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Low back pain is a significant problem in the western world and its associated cost is
enormous. It is the second most common reason for a visit to medical practitioners.
Diagnosis of the underlying causes can be extremely difficult. Since mechanical factors
often play an important role, it can be helpful to study the motion of the spine. Tradi-
tional radiographic methods of obtaining spine images suffer from high radiation dosage
and can yield only a limited number of images. In order to overcome this problem, dig-
ital videofluoroscopy was introduced. This can provide motion sequences of the lumbar
spine with many frames, but the images obtained often suffer due to noise, exacerbated
by the very low radiation dosage. Thus determining vertebra position within the image

sequence presents a considerable challenge.

There have been a number of studies on vertebral extraction from fluoroscopic images,
varying from manually locating the vertebral landmarks to template matching. However,
the former method poses problems of repeatability which can lead to errors in kinematic
analysis, while the latter cannot cope with the large changes in the illumination and
contrast amongst the frames. In this thesis, extended forms of the Hough transform,
together with a recent method of low level feature extraction (phase congruency), have
been used to solve this problem. Phase congruency allows for better low level feature
extraction, but even this is sufficient to reconcile errors which needs a higher level in-
terpretation. The generalised Hough transform can be used to extract arbitrary shapes,
but can suffer from discretisation errors. In the new approaches to the Hough transform,
Fourier descriptors'are used to describe the vertebral body shape. This description was
incorporated within the Hough Transform algorithm from which the affine transform
parameters, i.e. scale, rotation and center position can be obtained. The method has
been applied to images of a calibration model and to images from a sequence of a mov-
ing human lumbar spine. The results are encouraging but sometimes difficulties can be

experienced in the extraction because of the extremely poor image quality.



i

A new spatio-temporal Hough transform has been developed which can improve per-
formance by incorporating the contextual information within the image sequence. An
energy function that represents the compromise between the contextual information and
the Hough space has been constructed. Rather than finding the maxima in the Hough
space like traditional Hough transform, here the Genetic Algorithm is employed to search
for maxima of the energy function. The application results on nine subjects show bet-
ter performance than the traditional Hough transform. The results are promising and
show potential for object extraction from poor quality images, and that models of spine
movement can indeed be derived for clinical application. As a generic approach, the

spatio-temporal Hough transform has potential application in other fields.

Some kinematic parameters have been determined from the data extracted by using
the spatio-temporal Hough transform. In order to investigate the validity of the new
method, a comparison between results from the automated segmentation and those from
a manual labelling was conducted and the statistical analysis shows a good match. As
such, new approaches have been developed for vertebrae extraction in spine motion

analysis leading to automated extraction of parameters of clinical interest.
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Glossary of Terms

Arthritis: an inflammatory condition that affects joints. It can be infective, autoim-

mune, traumatic in origin.
Coronal: having the direction of the coronal suture.

Degenerative: characterised by deterioration or change from a normally active state

to a lower or less active form, especially of body tissue, as in a disease process.

Digitized videofiuoroscopy (DVF): a system for acquiring low-dose motion radio-
graphs. It consists of an X-ray source, an image intensifier and a video camera,
which allows capture of dynamic images of the structure of interest (in particular
the lumbar spine) at low radiation exposure. The captured images can be stored

on videotape or digitised and stored on a computer.
Goniometer: an instrument for measuring angles.
Hernia: protrusion, as of an intestine or other organ from its normal position.
Image intensifier: a device for amplifying the intensity of a X-ray image for recording.

Inclinometer: an instrument used to measure the angle of thoracic prominence, re-

ferred to as angle of trunk rotation).

Invasive: of or relating to a medical procedure in which a part of the body is entered,

as by puncture or incision.

In wvitro: in a test tube, culture dish, etc.; hence, outside a living body, under artificial

conditions.
In vivo: within the living organism.

Noninvasive: of a diagnostic or therapeutic procedure: not involving the disruption of

body tissues.

Sagittal: of or pertaining to the longitudinal plane dividing an animal into right and
left halves.

xi
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Scoliosis: lateral curvature of the spine.

Spondylolisthesis: forward displacement of one of the lower vertebrae over the verte-

brae below it or over the sacrum, causing severe pain in the lower back.

Stenosis: narrowing. In spinal stenosis, the spinal canal, which contains and protects
the spinal cord and nerve roots, narrows and pinches the spinal cord and nerves.

The result is low back pain as well as pain in the legs.
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Chapter 1

Introduction

1.1 Background

Low back pain is a very common problem in the world and humans have struggled against
backache for many years (Allan and Waddell 1989). Compared with other diseases,
such as cancer and infection, low back pain has been (and continues to be) one of
the incompletely understood, and as yet unsolved, problems in modern medicine even
though considerable technical advances have been made in diagnosis, treatment and
rehabilitation. Both the problem and its associated disability have appeared to escalate
with time. Statistically back pain is the second most common reason for a clinical
visit (North American Spine Society 2001). Nearly 80% of all people over the age of 30
will experience back problems during some period in their life. The cost of low back
pain is now enormous. In the United States an estimated direct and indirect cost is $75
to $100 billion (Porterfield and Derosa 1998). In the United Kingdom, the situation
is similar: the cost has been quoted as £6 billion annually and hence more and more
attention has been paid to low back pain in the last 25 years (Department of Health
1999). In 1994 the Clinical Standards Advisory Group suggested that top priority should
be given to low back pain (Clinical Standards Advisory Group 1994).

Despite the high occurrence of back pain, diagnosis of the underlying problem remains
a major problem. One possible hindrance is that low back pain might be a syndrome
of many different diseases and disorders, and the other is the structural complexity of
the spine and the difficulty of undertaking in vivo diagnosis and testing. There are
a number of possible sources of pain, e.g. injured muscles or ligaments, disc hernia,
arthritis, cancer or bone infection. Most of them have a direct or indirect influence on

the movement of the vertebral bones and can be described as mechanical disorders.

In order to understand the mechanical behaviour, specifically of the lumbar spine, a

1



Chapter 1 Introduction 2

number of studies has been conducted in which different methods have been used to ob-
tain movement information and again a large variety of parameters have been proposed
to depict the motion pattern. Among the information acquisition techniques, radio-
graphic imaging with X-rays is the most commonly used technology. After the images
have been obtained, it is essential to locate the positions of the vertebrae for analysing
the motion patterns and this is called “landmark location” in most studies. For a long
time, this has been carried out manually. This manual work can be very tedious and
exhausting while the reliability and accuracy will largely depend on the experience of

the marker and thus is error-prone.

1.2 Objectives

This study attempts to bridge the spine kinematics and computer vision fields and it
is expected that this multidisciplinary effort can benefit these two areas. Due to the
importance of the accuracy and efliciency of the landmarking in kinematic studies, the
main objective of this research is to explore an automated landmarking algorithm (the
spatio-temporal Hough transform (STHT')). This method should provide better accuracy
and has the ability to cope with large image sequences efficiently without the inter/intra
observer errors of manual landmarking. We will also investigate the application to spine

kinematics based upon the results obtained by using the newly developed STHT.

1.3 Contributions

The main contributions of this work are considered to be in the following aspects:

e The most important contribution is the ability to locate spinal objects (lumbar
vertebrae in particular) automatically. The Hough transform has been introduced
for spinal motion studies owing to its good performance in handling noise and
partial occlusion. Results of this application have been reported in our earlier
papers (Zheng et al. (2000a, 2000b, 2001a, 2003, 2002a); Allen et al. (2001)). The
extraction results have also been used in a 3-D, real-time spine visualisation system

(Zheng et al. (2002b)).

e Another significance of this work is the ability to study the continuous motion of
the spine. First, digital videofluoroscopic (DVF) imaging has enabled the possi-
bility of obtaining the continuous motion information of the lumbar spine without

excessive radiation risk. Second, the proposed STHT is designed to be suitable
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for extracting the vertebrae in a motion sequence and, in fact, good performance
of the STHT is achieved by incorporating the spatio-temporal information within
the motion sequence. Some extraction results by using the STHT have been intro-
duced in our recent papers (Zheng et al. (2001b, 2002a)). As a generic approach,
the STHT can be applicable to other motion analyses as well.

o In this study the kinematics of the spine have been quantified, not only by widely-
used indices, but also by some new concepts that might provide clinicians with a
more intuitive sense of the lumbar spine motion and hence be helpful in diagnosis

and treatment of the spinal disorders.

1.4 Thesis Overview

In chapter 2, the anatomy of the human spine is briefly introduced and then the problem
of low back pain is discussed in detail where the possible causes of low back pain are
presented. So far, spine kinematics has been widely studied for better understanding of
the relationship between low back pain and the motion pattern of the spine. The last
section of the chapter focuses on issues arising from spine kinematics. The emphasis
is on the landmark location problem within radiographic images. This chapter will be

helpful for understanding the motive and the clinical background of the research.

Although a number of techniques has been used to capture the motion of the spine,
so far radiographic imaging is still the most frequently used technology. Chapter 3
introduces some imaging techniques and gives an analysis of their suitability for spine
motion study. To our knowledge, to date DVF imaging is the only practical tool for
acquiring continuous spine motion and therefore the focus of this chapter is on DVF. The
DVF method, the radiation dosage, the performance and the data acquisition procedures

are discussed in detail.

Chapter 4 deals with the edge detection problem. In many applications, edge informa-
tion is of great interest and how to obtain edge information efficiently and with high
quality has been a main concern in image processing. In this study, this becomes an
essential part of the processing because the image quality of the DVF is limited by
the low radiation dosage. This chapter begins with an overview of edge detection ap-
proaches. In many applications, phase congruency can yield good edge information and
has many advantages. A comparison of the results obtained from both Canny and phase

congruency on DVF images is given and the results reveal the good attributes of phase

congruency.

In chapter 5, a short overview of image segmentation techniques is given and then the
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Hough transform is introduced in detail. The basic idea of the Hough transform is pre-
sented by simple applications to straight lines and arbitrary shapes. How to describe the
shape is very important in arbitrary shape extraction. Instead of a discrete description
of target shape, here Fourier descriptors (FDs) are introduced to represent the shape in
a continuous pattern. The theory of the parameterised Hough transform is given based
upon the derivation of FDs from the coordinates of the target contour. To evaluate its
performance, some experiments have been conducted. These experiments include appli-
cations to a synthetic image and images of a calibration model. For the synthetic image,
performance with different orders of FDs, different noise levels and occlusions have been

investigated. Finally the approach is applied to DVF sequences and some results are

presented.

As stated earlier, the poor image quality of DVF limits the performance of edge detection
that in turn affects the evidence gathering of the Hough transform. In the worst case,
the Hough transform is unable to locate the vertebrae correctly. These problems have
provided the inspiration to develop a new version of the Hough transform. Chapter 6
presents this new method called the “spatio-temporal Hough transform” as the spatio-
temporal information are incorporated in this new approach. The mechanism of the
new method is very simple, instead of locating the maxima in a single Hough space, the
STHT method locates the maxima from an newly defined energy function which contains
two parts: one is the Hough space and the other is the information from the contextual
knowledge within the motion. A spline is used to describe the smooth trajectories of the
lumbar vertebrae and spatial constraints between vertebrae are expressed by a penalty
function. By this adaption, the new approach can significantly improve the performance
of the basic Hough transform. Genetic Algorithms (GAs) are used to tackle the search
problem because of their good performance in optimisation. The basic idea of the GA
is introduced in detail. Some extraction results are reported and some issues about the

STHT are discussed before the short conclusion.

Chapter 7 mainly focuses on spine kinematics. First, some kinematic parameters used
to quantify the motion are discussed. Based on the results from the STHT, some pa-
rameters such as rotations and intervertebral angles in the sagittal plane view are ob-
tained. An average motion pattern is derived from the data of nine normal subjects.
Finally, a comparison between these results and those from manual landmark location
is conducted. Statistically they are very close but the automated method avoids many

problems inherent with the manual labelling.

Chapter 8 summarises the research and offers new directions for the future. Some

potential developments for the STHT are suggested.
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Chapter 2

Human Spine and Low Back Pain

2.1 Introduction

The main aim of this study is to develop a new method for improving the landmarking
problem in spine kinematic studies. This chapter introduces the anatomy of the human

spine and issues of low back pain. It provides a foundation for later chapters.

This chapter is organised into four sections. The first section provides an overview of
the structure and functions of the spine for better understanding of back pain. A typical
lumbar vertebra is introduced in order to understand the structure of the lumbar spine.
Discussions mainly focus on the low back pain problem. A definition of low back pain
is given and then the possible causes are presented. Spinal instability is discussed in
detail as it is regarded as being related to abnormal motion. Methods that are used for
acquiring motion information for spine kinematic study are discussed and the emphasis
is on radiographic techniques as they are most commonly used. Finally the anatomical
landmarking problem is introduced and an overview is given of the previous methods

that aim to automate the marking procedure.

2.2 The Anatomy and Functions of the Spine

2.2.1 Anatomy of the Human Spine

The spine is a very important 3-D mechanical structure. Together with the ribs and
the sternum, it makes up the axial skeleton of the human body. The spine is composed
of a series of bones called vertebrae. From the top and downwards, these bones can be

described in the cervical, thoracic, lumbar, sacral, and coccygeal regions. The cervical

6
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FIGURE 2.1: Illustration of the lumbar spine (adapted from Bogduk (1997) with per-
mission of Elsevier).

spine normally comprises 7 bones, the thoracic spine has 12 bones, and the lumbar or
low back region is composed of 5 bones. The sacral region consists of 5 fused bones, and
the coccygeal region has 3 to 5 tiny bones, as shown in Figure 2.1. However variations
do occur. These vertebrae are connected by a sequence of intervertebral disks to form a
strong but flexible support for the neck and trunk. The spine is also stabilised actively
by muscles and passively by ligaments that permit twisting and bending movements and
also limit other possible harmful movements that might damage the spine itself or the

spinal cord (Wynsberghe et al. 1995; Case et al. 1999). Without these constraints the

spine would be unstable.

The spine is curved and in profile looks more like an elongated letter “S” in shape rather
than a column. The cervical and lumbar regions have a forward curve whilst the thoracic
region and sacral region have a backward curve when viewed from the side. The curve of
the spine facilitates energy absorption and protects the spinal structures against impact
by increasing its strength, helping to maintain a balanced center of gravity in the upright

position and absorb shocks from actions such as walking (Wynsberghe et al. 1995).
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2.2.2 Functions of the Spine

The spine is a very important, if not the most important structure, in the human body.

It maintains three vital functions: support, mobility and protection of the spinal cord.

e Support The spinal column is the principal supporting structure. The spine bears
heavy loads, in particular the cervical and lumbar regions, including the weight of
the upper body and any loads being lifted, lowered, carried or held. These loads

can be transferred to the lower limbs through the hips.

e Mobility The spine allows a wide range of movements to occur. The cervical
and lumbar spine areas are particularly flexible. Forward bending (flexion) and
backward bending (extension) of the lumbar spine produce the largest range of
movement in the spine. Twisting (axial rotation) and side bending (lateral flexion)
are also common spinal movements. In anatomical terms, spine movements can
be described in three fundamental planes of motion: the sagittal, coronal and
horizontal planes, shown in Figure 2.2. In biomechanics, these movements are
commonly defined in relation to three imaginary axes drawn through the body,
which are labelled X, Y and Z (Bogduk 1997), shown in Figure 2.3. Also, the
motions of the spine are known to be “coupled”, or linked each other. Lateral
bending (Z rotation), for example, is coupled with axial rotation (Y rotation) and
vice versa. A number of studies has been conducted in order to determine the
range of these movements. Coupled movements are small, especially during the
flexion/extension in the sagittal plane and thus in practice they have often been

neglected (Adams 1999).

e Protection The spinal column protects the spinal cord and nerves from damage

as they pass from the brain to the upper and lower limbs.

2.2.3 A Typical Lumbar Vertebra

The sizes of lumbar vertebrae appear to be the largest in the vertebral column because
of their role as weight bearing structures. A typical lumbar vertebra is presented in this
section for better understanding of the structure of the lumbar spine and is shown in
Figure 2.4. There are variations in vertebral size, shape and detail; in general, how-
ever, all vertebrae have the same basic structure. Therefore, it will also be helpful in

understanding other regions.

The lumbar vertebrae are irregular-shaped bones consisting of various named parts.

There are three main parts to a vertebra: vertebral body (weight bearing structure);
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FIGURE 2.2: Planes and directions in anatomical system (adapted from Bogduk (1997)
with permission of Elsevier).

vertebral arch (protective in function) and vertebral processes and these are shown in

Figure 2.4.

The vertebral body is a thick, disc shaped cylindrical block of bone flattened at the back
and with roughened top and bottom surfaces. The inside is made up of spongy bone
called a cancellous core that enables it to resist compression, and a thin outer covering

of compact bone called the cortical shell that is the weight bearing part of a vertebrae.

The vertebral arch, also known as neural arch, extends backwards from the vertebral

body. It consists of two short, thick processes (called pedicles) that stick out backwards
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FIGURE 2.3: Axes and directions in biomechanical system (adapted from Bogduk
(1997) with permission of Elsevier).

from the vertebral body and join the laminae. The laminae are flat and join together
to form the back part of the vertebral arch. Together the vertebral arch and vertebral
body surround the spinal column. The space occupied by the spinal column is called
the vertebral foramen. The vertebral foramens, when stacked on top of each other, form
the vertebral or spinal canal. On each side of the vertebral column there is an opening
between each vertebra called the intervertebral foramen which enables the spinal nerves

to pass through.

There are seven different processes that come from the vertebral arch. A transverse
process extends sideways on each side from the junction of a lamina and pedicle. A
single spinous process extends back and downwards from the junction of the laminae.
These three processes have spinal muscles attached to them. The other four articular

processes form joints with other vertebrae. The two articular processes on top form a
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FIGURE 2.4: Illustration of a typical lumbar vertebra. (adapted from Bogduk (1997)
with permission of Elsevier.)
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joint with the two articular processes on the bottom of the vertebrae above, and the two

bottom processes form a joint with the two processes on top of the vertebrae below.

Adjacent vertebral bodies are attached to each other by an intervertebral disc. The disc
is composed of a central mass of “pulpy” tissue called the nucleus pulposus and a tough
outer covering of fibro-cartilage called the annulus fibrosis. The thinner layers of the
annulus at the back make this area prone to damage. The discs are “shock absorbers”
by providing resilience to the spinal column as well as flexibility. When a body is erect,
the various parts of the disc are under uniform pressure; but when the spine is flexed,
extended or bent to the side, one part of the disc is under increased compression whereas

another part is under tension.

2.3 Low Back Pain

Low back pain (LBP) is defined as pain perceived as arising from either the lumbar
spine or the sacroiliac region or from a combination of both (Bogduk 1997). LBP can be
caused by many diseases and disorders and the origin of LBP from multiple organ sys-
tems complicates its differential diagnosis (D’Orazio 1999). Furthermore, understanding
is also limited by the structural complexity of the spine and the difficulty of in wvivo ex-
periments: the lumbar spine is especially difficult to access. Up to 85% of back pain

patients cannot be given accurate diagnoses (Moffett and Richardson 1995).

Compared with other diseases, such as cancer and infection, LBP has been, and continues
to be one of the unsolved problems in modern medicine despite the considerable technical
advances in diagnosis, treatment and rehabilitation. Both the problem and its associated
disability have appeared to escalate with time. The cost of low back pain is enormous.
For example, it has been estimated that chronic low back pain annually results in 225,000
to 300,000 lumbar surgeries and an estimated direct and indirect medical cost of $75
to $100 billion in the United States (Porterfield and Derosa 1998). Statistically, back
pain is the second most common reason for a clinical visit in the United States (North
American Spine Society 2001). Nearly 80% of all people over the age of 30 will experience
back problems during some periods of their life. In the United Kingdom, the situation
is similar: it costs £6 billion annually and more and more attention has been paid to

LBP in the last 25 years (Department of Health 1999).

Back pain can be classified as acute or chronic. Acute back pain typically gets better
within 3 months’ duration whilst chronic back pain persists longer. The key distinction
is not the duration of the pain, but the persistence of chronic pain longer than the

expected healing time and the intractable nature of chronic pain (Waddell 1999).
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Low back pain can be further divided into two main categories as specific low back pain
(SLBP) and non-specific low back pain (NSLBP) (Tulder et al. 1997). SLBP means that
there is a defined cause of the pain such as disc herniations, spondylolisthesis, spinal
stenosis, vertebral fractures, tumors, infections and inflammatory diseases like arthritis.
NSLBP means that there is no specific cause of the pain but currently there may be one
or more undetermined causes. In practice fewer than 15% of people with back pain are
diagnosed with a specific cause of pain. This suggests that the majority of people suffer
from NSLBP where a definite cause cannot be determined. This is further confirmed by
the study of White et al. (1999). Many patients with NSLBP suffer from either muscle
pain, or facet joint disease or degenerative intervertebral disc. NSLBP is also known as
“mechanical low back problem” (Waddell 1996; Bratton 1999; Eisenstein 1999). As the
cause of pain is biomechanical in nature whilst the pain may also cause abnormal motion,
many attempts have been made to establish the relationships between motion pattern
and low back pain. In one study, Marras et al. (1999) used classification techniques
to assess the trunk angular motion as subjects flexed and extended their trunks in five
different planes of motion. The results demonstrated that the quantitative measurements

derived were able to distinguish between asymptomatic subjects and those with low back

disorders.

In spine motion studies, a number of concepts has been proposed for describing the
relationships between motion and low back pain amongst which spinal instability is the

most popular, but also the most controversial.

Instability has been regarded as one of the most common causes of LBP and indeed
numerous studies have focused on it over the last fifty years (Knutson 1944; Morgan
and King 1957; Dupuis et al. 1985; Gertzbein et al. 1985; Paris 1985; Pope et al. 1986;
Stokes and Frymoyer 1987; Gertzbein et al. 1988; Mimura 1990; Weiler et al. 1990;
Panjabi et al. 1994; Szpalski et al. 1999). Morgan and King concluded that 25% of all
back pain was the result of segmental instability (Morgan and King 1957) and this has
been supported by a later study (Weiler et al. 1990). Controversy surrounds the word
“instability” when describing potential causes of low back pain (Szpalski et al. 1999),
particularly since hypermobility is seen in many patients who have little or no pain. Sim-
ilarly, many patients appearing with LBP have no demonstrable instability (Eisenstein
1999). Most likely, it seems that instability does not cause pain, at least not directly.
It appears more likely that instability is only an indicator of underlying degenerative
changes or preceding injuries and it is the latter that causes the pain (Okawa et al.
1998). In the case of instability defined in terms of an excessive range of movements,
pain may arise from the spinal structures that normally limit that movement and whose
damage leads to the increased range of movement. Links between potentially painful

spinal pathology and abnormal spinal movements may then help clinicians to formulate
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and evaluate their own definition of spinal instability (Adams 1999).

How to quantify instability is another concern. So far, various indices have been proposed
to determine the instability such as the range of movement, translations and rotations in
different planes. It is unclear which of them is suitable for representation of the instability
as well as the standard to divide normal motion and abnormal motion (Gertzbein et al.
1984; Ogston et al. 1986; Pearcy and Bogduk 1988; Panjabi et al. 1994; Okawa et al.

1998). These parameters involved will be discussed in detail later.

In summary better diagnosis probably relies, to some extent, on improving our under-
standing of the mechanics of the spine and how disorders might reveal themselves during
spinal motion. This is also why so many studies have focused on spinal motion, and now
it appears that studies have been extended from the motion of the bones alone to the
effects of the muscles and ligaments associated with the spine, e.g. Brolin (2002) used a

Finite Element (FE) model to evaluate the effect of ligament injuries on the motion of

the cervical spine.

2.4 Spine Kinematics

Spine kinematics investigates the spine movement without considering the forces acting
on the structures involved, as the forces are difficult to measure in vivo. Spine kinematics
could be very useful for better understanding LBP and helping its diagnosis, treatment
and rehabilitation. The motion of the human spine can be obtained from studies of living
subjects or isolated cadaveric vertebral specimens. There is a compromise between
them, the former can provide “realistic® but sometimes less accurate measurements
because of some uncertainties caused by muscles, ligaments and other parts of the human
body, whereas the latter can provide highly accurate but less “realistic” results since
the conditions in the experiments can be easily controlled whilst there are differences

between the living human spine and cadaveric specimens.

In spine motion studies, different technologies have been explored to capture the motion
and they can also be classified as invasive and noninvasive, based on whether or not
the experimental instruments entered the human body. Imaging techniques (including
X-rays, magnetic resonance imaging (MRI), DVF imaging, etc.) are commonly used to
obtain the motion information of the lumbar spine because they can provide intuitive

and accurate information of the lumbar spine. These technologies will be discussed in

the next chapter.

Apart from the radiographic imaging technique, some direct clinical measurement meth-

ods are also used, such as direct palpation, inclinometers and other sensors (position,
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accelerometer and electro-magnetic sensors). These approaches will be introduced next.

Normally, the spine can maintain its shape with its different curvatures. Back surface
curvature obtained by palpation was used to estimate the range of the motion. Paris
suggested that manual palpation was sufficient to find instability (Paris 1985). Evidence
to validate these claims appears to be lacking, and it seems unlikely that accurate

measurement of curvature can be achieved without the aid of other technologies such as

X-rays (Stokes et al. 1987).

Goniometers and inclinometers can be used to measure the range of motion and are
recommended by the American Medical Association Guides (1987) for assessing the per-
centage impairment in chronic low back pain, however, their validity was doubted (Nat-

tress et al. 1999). Like palpation, it cannot measure the motion at the segmental level.

Several studies developed methods using pins placed directly in the spinous process.
In one study, Gregerson and Lucas (1976) placed pins rigidly in the spinous process of
volunteers and measured axial rotation in a variety of activities. Panjabi et al. (1986)
and Pope et al. (1987) placed pins in the spinous processes with accelerometers mounted
to them, which enables direct measurement of the lumbar spine response to vibration
and impact. Steffen et al. (1997) developed a technique to measure the L3-L4 segmental
motion pattern in healthy subjects by inserting pins percutaneously into the spinous
processes. Electromagnetic sensors are attached to these pins. Thus 3-D real time
motion can be obtained and analysed. The main limitations of the aforementioned

methods are the risks of infection and pain involved in the experiments.

Mounting of transducers, markers or position sensor on the skin has also been used for
the motion measurement (Stokes and Frymoyer 1977; Pope et al. 1986; Gatton and
Pearcy 1999). The movement of the skin with respect to the vertebra is difficult to
determine and thus the accuracy is problematic. It has not yet been proved whether or
not diagnostic equipment relying on the detection of surface movements have adequate

accuracy for determination of motion at the segmental level.

2.5 Landmarking Problem

2.5.1 Data Acquisition

In spine kinematics studies, once radiographic images have been obtained, reference
points (also referred as landmarks) are used to describe vertebral positions in the images
and have to be identified. In order to determine the positions of a 2-D rigid object in

images, the positions of at least two fixed points on the object have to be located.
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Following the definition of kinematics, kinematic parameters can be easily derived if
landmarks have been located in each frame. For example, the intervertebral angle can be
obtained by simply calculating the relative position of the landmarks on two neighboring
vertebrae. These parameters will be discussed in detail in chapter 7 and their calculations
can be found in the literature (White and Panjabi 1990; Frobin et al. 1996; Frobin et al.
1997; Bogduk 1997; Muggleton and Allen 1998).

From these discussions it is not difficult to find that, to date, landmarking is still the
essential step in spine kinematics. Any errors caused by this procedure will propagate
during the following steps, which can in turn cause large errors in kinematics. There are
some basic requirements for selecting landmarks. First, they should be easily recognised
and fixed through the motion sequence of interest. In the case of the lumbar vertebrae,
four corners of vertebral body have been believed to be the most prominent and visible
parts of the bones as they can be seen throughout the series, and hence they have been
used in many studies. Second, the methods to locate them have to be easy and quick for
use with good repeatability, reliability and robustness, even though the image quality is

often poor.

Thus locating landmarks with accuracy and reliability has been an important aim and

indeed many methods have been proposed.

2.5.2 Previous Landmarking Methods

Landmarking was originally carried out entirely manually. Due to poor image qual-
ity, it is difficult to place markers exactly on the vertebral corners and furthermore,
repeatability cannot be assured. After a thorough error study, Panjabi et al. (1992)
suggested that marking radiographs manually results in significantly large errors and
the manual superposition and marking of radiographic films are major components of
errors in kinematic parameters. For example, errors caused by the person who marks
the radiographs can be very large. This error can be further classified as intraobserver
and interobserver error. The former is caused by the same marker in repeated measure-
ments and the latter is caused in marking the same radiograph by different markers.
The reported errors related to them are 1.6° and 1.25° for flexion-extension, respec-
tively (Dvofdk et al. 1991). Despite these disadvantages, most studies have still been
using this method since better approaches to cope with the landmark problem efficiently

are yet to be introduced (Farrokhi et al. 2002; Kulig et al. 2002).

Some so-called automatic algorithms have been developed. Simonis and Allen (1993)
used a template matching method wherein a template comprising the whole vertebral

body was defined. It can locate the vertebrae by finding the best match between the
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template and the whole image. Muggleton and Allen (1997) obtained some improve-
ments by using an annular template, which was defined by outer and inner templates.
In this method, only the part between these two templates was correlated with the whole
image to identify the vertebrae. This can save some computation time, but it was still
based on template matching. Both of them have limitations. First, the whole image has
to be searched with a large template, leading to a long computation time. Second, a
major assumption is that the vertebral body will have the same dimension during the

[4

motion. However, out-of-plane motion normally happens due to the “coupled” nature

in lumbar spine movement and consequently this method is problematic. Finally, the
method will suffer when the image illumination changes unpredictably and considerably
in a sequence. In a recent study, Cardan and Allen (2000) proposed a first pixel algo-
rithm. In this method, four small corner areas of each vertebra are defined in the first
frame, and then they are used as templates in the latter frames. Once they are located,
corner points can be found by searching the first point on the edge, when a diagonal
line moving towards the edge intersects the vertebral image. The authors suggested that
it has good repeatability and reliability. However, it still depends on template match-
ing and thus the inherent problems cannot be solved. Furthermore, the corner found
might be incorrect since the first points found in different frames may not be the same

especially in the case of poor image quality.

2.6 Conclusions

In this chapter the anatomy of the human spine was introduced and in particular a
typical lumbar vertebra was presented. Then low back pain and spine kinematics were
discussed in detail. Finally, an insight into the landmarking problem associated with
radiographic images was given. From this analysis it appears that landmark location
is the crucial step in the spine kinematics study and so far there have not yet been
satisfactory methods for general application, especially automated ones. These facts

encouraged us to develop an automatic method that can handle this problem effectively.



Chapter 3

Digital Videofluoroscopy

3.1 Introduction

Medical imaging techniques began with the discovery of X-rays in 1895. Since then,
medical imaging has proved to be valuable in diagnosis medicine. Various imaging tech-
niques, such as plain X-rays, Ultrasound Scan, Magnetic Resonance Imaging (MRI),
computerised tomography (CT), single-photon emission computed tomography (SPECT)
and positron emission tomography (PET), have been developed for different diagnos-
tic applications and reviews on them are elsewhere (Cho et al. 1993). These imaging
techniques have enabled clinicians to have more and more freedom to select a suitable
approach for diagnostic tasks. In this chapter, the reason why currently only DVF
is suitable for spine kinematic study is discussed by reviewing other possible imaging
methodologies. Then the DVF technique is introduced in detail. Some issues within
the data acquisition, radiation dosage and subject selection are presented. Possible fu-
ture developments in imaging technology appropriate for spine motion analysis are then

discussed.

3.2 Why DVF

Plain X-ray radiographs are in widespread use and the acquired images are usually of
good quality. One lateral view of a human lumbar spine is shown in Figure 3.1(a) and
the boundaries detected by Canny (an edge detection method, to be discussed later) are
very clear, as shown in 3.1(b). In spine kinematics plain X-rays have been used in a
number of studies (Pearcy and Bogduk 1988; Dvordk et al. 1991; Panjabi et al. 1992;
Miyasaka et al. 2000). Due to the high radiation dosage, only a limited number of static

images can be obtained, usually in the neutral position and at the extreme positions
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of mobility. Consequently, it is impossible to determine the intermediate states or to
describe motion as the spine moves, say, from flexion to extension or in a lateral bending.
Okawa et al. (1998) pointed out that instability cannot be accurately identified with only
these terminal radiographs, because an abnormal motion may occur in the middle range
of spinal motion. Bi-planar X-rays have been developed for measurement of the 3-D
spine motion and regarded as the most accurate way to obtain information on spinal
kinematics (Suh 1974; Brown et al. 1976; Wilder et al. 1980; Stokes et al. 1981; Pearcy
et al. 1984; Mimura 1990). However, they are also limited by the radiation dosage in

the same way as plain X-rays and are unlikely to be able to record the whole motion

pattern.

(a) X-ray image (b) Edge map

FIGURE 3.1: X-ray image of the lumbar spine (from
http://www.scar.rad.washington.edu/RadAnat/LSpineLat.html) and its edge map.

CT is a very important modality for diagnosing spinal pathological conditions (Beutel
et al. 2002). Apart from its relatively lower radiation exposure compared to X-rays, due
to its versatility and image quality CT provides us with more diagnostic information. It
can also demonstrate more pathological changes than conventional invasive and nonin-
vasive radiographic studies of the spine. However, the prerequisite to obtain an optimal
spine image for CT is that patients should keep as stationary as possible and thus mo-
tion of the patients is strictly limited. On the other hand, CT is usually used to study
the transaxial nature of the spine and thus shows “sliced spine”. It is unlikely to put
patients into the CT scanner sideways, sagittal or coronal plane view of the lumbar spine
has to be reconstructed from multiple slices which again will significantly raise radiation
risk to the patients as CT also uses ionising radiation. Therefore, CT currently cannot
yield movement information. Recently a prototype 4D-CT scanner has been developed

and in the future it might have potential for real-time motion study (Saito et al. 2002).
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Unlike X-rays and CT, MRI does not use ionising radiation to create images. It can
obtain images by measuring the response of hydrogen atoms in the human body under
a powerful magnetic field together with a radio frequency pulse. MRI can acquire very
clear and accurate images, particularly of soft tissues, but for a long time it has been
regarded as not fast enough for motion analysis (Cho et al. 1993). Moreover, it increases
the cost of diagnostic imaging for persistent low back pain and has even been considered
to be an add-on rather than a substitute for other imaging modalities in the evaluation
of persistent LBP (Ackerman et al. 1997). However, MRI has recently been used in
some spine motion studies and it appears that it is developing rapidly (Farrokhi et al.

2002; Kulig et al. 2002).

Medical diagnostic ultrasound systems can produce images of soft tissues and internal
body organs by capturing scattered echo strength of high-frequency sound waves. It is
a safe and non-invasive imaging technique, but unfortunately the images are not yet of

sufficient quality to allow detailed investigation of the spinal column in motion.

In short, the aforementioned techniques, so far, are not suitable for a dynamic spine
motion study, as they are limited by either radiation safety or by providing only static
images. DVF appears to be the only practical imaging technique for documenting the

continuous motion of the spine.

3.3 Digital Videofluoroscopy

Breen et al. (1987) first introduced the DVF technique in 1987 for investigation of spinal
motion. Since then the DVF has been developed and widely used (Breen et al. 1988;
Breen et al. 1989; Cholewicki and Mcgill 1991; Allen et al. 1992; Breen and Allen 1993;
Breen et al. 1993; Simonis et al. 1993; Simonis and Allen 1993; Muggleton and Allen
1997; Okawa et al. 1998; Muggleton and Allen 1998; Cardan and Allen 2000). DVF
works according to the same principle as plain X-rays but the radiation dosage to which
the patient is exposed is much lower due to the introduction of an image intensifier
which can amplify the intensity of an X-ray image. A very low dose X-ray machine
is used to generate the radiation and the subject is placed between the X-ray source
and the image intensifier. The distance between the subject and the image intensifier
is kept constant during the image capture. The image obtained by an image intensifier
can be stored on videotape for future processing, or digitised and processed directly by
computer. There has been considerable progress in improvement and refinement over

the prototype system (Kondracki 1998). Two DVF images used in the current study are

shown in Figure 3.2.
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(a) Frame 1 (b) Frame 2

F1GURE 3.2: Two DVF frames from a lumbar spine sequence.

As with other techniques, there are advantages and disadvantages with DVF.

Advantages
The most important characteristic is that it provides us with the possibility of

obtaining real-time, continuous motion sequences of the lumbar spine. This allows
us to investigate the whole motion pattern of the lumbar spine rather than that
only at the extreme positions as before. The continuous motions at segmental
levels can be recorded and enable us to investigate the motion at the level of
the intervertebral joint. In addition, and perhaps more important, DVF is much

safer for patients than traditional X-rays owing to the great reduction in radiation

dosage.

Disadvantages
Limitations of DVF are also apparent. First, the image quality is relatively poor,
due to the low radiation dosage. Second, like plain X-rays the quality varies across
the image. In the middle, the illumination is brighter while the intensity and
contrast are very poor in other areas, which can be seen in Figure 3.2. The main
reason for this is that the X-ray source is point-like and creates a cone of radiation
that affects, proportionally, all the vertebrae from the middle of the image to the
edges. In obtaining DVF images, the X-rays are focused on the regions of L3 in
order to keep the whole lumbar spine within view. Another factor is the effect of
surrounding soft tissues and bones. Generally, there are more soft tissues shown
in the lateral view than in the anterior-posterior view. The composition of the soft
tissue itself cannot only affect the image intensity, but also produces scatter which
degrades the image further. For example, the L1 vertebral body has very low
contrast against its neighboring area due to the effect of soft tissues. In the lateral

view, L5 is often obscured by the pelvis and is difficult to be detected visually.
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3.4 Data Acquisition

DVF image sequence data used in this work were provided by Dr. M. Kondracki *. For
details on the data acquisition please refer to his thesis (Kondracki 2001). However,

we now discuss some of the main issues relating to the acquisition procedure for better

understanding of the processes.

Population Examined. Data from thirty apparently healthy male volunteers (sub-
jects) was going to be collected in his experiment 2. For the six months leading to the
data capture, the subjects should have no history of low back pain. Subjects found to
have suffered any significant back pain longer than six weeks or had received any major
back surgeries such as spinal fusion, laminectomy or discectomy before the examination
were excluded. In this way, and with exclusion due to acquisition errors, 20 subjects
were excluded (note that acquisition was centred in a clinical referral unit) leaving the
DVF image sequences of ten subjects aged between 19 and 40 years with an average age
of 28 years. One subject’s data has been excluded because the image quality is very

poor. Therefore, results from nine subjects are evaluated in the current study.

Passive Examination. Generally, in kinematic studies of the lumbar spine, both in-
voluntary motion (in which the subject is moved in a controlled manner) and voluntary
motion (in which the subject moves himself spontaneously) are used, as shown in Ta-
ble 3.1. The main objective of kinematics study is to assist in diagnosing mechanical
disorders of the lumbar spine. Any technique should therefore be applicable to both
patients and normal subjects. Since low back pain tends to restrain the patient from
bending as far as his/her spine would allow, the examination of voluntary motion will
not uncover hypermobile motion thus making it less useful as a diagnostic tool. We
therefore believe that involuntary motion should be performed if a patient is to be ex-

amined by means of functional radiographic studies as has already been suggested by

Dvorék et al. (1991).

TABLE 3.1: Involuntary and voluntary motion measurements.

Involuntary motion Dvoték et al. 1991; Panjabi et al. 1992
Lee and Chen 2000; Kondracki 2001.

Voluntary motion | Dimnet et al. 1982; Pearcy et al. 1984; Pearcy and Bogduk 1988
Okawa et al. 1998; Takayanagi et al. 2001.

Passive Motion Table. During DVF acquisition Dr. M. Kondracki (2001) designed

IM. Kondracki now is a clinician at the Anglo-European College of Chiropractic (AECC) after he
completed his PhD at the University of Southampton in 2001.
2Ethical approval has been given for the data collection and study.
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a passive motion table consisting of two main sections namely a two-piece articulating
section and a base section. The former, constituting the moving and the static sections,
is made of materials capable of allowing X-rays to pass through freely. The latter on the
other hand is used mainly to provide support to the table and a surface on which the table
can rotate. During data acquisition, subjects were placed on the two-piece articulated
section. A motor is used to take the lower part of the articulating section moving through
a circular arc of around 90° in approximately 12 seconds. For convenience, the arc is

marked in 5° increments.

Technique of DVF Examination. The subjects were made to undergo passive flexion-
extensions and lateral bending motions twice with about twenty minutes interval between
the screenings. The DVF image sequences were taken from a lateral view in the former
and from the anteroposterior view in the latter. The frames were captured at a rate of
about 5 frames per second. In each sequence 150 frames are obtained which means that

the total exposure time is about 2 minutes.

In the current study, the analysis is performed on every fourth frame and this meant 38
frames for each sequence are used, thus reducing the encompassing time span to approx-
imately 0.8 seconds for each increment. In his experiment, the images obtained were
directly digitised and saved to a hard disk. This avoided the need for an intermediate
video tape as used in the early DVF to store the images. This in turn avoided the image
degradation usually caused by video tape. It will therefore be proper to refer to the

DVF as digitised fluoroscopy (DF).

An aluminium grid was used to calibrate the distortion in the image. This helped to
calculate the resolution of DVF images. The grid was formed by precision-drilled holes
of 1 mm in diameter at 1 em spacing over an area of 14 c¢m by 14 em (Kondracki 2001).
The image resolution of the pixels in the horizontal and vertical directions was about
0.5 mm/pizel after averaging 5 repeat measurements of pixels between two end points

of each row and column.

Flexion-Extension. The subject was placed on the passive motion table on their right
hand side, as shown in Figure 3.3(a). During the experiment, an attempt was made to
position the L3 of the subject at the interface of two articulated parts by moving him
up or down in order to maximally keep the whole lumbar spine within view during the
movement (there are still some cases where lumbar spine is out of view and these have
posed problem in the segmentation which will be discussed later). Further adjustments
were made to make the subject feel comfortable, stable and in an attitude as close to the
neutral spinal position as possible. The upper part of the body was secured by running a
strap underneath the table and over the subject as shown in Fig 3.3(a). The lower body

was left unsecured to alleviate excessive discomfort. Additionally, a pillow was placed
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(2) Sagittal view

(b) Anteroposterior view

FIGURE 3.3: Passive motion table, with kind permission of M. Kondracki (2001).
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between the knees to help keep the pelvis aligned. In order to avoid over extension of

the lumbar spine the knees and hips slightly flexed.

The subject was taken through the movement a number of times before the fluoroscopic
imaging to ensure they could cope with the full range of 40° for both flexion and ex-
tension. In some cases, the subjects felt quite uncomfortable in full flexion. They were
then taken through the sequence under the fluoroscopic imaging. The sequence starts
with an initial neutral position and then to full flexion. The subject was then taken to
full extension by reversing the direction of movement of the table before the the subject
was taken back to the initial neutral position. In most cases, the lumbar spine of the
subjects cannot be made to return to the same “initial neutral position” and this was

addressed in Kondracki’s study (Kondracki 2001).

The X-ray dosage, controlled by the image intensifier, often results in image “flaring”
when the subject’s trunk fails to cover the extent of the X-ray beam (this often occurs
in the extension phase) and the image intensifier received unattenuated rays. In order
to eliminate or reduce this problem capable of causing large changes in contrast and

blurring of the lumber spine, a flexible lead sheet was placed on the subject’s back. This

is shown in Figure 3.3(a).

Lateral Bending. A similar procedure to that discussed above was then used to adjust
the position of the subject. The subject was placed in the supine position with a small
pillow under the knees for comfort and to help reduce excessive extension of the lumbar
spine. This helped to prevent any possible coupled motion. The subject was taken into

the right lateral bending and then back into left bending before being returned to the

“neutral position”.

3.4.1 Dosage Analysis

The use of ionising radiation raises important issues in relation to a patient’s safety.
In an attempt to overcome this, Breen (1991) undertook a pioneer dosage study on the

prototype system to determine the absorbed radiation dosage values for a typical patient

screening sequernce.

These values and, by way of comparison, the dosage associated with plain-film X-rays
are shown in Table 3.2 3. It is clear that there is a great reduction in radiation associated

with DVF when compared with a standard plain X-rays of the same region.

In DVF acquisition the total radiation dosages on different subjects have been analysed

3Gy is an international system unit (SI unit) of absorbed dose of radiation, 1 Gy is 1 Joule(J)
absorbed per kilogram of irradiated material. That is, 1 Gy = 1 J/kg.
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TABLE 3.2: Absorbed radiation dosage (Breen (1991)).

Typical DVF screening Typical plain-film
(approx. 10 seconds per view)
View Absorbed dose (mGy) View Absorbed dose (mGy)
Lumbar A/P 2.9 Lumbar A/P 20
Lumbar lateral 12.6 Lumbar lateral 50

* A /P means anteroposterior

and are shown in Table 3.3. The average dose-area product across all ten subjects for
one screening (anterior/posterior and sagittal) is about 2.55 Gy cm?. There is a large
reduction over the prototype and is also significantly lower than 15 Gy em? as recom-
mended by the National Radiation Protection Board (NRPB) of the United Kingdom.
Nevertheless, by considering the reduction in dosage levels for common medical proce-
dures, this value is still much lower than the median dose of 7.65 Gy em? for the lumbar

spine plain film (Warren-Forward et al. 1998).

TABLE 3.3: Radiation dosage and screening times for all subjects, adapted with kind
permission of M. Kondracki (2001).

Subject Total time | Total dose-area product | Effective dose
index (min) (Gy em?) {(mSV)
BM 1.7 6.82 0.99
CR 1.9 3.43 0.46
DE 1.6 5.87 0.68
DO 1.7 4.88 0.61
GD 1.7 3.85 0.44
GP 1.8 5.34 0.65
JM 1.8 4.05 0.50
JW 1.9 5.98 0.70
NW 1.9 4.77 0.57
RM 2.3 6.01 0.62
Mean values for
all ten subjects 1.83 5.1 0.62
Average values for
screening once 0.915 2.55 0.31

3.5 Conclusions

At present, DVF is the only practical imaging technique to obtain continuous motion
images of the lumbar spine at the segmental level with a very low radiation dosage.
However, the quality of DVF images is still relatively poor and requires great care in
locating landmarks, which is much more difficult than in a plain radiograph. Without

exception, this led to problems in the current study and this will be discussed in later

chapters.
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Indeed, the limitations of DVF encourage new development in radiographic science that
might obtain motion sequences with improved image quality but even less radiation
risk. This can be achieved in many possible areas. Currently, the technique of cinera-
diography is also used in spine kinematics (Kanayama et al. 1996; Takayanagi et al.
2001). Pulse X-rays in synchrony with image acquisition should ensure a progressive
reduction in absorbed radiation dosage. Improvement in the sensitivity of image in-
tensifiers and shortening of their persistence time will enhance image quality and also
safeguard patients from X-ray hazards. Bi-planar fluoroscopy will provide a valuable
tool for investigating 3-D motion. These changes, together with 4D-CT and high speed

MRI, although by no means a reality as yet, should come into use in the future.

It is worth mentioning that the automated segmentation algorithm proposed in this
study is a generic approach and should be directly applicable to the new imaging tech-

niques which are likely to offer improvements in image quality.
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Edge Detection

4.1 Introduction

The boundaries of an object’s surface often lead to oriented localised changes in intensity
in an image, called edges. Edge detection is regarded as one of the first steps in image
processing. There have long been attempts at an optimal edge detection algorithm. This
effort has constituted a principal area of research in low-level vision and has led to a
number of edge detection algorithms published in computer vision journals over the last

30 years. Even now, new algorithms are still being published.

The edge information is a prerequisite for the Hough transform (HT), which is founda-
tion of this study and will be fully discussed in later chapters. To a great extent, the
performance of the HT relies on the available edge information. As has been stated,
the quality of DVF images is much inferior to that of X-ray images, thus extra caution
is necessary to select an appropriate edge detection method for obtaining better edge
information. The edge detection methods can be divided into two approaches, known
as gradient-based and phase-based operators, in terms of the information used in these
methods. In this chapter, gradient-based operators and phase-based operators (espe-
cially phase congruency) are introduced here. Amongst gradient-based methods, the
Canny operator is widely used and is sometimes regarded as optimal. Thus, a com-
parison of results between Canny and phase congruency was conducted and the results
showed that in most cases phase congruency can here provide superior results to those

of Canny. This has encouraged us to use phase congruency for edge detection in this

study.

28
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4.2 Gradient Based Operators

Gradient-based edge operators are the most commonly used methods and they can locate
the edges by detecting the changes in brightness of an image. According to Nixon and
Aguado (2002) and Sonka et al. (1999), the gradient-based edge operators can be divided

into three categories:

e Operators that approximate derivatives of the image function using differences

such as Roberts, Sobel, Canny and Prewitt.

o Operators that use the zero-crossing of the image function second derivatives i.e.

Laplace and Marr-Hildreth.

e Operators that attempt to match an image function to a parametrical model of

edges.

As new algorithms have continuously been developed and these operators are often best
for specific kinds of images, in practice it is very difficult to select the most appropriate
edge detection method. Amongst these, the Canny operator is one of the most popular
methods (Canny 1986), and is designed to provide optimal edges (Nixon and Aguado
2002). With adaptive thresholding, it can provide better results than other complex
algorithms (Heath et al. 1997). However, it is virtually impossible to achieve an exact
implementation of Canny given the requirement to estimate the normal direction. A
common approximation usually consists of a Gaussian filter followed by the Sobel oper-
ator with non-maximum suppression and then hysteresis thresholding. A Gaussian filter
is optimal for image smoothing and can significantly reduce the response to Gaussian
noise. Non-maximum suppression results in thinned edges. Hysteresis thresholding con-

nects the edge points and thus has the ability to detect major features of interest in the

edge image.

In order to select a suitable edge detection method for the current study, an experiment
has been conducted to compare the results of Sobel and Canny when applied to DVF
images. In the experiment, a low threshold and a high threshold were used, respectively!.
The results are shown in Figure 4.1. When the low threshold was used, too many
unwanted edges remain and it is difficult to discern the desired edges (boundaries of the
vertebrae) while too few useful edges were left when a high threshold was selected. In
the case of high threshold, the edges of L2-4 look good but those of L1 and L5 almost
disappear. The reason for this comes from the low contrast and inconsistent brightness

of DVF, as discussed in the previous chapter.

!Hysteresis thresholding in Canny requires two thresholds, an upper one and a lower one. In this
experiment both were set to the same relatively low or high values.
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In further experiments, in order to eliminate the problem caused by large changes in
brightness within the whole image, the image was cropped into small areas in which a
single vertebra is contained. As a worst case, only the L1 and L5 areas were compared.
This time only Canny is used as it has been justified that Canny can perform better than
Sobel. Apart from low and high thresholds, a manual tuning of the thresholds was also
used and is believed to provide optimal edge results. Figure 4.2(a) is the source image
of the L1 and Figure 4.2(b) illustrates results of the L1 with manual optimal thresholds,
Figure 4.2(c) and 4.2(d) show edges with low thresholds and high thresholds. Similarly,
the L5 image and its results are shown from Figure 4.2(e) to 4.2(h). It seems that
there is little improvement and problems still exist especially in the region of L5. Even
though manual setting of the threshold could lead to acceptable results, it is unlikely
to be useful as one cannot depend on manual effort to set appropriate thresholds for a

large data set such as DVF sequences.

4.3 Phase Congruency

Canny, Sobel and other commonly used edge algorithms perform in the spatial domain,
such as finding edges via changes in brightness. There are difficulties in selecting a
threshold above which features are considered to be significant. This implies that priority
may be given to edges in brighter areas. Setting too low a threshold may yield too much
background information whilst setting too high a threshold may mean that features in

areas of low contrast are overlooked.

Phase congruency has recently been introduced (Kovesi 1999). It is based on the fact
that features are perceived at points in an image where the Fourier components are
maximally in phase. A wide range of feature fypes can cause points of high congruency,
these include step edges, line edges and roof edges. Some studies focused on the phase
information before phase congruency (Morrone et al. 1986; Morrone and Owens 1987).
Human vision is able to respond very successfully to large variations in image contrast
and magnification. This may be due to a finely tuned adaptive threshold, but there have

been suggestions that detection of phase information plays a crucial role.

In most applications only the magnitude information of images is needed while the phase
information is discarded. Despite this common practice, phase information should not be
ignored but it needs more attention because phase carries considerable information of an
image. The importance of phase was demonstrated by Oppenheim and Lim (1981). They
constructed a synthetic image by combining the magnitude information of one image
and the phase information of another. The perceived features in such an image clearly

correspond to the phase data, if somewhat degraded. This is illustrated in Figure 4.3.
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(d) Sobel with high threshold.

FIGURE 4.1: Edge image of a DVF image by using Canny and Sobel.
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(d) High thresh-

(a) L1 source. (b) Manual.
olds.

(e) L5 source. (f) Manual. (g) Low thresh- (h) High thresh-
olds. olds.

FIGURE 4.2: Edge detection of vertebrae L1 and L5 by using Canny.

Phase congruency has significant advantages over gradient-based methods. It is a di-
mensionless quantity that is invariant to changes in image brightness or contrast. Hence
it provides an absolute measure of the significance of feature points, thus allows a uni-
versal threshold value that can be applied to a wide range of images. Consequently,

the problem of selecting threshold for a whole image with uneven brightness, like DVF

images, might be solved.

(a) Rice (b) Cameraman (c) Mixture (Magnitude
(a)) plus Phase (b)

FIGURE 4.3: Importance of the phase information in image.
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4.4 Comparison between Phase Congruency and the Canny

Operator

Although various edge detection techniques have been proposed, because of the diffi-
culty in obtaining ground truth for real images, the traditional technique for comparing
them is to present image results, side by side, and to let readers subjectively judge the
quality. This therefore is not a scientifically satisfactory strategy and makes it difficult
to compare different methods. So far, there has been one study conducted by Heath
et al. (1998) aiming to change this situation. In this study output edges of four well-
known detectors (Canny, Nalwa-Binford, Sarkar-Boyer, and Sobel) were evaluated by a
number of volunteers. During the experiment, different tuning factors (e.g. threshold
values) were also considered, then the ratings were statistically evaluated so as to find
any possible significance. The conclusion was a little disappointing but conformed to
reality. That is, Canny usually. performed better than others whether or not parameters
are fixed or adapted, but in some cases this could be reversed. The important point
is that the performance of the detectors largely depended on the images to which they
were applied, so did the optimal parameter settings. Thus, in practice, caution is needed

in selecting appropriate methods and parameters for specified images.

As many studies have suggested, in most cases, that Canny can yield more satisfactory
edge information than other gradient-based methods. Here, to show the good per-
formance of phase congruency, some comparisons have been conducted between phase
congruency and Canny. The source code provided by Kovesi (1999) was used for phase

congruency whilst the function provided by Matlab Image Processing Toolbox was used

for Canny.

First, these two methods are applied to a cameraman picture, as shown in Figure 4.4(a).
Values of two thresholds for the hysteresis thresholding used in Canny were automatically
set by the function itself (where the upper threshold value is determined by assuming
that only 30% of the pixels are edge points and the lower threshold value is 40% of the
upper threshold value). In the current study the upper and lower threshold values for
hysteresis in phase congruency were set to 0.5 and 0.3. This setting can provide more
detail and probably remove more background noise. The results shown in Figure 4.4(b)

and 4.4(c) are not distinct as the contrast within the source image is very sharp.

In order to show the superior ability of phase congruency against the uneven illumi-
nations within an image, a new image was obtained from the cameraman picture by
doubling the brightness in the left half whilst halving that in the right half, as shown in
Figure 4.4(d). Again Canny and phase congruency are applied to it and the results are
shown in Figure 4.4(e) and 4.4(f), respectively. Despite the low brightness on the right
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(d) Changed cameraman (e) Canny (f) Phase congruency

FIGURE 4.4: Comparisons between Canny and phase congruency on cameraman.

side, the edges of the high building were still successfully detected by phase congruency,
but Canny failed. These results showed the unique feature of phase congruency. That is,

there is no need to adjust thresholds for images that have wide variations in illumination

level.

Phase congruency has also been applied to some DVF images and example results are
illustrated in Figure 4.5. These results are encouraging compared to the results on
Figure 4.1(a) and 4.1(c). They provide more edge information but with fewer unrelated
noise points. Especially, there is a large improvement on the edges detected in the
regions of L1 and L5. It is worth mentioning that all these results were achieved without
extra effort for threshold selection. The only limitation of phase congruency might be
its speed: phase congruency runs about 15 to 30 times slower than Canny. It seems
unlikely to be a problem in future since computer speed continues to increase, and the

gain in performance appears worthwhile.
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(c) Frame 3 (d) Frame 4

FI1GURE 4.5: Edge maps of several DVF images by phase congruency.

4.5 Conclusions

Edge detection represents an extremely important step which can facilitate subsequent
high-level algorithms (e.g. segmentation and image analysis) and remains an active
research area. In practice there is a compromise between operators. That is, a simpler
high level algorithm can be used if good edges can be detected by the edge detection;
otherwise, poor edge information will impose a more exacting requirement on the high-
level techniques which should be capable of eliminating or handling the problems caused

by the poor edge information.

Due to the low quality of DVF images, the most commonly used edge detection tech-
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niques are unable to yield satisfactory results even with adaptive parameters. Fortu-
nately, phase congruency can yield better edge results. As ever, there is no panacea:
better algorithms have always been desired and may be achieved in future. On the other

hand, this is one of the factors that motivated development of a new spatio-temporal

Hough transform.
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Parameterised Hough Transform

5.1 Introduction

As stated earlier, landmark location has been a crucial step in the analysis of spine
kinematics and there has been no acceptable automatic approach yet. This study aims
to develop an automated method by taking advantage of image segmentation which is
a very active area in computer vision. Image segmentation is a very important step of
image processing which ultimately leads to the image analysis. Its main goal is to find
shapes of interest in an image. So far, various image segmentation methods have been
developed, ranging from simple methods such as thresholding or subtraction to more so-
phisticated methods such as template matching, active contours (snakes) and the Hough
transform. In this chapter, a brief overview of existing image segmentation methods is
presented, then a review of literature on the Hough transform is conducted. Following
the introduction to the Fourier descriptors, the parameterised Hough transform (PHT)
is described in detail. In order to test the performance of the PHT, some experiments
were conducted in which the PHT has been applied to a synthetic image with/without
noise and occlusion, and to a calibration model. These tests have yielded promising

results. Finally, the PHT was applied to DVF images and some extraction results are

reported.

5.2 Basic Segmentation Methods

Image segmentation is one of the most important steps in image processing in which the
computer attempts to separate objects from the image background and from each other.
A number of algorithms has been developed to achieve the segmentation task and here

only a selection is discussed.

37
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Thresholding and subtraction are possibly the most simple segmentation methods. Thresh-
olding assumes that the shape of interest can be identified from other objects or back-
ground by changes in brightness. Therefore, it finds the shape by locating the pixels
with brightness level in a predefined range of values. Thus correct threshold selection is
crucial for successful segmentation. Thresholding is sensitive to changes in the illumi-
nation. Moreover, it can only work well when the contrast between the shape and the
background is large. Unfortunately, this is not the case in most real-world applications.
Subtraction is also very simple to use. It works by subtracting the background from the
image. In doing this the background has to be known precisely in advance. Moreover,
the subtraction cannot handle noise very well as it has no noise filtering ability. Over-
all, thresholding and subtraction are attractive owing to their simplicity and efficiency,
but they are sensitive to partial shape, noise and variation in illumination. Therefore,

advanced segmentation approaches are desired to improve performance.

Template matching is anotherrbasic method of segmentation. Namely, a template is
defined in which the shape of interest is contained. In implementation this template
is centered on an image pixel and the degree of match between the template and the
image is checked. Correlation between the template and the image is a general matching
criterion. This procedure is repeated for all the pixels in the image. The maximum
correlation is regarded as the best match and its position suggests where the target shape
is located in the image. If the template is square and of size M x M and is matched to an
image of size N x N, the computational cost involved is O(N2M?) for determining the
location of the known shape. By rotating the template or by using polar coordinates,
template matching can also handle the orientation change of the known shape in the
image. Of course, with more parameters involved, the counting procedure becomes more
and more complex and thus the computation will greatly increase. In fact, the large
computation cost is one of its limitations. Furthermore, in reality the searched images
are usually corrupted by noise, geometric distortion and occlusion and it appears that
template matching cannot cope with these satisfactorily. These are reasons why those
aforementioned automatic landmark location approaches are unattractive (Muggleton
and Allen 1997; Muggleton and Allen 1998; Simonis et al. 1993; Cardan and Allen
2000) as they were based upon template matching.

An active contour (or snake) is an energy-minimising curve guided by external constraint
forces and influenced by image forces that pull it toward features such as lines and edges.
The weakness of a snake is that the result depends on appropriate initialisation and on
parameter selection. Moreover, snakes cannot solve the correspondence problems in
motion sequence analysis whereby shapes found might differ between frames because of
occlusion or noise. Consequently, errors may be generated and would be propagated to

the computation of spine kinematics. Furthermore, there is no evaluation of performance
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when applied to images of poor quality. Hence, snakes might not be an appropriate

method for this type of problem.

An active shape model (ASM) is a segmentation method that combines a model of the
object contour and the grey-level appearance surrounding the contours. Similar to the
snake, it can handle shape variations. In the ASM, the object shape is usually de-
rived from training data that contains the object of interest, by performing principal
components analysis (PCA) which is a statistical approach widely used for image dimen-
sionality reduction. Each training example is described by a series of landmark points.
The grey-level appearance is modelled in a similar way to shape by using PCA to analyse
the grey-level profile in the direction perpendicular to the edge at each landmark point.
The ASM has been used to locate vertebrae (Smyth et al. 1997). However, the ASM
is limited by the requirement of training data and correspondence problem between the

found shapes, as for a snake.

Before moving to the discussion of the Hough transform, it appears necessary to clarify
the concept of medical image registration. In medical imaging, registration is a widely
used method to achieve spatial alighment between two images (normally from different
modalities i.e. MRI and CT) and this is very important in the integration of useful
information from these images. For example, Hamadeh et al. (1997) proposed a solution
to estimate the motion based on 3-D/2-D registration of a 3-D surface model obtained
from CT slices with 2-D functional radiographies. The registration was achieved by
using the method of least squares to minimise the distance errors between two surfaces.
The method itself might be useful but the system is very complex and requires much
computation. Due to the relatively blurred nature of the images, the accuracy of image
registration is limited, sometimes large displacement in the registration can be obvious
to the naked eye (Maintz and Viergever 1998). Registration between image edges might
be helpful to overcome this kind of problem. In fact, medical image registration describes
a class of approaches of which some are based on segmentation such as registration using

rigid models (point, curves, surface) and deformable models (snakes).

5.3 The Hough Transform

5.3.1 Straight Lines

The basic principle of the Hough transform is quite simple. Take line extraction for
example, the problem can be described as how to find the straight line given edge points

P,(z;,y;) in an image as shown in Figure 5.1(a). A straight line can be expressed in the
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slope-intercept form: y = ma + ¢, where m is the slope of the line and ¢ is the intercept

on the y axis. Any line can be characterised by parameters m and c.

There is an infinite number of lines that could pass through a single isolated edge point
Pi(z;,y:). Each of these lines can be defined by a particular combination of (m,e¢).
We can characterise each of the possible lines that pass through this point as having
coordinates (m,c¢) in a slope-intercept space (also referred to as the parameter space,
accumulator space or Hough space), this is shown in Figure 5.1(b). For example, the
possible lines through point P; are defined by a line Ly in the (m,c) space. If this
procedure is repeated for other edge points, there will be more lines formed in the (m, ¢)
space. Lines formed by any two edge points will intersect in the accumulator space,
like Ly and Ly will go through Iy(m1,¢;). If the number of intersections (votes) at the
given point (m;,¢;) is n, this means that n feature points lie on the line defined by
(mi, ). In this way, the Hough transform can locate the line by finding the (m, ¢) pair
corresponding to the maximal number of votes in the accumulator space, like I (m,c¢) in
Figure 5.1(b). In other words, the Hough transform works by letting each feature point
(z,y) vote in the (m,c) space for each possible line passing through it and this is why
the Hough transform is often referred to as evidence gathering. In implementation, the
slope-intercept space (m, ¢) is converted into an accumulator array by quantising it into
finite intervals or accumulator cells. As the HT proceeds, the accumulator cells that lie
along the straight line (m,c) are increased. Resulting peak values in the accumulator

array represent strong evidence that a corresponding straight line exists in the searched

image.

Note that during these procedures, every point in image space (z, y) corresponds to a line
in parameter space (m, ¢) and each point in (m, ¢) space corresponds to a line in image
space (z,y), this feature is highlighted as principle of the duality in geometry (Aguado,
Montiel, and Nixon 1998).

v l Py ¥ o &\\\\;&\ (m, <)

' iy, © .;F Mg, ¢5)
= 3ig, €3 S

P, o) cT

o
o

1

* P, 1)

m

(2) Image containing a line (b) The slope-intercept space

FIGURE 5.1: Illustration of line extraction.
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An inherent weakness of the Cartesian parameterisation is that m may become infinity
(i.e. a vertical straight line) and in this case no array can be set with enough ele-
ments. This problem was solved by the polar parameterisation introduced by Duda and

Hart (1972), which has bounded parameter ranges.

The idea of line extraction can be easily extended to other analytical shapes such as
circles and ellipses. However, the dimensionality of the accumulator space becomes
larger as more parameters are required. For example, for a circle three parameters
(radius and locus of the center) are needed while four parameters (locus of the center
and lengths of major axis and minor axis) are needed for an ellipse (and another one
is needed if there is orientation). The complexity of determining the maximal vote

increases in proportion with the increase in dimensionality.

5.3.2 Arbitrary Shapes

In reality, natural shapes are not always able to be described in analytical form. Here,
following the idea of Merlin and Farber (1975), an intuitive introduction will be given
to show how the Hough transform can cope with the arbitrary shapes. For simplicity,

only the problem where translation parameters needs to be determined was considered.

Suppose that we have a known object where its contour is used as the model (or template)
in the Hough transform implementation, shown in Figure 5.2. The problem is how to
determine its position within an image. As we know, for a known 2-D rigid object, if
the location of a reference point to it is known and then the position of this object is
uniquely determined when there is no orientation and scaling change. Such a reference

point can be selected at random, but normally the center of mass is used, like O in

Figure 5.2.

FIGURE 5.2: The curve to be found.

Given an edge point A in the image, shown in Figure 5.3(a), it can belong to an infinite
number of different traces of the contour, some of them are shown in Figure 5.3(b). For
each trace, there is a possible center denoted as O;. The locus of all possible candidates

O; can be easily obtained by saving all possible positions of O; for possible traces.
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Actually this locus is just the template contour rotated by 180° and centered at A,
shown in Figure 5.3(c).

By repeating this procedure for other possible feature points, more possible loci of the
searched contour can be obtained, shown in Figure 5.3(d). Like straight line extraction,
it can be found that there are intersections between different loci of the possible centers.
The location of the center can be determined by looking for the maximal intersections
and this means that the known object has been segmented from the image. Similar to
straight line extraction, an accumulator array can also be introduced in order to keep
the intersection numbers of the loci formed by different feature points. The translation
parameters are determined by locating the maximal number of votes in the accumulator
array. From this aspect, it can again be found that the Hough transform is gathering

evidence from the feature points.

Owing to the mechanism of collecting evidence from all feature points, the Hough trans-
form is very robust to noise. This can be intuitively explained by Figure 5.3(e). Because
of the random nature of noise, noise points can only produce loci randomly, this will

only increase the overall values of the accumulator array cells but is unlikely to dominate

the evidence gathering procedure.

The Hough transform can be extended to more complex problems such as translation
together with orientation and scaling change. This means that more parameters are
needed to be determined. As stated earlier, the computation cost will increase in pro-

portion with the increase of dimensionality.

From the above discussion, it can be found that theoretically the Hough transform is
capable of extracting any arbitrary shape, however, how to describe the arbitrary shape
had not been solved until the generalised Hough transform (GHT) appeared (Ballard
1981). In the GHT, an R-table is introduced to describe the arbitrary shape. Given
a 2-D arbitrary curve, for any feature point its edge direction ¢ and radius vector to
the chosen reference point (r, ) (where r is the distance between them and « is the
angle between the vector and the horizontal) can be obtained. Then the R-table is
formed by arranging the points with the same edge direction values in the same row.
Since the R-table is a discrete description, when the contour is scaled or rotated there
can be problems with aliasing and rounding errors and thus distortions are inevitable.
Recently, instead of the R-table, a continuous description has been proposed to eliminate

the problems with the R-table (Aguado, Nixon, and Montiel 1998) and will be presented

later.
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FIGURE 5.3: Illustration of arbitrary shape extraction using the Hough transform.
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5.3.3 Overview

As stated earlier, the Hough transform is one of the most powerful tools in computer
vision. Originally the Hough transform was designed to detect straight lines (Hough
1962). Rosenfield realised its potential as an image processing algorithm and brought
it to the mainstream of image processing. Owing to its good performance, the Hough
transform was first extended to detect objects that can be described analytically such as
circles (Kimme et al. 1975), ellipses (Tsuji and Matsumoto 1978). To solve the problem
of detecting an arbitrary shape, a generalised Hough transform has been proposed (Bal-
lard 1981). A number of variations of the Hough transform has been proposed to handle
specified problems such as 3-D shape extraction (Wang and Reeves 1990), motion extrac-
tion (Nash, Carter, and Nixon 1997) and extracting an arbitrary shape with arbitrary
motion (Grant, Nixon, and Lewis 2002).

Simultaneously, a number of studies has been focused on improving the performance
in different aspects. As stated earlier, the Hough transform requires much storage and
extensive computation. The fast Hough transform (FHT) (Li et al. 1985) and the
adaptive Hough transform (AHT) (Illingworth and Kittler 1987) have been proposed in
which a coarse-to-fine algorithm is used in the accumulator space to reduce the storage
and the time for locating the results. Alternatively, this objective can be achieved
by parameter decomposition (or by a multi-stage strategy) so that the dimension of
the Hough space can be reduced (Kimme et al. 1975; Illingworth and Kittler 1987;
Muammar and Nixon 1991). For a better description of the shape to be extracted,
elliptic Fourier descriptors have been introduced to describe arbitrary shapes and will
be discussed later (Aguado, Nixon, and Montiel 1998). In order to improve the efficiency
of peak search, Genetic Algorithms (GAs) have been used (Goulermas and Liatsis 1998;
Ser et al. 1999). Another effort has been made in extracting deformable shapes and
similar shapes (Samal and Edwards 1997; Brejl and Sonka 2000b).

Apart from those Hough transforms wherein all feature points are involved in the evi-
dence gathering, there is another method called the randomised Hough transform (RHT).
(Xu et al. 1990; Leavers 1992; Xu and Oja 1993; Kélvidinen et al. 1994). The RHT ran-
domly samples the edge data and only a subset of feature points is processed. Evidence
gathering stops when the peak value of the Hough space is larger than a predefined
threshold. In this way the RHT can save storage and computation time. However, the
results cannot be reversed to see which point has contributed to the extraction. More-
over, there is a problem in selecting an appropriate termination criterion. A performance
comparison has been made on the existing varieties of the RHT (Kélvidinen et al. 1994).
For more details, e.g. shape parameterisation, accumulation in parameter space, peak

location, etc., we refer the reader to review two surveys of the Hough transform (Leavers
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1993; Illingworth and Kitter 1988).

The unique properties of the Hough transform also provoke applications in vertebra
extraction. A GHT based approach has been used to locate cervical vertebrae from
X-ray images (Tezmol et al. 2002) where the criterion of reckoning votes has been
modified to allow the shape information to be included in the voting process for more
accurate segmentation. In this method, a mean shape averaged from 50 images has
been used to represent the cervical spine. This method is proposed with the ability to
identify variations of the target shape, however, the reported orientation error is 4.16°
on average. It appears that this accuracy is not good enough for spine kinematics.
Another method called the active Hough transform has also been applied to locate
vertebrae in MRI spine images (Brejl and Sonka 2000a). This method is also based on
the GHT but claims better performance by incorporating the border information and
the variance of the target object contour to form the R-table. These two approaches
have three limitations. First, training data is needed to form the contour model. Second,
variations found in different images can result in correspondence problems. Third, as

with variations of the GHT, the problem caused by discrete description of model shape

yet awaits solution.

5.3.4 Further Discussion

Despite the sheer volumne of studies on the HT, so far, there is no rigorous mathematical
expression yet and only very few studies discussed its definition (Davies 1990; Deans
1981; Princen et al. 1992; Aguado et al. 1998; Olson 1999) amongst these the definition
based on the principle of geometry duality is most elegant and attractive (Aguado, Mon-
tiel, and Nixon 1998). More surprisingly, there have been very few papers on theoretical
discussions of its performance such as bias and aliasing errors (Veen and Groen 1981;
Maitre 1986; Hunt et al. 1990; Grimson and Huttenlocher 1990; Kiryati and Bruckstein
1991; Lam et al. 1994; Palmer et al. 1997; Soffer and Kiryati 1998; Aguado et al. 2000).

Sklansky (1978) showed that the HT provides a result equivalent to that derived by
template matching. Therefore, the HT inherits advantages such as immunity to noise
and occlusion but with less computational effort. The HT, by matching only image edge
points to target contour points, requires much less computation than template matching.
In particular, the number of edge points increases only linearly with the image size N,
not by N2, likewise with the number of target contour points M. Thus, the complexity
of the Hough transform is approximately O(NM).

In summary, the Hough transform is a powerful model based approach in computer

vision and its implementation relies on two conditions. First, a model of the object of
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interest, i.e. line, circle or any arbitrary shape, should be predefined. Second, edges of

the image to be searched should be available.

5.4 The Parameterised Hough Transform (PHT)

In a revision of the GHT (Aguado, Nixon, and Montiel 1998), elliptic Fourier descriptors
were used to describe the shape. This representation gives a continuous representation

that can be sampled at any resolution without the aliasing problems of the R-table.

Elliptic Fourier descriptors are chosen for their completeness, simple geometric interpre-
tation, access to frequency information and the fact that they can be easily obtained
from the chain code of the model contour (Kuhl and Giardina 1982). Alternatively they
can be derived by applying the Fourier transform to the coordinates of the points on the
contour directly. Apart from this description, however, other analytic representations

(e.g. a wavelet descriptor) might equally be used.

5.4.1 Fourier Descriptors

Usually, a 2-D curve ¢(t) can be mathematically described by a vector function, which

defines the position of the points in it by their components in two orthonormal axes.
That is
c(t) = cx(t)Uqg + ¢y (1)U, (5.1)

where U, = [1 0] and U, = [0 1)T are two orthonormal vectors.

During the Fourier descriptor calculation, the overall length of the curve is normalised

to 2w. Therefore, the position of the point on the curve ¢ is indexed by radians in the
range of [0, 27).
According to Fourier theory, ¢; and ¢, can be expressed by a Fourier expansion. That
is
a o0
cx(t) = —;—O + Z(axk cos(kwt) + by sin(kwt))
k=1
a o0
ey(t) = —12’—0 + Z(ayk cos(kwt) + by sin(kwt)) (5.2)

k=1

In Equation (5.2), w is the basic frequency and k is the harmonic number. The coef-

ficients agk, byk, ayr and by which are later called Fourier descriptors (FDs), can be
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computed by the discrete approximation given in trigonometric form as

2 . 2 & . ,
Qok = — in cos(kwi) and by = o ;Ii sin(kwi)

i=1

2 ¢ : 2~
ayr = — Z;yi cos(kwi) and by, = — Z;yi sin(kw?) (5.3)
1= 1=
where m is the number of total sampling points, z; and y; define the values of the

functions z(t) and y(t) at the sampling point 7.

Thus Equation (5.2) can be expressed in matrix form as

m/2

o) = 2len] = Slemr ][ -

Given the discrete nature, the possible number of frequencies in the expansion &k should
be integers between 1 and m/2 as suggested by sampling theory, but the determination
of the maximal frequency still deserves some discussion especially when the sampling
points are very few and the curve has a very sharp corner. For convenience, the DC
components azo and a,o in Equation (5.4) can be omitted since any curve can be defined

with its center at the origin of the coordinate system. That is

m/2

[cm(t)] _ Z[azk bxk:‘ [COS(kWt)] (5.5)

cy(t) e Qyk byk sin(kwt)

For a given curve, shown in Figure 5.4(a), its reconstructions with different orders of FDs
are illustrated in Figure 5.4(b) to Figure 5.4(k). With more harmonics, the reconstruc-
tion is increasingly close to the original curve. Especially from 16 FDs, the difference
between the reconstruction and the original curve becomes very small. The values of
the FDs are shown in Figure 5.5 and it appears that these values decrease with increase
in the FDs’ order. This implies that it is possible to reconstruct the original curve by

limited numbers of FDs without large errors.

In order to illustrate the possible errors between the reconstruction and the curve itself,
another experiment has been conducted. During the calculation of FDs, the indexes in
radians corresponding to the sampling points along the curve can be obtained as well.
Note, these indexes do not increase linearly because in generating the chain code the
distance between the neighboring points is not same but with possible value of 1 or v/2.
After the FDs were obtained, the reconstruction is made at these index values. There-
fore, differences between the curve and reconstruction can be compared and Figure 5.6

shows such comparison of the differences with 8, 24 and 48 FDs. Clearly, improvement



Chapter 5 Parameterised Hough Transform

48
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FIGURE 5.4: Curve reconstruction by different FDs.

------ Original
— Reconstructed

----- Original
— Reconstructed

«+++ Original
—— Reconstructed

------ Original
— Reconstructed



Chapter 5 Parameterised Hough Transform 49
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FIGURE 5.4: Curve reconstruction by different FDs (continued).
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FIGURE 5.5: FDs for the curve.
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in accuracy can be achieved with a larger number of descriptors. Another consideration
is the possible maximal difference. For each reconstruction, the maximal absolute values
of the difference at sampling points was obtained and these are shown in Figure 5.7(a).
Similarly, the average differences with each reconstruction were also obtained and are
shown in Figure 5.7(b). It denotes that the overall average difference has become less
than unity after 16 FDs and the error continues to reduce but only slightly with contin-

uing increase in the number of descriptors. This shows that the FDs can describe the

shape well.

Difference in x direction
Difference in y direction

% ~ 8FDs -6 - 8FDs
-~ 24FDs ¢ -~ 24FDs
—— 48 FDs : —— 48 FDs
5 " ; i ; . . g i ; g i i ’
‘0 100 200 300 400 500 600 700 i) 100 200 300 400 500 600 700

Sampling point index Sampling point index

(a) x difference (b) y difference

FIGURE 5.6: Difference between reconstructions and the curve itself.
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FIGURE 5.7: Maximal and average differences between the reconstructions and the
curve itself.

The good attributes of FDs, such as invariance to rotation, scaling and translation, and
especially access to frequency components, make it a powerful tool to represent curves,
whether they are closed or open. In case of an open curve like a straight line, the FDs

can be derived by tracing the curve twice in opposite directions.
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5.4.2 Description of the Algorithm

Any curve A(t) obtained by applying the affine transformation (only translation, scaling
and rotation are considered here, shears can be included as well) to a curve ¢(t) can be

expressed by its two components in the « and y directions. That is,

Aw(t)J {a:t} [cos(p) — sin(p)J [cx(t):!
i W R Al L (>
where s represents the scale factor, p is the (clockwise) rotation, and (z;,y:) are trans-

lations in the z and y directions.

Following the derivation of the HT (Aguado, Nixon, and Montiel 1998), the transforma-

tion kernel was defined as

= [, O e

For any edge point P(p,,,py,) located by edge detection methods (especially phase con-

gruency, as used in this study), its translation vector can be expressed as

[ﬂ _ [pm,} _ w(t, 5, p) (5.8)

Yt Yz Yi

As introduced earlier, in order to form the accumulator array an evaluation criteria has
to be made in order to increase the values of the array cells where there are intersections.

Here, a simple matching function was introduced and it can be expressed as

H(a,b)={é Z;: (5.9)

Here, a and b can be vectors '. Now the HT can be defined in discrete form as

Spu(b,s,p)=>_ > H(b [pzlJ —w(t, s, p)) (5.10)

ZGD tEDt

where b is the translation vector, and Spg(b, s, p) is a 4-D accumulator space. D; is

the collection of the edge points located within the image and D; is the domain of the

In terms of signal processing, the procedure to form the accumulator space in line extraction can
be regarded as a certain space-variant transform followed by sampling on a rectangular grid. Thus, the
commonly used matching function like Equation (5.9) is a discontinuous and non-bandlimited function.
Due to aliasing effects a non-bandlimited signal cannot be properly represented by a discrete set of
samples and this is one weakness in the implementation of the Hough transform (Kiryati and Bruckstein
1991). In order to reduce/alleviate the aliasing effect, Kiryati et al. (1991) proposed a “bow tie” matching
function. In a recent study a “top-hat” function was introduced for line extraction (Palmer et al. 1997).
they reported that the new “top-hat” matching function can perform better to locate the true parameters
of lines than the commonly used one even when the outliers exist. For arbitrary shape extraction, such
functions can also exist but perhaps they will have more complicated forms.
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points in the model shape.

In fact, Equation (5.10) is an evidence gathering procedure which was introduced earlier.
Specifically, all possible instances of the model in the image, i.e. changes in size, rotation
and position, are taken into account. Thus, the real translation vector bg, rotation pg,
and scale sp can be determined by locating the maximal value in Equation (5.10), where

bo = (=10, y20)T. That is,

(bo, s0, po) = argmax(Spu(b, s, p)) (5.11)

The expression of Equation (5.11) that defines the HT using FDs for arbitrary shape
extraction was used in this study. Essentially, for a given feature point, a locus of points
is plotted through the 4-D accumulator space (translation in the z and y directions,
rotation p and scale s). The maximal value of this accumulator denotes the position of

the object found?.

5.5 Applications

5.5.1 Synthetic Image

First, the HT was applied to a simple image, shown in Figure 5.8. In this image, the
center of the object is actually located at (60.75,55.26), which can be rounded to the
nearest pixel position (61,55). The true results should be scale = 1, rotation = 0,

z = 61 and y = 55. The total number of edge points is 377.

Ficure 5.8: The synthetic image.

As discussed above, the core of the HT is forming the accumulator space. In this
study, by assuming intervals for scale, rotation and translation are unity, one degree and
one pixel, respectively, a 4-D array can be formed by discretising the ranges of these

parameters according to the above intervals. Each edge point votes in this array. That is,

?Normally, there will be peak formed in the accumulator even without occurrence of the searched
object. In application, a specified threshold value is often defined and only the peak with value larger
than this value is regarded as the actual peak.
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TABLE 5.1: The extraction results with different Fourier harmonic components.

FDs order 4 8 16 24 32 40 60
Peak 81 155 249 275 279 293 302
Scale 1 1 1 1 1 1 1
Rotation 0 0 0 0 0 0 0
X 62 61 61 61 61 61 61
Y 55 55 55 55 55 55 55

Unit for rotation is degree, unit for = and y is one pixel.

if the parameters obtained are within the range set earlier, the value of the corresponding
cell will increase by one. In this way, the array cells are assigned values by all the edge
points. Then the parameters can be determined by locating the maximum in the array.
In order to illustrate this procedure, the array values were transformed into an image
(for convenience, only the vote distribution for translation was shown with scale of unity
and rotation of zero degree), in which the brightness of the image point is proportional

to the number of votes that cell obtained. Here, 16 FDs were used.

(a) 1 point (b) 50 points

(c) 100 points (d) 377 points

FIGURE 5.9: Illustration of Hough space formation.

In Figure 5.9, from 5.9(a) to 5.9(d), are the Hough spaces formed by 1, 50, 100 and 377
edge points, respectively. After analysing all edge points, the position of the brightest
point is the values of z and y we are looking for. In Figure 5.9(d), the coordinates (z, y)
of the brightest point are (61, 55) and this means that the z and y parameter values are
(61, 55) as expected. The peak value corresponding to it is 249, which is smaller than
the total number of edge points. The reasons for this might be from the discretisation

of the Hough space or partially from the approximation of the 16 FDs for the original

model.



Chapter 5 Parameterised Hough Transform 54

As we know, reconstruction with differing numbers of FDs will approximate the original
model with different degrees of accuracy. An experiment was conducted to demonstrate
how this number affects the extraction. Table 5.1 shows the extraction results with
different numbers of FDs. Here, reconstruction by 16 FDs gives a good match to the
image data. Four and eight descriptors are insufficient, as the peak values are less than
half of the number of total edge points. More descriptors, such as 24 and 32 or higher, are
unnecessarily complex as the results show no improvement over that by 16 FDs and the
vote values increase only slightly. This implies that reducing the number of descriptors
can reduce computational cost without sacrificing accuracy. Clearly, the results of 16
FDs are sufficient for a more refined analysis of the match at the vertebral corners, which

is the main objective of this approach.

Another concern is to what degree the HT can handle occlusion and noise. Here, in-
stances of the whole shape, 25% and 75% occlusion with different noise levels from 0 to

95% were considered. In this experiment, 16 FDs were also used.

It is difficult to add “real” noise to an image so we attempted to look at noise and
occlusion in the worst case. Moreover, with powerful noise removal algorithms, noise can
be reduced to minimum in most cases. Therefore carrying out the performance analysis
by adding “salt and pepper” noise to the edge image appears to be reasonable. Occlusion
was simulated by removing certain chosen parts from the edge image. Figure 5.10 shows
25% occlusion, its results and images with different noise levels and the corresponding
Hough space. In the Hough space images, it can be seen that the relatively bright area
spreads with the increase in noise level. This means that the signal/noise ratio decreases
and the peak is gradually impaired and eventually inundated by the peaks generated
by noise. Figure 5.11 shows 75% occlusion as well as its extraction results, images with

different noise levels and the corresponding Hough space.

Visually when the noise level is about 60%, the shape cannot be identified by human
vision. The results show that the HT can work well until the noise level is 90% for the
whole shape. When there is occlusion, this ability is reduced slightly. It can succeed
until the noise levels are 85% and 70% for 25% and 75% occlusion, respectively. These
results confirm that the HT has a good ability to handle noise and occlusion, and can be
useful for application to medical images. It is worth mentioning that the PHT should
be able to handle a higher percentage occlusion. However, the percentage of occlusion
may only be an effective measure for smooth shapes while it perhaps does not make
sense for a large angular shape. For this kind of shape the PHT can still succeed if only
one small corner area remains after occlusion. In this case, despite the high percentage
of occlusion the main feature is retained and this does not result in extra difficulty to

the PHT at all. Therefore, we believe that percentage of occlusion is just a measure
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of ability and should not be over-emphasised. Moreover, it appears more reasonable to

consider occlusion together with noise.
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(b) Extraction result

(a) 25% occlusion

(d) Hough space (30%
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(e) 60% noise
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occlusion and different noise levels.
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FIGURE 5.10:
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FIGURE 5.11: 75% occlusion and different noise levels.
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5.5.2 Application to the Calibration Model

When a clinical measuring technique is developed, it is essential to demonstrate its
reliability before it can be used in clinical trials. In this study, a calibration model has

been designed to examine the validity of the PHT.

The calibration model is comprised of two human lumbar vertebrae (L3 and L4) linked
at the position of the centrum of the disc by means of a universal joint, shown in Fig 5.12.
A perspex pointer was fitted to one side of the superior vertebral body in such a way as to
describe arcs whose centres correspond to the universal joint. A computerised numerical
control (CNC) machine tool was used to preset the angular position in 2-D and the
accuracy of these preset angles are considered to be within £1°. The measurement
of these arcs was obtained from a protractor attached to the base of the model. The

increment of the preset angles is 5° and the useable range of the protractor was 30°.

FIGURE 5.12: The calibration model.

During DVF acquisition, vertebra L3 rotates with increments of 5° with reference to the
universal joint whilst the vertebra L4 remains stationary. The model was X-rayed in lat-
eral projection using a focus-to-intensifier distance of 1m. The results of the calibration
studies have been reported (Breen et al. 1993). In brief, by manual landmarking, they
established the inherent ability of the technique to measure intervertebral rotations to
an accuracy of £1° over a motion range of 30° and instantaneous axis of rotation (IAR)
to within +5mm of their true location for rotations of 7° or greater. The left column
of Figure 5.13 illustrates these DVF images. The value shown on the top right of each
frame is the preset rotation angle. The positive value denotes that motion is in the

extension direction whilst negative means flexion.
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(a) 8 =0° (b) 6 = 0°, extraction

(c) §=5° (d) 8 = 5°, extraction

(e) 6 =10° (f) 8 = 10°, extraction

(g) 6 = —5° (h) @ = —5°, extraction

FIGURE 5.13: Extraction results of model images with 16 FDs.
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(i 8 = —10° () @ = —10°, extraction

(m) 8 = —20° (n) 8 = —20°, extraction

FIGURE 5.13: Extraction results of model images with 16 FDs (continued).

As has introduced earlier, the Hough transform is a model based approach which means
the ability to accurately and effectively construct model for the target object is essential
in applications. Since the emphasis of this study is to develop a new segmentation
algorithm, the template contours are manually constructed by using the edge information
within the image. For the calibration study, the template contours of L3 and L4 are
obtained by manually connecting the edge points located by applying phase congruency

to the frame with the preset rotation set to zero. For the case of a real DVF sequence,
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TABLE 5.2: Extraction results with 16 Fourier harmonic components.

L3 L4
Preset rot. T Y Rot. Preset rot. T Y Rot.
(degree) | (pixel) | (pixel) | (degree) | (degree) | (pixel) | (pixel) | (degree)

10 211 168 11 0 198 289 0

5 207 169 6 0 198 290 0

0 200 168 0 0 198 290 0

-5 195 168 -5 0 199 290 0
-10 188 169 -10 0 198 290 0
-15 182 170 -16 0 198 290 0
-20 176 171 -21 0 198 290 0
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FIGURE 5.14: Comparison between preset rotation value and extracted value for L3.

since the image quality is poor, it becomes more difficult to construct them. Considering
that the subjects keep stationary in the first 10 frames within a sequence, the average
of these 10 frames is used in order to reduce the effect of noise. Edges are then detected
by applying phase congruency to this averaged image. Finally, manual work is used to
connect the edges to form the template contours. In this way we managed to minimise
the possible variations and errors by using the edge information. This approach to
the initialisation of template contours is somewhat time consuming, manual work and

subject specific. This should be improved in the future.

Once the template models are ready, the HT was used to locate the vertebrae within
images based on the edge information detected by phase congruency. Here only results
with 16 FDs are presented. Note that during the extraction the changes of the unknown
parameters (z, y and p) were limited to a certain small range in order to reduce the
computational cost and requirement on storage. As such, the ranges of z and y are 64
pixels and that for p is 64°. This means the size of Hough space is 64 * 64 * 64. The
Hough spaces formed here will also be used to test the newly developed algorithm which

will be discussed in the following chapter.
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The extractions were superimposed on the source images and illustrated by highlighting,
shown in the right column of Figure 5.13. Figure 5.14 shows the comparison between
the extracted value and the preset rotation for L3 where the stars denote the extracted
rotation values. Table 5.2 presents the extraction results for both L3 and L4. The
rotation results of L3 are very close to the preset values and there is only a 1° difference
in rotation. This accuracy is much better than that established in a similar study where
an averaged error of 4.16° was reported (Tezmol et al. 2002). Rotated from right to left,
the z coordinate of its center changes from 211 to 176 while the y coordinate slightly
changes between 168 and 171 (here z increases from left to right and y increases from
top to bottom). It means that the y values do not change much because of the small
rotation involved. Note that in this case the interval values for the parameters are 1° for
rotation and one pixel for translation. By using a finer interval, more accurate results
might be obtained. Furthermore, it is worth mentioning that the PHT has an inherent

advantage over a manual method.

The relative error of these extraction results, about the 30° movement range of the

vertebra L3, is less than 2% according to the following Equation (5.12).

N
D lzi— il
err(%) = lfW— (5.12)

where N is the total number of experiments and M, is the range of movement.

5.5.3 Application to DVF Images
5.5.3.1 Vertebra L3 Extraction

As discussed earlier, during acquisition of DVF images of the lumbar spine, the X-rays
are usually focused on the area of the vertebra 1.3 and consequently this area of the

image has the best quality. For this reason the PHT was applied to the vertebra L3 as
the starting point.

During the extraction only areas containing vertebrae (width 100 and height 100) are
analysed rather than the full size of DVF image (about 800*%600) in order to reduce
the computation cost. This is achieved by cropping them from the original images by
the estimated positions made from several frames (i.e. neutral position and extreme
flexion/extension positions). Similar to the extraction of calibration model, the ranges

of the unknown parameters (z, y and p) were also limited. The ranges of z and y are
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TABLE 5.3: L3 extraction results with different FDs.

FDs order Scale Rotation x translation y translation Peak value
(degrees) (pixel) (pixel)
4 1 2 47 40 123
8 1 1 48 39 128
16 1 1 48 40 152
24 1 1 48 40 141
32 1 1 48 40 146

32 pixels and that for p is 64°. This means the size of Hough space is 32 % 32 % 64. The

Hough spaces will also be used in the newly developed algorithm.

First, the vertebra L3 image was isolated from the first frame of a sequence, shown
in Figure 5.15(k). The binary image of L3, shown in Figure 5.15(1), was derived after
application of phase congruency. As introduced earlier, the model shape was initialised

by manual work in order to form the chain code, from which the FDs can be derived,

shown in Figure 5.15(m).

As there are no size changes of the vertebrae in DVF sequences, size was not consid-
ered and so only a 3-D Hough space was used in this study, unless stated. The PHT
algorithm was used to determine the position parameters of the L3, that is rotation and
translation in the z and y directions. Figure 5.15(n) shows the formed Hough space and
Figure 5.15(0) presents the resulting image when 16 FDs were used. To compare the
results of different orders of FDs, we experimented with 4, 8, 16, 24 and 32 components
and the final results are shown in Table 5.3. From Table 5.3, it can be found that the
peak value appears to be largest when 16 FDs are used. Afterwards it appears that there
is & small decrease in the peak value. The possible reason for this is that the recon-
struction model is more and more close to the chain code model with the increment of

Fourier components. It will not represent the real shape if the model does not represent

the objects completely.

5.5.3.2 Other Lumbar Spine Segment Extractions

The PHT was applied to other lumbar vertebrae within the same image, in which 16

FDs were used as well.

The first row of Figure 5.15 shows the original vertebra L1 image, its edge image, model
template, Hough space and resulting image in turn. The second, fourth and fifth rows
correspond to those of vertebrae L2, 1.4 and L5, respectively. Together with the FDs,

the extraction has been used to form a contour which was superimposed onto the source
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image for accuracy evaluation. From Figure 5.15, it appears that the PHT can yield
satisfactory extraction results. As it is always difficult or impossible to have the ground
truth in clinical applications, this is such a case as well. Given that the ground truth of
the real motion is lacking, it will be valuable to validate it if we can compare the results
obtained by the HT and those from other studies on the same subjects. An evaluation

of comparison between the manual labelling and the HT will be presented in Chapter 7.

(k) M (m) (n) (0)

(u) V) (w) () (2]

FIGURE 5.15: Extraction results on L1 - L5 of a DVF frame. Column 1: original
images; column 2: edge maps; column 3: models; column 4: Hough spaces and column
5. extraction results.
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Similarly, the PHT has been applied to other DVF images. The results shown in Fig-

ure 5.16 look very promising.

single
6z

(a) Frame 1 (b) Frame 2

(e) Frame 5 (f) Frame 6

FIGURE 5.16: Extraction results of 6 frames.

5.5.4 Computational Cost

The computational time and memory required by the HT depends on the total number of

edge points in the searched image, the size of the known object, the possible ranges of the
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wanted parameters and the intervals used for quantising these parameters. Currently,
the Java program requires about five minutes to extract one DVF frame on a 450MHz PC
with 256 MB memory. This does not include the time consumed by phase congruency to
detect the edge maps. It is necessary to note that the implementation was not optimised
for speed. Some improvement would be expected if using C/C++ and optimising the
source code with respect to the computational speed. However, it appears unnecessary to
analyse the motion sequence in real time for clinical applications. It is worth mentioning

that its inherent parallel character enables the potential for real-time implementation if

high speed is required.

5.6 Conclusions

In this chapter, an overview of image segmentation was given first, then the basic ideas of
the HT were introduced in detail followed by a short review on the early studies. Elliptic
FDs were presented from which the PHT was derived. In order to test performance, the
PHT has been applied to a synthetic image, both with and without noise and occlusion,
and images of a calibration model and the results look promising. Finally, the PHT
was applied to DVF images and the results are still encouraging. The calculation of the
PHT reveals that this performance is not achieved without computational cost, though

this cost is somewhat mitigated by continuing advance in computer technology.



Chapter 6

Spatio-Temporal Hough

Transform

6.1 Introduction

We have shown in the previous chapter that the PHT has good performance in vertebral
extraction. It sometimes fails to locate the vertebrae correctly, especially L5 and L1.
Three instances are shown in Figure 6.1 where the locations of L1 and the L5 in 6.1(a),
the locations of L1 in 6.1(b) and in 6.1(c) were wrongly identified: in 6.1(a) L5 is too
low and also incorrectly estimated rotation; in 6.1(b) L1 appears erroneously low; and
in 6.1(c) L5 is displaced. This is largely caused by poor edge information and their edge
maps are shown in Figure 6.2. From Figure 6.2 it can be seen that the edges of L1
and L5 are always in discontinuous form and less clear than the neighbouring features
i.e. boundaries of neighbouring vertebrae or the sharp boundaries around the image. As
stated earlier, phase congruency was used to obtain edges owing to its good performance
against large illumination changes and low contrast. Therefore, it appears that the
problem originates from two factors during DVF image acquisition. One is the radiation
dosage which has been set to a low value for the safety of subjects, whilst adversely
affecting the image quality. The other is from the appearance of other structures of
the human body, such as pelvis, muscles and other soft tissues, that reduced the image
quality even more. These are beyond the scope of our study and the only feasible way
is to investigate if there are some approaches that can help to overcome these problems.
An alternative is to alleviate the problem at a higher level, that is within the Hough

transform framework itself.

67
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(a) Problem case 1 (b) Problem case 2 (c) Problem case 3

FIGURE 6.1: Illustration of some cases of incorrect extractions.

(2) Edge maps of (b) Edge maps of (c) Edge maps of problem
problem case 1 problem case 2 case 3

FIGURE 6.2: Edge maps corresponding to the cases of incorrect extractions.
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6.2 The PHT and Spatio-Temporal Information

Before turning to the new approach, it is worth having a close look at the conventional
Hough transform. Consider the PHT as an example, from the discussion in the previous
chapter there are two limitations with it in analysing motion sequences. First, for an
image containing multiple objects, the PHT has to extract them separately. If these
objects have the same shape, one accumulator is needed to contain the votes produced
by the HT during the evidence gathering. Objects can then be located by finding
maxima in the accumulator which are higher than a predefined threshold. If these
objects have different shapes, then the problem becomes complex and accumulators have
to be constructed for different types of shapes. In order to find multiple occurrences
of the same shape one by one, a complex scheme has to be introduced to interpret the
accumulator space. This implies that the HT assumes them to be isolated objects. The
possible relationships (referred to as spatial information) such as the position constraints
are not taken into account within the implementation of the HT. For lumbar spine
extraction, there are spatial constraints on the vertebrae, i.e., these bones cannot enter
each other. Second, for object extraction within a motion sequence, such as the problem
to locate five lumbar vertebrae in DVF sequences, the PHT algorithm is applied frame
by frame. This strategy means that the PHT does not take advantage of the possible
relationships between frames (referred to as temporal information) within a motion
sequence. These two aspects imply that the conventional PHT only utilises the edge

information alone and does not incorporate the spatio-temporal information into itself.

However, in our view, spatio-temporal information will be valuable for improving the
performance of the HT to handle motion sequence analysis. Consider multi-object ex-
traction from a sequence as an example, there should be some relationships among these
objects such as distance constraints within one image and contextual information be-
tween the frames, i.e. the trajectory of the object of interest often appears to be a
smooth pattern when the sampling rate is high enough compared with the speed of the
moving object. Thus if this information can be used, it will be helpful in handling noise,

partial occlusion and false peaks.

Therefore, the new version of the HT should be able to incorporate this information.
Hereafter, this hybrid HT will be referred to as the Spatio-Temporal Hough transform
(STHT). To some degree, the STHT is designed to extend the HT’s ability to handle
motion analysis by combining the spatio-temporal information. Thus, it is also expected
to be more robust for motion analysis with an improved ability to handle low quality

image sequences.

The motion analysis has been conducted in a number of previous studies. Before in-
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troducing the STHT, a brief overview of existing methods is presented in the following

section.

6.3 Existing Techniques

To locate moving objects in an image sequence, it appears that techniques that analyse
the motion sequence as a whole can be more powerful than those based on analysing

single static images individually. So far, there has been a substantial literature on the

problem of motion analysis in a sequence.

Optical flow has been used to analyse motion in a number of studies. Optical flow is
a vector field that reflects the direction and magnitude of the intensity changes from
one image to the other due to motion involved. The time interval between frames must
be very short in order to guarantee small inter-frame changes (Sonka et al. 1999).
Optical flow is based on two basic assumptions. That is, the observed brightness of
any object point is constant over time and nearby points in the image should move in
a similar manner. Optical flow will be subject to error if these two assumptions are
violated. Unfortunately, this is quite common in application. Error propagation is often

observed in application. Furthermore, optical flow is not the exact motion field but an

approximation.

Feature point correspondence is also used in motion analysis. Unlike optical flow, it
can work even when the time interval between frames is not small. One application
of the correspondence is to solve the problem of many objects moving simultaneously
and independently (Seith and Jain 1987; Rangarajan and Shah 1991; Chetverikov and
Verestéy 1999). This is based on the notion of path coherence which assumes that
the motion of an object at any point in an image sequence will not change abruptly.
How to design a good path coherence function is yet to be solved. Furthermore, this
approach suffers from occlusion and missing data problems. To overcome these problems,
additional local trajectory constraints must be considered and incomplete trajectory

must be allowed.

The Kalman filter is a tracking method widely used in motion analysis. It is an efficient
computational (recursive) solution of the least-squares method. It can give estimates of
past, present and future states of a system even when the underlying model is imprecise
or unknown. Its basic form requires that the system be linear with its observations to
be a linear function of the underlying state while noise involved is assumed to be white
and Gaussian. In application these assumptions often appear unrealistic. Moreover, if

the parameters of the Kalman filter are not initialised properly, the filter can diverge
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and thus fail in tracking. This approach estimates the object’s motion by using earlier
motions which means errors produced in the earlier frames can be propagated during

the analysis.

As mentioned earlier, the VHT is a variation of the HT that has been developed to
conduct motion analysis (Nash 1999). The original form of the VHT was used to extract
circular shapes with linear velocity. In implementation, apart from the shape parameters,
velocities in the z and y directions are also incorporated into the accumulator space.
Then the VHT collects evidence from all feature points in the whole sequence into
a single accumulator. This differs to other studies where accumulators are used for
each frame when the HT is applied to individual frames one after the other. This is
the reason why the VHT appears to be more robust than a standard frame-by-frame
tracking implementation, especially when the target is occluded or noisy as any missing
or damaged structural information in one frame can be compensated for by redundant
data in others. Due to the global search nature of the VHT, it is unnecessary to initialise
the algorithm to search in a specific area although limiting the extent of the search can
often reduce the computational cost. The VHT has also been adapted to be capable of
coping with other motions such as pulsating artery. The limitation of the VHT is that

it can only handle motions that can be described parametrically.

An improvement has been made in the form of the continuous VHT (CVHT) which can
handle arbitrary shaped objects moving in arbitrary patterns of motion (Grant, Nixon,
and Lewis 2002). In this method, a motion template was designed and also represented
by FDs like the shape model. By evidence gathering, the moving object can be located
by finding the possible variations of the motion as well as position parameters. The
CVHT requires a motion template which means some a priori knowledge of the motion
has to be known in advance. As discussed before, the computation involved can be

prohibitive when more parameters are used.

Recently, another HT version has been proposed for motion analysis (Lappas et al.
2002). In this method, the standard HT is applied to individual frames of one sequence
and accurulator spaces corresponding to these frames are obtained. Then, an energy
function is designed in which the Hough space term and a smoothness term are included.
The Hough space term is the sum of peak values in the accumulator space where the
considered trajectory passes. The smoothness term represents the assumption that
motions are smooth and is obtained by evaluating changes both in direction and in
speed. By locating the maxima of the energy function, the extraction of a sequence is
achieved. There are some limitations with this method, i.e. dynamic programming is

used to search the optimal values but dynamic programming can converge very slowly.

From the brief review of related works in motion analysis, it is clear that these three
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versions of the HT only consider a single moving object and cannot be used for multiple
moving objects. Feature point correspondence may be possible, but it requires that
points in different frames should be matched. It seems this cannot be true in reality as

occlusion and missing data often occur.

Hence, a new motion analysis technique is desirable and the STHT is one of the first
approaches to fully use the spatio-temporal information within the sequence. The STHT
is based on the HT and thus it inherits its good performance in noisy environments and

ability to handle occlusion.

To re-iterate, the new STHT which performs a global analysis of a sequence may offer
certain performance benefits, over analysis on frame by frame. When extracting objects
from a very noisy image sequence, or instances where the object of interest is partially
occluded by another object in the scene, a global analysis may offer improved perfor-
mance by the nearby information in neighbouring frames. Temporal information may be
valuable in handling noise and occlusion. For multiple objects, spatial information can
also be very useful, i.e. the relationship between two objects can be utilised to eliminate

the false peak location in the HT.

6.4 Description of the Algorithm

Frame 1 Frame 2 Frame N-1 Frame N

FIGURE 6.3: Illustration of the basic idea of the STHT.



Chapter 6 Spatio-Temporal Hough Transform 73

6.4.1 Basic Ideas

Figure 6.3 shows the basic idea of the STHT, given a motion sequence consisting of
N frames with 5 moving objects which are denoted by solid blocks. The blocks with
dotted lines denote incorrect extractions with either wrong relative positions or abnormal
changes in the motion. The STHT should be able to minimise these possibilities by
using spatio-temporal information. Although the STHT designed here is specific for
the extraction of lumbar vertebrae, it can easily be extended to other applications, i.e.
kinematic study of knee or finger joints and other kinds of motion analysis. In these
cases, the above conditions can be generalised or supplemented to adapt to the specified
problems in order to obtain more robust results. This should be borne in mind during

the development of the algorithm.

A major concern with the STHT is how to use the spatio-temporal information. This
included how to translate the spatio-temporal information into parameters that can
mathematically be measured, and how to combine this with the HT. In order to do this,

some assumptions have to be made and these will be discussed in further detail.

6.4.2 Assumptions

In the development of the STHT, the following assumptions were made to simplify the

problem.

e Temporal Issues
Each object should be a rigid body and undergo an arbitrary but smooth planar
motion. Assumption of rigidity can guarantee that there is no deformation in tar-
get shapes during the motion sequence. The assumption of smooth motion enables
us to use the motion information in the STHT. Provided that the sampling rate is
high enough while the speed of the object’s motion itself is relatively slow, this as-
sumption on motion can be reasonable. In spine motion studies these assumptions
should hold. In particular, abrupt motions are unlikely to occur because in the
current study only young healthy normal subjects are used. It is worth mentioning
that in the current study the sampling intervals between frames are constant. As
a variation of the HT, the STHT potentially has the ability to handle 3-D motion,
but this is conditional upon the availability of 3-D information (i.e. multi-view im-
agery, but this needs synchronisation). Here only planar motion was considered.
As discussed earlier, this should be reasonable because the out-of-plane motion

can be negligible in the sagittal plane motions.
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e Spacial Issues
In each frame, there are some spatial constraints between objects which can be
used. In particular for the lumbar spine, the positions of vertebrae are constrained
by muscles and ligaments. The vertebral bodies should not enter each other or
at least the distance should be maintain because of the existence of interverte-
bral discs between them. Obviously the earlier extraction of L1 in Figure 6.1(b)

contradicts this and the extraction is impossible from a physiological viewpoint.

6.4.3 Energy Function

In the STHT, the spatio-temporal information and the HT are embodied in an energy
function by using the following criteria: the motion must be smooth; the trajectory
must pass through the points in the accumulator space with as large peaks as possible;
and the spatial relationships between objects should be known in some form. Taking all
these into account, we consider three terms in the energy function. Therefore, for any

searched object, the energy function can be expressed as

E= leHough - w2Etemporal - w3Espatial (61)

where wq, wy and ws are weighting factors that may be adjusted to vary the relative

contribution of each term.

The first term is the so-called Hough term. It contributes the sum of peak values of the

points in the accumulator spaces, which pass through the trajectory. It can be expressed

as,

N
EHough = Z H(«'L'i) Yi, Pi) (6'2)

i=1

where NV is the total number of frames in the sequence. This term is used to force the
sum of peaks of possible solution to be as large as possible. H(z;,v;, p;) is the Hough

space corresponding to each frame.

The second term, Etemporal, €xpresses the smoothness in the trajectory over the whole
sequence and it will tend to prefer solutions that have a smooth trajectory. The third
term, Egpatiai, represents the constraints of spatial information. It will favour the ex-
pected position changes between objects. In other words, it is used to penalise those
positions that violate the spatial constraints between neighboring objects. These two

terms will be discussed in further detail in the following sections.
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The latter two terms typically reflect the a priori knowledge. Equation (6.1) is, in
fact, a compromise between the PHT and the underlying spatio-temporal information
in the sequence. With the aid of a priori knowledge, the STHT is expected to have
a better performance against occlusion, noise and false peak locations in the Hough
spaces. Setting we = 0 and w3 = 0 allows the energy function to search the maxima
among all the Hough spaces involved and the chosen solution will be the same as that

of the standard PHT.

6.4.4 Temporal Term

As discussed earlier, temporal information can be very useful in improving the perfor-
mance of the HT by collecting global evidence from the sequence. In implementation,
however, how to describe this information and how to incorporate it into the energy

function needs careful consideration.

In Lappas et al.’s approach (2002), the smooth trajectory is represented by both direction
and velocity constraints. This will favour small velocity and direction changes and can
only be effective for an object that moves slowly relative to the frame rate. The term that
they used is a simplification of the energy function proposed by Sethi and Jain (1987)

for handling point correspondence problems.

In the current study, a spline is used to describe the smooth trajectory. A spline is a
smooth piecewise polynomial function. It originates from the flexible strips used to create
smooth curves in traditional drafting applications. Splines are widely used in computer
graphics and image processing to obtain smooth curves (or surface) owing to their good
properties. When used for interpolation, they do not have the oscillatory behavior that
is a characteristic of high-degree polynomial interpolation such as Lagrange or Hermite
interpolation. Also, mathematically, it is the smoothest curve that passes through a set
of fixed points (de Boor 1978). It appears that a spline can be a good candidate to

describe the smoothness of the trajectory.

Given observations of an independent variable, y at design points = (these points are
referred to as nodes), the most common piecewise polynomial approximation using cubic
polynomials between each successive pair of nodes is called cubic spline interpolation.
A general cubic polynomial involves four constants so there is sufficient flexibility in the
cubic spline to ensure not only that the interpolation is continuously differentiable on

the interval, but also that it has a continuous second derivative on the interval.

In order to guarantee continuous first and second derivatives, conditions at these nodes

are Introduced. With these conditions, the coefficients that are used to define those
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cubic polynomials can be determined uniquely. This means that the cubic spline S that
passes through all these nodes is known. Normally, the points 2 should not have the same
values in order to avoid intervals with zero values which make it impossible to determine
a spline. Details of this procedure are given in Appendix A (Burden and Faires (1993)).
Provided that the spline S is known, for any given z; within the range [Zmin, Tmaz], &
unique value of y; can be determined, so do the first and second derivatives which can
be expressed as S’ () and S” (z;), respectively. These are used to quantify the smooth

trajectory.

The second problem is how to form the smoothness function. Motivated by the active
contour, in which the first and second derivatives are used to represent the continu-
ousness and smoothness of a curve, here the smoothness of a trajectory is represented
in a similar way. Each vertebra involves a translation in the  and y directions and a
rotation change p, requiring three cubic splines, S;, Sy and S, to describe them. Thus,

the Eiemporal term in the Equation 6.1 is defined as follows:

in
Etemporal :a/t (CIE(S:IE)Q + (1 - C-I)(S:IEI)Q) dt

+5 TGS+ (1= G)(SM?) db 4y / (6802 + (1= ) (8M?) dt.
(6.3)

Here, «, § and ~ are factors that may be adjusted to vary the relative contributions of
these terms. Similarly, {z, ¢, and (, are used to control the relative contributions of
the first and second derivatives. In implementation the integrals are approximated by

summing them up at sampling points as

Eremporat =0t Y _, (¢2(52)% + (1 = &)(52)?)

t1

+B (G + A=) +7 D (GlSH)2 4+ (1= C)(SH)?)  (6.4)

6.4.5 Spatial Term

Spatial information is another important term in forming the energy function of the
STHT. For the moving lumbar spine, this kind of information is plentiful, i.e. physical

constraints, the possible smooth connection curve through five vertebrae etc. However,
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how to describe them mathematically and incorporate into the energy function is not
easy. For instance, if using the smoothness of possible connection curve, it implies that

five vertebrae have to be investigated simultaneously and this can lead to a problem of

dimensionality.

In simplifying the problem, only the distance between centers of neighboring vertebrae
is used. Specifically, the distance d between centers of two neighboring vertebrae should
be within a predefined range [Dpin, Dmaez]- If d is beyond this range, a penalty with

large value L will be given. That is,

0 szn S d S Dma:z:
Espatial = (65)
L d< Dpin or Dy < d.

Equation (6.5) implies that the spatial information serves as a means to penalise those
positions that violate the physical constraints. This is possible due to the flexibility

of the Genetic algorithms (GAs) that are used to search for the maxima of the energy

function.

6.4.6 Energy Maximisation

A solution to the STHT is defined to be the global maximum of Equation (6.1). That

1s,

Eop = max(E). (6.6)

From Equation (6.1), it can be seen that maximising this energy function can lead to high
dimensionality. For example, if the Hough space for each frame is 3-D (translation in z
and y directions and rotation p) and the possible size of each dimension is 10, if N (the
total number of frames contained in a sequence) is 10, the STHT has to explore a space
as large as 103V, In application, this inevitably results in an increasing requirement on
memory and computation. Hence, it appears that the exhaustive search is not applicable
in terms of complexity. GAs are used for the optimisation due to known good ability in

search of multimodal accumulator spaces.

In short, the implementation can be described as follows. First, the Hough spaces of each
lumbar vertebra in all frames of a sequence are obtained. Then the STHT is applied to
these vertebrae one after the other. That is, for each vertebra, the solution is obtained

by using a GA to maximise the energy function defined in Equation (6.1). To locate
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five vertebrae is a multi-step procedure. Due to the relatively good edge information in
the area of L3, L3 is extracted first by considering only the first two terms. Then the
other vertebrae, L2, L4, L1 and L5, can be extracted in turn and in that order. In these
extractions, the results of each prior extraction are used to form spatial constraints. For
example, the results of 1.3 are used for L2 extraction as well as L4. Then results of 14
are used for L5 extraction and so are those of L2 for L1. This appears reasonable as the

extraction progresses from the area of best quality to areas of poor quality.

From the implementation, it can be seen that the STHT extracts moving objects one
by one using the global information in the sequence. On the other hand, the STHT can
also be adapted to extract all objects of interest by using a single energy function that
can evaluate them together, this can be illustrated by Figure 6.4. The energy function

can be expressed as

M
_ | J i J i
E= Z uf{EHough - w2Etemporal - w3Espatz'al (67)
J=1

where M is the number of total objects. E}{ ough? Eiemporal and Egpatiqr can be defined
as in Equation (6.1). However, with the increase of objects, more weighting factors are
required to express the relationships between these objects. How to determine appro-
priate values for these weighting factors can be difficult because of the possible complex
relationships amongst these objects. Furthermore, the dimensionality problem becomes

even more pressing. This may be investigated in future work.

6.5 Genetic Algorithms

Genetic algorithms (GAs) are known for their good performance in the optimisation of
high dimensionality problems. There has not, so far, been any formal definition which
is often problem-oriented. GAs are based on an analogy to natural behaviour and are
adaptive methods used to solve search and optimisation problems. GAs can solve the
specified problem by mimicking the principles of natural selection and “survival of the
fittest” (Beasley et al. 1993a; Beasley et al. 1993b). In implementation a population
of individuals is introduced. Each individual represents a possible solution to a given
problem, and it is also assigned a fitness value according to the extent of how good
this solution is for the problem. The fitter individuals will have a higher probability of
survival and of reproducing new individuals by which the most promising areas of the
search space are explored. If a GA is designed well for a specified problem, it will converge

to an optimal solution for the problem. Apart from GAs, there are other algorithms
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FIGURE 6.4: Illustration of the STHT.

based on analogy with nature, i.e. Neural Network and Simulated Annealing. Neural
Networks are based on the behavior of neurons in the brain. They are often used for
classification tasks and their areas of application partly overlap those of GAs. Simulated

Annealing is another popular search technique that is based upon the analogy with the

cooling of a solid.

The popularity of GAs stems from their robust and simple implementation and that they
can successfully deal with a wide range of problems. As suggested, although GAs are not
guaranteed to find the global optimum solution to a given problem, they are generally

good at finding “acceptably good” solutions to problems “acceptably quickly” (Beasley
et al. 1993a).

There are numerous books on GAs. Readers are invited to refer to the book by Gold-
berg (1997). Many studies have been conducted in order to improve its performance
such as efficiency and convergence. For instance, cooperative coevolution was proposed

to favor parallel computation and more data sets (Potter 1997).
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6.5.1 Existing Applications

GAs are powerful searching tools and have various applications in pattern recognition
and machine learning. In particular, GAs are used as a means of overcoming the com-

putational cost experienced in the conventional HT.

Goulermas and Liatsis (1998) proposed a hybrid GA/HT system for fine-tuning the
accumulator space of the HT for circular shape detection. In this method, the HT
is embedded into the GA which is specially designed to obtain the accurate detection

against the case of excessive noise.

Ser et al. (1999) also employed a GA in their implementation of the GHT. Here, a GA is
used to speed up the maximum search in the parameter space. This method can avoid
enormous storage for the Hough parameter space even in the case that fine resolutions are
used for the parameters and thus higher accuracy can be obtained without the problem
of storage limitation. This method can be applicable to the detection of both analytic
and nonanalytic objects. Apart from the weakness of the GHT, its main limitation is

the large time consumed to obtain accurate results.

6.5.2 Fundamental Principles

The process involves four major steps (Ser et al. 1999). These are, namely, initialisation,
reproduction, crossover and mutation. During initialisation, population is initialised by
values randomly selected from the space to be searched. Therefore, each individual is
assigned a fitness value. After initialisation, iterative reproduction is started and contin-
ued until the required convergence which is, sometimes, predefined generation number
or an error limit. After each reproduction, a new generation is produced and called a
“child” while the previous generation is called a “parent”. During each reproduction,
the natural phenomenon of “survival of the fittest” is introduced. However, it is not
the simple reproductions of the best chromosomes. To maintain the number of individ-

uals, new individuals are also introduced by using some operators, i.e. crossover and

mutation.

This section continues by discussing each of the genetic operators coding, fitness function,

reproduction, initialisation and convergence in further detail.

6.5.2.1 Coding

In the implementation of a GA for & particular problem it is assumed that the potential

solution to the problem can be represented as a set of parameters (known as genes)



Chapter 6 Spatio-Temporal Hough Transform 81

i.e. in our problem, the possible positions of the vertebra z;, y; and p; for 1 < i < N.
These parameters are joined together to form a string which is often referred to as
chromosome. In the forming of the string binary encoding is often used (other methods
are also applicable.). Given the size of the Hough spaces described in section 5.5.3, our
problem is to maximise Equation (6.1) with variables z;, y; and p;, for 1 <i < N, which
are represented by 6, 6 and 7-bit binary numbers, respectively (one bit digit is used to
denote that the value is positive or negative). Therefore each chromosome will have 3N
genes arranged as z1y1012Z2Y202...2NyNpN and consist of 19« N (N * (6 + 6+ 7)) binary
digits.

6.5.2.2 Fitness Function

Once the coding has finished, a single function value can be derived, which depends on
the possible values assigned to those variables. In GAs this is called fitness function
and it is designed to represent how good a chromosome is during evolution. This fitness
value is of great importance for the reproduction in the GAs. In function optimisation,

the fitness function will just measure the value of the function.

6.5.2.3 Reproduction

After calculating the fitness function of all individuals in a specified generation, the
reproduction phase is involved for designing a new generation according to the perfor-
mance of the individuals within the current generation. As has been introduced, the
selection protocol is “survival of the fittest”. That is, individuals with higher fitness
values will be more likely to be selected as parents to produce offspring while the least
fit individuals may not be selected and will die out. Having selected two parents, off-
spring are generated by recombining their chromosomes in which crossover and mutation

mechanisms are typically used. These operations are outlined as follows.

Selection The manner of selecting parents has important effects on producing the new
generation. The behavior of the GA largely depends on how individuals are chosen.
Without exception, there are a number of approaches that have been proposed,
i.e. proportionate selection, fitness ranking, steady state selection and tournament
selection. Consider the tournament selection as an example, pairs of individuals
are randomly selected from the current generation and the individual with the
higher fitness value is selected as one of parent. Another parent can be selected
in such a way as well. In practice large tournaments may also be used in which

the best one among n randomly selected individuals is used as one of the parent.
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The aforementioned selection strategies (apart from proportionate selection), how-
ever, can yield similar performances if suitable adjustment of parameter is made,
such that there is no absolute “best” method (Goldberg and Deb 1991). In our

application, tournament selection is used.

Crossover Crossover is the most vital operator in GA as it mostly determines how the
offspring are generated, given specified parents. There are three most commonly
used schemes, namely, 1-point crossover, 2-point crossover and uniform crossover.
Of course other multiple point crossover may also be used. The 2-point and uniform
crossovers are just the special cases of multiple point crossover. The basic idea of
crossover is illustrated by considering 1-point crossover. Given two parents, cut
them at a certain position (often randomly selected) and form two “heads” and
two “tails” segments. Heads and tails from different individuals are connected to
form two new individuals, shown in Figure 6.5(a). In this way, two offspring are
expected to inherit some genes from both parents and after evolution over many
generations the solution can be found. 2-point and uniform crossover are different
in which 2 randomly selected positions (or any binary for uniform crossover) are
used to cut the chromosome into pieces for generating new offspring. Crossover is
believed to maintain the goodness between generations. From this aspect, a 1-point
crossover seems better as multiple crossover may cause the disruptive change on the
chromosome and impair the performance of the GA. However, multiple crossover
has the advantage of a more thorough search of the problem space. Again there
is no conclusion on which scheme performs better, and it appears that to some

degree it will depend on the specified problem.

In application, crossover is not applied to all pairs of individuals selected for mat-
ing. This means that some of them are just copied to produce the offspring rather
than by crossover. This is often achieved by setting a threshold perossover ( typi-
cally between 0.6 and 1), and only those that have a higher probability than the
threshold are selected for crossover. This is believed to give each individual a

chance of passing its genes without the disruption caused by crossover.

Mutation Mutation is applied to each child individually after crossover. It can pro-
duce new individuals by reversing the binary bit selected at random in the string
and each bit of a chromosome has a probability to be reversed, as shown in Fig-

ure 6.5(b).

Generally, it is believed that crossover plays a more important role than mutation for
rapidly exploring a search space. However, crossover alone cannot work well because it
only functions to find the better fitness values in neighboring areas of the parents and

sometimes gets trapped by local maxima. In contrast, mutation provides a small amount



Chapter 6 Spatio-Temporal Hough Transform 83

Parent 1 Parent 2

10010: 00100110 1101111000011

_~"  [to01000 0100110
/ - J Mutation

10010 111000011] [11011i 00100110 |
Child 1 Child 2 1001001 0100110

(a) crossover (b) mutation

FIGURE 6.5: Illustration of crossover and mutation.

of random search and can maintain the exploration capability of GAs and ensure that
each point in the search space has the same probability of being examined (Beasley et al.
1993a). However, the probability of mutation pputeion should be smaller than that of
CTOSSOVET Perossover, Otherwise, the performance of the GAs will be reduced by disruptive
genes. It becomes random search when pmytation = 1. In most applications, the value of

Pmutation 1S set to the reciprocal of the (individual) chromosome length.

6.5.2.4 Initialisation and Convergence

Initialisation is used to create the starting population. In application, this is often
achieved by assigning random values to the starting population. Nevertheless, as always,
if some a priori knowledge about the solution is available, it will be helpful to use this
information to make the initial population as fit as possible. In some sense, the better

the initialisation, the easier and quicker the search for the optima (Sonka et al. 1999).

If the GA has been correctly implemented, the population will evolve over successive
generations so that the best fitness and the average fitness of the population will gradu-
ally converge to the global optimisation (Beasley et al. 1993a). In application, different
criteria are used as the convergence condition to terminate the evolution. The simplest

one is to terminate when an initially specified generation has been finished.

In summary, GAs can work well for most of optimisation problems, however, some special
skills are needed to handle different problems in order to obtain good performance.
There are many factors that can affect performance, i.e. how to select parents, how to
select an appropriate crossover scheme, how to select probability values for crossover and
mutation, whether or not using elitism (the fittest individual is directly inherited between
generations), etc. Normally, careful tuning is needed to achieve a good performance and

this often requires a considerable amount of insight into the nature of the problem to be
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solved.

6.5.3 Comparison with Other Approaches

There are a number of approaches in connection with search and optimisation problems.

Random (or an enumerated) search is the simplest method. It is an unintelligent strategy
which looks for the optima within the whole search space. It can definitely find global
optima when the search space is not extremely large. However, in most applications

time is a crucial factor.

Gradient methods are generally referred to as hillclimbing and rely on gradient informa-
tion of the fitness function which directs its search. If the function is discontinuous, it
will fail as the gradient information is unavailable. Moreover, it only performs well on
functions with a single peak (known as unimodal functions). It will be trapped by the
local optimum of multimodal functions. Iterated hillclimbing is formed by combining
random search and hillclimbing together in order to improve the performance. Once a
peak is located, another hillclimbing search is started from a randomly selected point

again. It will have better performance only if the fitness function does not have too

many local maxima.

Dynamic programming is a well-known method in optimisation problem and has been
widely used in image processing. For example, it was used in a recent work by Lappas et
al. (2002). It is only applicable for solving multi-step optimisation problems where the
overall fitness function is the sum of the fitness functions for each stage of the problem.
Moreover, there should be no interactions between stages while this is often not the case

in many applications.

As has been stated, simulated annealing works by mathematically simulating the phys-
ical process of annealing which is used to strengthen a material by first heating the
matter and then slowly cooling it to reach a minimal energy state. It has been used
successfully and continues to be an active research area. Its limitation is that it only
deals with one candidate solution at a time and does not build up an overall picture of
the search space. Therefore a previous step is not used to guide new moves while GAs

can achieve this by inheriting the best fitness between generations.

It is unwise to assert which method is best as these methods are often problem-oriented.
In many applications, however, GAs can perform very well and even better if it is
combined with other approaches such as incorporating local search. Moreover, it is easy
to construct and is adaptable for many different problems. All these have made GAs

popular and this is also the reason why they are being used in this work.
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6.6 Extraction Results

Before the STHT implementation, the performance of the developed GA is evaluated by
analysing some well known optimisation functions. These functions are typically used
as benchmark functions in evaluating optimisation algorithms and can be found in other
studies (i.e. De Jong (1975)). During the experiments, unless otherwise stated, fitness
values are obtained by averaging the results of 10 runs with different initialisations.
These experiments have shown that the designed GA performs well in terms of efficiency
and convergence. Both uniform and 2-point crossover were tested. It appears that
the final results are very close but the GA using 2-point crossover converges slightly
faster than using uniform crossover, especially at the beginning of the evolution. In the
following STHT performance experiments, tournament selection is used to select parents
and two-point crossover operator is used. p. is set to 0.95 and p,, is set to the reciprocal
of the length of an individual which depends on the length of each parameter, the total
number of frames provided that the number of parameters corresponding to each frame

is three.

6.6.1 Parameter Settings

As has been discussed, the core of the STHT is based on the compromise between the
Hough space and the spatio-temporal information. In the current study we have not
attempted to find the optimal weighting factors, i.e. weighting factors wy and wy are
set to 0.8 and 0.2, respectively. Currently, the spatial term is used as a penalty and ws
is set to 1 here. The o, B and vy are set equally to 1/3 while the ¢z, ¢, and ¢, are set
to 0.4. In practice, these weights can be adjusted according to the specified problems.
For example, if the images are of good quality, then the weighting factor ws can be
set to a relatively small value which means that the Hough spaces dominate the energy
function. However, tuning these weights will possibly be part of future work rather
than the framework proposed here. The effects of spatial information and temporal

information were investigated in the following experiments.

6.6.2 Test on Calibration Model

The DVF images of the calibration model used in chapter 5 were used to provide a
measure of validation of the STHT performance. The STHT is applied to extract L3 in
the DVF images of this model. A synthetic dynamic motion sequence was formed by
arranging seven DVF images in the order that the values of the preset rotation change

from —20° to 10°. The estimated positions of L4 by the PHT were used to describe the
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spatial term. That is, a penalty will be introduced if the possible center position of L3

is too close or too far from that of L4.

During the evolution 100 individuals were used and each of them contains 3« N param-
eters where N is the total number of frames in the sequence and here is equal to 7. As
discussed in previous chapter, during the PHT implementation the possible range of z,
y and p were set to small values and the size of the Hough space is 64*64*%64. Thus 7
binary digits were used to represent each parameter in the GA and the total length of
each individual is (7 +7 + 7) * N. The results obtained from the PHT were used to
initialise the GA in order to locate the optima more quickly. The GA was designed to

terminate after 2000 generations.

The initialisation with the results of the PHT means that the Hough term is already
global optima at the beginning of optimisation. During the optimisation, the value of
the temporal term Ejemporer Will gradually decrease. Meanwhile the value of Hough
term Epougn could become smaller. The combination of this compromise leads to a

maximisation of the total energy function E that corresponds to the target results.

During the experiments on the calibration model, two different cases are considered
to test the performance of the STHT with special consideration of accuracy of motion
estimates. In the first case wg is set to 0 while wg is 0.2. This means the spatial term
was excluded from the energy function. In the second case the full energy function of
the STHT was considered by setting ws to 0.2 and w3 to 1. Note that here the effect
of excluding temporal information was not investigated. When temporal information
is excluded, the STHT will have no effect on the results from the PHT because of the
manner of initialisation: these results have already met the requirement of spatial term

Espatiar and there is no further optimisation that can be achieved by the energy function.

With these two values for ws, the results from 10 runs are averaged and calculated to
the nearest 0.1°. Together with the results from an early study using template match-
ing (Simonis 1994) and those from the PHT, these results are presented in Table 6.1. It
can be seen that the PHT and two cases of the STHT can obtain better results than the
template matching method. According to Equation (5.12), their errors are within 2%
while the error of Simonis’ approach (1994) is about 3.7%. The results are also shown
in Figure 6.7. From Figure 6.7 it can be observed that deviations of the results by using
template matching sometimes appear large while the rotation angles computed by the
PHT and the STHT are much close to the preset values. It can also be seen that two
cases of the STHT have a slight improvement over the PHT. The reason for this may
come from the fact that the PHT results are already very good and only a fine tuning
can be obtained by the STHT. To some extent, this can be illustrated by the Hough

space as shown in Figure 6.6. A significant peak is often observed as the quality of the
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DVF images of the model is somewhat better than that of the images obtained in vivo
from the lumbar spine. Although the differences among the results sometimes are larger
than 1°, the resulting images of four methods are very similar and it seems that the
naked eye is unlikely to distinguish such small differences among them, the resulting

images with the preset value —20° are presented in Figure 6.8.

Peak value

Computed values (degree)
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FIGURE 6.7: Result comparison of four studies on the calibration model.

6.6.3 Extractions of DVF Sequences

In the extraction of DVF sequences of nine subjects, 200 individuals are used in the
GA. Each individual contains 3 x N parameters where the total number of frames N is
38. As described in the early part of this chapter, the length of each individual is 722
bits (19 % IV). Similar to the studies on the calibration model, here the results from the
PHT are also used to initialise the GA. The STHT algorithm has been applied to nine
subjects in the order of L3, L2, L4 , L1 and L5. The overall results are promising and
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(c) STHT case 1

(d) STHT case 2

FIGURE 6.8: Illustration of the resulting images by four studies.

TABLE 6.1: The comparison of rotations amongst four studies.

Preset angle Simonis’ results PHT STHT case 1 STHT case 2
(degree) (degree) (degree) (degree) (degree)
-20 -21.8 -21 -20.9 -20.6
-15 -16.2 -16 -16 -16
-10 -11.6 -10 -10 -10
-5 -6.2 -5 -5 -5
0 0 0 0 0
5 5.9 6 5.8 5.6
10 11.1 11 11.5 11.1

there is a large improvement over the PHT. Some results from two subjects are shown
in Figure 6.9. More results will be provided in the following chapter where comparisons

with the manual labelling are also given.

In the current study, the effect of excluding temporal and spatial information were
considered by setting wy or wg to 0, respectively. Table 6.2 shows comparison of correct
extraction rate of these studies for a total of 342 DVF images (38 frames for each of
nine subjects). During the experiment, visual evaluation is obtained by observing the
resulting images which are obtained by superimposing the reconstructed contours onto

the original images. In the evaluation those resulting contours that are obviously away
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(a) BM results
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FIGURE 6.9: Extraction of the lumbar spine by the STHT.

from the real boundaries of the vertebrae are labelled as incorrect extraction. This
evaluation could be improved in future by quantitative comparison of the overlaying
points if radiologists are available to help us to mark the boundaries of the vertebrae. It
appears that an overall improvement has been achieved and especially there is significant
improvement for the L1 and the L5. Compared to the improvement of L5, improvement
of L1 is a little lower. The main reason is that most parts of the L1 are out of the
scope in many DVF frames. In these cases the useful edges become too few and the
STHT cannot detect it correctly. Therefore, in future DVF acquisition, extreme caution

is needed to ensure that all the lumbar spine is contained within images.

Also, it seems that the introduction of the spatial information or temporal information
alone with the Hough term can improve the correction rate, and the effect of the latter

looks much more significant than that of the former. The reason for this may come from
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the way that they are used in the STHT, the latter is quantified by smoothness function
while the former is just represented by a fuzzy penalty term. The combination of these

two terms with the Hough space term can lead to a better result than any of them only.

TABLE 6.2: The comparison of correct extraction rate between the STHT and the PHT.

L1 L2 L3 L4 L5
PHT 76% 03% 98% 94% 61%
STHT (wy = 0, w3 = 1) 80% 93% 99% 95% 79%
STHT (wz = 0.2, w3 = 0) 82% 95% 100% 98% 85%
STHT (wz = 0.2, ws = 1) 87% 97% 100% 100% 92%

6.7 Discussions

6.7.1 Computational Cost

Apart from the computation required in forming the Hough space, the computation is
mainly consumed by optimisation using GAs. In practice there are different criteria
of convergence of GAs, i.e. specified generation number, the best fitness value/the
average fitness value etc, here a specified generation number 2000 is used as criteria to
terminate the optimisation process. The time consumption depends on many factors
such as chromosome length and fitness calculation. For our problem, it appears that the

time taken by GAs is about 7 minutes for each vertebrae.

6.7.2 Accuracy

After an extraction (including landmark location) has been obtained, two questions
appear paramount: How accurate is the exfraction? and how can it be used? For
spine kinematics, the answer to the latter question appears simple as these will be used
to quantify the spine motion. Specifically, how to use the extraction results from the
STHT will be discussed in detail in the next chapter. The other question concerning the
segmentation concerns is the accuracy. There is a widespread quest for measure that

somehow quantify the extraction accuracy, unfortunately there is no such measure in

medical imaging.

In practice, accuracy can be divided into quantitative and qualitative accuracy. Quan-
titative accuracy needs a ground truth that is usually unavailable in clinical practice.
The latter one is usually done by using simple visualisation. Compared to the former

one, it is easy with a reasonable idea of accuracy. The results of the PHT and STHT are
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both evaluated in this way. It is worth mentioning that a further accuracy investigation
is conducted in the next chapter by comparing the results of the STHT and the manual

landmark location.

6.7.3 Endplate vs. Model

One concern is the model of the vertebral contour. The vertebral endplates have non-
sharp edges and the projection of them on the sagittal plane may become fuzzy and may
not be constant throughout the motion sequence. However, this suggests why the Hough
transform has an advantage over the earlier manual methods from another aspect. As
discussed earlier, the Hough transform can locate the vertebrae by collecting evidence
over the whole contour rather than at several corner points and thus it will not be
seriously affected by partial deformation, missing data, or inconsistent changes of the
image illumination. In contrast, manual marking is difficult or impossible to cope with
such cases. Although the endplate shape sometimes can be very helpful in diagnosing
disease, as our main focus is the motion rather than exact shape of the endplate, we do

not think it is vital in this study.

6.8 Conclusions

In this chapter the Spatio-Temporal Hough transform algorithm has been introduced.
The STHT can achieve better performance than the traditional HT by the inclusion of
the spatio-temporal information within the image sequence. In the STHT, an energy
function is designed to combine the Hough spaces and the spatio-temporal information.
A GA is used to locate the maxima of the energy function. The STHT performance
was investigated by applying it to the DVF images of the calibration model and has
shown acceptable results. The extraction results on nine normal subjects have shown
that the STHT is a promising approach in motion analysis. Clearly, the inclusion of
temporal constraints can improve the accuracy of the extracted results. Further, it
has been shown how including spatio-temporal information improves the results, with
the greatest increase due to the temporal constraints, as opposed to the enforcing of
the spatial information. With the extraction results obtained, the spinal kinematic

parameters can be determined and these will be discussed in the following chapter.



Chapter 7

Preliminary Study of Spine

Kinematics

Spine kinematics is of great interest for better understanding of low back pain. A
number of parameters has been used to quantify the motion of the spine, typically in
the cervical and lumbar spine. This chapter provides an insight into these parameters.
A preliminary study is conducted of spine kinematics based upon vertebral extraction
results from DVF image sequences of nine subjects by the STHT. First, a short review
on the commonly used parameters in spine biomechanics is provided. Based upon the
results obtained from the complete version of the STHT (where weighting factors were
set as wy = 0.8, wo = 0.2 and ws = 1, respectively), some of these parameters are
calculated. Finally a comparison of results obtained from both manual marking and the

STHT is made and some statistical evaluation results are presented.

7.1 Kinematic Parameters

So far, a number of parameters has been proposed in order to depict the motion pattern
of the lumbar spine. One reason for the apparent range of parameters is due to the
arbitrary shapes of vertebrae. Manual labelling aims to simplify this problem by finding
corners that can be regarded as a simple description of the shape. If the vertebrae were
conic sections, as such explicitly described by parameters, it is likely that this range
would be smaller. However, the new use of shape definition could be help to reduce
this range as an estimation of center positions and rotations. The other is due to the
complexity of spine motion, most of these parameters are only able to partially describe
the motion such as in rotation or translation. As discussed in chapter 2, the spine can

rotate around its axis, move forward and backward and bend in a lateral direction. There

92
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are also coupled motions, especially in lateral bending. Some studies have suggested that
the coupled rotation is not very large especially in extension and flexion (Panjabi and
White 1971; Pearcy 1986). Therefore, we assume that pure planar motion is involved
when the subject flexes and extends during the experiments. During DVF acquisition
the patient was constrained on the passive motion table, and hence this assumption
appears to be reasonable. As the focus of this study is not to evaluate these parameters,

only some typical parameters are reviewed.

o Instantaneous Axis of Rotation (IAR)
In the early studies, the IAR, also known as Instantaneous Center of Rotation
(ICR), was one of the most often used parameters in spine kinematics. It can reflect
the combination of the sagittal translation and simultaneous rotation. During
flexion-extension, each vertebra exhibits a motion with respect to the lower one.
In the TAR calculation, the lower vertebra is assumed to keep the original position
while only the upper one moves in relation to it, as shown in Figure 7.1. The
TIAR lies at the intersection of the perpendicular bisectors of the displacement
vectors (AA’ and BB’) of two markers A and B provided that a vertebra can be
assumed to be a rigid body. The IAR is error sensitive (Dimnet et al. 1976) and
the error can be unacceptably large if the magnitude of rotation is less than 5°
and if the landmarks A and B are located at a distance of less than 30mm from
the center of rotation. There have been a number of studies on its calculation
and optimisation (Panjabi 1979; Bogduk 1997; Muggleton and Allen 1998; Challis
2001). In short, it appears that the IAR can be useful only when the magnitude of
movement is sufficiently large. Also, if relative movement between two vertebrae
exhibits a pure translation, two bisectors will become parallel which means that
the estimate of the coordinates of the IAR will become infinite. This remains as

the most significant limitation of the IAR.

e Centrode
There is an intimate relationship between the centrode and the IAR. During spine

movement, if the IARs are determined for each phase of the motion and then plot-
ted in sequence, they will depict a locus known as the centrode of motion (Bogduk
1997). The centrode is like the path during the full range of motion of the joint,
as shown in Figure 7.2. One study proposed that centrode patterns can be used
to determine whether there are pathological changes in the vertebrae (Gertzbein
et al. 1985). For example, in normal cadaveric specimens the centrode will be
short and located within a restricted area in the vicinity of the upper endplate of
the next lower vertebra, while it will exhibit longer, displaced and seemingly er-

ratic behaviour with degenerative vertebrae. However, Pope et al. (1999) noticed
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FIGURE 7.1: The location of an IAR.

Gertzbein et al. (1988) has reported that this pattern cannot be established in
their later study. Unfortunately, this finding has been overlooked or neglected by
most studies. A centrode is a collection of a series of IARs and as such is subject
to potentially large errors for small measurements. It appears to be impractical to
use the centrode to distinguish between normal and abnormal motions for the LBP
patients with limited movements, since the magnitude of each movement may be
very small (Pearcy and Bogduk 1988). Furthermore, the centrode is meaningless

when the motion is only examined at the extreme positions.

Intervertebral Angle (IVA)

The intervertebral angle is a parameter to measure the rotation movement between
two neighbouring vertebrae. It can be measured directly by the angle between lines
across their vertebral endplates, as shown in Figure 7.3. These lines are defined by
anatomical landmarks. As has been discussed in chapter 2, with manual marking

it is unlikely to locate the same landmarks in different images.

Sagittal Translation

Translation is often used in sagittal motion analysis. There are different notations
to define translation (Muggleton and Allen 1998). Figure 7.4 shows one (Frobin
et al. 1996). For two neighbouring segments, four corners of each vertebral body
are used to define a midplane. The sagittal translation is defined as the change
along the bisectrix of two midplanes against the height of the superior vertebral
body. One should notice that this definition relies on more landmarks than the

IVA and is potentially subject to larger errors caused by landmarking.
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F1Ggure 7.2: Ilustration of the centrode (1,2,..,5 in the middle of two vertebrae denote
IARs and 0,1,...,5 on the top are different positions during the motion.), adapted from
Bogduk (1997) with permission of Elsevier.

Fi1cureg 7.3: Illustration of the intervertebral angle.

e Axial Translation
It is believed to be valuable in clinical application as it has potential to represent
the intervertebral stiffness. It can be defined as the percentage of the average

intervertebral disc depth over the average superior vertebral body depth.

e Neutral Zone (NZ)
Neutral zone is a part of the range of motion of a vertebral body, starting from the
neutral position up to the beginning of some resistance offered by the joint (White

and Panjabi 1990). This is illustrated in Figure 7.5. It reflects the sense of excessive
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FIGURE 7.4: An illustration of the sagittal translation.

displacement under minor load. An increased value of NZ is believed to be a factor

of instability.
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FIGURE 7.5: Tllustration of the neutral zone, adapted from Bogduk (1997) with per-

mission of Elsevier.

e Range of Motion (ROM)

Range of motion is defined as the displacement between the extremes of the phys-

iological range of motion or rotation of a joint. It might be useful to represent

the whole range of the motion, but it is limited by many factors. For example,

movements of LBP patients may be affected by pain and consequently ROM can-

not represent the degree of the LBP impairment. One study suggests that neutral

zone is more appropriate than the ROM in characterising instability (Panjabi et al.



Chapter 7 Preliminary Study of Spine Kinematics 97

1994).

There are other parameters derived by measuring position changes of vertebrae in the
images. For example, the curve along the posterior longitudinal ligament between the
inferior T12 (the 12th vertebra of the thoracic spine) to the superior S1 is assumed to be
portion of an ellipse. Thus an elliptical model is used to discriminate between normal
and low back patients (Harrison et al. 1998). Kanayama et al. (1996) proposed phase
lag to evaluate the sagittal motion. The relative position of the pedicles (or the spinous
processes) against the vertebra is also used in quantifying the vertebral axial rotation,

on which there is a good comparison conducted by Russell et al. (1990).

Some parameters based on direct measurement have also been used. Fingertip-to-floor
distance measures the distance from the tip of the middle finger to the floor when the
patient maintains full flexion posture (Gill et al. 1988). However, it cannot reveal
motions in the segmental level and measurement repeatability is problematic due to the
effects of many vertebrae, shoulder, elbow, wrist etc. involved. Waddell (1999) even
suggested that it is inappropriate to use it as a measure of lumbar flexion. The Schober
technique is also used to measure the flexion: with the subject standing erect, make a
mark at the approximate position of the lumbosacral junction, make a second one 10cm
higher and a third mark 5¢m lower. The distance between the latter two marks are
measured when the subject flexes and extends (Gill et al. 1988). This is still unable to
measure the motion in segmental level. Together with parameters directly measured by

inclinometers, these are adequately reviewed by Gill et al. (1988).

From the above discussion, it can be seen that accuracy of most kinematic parameters,
e.g. IAR, centrode, IVA and sagittal translation, largely depends on the accuracy with
which the landmark points have been located. For example, the errors caused by manual
landmarking has been regarded as the major source in the errors of the IAR (Panjabi
et al. 1992). It is desirable to develop a landmark location approach that can identify
landmarks with high accuracy, efficiency and reliability, as has been the focus of earlier
studies (Simonis et al. 1993; Muggleton and Allen 1997; Cardan and Allen 2000). This
highlights the great value of the newly developed STHT.

7.2 Calculations of Kinematics

As discussed in the previous chapter, the STHT has been developed to analyse the dy-
namic motion of the spine in an image sequence. Its performance has been reinforced
by incorporating the spatio-temporal information within the analysis. The STHT can

extract vertebrae within a DVF sequence by detecting contours that are predefined as
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target shapes. After extraction, these contours, the positions of their centers, together
with their orientations, are known. Figure 7.6 shows the extraction results of one sub-
ject. When the subject was taken in a passive flexion/extension motion as described in
chapter 3, the vertebral centers depicted a sinusoidal pattern in the forward and back-
ward directions Figure 7.6(a), a sinusoidal pattern was also observed in rotation with
respect to the vertebral centers 7.6(c). It appears that the centers of the vertebrae were
slightly stretched away from the head at the extreme flexion while they were clearly
pushed towards to the head at the extreme extension 7.6(b).

From Figure 7.6, it seems that the lumbar spine cannot return to the initial position.
This has been observed with some subjects. There are several possible causes, e.g.
the subject shifting during the experiment, measurement errors, the variability of the
neutral position or perhaps the nature of passive motion protocol in which the muscles

and ligaments of the subject involved are still in a relaxed condition.

In contrast to the manual identification, where only a few anatomical landmarks (usually
four corners) are located, the STHT can present much more useful information. For
example, positions of any points on the contour can be determined mathematically and
uniquely from the extraction. This will be discussed next. This guarantees that the same
points are used in the parameter calculation and can avoid the location errors caused
by inter/intra observers in the manual work. In addition, the STHT aims to locate
the whole contour rather than several discontinuous points, thus it will not be greatly
affected by missing data, partial occlusion and noisy frames, while manual marking
appears problematic in these cases. Therefore, the STHT has a significant advantage

over manual location and can be a powerful tool in spine kinematic measurement.

With the power provided by Fourier descriptors to effectively describe the arbitrary
shape, a valuable point to be addressed here is that the parameters (positions of the
centers and rotations) determined by the STHT may serve as measures to quantify the
motion of the lumbar spine. These parameters appear more intuitive than those used be-
fore and are sufficient to describe the positions of a moving rigid arbitrary-shape object
such as vertebra. This can be seen from Figure 7.7 where the squares denote the center
positions of the vertebrae and the dotted lines show the virtual connections between

these centers. This is further shown in Figure 7.8.

However, questions may arise, i.e. whether parameters obtained will still be meaningful
when the contour constructed is not as same as the true contour of the vertebral body
(Figure 7.9(b)). Two cases are shown in Figure 7.9(a) and 7.9(c). From a mathematical
view, the rotation values obtained by using either Figure 7.9(a) or 7.9(c) as model will

remain the same as that obtained by using the model as shown in Figure 7.9(b). As for
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center positions, there will be a constant difference when using Figure 7.9(a) and 7.9(b),
so do when using Figure 7.9(b) and 7.9(c) as models. However, the relative motion
patterns of centers in a motion sequence with respect to the first frame will be the same.

Therefore, these parameters can still be useful.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

FIGURE 7.7: Illustration of center connections.

(2) (®)

FIGURE 7.8: Illustration of motion. (a) Center connection using smooth curves. (b)
Motion shown by the contours.

7.2.1 Corner Derivations

In spine kinematics, most conventional parameters are derived by positions of two or
more landmarks. Although the STHT can provide more information on the positions of

the lumbar spine, this cannot directly be used to calculate those parameters. Here we
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FIGURE 7.9: Tllustration of variations of model shapes.
illustrate how landmarks, four corners in particular, can be obtained from the STHT
extraction results.

Corner detection is achieved by examining the values of curvature x along the contour.

Given a 2-D curve, the curvature £ at any point on the curve can be expressed as

a,
5
£~

(7.1)

K =

R+ ()2

where dy/dz and dzy/da?2 are the first and second derivatives. The curvature x can be
rewritten as k(t) = m—[%%zﬁ(%g% for a curve in parametric form y = y(t) and z = z(¢),
as used in Equation (5.5) (details about curvature can be found in James (1992).). In
Equation (5.5), t is used to parameterise the position along the curve and its range is
between 0 and 360°. The t is the only unknown parameter, provided that the Fourier

descriptors have been determined.

The curvature can represent the sharpness of the local area. That is, a point with a
larger value of x means the radius is smaller at that point. Therefore, a corner can be

located by detecting a relatively large value of &.

As each vertebral body is approximated by a closed curve on which there are roughly
four corners, the curvature at the corner should be larger, at least in the local area.
A simple method is used to define four corners. That is, the first corner is located by
finding the point corresponding to the global maximum of the curvature, the other three

corners can be detected by looking at approximately 90° intervals.

This approach can succeed in locating the corners. Figure 7.10 shows this procedure
on 5 vertebral models of one subject where the stars denote the position of the corners
and the circles indicate positions of peaks. In all but one case, the corners appear to

form sharp peaks of the curvature function. In one case, as shown in Figure 7.10(a),
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the value of k at the lower right corner appears to be close to that of the neighboring
areas because of local smoothness. A more rigorous approach may be needed and some

methods can be found in the book by Nixon and Aguado (2002).

After four corners of the target contour are determined, their positions in the DVF
sequence can be derived from the extracted rotations and translations by the STHT. This
enables us to calculate conventional kinematic parameters with potentially increased

repeatability and accuracy.

7.2.2 Results of Rotations and Intervertebral Angles (IVAs)

If landmark data are available, most conventional kinematical parameters can be easily
derived by applying elementary geometric techniques. Moreover, the main aim of this
study is to solve landmarking problems. Only the results of rotations and intervertebral
angles are presented. The former describes the motion of single vertebra while the latter
is effective for measuring the relative rotation between neighbouring vertebrae. Since
all lumbar vertebrae in the image are moving, it may be more appropriate to study the

motion between two neighbouring segments.

During calculation, the initial orientations of the vertebrae are normalised to zero so
that all angular measurements are defined relative to the starting position, in this case,
the neutral position. It should be emphasised that the results of L1 lack significance as

L1 is out of view in many DVF images.

7.2.2.1 Rotations of Vertebrae

The absolute rotations of five vertebrae of nine subjects are shown in Figure 7.11(a)
to 7.11(e). Average rotations across the 9 subjects were also calculated for a better
understanding of the motion pattern and these are shown in Figure 7.11(f). Due to the
passive motion protocol used in the experiment, L5 vertebra has the largest rotation
while the rotation of L1 is relatively small. It seems that the maximal rotations occur
at the extremes of flexion and extension. The average curve of the L1 rotation around
the vicinity of the extreme extension appears less smooth than those of other vertebrae.
This is caused by the out of view problem which has been discussed earlier. The problem

of how to constrain the subject in DVF acquisition needs consideration in future work.
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7.2.2.2 Intervertebral Angle (IVA)

From the vertebral extraction data, we can obtain the rotations of each vertebra pf s i=
1,....,5andi=1,..., N, where N is the total number of frames used in a sequence. Thus

the intervertebral angles can be obtained by subtracting the rotations of neighbouring

vertebrae. That is, IVA = pf — pf“, where £k = 1,2,3,4. The results are shown in

Figure 7.12. Note that the initial IVAs are zero because of the normalisation. Overall,
it appears that the maximum IVA value is less than 15° and IVAs between L4 and L5
are larger than others. It can be seen from Figure 7.12 that the IVA is not a smooth

function during the motion and this implies that the motion of neighbouring vertebrae

does not change in the same pattern during flexion and extension.
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FIGURE 7.12: The IVAs of the lumbar vertebrae in 9 subjects.
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7.3 Comparison with Manual Labelling

It is often difficult, or even impossible, to obtain “ground truth” in medical imaging
analysis. Here is such a case. The data of M. Kondracki (2001) from manual landmark

identification was used as a measure of validation.

The comparison of rotations from the STHT and from manual marking is presented
in Figure 7.13(a), where ‘A’ means results of the STHT and ‘K’ means that of man-
ual marking. The motion pattern looks very similar for most of the vertebrae of the
subject. L1, however, shows large variations which appears to be due to the problem
in data acquisition, as discussed earlier. Figure 7.13(b) shows the difference between
two studies with respect to the maximum of the manual labelling. To further evaluate
the relationships between the two methods, a statistical analysis was conducted. The
value of R? returns the square of the Pearson product moment correlation coefficient R
through data points in two variables = and y. R is defined in Equation (7.2). R? ranges
from 0 to 1 and can reveal how closely y corresponds to z. If it is near unity, the match
between two variables is deemed to be close. Here z and y denote the results obtained

by manual labelling and the STHT, respectively.

(S () - (CE)(2) (7.2)

R=
VIn2 (%) = (C @) 207 - ()]

For each lumbar segment across all subjects, the value of R? is calculated and is shown
in Table 7.1. From this table, it can be seen that the results of the two methods
statistically match very well except for L1. Surprisingly, despite the poor image quality
in the L5 area, the value of R? for L5 is very good. As discussed in the previous chapter,
the correct extraction rate of L5 is not very good, this might imply that the manual
labelling may also have a large uncertainty for L5. In another test, the rotations for
each segment across all subjects were grouped and the R? values are 0.465, 0.776, 0.829,
0.855 and 0.784 for L1 to L5, respectively. Again, the R? value for L1 is much lower
than those of other segments, the reason is mainly due to the problem of L1 occasionally

being out of the field of view of the fluoroscope.

The use of correlation coefficients sometimes could be inappropriate and misleading, and
for this reason we looked at linear regression. Given two observations X and Y, linear
regression attempts to explain this relationship with a straight line fit to them. The linear
regression model postulates that ¥ = aX + b + ¢, where the “residual” € is a random
variable with mean zero. The coefficients a and b are determined by the condition that
the sum of the square residuals is as small as possible. Here linear regression analysis

was also used to determine the relationship between the manual labelling rotation values
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TABLE 7.1: The R? values between rotations determined by the STHT and by manual
labelling on 9 subjects.

Subject L1 L2 L3 L4 L5
1 0.784 0.954 0.968 0.973 0.943
2 0.157 0.927 0.971 0.969 0.976
3 0.750 0.916 0.979 0.978 0.984
4 0.490 0.884 0.954 0.936 0.929
5 0.767 0.923 0.965 0.983 0.937
6 0.700 0.960 0.973 0.970 0.958
7 0.720 0.947 0.982 0.991 0.975
8 0.334 0.922 0.959 0.933 0.967
9 0.219 0.897 0.938 0.952 0.929
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and those obtained by the STHT on 9 subjects. That is, the 342 values obtained by
the STHT and 342 values marked manually were evaluated for each vertebrae. Ideally

a should be one and b will be zero if measurements obtained from these two approaches

match perfectly.

The relationships corresponding to the five vertebrae appear good, especially for L2, L3
and L4, as shown in Figure 7.14 where the thick solid lines denote the regressed lines,
the dotted lines denote ¥ = X while the “o” denotes the data points. The regression
equations are also shown in PFigure 7.14 with 95% confidence intervals, respectively.
Some disparity was observed for L1 and the underlying reason might arise from the out-
of-view problem. The regression of L5 appears different from that for L1. The slope of
the regressed line is close to one while the intercept has a value over 2.5 degrees which is
much higher than for the others. This could be explained by the difficulty in identifying
L5 which is corroborated by visual analysis. Overall, this regression analysis confirms
that the accurate extraction appears to have been achieved and we await confirmation

of the potential of this new technique on a much larger dataset.

7.4 Conclusions

This chapter has discussed the parameters that are commonly used in spine kinematics.
Most of them can be derived from landmark data and their accuracy largely depends
on that of the landmarks. After the contours of the vertebral bodies are identified using
the STHT, it is necessary to determine some points as landmarks to study the kinemat-
ics. Here, a simple method that can detect four corners by curvature was proposed. In
this way, problems in the conventional landmarking approaches can be overcome. Fi-
nally, some results of the estimation of vertebral rotations and intervertebral angles were
presented. As a validation measure, the rotations obtained from the STHT and from

manual landmarking correlate quite closely and the statistical results are encouraging.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Low back pain is a very common problem. Both the problem and its associated disability
have appeared to escalate with time even though there is continuous and considerable
progress being made by means of diagnosis, in appearance of new medicines and in-
creasing knowledge of the human body. The direct and indirect cost of back pain have

become a significant problem.

Despite the high occurrence of back pain, uncertainty still exists about its exact causes.
The main problem is that it might be caused through multiple sources, that is, not only
from the spine itself, such as through injury or pathological problems, but also through
other structures such as nerves. Even psychological factors can result in low back pain.
On the other hand, the complexity of the structure and the difficulty in accessing the

spine also limit an exact diagnosis.

One of the main functions of the spine is to provide mobility of the human body, therefore
there must be some relationships between the motion and low back pain. It is difficult
to determine the relationships between them, i.e., does abnormal motion cause low back
pain, or does low back pain cause abnormal motion or is there an interaction between
them? Most problems, however, have a direct or indirect influence on the movement
of the vertebral bones and can be catalogued as mechanical disorders. In order to
understand the mechanical behaviour, specifically of the lumbar spine, a number of
studies has been conducted, and again various parameters have been proposed to depict

the patterns of the spinal kinematics.

In spine kinematics, radiographic techniques are the most commonly used methods to

capture the motion of the spine. There are two significant issues with radiographic

110
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imaging. First, is it possible to obtain real time motion of the lumbar spine with as
low risk as possible to the subject? In attempting to answer this question, DVF has
been developed and indeed it can provide images of continuous motion of the lumbar
spine at the segmental level, while the radiation involved is much lower than that of
plain X-rays. Unfortunately, the quality of DVF is compromised by the reduction in the
radiation dosage. The second question is whether or not it is possible to identify the
vertebrae from the images obtained, accurately and efficiently. After a motion sequence
(in particular DVF here) is obtained, it is crucial to determine the positions of the lumbar
spine in all frames. In order to determine the position of an object in 2-D space uniquely,
at least 2 points of the object have to be identified from the image and this procedure
is referred to as “landmark location” in spine kinematics studies. Previous methods
including manual work and some so-called automatic methods suffer many problems.
Thus, the objective of this study was to develop a powerful tool for eliminating the
problems associated with those previous methods. This has been achieved by solutions

based on the Hough transform.

The Hough transform is a very powerful tool in computer vision and it can locate a target
object in an image by gathering evidence from the edge information. Edge detection is
also a very active area in image processing. In this work, phase congruency was employed
to detect edges from DVF images, owing to its good performance in coping with images

of low quality and variable illumination levels together with no need to tune thresholds.

The Hough transform has many variations and here a continuous version has been used
in which Fourier coefficients are used to represent the model shape continuously in order
to avoid discretisation and rounding errors. This method has been applied to synthetic
images both with and without noise and occlusion, and also to a calibration model.
These experiments showed good results. The extractions from the DVF sequence were

also very encouraging.

In some cases, however, the PHT cannot yield correct results especially for extrema
vertebrae such as L1 and L5 because of the inferior image quality. To improve the
performance of the basic Hough transform, a Spatio-temporal Hough transform (STHT)
has been developed. In the new method the contextual information within the motion
sequence has been exploited to augment the ability in coping with noise, occlusion and
partial missing data. Together with the Hough space this information is used to form
an energy function. Compared with the traditional Hough transform, it is the maxima
of the energy function in the STHT that correspond to the solution we are looking for
rather than the maximum of the Hough space in the traditional HT. Due to the high
dimensionality involved, a genetic algorithm (GA) is used to handle the search problem.

Results from the DVF sequences of nine subjects are very promising.
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Finally, some kinematic parameters have been calculated based on the results obtained
by using the new STHT. In order to validate the new method, a comparison has been
conducted in which the results derived from expert manual marking were compared
with results from the STHT. Statistical comparison of these results showed considerable

potential for the new approach.

In short, the landmarking problem in spine kinematics actually is motion sequence anal-
ysis. The Parameterised Hough transform (PHT) is a powerful approach that can handle
the segmentation problem in a single image. When it is applied to a motion sequence,
it works on the frame by frame basis and does not consider the potentially valuable
information within the sequence. Thus its performance is limited in handling motion
sequences; The new STHT, however, can take advantage of this useful information
and thus is powerful for motion sequence analysis. That is, the STHT has extended
the ability of traditional HT to handle motion sequences by collecting spatio-temporal

information within the sequences.

8.2 Future Directions

Future work will lie in the following areas:

The STHT has proved to be a powerful tool in motion analysis, however, currently it is

only a framework and more theoretical study is needed.

e The first question is on the spatio-temporal information. Currently, only the con-
straints on the trajectory and the spatial positions have been combined with the
Hough transform. Additional a priori knowledge, e.g. gradient information, could
also be included in the STHT. In order to achieve this, however, we must represent
them and incorporate them in a mathematical form. These could be extremely

valuable in further improvement of the existing STHT.

e The Hough transform is a model-based method and usually a unique model has to
be built for each target object. Accordingly, the second question is whether or not
it is possible to extend the STHT to cope with shape similarity? If so, this could

be very useful in extraction of similar shapes such as the lumbar vertebrae.

e Thirdly, a thorough performance analysis of the Hough transform would be de-
sirable. As has been stated, although a large variety of Hough transforms has
been proposed, very few studies have focused on the property of the Hough trans-
form itself. Analysis in this area might be helpful in answering some fundamental

questions, e.g. how to select intervals in quantising the parameters, how to form
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the accumulator space etc. This may give us new guidance for improving the

performance of the HT.

e A further area is the construction of the model shape. So far, this was achieved
by manual initialisation. This is the main reason why the STHT is called an
“automated” method. The significance of automatic initialisation is that it can
avoid possible errors in manual model construction (in particular, different ini-
tialisations may occur when different persons are involved.). In turn, this may
affect the Hough transform. However, this automatic initialisation appears to be
impractical for arbitrary shapes as it can be directly used for segmentation of the

motion sequence effectively if such an approach exists.

e The Hough transform has the ability to handle 3-D object extraction. Thus, it
has the potential to handle the out-of-plane motion problem if such information
can be recorded by certain forms of images. This encourages us to develop a 3-D

version of the STHT.

Another area would be to find more areas of applications. First, more analysis of the
spine kinematics would be of great interest. At present only data from nine subjects
were analysed. If possible, we would like to apply the STHT to a larger database. This
will not only further validate the STHT, but also enable us to have an insight into
the motion patterns, i.e., what is normal and what is abnormal motion? What is the
relationship between the motions and low back pain? These could be very useful for
clinicians as a powerful tool for better understanding of low back pain and improving
its diagnosis, treatment and rehabilitation. Second, the STHT can be applied to other
medical kinematics studies, e.g. pelvis, knees and finger joints etc. This will be very
useful in decision making and also for evaluating the outcome of a joint surgery. As a

generic method, it could be applied to motion analysis in broader areas than just spine

kinematics.

New imaging techniques are also desirable. They should not only have the ability to
record real time motion, but also be expected to yield images with better quality than

DVF whilst minimising/eliminating the potential radiation risks to the subject.

Finally, but non-trivially, some studies might improve the edge detection, especially for

moving objects.



References

Ackerman, S. J., E. P. Steinberg, R. N. Bryan, M. BenDebba, and D. M. Long (1997).
Trends in diagnostic imaging for low back pain: has MR imaging been a substitute

or add-on? Radiation 203(2), 533-538.

Adams, M. A. (1999). Biomechanics of the intervertebral disc, vertebra, and liga-
ments. Lumbar Segmental Instability, 1-13.

Aguado, A. S., E. Montiel, and M. S. Nixon (1998). On the intimate relationship
between the principle of duality and the Hough transform. Proceedings of the Royal
Society-A 456, 503-526.

Aguado, A. S., E. Montiel, and M. S. Nixon (2000). Bias error analysis of the
generalised Hough transform. Journal of Mathematical Imaging and Vision 12(1),

25-42.

Aguado, A. S., M. S. Nixon, and M. E. Montiel (1998). Parameterizing arbitrary
shapes via Fourier descriptors for evidence-gathering extraction. Computer Vision

and Image Understanding 69(2), 202-221.

Allan, D. B. and G. Waddell (1989). An historical perspective on low back pain and
disability. Acta Orthop Scand 60, 1-23.

Allen, R., C. Simonis, and A. C. Breen (1992). Spine kinematic analysis using digital
videofluoroscopy and image processing. In IEE Colloguium on Image Processing for

the Disabled, Edinburgh.

Allen, R., Y. Zheng, and M. S. Nixon (2001). Measurement of the kinematics of the
lumbar spine in vivo. In International Conference on Biomechanics combined with

Annual Scientific Meeting of Taiwanese Society of Biomechanics, Taiwan, pp. 25.

American Medical Association (1987). Guides to the evaluation of permanent im-

pairment. Technical report, American Medical Association, Chicago. 52-59.

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes.
Pattern Recognition 13(2), 111-122.
114



REFERENCES 115

Beasley, D., D. R. Bull, and R. R. Martin (1993a). An overview of genetic algorithms:
Part 1, fundamentals. University Computing 15(2), 58-69.

Beasley, D., D. R. Bull, and R. R. Martin (1993b). An overview of genetic algorithms:
Part 2, research topics. University Computing 15(4), 170-181.

Beutel, J., H. L. Kundel, and R. L. Van Metter (2002). Handbook of Medical Imaging:
Physics and Psychophysics, Volume 1. SPIE.

Bogduk, N. (1997). Clinical Anatomy of the Lumbar Spine and Sacrum (3rd ed.).
London: Churchill Livingstone.

Bratton, R. L. (1999). Assessment and management of acute low back pain. American

Family Physician 60, 2299-2308.

Breen, A. C., R. Allen, and A. Morris (1987). A computer/X-ray method for mea-
suring spinal segmental movement: a feasibility study. Transactions of the Pacific

Consortium for Chiropractic Research E3.1-3.7.

Breen, A. C., R. Allen, and A. Morris (1988). An image processing method for spine

kinematics-preliminary studies. Clinical Biomechanics 8, 5-10.

Breen, A. C.; R. Allen, and A. Morris (1989). A digital videofluoroscopic technique
for spine kinematics. Journal of Medical Engineering & Technology 13(1/2), 109-113.

Breen, A. C. and R. Allen (1993). Image presentation for spinal kinematic analysis

using digital videofluoroscopy. Third International Conference on Image Processing

and Its Applications.

Breen, A. C., R. Brydges, H. Nunn, J. Kause, and R. Allen (1993). Quantitative anal-
ysis of lumbar spine intersegmental motion. FEuropean Journal of Physical Medicine

& Rehabilitation 3(5), 182-190.

Breen, A. C. (1991). The measurement of the kinematics of the human spine using
videofluoroscopy and image processing. Ph. D. thesis, University of Southampton,

Southampton, U. K.

Brejl, M. and M. Sonka (2000a). Automated initialization automated design of border
detection criteria in edge-based segmentation. In The 4th IEEE Southwest Symposium
on Image Analysis and Interpretation, Austin, USA, pp. 26-30.

Brejl, M. and M. Sonka (2000b). Object localization and border detection criteria
design in edge-based image segmentation: Automated learning from examples. IFFE

Transactions on Medical Imaging 19(10), 973-985.



REFERENCES 116

Brolin, K. (2002). Influence of ligamentous injuries on the upper cervical spinal
kinematics. In Proceedings of the 4th World Congress of Biomechanics, pp. 1.

[Electronic version].

Brown, R. H., A. H. Burstein, C. L. Nash, and C. C. Schock (1976). Spinal analysis

using a three-dimensional radiographic technique. Journal of Biomechanics 9, 355—

365.

Burden, R. L. and J. D. Faires (1993). Numerical Analysis (5th ed.). Boston: PWS
Publishing Company.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions
on Pattern Analysis & Machine Intelligence PAMI-8(6), 679-698.

Cardan, C. and R. Allen (2000). Measurement of spine motion for diagnosis of

mechanical problems. Computer Simulation & Modeling in Medicine 1(1), 15-19.

Case, K., D. C. Xiao, B. S. Acar, and J. M. Porter (1999). Computer aided modeling
of the human spine. Proc. Inst. Mech. Engrs. 213(part B), 83-86.

Challis, J. H. (2001). Estimation of the finite center of rotation in planar movements.

Medical Engineering & Physics 23, 227-233.

Chetverikov, D. and J. Verestéy (1999). Feature point tracking for incomplete tra-
jectories. Computing 62(4), 321-338.

Cholewicki, J. and S. M. Mcgill (1991). Method for measuring vertebral kinematics

from videofluoroscopy. Clinical Biomechanics 6, 73-78.

Cho, Z. H., J. P. Jones, and M. Singh (1993). Foundations of Medical Imaging. New
York: John Wiley & Sons, Inc.

Clinical Standards Advisory Group (1994). Epidemiology review: The epidemiology
and cost of back pain. Technical report, London: HMSO.

Davies, C. R. (1990). Machine Vision: Theory, Algorithms, Practicalities. London:

Academic Press.

Deans, S. R. (1981). Hough transform from the Radon transform. IEEE Transactions
on Paitern Recognition & Machine Intelligence PAMI-3(2), 185-188.

Department of Health (1999). The prevalence of back pain in Great Britain in 1998.
Bulletin 1999/18, Department of Health, U. K.

de Boor, C. (1978). A Practical Guide to Splines. New York, Heidelberg, Berlin:
Springer-Verlag.



REFERENCES 117

De Jong, K. (1975). An analysis of the behaviour of a class of genetic adaptive
systems. Ph. D. thesis, University of Michigan.

Dimnet, J., J. P. Carret, G. Gonon, and L. P. Fischer (1976). A technique for

joint center analysis using a stored program calculator. Journal of Biomechanics 9,

T7T1-TT78.

Dimnet, J., A. Pasquet, M. H. Krag, and M. M. Panjabi (1982). Cervical spine motion
in the sagittal plane: Kinematic and geometric parameters. Journal of Biomechan-

ics 15(12), 959-969.

D’Orazio, B. P. (1999). Low Back Pain Handbook. Boston: Butterworth and Heine-

mann.

Duda, R. O. and E. Hart (1972). Use of the Hough transform to detect lines and
curves in pictures. Commaunications of the ACM 15(1), 11-15.

Dupuis, P. R., K. Yong-Hing, J. D. Cassidy, and W. H. Kirkaldy-Willis (1985). Ra-
diologic diagnosis of degenerative lumbar spinal instability. Spine 10(3), 262-276.

Dvoték, J., M. M. Panjabi, D. G. Chang, R. Thiler, and D. Grob (1991). Functional
radiographic diagnosis of the lumbar spine. Spine 16(5), 562-571.

Eisenstein, S. M. (1999). “Instability” and low back pain: A way out of the semantic
maze. Lumbar Segmental Instability, 39-44.

Farrokhi, S., K. Kulig, J. Burnfield, and C. Powers (2002). In vivo assessment of
the instantaneous axes of rotation of the lumbar spine in symptomatic and asymp-
tomatic subjects. In Proceedings of the 4th World Congress of Biomechanics, pp. 1.

[Electronic version).

Frobin, W., P. Brinckmann, M. Biggemann, M. Tillotson, and K. Burton (1997).
Precision measurement of disc height, vertebral height and sagittal plane displacement

from lateral radiographic views of the lumbar spine. Clinical Biomechanics, 1-64.

Supplement.

Frobin, W., P. Brinckmann, G. Leivseth, M. Biggermann, and O. Reikeras (1996).
Precision measurement of segmental motion from flexion-extension radiographs of the

lumbar spine. Clinical Biomechanics 11, 457-465.

Gafton, M. L. and M. J. Pearcy (1999). Kinematics and movement sequencing during

flexion of the lumbar spine. Clinical Biomechanics 14, 376-383.

Gertzbein, S. D., R. Holtby, A. Kapasouri, and B. Cruickshank (1984). Determination

of a locus of instantaneous centers of rotation of the lumbar disc by Moiré fringes: A

new technique. Spine 9(4), 409-413.



REFERENCES 118

Gertzbein, S. D., J. Seligman, R. Holtby, K. H. Chan, A. Kapasouri, M. Tile, and
B. Cruickshank (1985). Centrode patterns on segmental instability in degenerative
disc disease. Spine 10(3), 257-261.

Gertzbein, S. D., N. Wolfson, and G. King (1988). The diagnosis of segmental
instability in vivo by centrode length. In The Annual Meeting of the International
Society for the Study of the Lumbar Spine, Miami, Florida. [Presentation].

Gill, K., M. Krag, G. Johnson, L. Haugh, and M. Pope (1988). Repeatability of four

clinical methods for assessment of lumbar spine motion. Spine 13, 50-53.

Goldberg, D. E. and K. Deb (1991). A comparative analysis of selection schemes used
in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations of Genetic Algorithms,
Morgan Kaufmann, pp. 69-93.

Goldberg, D. E. (1997). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Goulermas, J. Y. and P. Liatsis (1998). Genetically fine-tuning the Hough transform

feature space, for the detection of circular objects. Image and Vision Computing 16,

615-625.

Grant, M. G., M. S. Nixon, and P. H. Lewis (2002). Extracting moving shapes by
evidence gathering. Pattern Recognition 35, 1099-1114.

Gregersen, G. G. and D. B. Lucas (1976). An in vivo study of the axial rotation
of the human thoracolumbar spine. Journal of Bone Joint Surgery (American) 49,

247-262.

Grimson, W. E. L. and D. P. Huttenlocher (1990). On the sensitivity of the Hough

transform for object recognition. IEEE Transactions on Pattern Recognition & Ma-

chine Intelligence 12(3), 255-274.

Hamadeh, A and P. Cinquin (1997). Kinematics study of lumbar spine using func-
tional radiographies and 3D /2D registration. In J. Troccaz, E. Grimson, and R. Mosges
(Eds.), Lecture Notes in Computer Science, CVRMed-MRCAS’97, Volume 1205, pp.

109-118. Springer.

Harrison, D. D., R. Cailliet, T. J. Janik, S. J. Troyanovich, D. E. Harrison, and
B. Holland (1998). Elliptical modeling of the sagittal lumbar lordosis and segmen-
tal rotation angles as a method to discriminate between normal and low back pain

subjects. Journal of Spinal Disorder 11(5), 430-439.



REFERENCES 119

Heath, M. D., S. Sarkar, T. Sanocki, and W. Bowyer (1997). A robust visual method
for assessing the relative performance of edge-detection algorithms. IFEE Transac-

tions on Pattern Analysis & Machine Intelligence 19(12), 1338-1359.

Heath, M., S. Sarkar, T. Sanocki, and K. Bowyer (1998). Comparison of edge de-
tectors: A methodology and initial study. Computer Vision and Image Understand-

ing 69(1), 38-54.

Hough, P. V. C. (1962). A method and means for recognizing complex patterns. U.S.
Patent 3,069,654.

Hunt, D. J., L. W. Nolte, and A. R. Reibman (1990). Hough transform and signal
detection theory performance for images with additive noise.  Computer Vision,

Graphics, and- Image Processing 52, 386—401.

Ilingworth, J. and J. Kitter (1988). A survey of the Hough transform. Computer
Vision, Graphics, and Image Understanding 44, 87-116.

Ilingworth, J. and J. Kittler (1987). The adaptive Hough transform. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence PAMI-9(5), 690-698.

James, G. (1992). Modern Engineering Mathematics (1st ed.). Addison-Wesley.

Kalvidinen, H., P. Hirvonen, L. Xu, and E. Oja (1994). Comparisons of probabilistic
and non-probabilistic Hough transforms. In Computer Vision (Jan-Olof Eklundh
ed.), Volume 2, Stockholm, Sweden.

Kanayama, M., K. Abumi, K. Kaneda, S. Tadano, and T. Ukai (1996). Phase lag of

the intersegmental motion in flexion-extension of the lumbar and lumbarsacral spine.

Spine 21, 1416-1422.

Kimme, C., D. Ballard, and J. Sklansky (1975). Finding circles by an array of
accumulators. Communications of ACM 18, 120-122.

Kiryati, N. and A. M. Bruckstein (1991). Antialiasing the Hough transform. CVGIP:
Graphical Models & Image Processing 53(3), 213-222.

Knutson, F. (1944). The instability associated with disc degeneration in the lumbar
spine. Acta Radiology 25, 593-609.

Kondracki, M. (1998). Kinematic determination of the functional integrity of the

lumbar spine in vivo. In 3rd Interdisciplinary World Congress of Low Back and

Pelvic Pain, Vienna, Australia, pp. 32-37.

Kondracki, M. (2001). Clinical application of digitised videofluoroscopy in the lumbar
spine. Ph. D. thesis, University of Southampton, Southampton, U. K.



REFERENCES 120

Kovesi, P. (1999). Image features from phase congruency. Videre: Journal of

Computer Vision Research 1(3), 2-26.
Kreyszig, E. (1993). Advanced Engineering Mathematics (Tth ed.). Wayne Anderson.

Kuhl, F. P. and C. R. Giardina (1982). Elliptic Fourier features of a closed contour.
Computer Graphics & Image Processing 18, 236-258.

Kulig, K., C. Powers, R. Landel, H. Chen, M. Fredricson, M. Guillet, and K. Butts
(2002). Segmental mobility of lumbar spine during a prone press-up maneuver in
symptomatic and asymptomatic subjects: assessment using dynamic MRIL. In Pro-

ceedings of the 4th World Congress of Biomechanics, pp. 1. [Electronic version].

Lam, W.C. Y., L. T. S. Lam, K. S. Y. Yuen, and D. N. K. Leung (1994). An analysis
on quantizing the Hough space. Pattern Recognition Letters 15, 1127-1135.

Lappas, P., J. N. Carter, and R. I. Damper (2002). Robust evidence-based object
tracking. Pattern Recognition Letters 23, 253-260.

Leavers, V. F. (1992). The dynamic generalized Hough transform: its relationship
to the probabilistic Hough transform and application to the concurrent detection of

circles and ellipses. CVGIP: Image Understanding 56(3), 381-398.

Leavers, V. F. (1993). Survey: Which Hough transform? CVGIP: Image Under-
standing 58(2), 250-264.

Lee, Y. and Y. Chen (2000). Regressionally determined vertebral inclination angles
of the lumbar spine in static lifts. Clinical Biomechanics 15, 672-677.

Li, H., M. A. Lavin, and R. J. Lemaster (1985). Fast Hough transform. In Proc. 3rd
Workshop Computer Vision: Representation and Control, Bellair,MI, pp. 75-83.

Maintz, J. B. and M. A. Viergever (1998). A survey of medical image registration.
Medical Image Analysis 2(1), 1-37.

Maitre, H. (1986). Contribution to the prediction of performances of the Hough
transform. IEEE Transactions on Pattern Analysis & Machine Intelligence PAMI-

8(5), 669-674.

Marras, W. S., S. A. Ferguson, P. Gupta, S. Bose, J. Y. Kimand M Parnianpour, and
R. R. Crowell (1999). The quantification of low back disorder using motion measures,

methodology and validation. Spine 24(20), 2091-2100.

Merlin, P. M. and D. J. Farber (1975). A parallel mechanism for detecting curves in
pictures. IEFE Transactions on Computers C-24, 96-98.



REFERENCES 121

Mimura, M. (1990). Rotational instability of the lumbar spine - a three-dimensional
motion study using bi-plane X-ray analysis system. Japanese Orthopaedics Associa-

tion 64, 546-559.

Miyasaka, K., K. Ohmori, K. Suzuki, and H. Inoue (2000). Radiographic analysis of
lumbar motion in relation to lumbosacral stability. Spine 25(6), 732-737.

Moffett, J. A. K. and G. Richardson (1995). Lumbar spine disorders: Current con-
cepts, Volume 1, pp. 225-235. World Scientific: Singapore.

Morgan, F. P. and T. King (1957). Primary instability of lumbar vertebrae as a

common cause of low-back pain. Journal of Bone Joint Surgery 39, 6-22.

Morrone, M. C. and R. A. Owens (1987). Feature detection from local energy. Pattern
Recognition Letters 6, 303-313.

Morrone, M. C., J. R. Ross, D. C. Burr, and R. A. Owens (1986). Mach bands are
phase dependent. Nature 324(6094), 250-253.

Muammar, H. K. and M. Nixon (1991). Tristage Hough transform for multiple ellipse
extraction. IEE Proceeding E 138(1), 27-34.

Muggleton, J. M. and R. Allen (1997). Automatic location of vertebrae in digitized
videofluoroscopic images of the lumbar spine. Medical Engineering & Physics 19(1),
77-89.

Muggleton, J. M. and R. Allen (1998). Insight into the measurement of vertebral
translation in the sagittal plane. Medical Engineering & Physics 20, 21-32.

Nash, J. M., J. N. Carter, and M. S. Nixon (1997). Dynamic feature extraction via
the Velocity Hough transform. Pattern Recognition Letters 18, 1035-1047.

Nash, J. M. (1999). Evidence Gathering for Dynamic Feature Extraction. Ph. D.
thesis, University of Southampton, Southampton, U. K.

Nattress, C. L., J. E. Nitschke, P. B. Disler, M. J. Chou, and K. T. Ooi (1999).
Lumbar spine range of motion as a measure of physical and functional impairment:

an investigation of validity. Clinical Rehabilitation 13, 211-218.

Nixon, M. S. and A. S. Aguado (2002). Feature Extraction & Image Processing (1st
ed.). UK: Butterworth-Heinemann.

North American Spine Society (latest found on March 6, 2001). Facts about back
pain. http://www.spine.org/bthw/FactsAboutBackPain.htm.


http://www.spine.org/bthw/FactsAboutBackPain.htm

REFERENCES 122

Ogston, N. G., G. J. King, S. D. Gertzbein, M. Tile, A. Kapasouri, and J. D. Ruben-
stein (1986). Centrode patterns in the lumbar spine - baseline studies in normal

subjects. Spine 11(6), 591-595.

Okawa, A., K. Shinomiya, H. Komori, T. Muneta, Y. Arai, and O. Nakai (1998).
Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine 23(16),
1743-1749.

Olson, C. F. (1999). Constrained Hough transforms for curve detection. Computer

Vision and Image Understanding 73(3), 329-345.

Oppenheim, A. V. and J. S. Lim (1981). The importance of phase in signals. In The
Proceedings of The IEEE, Volume 69, pp. 529-541.

Palmer, P. L., J. Kittler, and M. Petrou (1997). An optimizing line finder using a
Hough transform algorithm. Computer Vision & Image Understanding 67(1), 1-23.

Panjabi, M. M., G. B. J. Anderssen, and L. Jorneus (1986). In vivo measurements of

spinal column vibrations. Journal of Bone Joint Surgery (American) 68, 695-702.

Panjabi, M. M., C. Lydon, A. Vasavada, D. Greter, J. J. Crisco, and J. Dvotrdk (1994).
On the understanding of clinical instability. Spine 19(23), 2642—-2650.

Panjabi, M. M. (1979). Centers and angles of rotation of body joints: A study of

errors and optimisation. Journal of Biomechanics 12, 911-920.

Panjabi, M., D. Chang, and J. Dvofdk (1992). An analysis of errors in kinematic

parameters associated with in vivo functional radiographs. Spine 17(2), 200-205.

Panjabi, M. and A. A. White (1971). A mathematical approach for three-dimensional

analysis of the mechanics of the spine. Journal of Biomechanics 4, 203-211.
Paris, S. V. (1985). Physical signs of instability. Spine 10, 277-279.

Pearcy, M. J. and N. Bogduk (1988). Instantaneous axes of rotation of the lumbar
intervertebral joints. Spine 13(9), 1033-1041.

Pearcy, M., 1. Portek, and J Shepherd (1984). Three-dimensional X-ray analysis of

normal movement in the lumbar spine. Spine 9, 204-297.
Pearcy, M. (1986). Measurement of back and spinal mobility. Clinical Biomechan-
ics 1, 44-51.

Pope, M. H., M. Svensson, H. Broman, and G. B. J. Andersson (1986). Mounting of
transducers in measurement of segmental instability motion of the spine. Journal of

Biomechanics 19, 675—-677.



REFERENCES 123

Pope, M. H., D. G. Wilder, and L. Jorneus (1987). The response of the seated human

to sinusoidal vibration and impact. Journal of Biomechanical Engineering 109, 279—

284.

Pope, M., M. Ogon, and A. Okawa (1999). Biomechanical measurements. Lumbar
Segmental Instability, 27-37.

Porterfield, J. A. and C. Derosa (1998). Mechanical Low Back Puain: Perspective in
Functional Anatomy (2nd ed.). W. B. Saunders Company.

Potter, M. (1997). The Design and Analysis of a Computational Model of Cooperative
Coevolution. Ph. D. thesis, George Mason University, Fairfax, Virginia, USA.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical
Recipes in C (2nd ed.). Press Syndicate of the University of Cambridge.

Princen, J., J. lllingworth, and J. Kittler (1992). A formal definition of the Hough

transform: Properties and relationship. Journal of Mathematics & Imaging Vision 1,

153-168.

Rangarajan, K. and M. Shah (1991). Establishing motion correspondence. Computer
Vision Graphics Image Processing 54 (1), 56-73.

Russell, G. G., V. J. Raso, and J. Mcivor (1990). A comparison of four computerized

methods for measuring vertebral rotation. Spine 15(1), 24-27.

Saito, Y., H. Aradate, H. Miyazaki, Y. Kudo, K. Tsujita, N. Shimadu, and Y. Sawanaga
(2002). Development and evaluation of a real-time three dimensional CT (4D-CT)
scanner. In Proceedings of SPIE, Volume 4982, San Diego, pp. 801-808.

Samal, A. and J. Edwards (1997). Generalized Hough transform for natural shapes.
Pattern Recognition Letters 18, 473-480.

Seith, I. K. and R. C. Jain (1987). Finding trajectories of feature points in a monocular
image sequence. IEEE Transactions on Pattern Analysis & Machine Intelligence 9(1),

56-73.

Ser, P. K., S. T. C. Clifford, and W. C. Siu (1999). Genetic algorithm for the extrac-
tion of nonanalytic objects from multiple dimensional parameter space. Computer

Vision & Image Understanding 73(1), 1-13.

Simonis, C., R. Allen, and R. Cloke (1993). Spatial analysis of the movement of the
spine: Application of parallel computing in the field of spine biomechanics. Transputer

Applications 1, 35-38.



REFERENCES 124

Simonis, C. and R. Allen (1993). Calculation of planar spine kinematic parameters
using videofluoroscopic images and parallel processing. In Proceedings of 15th IEEE
Engineering in Medicine & Biology Society, Part 3, San Diego, California, USA, pp.
1087-1088.

Simonis, C. (1994). Parallel calculation and analysis of spine kinematics parameters
using videofluoroscopy and image processing. Ph. D. thesis, University of Southamp-

ton, Southampton.

Sklansky, J. (1978). On the Hough technique for curve detection. IEEE Transactions
on Computers C-27(10), 923-926.

Smyth, P. P., C. J. Taylor, and J. E. Adams (1997). Automatic measurement of
vertebral shape using active shape models. Image & Vision Computing 15, 578-581.

Soffer, M. and N. Kiryati (1998). Guaranteed convergence of the Hough transform.
Computer Vision & Image Understanding 69(2), 119-134.

Sonka, M., V. Hlavac, and R. Boyle (1999). Image Processing, Analysis and Machine
Vision (2nd ed.). U. S.: PWS Publishing.

Steffen, T., R. K. Rubin, H. G. Baramki, J. Antoniou, D. Marchesi, and M. Aebi
(1997). A new technique for measuring lumbar segmental motion in vivo method,

accuracy and preliminary results. Spine 22(2), 156-166.

Stokes, I. A. F., T. M. Bevins, and R. A. Lunn (1987). Back surface curvature and

measurement of lumbar spine motion. Spine 12(4), 355-361.

Stokes, I. A. F. and J. W. Frymoyer (1977). Relationship between movements of
vertebra and adjacent skin markers and sections of the back. Annual report, The

Oxford Orthopaedics Engineering Center.

Stokes, I. A. F. and J. W. Frymoyer (1987). Segmental motion and instability.
Spine 12(7), 688-691.

Stokes, I. A. F., D. G. Wilder, J. W. Frymoyer, and M. H. Pope (1981). Assessment of

patients with low back pain by bi-planar radiographic measurements of intervertebral

motion. Spine 6, 233-240.

Suh, C. H. (1974). The fundamentals of computer aided X-ray analysis of the spine.
Journal of Biomechanics 7, 161-169.

Szpalski, M., R. Gunzburg, and M. H. Pope (1999). Lumbar Segmental Instability
(1st ed.). Philadelphia: Lippincott Williams & Wilkins.



REFERENCES 125

Takayanagi, K., K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, and T. Tamaki
(2001). Using cineradiography for continuous dynamic motion analysis of the lumbar

spine. Spine 26(17), 1858-1865.

Tezmol, A., H. Sari-Sarraf, S. Mitra, R. Long, and A. Gururajan (2002). Customized
Hough transform for robust segmentation of cervical vertebrae from X-ray images. In
Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, Santa Fe,
New Mexico, U. S., pp. 224-228.

Tsuji, S. and F. Matsumoto (1978). Detecting of ellipses by a modified Hough
transform. IEEE Transactions on Computers C-27(8), 777-781.

Tulder, M. W., W. J. J. Assendelft, B. W. Koes, and L. M. Bouter (1997). Spinal
radiographic findings and non-specific low back pain. Spine 22(4), 427-434.

Veen, T. M. V. and F. C. A. Groen (1981). Discretization errors in the Hough
transform. Pattern Recognition 14(1-6), 137-145.

Waddell, G. (1996). Keynote address for primary care forum low back pain: A twenty
century health care enigma. Spine 21(24), 2820-2825.

Waddell, G. (1999). The Back Pain Revolution. United Kingdom: Churchill Living-

stone.

Wang, H. L. and A. P. Reeves (1990). Three dimensional generalized Hough transform
for object identification. J. Soc. Photo-Opt. Instrum. Eng. 1192(1), 363-374.

Warren-Forward, H. M., M. J. Haddaway, D. H. Temperton, and I. W. McCall (1998).
Dose-area product readings for fluoroscopic and plain film examinations, including an

analysis of the source of variation for barium enema examinations. British Journal

of Radiology 71, 961-967.

Weiler, P. J., G. J. King, and S. D. Gertzbein (1990). Analysis of sagittal plane
instability of the lumbar spine in vivo. Spine 15(12), 1300-1305.

White, A. A., M. Bernhardt, and M. M. Panjabi (1999). Clinical biomechanics and
lumbar spinal instability. Lumbar Segmental Instability, 15-25.

White, A. A. and M. M. Panjabi (1990). Clinical Biomechanics of the Spine (2nd
ed.), Volume 1. Philadelphia: Lippincott-Raven.

Wilder, D. G., D. Selgison, J. W. Frymoyer, and M. H. Pope (1980). Objective
measurement of L4-5 instability: A case report. Spine 5, 56-58.

Wynsberghe, D. V., C. R. Noback, and R. Carola (1995). Human Anatomy and
Physiology (3rd ed.). U.S.A.: McGraw-Hill, Inc.



REFERENCES 126

Xu, L., E. Oja, and P. Kultanen (1990). A new curve detection method: Randomized
Hough transform (RHT). Pattern Recognition Letters 11(5), 331-338.

Xu, L. and E. Oja (1993). Randomized Hough transform (RHT): Basic mechanisms,
algorithms, and computational complexities. CVGIP: Image Understanding 57(2),
131-154.

Zheng, Y., M. S. Nixon, and R. Allen (2000a). Finding lumbar vertebrae by evidence
gathering. In The 6th Annual Scientific Conference of the Institute of Physics and
Engineering in Medicine (IPEM2000), Southampton, pp. 95-96.

Zheng, Y., M. 8. Nixon, and R. Allen (2000b). Lumbar spine location in fluoroscopic
images by evidence gathering. In Proceedings of Medical Image Understanding and

Analysis (MIUA2000), London, pp. 45-48.

Zheng, Y., M. S. Nixon, and R. Allen (2001a). Automatic lumbar vertebrae regis-
tration using the hough transform in digital videofluoroscopy. In Physica Medica-
European journal of medical physics, Volume 17, Belfast, pp. 172-173. The 7th An-
nual Scientific Conference of the Institute of Physics and Engineering in Medicine

(IPEM2001).

Zheng, Y., M. S. Nixon, and R. Allen (2001b). Automatic lumbar vertebrae seg-
mentation in fluoroscopic images via optimised concurrent hough transform. In 23rd
Annual International Conference of the IKEE Engineering in Medicine and Biology
Society, Istanbul, Turkey. IEEE.

Zheng, Y., M. S. Nixon, and R. Allen (2002a). Lumbar spine motion analysis via

automatic segmentation. In The Fourth World Congress of Biomechanics, Calgary,

Canada.

Zheng, Y., M. S. Nixon, and R. Allen (2002b). Lumbar spine visualisation based on
kinematic analysis from videofluoroscopic imaging. Medical Engineering & Physics 25(3),

171-179.

Zheng, Y., M. S. Nixon, and R. Allen (2003). Automatic segmentation of lumbar
vertebrae in digital videofluoroscopic images. IEEE Transactions of Medical Imaging.

in press.



Spline Theory

Cubic splines are piecewise cubic polynomials which can be fitted to a series of (z;, ;)
data points. A full cubic spline with knots at z; (where the piecewise portions join)
exactly interpolates the data points. The piecewise portions are defined so that at the

knots the function and its first two derivatives are continuous.

Given a function f defined on [a,b] and a set of numbers, called nodes, a = ¢ < 71 <
o0 < T, = b, according to Burden and Faires (1993), a cubic spline interpolant S for f

is a function that satisfies the following conditions:

1. S is a cubic polynomial, denoted as S;, on the subinterval [z;,z;41] for each
i=01,..,n—-1;

2. S(zj) = f(z;) for each j =0,1,...,n;

3. Sjr1(zjy1) = Sj(zjy1) foreach j =0,1,..,n —2;

4. S;+1($j+1) = S;(xj+1) for each 7 =0,1,...,n — 2;

5. S‘;,_'_l(a:j_i_]_) = SJI-/(a:jH) foreach 7 =0,1,...,n — 2;

6. one of the following set of boundary conditions should be satisfied:

(a) §"(x0) = S"(xs) = 0 (free or natural boundary)
(b) S (z0) = £ (z0) and S'(z,) = f () (clamped boundary)

The above conditions (2-5) are to ensure that the function and its first and second
derivatives respectively are continuous at the knots while the final restriction above
means that cubic spline will be a unique solution for the given data sets (proof of

uniqueness and existence can be found in Kreyszig (1993)).

When the free boundary condition occurs, the spline is called a natural spline, and its
graph approximates to the shape that a long flexible rod is forced to pass through each

of the data points. In general, clamped boundary conditions lead to more accurate

127



Appendix Spline Theory 128

approximations since they have more information about the function. However, it is
slightly difficult to use as it is necessary to have either the values of the derivative at

the endpoints or an accurate approximation of those values.

Given a cubic spline interpolant S, the conditions in the definition are applied to the

cubic polynomials:

Si(z) = a; +bj(x—a:j)+cj(a:——xj)2+dj(:v—xj)3; (1)

for each j =0,1,...,n— 1.

From condition (2), we can have S;(z;) = a; = f(z;).

If condition (3) is applied, we have:

ajr1 = Sjr1(2j11) = 5j(zj1) = aj +bj(z1 — 5) + ¢ (Tt — 25) + dj (201 — 25)°.

If we define a,, = f(z,), equally we have

aj41 = aj + bjh; + ¢jhi + djh3 @)
foreach j = 0,1, ...,n—1. Here a simpler notation h; = z;41—z; foreachj =0,1,...,n—1
is introduced for convenience.

In a similar manner, define b,, = S; (zn) and from condition (4) we will have

bj+1 = bj + Zth]‘ -+ 3djh? (3)

for each j =0,1,...,n — 1.

We can also obtain coefficients ¢; by defining ¢, = S” (z,,)/2 and applying condition (5).

In this case,

¢j+1 = ¢; + 3djhy (4)
for each j =0,1,...,n - 1.

Solving for d; in Equation (4) and substituting this value into Equation (2) and (3) gives

two new equations

h2
aj+1 = aj +bjh; + —?;1—(263' + Cj+1) (5)
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bj+1 = bj + hj(c; +cjp1) (6)

foreach j=0,1,...,n - L.

The final relationship involving the coefficients is derived from Equation (6) by substi-
tuting the values b; and b;_; obtained by solving Equation (5) and can result in the

form of linear system of equations

3 3
hj-16j-1+ 201+ hy)e; + hicin = 3 (0541 — 0j) = (a5 — aj-1)  (7)
7 71—

foreach j=1,2,...,n— 1.

Note that there are n — 1 equations involved in the linear system described by Equa-
tion (7). Although a; for each j =0,1,...,n and h; for each 7 =0,1,...,n — 1 are given
by the spacing of the nodes z; for each j = 0,1,...,n and the values of f at the nodes,
it is still not enough to solve ¢;, 7 = 0,1, ...,n where are n 4+ 1 unknown parameters.
This is why the boundary conditions are essential to define a cubic spline. Given either
of these two conditions, a unique cubic spline interpolant will be defined as the matrix

is strictly diagonally dominant.

In application, there are standard programs elsewhere to solve this problem, i.e. a C

program is available in Numerical Recipes in C (Press et al. 1992).

The cubic spline has the property that it is the interpolating function which minimises
the integrated squared second derivative [(f”(z))%dz (for proof, see Kreyszig (1993)).
The integrated squared second derivative acts as a roughness penalty, with smooth or
slowly varying curves giving small values (for example a straight line gives a value of 0).

However the cubic spline has a discontinuous third derivative:

f’”(I) = dj; if Tj < T < Tjt1 (8)

foreach j =0,1,...,n — 1.



