques for 

the assimilation of the two-dimensional directional spectrum into wave models. 

1.4 Organizat ion of t he Work 

The structure of the work is the following. In Chapter 2 and 3 the buoy measurements and the 

characteristics of the WAM model that we are working with are respectively presented. The 

scheme for the partitioning and spectral adjustment of the frequency spectrum is described 

in Chapter 4 and its application to buoy measurements to investigate the influence of swell 

on wind sea growth in the open sea is carried out in Chapter 5. 

Chapter 6 is focused on a comprehensive description of the Max-Planck Institut (MPI) 

retrieval scheme of wave spectra from SAR images. In addition a review of the SAR ocean 

wave imaging mechanisms is presented together with discussions about the strengths and the 

weakness of the algorithm. 

The intercomparison of the directional spectra yielded by the MPI scheme, from the model 

and by the buoy together with a statistical validation of the retrievals and estimates against 

buoy measurements is presented in Chapter 7. 

The conclusions and ideas for future work are presented in Chapter 8 whereas the Ap-

pendix provides an overview of assimilation schemes of directional wave data published up 

to the present. 

This work has been organized in such a way that every chapter has the format of a 

scientific paper, therefore the fundamental background concepts are within chapters rather 

than in a single, in general introductory chapter. 



Chapter 2 

Buoy Measurements 

2.1 Buoy Wave D a t a Analysis 

Campos Basin, off Rio de Janeiro (Figure 2.1), is the most important oil and gas basin in 

Brazil. More than 70% of the petroleum prospected in the country comes from the tens of 

platforms located in this area. Every day several offshore operations take place in the region, 

which operatively depend on the sea state, in particular on the surface waves. This is one of 

the most important regions in Brazil with huge urban concentrations and strong commercial, 

industrial and touristic activities. 

The South Atlantic Deep Water Program (PROCAP) was an extensive experiment car-

ried out by the Brazilian Oil Company PETROBRAS in Campos Basin to study the main 

oceanographic features of the region. In terms of wind and wave measurements a heave-

pitch-roH buoy (Figure 2.2) waa moored in a depth over 1000 meters at position 22°31' 5" 

and 39°58' W from March 1991 to March 1993 and from January 1994 to July 1995. The 

wind speed and direction were measured hourly from the buoy by two Young propeller-vane 

anemometers at a height of 3.78 m and 4.43 m and later converted for the standard height of 

10 m. Each measurement is the average of a ten minute record, obtained one per hour. 

The wave buoy acquired three time series, the vertical displacement (r?) and two slopes 

(rjx and rjy) in the east and north directions, respectively. These time series are the starting 

point for the spectral analysis performed. The displacements were sampled at a rate of 1 Hz 

during 20 minutes eight times a day every three hours. The spectral estimators were obtained 

using the Welch Method (see for example Marple Jr., 1987). Records consisting of 1024 data 

points (with a sample length of approximately 17 minutes) were segmented in 16 partitions 
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Figure 2.2: Heave-pitch-roll buoy in operation in Campos Basin. The hull has a diameter of 
3 m, the structure has a height of 6 m with a total weight of 1500 kg. 

Following the original work of Longuet-Higgins et al. (1963), applying auto and cross-
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spectral analysis on the three components yields 

V —TT 

C22(/) = A;^/''F(/,g)cos"(0)dg, 
V—TT 

/

+7r 

F(/,g)sin"(0)dg, 
-TT 

Qi2(/) = A: / F(/,0)cos(g)d0, (2.1) 
J —TT 

Qi3(/) = A: y^''F(/ ,e)sin(g)d0, 
-IT 

/ • + 7 r 

u2 C23(/) = ^ y F(/,g)sin(g)cos(g)d0, 

Cl2(/) = C i 3 m = Q 2 3 ( / ) = 0 

where 

is the direction of propagation and where the wave number is represented by 

(2.3) 

The directional wave spectrum F(/ , )̂ describes how energy propagates in frequency and 

direction and is represented by the product of the one dimensional spectrum F( / ) and the 

energy spreading function D(/ , )̂ as 

= (2.4) 

where 

/ + 7 r 

D(/,0)d0 = l. (2.5) 
-TT 

The spreading function D(/ , 0) can be expanded as a Fourier series as foUows: 

^ ^ cos + 6n(/) sin n^) j (2.6) 
I n~l J 

where 



2.2 Wind Measurements 13 

«.(/) = 

6i(/) = r"D(/,g)sin(g)dg = 
V—TT 

Q i s m 

aM) = y'"D(/,9)cos(29)dO= 

H f ) = |%(/.9)sm(2£))d«=^^. 

The Fourier expansion (2.6) is truncated at n = 2 given the limitation that only three 

components are measured by the buoy, that is the vertical displacement and two slopes. This 

truncation causes negative lobes in D(/, ^), which is always positive deEnite. Longuet-Higgins 

et al. (1963) proposed the application of weighting functions to solve this limitation, which 

causes an undesirable broadening of the spreading function. 

The application of Fourier analysis to obtain the spreading function D{f, 6) is limited to 

the small number of components used in the expansion. Due to this limitation alternative 

approaches are applied to estimate the spreading function. Among them the non-parametric 

Maximum Entropy Method (MEM) produces reasonable results, particularly in the recon-

struction of directional double-peaked wave spectra (Lygre and Krogstad, 1986). MEM is 

a non-parametric model in the sense that there is no fixed analytical form. In contrast to 

MEM, parametric models such as the forms proposed by Longuet-Higgins et al. (1963) and 

Donelan et al. (1985) have a predetermined form and a controlling parameter (respectively s 

and /)) which is dependent on a single peak frequency. These parametric models are not con-

sistent with reconstructing the two dimensional spectrum F(/ , 0) when wind sea and swell 

co-exist, since they attempt to Gt a single peal{ centered between the two wave directions 

(Young, 1994). Hence MEM is more suitable for the present purpose and was applied for the 

estimation of 

2.2 W i n d Measurements 

The buoy was equipped with meteorological instruments for measuring wind, barometric 

pressure, air temperature, relative humidity and precipitation. Wind speed and direction 

were measured by two Young propeUer-vane anemometers at a height of 3.78 m and 4.43m 

and the speed value later corrected for the standard height of 10 m using a logarithmic 
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relationship. Each wind measurement is an average of a 10-min record obtained hourly. 

Gaps in the wind recorded by the anemometers on the buoy correspond to less them 10% of 

the total amount of measurements, and were fiUed with observations obtained on the nearby 

Enchova Platform located at 22°40'36'' 5" and 40°36'20'' W, about 60 km west from the buoy 

mean position. The wind meaaurements obtained from the buoy and &om the oil platform 

present a high correlation, both in direction and speed as described in Violante-Carvaiho 

et al. (1997), which is attributed to the spatial homogeneity of the wind Gelds encountered 

in the region. This is not true for situations associated with the passage of cold fronts with 

winds varying rapidly in both vertical and horizontal speed and direction. 

2.3 The Wave Climate in Campos Basin 

The wave climate in Campos Basin can be described by the main meteorological situations 

encountered over the South Atlantic. The area is strongly affected all the year round by 

relatively long swell waves responsible for most of the spectral energy measured by the buoy. 

For completeness a brief description of the most important meteorological events and the 

characteristics of the waves generated by them is presented (see more details in Violante-

Carvalho, 1998). 

Over one third of the spectra measured in the area present 3 or more peaks which can be 

explained on the grounds of the prevailing meteorological conditions. The decomposition of 

the spectra into different wave systems (wind sea, swell and young swell) and the information 

of how energy is distributed in frequency and direction is valuable information for the char-

acterization of the wave climate of the region. Some of the characteristics of the wave spectra 

analyzed appear in table 2.1, which shows the occurrence of spectral peaks as a function of 

the significant wave height Hs- The dataset spans a period of 26 months during which 5807 

wave spectra were measured. The data indicate that about 25% of the spectra are unimodal 

whereas the vast majority presents two or more peaks. 

The semi-stationary South Atlantic Subtropical High pressure center (SASH) has a fun-

damental role in the climatology over the continent and in the wave climate in Campos Basin 

(represented by H in Figure 2.3). The anticyclonic circulation usually creates good weather 

conditions and is associated in the study area with northeasterly or easterly winds generating 

wind seas with SWH spanning from 0.25 to 1.25 m and peak periods from 3 to 5 s. Another 

wave system is also associated with the SASH although not related to the local wind measured 
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Table 2.1: Occurrence of Spectral Peaks in Campos Basin. 

^s(m) 1 peak 2 peaks 3 or more num. o6g. %o6g. 
fTg < 1.5 236 533 706 1475 25.40 

1.5 < < 2.5 776 1468 1176 3420 58.89 
2.5 < < 3.5 312 298 121 731 12.59 
3.5 < Hg < 4.5 116 24 3 143 2.46 
4.5 < /fa < 5.5 25 9 0 34 0.59 

5.5 < 4 0 0 4 0.07 
o6a. 1469 2332 2006 5807 

% obs. 25.30 40.16 34.54 100 

by the buoy. Due to the curved form of the isobars around the high pressure center waves 

are generated near the buoy with propagation directions slightly more easterly (in general 

20 to 40° higher clockwise), as can be seen by the arrows indicating the wind direction in 

Figure 2.3. This young swell component presents typical values of SWH ranging from 0.5 to 

2.0 m and peak periods from 5 to 8 s. The young swell is generally associated with longer 

fetches and more energetic waves than the wind sea and is responsible for severe situations 

in the area (Parente et al., 2001). 

Frontal systems act in the South American continent throughout the whole year associ-

ated with the large scale undulatory How. The dislocation of these systems has two main 

preferential trajectories—with a zonal or meridional component (Gan and Rao, 1991)—that 

are determinant in the direction of the waves that propagate towards Campos Basin. Frontal 

systems with a meridional component dislocate typically from southwest to northeast over 

the American continent. The passage of cold fronts over Campos Basin is combined with 

winds turning anticlockwise from southwest to northeast and more severe wave conditions 

(Parente et al., 2001). On the other hand the dislocation of these systems with a more pro-

nounced zonal component, preferentially from west to east within a latitude band between 

35° and 55° S, is responsible for long waves from the south quadrant with typical values of 

SWH from 0.5 to 2.0 m and peak periods from 8 to 15 s. Figure 2.3 also presents a typical 

situation of waves generated over 3000 km from the buoy. A cold front represented by black 

triangles associated with a low-pressure center in the southern extreme of the continent gen-

erates a distant swell. This is a common situation in Campos Basin, that is, a distant swell 

propagating in the opposite direction to the wind sea and a young swell propagating close to 

the wind sea both in direction and frequency. 
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Figure 2.3: Schematic representation of the semi-stationary South Atlantic Subtropical High 
pressure center and its influence over the South American continent. The position of the buoy 
at Campos Basin is represented by the black spot and the direction of the wind responsible 
for the generation of a young swell and the wind sea is represented respectively by the arrows 
1 and 2. At the south extreme of the continent there is a cold front plotted as black triangles 
associated with the progression of an extratropical cyclone (low pressure center L) generating 
swell from the southern quadrant. 



Chapter 3 

The Wave Model WAM 

3.1 W A M D a t a 

In this work the directional spectra from WAM are used as a first-guess by the MPI re-

trieval scheme to remove the 180° ambiguity and to augment the wave spectral information 

beyond the azimuthal cut-off wavenumber. A brief summary of the main characteristics 

of the third generation WAM model follows but more detailed information is presented by 

WAMDI Group (1988); Giinther et al. (1992); Komen et al. (1994) and in the web site at 

www. dkrz. de/forschung/reports / report4/wamh-1. html. 

In contrast with second generation wave models, a third generation model such as WAM 

does not introduce assumptions about the shape of the spectrum (SWAMP Group, 1985). 

The 2D wave spectrum is determined by the integration of the transport equation : 

= S'in + 5'nZ + (3.1) 

where F = f (/, 0, A, )̂ the two-dimensional wave spectrum is a function of the frequency / , 

the direction ^ on a spherical grid of latitude and longitude A and 

^ = ft 

0 . ^ (3.4) 
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represent the rate of change of the position and direction along a great circle path for a wave 

packet in water of infinite depth. The source terms are represented by the wind input (5"^), 

the nonlinear transfer (5"̂ !) and the dissipation term 

Since August 1993 ERS-1 altimeter wave height data have been assimilated by ECMWF 

into their WAM wave model using an optimal interpolation scheme. We are running a 

workstation version of the WAM without the implementation of any sort of data assimilation. 

That means that the outputs from the wave model used in this work are the direct result of 

integration of the energy balance equation (3.1) which makes the comparison of the model 

against buoy data much more meaningful. The ocean wave spectra are computed using the 

WAM cycle 4 every hour on a latitude-longitude grid with a spatial resolution of 1° covering 

the whole South Atlantic basin from the Equator line to 72° S and from 74° W to 30° .G, 

which totals 7488 grid points. Both the source and the advection terms have a time step 

of 12 minutes for aU the 600 spectral components (25 frequencies and 24 directions). The 

spectrum is evaluated up to a high frequency cut-off, and beyond this point an tail is 

added with the same directional distribution as the cut-off region. 

The WAM model runs operationally at most forecasting centers and has been validated 

on statistical basis against buoy data (see for example the results presented in Komen et al., 

1994). The comparisons of significant wave height estimated by the model against Geosat 

altimeter measurements show an overall good correlation with small values of bias (Romeiser, 

1993). However significant discrepancies were encountered in some individual cases and have 

been attributed to errors in the forcing wind or to inadequate spectral resolution of the model. 

3.1.1 The W i n d Input Source Term 

The wind input term represents the transfer of energy from the wind to the ocean, producing 

waves. Short waves are produced in the high frequency part of the spectrum whenever the 

wind is blowing on the sea surface. The wind input source term Sin adopted in the WAM 

cycle 4 is based on Miles' theory for laminar Sow given by the expression presented by 

Snyder et ai. (1981) and later modified (Janssen, 1989; 1991) which describes the wind-wave 

momentum transfer. In this theory the wind input depends in a a quasi-linear way on the 

wave spectrum: 

'S'in = (3.5) 
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where "yiyi is the growth rate parameter. The stress in the air surface layer is aSected by 

the waves through their orbital velocity, the so-called wave-induced stress. Therefore the 

momentum transfer from air to ocean is dependent on the sea state, which is taken into 

account in the model. 

3.1.2 The Nonlinear Wave-Wave Interactions 

The nonlinear wave-wave interactions are extremely important for the understanding of the 

evolution of the directional spectrum. The role of the nonlinear term is to redistribute energy 

from the short wave components to the long ones resulting in waves that otherwise would 

not be generated directly by the wind. The term describes the energy transfer due to 

nonlinear wave-wave interactions when a set of four waves of diSerent wave lengths, called a 

quadruplet, interact with each other satisfying the resonance conditions 

ki -|- k2 = ks "h k.4 (3.6) 

LOi -f- W2 = wg -|- W4 (3.7) 

where k is the wavenumber vector and u) is the angular frequency (27r/). The exact calculation 

of Sni is too time consuming to be used in operational models so a parameterization is 

employed, the discrete interaction approximation (DIA) (Hasselmann and Hasselmann, 1985; 

Hagselmann et al., 1985a). It is still not very clear whether the DIA represents correctly the 

nonlinear interactions in more complex sea states such as in situations of turning or ceasing 

winds where wind sea-swell transition and turning wind sea are present (Young, 1999). 

3.1.3 Diss ipat ion D u e t o Whitecapping 

Dissipation of energy may occur in deep water by wave breaking in a process called white-

capping when the wave amplitude increases beyond a certain level—this term was introduced 

to differentiate it from depth-induced wave breaking. The dissipation term S^s implemented 

in WAM cycle 4 is based on the whitecapping theory (Hasselmann, 1974), uses the parame-

terization proposed by Komen et al. (1984) and takes into account the wave induced stress 

(Janssen, 1991). Like the wind input, Sds is quasi linear in the wave spectrum and is repre-

sented by 

'S'da = (3.8) 
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with the dissipation rate depending on integral spectral parameters. The parameter 5"̂ ^ 

is the least well known of the three source functions and its value was adjusted to ensure that 

the action balance equation (3.1) achieves an agreement with measurements in fetch-limited 

growth. 

3.2 T h e Forcing Wind 

The wind input is from the Atmospheric General Circulation Model (AGCM) which is run 

operationally by the European Centre for Medium-Range Weather Forecasts (ECMWF). Two 

different data sets were obtained from the British Atmospheric Data Centre (BADC). The 

first one is the ECMWF Re-Analysis (ERA) from 1991 to February 1994. The AGCM has 

a variable altitude resolution divided in 31 levels with maximum altitude of 30 km, it has 

a latitude-longitude resolution of 1.125° and the wind field is computed every 6 hours. The 

second data set is the ECMWF Operational Analysis (from March 1994 to December 1995) 

and includes the same parameters with same resolution as ERA. The wind field at 10 meters 

height (uio) is used to drive the wave model. More details are presented at the web page 

http://www.badc.rl.ac.uk/. 

http://www.badc.rl.ac.uk/


Chapter 4 

A Spectral Scheme for the 

Partitioning of the Frequency 

Spectrum into Wave Systems 

A spectral approach is applied in a novel method for the partitioning of the frequency wave 

spectrum into wave systems and for the adjustment of the spectral parameters. The method 

described in this chapter is employed on the investigation of the growth of surface gravity 

waves in an open sea region dominated by swell. 

4.1 In t roduc t ion 

It is fundamental to be able to properly separate swell from wind sea in order to study whether 

or how the interactions between them modify the growth relations of wind waves obtained in 

swell-free environments. Spectral methods are necessary for the partitioning and adjustment 

of the multi-modal wave spectra in order to determine how energy distributes in frequency 

and direction. Most of the known spectral formulations are for the adjustment of unimodal 

spectra and so it is not possible to apply them for the common cases when more than one 

spectral peak is present. To overcome this limitation a technique for the representation and 

partitioning of multi-peaked spectra is proposed. 

Detailed knowledge of the shape of the ocean wave spectrum and its growth is important 

information for offshore engineering purposes. Among numerous examples are the estimation 

of induced loads on marine structures and the response of floating bodies to the wave action. 
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In the last 50 years several works have sought to properly describe and parameterize the wave 

spectrum. Most of them have produced spectral models that aim to describe only the wind 

sea part of the spectrum, generated by the local wind, and hence unimodal. Furthermore 

the greatest part of these studies are based on measurements on wave tanks in laboratories 

or in swell-free environments with well defined fetches like lakes or sheltered coastal areag. 

Undoubtedly such work has clarified the understanding of the physical mechanisms behind 

wave generation and growth but there is a lack of studies in open sea regions. Prom the 

operational perspective it is important to conGrm whether the theoretical relationships, for 

example correlating wave energy and wind, apply to the most common cases, that is areas in 

the open ocean where swell is present. 

Donelan et al. (1992) carried out a detailed field experiment in Lake Saint Clair to explore 

the wave growth in a fetch-limited swell-free environment. They found a high correlation 

between the reciprocal wave age (Vc/cp aiid the dimensionless wave energy e = 

where mo is the wave energy variance, C/c is the component of the wind in the wave direction 

and Cp is the phase velocity at the peak frequency. But the modiGcation of the wind sea 

growth by swell is not completely clear and the results from laboratory waves show some dis-

agreements among experiments. It is clear however that there is a reduction in the amplitude 

of laboratory wind waves when longer (swell) waves are added. 

In the North Atlantic Dobson et al. (1989) found no significant influence on the fetch laws 

proposed by Donelan et al. (1985) after removing the swell from the spectra. However both 

works were carried out in short-fetched coastal areas and some questions stiU remain about 

the influence of swell on wind sea growth in the open ocean. 

4.2 Spectral Formulat ions 

The spectrum measured in a particular point of the ocean is the sum of wave systems gen-

erated by events apart either in space and in time. Although the wave spectrum is quite 

complex there is a remarkable similarity of its shape in different locations under an enormous 

variety of wind speeds, spanning from small waves in lakes up to storm waves generated 

by hurricanes. It is believed that the evolution of the waves in deep water is a function of 

three dynamical processes (Komen et al., 1994): the nonlinear wave-wave interaction (5„|), 

the gain of energy from the wind input (Sin) and the dissipation due to wave breaking (Sds)-

Among the three processes the non-linear interactions play a very important role in the shape 



4.2 Spectral Formulations 23 

stabilization of the wave spectrum F( / ) forcing its high frequency portion beyond the peak 

frequency to decay in a manner inversely proportional to frequency to a power n in the 

form F ( / ) oc 

The similarity hypothesis proposed by Kitaigorodskii (1962) enabled the description of 

the development of the wave spectrum under fetch limited conditions. A key argument in 

his hypothesis was the existence of a high frequency 'equilibrium range'. In this equilibrium 

range the dynamical processes balance each other, that is + 5'in + 'S'ja = 0, rates of energy 

gain due to wind input is balanced by energy loss due to breaking and nonlinear wave-wave 

interactions and hence the spectrum remains stable. Phillips (1958) suggested that in the 

portion of higher energy within the equilibrium range (in the band of frequencies from 1.5^ 

to where is the peak frequency) the spectrum is a function of decay expressed 

aa: 

f ( /) = ag^(27r)-V-' (4.1) 

where / is frequency, g is the gravitational acceleration and a is a constant scale parameter 

set equal to 0.0081. Philhps' work was based on dimensional considerations and on the fact 

that due to the wave steepness the high frequency part of the spectrum is limited due to 

wave breaking. Any wind input in these frequencies is lost in wave breaking and hence (4.1) 

escribes the high frequency part of the wave spectrum. 

Pierson and Moskowitz (1964) proposed a spectral form for fully developed seas from 

analysis of measurements in the North Atlantic. They added an exponential term to Phillips' 

expression (4.1) to generate a low frequency spectral face 

f ' ( / ) = a!g (̂27r) ^exp - f -4 V p 
(4.2) 

The Pierson-Moskowitz spectrum (4.2) describes the waves developed under no limitations 

in fetch and time. But fully developed seas are not very common in nature as they require a 

steady wind blowing for a long period over a large area. Seeking to clarify the development of 

growing seas under fetch limited conditions researchers from Europe and USA carried out the 

Joint North Sea Wave Project (JONSWA.P). The location of these extensive observations 

was carefully chosen based on the simple situations suggested by Kitaigorodskii, that is a 

steady offshore wind over a strait beach in a region not contaminated by swell. Hasselmann 

et al. (1973) proposed the JONS WAP spectrum that described fetch-limited waves very well 
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using 6ve parameters (Jp, , "ŷ  , o-Q and crb): 

= ^exp 

where 

(7 

4 V p 

(7a / o r / < /p 

<76 / o r / > 

exp 

^3 

-if-fpr 

(4.3) 

The JONSWA.P spectrum (4.3) is based on the Pierson-Moskowitz spectrum with an 

enhancement factor 7j added. This enhancement is only significant in the region near the 

spectral pealc and at higher frequencies the decay is inversely proportional to frequency to 

the fifth power as suggested by Philhps (1958). The peak frequency is the frequency at the 

maximum of the spectrum. The left and right-side widths of the peak region are represented 

respectively by da and cr;,. The high frequency scale parameter is not constant ag initially 

proposed by Philhps (1958). Haasehnann et al. (1973) found a relationship between 

and fetch which confirmed the suggestion of Longuet-Higgins (1969) that aj decreases with 

increasing fetch X given by 
/ \ - 0 . 2 2 

where C/io is the wind speed at 10 meters height. They found no correlation of "/j, erg Eind 

(75 with fetch and proposed mean values for their representation (7^ = 3.3, Ua = 0.07 and 

at) = 0.09). 

The high frequency form F{f) oc present in the JONSWAP spectrum has been ques-

tioned by recent researches (see for example Philhps, 1985) that reanalyzed the equihbrium 

spectral balances coming up with a /""* power law rather than /"^. Toba (1973) postulated 

a different formulation for the high frequency tail represented by a decay which seems to 

be more consistent with observations. Based on detailed field measurements in Lake Ontario 

Donelan et al. (1985) proposed a new spectral form: 

^ ( / ) = adg (̂27r) V '̂ exp 
_/x-4 exp 

(4.4) 

The Donelan spectrum (4.4) is a modified version of the JONSWAP spectrum to allow a / ^ 

frequency tail. Unlike Hasselmajin et al. (1973) who presented spectral parameters dependent 
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on fetch, Donelan et al. (1985) parameterized them in terms of the reciprocal wave age f/c/cp-

For the high frequency scale parameter they proposed: 

= 0.006([/c/cp)° Ŝ; 0.83 < (7c/cp < 5. 

Furthermore Donelan et al. (1985) suggested that, in contrast to Hasselmann et al. (1973), 

"Xj and (7 depend on wave age: 

1.7, 0.83 < [/c/cp < 1; 

1.7 + 6.01og([/c/cp), l < [ / c / c p < 5 

and 

a = 0.08[1 + 4/([/^/cp)^]; 0.83 < !7c/cp < 5. 

The exponent M of the high frequency tail that best describes the spectrum decay F( / ) oc 

is still an open question. In many studies (Toba, 1973; Mitsuyasu et al., 1975; Donelan 

et al., 1985; Rodriguez and Guedes Soares, 1999b; Liu, 1989; Young, 1998) the value of n varied 

between -3.5 and -5. Rodriguez et al. (1999), following Kitaigorodskii (1983) considerations, 

point out the existence of a transitional frequency at which the decay changes from 

to a f~^ tail. These works raise the question of whether there is a universal high frequency 

decay in the form F{f) oc but also give strong evidence that n lies between -4 and -5. 

4.3 The M e t h o d for t he Spectral Ad jus tmen t 

Formulations of the type (4.2, 4.3, 4.4) are for unimodal spectra and cannot represent the 

sea state when there is wind sea and swell. However they form the theoretical basis for 

the representation of multi-peaked spectra (Ochi and Hubble, 1976; Guedes Soares, 1984; 

McCarthy, 1989). In these papers it is assumed that the wave spectrum is composed of 

wave systems generated by diEerent sources and there is no interaction between each spectral 

component. Hence the methods for representing a bimodal spectrum assume that the one 

dimensional spectrum F { f ) is the sum of a high frequency Fhf{f) and a low frequency Fif{f) 

component yielding 

= + (4.5) 
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Ochi and Hubble (1976) proposed a method for the adjustment of bimodal spectra where 

each part is expressed by three parameters. They represented the high and low spectral 

components using a modified version of the Pierson-Moskowitz spectrum. Guedes Soares 

(1984) adopted the same approach to model double-peaked wave spectra but using a spectrum 

derived from JONSWAP. The justification for modeling the high frequency part of the 

spectrum is straightforward since the JONSWAP form was originally developed for wind sea. 

However this spectral formulation does not apply for swell. His explanation for adjusting the 

low frequency using a JONSWAP model was due to the narrowness of the swell, which can 

be well represented by the sharp spectral shape of (4.3). 

The spectral representation suggested by Guedes Soares (1984) seems to be more appro-

priate. The good fit of the JONSWAP type formulations (4.3 and 4.4) has been confirmed 

by numerous experiments and the power laws for wave growth were obtained applying these 

spectral forms. Nevertheless, aa has already been pointed out, the exponent n that best de-

scribes the high frequency part of the spectrum in the form F{f ) oc is not exactly known. 

McCarthy (1989) also applied a modified version of JONSWAP to adjust double-peaked spec-

tra. His approach waa based on a more Sexible spectral form where the logarithmic decay is 

allowed to vary and he added a new parameter to adjust the low frequency region before the 

peak. 

In order to investigate the behavior of the high frequency tail decay we employed a spectral 

method based on JONSWA.P using a variable exponent m: 

f ( / ) = (27r)ag^(27r/) "exp 
_ 5 / / x - 4 

4 V p 

exp -(/—/p)̂  
(4.6) 

The values of cr are the same as in (4.3) and hence there are four parameters to be determined 

for the spectral adjustment: a and -y. 

The first step in the fitting procedure is to select the spectral peaks (see How chart in 

Figure 4.1). As discussed by Rodriguez and Guedes Soares (1999a) the correct identification 

of the points of maximum ordinates might be masked by random Guctuations arising from 

the spectral estimators. Pierson (1977) pointed out that 70% of the spectral peaks that are 

4 bands wide are double-peaked due to sampling variabihty. Therefore this selection requires 

additional tests to identify whether a separate peak corresponds to a different wave system 

or not. 

A balance must be found between resolution and variance, or in other words a compromise 
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select and 
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peaks 
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3 peaks 
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adjust 
sea 

i. The program selects up to three points of highest 

spectraj ordinate and sort them by frequency. 

ii. Consistent here means that the spectral peak 

passed all the three criteria for the selection, i.e 

1. must be at least 2 times the frequency resolution 

apart from the closest peak 

2. Satisfy the condidons of the first CIT 

3. The ratio between the peak and the eldest one 

must be less than 15. 

iii. When there are three seleckd peaks they are 

denominated sea, high frequency (HF) and low 

frequency (LF) peaks respectively from higher to 

lower frequency. 

the peak is not 
selected and 
proceed 

the test of the 
next peak 

consistent 

consistent 

yes adjust 
n C LF adjusted wave spectrum 

Figure 4.1: Flow chart of the algorithm for the spectral adjustment of the 1-D wave spectrum. 

between increasing the number of degrees of freedom (and hence reducing the variance) and 

the capabihty to identify small nuances in the smoothed spectrum. The spectra with 32 
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degrees of freedom and 50% overlap yielded a satisfactory relation between resolution and 

variance, although additional criteria are applied to check whether the peaks are due to 

the sampling variability. Guedes Soares and Nolaaco (1992) presented some criteria for the 

selection of the peaks, in which two of them are based on the 90% conGdence interval test 

(CIT). In that paper the first CIT used by them imposes the condition that the two peaks 

will be accepted if the ordinate of lower limit of the 90% confidence interval of the greater 

peak is higher than the ordinate of the upper limit of the confidence interval of the trough 

between the peaks. In addition they proposed a second CIT that imposes that the ordinate 

of the trough between the two peaks must be lower than the lower limit of the 90% conGdence 

interval of the smaller peak. 

We adopted three criteria which must all be satisGed for the selection of the spectral 

peaks. The first criterion requires that the peaks must be 2 times the frequency resolu-

tion (0.03 Hz) apart. This was considered the best value after several tests using distances 

spanning from 0.02 .Tfz to 0.05 jifz. The second criterion is based on the 90% conGdence 

intervals and the peaks will be accepted if they satisfy the conditions of the first CIT in 

Guedes Soares and Nolasco (1992). The second CIT proposed by them is too restrictive 

eliminating many peaks that were visually accepted. The third criterion applied for peak 

selection is that the ratio between the two spectral peaks must be less than 15. This require-

ment eliminates peaks that are below an arbitrary threshold value and hence contaminated 

by background noise. 

The next step in the fitting procedure is to adjust the high frequency spectrum 

The decay is determined by logarithmic regression of the points greater than 2/^. To 

obtain a the value of "y was set to 1 in (4.6) because its eEect at &equencies higher than 

f / f p > 1.37 is negligible. The value of a was obtained by iterating from 0.0001 to 0.1 in 

order to minimize the total square error for the range between 1.37 and 2 times the peak 

frequency (Hasselmann et al., 1976). Once /p,n and a are known 'y is the last parameter 

to define f / i / ( / ) . It waa chosen as the value that produces the least square error between 

measured and fitted spectra. 

The adjusted high frequency spectrum -P)j/(/) is subtracted from the measured spectrum 

yielding i^/( /) (4.5). The same process is repeated to obtain the parameters a and "y for 

the low frequency spectrum. These procedures outline the fitting of bimodal spectra. 

The wave climate in Campos Basin is complex and spectra with 3 or more peaks are 

common, about one third as indicated by table 2.1 on page 15. The fitting procedures for 
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double-peaked wave spectra selects the two points of highest spectral ordinate. Many times 

however the wind sea spectra in Campos Basin were neglected to adjust the more energetic 

swell and young swell components. To avoid this limitation the fitting procedure was extended 

to model a third peak, but only if the two selected ones do not correspond to the wind sea 

(as defined in the next chapter). In addition the third peak must satisfy the three criteria 

previously outlined for the spectral selection. Therefore the wave spectrum generated by the 

local wind is always adjusted and a trimodal spectrum is given as 

(4.7) 

In this situation the wind sea is represented by f^ea(/), the young swell by and swell 

by ffy(/) . In a bimodal spectrum (4.5) in general the wind sea will be .Fk/(/) the young 

swell or swell will be represented by 

r 0.6 

Figure 4.2: Examples of the adjusted wave spectrum. Top panels show the measured ID 
spectrum (solid line) and the adjusted spectrum (dashed Una) for a bimodal (left) and tri-
modal (right) case. Bottom panels show the respective directional spectra calculated using 
the Maximum Entropy Method. 

Furthermore due to the response of the heave-pitch-roll buoy to the sea movements we 

have imposed a frequency band from 0.04 Hz to 0.35 Hz for the selection of the spectral peaks, 

but for the calculation of the high frequency decay paramenter we have used all the data 

up to the Nyquist frequency cut-off, that is 0.5 Hz. Although the response of the buoy is not 
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reliable for the peak selection at higher frequencies due to noise its response is good enough for 

the determination of the high frequency decay The high frequency decay is a mean value 

calculated over several points, which diminishes the possibility of an erroneous value due to 

statistical variability. Additionally a quality parameter was also calculated, which basically is 

the ratio between the spectral energy measured by the buoy and the spectral energy yielded 

by the fitting procedure. Most of the values obtained range from 0.9 to 1.1, which means that 

in general the energy adjusted is within ±10% of the measured spectral energy. This implies 

that the value of signiEcant wave height adjusted by the fitting procedure has a variability of 

±10% around the value measured by the buoy. Other wave parameters such as wave period 

and wave direction are independent of this range since they are obtained directly &om the 

buoy measurement. However the high frequency decay n and the parameters a and 7 are 

dependent on the fitting procedure. Actually the values of n and the parameters a and 7 

vary in order to the area to be adjusted to get as close as possible to the measured area. 

Therefore it seems reasonable to assume that their variability is of the same order of the 

adjusted area, that is, around 10%. 

Examples of bimodal and trimodal adjusts are presented in Figure 4.2. On the left the 

bimodal spectrum has a dominant high frequency peak from BNB at 0.1514 j fz (6.6 a) and an 

significant wave height (SWH) value of 1.83 m while the least energetic low frequency peak 

(0.0859 2: or 11.6 s) from the south quadrant has SWH = 0.99 m. The more complicated 

trimodal spectrum on the right side presents wind sea, high and low frequency peaks of 

0.2119 Hz, 0.1318 i f z and 0.0840 z (4.7 s, 7.6 s and 11.9 s) and SWH values of 0.83 m, 0.54 m 

and 0.69 m respectively. The directional information is used in the model for the adjustment 

of the ID spectrum to select the wind sea. The accurate representation of the 2D spectrum 

is necessary as well to characterize the adjusted wave systems in terms of direction, energy 

and frequency which is of great interest in terms of offshore operations in Campos Basin. 



Chapter 5 

Buoy Observations of the Influence 

of Swell on Wind Waves Growth in 

the Open Ocean 

The influence of longer (swell) on shorter, wind sea waves is examined using an extensive 

database of directional buoy measurements obtained from a heave-pitch-roll buoy moored 

in deep water in the South Atlantic. This data set is unique for such an investigation due 

to the ubiquitous presence of a young swell component propagating closely in direction and 

frequency with the wind sea, as well as a longer, opposing swell. Our results show, within 

the statistical limits of the regressions obtained from our analysis when compared to mea-

surements in swell free environments, that there is no obvious influence of swell on wind sea 

growth. For operational purposes in ocean engineering that means that power-laws from fetch 

limited situations describing the wind sea growth can be applied in more realistic situations 

in the open sea when swell is present. 

5.1 In t roduc t ion 

Most of the studies that tried to address the problem of the growth of wind waves were 

carried out in laboratory tanks or coastal areas with well known fetches and without swell. 

The effect of longer waves on the evolution of wind sea is not well investigated in the open 

ocean where swell is ubiquitous. It is not clear whether or how its presence would change the 

mechanics of wave growth and to what extent. 
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The detailed processes that govern the shape and evolution of wind waves are still not 

completely well understood. It is however common knowledge that the growth of waves 

in deep water is a function of three dynamical processes called source terms, that is, the 

input of kinetic energy by the wind (5'in), energy dissipation due to wave breaking (also 

known as white capping) and nonlinear resonant wave interaction (5„;). It is remarkable that 

wind waves spanning a variety of wind speed conditions present a similarity in their spectral 

shape, and although all three dynamical processes play an important role it is believed that 

the nonlinear interactions are mainly responsible for this 'shape stabilization' process. One 

of the main features of this universal shape of wave spectra is a high frequency tail decay 

proportional to a power law in the form F{f) oc / " where F ( f ) is the frequency (or one 

dimensional) spectrum, / is frequency and n is an exponent that determines the rate of 

decay. 

The concept of equilibrium range was fundamental for the description of the evolution 

of waves under fetch limited conditions. Phillips (1958) using dimensional considerations 

suggested that in the frequency range between 1.5 to 3 times fp (the peak frequency) due to 

wave steepness the spectral level is determined mainly by wave breaking. In this region the 

dynamical processes balance each other, that is 5'in + = 0 and the input of spectral 

energy equals the loss of energy yielding a saturation level. Phillips (1958) pointed out that 

the spectral tail that best describes this high frequency band is proportional to the minus 

fifth power (n = — 5). Later on Phillips (1985) reanalyzed the equilibrium range theory and 

reported that an tail is more appropriate. 

The evolution of the wave spectrum is determined by the sum of the dynamical terms 

'S'in, and ag represented by the energy transfer equation: 

+ Cg • VF = Sin + Sds + Snl (5.1) 

where F = F{f\ 9) is the directional spectrum and Cg is the group velocity. The left hand 

side of (5.1) gives the advection of energy for each wave component whereas the right hand 

side describes the wave-wave interactions (5'n(), the wind input (Si^) and dissipative processes 

(5'(fa). As a result of the dynamical processes the peak shifts to lower frequencies and broadens 

as the spectrum becomes more mature. 

The study of the interaction of long and short wind waves is also relevant to understanding 

the processes involved in the modulation of radar backscatter at a shorter wave length scale. 
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Komen et al. (1984) solved (5.1) numerically to study the equilibrium range solution and the 

dynamics of wave generation and evolution, where they considered for computational reasons 

the range of frequencies around fp. Moreover Komen (1988) points out that the evolution of 

short gravity waves can be described &om consideration of the source terms and how they 

interact. For low wind speeds and at an early stage of development very short gravity waves 

are within the frequency range analyzed by Komen et al. (1984) and hence the source terms 

describe the physical processes involved in their evolution. The imaging of ocean waves by 

radar, for example the Synthetic Aperture Radar (SAR) imaging mechanism, is based on 

the interaction of these decimeter waves with longer waves through the process called Bragg 

resonant scattering. Most of the models of the tilting modulation transfer function assume a 

Phillips high wavenumber spectrum though it is not clear what is the best exponent for 

such models (see for instance Violante-Carvalho et al. (2002b) and the references in there). 

Although in the present study we are focusing on longer wind sea and swell waves (with 

wave lengths longer than 20 meters) the discussion might help to clarify how Bragg waves 

are hydrodynamically affected by longer waves. 

Energy transfer among wave components due to nonlinear interactions has been consid-

ered an important aspect for determining the evolution of the wave directional spectrum since 

the pioneering JONS WAP experiment in the North Sea (see more on page 24). Its influence 

on the wind generated growth in laboratory experiments has also been determined (Donelan, 

1987). Through numerical experiments, the importance of the spectral peaks for swell and 

wind sea to be nearly located within the frequency-direction space, has already been de&ned 

(Young et al., 1995; Masson, 1993). 

More recently Lavrenov and Ocampo-Torres (1999), using the exact calculation for the 

energy transfer due to nonhnear interaction, studied the dependence on the directional spread. 

Non-zero values for energy transfer were calculated for waves traveling in opposite direction 

to the wind, specially for wide directional spreading within the spectra. Furthermore, for 

cases of similar directional spread, the relative nonlinear energy transfer waa greater for 

wider frequency spectrum. Within this context, bimodal or trimodal spectra can be viewed 

aa displaying rather wide directional spreading character. Therefore, this can be an obvious 

mechanism to influence wind wave growth under the presence of swell. 

When performing strict calculations of energy transfer due to nonlinear interactions for 

bimodal spectra, a clear strengthening of interaction level is observed for cases when both 

wave Eelds (wind sea and swell) propagate in the same direction. Nevertheless, for cases when 
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both systems propagate in different directions the interaction still occurs at a lower strength 

(Lavrenov and Ocampo-Torres, 1999). Furthermore, non-zero values for energy transfer to 

directions opposite to the wind are always detected. 

A number of experiments indicate that wind waves are attenuated in the presence of 

long waves but the mechanisms which cause the suppression of the wind waves are not clear 

although several theories have been proposed. Through numerical simulations Masson (1993) 

investigated the effect of nonlinear coupling due to resonant interactions in bimodal spectra 

in deep water waves. The nonlinear term Sni has been shown to play an important role in the 

coupling between swell and wind sea causing the swell to grow at the expense of the wind sea 

in the frequency range just below the peak frequency of the wind sea. The magnitude of the 

coupling depends on the relative direction of propagation between swell and wind sea, where 

the coupling is maximum at about 40° (Masson, 1993). When the direction of propagation of 

swell moves away from the wind sea direction the nonlinear coupling decreases quickly. That 

work also considered the influence of swell on wind sea growth in relation to the separation 

between them in frequency space, where the couphng is not signiGcant for ratios of swell and 

wind sea peak frequencies less than about 0.6. Based on laboratory experiments 

Phillips and Banner (1974) suggested that the reduction in amplitude on wind waves is due 

to enhanced dissipation 6'̂ ^ caused by modulation of the short waves by the long waves 

which then increases the surface drift at the crest of the mechanical waves and the premature 

breaking of the short waves. More recently Chen and Belcher (2000) developed a model to 

explain different results from wave tank experiments. They pointed out the important role 

of the wind input source term Sin and its coupling with the long waves. They supposed that 

the long wave absorbs momentum from the wind leaving a reduced amount of turbulent flux 

in the wind which causes a slower development of wind waves. 

There is however a lack of evidence from measurements in the open ocean of the influence 

of swell on wind waves. This is caused partially by the difficulty to isolate wind sea from the 

swell contaminated spectra. Dobson et al. (1989) found no clear influence of opposing swell on 

wind sea in an experiment carried out in a fetch-limited coastal area. They concluded that the 

similarity of their results with those of Donelan et al. (1985) in a swell free environment was 

because of the short fetches involved in both experiments. The first attempt to investigate 

wind sea growth and dissipation in a swell dominated area in the open sea was carried out 

by Hanson and Phillips (1999) in the Gulf of Alaska. They computed 236 directional spectra 

where over a third of the cases were classiGed as without swell. In addition only 27% of the 
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swell cases (or less than 20% of the total spectra) were aligned with the wind sea direction 

whereas the great majority of the swell propagated non aligned with the wind sea. From 

their results they have found no clear effect of swell on wind sea growth regardless of the 

direction of swell propagation. They have not mentioned any sort of investigation of the 

relation between its possible influence on wind sea growth. In an attempt 

to address the lack of measurements in the open ocean of the inSuence of longer waves on 

shorter waves we analyzed a data set that consists of over 5800 spectra from a heave-pitch-roll 

buoy deployed in deep water in the South Atlantic. 

5.2 D a t a and Analysis 

Campos Basin, located off the northern part of the state of Rio de Janeiro (see Figure 2.1 on 

page 10), is the most important offshore region in Brazil. In this basin are located tens of oil 

platforms responsible for around 75% of the oil and gas prospected in the country, besides 

the fact that this is a region of strong comercial and touristic activities. Several offshore 

operations take place daily in Campos Basin, such as underwater surveys, pipeline laying, 

platform maintenance, Gexible riser inspections and so on. Its operationaiity depends on the 

most precise possible description of the sea state, in particular the surface waves, to ensure 

the safety of personnel and to avoid damage to equipment. 

The South Atlantic Deep Water Program (PROCAP) was an experiment conducted by 

the Brazilian Oil Company (PETROBRAS) to study the development of the main meteoro-

logical and oceanographic features of the region and their temporal variability. This program 

consisted of mooring lines with several instruments for both near-surface and deep water mea-

surements of currents, temperature, salinity, dissolved oxygen, pH and pressure. For wind 

and wave measurements a heave-pitch-roll buoy with meteorological sensors was deployed in 

the central region of Campos Basin nearly 150 km offshore. From March 1991 to March 1993 

the buoy was moored at position 22°31' S and 39°58' W in a depth of 1250 m. The same 

buoy was redeployed from January 1994 to July 1995 at position 22°38' 6̂  and 40° 12' W in 

1050 m. Here we will describe briefly the wave data acquisition and analysis (more details 

about the wave and wind analysis on pages 9 and 13 respectively). 



Buoy Observations of the Influence of Swell on Wind Waves Growth in the 
36 Open Ocean 

5.2.1 Wave Measurements 

The heave-pitch-roll buoy, equipped with a Datawell Hippy 120 Sensor, was highly reliable 

for the most part of the campaign. However the present analysis is interested mainly in the 

spectral evolution of the wave field over time therefore we consider only the period when there 

were no, or very small, wave gaps. In this work the wave data comprise the months from 

February 1992 to January 1993 and from February 1994 to March 1995 totaling 26 months 

and over 5800 wave spectra. 

The buoy acquired three time series, the vertical displacement and two slopes in the east 

and north directions, at a rate of 1 Hz during 20 minutes eight times a day every 3 hours. 

Records of 1024 points were segmented in 16 partitions of 64 points yielding 32 degrees 

of freedom and frequency resolution of 0.015625 Hz using the Welch Method to obtain the 

spectral estimators (see for example Marple Jr. (1987)). The classical Fast Fourier Transform 

(FFT) was applied to all three time series with a Hanning window and 50% overlap. The 

directional information was computed using the nonparametric Maximum Entropy Method 

(MEM) (Lygre and Krogstad, 1986). 

The high frequency response of the instrument to the sea movement is critical for the 

analysis performed. The presence of noise generated for example by currents and the mooring 

system causes a limitation in the buoy frequency range. Furthermore the size of the buoy and 

its response to the sea displacement together with the accuracy of evaluation of the spectral 

estimators impose a frequency band from 0.04 Hz to 0.35 Hz (Tucker, 1989). Outside this 

range the buoy response is questionable and was not considered in the analysis. 

5.2.2 The Spectral Fitt ing 

A method for spectral fitting and selection of different wave systems of the ID spectrum 

was developed and is comprehensively explained in Violante-Carvalho et al. (2002b) and on 

page 25. Here we will only give a brief description for completeness. Such a method is of 

great value for several apphcations since the wave spectrum is subdivided into a number 

of diSerent wave systems which can be characterized by a small number of parameters like 

significant wave height, mean frequency, propagation direction and directional spread among 

others. Several works have attempted to address the problem of partitioning of the ID 

wave spectrum, among them (Ochi and Hubble, 1976; Guedes Soares, 1984; McCarthy, 1989; 

Guedes Soares and Nolasco, 1992; Rodriguez and Guedes Soares, 1999a). Methods for the 
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partitioning of the directional (or 2D) spectrum have been introduced with the original work 

by Gerling (1992), and later modified by Hasselmann et al. (1996). We however prefer to use 

only the information yielded directly by the buoy (that is the ID spectrum from the heave 

measurements) rather than applying a method for the estimation of the spreading function. 

We use the maximum entropy method rather than the classical Fast Fourier analysis to 

compute the direction of the wave systems adjusted by the spectral fitting method. 

The main assumption in the method by Violante-Carvalho et al. (2002b) is to consider 

the ID spectrum F( / ) as the sum of independent wave systems, hence a bimodal spectrum 

is characterized by a high frequency and a low frequency system yielding 

(5.2) 

Each wave system f k / ( / ) and .Pz/(/) is adjusted using a spectral method based on the 

JONSWAP spectrum (Guedes Soares, 1984). The JONSWAP spectrum (Hasselmann et al., 

1973) presents a rate of energy decay for the high frequency part which is inversely propor-

tional to frequency to the fifth power (F(/)"'^). The high frequency tail that best describes 

the spectral decay is still subject to debate, although in many studies there is a clear evi-

dence that its value lies between -3.5 and -5 (Toba, 1973; Mitsuyasu et al., 1975; Donelan 

et al., 1985; Banner, 1990; Prevosto et al., 1996; Rodriguez and Guedes Soares, 1999b; Young, 

1998). Liu (1989) has reported for experiments in deep water a weak correlation of the high 

frequency decay at early wave growth stage with the total spectral energy, and for well de-

veloped or fully developed waves n seemed to be constant with values between -4 and -3. 

Young and Verhagen (1996) described the gradual decrease in magnitude of n as a function 

of the effects of finite depth in a shallow lake in Australia. In deep water they found that the 

exponent is approximately -5 and when the effects of the finite depth become more significant 

n approaches -3. 

To investigate the behavior of the high frequency tail we employed a spectral form using 

a variable exponent n in the form F(/)""^: 

F ( / ) = (27r)ag^(27r/) "exp 
4 V p 

exp 
7 

-jf-fp) 
(5.3) 

The exponent M is determined by logarithmic regression of the spectral points beyond 2 

times the peak frequency fp. The parameter a is the high frequency spectral level, 7 is the 
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Figure 5.1: The exponent n for the cases selected as wind sea as a function of the inverse 
wave age C/io/Cp. 

enhancement factor, a is the spectral width in the peak region and g is the gravitational 

acceleration. It is worth noting that (5.3) reduces to the JONSWAP spectrum when n equals 

-5. 

The high frequency decay m obtained from cases selected as wind sea (as defined later in 

this section) is highly variable although most of its values lie between -4 and -6. Figure 5.1 

shows values of the exponent n for the cases selected as wind sea against the inverse wave age 

Uio/Cp. There is no clearly predominant decay that supports either or the 

forms normally encountered in the Hterature. The best representation of the high frequency 

tail of the spectrum, or even whether there is a unique value, remains an open question and 

perhaps a model with a variable exponent n as in (5.3) is a better approach. However using 

a constant value of n, either -4 or -5, would allow us to compare our results with previous 

works where a constant m was employed. We have found no clear dependency of n on other 

spectral parameters and its value presents a mean equal to -5.01 with a standard deviation 

equal to 0.78. For this reason we have set the value of M to -5 in (5.3) and hence we are 

adopting a JONSWAP model for the spectral fitting. 

The first step in the fitting procedure is to select the points of highest spectral ordinate 

and to check whether they are in fact correlated to diSerent geophysical processes or are a 

consequence of, for example, sampling variability. Spectra with 32 degrees of freedom and 
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50% overlap yielded a satisfactory relation between resolution and variance although further 

tests are necessary to ensure that a spectral maximum is in fact related to a wave system 

rather than to Guctuations arising from the spectral estimators (see more discussion about 

this in Pierson (1977)). We adopted three criteria that must all be satisfied for the selection 

of the spectral peaks: 

« the peak must be separated 2 times the frequency resolution (O.OSTifz) from its closest 

peak, a rather arbitrary value but which yielded satisfactory results. 

• the ratio between the ordinate of the peak and of the adjacent one must be less than 

15 to eliminate peaks that are below a background noise. 

• the two peaks will be accepted if the ordinate of lower limit of the 90 percent confidence 

interval of the greater peak is higher than the ordinate of the upper limit of the 90 

percent confidence interval of the trough between the peaks, which basically means 

that the valley between the peaks has to be suGciently low. 

The next step in the fitting procedure is to adjust f%/(/). The values of a and 'y are 

chosen to produce the least-square error between measured and fitted spectra. The adjusted 

high frequency spectrum is then subtracted from the measured spectrum (5.2) and the same 

procedure is repeated to adjust the low frequency spectrum. These procedures outline the 

Gtting of double peaked spectra. 

The wave spectra encountered in Campos Basin are quite complex and over a third of the 

observations fitted using the above criteria present three or more spectral peaks. The fitting 

procedure for double peaked spectra selects the two most energetic peaks and hence may 

not select the wind sea system. The main goal of the present analysis is to investigate the 

influence of swell on the wind sea, therefore we must extend the fitting technique. To ensure 

that the wind sea is always fitted the above procedure was extended to model a third peak, 

but only if the two initially selected do not correspond to the wind sea. The third peak must 

also satisfy the three criteria for selection of wave systems. Therefore a trimodal spectrum is 

represented by 

f^(/) = F , , . ( / ) + (5.4) 

where f^ea(/) represents the wind sea system, f%/(/) may represent a young sweU and f f / ( / ) 

is the swell at lower frequency. 
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We need reliable criteria to isolate the wind sea from the rest of the spectrum and the 

wind direction is used as a first condition for the selection. The high frequency peaks that 

remain within a ±30° window of the wind direction measured by the buoy are selected 

aa potential wind sea systems. However in the region of Campos Baain there is a strong 

presence of a young swell component which presents propagation directions close to the wind 

direction and lies in the high frequency part of the spectrum, although not related to the local 

wind (Violante-Carvalho, 1998). The equilibrium range theory is then applied as a second 

criterion for the selection of the wind sea component. Phillips (1958) suggested that in the 

high frequency part of the spectrum (from 1.5/p to 3.0/p) the spectrum is proportional to 

frequency to a power -5 in the form 

F( / ) = ag^(27r)-''/-5. (5.5) 

The high frequency level a is wind dependent and can be used as an indication of the stage 

of wave growth. This feature is exploited for the selection of the wind sea component of the 

spectrum. Examination of the data indicates that the wave components above a = 0.001 are 

correlated to the wind energy transfer region and so were classified as wind sea. Figure 5.2 

presents a typical trimodal spectrum from 1 May 1992 1600 UT with a swell peak at 0.0645 Hz 

(15.5 s), a young swell at 0.1266 Hz (7.9 s) and wind sea at 0.1887 Hz (5.3 s). The direction 

that the wind waves are coming from (not shown on the plot) are, respectively, 145° (SE), 

44° (NE) and 33° (NE). Both peaks at higher frequencies he on a band of active wind input 

and the wave directional information itself might not be enough for a correct isolation of 

the wind sea. The figure illustrates a case where the young swell system is just below the 

equilibrium level for a value of a = 0.001. This threshold value is used in conjunction with 

the wave directional information for the selection of the wave system generated by the local 

wind. 

5.3 The Influence of Swell on W i n d Waves 

Violante-Carvalho (1998) presented a comprehensive statistical description of the spectral 

evolution of different wave systems and their relation to the meteorological patterns encoun-

tered in Campos Basin (see more details on page 14). A distant swell propagating in the 

opposite direction to the wind sea and a young swell propagating close to the wind sea both 
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Figure 5.2: A trimodal spectrum with the equilibrium range a5^(27r)~^/~® for a = 0.001 
included representing the separation between wind sea and young swell. Also appears on the 
plot the 90% conhdence interval represented by the up and down triangles. 

in direction and frequency is a common situation in Campos Basin. This is an ideal scenario 

for the investigation of the influence of swell propagation on wind sea growth. 

Our analysis was limited to the cases of waves generated by winds whose direction re-

mained relatively stable. The data set was prepared by selecting from 26 months of wind 

and wave observations the periods in which the wind direction remained within ±20° of its 

mean for at least four days. Figure 5.3 illustrates one of the nine selected periods of relatively 

steady wind direction. The selection of steady wind conditions is of fundamental importance 

for the analysis since varying winds would increase the scatter in the data. 

There is a level of uncertainty in our analysis in the band close to the Nyquist frequency 

associated with waves of small amplitudes. This is firstly due to the high frequency buoy 

response already pointed out and in second place to the method of spectral partitioning. The 

partitioning scheme using the one-dimensional spectrum rather than the full directional spec-

trum may compute an unknown amount of energy from high frequency components of swell 

propagating in directions other than the local wind. Hence, the fitting spectral method may 

overestimate the energy variance mo due to swell contamination of the wind sea spectrum. 

To mitigate this analysis limitation, and because of the uncertainty of the buoy response to 

high frequency waves, we ehminated the wave observations where the wind speed f/io is less 

than 7m/g. Furthermore Donelan et al. (1985) proposed that (7io/cp = 0.83 corresponds 
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Figure 5.3: Respectively from top to bottom time history of wind direction, wind speed and 
wave age of the wind sea extracted from the model of spectral adjustment observed by the 
buoy during one of the selected periods of relatively steady wind direction. 

to the value of the spectrum at full development, where the spectral components below this 

value are classified as swell and above as wind sea. Therefore we dropped the spectra for 

which (7io/cp < 0 83, hence characterized as swell, because of the poorer correlation obtained 

which yields a total number of 119 ideal cases used in our analysis. 

The values of the wind sea high frequency level a isolated by the method of spectral 

adjustment are plotted in Figure 5.4 against the reciprocal wave age E/io/cp. Our results 

are in remarkable agreement to those obtained in idealized fetch limited conditions, despite 

the high scatter in the data as observed in similar studies. Due to the process of shape 

stabilization (see for example Komen et al. (1994) and Young (1999)) the spectral peak 

shifts to lower frequencies and a decreases due to its response to the wind input of energy. 

Therefore a has a geophysical meaning and can be used as an indication of the stage of 

wave development. The evidence that the value of a can be extracted from a multi-modal 

oceanic spectrum can be useful information for wave forecasting. Once the wind information 

is available, for example from a scatterometer on board a satellite, the value of a and therefore 

the stage of wave growth can be used to update wave models. 

Table 5.1 presents the occurrence of directions of swell propagation relative to the wind 

sea direction. For the trimodal spectral cases swell is considered the closest wave system 
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Figure 5.4: Values of the 119 cases of high frequency energy level a as a function of the 
reciprocal wave age f/io/cp. The solid line is the best 5t to our data a = 0.0077((7io/cp)°'^ 
with a correlation coefficient r = 0.54, whereas the 90% conhdence interval is represented by 
the dotted lines. The dashed line is from JONSWAP, a = 0.0080((7io/c \0.73 

•pj 

to the wind sea in frequency space, regardless of whether it is the most energetic system or 

not. We classified as aligned swell those cases where the direction of propagation of swell is 

within a ±45° window of the wind sea direction and all other cases are considered as non 

aligned swell. Moreover table 5.1 provides within brackets the number of cases where the 

ratio between the swell peak frequency and the wind sea peak frequency is less than 0.55 

< 0.55). Hence considering bimodal spectra there are 13 cases out of 57 where 

the direction of propagation of the swell peak is aligned with the wind sea and the ratio 

is less than 0.55. Another information given in table 5.1 is that from the 37 cases 

of trimodal spectra there is only one where swell is not aligned with wind sea which is evidence 

of the strong presence of a young swell system in Campos Basin, whose peaks are close to the 

wind sea in terms of direction of propagation and in terms of frequency. Most of the time the 

second swell partition of the trimodal spectra propagates from the south quadrant at lower 

frequencies, usually with generation areas located at higher latitudes (Violante-Carvalho, 

1998). 

Donelan et al. (1992) carried out a detailed field experiment in Lake Saint Clair to explore 

the wave growth in a fetch-limited swell-free environment. They found a high correlation 
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Table 5.1: Occurrence of the direction of swell propagation relative to the wind sea direction 
in terms of the number of spectral peaks. Within brackets are the number of cases where the 
ratio between the swell peak frequency and the wind sea peak frequency is less than 0.55. 

aligned swell non aligned swell Mitm. obg. 
unimodal - - 3 
bimodal 57 [13] 22 [12] 79 
trimodal 36 [1] 1 [0] 37 

total 93 [14] 23 [12] 119 

between the reciprocal wave f/c/cp &nd the dimensionless wave energy e: 

, = 0.0022 (5.6) 

In order to investigate whether the swell dominated environment of Campos Basin produces 

similar results we searched for the best regression to the data. We present in Figure 5.5 

the variation of the dimensionless wave energy e with (7io/cp and the best-6t of the data 

expressed by 

6 = 0.0017 

-3.21 

(5.7) 

with a correlation r = —0.82. 

The best fit to the data (5.7) is in close agreement with Donelan's relationship (5.6). 

Hanson and Phillips (1999) obtained similar results from their data in the Gulf of Alaska: 

0.0020 

- 3 . 2 2 

(5.8) 

Within the scatter in the data there is no clear evidence of the inSuence of swell on wind 

waves, with relations (5.6-5.8) being statistically identical. However both statistics carried 

out at open sea (5.7 and 5.8) seem to point to a small reduction on wave energy in the 

presence of swell in comparison to (5.6). The relation obtained at Campos Baain (5.7) seems 

to indicate a reduction of around 15% on the wind sea energy, whereas in the work by Hanson 

and Phillips (1999) (5.8) the reduction is less than 5%. It is worth noting that only 18% of 

spectra measured in the Gulf of Alaska presented swell propagating aligned with wind sea. 

In contrast over 78% of the spectra used in our analysis present swell propagating close both 
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Figure 5.5: The dimensionless wind sea wave energy 6 as a function of the reciprocal wave age 
Uw/cp- The solid line is the best fit to the data e = 0.0017([/io/cp)"^'^^ and the dashed line 
is the power-law regression e = 0.0022(f7io/cp)~^'^ from Donelan et al. (1992). The diamonds 
are the 23 cases where swell is not aligned with wind sea, the stars are the 3 cases of unimodal 
spectra whereas the points are the 93 cases where swell is aligned with wind sea (see table 5.1). 
The 90% confidence interval is also shown as the dotted lines. 

in frequency and in direction with the wind sea, where one would expect a stronger reduction 

on wind sea energy due to the presence of longer waves. 

There is enough scatter in the plot to extend our analysis to investigate the influence 

of swell in terms of both direction of propagation and frequency. The best fit to our data 

considering non-aligned swell and aligned swell (with correlation coefficients r=-0.89 and 

r=-0.82) is given respectively by 

and 

6 = 0.00181 — 
V , 

0.00161 — 

- 3 . 2 

-3.0 

(5.9) 

(5.10) 

Prom Figure 5.5 it is not clear whether the direction of propagation of swell may agect the 

wave growth, although looking at (5.9) and (5.10) there seems to be a slight decrease in wave 

energy when swell propagates aligned with wind sea. Considering that most of the swell in 

Hanson and Phillips (1999) is propagating non aligned with wind sea, that could explain why 
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the relation obtained from their data presents a slightly higher value than ours. 

Masson (1993) based on simulations concluded that the nonlinear coupling is negligible 

unless the two peaks are very close in frequency which can make the bimodal structure of the 

spectrum hard to identify. The data from Campos Basin provide ideal cases for validation of 

these assumptions. Just to illustrate an example a wind sea component at 0.189 Hz (5.3 s) 

and a young swell component at 0.127 Hz (7.9 s) propagating in close directions is a common 

situation. The spectrum in Figure 5.2 illustrates such a situation where the ratio between 

swell and wind sea peak frequencies is greater than 0.6. The spectral peaks are clearly 

separated in f space and the method adopted in the present work for the spectral adjustment 

is able to identify both systems. The regression obtained from the data considering the cases 

where the ratio is less than 0.55 is: 

/ \ - 3 . 3 

e = 0 . 0 0 2 0 f ^ j (5.11) 

with a correlation coefficient r—-0.84. It is worth noting that (5.11) is closer to the relation 

obtained in a swell free environment (5.6). The regression of the 90 data points where 

> 0 55 (with r=-0.82) is 

-3.2 

e = 0.0017 (5.12) 

which is the same as relation (5.7) when we consider the regression of all cases regardless of 

their direction of propagation or ratio -

5.4 Discussion 

We have examined the effect of long waves on the energy of wind sea considering different 

propagation directions and frequencies of swell. Based on Phillips' equilibrium range theory 

and applying a spectral method for the adjustment and partitioning we were able to isolate 

the wind sea from the swell contaminated spectra in a tropical open ocean region in the 

South Atlantic. Prom a data set of over 5800 buoy observations we selected cases where 

the direction of the wind remained stable in direction. The data obtained from the buoy in 

Campos Basin are unique for the investigation of the influence of swell on wind waves due 

to the ubiquitous presence of a young swell component propagating aligned with wind sea as 
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well ag a longer, opposing swell. 

The regression of the values of the high frequency energy level a against the inverse 

wave age is in very close agreement with similar studies from fetch limited areas. Such 

results obtained from multi-modal spectra in the open ocean are remarkable. There is a clear 

instrumental limitation from pitch-roll buoys in the band close to the Nyquist frequency 

although we have selected only cases of moderate to strong wind speeds to mitigate this 

problem. Furthermore we have imposed a representation of the high frequency exponential 

decay in the form F{f)~^ although there is no clear indication from our data that a single, 

constant value should apply. The parameter a is very sensitive to the high frequency band 

of the spectrum which is a region where one would expect a strong influence of longer waves 

modulating the shorter, wind sea waves. A possible explanation for such close agreement 

could be the fact that oceanic waves are longer than those encountered in wave tanks. If the 

reduction of wind waves as observed in wave tanks is in fact mainly due to nonlinear coupling 

then longer waves with smaller wave slopes (less nonlinear and hence with weaker nonlinear 

interactions) would be less sensitive to the presence of swell. However we have found no clear 

dependency of the wave slope on the energy ratio between sea and swell (not presented here) 

with the scatter in the data showing no clear trend. 

Our measurements demonstrate that there is no significant effect of swell on wind sea 

growth. The relation obtained from our observations is similar to the relation proposed by 

Donelan et al. (1992), which is striking due to the di&rences between the experiments, that 

is a lake without swell and an offshore region where swell is present and is responsible for 

most of the spectral energy. The relation between wind sea energy and inverse wave age from 

Campos Basin is statistically identical to the relation obtained in a swell free environment 

and to another experiment carried out in the open ocean. However there seems to be a small 

reduction in wave energy in both relations obtained from swell contaminated environments. 

The observation cases selected in our study when swell is aligned with the wind will exhibit 

a stronger nonlinear interaction, with the subsequent more active energy transfer. This 

mechanism will enhance energy distribution so as to reduce the wind sea spectral level. 

Although a subtle difference is obtained &om our results, lower energy level for wind sea 

under the presence of swell seems to suggest that the nonlinear mechanism is an influencing 

factor. Further analysis seems to indicate that there is a slight reduction in wave growth when 

swell propagates close in direction to the wind sea. In addition the regression obtained from 

our data also seems to point to a minimal reduction on wave growth when swell and wind 



Buoy Observations of the Influence of Swell on Wind Waves Grow^th in the 
48 Open Ocean 

sea components are close in frequency speice, that is ^ 0.55. Nevertheless all the 

regressions obtained lie within the 90% conGdence interval limits which makes it diiEcult to 

make firm conclusions from these indications. 

Our results are within the statistical limits of the regressions obtained in swell free en-

vironments, giving evidence that there is no strong effect of longer waves on wind waves in 

oceanic regions. If there is in fact any sort of influence of swell on wave growth it seems 

to us that it is relatively small and considering the present instrumental limitations in wave 

measurements such influence will be masked within the scatter in the data. For practical 

purposes that means that power-laws obtained from fetch limited situations can be applied 

in the open sea. 



Chapter 6 

On the Retrieval of Two 

Dimensional Directional Wave 

Spectra from Spaceborne Synthetic 

Aperture Radar (SAR) Images 

In this chapter we revisit the main features of the SAR ocean wave imaging mechanisms to-

gether with a detailed description of the Max-Planck Institut (MPI) retrieval algorithm which 

runs operationally at the European Centre for Medium-Range Weather Forecasts (ECMWF). 

Some examples of retrieved spectra are compared against directional buoy measurements ob-

tained in deep water in the South Atlantic and against WAM spectra. The main characteris-

tics of the MPI retrieval scheme are discussed and some of its deficiencies and strengths are 

identiHed. 

6.1 In t roduc t ion 

Spaceborne Synthetic Aperture Radar (SAR) is to date the only source of two dimensional 

directional wave spectra with continuous and global coverage when operated in the so-called 

SAR Wave Mode (SWM). Since the launch in 1991 of the first European Remote Sensing 

Satellite ERS-1 and more recently with ENVISAT millions of SWM imagettes containing 

detailed spectral information are now available in quasi-real time. This huge amount of 

directional wave data has opened up many exciting possibihties for the improvement of our 
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knowledge of the dynamics of ocean waves. 

The quality of the retrieval schemes compared against independent directional data has 

not yet been demonstrated, Bauer and Heimbach (1999) compared the significant wave height 

extracted from ERS-1 SAR using the MPI scheme against Topex altimeter data. They have 

found a good correlation between both measurements but the comparison of an integral 

parameter does not provide much insight about the spectral capabilities of the retrieval. 

The spectral performance of the MPI scheme was compared against three years of WAM 

wave model spectra (Heimbach et al., 1998) which were used themselves as Srst guess for the 

inversion. Although the overall agreement was quite promising it was clear that an assessment 

against independent data, for example spectra from a directional buoy, would be more likely 

to point to any deficiencies of the method. 

The performance of the retrieval schemes has been indirectly assessed as weU through 

data assimilation exercises. The assimilation of spectral SAR data retrieved from the MPI 

scheme (Hasselmann et al., 1997; Dunlap et al., 1998) and from the scheme by Krogstad et al. 

(1994) (Breivik et al., 1998) has shown no clear positive impact on the wave forecast. It is 

not clear from these assimilation experiments if the lack of improvement in the forecasting is 

due to the SAR data and its retrieval or due to the assimilation schemes. The nonhnear SAR 

imaging process has a degree of uncertainty due to the complex mechanisms involved. Thus 

a comparison of the retrieved spectra—meaning hereafter the final product to distinguish 

from the intermediate spectra obtained in the course of the inversion—against, for instance, 

directional buoy spectra has twofold importance. On the one hand such a comparison would 

allow us to clearly pinpoint deficiencies in the retrieval scheme. On the other hand the linearly 

mapped low frequency band of the SAR image could give insights about the swell measured 

by the buoy. 

The main goal of the present chapter is to supply a detailed investigation of the possibil-

ities/limitations of mapping wind waves with a spaceborne SAR instrument using the MPI 

retrieval algorithm. The MPI scheme runs operationally at ECMWF and is the most broadly 

used algorithm to date implemented in several institutions around the world. However very 

Httle is known about its performance assessed against independent measurements. We are 

comparing SAR wave spectra extracted from the MPI scheme against directional buoy spec-

tra measured in the open ocean in the South Atlantic and against WAM spectra used as first 

guess to the inversion. The main characteristics of the MPI retrieval scheme are presented 

together with a comprehensive review of the SAR modulation transfer functions. The struc-
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ture of the chapter is the following. In section 2 the SAR imaging mechanisms Eire described 

in some detail while the MPI retrieval scheme is discussed in Section 3. Collocation criteria 

are presented in section 4 and Gnally results of the comparison and discussions are illustrated 

in sections 5 and 6. 

6.2 SAR Ocean Wave Imaging Mechanisms 

It is quite remarkable that an instrument like SAR that emits microwave pulses able to 

penetrate no further than the very top skin layer of the ocean is capable of capturing in 

its back scattered pulse information about several oceanic features such as internal waves, 

shallow water bathymetry, current boundaries and surface gravity waves among others. In 

the explanation for what is, at first sight, a surprising response lie the principles of the SAR 

ocean wave imaging mechanism. 

The ERS-1 satellite was launched in July 1991 into a sun-synchronous, polar, near-circular 

orbit operating at an altitude of about 785 km. Its payload consisted of an Active Microwave 

Instrument comprising a SAR (image and wave modes), a Wind Scatterometer, a Radar 

Altimeter and an Along Track Scanning Radiometer. In SAR image mode the instrument 

acquires 100 x 100 km images but due mainly to onboard data storage limitations it can be 

operated only in the vicinity of a ground station. The SAR Wave Mode was introduced to 

yield global coverage of directional wave spectra since the much smaller images acquired in 

this mode are stored onboard and transmitted once per orbit to ground stations. Figure 6.1 

shows the several thousand of SAR Wave Mode imagettes acquired by ERS-1 during the 

period of one month over the South Atlantic. The resolution of the SAR Wave Mode imagette 

is similar to the SAR image mode, around 30 x 30 m. The spectrum consists of 12 x 12 polar 

wavenumber coordinates ranging from approximately 100 to 1000 m in wavelength (wave 

periods from 8 s to 25 s) and covering a 180° sector and so with directional resolution of 15°. 

The ERS-1 SAR is a right side looking imaging radar operating at C-band (frequency 

of 5.3 GHz). A SAR is an active all weather sensor transmitting its own radiation and 

receiving back part of the energy that was back scattered from the sea surface. The fraction 

of incident energy reflected back is called the radar cross section and the radar modulation 

transfer function (MTF) is used to define the relation between the surface wave height and the 

amplitude of the variabilities of the radar cross section. At the typical incidence angles used 

in SAR onboard satellites (23° from vertical for ERS-1) the electromagnetic waves emitted 
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Figure 6.1: The selected area covers the South Atlantic from the Equator line to 72° S and 
from 74° W to 30° E which is the lat-lon grid used for the wave model. Every dot represents 
a SAR Wave Mode imagette and the * are those closer than 150 km from the buoy in Campos 
Basin during October in 1994. 

by SAR interact with short ocean surface waves in a process called the Bragg resonant 

scattering process (see for example Robinson, 1985, chapter 12). The back scattered signal 

is proportional to the amplitude of these decimetric ocean waves denominated Bragg surface 

ripples. For ERS-1 the Bragg ripples have a wavelength of approximately 8 cm. These short 

waves are modulated by longer waves, for example a swell propagating on the surface or 

even internal waves propagating several meters in depth, which causes the longer waves to 

be visible on SAR images. 

The imaging of ocean surface waves by SAR is based on a two-scale model (see for instance 

Komen et al., 1994) consisting of the short waves whose wavelength is approximately half as 

long as the incident radar wavelength and the longer swell waves. The back scattered signal 

is affected by the slope of the long waves that changes the angle of view that the ripples 

present to the radar, the tilt modulation. In addition the amplitude of the short waves is 

modulated by the long waves in a process called hydro dynamic modulation, which increases 

the energy of the Bragg waves near the swell crests and reduces the energy near the troughs. 

The linear Real Aperture Radar (RAR) modulation is composed by the hydro dynamic and 
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Figure 6.2: Representation of the tilt and hydrodynamic modulation processes. The dashed 
arrows indicate the component of the long wave orbital velocity creating convergent and di-
vergent patterns at the sea surface—the hydrodynamic modulation. The locus of backscatter 
energy vector illustrates the radar backscatter being strongest from the slope of the wave fac-
ing towards the radar and weakest facing away—the tilt modulation. Adapted from Robinson 
(1985). 

tilt modulation and assumes that the target is stationary (see Figure 6.2). SAR imaging is 

sensitive as well to the vertical movement of the sea surface caused by the orbital motion 

of the waves. An azimuthal displacement occurs due to the Doppler effect of a moving 

target—the velocity bunching mechanism—causing image smearing. If the azimuth image 

shift becomes comparable with the length of the long waves the image modulation becomes 

nonlinear causing loss of information beyond the azimuthal cut-oS wavenumber and limiting 

the SAR resolution in the azimuth direction. It is still not clear which one of the three 

imaging mechanisms is the dominant one (see a comprehensive review in Hasselmann et al., 

1985) and in the following we will extend a bit further the discussion of each one of the 

modulation transfer functions. 

The amount of energy reflected back to the sensor by the ripples which scatter the radar 

will be a function of the inclination of the longer (swell) wave on which they ride (Figure 6.2). 

The tilt modulation represents the change in cross section relative to the change in the 

incidence angle due to slope variations. Basically the amount of energy reflected back will be 

greater for the target plane (facet) facing towards the radar, while for the slope of the wave 

facing away the cross section will be smaller. This mechanism is primarily sensitive to range 
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(perpendicular to the direction of satellite flight) travelling waves. Models of the Tilt MTF 

assume a Phillips (or slope although the best representation for this high frequency 

decay exponent is still open to debate (see for instance Violante-Carvalho et al., 2002a). The 

Tilt MTF is represented by 

where is the component of the wavenumber vector in the range direction and 6 is the 

ra<lar incidence angle. The i sign represents vertical and horizontal polarization respectively 

and hence the tilt MTF is strongest for horizontal polarization. The maximum cross section 

occurs on the face of the long wave—tc/2 from the wave crest—as described by the phase 

in (6.1). 

The amplitude of the Bragg waves is modulated by the phase of the longer swell wave 

in a process called hydrodynamic modulation. The currents induced by the orbital velocity 

field under the crest of the longer wave advect the Bragg waves resulting in a convergent 

Held which causes an increase in the amplitude of the ripples on the surface near the swell 

crest. Near the trough there is a corresponding reduction in ripple amplitude generating a 

pattern of increase and decrease of ripple amplitude connected to swell phase (Figure 6.2). 

There are several equations to represent the hydrodynamic modulation, here we follow the 

form proposed in Hasselmann and Hasselmann (1991) 

The feedback coefRcients and Yj depend on the wind speed, /z is a damping factor and 

w = 27r/ where / is frequency. The best representation for the hydrodynamic modulation, the 

less well understood of the MTFs, is an issue under dispute. There is no phase dependence 

in (6.2), which implies that the maximum cross section is on the crest of the long wave. The 

above equation expresses that the radar cross section depends on the local wind speed and on 

the long wave spectrum and, like the tilt modulation, can not image azimuth travelling waves. 

Due to the less well understood representation of the hydrodynamic modulation the incidence 

angle for the ERS-1 SAR was deliberately chosen to minimize the importance of this term in 

comparison with the better understood tilt modulation. Monaldo and Beal (1998), using a 

simplified version of (6.2), found a ratio between Tt/Th equal to 6.1 for an incidence angle of 

23°. 

Therefore long waves travelling in the range direction are detected by SAR because of their 
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effect on decimetric Bragg waves through the tilt and hydrodynamic modulations. However 

long waves travelling in the azimuth direction can not be detected in this way. The mechanism 

for the imaging of azimuth travelling waves is closely tied to the aperture synthesis process 

used to achieve a finer resolution in the azimuth direction. The along track resolution for 

an antenna of 10 m (like the one onboard ERS-1) without using the principle of aperture 

synthesis would be in the order of 5 km. Alternatively for an azimuth resolution of 25 m 

an antenna of length 4 km would be necessary. The concept of aperture synthesis is used 

to improve the resolution without the need for augmenting the antenna's dimensions. The 

basic idea is to take advantage of the forward motion of the satellite using many returns of 

the target's reflection to build up a signal equivalent to that from a much larger antenna. 

Since the satellite's velocity is always changing in relation to the target the instrument uses 

the time dependent Doppler shift in frequency of the returned pulse to resolve the diEerent 

target's position when performing the aperture synthesis. 

Nevertheless the sea surface is not a stationary target. The orbital velocity of the long 

ocean waves produces a vertical displacement of the location of the facets of small resonant 

waves. This vertical movement modifies the Doppler shift of the target, providing its own 

Doppler offset, implying that its apparent azimuthal position is displaced on the SAR image. 

The spatial mispositioning depends on the orbital velocity of the long waves which is directly 

proportional to their mean frequency and significant wave height, and therefore sea state 

dependent. For ERS-1 a wave of mean frequency of say 0.1 Hz—wavelength of 156 m—and 

significant wave height of 5 m would be displaced by more than 170 m in both azimuthal 

directions. The rising face of the wave is displaced in the positive azimuth direction whereas 

the falling face shifts in the negative azimuth direction. If this displacement, called velocity 

bunching, is small when compared to the wavelength of the long wave the effect is approxi-

mately linear. But if the displacement is of the same order as (or larger than) the wavelength 

of the long waves, which is the case for waves as in the previous example, the velocity bunch-

ing mechanism is strongly nonlinear. These nonlinearities cause smearing of the image and 

an azimuthal fall-off with a high wavenumber azimuthal cut-off beyond which waves are not 

mapped into the SAR image plane. The azimuthal cut-off is sea state dependent and hence 

varies, but in general SAR can not detect waves shorter than 150-200 m propagating in the 

azimuth direction. Therefore the SAR imaging process can be thought of as a low-pass filter 

damping out the high wavenumber part of the spectrum. 
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The linear velocity bunching MTF is represented as 

(sin^ g sin^ + cos^ (6.3) 

where A is the distance between the radar and the ocean surface (slant range), V is the 

satellite ground track velocity, is the component of the wavenumber vector in the azimuth 

direction and is the wave propagation angle with the satellite track (sin(^ = j^). The 

phase of (6.3) depends on the sign of tg; for positive values, or waves propagating in the same 

direction as the satellite, the maximum cross section occurs at the wave crest. For negative 

values of or waves propagating antiparallel to the satelhte, the minimum cross section 

occurs at the wave crest. Reducing the ratio i?/F, for instance with SAR on a lower altitude 

satellite, brings down the azimuth degradation caused by orbital motion and as a result the 

linear behavior of the velocity bunching mechanism applies over a larger wavenumber band. 

The mapping of a wave spectrum into a SAR image spectrum (and its inversion) has 

to take into account all the imaging mechanisms and the nonlinearities encountered at least 

in part of the spectrum. Hasselmann and Hasselmann (1991) developed a closed nonlinear 

integral transform for treating this problem which combines additional information, in general 

from wave models, with the incomplete information yielded by SAR images. The main feature 

of this integral transform is an exponential term that describes the azimuthal fall-off. The 

characteristics of the integral transform, together with a discussion of the MPI retrieval 

scheme, are presented in the next section. 

6.3 T h e M P I Retrieval Scheme 

Hasselmann and Hasselmann noted that since the imaging mechanisms are quite well under-

stood the forward mapping of an ocean wave spectrum into a SAR image spectrum can be 

computed numerically. However the wave spectrum provided by SAR images is an incomplete 

spectrum. First of all this is due to the directional ambiguity. Secondly the nonlinearities 

caused by orbital motions result in an azimuthal high wavenumber cut-off and therefore 

waves shorter than 150-200 m propagating parallel to the satellite path are not imaged. In 

addition due to spatial resolution and storage limitations waves shorter than approximately 

70 m (period of approximately 7 s) propagating even in the range direction are not mapped 

onto the SAR image either. These constraints impose the use of a first guess to augment the 
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spectral information. Hasselmann and Hasselmann recognized that because of this lack of 

information in the high wavenumber part of the spectrum not only a forward mapping was 

necessary but a method for inverting this mapping relation must be devised which extends 

the missing spectral information with the use of a 6rst guess wave spectrum. 

The retrieval algorithm used in this work is the improved MPI scheme presented by 

Hasselmann et al. (1996). The mapping of an ocean wave spectrum F(k) into a SAR image 

spectrum f (k) (Hagselmann and Hasselmann, 1991) is a closed integral transform in the form 

oo 2 n 

f (k) = ^ (^a/3)'^f^m(k) (6.4) 
n = l m=2n~2 

where e T p ( — d e s c r i b e s an exponential fall-oS of the spectrum beyond an azimuthal 

cut-off wavenumber. This term can be thought of as a low-pass filter where the information 

beyond the cut-off is suppressed. The root mean square (rms) azimuthal displacement (^') is 

given by where j3 is the ratio of the slant range to the platform velocity R/V and Ur 

is the orbital velocity, represents the Fourier transform of the auto and cross-covariance 

functions of the Real Aperture Radar image intensity and the orbital velocity. The indexes 

m and n indicate the order of nonlinearity with respect to the velocity bunching mechanism 

and to the input wave spectrum, respectively. 

The full nonlinear mapping relation may be approximated by a quasi-linear mapping 

relation truncating (6.4) at » = 1 which is 

f(k)-exp(-A:^^/^)fi(k). (6.5) 

In the quasi-linear approximation the representation of the azimuthal cut-off term is retained 

but the nonlinearities in the mapping are not taking into account. The nonlinearities in the 

mapping mechanism cause transfer of energy from high to low azimuth wavenumbers, which 

are ignored using (6.5). 

The MPI retrieval is performed in two steps. The first step or inner loop is the inversion 

of the mapping relation. An improved estimate of a given first guess wave spectrum is 

constructed through the minimization of a cost function. The second step or outer loop is 

meant to reduce the spectral gap in the azimuthal cut-off. After the minimization of the 

cost function the wave spectra of both the first guess and the observed SAR are partitioned 

into different wave systems and cross-assigned. The Srst guess wave systems are modiGed to 
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conform to the observed SAR wave spectrum. In the following we discuss in more detail the 

two steps performed in the retrieval scheme. 

The main idea behind the MPI retrieval scheme is to create a simulated SAR image 

spectrum from a first guess wave spectrum through the mapping relation P(k) = $(F(k)) 

(as speciEed by equation 6.4). This first guess spectrum is compared to the observed SAR 

spectrum and the differences between both spectra are minimized through the following cost 

function 

J = y [f (k) - f (k)]^f (k)dk + 

- m a 
The first error term is a function of the deviation between the observed SAR spectrum P(k) 

and the fitted SAR spectrum P(k). The second term, expressing the deviations between 

the first-guess wave spectrum F(k) and the optimal fit wave spectrum F(k), is necessary 

to solve the 180° directional ambiguity and to extend the information at high wavenumbers 

beyond the azimuthal cut-off. The factor is set in order that the 6rst-guess wave spectrum 

has a small influence in the part of the spectrum where SAR information is available but 

is great enough to solve the directional ambiguity ()U = and B is a constant to 

prevent the denominator from vanishing. The third term in equation (6.6) penalizes the 

differences between the clutter cut-off length scale from the observed and simulated SAR 

spectrum represented by and The value of the weighting factor is chosen to make 

the third error term of the same order of magnitude as the first term. To correct the errors 

in the cut-off the scale parameter a is applied to the whole spectrum and not only to the 

low wavenumber part where there is SAR information. Hence a also modifies the high 

wavenumber components that contribute to the rms orbital velocities and consequently to 

the rms azimuthal displacement ^/. Since Xd is determined by (both are proportional), a 

then affects reducing then the error between the observed and simulated cut-oS. 

The performance of the MPI scheme is evaluated in terms of the reduction of the cost 

function J through a quality control flag called jgua/ (Hasselmann et al., 1998). When 

the cost is reduced to less than 10% of its value (jgiio/ = 0) the inversion is considered 
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excellent, whereaa for = 1 (cost reduced to 10—50%) the result is considered acceptable. 

Inversions with cost reductions lower than 50% (jgwa/ = 2) are considered questionable. For 

= 3 the inversion was performed without convergence and jgua/ = 4 indicates that 

no azimuthal cut-off adjustment was achieved. In general the inversions are accepted when 

equals 0 or 1. 

Hence the MPI scheme finds a retrieved wave spectrum by minimizing a cost function 

which depends on the wave spectrum, the SAR spectrum and the azimuthal cut-off wavenum-

ber. The full nonlinear mapping relation (6.4) is used to calculate the SAR image spectrum 

from a first guess wave spectrum. However the quasi-linear approximation (G.5) is applied to 

yield the direction of minimization of the gradient of the cost function (6.6). The inversion is 

performed by the minimization of the cost function J, which is achieved when the difference 

between two iterations is smaller than a speciGc value, in general after 6-10 iteration steps. 

The form of the spectrum is modified only up to the point where there is SAR spectral in-

formation and beyond the cut-off wavenumber it retains the information from the first-guess 

wave spectrum. At this point an improved estimation of the first guess wave spectrum is 

constructed which is used in the next step. 

The second step or outer loop replaces at every iteration the input spectrum by the wave 

spectrum derived in the previous cycle. So the first-guess wave spectrum from the model is 

used only in the 0-th cycle, and after the first cycle of the outer loop its information is modified 

by new information based on the SAR image. The main reason for this additional loop is to 

resolve the discontinuities in the vicinity of the cut-off wavenumber once the inversion modifies 

the spectrum up to this point. In addition the second loop decouples the retrieval from the 

WAM first guess wave spectrum implying that the retrieval (in a sense) is independent of the 

first guess. 

The input two dimensional spectrum is partitioned in different wave systems, that is swell, 

wind sea, old wind sea, eadi one represented by some wave parameters: signiScant wave 

height, mean frequency, spread width and direction. The shape of the wave systems does not 

change and only the wave height, mean frequency and direction are adjusted. Thus the input 

spectrum maintains the characteristics of the original one, but the scales and directions Eire 

adjusted to conform to the observed spectrum. The program cycles five times around the 

outer loop and the updated spectrum from the previous loop is used as the input spectrum 

for the inversion in the next cycle. 

Figure 6.3 shows one example of the retrieval operation. Panel (a) is the observed SAR 
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Figure 6.3: Example of the retrieval operation using the MPI scheme from 2 October 1994 
1248 UT. Panel (a) is the observed SAR image, (b) is the a priori WAM wave spectrum, (c) 
is the first simulated SAR, (d) is the best simulated SAR of the iteration, (e) is the inverted 
wave spectrum of the iteration and finally (f) is the retrieved SAR spectrum. All spectra in 
wavenumber domain with the x axis indicating azimuth direction whereas y axis indicates 
range direction. 

image spectrum whereas panel (b) is the a priori WAM wave spectrum which is used as first 

guess in the 0-th iteration. Panel (c) is the first simulated SAR spectrum using the mapping 

relation P(k) = $(F(k) of the first guess wave spectrum (panel (b)). Panels (d) and (e) are 

respectively the best simulated SAR spectrum of the 0-th iteration and its inverted wave 

spectrum. The best inverted wave spectrum (e) is used as input spectrum for the next 

iteration and so on. Panel (f) is the retrieved SAR image spectrum from the iteration which 

yielded the smallest error between the observed spectrum and the input spectrum. 
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The MPI retrieval scheme is a complicated algorithm. The best way to identify its skill 

deficiencies and strengths is through comparisons against independent data. 

6.4 Collocated D a t a Set 

All SAR image spectra were collocated in space and time with WAM spectra at a maximum 

distance of 50 km (approximately half a WAM grid increment) and maximum time separation 

of 30 minutes (half a WAM time increment). To validate the SAR inversions we have chosen 

a maximum time difference of 1.5 hour and a maximum distance of 150 km between buoy and 

SAR measurements. We are not using the quality control parameter from the MPI scheme 

to reject inversion results. The buoy is located around 150 km offshore in a depth over 1000 

meters. We have chosen these collocation criteria due to the relative temporal invariance and 

spatial homogeneity expected to be encountered in deep ocean areas. 

6.5 Compar isons of Retr ieved ERS-1 SAR Spec t ra Against 

Direct ional Buoy D a t a 

For the present comparison of wave spectra extracted from ERS-1 SAR against directional 

buoy measurements and against WAM wave spectra we selected some cases in the month 

of October 1994. The wave climate in Campos Basin can be explained on the grounds of 

the meteorological conditions encountered in the region (Violante-Carvalbo, 1998) (see more 

details about the wave climate in Campos Baain on page 14). 

Figure 6.4 is an example of retrieved spectra. Figure 6.4a shows the observed SAR 

image spectrum with the azimuthal cut-off wavenumber around 0.045 rad/m (or around 

9.5 s). Two wave systems are clearly observed, a low wavenumber swell system propagating 

in azimuth direction and a partially observed wind sea system propagating in range direction. 

Figure 6.4b is the the WAM first guess wave spectrum and the retrieved SAR spectrum (6.4c) 

is in good agreement with the observed SAR spectrum. A typical scenario of good weather 

conditions measured by the buoy is presented in 6.4d, that is a swell system propagating 

northward and a wind sea propagating southwestward. The swell wave systems of the WAM 

first guess spectrum (6.4e) and of the retrieved SAR spectrum (6.4f) differ significantly, which 

demonstrates that the first guess is used only to solve the directional ambiguity. The wind 

sea system is clearly overestimated both in 6.4e and 6.4f due to an overestimation of the wind 
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speed yielded by the ECMWF model compared to the wind measured by the buoy. However 

there is reasonably good agreement between the low frequency components measured by the 

buoy and retrieved using the MPI scheme, which is the part of the spectrum directly measured 

by SAR. 

Only the wave components in the low frequency part of the spectrum are visible on 

SAR images whereas the high frequency information yielded by the retrieval is derived from 

the wave model. Therefore only the swell systems are directly measured by SAR. Another 

example of good agreement between swell components measured by the buoy and retrieved 

by the MPI scheme is illustrated in Figure 6.5. Figure 6.5d is the directional spectrum 

measured by the buoy with a swell component propagating northward, a wind sea component 

propagating towards WSW and a young swell component propagating close to the wind sea 

both in direction and frequency (westward and 0.116 Hz). Although the wind sea component 

of the WAM spectrum (6.5e) is in good agreement with its counterpart in the buoy spectrum 

the two spectra differ substantially in the low frequency components. The northward swell 

in 6.5d is barely detectable in 6.5e, whereas the direction of propagation of the young swell 

components differ by more than 30° probably due to a mispositioning of the South Atlantic 

high pressure center in the meteorological model. The retrieved spectrum (6.5f) shows clearly 

the northward swell component in very good agreement with the buoy observations in terms 

of direction of propagation, frequency and energy. The young swell component, which is 

located beyond the instrument cut-off and not mapped directly by SAR, still remains in 

disagreement with the buoy spectrum. 

Figure 6.6 and 6.7 are examples of spectral inter comparisons that show a poor agreement 

in the high frequency band between the buoy measurement on one side and the WAM esti-

mates and SAR retrievals on the other side. Due to the passage of a cold front over the buoy 

the wind direction turns quickly from eastnortheastern to southeastern in Figure 6.6. The 

time averaged wind input from the ECMWF model is not able to describe such fast varia-

tions properly, which reflects in a poor representation of the high frequency band estimated 

by the wave model and hence retrieved from the MPI scheme. Figure 6.7 presents a case of 

an underprediction of the wind speed from the ECMWF model and consequentely a poor 

representation of the retrieved wind sea system. However the low frequency swell components 

are fairly well described in both examples. 

These examples illustrate how the retrieved spectrum may yield useful information on the 

low frequency spectral components, but show as well indications that the wind sea part of 
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Figure 6.4: Example of the retrieval from 28 October 1994 0131 UT. Top row: panel (a) 
is the observed SAR image, (b) is the Grst guess WAM wave spectrum, (c) is the retrieved 
SAR spectrum. Spectra in wavenumber domain with the x axis indicating azimuth direction 
whereas y axis indicates range direction. Bottom row: panel (d) is the buoy directional 
spectrum, (e) is the WAM first guess spectrum and (f) is the retrieved SAR spectrum. 
Spectra in polar frequency-directional plots with the wind direction represented by the arrow 
in the center. Circles denote frequency at 0.1 Hz interval from 0.1 Hz (inner circle) till 0.4 Hz 
(outer circle). Isolines are logarithmically spaced relative to the maximum value of the 
spectral energy density. Wind data: measured by the buoy (speed and direction of 3.94 m/g 
and 220° and from the ECMWF model (speed and direction of 11.07 m/s and 202°). 
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Figure 6.5: Example of the retrieval from 2 October 1994 0143 UT. Top row: panel (a) is 
the observed SAR image, (b) is the first guess WAM wave spectrum, (c) is the retrieved 
SAR spectrum. Spectra in wavenumber domain with the x axis indicating azimuth direction 
whereas y axis indicates range direction. Bottom row: panel (d) is the buoy directional 
spectrum, (e) is the WAM first guess spectrum and (f) is the retrieved SAR spectrum. 
Spectra in polar frequency-directional plots with the wind direction represented by the arrow 
in the center. Circles denote frequency at 0.1 Hz interval from 0.1 Hz (inner circle) till 0.4 Hz 
(outer circle). Isolines are logarithmically spaced relative to the maximum value of the 
spectral energy density. Wind data: measured by the buoy (speed and direction of 7.66 m/s 
and 226° and from the ECMWF model (speed and direction of 11.12 m/a and 223°). 
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(a) (b) (c) 

Figure 6.6: Example of the retrieval from 5 October 1994 0138 UT. Panel (a) is the buoy 
directional spectrum, (b) is the WAM first guess spectrum and (c) is the retrieved SAR 
spectrum. Spectra in polar frequency-directional plots with the wind direction represented 
by the arrow in the center. Circles denote frequency at 0.1 Hz interval from 0.1 Hz (inner 
circle) till 0.4 Hz (outer circle). Isolines are logarithmically spaced relative to the maximum 
value of the spectral energy density. Wind data: measured by the buoy (speed and direction 
of 4.51 m/s and 325° and from the ECMWF model (speed and direction of 2.37 rajs and 
268°). 

the spectrum is not very well retrieved by the MPI scheme. It is worth mentioning however 

that selected cases such aa those previously shown are important to illustrate strengths and 

deficiencies of the retrieval but are not representative in a statistical sense. The MPI algo-

rithm is quite complex and a more extensive validation with in situ data are necessary, which 

will be presented in the next chapter. Preliminary results show that for periods longer than 

12 seconds (the part of the spectrum observed by SAR) the MPI method performs as well as 

(and for same frequency bands even better than) the WAM model for values of SWH, mean 

direction of propagation and for values of mean frequency. However, for periods shorter than 

12 seconds its performance is worse, even considering the fact that the model is used as first 

guess to the MPI scheme. 

6.6 Discussion 

The MPI scheme was the first ever proposed and most widely used algorithm to retrieve 

directional wave spectra from SAR images. When operated in the SAR Wave Mode thousands 
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(a) (b) (c) 

Figure 6.7: Example of the retrieval from 16 October 1994 1257 UT. Panel (a) is the buoy 
directional spectrum, (b) is the WAM first guess spectrum and (c) is the retrieved SAR 
spectrum. Spectra in polar frequency-directional plots with the wind direction represented 
by the arrow in the center. Circles denote frequency at 0.1 Hz interval from 0.1 Hz (inner 
circle) till 0.4 Hz (outer circle). Isolines are logarithmically spaced relative to the maximum 
value of the spectral energy density. Wind data: measured by the buoy (speed and direction 
of 13.29 m/s and 224° and from the ECMWF model (speed and direction of 5.70 m/s and 
209°). 

of imagettes are available daily in quasi-real time with global and continuous coverage. This 

is a unique data set far beyond the capabilities of any other operational wave measurement 

system, both in terms of spatial and temporal coverage. We discuss in this paper the main 

strengths and weakness of the retrieval scheme together with a review of the ocean wave-radar 

modulation transfer functions. 

The retrieval of wave spectra from SAR images requires a 6rst guess wave spectrum to 

solve the directional ambiguity inherent of frozen images and to extend the spectral infor-

mation beyond the high wavenumber cut-off caused by nonlinearities in the imaging process. 

Some examples of spectra retrieved with the MPI scheme are compared against directional 

buoy data and against the model spectra used as Grst guess to the inversion. These exam-

ples highlight the strengths of the retrieval scheme, that is the performance of the retrieval 

is better than the performance of the model for long (swell) components both in terms of 

direction of propagation and in terms of mean frequency. 

This is exactly the compromise that must be achieved, or in other words to stress the 

strength of one to compensate the deAciency of the other. Third generation wave models 
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such as WA.M are known to describe very well the wind sea part of the spectrum, where there 

is no information mapped onto SAR images. On the other hand the low frequency part is 

comparatively less weU described by wave models, partially due to a poor understanding of the 

dissipation processes. The low wavenumber part of the spectrum is mapped quasi-linearly 

onto SAR images and hence the wave components are measured directly with additional 

information used only to solve the direction of propagation. 

SAR data are valuable information but must be considered with care because the retrieval 

schemes need to improve the performance of the wind sea retrieval. The three schemes 

proposed so far require a better representation of the high wavenumber part of the spectrum 

to fill in the spectral gap beyond the cut-oS. However, aa demonstrated in this paper, SAR 

does in fact yield useful information in the low frequency part of the spectrum. 





Chapter 7 

Assessment of ERS Synthetic 

Aperture Radar through 

Intercomparisons of One Year of 

Directional Buoy Measurements 

One year of directional buoy measurements comprising the period from May, 1994 to April, 

1995 acquired in deep ocean waters by an offshore heave-pitch-roll buoy are used for the 

assessment of the directional wave spectra retrieved from the Max-Planck Institut (MPI) 

scheme. Detailed validations of the main wave parameters, that is SWH, mean direction of 

propagation, mean wave length and directional spreading are performed. We demonstrate 

that the MPI scheme deteriorates the input hrst guess increasing the bias and the error of 

the retrieved spectra. For longer waves in the part of the spectrum observed by SAR, on the 

other hand, the algorithm performs better than (or at least as well as) the third generation 

WAM wave model. In addition to the limitations of the MPI scheme in extending the spectral 

information beyond the high wavenumber cut-off, the use of the quasi-linear model to map 

the SAR image spectrum back to the wave spectrum causes the scheme to interpret wind sea 

energy as swell. 
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7.1 In t roduc t ion 

Since the advent of spaceborne Synthetic Aperture Radar (SAR) in the early nineties all 

weather ocean wave spectra are now available on a global basis and in quasi-real time. SAR 

is the only instrument so far deployed from satellites that is capable of measuring the two 

dimensional directional wave spectrum and hence allowing the complete characterization of 

a sea state. When operated in the SAR Wave Mode (SWM), the Advanced Microwave 

Instruments (AMI) on the European Remote Sensing satellites ERS-1 and ERS-2 acquire 

10 X 5 km imagettes every 30 seconds yielding an along track resolution of 200 km and a 

cross track resolution of 1000-2000 km. The 1500 imagettes that are collected daily bring 

enormous new possibilities for the study of wind generated waves providing global data with 

high temporal and spatial coverage. 

From the practical point of view this huge amount of spectral data has applications 

such as in optimization of ship routing, wave chmate atlases, offshore operations and coastal 

management. But this kind of information is also valuable for several scientific investigations. 

Improving the understanding of the dynamics of surface ocean waves is important for a better 

knowledge of, for example, the chmate dynamics (Janssen and Viterbo, 1996), the transfer 

of momentum from the wind (Donelan, 1990) and the exchange of gases through the air-sea 

interface (Csanady, 2001). The information extracted from SAR images has opened up new 

and exciting possibihties for wave modelers to assimilate observations of directional spectra 

into third generation wave models, an approach that has been hindered by the sparseness of 

directional wave measurements. 

However to retrieve the two dimensional spectrum from SAR images is not a simple 

exercise. There are two main limitations in the images observed by SAR which demands great 

care in the process to derive the wave spectrum—as already discussed in chapter 6. In the first 

place there is a 180° directional ambiguity inherent in frozen images. This problem has been 

overcome with the launch of ENVISAT carrying the Advanced Synthetic Aperture Radar 

(ASAR) which uses successive images to solve the direction of propagation. In addition the 

SAR imaging mechanism is strongly nonhnear due to distortions induced by the orbital wave 

motions (the velocity bunching mechanism) causing degradation of the azimuthal (parallel 

to the satellite flight) resolution. The result of this distortion is that there is a loss of 

information beyond a cut-off wavenumber and waves with wavelengths shorter than 150-

200 m propagating in the azimuthal direction are not mapped onto the SAR image directly. 
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Therefore to extract the wave spectrum from a SAR image spectrum requires additional 

information to solve the directional ambiguity and to recover the spectral information at the 

higher wavenumber band corresponding in general to the wind sea part of the spectrum. This 

problem haa been tackled by three different methods for which the basic difference in their 

strategies lies in how they address the problem of reconstructing the directional spectrum 

beyond the high wavenumber azimuthal cut-off and hence filling in the spectral gap in the 

wind sea part of the spectrum. 

The first retrieval algorithm was developed at the Max-Planck Institut (MPI) by Hassel-

mann and Hasselmann (1991) and an improved version was published later by Hasselmann 

et al. (1996), They derived a closed expression for the mapping of a wave spectrum onto a 

SAR image spectrum, the forward mapping relation, together with a computationally e@-

cient technique to invert the mapping relation. This algorithm has been described in detail 

in chapter 6. The main idea behind the MPI scheme is to use a first guess wave spectrum, 

in general from a wave model, and iteratively change its inverted SAR image spectrum to 

match the observed SAR image spectrum. They claim that the retrieval is independent of the 

Srst-guess which is used just to solve the directional ambiguity and to augment the spectrum 

beyond the azimuthal cut-off. 

The second retrieval scheme to be proposed is a simphfied version of the MPI scheme. 

Krogstad et al. (1994) applied a very similar approach but they use a quasi-linear approx-

imation of Hasselmann and Hasselamann's full nonlinear forward mapping relation. The 

nonlinearities in the mapping mechanism cause transfer of energy from the short wave com-

ponents to the long wave components. Ignoring such nonlinearities applying a quasi-linear 

approximation might cause spurious swell peaks when the SAR image spectrum is mapped 

back into the wave spectrum (see Hasselmann et al., 1985). 

The Semi-Parametric Retrieval Algorithm (SPRA), the third retrieval scheme, was pro-

posed by Mastenbroek and de Valk (2000) who employ additionally the wind information from 

the scatterometer that is operating simultaneously with the SAR. In this approach there is 

no need for a first guess wave spectrum since they apply a parameterized wind sea spectrum 

and estimate its direction of propagation from the wind measurements. The drawback of this 

methodology is that the direction of propagation of swell is not determined and in general 

there is a spectral gap in the vicinity of the azimuthal cut-off, the delimitation between the 

part of the spectrum observed and not observed by SAR. In addition if there is a swell shorter 

than 150-200 m its spectral component will not be detected by the retrieval scheme. The 
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authors argue that their scheme is able to retrieve the wave components observed by SAR, 

which in the end is the information that is meant to be recovered. However the most precise 

possible characterization of the full two dimensional spectrum is extremely desirable for two 

main reasons. First of all it is much more convenient for practical purposes to handle the full 

spectrum rather than just its low frequency part. In second place the SAR mapping of the 

low frequency components is influenced by the shorter (high frequency) waves through the 

nonlinear transformation. Therefore a better retrieval ought to be directly linked to a better 

representation of the high frequency components of the spectrum. 

Voorrips et al. (2001) (hereafter referred to as VMHOl) compared the MPI and the SPRA 

schemes against several non directional buoys deployed mostly off the North American coast. 

In that work it became clear that both schemes have room for improvement, and that their 

main deficiencies lie in how to augment the spectral information beyond the azimuthal cut-

off. However one of the most striking characteristics of SAR data, its directional spectral 

information, was not considered. The main problem for such a comparison is a lack of 

available directional buoy data in deep water. The few directional buoys available to VMHOl 

were not included in their analysis because they are moored in relatively shallow coastal 

waters, where one would expect a greater spatial variation of the wave parameters when 

compared to the more spatially homogeneous situations in the open sea. 

7.2 Collocated D a t a Set 

A data set was constructed which matches the SAR wave mode acquisitions with the cor-

responding data available from the wave buoy in Campos Basin, which waa described in 

chapter 2. The collocation criteria applied to match the data from each source are those 

listed on page 61, that is the maximum distance between the SWM imagette and the WAM 

spectrum used as first guess waa 50 km and a maximum time separation of 30 minutes. For 

the comparison between retrieved wave spectra and buoy measurements the maximum al-

lowed distance and time diEerence wag 150 km and 90 minutes respectively, yielding a total 

of 105 matched spectra evenly spaced over the one year period considered. The mean SWH 

measured by the buoy is 1.88 m with ratio between the mean wave energy of compo-

nents longer than 12 seconds and mean SWH equal to 33%, which means 

that on average around one third of the wave energy is at the low frequency part of the 

spectrum. In relation to the satellite track both paths were equally selected, with 49% of the 
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cases consisting of descending orbit. 

7.3 Stat ist ical Validation of ERS-1 SAR Retrievals and W A M 

Est imates against Buoy Measurements of Significant 

Wave Height , P ropaga t ion Direction and Mean Fre-

quency 

7.3.1 Methodology 

In Hasselmann et al. (1996) a partitioning method based on the original idea proposed by 

Gerling (1992) was introduced into the MPI retrieval scheme (Hasselmann and Hasselmann, 

1991) in an additional iteration loop. In this improved version of the retrieval scheme after 

the minimization of the cost function the two dimensional wave spectrum is divided into 

different wave systems. Each one of them is represented by a set of mean parameters, that is 

significant wave height, propagation direction and mean frequency. Wave systems from the 

observed SAR wave spectrum are cross assigned with wave systems from a first guess and the 

later ones are modified to match the mean parameters of the observed wave systems. The 

result is that the retrieved SAR wave spectrum is smoother in the high wavenumber cut-off, 

the region between the observed and non-observed part of the SAR spectrum. In addition the 

reduction of the number of spectral values, from 600 bins of 25 frequencies and 24 directions 

into a number of wave systems each one represented by some mean parameters suits very 

well the requirements of wave data assimilation into models. In the present work the wave 

systems extracted using the partitioning scheme proposed in Hasselmann et al. (1996) are 

used for the inter comparison. 

Different wave systems of different spectra are cross assigned to each other (SAR x Buoy 

and WAM x Buoy) based on the following criteria: 

1. The coordinates of the two partitions must be within some critical distance to each other 

in k space. A wave system of a spectrum ^ with wave numbers (A:̂ , A;̂ ) is cross assigned 

with a wave system of a spectrum .6 with wave numbers (A;*,A:̂ ) if their normalized 

squared distance in k space is less than some arbitrary value, thus reading 

(K - klf + (hi - kif ^ ̂  
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The arbitrary value of 0.75, the same as suggested by Hasselmann et al. (1996), suits 

well as a first constraint. However, by itself, this criterion is not enough to ensure a 

reliable match. 

2. In Hasselmann et al. (1996) four diEerent classes of wave systems are proposed based on 

the wave age—wind sea, old wind sea, mixed wind sea-swell and swell. In the present 

work different wave systems are cross assigned if they are of the same type, that is if 

both wave systems are pure wind sea (we are not considering old wind sea and mixed 

wind sea-swell) or both wave systems are swell. 

3. To eliminate spurious partitions the peaks must be above an arbitrary frequency de-

pendent energy threshold value 

20.10-G 

+ 3 .10-3 

where /p is the peak frequency of the wave system. 

4. If more than one partition fulfills the previous conditions the closest one is chosen. 

Each partition is considered to be an independent wave system generated by diEerent 

meteorological events and is fully characterized by its significant wave height, mean direction 

of propagation and mean frequency. As described by Hasselmann et al. (1996) each wave 

system is defined by an inverted catchment area consisting of spectral points with ascents 

running into a local peak. Therefore mean parameters can be determined integrating over 

the spectral interval (/, )̂ that the partition belongs to as: 

# Significant Wave Height (SWH) is 4 \ / ^ where is the total energy of a wave system 

Et = y % g ) # d g (7.1) 

# Mean direction 

—(fSSSS) 
# Mean Frequency 

(7.3) 
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However the inter comparison of mean parameters based on the cross assignment of dif-

ferent wave systems, each one a component of the full two-dimensional spectrum 0), 

has two drawbacks. In the first place there is a limitation in the retrieval of the directional 

spectrum from buoy measurements. Prom spectral analysis of the three time series acquired 

by the buoy, that is the elevation and two orthogonal inclinations in the east and north 

directions, one can recover the one dimensional spectrum 5'(/) and the first four Fourier 

coefficients—obtained for example from the relations presented in Long (1980). The limita-

tion in the number of coeGicients that can be determined is due to the fact that there are 

only three time series available. The expansion of the spreading function D(y, 0) aa a Fourier 

series as proposed by Longuet-Higgins et al. (1963) is truncated after the second harmonic 

causing negative lobes, which is not suitable since D(/, )̂ is always positive deEnite. Other 

diEerent approaches have been proposed for the representation of the spreading function— 

and therefore for the reconstruction of the directional spectrum—which can be divided in 

two main groups, parametric and nonparametric methods. In parametric methods such as 

the ones proposed by Longuet-Higgins et al. (1963) and Donelan et al. (1985), D{f,9) has a 

prescribed form and a controlhng parameter which depends on the peak frequency. However, 

these methods are not consistent when wind sea and swell co-exist in the same frequency 

band since they tend to fit a single peak in between both wave directions (Young, 1994). In 

contrast to parametric methods, nonparametric methods such as the Maximum Entropy (Ly-

gre and Krogstad, 1986) do not impose any analytical form for the representation of D(/, ^). 

In these methods a particular solution from the feasible set of all solutions consistent with 

the data is selected by minimizing a cost function. But again due to the limitation in the 

number of Fourier components yielded by a heave-pitch-roll buoy the directional distribu-

tion is underdetermined implying that the directional spectrum retrieved from buoys have a 

degree of uncertainty. 

In addition to the limitation of single point measurements such as wave buoys to recon-

struct the directional spectrum, the use of mean parameters for the intercomparison based 

only on the cross assignment of wave systems has a second drawback. One of the main di@-

culties in the cross assignment is the association of a wave system in one spectrum with its 

counterpart in another spectrum, for example to intercompare the two-dimensional spectrum 

retrieved from the buoy against the two-dimensional wave spectrum from the model or from 

SAR. Quite often the SAR wave spectra contain more partitions than the WA.M spectra and 

than the buoy spectra, possibly due to noise or to limitations in the retrieval scheme (Hassel-
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mann et al, 1996). Although the criteria listed above seem to be rigorous enough to guarantee 

the right selection, the cross assignment procedure may select nonassociated wave systems. 

Therefore we also apply a second approach where rather than the two-dimensional spectrum 

the one-dimensional spectrum is used for the intercomparison. From the first Fourier compo-

nents that are directly measured by the buoy one can reliably retrieve the one-dimensional 

energy density spectrum 5'(/) and some other mean parameters. The main advantage of such 

an approach is that no sort of directional distribution is imposed and the mean parameters, 

including direction of propagation and directional spread, are determined directly by the Srst 

Fourier coefficients. Moreover in the second approach the intercomparison is performed using 

specific frequency bands rather than individual wave systems which will assure that only 

related information will be intercompared. 

In the second approach used in our study the two-dimensional directional spectra (re-

trieved from SAR and computed by the WAM) are integrated to provide the frequency spec-

trum S { f ) in addition to the directional distribution and then the first Fourier coefficients 

ai( / ) and bi(y) are obtained (see similar approaches in, for instance, Voorrips et al., 1997; 

Wyatt et al., 1999). Comparisons are made of parameters over specific frequency bands—4s 

to 6s, 6s to 8s and so on till 16s to 18s. The mean parameters over speciGc frequency bands 

are calculated aa follows (using the method presented in Kuik et al., 1988): 

# SWH is where e* is the total energy over the frequency band from /min till /moi 

= / g(/)df (7.4) 
fmin 

# Mean direction 

Mean Frequency 

arctan (7 5) 
\G,iU jy 

(7.6) 

Naturally delimit the frequency band interval and the Fourier coefBcients 

a i ( / ) and 6i(/) are also calculated over the same interval. 

Although the intercomparison of the one-dimensional spectra over specihc frequency 

bands seems to be more rigorous than the cross assignment of partitioned wave systems, 

both approaches will be presented and discussed in the following. The use of wave systems 
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from the partitioning scheme have been used so far in some assimilation exercises (Hassel-

mann et al., 1997; Dunlap et al., 1998) and in another intercomparison study (Heimbach 

et al., 1998). For assimilation purposes the use of individual partitions seems to be the most 

operationally feasible solution. However, as commented earlier, the cross assignment of wave 

systems is subject to a degree of uncertainty that, at best, needs to be investigated. There 

is a trade off between being sufficiently rigorous to ensure the correct selection and the need 

to avoid imposing excessive constraints and therefore unreasonably reducing the number of 

matches. 

7.3.2 Significant Wave Height 

In order to validate the performance of the MPI retrieval scheme and the WAM model against 

buoy measurements we calculate the energy of all wave components integrating over the whole 

frequency domain, as in 

= . (7.7) 

The scatter plots of significant wave height of SAR and WAM against buoy measurements 

are shown in Figure 7.1. The performance of the wave model is superior than the SAR, in 

terms of bias, standard deviation and normalized RMS error. Although the MPI scheme uses 

the WAM spectra as first guess to the inversion the results of SWH retrieved from SAR are 

worse. The scatter in the WAM is about 25% lower than the scatter in the SAR retrievals 

with the MPI scheme adding its own error. The same was observed in VMHOl but in that 

work the correlation between both WAM-Buoy and SAR-Buoy was higher, probably because 

they have selected a narrower collocation window (maximum time and distance of 30 min 

and 80 km between SAR and buoy measurements) and due to the fact that altimeter data 

have been assimilated into the ECMWF WAM model used in their comparison. However 

the values of normalized RMS error that we find are very similar to the ones obtained by 

VMHOl. In our results the mean value of SWH retrieved by the MPI scheme is 9.6% higher 

than the mean value of SWH computed by the WAM, which is in accordance with the results 

reported by Dunlap et al. (1998). 

In the imaging of wind waves by SAR the vertical movement of the sea surface caused 

by the orbital motions of the waves results in an azimuthal displacement due to the Doppler 

effect of a moving target. As a consequence there is a loss of information in the azimuth 

direction beyond a high wavenumber cut-off. This cut-off wavenumber is sea state dependent 
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Figure 7.1: Scatter plots of Significant Wave Height (SWH) calculated using (7.7) and their 
statistics, respectively biaa, standard deviation (st dev), RMS error normalized with the RMS 
buoy wave height (nrmse) and correlation (corr). On the left plot SWH computed by the 
WAM model against buoy measurements and on the right plot SWH retrieved from SAR 
against buoy measurements. The hne of slope unity is also shown. 

but in general waves shorter than 150/200 m propagating parallel to the satellite track are 

not mapped directly by SAR. In the MPI scheme in general a wave model is used as a first 

guess to augment the spectral information beyond the cut-off and to resolve the directional 

ambiguity inherent in frozen images. Therefore to investigate the performance of the MPI 

scheme in the low wavenumber band where waves are mapped directly onto the SAR image 

we calculate the energy of the wave components longer than 225 m (or periods longer than 

12 s in deep water): 

Hs^ 
h 

S ( / ) # l 
1/2 

(7.8) 
ifi J 

where / i = 0 and /g = 1/12 Hz. 

The scatter plots of the low wavenumber wave heights using (7.8) are shown in Figure 7.2. 

In contrast to the results presented in Figure 7.1 the performance of the MPI retrieval scheme 

is 88 good as the WAM model for values of signiScant wave height in the low frequency band 

of the spectrum. Apart from the fact that the WAM results are virtually bias free, the MPI 

retrievals have a standard deviation and a normalized RMS error of the same order as the 

WAM. These results are in contrast with those presented in VMHOl, where the WAM results 

compare slightly better with buoy measurements than the MPI retrievals, even considering 
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only the low frequency part of the spectrum. 

There are two main differences between our comparisons and the ones presented by 

VMHOl, the collocation criteria and the wave model used as first guess to the inversion. 

In VMHOl a narrower collocation window, both in time and space was imposed which to 

some extent would explain their greater correlation when considering the energy of the spec-

trum over the whole frequency interval using (7.7). In VMHOl most of the buoys are located 

in relatively shallow waters where one would expect a greater variability of the wave pa-

rameters when compared to the more spatially homogeneous situations encountered by the 

deep water buoy in Campos Basin. However, when considering the frequency band directly 

mapped onto SAR images (7.8), our results are very similar to the ones presented in VMHOl 

which indicates that our coarser collocation criteria is not the cause for the discrepancy. 

The second main difference between the present study and VMHOl is that although both 

works are using the spectra calculated by the WAM model as first guess to the inversion, 

in their work altimeter data have been assimilated into the ECMWF WAM version. In this 

paper no sort of modification was imposed to the model output and the spectra computed by 

the WAM are the direct result of the physics behind the model. If assimilation of altimeter 

data is in fact the reason for the somewhat better performance of the WAM results than the 

MPI retrievals in the low frequency part of the spectrum as presented in VMHOl then this 

fact raises an interesting point. The main conclusion in the work by VMHOl is that the MPI 

retrieval scheme deteriorates the quality of the hrst guess used to the inversion. This seems 

to be corroborated by our results shown in Figure 7.1, at least when the high wavenumber 

band where the model is used to augment the spectral information beyond the cut-off is 

considered in the calculation of SWH. However looking at Figure 7.2 in the low wavenumber 

part of the spectrum the MPI retrievals match the buoy measurements as weU as the WA.M 

results. Thus, in opposition to the conclusions presented by VMHOl, we have found that the 

low wavenumber SWH retrieved from the MPI scheme does not make the low wavenumber 

SWH estimated by the model and used as hrst guess any worse. 

One of the main characteristics of the MPI retrieval scheme as has already been pointed 

out is a partitioning method to isolate and to cross assign different wave systems from the 

inverted SAR wave spectrum and the WAM first guess spectrum. As a result at the end of 

the retrieval not only the directional SAR wave spectrum has been recovered but each wave 

system is defined by a number of mean parameters as well. The reduction of the number of 

degrees of freedom of the wave spectrum is a very desirable feature that has been exploited in 
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Figure 7.2: Same aa Figure 7.1 but for values of (7 8). 

data assimilation studies. Figure 7.3 shows the scatter plots of SWH of the cross aasignment 

of partitions using (7.1). The reason why the number of partitions that were cross assigned 

differ among plots (and are different from the number of spectra in Figures 7.1 and 7.2) 

is that more than one partition per spectrum might be selected. The statistics shown in 

Figure 7.3 are similar to those in Figure 7.1 which is an indication that the criteria for the 

cross assignment listed at the beginning of this section are rigorous enough to ensure that 

only related partitions will be selected. 

The statistics of the wave systems whose mean wave length are greater than 225 m would 

give us insights about the performance of the retrieval of long waves. However the low 

number of points that resulted from applying this constraint, 29 and 26 respectively for SAR 

and WAM, yielded high correlation coeGcients for SWH (ranging from 81% to 90%) but very 

low correlations for mean frequency and mean direction of propagation (values ranging for 

both frequency and direction from 42% to 53%). As the number of points is low any sort 

of conclusion should be considered with caution and the results presented in Figures 7.4, 7.6 

and 7.9 are more statiscaly meaningful, as all the points are employed in these calculations. 

To analyze the SWH retrieved from SAR and estimated by the model in more spectral de-

tail we calculate the energy of the wave components over speciGc frequency bands using (7.4) 

(Figure 7.4). The WAM estimates are virtually bias free whereas the MFI retrievals show a 

positive bias over the whole spectral range. It is worth mentioning however that for periods 

smaller than approximately 12 s the information retrieved from the MPI scheme is yielded 
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Figure 7.3; Scatter plots of SWH for every partition calculated using (7.1) and their statistics 
as in Figure 7.1 with the line of slope unity drawn passing through the origin. On the left 
plot SWH computed by the WAM model against buoy measurements and on the right plot 
SWH retrieved from SAR against buoy measurements. The crosses are the partitions whose 
mean wavelength are greater than 225 m—periods greater than 12 s. 

from the WAM model and therefore the retrieval is adding its own error increasing the bias. 

But in the part of the spectrum directly observed by SAR (periods greater than 12s) the bias 

of the MPI scheme slowly decreases with wave period and for very long waves (periods longer 

than 16 s) it performs better than the model with a smaller bias. The standard deviation 

and the normalized RMS error of both MPI retrievals and model estimates show a trend to 

increase with period with the MPI scheme presenting greater errors for waves with periods 

smaller than 12 s. Likewise the error of the MPI scheme in the low wavenumber part of the 

spectrum is of the same order as (and for longer wavelengths even smaller than) the WAM 

results. 

7.3.3 Propagation Direction 

The waves measured by the buoy have basically two main characteristic features: relatively 

short waves with a westward component and a northward long sweU generated far away from 

Campos Basin (see page 14 for more details about the wave climate in Campos Basin). Since 

the ERS-1 satellite had a polar orbit the long northward swell is propagating in the azimuth 

direction and the shorter westward waves in the range direction. In Figure 7.5 we present a 

comparison of the histograms of the direction of propagation of the wave systems calculated 
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Figure 7.4: Statistics of SWH compared with buoy measurements over frequency bands 
using (7.4). 

Table 7.1: Statistics of the comparisons against buoy measurements of the direction of prop-
agation of the wave systems calculated using (7.2)—bias and standard deviation in degrees. 

p o i n t s bias St dev nrmse corr 

WAM 156 0.93 33.50 0.37 0.88 
SAR 143 4.84 53.10 0.60 0.72 

using (7.2) with the statistics of the point by point comparisons presented in table 7.1. The 

overall statistics of the WAM-Buoy comparison appears to be better than the SAR-Buoy 

with smaller errors and a greater correlation. However the agreement of the SAR-Buoy 

comparison is much better in the northward and northwestward direction of propagation, 

that is the results of the MPI retrievals compare better with the buoy data for long swell. 

In Figure 7.6 we calculate the propagation direction using (7.5). The WAM results present 

a very small bias for waves with periods shorter than 10 s but for longer waves the bias has 

a trend to increaae with wave period. In the part of the spectrum observed by SAR (waves 

with periods longer than 12 s) the MPI retrievals have a slightly smaller bias than WAM. 

Both WAM estimates and the MPI retrievals have a directional resolution of 15° which is 

of the same order ag the maximum bias found. The standard deviation and the normalized 

RMS error of both WAM and MPI increase with wave period. 
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Figure 7,5: Histograms of the mean direction of propagation (direction waves go to) of 
the WAM estimates and buoy measurements (on the left) and the MPI retrievals and buoy 
measurements (on the right). Buoy measurements are represented by the broken lines whereas 
the MPI and WAM by the full lines. 
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Figure 7.6: Values of direction of propagation over frequency bands using (7.5). 

In Figure 7.7 we show the scatter plots of propagation direction for the low wavenumber 
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Figure 7.7: Scatter plots of mean propagation direction for the low wavenumber components 
(longer than 225 m or periods greater than 12 s) and their statistics using (7.9). On the left 
plot propagation direction computed by the WAM model against buoy measurements and on 
the right plot propagation direction retrieved from SAR against buoy measurements. The 
line of slope unity is also shown. 

components using 

arctan 
I s m 

5'(/, g) cosg#dgy 
(7.9) 

where / i = 0 and /g = 1/12 Hz. Although the correlation coefficients of both plots is quite 

low (less than 15%) they show some interesting aspects of the data analyzed. They show 

a cluster of points near the northward direction which is typical of swell generated further 

south from Campos Basin, whereas the values of standard deviation and bias are in agreement 

with Figure 7.6. The point by point comparisons show a very poor agreement among plots, 

both for SARxBuoy and WAMxBuoy comparisons, implying that the performance of mean 

directions of WAM and SAR for long waves are not particularly good. 

7.3.4 Mean Frequency 

We present in Figure 7.8 histograms of mean frequency of retrieved SAR and WAM estimates 

against buoy measurements with the statistics presented in table 7.2. Similar to the results of 

propagation direction the overall statistics of the wave model is superior to the SAR results 

although once again the plots should be examined with care in terms of spectral detail. The 

comparison of WAM results against buoy data shows two distinct patterns, the high frequency 
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Figure 7.8: HistogTams of the mean frequency of the WAM estimates and buoy measure-
ments (on the left) and the MPI retrievals and buoy measurements (on the right). Buoy 
measurements are represented by the broken lines whereas the MPI and WAM by the full 
lines. Mean frequency is calculated using (7.3). 

Table 7.2: Statistics of the comparisons against buoy measurements of the mean frequencies 
of the wave systems calculated using (7.3)—bias and standard deviation in Hertz. 

points bias st dev nrmse corr 
WAM 156 -0.0017 0.0299 0.21 0.82 
SAR 143 -0.0131 0.0354 0.27 0.73 

band with a much better agreement than the low frequency part of the spectrum. This is in 

contrast with the SAR-Buoy comparison where the MPI retrievals compare better with buoy 

measurements than the model results for longer waves. 

Figure 7.9 shows that both the MPI scheme and the WAM model tend to underestimate 

the mean frequency of short waves. Both WAM and SAR show a negative bias in frequency 

for periods shorter than 12 s with a trend to decrease with wave period whereas for longer 

waves the bias show the opposite trend. Standard deviation and normalized RMS for both 

WAM and SAR decrease with wave period with the standard deviation in the band of periods 

from 4 to 8 s being 5 times larger than for periods greater than 16 s. Both in terms of bias 

and error the MPI retrievals perform better than WAM estimates for waves with periods 

longer than 12 s. 
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Figure 7.9: Values of the mean frequency over frequency bands using (7.6). 
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Figure 7.10: Scatter plots of mean frequency for low wavenumber components (longer than 
225 m or periods greater than 12 s) and their statistics using (7.10). On the left plot mean 
frequency computed by the WAM model against buoy measurements and on the right plot 
mean frequency retrieved from SAR against buoy measurements. The line of slope unity is 
also shown. 

Figure 7.10 shows the scatter plots of mean frequency for low wavenumber components 

using 

r/, 



7.4 Underestimation of the Mean Frequency of Short Waves by the WAM 
Model 87 

where f i = 0 and /g = 1/12 Hz. They show that most of the long wave energy is in the 12-14 

second band (frequency from 0.071 Hz to 0.083 Hz) which needs to be taken into consideration 

in the analysis of Figures 7.6 and 7.9. Therefore the results in the longer wave period bands 

are not particularly relevant due to the fewer points in longer 2 second bands. Both plots in 

Figure 7.10 present low correlation cofhcients (lower than 15%) and the 12-14 second band 

seems to express a reasonable picture of the performance of WAM and SAR for long waves. 

Figures 7.7 and 7.10 show that mean frequency and mean directions are not particularly good 

in either case. 

7.4 Underes t imat ion of t he Mean Frequency of Short Waves 

by the W A M Model 

The larger errors encountered in the band of short wave components in Figure 7.9 could be 

explained by a wrong wind input used by the WA.M where the negative bias would be related 

to an overestimation of modeled wind speeds. Figure 7.11 is a point by point comparison 

of the wind speeds measured by the buoy and the wind speeds calculated by the BCMWF 

atmospheric model. The bias of the model wind speed is low, about 6% of the mean value 

measured by the buoy, and its negative value represents an underestimation of the modeled 

wind speed. Consequently it seems that the wind input is not the cause for the poorer 

agreement in the high frequency band. 

The underestimation of the mean frequencies calculated by the WAM could be related 

to the spectral discretization employed. One of the main features of second generation wave 

models is that to ensure a stable spectral evolution some sort of parameterization is imposed, 

in general with some prescribed spectral form being applied to the wind sea (SWAMP Group, 

1985). A third generation wave model such as WAM, on the other hand, computes the wave 

spectrum integrating the energy balance equation without any restriction on the spectral 

shape (Komen et al., 1994; Young, 1999). The fundamental role of the nonlinear interactions 

in the growth of wind waves became clear during the JONSWAP experiment (Hasselmann 

et al., 1973). In the initial growth phases of fetch or duration limited wind seas a peak nor-

mally starts to develop at high frequencies just after the wind begins to blow. The nonlinear 

interactions cause a migration of energy from higher frequencies to frequencies near the spec-

tral peak. The nonlinear interactions are also responsible for a spectral shape stabihzation 

forcing the high frequency portion of the spectrum to decay in a manner inversely propor-
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Figure 7.11: Statistics and scatter plot of the wind speed measured by the buoy and estimated 
by the ECMWF model (in m/s for a reference height of 10 m). The mean wind speed measured 
by the buoy is 6.5 m/s. 

tional to frequency (Young and van Vledder, 1993). The result is that as the wind continues 

to blow the spectrum broadens and the peak shifts to lower frequencies with increasing fetch 

up to the point where it attains full development. 

Hence the proper estimation of the wave spectrum by a third generation model in the 

initial phages of growth is closely connected to the frequency discretization used in high 

frequency. Beyond the maximum high frequency used in the model the wind sea growth 

cannot be simulated properly since the transfer of energy from higher frequencies through 

nonlinear interactions will be neglected. Around the cut-off frequency the wind sea peak 

starts to grow slowly only because of the direct input of energy by the wind and only after 

it attains a higher spectral level the nonlinear interactions then begin to act and the peak 

gradually migrates to lower frequencies. Thus the choice of the highest discrete frequency is 

fundamental for the modeling of the wind wave development since it will impose the initial 

position of the peak in frequency space and in addition will be responsible for a time gap 

necessary for the nonlinear interactions to become effective. 

The spectral discretization used in the present version of the WAM cycle 4 is 24 directions 

and 25 logarithmicaly spaced frequencies from 0.042 Hz to 0.41 Hz (WAMDI Group, 1988). 

Tolman (1992) has investigated numerical errors in third generation wave models and their 

influence on the initial stages of growth. Considering scaling laws, that work discusses the 
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effect of the frequency range for different wind speeds. He concludes that the frequency 

discretization used in the WAM results in good scaling behavior for wind speeds spanning 

from 15 to 25 m/s whereas for lower winds the mean wave energy is overestimated and the 

mean frequency is underestimated (see Figure 2 in Tolman, 1992). This optimal wind speed 

range is high, specially considering tropical regions where lower wind speeds are much more 

common. Using 10 years of wind measurements acquired on an oil platform in Campos Basin, 

Violante-Carvalho et al. (1997) describe typical meteorological situations encountered in the 

study area, where 97% of the wind speeds observed during this period are below 15 m/s and 

74% are below 9 m/s. Thus clearly the mean wind speeds in Campos Basin are lower than 

the optimal range for what the model frequency discretization best applies. 

The underestimation of the mean frequency by the WAM in the early stages of wave 

growth as observed in Figure 7.9 could be related to the diagnostic tail added beyond a high 

frequency cut-oS. The wave spectrum estimated by the model comprehends a prognostic 

part which extends up to 2.5 times the mean frequency (or maximally up to 0.41 Hz) and 

beyond this point a diagnostic part represented by an tail. Therefore beyond 0.41 Hz the 

model cannot simulate properly the initial growth of the wind sea with the modeled waves 

developing near the cut-oE only due to the wind input rather than by nonlinear transfer of 

energy from higher frequencies. Since the nonlinear transfer is only triggered after a certain 

level this results in a delay in the development of the wind sea peak which is in addition 

located at lower frequencies. 

Tolman (1992) also shows the eEect of the extension of the high frequency cut-oE to a 

much higher value of 0.97 Hz (his Figure 4) and as a result the reduction of the discrepancies 

with wave energies and mean frequencies closer to nondimensional growth curves. This 

underestimation of the mean frequency of the wind sea in early stages of development is 

more easily detectable through detailed spectral comparisons like the one presented in Figure 

7.9. When the mean frequency is calculated over the whole spectral domain or comparisons 

are performed on a global scale—as most of the validation tests of the WAM have been so 

far—this limitation of the model in the initial generation phases are less likely to be found. 
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7.5 Comparisons of Direct ional Wave Spect ra 

7.5.1 The Direct ional Spreading Retr ieved from the M P I Scheme 

The overall performance of the MPI retrievals is best measured by quantitative results such as 

those obtained above, although direct comparisons of the directional spectra are interesting 

to enable a clearer understanding of the differences through qualitative validations. We are, 

however, comparing spectra obtained in rather diEerent ways. Remote sensing instruments 

like ERS-1 SAR measure the wavenumber spectrum whereas the wave model WA.M estimates 

the frequency spectrum. The buoy, on the other hand, yielded the frequency spectrum 5'(/) 

from the heave series and the first Fourier coefficients with the directional distribution being 

reconstructed using the Maximum Entropy Method (Lygre and Krogstad, 1986). One way 

to assess the differences among spectra is to determine the Fourier coefEcients by integrating 

the directional spectra and to compare them with the coefficients measured directly by the 

buoy. 

In the MPI scheme the WAM first guess wave systems are rotated and scaled in order to 

adjust to the wave systems of the inverted SAR wave spectrum. However their spectral forms 

are not allowed to vary which means that the spectral widths of the wave systems retrieved 

from the MPI scheme are the same as those from the first guess wave model. The importance 

of the nonlinear term Sni in determining the directional spreading has been pointed out by 

Donelan et al. (1985) and later confirmed by numerical simulations in Banner and Young 

(1994) and evidence from measurements (Young et al., 1995). In third generation wave 

models the directional spreading is computed from the integration of the source terms where 

5"̂ ; forces the spectrum to a typical shape with a relatively narrow spread around the peak 

that slowly broadens at higher and lower frequencies (Young and van Vledder, 1993). The 

directional distribution predicted by the model used by Banner and Young (1994), however, 

employed the full solution of the nonlinear source term called Exact-NL. In the WAM model 

the complex wave-wave nonlinear interactions is approximated by a non-exact solution 

called the DIA (Discrete Interaction Approximation) for computational efficiency. Although 

the SWH computed from the WAM model has been exhaustively tested against measurements 

the impact of the DIA on the spreading has not yet been quantitatively demonstrated. 

In order to assess the performance of the MPI scheme in estimating the directional spread-

ing we present in Figure 7.12 a swell component propagating in the azimuth direction with 

its frequency spectrum and directional spreading shown in Figure 7.13. The spreading is 
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calculated using the expression proposed by Kuik et al. (1988) that reads 

cr(/)= ^2 ^ 1 - ^ 0 ^ 0 ^ + 6 ^ ^ ^ (7.11) 

where Gi(/) and 6i(/) are the 6rst Fourier coelEcients. The overall agreement of the direc-

tional spectra is good (Figure 7.12d, Figure 7.12e and Figure 7.13a) with the model overesti-

mating the wind sea component in range direction. In Figure 7.13b the input wave spectrum 

from the WA.M slightly underestimates the value of SWH measured by the buoy with a some-

what broader angular distribution. As shown in VMHOl since the MPI scheme is not allowed 

to narrow the spectrum width it has no choice rather than increasing the energy level. 

The values of a{ f ) are presented in Figure 7.13c, where the directional spectra of the SAR 

retrievals and WAM estimates are integrated to provide the Fourier coefficients. The values 

of cr(/) computed from the coefficients directly measured by the heave-pitch-roll buoy (Buoy 

Coef in Figure 7.13c) are also shown, with the typical shape of a narrow distribution around 

the peak that broadens at both higher and lower frequencies. The directional spreading 

computed by the model and retrieved from SAR present much the same value of directional 

spread at the peak of the spectrum, which is narrower than the one calculated from the 

Fourier coefficients measured by the buoy. 

Another case of a very long and energetic swell component generated far away &om 

Campos Basin with SWH measured by the buoy of 8.9 m is illustrated in Figure 7.14 and 

7.15. Once again the agreement between spectra is good (Figure 7.14d, Figure 7.14e and 

Figure 7.15a) both in terms of frequency, direction, spreading and energy. In Figure 7.15c 

the same behavior of the spreading as in the previous case is observed. Prom the two examples 

shown, a northward swell and a much longer and more energetic case, the spreading computed 

from the model (and therefore imposed on the spectrum retrieved by the MPI scheme) seems 

to represent fairly well the spreading directly computed from the buoy data. Although the 

value at the peak is slightly narrower, the overall shape of the directional spread retrieved 

by the MPI scheme describes very well the same trend measured by the buoy in the cases 

selected above. 

7.5.2 Nonlinearit ies in the S A R Imaging Mechanism 

Nonlinear SAR degradation of azimuth waves causes energy of high wavenumber waves to 

be transferred to low azimuthal wavenumbers. In the MPI scheme for computational reasons 
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Figure 7.12: Example of a 195 m swell on August 29 1994, 1243 UT. The upper row shows SAR 
image spectra and the second row shows wave spectra (with exception to the third panel). 
Panels a to c are respectively the WAM image spectrum, the image spectrum retrieved by the 
MPI scheme and the observed SAR spectrum. Panels d and e are the WAM wave spectrum 
and the wave spectrum retrieved by the MPI scheme. In panel f the arrow indicates the wind 
speed estimated by the model (no wind information available from the buoy). 
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Figure 7.13: Panel a is the wave spectrum measured by the buoy for the case in Figure 7.12. 
The frequency spectrum with the values of significant wave height is shown in panel b. 
Panel c is the spreading function calculated using (7.11) directly calculated from the Fourier 
coefficients (Buoy Coef), and from the SAR and WAM. 

the SAR spectrum is mapped back to the wave spectrum using a quasi-linear approximation 

to the mapping relations, in contrast to the forward mapping that uses the full nonlinear 

transform (Hasselmann and Hasselmann, 1991). The quasi-linear term is an approximation to 

the full nonlinear transform obtained by terminating the expansion after the first linear terms 

where the azimuthal cut-off is retained but nonhnearities in the mapping are not taking into 

account. Mastenbroek and de Valk (2000) and Voorrips et al. (2001) have already discussed 

the implications in neglecting the transfer of energy when the quasi-Hneaj approximation is 

employed with the generation of spurious swell peaks in azimuth direction. 

Figures 7.16 and 7.17 show the case of a swell peak erroneously enhanced due to the 

way that the MPI scheme deals with the nonlinearities in the SAR mapping mechanism. The 

frequency spectra (Figure 7.17b) illustrates a poor first guess where the wind sea component is 

underestimated by the WAM model probably because of an underestimation of the wind input 

by the ECMWF model (Figure 7.16f). The energy that this wind sea creates in low azimuth 

wavenumber caused by the nonhnearities in the SAR mapping mechanisms is erroneously 

interpreted by the MPI scheme as swell, which was already overestimated by the WAM 

model. The result is a swell peak that is 10 times larger than the one measured by the 

buoy. It is worth noting that although the value of SWH computed by the model is exactly 

the same as the one measured by the buoy, the frequency spectra differ enormously which 
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Figure 7.14: Example of a 345 m swell propagating northward (in azimuth direction) on June 
30 1994, 1250 UT. See the caption in Figure 7.12. The wind speed measured by the buoy is 
indicated by the black arrow (first value of UIO on top) and the wind speed estimated by the 
ECMWF model is indicated by the open arrow (second value of UIO). 
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Figure 7.15: Directional spectrum measured by the buoy, frequency spectrum and spreading 
for the same case in Figure 7.14. 

demonstrates the need for detailed spectral information in assimilation exercises. 

The directional spectrum measured by the buoy in the case illustrated in Figure 7.16 

is used as first guess to the inversion and the retrieved wave spectrum is presented in Fig-

ure 7.17c. The spurious peak at low frequency has disappeared and although the wind sea is 

somewhat underestimated the swell component is well retrieved both in terms of direction, 

frequency, energy and directional spread (Figures 7.16d and e). This case demonstrates how 

the nonlinearities in the SAR imaging mechanisms may be erroneously interpreted by the 

MPI scheme causing wind sea energy to be transferred to low azimuth wavenumbers. 

7.6 Discussion 

In a previous validation exercise where only SWH was taken into account, Voorrips et al. 

(2001) concluded that the MPI scheme increases the bias and the error of the WAM spectra 

used as first guess, even considering only the low wavenumber part of the spectrum directly 

mapped onto SAR images. Similar comparisons were performed in the present work but in 

contrast to the Endings presented in Voorrips et al. (2001) we have found that the performance 

of the MPI scheme, when only the low wavenumber part of the spectrum is included in the 

computation of SWH, is as good as than the wave model. The main difference between both 

works is the WAM model employed. The ECMWF WAM version used in their study has 

assimilated SWH from altimeter data whereas our first guess wave spectra were estimated 



Assessment of ERS Synthetic Aperture Radar through Intercomparisons of 
96 One Year of Directional Buoy Measurements 

0.06 

-0.06-0.04-0.02 0.00 0.02 0.04 0.06 
Azimuth Wavenumber [rad/m] 

I 
0.06 

0.04 

m 0.02 

0.00 

g -0.02 

-0.04 

-0 .06 

-0.06-0.04-0.02 0.00 0.02 0.04 0.06 
Azimuth Wavenumber [rad/m] 

55 0.02 

-0.06-0.04-0.02 0.00 0.02 0.04 0.06 
Azimuth Wavenumber [rad/m] 

(b) (c) 

-0.02 

-0.04 

-0.06 L 
-0.06-0.04-0.02 0.00 0.02 0.04 0.06 

Azimuth Wavenumber [rad/m] 

0.06 

0.04 

0.02 

0.00 

-0 .02 

-0.04 

-0 .06 

-0.06-0.04-0.02 0.00 0.02 
Azimuth Wavenumber 

0.04 0.06 
[rad/m] 

UIO = 12.5 m/s 

UIO = 8.9 m/s 

(d) (e) (f) 

Figure 7.16: An erroneously enhanced swell peaj{ due to a poor Grst guess on November 28 
1994, 0141 UT (see Figure eg2cont too). See the caption in Figure 7.12. The wind speed 
measured by the buoy is indicated by the black arrow (first value on top) and the wind speed 
estimated by the ECMWF model is indicated by the open arrow (second value of UIO). 
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Figure 7.17: Directional spectrum measured by the buoy (a) and frequency spectrum (b) 
for the same case in Figure 7.16. Panel c is the frequency spectrum retrieved using the 
directional spectrum measured by the buoy as first guess to the inversion. Panels d and e are 
respectively the directional spectrum of the buoy measurement and the retrieved SAR wave 
spectrum correspondent to panel c with both spectra in polar frequency-directional plots 
with the wind direction represented by the arrow in the center. Circles denote frequency at 
0.1 Hz interval from 0.1 Hz (inner circle) till 0.4 Hz (outer circle). Isolines are logarithmicaly 
spaced relative to the majcimum value of the spectral energy density. 
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without any sort of assimilation procedure. 

As well as the assessment of SWH, directional wave parameters were also considered in our 

analysis. For short waves the MPI scheme also deteriorates the retrievals of mean direction 

of propagation and mean frequency, where the model spectra used aa first guess compare 

better to the buoy spectra than the retrievals. However for waves longer than 225 m, directly 

measured by SAR, the performance of the MPI scheme is at least as good as the WAM 

model. However most of the long wave energy is in the 12-14 second band so any conclusions 

drawn need to bear in mind that the results in the wave period bands longer than 14 s are 

not particularly relevant. In addition to the shortcomings of the algorithm to extend the 

spectral information beyond the high wavenumber cut-off, another constraint is the way that 

the MPI scheme deals with the nonUnearities in the SAR imaging mechanism. The use of 

the quasi-linear model to map the SAR image spectrum back to the wave spectrum might 

cause the algorithm to interpret a transfer of wind sea energy to low azimuth wavenumber 

components as swell. 

In summary, the MPI scheme indeed degenerates the high wavenumber part of the first 

guess spectrum increasing the bias and the error of the wave parameters considered in the 

present work, that is SWH, mean direction of propagation and mean frequency. However for 

longer swell components it does not make the input spectrum any worse, on the contrary its 

performance is at least as good as—and even slightly better at some frequency bands—than 

the WAM wave model. However due to the fewer points in bands longer than 14 s these 

results should be considered with care. 



Chap te r 8 

Conclusions and Perspectives 

This work has investigated the use of Synthetic Aperture Radar for the observation of wind 

waves. The interaction between short and long waves and its importance in the modulation 

transfer functions haa been discussed. A data set consisting of over four years of directional 

buoy measurements has been employed to study the influence of swell on wind sea growth, 

where their direction of propagation and separation in terms of frequency is analyzed. Ad-

ditionally the widely used SAR retrieval scheme developed at the Max-Planck Institut has 

for the Erst time been evaluated through statistical intercomparisons against one year of in 

situ directional measurements and the WAM wave model data. The main conclusions of the 

analysis are summarized in the following: 

• for practical purposes there is no clear effect of swell on wind sea growth and power 

laws from fetch limited situations apply to the open sea, 

» the high wavenumber spectrum suits well to models of the Tilt modulation, 

• our measurements point to a dependence of the long-short wave modulation on the 

wind speed and in the present representation of the Hydrodynamic modulation this 

dependency is neglected, 

» for wave data assimilation exercises the proposed criteria for the cross assignment of 

wave systems are appropriate yielding satisfactory results, 

• the frequency discretization employed by the WAM is not appropriate resulting in an 

underestimation of the mean frequency of the short waves, 
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• for short waves the MPI scheme deteriorates the first guess increaaing the bias and error 

of the retrievals of SWH, mean direction and mean frequency, 

• for waves longer than 225 m or periods longer than 12 s—the part of the spectrum 

observed by SAR—the performance of the MPI scheme is worse than WAM, 

• the directional spreading of the MPI retrievals is in close agreement with the values 

obtained from the coefficients directly measured by the heave-pitch-roll buoy, 

• the use of the quasi-linear model to map the SAR image spectrum back to the wave 

spectrum ignoring the nonlinearities might cause wind sea energy to be interpreted as 

swell. 

In the rest of this chapter these conclusions and their implications are developed in more 

detail. 

8.1 T h e Modula t ion of Wind Waves by Swell 

Our understanding of the dynamics of wave generation and growth have improved substan-

tially over the last few decades but there are still many unknowns in the fundamental processes 

which have been left to be elucidated. The main characteristics of wave evolution in con-

trolled environments such as wave tanks or in sheltered areas without the presence of swell 

and in well dehned fetches have been extensively documented and investigated. However ob-

servations of the wave growth in more common situations encountered in the open sea, that 

is in the presence of swell, are scarce. Therefore the question of how, and to what extent, 

long waves interact with shorter wind waves in the real ocean has not yet been properly 

investigated. 

This question has attracted the attention of many researchers due to the increasing interest 

that this topic has aroused lately. Decimetric gravity waves (ripples) play a key role in the 

exchange processes through the air-sea Interface and are hence associated with the transfer of 

momentum, heat, gases and mass. In addition—as so-called Bragg waves—they are involved 

in the modulation of radar backscatter and thus in the imaging of, for example, ocean surface 

waves. In the present work the energy balance of the wind waves propagating in the presence 

of longer waves was investigated. We have analyzed an extensive data set obtained from a 

directional buoy in tropical deep ocean waters where the inHuence of swell on wind waves was 
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examined, both in terms of their direction of propagation and their separation in frequency 

space. Although the wind sea waves observed in our analysis are two orders of magnitude 

longer than the Bragg waves responsible for the radar backscatter, the approach presented 

by Komen et al. (1984) where the dynamics of the wind waves are described by the source 

terms, can be applied to the decimetric waves according to the justifications presented in 

Komen (1988). 

Together with a lack of long term wave measurements in the open sea, the main reason 

why the investigation of the influence of long waves on short waves has been delayed is the 

need for proper spectral methods for the partitioning between wind sea and swell. Although 

the partitioning scheme of the directional spectrum described by Hasselmann et al. (1996) 

was available we have opted to develop a new approach where the frequency spectrum is 

adjusted instead. The high frequency spectral tail, which is one of the main points in our 

investigation, is very sensitive to the spectral width of the two-dimensional spectrum (Banner 

and Young, 1994). The directional spectrum retrieved from buoys is subject to a certain 

degree of uncertainty due to the limited number of time series available and therefore the 

partitioning of the one dimensional spectrum, obtained directly from the heave measurement, 

yields more robust results. 

The partitioning scheme developed in this work is based on a modified version of the 

JONSWAP spectrum where the exponent of the high frequency decay is estimated from 

the measured spectra. Spectral parameters such as for instance SWH, mean direction of 

propagation, mean frequency and wave age among others in addition to the JONSWAP 

parameters a and 'y are calculated. Parameters estimated from the spectral adjustment are 

in close agreement with growth laws obtained in swell free environments, a result which has 

twofold importance. Firstly, for practical purposes, the presence of swell has no significant 

influence on wave growth and power laws obtained in fetch limited situations apply to the 

open sea where swell is ubiquitous. In the second place these results demonstrate that the 

spectral scheme for the partitioning of the frequency spectrum has ability to recover properly 

the wave parameters. 

The Modulation Transfer Functions (MTFs) define the relation between the surface Bragg 

wave heights and the amplitude of the variabihties of the amount of energy that is reflected 

back to remote sensing sensors. In the specific case of Synthetic Aperture Radars imaging 

surface waves, swell travelling in the range direction is detected because of its eSect on the 

decimetric Bragg waves through the Tilt and Hydrodynamic MTFs, both composing the 
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linear Real Aperture Radar (RAR) modulation. In contrast to the well known mechanism 

of imaging of azimuth travelling waves, the velocity bunching, the environment-dependent 

RAR modulations are poorly understood. For spaceborne SARs at high altitude, the velocity 

bunching mechanism surpasses the other modulation mechanisms. In addition, for the low 

incidence angles that have been deliberately chosen, the importance of the Hydrodynamic 

MTF, the less well understood of the modulation processes, is minimized in comparison with 

the Tilt MTF. However, for range travelling waves, the Hydrodynamic MTF becomes of the 

same order as the other MTFs. 

Several laboratory experiments have demonstrated that the amplitude of short waves 

decreases in the presence of longer waves, although there is no clear consensus on what is the 

mechanism or mechanisms which cause this suppression. The relation between the wind sea 

energy e and the inverse wave age (7io/cp obtained from our measurements in the open ocean 

is statistically identical to the same relation from an experiment carried out in a lake without 

swell (Figure 5.5 on page 45). However, within the scatter in our data, the reduction in wind 

sea energy is more strongly observed for younger waves (larger values of inverse wave age), 

which might point to a dependence of the long wave-short wave modulation on the wind speed. 

This indication might lead to development of a more physically meaningful representation 

of the Hydrodynamic MTF, which describes how the amplitude of the Bragg waves are 

modulated by the phase of the swell waves. The damping factor /U in the Hydrodynamic MTF 

represents the rate at which the perturbed short waves tend to relax back to equihbrium. In 

the MPI scheme is represented by a constant relaxation time, which perhaps could be better 

described by a wind speed dependent term. The development of an improved Hydrodynamic 

MTF is beyond the scope of the present work and due to the scatter within the data these 

findings should be considered with care, although there are other evidences that suggest that 

is in fact wind speed dependent (Wright et al., 1980). 

Our observations that the relation between e and C/io/cp is statistically identical to an 

experiment in a swell free environment may not be in disagreement with laboratory results 

as pointed out by Hanson and Phillips (1999). Chu et al. (1992) performing an experiment 

in a wave tank observed the reduction in amplitude of the short waves by breaking near 

the crest of the long wave accompanied by a shortening of the wind waves due to straining 

caused by the currents induced by the orbital velocities of the swell component. These effects 

combined compensate each other since the reduction of the energy of the short waves due to 

wave breaking comes along with an increase of the inverse wave age due to a decrease of the 
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phase velocity Cp—since Cp is directly proportional to the wave length. 

The tilting modulation of the sea surface represents the change in the radar cross section 

due to variations in the incidence angle relative to the slope of the swell wave. The better 

known Tilt MTF assumes that the Bragg waves are represented by a high wavenumber 

spectrum in the form F{k) = which corresponds to an spectrum. From our data no 

clear single representation for the high frequency decay of the spectrum in the frequency band 

between 1.37 and 2 times the peak frequency was observed, which together with several other 

experiments suggest that the assumption of a unique slope model might not be appropriate. 

The relation between the high frequency energy level a adjusted from the partitioning method 

against the inverse wage age, on the other hand, shows a remarkable agreement with data 

obtained in a swell free experiment (Figure 5.4 on page 43). This is an indication of the shape 

stabilization effect of the nonlinear interactions 5'nz which forces the spectrum to a universal 

shape, even in the presence of swell as shown from our measurements. This fact demonstrates 

that although the imposition of a single high frequency decay to the Tilt MTF may not be the 

ideal option, the JONSWAP parametric spectral form fits our data well which is an indication 

of its applicability even in situations where one would expect strong modulations of the wind 

waves. 

8.2 Assessment of E R S SAR Retrievals and W A M Est imates 

Against Direct ional Buoy Measurements 

One year of measurements acquired in tropical deep waters in the South Atlantic is employed 

to perform intercomparisons of wave spectra retrieved by the MPI scheme and estimated by 

the WAM model. For the first time a scheme for the retrieval of wave spectra from ERS 

SAR images was statistically validated against directional buoy observations. Two different 

approaches were applied. In the first one, wave systems extracted from a partitioning method 

of the directional spectrum are cross assigned and their main parameters, that is SWH, mean 

direction, mean frequency and directional spread, are intervalidated. The comparison of 

wave systems, each one a constituent of the directional spectrum, is of interest for being an 

operationally feasible option for wave data assimilation studies. For the second approach, in 

contrast, the directional spectra retrieved from SAR images and estimated by the model are 

integrated to provide the frequency spectrum. The comparisons of the main wave parameters 

are made over specific frequency bands which assures that only related information is being 
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assessed. The statistics of SWH obtained using both approaches are very similar which is 

indicative of the suitability of the criteria employed for the cross assignment. 

Due to the sparseness of observations, specially at sea, the deficiencies of meteorological 

models in computing the wind in the Southern Hemisphere are well known. The selection of 

about one hundred cases of wind measurements acquired by the offshore buoy, distributed 

over the whole year of analysis, yielded a good opportunity to also validate the wind fields 

estimated by the BCMWF model. The overall agreement is good with a correlation coeScient 

of 0.70 and normalized root mean squared (rms) error of 36%. The model presents a small 

negative bias that correspondes to about 6% of the mean speed measured by the buoy, 

although the spread is relatively high with a standard deviation of the order of 50% of the 

mean buoy wind speed. 

Heimbach et al. (1998) comparing WAM estimates against SAR retrievals that used the 

wave model results themself as Erst guess have found a systematic underprediction of the 

energy of the swell components and an overprediction of the wind sea, whereas from our 

measurements this trend was not observed with the model being virtually bias free over the 

whole spectral range. ConErming the findings of Voorrips et al. (2001), we have observed 

that the MPI scheme deteriorates the values of SWH used as first guess for the inversion. The 

scatter in the WAM-Buoy point by point comparisons of SWH is 25% lower than the SAR-

Buoy scatter indicating that the MPI scheme adds its own error. The mean value of SWH 

retrieved by the MPI scheme is about 10% higher than the mean value of SWH estimated 

by the model, which is in accordance to the results presented by Dunlap et al. (1998). The 

performance of the MPI scheme is shown to be worse than the wave model for values of SWH 

computed considering only the low wavenumber part of the spectrum—waves longer than 

225 m. 

The overall agreement between the propagation direction estimated by the WAM and 

from the buoy measurements is quite good with a correlation coefficient of 0.88. The model 

estimates present very small bias for waves with periods shorter than 10 s with a trend to 

increase its value for longer waves, although both WAM and SAR retrievals present maxi-

mum bias of the order of 15° which is their directional resolution. The performance of the 

MPI scheme for propagation direction is worse than the wave model with an increase of the 

standard deviation and normalized rms error with wave period. 

Some discrepancies have been identified between the mean frequency of short waves es-

timated by the model and measured by the buoy. The underestimation of the computed 
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mean frequencies may be explained by an inadequate spectral discretization employed by the 

model, which appears to cause a delay in the development of the wind sea peak. WAM and 

SAR retrievals perform better for longer waves, with both bias and error decreasing slowly 

with wave period. 

The retrieval of the directional spreading wag assessed through some selected qualitative 

validations. In the MPI scheme the spectral shape of the retrieved wave systems are the same 

as their counterparts in the WAM first guess wave spectrum. The spreading computed by 

a third generation wave model depends on the integration of the source terms, whereag the 

nonlinear interactions 5'̂ ; play a key role in this process aa has already been demonstrated 

by simulations and in situ measurements (Donelan et al., 1985; Young and van Vledder, 

1993; Banner and Young, 1994). The impact on the directional spread of the non exact 

approximation of the calculation of called discrete interaction approximation (DIA), 

has not yet been quantitatively demonstrated. However there is considerable uncertainty 

associated with the spread retrieved from heave-pitch-roll buoys due to the hmitation in 

the number of time series acquired by the instrument, which means that the buoy in this 

cage is not a reliable reference for the other observations. Hence a cross-validation exercise 

was performed, where the spread retrieved by the MPI scheme (and therefore estimated by 

the model) and computed from the Fourier CoeSicients directly meagured by the buoy were 

compared. The MPI and WAM results are very close to the value computed from the Fourier 

coeSicients. However a statistical validation of the retrieved spreading against the values 

obtained by the heave-pitch-roll buoy has not been performed yet. One of the main reasons 

for such a lack of this sort of statistical validation is the complicated shape of the directional 

spreading when peaks he close in frequency space. A possible way forward for investigating the 

spreading could be a spectral approach based on the partitioning of the directional spectrum, 

where different wave systems are classiGed in accordance with their mean direction, energy, 

frequency and spreading. Once different wave systems are isolated their respective Fourier 

coeGcients could yield valuable information about the spreading characteristics of different 

waves systems, an approach that should be pursued ag a future work. 

In addition to the deficiency of the MPI scheme in extending the spectral information 

beyond the cut-oE, another shortcoming was observed. The SAR image spectrum is mapped 

back to the wave spectrum using a simpliGcation of the full nonhnear mapping relation, the 

so-called quasi-linear approximation. We presented a case where an underestimation of the 

wind sea used as first guess resulted in an overestimation of the retrieved swell peak due to the 
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way that the algorithm interprets the nonlinearities in the SAR spectrum. The nonhnearities 

in the quasi-linear approximation are ignored and the energy created by the wind sea in the 

low azimuth wavenumber was interpreted as swell energy. 

8.3 Fu tu re Directions 

The aim of data assimilation is to take advantage of the available observations by introducing 

them into modeling procedures, in such a way that the forcing or the initial conditions 

are improved giving better predictions with the model (a broader description of wave data 

assimilation techniques is presented in the Appendix). Data assimilation methods have been 

used for over four decades in meteorological models with the objective of improving the 

forecasting by making use of the widely available network of meteo-stations all over the world. 

Wave modelers, in contrast, have put off such an approach mainly due to the sparseness 

of wave observations. However after the advent of satellite oceanography this picture has 

changed and, in the particular case of wind waves, since the 1990's measurements of signiGcant 

wave heights from altimeters became available and have been assimilated by several weather 

centers. Nevertheless the exercise of distributing the energy averaged over frequency and 

direction from wave height measurements over the whole two-dimensional spectrum requires 

several assumptions to be made, specially about the separation of wind sea and swell (Thomas, 

1988; Janssen and Bidlot, 2001). But with the advent of SAR measurements and with the 

better understanding of the imaging processes, retrieval algorithms have been proposed and 

the full directional spectra extracted from SAR images are now available in quasi-real time 

with global coverage. It is recognized that the assimilation of wave observations can improve 

both the present sea state and, in the case of swell, the forecast of the models (see for example 

Lionello et al., 1995; Voorrips et al., 1997; Breivik et al., 1998; Dunlap et al., 1998). 

However, as demonstrated in this work, the assimilation of the directional spectra re-

trieved from SAR images using the MPI scheme must be performed with great care. The 

MPI retrieval algorithm performs worse than the WAM wave model, therefore a more con-

sistent procedure to extract the spectral information from SAR images should be pursued. 

Even the part of the spectrum directly mapped onto SAR images seems to performe worse 

than the WAM wave model which might be the explanation for the poor performance of the 

forecasting when the MPI scheme was applied in assimilation experiments. 

The combination of measurements and numerical estimations can be translated into bet-
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ter and more physically consistent model parameterizations. Inverse modeling techniques 

consist of estimating optimal parameters that minimize a function describing the difference 

between observed and estimated conditions, therefore improving the model parameters. Such 

approaches in oceanography have been already pursued (see the examples listed in Wunsch, 

1996), although its application in wave modeling is in its infancy (de las Heras et al., 1994; 

Hersbach, 1998). Modeling of inverse problems of wind waves depends on good quality obser-

vational networks, therefore global measurements of the directional spectrum from the SAR 

wave mode are fundamental in this context. 

The present work discussed many of the potentialities of using Synthetic Aperture Radar 

onboard satellites for the study of surface gravity waves. A scheme to retrieve wave spectra 

from SAR image spectra was investigated in detail through comprehensive statistical analyses 

of the main wave parameters and direct comparisons of the directional spectra. However 

further investigations are necessary for the improvement of the present retrieval schemes. 

Over ten years of measurements which yielded a few million of SAR wave mode imagettes 

represent a unique data set for the investigation of the wind wave dynamics. These Agures 

will increase with the recently launched ENVISAT providing more global observations of the 

directional spectrum for the years to come. 





Appendix A 

A Review of the Techniques for the 

Assimilation of the 

Two-Dimensional Directional 

Spectrum into Wave Models 

Several meteorological centers are investigating methods on how to use the new information 

retrieved from spaceborn SAR measurements in order to improve the wave forecasting. With 

this picture in mind, and focusing mainly on the problem of the full directional spectrum, 

the theory of wave data assimilation techniques is reviewed. The present chapter aims as 

well to describe in some detail the three techniques used so far in the assimilation of the two 

dimensional spectrum, that is the Optimal Interpolation Scheme, the Adjoint Technique and 

the Green's Function Method. 

A . l In t roduc t ion 

The aim of data assimilation is to improve the forecasting introducing available observations 

into the modeling procedures in order to minimize the differences between model estimates 

and measurements. Both model and data are assumed to contain errors, which must be taken 

into consideration during the assimilation procedure. The assimilation of scatterometer, 

altimeter and Synthetic Aperture Radar (SAR) data can be applied in a combined wind and 

wave data assimilation procedure to improve the modeled data, and its difference from the 
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observed data should be smaller than before. As the number of observations to be assimilated 

is inevitably less than the model grid the data inserted at one grid point must be distributed 

over neighboring points. To avoid discontinuities the information should be interpolated using 

either sequential or variational methods. 

Sequential methods (also known ag kinematic) are time independent assimilations because 

they make corrections only at the time when an observation is available, in general over a 

synoptic interval of 6 hours. The strategy is to run the model forward in time, stopping at 

intervals to assimilate the available observations and then continuing the model run with the 

corrected state. Threfore winds are updated only locally, although waves in a particular grid 

point are the result of winds acting in a large area over a large period of time. These methods 

are computationally cheaper than variational methods, which make them particularly fit for 

operational use. Some examples of Sequential methods are the Optimal Interpolation (Li-

onello et al., 1992; Hasselmann et al., 1997; Voorrips et al., 1997), the Kalman filter (Voorrips 

et al., 1999) and Successive Corrections (Breivik et al., 1998). 

The Optimal Interpolation method (01) is the most commonly used sequential method 

and is implemented operationally at several weather forecast centers in the world, using so far 

only significant wave heights (SWH) derived from altimeters. In the assimilation of altimeter 

wave heights some Aoc assumptions are imposed on the distribution of the energy between 

wind sea and swell, which are treated separately as in second-generation wave models. Thus 

one of the most powerful features of third-generation wave models such as WAM is neglected, 

that is the spectrum has no prescribed form and is free to respond to the source functions. 

This problem arises because a single point wave height measurement has to be distributed over 

the whole two-dimensional spectrum, a restriction that no longer applies to the assimilation 

of retrieved SAR wave spectra. 

Variational (or dynamical) are time dependent methods which take the model dynamics 

into account but have a much higher computational cost compared to Sequential methods. A 

best estimation is obtained through the minimization of a cost function which is dependent 

on some control variables, generally the wind input. Observations over different time levels 

are considered in contrast to the single time level scheme used in Sequential methods. Hence 

it is possible to correct the wind Geld that generated a wave component at a time preceding 

the available observations. A swell generated by a distant storm acts over a large area and the 

method needs to compute the dynamical regime to track its position back in space and time. 

So the best model solution not only fits the data available but also is consistent with the 
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constraints of the model. Examples of applications in wave data assimilation are the Adjoint 

Model (de las Her as, 1994; Hersbach, 1998) and the Green's Function Method (Bauer et ah, 

1996; 1997). 

More information about assimilation of altimeter wave heights is described in Komen 

et al. (1994, chap. 6). A comprehensive description of assimilation schemes is also presented 

in de las Heras (1994), while the main purpose of the present work is to review the state 

of the art of techniques for assimilation of the two dimensional wave spectrum, for instance 

extracted from SAR images or from buoy measurements. The structure of the paper is as 

follows. In section 2 the main aspects of the theory of wave data assimilation are presented. 

Sections 3, 4 and 5 discuss in more details, respectively, the three most applied wave data 

assimilation techniques: Optimal Interpolation, Adjoint Model and Green's Function. The 

Enal remarks are presented in section 6. 

A.2 Theoret ical Basis of Wave D a t a Assimilation 

The evolution of wave energy as a function of frequency, direction, position and time 

.B(/, r, t) is represented by the energy balance equation (Komen et al., 1994) which for 

deep water reads 

+ Cg • yE = Sin + Sni + Sds (A.l) 

where Cg is the group velocity and the right hand side of (A.l) represents the source and sink 

terms due, respectively, to wind input, nonlinear interactions and white-capping dissipation. 

However it is more convenient for data assimilation purposes to rewrite (A.l) in a matrix 

form where a set of state variables is forced by a set of control variables: 

xt+i = F(xt + ut) (A.2) 

where a state vector xt is the wave energy E at each direction, frequency and grid point at 

time t and a control vector Ut, in general the wind speed, is also defined over each point 

at time t (Wunsch, 1996). The nonlinear functional F represents the physics of the wave 

model and must be linearized in order to describe how a perturbation in the control vector 

is dynamically represented by a perturbation in the state vector. Hence performing a Taylor 

expansion of (A.2) and retaining only the terms up to the 6rst-order the wave energy balance 
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equation can be represented as 

+ 
dut 

5ut. (A.3) 

Therefore the nonlinear energy balance equation (A.l) is rewritten in matrix form (A.2) 

and its linear representation (A.3) describes how perturbations in the state vector (the wave 

energy E) are determined by perturbations in the wind field, which is the way that variational 

methods can track back a swell component both in time and in space. 

Deviations between observations and model data are used to obtain the best estimate of 

the wave model. In order to minimize such differences, the wave model output is modified by 

adjusting its control variables—the initial conditions or the wind Geld. The best solution is the 

one which minimizes a cost function that consists basically of quadratic differences between 

observed and modeled data (respectively d° and d). Considering the probabihty distribution 

P(d — d°; c) given a set of control variables c and assuming that the distribution of the data 

error representing the model is Gaussian around its maximum (which is reasonable using the 

Central Limit Theorem) it follows that: 

P(d — d°) ~ exp(-^(d — d°)^). (A.4) 

The maximum of P corresponds to the minimum of the exponent, which means that the 

maximum probability or most likely state is associated with the minimum of the cost function 

J, which in matrix notation reads 

J = (d - d ° )^M(d - d°) (A.5) 

where M is the expected variance in the model/data error. The calculation of such matrices 

requires long term statistics of the error covariance of the observations and predictions. Be-

cause the true states are not known in most cases, empirical relations are used to approximate 

M. Different weights of the error covariance matrix M are associated with the corrections 

depending on the distance between the model and observation locations, instrumental errors 

and model errors. In addition the cost function (A.5) can be written in a more general form 

adding terms penalizing differences between any o priori information available. 

The goal of any data assimilation scheme is to minimize the cost function J setting 

the control variables in order to find the values that yield the minimum difference between 
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modeled data and observations. In most wave data assimilation studies the control variables 

have been defined as the wind field, although any other parameter that might influence the 

state vector could be used, as for example, the superficial current Geld or the initial wave Held. 

The minimization of the cost function J involves the inversion of (A.5) using the linearized 

wave model equations (A.3). However this becomes a non-trivial exerercise due to the size 

of the state vector, with dimension of the order of 10^ in the case of global wave models. 

Therefore one seeks the minimization of (A.5) searching for the maximum efficiency and the 

minimum computational cost. 

When all available observations are used for the minimization of the cost function the 

assimilation scheme is denominated a variational method. In this case the inversion of (A.5) 

will require a time-dependency of the wave model equations since observations at a later 

time t will have to be related to the wave state at some previous time t — 1. This approach 

allows the correction of the wind field at some point and time away from the observations, for 

example tracking back a swell component, but evidently with a high computational cost. On 

the other hand if only the observations at a single time level are used for the minimization 

of the cost function the approach is denominated a sequential method. Much simpler and 

computationaly cheaper this method permits the correction only of the wind associated with 

the wind sea, and hence only locally. In the following sections we wiU describe in more details 

the characteristics of sequential and variational methods and their applications in wave data 

assimilation studies. 

A.3 The Opt imal Interpola t ion Scheme 

The Optimal Interpolation Scheme (01) is the widest used method for wave data assimilation 

due especially to its simplicity and low computational cost compared with other techniques. 

In this scheme the available SAR spectral information is spread over the grid points using 

statistical interpolation techniques without taking into account the model constraints. The 

assimilation is performed in two steps. First a best-guess or analyzed field is calculated by 

Optimal Interpolation and then the corrections applied to the wind sea part of the spectrum 

are used to correct the local wind. 

The analyzed or best estimate value x = of the true state vector x* = (z*) is 

a linear combination of the model first-guess vector = (z^) obtained from a previous 

run and the weighted errors between the observed data d° and the corresponding first-guess 



A Review of the Techniques for the Assimilation of the Two-Dimensional 
114 Directional Spectrum into Wave Models 

values d-̂  computed from the model: 

^ o 6 a 

^ (A.6) 
j=i 

where z represents each component of the analyzed field, j the component of every observation 

and rioî s denotes the number of observations. Wij are the interpolation weights determined 

by the minimization of the mean square error between the true state vector eind its best 

estimation 

J = < (x - > . (A.7) 

This cost function (equation A.7) is minimized to obtain the interpolation weight Wij (angle 

brackets meaning mean values over a large number of realizations). This yields that Wij is 

a function of the covariance error matrices of the observations and the first-guesses (Komen 

et al., 1994; Hasselmann et al., 1997). The problem that arises is the computation of these 

matrices, since long term statistics are needed in order to compare the model predictions 

with observations. In general empirical relations are used to overcome this problem, and 

in Voorrips et al. (1997) 2 years of comparison of model results with buoy data are used to 

determine more refined matrices. 

The analyzed data are the result of the Optimal Interpolation scheme (A.6) and can 

be applied to diEerent types of data, for instance wave heights from altimeters, buoy data 

and two-dimensional spectra retrieved from SAR images (see for example the description of 

algorithms for the retrieval of SAR spectra in Hasselmann and Hasselmann, 1991; Krogstad 

et al., 1994; Hassehnann et al., 1996; Mastenbroek and de Valk, 2000). In Hasselmann et al. 

(1997) the first step in the assimilation procedure is the optimal interpolation of the two-

dimensional SAR wave mode spectrum obtained every 30 s or 200 km along the satellite track. 

Seeking operational efficiency the number of variables involved in the problem is reduced by 

partitioning the 2-D spectrum, using a technique introduced by Gerling (1992), in general into 

3 or 4 wave systems (wind sea, swell, mixture of wind sea and sweU and old wind sea). The 

wind sea systems are identified by comparing the phase velocity and direction of the spectral 

peak with the wind speed and direction. Each wave system is assumed to be generated by 

different physical events, and so are uncorrelated with each others, and each is represented 

by few parameters: SWH (or spectral energy), mean direction and mean frequency (see more 

details in Haaselmann et al., 1996). Each wave system of diSerent spectra is cross-assigned 
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with its counterpart—a wind sea system of a first-guess spectrum is correlated with the same 

system in the observed spectrum. If the wave system of the hrst-guess spectrum does not 

have a match in the observed spectrum it is superimposed on the analyzed spectrum. On the 

other hand, if the observed spectrum does not have a match in the first-guess spectrum it is 

superimposed on the first-guess spectrum. So a correspondence between all wave systems of 

the analyzed and observed spectra is reached and the wave systems that are cross-assigned 

are optimally interpolated generating an analyzed held of the parameters. 

At this point the second step in the assimilation procedure can be implemented with the 

update of the spectrum and the correction of the wind field. The first-guess spectrum is 

rotated and rescaled to agree in direction, frequency and energy with the parameters derived 

from the interpolation and the new analyzed spectrum is created. The wind is corrected 

using scaling power laws for a growing wind sea spectrum under quasi-equihbrium growth 

conditions (Hasselmann et al., 1976). The wind field derived after the wave assimilation is 

interpolated with the first-guess wind yielding an updated wind field. The wave model can 

now be forced by the updated wind field and the differences between the model and the 

SAR-retrieved wave spectrum are expected to be smaller. 

A test run over a period of two months of assimilation of directional spectra extracted 

from ERS-1 SAR data is presented in Hasselmann et al. (1997). In that work the optimal 

interpolation scheme used by ECMWF in the assimilation of altimeter data was modified and 

applied to the assimilation of the fuU spectrum retrieved &om SAR data. Another example of 

the application of 01 is presented in the work of Voorrips et al. (1997), where wave parameters 

extracted from pitch-roll buoys in the North Sea are assimilated into a regional version of the 

WAM model. In Breivik et al. (1998) a routine for the assimilation of retrieved SAR spectra 

during a test period of 4 months was run parallel to the regular operation of the Norwegian 

Meteorological Institute (DNMI) second generation wave model using another sequential 

scheme, the Successive Corrections method. Successive Corrections is used operationally at 

DNMI so far assimilating only wave heights (Breivik and Reistad, 1994). The 01 has also 

been used operationally in several meteorological centers in their wave forecasting systems. 

Since August 1993 ERS-1 altimeter wave height data have been assimilated by ECMWF 

into their WAM wave model (Lionello et al., 1992) while studies for the implementation 

of assimilation of the full directional SAR wave spectra are ongoing (Janssen and Bidlot, 

2001). Observations of SWH from the ERS-2 altimeter are assimilated using 01 by the 

British Meteorological 0@ce (UKMO) in Bracknell into their second generation wave model 
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(Thomas, 1988; Lorenc et al., 1991) and at the present the assimilation of retrieved SAR wave 

spectra is an active line of research in this center (James Gunson, personal communication). 

On the whole the previous works have shown that the impact of assimilation of SAR 

spectra into wave models was very modest or neutral. The reason or reasons for this lack 

of improvement in the forecasting are not clear. One possibility is that the wave models 

have attained a level of sophistication where there is no clear improvement of the forecasting 

because of data assimilation. This seems unlikely to be the caae. Even third generation models 

such as WAM with state of the art representation of the physics of wave evolution have room 

for improvement, specially in the description of the low frequency part of the spectrum. 

The less well known wave dissipation source function causes a poorer representation of swell 

compared to the better description of the wind sea part of the spectrum (Komen et al., 

1994). Another possible cause could be that methods to extract wave spectra from SAR 

images are not dealing properly with the complexities of the SAR imaging mechanisms and 

hence yielding poor retrievals (Voorrips et al., 2001). In addition it is not clear if the lack of 

improvement in the assimilation exercises are due to the assimilation schemes themselves or 

to the far fewer SAR observations (both in temporal and spatial coverage) compared to the 

number of model grid points. 

However, besides the fact that these works have found no clear improvement in the fore-

casting, they have also used signiEcant wave heights as independent data for the validation of 

the assimilation. The reason is that there is no other source of directional wave information 

over oceanic basins apart from SAR data. Most of the buoys deployed in the ocean measure 

only the surface elevation and hence only the frequency spectrum. The only source of wave 

information with coverage similar to SAR data is derived from altimeters, but the problem 

of using SWH to assess assimilation experiments is the averaging property of this parameter. 

More insights about the impact of the assimilation into the forecasting could be gained com-

paring the directional and spectral misfit between model and another source of directional 

wave information such as directional buoys. Another point worth mentioning is that the only 

new information added through the assimilation of SAR data is the the low frequency part 

of the spectrum since the wave model spectra are used to extend the spectral information 

beyond the high frequency cut-off. Therefore retrieval methods that do not rely on the wave 

model spectrum itself as 6rst guess, like the cross-spectral method by Bngen and Johnsen 

(1995), could bring more information to the assimilation procedure and hence improve the 

forecasting. 
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A.4 T h e Adjoint Technique 

The basic idea of data assimilation in variational methods is to fit model predictions to obser-

vations by modifying the model input rather than the model output. The differences between 

the model output and observations are measured by a cost function, and the assimilation is 

performed in order to minimize this cost function respecting the constraints of the model. 

The change in the wind field needed to generate a change in the wave field is determined 

by inverting the wave model equation, which has a very high computational cost specially 

for global operational implementation. The purpose of the Adjoint Method is to determine 

the minimum of the cost function without explicitly inverting the model equations, in such 

a way that the model equations and the adjoint model equations are solved in an iterative 

minimization loop. 

Following the notation proposed by Komen et al. (1994) and describing the general data 

assimilation problem, the cost function J is constructed from three terms 

J = + j / + J': (A.8) 

taking into account the difference between observed and modeled data the misfit between 

the model data and first-guess model values and the difference between the control vari-

ables and first-guess control variables (such the wind input and the initial wave field). J 

is a quadratic function that penalizes deviations of the model from observations and first-

guesses, and its minimization yields the values of the control variables that make the model 

results fit best to the data and first-guesses available. Since J is positive definite, it is differ-

entiable and always has a point of minimum. Then the variations with respect to the control 

variables {dJ/dc) is called the gradient of the cost and must be zero at its minimum. 

The minimization of (A.8) is very time consuming in computational terms (actually the 

linear form of J is calculated by direct minimization) since the model data are implicit 

functions of the control variables. To avoid the direct inversion of the model equations, the 

Lagrange function L is constructed using the multipliers method 

= J + (A.9) 

by adding the Lagrange multiplier A times the models equations (in matrix representation) 

E' to the cost function J (de las Heras, 1994; Komen et al., 1994). 
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Taking into consideration that the function L is odd its extremum has a stationary point 

that corresponds to the minimum of the cost function. More specificaly, the total derivative 

of J is the same as the partial derivative of f, with respect to the control variables 

and both vanish at the point of minimum. This point can be determined by taking the partial 

derivatives of ^ with respect to all the arguments of the problem and setting the results to 

zero. The variation of the Lagrange function with respect to A 

dL/dXi = 0 (A. 10) 

yields the model equations, which can be solved forward in time. The derivative of (A.9) 

with respect to the model data 

dL/dxi = 0 (A.11) 

is called the adjoint of the wave model and can be solved backward in time. As has already 

been pointed out 

dL/dc = 0 (A.12) 

is the gradient of J or the cost-function gradient. 

The problem of solving the model equations explicitly in order to compute the cost-

function gradient is avoided by solving the linearized model equations (A. 10—A. 12) in an 

iterative way. As the gradient will be zero only for specific values of the control variables 

they are used to search the minimum of the cost. Choosing a first-guess for the control 

variables and solving (A. 10) the solution is the model parameter of interest and the cost 

function J is determined. The adjoint model (A. 11) can be solved backward in time to yield 

the value of A and the gradient of J can be extracted using (A. 12). If the value reached is 

not acceptable, the control variables can be updated and the procedure repeated until the 

minimum is approached. Multiple integrations of the model equations and the adjoint model 

equations are required, which can have a computationally expensive cost in particular for 

third-generation models in globed runs. 

The complication of deriving the adjoint model equations from the model equations was 

avoided by Hersbach (1998). In that work an adjoint model compiler was used to compute 

the code automatically line by line generating the adjoint of the full-dimensional WAM. The 

adjoint was used for inverse modeling with the object to get better estimates of several model 

parameters in the sink and source terms. In this way it is possible to determine whether 
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misfits between model and data are caused by wrong wind inputs or by deficiencies in the 

model formulation (or in the linearization of the model equations). So far the adjoint method 

has been applied in wave data assimilation only to the simpler inverse modeling exercise, with 

the exception of de las Heras (1994) who worked with a one-dimensional version of the WAM 

to assimilate wave heights using synthetic data. For short period tests (of one day) the results 

obtained by de las Heras (1994) using the adjoint method were superior than the results from 

twin experiments using a simpler optimal interpolation method. For periods longer than one 

day the behavior of the gradient is more complex and the value of the minimum of the cost 

function was not attained in many cases. 

A.5 The Green ' s Funct ion M e t h o d 

In the Adjoint Method the computationally expensive direct inversion of the model equations 

is avoided by solving the linearized model equations in an iterative way. Despite that, this 

method still requires an order of magnitude more computer time than the integration of 

the wave model which seems to be very costly for global operational implementation. The 

Green's Function Method on the other hand also avoids the direct inversion of the model 

equations, but does so by relying on a number of physical approximations. The wave spectrum 

perturbations are expressed by the impulse response (or Green's) function over the wind field 

perturbations, and are inverted without the need of iterations, implying a computational 

time of the same order as the integration of the model. 

The main assumption is that the wind perturbations that generate the spectrum perturba-

tions are associated with a small region in space and time and therefore can be approximated 

by a function. This hypothesis is intuitively plausible but it lacks mathematical rigor com-

pared to the Adjoint Method. Once the wave component becomes swell the wind speed has no 

more influence on it, but on the other hand in the generation region its presence is important 

during the wave growth. The wave spectrum response to the wind input is to shift the spec-

tral peak towards lower frequencies through nonlinear wave to wave interactions, transferring 

energy from the region just beyond the spectral peak to the region below the spectral peak 

which maintains a quasi-equilibrium spectral shape. Thus the impact of the wind is scattered 

over higher and lower frequencies through this stabihzing eSect of the spectrum shape, being 

only retained and transported when the wave component leaves the generation area, that is 

as swell, propagating undisturbed. So the most sensitive region of the wave spectrum is the 



A Review of the Techniques for the Assimilation of the Two-Dimensional 
120 Directional Spectrum into Wave Models 

one that last received the input from the wind in the transition between wind sea and swell. 

The assimilation scheme consists of minimizing the differences between model data and 

observations through the following cost function (Bauer et al., 1996) 

(A.13) 

where and are the first-guess of the model data and the respective observed value, dr is 

the modification after the optimization, Up and Vp are the changes in the wind field in x and 

y components in a point p in space, Uobs is the number of observations, af is the standard 

deviation of the measurements and C is a weighting factor. The Green's Function Method 

computes the model modifications dr which are correlated with the modifications in the wind 

input Up and Vp respecting the constraints of the model. 

In order to minimize the cost function, (A.13) must be expressed in terms of the control 

variables Up and Vp, in a way that the response of the wave spectrum x described by the 

perturbations in the wind field u is expressed by the Green's function. In practice, the 

integration of the response function requires the inversion of the Green's function operator, 

which is not feasible due to the complexity of this matrix which involves the whole source 

function. Relying on the assumption that only a specific small region of the wind field 

causes a perturbation in a component of the wave spectrum, the Green's function can be 

approximated by a ^function representing the relation between the wind changes (tip, t;̂ ) = 

['u(xp,tp),t;(xp,tp)] in a point in the past (xp,tp) and the spectral energy changes in the 

observation point (x^, t^). The point (xp,tp) determines the influence point or the point of 

the last wind input that must be altered to yield the spectral modification in the component 

k and point x^. The influence point {xp,tp) can be determined by tracing back the wave 

component using the wave age along the great circle path at its group velocity Cg. 

So far the Green's function assimilation method was run for synthetic wind cases (Bauer 

et al., 1996) with no rerun of the wave model in order to check the wave field corrections. 

A more realistic case was apphed to determine the wind field corrections during a storm 

in the North Atlantic (Bauer et al., 1997). The results were compared with the Optimal 

Interpolation scheme and the wind corrections have a general good agreement, but again 

a comparison with the new model output generated by the updated wind field was not 

performed. 

Although quite attractive because it is less expensive in computational terms, the Green's 
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function method relies on some simplifications, the strongest being about the localization 

of the wind region of influence. Perturbations in the wave spectrum are assumed to be 

caused by perturbations in the wind field in some specific region (in space and time) that are 

approximated by a 5-function, a rather unrealistic supposition. In addition the corrections 

to the wind are estimated using observations available during one time level in general of 6 

hours—like sequential methods—rather than over different times—like variational methods. 

However since the constraints of the model are maintained the wave spectrum computed after 

the assimilation is consistent with the model dynamics. 

A.6 Discussion 

Significant wave heights measured from satellite altimeters have so far been the most widely 

used information applied in wave models at several weather centers. However significant wave 

height is a mean parameter. Therefore a greater impact is expected on the wave analysis 

using techniques for the assimilation of the full two-dimensional spectrum due to the detailed 

spectral and directional information derived from this information. Global observations of 

directional spectra are now available with the SAR onboard ERS-1 and ERS-2 and more 

recently with the launch of ENVISAT carrying the Advanced Synthetic Aperture Radar 

(ASAR). This fact has opened up challenging possibilities and several studies are undergoing 

on how to best exploit this information to improve the wave forecasting. In the present work 

a comprehensive discussion of the theory of wave data assimilation is presented with a review 

of several assimilation studies developed in the last few years. Futhermore the techniques 

used so far in the assimilation of the two-dimensional spectrum are examined in more depth. 

Research in the area of wave data assimilation is in its early stages of development and 

implementation but some works have already indicated some exciting prospects for the future. 

One of the main issues of working with the assimilation of the two-dimensional spectrum is 

the high number of degrees of freedom involved in the problem. The approach of partitioning 

the spectrum into a number of wave systems each one represented by a set of parameters like 

mean direction of propagation, mean energy (SWH) and mean frequency seems reasonable 

and suits the assimilation problem very well. Another point that deserves to be mentioned is 

the calculation of the covariance matrices that requires long term statistics of the differences 

between observation and model. In the study by Voorrips et al. (1997) two years of buoy 

measurements in the North Sea were used to estimate the interpolation weights. However, 
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specially due to the lack of long term observations, these interpolation weights are generally 

approximated by exponential expressions of the ratio between the distance model-observation 

and a correlation length scale. Thus an improvement of the estimation of the error covariance 

matrices necessarily requires several runs of the model to compute the statistical correlations. 

A very particular characteristic of assimilating data into wave models which has no coun-

terpart in meterorological or oceanic models is the distinction that must be imposed between 

wind sea and swell. Wind waves are very sensitive to the wind input which ensures that 

any correction of the wind sea part of the spectrum, if not accompanied by the respective 

correction in the wind input, reverts quickly to its original (incorrect) state. Therefore the 

correction of the wind sea part of the spectrum has only local influence. This became clear 

in the very first exercises on wave data assimilation which pointed out that combined wind 

and wave assimilation schemes, that is coupled wind-wave models, would be necessary for 

optimal assimilation purposes. But the use at the present moment of coupled models is a 

very ambitious task and it seems that it will not be feasible, at least operationally, in the 

near future. 

The eEect of swell corrections, on the other hand, can be felt over entire ocean basins over 

the period of several days. Once the wind waves leave the generation area, becoming swell, 

they propagate almost undisturbed and the analyzed (corrected) components will have a 

positive impact on the forecasting. In addition due to nonlinearities in the imaging processes 

only the low frequency part of the spectrum, before a high wavenumber cut-off, is directly 

mapped onto SAR images. As a consequence, if the main objective is to improve the wave 

forecasting rather than correct the wind input, it seems reasonable to assimilate only the 

swell part of the spectrum which is in the end the only information directly measured by 

SAR. 
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