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Eigenanalysis is applied to three m^or types of repetitive structures: rigid-jointed, 
asymmetric, and pre-twisted. 

For a 2-D rigid-jointed repetitive structure, the general idea of the State Variable 

Transfer Matrix Method is presented. This provides not only an exposition of the 

approach, but also justification for the treatment of rigid-jointed structures as pin-

jointed. 

For an asymmetric repetitive structure, a is developed due to 

the non-existence of the conventional transfer matrix. Analysis of a 3-D NASA truss 

reveals couplings of tension-torsion, and bending-shear, and the equivalent continuum 

beam properties are determined. To fully understand these coupling effects, a 2-D 

planar asymmetric framework representing a single face of the 3-D truss is also 
analysed. Further, the continuum beam dynamic theories for the tension-torsion and 

bending-shear couplings are derived through the application of Hamilton's principle, 

and natural frequency predictions of the 3-D NASA truss are compared with those from 

FEM. 

For a pre-twisted repetitive structure with uniform pre-twist rate, the Floquet system is 

transformed into an autonomous system by introducing a local coordinate system to 

define the transfer matrix, prior to eigenanalysis. For the multiple complex unity 

eigenvalues, near diagonal Jordan decompositions are employed to determine the 

simplest eigen- and principal vectors. Equivalent continuum properties including 

coupling coefficients are determined. The tension-torsion coupling agrees with 

established pre-twisted beam theory, but the bending and shear vectors cannot be fully 

explained according to existing approximate bending theory for pre-twisted structures. 

An in-depth study of tension-torsion coupling, both static and dynamic, is presented for 

structures with pre-twist angles per cell over the range of 0° to 180. Variations of the 

equivalent continuum properties are also evaluated over this range. 

Moreover, an alternative analytical approach is developed for the continuum modelling 

of a symmetric repetitive structure, based on minimisation of potential energy of a 

single cell. 
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INTRODUCTION 

Periodic, or repetitive structures consist of a basic cell, which repeats in one, two or 

three directions. A rail track supported on equally spaced sleepers, and a honeycomb 

sandwich panel, are examples of one-dimensional (beam-like) and two-dimensional 

(plate-like) periodic structures, respectively. This thesis is concerned primarily with the 

static analysis of one-dimensional (beam-like) repetitive structures. Since the 

manufacture and construction, or assembly, of repetitive structures is also a repetitive 

process, they often represent a cost effective design solution in many mechanical, civil 

and aerospace engineering applications. Due to their low cost, lightweight, and high 

stifBiess, together with ease of packaging, transportation and assembly, repetitive lattice 

structures have become the dominant form for future space applications such as large 

space stations, space mirrors and deployable antenna systems. 

In the m^ority of what follows, the repeating cell is regarded as consisting of several 

pin-jointed members. This choice has been made primarily because the finite element 

analysis (FEA) of such structures involves a rod in tension or compression only, whose 

finite element is "exact"; thus the computational process alone limits the accuracy of 

FEA of pin-jointed structures. In turn, this means that results obtained from the primary 

analytical tool employed in the thesis - eigenanalysis - can be verified by comparison 

with what may be regarded as exact results. This does not imply that pin-jointed 

structures are not of interest in their own right; indeed the removal of members from 

such a structure can reduce it to a mechanism, which in turn allows its transportation in 

a very compact form, an attribute which finds favour in space application. On the other 

hand, repetitive structures are not limited to frameworks either rigid- or pin-jointed. For 

example a continuum structure such as a metre rule could be regarded as repetitive were 

it not for the different, progressive, numbering along its edge - each centimetre of rule is 

identical to that preceding it. 
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The analysis of one-dimensional beam-like structures, be they a continuum or a 

framework, is historically linked to the French elastician Barre de Saint-Venant. For a 

continuum elastic beam of arbitrary (but constant) cross-section, solution of a practical 

problem such as determination of its torsional stiffness, requires the determination of 

stress and displacement fields, which must satisfy exactly the equilibrium equations, the 

strain compatibility equations', the Hooke's law and the boundary conditions. If the 

beam is loaded at its ends only, then this is one of a set of problems known as Saint-

Venant's problem, the others being tension, pure bending, and bending caused by a 

shearing force applied to one end. In each case, the condition on part of the boundary is 

that the surface generator of the beam (which is, in fact, the majority of the boundary) 

should be &ee of external tractions. However, such exact solutions can generally be 

found only when the conditions at the ends of the beam (which are a minority of the 

total boundary), are relaxed in some sense, and this process is an application of what is 

known as Saint-Venant's principle (SVP). 

In applying SVP, an actual load system on part of the elastic body or structural element 

is replaced by a statically equivalent load, distributed in a particular way demanded by 

the elastostatic solution - this represents the relaxed boundary condition at the beam 

ends. Statically equivalent implies that the resultant force and moment remain 

unchanged. The difference between the two load distributions is termed self-

equilibrating, and since it has no resultant force or couple that requires reaction at some 

other locations on the structure, there is no reason why the associated stress and strain 

field should penetrate any great distance into the structure. That is, the self-equilibrating 

load should produce only a local effect, which decays exponentially as one moves away 

from the beam end. 

The discussion above implies that the exact distribution of the end load, such as a 

twisting moment, is actually known; invoking SVP is then equivalent to replacing the 

actual means of load application by that demanded by the solution, and arguing that this 

has only a local effect. More often than not, however, the structural analyst knows only 

] These may be avoided if the equilibrium equations are expressed in terms of displacement (Navier 
equations) rather than stress. 
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the magnitude of an end load, and does not know its exact distribution. Thus SVP is 

rarely invoked consciously, yet it underpins much of the discipline known as 

Mz/grWj'. 

The first proof of SVP for continuum beams was provided by Toupin [1] in 1965, and 

there has been extensive research in the field since that time, with reviews having been 

provided by Morgan and Knowles, [2-4]. Recently, several additions to the stock of 

exact elasticity solutions describing Saint-Venant decay in continuum beams have been 

made by Stephen and his co-workers at the University of Southampton [5-8]; typically 

these are for beams having mathematically amenable cross-sections, such as the hollow 

circular cross-section. 

The first application of SVP to pin-jointed frameworks was provided by Hoff [9] in 

1945. More recently Stephen and Wang, [10], developed an approach based upon the 

eigenanalysis of a state variable transfer matrix of a pin-jointed repetitive structure 

which unifies the two problems bearing the name of Saint-Venant: the decay of self-

equilibrated loading (Saint-Venant's principle) and the transmission of resultant forces 

and moments applied at the end of the structure only (Saint-Venant's problem). The 

Saint-Venant decay rates are the non-unity eigenvalues of the transfer matrix, while the 

equivalent continuum beam properties of the 6amework were determined from the 

eigen- and principal vectors associated with the multiple unity eigenvalues. 

Further, these equivalent continuum properties have been employed in conventional 

beam theories [11], allowing the efficient analysis of the global behaviour of the 

repetitive structure (for example, vibration and its feedback control, global buckling, 

etc) most suitable for the preliminary design process. Comparison with the predictions 

from FEA suggested excellent agreement of natural frequencies, provided that the semi-

wavelength is greater than the depth of the cell. 

Stephen and Wang [12] have extended the transfer matrix approach to investigate the 

Saint-Venant decay rates of prismatic continuum beam with general cross-section, for 

which exact analytical solutions are unavailable. A representative length of the 

continuum beam is first modelled using the Finite Element Method (FEM), from which 

1.3 



the stif&ess matrix is determined. A substructure technique then generates a j'wper-

e/e/Menf whose stifBiess matrix relates forces and displacements components at 

either end of the representative length (components at slave nodes in the interior of the 

model are condensed out of the stiffness matrix), from which the transfer matrix can be 

formulated. Generation of this super-element is readily accomplished within a FEA 

package, such as ANSYS. 

The transfer matrix approach of Stephen and Wang [10] may be regarded as the 

foundation, and also the point of departure, for the work described in this thesis. In 

particular, the method is applied first to repetitive structures having rigid rather than pin-

joints, from which it is concluded that the method of joining has negligible effect upon 

the equivalent continuum properties, but introduces additional modes of decay 

associated with self^equilibrated moments. Second, an alternative approach is 

developed for determination of the equivalent continuum properties without resorting to 

eigenanalysis. The new method requires a knowledge of the stiffness matrbc K of the 

single repeating cell of the repetitive structure, together with the ability to deduce the 

cell displacement vectors for tension, bending moment and shearing force; a oMce anc/ 

for all application of the principle of minimum potential energy for tension yields an 

analytical expression for the equivalent Poisson's ratio, from which all the remaining 

properties such as cross-sectional area, second moment of area and shear coefficient can 

be obtained. 

The two topics briefly described above are preliminary to the two m^or topics within 

the thesis, the first of which is the analysis of an actual truss modelled upon a 

demonstrator structure [13] deployed &om the space shuttle 

052), whose (rigid) welded joints are treated, justifiably in the light of the preliminary 

work described above, as pin-jointed. This asymmetric structure exhibits coupling 

between various transmission modes, including tension and torsion, and also a shear 

deflection perpendicular to the plane of curvature in bending. The former is reminiscent 

of tension-torsion coupling widely known to exist in the case of structures having a pre-

twisted form, as in a turbine blade. Results from the eigenanalysis of this asymmetric 

structure are fully validated by comparison with ANSYS predictions for static loadings. 
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For the vibration analysis of this structure, it has been necessary to develop equivalent 

continuum dynamic beam theories that include the coupling effects observed. The 

natural &equency predictions have been validated by comparison with ANSYS 

predictions. 

The second major topic is the analysis of a pre-twisted repetitive structure having a 

constant pre-twist angle per cell. The stiffness matrix K, and hence the transfer matrix 

G, of each cell is periodic in the pre-twist angle a and, within a global coordinate 

system, each of these transfer matrices is dependent upon the index of the cell, M. 

However, the introduction of a local coordinate system that rotates with the cross-

section results in an autonomous transfer matrix that is identical for each cell of the 

structure. This pre-twisted structure provides a physically realisable setting for an 

exposition of Floquet theory, which is more often applied to systems having temporal, 

rather than spatial, periodicity. The eigenanalysis again provides the Saint-Venant 

decay rates, but attention is focussed on the equivalent continuum properties, and the 

coupling between various modes of deformation. These include not only tension-torsion 

coupling, but also coupling between bending and shear modes. This analysis is thought 

to be the first that provides a complete solution for a pre-twisted structure, albeit highly 

idealised, in an exact manner, and does not introduce any ad hoc assumptions typical of 

the Strength of Materials approach to pre-twist, or the asymptotic approaches employed 

within TTzeo/y q / " i n v e s t i g a t i o n s . As with a straight beam, eigenanalysis 

provides the decay modes associated with Saint-Venant's principle, and also the 

transmission modes associated with Saint-Venant's problem; the former have 

eigenvalues occurring as reciprocals, while the latter are associated with both real and 

complex unity eigenvalues. The equivalent continuum properties of the pre-twisted 

structure are readily obtained for coupled tension-torsion, where interpretation of the 

principal vectors is in accordance with approximate continuum theories for such 

coupling. However, interpretation of the principal vectors describing bending and shear 

has been hampered by the absence of an adequate elasticity model for the continuum 

behaviour of pre-twisted elastic beams or rods. Indeed, none of the previously derived 

bending theories provides agreement with the coupling exhibited by the bending and 

shear vectors determined through eigenanalysis. The equivalent continuum properties 
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for coupled tension-torsion are evaluated over the range of pre-twist angle, 0° < (%< 

180°. 

1.1 REVIEW OF PREVIOUS STUDY OF REPETITIVE STRUCTURES 

Noor [14] classified the approaches to the analysis of large repetitive structure into four 

main streams 

a) Direct Method - this is conventional Finite Element Analysis (FEA), in which the 

complete structure is modelled as an assemblage of discrete finite elements. For a 

structure with a very large number of elements, such analysis can become 

computationally very expensive and time consuming, and in dynamic analysis, may 

produce far more modes of vibration than are actually needed. It is inefficient because it 

does not take advantage of the periodicity or regularity of the repetitive structure. Of all 

the approaches, while it may provide an oMf wer, it provides limited of 

the behaviour of a structure. 

b) D/recf/ZeM - this approach involves relating the displacements on either side 

of the typical cell by finite difference equations, then either solving the resulting finite 

difference equations dhectly, or converting them into approximate differential equations 

through the use of a Taylor series. This approach has been extensively developed by 

Renton [15]. 

c) f - this approach typically relates a state vector of 

displacement and force components on either side of the generic cell by a transfer 

matrix; application of '.y r/zgorem for dynamic problems leads to an eigenvalue 

problem for propagation constants or, equivalently, natural frequencies. The theory has 

been highly developed, and applied to both one-dimensional (beam-like) and two-

dimensional (plate-like) structures, [16-24], Lin and co-workers [16, 17] pioneered the 

application of transfer matrix methods to the vibration analysis of periodic stiffened 

plate structures. Mead [18,19] adopted a wave propagation approach, which can be 

most simply applied to infinite or semi-infinite periodic structures. An overview of the 

contribution to this field made by researchers at the University of Southampton was 

given by Mead [20]. Zhong and Williams [21, 22], while employing a dynamic stiffness 

matrix approach to the eigensolution of wave propagation, indicated the analogy 
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between structural mechanics and control theory; indeed state vector representations are 

at the heart of so-called Modern Control Theory, and this cross-fertilisation introduced 

the symplectic orthogonality relationship (as a consequence of the symmetry of the 

stif&ess matrix K, [25]) as a means of eigenvector expansion. 

d) coMfmzmm mefAot/ - this approach employs a continuum model to replace 

the original structure based on the assumption that they are equivalent in some sense. It 

is appealing particularly if one is only interested in the global behaviour of the structure, 

for example vibration and its feedback control, global buckling and thermal 

conductivity. The key to continuum modelling involves the determination of equivalent 

relationships between the geometric and material properties of the lattice and the 

continuum model. Noor and co-workers [26, 27] developed continuum modelling 

theory for lattice structures based on the concept of energy equivalence, which means 

the lattice structure and its continuum model contain equal kinetic and strain energies 

when both are subjected to the same displacement and velocity fields along the 

centreline. Their method was based on the assumption that displacement components 

vary linearly in the axial direction, but have a bilinear variation over the cross-section to 

ensure compatibility at the mterface of two adijacent repeating cells. Member strains of 

the repeating cell are then expressed in terms of the strain components in the coordinate 

directions, and expanded using a Taylor series, allowing the members strains of the 

discrete structure to be replaced by those of the continuum model. 

Based on the same concept of energy equivalence, Lee's approach [28] employs a 

continuum transformation matrix which relates the initial nodal displacement vector of 

the repeating cell, to equivalent nodal displacements expressed in terms of continuum 

rod displacements; since there are, in general, fewer of the latter displacements, this 

process implies a condensation of the original mass and stifBiess matrices, and is not 

unique. Well-defined conventional finite element matrices are used to calculate the 

strain and kinetic energies stored in the original representative lattice and, through the 

transformation matrix, these are expressed in terms of the continuum degrees of 

&eedom. Equating the (reduced) stif&ess and mass matrices for the representative cell 

to those for the finite element of the continuum model, the equivalent continuum 

properties of the lattice structure were obtained. A conventional Timoshenko 

continuum model was employed for symmetric structures, and an extended Timoshenko 
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model for structures displaying asymmetry. Compared with conventional finite element 

analysis, Lee noted that natural &equency predictions from the equivalent continuum 

models tended to overestimate, particularly for asymmetric structures in the higher 

modes. 

Sun [29] simulated static experiments, numerically, in order to effectively measure the 

equivalent continuum properties of a typical cell of the lattice. However, this method 

requires a prior knowledge of the magnitude and distribution of the nodal forces, and 

also boundary constraints must carefully specified to allow, for example, Poisson's ratio 

effects in a simulation of tension. Similar a knowledge is required for the method 

described in Chapter 3, but since this is limited to deduction of the displacement vector, 

not the force vector, this requirement is not so onerous. Nevertheless, the displacement 

vectors are not always obvious particularly if there exists coupling between the various 

modes of deformation. 

The transfer matrix eigenanalysis approach, which forms the majority of this thesis, falls 

directly within Noor's classification. On the other hand, the 

equivalent continuum properties obtainable from eigenanalysis leads directly to Noor's 

classification; thus eigenanalysis provides a hnk between 

the two. 

1.2 REVIEW ON THE PREVIOUS STUDY OF PRE-TWISTED 

STRUCTURES 

A variety of engineering components may be modelled as (continuum) beams having 

initial pre-twist; these include turbine and helicopter blades, propellers and wind 

turbines. For a straight, prismatic, homogenous beam, the responses to end loadings are 

in the main uncoupled; a tensile force produces only an extension (together with a 

Poisson's ratio contraction), a twisting moment produces a rotation (together with axial 

warping if the cross-section is not circular), and a bending moment in the two principal 

planes produces independent curvatures also in the two principal planes. The exception 

to this lack of coupling is that of a shearing force, which must be coupled to a bending 

moment, if complementary shearing forces are not applied on the surface generators of 
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the beam - this possibility is, of course, excluded within 

Coupling between shear and rotation is possible if the cross-section is not doubly 

symmetric, but the concept of the allows de-coupling of these 

displacements. 

However for a straight, pre-twisted beam, tension is coupled with torsion, and bending 

is generally regarded as being coupled in the two planes. This coupling has been 

extensively studied [30-64] because of the importance of the engineering applications; 

for example the considerable cgn/ri/wga/yorce body loading on a high speed turbine or 

compressor blade will not only increase the length of the blade, but also reduce its angle 

of attack which has an effect on its aerodynamic performance, and this must be 

considered in the design process, see Ohtsuka [31]. 

For tension-torsion coupling, it is easy to visualise that a pre-twisted beam will increase 

in length if a twisting moment is applied in a direction tending to decrease the pre-twist 

angle - the responses are coupled in the sense that a twisting moment produces both a 

rotation and an extension. They are also coupled in the sense that both a twisting 

moment and a compressive force would need to be applied in order that the response 

would be a rotation only. 

Bending-bending coupling is equally important, but is not so easy to visualise: consider 

a straight beam, such as a plastic ruler, for which the bending stiffness in the two 

principal planes are quite unequal; if subject to excessive compressive load, buckling 

would clearly favour deflection in the flexible plane. However, suppose the beam now 

has a total uniform pre-twist through 90°, and that a bending moment is applied at one 

end (left hand, say) in the flexible plane of /Aaf at the right hand end, the moment is 

now in the stiff plane and, assuming that no torsional buckling should take place, the 

resulting bending curvature at the right hand end will be clearly less than at the left 

hand. Thus at the two ends, there would be curvature in just one plane; bending 

deflection would still favour the flexible plane, and would obviously be much greater at 

the left hand end. The above is relatively easily to visualise: what is not, is the 

behaviour at locations between these two extremes - if there is bending curvature 
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perpendicular to that of the applied bending moment, then clearly its magnitude must 

vary 6om zero to zero over the 90° twist of the beam; in turn, there are two obvious 

possibilities; either that it depends on double the pre-twist angle in a sinusoidal form, or 

that it remains zero throughout. 

In 1991, Rosen [30] provided an extensive literature survey on the static and dynamic 

analysis of pre-twisted rod and beams, citing over 200 references, analysis of which 

shows the development over the past fifty years. Initially, investigations were primarily 

analytical and experimental, the former relying on development of the governing 

equations and their solution; most of the significant contributions were made prior to the 

development of the FEM. The latter allowed analysis of a pre-twisted beam by 

idealisation as a series of uniform straight beam elements, each rotated with respect to a 

global coordinate system, with the number of element adjusted according to the 

accuracy required. As a consequence, one might argue that FEA slowed analytical 

developments in this area, and an exact elasticity solution for pre-twisted structure is 

still unavailable. The major developments in this area are summarised below, first in 

terms of tension-torsion coupling, and then bending-bending coupling. 

One of the first investigations into the effect of pre-twist on the torsional stiffness of a 

thin prismatic bar was made by Chen^ [32], who proposed the Ae/fca/ 

in which it is assumed that the longitudinal stress in the bar cross-section is not parallel 

to the axis, but acts in the direction of the longitudinal spiral fibres of the pre-twisted 

bar. Chen concluded that the torsional stiffness was increased by the pre-twist, and this 

was validated by his experimental results. This basic assumption was employed in most 

subsequent investigations that employ assumptions typical of Strength of Materials. 

Rosen and Friedmami [33] noted that Chen's theory employed a non-orthogonal 

curvilinear coordinate system, and that simplifications would arise when the theory for 

such a coordinate system was correctly applied. Later, Rosen [34] noted the paradox 

that a rod of circular cross-section could be regarded as pre-twisted simply by painting a 

spiral onto its surface, yet the helical fibre assumption theory would predict an increase 

in the torsional stiffness; for this reason Rosen suggested that Chen had restricted the 

2 In the literature, Chen Chu is most often referred to according to his given name, Chu. 
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applicability of his theory to thin-walled cross-sections. Rosen developed a more 

general theory taking into account axial warping of the cross-section which, of course, is 

absent in the torsion of a circular cross-section, and also employed both non-orthogonal 

and simpler orthogonal coordinate systems; the resulting theory accommodates Chen's, 

and also overcame tlie paradox of the circular cross-section. 

The coupling effect between tension and torsion of the pre-twisted rod has also been 

investigated employing the more exact methods of the three-dimensional Theoiy of 

althougli approximations are introduced at a later stage of the analysis. The 

typical approach is to introduce a local coordinate system, which rotates with the 

principal axes of the cross-section, into the governing differential equations for stress 

describing force equilibrium, or the equivalent (Navier) equations for displacements; in 

either case, the equilibrium equations become more complicated, but the advantage is 

that the traction free boundary condition becomes independent of the axial coordinate. 

Stress and strain are then typically expressed as a power series in some pre-twist 

parameter (assumed small), with the zero^ order term being the known Saint-Venant 

solution for the straight beam. This approach was taken by the m^ority of investigators 

[35-46] including, notably, Okubo [35-37] and Krenk [38, 39]. 

Shield [46] adopted a quite different approach to tension-torsion coupling; the starting 

point was again the governing equations expressed within the local (rotating) coordinate 

system, but terms involving the pre-twist parameter were regarded as applied surface 

tractions within the boundary conditions, and as body force loading within the 

equilibrium equations, ybr a j'/razgAr He then employed the reciprocal theorem, 

with the second load system being simple tension of a straight rod. His results show 

excellent agreement with those of Okubo. 

De Prima [47] investigated the coupled extensional and torsional vibration of a pre-

twisted rod, and found that the frequencies of the predominantly extensional modes are 

practically unaltered by pre-twist, while frequencies of the predominantly torsional 

modes increase significantly. Overall, the nature of tension-torsion coupling is well 

understood qualitatively: pre-twist has the effect of increasing the torsional stiffness 

appreciably, and at the same time decreasing the axial stifBiess, although not by much. 
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This is exactly as one would expect: axial stif&ess is generally greater than torsional 

stiffness (although one is not comparing like with like) and a coupling of the two 

displacement modes has the effect of bringing their stiffness' closer together. 

The same cannot be said for the coupling of bending deformations, where there remains 

considerable controversy. For beams with small angles of pre-twist, it is common to 

treat the coupling as a problem of asymmetric bending q/"o where a 

bending moment in one plane produces curvature in two orthogonal planes. However, 

when applied to a beam having a cross-section in which the two principal second 

moments of area, and hence stiffness, are equal, this approach predicts that pre-twist 

will have no effect. In contrast, Den Hartog [48] observed from experiment that such a 

pre-twisted beam with thin-walled cross-section shows considerably larger deflection 

than a straight beam of the same cross-section and length under the same bending load, 

and presented this as a challenge for further research. Zickel [49, 50] considered a pre-

twisted beam with thin-walled doubly symmetric cruciform cross-section, for which the 

second moments of area are also equal, and developed a general theory based upon the 

A e / f c a / w h i c h predicts that the bending stifBiess about a principal axis 

is a decreasing function of pre-twist rate, in accordance with Den Hartog's observation. 

However, experiments conducted by Maimder [51] suggested that the deflection due to 

bending does increase with pre-twist, but is much larger than that predicted by Zickel. 

Maunder [51] developed a theory by considering the interaction of pre-twist with 

distortion of the cross-section, based on the assumption that a form of transverse 

distortion is governed by a single free parameter which can be directly determined by a 

minimum principle; his results showed nice agreement with the experimental results. In 

the above, the authors considered only the decreased stiffness produced by pre-twist, but 

did not consider explicitly any coupling of the bending curvature with any other 

displacements. 

Tabarrok [52] derived general buckling equations for pre-twisted rods using the 

principle of total potential energy, including four first order coupled force-displacement 

equations, which suggest that bending curvature occurs in the plane of the bending 

moment, coupled with a cross-sectional rotation in the perpendicular plane; identical 
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coupled moment-curvature relationships were developed by Vielsack [53]. On the other 

hand, the shearing force-displacement relationships suggested by Tabarrok [52] are 

similar to those of a Timoshenko beam, with the addition of the product of the pre-twist 

rate and a transverse displacement describing the coupling effect in the plane 

perpendicular to the shearing force. Vielsack's shear equations ignore shear deflection, 

so they cannot be regarded withm the spirit of a Timoshenko beam. Rather, shearing 

force is equal to rate of change of bending moment, as in elementary beam theory, 

together with an additional term, which is the product of the pre-twist rate and bending 

moment in the perpendicular plane; these relationships are, in fact, a statement of 

moment equilibrium. Tabarrok's equations do not include the product moment of area, 

so the coupling effect is still present for pre-twisted structures having equal second 

moments of area; this is consistent with Den Hartog's experimental observation. 

However, neither of the above generalised moment-curvature relationships is in 

agreement with those found in the present work. 

As with tension-torsion, the bendlng-bending coupling of a pre-twisted beam has been 

investigated employing the three-dimensional TTzgo/y q / " a g a i n with the 

governing equations expressed in a local coordinate system that rotates with the 

structure. Thus Goodier and Griffin [40] considered pure bending of a pre-twisted rod 

of elliptic cross-section, and generated a series solution as a power series to the second 

order in the pre-twist rate parameter, while bending by a terminal shearing force has 

considered by Pucci and Risitano [41], and Guglielmino and Saccomandi [42]. There 

has also been several investigations by researchers from the former Soviet Union, 

including Druz' et al [43], who treated the general problem of pre-twist as a spectral 

problem of a differential operator in the cross-section; as with the transfer matrix 

method [10], their approach unifies the decay and transmission problems. 

1.3 LAYOUT OF THE DISSERTATION 

The present thesis is set out as follows: 

Chapter 2 presents the state variable transfer matrix method, employed to analyse a 

symmetric rigid-jointed planar framework, with the results compared with the pin-

jointed framework examined in [10], thereby providing justification for the treatment of 
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rigid-jointed structures as pin-jointed, at least as far as the equivalent continuum 

properties are concerned, in the analysis of long, beam-like structures. Of course, a pin-

jointed structure cannot withstand local, nodal, moments. 

Chapter 3 presents an alternative, analytical, approach to the continuum modelling of a 

symmetric repetitive structure. 

Chapter 4 presents a generalised eigenvalue problem for the analysis of an asymmetric 

repetitive structure, for which the conventional transfer matrix of the single cell does not 

exist, and is applied to a 3-D NASA truss. The structure displays tens ion-tors ion, and 

bending-shear couplings, hi order to fully understand these couplings, a simple 2-D 

planar asymmetric Aamework, representing a single face of the 3-D 7V/4&4 truss, is also 

analysed. 

Chapter 5 deals with the dynamic analysis of the truss, employing the equivalent 

continuum properties determined in Chapter 4; governing equations and boundary 

conditions are derived from the generalised stif&ess matrix, and application of 

Hamilton's principle. Natural frequency predictions are compared with those from 

FEA. 

Chapter 6 extends the transfer matrix technique to the eigenanalysis of repetitive 

structures having uniform pre-twist. hitroduction of a local coordinate system rotating 

with nodal cross-sections results in an autonomous transfer matrix for this Floquet 

system. A variety of near diagonal Jordan decompositions are possible for the multiple 

unity eigenvalues, and these are discussed. Equivalent contmuum properties, including 

coupling coefficients are determined. Unusually, an asymmetric stifSiess matrix is 

obtained for bending moment and shear coupling, which may imply that the coupled 

bending-shear model is inadequate for the pre-twisted bending examined here. Other 

possible interpretations for the bending and shear vectors are also discussed. 

Chapter 7 deals with the static and dynamic analysis of the pre-twisted structure with 

pre-twist angles per cell over the range of 0 to 180 , focussing on the tension-torsion 
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coupling. The relevant equivalent continuum properties are evaluated over this range, 

and explained in terms of the variation in lengths of the members that make up the cell. 

These properties, together with mass and rotary moment of inertia per unit length, are 

employed in the coupled extensional-torsional dynamic equations developed in Chapter 

4, for structures with a specific pre-twist angle of a = 22.5 , and compared with FEA 

predictions. A comparison of fundamental natural frequencies is also made for 

structures having pre-twist angles over the range 0 to 180 per cell. 

Chapter 8 presents conclusions and recommendations for future work. 
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CHAPTER TWO 

ETC%&NVUSAj;^SrS()FI%H3ED^J0f%nnEDFU&PETlTT\TE 

STRUCTURE 

2.1 INTRODUCTION 

In this Chapter, the state variable transfer matrix method of Stephen and Wang [10] is 

applied to a repetitive structure having rigid-joints. This provides not only an exposition 

of the approach, but also justification for the treatment of rigid-jointed structures as pin-

jointed, at least as far as determination of the equivalent continuum properties is 

concerned. For a pin-jointed structure, the nodal displacement is completely 

characterised by two components for a planar structure, or three components for a space 

framework. When the structure is rigid jointed, a planar structure has one additional 

degree of 6eedom - a rotation in the plane, while a space Bramework has three 

additional such rotations. Associated with these rotations are possible nodal moments. 

Thus treating a planar structure as rigid-jointed leads to a 50% increase in the size of the 

state vector, and a 100% increase for the space &amework, with equivalent increases in 

the size of the transfer matrix. 

2.2 TRANSFER MATRIX FORMULATION 

The rigid-jointed planar framework under consideration is shown in Figure 2.1. The 

geometric and material properties are identical to those in [10]: the Young's modulus of 

each member is ^ = 200x10^ N/m^, and density = 8000 kg/m^. Horizontal and 

vertical members are of length 1 m , and have cross-sectional area A = 1 cm^; the 

diagonal members have length ^/Ym, and cross-sectional area 0.5 cm^. However, 

since vertical members are regarded as being shared between adjacent cells, the single 

repetitive cell must have vertical members with half stiffness; for a pin-jointed structure 

this just requires that the cross-sectional areas should be ^4/2. However for a rigid-

jointed structure, when the members can also carry bending moment, one also requires 

that the bending stiffness, and hence the second moment of area should be one half. For 

ANSYS validation, these requirements are achieved by treating these members as tubes, 

when the inner and outer radii can be adjusted to give the required stiffness. 
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Figure 2.1. Rigid-jointed planar framework; the length of the truss is equal to the number of the cells, L. 
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Figure 2.2. Single ( y " ) cell of framework in Figure 2.1; (a) and (b) show positive joint force and moment 

according to transfer matrix and FEA conventions, respectively. 

A typical cell located between the y* and (y+ 1)"' sections of the structure in Figure 2.1 

is shown in Figure 2.2. Let and d denote the nodal force and displacement vectors 

respectively, associated with the y"' section; the state vectors at the section y a n d 
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(y +1)''' sections are then ŝ . - ^ and = |̂ d 

related by the transfer matrix G through the equation 

s 

or in partitioned form 

y+1 P y+i and they are 

'v+i — G s^., 

^dy.r 

_Pv_ 

(2.1) 

(2.2) 

Two consecutive state vectors are also related by a constant multiple A, as 

(2.3) 

this is the static equivalent of an application of Block's theorem [65], for systems 

possessing translational symmetry. Substitution of the above into equation (2.1) leads 

directly to the standard eigenvalue problem 

[ G - A l ] s ^ . = 0 , (2.4) 

where I is the identity matrix of the appropriate size. 

Thus the eigenvalues of the transfer matrix describe how associated eigenvectors scale 

as one moves from one nodal section to the next. A unity eigenvalue implies that it is 

transmitted unchanged, while a non-unity eigenvalue |A| < 1 implies that the nodal 

displacements and forces decay as one moves 6om cell to cell. 

The transfer matrix G can be obtained from the stiffness matrix K of the single 

repeating cell. Referring to Figure 2.2(b), the generalised force and displacement 

vectors F and d , are related by the stiffness matrix equation F = Kd , or in partitioned 

form 

y+1 

K,, K LR 

^RL ^RR, d y+i 
(2.5) 

Transfer matrix analysis employs the sign conventions of the Theory of Elasticity, so set 

-p^ = Py+n substitute into equation (2.5), expand and rearrange to give 

= G 
d / 

LPV_ 
(2.6) 

when the transfer matrix G becomes 
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G 
- K ^ - ' 

(2.7) 

The (2M X In) transfer matrix G has the property of being symplectic, see [25], and 

satisfies the relationship 

G ' J . G = J^ , (2.8) 

where J,„ is the metric matrix J„ = 
0 I 

- I 0 
, with = J , ' = - J _ , and I is the 

(» X ») identity matrix. This relationship depends solely on the stif&ess matrix K being 

symmetric. The symplectic relationship, equation (2.8), can be rearranged to give 

G^ - G"'; thus the inverse of G is similai" to the transpose of G, which in turn has 

the same eigenvalues as G; the eigenvalues therefore occur as reciprocals. 

The eigenvalues of any real symplectic matrix are known [66] to fall into one of five 

classes 

a) if it occurs, A= 1, must occur an even number of times 

b) if it occurs, A = -l, must occur an even number of times 

c) the real eigenvalues occur as reciprocals, that is if ^ is an eigenvalue, then so 

is 

d) the complex unity eigenvalues occur as and A = note that the inverse 

is simultaneously the complex conjugate 

e) the general complex eigenvalues occur as reciprocals and as complex corrugates, 

that is = <3 + = a - /I = (a + f6)"', A = (a - z6)"' are all eigenvalues 

Suppose that A is an eigenvalue having multiplicity A:, then A"' is an eigenvalue also 

having multiplicity /c; thus the Jordan blocks corresponding to A and have the same 

structure. A direct consequence of the above is that the determinant of a transfer matrix 

is equal to unity. 

Since the transfer matrix G is not symmetric, one would normally employ 6/-

orthogonality as the means of modal decomposition of an arbitrary state vector. Let X, 

be an eigenvector of G associated with the eigenvalue A,, such that 
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( ; x , = ^ x ^ ; (2.9) 

let Y/ be an eigenvector of associated with the eigenvalue such that 

(; ==;i.Ty\. (2.1(3) 

Pre-multiply the first of these by Y / to give 

(2.11) 

Transpose the second, and post-multiply by X, to give 

Y / G X , = % ^ X . (2.12) 

Subtraction gives 

-/L,. ==(), (2.13) 

hence the bi-orthogonality relationship 

Y/X,=0,for;i ,;6A^.. (2.14) 

The disadvantage of this approach is the need to perform a second eigenanalysis of the 

transpose of G. Instead, symplectic orthogonality is determined as follows; transpose 

equation (2.9) to give 

X/G^=; i ; x / . (2.15) 

Post-multiply by G X .̂ to give 

X / G " J , , G X . = ; , X , % G X , . (2.16) 

Now G^ G = J^, and G Xy = /ly Xy, and substituting these expressions into the 

above yields 

( l - A y ^ ) X , % X . = 0 . (2.17) 

Thus an eigenvector is to all vectors, including itself^ but 

excluding the eigenvector(s) associated with its reciprocal eigenvalue. Zhong and 

Williams [25] have shown that the symplectic orthogonality relationship is a 

consequence of the reciprocal theorem of Betti-Maxwell [67]; of course this in turn is a 

consequence of the symmetry of the stiffness matrix K. According to the reciprocal 

theorem, for two different load systems applied to the cell, denoted superscripts (1) and 

(2), the work done by the forces F^'' acting through the displacements is equal to 

the work done by the forces acting through the displacements . For the single 
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cell, Figure 2.2(b), this may be written as 

(2.18) 

Express the right hand side vectors, in terms of the left hand side vectors according to 

F r = p i ' = v ; ' = - ^ F i " . (2.m,h) 

togpve 

^ 4 +;(, ;i2 (2.20) 

or 

= 0 C2.21) 

Now consider the term 

X. J . x , = (2.22) 

which indicates that equation (2.21) is an expression of the symplectic orthogonality 

relationship. 

2.3 EIGENANALYSIS 

From Figure 2.2, the generalised force and displacement vectors are 

V,=[p„ P„ P„ P„ M,. F„ 

Py«=[^ ' , , n. P^, /•„ M,, P„ P„ M . J ' 

d y = k V, (y, "2 2̂ y/2 »3 ^3 

dy+, =["4 V4 W; V; y/; Wg Vg y/g]''. 

The global stiffness matrix K can generally be assembled using 

K = P ' K , P , 

(2.23) 

(2.24) 

in which Ky_ is a block diagonal matrix describing the stiffness of each individual 

member within the cell in local coordinate system, and P is the connectivity matrix. 

can be readily determined by either FEM [68] or by matrix structural analysis [69]. 

The transformation matrix p is calculated by defining the direction cosine matrix in 

terms of the projections of the elements onto the global axes and then applying a series 

of rotations about three principal axes [67]. The transfer matrix G is then determined 
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by simple manipulation of the stiffness matrix K according to equation (2.7). Using 

the function e/g within MATLAB, the eigenvalues of the transfer matrix G are readily 

determined and these are listed in Table 2.1, together with those of the pin-jointed 

framework obtained in [10]. First note that the nature of the jointing has no effect on 

the number of unity eigenvalues; for the planar pin-jointed cell these are known to be 

the three rigid body modes, plus tension, bending moment and shearing force, and the 

method of jointing clearly has no bearing on these. 

Table 2.1 Effect of jointing on eigenvalues 

Rigid-jointed Pin-jointed 

1.6779x10' 1.6870x10' 
3.5353 3.5436 

5.9597x10"^ 5.9596x10"^ 
2.8286x10"' 2.8292x10"' 
-1.4331x10' -1.4244x10' 
-6.9779x10"^ -7.0207x10"^ 
-1.5689x10' 1 

-7.2812 1 
—6.4316 1 

-0.15548 1 
-0.13734 1 

-0.063740 
1 
1 
1 
1 
1 
1 

1 

Since the number of unity eigenvalues remains constant, the increase in size of the 

transfer matrix leads to new eigenvalues which must pertain to new decay modes. As 

seen in Table 2.1, rather than tliree reciprocal pairs for the pin-jointed case, one now has 

six pairs for the rigid-jointed framework. Physically, such pairs correspond to self-

equilibrated loading on the left face of the cell decaying from left to right (|,iJ < 1), while 

the inverse ( /I- > 1) corresponds to self-equilibrated load applied on the right face of 

the cell decaying from right to left, which is equivalent to an increase from left to right. 

The two eigenvalues shown underlined in Table 2.1 are the decay factors for the 
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two types of &amework, and will dominate decay in the sense that they will penetrate 

the furthest distance into the structure. In practical terms, the effect of rigid jointing is 

negligible, resulting in a decrease in the j/oM/ayr decay factor to 0.28286 &om 0.28292, 

A? = 0.2829 = 0.0596 =-0.1555 

A 0.7800 

1 0.00001 

2 ^ 

0.00001 

0.7800 

1 4 (j^ 

2 

1 4 

2.4342 

^.00025 

0.00025 

2.4342 

1.2391 
0.8015 

0.8752 

0.8015 
1.2391 

Aio =-0.1373 An =-0.0637 A)2 = -0.0698 

1 4 

1 ^ 

1.2733 

0.8420 

8420 

1.2733 

0.0104 
/^0.017 

0.0548 

0.017 

0.00083 
00104 

0.0037 

0.0104 
-0.00104 

0.00083 

Figure 2.3. Nodal forces and moments for left-hand decay modes; displacements not shown. 
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indicating that the self-equilibrated loading associated with this eigenvalue would 

penetrate slightly further into the structure; this is as one might expect, since rigid-

jointing should make the structure slightly stifkr. 

The main eflect of rigid-jointing is the introduction of three new decay modes, two of 

which (/I9 = -0.15548, and Aio = -0.13734) decay at approximately twice the rate of the 

dominant mode (Ay = 0.28292), the minus sign indicating that the decay is oscillatory 

from cell to cell. For the pin-jointed structure, the decay eigenvectors have self-

equilibrated loading in the and)/-directions only, it being impossible to apply a 

moment at a pin-joint; with rigid joints, these modes now have a very small additional 

self-equilibrated moment - indeed just sufficient that the displacement components of 

the eigenvector should decay with the specified eigenvalue. The new decay modes still 

have self-equilibrated loading in the x- and ^/-directions, but with the addition of 

comparatively large self-equilibrating moments. The force and moment components of 

the left-to-right decay eigenvectors are shown in Figure 2.3, and these were also 

determined using the eig function within MATLAB. 

Determination of the vectors associated with the multiple unity eigenvalues, however, is 

not so simple. The QR algorithm employed within MATLAB essentially derives 

eigenvectors which, when combined to form a transformation matrix, diagonalise 

the original matrix. However, there exist some matrices for which a sufficient number 

of independent eigenvectors do not exist for some or all of its repeated eigenvalues. 

These matrices are said to be defective and are not diagonaiisable, but can be reduced to 

a near diagonal form known as the Jordan canonical form (JCF); this contains blocks in 

which a unity element exists on the super diagonal, indicating that a principal vector is 

coupled to an eigenvector. If the same repeated eigenvalue occurs in different Jordan 

blocks, then the matrix is also said to be derogatory. Reliable determination of the JCF 

of such a matrix can only be achieved when the matrix is known exactly, so its elements 

must be integers or ratios of small integers. Any small errors in the input matrix will 

completely change its JCF. Thus the six unity eigenvalues shown in Table 2.1, are 

computed by MATLAB as being very close, but not exactly equal, to unity as physical 
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argument demands they must. In turn the majority of the eigenvectors calculated by 

MATLAB must be discarded. 

The procedures fbr dealing with defective matrices is best explained through a simple 

example [70]: suppose G is a real, non-symmetric \ 2 x 2 matrix. The eigenproblem is 

the solution of 

( G - A l ) s = 0, (2.25) 

together with subsequent decomposition of the matrix G: there exists a non-singular 

matrix V such that 

G = VJV ', (2.26) 

where J is the Jordan canonical form. 

There are three cases of interest: 

a) Suppose G has eigenvalues and ^2, not necessarily distinct, but having two 

independent eigenvectors Vi and V2. That is, there are two solutions 

G v , = ^ v , and G v 2 = ^ v 2 . (2.27) 

Define the transformation matrix V = [v, v^], which is non-singular, since the two 

vectors are linearly independent. Then 

0 
G V = [Gv, G v J = [/l, V. /^2vJ = [v, v J (2.28) 

0 

so, G V = V J, or G= V J V"'. For this case, the Jordan form is diagonal, consisting of 

trivial (one-dimensional) blocks; that is, the matrix is diagonalisable. 

b) Suppose that G has just one repeated eigenvalue A], and a single independent 

eigenvector, v,. That is, there is just one solution 

Gv, = ^ v , (2.29) 

Let W2 be a (principal) vector of the same dimension as, but independent of̂  v, . Now, 

on account of the twofold eigenvalue, the characteristic equation takes the form 

( A - , ^ ) ^ = 0 , and according to the Cayley-Hamiiton theorem [70], a square matrix will 

satisfy its own characteristic equation, that is 

1 Symmetric matrices are always diagonalisable. 
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( G - ; i , i y = 0 , 

and post-multiply by to give 

W 2 = 0 . 

Now define the relationship 

= Vi , 

this satisfies equation (2.31) as, pre-multiplying by ( G - , ^ 1 ) , one has 

( G - ; i , i ) ' w 2 = ( G - ; i , i ) v , = 0 . 

Equations (2.29) and (2.32) define a chain of eigen- and principal vectors 

G V, = /I, V[ 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
Gw^ = ,^^2 +v. 

Note that any multiple (c) of the eigenvector v, may be added to the principal vector w, 

and the new vector is also a principal vector, that is, they are not unique: 

G ( w 2 + c v j = , ^ ( w 2 + c v j + v | , since Gcv,=,^cv;. (2.35) 

Now define the transformation matrix V = [v, w^], which is non-singular, since the two 

vectors are independent. Then 

1 
G V = [Gv. GwJ = [;(, ^W2+v,] = [v, w j 

0 
(2.36) 

so, G V = V J, or G= V J V ' . For this case, the Jordan form is not diagonal, and 

consists of the repeated eigenvalue on the leading diagonal, and a unity on the super-

diagonal. 

c) Suppose G has complex eigenvalues ^ with associated 

eigenvectors v, = u + iv and v^ = u - /V, where u and v are real and independent. If 

one employs the transformation matrix V = [v, v^], then 

G V = [Gv, G v J = [(<z-f^)v, (or-k/^)v2] = [v, v j 
0 {oc + ip^ 

. (2.37) 
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This formulation is just a particular case of a), with complex conjugate eigenvalues and 

eigenvectors. Instead, employ the real and imaginary parts of the eigenvectors as 

transformation matrix, that is V = [u v]. First, however, note that 

G(u + /v) = ( « - / / ? ) (u + /v) = au + y5v + /(-y0u + a v ) , (2.38) 

and taking the real and imaginary parts, gives 

Gu = au + y5v, G v = -/?u + a v . (2.39) 

One then has 

cc —fi 
G V = [Gu G VI = ^{au + / / v ) (-y5u + a y ) J = [u vj 

so the Jordan form now takes a real block form. 

(2.40) 

In order to determine the eigen- and principal vectors, it is generally acknowledged that 

one should start with the principal vector of the highest grade, when any other principal 

vectors in the chain, together with the geMem/mg eigenvector are calculated simply by 

matrix multiplication; for example, in equation (2.32), the eigenvector v, can be 

immediately calculated once the principal vector is known. On the other hand, if 

one starts with the eigenvector, because of the non-uniqueness of the principal vector, it 

is necessary to make an arbitrary choice for inclusion of multiples of the eigenvector, as 

in equation (2.34); for principal vectors of higher grade, one has to make an arbitrary 

choice for inclusion of multiples of eigenvector and principal vectors of a lower grade. 

From null spaces of the extended matrices, Wong and Leung [71] developed a general 

approach to determine the simplest JCF of an arbitrary matrix, which is both 

and derogatory. Forward and backward processes are employed to determine first the 

eigen- and principal vectors of the extended matrices, and then the indeterminate 

constants are eliminated by requiring orthogonality of principal vectors of lower grade 

with those of higher grade. Mathematically, the process to determining the eigen- and 

principal vectors is accomplished so long as the simplest JCF is achieved. However, 

within the spirit of eigenanalysis by transfer matrix method, it is known that the eigen-

and principal vectors pertaining to multiple unity eigenvalues represent the transmission 

modes of the resultants of tension, torsion, bending moments and shearing forces. 
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Physical interpretation of these vectors allows determination of the equivalent 

continuum properties of the repetitive structure. Thus, the determination of the principal 

vectors should not stop until both JCF and all the vectors are given in their simplest 

forms. Indeed, the procedure described in [71] provides a rather straightforward means 

to determine all the eigen- and principal vectors of the transfer matrix, which can then 

be transformed into the simplest JCF. Nevertheless, those principal vectors are not 

given in their simplest forms since principal vectors of higher grade are coupled with 

those of lower grade within each Jordan block. In practice, the difficulty to uncouple 

those lower grade vectors &om the higher order ones is equivalent to making the 

arbitrary choices in the first step when following the chain in equation (2.31). 

Therefore, despite being the least favoured method, the approach described in equation 

(2.34) is adopted here. This is because the eigenvectors associated with the multiple 

unity eigenvalues are obviously the rigid body displacements, so can be assigned their 

simplest value at the outset. This helps considerably in the physical interpretation of the 

principal vectors^. The difference in the two approaches by equations (2.31, 2.32) and 

(2.34) is essentially whether to make a difficult choice once (the favoured method), or 

whether to make a simple choice, several times (the method employed here). 

Mindful of the above, rather than employing the eig function within MATLAB, instead 

the set of equations (with eigenvalue set equal to unity) 

( G - I ) v . = 0 , (2.41) 

are reduced to their simplest row echelon forms using the function, and the 

MATLAB command rA'^([G-eye(18)]). This indicates that there are two independent 

eigenvectors: the rigid body displacements in the and^z-directions and these are given 

their simplest values by setting 

v . = [ l 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]^ (2.42) 

for the former, and 

=[0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 ] \ 2 . 4 3 ) 

2 This issue is considered in greater depth in Chapter 6 where one has multiple complex unity 
eigenvalues. 
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for the latter. Principal vectors associated with these independent eigenvectors are then 

calculated using the chain of equations 

( G - I ) v . = 0 

. (2.44) 

't-1 

Now, the function is employed on the augmented matrix [ G - I , v j to find 

and this process is repeated to find the principal vector of the highest grade w,,, after 

which no new vectors are generated. In this way, it is found that the principal vector 

describing tension is coupled to the rigid body displacement in the x-direction in a 2 x 2 

Jordan block, while the principal vectors (in ascending grade) describing rotation about 

the z-axis, bending moment and shearing force are coupled with rigid body translation in 

the }'-direction, in a 4 x 4 Jordan block. 

A similarity matrix V comprised of all eigen- and principal vectors, including both 

decay and transmission modes, is then constructed, and this transforms the transfer 

matrix G to Jordan canonical form. Since the repeated unity eigenvalue appears in two 

distinct Jordan blocks, the transfer matrix G is both and (/erogafof}'. Both V 

and J are given in Appendix 2. 

Not only does the Jordan canonical form reveal the coupling between the various 

modes, it also allows one to calculate powers of the transfer matrix G in the most 

efficient manner; suppose one knows the applied state vector s(0) on the zero^ left-

hand end of the structure in Figure 2.1; the state vector on the right-hand side of this 

first cell is given by 

s(l) = G s ( 0 ) , (2.45) 

and the state vector on the right-hand side of tlie is then 

s(M) = G''s(0). (2.46) 

Powers of the transfer matrix are evaluated according to 

G" (VJV-^) = VJ" V-'. (2.47) 
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Moreover, the power of the JCF simply requires evaluation of the power of the 

diagonal elements, although for the non-trivial Jordan blocks, a more involved treatment 

is required. Suppose a Jordan block pertaining to eigenvalue A, having dimension t x A:, 

is written as 

'A 1 

J = 

where N is the matrix 

A 1 

A 

= ; i i + N , (2.48) 

N, = 

0 1 

0 1 

0 

(2.49) 

The /c'̂  power of the nilpotent matrix is zero, so the binomial expansion of 

J" = (Al + N)" has a finite number of terms, as 

( A H - N ) ' ' = n + r- 'N-k 
v2y 

r - ' N ' + . - . + 
^ n ^ 

(2.50) 

since higher powers of N,. are zero; in the above the binomial coefficients are given by 

i[n-l)[n-2)---[n-h + l) 

bl 
(2.51) 

The power of the Jordan block becomes 

A" . . . " 
2 

j ; = 0 r (2.52) 

0 0 r 

2.4 EQUIVALENT CONTINUUM PROPERTIES 

Physical interpretation of the transmission eigen- and principal vectors in V allows 

determination of the equivalent continuum beam properties of the framework, as 

follows: 
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3.9644x10" 

0.89644 ^ C 
8.4402x10' 

0.89644 

8.4402x10-

1 C-

5 0.89644 

8.4402x10 - 6 

8.4402x10-^ 

^ 0.89644 

r 1.0354x10"* 

V(:,14) V(:,14) + V(:,13) 

Figure 2.4. Coupling of eigenvector V(:,13) for rigid body displacement in the A:-direction, with principal 

vector V(;,14) for tension; here and later, dotted lines show initial cell configuration. 

a) Consider the vectors for tension and rigid body displacement in the x-direction, 

which are coupled within a 2 x 2 block in the JCF, and are the fourteenth and thirteenth 

columns of the transformation matrix V. The rigid body displacement can exist in its 

own right if the cell is not restrained in the x-direction. According to the chain 

equations (2.44), these two vectors have the relationship^ 

GV(:,14) = V(:,14) + V(:,13), (2.53) 

which is interpreted as stating that when a tension vector V(:,14) is applied to the left 

hand side of the cell, on the right hand side, equivalent to pre-multiplication by G, one 

has both the tension vector and a rigid body displacement in the %-direction, V(:,13). 

Physical representation of the above is shown in Figure 2.4, from which it can be seen 

that a total resultant tensile load of 7̂  = 14-2x0.89644 = 2.7929 N is coupled with a 

cell elongation of 3.9644xl0~^m; note that vectors are shown scaled such that the 

largest force component has unit magnitude. The continuum beam constitutive 

relationship for tension is 

L 
(2.54) 

3 Vectors are now described using the MATLAB notation for a column within a matrix. 
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and since 7]., ^ , w, Z are known, the equivalent cross sectional area of the 6amework 

is calculated as = 3.52246 cm^. Additionally, there is a Poisson's ratio effect on the 

cross section: axial strain in the x-direction is = w/Z = 3.9644x10"^, while transverse 

strain in the y-direction is =(-2x1.0354x10"^ )/2 = -1.0354xl0"^; inserting into 

g,, = gives the equivalent Poisson's ratio v = 0.261188, and the equivalent shear 

modulus is determined as G = ^/2(l + v) = 79.29 x 10^ , with the Young's 

modulus E being regarded as fixed. 

b) Next consider the vectors for shear, bending moment, rigid body rotation about the z-

axis and rigid body displacement in the y-direction; these are the eighteenth to fifteenth 

columns of the transformation matrix V, and are coupled within a 4 x 4 block of the 

JCF. Again, the eigenvector V(:,15) for rigid body displacement in the ̂ /-direction can 

exist in its own right when the cell is free of constraint. The sixteenth column V(:,16) 

defines rigid body rotation of the cell about the z-axis is coupled with the rigid body 

transverse displacement of the cell according to the relationship 

GV(:,16) = V(:,16) + V(:,15) (2.55) 

and is represented in Figure 2.5. 

4.6935xlO-^j 

4.6935x10" 

n 

V(:,16) + V(:,15) 

Figure 2.5. Coupling of eigenvector V(:,15) for rigid body displacement in the _>'-direction, with principal 

vector V(:, 16) for rigid body rotation; ^/-components of displacements on the left-hand side are negligible. 
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The seventeenth column V(:,17) defines a bending moment, and is coupled with the 

rotation vector V(:,16) according to 

GV(:,17) = V(: ,17)+V(: ,16) . (2.56) 

Physical representation of this is given in Figure 2.6, where it is seen that a bending 

moment M = ^2 + 3.2974 x 10~^) Nm results in a bending curvature of 

1/i? = 4.6935 x l O ' ^ m ' , where the latter is calculated from the similar triangles shown 

in Figure 2.6; in particular one such triangle is the deformed upper half of the left hand 

face of the cell, while the second is the lower half projected to the centre of curvature. 

According to the constitutive relationship for beam bending 

M = (2.57) 

the equivalent second moment of area is found to be / = 2.13065 x 10"^ m''. It is noted 

that rigid jointing has the effect of introducing very small (indeed negligible) nodal 

moments into the bending moment vector, as shown in Figure 2.6. 

2.3467x10" 

1 
5.1147x10' 

2 .2744x10' 

6.1294xl0-^f 

5.1147x10"^ 

> 1 

5.1147x10"^ 

2.2744x10"^ 

5.1147x10"^ 

< 1 

V(:,17) V(:,17) + V(:,16) 

Figure 2.6. Coupling of principal vector V(:,16) for rigid body rotation, with principal vector V(:,17) for 

pure bending. 

Finally, the eighteenth column V(:,18), which defines a shear vector, is coupled with 

the bending moment vector V(:,17) according to the relationship 

GV(:,18) = V(:,18) + V(:,17), (2.58) 
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and this is shown in Figure 2.7. Since a state ofjowre cannot exist if the upper and 

lower surfaces are &ee of traction, as in Saint-Venant's problem, so a bending moment 

is always required to balance the moment produced by the shearing force, as seen on the 

left hand face of the cell in Figure 2.7. Consequently, the shearing vector will produce 

both a shear angle and a bending curvature, and the displacement components in the x-

direction are decomposed into these two components, as shown in Figures 2.8(a, b). 

1.5007x10-" 1.2660x10 - 7 

0.469366 i 
5.1147x10-" I 

2.2744x10-^ I 

1.0613 

6.1294x10'^ 

0.469366 
1 < 

5.1147x10 

0.469366 

1.0613 

0.469366 

V(:,18) V(:,18) + V(:,17) 

Figure 2.7. Coupling of principal vector V(:,18) for shearing force and left-hand bending moment, with 

principal vector V(:,17) for pure bending. 

Within Timoshenko beam theory [72], the shear angle is defined according to the 

relationship 7 = ^ - dv/dx, in which dv/dx is the centreline slope and y/ is rotation of 

the cross-section. The simplest method of evaluating the shear angle is to impose a 

rotation on the cell in Figure 2.7 to bring the centreline slope to the horizontal, when 

dv/dxis zero and y = ; this, together with consideration of Figure 2.8(a), gives the 

shear angle y = 1.44465 x 10~% and the shearing force has magnitude 

Q = 1.0613 + 2x0.469366 = 2.000032 . The equation for shear is 

G = (2.59) 

which yields the equivalent shear coefRcient of the cell as AT = 0.4957. The 

deformation shown in Figure 2.8(b) is equivalent to a bending curvature of 

l/j(' = 2.3468x10"^, which is exactly half of the bending curvature seen when the cell 
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is subject to pure bending. This is as one might expect: the bending moment varies 

linearly &om zero on the right hand side of the cell, to the full value as expressed by the, 

vector V(:,17) on the left; tlie average of the bending moment rayzWenr within the shear 

vector is therefore one-half of the full value and, in turn, so is the curvature. 

1.3834x10-^ 1.3834x10"^ 

" 1 -

1.1734x10-*!.1734x10" 

(a) (b) 

Figure 2.8. Decomposition of the displacements in the x-direction f rom Figure 2.7: (a) shear angle due to 

the shearing force; (b) bending curvature due to the left-hand bending moment. 

Note that the small moment terms within both the bending moment and shear force 

vectors have been included in evaluation of the continuum properties; indeed they are 

necessary to ensure exact moment equilibrium of the cell. 

Table 2.2 Effect of jointing on equivalent continuum properties 

Continuum properties Rigid-jointed Pin-jointed 

Cross-sectional area, cm^ 3.52246 3.52241 

Second moment of area, / m"* 2.13065x10-^ 2.13061x10"^ 

Poisson's ratio, v 0.26119 0.26120 

Shear modulus, G N/m^ 79.29030x10^ 79.2893x10^ 

Shear coefficient, /r 0.49569 0.49562 

The equivalent continuum properties of the rigid-jointed framework determined above 

are listed in Table 2.2, together with those of the pin-jointed framework obtained in 
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[10]. Clearly the axial stifGiess the bending stif&ess E/and the shear stif&iess 

are slightly increased when the cell is rigid-jointed, but the differences are negligible. 

Note that an increase in the equivalent shear modulus G requires a commensurate 

decrease in Poisson's ratio, bearing in mind that Young's modulus E is regarded as 

invariant. Thus one concludes that, certainly as far as calculation of the equivalent 

continuum properties is concerned, treating a rigid-jointed structure as pin-jointed, is 

quite justified. This is in accord with Noor's view [14],/br wzf/z r/gzW 

afb/MmafeAf Ay /oca/ 

coMfmww/M are goocf eMowgAybr accwrafe fAe g/o6a7 

wzYA n g f W T h a t is, one need not employ a micro-polar 

continuum model for such structures. 
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APPENDIX 2 

TRANSFORMATION MATRIX AND JORDAN CANONICAL FORM OF 2D RIGID-JOINTED FRAMEWORK, FIGURE 2.1 

V = 

' 1.6409x10-" -6.1083x10-" -5.8236x10-" 4.1570x10-'° 1.9148x10-" 4.2902x10 " 
1.7431x10-" 4.6051x10-" 4.5165x10-" 1.4971x10-" 1.5542x10-" 3.9539x10-" 
3.1848x10-'" -1.1607x10-^ -1.9274x10-" 7.4118x10-" 6.5758x10-" -2.2798x10-" 
-7.9833x10-" 0 0 -3.9625x10-" 0 -9.3071x10-" 

0 -4.0696x10-" -3.9724x10 " 0 5.0824x10 " 0 
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CHAPTER THREE 

AN ALTERNATIVE APPROACH FOR DETERMINATION OF 

EQUIVALENT CONTINUUM PROPERTIES 

3.1 INTRODUCTION 

In this Chapter, the continuum properties of repetitive structure are found without 

resorting to eigenanalysis. The cell is first defined by its stiffness matrix, K . The 

approach then relies upon the ability to deduce the displacement vectors for tension, 

bending moment and shear; this is straightforward for tension and bending. The shear 

displacement vector is not immediately obvious, but can be deduced employing 

elementary requirements of force and moment equilibrium of the cell. A once and for 

all application of the principle of minimum potential energy for tension yields the 

equivalent continuum Poisson's ratio, from which all the remaining properties follow. 

For simplicity, we consider again the planar structure treated in [10] and then without 

derivation, present more general expressions for the continuum properties in terms of 

length and cross-sectional area for this particular cell configuration, allowing more 

general conclusions to be drawn. When compared with eigenanalysis, which is 

essentially a numerical technique, the new approach has the advantage of yielding 

analytical expressions for the continuum properties. 

3.2 EXAMPLE STRUCTURE 

We consider the beam-like repetitive pin-jointed framework previously shown in Figure 

2.1; the typical repeating cell is shown in bold, together with nodal numbering. 

Horizontal and vertical members have a cross-sectional area of 1 cn f , while the 

diagonal members have area of 0.5 cnf . However, since vertical members are regarded 

as being shared between adjacent cells,yor rAe ceZZ their cross-sectional area is 

also 0.5 cm^. Young's modulus for each member is taken to be 200 x 10^ N/m^ and this, 

together with the length and depth of the cell of 1 m and 2 m, respectively, is regarded 

as applying equally to the equivalent continuum beam. 
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3.3 EXACT EQUIVALENT CONTINUUM PROPERTIES OF THE 

EXAMPLE STRUCTURE 

The stiffness matrix K for the single cell can be found by a variety of means, see for 

example [69], and relates the nodal force and displacement components according to 

F = K d , (3.1) 

which is presented explicitly in the Appendix 3. 

F, 
I.v 

F-2jr 

K 3 .V 

d, 

i ^4. 
\ 

t 
>< 

y 
Lc_ 

^ 7% 4jr 

F, 
6.V 

Figure 3.1. Single cell loaded in tension; dotted lines show initial cell configuration. 

We presume the cell to be loaded in tension, as shown in Figure 3.1, and restrained in 

such a way as to prevent rigid body displacements, but to allow Poisson's ratio 

contraction. This immediately implies that displacement components 

- 0- Set = w, when the strain in the 

direction is £ ^ = ^ = ii, since Z = 1. The strain in the ̂ /-direction is 

g _ _4); ^ 22. aiid by virtue of the symmetry of the cell, 
^ 2Z 2Z, 

ci ci 

= -V w, = y w, and the cell displacement vector for tension is 

A = \^ -vu Q Q Q vu u -vu u 0 u v uY • (3.2) 

The strain energy of the cell U is calculated as 
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[/ = - d ^ K d = : ^ x 
2 10'' 

f f 
\ V 1 + -

V 1 
• H h -

2V2; V2 2 2V2 

The cell will deform in such a way as to minimise the above, that is 

(3.3) 

dv 
= 0, (3.4) 

which gives v = 
1 

defined using G = 

I + 2V2 

E 

2(1+ v) 

: 0.261204. An equivalent shear modulus G can then be 

, with Young's modulus being regarded as invariant. 

The tensile force applied to the cell is 
(3.5) 

and these force components are calculated from (3.1), employing displacement vector 

(3.2) as 

_g 
1 + 

l-v 

472 . 
X". •f;, = J r 1 + 

1 - V 

2V2 
xw (3.6) 

and 

r = E 

10' 
3 + 

1-K 

VT. 
xw. (3.7) 

For a continuum beam, we have 11, and with L — \, the equivalent cross-

sectional area is 
V5 

x W =3.5224x10-" 

M 

Figure 3.2. Single cell loaded in pure bending. 
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Next consider the displacements during bending, as shown in Figure 3.2; assume 

displacements = -w, = w , which is consistent with rotations of the 

side faces of the cell, and =d^^=Q , which is consistent with zero axial strain on the 

neutral axis. For a continuum beam, a fibre coinciding with the member joining nodes 1 

and 4 would have strain , where y is distance from the neutral axis and R is the 

2w 
radius of curvature; but the strain = — andjx = 1, hence 

^ = A = ^ = 2w. (3.8) 
E/ ^ 1 

Also shown in Figure 3.2 is an apparent shift of the neutral axis (the member joining 

nodes 2 and 5) toward the tension (upper) side of the cell. In fact, the upper side moves 

toward the neutral axis while the lower, compression side moves away by an equal 

amount, both displacements being Poisson's ratio effects. For a continuum beam, [73] 

gives the transverse displacement during pure bending as v = + v )+ c; here 

the term represents the curvature due to bending, while the constant c, representing a 

rigid body displacement in the ^-direction. The latter is adjusted such that v = 0 on 

y = ±1 to give v = ). Nodes 2 and 5 have )/ = 0, and employing expression 

(3.8) gives (̂ 2̂  = (̂ 5̂  = . The cell displacement vector for bending is then 

d = [-M 0 0 vu u 0 II 0 0 vu -u O]^. (3.9) 

The bending moment is 

M = ( F „ - F , ^ x L - (3.10) 

the force components in the above are calculated from (3.1) employing displacement 

vector (3.9) as 

z + 
10^ 4V2 

(3.11) 

hence 

10" 4V2 
(3.12) 
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from which the second moment of area is / = 
4V2 

X10-" =2.130602x10-" m" 

F, 4)7 

5)/ 

Figure 3.3. Single cell subject to shear and bending moment 

Figure 3.3 shows the cell subjected to a shearing force, together with a bending moment; 

again the nodal displacements are guided by the solution for a cantilevered continuum 

beam subjected to a shearing force [73]. Rotations on both sides of the cell are different, 

so we set 6/,̂  = -w,, = w, and = 2̂ - with pure bending, there is a 

Poisson's ratio effect of an apparent shift of the neutral axis in the)/-direction ((Z;;,)) but 

this effect is absent on the right face of the cell where the bending moment is zero, that 

is 6/;̂  = 0. The shear displacement vector is written initially as 

d = ĵ -w, 0 0 M| 0 -u^ 0 0 0 W; o ] ^ 

the associated force components are then calculated from equation (3.1), as 

(3.13) 

f r 
1 + 

V V 4V2 

\ \ 

' 10' 
4 / 

4V2 
F-2>' 10" 

1+ 
2 V 2 4V2 

10" 

Uj + djy 
F. iy 10" 2 V l j 

(3.14) 

These components satisfy vertical force equilibrium for the complete cell, and there is 

zero horizontal resultant on both sides. Moment equilibrium requires the relationship 
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<̂9 
w, = — ^ + ^ 1 ^ 

4V2 ' l " " 4V2 
(3.15) 

while asymmetry of the shear force vector requires 

F,^=~F„ , F „ = - F „ , (3.16) 

which yield the single relationship 

Z-Zj — U2 4" (l + 2V2)6/2^ (3.17) 

hence 

W[ = (16 + 6-72) d^y, = (15 + 4V2) djy (3.18) 

The shearing force is then 

e = f | , + f : , + = j f r (5 + 8V2) . (3.19) 

As in Chapter 2, the shear angle y is defined as y = ^ - dv/d^;, in which is the cross-

sectional rotation and dv/d^; is the centre line slope; again, we take the rotation as the 

average of the rotations on either side of the cell when the shear angle is, Figure 3.3, 

equal to 

r = + (3.20) 

bearing in mind that cell has unity length. Finally, introduce the above expressions into 

the shear equation g = GWxy to give the shear coefficient as 

%- = —4(5 + 8V2)(l + w) (3.21) 

The equivalent properties as derived above are in agreement with those determined in 

Table 2.2. 

3.4 ANALYTICAL EXPRESSIONS FOR THE EQUIVALENT CONTINUUM 

PROPERTIES OF A MORE GENERALLY DEFINED FRAMEWORK 

Consider a cell, as in Figure 2.1, but having more general lengths and cross-sectional 

areas. In particular, the longitudinal members have length L, and cross-sectional area 

while the vertical and diagonal members have lengths and Z) = , and 
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areas andv4f), respectively. The equivalent properties are expressed first in terms of 

the absolute parameters of the cell and then more simply in terms of derived equivalent 

properties, in particular the Poisson's ratio, which is 

(3.22) 

For isotropic homogenous materials, Poisson's ratio can take values within the 

range - 1 < y < 0.5 . For this particular cell configuration, v cannot be negative; it has a 

minimum value of zero when is zero, wheii the cell can withstand tension and 

bending - for shear it is a mechanism. 

The equivalent cross-sectional area is 

which is equal to that of the three longitudinal members together with a necessarily 

positive contribution from the vertical and diagonal members. 

The equivalent second moment of area is 

/ = 2y4^^'+ (3.24) 

and consists of a "parallel-axes theorem" contribution from the top and bottom 

longitudinal members together with a positive contribution from the vertical 

and diagonal members. Moreover, this additional contribution is consistent with a 

"parallel-axes theorem" treatment of the additional area term, , in expression 

H 

(3.23). hi particular, it is reasonable that one-half of this additional area should be 

placed symmetrically about the neutral axis, at distance HH, when the parallel-axes 

theorem gives 

2 x X = (3.25) 
V 

It is interesting to note that I reduces to , and not zero, when the diagonal 

members are absent, as one might argue that these members are required to transmit 

shear from the upper (tensile) to the lower (compressive) members of the cell; in 

practice these diagonals are clearly necessary. On the other hand, the displacement 

vector for bending prescribes that the cell deforms in the required manner. 
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The shear coefficient becomes 

+ 3 A ^ D ^ ' +4^^v4^r)(2v4,D' + v 4 ^ r + v 4 ^ / f ' j ^ 2 6 ) 

8(l + v)(2y4^^ + v ^ ^ Z ) ^ g 7 f ' Z 

^(3y4^^ + 4yy4^Z)(2^^/fD^ +Vy4f,D^Z + v / ( ^ Z ^ " ) ' 

the above reduces to zero when = 0 , as the cell cannot withstand shear. 
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CHAPTER FOUR 

EIGENANALYSIS OF AN ASYMMETRIC REPETITIVE 

STRUCTURE 

4.1 iisTrR()i)ij(:Tri()P4 

In this Chapter, eigenanalysis of the transfer matrix is applied to an actual structure 

modelled on a deployable satellite boom structure [13] whose repeating cell is 

asymmetric about the mid-plane; a ten-cell model is illustrated in Figure 4.1. Based on 

the conclusion drawn from Chapter 2 - that the continuum properties are unaffected by 

the method of jointing -the actual rigid-jointed structure is modelled as being pin-

jointed. This has the advantage of simplicity and also allows the results obtained &om 

eigenanalysis to be verified by exact predictions from FEA. The pin-jointed idealisation 

of the structure requires the transfer matrix approach to be posed as a gengra/ff ec/ 

eigenvalue problem; this modification is necessary because inversion of one particular 

partition of the stiffness matrix K is impossible, as it is singular. This means that 

construction of the transfer matrix G, as defined in equation (2.7), is impossible; on the 

other hand, the generalised eigenvalue problem avoids the ill conditioning associated 

with inversion of the stiffness matrix partition, and the numerical inaccuracies that ensue. 

The generalised eigenvalue problem employs state vectors comprised of the 

displacement components on both sides of a cell, rather than displacement and force on 

one side, as for the standard eigenvalue problem. 

Figure 4.1. A ten-cell 3-D pin-jointed satellite truss with equilateral triangular cross-section. 

Beside the twelve unity eigenvalues for the transmission modes, eigenanalysis of the 

structure shows three eigenvalues equal to zero (and three equal to infinity, since they 

must occur as reciprocals), and nothing else. This implies that any self-equilibrated load 
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is confined to the cross-section on which it is applied, and does not penetrate the 

structure, not even to the next nodal cross-section. Of course, this is exactly why the 

matrix partition is singular - displacement components of some nodes on the right hand 

side of the cell are quite unaffected by force components applied at nodes on the left 

hand side of the cell. 

Since the eigen- and principal vectors of the generalised problem contain only 

displacement components, a new matrix T is defined as being comprised 

of transmission vectors consisting of both displacement and force components, and is 

calculated employing the stiffness matrix K. Physical interpretation of the vectors in T 

shows coupling between various modes of displacement. First, tension is coupled with 

torsion, which is reminiscent of the established behaviour of pre-twisted beams. 

However, coupling indicated in the displacement components of the bending moment 

vectors were not readily identified, but simple (ANSYS) FEA of a 10-cell pin-jointed 

model subjected to a bending moment showed coupling between bending curvature, and 

shear perpendicular to the plane of curvature. 

Calculation of the equivalent continuum beam properties of the structure, including the 

coupling coefficients between the modes, revealed several Mw/Merzco/ 

between actual properties of the structure, and the equivalent continuum properties, often 

involving an apparent Poisson's ratio of v = 0.2612. In order to more fully understand 

the physical causes behind these coincidences, and the nature of coupling in general, a 

simpler 2-D planar asymmetric framework, Figure 4.2, is first considered. This simple 

planar structure is representative of a single face of the NASA structure, and displays 

tension-shear coupling; this behaviour is sufficient to explain the tension-torsion, and the 

bending-shear couplings evident in the 3-D structure. 

V" cell 

Figure 4.2. A 2-D planar asymmetric framework with typical eel 
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4.2 GENERALISED EIGENVALUE PROBLEM 

(y-l)"' section y"' section y''' section 

z, w 

cell 

(y + 1)'̂  section 

(y + 1)' cell 

Figure 4.3. Two consecutive cells, y " and (y + l) , of the framework shown in Figure 4.1. 

Consider two consecutive cells of the NASA truss shown in Figure 4.3; let d and 

denote the nodal displacement vectors associated with the ( j -1)" ' , 7"', and 

(7 + 1)"' sections respectively. Their corresponding nodal force vectors F .̂_,, and 

Fy_̂ , are related to the displacements through the equations 

Fp. .1 Td. .1 r P. 1 r d . 1 
(4.1a, b) 

F- 1 F d. 
= K J = K J 

.Fv J J J . 

where K 
, RL KR 

is the stif&ess matrix of the single cell. The force 

component F̂  appears in both of the relationships for the two adjacent cells, and can be 

eliminated to give 

Kiidy + K ĝd̂ .+, + K^dy_i + K ^ d y = 0 . (4.2) 

T" T T T" T T 
Define state vectors for adjacent cells as Sy = d^ ] and ŝ .̂ , = [d .̂ d .̂̂ , ] , 

when equation (4.2) can be expressed as 

Aŝ . = . (4.3) 

where 
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0 I I 0 
A = , B = (4.4) 

_ I.I. ^LR_ 

and I is the identity matrix. Now set 

S /+1 — Sy, (4.5) 

to give the generalised eigenvalue problem 

ASy=ABSy or ( A - A B ) S y = 0 . (4.6) 

Eigenvectors for the non-repeating eigenvalues were determined from the MATLAB eig 

command. The principal vectors are determined from the near diagonalised form 

AV = BVJ (4.7) 

where V is the similarity matrix of eigen- and principal vectors, and J is the JCF. For the 

multiple unity eigenvalues this implies the chain of equations 

( A - B ) Vj = 0 

( A - B ) w , = B V , 

( A - B ) =Bw^_, 

for a Jordan block of size A: x and a principal vector is found using the 

command on the augmented matrix [ A - B, B w. ]. In fact the JCF cannot be determined 

numerically through a similarity transformation, since matrix B cannot be inverted; 

however, the structures of the Jordan blocks for the vectors pertaining to the unity 

eigenvalues are obvious through physical reasoning: thus one has a 2 x 2 block coupling 

extension and the combination of loads necessary to produce that extension (a tensile 

force for the symmetric structure considered in Chapter 2, but here other loads are 

required), and likewise a 2 x 2 block coupling rotation and the necessary loads to 

produce that rotation. On the other hand, one has 4 x 4 block(s) coupling transverse 

displacement, rotation, bending, and shear - in one plane for the planar structure, and 

two planes for the space &amework. 

From the above, it is clear that the eigen- and principal vectors consist only of 

displacement components; a transmission matrix T is thus defined as being comprised 

of vector pairs s j and s . = , each of which is derived from 
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two of the vectors coupled in the above chain, for example Wyt_i and wt_2. The force 

components within the new vectors can be readily determined through equations (4.1), 

and the complete transmission matrix T is given in Appendices 4.A and 4.B for the 

planar and NASA structures, respectively. Pairs of columns of T describe the 

displacement and force components on either side of a single repeating cell for the 

transmission of the stress resultants of tension, torsion, bending moments and shearing 

forces, together with the principal vector rigid body rotations; the eigenvector rigid body 

displacements and rotation are resident within one vector of the pair. 

4.3 SIMPLE 2-D PLANAR ASYMMETRIC FRAMEWORK 

A planar pin-jointed asymmetric framework is shown in Figure 4.2, together with the 

nodal numbering of the typical cell; the material and geometric properties are as follows: 

the Young's modulus and density, vE = 70x10^ Nm"^ and = 2700 kg/m^ is the same for 

all members; the lengths of the two vertical bars are L - 342.8 mm, and their cross-

sectional areas are taken as AH since these vertical bars are regarded as being shared by 

two adjacent cells. The diagonal bar has length V 2 x 342.8 = 484.8 mm as demanded by 

geometry, together with cross-sectional area^ .̂ The lengths of the two horizontal bars 

are Z, and their cross-sectional area is ^4/2; this planar structure is now equivalent to one 

face of the structure whose horizontal member cross-sectional areas are regarded 

as being shared between adjacent faces. The full cross-sectional areav4 is calculated 

from member diameter d = 6.35 mm. Since there is only one diagonal bar in the typical 

cell, the structure is clearly asymmetric about its mid-plane. 

The stif&ess matrix K fbr the single cell is given in Appendix 4.C. Referring to 

equation (2.7) of Chapter 2, in order to construct the transfer matrix G one must invert 

the partition ; however from Appendix 4.C, it is clear that both and are 

singular. More specifically, the zero columns within and indicate that 

displacement is quite independent of the force components on nodes 1 and 2, and 

likewise fbr displacement the force components on nodes 3 and 4. 
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Figure 4.4 shows the 2-D asymmetric structure subjected to the only possible self-

equilibrated load = O) at its &ee end; nodal force equilibrium then requires the 

following relationships 

^ + F c o s - + f: = 0 
!>• 

71 7^ +fLs in—= 0 (4.9) 

F = 0 

Bearing in mind that , solution of the above requires f], - , 

- F j = F^=Q and thence ^ = 0 , which clearly indicates a zero decay rate, and hence 

the reciprocal eigenvalue pair [inf, 0]^; the remaining six eigenvalues must be equal to 

unity. 

Figure 4.4. A 2-D planar asymmetric framework subjected to self-equilibrated end loading. 

4.3.1 Equivalent Continuum Properties and Coupling Coefficients 

The nodal force components, together with decomposition of the displacements, of the 

transmission matrix, Appendix 4.A, are shown in Figures 4.5 - 4.8. 

a) The first two columns of the transmission matrix, T(:,l) and T(:,2), are termed the 

tension pair and are derived from the principal vector for tension, which is coupled to re-

direction rigid body displacement, in the principal vector chain, and is shown in 

Figure 4.5; it is seen that a tensile force 7̂  = 6.4668x10"^ N , when applied to both left 

and right hand sides of the cell, produces an extension w = 1 x 10"^ m in the x-direction. 
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10 

together with a shear in the %y-plane ^ ; note the absence of a Poisson's ratio 

contraction. 

3.2334x10 

3.2334x10 

3.2334x10" 

5x10"^ 5x10"^ 5x10-^ 

^ p ^ ^ ^ 

3.2334x10" 

1̂ 
5x10-^ 

(a) (b) (c) 

Figure 4.5. The tension pair of the single-face cell of the 3-D satellite truss; the deformation is 

decomposed into (b) extension and (c) shear deformation. 

2.5x10"^ 2.5x10"^ 
j<^"" 

1.6167x10-': / \ | 1.6167x10" 

.6167x10"^ /! 1.6167x10" ^ 

Figure 4.6. The bending moment pair of the single-face cell of the 3-D satellite truss; the deformation 

represents a bending curvature only. 

b) The third and fourth columns of the transmission matrix, T(:, 3) and T(:,4), are 

termed the and are derived &om the principal vector for bending 

moment, which is coupled to rigid body rotation about the z-axis in the principal vector 

chain; from Figure 4.6, it is seen that the moment M = 1.6167x1x10"^ Nm when 

applied to both left and right hand sides of the cell, produces a bending curvature of 

1 10"^ 
— = ^ m"'. Again, note the absence of any Poisson's ratio effects. 
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c) The fifth and sixth columns T(:,5) andT(:,6) are termed the 

and are derived from the principal vector, which is coupled to the bending moment in 

the principal vector chain. From Figure 4.7, the force components of these two 

vectors show shearing and compressive forces on both sides of the cell, together with 

a bending moment on the left hand side. The displacements show a combination of 

shear, curvature, and an apparent Poisson's ratio of the cross-section, at 

first sight connected with the compressive force, despite there being no axial 

contraction. 

8.0836x10"^ 

1.6167x10 ~ ^ ^ 

8.0836x10"^ 

1.6167x10-^ 

8.0836x10" 

j 4̂— 8.0836x10"^ 

8.0836x10-^ 

8.0836x10 

i 8.0836x10" 
8.0836x10-

2.5x10' 

(a) 

4.7855x10"^ 4.7855x10"^ 1.25x10" 1.25x10" 
^ ^ ^ 

2.5x10" 

(b) (c) 

Figure 4.7. The mixed shear pair of the single-face cell of the 3-D satellite truss; (a) shows the force 

components which indicates that the cell is subjected to shearing force, compressive force and bending 

moment; displacement components indicate a shear deformation and cross-sectional expansion (b), and a 

bending curvature (c). 

The above vector pairs are those produced by the numerical procedures described above 

for this generalised eigenproblem and contain all potential information; however, linear 
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combinations of these pairs are more usefiil for determination of the equivalent 

properties, and in particular for a numerical understanding of the various couplings. 

Before developing new vector pairs, however, we first note the physical arguments that 

lie behind the observed couplings. As regards the tension pair. Figure 4.5, it is not 

difficult to see that the tensile force is carried by the horizontal members only, and that 

the diagonal member is fi-ee of load; in turn, this diagonal does not change its length and, 

because the cell is pin-jointed, this is accommodated by the transverse shear of the cell 

by just sufficient amount that the length of the diagonal remain constant. A consequence 

of the diagonal being free of load is that the vertical members are also free of load, and 

since their lengths remain constant, the equivalent Poisson's ratio for the cell is zero, 

hiserting the relevant magnitudes of tensile force and extension w from Figure 4.5 into 

the expression 7̂  = ^ , with ^ regarded as constant, leads to an equivalent cross-

sectional area equal to the actual area of the two horizontal members, which is 

4 . . ^ = - ^ = 31.6688xlO- 'm\ 

For the bending moment pair, Figure 4.6, again the horizontal members carry the tensile 

and compressive loads, while the diagonal is free of load. But now, the contraction of 

the upper member, and extension of the lower, is exactly as required to maintain the 

length of the diagonal member, which now has no influence on the behaviour; again 

there is no Poisson's ratio effect. Inserting the relevant magnitudes of moment M m d 

1 EI 
curvature — from Figure 4.6 into the expression M = — leads to an equivalent second 

moment of area / = 9.30377xl0'^m'^, which is exactly what one would expect 6om 

application of the parallel axes theorem, assuming acZwaZ values for the areas of the 

horizontal members. 

We now propose that one can conceptually trade the aMf&ofrqpzc coupling exhibited 

above, with more appealing isotropic characteristics; in particular, since tension produces 

a shear deformation, one might reasonably assume that a shearing force will produce a 
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Poisson's ratio effect, and that these effects are reciprocal. To develop this idea further 

one needs the first of the combined vector pairs, describing pure shear which is shown in 

Figure 4.8(a); we note that such a state of pure shear, as depicted, would not be allowed 

within the context of Saint-Venant's problem since shearing loads are applied to the 

upper and lower faces of the cell (the surface generators) rather than just the cross-

section. However a nodal force in the x-direction can belong equally to the cross-section, 

so the shearing forces on the upper and lower faces of Figure 4.8(a) are indistinguishable 

from the combination of bending moments shown in Figure 4.8(b), which is here defined 

as the state ofjowre j'Aeor. Now superpose sufficient pure shear ( - 5 / 6.0355) to suppress 

the shear deformation due to tension, to give the combination of extension and apparent 

(a) 

6.0355x10"^ 6.0355x10"^ 

2.5x10"^ 

(c) 

8.0836x10" 

8.0836x10 

8.0836x10 

8.0836x10' 

4— 8.0836x10"^ 

8.0836x10"^ 

8.0836x10"^ 

j 8.0836x10"^ 

(b) 

1.25x10"^ 1.25x10"^ 
—>j |4— —>1 |4— 

(d) 

Figure 4.8. The pure shear pair of the single-face cell of the 3-D satellite truss; (a) shows conventional 

pure shear; (b) shows an equivalent combination of shear and bending moment; (c) shows the shear 

deformation and cross-sectional expansion; (d) shows the extension. 
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Poisson's ratio contraction shown in Figure 4.9; the strains are 

2x3.96446x10' :L07108xl0-
^ —, and hence the apparent Poisson's ratio 

V = 0.2612 . Now calculate an equivalent cross-sectional area A based upon the 

extension caused by this tension-shear combination, and one finds 

= 39.94093xl0"^m^ = (1 H-v); moreover, one now has as the equivalent shear 

modulus G = 
2(l + y) 

= 27.7514x10" N / m \ 

4.0780x10 - 2 

1.6892x10 

8.4459x10 

1.6892x10"^ 8.4459x10 
I [/C 

4.0780X10" 

(a) 

5x10" 

1 
t 2.6120x10"^ 

(b) 

4.0780x10" 

8.4459x10" 

8.4459x10" 

4.0780x10" 

1.3060x10"" 1.3060x10 
^ 

(c) 

Figure 4.9. The extension pair of the single-face cell of the 3-D satellite truss; (a) shows the force 

components which indicates tension, shearing force and bending moment; the deformation is decomposed 

into (b) extension and Poisson's ratio contraction, and (c) a bending curvature. 

Returning to the Figure 4.7, one sees that a shearing force of 

magnitude g = 2x8.0836x10"^ =1.61672x10"^ N produces a shear angle of 

4.7855x10 " 

Z/2 
; to define a shear coefficient /rwithin the expression Q = KAGy 

requires a choice of the appropriate cross-sectional area .,4 and shear modulus G. For 
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example one might choose the actual cross-sectional area, zero Poisson's ratio, when the 

shear modulus G = EH; on the other hand one might choose the calculated equivalent 

E 
cross-sectional area, the apparent Poisson's ratio, and the shear modulus G = . 

2(1+ v) 

In fact, both these choices lead to the same value for the shear coefficient, since 

Y = 1 ^) 2 ( 1 + ^ ' 10) 

and hence the value K - 0.5224, which is noted to be numerically twice that of the 

apparent Poisson's ratio. 

Now the mixed shear pair contains a compressive force, suppressing elongation of the 

cell which, in turn, is coupled to a shear angle. If this compressive load is removed to 

give the shear pair, Figure 4.8, one now has a shear angle of / = ' which 

leads to a shear coefficient AT = 0.4142 = , numerically. 

1 + v 

We now formalise three states of^wre load, and employ these to determine the 

governing coupled equations; wnzY states of tension moment M* and pure shear 

are defined according to Figures 4.5,4.6 and 4.8, with magnitudes 

r ' = 2X 3.2334X10-" = 6.4668 X1Q-" N, = 1.61672x 10-"= x 1 Nm, 

G/=2x8 .0836x10-" =1.61672x10"" N. 

In addition a shear load Q* is defined according to Figure 4.7, which represents the 

mixed shear pair, but with the compressive load removed. 

Now construct the Table 4.1, for arbitrary T, gp, g , and A/, where each 

row shows the deformations caused by the pure loads; note that, numerically, the 

1 + v 
coefficient 4.8284 = . It is now easy to see that by adding an appropriate, negative, 

V 

multiple of the second row (pure shear) to the first (tension) one may suppress the shear 

angle while introducing an apparent Poisson's ratio cross-sectional contraction, the 

strain g,.. 
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Table 4.1 Deformation produced by arbitrary loads T, g Afand Q. 

r 

T 
10'^ r 

LT* 

10-^ r 

LT* 
0 0 

Qp 
10"'6, 4.8284x10-^6^ 

0 
10-' 

Qp 0 
4 ^ 6 / 

M 0 0 
IQ-^M 

0 

Q 
10-^6 

4ZG' 

4.8284x10-^6 

4 I G ' 

IQ-^g 

2 ^ 6 ' 

lO-'G 

4 1 6 ' 

The governing equations are determined by adding the effects of each of these causes, as 

r 

R 

15.464x10' 

L 

0 

0 

F 
0 0 

1 1 

4.8284 4.8284 

- 2 

L 
1 1 

0 

T 

M 

Qp 

Q 

(4.12) 

where numerical values for the unit loads have been inserted. Moreover, numerically 

15.464x10"^ 1 
the coefficient 

L 
enabling one to write 

r 
1 

li 

1 
r 
1 

li ^•^acllial 

0 

0 

_4̂  

0 0 

1 1 

4.8284 4.8284 

- 2 

L 
1 1 

0 

T 

M 

a 
Q 

(4.13) 

The above compliance matrix is not invertible, as it is singular having rank 3; the 

information contained within the fourth column, pertaining to the shear force Q, is 

clearly a linear combination of columns two and three, as one would expect since Q is 

constructed from M and Qp. A variety of non-singular matrices may be extracted from 

the above, and these allow the equivalent properties to be determined in different ways. 

First, delete the second row and the fourth column, and invert to give 
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T. 

M 

a 

1 0 - \ 

0 0 
1 

0 
T 

0 
'R 

0 0 1 

(4.14) 

L' 
From the above, one has equivalent second moment of area 7 = ^ , as previously 

calculated. The tensile force 7]̂  = , but if the pure shear gp is sufficient 

to suppress the shear angle such that , then one has 7̂  = (1 + w ) , and 

the equivalent cross-sectional area as calculated previously. 

Instead, if one deletes the fourth row and the third column and invert, one finds 

T. 

M 

0 

:&4. 

1.2612 -0.2612 0 

-0.26121 0.26122 ^ 

2 2 4 

-0.2612 0.2612 0 

r 

R 

(4.15) 

from the above, one may pick out the tension-shear coupling which is numerically 

equivalent to 

X ' 1 + v -V 

G . 
- ̂ A,dual 

G . V . r . 
(4.16) 

If one compares this with 

T. 

Q 7 
(4.17) 

it is clear that the shear coefficient takes the value K = 2V — 0.5224 because of the 

relationship between E and G described above. The coupling coefficient relating 

tension and shear, = -5.7905x10^ N is also clearly dependent upon the apparent 

Poisson's ratio. As will be seen, the tension-shear coupling observed for this single face 

planar structure, manifests itself as both tension-torsion coupling, and bending-shear 

coupling in the structure. 
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4.4 THE 3-D ASYMMETRIC AW&4 TRUSS 

The structure illustrated in Figure 4.1 is an actual truss, modelled on one employed by 

7V/4&4. According to Figure 4.3, the displacement vectors are defined as 

V; W, W; ̂ 2 ^2 3̂ ^̂ 3 ] ̂  

d; = k ^̂4 ^̂ 5 ̂ 6 6̂ ^ 

d;+i = [w? Wy Wg Vg Wg Wg V, Wg ] ^. (4.18a, b, c) 

Eigenanalysis gives the reciprocal pair eigenvalues [inf̂  O]̂  having multiplicity of 

three, together with twelve eigenvalues very close to unity; of course, the latter must be 

exactly equal to unity. The zero eigenvalues imply that any self-equilibrated load 

applied to the left hand end of the structure does not penetrate into the structure beyond 

the first cell. Its reciprocal (inf) implies that the same is true for any self-equilibrated 

load at the right hand end of the structure. 

For a space frame beam-like structure, physical argument requires twelve exactly unity 

eigenvalues, whose eigen- and principal vectors pertain to the three rigid body 

translations in the and z-directions, and three rigid body rotations about these axes, 

and six transmitting modes of tension, torsion, and bending moments and shearing 

forces in both the Jty- and %z-planes. For A = 1, the set of equations 

( A - B ) v . = 0 , (4.19) 

and use of the command within MATLAB, shows that there are only four 

independent eigenvectors - rigid body displacements in the x-,)/-, and z-directions and a 

rigid body rotation about the x-axis. They are 

" [ 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 ]% 

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 ]% (4.20a,b,c,d) 

=[0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 ]% 

2 3 2 3 3 2 3 2 3 3 _ 

where L is both the length of the cell, and the length of the members which make up the 

cross-section, and H is the height of the cell; the small angle 9 is arbitrarily chosen to 
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be 5x10 ^ radian. The coupled principal vectors were determined according to the 

procedures described in Section 4.2. 

4.4.1 Equivalent Continuum Properties and Coupling Coefficients 

Physical interpretation of the transmission vectors allows one to calculate the equivalent 

beam properties and coupling coefRcients, as follows: 

a) The first two columns of the transmission matrix, T(:,1) and T(:,2), are derived from 

the principal vector for tension, which is coupled to rigid body displacement in the %-

direction in the principal vector chain, and represent displacement and force on the left 

and right hand sides of the cell, as shown in Figure 4.10; it is seen that a combination of 

tensile force 7̂  =2.4468x10"' N and twisting moment =-5.0147x10"^ Nm, 

when applied to both the left and right hand sides of the cell, produces an extension 

u = 1x10'^ m in the x-direction. These two vectors are termed the extension pair. 

8.156]xlO-^ r 
' 

5081x10 

2x8.1561x10' 

8.1561x10 

7.5403x10 

T(:,2) 

- 1 0 
2x8.1561x10 

8.4459x10 

1.3060x10"^ 1.3060x10 

Figure 4.10. Single cell subject to both tension and twisting moment having unit extension; vectors T(: , l) 

and T(:,2) describe the displacement and force components on the left and right hand side of the cell, 

respectively. Note the apparent Poisson's ratio contraction of the cross-section. 

b) The third and fourth columns of the transmission matrix, T(:, 3) and T(:,4), are 

derived from the principal vector for torsion, which is coupled to rigid body rotation 

about the axis in the principal vector chain; from Figure 4.11, it is seen that a 
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combination of twisting moment = 2.4812x10"^ Nm and compressive force 

7̂ . = 2.5073x10"^ N , when applied to the left and right hand sides of the cell, produces 

a pure rotation ^ = 5x10"^ radian about the x-axis. These two vectors are termed the 

7.4617x10 

8.3579x10- 8.3579x10 
4 

2x8.3579x10" 

T(:,3) 

j 3.7309x10"'° 

5.0x10"^ 4.1789x10"^ 

4.1789x10 

2x8.3579x10 

4.1789x10" 

Figure 4.11. Single cell subjected to both twisting moment and compressive force, causing pure rotation 

about the x-axis; vectors T(:,3) and T(:,4) describe the displacement and force components on the left and 

right hand side of the cell respectively. Note the apparent Poisson's ratio expansion of the cross-section. 

The above tension-torsion coupling may be written in matrix form 

dn 

9z 

9% 

'T,' K,; 
(4.21) 

where is the tension-torsion coupling coefGcient. For the one knows 

parameters 7]̂ , Mr, Z, and E, and9w/9x = w/Z, = 2.9172x10"^; in particular one has 

9^/9% = 0 and substitution into equation (4.21) gives 

or v4 = 7;/(^ai , /ax) = 1 1 9 . 8 2 4 0 x l 0 ^ m \ 

oi" ^«=M, / (3w/8x) = -1 .7190x l0 'Nm. (4.22a,b) 

Additionally 6om Figure 4.10, one can see displacements in the }/-and z-directions; 

these are an apparent Poisson's ratio contraction of the cross-section, from which the 

equivalent Poisson's ratio would be determined as follows; strain in the x-direction is 
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- u l L = 2.9172x10"^, while strain in the ^/-direction is 

= - v / ^ = - ^ = -7.6197X10"^ and strain in the z-direction is 

= " W ^ = "('^iz-'^2z)/^ = "7.6197xlO'^. Writing =-vg_,,gives the 

apparent equivalent Poisson's ratio v = 0.2612 . The equivalent shear modulus would 

then be found as G = ^ [ 2 ( 1 4 - v ) ] = 2.7752x10^° Nm 

From the torsional rotation pair, vectors T(:,3) and T(:,4), one knows parameters, 71-, 

Mx, L and E, and dd/dx = OjL -1.4586x10"^; in particular one has 3w/3x = 0 which 

gives 

= GJ(a^/ax), or J = = 6.1297x10-"m", 

or jiT,, =7;/(86)/8%) = -1 .7190xl0"Nm, (4.23a,b) 

where the above equivalent shear modulus G is employed in the determination of J. 

Note that identical coupling coefficients are obtained 6om the two separate vector pairs, 

which is exactly as one would expect &om the reciprocal theorem. Just as the 

pair indicates an apparent Poisson's ratio contraction, the pair also 

suggests such an effect: the combination of twisting moment and compressive force 

necessary to produce rotation, but no extension, also results in a cross-sectional 

expansion. Figure 4.11, which are the nodal displacements in vector T(:,3), suggesting 

1.2924 
equivalent strains = £ ^ = — ^ — x l O . Calculation of an equivalent Poisson's ratio 

from this vector pair, would suggest that it should be infinite, since the strain in the x-

direction is zero. 

Now, the pair of vectors, and the /oMo/ pair, are ideal for 

determination of the equivalent continuum properties according to equation (4.21), since 

they describe the necessary combination of tensile force and twisting moment such that 

the deformation should consist of only and respectively. 

This implies that dd/dx and du/dx is zero, in turn. These vector pairs maybe 

combined in appropriate proportion to generate tension and torsion pairs; the former 

describes the coupled extension and rotation produced by just a tensile force, the latter 
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the coupled extension and rotation produced by just a torsional moment. These revised 

vectors are given in Appendix 4.D, where it can be seen why the equivalent Poisson's 

ratio contraction was referred to above, as The left hand column of the 

tension pair, T(:,17), shows that all nodal displacements on the left hand side of the cell 

are zero, while the nodal displacements on the right hand side, T(:,18), consists of an 

extension w = 1x10"^ m , together with nodal displacements equivalent to a cross-

2"%/̂  3 HO 
sectional rotation of ^ = —^xlO"^ indicating the relationship w 

however, there are no displacements (on either side of the cell) consistent with a cross-

sectional contraction, suggesting that the equivalent Poisson's ratio is zero. The reason 

behind this simple relationship between u and 0is discussed in Section 4.4.2. 

The pazr has a cross-sectional rotation on the right hand side of 

_ 9.8958x10-' c 1 ^ - . - 1 
" — 2 j ^ / 3 — = 5x10 radian; also mdicated is a cross-sectional expansion, agam 

suggesting an anomalous value of Poisson's ratio. The equivalent strain in the x-

direction may be expressed as = 1.0247x10"' / Z,, where Z, is the length of the cell; 

the equivalent strains in the y- and z-directions turn out to have identical value, which 

would suggest an equivalent Poisson's ratio of i/= -1 . These issues are discussed 

further in Section 4.4.2; however it is sufficient at this stage to note that calculation of 

the equivalent continuum properties for employment within simple dynamic theories are 

unaffected by this dilemma. In particular, an incorrect designation of equivalent 

Poisson's ratio would lead to an incorrect value for the shear modulus G and, in turn, the 

torsion constant J; however, the product GJ employed in the dynamic theories remains 

constant, irrespective of the choice of Poisson's ratio. 

c) The fifth and sixth columns of the T(:,5) and T(:,6) are 

determined from the principal vector describing rigid body rotation about the z-axis, 

which is coupled to rigid body displacement in the ^/-direction, in the principal vector 

chain. Similarly, the eleventh and twelfth columns T(;,11) and T(:,12) are determined 

6om the principal vector describing rigid body rotation about the y-axis, which is 
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coupled to rigid body displacement in the z-direction, in the principal vector chain. 

These two vector pairs are shown in Figure 4.12(a, b) and are termed the ngfW 

5.7734x10-^ A 

—H 

— 

2.8867x10 

T(:^) 

IxlQ-

T(:,6) T(:,] 1) T(:,12) 

(a) (b) 

Figure 4.12. (a) Rigid body rotation about the z-axis; (b) Rigid body rotation about the;^-axis. 

d) The seventh and eighth columns T(:,7) andT(:,8) are determined iBrom the principal 

vector describing a bending moment the Jty-plane, which is coupled to rigid body 

rotation about the z-axis, in the principal vector chain. Tlie force components of these 

two vectors show a pure bending moment in the Ay-plane on both sides of the cell. 

However, the displacement components in the z-direction indicate not solely a bending 

curvature in the Ay-plane, but rather rotations in the two principal planes and can be 

expressed in the form 

A " ' 4 / 
= ox 4 - 6x 

5 
= cx + (/x ^2x (4.24) 

Similarly, the thirteenth and fourteenth columns T(:,13) and T(:,14) are determined 

&om a bending moment vector in the xz-plane which is coupled to rigid body rotation 

about the y-axis, in the principal vector chain. Again the force components show a pure 
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bending moment in the %z-plane, while the displacement components in the %-direction 

can be decomposed as 

" 4 / 'du 'd,; T(:,12) 
" 4 " 

= ex + / X , = g x + Ax 

T(: ,6) 

. (4.25) 

Simple calculations from equations (4.24) and (4.25) give the values of a = -0 .5 , 

6 = -0 .28849, c = 0.5, (/ = -0 .28849; e = -0 .5 , / = 0.28849, g = 0.5 and 

h = 0.28849. 

The sign of the coefficients in the above decomposition allows one to characterise the 

nature of the coupling through interpretation of the cross-sectional rotations; for 

'd,; 'd,; 

example, the two columns and djx represent rotations of the left hand 

T(:,6) 'd,; 

face of the cell about the y- and z-axes, respectively, while and ds. are 

d.._ 

rotations of the right hand face cell about the and z-axes, respectively. Thus the fact 

that coefficients a and c are of equal magnitude but opposite sign indicates that this is a 

curvature in the Ay-plane; on the otlier hand, the fact that coefficients 6 and cf are equal 

indicates equal rotation of both faces of the cell, which is equivalent to a shear of the 

cell in the xz-plane. 

The nature of the above coupling has been confirmed through an ANSYS model of the 

ten cell pin-jointed structure loaded by a bending moment in the Ay-plane according to 

the force components of the bending vector T( : ,8) , as in Figure 4.13. The nodal 

displacement solutions in the y- and z-directions &om this numerical experiment are 

shown in Figure 4.14, from which bending curvature in the xy-plane and a shear 

deformation in the zz-plane are obvious. The analytical expressions shown were 

obtained by curve fitting and, as will be seen, are in complete agreement with the above 

decomposition. Similar agreement is found when the bending moment is in the xz-
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plane. Vector pairs T(:,7) andT(:,8), and T(:,13) and T(:,14), are each one of two 

z , w 

Figure 4.13. Ten cell 3-D pin-jointed satellite truss subject to bending moment in accordance with the 

force components of the bending vector T(:,8). 

V, w (m) A 

6x10 
5x10 

4x10 

3.428 

w = 8.4212x10"'a: 8 __2 v = 4.2549 xlQ-'jc 

2x10 

Figure 4.14. The nodal displacement solution of the numerical experiment shown in Figure 4.13. 

According to the reciprocal theorem, just as a bending moment produces curvature, with 

a coupled shear deformation, so one would expect a shearing force to produce a shear 

deformation, with a coupled curvature; accordingly, the coupled equations for bending 

and shear in the two principal planes are written as 
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dA; V 

+ y/z 

9}v 

3%, 

dv 
(4.26) 

V 9% 

Gz = 

G, = V.-

9x/ 

9% y 

av^ 

9x 

+K 

+;ir» 
y 

9^: 

9x 

(4.27) 

where and are defined as the coupling coefEcients for bending and shear in the 

two orthogonal principal planes, %z and jg/, respectively 

The bending moment vector pairs T(:,7)andT(:,8), and T(:,13) andT(:,14) are shown in 

Figures 4.15 and 4.16, respectively, from which geometric consideration yields the two 

bending curvatures in the jcx-and xz-planes 

l/^„ = 1.4434x10-^(^/3x1/2) = 8.5098x10-" m"', 

1/jg, =2 .5x10-^(2 /2x1 /2) = 8.5098x10-" nr' , 

and their coupled shear angles 

= 1.4434 X10-^(1/2 ) = 8.4211X10-^ 

in the xz-plane, and 

=8.3333xlO-'°/(^/3) = 8.4211x10-" 

in the jg/-plane, respectively. 

According to the definitions of bending curvature and shear angle, one has 

1 _d"v 

r . v . 

dw 

dx 

(4.28) 

(4.29) 

Integrating equation (4.28) twice and imposing dv/dx = 0 and v = 0 at the fixed end 

x-0, and insert the calculated curvature gives 

1 
v = =4.2549x10 m , 

2^. 
(4.30) 
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2.8868x10"^ A ^ 
—^ — 

^ r 

3.7337x10-^' 

2x1.8868x10 

.4434x10" 

Tt,7) 

3J337X10 - 2 

I -<0— 

% 
- » 

2x1^1868x10 - 2 

T t j ) Tt,7) 

1.4434x10"^ 

— • ! — 

1.4434x10"!' 

T t f ) 

Figure 4.15. Single cell subject to pure bending moment in the ay-plane; vectors T(;,7) and T(:,8) 

describe the displacement and force components on the left and right hand sides of the cell respectively. 

3J334X10 

3J334X10 
^ |_ 

Tt,]3) 

3.2334x10" 

2.5x10' ' 2.5x10 
w U 0'j pj— 

1.6667x10^" . lX%67xlO-9 

- H h -

3.2334x10"^ J 

Tt,14) 

8.3333x10 83333x10 

Tt,]3) 

- 1 0 

Figure 4.16. Single cell subject to pure bending moment in the xz-plane; vectors T(:,13) and T(:,14) 

describe the displacement and force components on the left and right hand sides of the cell respectively. 

while integrating equation (4.29) and imposing w = 0 at the fixed end x = 0, and 

inserting the calculated coupled shear angle gives 

= 8.421 IxlO'^xm. (4.31) 

Equations (4.30) and (4.31) are in near exact agreement (error s 0.001%) with the two 

corresponding curves fits shown in Figure 4.14, obtained &om the ANSYS model. Last, 

note that there are no Poisson's ratio effects evident within these bending moment 

vectors, again indicating v = 0. 
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e) Finally, the ninth and tentli columns T(:,9)andT(:,10), and the fifteenth and sixteenth 

columns T(:,15)andT(:,16) of the transmission matrix describe the displacement and 

force components when the cell is subjected to both a shearing force and a bending 

moment in the Â y-and xz-planes, respectively, and each is termed a jAeanngybrcg 

These shear pairs are determined from two principal vectors: the shear vectors in the xy-

and zz-planes which are coupled with bending moments in the principal vector chains, 

and also coupled with the two bending vectors in the two orthogonal planes. The two 

shear pairs are shown in Figures 4.17 and 4.18, and are decomposed as shown in Figures 

4.19-4.22. 

3.7337x10-
4 

9.2923x10" 

2 p>j 

1.6167x10 

2x8.0836x10 

2x1.8668x10'^ 

4.6462x10" 

6.4056x10" 

— — 

1.6167x10" 

— • ! 

2x8.0836x10 

3.2028x10" 

.4434x10"^ 

T(:,9) T(:,10) T(:,9) T(:,10) 

Figure 4.17. Single cell subject to shearing force and bending moment in the xy-plane; vectors T(:,9) and 

T(:,]0) describe the displacement and force components on the left and right hand side of the cell 

respectively. 

As in Chapter 2, the shear angle is defined according to the relationship / = - dv/d%, 

in which dv/dx: is tlie centreline slope and y/ is rotation of the cross-section. Now since 

the centreline slope rotations shown in both Figures 4.17 and 4.18 are akeady zero, one 

has dv/dx = dw/d% = 0. Thus, from Figures 4.19(a) and 4.21 (a), cross-sectional rotations 

on either side of the cell give the shear angles 

=3.9245xlO-Y(/f /3)=3.9658xlO-% 

=6.7974 X 10-^/(1/2) = 3 . 9 6 5 8 x 1 ( 4 . 3 2 a , b) 
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T h e c o u p l e d b e n d i n g curvatures c a n b e d e t e r m i n e d 6 o m F i g u r e s 4 .20 (a ) and 4 .22(a ) , 

and are 

1 / ^ , - 1 . 4 4 3 4 x 1 0 " ^ 

1/;;^ = 8 . 3 3 3 3 x 1 0 

L 
x Z = 2 . 4 5 6 6 x 1 0 m 

10 , 

V 3 y 
2 . 4 5 6 6 X 1 0 - ^ m - ' . (4 .33a , b ) 

3J334X10-

&0473X10-

— — 

1.3473x10" 

5.3891>(10 

3 ^ 3 3 4 x 1 0 ' 

1.3473x10-2 

5 . 5 4 7 4 x 0 

3473x10 

5.3891x10 

1.3473x10 

Tt,15) T t l 6 ) Tt,15) 

1.6667x10-^ 

—H H— 

—•! — 

8 3 3 3 3 x 1 0 " 

Tt,16) 

Figure 4.18. Single cell subject to shearing force and bending moment in the .tz-plane; vectors T(:, 15) 

and T(:,16) describe the displacement and force components on the left and right hand side of the cell 

respectively. 

7.8490x10"^ 

— 

—•! [-4— 

3.9245x10"^ 

y 
A 7.8490x10 ' 

—•! [-4— 

3.9245x10" 

1.4434x10 .4434x10 

— — —•! [4— 

7.2170x10 -10 7.2170x10 10 

(a) (b) 

Figure 4.19. Decomposition of the displacements of Figure 4.17 in the Ay-plane; (a) shows shear angle 

and (b) shows bending curvature. 
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7.2170x10-'° 7.2170x10-'° 7.2170x10"'° 7.2170x10' 

(a) (b) 

Figure 4.20. Decomposition of displacements of Figure 4.17 in the xz-plane; (a) shows bending curvature 

coupled with shear angle in the Ay-plane due to shearing force, and (b) shows shear angle coupled with 

bending curvature in the xj^-plane due to bending moment. 

6.7974x10' 6 ^ 9 7 4 x 1 0 ' 1.25)(10-* 1.25x10-* 

(a) (b) 

Figure 4.21. Decomposition of displacements of Figure 4.18 in thexz-plane; (a) shows the shear angle 

and (b) shows the bending curvature. 



8.3333x10"'° A 8.3333x10"'° 

— — — • ! — 

8.3333x10-'° 

—H H— 
A y 

8.3333x10' 

—H H— 

— • ! 

4.1667x10"'° 

(a) 

4.1667x10 - 10 4.1667x10"'° 

(b) 

—J 
4.1667x10 -10 

Figure 4.22. Decomposition of displacements of Figure 4.18 in the xj-plane; (a) shows bending curvature 

coupled with shear angle in the xz-plane due to the shearing force, and (b) shows shear angle coupled with 

bending curvature in the xz-plane due to the bending moment. 

As with the previous analysis of the rigid jointed planar structure, a shearing force gives 

rise to a bending moment which is effectively one-half, in magnitude, of the full 

bending vector, but averaged over the cell length, which in turn produces half curvature, 

which is coupled with half shear angle, as shown in Figures 4.19(b) and 4.21(b). This 

gives the curvatures due to the bending moments within the two shear vectors as 

1/;;^ =7.2170x10-"'/(^/3xZ/2) = 4.2549x10"^ m"', 

1/j;; = 1.25x10"Y(Z/2xZ/2) = 4.2549x10"^ m"', (4.34a, b) 

while Figures 4.20(b) and 4.22(b) gives the coupled shear angles in the perpendicular 

planes 

X, =7.2170xl0"'y(^/2)=4.2106xl0-% 

= 4 . 1 6 6 7 x l 0 " ' y ( ; f / 3 ) = 4 . 2 1 0 6 x l 0 - \ (4.35a, b) 

Compared with the bending curvatures and coupled shear angles obtained in the bending 

vectors, it is gratifying to see these deformations are consistent with the above 

argument. 

From equations (4.26) and (4.27), the stifhess relationship for the bending and shear 

coupling of and can be expressed in the matrix form 
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. K j 

y'y -
dw 

dx 
(4.36) 

However, in order to determine the equivalent second moment of area, and the shear 

coefEcient, it is more convenient to write the above in the inverted form 

& (4.37) 

where is now a co/Mp/fance matrix, and 

1 

9% 9% 

^2 
-1 

_^21 ^22 _ L ^ 4 

(4.38) 

(4.39) 

Forthebendingvectorpairinthexy-plane, T(:,7)andT(:,8),onehas, = 0 

M^=l.10842x10-" Nm, l/^^=8.5098xl0-^m-% / ^ = 8 . 4 2 1 1 x l O - \ a n d 

substituting into equation (4.37) gives 

Xvz 
M|2 = 

"22 — 

K 

M. 

7.5974x10"% 

7.6774xlO-\ 

(4.40) 

(4.41) 

From the shear vector pair in the xz-plane, T(:,l 5) and T 1 6 ) , one has = 0 Nm, 

=3.2334xlO-"N, l/7(^=2.4566xlO'^m-% =3.9658x10"^,andsubstituting 

into equation (4.37) gives 

r. 

'21 

a 

& 

1.2265x10' 

7.5974x10' 

(4.42) 

(4.43) 
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Note that found to be identical &om the two vector pairs, which is as 

one would expect from the reciprocal theorem. Inversion of the matrix Nc gives 

/Ijj «[2 
-1 " 8.6857x10" -8.5952x10" 

_̂ 21 2̂2 _ -8.5952x10" 1.3876x10^ 
. (4.44) 

The equivalent second moment of area / , , shear coefficient , and the coupling 

coefficient for bending and shear , are then determined as: = 0.2612, 

=1.9823xlO"^m'^, =-8.5952xlO'*Nm. As with the single face, note that the 

shear coefficient is again a (now single) multiple of the apparent Poisson's ratio. 

Consideration of the bending vector pair in the %z-plane, T(:,l l) andT(:,12), and the 

shear vector pair in the xy-plane, T(:,9) andT(:,10), and following similar procedures, 

it is found that = 7̂  and . 

4.4.2 Coupling Behaviour 

All of the observed couplings for the 3-D structure can be explained in terms of the 

tension-shear coupling seen in the /ace 2-D planar structure; recall that an 

extension w (= 1 x 10"̂  m) was coupled with a shear angle of During tension, each 

of the three faces would both extend, and undergo a shear deformation, fAree/oca; 

however, compatibility of nodal displacement of the three faces, 

requires an out-of-plane rotation of the face, for which it is a mechanism and so does not 

affect the stif&ess. Thus shear deformation in the three planes at 120°, together with 

this out-of-plane rotation, is nothing other than a rotation of the cross-section as a 

whole; hence a tensile force produces both an extension and a rotation, as in the 

pair, T(:,18); as with the single face, there is no Poisson's ratio contraction associated 

with this extension. Moreover, the relationship w = - y - n o t e d in Section 4.4.1, is 

entirely consistent with the shear of the single face. 

Bending-shear coupling is easily understood by considering a cell having a square cross-

section, comprised of four 2-D planar face cells, as depicted in Figure 4.23a. 
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Decompose this into two side faces, and an upper and lower face. Figure 4.23b, with the 

nodal forces that constitute the pure bending moment being shared accordingly. Now, 

the side faces contribute nothing towards coupling, and there is zero Poisson's ratio 

contraction in the ^/-direction. The lower face is in tension and will both extend and 

shear; the upper face is in compression, and will both contract and shear in the same 

sense as the lower face, since the diagonal is in the opposite direction to that of the 

lower face. Thus the pure bending moment would produce a bending curvature in the 

jigz-plane, coupled with shear in the %z-plane. These arguments may be transferred to the 

triangular structure by imaginmg that the upper face is removed, and the two side faces 

are folded in, to meet at the apex, nodes 3 and 6 of the cell. Now the shear deformation 

arises from just the lower face being in tension. 

A 

w 
z, w 

(a) 

Far face Near face Upper face Lower face 

(b) 

Figure 4.23. (a) Single repeating cell of an asymmetric framework with square cross section subjected to 

bending moment; (b) four decomposed faces subject to tension or compression 

At first sight, the tension-torsion coupling, and the bending curvature-shear coupling, of 

this asymmetric structure, may seem unusual; however this is solely because one is 

trying to characterise the equivalent continuum behaviour according to the precepts of 
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isotropic, rather than anisotropic, elasticity. This is particularly evident in attempts to 

determine an equivalent value for Poisson's ratio: suppose that the single diagonal bar in 

each face of the structure were to be replaced two such diagonals, each having a one-

half cross-sectional aiea; the equivalent cross-sectional area would remain unchanged. 

However the now symmetry of the structure leads to a quite unambiguous value for 

Poisson's ratio as 0.2612; indeed this value of vand the equivalent cross-sectional 

area, are given in Chapter 7, where a pre-twisted structure having two such diagonals is 

considered over a wide range of pre-twist angles, including the straight case, 0. 

For this latter case, one has a cross-sectional contraction (the Poisson's ratio effect), 

rather than a rotation, coupled to an extension - however the term cowp/mg is rarely, if 

ever, employed, since this Poisson's ratio effect is regarded as Mor/MoZ within the field of 

isotropic elasticity. Returning to the 3-D asymmetric structure, and the jco/r, 

one requires a twisting moment to suppress cross-sectional rotation, when one has an 

apipafgnr Poisson's ratio of the same expected value 0.2612. Thus one sees an 

entirely consistent rm(/e-(^between Poisson's ratio coupling (normally 

and rotational coupling, according to the symmetry or asymmetry of the structure. 
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APPENDIX 4.A 

TRANSMISSION MATRIX OF A SINGLE-FACE CELL OF THE 3-D SATELLITE TRUSS, FIGURE 4.2 
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TRANSMISSION MATRIX FOR THE 3-D PIN-JOINTED ASYMMETRIC FRAMEWORK, FIGURE 4.3 
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4.(: 

STIFFNESS MATRIX OF THE SINGLE FACE OF THE 3-D SATELLITE TRUSS, FIGURE 4.2 
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APPENDIX 4.D 

TENSION AND TORSION PAIRS FOR THE 3-D ASYMMETRIC PIN-JOINTED FRAMEWORK, FIGURE 4.3 
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5.9164x10'° 

9.8958x10^ 

0 

2.8695x10 " 

-1.6567x10-" 

0 

-2.8695x10-" 

-1.6567x10-" 

0 

0 

3.3134x10" 
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CHAPTER FIVE 

DYNAMIC ANALYSIS OF A REPETITIVE STRUCTURE 

5.1 INTRODUCTION 

In this Chapter, continuum dynamic beam theories are constructed for the asymmetric 

structure considered in Chapter 4, which allow for the tension-torsion and bending-shear 

couplings revealed between these displacement modes. The analysis employs a 

generalised stiffness matrix for the cell, whose elements are the equivalent continuum 

properties as determined in Chapter 4, and the use of Hamilton's principle. Inertia 

properties are determined from first principles, and may be regarded as exact. 

The frequency predictions are compared with those obtained from ANSYS, the latter 

being regarded as the benchmark for accuracy. However, unlike static FEA of pin-

jointed structures, dynamic analysis may no longer be regarded as exact; one has a 

choice of lumped or consistent mass matrices, neither of which will lead to the exact 

&equency. The lumped mass matrix is diagonal, which is computationally 

advantageous, and usually leads to an underestimate of natural frequencies. Its use is 

considered essential in problems involving wave propagation, and is generally regarded 

as better for skinny structures [74]. The consistent mass matrix is symmetric and 

banded, and according to Desai and Abel [75], the principal advantage is more accurate 

modes shapes and frequencies that are proven upper bounds. On the other hand, use of 

the consistent matrix can lead to spurious modes of oscillation, and this was found with 

an ANSYS model of a rigid-jointed truss. 

The ANSYS predictions employed here, are those which provide best agreement with 

the continuum models derived below; for the Gexural Aequency predictions of the 

coupled Timoshenko beam theory, this is achieved using the lumped mass option; on the 

other hand, for the coupled tension-torsion frequency predictions, better agreement is 

found using the consistent mass matrix. 
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5.2 MASS AND MOMENT OF INERTIA PER UNIT LENGTH 

a) The mass per unit length is calculated simply as the sum of the individual masses of 

the members that constitute the generic cell, divided by the length of the cell 

(0.3428 m), and is found to be 0.8758 kg/m. Note that cross-sectional members are 

regarded as being shared between adjacent cells, so their contribution is halved. 

b) The moments of inertia of the cell are calculated as follows: first, the moments of 

inertia of each member is calculated about its own centre of gravity, taken as the origin 

of a local coordinate system, with the local x-axis along the length of the member, and 

using the simple formulae = fMZ,̂ /l2, and / 2 ; however, for the 

structure under consideration, the moment of inertia of a typical member is 

approximately 1 / 2000"' of , so the former is ignored. These are then converted to 

moments of inertia about the three global principal axes, using coordinate 

transformations and the parallel axis theorem, as appropriate [76]. Last, they are added 

to give the moments of inertia for the complete cell, which is then divided by the length. 

The moments of inertia about the y- and z-axes per unit length are found to be 

=2.2177x10"" kgmand 7̂ , =2.4689x10"" kgm. 

Again note that contributions from the members that constitute the cross-section are 

halved. It should be noted that these properties may be regarded as exact, not 

withstanding the above approximation, while the equivalent continuum properties 

determined through eigenanalysis are regarded as approximate. 

5.3 CONTINUUM DYNAMIC THEORY 

5.3.1 Dynamic Equations 

The generalised stifSiess for the truss examined in Chapter 4 may be written as 

F = Kd, (5.1) 

or in full 
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71 0 0 0 0 

0 0 0 0 

0 , 0 0 0 0 

0 0 0 0 

a 0 0 0 0 

0 0 0 0 Eh 

9w 

9% 

9x 

¥ 

(5.2) 

9% 

Note that this matrix is block diagonal, so the tension-torsion coupling can be treated 

separately; at first sight the same is true for bending in the two planes, but closer 

inspection shows that cross-sectional rotations, and their derivatives provide coupling in 

the displacement vector. 

According to Hamilton's principle [77], the governing equations and boundary 

conditions may be generated according to 

^ r ' ( r - [ / ) d r = o, (5.3) 
""A 

where the kinetic and strain energies are 

U--f i d ' K d l d x , (5.5) 

Carry out the first variation of equation (5.3), and integrate by parts in the usual way, 

gives the dynamic equations: 

9'w _ 9 ' ^ 9 ^ 
7M 
dt' ' 

3^9 d\_ a'e 

9ŷ ^ 9^v. 

a. 

(5.6a) 

(5.6b) 

(5.6c) 
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= 0, (5.6d) 

^ Br' 
+ K'̂ y4G({ŷ  -

a'v 

a;c' a . . 
= 0, (5.6e) 

J 
9z' 

= 0, (5.6f) 

together with the boundary conditions: 

^7/ A 0 
either EA h — = 0; or & = 0 , w is specified, 

A Q 
either GJ V K^^ —- = 0; or 59 - Q, d is specified, 

9% 9;( 

av. 
either x" - : : r ) + = 0; or & = 0 , v is specified, 

dx 

either + E/ = 0; or 6i// = 0 , is specified, 
d% d% 

(5.7a) 

(5.7b) 

(5.7c) 

(5.7d) 

either = 0; or &; = 0 , w is specified, (5.7e) 
dA; dx 

either (y/ - ^ ) + = 0; or 6;/^ = 0 , is specified. (5.7f) 
d% d% 

5.3.2 Solution of the Dynamic Equations 

a) Coupled Tension-Torsion 

First separate variables by writing 

w(%, ̂ ) = [/ (%) sino;^ and = 0(%)sin(U^ (5.8) 

in equations (5.6a, b), which leads to the coupled ordinary differential equations 

GJ ^ ^ ( u ' 0 = 0 . 
dx' " dx' 

These may be uncoupled, which leads to the two fourth order equations 

U" 

8 " 

U'' 

e" 
+ CO Jm 

U 

0 

(5.9a, b) 

= 0, (5.10) 

where prime denotes differentiation with respect to x. Setting 
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'U{x} 'u' 
0 ( x ) 0 

(5.11) 

leads to a characteristic equation whose roots are 

J , - GJm)" + 

A) 

and hence general solutions 

U(x) 

e[x) 

u, 

e, sinA% + 
U2 
0 . 

2 

U, 

(5.12) 

cos + 
0 . 

sinA2;c + 
U, 

0 . 
c o s ^ x . (5.13) 

The eight constants in the above are not independent, but are related by 

0, 

03 = 

0 , u. 2) 
(5.14) 

4 , 4 
2 ^4-

End conditions are &ee, fixed, or yMixecf: at a free end, [/ and 0 are unspecified, so 

conditions (5.7a, b) become 

"dC/' 

GJ_ 

dz 

d 0 

djc 

= 0 . (5.15) 

The determinant of the above continuum property matrix will, in general, not be equal to 

d(y d 0 
zero, in which case one has = — = 0. At a fixed end, one has simply U-@ - 0 . 

dx dz 

Two types o f e n d conditions are possible: it is possible to allow extension but not 

d[/ AT,, d 0 
rotation, in which case one has 0 = 0 and 

dx ^ dx 
; alternatively, if rotation is 

allowed, but not extension, then [ / = 0 and 
d% GJ dx 

For a free-free beam, application of the boundary condition at the end x - 0 leads to the 

equations 
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C/,ŷ  = 0, +©3/^2—0 

which, combined with equations (5.14), provides the condition 

(5.16) 

U, 

u. 
0 (5.17) 

The determinant in the above is only zero for the degenerate case ; the more 

general requirement is [/, = = 0, and hence ©j = ©j = 0 . Application of the 

boundary conditions at the end x-L, leads to the frequency equations 

sin/ljZ = 0, smA^L = Q (5.18) 

and hence the natural frequency predictions are 

i ) torsional 

A) 

i i ) extensional 

A?: 
ml mGJ + + iJ(mGJ - EJ^Af + 

with mode shapes 

= ©(x) = 0 2 c o s - ^ , (M = l , 2 ,3 - etc). 

(5.19) 

(5.20) 

(5.21) 

For a fixed-free (cantilevered) beam, one finds from the conditions at x = 0, 

t / j = ^4 = ©2 = ©4 - 0 

while the conditions atx-L lead to the frequency equations 

cos = 0, cos AgZ = 0 

and hence the Aequency predictions are 

i ) torsional 

0) 
M7C ImGy -I-

21 2/My, 

i i ) extensional 

(5.22) 

(5.23) 

(5.24) 
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_ nj: mGJ + EJ^A + ^J{mGJ - EJ 

' 

with modes shapes 

C/(x) = t/(Sin-^^^, 0 ( x ) = 0 ; sin-^^^ (« = 1, 3,5 -- etc). (5.26) 

It is noted that equations (5.24) and (5.25) are also equally applicable to fixed-fixed end 

conditions. 

b) Coupled Bending-Shear 

Separate variables by writing 

v(x,r) = K(x)sin(Mf, w(jc,r) = PF(z)siii<uf, 

y/^(%,f) = Yy(%)sinA;^, = (527) 

in equations (5,6c, d, e, f), which leads to the coupled ordinary differential equations 

- /MfuV+K-, /G(Y; - D + Y ; = o, 

+ K-^/4C(Y; - PF') + = 0 , 

= o , 

+ &:,̂ y4G(Y, - K) + - ^ 7 , ^ ; = O. (5.28a, b, c, d) 

For the structure under consideration, one has (Chapter 4) and = AT̂ , and 

also we know that J = , so set 

= (5.29) 

when equations (5.28) reduce to 

-A:"^K + ( Y ; - r ) + 6Y; = 0 , 

PF + ( ^ ; - PF') + 6Y; = 0 , 

+ (Yy - PF') + 6 r - g Y ; = 0 , 

+ (Y, - F') + 6PF'- = 0 . (5.30a, b, c, d) 
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Uncoupling the variables in equation (5.30) leads to four fourth order ordinary 

differential equations 

q y " + = 0, 

where 

c, = g - 6^ 
4_2 + A: gr 

Setting 

' F ( x ) " 'A' 

B 

C 

D_ 

leads to the characteristic equation 

Cj^ + + Cg = 0 

with roots 

/̂ ,2 = ± 

4,4 

l-C; +-Jc2^ -4c,c3 

2c, 

jCj + ^Jc2 -4C,C; 

2c, 

The general solutions are then 

' F(x) " 'A^ 'A^ ' A ^4 

^(%) 
T , (-1-) -

q 
sinhrxH-

B, 

Q 
cosh rx + 

B, 
Q sin JX + 

Q 

. A J . A _ LA J _A_ 

(5.31a, b, c, d) 

(5.32) 

(5.33) 

(5.34) 

cos (5.35a, b, c, d) 

where 

r = 
'-C; +-\ -4C,C3 

2c, 

|C2+^ ' c / - -4c,c3 

1 
5.8 
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Only half of the constants in equations (5.35) are independent, being related as 

where 

— ^55 Q +^22"^ 

A = ^ 5 5 ^ + ^ 2 2 4 

A ~ -̂ 66 Q ~ ^44^4 

^4 = - ^ 6 6 ^ + ^ 4 4 ^ 3 

D, — ^ 2 2 ^ 

A = ^33^4 + ^44Q 

^4 =-^33-^3 "^44(^3 

^11 -

(5.36a, b) 

r 

X22 = 6r 

^33 

=6^ 

-A:" pa +1 -^55= 
r 

—li'pq +1 + qs^ 
^66= ^ 

S 

Substitution of equation (5.36) into equations (5.35b) and (5.35d) gives 

PF(x) = (A7;;C2 +Ar22v42)sinhA%+(A!^;;C] +A^224)coshr(; 

" ^44^4) sin j'%+(— ĝgCg + ) cos jx , 

(x) = (^j, - ^̂ 22 Q ) sinh rx+(AT,, ̂ 4, - Q ) cosh rx 

+(^^33^4 + sinsx + {—Kj^^A^ — AT^^Cj)cos sx. (5.37a, b) 

Application of boundary conditions leads to a matrix equation of the form 

[F(G))]^ q Q Q Q ] ^ = 0 . (5.38) 

where 

[?(&;)] = [ / , ] , / = 1,2, 8 , ; =1 ,2 , 8. 
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Non-trivial solution of equation (5.38) requires that the determinant of [f((2;)] be equal 

to zero, &om which the natural Aequencies are determined. The coefficients are 

derived in Appendix 5 for 6ee-6ee and fixed-fixed end conditions. 

5.4 COMPARISON OF NATURAL FREQUENCY PREDICTIONS 

Table 5.1 shows bending frequency predictions for a slender truss having thirty cells, 

length L = 10.284 m, for free-free and fixed-fixed boundary conditions, compared with 

the ANSYS predictions, employing the Zw/Mpec/ Twayj' matrix option. Because the 

continuum properties are identical in the xz- and xj^-planes, the continuum dynamic 

theory predicts double natural &equencies for each flexural mode, and this is confirmed 

by the ANSYS prediction; for brevity only one is shown. 

Table 5.1 Comparison of natural frequencies (Hz) in bending according to ANSYS and present method; 
free-free and fixed-fixed beam, L = 10.284 m (30 cells) 

Free-Aree beam Fixed-fixed beam 

n ANSYS Flexural n ANSYS Flexural 

1 12.769 
12.7841 

(+0.12%) 
1 12.561 

12.5263 
(-0.28%) 

2 34.194 
34.1673 

(-0.08%) 
2 33.333 

33.0858 
(-0.74%) 

3 64.428 
64.1955 

(-0.36%) 
3 62.398 

61.6122 
(-1.26%) 

4 101.05 
100.8062 
(-0.24%) 

4 97.884 
96.1320 

(-1.79%) 

5 143.65 
142.2425 
(-0.98%) 

5 138.21 
135.0844 
(-2.26%) 

6 189.29 
187.0587 
(-1.18%) 

6 182 
177.2388 
(-2.62%) 

7 237.12 
234.1562 
(-1.25%) 

7 228.15 
221.6850 
(-2.83%) 

8 286.07 
282.7337 
(-1.17%) 

8 275.71 
267.7650 
(-2.88%) 

9 335.3 
332.2210 
(-0.92%) 

9 323.92 
315.0056 
(-2.75%) 

10 384.13 
382.2177 
(-0.50%) 

10 372.13 
363.0634 
(-2.44%) 
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The A equency predictions of the modified Timoshenko beam model shows excellent 

agreement with the ANSYS predictions, with an accuracy of +0.12% to -1.18% for the 

6ee-&ee beam, and -0.28% to -2.88% for the fixed-fixed beam, for the first 10 modes. 

For the short (10 cell) beam, Table 5.2, agreement is very good for the first four modes 

of the 6ee-free beam (+0.59% to +3.72%), and the Grst six modes of the fixed-fixed 

beam (+4.79% to -4%). For the higher bending modes of a short beam, with the 

wavelength being closer to tlie depth of the truss, the m-depth vibration or local effect 

become important and even dominates, however, the continuum model does not 

represent local effects accurately. 

Table 5.2 Comparison of natural frequencies (Hz) in bending according to ANSYS and present method; 
free-free and fixed-fixed beam, L - 3.428 m (10 cells) 

Free-free beam Fixed-fixed beam 

n ANSYS Flexural n ANSYS Flexural 

1 102.47 
103.6206 
(+1.12%) 

1 92.421 
90.5258 

(-2.05%) 

236.49 
237.8928 n 211.3 

202.9266 
236.49 

(+0.59%) 2 211.3 
(-3.96%) 

382.21 
388.3985 

347.6 
333.6894 

382.21 
(+1.62%) 

347.6 
(-4.00%) 

4 519.2 
538.5257 
(+3.72%) 

4 484.84 
472.2709 
(-2.59%) 

639.24 
684.7989 C 612.78 

615.5551 
J 639.24 

(+7.13%) D 612.78 
(+0.45%) 

6 741.43 
817.040 

(+10.20%) 
6 725.49 

760.220 
(+4.79%) 

7 825.71 
937.250 n 819.13 

905.544 
7 825.71 

(+13.51%) 
/ 819.13 

(+10.55%) 

Next, consider the coupled torsion-extension predictions, Table 5.3, for the long (30 

cell) beam, length 1 = 10.284 m, again for 6ee-6ee and fixed-fixed end conditions. 

Better agreement with ANSYS predictions arises when the latter employs the 

mass matrix, and only these are shown. Again, the results show excellent agreement; 

for the predominantly torsional modes, the accuracy is within +0.02% to +1.30% for the 

free-&ee beam, and +0.02% to +1.25% for the fixed-fixed beam for the first 9 modes. 
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For the fiist two extensional modes, the maximum error is —0.05% and -0.33% for free-

free and fixed-fixed beams, respectively. 

Table 5.3 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and 
present method; free-free and fixed-fixed beam, L = 10.284 m (30 cells) 

Free-A-ee beam Fixed-fixed beam 

n ANSYS Torsional Extensional n ANSYS Torsional Extensional 

1 37.578 
37.5858 

1 37.83 
37.5858 

1 37.578 
(+0.02%) 

1 37.83 
(-0.65%) 

O 75.111 
75.1715 n 75.618 

75.1715 
75.111 

(+0.08%) Z 75.618 
(-0.59%) 

3 112.55 
112.7572 

113.31 
112.7572 

3 112.55 
(+0.18%) J 113.31 

(-0.49%) 

4 149.86 
150.343 

(+0.32%) 
4 150.89 

150.343 
(-0.36%) 

5 151.81 
151.7855 
(-0.02%) 

5 152.12 
151.7855 
(-0.22%) 

f. 186.98 
187.9287 

188.3 
187.9287 

0 186.98 
(+0.51%) 0 188.3 

(-0.20%) 

7 223.88 
225.5146 

7 225.46 
225.5146 

7 223.88 
(+0.73%) 

7 225.46 
(+0.02%) 

260.51 
263.1003 Q 262.39 

263.1003 
O 260.51 

(+0.99%) O 262.39 
(+0.27%) 

Q 296.82 
300.686 n 298.8 

300.686 
296.82 

(+1.30%) 
y 298.8 

(+0.63%) 

10 303.73 
303.5711 
(-0.05%) 

10 304.59 
303.571 

(-0.33%) 

11 332.77 
332.2210 

11 335.29 
332.2210 

11 332.77 
(-0.92%) 

11 335.29 
(+1.25%) 

For the short (10 cell) beam. Table 5.4, good agreement is obtained up to the fourth 

torsional mode for free-free (0.21% to +3.49%) and up to the sixth torsional mode for 

fixed-fixed beam end conditions (-1.81% to +2.76%); again the agreement for the 

extensional modes is excellent. Similar accuracy and trends for the natural frequency 

agreement can be seen in Table 5.5, for both long and short cantilevered beams. 

Generally, as noted by many other authors, for any type of mode, it is found that the 

long beam always gives better accuracy for the natural frequency prediction. According 

to Lee [14].' f fAg MW/MAer ay 
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Table 5.4 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and 

present method; free-free and fixed-fixed beam, L = 3.428m (10 cells) 

Free-free beam Fixed-fixed beam 

n ANSYS Torsional Extensional n ANSYS Torsional Extensional 

1 112.52 
112.7573 
(+0.21%) 

1 114.84 
112.7573 
(-1.81%) 

2 223.64 
225.5146 
(+0.84%) 

2 228.46 
225.5146 
(-1.29%) 

331.92 
338.2718 

339.42 
338.2718 

331.92 
(+1.91%) 

339.42 
(-0.34%) 

435.82 
451.0291 /I 446.74 

451.0291 
4 435.82 

(+3.49%) 
4 446.74 

(+0.96%) 

5 455.84 
455.3566 
(-0.11%) 

5 458.85 
455.3566 
(-0.76%) 

533.53 
563.7864 

548.67 
563.7864 

u 533.53 
(+5.67%) 0 548.67 

(+2.76%) 

7 622.63 
676.5437 n 641.72 

676.5437 
7 622.63 

(+7.97%) 
! 641.72 

(+5.43%) 

Table 5.5 Comparison of natural frequencies (Hz) 

present method; 

in torsion and extension according to ANSYS and 

cantilever beam 

10 cell structure 30 cell structure 

n ANSYS Torsional Extensional ANSYS Torsional Extensional 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

56.92 

170.08 

228.46 

281.30 

389.06 

491.81 

587.52 

672.36 

688.20 

745.46 

56.3786 
(-0.95%) 
169.1359 
(-0.56%) 

281.8932 
(+0.21%) 
394.6505 
(+1.44%) 
507.4078 
(+3.17) 
620.165 
(+5.56) 

732.9223 
(+9.01%) 

845.6796 
(+13.44%) 

227.6783 
(-0.34%) 

688.0349 
(-0.75%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

18.855 

56.541 

75.973 

94.164 

131.67 

169.02 

206.17 

227.98 

243.11 

279.72 

18.7929 
(-0.33%) 
56.3786 

(-0.29%) 

93.964 
(-0.21%) 
131.5502 
(-0.09%) 
169.1359 
(+0.07%) 
206.7217 
(+0.27%) 

244.3071 
(+0.49%) 
281.8932 
(+0.78%) 

75.8927 
(-0.11%) 

227.6783 
(-0.13%) 
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APPENDIX 5 

DERIVATION OF MATRIX F ( 6 ; ) 

Free-free beam. Insert equation (5.27) into (5.7c, d, e, f) gives the boundary conditions 

in matrix form 

0 

0 

0 

0 

0 0 

0 

0 EA 

vp' 
= 0. (A l ) 

because det 

0 0 

0 0 

0 0 K. 

0 0 EI. 

# 0 , the boundary conditions become 

Y , - r = o , 

"P: = 0 , 

(A2a, b, c, d) Y; =0. 

Substitution of equation (5.35a) into (A2a) gives 

(^,,y42 -Ar22Q)smhnr+(Arj;^, -^22("i)cosh/% + 

sin sx + cos sx — 

r cosh sinh n: - j cos -I- 4̂̂  j sin = 0; (A3) 

at z = 0, equation (A3) becomes 

(AT,] -/')y4| + (-AT); -^)y4g - ^^22^ - = 0 , (A4a) 

at A; = Z, equation (A3) becomes 

(;K̂ , 1 -r )^j coshrZ/ + (AT,, -r)/^^ sinhrZ, + (-AT̂ ^ - c o s + (AT̂ ^ + j')y4̂  sin 

-^^220, cosh rZ, - ^^220; sinh rZ, - cos 4- sin gZ, = 0 . (A4b) 

Substitution of equation (5.35c) into (A2b) gives 

C, r cosh rx + C2 r sinh n: + Q j cos ^ sin = 0; (A5) 

at z = 0, equation (A5) becomes 

r C , + ^ Q = 0 , (A6a) 
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at X = 1 , equation (A5) becomes 

/-Q cosh rZ, + r Q sinh rZ + cos sin = 0. (A6b) 

Substitution of equation (5.37a) into (A2c) gives 

C; sinh n r + Q cosh + Q sin + Q cos - (^^^ Q + ^^2 A 

-(A^ggC, + )r sinh rx - (A^ggQ - ^^^^) j' cos jx + 

(-A'ggQ + )'̂  sin = 0; (A7) 

at X = 0, equation (A7) becomes 

Q + Q - %,C, + y - (K„C, ^ K,,A, )s = 0. (A8a) 

at x = L, equation (A7) becomes 

-^22^^ sinh r l - cosh rZ, + j' sin j' cos fZ + 

(l-rAr;;)Q sinhrZ + (l-rAr;;)C2 coshrL + ( l - f ^ g g ) Q sin j'Z + 

(1 - f ) Q cos jZ = 0. (A8b) 

Substitution of equation (5.37b) into (A2d) gives 

(X,, ^ - ^̂ 22 C, )f sinh /%+(AT, I ̂ 2 " ^22 Q )r cosh rx+ 

(ATĝ ŷ ^ +Ar^Q)j'COS ;yA;+(Arggy43 +Ar^Q)j'sin:y% = 0 ; (A9) 

at X = 0, equation (A9) becomes 

( ^ . , 4 - ^ 2 2 Q y + (^334 + ^ 4 4 Q > = 0 , (AlOa) 

at z = 1 , equation (A9) becomes 

sinh rZ, + 1̂ 42/" cosh rZ, + sin fZ, + cos 

-ATgzQr sinh rZ - A'22 Q r cosh rZ + AT̂^ sin Ẑ, + AT̂  Qj' cos jZ, = 0 . (A 1 Ob) 

equations (A4), (A6), (A8) and (A 10) give the coefGcient ^ ) matrix [F(6))] under 

free-free boundary conditions. 

/, = = (i^,i - r) cosh rZ '/3, = 0 Ai = 0 

fu = 0 A2 = (AT,; -r ) s inhrZ /32 = 0 / 4 2 = 0 

^3 = - '̂ 33"" ̂  fii - (-A^gg - j ) cos fZ As = 0 A3 - 0 

fu = 0 ŷ 4 = : (ATgg + ^) sin ŷZ, /34 = 0 A , = 0 

-;^22 ' ' A ; = -K22 cosh rL As 
= ' / « = r cosh rL 

/ e = 0 Ag = -A'22 sinh rZ /so — 0 = r sinh rL 

/ ? = ~^44 /27 = -AT^ cos /s? — s A, = .y cos fZ 

.7̂ 8 = 0 y2g=^44sin'yZ: ./as = 0 = - J sin ^Z 
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/si = 0 

/SZ = -^^22 

/53 = 0 

^54 —'̂ ^44 

/s ; = 0 

A = o 

/ss 

ŷ i =-r^22smh/ 'Z 

A2 - "''^22 coshrZ/ 

ŷ 3 =^^44sinjyl 

=^A:44Cos^Z 

ŷ 5 = ( l - / ' ^ 5 5 ) s m h r Z ' 

Ae =(1-^^55) cosh rZ 

Ag =(l- '^^66)cos^^ 

/71 = 0 

A 
/?) = 0 

fl4 ~ -^^33 
A ; = 0 

/ya - "^^22 

f n - 0 

/?« —"̂ 4̂4 

y^, =r;iri ,sinhrl 

ŷ 2 = f ^ i ] coshr l 

s in^l 

= j'ATgg 

= -^"^22 sinhrZ, 

/so =-^^22 coshr l 

ŷ y = j'AT^^sin^Z, 

ŷ g =:y^44 cos^Z 

8̂3 - ' 

/ss ~ '̂ ^22 ' 
( A l l ) 

Fixed-fixed beam. Insert equation (5.27) into (5.7c, d, e f) gives the boundary 

conditions 

= ^ = y = Y = 0 . (A12) 

At the fixed end, % = 0 , substitution of equation (5.35a), (5.35c), (5.37a) and (5.37b) 

into above equation gives 

= 0 , 

^ , / , - ; ^ 2 2 q - ^ 3 3 4 - ^ 4 4 ^ 3 = 0 , 

Cj + C4 = 0, 

- ^ 6 6 ^ + ^ 4 4 4 = 0 - (A13a, b, c, d) 

At the fixed end, x = L, substitution of equation (5.35a), (5.35c), (5.37a) and (5.38b) 

into (A 12) gives 

sinh rZ + cosh rZ + sin cos = 0 , (A14a) 

C, sinhrL + Cj coshrL + Q sinsL + Q cossL = 0, (A 14b) 

cosh r l + .^2^22 + 4 ^ 4 4 cos j:Z, - 4 ^ 4 4 sinaZ 

+ CjATg; cosh r l + QAT;; s i n h r Z , - c o s j Z + s injZ = 0 , (A14c) 

y4,Ar,j coshrZ + ŷ ^A ;̂, sinhrZ-y^gATgg cos^Z, + ŷ ÂT̂ ^ sin 

- CjAT;; c o s h r l - sinhrZ - cos j'Z + QAT^ sin^yZ = 0 . (A14d) 

Combining equation (A13) together with (A 14) gives the coefficients ^ ) of the 

matrix [F(£y)] under fixed-fixed boundary conditions 
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7 n = 0 ' A , = 0 ' / 3 , = = ^22 

/ l2 = 1 /22 = 0 A = 0 

/ , 3 = 0 /23 = 0 /33 = " ^44 

/ . 4 — 1 ^24 = 0 /34 = 0 

• / . 5 — 0 /25 
= 0 ' /35 = = ^55 ' ' 

/ l 6 = 0 726 ^36 = 0 

/ l7 — 0 /27 = 0 /s? - - ^ 6 6 

= 0 . A s / s = 0 

f^\ — -̂ 11 

/ 4 2 = 0 

^43 — "^33 

A = 0 

A ; — "^22 
A = 0 

/ l ? = -^44 

Ag = 0 

= s inh r l = 0 ' A = ^22 rZ, = /<̂ ]j cosh rZ 

= c o s h r l 6̂2 = 0 fl2 = sinh rZ, ŷ 2 = sinh rZ 

y^3 =sm:yZ / 6 3 = 0 fn = AT^cosjZ ^3 - -^^^cos&Z 

= cos j z / 6 4 = 0 

/g; = s m h r l ' 
7̂4 = -^^44 sin jZ, 

= cosh rZ,' 
^ -= ATgg sin.yZ 

^ 5 = 0 

/ 6 4 = 0 

/g; = s m h r l ' /75 

= -^^44 sin jZ, 

= cosh rZ,' f — 
Vg; 

-̂ "22 cosh rZ 

yie = 0 =coshf '^ /yg = AT;; sinh rZ ŷ 6 = -X 2̂2 

/s? = 0 /i7 = s m ^ l fii = -^66 cosjZ, Ys? = cos ̂ Z 

^ / 5 8 = 0 ^ Ag =cos^Z . y7B = sin j'Z, z^^s in j 'Z 

. (A15) 
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CHAPTER SIX 

EIGENANALYSIS OF PRE-TWISTED REPETITIVE STRUCTURES 

6.1 INTRODUCTION 

In this Chapter, the transfer matrix approach described in Chapter 2 is extended to 

structures having a pre-twisted form; again the structure is regarded as pin-jointed, 

allowing comparison of the results to be checked against exact FEA predictions. 

^ z 

n - 1 

(^) (b) 

Figure 6.1. Local and global coordinate systems on the left and right hand side of the first cell, respectively 

6.2 EXAMPLE AND THEORY 

To focus ideas, consider a pin-jointed beam-like framework whose cross-section is in 

the form of an equilateral triangle of side length L - 0.3428 m. The zero'^ nodal cross-

section is assumed to align with a global x); z coordinate system (x is the axial 

direction). Figure 6.1(a), while the adjacent n = 1 nodal cross-section, Figure 6.1(b), is 

pre-twisted through angle a radians, here taken as a-n l% \ also shown is a local 

coordinate system x y' z which rotates with the cross-section. The axial length of the 

cell is also taken to be Z = 0.3428 m. Individual members of the cell are of aluminium, 

having Young's modulus E-lQx 10^ N/mnf and diameter d - 6.35 mm. The 

longitudinal (helical) members, together with the two diagonals in each external face of 
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the cell, have length as demanded by the relevant nodal locations, that is, the pre-twisted 

structure is free of any residual stress or deformation prior to loading. The complete 

first cell of the framework, Figure 6.2, is shown in bold. 

6 

Figure 6.2. A six cell pin-jointed pre-twisted framework; the first cell is shown in bold. 

6.2.1 Transfer Matrix 

For a straight repetitive structure, a stiffness matrix K for a typical cell is first 

constructed employing the global coordinate system, which, of course, is applicable to 

all cells. Symbolically, the stif&ess matrix relates nodal force and displacement 

components as 

F = K d , (6.1) 

and the transfer matrix G in global coordinates is calculated from K, as in 

equation (2.7), and relates state vectors on either side of the cell as 

(6.2) 

In the above, the subscripts L and R are employed to denote left and right hand sides of 

the cell, while G shows no dependence on the cell index; this is an adequate description 

for the straight structure, which possesses translational symmetry, but is quite 

inadequate for the pre-twisted structure, when, in global coordinates, the transfer matrix 

for each cell within a cycle is different, histead we write for the first cell, Figure 6.2, 

s(l) = G(l)s(0) , (6.3) 

and for the typical M ^ cell 

S(M) = G(M)S(M-1), (6.4) 

where the state vector subscript has been replaced by an argument, to denote the nodal 

location, and the transfer matrix G also requires an index to identify the cell. 
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Assuming that the pre-twist angle «for each cell is constant, then the transfer matrix 

G(M) is periodic, with period ^ = 2;F/o;, that is 

G(M + j?) = G(M), (6.5) 

and for the present example p= 16. 

For simplicity, suppose that the nodal cross-section aligns with the global coordinate 

system; so too will the ( # + . Suppose that one constructs a stif&ess matrix for all 

cells, and then condense this to form a superelement matrix K relating force and 

displacement components on the and the {N + p)"' nodal locations. Note that the 

subscript p has been employed to denote a complete cycle o f p cells. From this one 

could construct a transfer matrix , using equation (2.7), which is known as the 

matrix, and perform eigenanalysis in the usual way; that is, denoting the 

state vectors as ŝ (7V̂ ) and +7^)' respectively, then 

+ s^(#) and + = s^(^) , (6.6) 

to give the eigenproblem 

( G ^ - A „ I ) s / # ) = 0. (6.7) 

Denote the square matrix comprised of the eigen- and principal vectors of the above as 

{N); this transforms the transfer matrix to the Jordan canonical form , according 

to 

S„(iVr"G,S„(A') = J , . (6.8) 

Pre-multiply by S^(#) to give 

G„S„(A') = S„(]V)J„. (6.9) 

But S^,(^ + ^) -G,,S^,(7V), so we have 

S / # - K ; ? ) = S / # ) J ^ . (6.10) 

The process described above allows one to treat the pre-twisted beam as if it were 

straight; however, state vectors are only defined at those cross-sections that align with 

the global coordinate system, and the information contained within the eigen- and 

principal vectors describes the behaviour of a complete cycle of p cells. However, no 

information is available at other cross-sections. Such a procedure is exactly how 
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periodic systems are usually treated using Floquet theory. The eigenvalues are 

known as Floquet multipliers, and they define the stability of a (usually dynamic) 

periodic system, and this information is all that is normally required. 

It is not difficult to define an autonomous transfer matrix G , which does not depend 

upon the index of the cell, n, by employing a local coordinate system. Refer to Figure 

6.1(a) for the first cell, and note that the left hand side aligns with the global xyz 

coordinate system. The local right hand side nodal coordinates transform as 

0 ir^" 
cosor sinar (6.11) 

-sinof cosor z 

or, symbolically 

X;=T3 I ; (6.12) 

where the 3 x 3 orthogonal transformation matrix T3 is defined accordingly. On the 

other hand, nodal displacement and force components transform, Figure 6.1(b), referring 

to node 4, as 

/ ~ 

X "1 

Y = 0 
y 0 

1 0 0 " > 4 / 

p' 0 cos or - s i n a (6.13) 

0 sino; cosor A^_ 

and 

'dl ' 1 0 0 " 

dl = 0 cos« -sinor (6.14) 

or 

dl_ 0 sinor cosor 

or 

K T/P,, and d ; , = T / d , , . (6.15) 

Extending the above to the other nodes, the state vector on the right hand side may be 

written in the local coordinate system as 

(6.16) 

where T , / is the 18 x 18 transformation matrix consisting of blocks on the leading 

diagonal. Pre-multiply equation (6.3) by to give 

s'(l) = G's(0) (6.17) 
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where 

G' = T , / G ; (6.113) 

note that s '(0) = s(0) , since for this first cell, the local and global coordinate systems 

coincide on the left hand side. It will be asserted that this transfer matrix G for the first 

cell applies equally to all cells within the structure. In principle, each cell within the 

period requires a transformation matrix to relate the local coordinate system with the 

global; the pattern is easily discerned by considering the second cell, Figure 6.3, whose 

local right hand side coordinates transform as 

X 

y = 

z 

1 0 0 

0 coscK sinor 

0 -s infz cosor 

r / I 
X 

/ y = 

z 

1 0 0 

0 cos a sin a 

0 -sinor cosor 

- 2 
X 

(6.19) 

z 

or 

r 
X 

y = 

z 

1 0 0 

0 COS sin 

0 - s i n 2 a cos 2 a 

(6.20) 

or, symbolically, 

x '=T^(2) I . , (6.21) 

where the index 2 denotes a rotation by angle 2 a, and the transformation matrices 

previously introduced require index 1. Indeed, using this notation, transformations for 

the first cell may be re-written as follows: in global coordinates s (l) = G (l) s (O). In the 

local coordinate /or /A/f eg//, one has s'(l) = ( l ) s ( l ) , ^'(0) = T,g (O)s(O) = s(0) , 

sinceT|g(0) is the identity matrix. Pre-multiplyby 'I]g^(l) in the above to 

givel^g^(l)s(l) = 1^ / ( l )G( l ) s (0 ) or s'(l) = G'(l)s'(0) when 

G%1) = T, / (1)G(1) . (6.22) 
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M - 2 

Figure 6.3. Coordinates of the right hand side of the second cell. 

For the second cell, suppose that the transfer matrix had been calculated in global 

coordinates according to s (2) = G (2) s (1). However, in the local coordinates for this 

onehas s'(2) = 1^,^(2)5(2), and s'(l) = 'Ijg^(l)s(l) ,or 

s (l) = T,g ( l ) s ' ( l ) , since the transformation matrix is orthogonal. Pre-multiply by 

T ,g^(2) intheabovetogiveT ,g^(2)s(2) = Tjg^(2)G(2)s(l) or s'(2) = G ' ( 2 ) s ' ( l ) 

where 

G'(2) = T,/(2)G(2)T„(1). (6.23) 

For the n ' ' cell, one has in global coordinates, s (n ) = G ( n ) s ( n - 1 ) . In the local 

coordinates, s'(M) = (M)s(M), s (M- l ) = 'Î g ( M - l ) s ' ( M - l ) ; pre-multiply byl^g^ (») 

in the above to give T,g^(M)s(M) = 'I^g^(M)G(M)s(M-l) or s'(M) = G'(M)s'(M-l) where 

G'(») = T.g" (M)G(M)T.g ( » - ! ) . (6.24) 

We now make the assertion that the transfer matrix expressed in the local coordinates 

pertaining to the cell under consideration, is invariant; that is 

G = G'(l) = G'(2) = . . .G%M)... = G'( jo). (6.25) 
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6.2.2 Floquet Theory 

The pre-twisted rod is a reahsation of discrete Floquet theory for which the following 

general results are relevant: 

a) let s(/7) be a vector solution to the periodic system s(« +1) = G(« +1) s{n). 

b) the matrix analogue of (a) is S(M +1) = G(M +1) &(») where S(M) is a square matrix of 

column vector solutions to (a ). 

c) S(«) is a fundamental matrix of (b) provided that it is a solution such that 

det S{n) 0, for all integer n; in principle there are an infinite number of 

fundamental matrix solutions; indeed, set» = 0 in b), then S(0) represents the 

infinite number of (initial) end conditions which are possible on the left hand side of 

the first cell of the structure. Fundamental matrix solutions are characterised as 

follows: 

d) if S(M) is a fundamental matrix, then is another fundamental matrix if and 

only if there is a constant non-singular matrix C such that («) = S («) C for all 

There is a WMf'gwe fundamental matrix solution defined according to the imposed end 

condition on the left hand side being equal to the identity matrix, that is S(0) = I , in 

which case Y (O) = C, the /MOMOcfro/My matrix. 

e) if C is a nonsingular matrix and^ is a positive integer, there is a constant 

nonsingular matrix L such that L'' = C . 

f) if is a fundamental matrix, then so is Y(M + and, + jo) = Y(M) C, where 

C = G( ; , )G( jD- l ) G(2)G(1). 

Furthermore, there is a nonsingular matrix function P(M) such that S(M) = ?(») L"; 

further, P(/?) is periodic, with period p. 

g) the eigenvalues // of matrix C are known as the Floquet multipliers of the system 

h) %{n) is a solution of the Floquet system if and only if z(n) = P(??)~'s(n) where z{n) is 

a solution of the autonomous system %(» + 1) = L z(M); this is the Floquet 

decomposition, that is $(«) - ?(«)%(»). 
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The above are largely from Kelley and Peterson [70], but with the notations modified to 

conform with those already introduced. 

In h), one may readily identify the autonomous matrix L with the transfer matrix, 

written in local coordinates, G , and vector solution z[n) with s '(«) . Moreover, the 

matrix function ?(«) is identified as T,, (») . In turn, = G^, so one may 

identify matrix C with G^, as in e) and f). The Floquet multipliers // are then equivalent 

to the , as in g). 

From the knowledge of Equations (6.22-6.25), the following expression can be given, 

(G')" =G'(M)G'(M-1).. G'(2)G'(1) 

= T , / ( » ) G W T . X " - l ) V ( » - l ) G ( » - l ) T , X M - 2 ) . . . T , / ( 2 ) G ( 2 ) T , X l ) V ( l ) G ( l ) 

(M)G(M)G(M-1).. G(2)G(1) (6.26) 

According to (6.2.2.f), if is a fimdamental matrix for the Floquet system 

s(rt + l) = G(?7 + 1)S(/i), (6.27) 

T (« + P) is also a fundamental matrix and 

T(M + ;)) = Y(M)C, (6.28) 

where C = G (/>) G (/; - 1 ) • • • G (1). 

Furthermore, there is a non-singular matrix function T,g(«) and a non-singular matrix 

G such that 

Y H = T , g ( » ) ( G y , (6.29) 

where Ijg (» 4- ^) = T,, (») . 

According to equation (6.29), left-hand side of equation (6.28) becomes 

+ = + (6.30) 

or 

Y(M + ;;) = T , X » ) ( G y ( G y . (6.31) 

Consideration of (6.26) gives 

6.8 



Y (» + ;,) = T,, (M)(GT T , / ( ; , )C , (6.32) 

but, T,g^ [p) = I , so the above equation becomes 

Y ( » + ;?) = T „ ( » ) ( G y C . (6.33) 

While considering equation (6.29), the right hand side of (6.28) becomes 

Y ( » ) C = T,g(M)(GyC. (6.34) 

Therefore, equations (6.33) and (6.34) do satisfy equation (6.28). 

According to (6.2.2.h), let T(7i) = T,g (;i)(G')" as in Floquet Theorem. Then s(«) is a 

solution of the Floquet system, equation (6.27), if and only if 

s'(M) = T,ĝ  («)$(») (6.35) 

is a solution of the autonomous system 

s'(7i + l) = G'S'(7I) . (6.36) 

Hence, the autonomous system is verified. 

6.2.3 Eigen analysis 

Two consecutive state vectors are related by the s c a l a r a s 

s'(» + l) = ;is'(M), (6.37) 

which, together with the transfer matrix relation, equation (6.36), immediately leads to 

the eigenvalue problem 

GV(n) = / ls'(n). (6.38) 

The gfg command within MATLAB gives the eigenvalues of the transfer matrix G' as 

the three reciprocal pairs 

-22.3303 

-0 .0488 

-10.0110-10.0110; 

-0 .0499 + 0.0499/ 

-10.0110 + 10.0110/ 

- 0 . 0 4 9 9 - 0 . 0 4 9 9 / 

which pertain to decay of self-equilibrated loading, and four real unity eigenvalues 

pertaining to rigid body displacement in, and rigid body rotation about, the %-direction, 

together with tension and torsion. Also there are eight complex unity eigenvalues of the 

form 4xe~'", in which a is the angle of pre-twist per cell and i = , and these 
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pertain to rigid body displacements in, and rigid body rotations about, both the / - a n d z -

directions, together with bending moments and shearing forces in both planes. 

As with the eigenanalysis described in Chapter 2, the eigenvectors associated with the 

distinct decay eigenvalues are correctly calculated by the QR algorithm employed 

within MATLAB, and these are designated v, to . The four (real) unity eigenvalues 

pertain to eigenvectors describing rigid body displacements in the x-direction, , and 

rotation about the x-axis, v , , these being unaffected by the choice of global or local 

coordinates. The reduced row echelon form of G - I yields these two independent 

eigenvectors, which may be written as 

^9 = 

[ 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ] % 

(6.39a, b) 
2 3 2 3 3 

where the angle of rotation ^is taken to be small, ^ = 5x10"'' radians. Two principal 

vectors w, and w,,, are coupled to the eigenvectors and v , , respectively and are 

found using the MATLAB rref command on the augmented matrix, again as described 

in Chapter 2, followed by appropriate interpretation. Principal vector Wg, consists of 

the necessary combination of tensile force and twisting moment which, when applied to 

the left and right hand sides of the cell, produces the unit extension defined by vector 

Vy. Principal vector w,q consists of the necessary combination of twisting moment and 

tensile force which, when applied to the left and right hand sides of the cell, produces 

the rotation defined by vector v , . Therefore, there are two 2 x 2 Jordan blocks 

associated with these vectors, which are 

^ ^ (6.40) 
"l r "1 r 

1̂ 2x2 = , J^2x2 = 
0 1J 0 1 

This coupling between tension and torsion is similar in nature to that described in 

Chapter 4, for the asymmetric AC4&4 structure. 
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For determination of the eigen- and principal vectors associated with the multiple 

complex unity eigenvalues, , a variety of strategies are possible. For example, 

two chains of equations relating eigen- and principal vectors may be expressed as 

= 0 

w 
12 

w 12 

: W , 

= 0 

15 

16 

(6.41a, b) 

" I ) , 

( G ' - m ) w , 3 

The reduced row echelon forms of the matrices ^G^-e'"! j and ^G'-

respectively, yields the two eigenvectors 

V,, = [0 z 1 0 M 0 M 0 0 0 0 0 0 0 0 0 ] \ 

v,; = [0 - / 1 0 -f 1 0 - / 1 0 0 0 0 0 0 0 0 0 ] \ 

which is a combination of real and imaginary rigid body displacements in the )/- and z-

directions. 

The principal vectors to w,4 and w,^ to Wjg can then be determined by following 

the chains, equations (6.41a) and (6.41b), respectively. If one then constructs a 

similarity matrix V from these eigen- and principal vectors, this gives the JCF in its 

simplest form 

(6.42a, b) 

J = V G V = 

A 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 4 ' 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 T' 
"2x2 

0 0 0 

0 0 0 0 0 0 0 T2 
" 2 x 2 0 0 

0 0 0 0 0 0 0 0 T' 
"^4x4 

0 

0 0 0 0 0 0 0 0 0 j2 
* ' 4 x 4 

(6.43) 

where the two 4 x 4 Jordan blocks associated with the multiple complex unity 

eigenvalues are 
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T' — 
4x4 ~ 

g" 1 0 0 1 0 0 

0 g" 1 0 ,2 _ 0 e- '" 1 0 

0 0 e " 1 
5 *' 4x4 ~ 

0 0 1 

0 0 0 g'" 0 0 0 

(6.44a, b) 

and the 2 X 2 Jordan blocks associated with the real unity eigenvalues are as equation 

(6.40) 

Now, while the JCF may be in its simplest form, because of the complex eigenvalues, 

and complex eigen- and principal vectors, interpretation of the vectors is at its most 

difficult. Obviously a complex vector is not physically permissible, but when 

considered in conjunction with its conjugate, the (real) displacement and force 

components are the real and imaginary parts, in turn, hideed, if one replaces the 

complex conjugate columns of the similarity matrix by their real and imaginary parts, 

one obtains the real JCF 

where 

= 

A 0 0 0 0 0 0 0 0 

0 real(;i2) -imag(;!2) 0 0 0 0 0 0 

0 imag(4) real(,^) 0 0 0 0 0 0 

0 0 0 A~' 0 0 0 0 0 

0 0 0 0 real^^) - i m a g ( ^ ] 0 0 0 

0 0 0 0 imag(^) real(^) 0 0 0 

0 0 0 0 0 0 l ' 
"2x2 

0 0 

0 0 0 0 0 0 0 T2 
"2x2 0 

0 0 0 0 0 0 0 0 ^8x8 

cosar -sinar 1 0 0 0 0 0 

sinor cosor 0 1 0 0 0 0 

0 0 COSCK -sin(% 1 0 0 0 

0 0 sin or COSCK 0 1 0 0 

0 0 0 0 COSCK - s in or 1 0 
' 

0 0 0 0 sin a cos or 0 1 

0 0 0 0 0 0 cos or -sinor 

0 0 0 0 0 0 sinor cos or 

(6.45) 

(6.46) 
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note that the single complex unity eigenvalues on the leading diagonal are replaced by 

2 x 2 real blocks. Within this formulation, the principal vectors and describe 

rigid body rotations of the left-hand side of the cell, but employ the local and 

z'- axes of the right-hand cross section, respectively. In turn, their coupled principal 

vectors , w,g, w,^ and w,g describe bending moment and shear vectors applied to 

the left-hand side of the cell, but employ the local coordinate system of the right-hand 

side of the cell. For interpretation of these vectors it is easier if they are expressed 

within the local coordinate system of the left-hand side, for which the local and global 

coordinate systems coincide. This is achieved by employing a Meo/- (/zagoMo/ Jordan 

decomposition in which the complex unity eigenvalue replaces the real unity on the 

super diagonal; the chains then become 

( G ' - m ) 16 - ^ 1̂5 

( G ' - e ' " l ) w 
1 4 

: g-'W, 

( G ' - g - ' " l ) v , ; = 0 

( G ' - e - ' " l ) w 

(6.47a, b) 
16 

6 '"W 
1 7 

The new complex similarity matrix V comprised of these eigen- and principal vectors 

transforms the transfer matrix G into a new JCF, which remains broadly as in 

equation (6.43), but with two new 4 x 4 blocks, which are 

J \ x 4 = 

g'" e'" 0 0 g-'" g-'" 0 0 

0 0 2̂ 0 g-"" g-'" 0 
, J 4 x 4 = 

0 g-'" g-'" 0 0 g'" e'" 0 0 g-'" g-'" 

0 0 0 g'" 0 0 0 g-'" 

(6.48a, b) 

Again, this leads to complex conjugate eigen- and principal vectors, and replacing these 

by their real and imaginary parts, allows one to construct a new real similarity matrix 

which transforms G into a new real JCF, which differs f rom equation (6.46), in that the 

8x8 block becomes 
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"̂ 8x8 -

cos or -sincK COS or - s i n or 0 0 0 0 

sincy cos« sinor cos or 0 0 0 0 

0 0 cos or - s i n or COS or - s i n or 0 0 

0 0 sin or cos or sin or cos or 0 0 

0 0 0 0 cos or - s i n or COS or - s in or 

0 0 0 0 sin or cos or sin or cos or 

0 0 0 0 0 0 cos or - s i n or 

0 0 0 0 0 0 sin or cos or 

(6.49) 

This real similarity matrix V and the associated JCF are given in Appendix 6.A. The 

eigen- and principal vectors pertaining to the multiple complex unity eigenvalues are 

now expressed within the local/global coordinate system of the left-hand cross section. 

This greatly simplifies the physical interpretation of these vectors and, in turn, 

determination of the equivalent continuum properties. 

6.2.4 Equivalent Continuum Properties 

a) The two vectors v^ and Wg are coupled according to 

G'wg=wg+Vy, (6.50) 

as shown in Figure 6.4, where it is seen that a tensile force and a twisting moment are 

applied on both hand sides of the cell in order to produce unit extension in the x-

direction, only. The two vectors v, and w,o are coupled according to 

(6.51) 

as shown in Figure 6.5, where it is seen that a twisting moment and a compressive force 

are applied on both sides of the cell in order to produce rotation about the x-axis, only. 

For a pre-twisted structure, the coupled force-displacement equations for tension and 

torsion may be written exactly as in Chapter 4, as 

L L 

L L 
(6.52a, b) 
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where is the coupling coefficient for tension-torsion. 

L 6 8 8 3 XLO" 

7 . 6 4 6 9 X 10" 

4 

2 X 7 . 6 4 6 9 X 1 0 ' 

r • 
I 

I 

&4417xlCr 

w. 

1 X 1 0 

1 

% 6 4 6 9 X L O 

9 1 2 7 4 X 1 0 

^ Z 

2 X 7 . 6 4 6 9 X 1 0 

w.+v. 
1 . 4 6 1 2 X 1 0 ^ 1 / W N 2 X L 0 R 

Figure 6.4. Coupling of eigenvector v, for rigid body displacement in the x-direction, with principal 

vector w, for extension; displacement are exaggerated. Dotted lines show initial configuration 

4 

9 . 0 3 2 3 X 1 0 ' 
- > • 

2 X 9 . 0 3 2 3 X 1 0 ' ^ 

9 . 0 3 2 3 X 1 0 

. -J 

2 X 9 . 0 3 2 3 X 1 0 

& 6 1 4 6 X L O 

5x10^ 
W , 

FIGURE 6 .5 . COUPLING OF EIGENVECTOR V, FOR RIGID BODY ROTATION ABOUT THE ;:-AXIS, WITH PRINCIPAL VECTOR 

for torsion. 

From vectors Wg and the quantities 7^, , and w are known (^is zero), and the 

equivalent cross-sectional area and coupling coeHicient are calculated 

as^ = (2.2941xlO-') /(7xlO"'xlxlO-^)=1.1234xlO"'m\ = -1 .8578x lO'Nni . 
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Additionally, there is a Poisson's ratio effect on the cross section; the strain in the 

direction =1x10'^/0.3428 = 2.9172 x 10~®, and the strains in the y-and z-directions 

areg, =( -1 .6883-0 .8442)x lO-" / (o .3428xV3/2)=-8 .5306xlO-" , 

= - (l .6214 X1Q-" )/0.3428 = -8.5306 x 10"^ Employing v = - = - g , / g , , the 

Poisson's ratio is calculated as v = 0.2924. In turn, the equivalent shear modulus is 

found to be G = £'/2(l + v) = 2.7081x10"' N/m% with Young's modulus E being 

regarded as invariant. 

From vectors w,,, and v , , quantities 7^, , and ^are known (w is zero), and equation 

(6.52) gives the equivalent torsion constant and coupling coefficient as 

y = (8.6146x 10"̂  X 0.3428/V3)/(2.7081 x 10'° x 5 x 10"^) = 1.2949x 10"^m\ 

= -1.8578 X10^ Nm; the latter is identical to that found 6om vectors Wg and Vy, as 

one would expect from the reciprocal theorem. 

b) The two principal vectors and are coupled to the eigenvectors v,, and , 

describing rigid body displacements in the y- and z-directions, respectively, according to 

G ' w,3 = cos a V,, + sin a v,^ + cos a + sin a w,^, 

G'w,^ =-sin6y V], 4-cosar -sinorw,3 4-cos or w,^. (6.53a, b) 

Vectors w,, and describe rigid body rotations of the left-hand cross section about 

the z-and j^-axes, respectively, within the global coordinate system. Pre-multiplication 

of these vectors by the transfer matrix G'will give rigid body rotations of the right-hand 

side about the local z'-and ^/'-axes, respectively, as indicated by equation (6.53). 

However, for interpretation of these vectors, it is preferable that these right-hand 

rotations be expressed within the global coordinate system, which is achieved by pre-

multiplication by G, according to 

= G w,3, w „ ^ = G w , 4 . (6.54) 
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where G is the transfer matrix defined within the global coordinate system and the 

additional subscript ^ denotes the right-hand side vector. The physical representation of 

vectors , and and , is shown in Figure 6.6. 

5 . 7 7 3 4 X 10 

1 X 10" 

AC 

2.8867 X 10 

w, 

5 x 1 0 

I 1 X 10 

1 
^ % 

5x10 

w,. 

(a) (b) 

Figure 6.6(a). Principal vector w „ for rigid body rotation about the z-axis; (b) principal vector for 

rigid body rotation about the j -axis . 

c) Vectors w,g and describe the bending moments on the left-hand side of the cell 

in the ;(y-and %z-planes, respectively, within the global coordinate system, and are 

coupled to the rotations according to 

G ' w , ; =cosarw,T4-sin(%Ww-i-cosArw,; -Hsinorw^, 

G ' = - s i n ( % W n 4-cosor -sinof -t-cos(Z . 
' 1 3 1 4 1 5 ' 16 • 

(6.55a, b) 

Again, pre-multiplication by G' would give the two bendmg moment vectors on the 

right-hand side of the cell in the local - and xz'-planes, and for interpretation of the 

vectors, it is preferable that these right hand vectors be expressed within the global 

coordinate system, which is achieved by pre-multiplication by G, to give 

w , 5« 
G w . ; , w. , . = G w _ . (6.56) 
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Analysis of the %-direction displacement components within vectors w,, and W|g, 

shows that they are comprised of two rotations of the left-hand cross section, about the 

y- and z-axes, and can therefore be decomposed into 

. (6.57a, b) 

On the other hand, analysis of the x-direction displacement components within the right-

hand side vectors w,;,, and , shows that they are comprised of two rotations of the 

left-hand cross section, about the y- and z-axes, and can therefore be decomposed as 

'd,; "15 "13 
' 4 / "'14 "16 'd,; "14 'd,; 

= aX + 6x , = cx 2̂.T + 

' 4 / 'du X / " 4 / ' 4 / 
= gx + / X 2̂̂  , ^2j = g X + Ax . (6.58a,b) 

Simple calculations from equations (6.57) and (6.58) give a = -0 .5 , 6 = 0.2109, 

c = -0 .5 , (/ =-0 .2109; e = 0.5, / = 0.2109, g = 0.5 and A = -0.2109. 

The physical representations of these bending moment vectors are shown in Figures 6.7 

and 6.8. Geometric consideration of Figures 6.7(a) and 6.8(a) gives the two bending 

curvatures in the jgz-and xz-planes, respectively, as 

1/^, =1.4434x10 

1/^, =2.5x10 

—X— 
v 3 2y 

= 8.5098xl0-^m-

—X— 
V2 2 ; 

;.5098xl0-"m-% (6.59a, b) 

while consideration of Figures 6.7(b) and 6.8(b) gives the two coupled shear angles in 

the xz- and Ay-planes, respectively, as 

=1.0546x10' 

=6.0886x10 -10 

6.1527x10"% 

= 6.1527xlO-\ 
V / 

(6.60a, b) 
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2 . 8 8 6 8 x 1 0 

3 . 3 4 1 0 X L O - ' - L R " 

A 2.6670 X 10' 1.0545x 10-* 

2xlX)705xia1 

3.0867x10' I*— 

' 4^609x 10^ ' ^ 

3.7680 x lO '" 

1.4434x10 

w,. 

_ J 2.6506x10 ' I I -
2.2902x10^ 

74130x10 

4.6600 X IQ-

X 

w,, 

1.0545x 10 

w„ 
* L2073 xlCr 

w,. 

(a) (b) 

Figure 6.7. Principal vector w,, fbr bending moment in the ay-plane; (a) and (b) show the displacement 

and force components in the ay- and %z-p]anes, respectively. 

2.5 X 10 ' 

—1 f — 
2.8934 X 10"' 

1.7573 x 10" 

1.2177x10 
r* 

2.8934x10 ' I 
L. 

0339 X 10 ' 
p. 

^.1047x 10" 

1.2785 x10 

t ^ 1.1250 X 10 ' 

% 

I 1.5894x 10" 

2.5 X 10" 

w„ 

— — 

2 . 8 6 2 1 x 10"' 

w , . . 

3.3124 X 10-g Qgg^^xlO"' 
_ J L 

9.6609x10" 

w „ W,, 

(a) (b) 

Figure 6.8. Principal vector w,^for bending moment in the.rz-plane; (a) and (b) show the displacement 

and force components in the.tz- and ay-planes, respectively. 

The above indicates that a bending moment produces a bending curvature, and shear 

deformations in both the plane of bending and the perpendicular plane. This contradicts 

widely accepted theory, but partially agrees with Tabarrok's bending theory of pre-
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twisted beams [52], since his coupled equations also suggest that a coupled shear 

deformation takes place in the plane perpendicular to the bending curvature. 

c) Vectors and W;g are coupled to the bending moments on the left-hand side of 

the cell, according to 

G' = cos or Wj; + sin or + cos or + sin or , 

G'w,g =-s inor w,; +cosor -sinor -kcosor w,g. (6.61a, b) 

Previous experience from the eigenanalysis of a straight repetitive structure suggests 

that these two vectors should describe shear; however analysis of the force components 

within vectors and ŵ g gives a resultant shear force g , and moments M. , for 

the fbimer, and a resultant shear force , and moments for the latter. In fact, 

only gy and , and g , and M a r e required to define the simplest left-hand shear 

vectors in the Ay-and xz-planes, respectively, and the unnecessary bending moments are 

removed according to the scheme 

resultant (M ) within w,y 

resultant j within 

resultant ( ) within w 
W;g=W;y ) — ^ XW;;. (6.62a, b) 

resultant (Af J within w 
1 5 

The two new shear vectors and w'g are given in Appendix 6.B. Again, it is 

preferable that the shear vectors on the right-hand side of the cell should be given within 

the global coordinate system, and these are determined by 

w^g^^Gw^g. (6.63) 

These describe the shear vectors in the Ay-and %z-planes on both sides of the single cell, 

in global coordinates, in their simplest forms. 

Consideration of the x-direction displacement components in the vectors and w[g 

shows that they can be decomposed into rotations about the z- and^z-axes, as 
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'd,: "'17 4 / "13 W,4 ' 4 / "'14 'd,: 

= a X + 6 x , = c x + t/x 

4 . . 

, (6 .64^b) 

On the other hand, consideration of the x-direction displacement components in the 

vectors and w[gg shows that they are also comprised of rotations of the right-hand 

side about the and z-axes, as 

(6.65a,b) 

Simple calculations &om equations (6.64) and (6.65) gives a = 1.1678, 6 = 0.0307, 

c = 1.1678, and = -0.0307; e = 0.6678, / = -0 .2416 , g = 0.6678and A = 0.2416. 

Physical representations of the shear vectors and , and w[g and wig^ are given 

in Figures 6.9 and 6.10, respectively. The %-direction displacement components in the 

shear vectors can be fiirther decomposed, as illustrated in Figures 6.11-6.14. 

'd,; ^̂17 A 
X v " 

= g x + / X ^2j , 2̂jr = g X + A x dix 

_^3T_ _ 

6 .8291 X 10" 

3 . 3 4 1 0 X 10 
4 

3 .5623 X 10" 

1.1957 X 10 

2 X 1 . 6 7 0 5 x 10 

4 . 9 2 2 8 X 10 

3 . 3 7 1 3 x 1 0 
1 .2054 X 10 

1 . 5 3 2 7 x 10 

1 . 1 2 8 0 x 1 0 ' 

7 . 4 1 0 9 X 1 0 

.0328 X 10-'" 

1 . 0 2 4 3 x 1 0 

8 .4904 X lO " 

w 

3 . 0 5 9 0 X 10' 

w 

— ^ — 

1.5327 x 10 

^ X 

5.3373 X 10 ' 

1 . 3 8 2 8 x 10" 

(a) (b) 

Figure 6.9. Principal vector w*,, for shearing force and bending moment in the Ay-plane; (a) and (b) 

show the displacement and force components in the xy- and xz-planes, respectively. 
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2 . 8 9 3 4 x 10 p. 

5 . 8 3 9 2 x 10 23472x 10^ 
L7698xlO 

L 4 3 6 6 x l O ^ I 

7JW22xlO^ 

2 8 9 3 4 x 10^ 
4 

7 J 3 5 2 x l O 

1 8 2 2 8 x 10 5 ^ 3 9 2 x 1 0 

4 / 1 . 2 8 8 5 x 1 0 

9 I W 6 1 x l O 

L 4 7 5 5 xlOr 

8IW95xlO^ 

8 . 8 4 9 0 x 1 0 " 

1 8 7 8 x 10^ 

w 

8 2 0 5 x 10 ' 

L 1 0 6 5 x l 0 " 

w 

(a) (b) 

Figure 6.10. Principal vector w',, for sliearing force and bending moment in the xz-plane; (a) and (b) 

show tlie displacement and force components in the aiz- and jry-planes, respectively. 

5 . 2 9 9 1 X 10 

r* 4 . 8 9 5 8 X 10 
1 . 4 4 3 4 X 10 

14- ^ 1.3335 X W 
-k i< 

6 . 9 1 6 7 x 1 0 " 

2 . 6 4 9 6 X 10 

1 . 8 8 4 0 X 10 

—II—î ii» mmm^m 7 . 2 1 6 9 X 1 0 

4 . 2 0 4 1 X 10" 1 .1451 X 10" 

(a) (b) 

Figure 6.11. Decomposit ion of the displacements in the xy-plane of F igure 6.9; (a) shows the shear 

angle due to shearing force, and (b) shows the bending curvature due to bend ing moment. 
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6 .8056 X 10" 

6 .8056 X 10 

4 . 7 8 3 9 x 10' 
5 .2729 X 10 

^ 

3.0073 X 10" 

3 .7065 X 10 
> 

2 . 3 3 0 0 x 10" 

— ^ — 
5 . 2 7 2 9 x 1 0 

7 . 7 9 1 2 x 1 0 " ' " 6 . 0 3 6 5 x 1 0 " 

(a) (b) 

Figure 6.12. Decomposition of the displacements in thexz-plane of Figure 6.9; (a) shows the bending 

curvature coupled with the shear angle in the .tz-plane due to shearing force, and (b) shows the shear 

angle coupled with the bending curvature in the.rz-plane due to bending moment . 

4 . 5 8 9 2 x 10 
3 .2259 X 10 

4 . 5 8 9 2 X 10 

2 . 0 2 7 9 x 1 0 

5 .2538 X 10" 
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(a) (b) 

'i| 5 . 5 2 3 6 x 10" 

1.25 X 10 
8 . 7 8 6 7 X 10 

1 . 4 3 1 0 x 1 0 ' 

Figure 6.13. Decomposition of the displacements in the ,rz-plane of F igure 6.10; (a) shows the shear 

angle due to shearing force, and (b) shows the bending curvature due to bending moment. 
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7.8584 X 10 7.2602x10 
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.0257 X 10' 
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(a) 

6.0^6x10- '"^) ; 5.6252x 10" 

JC 

7.9472 x 10" 

3.0443 x lO '" 

4.8304 X 10' 

(b) 

Figure 6.14. Decomposition of the displacements in the xj -plane of Figure 6.10; (a) shows the bending 

curvature coupled with the shear angle in thex>'-plane due to shearing force, and (b) shows the shear 

angle coupled with the bending curvature in the Ay-plane due to bending moment. 

As in Chapter 2, the shear angle is defined according to the relationship / = ^ - dv/dx, 

in which dv/dx is the centreline slope and y/ is rotation of the cross-section. Again, the 

simplest method of evaluating the shear angle is to impose a rotation on the cell to bring 

the centreline slope to the horizontal, and then take the average of the cross- sectional 

rotation on both sides of the cell. Geometric consideration of Figures 6.11(a) and 

6.13(a) then gives the cross-sectional rotation on either end of the cell in the two planes, 

as 

2.6496 xlO"" 

V. 

; f / 3 

4.5892x10"^ 

1/2 

= 2.6775x10" 

= 2.6775x10" (6.66a, b) 

Moreover, the ̂ /-and z-direction displacements within vectors and , and wj'g 

and suggests a shift of the centre of area on the left-hand side of the cell for both, 

as shown in Figures 6.15 and 6.16, respectively. The centre line slope rotations within 

the two shear vectors can then be determined by geometric consideration as 

dv 7.1807x10-'° 

dx 0.3428 
= 2.0947x10-

6.24 



dw 7.1807x10 - 1 0 

dx 0.3428 

so the shear angles in the two planes are 

dv 

dx 

dw 

= 2.0947x10-

^4680x10"% 

= 2.4680x10-'. 
d% 

(6.67a, b) 

(6.68a, b) 

9.3197 X lO '" / 
/ 

4361 X 10 

J 7.1807 X 10 ' 

2.3190 X 10" 

4.6780 X 10" 

1 
2.3390x 10 

^ z 
1.7123x10-

3.5904x 10'"' 6.3903x 10" 

(a) (b) 

Figure 6.15. Displacements in thej'-direction for the principal vector on the left hand (a) 

and right hand (b) sides of the cell, respectively. 

7.1807x 1 0 / » 
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^ z 
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5.0417 X 10-'" 1.0771 x W 1.6500 x 10" 

1.7123 X 10 

^ z 

—J 
6.3903 X 10-" 

2.3390x10 

(a) (b) 

Figure 6.16. Displacements in the z-direction for the principal vector vv*,g on the left hand (a) 

and right hand (b) sides of the cell, respectively. 
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From the above discussion of the bending moment vectors, it is known that when a pure 

bending moment is applied to the typical cell, a bending curvature in the principal plane 

is coupled with a shear deformation in the perpendicular plane. According to the 

reciprocal theorem, when the cell is subject to a shear, it should result in a shear 

deformation in the principal plane, coupled with a bending curvature in the 

perpendicular plane; &om Figures 6.12(a) and 6.14(a), these two secondary bending 

curvatures are, respectively 

6 . 8 0 5 6 X 1 0 - ' 

^ Z/2XZ/2 

1/;; = 2.3166x10'" m-'. (6.69a, b) 
/ - / / / 3 x l / 2 

Moreover, the bending moments M. and applied on the left-hand side of the cell, 

vectors and w*g, can be regarded as being linearly distributed along the cell from 

the left side to the right which, &om Figures 6.11(b) and 6.13(b) gives the bending 

curvatures as 

= 7.2169x10 = 4 2549x10-"m-', 
/ " 7f /3xZ/2 

1 9 ̂  V1 
1 / ; ; ' = ^ - ^ = 4.2549xlO-"m-'. (6.70a, b) 
/ Z,/2x^/2 

Also, geometric consideration of Figures 6.12(b) and 6.14(b) gives the coupled shear 

angles due to the applied bending moments in the perpendicular planes, respectively, as 

x ^ i ^ z g p : = 3 . 0 7 6 4 x , 0 - % 

= 3.0764x10-". (6.71a, b) 
; / / 3 

It is noted that the bending curvatures and shear angles obtained in equation (6.70) and 

(6.71) are exactly one-half of those obtained in equation (6.59) and (6.60), respectively. 

This is consistent with the view that the bending moments resident within the two shear 

vectors are exactly one-half of those within the bending moment vectors w,; and , 

respectively. 
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For the pin-jointed pre-twisted repetitive structure examined here, having equal second 

moments of area, analysis of the bending and shear vectors for the single cell suggests a 

bending and shear coupling, similar to the asymmetric 7V/4&4 truss examined in 

Chapter 4. However, such coupling cannot be explained by any existing bending theory 

for pre-twisted beams; equation (2b,c) of [30] suggests no such coupling, while 

Tabarrok's pre-twisted bending theory [52] suggests that a displacement rather than a 

bending curvature should occur in the plane perpendicular to that of the shear. In the 

following section, the equivalent continuum properties of second moment of area, shear 

coefficient and the bending-shear coupling coefficient of the pre-twisted structure are 

determined using the procedures described in Cliapter4. 

As with equation (4.36), the coupled force-displacement equation for bending moment 

in the plane and shear in the xz-plane can be written in the matrix form 

9w 

' 6 / ¥y-
9% 

where 

& 
:N., 

& 

dw 
a x ' 

1 

and is the compliance matrix 

N = Mil 77,2 

«22_ 

(6.72) 

However, in order to determine the equivalent second moment of area and shear 

coefficient, it is more convenient to write equation (6.72) in its inverted fbmi 

(6.73) 

(6.74) 

(6.75) 

From the bending vector in the ^y-plane, w,; , one has =9.9185x10 ^Nm, = 0, 

l/7(^ = 8.5098x10"^ m"', = 6.1527x10"^, and substituting into equation (6.73) gives 

M _ , 
'12 6.2033x10" 
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*22 : 8.5797 x l O - \ (6.76a, b) 

From the shear vector in the xz-plane w'g, one has = 0 Nm, = 2.8934x10 ^ , 

l/^^ =2.3166x10"^m"% =2.4680x10"^, andsubstitutingintoequation(6.73)gives 

& 
& 

8.5298x10' 

= 8.0064x10" (6.77a, b) 

Inversion of the matrix Nc gives 

M i l » I 2 
- 1 

_ ^ 2 I ^22 _ 

1.2577x10" -9.0935x10" 
. (6.78) 

-1.1737x10^ 1.2504x10^ 

From the above, the equivalent second moment of area is 7̂  = 1.7863xl0""m'*, and 

shear coefficient = 0.4134. However, equation (6.78) clearly suggests two unequal 

coupling coefficients for bending and shear, since n,; 9== 2̂1 - Therefore, the coupled 

equations are modified, to read 

& 1 

A T ' ^ 7 z _ _ .tz z J 

9% 

9% 

(6.79) 

and the two coupling coefGcients are =-9.0935xlO'^Nm, =-1.1737xlO^Nm. 

Similarly, j&om the bending vector in the %z-plane, w,g, and the shear vector in the Ay-

plane, , it is found that , 7̂  = /^, and , within the 

coupled equations 

9v 

a ^ . 1 
M EI j-J 

9% 

9% 

(6.80) 

Thus, equation (6.79) and (6.80) suggest two asymmetric stifGness matrices coupling the 

moment and shearing force, wliich is contrary to the usual expectations of the reciprocal 

theorem. 
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This asymmetry in the stifGiess matrix may imply that the coupled bending-shear model 

employed for the straight, but asymmetric, 3-D AW&4 truss is not adequate for the pre-

twisted structure examined here. However, other interpretations are possible. First, 

note that the cross-sectional displacements, that is, rotation and shear, are based on the 

three nodal axial displacements on both sides of the cell, and that it is always possible 

for a plane to pass through three given points. Thus it is entirely possible, at least for 

this triangular cross-section, for a cross-sectional warping to be misinterpreted as a 

rotation. This possibility could be confirmed, or discounted by the analysis of a pre-

twisted rod having, say, a square cross-section. Another possibility is a lack of work 

conjugacy in relation to moments and rotations, which is known to lead to asymmetric 

tangent matrices in large displacement, small strain analysis. 

It is quite possible that the particular way of presenting the moment-shear coupling 

needs modification for a pre-twisted structure: thus when one calculates tlie nodal 

stif&ess matrix K, in global coordinates, which is the first step of the analysis 

procedure, one is relating nodal force and displacement components OM of the 

cell. However, in writing relationships such as those expressed in equation (6.80), 

moment and shearing force are only explicitly given for the left hand side of the cell, 

while those on the right hand are understood; likewise, curvature and shear are 

interpreted firom the rotation of the cross-section on both sides of the cell. For the 

straight AW&4 truss, this appears to be acceptable - for example, moment equilibrium 

would require that there is an equal but opposite moment on the right hand side, while 

cross-sectional rotations are always expressed within a global coordinate system. For 

the pre-twisted cell, the implied right hand side moment is only equal and opposite 

within the global coordinate system, not the local; the greater difficulty lies with the 

cross-sectional rotation, as finite rotations are known not to commute. Thus, while the 

curvature and shear have been calculated from cross-sectional rotations of both sides of 

the cell in the global system, it is possible that one should in some way be treating these 

in the local coordinate system on the right hand side. Of course, none of these problems 

arise in tlie case of tension-torsion coupling, since the cross-sectional rotation 

(deformation) does commute with angle of pre-twist, as they are both about the same 

axis. 

6.29 



The inability to resolve this issue highlights the need for further research in the general 

area of bending of pre-twisted structures - for both the idealised structure considered 

here, and also for continuum rods, as in a pre-twisted turbine blade. However, one 

should emphasise that this issue represents a weakness in interpretation and current 

understanding, not an error in the principal vectors obtained by the eigenanalysis 

described in this Chapter - these must be correct, otherwise one would not obtain the 

correct Jordan canonical form. 
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APPENDIX 6.A 

TRANSFORMATION MATRIX AND JORDAN CANONICAL FORM FOR 3D PIN JOINTED PRE-TWISTED 

V = 

FRAMEWORK, FIGURE 6.2 

-2.6441x10"^ -5.9282x10'" -1.6709x10-" -1.5171x10-" 5.9694x10 " -2.6441x10-" 

-7.8780x10"^ -2.2359x10'" -1.3240x10'" 8.6401x10-" 1.3240x10 " 1.5472x10'" 

-6.3349x10"" -4.6575x10^" 8.6401x10-" 4.6575x10 " -2.2359x10'" 9.9900x10'" 

-2.6441x10"^ 1.5171x10-" 5.9694x10'" 5.9282x10-" -1.6709x10 " -2.6441x10'" 

-1.5472x10"^ 8.6410x10" -1.3240x10-" -2.2359x10-" 1.3240x10" 7.8782x10'" 

9.9900x10"" -4.6575x10 " -2.2359x10-" 4.6575x10-^ 8.6401x10-" -6.3349x10'" 

-2.6441x10-" 4.4111x10" -4.2986x10-" -4.4111x10-" -4.2986x10-" -2.6441x10 " 

9.4252x10 " -6.8595x10-" 1.3606x10-" -6.8595x10-" -1.3606x10 " -9.4252x10-" 

-3.6650x10-" 2.2189x10-" -6.8595x10-" -2.2189x10" -6.8595x10-" -3.6550x10'" 

0 0 0 0 0 0 

— 1/2 - V F / 2 —1/2 - V ^ / 2 —1/2 - 1 / 2 

- V 3 / 2 - 1 / 2 V 3 / 2 -1/2 V ^ / 2 - V I / 2 

0 0 0 0 0 0 

- 1 / 2 V3/2 - 1 / 2 V I / 2 -1 /2 -1 /2 

V I / 2 —1/2 - V F / 2 - 1 / 2 - V F / 2 V I / 2 

0 0 0 0 0 0 

1 0 1 0 1 1 

0 1 0 1 0 0 
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IxlQ-' 0 0 0 0 0 

0 8.4417x10"'° &57xlO^ 3.8019x10" 1x10^ 0 

0 1.4621x10-" -4.9479x10-" 6.5851x10-" 0 1x10 

1x10^ 0 0 0 0 0 

0 8/W17xlO^° -8 .57x10^ 3.8019x10-" 1x10-" 0 

0 -1.4621x10"^ -4.9479x10-" -6.5851x10 " 0 1x10 

1x10^ 0 0 0 0 0 

0 -1^^83x10^ 0 -7.6039x10-" IxlO'" 0 

0 0 9.8958x10-" 0 0 1x10 

0 7.6469x10-2 0 -9.0323x10-3 0 0 

0 -7.9046x10-3 0 7.4604x10-3 0 0 

0 4.5637x10^ 0 -4.3073x10-3 0 0 

0 7.6469x10-2 0 -9.0323x10-3 0 0 

0 7\(M46xlO^ 0 -7.4604x10-3 0 0 

0 4^:637x10^ 0 -4.3073x10-3 0 0 

0 7.6469x10-2 0 -9.0323x10-3 0 0 

0 0 0 0 0 0 

0 -9.1274x10-3 0 8X^:46x10^ 0 0 
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2jW68xlO^ 

0 

0 

28868x10^' 

0 

0 

-5.7735x10"^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5x10^ 
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0 

- 5 x 1 0 ^ 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-3.8880x10"' 

3.5904x10^" 

6.2187x10"'° 

-2.4980x10'" 

3.5904x10-'° 

-6.2187x10-'" 

28868x10^ 

14361x10^ 

0 

1.6705x10'^ 

-3.5656x10-^ 

-2.0586x10-3 

1.6705x10-2 

3.5656x10^ 

-2.0586x10-" 

-3.3410x10-" 

0 

4 J 1 7 2 x l O ^ 

-3.1089x10-9 

&2187xlO^° 

1.0771x10-9 

1.8911x10-9 

-6.2187x10-'° 

1.0771x10-9 

1.2177x10-9 

0 

0 

2.8934x10-2 

-2.0586x10-" 

3.5656x10-" 

-2.8934x10-2 

-2.0586x10-" 

-3.5656x10-" 

0 

41142x10^ 

0 

20225x10^ 

-6.3152x10-'° 

-1.0938x10-9 

4Ji317xlO^ 

-8.6547x10-" 

L4990xl0^° 

-6.1542x10-9 

-1.4361x10-9 

0 

-2 .7259x10 " 

- 5 ^ U 7 4 x l O ^ 

1.7787x10-" 

-3.0684x10-2 

-1.3049x10-2 

23385x10^ 

3.3410x10-2 

-9^%%8xlO^ 

-4.1172x10-" 

5^^85x10^ 

-4.6455x10-'° 

-8 .0462x10'° 

-4.7208x10-9 

7J919X10") 

-1.3496x10-9 

- l J U 7 7 x l O ^ 

62928x10^° 

0 

-3.7005x10-2 

1.7786x10-" 

-1.3372x10-2 

2.0863x10-2 

2.3385x10 " 

-6.2406x10-" 

1.6142x10-2 

-4.1172x10-" 

-9 .3213x10" 
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V G V = J , where J is the Real Jordan block matrix 

22.3303 0 0 0 0 0 

0 -10.0110 -10.0110 0 0 0 

0 10.0110 -10.0110 0 0 0 

0 0 0 -0.0499 -0.0499 0 

0 0 0 0.0499 -0.0499 0 

0 0 0 0 0 — 0 . 0 4 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 &9236 -0.3828 0.9236 - 0 3 8 2 8 0 0 0 0 

0 0 0 0 03828 (19236 03828 0.9236 0 0 0 0 

0 0 0 0 0 0 0.9236 - 0 3 8 2 8 (19236 -(X3828 0 0 

0 0 0 0 0 0 03828 0.9236 03828 0.9236 0 0 

0 0 0 0 0 0 0 0 0.9236 -(X3828 (19236 -0.3828 

0 0 0 0 0 0 0 0 03828 0.9236 03828 0.9236 

0 0 0 0 0 0 0 0 0 0 0.9236 -(13828 

0 0 0 0 0 0 0 0 0 0 03828 0.9236 
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APPENDIX 6.B 

TWO f MgE SHEAR VECTORS FOR THE PIN-JOINTED PRE-TWISTED FRAMEWORK, FIGURE 6.2 

w 
1 7 1 = 

3.5245x10"^ 

-9.3197x10-'° 

-1.6142x10-9 

3.2180x10-* 

2J390xl0^" 

-3.7049x10-'° 

-6.7425x10-9 

-1.4361x10-9 

0 

-1.6705x10'" 

-4.9228x10-" 

5.5975x10-^ 

-1.6705x10-" 

-1.2054x10-" 

4.0612x10-3 

3.3410x10-2 

- l J ^ 5 7 x U r 2 

-4.1172x10-" 

5.7507x10-9 

-2.9108x10-'° 

-5.0417x10-'° 

-5^%77xlO^ 

9.5265x10'° 

-1.6500x10-9 

1.7698x10-9 

1.3231x10'° 

0 

-2.8934x10-: 

5.5975x10-3 

-L4366xlO^ 

2.8934x10-" 

4.0612x10-" 

-7.2352x10'" 

0 

- 4 J 1 7 2 x l 0 ^ 

-7.3322x10-" 
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CHAPTER SEVEN 

TENSION-TORSION COUPLING OF PRE-TWISTED REPETITIVE 

STRUCTURES 

7.1 mTRODUCTION 

In this Chapter, the tension-torsion coupling of the pre-twisted structure is further 

investigated. First, there is a detailed study of the natural frequencies of vibration of a 

pre-twisted structure having (%= 22.5° (as in Chapter 6). The governing equations of 

motion for tension-torsion developed in Chapter 5 for the asymmetric structure are 

equally applicable to the pre-twisted structure, and application of the approach requires 

calculation of the mass and rotational moment of inertia about the A;-axis, per unit 

length. As with the asymmetric structure, these inertia properties are calculated 6om 

first principles, and their values may be regarded as exact. Natural frequency 

predictions, for structures of different lengths and boundary conditions, are compared 

with predictions provided by ANSYS, the latter again being taken as the benchmark for 

accuracy, in order to gauge the range of applicability of the present equivalent 

continuum approach. 

Following the procedures developed in Chapter 6, the equivalent continuum properties 

relevant to tension-torsion are determined for angles of pre-twist per cell over the range 

0° to 180°; this allows one to gauge the sensitivity of the various parameters to the 

angle of pre-twist and, in turn, allows one to qualify the remarks of previous researchers 

on the effects of pre-twist. For example, Di Prima [47] concluded that both changes of 

pre-twist rate and the depth-to-width ratios of a bar's rectangular cross section would 

have considerable effect on the natural frequencies of the predominantly torsional 

modes, but the predominantly extensional modes would not be affected significantly. 

An understanding of the dependence of these equivalent continutmi properties on the 

angle of pre-twist is gained largely from a knowledge of how the lengths of individual 

members in the cell depend on pre-twist, which is explored in some detail. 
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Finally, the natural frequencies for the fundamental modes of both torsional and 

extensional modes under various boundary conditions are determined for a 10-cell 

structure with pre-twist angle over the range 0° to 180° per cell; comparison with 

ANSYS predictions shows very nice agreement. 

Table 7.1 Compar i son of natural f requenc ies (Hz) in torsion and e x t e n s i o n according to A N S Y S a n d 

present method; f ree- f ree and cant i lever beam, L = 10 .284 m (30 ce l l s ) 

Free-free beam Cantilever beam 

n ANSYS Torsional Extensional ANSYS Torsional Extensional 

1 56.4051 

2 112.7111 

3 147.2962 

4 168.8179 

5 224.6235 

6 280.0243 

7 294.7308 

8 334.9093 

9 389.1687 

10 442.4367 

11 442.6843 

12 495.3336 

13 546.9881 

14 590.5353 

56.4216 
(+0.03%) 
112.8432 
(+0.12%) 

169.2648 
(+0.26%) 
225.6864 
(+0.47%) 
282.1080 
(+0.74%) 

338.5296 
(+1.08%) 
394.9512 
(+1.49%) 

451.3728 
(+1.96%) 
507.7944 
(+2.52%) 
564.2160 
(+3.15%) 

147.2730 
(-0.02%) 

294.5460 
(-0.06%) 

441.8090 
(-0.14%) 

589.1030 
(-0.24%) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

28.2216 

73.7293 

84.6157 

140.8601 

196.8542 

221.2605 

252.4977 

307.6788 

362.2828 

369.0115 

416.2216 

469.3422 

517.0671 

521.5608 

28.2108 
(-0.04%) 

84.6324 
(+0.02%) 
141.0540 
(+0.14%) 
197.4756 
(+0.32%) 

253.8972 
(+0.55%) 
310.3188 
(+0.86%) 
366.7404 
(+1.23%) 

423.1620 
(+1.67%) 
479.5836 
(+2.18%) 

536.0052 
(+2.77%) 

73.6365 
(-0.13%) 

220.9095 
(-0.16%) 

368.1825 
(-0.22%) 

515.4555 
(-0.31%) 
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7.2 VIBRATION ANALYSIS FOR PRE-TWIST ANGLE OF 22.5° PER CELL 

First the mass and rotational moment of inertia, both per unit length, are calculated from 

first principles as /» = 0.8794 kg/m, and = 2.2203x10"^ kgm. The natural 

frequency predictions shown in Tables 7.1 and 7.2 employ the relevant equations from 

Chapter 5, and are compared with those &om ANSYS, again employing 

matrices; the latter are regarded as the benchmark for accuracy. 

Table 7.2 Compar i son of natural f requencies (Hz) in torsion and e x t e n s i o n according to A N S Y S and 

present method; f ree- f ree and f ixed- f ixed beam, L = 3 . 4 2 8 m (10 cells) 

Free-free beam Cantilever beam 

n ANSYS Torsional Extensional n ANSYS Torsional Extensional 

1 168.8107 
169.2468 
(+0.26%) 

1 84.6916 
84.6324 

(-0.07%) 

2 334.8527 
338.5296 
(+1.10%) 

2 221.7947 
220.9095 
(-0.40%) 

3 442.3925 
441.8190 
(-0.13%) 

3 252.7148 
253.8972 
(+0.47%) 

4 495.1505 
507.7944 
(+2.55%) 

4 416.984 
423.1620 
(+1.60%) 

5 646.3602 
677.0592 
(+4.75%) 

5 572.9175 
592.4268 
(+3.41%) 

6 784.7169 
846.3240 
(+7.85%) 

6 667.2068 
662.7285 
(-0.67%) 

7 887.8699 
883.6380 
(-0.48%) 

7 718.4749 
761.6916 
(+6.02%) 

For the slender rod, Table 7.1, there is excellent agreement up to the lO"' torsional mode 

(+0.03% to +3.15% for the 6ee-&ee beam, -0.04% to +2.77% for the cantilever beam), 

and up to the 4"̂  extensional mode (-0.02% to -0.24% for the firee-&ee beam, and 

-0.13% to -0.31% for the cantilever beam). For the short beam, Table 7.2, the 

agreement is still very good up to the S"' torsional mode (+0.26% to +7.85% for the 

&ee-free beam, —0.07% to +6.02% for the cantilever beam), and up to the 2"̂  

extensional mode (-0.13% to -0.48% for the free-free beam, and -0.40% to -0.67% for 

the cantilever beam). 
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7.3 EQUIVALENT CONTINUUM PROPERTIES FOR ANGLES OF PRE-

TWIST OVER THE RANGE 0 TO 180 

Here, interest is focused on the two principal vectors of tension and torsion, which, 

together with their coupled eigenvectors of rigid body displacement in the x-direction, 

and rigid body rotation about the x-axis, are associated with the fourfold multiple (real) 

unity eigenvalue. These allow calculation of the equivalent stiffness properties within 

the coupled equations 

( 7 . 1 ) 

— ^ + (7.2) 

Here is the equivalent cross-sectional area, J is the equivalent torsion constant and 

is the coupling coeHicient for tension-torsion. The shear modulus G is determined 

&om the expression G = ^ / 2 ( l + v ) , i n which Young's modulus E is regarded as the 

same as the members that make up the &amework; Poisson's ratio y is calculated &om 

the cross-sectional contraction contained within the tension vector. These quantities 

were calculated in Chapter 6 for an angle of pre-twist of22.5°; now they have been 

calculated and plotted over the range 0° to 180°, with steps of 1°. 

However, before discussing these results, first consider Figure 7.1, which shows how 

the lengths of three typical members depend upon pre-twist angle, a. denotes the 

length of the member joining nodes 3 and 6, and for the straight structure it is horizontal 

and parallel to the jc-axis. D26 and D35 are the lengths of the diagonals in the face 

defined by nodes 2, 3, 6 and 5. Each is representative of three of its type; obviously, the 

angle of pre-twist has no effect on the length of the members that constitute the cross-

sections. It is convenient to consider three distinct ranges (A, B and C) of pre-twist 

angle: for 0° < or < 60° (A), Tifsg and D26 both increase in length, while D35 decreases. 

For 60° < or < 120° (B), 7/35 increases while both (initially) diagonal members 

decrease in length, and for 120° < or < 180° (C), i/36 and D35 both increase in length, 

while D26 decreases. 
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pre-twist angle per cell (degrees) 

140 160 180 

Figure 7.1. Variat ion of the lengths of d i f ferent m e m b e r s with pre - twis t angle . 
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Figure 7.2. Varia t ion of mass per unit length wi th pre- twis t angle. 
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Now the mass per unit length, m, depends solely on the length of the members; but in 

the example structure, the initially horizontal member has a cross-sectional area 

double that of a diagonal member, so its contribution is dominant. Thus over range A, 

the contributions from the (initially) diagonal members lead to a reduction in m, but this 

is more than offset by the increasing contribution from %6. Over range B, the 

contribution from increases at a near linear rate, while both diagonal members lead 

to a near linear reduction, and the net effect is again a linear increase. Finally, in range 

C, the contribution &om 7̂ 36 increases at a declining rate, while the contributions 6om 

the diagonals leads to a reduction in /M, as in range A; however, the contribution 6om 

i/36 is still dominant. Thus the length changes clearly explain the characteristic shown 

in Figure 7.2. 

1.02 

W) 
c 

o 
Z 

0.98 

0 .96 

0 .94 

0 .92 

0 .9 

0.6 
20 4 0 60 80 100 120 

pre-twist angle per cell (degrees) 

140 160 180 

Figure 7.3. Var ia t ion of rotary m o m e n t of inertia per unit length with p r e - t w i s t angle . 

The variation in moment of inertia per unit length, is shown in Figure 7.3; again this 

may be discussed over the three ranges. However, at first sight, one might expect the 

increase in mass per unit length to automatically lead to an increase in which is not 

the case. Rather, the moment of inertia is linearly dependent on the mass of a member, 

but depends also on the square of the distance from the centroidal x-axis, through the 
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parallel axes theorem, and this is the dominant feature. Moreover, inclination of the 

members changes throughout the range, so one has several factors contributing to the 

characteristic. 

H 0.14 

40 M 80 100 120 140 
pre-twist angle per cell (degrees) 

180 

Figure 7.4. Varia t ion of the dis tances of d i f ferent m e m b e r s f r o m the cen t ro ida l jt-axis with pre- twist angle . 

Figure 7.4 shows how the distances of three typical members from the centroidal x-axis 

depend upon pre-twist angle, a. DH^e denotes the distance of the horizontal member 

joining nodes 3 and 6 from the centroidal x-axis, and DD26 DD35 are the distances of 

the diagonals in the face defined by nodes 2, 3, 6 and 5 &om the centroidal x-axis. Over 

range A, the initially horizontal members move closer to the x-axis, but not by much; of 

the diagonal members, one will move close, while the other will move further away, and 

the net result is that Jx remains essentially constant. Over range B, as indicated in 

Figure 7.4, the initial horizontal members move toward the x-axis at a rather fast rate, 

while both diagonal members move away Aom the x-axis. Consider two pre-twist 

angles, 0° and 120°: the length of DDzg at <%= 120° is equal to 2)̂ )35 at (%= 0°, while 

and 2)^26 at ar= 120° are equal to DD26 and D7:Z36 at 0°, respectively. 

Therefore, only three horizontal members and three diagonal members are considered 

for their contribution to the overall variations of X. Note that the horizontal members 
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are dominant. Thus, over this range, 7^ decreases at a near constant rate, as does 

Over range C, D/fga keeps on decreasing at a constant rate, which is slightly faster than 

that of range B, and DD26 increases at a similar rate as that of range B, while D D 3 5 

decreases slowly. Therefore, compared with range B, one would expect an even faster 

decreasing rate of over range C. However, the net result is that decreases at a 

slower rate, and this may be due to contributions from other factors such as the overall 

increase of mass and more inclination of members. 

eg 

i 

g -o 

o 
Z 

0.55 
40 60 80 100 120 

pre-twist angle per cell (degrees) 

160 180 

Figure 7.5. Variation of cross-sectional area with pre-twist angle. 

Figure 7.5 shows variation in the equivalent cross-sectional area, and this is equivalent 

to axial stiffness; again it is convenient to consider the three regions. For the straight 

structure the equivalent axial stifGiess is equal to that of the horizontal members 

together with necessarily positive contribution from the diagonal members and also 

from the members which constitute the cross-section, as discussed in Chapter 3. Over 

range A, the length of the (initially) horizontal bars increases as Figure 7.1, and 

since the stiffness of a member is inversely proportional to its length, this leads to a 

reduction in axial stiffness. In addition, the inclination of these members to the x-axis, 

compounds this reduction, since inclined members contribute less. The length changes 
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for the diagonal members leads to an overall increase in stifbess, and the angle changes 

will be largely neutral, but the horizontal members are dominant. 

For range B, the equivalent stifEhess remains essentially constant; the lengths of all 

diagonal members decrease, leading to increased stiffness, while the horizontal 

members increase in length, leading to reduction in stiffness. Clearly, the two effects 

more or less cancel. Over the region C, lengths of three originally diagonal members 

will decrease and lengths of another three will increase, again, the effect of three 

originally horizontal members on the changing of the equivalent axial stiffness will 

dominates, therefore it starts to decrease more rapidly again. 
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Figure 7.6. Variation of Poisson 's ratio with pre-twist angle. 

The variation in Poisson's ratio v is shown in Figure 7.6; for zero pre-twist one has a 

value of v = 0.26120, and this increases throughout range A to give a maximum value 

of y = 0.38246 at (%= 71°. Poisson's ratio contraction implies a decrease in length of 

the cross-sectional members. For the straight structure, if there were no diagonal 

members, then one would have v = 0; it is the presence of the diagonal bars which leads 

to compressive loads in these cross-sectional members, and their reduction in length. 

Over range A, the initially horizontal members, which have dominant stif&ess, become 
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inclined to the x-axis, leading to increased compressive loads on the cross-sectional 

members, and hence increased contraction, and Poisson's ratio. Over range B, initially 

diagonal members become horizontal, leading to a reduction in the compressive loads in 

the cross-sectional members, and hence a reduction in Poisson's ratio to a local 

minimum, v = 0.34613 , at 124°. Over range C, these members again become inclined 

to the x-axis, which leads to an increase in the cross-sectional contraction, and hence an 

increase to a local maximum, v = 0.37595 , at 180°. The trend for the shear modulus 

G is shown in Figure 7.7, and is a direct consequence of the relationship of 

G = i i /2 (1 + y) , in which E is treated as constant. 

1 
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Figure 7.7. Variation of shear modulus with pre-twist angle. 

Variation in the torsion constant, J, is shown in Figure 7.8; for the straight structure, 

J = 8.2972x10"^ m'*, and this increases over range A to a maximum of 

J = 2.4868x10"^ m'* at or = 64°; this is almost exactly a threefold increase, and 

represents the largest sensitivity to pre-twist angle. Again, imagine a straight structure 

having no diagonal members: its torsional stiffness would be zero, as the cell would be a 

mechanism under torsional loading. Under torsion, it is the diagonal members that 

provide torsional stiffness, as they undergo tension or compression. As the pre-twist 
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angle increases, so the initially horizontal members become inclined, and start to 

withstand tension or compression during torsion. At (%= 60°, all of the initially 

horizontal and diagonal members are inclined to the %-axis, leading to the maximum 

stiffness at 64°. Over range B, three (initially) diagonal members gradually shift to 

become parallel to the %-axis, and this leads to the decrease in torsional stifSiess. Last, 

over range C, all these members shift away from being parallel to the x-axis, and hence 

the increase in the torsional stif&ess. 
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Figure 7.8. Variation of torsion constant with pre-twist angle. 

Since Young's modulus .E is constant, the axial stif&ess E/4 varies in a manner 

identical to area A, Figure 7.9; however, both parameters within the torsional stiffness, 

GJ, vary with pre-twist angle, and their product is shown in Figure 7.10. These results 

show that the axial stif&ess decreases while the torsional stifhess increases, with 

increased angle of pre-twist, when the latter is small, which agrees with previous results 

of [46]. Bearing in mind the relevant axis scales in Figures 7.7 and 7.8, the shear 

modulus G is much less sensitive to variations in the pre-twist angle a; than the torsion 

constant J, so it is the latter which dominates their conflicting trends in the torsional 

stiffness product GJ ; thus the trends in Figures 7.10 and 7.8 are near identical. 
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In contrast, the characteristic of the axial stiffness product EA, which is the same as the 

equivalent cross-sectional area characteristic, Figure 7.9, does not show the same 

sensitivity, or indeed fluctuations, to pre-twist angle. Thus it is no surprise that torsional 

natural frequencies should be more sensitive to pre-twist angle than are the extensional 

&equencies. 

x10 

w: -1.5 

40 60 80 100 120 
pre-twist angle per cell (degrees) 

160 180 

Figure 7.11. Variation of tension-torsion coupling coeff icient with pre - twis t angle. 

Tension-torsion coupling is caused by asymmetry of the structure, and variation in the 

coefficient is shown in Figure 7.11. The coefficient is zero for the straight structure, 

and decreases to a global minimum of = -2.3571x10^ Nm at or = 40°, which 

represents the largest coupling between tension and torsion; in contrast to the other 

equivalent properties, this minimum does not occur close to a pre-twist angle of 60° or 

120°, so discussion does not fall neatly into ranges A, B and C. 

For small angles of pre-twist, the initially horizontal members become inclined to the x-

axis; under tension they attempt to re-align themselves with the x-axis, resulting in 

rotation of the cross-section. In the absence of (initially) diagonal members in the faces 

of the cell, the cross-section would be free to rotate, and the cell would fully straighten 

7.13 



before becoming stiff; thus it is the relative stiffness' of these diagonals (compared to 

the horizontals) that controls the degree of rotation induced by the tensile force, hideed, 

under tension, coupling is encouraged by axial stif&iess (the horizontals) being greater 

than torsional stif&ess (the diagonals). Equivalently, under a twisting moment, in the 

absence of the (initially) horizontal members, the cross-sections would be &ee to move 

apart (or closer together, according to the sense of the moment); again that elongation is 

controlled by the relative stiffness' of the horizontals and diagonals. Indeed, under a 

twisting moment, coupling is encouraged by the torsional stiffness (the diagonals) being 

greater than the axial stif&iess (the horizontals). Additional to the above, as pre-twist 

angle increases, so (initially) horizontals become diagonals, and vice-versa, with further 

stiffness changes on account of the differing cross-sectional areas. So again one has 

many factors contributing to the overall characteristic. 

7.4 VIBRATION ANALYSIS OVER THE RANGE 0 TO 180 . 

The variation in natural fi-equency of the fimdamental torsional and extensional modes, 

with pre-twist angle, is shown in Figures 7.12 and 7.13, respectively, for a ten-cell 

structure. First one notes that coupling has the effect of depressing the higher natural 

frequency of the predominantly extensional mode, while increasing the lower natural 

frequency of the predominantly torsional mode; coupling brings the frequencies closer 

together. For small angles, one can also see that the torsional frequencies are more 

affected than the extensional, which is consistent with Di Prima [47]. Indeed, the 

torsional frequencies are much more sensitive to angle of pre-twist over the entire range 

considered. The differences between the equivalent contimium predictions, and those 

provided by ANSYS, are shown in Figure 7.14, indicating that the errors are confined 

within the range of-1.5% to +1.0%. 
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CHAPTER EIGHT 

CONCLUSIONS AND RECOMMDENDATIONS 

The research presented in this thesis is largely concerned with the continuum modelling 

of repetitive beam-like structures; the main method employed is the eigenanalysis of a 

state variable transfer matrix G, which can be derived by manipulation of the stiffness 

matrix K of a single cell. Non-unity eigenvalues describe the rate of decay of the 

associated eigenvector, as anticipated by Saint-Venant's principle, while the multiple 

(possibly complex) unity eigenvalues pertain to the transmission of end loading, as in 

Saint-Venant's problem, together with the rigid body displacements and rotations. 

The majority of the structures considered are treated as pin-jointed, as the Finite Element 

Analysis of such structures may be regarded as exact; in turn, the predictions of the 

methods developed here have been verified by comparison with these FE simulations. 

Justification is provided in Chapter 2, where the general theory of the state variable 

transfer matrix method is presented, and employed to analyse a 2-D rigid-jointed planar 

framework; both the Saint-Venant decay rates and the equivalent continuum beam 

properties are determined. Compared with the pin-jointed case examined in [10], a 

direct consequence of introducing a rotational degree of &eedom for the rigid-jointed 

framework is a 50% increase in size of the transfer matrix and state vector, leading to 

three new pairs of decay eigenvalues, whose associated eigenvectors are characterised by 

comparatively large self-equilibrated nodal moments and shearing forces within the 

generalised force vector. Rigid-jointing has no effect on the multiplicity of the unity 

eigenvalues, which remains at six, and is fixed by the planar nature of the structure; it 

does have the effect of introducing small nodal moments - indeed just sufficient that the 

nodal rotation components should transmit with unity eigenvalue - and these moments 

are included in the calculation of the resultant bending moment for determination of the 

equivalent second moment of area. Comparison of the decay rates and equivalent 

properties of the two frameworks lead to the conclusion that rigid jointing does make the 

structure stiffer, but the increase is quite negligible. The treatment of rigid-jointed 
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structures as pin-jointed is thus justified, at least as far as determination of the equivalent 

continuum beam properties is concerned, and the assumption of pin-jointing is employed 

throughout the remainder of the thesis. 

In Chapter 3, rather independently, an alternative analytical method is presented for 

determination of the equivalent continuum properties of the symmetric repetitive 

structure considered in Chapter 2, but now treated as pin-jointed. The method requires 

only knowledge of the stifBiess matrix K, and relies upon the ability to deduce the cell 

displacement vectors for tension, bending moment and shearing force, a process aided by 

the planar nature and symmetry of the structure. The tension displacement vector 

contains the Poisson's ratio as an unknown, and this is determined by a once andfor all 

minimisation of strain energy. For less symmetric structure, and those involving torsion, 

deduction of the vector is slightly more complicated, but still quite straightforward. 

Extension of the process to two-dimensional, plate-like structure is also possible. 

In Chapter 4, eigenanalysis is applied to a 3-D (space) asymmetric 6amework, which 

has seen practical use by NASA as a deployable boom, in connection with the 

International Space Station. Since a particular partition of the stiffness matrix K is 

singular (when treated as pin-jointed), construction of the transfer matrix G is 

impossible. Instead, a generalised eigenvalue problem is presented, which does not 

require inversion of the partitioned stiffness matrix and thus can be applied to repetitive 

structures of a more general character. The presence of zero decay eigenvalues implies 

that self-equilibrated loading does not penetrate into the structure at all, and that one can 

have loads and displacements on the left hand side of the cell which are quite unrelated 

with those on the right hand side - indeed this is precisely why the partition of K is 

singular, and the conventional transfer matrix does not exist. The vectors associated 

with the multiple unity eigenvalues reveal some unexpected coupling between various 

displacement modes. First, tension is coupled with torsion, which is the known 

behaviour of pre-twisted structures. Second, bending is coupled with a shear deflection 

in the perpendicular plane. In order to understand the cause of this coupling, 

eigenanalysis of a simpler 2-D planar asymmetric framework, representing a single face 

of the 3-D NASA truss, shows a tension-shear coupling, which is sufficient to explain the 
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tension-torsion and bending-shear couplings of the 3-D truss. The generahsed 

coupled force-displacement equations for the tension-torsion and bending-shear 

couplings are provided which allows one to determine the equivalent continuum beam 

properties of the truss, which in turn also validates the static coupled equations assumed. 

In Chapter 5, the dynamic continuum beam theories for coupled tension-torsion and 

bending-shear of the 3-D truss are derived through the use of Hamilton's 

principle, and solved for a variety end conditions. The equivalent continuum properties 

employed are those found in Chapter 4, while the inertia properties were calculated by 

elementary means. The predicted natural frequencies are in fairly good agreement with 

those obtained &om the FEM. For best agreement, the 7M<zy.y matrix is employed 

for the flexural modes predictions, while the matrix is used for the 

extensional and torsional modes predictions, within the FEM. This shows that the 

combined approach of the and 

two of Noor's classifications, can provide an efficient and accurate means for the 

prediction of the global dynamic behaviour of the repetitive structure. 

In part motivated by the unexpected tension-torsion coupling of the asymmetric 7V/4&4 

truss, Chapter 6 presents an extension of the transfer matrix approach to pin-jointed 

structuies having a pre-twisted form, which are known to possess such coupling. 

Employing a local coordinate system that rotates with the cross-section, allows one to 

construct an autonomous transfer matrix G , which is the same for each of the repeating 

cells; within global coordinates, the transfer matrix depends on the index of the cell. The 

existence of such an autonomous matrix forms part of Floquet theory, and the structural 

example presented, with its inherent spatial periodicity, is perhaps easier to visualise 

than systems possessing temporal periodicity, where this theory is more usually applied. 

Besides the non-unity eigenvalues that describe Saint-Venant decay, eight of the twelve 

unity eigenvalues which one expects for a 3-D beam-like &amework become complex; 

the real and imaginary parts are the cosine and sine of the angle of pre-twist per cell, 

respectively, and occur as corrugates as they must. 
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The four real unity eigenvalues are associated with rigid body displacements in, and 

rotation about, the axial direction, together with tension and torsion; these are coupled 

within a 4 X 4 Jordan block, indicating the expected tension-torsion coupling. The 

equivalent continuum beam properties such as cross-sectional area, Poisson's ratio, 

torsion constant and the tension-torsion coupling coefficients, are determined through 

physical interpretation of the vectors; the resulting coupled equations are in agreement 

with existing theories which have been developed for continuum pre-twisted structures, 

such as a turbine blade. Much of the simplicity of this tension-torsion coupling can no 

doubt be attributed to the well-known fact that finite rotations do not commute; for 

tension-torsion coupling, however, this is not a problem, as the rotation during 

deformation either adds to, or subtracts 6om, the existing pre-twist of the structure, 

according to the sense of the applied loads. 

For the eight complex unity eigenvalues, pertaining to the remaining transmission modes 

- transverse rigid body displacements, rotations, bending moments and shearing forces -

a variety of strategies have been presented for determination of the eigen- and principal 

vectors, each of which leads to a different Jordan decomposition of the transfer matrix 

G . Those which lead to the simplest, standard Jordan canonical form, which has the 

repeating eigenvalue on the diagonal, and a unity on the super-diagonal, lead to complex 

vectors which are the most difficult to interpret. On the other hand, the simplest possible 

interpretation of the vectors is when the force and displacement components on both 

sides of the cell are expressed within a global coordinate system, and this leads to a 

block Jordan decomposition in which a real block replaces not only the complex unity 

eigenvalue on the leading diagonal, but also the customary real unity on the super-

diagonal. 

However, reconciliation of these bending moment and shearing force vectors with 

existing theories for bending/flexure of pre-twisted structures has proved frustrating. 

While the tension-torsion coupling model employed for the asymmetric 3-D NASA truss, 

Chapter 4, readily extends to the pre-twisted structure; the same cannot be said for the 

moment-shear coupling, as it leads to asymmetric coupling coefficients within the matrix 

constitutive relationship. This is not what one expects within the context of a linear 
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theory, being contrary to the reciprocal theorem. On the other hand, none of the known 

existing theories for the bending of pre-twisted structures makes allowance for the 

coupling of bending curvature with shear in a perpendicular plane, as found. 

Reconciliation of these differences represents a m^or recommendation for further 

research - either construction of a continuum beam theory for bending of structures 

having pre-twisted form which can accommodate the presently observed coupling, or an 

alternative interpretation of the vectors for bending moment and shearing force which is 

in agreement with an existing theory. Or perhaps something in between: after all, the 

present eigenanalysis of an, albeit idealised, pin-jointed structure is probably the only 

exact elastic analysis of a structure having pre-twisted form, and deserves 

accommodation. 

Bearing in mind the above dilemma. Chapter 7 concentrates on the tension-torsion 

coupling of a pin-jointed pre-twisted repetitive structure, for which the nature of the 

coupling appears to be unambiguous, and fully investigates the variation of the 

equivalent continuum beam properties over the range of 0° to 180° of pre-twist angle per 

cell. The variation of these stiffness properties can be largely understood &om an 

appreciation of the changes in length of individual members with angle of pre-twist, 

together with their inclination to the axis of the rod. Just as in Chapter 4, these 

equivalent continuum properties, together with the mass and rotary moment of inertia 

per unit length, are then employed into suitably modified continuimi dynamic beam 

theories for vibration analysis. For the specific case of pre-twist angle per cell of 

a-22.5°, as considered in Chapter 6, natural frequencies under free-free and fixed-free 

end conditions are predicted for rods consisting of 10 and 30 repeating cells, and 

compared with FEM predictions. Not surprisingly, better agreement is found for the 

longer 30 cell case, when the maximum difference between the FEM predictions, and 

those according to the methods described in the present thesis are about 3% for the 

lowest 14 modes of vibration. For the shorter, 10 cell rod, the same accuracy is obtained 

for the lowest four or five modes of vibration. 
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In any vibration analysis, knowledge of the lowest, fundamental, frequency is of prime 

importance - damping tends to be smallest, so that amplitudes of forced vibration at 

resonance tend to be the largest. Moreover, if one seeks to avoid excitation of oMy 

resonance, so long as the highest Aequency of excitation is lower than that of the lowest 

natural frequency, it is obviously lower than all natural frequencies. For coupled 

tension-torsion, these fimdamental natural Aequencies, again for 6ee-free and fixed-A-ee 

end conditions and for the more onerous, shorter, 10 cell structure, are compared with 

FE predictions over the range of 0° to 180° of pre-twist angle per cell. Differences in 

natural frequency prediction are less than ± 1.5%, which lends considerable support to 

the accuracy of the methods employed within this thesis. 

The major new avenues for research, building on the work described in this thesis, are in 

the area of pre-twisted structures; the first challenge is a resolution the constitutive 

relationships describing coupled bending-shear, in particular those issues leading to 

asymmetry of the coupling coefficients. For tension-torsion coupling, this issue does not 

arise, and one can envisage a more in-depth study of this aspect of the elastic behaviour 

of pre-twisted structures, initially for pin-jointed structures not having the equilateral 

cross-section considered here, but for a range of more general cross-sections, for 

example a rectangle, or an isosceles triangle, and cross-sections for which the shear 

centre and centre of area (and mass) do not coincide, leading to tension-torsion-flexure 

coupling. Extension of these methods to continuum rods, rather than the discrete pin-

jointed structures considered here, is possible using the super-element techniques 

described in [12]; initially these were employed as a procedure for determination of 

Saint-Venant decay rates for straight rods of arbitrary cross-section for which analytical 

solution is impossible - stiffness properties were not determined, as the most important 

properties of cross-sectional and second moment of area can be determined by familiar 

methods. 

In the real world, the concept of a perfect periodic structure is an idealisation. The 

theory originated in the study of the behaviour of the constituent atoms of crystalline 

solids, which come closest to perfect periodicity; however, the existence of atomic 

isotopes introduces some disorder. In an engineering context, due to reasons such as 



material variance, manufacturing tolerances, etc, many periodic structures can only be 

regarded as near-periodic. Near-periodic structures can be categorised into two m^or 

classes: which contain only one element that is not identical to the 

others, and having many elements which deviate &om the averaged element 

regarded as repeating. /Me/Aock have been extended to analyse wave 

propagation in neai-periodic structures, in which perturbation, deterministic and 

probabilistic, and other statistical approaches are incorporated, and have proven to be 

very successful, see [78] for a review. 

Single disorder can be readily accommodated within the methods described in this 

thesis: a lack of fit, or the presence of a more flexible element, may be regarded as a 

local self-equilibrated load which will decay according to Saint-Venant's principle and 

the equivalent beam properties will be largely unchanged, so long as the deviation is not 

large. For general disorder, so long as the probability distributions are spatially 

invariant, one can reduce the analysis of the imperfect structure to an equivalent one for 

the ideal, [79]. 

Thus, the existence of disorder does not detract from the value of periodic structure 

theory - after all, if one were to analyse a complete, nominally periodic, structure, the 

location of any disorder is unlikely to be known in advance; manufacturing tolerances 

are always present, but less frequently modelled. Adequate quality control should ensure 

that elements having material defect and unacceptable dimensional tolerance are not 

present. Rather, it is more important that the possible consequences of disorder are taken 

into account. In dynamic analysis, disorder can produce the phenomenon of localisation, 

where the amplitude of one of the nominally identical elements, is significantly greater 

than the others; this is thought to be the cause of premature fatigue failure of turbine 

blades. Localisation also has implications for the design of systems for the control of 

large space structures, including vibration suppression, and shape and directional 

control: control schemes can become effective or unstable. 
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