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Eigenanalysis is applied to three major types of repetitive structures: rigid-jointed,
asymmetric, and pre-twisted.

For a 2-D rigid-jointed repetitive structure, the general idea of the State Variable
Transfer Matrix Method is presented. This provides not only an exposition of the
approach, but also justification for the treatment of rigid-jointed structures as pin-
jointed.

For an asymmetric repetitive structure, a generalised eigenproblem is developed due to
the non-existence of the conventional transfer matrix. Analysis of a 3-D NASA truss
reveals couplings of tension-torsion, and bending-shear, and the equivalent continuum
beam properties are determined. To fully understand these coupling effects, a 2-D
planar asymmetric framework representing a single face of the 3-D truss is also
analysed. Further, the continuum beam dynamic theories for the tension-torsion and
bending-shear couplings are derived through the application of Hamilton’s principle,
and natural frequency predictions of the 3-D NASA truss are compared with those from
FEM.

For a pre-twisted repetitive structure with uniform pre-twist rate, the Floquet system is
transformed into an autonomous system by introducing a local coordinate system to
define the transfer matrix, prior to eigenanalysis. For the multiple complex unity
eigenvalues, near diagonal Jordan decompositions are employed to determine the
simplest eigen- and principal vectors. Equivalent continuum properties including
coupling coefficients are determined. The tension-torsion coupling agrees with
established pre-twisted beam theory, but the bending and shear vectors cannot be fully
explained according to existing approximate bending theory for pre-twisted structures.
An in-depth study of tension-torsion coupling, both static and dynamic, is presented for
structures with pre-twist angles per cell over the range of 0" to 180. Variations of the
equivalent continuum properties are also evaluated over this range.

Moreover, an alternative analytical approach is developed for the continuum modelling
of a symmetric repetitive structure, based on minimisation of potential energy of a
single cell.
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CHAPTER ONE
INTRODUCTION

Periodic, or repetitive structures consist of a basic cell, which repeats in one, two or
three directions. A rail track supported on equally spaced sleepers, and a honeycomb
sandwich panel, are examples of one-dimensional (beam-like) and two-dimensional
(plate-like) periodic structures, respectively. This thesis is concerned primarily with the
static analysis of one-dimensional (beam-like) repetitive structures. Since the
manufacture and construction, or assembly, of repetitive structures is also a repetitive
process, they often represent a cost effective design solution in many mechanical, civil
and aerospace engineering applications. Due to their low cost, lightweight, and high
stiffness, together with ease of packaging, trénsportation and assembly, repetitive lattice
structures have become the dominant form for future space applications such as large

space stations, space mirrors and deployable antenna systems.

In the majority of what follows, the repeating cell is regarded as consisting of several
pin-jointed members. This choice has been made primarily because the finite element
analysis (FEA) of such structures involves a rod in tension or compression only, whose
finite element is “‘exact”; thus the computational process alone limits the accuracy of
FEA of pin-jointed structures. In turn, this means that results obtained from the primary
analytical tool employed in the thesis — eigenanalysis — can be verified by comparison
with what may be regarded as exact results. This does not imply that pin-jointed
structures are not of interest in their own right; indeed the removal of members from
such a structure can reduce it to a mechanism, which in turn allows its transportation in
a very compact form, an attribute which finds favour in space application. On the other
hand, repetitive structures are not limited to frameworks either rigid- or pin-jointed. For
example a continuum structure such as a metre rule could be regarded as repetitive were
it not for the different, progressive, numbering along its edge — each centimetre of rule is

identical to that preceding it.
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The analysis of one-dimensional beam-like structures, be they a continuum or a
framework, is historically linked to the French elastician Barre de Saint-Venant. For a
continuum elastic beam of arbitrary (but constant) cross-section, solution of a practical
problem such as determination of its torsional stiffness, requires the determination of
stress and displacement fields, which must satisfy exactly the equilibrium equations, the
strain compatibility equations', the Hooke’s law and the boundary conditions. If the
beam is loaded at its ends only, then this is one of a set of problems known as Saint-
Venant’s problem, the others being tension, pure bending, and bending caused by a
shearing force applied to one end. In each case, the condition on part of the boundary is
that the surface generator of the beam (which is, in fact, the majority of the boundary)
should be free of external tractions. However, such exact solutions can generally be
found only when the conditions at the ends of the beam (which are a minority of the
total boundary), are relaxed in some sense, and this process is an application of what is

known as Saint-Venant’s principle (SVP).

In applying SVP, an actual load system on part of the elastic body or structural element
is replaced by a statically equivalent load, distributed in a particular way demanded by
the elastostatic solution - this represents the relaxed boundary condition at the beam
ends. Statically equivalent implies that the resultant force and moment remain
unchanged. The difference between the two load distributions is termed self-
equilibrating, and since it has no resultant force or couple that requires reaction at some
other locations on the structure, there is no reason why the associated stress and strain
field should penetrate any great distance into the structure. That is, the self-equilibrating
load should produce only a local effect, which decays exponentially as one moves away

from the beam end.

The discussion above implies that the exact distribution of the end load, such as a
twisting moment, is actually known; invoking SVP is then equivalent to replacing the
actual means of load application by that demanded by the solution, and arguing that this

has only a local effect. More often than not, however, the structural analyst knows only

1 These may be avoided if the equilibrium equations are expressed in terms of displacement (Navier
equations) rather than stress.
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the magnitude of an end load, and does not know its exact distribution. Thus SVP is
rarely invoked consciously, yet it underpins much of the discipline known as Strength of

Materials.

The first proof of SVP for continuum beams was provided by Toupin [1] in 1965, and
there has been extensive research in the field since that time, with reviews having been
provided by Horgan and Knowles, [2-4]. Recently, several additions to the stock of
exact elasticity solutions describing Saint-Venant decay in continuum beams have been
made by Stephen and his co-workers at the University of Southampton [5-8]; typically
these are for beams having mathematically amenable cross-sections, such as the hollow

circular cross-section.

The first application of SVP to pin-jointed frameworks was provided by Hoff [9] in
1945. More recently Stephen and Wang, [10], developed an approach based upon the
eigenanalysis of a state variable transfer matrix of a pin-jointed repetitive structure
which unifies the two problems bearing the name of Saint-Venant: the decay of self-
equilibrated loading (Saint-Venant’s principle) and the transmission of resultant forces
and moments applied at the end of the structure only (Saint-Venant’s problem). The
Saint-Venant decay rates are the non-unity eigenvalues of the transfer matrix, while the
equivalent continuum beam properties of the framework were determined from the
eigen- and principal vectors associated with the multiple unity eigenvalues.

Further, these equivalent continuum properties have been employed in conventional
beam theories [11], allowing the efficient analysis of the global behaviour of the
repetitive structure (for example, vibration and its feedback control, global buckling,
etc) most suitable for the preliminary design process. Comparison with the predictions
from FEA suggested excellent agreement of natural frequencies, provided that the semi-

wavelength is greater than the depth of the cell.

Stephen and Wang [12] have extended the transfer matrix approach to investigate the
Saint-Venant decay rates of prismatic continuum beam with general cross-section, for
which exact analytical solutions are unavailable. A representative length of the

continuum beam is first modelled using the Finite Element Method (FEM), from which
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the stiffness matrix is determined. A substructure technique then generates a super-
element whose stiffness matrix relates master forces and displacements components at
either end of the representative length (components at s/ave nodes in the interior of the
model are condensed out of the stiffness matrix), from which the transfer matrix can be
formulated. Generation of this super-element is readily accomplished within a FEA

package, such as ANSYS.

The transfer matrix approach of Stephen and Wang [10] may be regarded as the
foundation, and also the point of departure, for the work described in this thesis. In
particular, the method is applied first to repetitive structures having rigid rather than pin-
joints, from which it is concluded that the method of joining has negligible effect upon
the equivalent continuum properties, but introduces additional modes of decay
associated with self-equilibrated moments. Second, an alternative approach is
developed for determination of the equivalent continuum properties without resorting to
eigenanalysis. The new method requires a knowledge of the stiffness matrix K of the
single repeating cell of the repetitive structure, together with the ability to deduce the
cell displacement vectors for tension, bending moment and shearing force; a once and
Jor all application of the principle of minimum potential energy for tension yields an
analytical expression for the equivalent Poisson’s ratio, from which all the remaining
properties such as cross-sectional area, second moment of area and shear coefficient can

be obtained.

The two topics briefly described above are preliminary to the two major topics within
the thesis, the first of which is the analysis of an actual truss modelled upon a
demonstrator NASA structure [13] deployed from the space shuttle (NASA STS61B8-120-
052), whose (rigid) welded joints are treated, justifiably in the light of the preliminary
work described above, as pin-jointed. This asymmetric structure exhibits coupling
between various transmission modes, including tension and torsion, and also a shear
deflection perpendicular to the plane of curvature in bending. The former is reminiscent
of tension-torsion coupling widely known to exist in the case of structures having a pre-
twisted form, as in a turbine blade. Results from the eigenanalysis of this asymmetric

structure are fully validated by comparison with ANSYS predictions for static loadings.
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For the vibration analysis of this structure, it has been necessary to develop equivalent
continuum dynamic beam theories that include the coupling effects observed. The
natural frequency predictions have been validated by comparison with ANSYS

predictions.

The second major topic is the analysis of a pre-twisted repetitive structure having a
constant pre-twist angle per cell. The stiffness matrix K, and hence the transfer matrix
G, of each cell is periodic in the pre-twist angle & and, within a global coordinate
system, each of these transfer matrices is dependent upon the index of the cell, n.
However, the introduction of a local coordinate system that rotates with the cross-
section results in an autonomous transfer matrix that is identical for each cell of the
structure. This pre-twisted structure provides a physically realisable setting for an
exposition of Floquet theory, which is more often applied to systems having temporal,
rather than spatial, periodicity. The eigenanalysis again provides the Saint-Venant
decay rates, but attention is focussed on the equivalent continuum properties, and the
coupling between various modes of deformation. These include not only tension-torsion
coupling, but also coupling between bending and shear modes. This analysis is thought
to be the first that provides a complete solution for a pre-twisted structure, albeit highly
idealised, in an exact manner, and does not introduce any ad hoc assumptions typical of
the Strength of Materials approach to pre-twist, or the asymptotic approaches employed
within Theory of Elasticity investigations. As with a straight beam, eigenanalysis
provides the decay modes associated with Saint-Venant’s principle, and also the
transmission modes associated with Saint-Venant’s problem; the former have
eigenvalues occurring as reciprocals, while the latter are associated with both real and
complex unity eigenvalues. The equivalent continuum properties of the pre-twisted
structure are readily obtained for coupled tension-torsion, where interpretation of the
principal vectors is in accordance with approximate continuum theories for such
coupling. However, interpretation of the principal vectors describing bending and shear
has been hampered by the absence of an adequate elasticity model for the continuum
behaviour of pre-twisted elastic beams or rods. Indeed, none of the previously derived
bending theories provides agreement with the coupling exhibited by the bending and

shear vectors determined through eigenanalysis. The equivalent continuum properties
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for coupled tension-torsion are evaluated over the range of pre-twist angle, 0° < o<

180°.

1.1 REVIEW OF PREVIOUS STUDY OF REPETITIVE STRUCTURES

Noor [14] classified the approaches to the analysis of large repetitive structure into four

main streams

a) Direct Method - this is conventional Finite Element Analysis (FEA), in which the
complete structure is modelled as an assemblage of discrete finite elements. For a
structure with a very large number of elements, such analysis can become
computationally very expensive and time consuming, and in dynamic analysis, may
produce far more modes of vibration than are actually needed. It is inefficient because it
does not take advantage of the periodicity or regularity of the repetitive structure. Of all
the approaches, while it may provide an answer, it provides limited understanding of
the behaviour of a structure.

b) Direct field method - this approach involves relating the displacements on either side
of the typical cell by finite difference equations, then either solving the resulting finite
difference equations directly, or converting them into approximate differential equations
through the use of a Taylor series. This approach has been extensively developed by
Renton [15].

¢) Periodic structure method - this approach typically relates a state vector of
displacement and force components on either side of the generic cell by a transfer
matrix; application of Bloch’s theorem for dynamic problems leads to an eigenvalue
problem for propagation constants or, equivalently, natural frequencies. The theory has
been highly developed, and applied to both one-dimensional (beam-like) and two-
dimensional (plate-like) structures, [16-24]. Lin and co-workers [16, 17] pioneered the
application of transfer matrix methods to the vibration analysis of periodic stiffened
plate structures. Mead [18, 19] adopted a wave propagation approach, which can be
most simply applied to infinite or semi-infinite periodic structures. An overview of the
contribution to this field made by researchers at the University of Southampton was
given by Mead [20]. Zhong and Williams [21, 22], while employing a dynamic stiffness

matrix approach to the eigensolution of wave propagation, indicated the analogy
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between structural mechanics and control theory; indeed state vector representations are
at the heart of so-called Modern Control Theory, and this cross-fertilisation introduced
the symplectic orthogonality relationship (as a consequence of the symmetry of the
stiffness matrix K, [25]) as a means of eigenvector expansion.

d) Substitute continuum method - this approach employs a continuum model to replace
the original structure based on the assumption that they are equivalent in some sense. It
is appealing particularly if one is only interested in the global behaviour of the structure,
for example vibration and its feedback control, global buckling and thermal
conductivity. The key to continuum modelling involves the determination of equivalent
relationships between the geometric and material properties of the lattice and the
continuum model. Noor and co-workers [26, 27] developed continuum modelling
theory for lattice structures based on the concept of energy equivalence, which means
the lattice structure and its continuum model contain equal kinetic and strain energies
when both are subjected to the same displacement and velocity fields along the
centreline. Their method was based on the assumption that displacement components
vary linearly in the axial direction, but have a bilinear variation over the cross-section to
ensure compatibility at the interface of two adjacent repeating cells. Member strains of
the repeating cell are then expressed in terms of the strain components in the coordinate
directions, and expanded using a Taylor series, allowing the members strains of the
discrete structure to be replaced by those of the continuum model.

Based on the same concept of energy equivalence, Lee’s approach [28] employs a
continuum transformation matrix which relates the initial nodal displacement vector of
the repeating cell, to equivalent nodal displacements expressed in terms of continuum
rod displacements; since there are, in general, fewer of the latter displacements, this
process implies a condensation of the original mass and stiffness matrices, and is not
unique. Well-defined conventional finite element matrices are used to calculate the
strain and kinetic energies stored in the original representative lattice and, through the
transformation matrix, these are expressed in terms of the continuum degrees of
freedom. Equating the (reduced) stiffness and mass matrices for the representative cell
to those for the finite element of the continuum model, the equivalent continuum
properties of the lattice structure were obtained. A conventional Timoshenko

continuum model was employed for symmetric structures, and an extended Timoshenko
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model for structures displaying asymmetry. Compared with conventional finite element
analysis, Lee noted that natural frequency predictions from the equivalent continuum
models tended to overestimate, particularly for asymmetric structures in the higher

modes.

Sun [29] simulated static experiments, numerically, in order to effectively measure the
equivalent continuum properties of a typical cell of the lattice. However, this method
requires a prior knowledge of the magnitude and distribution of the nodal forces, and
also boundary constraints must carefully specified to allow, for example, Poisson’s ratio
effects in a simulation of tension. Similar a priori knowledge is required for the method
described in Chapter 3, but since this is limited to deduction of the displacement vector,
not the force vector, this requirement is not so onerous. Nevertheless, the displacement
vectors are not always obvious particularly if there exists coupling between the various

modes of deformation.

The transfer matrix eigenanalysis approach, which forms the majority of this thesis, falls
directly within Noor’s Periodic structure method classification. On the other hand, the
equivalent continuum properties obtainable from eigenanalysis leads directly to Noor’s
substitute continuum method classification; thus eigenanalysis provides a link between

the two.

1.2 REVIEW ON THE PREVIOUS STUDY OF PRE-TWISTED
STRUCTURES
A variety of engineering components may be modelled as (continuum) beams having
initial pre-twist; these include turbine and helicopter blades, propellers and wind
turbines. For a straight, prismatic, homogenous beam, the responses to end loadings are
in the main uncoupled; a tensile force produces only an extension (together with a
Poisson’s ratio contraction), a twisting moment produces a rotation (together with axial
warping if the cross-section is not circular), and a bending moment in the two principal
planes produces independent curvatures also in the two principal planes. The exception
to this lack of coupling is that of a shearing force, which must be coupled to a bending

moment, if complementary shearing forces are not applied on the surface generators of
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the beam — this possibility is, of course, excluded within Sainz-Venant’s problem.
Coupling between shear and rotation is possible if the cross-section is not doubly
symmetric, but the concept of the shear centre allows de-coupling of these

displacements.

However for a straight, pre-twisted beam, tension is coupled with torsion, and bending
is generally regarded as being coupled in the two planes. This coupling has been
extensively studied [30-64] because of the importance of the engineering applications;
for example the considerable centrifugal force body loading on a high speed turbine or
compressor blade will not only increase the length of the blade, but also reduce its angle
of attack which has an effect on its aerodynamic performance, and this must be

considered in the design process, see Ohtsuka [31].

For tension-torsion coupling, it is easy to visualise that a pre-twisted beam will increase
in length if a twisting moment is applied in a direction tending to decrease the pre-twist
angle — the responses are coupled in the sense that a twisting moment produces both a
rotation and an extension. They are also coupled in the sense that both a twisting
moment and a compressive force would need to be applied in order that the response

would be a rotation only.

Bending-bending coupling is equally important, but is not so easy to visualise: consider
a straight beam, such as a plastic ruler, for which the bending stiffness in the two
principal planes are quite unequal; if subject to excessive compressive load, buckling
would clearly favour deflection in the flexible plane. However, suppose the beam now
has a total uniform pre-twist through 90°, and that a bending moment is applied at one
end (left hand, say) in the flexible plane at that end, at the right hand end, the moment is
now in the stiff plane and, assuming that no torsional buckling should take place, the
resulting bending curvature at the right hand end will be clearly less than at the left
hand. Thus at the two ends, there would be curvature in just one plane; bending
deflection would still favour the flexible plane, and would obviously be much greater at
the left hand end. The above is relatively easily to visualise: what is not, is the

behaviour at locations between these two extremes — if there is bending curvature
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perpendicular to that of the applied bending moment, then clearly its magnitude must
vary from zero to zero over the 90° twist of the beam; in turn, there are two obvious
possibilities: either that it depends on double the pre-twist angle in a sinusoidal form, or

that it remains zero throughout.

In 1991, Rosen [30] provided an extensive literature survey on the static and dynamic
analysis of pre-twisted rod and beams, citing over 200 references, analysis of which
shows the development over the past fifty years. Initially, investigations were primarily
analytical and experimental, the former relying on development of the governing
equations and their solution; most of the significant contributions were made prior to the
development of the FEM. The latter allowed analysis of a pre-twisted beam by
idealisation as a series of uniform straight beam elements, each rotated with respect to a
global coordinate system, with the number of element adjusted according to the
accuracy required. As a consequence, one might argue that FEA slowed analytical
developments in this area, and an exact elasticity solution for pre-twisted structure is
still unavailable. The major developments in this area are summarised below, first in

terms of tension-torsion coupling, and then bending-bending coupling.

One of the first investigations into the effect of pre-twist on the torsional stiffness of a
thin prismatic bar was made by Chen” [32], who proposed the helical fibre assumption,
in which it is assumed that the longitudinal stress in the bar cross-section is not parallel
to the axis, but acts in the direction of the longitudinal spiral fibres of the pre-twisted
bar. Chen concluded that the torsional stiffness was increased by the pre-twist, and this
was validated by his experimental results. This basic assumption was employed in most
subsequent investigations that employ assumptions typical of Strength of Materials.
Rosen and Friedmann [33] noted that Chen’s theory employed a non-orthogonal
curvilinear coordinate system, and that simplifications would arise when the theory for
such a coordinate system was correctly applied. Later, Rosen [34] noted the paradox
that a rod of circular cross-section could be regarded as pre-twisted simply by painting a
spiral onto its surface, yet the helical fibre assumption theory would predict an increase

in the torsional stiffness; for this reason Rosen suggested that Chen had restricted the

2 In the literature, Chen Chu is most often referred to according to his given name, Chu.
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applicability of his theory to thin-walled cross-sections. Rosen developed a more
general theory taking into account axial warping of the cross-section which, of course, is
absent in the torsion of a circular cross-section, and also employed both non-orthogonal
and simpler orthogonal coordinate systems; the resulting theory accommodates Chen’s,

and also overcame the paradox of the circular cross-section.

The coupling effect between tension and torsion of the pre-twisted rod has also been
investigated employing the more exact methods of the three-dimensional Theory of
Elasticity, although approximations are introduced at a later stage of the analysis. The
typical approach is to introduce a local coordinate system, which rotates with the
principal axes of the cross-section, into the governing differential equations for stress
describing force equilibrium, or the equivalent (Navier) equations for displacements; in
either case, the equilibrium equations become more complicated, but the advantage is
that the traction free boundary condition becomes independent of the axial coordinate.
Stress and strain are then typically expressed as a power series in some pre-twist
parameter (assumed small), with the zero™ order term being the known Saint-Venant
solution for the straight beam. This approach was taken by the majority of investigators
[35-46] including, notably, Okubo [35-37] and Krenk [38, 39].

Shield [46] adopted a quite different approach to tension-torsion coupling; the starting
point was again the governing equations expressed within the local (rotating) coordinate
system, but terms involving the pre-twist parameter were regarded as applied surface
tractions within the boundary conditions, and as body force loading within the
equilibrium equations, for a straight rod. He then employed the reciprocal theorem,
with the second load system being simple tension of a straight rod. His results show

excellent agreement with those of Okubo.

De Prima [47] investigated the coupled extensional and torsional vibration of a pre-
twisted rod, and found that the frequencies of the predominantly extensional modes are
practically unaltered by pre-twist, while frequencies of the predominantly torsional
modes increase significantly. Overall, the nature of tension-torsion coupling is well
understood qualitatively: pre-twist has the effect of increasing the torsional stiffness

appreciably, and at the same time decreasing the axial stiffness, although not by much.



This is exactly as one would expect: axial stiffness is generally greater than torsional
stiffness (although one is not comparing like with like) and a coupling of the two

displacement modes has the effect of bringing their stiffness’ closer together.

The same cannot be said for the coupling of bending deformations, where there remains
considerable controversy. For beams with small angles of pre-twist, it is common to
treat the coupling as a problem of asymmetric bending of a straight beam, where a
bending moment in one plane produces curvature in two orthogonal planes. However,
when applied to a beam having a cross-section in which the two principal second
moments of area, and hence stiffness, are equal, this approach predicts that pre-twist
will have no effect. In contrast, Den Hartog [48] observed from experiment that such a
pre-twisted beam with thin-walled cross-section shows considerably larger deflection
than a straight beam of the same cross-section and length under the same bending load,
and presented this as a challenge for further research. Zickel [49, 50] considered a pre-
twisted beam with thin-walled doubly symmetric cruciform cross-section, for which the
second moments of area are also equal, and developed a general theory based upon the
helical fibre assumption, which predicts that the bending stiffiiess about a principal axis
is a decreasing function of pre-twist rate, in accordance with Den Hartog’s observation.
However, experiments conducted by Maunder [51] suggested that the deflection due to
bending does increase with pre-twist, but is much larger than that predicted by Zickel.
Maunder [51] developed a theory by considering the interaction of pre-twist with
distortion of the cross-section, based on the assumption that a form of transverse
distortion is governed by a single free parameter which can be directly determined by a
minimum principle; his results showed nice agreement with the experimental results. In
the above, the authors considered only the decreased stiffness produced by pre-twist, but
did not consider explicitly any coupling of the bending curvature with any other

displacements.

Tabarrok [52] derived general buckling equations for pre-twisted rods using the
principle of total potential energy, including four first order coupled force-displacement
equations, which suggest that bending curvature occurs in the plane of the bending

moment, coupled with a cross-sectional rotation in the perpendicular plane; identical
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coupled moment-curvature relationships were developed by Vielsack [53]. On the other
hand, the shearing force-displacement relationships suggested by Tabarrok [52] are
similar to those of a Timoshenko beam, with the addition of the product of the pre-twist
rate and a transverse displacement describing the coupling effect in the plane
perpendicular to the shearing force. Vielsack’s shear equations ignore shear deflection,
so they cannot be regarded within the spirit of a Timoshenko beam. Rather, shearing
force is equal to rate of change of bending moment, as in elementary beam theory,
together with an additional term, which is the product of the pre-twist rate and bending
moment in the perpendicular plane; these relationships are, in fact, a statement of
moment equilibrium. Tabarrok’s equations do not include the product moment of area,
so the coupling effect is still present for pre-twisted structures having equal second
moments of area; this is consistent with Den Hartog’s experimental observation.
However, neither of the above generalised moment-curvature relationships is in

agreement with those found in the present work.

As with tension-torsion, the bending-bending coupling of a pre-twisted beam has been
investigated employing the three-dimensional Theory of Elasticity, again with the
governing equations expressed in a local coordinate system that rotates with the
structure. Thus Goodier and Griffin [40] considered pure bending of a pre-twisted rod
of elliptic cross-section, and generated a series solution as a power series to the second
order in the pre-twist rate parameter, while bending by a terminal shearing force has
considered by Pucci and Risitano [41], and Guglielmino and Saccomandi [42]. There
has also been several investigations by researchers from the former Soviet Union,
including Druz’ et al [43], who treated the general problem of pre-twist as a spectral
problem of a differential operator in the cross-section; as with the transfer matrix

method [10], their approach unifies the decay and transmission problems.

1.3 LAYOUT OF THE DISSERTATION

The present thesis is set out as follows:

Chapter 2 presents the state variable transfer matrix method, employed to analyse a
symmetric rigid-jointed planar framework, with the results compared with the pin-

jointed framework examined in [10], thereby providing justification for the treatment of
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rigid-jointed structures as pin-jointed, at least as far as the equivalent continuum
properties are concerned, in the analysis of long, beam-like structures. Of course, a pin-

jointed structure cannot withstand local, nodal, moments.

Chapter 3 presents an alternative, analytical, approach to the continuum modelling of a

symmetric repetitive structure.

Chapter 4 presents a generalised eigenvalue problem for the analysis of an asymmetric
repetitive structure, for which the conventional transfer matrix of the single cell does not
exist, and is applied to a 3-D NASA truss. The structure displays tension-torsion, and
bending-shear couplings. In order to fully understand these couplings, a simple 2-D
planar asymmetric framework, representing a single face of the 3-D NASA truss, is also

analysed.

Chapter 5 deals with the dynamic analysis of the truss, employing the equivalent
continuum properties determined in Chapter 4; governing equations and boundary
conditions are derived from the generalised stiffness matrix, and application of
Hamilton’s principle. Natural frequency predictions are compared with those from

FEA.

Chapter 6 extends the transfer matrix technique to the eigenanalysis of repetitive
structures having uniform pre-twist. Introduction of a local coordinate system rotating
with nodal cross-sections results in an autonomous transfer matrix for this Floquet
system. A variety of near diagonal Jordan decompositions are possible for the multiple
unity eigenvalues, and these are discussed. Equivalent continuum properties, including
coupling coefficients are determined. Unusually, an asymmetric stiffness matrix is
obtained for bending moment and shear coupling, which may imply that the coupled
bending-shear model is inadequate for the pre-twisted bending examined here. Other

possible interpretations for the bending and shear vectors are also discussed.

Chapter 7 deals with the static and dynamic analysis of the pre-twisted structure with

pre-twist angles per cell over the range of 0" to 180, focussing on the tension-torsion
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coupling. The relevant equivalent continuum properties are evaluated over this range,
and explained in terms of the variation in lengths of the members that make up the cell.
These properties, together with mass and rotary moment of inertia per unit length, are
employed in the coupled extensional-torsional dynamic equations developed in Chapter
4, for structures with a specific pre-twist angle of o= 22.5, and compared with FEA
predictions. A comparison of fundamental natural frequencies is also made for

structures having pre-twist angles over the range 0" to 180° per cell.

Chapter 8 presents conclusions and recommendations for future work.
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CHAPTER TWO

EIGENANALYSIS OF RIGID-JOINTED REPETITIVE
STRUCTURE

2.1 INTRODUCTION

In this Chapter, the state variable transfer matrix method of Stephen and Wang [10] is
applied to a repetitive structure having rigid-joints. This provides not only an exposition
of the approach, but also justification for the treatment of rigid-jointed structures as pin-
jointed, at least as far as determination of the equivalent continuum properties is
concerned. For a pin-jointed structure, the nodal displacement is completely
characterised by two components for a planar structure, or three components for a space
framework. When the structure is rigid jointed, a planar structure has one additional
degree of freedom — a rotation in the plane, while a space framework has three
additional such rotations. Associated with these rotations are possible nodal moments.
Thus treating a planar structure as rigid-jointed leads to a 50% increase in the size of the
state vector, and a 100% increase for the space framework, with equivalent increases in

the size of the transfer matrix.

2.2 TRANSFER MATRIX FORMULATION
The rigid-jointed planar framework under consideration is shown in Figure 2.1. The

geometric and material properties are identical to those in [10]: the Young’s modulus of

each member is £ = 200x10° N/m?, and density p = 8000 kg/m*. Horizontal and
vertical members are of length1 m, and have cross-sectional area 4 = 1 cm?; the

diagonal members have length /2 m, and cross-sectional area 0.5 cm?. However,

since vertical members are regarded as being shared between adjacent cells, the single
repetitive cell must have vertical members with half stiffness; for a pin-jointed structure
this just requires that the cross-sectional areas should be 4/2. However for a rigid-
jointed structure, when the members can also carry bending moment, one also requires
that the bending stiffness, and hence the second moment of area should be one half. For
ANSYS validation, these requirements are achieved by treating these members as tubes,

when the inner and outer radii can be adjusted to give the required stiffness.
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Figure 2.1. Rigid-jointed planar framework; the length of the truss is equal to the number of the cells, L.
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Figure 2.2. Single (jth ) cell of framework in Figure 2.1; (a) and (b) show positive joint force and moment
according to transfer matrix and FEA conventions, respectively.

A typical cell located between the j® and (j+1)" sections of the structure in Figure 2.1

is shown in Figure 2.2. Let p; and d; denote the nodal force and displacement vectors

respectively, associated with the ;™ section; the state vectors at the section j™ and
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h . T T
(j+1)" scctions are then s, = [djT P jT] and s, = [d i p}.HT] , and they are

related by the transfer matrix G through the equation

s;u=Gs,, 2.1
or in partitioned form
e sl
Pisi| [Gp Gy [Py
Two consecutive state vectors are also related by a constant multiple 4, as
S, =As8;; (2.3)

this is the static equivalent of an application of Bloch’s theorem [65], for systems
possessing translational symmetry. Substitution of the above into equation (2.1) leads
directly to the standard eigenvalue problem

[G-41]s, =0, (2.4)

where 1 is the identity matrix of the appropriate size.
Thus the eigenvalues of the transfer matrix describe how associated eigenvectors scale

as one moves from one nodal section to the next. A unity eigenvalue implies that it is

transmitted unchanged, while a non-unity eigenvalue ]/"tl < 1 implies that the nodal

displacements and forces decay as one moves from cell to cell.
The transfer matrix G can be obtained from the stiffness matrix K of the single

repeating cell. Referring to Figure 2.2(b), the generalised force and displacement

vectors F and d, are related by the stiffness matrix equation F = Kd, or in partitioned

{Fj :l:{KLL KLR} dj ] (2.5)
Fj+l KRL KRR dj+l

Transfer matrix analysis employs the sign conventions of the Theory of Elasticity, so set

form

F,=-p,,F,, =p,, ,and substitute into equation (2.5), expand and rearrange to give

d., d,
ool
pj+1 p‘j

when the transfer matrix G becomes
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G :[ _KLR—IKLL -'KLR_1 } (2 7)
KRL _‘KRRI<LR“1KLL '“KRRKLR_1

The (21 X 2n) transfer matrix G has the property of being symplectic, see [25], and

satisfies the relationship

G'J G=J,, (2.8)
, : : 0 I . T 4 .
where J, is the metric matrix J, = [ ol with J, =J, =-J,,and L is the

(n X n) identity matrix. This relationship depends solely on the stiffness matrix K being
symmetric. The symplectic relationship, equation (2.8), can be rearranged to give

J'G'J, =G™; thus the inverse of G is similar to the transpose of G, which in turn has

the same eigenvalues as G; the eigenvalues therefore occur as reciprocals.

The eigenvalues of any real symplectic matrix are known [66] to fall into one of five
classes
a) ifit occurs, A = 1, must occur an even number of times
b) ifit occurs, A =—1, must occur an even number of times
c) the real eigenvalues occur as reciprocals, that is if 4 = u is an eigenvalue, then so
s A=pu"
d) the complex unity eigenvalues occur as A= ¢'*and A = e™% note that the inverse

is simultaneously the complex conjugate

e) the general complex eigenvalues occur as reciprocals and as complex conjugates,
thatis A=a+ib, A=a—ib, A= (a+ib)”"', A= (a — ib)™" are all eigenvalues
Suppose that A is an eigenvalue having multiplicity %, then A7 is an eigenvalue also
having multiplicity k; thus the Jordan blocks corresponding to 4 and A™' have the same
structure. A direct consequence of the above is that the determinant of a transfer matrix

is equal to unity.
Since the transfer matrix G is not symmetric, one would normally employ bi-

orthogonality as the means of modal decomposition of an arbitrary state vector. Let X;

be an eigenvector of G associated with the eigenvalue A;, such that
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GX =1X; (2.9)

let Y, be an eigenvector of G associated with the eigenvalue Aj, such that

Ty —
GY =4Y,. (2.10)
Pre-multiply the first of these by YjT to give
Y, 'GX, =4Y,'X,; 2.11)
Transpose the second, and post-multiply by X; to give
T T
Y, GX, =4Y, X, (2.12)
Subtraction gives
T
(4 -2)Y,"x, =0, 2.13)

hence the bi-orthogonality relationship
Y, X, =0,for 4, = A,. (2.14)
The disadvantage of this approach is the need to perform a second eigenanalysis of the
transpose of G. Instead, symplectic orthogonality is determined as follows; transpose
equation (2.9) to give
X'G"=1 X, (2.15)
Post-multiply by J,, G X to give
X,'G"J,GX, =24 X'J,GX,. (2.16)

Now G'J,G=1J

» and G X, =4, X, and substituting these expressions into the
above yields

(1-2,4) X3, X, =0. (2.17)
Thus an eigenvector is symplectic orthogonal to all vectors, including itself, but
excluding the eigenvector(s) associated with its reciprocal eigenvalue. Zhong and
Williams [25] have shown that the symplectic orthogonality relationship is a
consequence of the reciprocal theorem of Betti-Maxwell [67]; of course this in turn is a
consequence of the symmetry of the stiffness matrix K. According to the reciprocal
theorem, for two different load systems applied to the cell, denoted superscripts (1) and

(2), the work done by the forces F 2 acting through the displacements d? is equal to

the work done by the forces F) acting through the displacements d"). For the single
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cell, Figure 2.2(b), this may be written as
d,"'F,®+a,V R =g, 5"+ d, 2" g, (2.18)
Express the right hand side vectors, in terms of the left hand side vectors according to
a,V=24a", =2 4,?,

B =gl = Al = AE0, FD =y = 2 = AE, (190, b)

to give
T \ T T \T
_dL(l) pL(z) + A A dL(l) pL(z) :_dL(Z) pL(l) +4 /’izdL(Z) pL(l) (2.20)
or
T T
(1-2,2)] 4", =a,%p," | 0 2.21)
Now consider the term
X'J X, = [dL(‘)TpL”) —dL(Z)TpL(I)] (2.22)

which indicates that equation (2.21) is an expression of the symplectic orthogonality

relationship.

2.3 EIGENANALYSIS
From Figure 2.2, the generalised force and displacement vectors are
T
pj = [1)1\ Ijly Mlz ]JZ.\' }:.‘2)1 MZ: 133,\' })3y M3z]

T
pj+l = [134\ })4,\/ M4z })5.\‘ P5y M5Z Péx ‘PGy Méz ]

T
dj:[ul Vi oy Uy, VY, W, Uy Wy ‘//3]

.
dy=luy vy vy oug voowsoug v W] (2.23)

J

The global stiffness matrix K can generally be assembled using

K=p"K,B, (2.24)
in which K, is a block diagonal matrix describing the stiffness of each individual
member within the cell in local coordinate system, and p is the connectivity matrix.
K, can be readily determined by either FEM [68] or by matrix structural analysis [69].
The transformation matrix B is calculated by defining the direction cosine matrix in

terms of the projections of the elements onto the global axes and then applying a series

of rotations about three principal axes [67]. The transfer matrix G is then determined

2.6



by simple manipulation of the stiffness matrix K according to equation (2.7). Using
the function eig within MATLAB, the eigenvalues of the transfer matrix G are readily
determined and these are listed in Table 2.1, together with those of the pin-jointed
framework obtained in [10]. First note that the nature of the jointing has no effect on
the number of unity eigenvalues; for the planar pin-jointed cell these are known to be
the three rigid body modes, plus tension, bending moment and shearing force, and the

method of jointing clearly has no bearing on these.

Table 2.1 Effect of jointing on eigenvalues

Rigid-jointed Pin-jointed
1.6779x10" v 1.6870x10"
3.5353 3.5436
5.9597x1072 5.9596%x1072
2.8286x107" 2.8292x107!
—~1.4331x10" —1.4244x10"
—6.9779x1072 —7.0207x1072
—-1.5689x10" 1
—7.2812 1
~-6.4316 1
—0.15548 1
—-0.13734 1
—0.063740 1

1
1
1
1
1
1

Since the number of unity eigenvalues remains constant, the increase in size of the
transfer matrix leads to new eigenvalues which must pertain to new decay modes. As
seen in Table 2.1, rather than three reciprocal pairs for the pin-jointed case, one now has

six pairs for the rigid-jointed framework. Physically, such pairs correspond to self-

equilibrated loading on the left face of the cell decaying from left to right ( ]/1] < 1), while

the inverse (ll"] > 1) corresponds to self-equilibrated load applied on the right face of

the cell decaying from right to left, which is equivalent to an increase from left to right.

The two eigenvalues shown underlined in Table 2.1 are the slowest decay factors for the
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two types of framework, and will dominate decay in the sense that they will penetrate

the furthest distance into the structure. In practical terms, the effect of rigid jointing is

negligible, resulting in a decrease in the slowest decay factor to 0.28286 from 0.28292,

A7 =0.2829

T 0.7800

| <__(»0.00001

) QP —
0.00001
0.7800
A = ~0.1373

1.2733

0.8420

b—(¢ 0.8420

l 1.2733

g = 0.0596

T 2.4342

| — (Ao.ooozs

—( 0.00025

l 2.4342

A4y = —0.0637

0.0104

| l__,(’o.on

0.0548

g =—0.1555

Ay = -0.0698

O'Oogi?o 00104
L&

0.00375

Figure 2.3. Nodal forces and moments for left-hand decay modes; displacements not shown.
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indicating that the self-equilibrated loading associated with this eigenvalue would
penetrate slightly further into the structure; this is as one might expect, since rigid-

jointing should make the structure slightly stiffer.

The main effect of rigid-jointing is the introduction of three new decay modes, two of
which (A = —0.15548, and A,y = —0.13734) decay at approximately twice the rate of the
dominant mode (47 = 0.28292), the minus sign indicating that the decay is oscillatory
from cell to cell. For the pin-jointed structure, the decay eigenvectors have self-
equilibrated loading in the x- and y-directions only, it being impossible to apply a
moment at a pin-joint; with rigid joints, these modes now have a very small additional
self-equilibrated moment — indeed just sufficient that the displacement components of
the eigenvector should decay with the specified eigenvalue. The new decay modes still
have self-equilibrated loading in the x- and y-directions, but with the addition of
comparatively large self-equilibrating moments. The force and moment components of
the left-to-right decay eigenvectors are shown in Figure 2.3, and these were also

determined using the eig function within MATLAB.

Determination of the vectors associated with the multiple unity eigenvalues, however, is
not so simple. The QR algorithm employed within MATLAB essentially derives
eigenvectors which, when combined to form a transformation matrix, will diagonalise
the original matrix. However, there exist some matrices for which a sufficient number
of independent eigenvectors do not exist for some or all of its repeated eigenvalues.
These matrices are said to be defective and are not diagonalisable, but can be reduced to
a near diagonal form known as the Jordan canonical form (JCF); this contains blocks in
which a unity element exists on the super diagonal, indicating that a principal vector is
coupled to an eigenvector. If the same repeated eigenvalue occurs in different Jordan
blocks, then the matrix is also said to be derogarory. Reliable determination of the JCF
of such a matrix can only be achieved when the matrix is known exactly, so its elements
must be integers or ratios of small integers. Any small errors in the input matrix will
completely change its JCF. Thus the six unity eigenvalues shown in Table 2.1, are

computed by MATLAB as being very close, but not exactly equal, to unity as physical
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argument demands they must. In turn the majority of the eigenvectors calculated by

MATLAB must be discarded.

The procedures for dealing with defective matrices is best explained through a simple
example [70]: suppose G is a real, non-symmetric', 2 x 2 matrix. The eigenproblem is
the solution of

(G-A1)s=0, (2.25)
together with subsequent decomposition of the matrix G: there exists a non-singular

matrix V such that
G=VIV', (2.26)
where J is the Jordan canonical form.
There are three cases of interest:
a) Suppose G has eigenvalues A; and A, not necessarily distinct, but having two

independent eigenvectors v; and v,. That is, there are two solutions

Gv,=4v, and Gv,=4,v,. (2.27)
Define the transformation matrix V =[v, v, ], which is non-singular, since the two

vectors are linearly independent. Then

GV=[Gv,Gv,|=[4v, 4v,]=]V, Vz][/g ﬂ(j’ (2.28)

s0, GYV=VJ,orG=VJV™. For this case, the Jordan form is diagonal, consisting of

trivial (one-dimensional) blocks; that is, the matrix is diagonalisable.

b) Suppose that G has just one repeated eigenvalue A, , and a single independent

eigenvector, v,. That is, there is just one solution

Gv, =4v, (2.29)
Let w, be a (principal) vector of the same dimension as, but independent of, v,. Now,
on account of the twofold eigenvalue, the characteristic equation takes the form
(A-4 )2 =0, and according to the Cayley-Hamilton theorem [70], a square matrix will

satisfy its own characteristic equation, that is

1 Symmetric matrices are always diagonalisable.
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(G-A1) =0, (2.30)
and post-multiply by w, to give
(G-A1)"w,=0. (2.31)
Now define the relationship
(G-AD)w, =v,, (2.32)
this satisfies equation (2.31) as, pre-multiplying by (G — A1), one has
(G-A1) W, =(G=A1)v,=0. (2.33)
Equations (2.29) and (2.32) define a chain of eigen- and principal vectors

Gvi=dv (2.34)
Gw, =Aw, +v,
Note that any multiple (¢) of the eigenvector v, may be added to the principal vector w,
and the new vector is also a principal vector, that is, they are not unique:
G(w,+cv,)=A(w,+cv,)+v,, since Gev,=Aev,. (2.35)

Now define the transformation matrix V =|v, w, ], which is non-singular, since the two

vectors are independent. Then
A1
GV=[Gv,Gw,|=[AVv, Aw,+v ]=[v, W,] 0 A (2.36)

so, GV=VJ,or G=VJV™. For this case, the Jordan form is not diagonal, and

consists of the repeated eigenvalue on the leading diagonal, and a unity on the super-

diagonal.

c¢) Suppose G has complex eigenvalues 4 =a—iff, A, =a+iff with associated
eigenvectors v, =u-+iv and v, =u—iv, where u and v are real and independent. If

one employs the transformation matrix V =[v, v,], then

GV=[Gy, sz]:[(0(—~z'b’)vl (a+ib’)v2]:[vl Vz]{(a;iﬂ) (afiﬂ)} (2.37)
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This formulation is just a particular case of a), with complex conjugate eigenvalues and
eigenvectors. Instead, employ the real and imaginary parts of the eigenvectors as

transformation matrix, that is V.= [u v]. First, however, note that
G(u+iv)=(a—iff)(u+iv)=cu+fv+i(-fu+av), (2.38)

and taking the real and imaginary parts, gives

Gu=au+fv, Gv=-LFu+av. (2.39)

One then has

GV=[Gu Gv]=[(au+ﬁv) (—,6u+0¢v)]=[u V][B

so the Jordan form now takes a real block form.

In order to determine the eigen- and principal vectors, it is generally acknowledged that
one should start with the principal vector of the highest grade, when any other principal
vectors in the chain, together with the generating eigenvector are calculated simply by

matrix multiplication; for example, in equation (2.32), the eigenvector v, can be
immediately calculated once the principal vector w, is known. On the other hand, if

one starts with the eigenvector, because of the non-uniqueness of the principal vector, it
1s necessary to make an arbitrary choice for inclusion of multiples of the eigenvector, as
in equation (2.34); for principal vectors of higher grade, one has to make an arbitrary

choice for inclusion of multiples of eigenvector and principal vectors of a lower grade.

From null spaces of the extended matrices, Wong and Leung [71] developed a general
approach to determine the simplest JCF of an arbitrary matrix, which is both defective
and derogatory. Forward and backward processes are employed to determine first the
eigen- and principal vectors of the extended matrices, and then the indeterminate
constants are eliminated by requiring orthogonality of principal vectors of lower grade
with those of higher grade. Mathematically, the process to determining the eigen- and
principal vectors is accomplished so long as the simplest JCF is achieved. However,
within the spirit of eigenanalysis by transfer matrix method, it is known that the eigen-
and principal vectors pertaining to multiple unity eigenvalues represent the transmission

modes of the resultants of tension, torsion, bending moments and shearing forces.
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Physical interpretation of these vectors allows determination of the equivalent
continuum properties of the repetitive structure. Thus, the determination of the principal
vectors should not stop until both JCF and all the vectors are given in their simplest
forms. Indeed, the procedure described in [71] provides a rather straightforward means
to determine all the eigen- and principal vectors of the transfer matrix, which can then
be transformed into the simplest JCF. Nevertheless, those principal vectors are not
given in their simplest forms since principal vectors of higher grade are coupled with
those of lower grade within each Jordan block. In practice, the difficulty to uncouple
those lower grade vectors from the higher order ones is equivalent to making the

arbitrary choices in the first step when following the chain in equation (2.31).

Therefore, despite being the least favoured method, the approach described in equation
(2.34) is adopted here. This is because the eigenvectors associated with the multiple
unity eigenvalues are obviously the rigid body displacements, so can be assigned their
simplest value at the outset. This helps considerably in the physical interpretation of the
principal vectors®. The difference in the two approaches by equations (2.31, 2.32) and
(2.34) is essentially whether to make a difficult choice once (the favoured method), or

whether to make a simple choice, several times (the method employed here).

Mindful of the above, rather than employing the eig function within MATLAB, instead
the set of equations (with eigenvalue set equal to unity)

(G-1)v,=0, (2.41)
are reduced to their simplest row echelon forms using the rref function, and the
MATLAB command rref (|G—eye(18)]). This indicates that there are two independent
eigenvectors: the rigid body displacements in the x- and y-directions and these are given

their simplest values by setting

V1:[100100100000OOOOOO]T(Z.A:Z)

for the former, and

V22[010010010000OOOOOO]T(2.43)

2 This issue is considered in greater depth in Chapter 6 where one has multiple complex unity
eigenvalues.
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for the latter. Principal vectors associated with these independent eigenvectors are then

calculated using the chain of equations

(G-T)v,=0
(G—U?M:“. (2.44)
(G-Dw, =w,,

Now, the rref function is employed on the augmented matrix [G -1, v,] to find w,,,

and this process is repeated to find the principal vector of the highest grade w,, after
which no new vectors are generated. In this way, it is found that the principal vector
describing tension is coupled to the rigid body displacement in the x-directionina 2 X 2

Jordan block, while the principal vectors (in ascending grade) describing rotation about

the z-axis, bending moment and shearing force are coupled with rigid body translation in

the y-direction, in a 4 X 4 Jordan block.

A similarity matrix V comprised of all eigen- and principal vectors, including both
decay and transmission modes, is then constructed, and this transforms the transfer
matrix G to Jordan canonical form. Since the repeated unity eigenvalue appears in two
distinct Jordan blocks, the transfer matrix G is both defective and derogatory. Both V

and J are given in Appendix 2.

Not only does the Jordan canonical form reveal the coupling between the various

modes, it also allows one to calculate powers of the transfer matrix G in the most

efficient manner; suppose one knows the applied state vector s (O) on the zero™ left-

hand end of the structure in Figure 2.1; the state vector on the right-hand side of this

first cell is given by

s(1)=Gs(0), (2.45)
and the state vector on the right-hand side of the n™ is then

s(n)=G"s(0). (2.46)
Powers of the transfer matrix are evaluated according to

G'=(VIV) =(VIV)(VIV).(VIV)=VIV'. (247
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Moreover, the n™ power of the JCF simply requires evaluation of the n' power of the
diagonal elements, although for the non-trivial Jordan blocks, a more involved treatment
is required. Suppose a Jordan block pertaining to eigenvalue A, having dimension & X £,

is written as

J=| O |=11+N, (2.48)

where N is the nilpotent matrix

N, = o (2.49)

The k™ power of the nilpotent matrix is zero, so the binomial expansion of
J' =(A1+N)" has a finite number of terms, as

n

ALANY =2+ AN N AN (2.50)
| 2 k

since higher powers of N, are zero; in the above the binomial coefficients are given by

[n):n(n—l)(n"z)“'(’7_b+1). (2.51)

b b!

The " power of the Jordan block becomes

/111 n/ftn—l n (l’l - l) ﬁn-z
2
J=0 A nA"! el (2.52)
0 0 A"

2.4 EQUIVALENT CONTINUUM PROPERTIES
Physical interpretation of the transmission eigen- and principal vectors in V allows
determination of the equivalent continuum beam properties of the framework, as

follows:
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3.9644 %1078

—p <

0.89644 «—— (* _____{ Y —— 0.89644
8.4402x 107 ,,3‘1\ 8.4402x107

I f — ]

8.4402x 107 \\;(:'/ ; 8.4402x10°¢

059644 —— (¥ . J D —> 0.89644

—£’1‘.o354><10‘8

V(;,14) V(:,14)+ V(:,13)

Figure 2.4. Coupling of eigenvector V(:,13) for rigid body displacement in the x-direction, with principal

vector V(:,14) for tension; here and later, dotted lines show initial cell configuration.

a) Consider the vectors for tension and rigid body displacement in the x-direction,
which are coupled within a 2x 2 block in the JCF, and are the fourteenth and thirteenth
columns of the transformation matrix V. The rigid body displacement can exist in its
own right if the cell is not restrained in the x-direction. According to the chain
equations (2.44), these two vectors have the relationship’

GV (,14)=V(,14)+V(,13), (2.53)
which is interpreted as stating that when a tension vector V(:,14) is applied to the left
hand side of the cell, on the right hand side, equivalent to pre-multiplication by G, one
has both the tension vector and a rigid body displacement in the x-direction, V(:,13).
Physical representation of the above is shown in Figure 2.4, from which it can be seen

that a total resultant tensile load of 7. =14+2x0.89644 =2.7929 N is coupled with a

cell elongation of 3.9644x107°m ; note that vectors are shown scaled such that the
largest force component has unit magnitude. The continuum beam constitutive

relationship for tension is

T = ]’;A u, (2.54)

3 Vectors are now described using the MATLAB notation for a column within a matrix.
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and since 7., E, u, L are known, the equivalent cross sectional area of the framework
is calculated as 4 =3.52246 cm®. Additionally, there is a Poisson’s ratio effect on the
cross section: axial strain in the x-direction is €, =u/L =3.9644x107*, while transverse
strain in the y-direction is £, = (— 2x1.0354%107® )/2 =-1.0354x107*; inserting into

£, =-ve,_ gives the equivalent Poisson’s ratio v = 0.261188, and the equivalent shear

modulus is determined as G = £/2(1+v)=79.29x10° Nm™ , with the Young’s

modulus £ being regarded as fixed.

b) Next consider the vectors for shear, bending moment, rigid body rotation about the z-
axis and rigid body displacement in the y-direction; these are the eighteenth to fifteenth
columns of the transformation matrix V, and are coupled within a 4 x 4 block of the
JCF. Again, the eigenvector V(:,15) for rigid body displacement in the y-direction can
exist in its own right when the cell is free of constraint. The sixteenth column V(:,16)
defines rigid body rotation of the cell about the z-axis is coupled with the rigid body
transverse displacement of the cell according to the relationship

GV (;,16)=V(;,16)+V (,15) (2.55)

and 1s represented in Figure 2.5.

4.6935x1078

V(516) V(;16)+V(515)

Figure 2.5. Coupling of eigenvector V(:,15) for rigid body displacement in the y-direction, with principal

vector V(:,16) for rigid body rotation; y-components of displacements on the left-hand side are negligible.
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The seventeenth column V (:,17) defines a bending moment, and is coupled with the

rotation vector V (:,16) according to
GV (5,17)=V(,17)+V(,16). (2.56)
Physical representation of this is given in Figure 2.6, where it is seen that a bending

moment M = (2 +3.2974x107° ) Nm results in a bending curvature of

I/R =4.6935%10°m™", where the latter is calculated from the similar triangles shown
in Figure 2.6; in particular one such triangle is the deformed upper half of the left hand
face of the cell, while the second is the lower half projected to the centre of curvature.

According to the constitutive relationship for beam bending

M =EI/R, (2.57)

the equivalent second moment of area is found to be 7 = 2.13065x10™*m*. It is noted
that rigid jointing has the effect of introducing very small (indeed negligible) nodal

moments into the bending moment vector, as shown in Figure 2.6.

l 2.3467x107°

—P <+— <—

Ce— TR —
5.1147x107°

5.1147%107°

2.2744x107° (l O 2:2744x107

6.1294x107°

-6
5.1147x107° 5.1147%10
] —>» C |
V(517) V(517)+V(516)

Figure 2.6. Coupling of principal vector V(:,16) for rigid body rotation, with principal vector V(:,17) for

pure bending.

Finally, the eighteenth column V (:, 1 8) , which defines a shear vector, is coupled with

the bending moment vector V (:, 17) according to the relationship

GV (,18)=V(,18)+V(;,17), (2.58)
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and this is shown in Figure 2.7. Since a state of pure shear cannot exist if the upper and
lower surfaces are free of traction, as in Saint-Venant’s problem, so a bending moment
is alWays required to balance the moment produced by the shearing force, as seen on the
left hand face of the cell in Figure 2.7. Consequently, the shearing vector will produce
both a shear angle and a bending curvature, and the displacement components in the x-

direction are decomposed into these two components, as shown in Figures 2.8(a, b).

1.5007x 1077 1.2660x1077

| (;;9?’66l5.1147><(:o‘6 T0'469366
2.2744x107
10613 l ( T 1.0613
6.1294x107 1
0.469366 5.1147x107°
"— l ( T 0.469366
V(:18) V(:18)+ V(517)

Figure 2.7. Coupling of principal vector V(:,18) for shearing force and left-hand bending moment, with

principal vector V(:,17) for pure bending.

Within Timoshenko beam theory [72], the shear angle is defined according to the
relationship ¥ = —dv/dx, in which dv/dx is the centreline slope and y is rotation of
the cross-section. The simplest method of evaluating the shear angle is to impose a
rotation on the cell in Figure 2.7 to bring the centreline slope to the horizontal, when
dv/dx is zero and y =y ; this, together with consideration of Figure 2.8(a), gives the
shear angle ¥ =1.44465x1077, and the shearing force has magnitude
0 =1.0613+2x0.469366 = 2.000032 . The equation for shear is

0 =xAGYy, (2.59)
which yields the equivalent shear coefficient of the cell as x =0.4957. The
deformation shown in Figure 2.8(b) is equivalent to a bending curvature of

1/R"=12.3468x107", which is exactly half of the bending curvature seen when the cell
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is subject to pure bending. This is as one might expect: the bending moment varies
linearly from zero on the right hand side of the cell, to the full value as expressed by the.
vector V(:,17) on the left; the average of the bending moment resident within the shear

vector is therefore one-half of the full value and, in turn, so is the curvature.

1.3834x1077  1.3834x1077 1.1734%107%1.1734x1078

SRR

(a) (b)
Figure 2.8. Decomposition of the displacements in the x-direction from Figure 2.7: (a) shear angle due to

the shearing force; (b) bending curvature due to the left-hand bending moment.

Note that the small moment terms within both the bending moment and shear force
vectors have been included in evaluation of the continuum properties; indeed they are

necessary to ensure exact moment equilibrium of the cell.

Table 2.2 Effect of jointing on equivalent continuum properties

Continuum properties Rigid-jointed Pin-jointed
Cross-sectional area, 4 cm’ 3.52246 3.52241
Second moment of area, / m* 2.13065x107* 2.13061x107*
Poisson’s ratio, v 0.26119 0.26120
Shear modulus, G N/m’ 79.29030%10’ 79.2893x10°
Shear coefficient, x 0.49569 0.49562

The equivalent continuum properties of the rigid-jointed framework determined above

are listed in Table 2.2, together with those of the pin-jointed framework obtained in
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[10]. Clearly the axial stiffness £4, the bending stiffhess £7 and the shear stiffness k4G
are slightly increased when the cell is rigid-jointed, but the differences are negligible.
Note that an increase in the equivalent shear modulus G requires a commensurate
decrease in Poisson’s ratio, bearing in mind that Young’s modulus E is regarded as
invariant. Thus one concludes that, certainly as far as calculation of the equivalent
continuum properties is concerned, treating a rigid-jointed structure as pin-jointed, is
quite justified. This is in accord with Noor’s view [14], for lattice structures with rigid
Joints, provided that the response is not dominated by local member deformation,
ordinary continuum models are good enough for the accurate prediction of the global
response of lattices with rigid joints. That is, one need not employ a micro-polar

continuum model for such structures.

2.21



[ 1.6409x10°®
1.7431x1077
3.1848%107"
~7.9833x107

0
0
1.6409x10°®

—1.7431x1077

—3.1848x107"°

1
2.4342
2.4542x10™
-2
0
0
1
—2.4342
—2.4542x107°

~6.1083x107
4.6051x107
~-1.1607x107°
0
—4.0696x107°
2.3823%107°
6.1083x10°°
4.6051x10°°
~1.1607x107°
8.333x10™
1
-1.0417%107°
0
-2
3.7501x107°
-8.333x10™
1
~1.0417x107

APPENDIX 2

~5.8236x107°
4.5165%107
-1.9274x10°*
0
-3.9724x10°®
3.5558x107
5.8236x107
4.5165x107
~1.9274x10°®
1.0369%107*
1
-1.7005%107*
0
-2
5.4748x107°
~1.0369%107
1
~1.7005%107*

2.22

4.1570x107"
1.4971x107
7.4118x1077
-3.9625%107°
0
0
4.1570x107"°
—-1.4971x1077
~7.4118x1077
1
1.2733
8.4203x10™
-2
0
0
1
~1.2733
—8.4203x10™

1.9148x107°
1.5542%107
6.5758%107
0
5.0824x107°
4.1160x1077
-1.9148x10~°
1.5542%1077
6.5758x1077
1.2391
1
8.0152x10™"
0
-2
8.7521x10™
~1.2391
1
8.0152x10™"

TRANSFORMATION MATRIX AND JORDAN CANONICAL FORM OF 2D RIGID-JOINTED FRAMEWORK, FIGURE 2.1
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0 2.3823x107°  3.5558x107°" 0 4.1160x1077 0

—1.6409x10°  6.1083x107°  5.8236x107° —4.1570x107"" —1.9148x107° —4.2902x107"
—1.7431x1077  —4.6051x10"" —4.5165%10"° —1.4971x107 —1.5542x1077 -3.9539x10°®
3.1848%x107° —1.1607x107° —1.9274x10™°  7.4118%10~’ 6.5758%x1077 —2.2798x107"

1 —-8.333x10™"  —1.0369%x107° 1 -1.2391 1
—~2.4342 1 1 -1.2733 1 —0.7800
24542x107  1.0417x107°  1.7005x1072 8.4203x10"  —8.0152x10™"  1.3901x10°°
-2 0 0 -2 0 -2
0 -2 -2 0 -2 0
0 ~3.7501x107 -5.4748x107* 0 —~8.7521x107" 0
1 8.333x10™*  1.0369%x107" 1 1.2391 1
2.4342 1 1 1.2733 1 0.7800
—2.4542x107°  1.0417x107°  1.7005x107%  —8.4203x107" -8.0152x10" —1.3901x107°
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VGV =J,where J is the Jordan block matrix
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CHAPTER THREE

AN ALTERNATIVE APPROACH FOR DETERMINATION OF
EQUIVALENT CONTINUUM PROPERTIES

3.1 INTRODUCTION

In this Chapter, the continuum properties of repetitive structure are found without
resorting to eigenanalysis. The cell is first defined by its stiffness matrix, K. The
approach then relies upon the ability to deduce the displacement vectors for tension,
bending moment and shear; this is straightforward for tension and bending. The shear
displacement vector is not immediately obvious, but can be deduced employing
elementary requirements of force and moment equilibrium of the cell. A once and for
all application of the principle of minimum potential energy for tension yields the
equivalent continuum Poisson’s ratio, from which all the remaining properties follow.
For simplicity, we consider again the planar structure treated in [10] and then without
derivation, present more general expressions for the continuum properties in terms of
length and cross-sectional area for this particular cell configuration, allowing more
general conclusions to be drawn. When compared with eigenanalysis, which is
essentially a numerical technique, the new approach has the advantage of yielding

analytical expressions for the continuum properties.

3.2 EXAMPLE STRUCTURE

We consider the beam-like repetitive pin-jointed framework previously shown in Figure
2.1; the typical repeating cell is shown in bold, together with nodal numbering.
Horizontal and vertical members have a cross-sectional area of 1 cniz, while the
diagonal members have area of 0.5 cm®. However, since vertical members are regarded
as being shared between adjacent cells, for the single cell their cross-sectional area is
also 0.5 cm”. Young’s modulus for each member is taken to be 200 x 10° N/m” and this,
together with the length and depth of the cell of 1 m and 2 m, respectively, is regarded

as applying equally to the equivalent continuum beam.
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3.3 EXACT EQUIVALENT CONTINUUM PROPERTIES OF THE
EXAMPLE STRUCTURE
The stiffness matrix K for the single cell can be found by a variety of means, see for
example [69], and relates the nodal force and displacement components according to
F=Kd, (3.1)
which is presented explicitly in the Appendix 3.

d,
F N bl F
Ix e < 7 —p 4x
T AN e 1
\<’ I
N I
4 ~ |
7 ~ i
Vi AN
Vi \‘\'
F,. y F
~ 1 B X
\\ s i
N ’ 1
~ 7
N I
N7 1
-~ i
F N
4 \
3x B V7 \; > FCL\'
[P Ni

Figure 3.1. Single cell loaded in tension; dotted lines show initial cell configuration.

We presume the cell to be loaded in tension, as shown in Figure 3.1, and restrained in
such a way as to prevent rigid body displacements, but to allow Poisson’s ratio
contraction. This immediately implies that displacement components

d,=d, =d; =d, =d,, =0. Set d, =d,, =d, =u,when the strain in the x-

. u . . o
direction is &, =—=u, since L = 1. The strain in the y-direction is

d, —d,,

613

g =t o "3 and by virtue of the symmetry of the cell,
2L 2L
d4 y dl
d,=-dy,,d,, =~d, ,s0 €, =—== —ii =d,, =d,,. Bute =-ve,,so
d,=d,, ==vu, d,, =d;, =vu,and the cell displacement vector for tension is
d=[0 -vu 0 0 0 vu u —vu u 0 u vul. 3.2)

The strain energy of the cell U is calculated as
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1 Eu? 3

1 v 1
Uz—d" Kd=—xX|V? |+ —=|——=+ =+ ——|. (3.3)
2 104[[2«/5}\/522\/5]
The cell will deform in such a way as to minimise the above, that is

oy (3.4)
ov

which gives v = ! =0.261204 . An equivalent shear modulus G can then be
1+2+2

defined using G = 2—(1—1—;-—5, with Young’s modulus being regarded as invariant.
+V

The tensile force 7 applied to the cell is
T,=Fy +F, +F, (3.5)

and these force components are calculated from (3.1), employing displacement vector

(3.2) as

E 1—-v E 1-v
F, =F =—|l+—=iXu, F._=—14+—=|Xu 3.6
4x 6x l04 ( 4\/5) U S5x 104 ( 2\/‘2“) )
and
E 1—-v
T =— | 34— |xu. (3.7)
X 104 ( \/’5]

. EA : :
For a continuum beam, we have 7 = A u , and with L = 1, the equivalent cross-

sectional area is A4 = (3 +1—_—V~)><1()"4 =3.5224%107" m?.

NG

Yl

N
N
N

_»1 d4 X l‘-

n G

[ %4

Figure 3.2. Single cell loaded in pure bending.
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Next consider the displacements during bending, as shown in Figure 3.2; assume
displacements d, =d,, =-u, d, =d, =u,which is consistent with rotations of the
side faces of the cell, and d,, =d, =0, which is consistent with zero axial strain on the
neutral axis. For a continuum beam, a fibre coinciding with the member joining nodes 1

and 4 would have strain £, = %, where y is distance from the neutral axis and R is the

. . 2u
radius of curvature; but the strain &, = A and y = 1, hence

—A-{:i:—z—li:%z. (3.8)
El R L
Also shown in Figure 3.2 is an apparent shift of the neutral axis (the member joining
nodes 2 and 5) toward the tension (upper) side of the cell. In fact, the upper side moves

toward the neutral axis while the lower, compression side moves away by an equal

amount, both displacements being Poisson’s ratio effects. For a continuum beam, [73]
. . : : M
gives the transverse displacement during pure bending as v = Y (xz +vy’ )+ ¢ ; here

the x* term represents the curvature due to bending, while the constant ¢, representing a

rigid body displacement in the y-direction. The latter is adjusted such that v=10 on

. M : .
y=x=1 to give v= E—b% (1 - yz). Nodes 2 and 5 have y = 0, and employing expression

(3.8) gives d,, =d;, =vu. The cell diSplacement vector for bending is then
d:[—u 0 0 vu u 0 u 0 0 vu -u O]T. 3.9)
The bending moment is
M=(F, —F, )xL; (3.10)
the force components in the above are calculated from (3.1) employing displacement

vector (3.9) as

Eu 1—v
F_:__F‘: 2+__._ , 311
. ox 104[ 4&] G-
hence
2Fu 1-v
M= 2+ , 3.12
10* ( 4\/2) ( )
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from which the second moment of area is I = (2 + %)X 107* =2.130602x107* m*,

Figure 3.3. Single cell subject to shear and bending moment

Figure 3.3 shows the cell subjected to a shearing force, together with a bending moment;
again the nodal displacements are guided by the solution for a cantilevered continuum
beam subjected to a shearing force [73]. Rotations on both sides of the cell are different,
soweset d,, =-u,,d, =u; and d, =-u,,d, =u,. As with pure bending, there is a

Poisson’s ratio effect of an apparent shift of the neutral axis in the y-direction (d,, ), but

this effect is absent on the right face of the cell where the bending moment is zero, that

is ds, =0. The shear displacement vector is written initially as

d=[-u, 0 0 dy, w O —u, 0 0 0 u, 0]; (3.13)

the associated force components are then calculated from equation (3.1), as

E 1 E 1 1
Me=-FB=— |y~ 14— u |, F),=—F, =— |y ——=dy, —| 1+—=| uy |, F5, =F5, =0
L 33 104 [ 2 { 4\/-2-J 1} 4 0x 104 [ I 4\/5 2y ( 4\/5J ZJ 25 5x
E [ u dy, E 1 U +u
F,o=F =—|-L__2 F == I+ —— |d,, +——> |,
R [4«/5 2 J RO ([ 2J5] Y42 (3.14)

E le+d2‘, E u
F,, =F, =—— = F,=———=|
e 10“{ 42 Y10t (242

These components satisty vertical force equilibrium for the complete cell, and there is

zero horizontal resultant on both sides. Moment equilibrium requires the relationship
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dy,
4[ (1+4\/_)uz (3.15)

while asymmetry of the shear force vector requires

F,=~F,, F,=-F, F,=-F,, (3.16)
which yield the single relationship
b =u, +(1+2v2)d,, (3.17)
hence
=(16+6v2)d,,, u,=(15+4v2)d,, (3.18)
The shearing force is then
O=F, + B, +F, == [5+8V2)d,,. (3.19)

As in Chapter 2, the shear angle ¥ is defined as ¥ = —dv/dx, in which yis the cross-
sectional rotation and dv/dx is the centre line slope; again, we take the rotation as the

average of the rotations on either side of the cell when the shear angle is, Figure 3.3,

equal to

u, +u,

7/:_—2_—+d2y’ (320)

bearing in mind that cell has unity length. Finally, introduce the above expressions into

the shear equation O = GAxy to give the shear coefficient as

_4fls+sd2)(i4)
(33+10J§)(3+111)

=0.49562 . (3.21)

NG

The equivalent properties as derived above are in agreement with those determined in

Table 2.2.

3.4  ANALYTICAL EXPRESSIONS FOR THE EQUIVALENT CONTINUUM
PROPERTIES OF A MORE GENERALLY DEFINED FRAMEWORK

Consider a cell, as in Figure 2.1, but having more general lengths and cross-sectional

areas. In particular, the longitudinal members have length L, and cross-sectional area

Ay, while the vertical and diagonal members have lengths H and D =+L* + H* , and
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areas Ay and Ap, respectively. The equivalent properties are expressed first in terms of
the absolute parameters of the cell and then more simply in terms of derived equivalent

properties, in particular the Poisson’s ratio, which is

A, HL?
Ly D+ A H

For isotropic homogenous materials, Poisson’s ratio can take values within the
range—1<v <0.5. For this particular cell configuration, v cannot be negative; it has a
minimum value of zero when A4p is zero, when the cell can withstand tension and
bending — for shear it is a mechanism.

The equivalent cross-sectional area is

44,4, L L

A=34, + =34, +4v =4 (3.23
L4,D+ A H? t H 7 )

which is equal to that of the three longitudinal members together with a necessarily
positive contribution from the vertical and diagonal members.
The equivalent second moment of area is

A A H L
A,D*+ A, H’

[=24,H" + =24,H? +v A, LH (3.24)

and consists of a “parallel-axes theorem” contribution from the top and bottom
longitudinal members (2ALH 2) together with a positive contribution from the vertical

and diagonal members. Moreover, this additional contribution is consistent with a
« ” o L . .
parallel-axes theorem” treatment of the additional area term, 4V'§A[{ , in expression

(3.23). In particular, it is reasonable that one-half of this additional area should be
placed symmetrically about the neutral axis, at distance H/2, when the parallel-axes

theorem gives
2
ZX(ZV%AHJX(—?) =VA,LH . (3.25)

It is interesting to note that / reduces to 24, H*, and not zero, when the diagonal

members are absent, as one might argue that these members are required to transmit
shear from the upper (tensile) to the lower (compressive) members of the cell; in
practice these diagonals are clearly necessary. On the other hand, the displacement

vector for bending prescribes that the cell deforms in the required manner.
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The shear coefficient becomes
o 8(d, D° + A, H* + A, HL? ) (24,4, D° +24, A H® + A, A, L' )4, H*L
(34,4, D% +34, 4, H® +44,4,L°)24,D° + 4,1°)(4,D° + 4, H*)
B 81 +v)24,H+v A, L)A,H L .
(A, H +4v A, L) 24, HD* +v A4, DL +v A,LH>)’
the above reduces to zero when A4, =0, as the cell cannot withstand shear.

(3.26)
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CHAPTER FOUR

EIGENANALYSIS OF AN ASYMMETRIC REPETITIVE
STRUCTURE

4.1 INTRODUCTION

In this Chapter, eigenanalysis of the transfer matrix is applied to an actual structure
modelled on a deployable satellite boom structure [13] whose repeating cell is
asymmetric about the mid-plane; a ten-cell model is illustrated in Figure 4.1. Based on
the conclusion drawn from Chapter 2 — that the continuum properties are unaffected by
the method of jointing —~the actual rigid-jointed structure is modelled as being pin-
jointed. This has the advantage of simplicity and also allows the results obtained from
eigenanalysis to be verified by exact predictions from FEA. The pin-jointed idealisation
of the structure requires the transfer matrix approach to be posed as a generalised
eigenvalue problem; this modification is necessary because inversion of one particular
partition of the stiffness matrix K is impossible, as it is singular. This means that
construction of the transfer matrix G, as defined in equation (2.7), is impossible; on the
other hand, the generalised eigenvalue problem avoids the ill conditioning associated
with inversion of the stiffness matrix partition, and the numerical inaccuracies that ensue.
The generalised eigenvalue problem employs state vectors comprised of the
displacement components on both sides of a cell, rather than displacement and force on

one side, as for the standard eigenvalue problem.

Figure 4.1. A ten-cell 3-D pin-jointed satellite truss with equilateral triangular cross-section. '

Beside the twelve unity eigenvalues for the transmission modes, eigenanalysis of the
structure shows three eigenvalues equal to zero (and three equal to infinity, since they

must occur as reciprocals), and nothing else. This implies that any self-equilibrated load
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is confined to the cross-section on which it is applied, and does not penetrate the
structure, not even to the next nodal cross-section. Of course, this is exactly why the
matrix partition is singular — displacement components of some nodes on the right hand
side of the cell are quite unaffected by force components applied at nodes on the left
hand side of the cell.

Since the eigen- and principal vectors of the generalised problem contain only
displacement components, a new transmission matrix T is defined as being comprised
of transmission vectors consisting of both displacement and force components, and is
calculated employing the stiffness matrix K. Physical interpretation of the vectors in T
shows coupling between various modes of displacement. First, tension is coupled with
torsion, which is reminiscent of the established behaviour of pre-twisted beams.
However, coupling indicated in the displacement components of the bending moment
vectors were not readily identified, but simple (ANSYS) FEA of a 10-cell pin-jointed
model subjected to a bending moment showed coupling between bending curvature, and

shear perpendicular to the plane of curvature.

Calculation of the equivalent continuum beam properties of the structure, including the
coupling coefficients between the modes, revealed several numerical coincidences
between actual properties of the structure, and the equivalent continuum properties, often
involving an apparent Poisson’s ratio of v=0.2612. In order to more fully understand
the physical causes behind these coincidences, and the nature of coupling in general, a
simpler 2-D planar asymmetric framework, Figure 4.2, is first considered. This simple
planar structure is representative of a single face of the NASA structure, and displays
tension-shear coupling; this behaviour is sufficient to explain the tension-torsion, and the

bending-shear couplings evident in the 3-D structure.

2 4

AN

-th

" cell

Figure 4.2, A 2-D planar asymmetric framework with typical cell.
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4.2 GENERALISED EIGENVALUE PROBLEM

(J__ l)lh Sectlon jth SeC'[iOIl jth SGCthn (J +1)th SeCthn
F9y
F9,\’
6 9 F9z
».v
1y,
F7x
4 7z
5 8 h

8y
(j+D)" cell | T
F8z

Figure 4.3. Two consecutive cells, j ™ and ( j+ 1)th , of the framework shown in Figure 4.1.

Consider two consecutive cells of the NASA truss shown in Figure 4.3;let d, ,, d; and
d,,, denote the nodal displacement vectors associated with the (j- l)th , j",and

( j+1)1h sections respectively. Their corresponding nodal force vectors F,,, F; and

F ,, are related to the displacements through the equations

F d F, d. ]
{ f"i:l({ ”"}, { ’ J:K[ ’ J (4.1a,b)
F, d, F,, d,,

X _ KLL KLR . . o .
where K = is the stiffhess matrix of the single cell. The force
<RL KRR

component F, appears in both of the relationships for the two adjacent cells, and can be

eliminated to give

K, d +K,d +K;d  +Kgd =0. 4.2)

J+
T T
"d,"]"ands,, =[d, d,, ]

Define state vectors for adjacent cells as s; =[d ;

j- ’

when equation (4.2) can be expressed as

As, =Bs,,. (4.3)

where
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0 1 I 0
A= , B= i (4.4)
"KRL “‘KRR KLL KLR

and I 1s the 1identity matrix. Now set
Sa=4s,, 4.5)
to give the generalised eigenvalue problem
As,=ABs; or (A-AB)s, =0. (4.6)
Eigenvectors for the non-repeating eigenvalues were determined from the MATLAB eig
command. The principal vectors are determined from the near diagonalised form
AV =BVJ. 4.7)
where V is the similarity matrix of eigen- and principal vectors, and J is the JCF. For the
multiple unity eigenvalues this implies the chain of equations
(A-B)v, =0
(A-B)w, =By, (4.8)

for a Jordan block of size & x k, and a principal vector w,,, is found using the rref
command on the augmented matrix [A—B, Bw,|. In fact the JCF cannot be determined

numerically through a similarity transformation, since matrix B cannot be inverted;
however, the structures of the Jordan blocks for the vectors pertaining to the unity
eigenvalues are obvious through physical reasoning: thus one has a 2 X 2 block coupling
extension and the combination of loads necessary to produce that extension (a tensile
force for the symmetric structure considered in Chapter 2, but here other loads are
required), and likewise a 2 X 2 block coupling rotation and the necessary loads to
produce that rotation. On the other hand, one has 4 x 4 block(s) coupling transverse
displacement, rotation, bending, and shear — in one plane for the planar structure, and

two planes for the space framework.

From the above, it is clear that the eigen- and principal vectors consist only of

displacement components; a transmission matrix T is thus defined as being comprised

of vector pairs s, = [dHT P ]T and s, = [djT p,’ JT , each of which is derived from

4.4



two of the vectors coupled in the above chain, for example wy_, and w;_,. The force
components within the new vectors can be readily determined through equations (4.1),
and the complete transmission matrix T is given in Appendices 4.A and 4.B for the
planar and NASA structures, respectively. Pairs of columns of T describe the
displacement and force components on either side of a single repeating cell for the
transmission of the stress resultants of tension, torsion, bending moments and shearing
forces, together with the principal vector rigid body rotations; the eigenvector rigid body

displacements and rotation are resident within one vector of the pair.

4.3 SIMPLE 2-D PLANAR ASYMMETRIC FRAMEWORK

A planar pin-jointed asymmetric framework is shown in Figure 4.2, together with the

nodal numbering of the typical cell; the material and geometric properties are as follows:
the Young’s modulus and density, £ =70x10° Nm™2and p = 2700 kg/m®is the same for
all members; the lengths of the two vertical bars are L = 342.8 mum, and their cross-
sectional areas are taken as 4/2 since these vertical bars are regarded as being shared by
two adjacent cells. The diagonal bar has length V2 %342.8 = 484.8 mm as demanded by

geometry, together with cross-sectional area 4. The lengths of the two horizontal bars
are L, and their cross-sectional area is 4/2; this planar structure is now equivalent to one
face of the NASA structure whose horizontal member cross-sectional areas are regarded
as being shared between adjacent faces. The full cross-sectional area 4 is calculated
from member diameter d = 6.35 mm. Since there is only one diagonal bar in the typical

cell, the structure is clearly asymmetric about its mid-plane.

The stiffness matrix K for the single cell is given in Appendix 4.C. Referring to

equation (2.7) of Chapter 2, in order to construct the transfer matrix G one must invert

the partition K,, ; however from Appendix 4.C, it is clear that both K, and K, are
singular. More specifically, the zero columns within K, and K,, indicate that

displacement d,, is quite independent of the force components on nodes 1 and 2, and

likewise for displacement d,, and the force components on nodes 3 and 4.
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Figure 4.4 shows the 2-D asymmetric structure subjected to the only possible self-

equilibrated load (F1 JHE, = 0) at its free end; nodal force equilibrium then requires the
following relationships
I
F +F cos—+F =0
a e 4 ¥

F +F, sinZ—zO , (4.9)

F,-F, =0
F =0

Bearing in mind that /], =—F, , solution of the above requires F, = F,,,

F =F,=F =0 and thence F, =0, which clearly indicates a zero decay rate, and hence

the reciprocal eigenvalue pair [inf, O]T ; the remaining six eigenvalues must be equal to

unity.
£y,
Vo
: %
-
* Fy
F

Figure 4.4. A 2-D planar asymmetric framework subjected to self-equilibrated end loading.

4.3.1 Equivalent Continuum Properties and Coupling Coefficients

The nodal force components, together with decomposition of the displacements, of the
transmission matrix, Appendix 4.A, are shown in Figures 4.5 — 4.8.

a) The first two columns of the transmission matrix, T(:,l) and T(:,Z), are termed the
tension pair and are derived from the principal vector for tension, which is coupled to x-
direction rigid body displacement, in the principal vector chain, and is shown in

Figure 4.5; it is seen that a tensile force 7, = 6.4668x10> N, when applied to both left

and right hand sides of the cell, produces an extension » = 1x10°m in the x-direction,
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together with a shear in the xy-plane y,, = —L—; note the absence of a Poisson’s ratio

contraction.
1x107® 5%107° 5%107°  5x107°
1 7 r
4 T e T T "
3.2334x1072 | | N\ 3233ax107 | 5 !
T | ! |
3.2334x1072 3.2334x1072
- —p L . e
e e
1x107 5%107°
(a) (b) (©)

Figure 4.5. The tension pair of the single-face cell of the 3-D satellite truss; the deformation is

decomposed into (b) extension and (c¢) shear deformation.

2.5%1077 2.5x107°

7 [

._...’ - 7; <_._.
1.6167x107 1 1.6167x107?
]
1.6167x107 1.6167%x1072
D —p

Figure 4.6. The bending moment pair of the single-face cell of the 3-D satellite truss; the deformation

represents a bending curvature only.

b) The third and fourth columns of the transmission matrix, T (:,3) and T(:,4), are

termed the bending moment pair, and are derived from the principal vector for bending
moment, which is coupled to rigid body rotation about the z-axis in the principal vector
chain; from Figure 4.6, it is seen that the moment M =1.6167xLx10~ Nm when

applied to both left and right hand sides of the cell, produces a bending curvature of

1 10" _ : _ ,
n = I m~'. Again, note the absence of any Poisson’s ratio effects.
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¢) The fifth and sixth columns T(:,5) and T(:,6) are termed the mixed shear pair,

and are derived from the principal vector, which is coupled to the bending moment in
the principal vector chain. From Figure 4.7, the force components of these two
vectors show shearing and compressive forces on both sides of the cell, together with
a bending moment on the left hand side. The displacements show a combination of
shear, curvature, and an apparent Poisson’s ratio expansion of the cross-section, at

first sight connected with the compressive force, despite there being no axial

contraction.
8.0836x107
1.6167x102 <— L» 4 —1 4+ 8.0836x107
8.0836x107 7| 8.0836x107
8.0836x107| 7 8.0836x107
1.6167x107% —» T l <— 8.0836x107
8.0836x107>
2.5%107°
(a)
-9 -9
4.7855x107° 4.7855x10 125% 10~ 1 25%10™

T ST T

2.5x107°

(b) ©

Figure 4.7. The mixed shear pair of the single-face cell of the 3-D satellite truss; (a) shows the force
components which indicates that the cell is subjected to shearing force, compressive force and bending

moment; displacement components indicate a shear deformation and cross-sectional expansion (b), and a

bending curvature (c).

The above vector pairs are those produced by the numerical procedures described above

for this generalised eigenproblem and contain all potential information; however, linear

4.8



combinations of these pairs are more useful for determination of the equivalent

properties, and in particular for a numerical understanding of the various couplings.

Before developing new vector pairs, however, we first note the physical arguments that
lie behind the observed couplings. As regards the tension pair, Figure 4.5, it is not
difficult to see that the tensile force is carried by the horizontal members only, and that
the diagonal member is free of load; in turn, this diagonal does not change its length and,
because the cell is pin-jointed, this is accommodated by the transverse shear of the cell
by just sufficient amount that the length of the diagonal remain constant. A consequence
of the diagonal being free of load is that the vertical members are also free of load, and
since their lengths remain constant, the equivalent Poisson’s ratio for the cell is zero.

Inserting the relevant magnitudes of tensile force T, and extension u from Figure 4.5 into
the expression 7, = EA—L— , with E regarded as constant, leads to an equivalent cross-

sectional area exactly equal to the actual area of the two horizontal members, which is

B wd?

A ——4——=31.6688><10‘(’mz.

actual ~

For the bending moment pair, Figure 4.6, again the horizontal members carry the tensile
and compressive loads, while the diagonal is free of load. But now, the contraction of
the upper member, and extension of the lower, is exactly as required to maintain the
length of the diagonal member, which now has no influence on the behaviour; again

there is no Poisson’s ratio effect. Inserting the relevant magnitudes of moment M and

1 . . : El .
curvature 2 from Figure 4.6 into the expression M = = leads to an equivalent second

moment of area [ =9.30377x10" m*, which is exactly what one would expect from
application of the parallel axes theorem, assuming actual values for the areas of the

horizontal members.
We now propose that one can conceptually trade the anisotropic coupling exhibited

above, with more appealing isotropic characteristics; in particular, since tension produces

a shear deformation, one might reasonably assume that a shearing force will produce a
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Poisson’s ratio effect, and that these effects are reciprocal. To develop this idea further
one needs the first of the combined vector pairs, describing pure shear which is shown in
Figure 4.8(a); we note that such a state of pure shear, as depicted, would not be allowed
within the context of Saint-Venant’s problem since shearing loads are applied to the
upper and lower faces of the cell (the surface generators) rather than just the cross-
section. However a nodal force in the x-direction can belong equally to the cross-section,
so the shearing forces on the upper and lower faces of Figure 4.8(a) are indistinguishable

from the combination of bending moments shown in Figure 4.8(b), which is here defined

as the state of pure shear. Now superpose sufficient pure shear (=5/6.0355 ) to suppress

the shear deformation due to tension, to give the combination of extension and apparent

< < -3 -3

prom Z 8.0836x107 4= 4 j-mmnoooees <+ 8.0836x10
5 - 8.0836x107 ! /71 8.0836x107

TE :i 8.0836x107 1 | 8.0836x107
] -3 AR -3
N ey 8.0836x10° —> 4 } — 8.0836x10

(a) (b)
6.0355x107° 6.0355%x107° 1.25%107° 1.25%107°

AT pimiinle

2.5%107°

(© (d)

Figure 4.8. The pure shear pair of the single-face cell of the 3-D satellite truss; (a) shows conventional
pure shear; (b) shows an equivalent combination of shear and bending moment; (c¢) shows the shear

deformation and cross-sectional expansion; (d) shows the extension.
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Poisson’s ratio contraction shown in Figure 4.9; the strains are

2%3.96446x107° 2.07108x107°
£, = 7 , €, = 7

, and hence the apparent Poisson’s ratio

v =0.2612. Now calculate an equivalent cross-sectional area 4 based upon the
extension caused by this tension-shear combination, and one finds

A=39.94093x10"m* = 4., (1+Vv) ; moreover, one now has as the equivalent shear

FE
modulus G=———=27.7514x10° N/m?.

2(1+v)
4.0780x10~°
T e e 4 —> 4.0780x1072
8.4459x107 ! 1 8.4459%107
16892x107  8:4459x1071 7 | 8.4459x107°
; .

- § ot 1 s 40780x107
4.0780x107

(a)

5%107° 1.3060x10™° 1.3060x107°
s T

-
I
1
1
1
\

(b) (c)

Figure 4.9. The extension pair of the single-face cell of the 3-D satellite truss; (a) shows the force
components which indicates tension, shearing force and bending moment; the deformation is decomposed

into (b) extension and Poisson’s ratio contraction, and (c) a bending curvature.

Returning to the mixed shear pair, Figure 4.7, one sees that a shearing force of

magnitude O =2x8.0836x107° =1.61672x107 N produces a shear angle of

_4.7855%x107
L/2

requires a choice of the appropriate cross-sectional area 4 and shear modulus G. For

; to define a shear coefficient x within the expression Q = kAGy
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example one might choose the actual cross-sectional area, zero Poisson’s ratio, when the
2

shear modulus G = £/2; on the other hand one might choose the calculated equivalent

E
2(1+v)

cross-sectional area, the apparent Poisson’s ratio, and the shear modulus G =

In fact, both these choices lead to the same value for the shear coefficient, since

E

actua[-é— = A (1+V)_£—- (410)

2(1+v)’

actual

and hence the value K= 0.5224, which is noted to be numerically twice that of the

apparent Poisson’s ratio.

Now the mixed shear pair contains a compressive force, suppressing elongation of the
cell which, in turn, is coupled to a shear angle. If this compressive load is removed to

6.0355x107

, which
L/2

give the shear pair, Figure 4.8, one now has a shear angle of ¥ =

1% :
, numerically.
l+v

leads to a shear coefficient x =0.4142 =

We now formalise three states of pure load, and employ these to determine the
governing coupled equations; unit states of tension T " moment M and pure shear Qp*
are defined according to Figures 4.5, 4.6 and 4.8, with magnitudes

T" =2x3.2334%x107 =6.4668x10° N, M =1.61672x107x L Nm,

4.11
0, =2x8.0836x107 =1.61672x107 N. i

In addition a shear load Q" is defined according to Figure 4.7, which represents the

mixed shear pair, but with the compressive load removed.

Now construct the cause and effect Table 4.1, for arbitrary 7, Oy, O, and M, where each
row shows the deformations caused by the pure loads; note that, numerically, the

. 1+ . . . .
coefficient 4.8284 = — . It is now easy to see that by adding an appropriate, negative,

1%
multiple of the second row (pure shear) to the first (tension) one may suppress the shear

angle while introducing an apparent Poisson’s ratio cross-sectional contraction, the

strain €.
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Table 4.1 Deformation produced by arbitrary loads 7, Q,, M and Q.

£, Y 1/R gy
-8 -8
T 10 T 10 T 0 0
LT LT
107°Q, 4.8284x107°Q, 0 10790,
Oy 410 4L0, 4LQ,
-8
M 0 0 10" M 0
LI’M
0 100 4.8284x107°Q 1070 100
ALO" ALO" 220" ALQ"

The governing equations are determined by adding the effects of each of these causes, as

E, 10 1 1 7

V| saeaxioe|l 0 48284 48284

| |=——7— 4 ) (4.12)
- L ""—2* 0 — Q/)

R L L

£, | 0 0 1 T

where numerical values for the unit loads have been inserted. Moreover, numerically

15.464x10° 1

the coefficient , enabling one to write

EAuclual
e, ] 1 0 1 1 7
Y | I 0 48284 4.8284 M
1 |= 4 ) : (4.13)
E EAactual 0 P— O _[ Q 4
2, | 0 0 1 1 |Le

The above compliance matrix is not invertible, as it is singular having rank 3; the
information contained within the fourth column, pertaining to the shear force Q, is
clearly a linear combination of columns two and three, as one would expect since Q is
constructed from M and Q,. A variety of non-singular matrices may be extracted from
the above, and these allow the equivalent properties to be determined in different ways.

First, delete the second row and the fourth column, and invert to give
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-1

10
T, N
r I

M|=Ed,,|0 = o= (4.14)
5 R
2] 0 0 1|e

2
From the above, one has equivalent second moment ofarea 7 =4, , i as previously

calculated. The tensile force 7. =FEA4_, , (ex -E, ) , but if the pure shear 0, is sufficient

to suppress the shear angle such that &, = -ve_, then one has 7, = E4,,,, (1+V)¢,, and

the equivalent cross-sectional area as calculated previously.

Instead, if one deletes the fourth row and the third column and invert, one finds

; 12612 -02612 0

y £

X . 2 X

o= | 026120 02612L L] 7 4.15)
2 2 4

© 02612 02612 0 | -

from the above, one may pick out the tension-shear coupling which is numerically

[T‘}:EAM,W,F'*‘V _VJ[S*]. (4.16)
@ -V Vv |V

0z S
0 K, KAG|| y

it is clear that the shear coefficient takes the value x=2v = 0.5224 because of the

equivalent to

If one compares this with

relationship between £ and G described above. The coupling coefficient relating

tension and shear, K, =-5.7905x10° N is also clearly dependent upon the apparent

Poisson’s ratio. As will be seen, the tension-shear coupling observed for this single face
planar structure, manifests itself as both tension-torsion coupling, and bending-shear

coupling in the NASA4 structure.
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4.4 THE 3-D ASYMMETRIC NASA TRUSS

The structure illustrated in Figure 4.1 is an actual truss, modelled on one employed by

NASA. According to Figure 4.3, the displacement vectors are defined as

d ——~[ukukuvw]T
j-1 1V Wy Yy Wy g Vs Wy
d——[ukukuvw]T
J 4 Vg Wy Us Vs We llg Vg We

d, = [u7 Vo W, Ug Vg Wy Ug Vy wg]T. (4.18a, b, ¢)

Eigenanalysis gives the reciprocal pair eigenvalues [inf, O]Thaving multiplicity of
three, together with twelve eigenvalues very close to unity; of course, the latter must be
exactly equal to unity. The zero eigenvalues imply that any self-equilibrated load
applied to the left hand end of the structure does not penetrate into the structure beyond
the first cell. Its reciprocal (inf) implies that the same is true for any self-equilibrated

load at the right hand end of the structure.

For a space frame beam-like structure, physical argument requires twelve exactly unity
eigenvalues, whose eigen- and principal vectors pertain to the three rigid body
translations in the x-, y- and z-directions, and three rigid body rotations about these axes,
and six transmitting modes of tension, torsion, and bending moments and shearing
forces in both the xy- and xz-planes. For A4 =1, the set of equations

(A-B)v, =0, (4.19)
and use of the r7ef command within MATLAB, shows that there are only four
independent eigenvectors — rigid body displacements in the x-, y-, and z-directions and a

rigid body rotation about the x-axis. They are

Vo =[100100100100100100],

rigidy

Vi =[010010010010010010], (420a,b,c,d)

rigidy

Ve =[001001001001001001],

rigidz
T
v,.m—o-L-g-—H—GO—ﬁg—ﬁﬁooﬂoL_g_ﬁ‘?O_L_g_ﬁﬁoo?ﬁq,
2 3 2 3 3 2 3 2 3 3

where L is both the length of the cell, and the length of the members which make up the

cross-section, and H is the height of the cell; the small angle @ is arbitrarily chosen to
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be 5x107° radian. The coupled principal vectors were determined according to the

procedures described in Section 4.2.

4.4.1 Equivalent Continuum Properties and Coupling Coefficients

Physical interpretation of the transmission vectors allows one to calculate the equivalent
beam properties and coupling coefficients, as follows:

a) The first two columns of the transmission matrix, T(;,]) and T(;,2), are derived from
the principal vector for tension, which is coupled to rigid body displacement in the x-
direction in the principal vector chain, and represent displacement and force on the left

and right hand sides of the cell, as shown in Figure 4.10; it is seen that a combination of
tensile force 7, =2.4468x10™" N and twisting moment M =-5.0147x107 Nm,
when applied to both the left and right hand sides of the cell, produces an extension

u =1x10"*m in the x-direction. These two vectors are termed the extension pair.

1.5081x107° y

e,
y.d

8.1561x107% r A _3
«— S AS——p 8.4459x10
/ \
// /7 \\\\
// Pie Z
/, ,’/ \\\\ \\
G e D e e e —— A .
2%8.1561x107 o 2x8.1561x107 V
7.5403x10
e 4 —_—p
1.3060x10™ 1.3060%107?

(1) T(.2)

Figure 4.10. Single cell subject to both tension and twisting moment having unit extension; vectors T(:,1)
and T(:,2) describe the displacement and force components on the left and right hand side of the cell,

respectively. Note the apparent Poisson’s ratio contraction of the cross-section.

b) The third and fourth columns of the transmission matrix, T( :,3) and T(:,4), are

derived from the principal vector for torsion, which is coupled to rigid body rotation

about the x- axis in the principal vector chain; from Figure 4.11, it is seen that a
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combination of twisting moment M =2.4812x10~> Nm and compressive force
T =2.5073x107* N, when applied to the left and right hand sides of the cell, produces

a pure rotation 6 =5x107° radian about the x-axis. These two vectors are termed the

torsional rotation pair.

7.4617x10710 y

A
8.3579x107 l/ 8.3579%x107> 4, _ -8
o — " 0=50x10" 4 175951073

\ 4
w

b b

> ~10
4 T3.7309><10
2x8.3579x10

4___
4._._.._
2%8.3579%1073

T(3) T(,4) 4.1789%x1073

Figure 4.11. Single cell subjected to both twisting moment and compressive force, causing pure rotation
about the x-axis; vectors T(:,3) and T(:,4) describe the displacement and force components on the left and

right hand side of the cell respectively. Note the apparent Poisson’s ratio expansion of the cross-section.

The above tension-torsion coupling may be written in matrix form

du

T EA K. | 5.

e a |l dx 421
ox

where K, is the tension-torsion coupling coefficient. For the extension pair, one knows
parameters Ty, My, L and E, anddu/dx =u/L =2.9172x107*; in particular one has
d0/dx =0 and substitution into equation (4.21) gives
T, =EA(ufox), or A=T,/(Edufdx)=119.8240x10"°m’,
M, =K, (du/ox), or K,=M,[(du/dx)=-1.7190x10°Nm. (4.22a,b)

Additionally from Figure 4.10, one can see displacements in the y-and z-directions;
these are an apparent Poisson’s ratio contraction of the cross-section, from which the

equivalent Poisson’s ratio would be determined as follows: strain in the x-direction is
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e, =uf/L=29172x10"", while strain in the y-direction is

g, =—v/H=- (dl_y —d;, ) / H =-7.6197x107* and strain in the z-direction is

g =—w/L=—(d, —d, )/L =-7.6197x10". Writing £, =-Vve,, £, =-VE_, gives the
apparent equivalent Poisson’s ratio v = 0.2612. The equivalent shear modulus would

then be found as G = E/[Z(l +V)] =2.7752x10"° Nm .

From the torsional rotation pair, vectors T(:,3) and T(:,4), one knows parameters, 7%,

M,, L and E, and 06/0x =0/L =1.4586x107"; in particular one has du/dx =0 which
gives

M, =GJ(06/dx),or J = M || G(96/dx)]=6.1297x10"m",
T,=K,(96/0x), or K, =T,/(d6/0x)=—1.7190x10’Nm,  (4.23a,b)

where the above equivalent shear modulus G is employed in the determination of J.
Note that identical coupling coefficients are obtained from the two separate vector pairs,
which is exactly as one would expect from the reciprocal theorem. Just as the extension
pair indicates an apparent Poisson’s ratio contraction, the forsional rotation pair also
suggests such an effect: the combination of twisting moment and compressive force
necessary to produce rotation, but no extension, also results in a cross-sectional
expansion, Figure 4.11, which are the nodal displacements in vector T(:,3), suggesting

1.2924 %107, Calculation of an equivalent Poisson’s ratio

equivalent strains £, =€, =

from this vector pair, would suggest that it should be infinite, since the strain in the x-

direction is zero.

Now, the extension pair of vectors, and the forsional rotation pair, are ideal for
determination of the equivalent continuum properties according to equation (4.21), since
they describe the necessary combination of tensile force and twisting moment such that
the deformation should consist of only extension and torsional rotation, respectively.
This implies that 06/dx and du/dx is zero, in turn. These vector pairs may be
combined in appropriate proportion to generate zension and forsion pairs; the former

describes the coupled extension and rotation produced by just a tensile force, the latter
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the coupled extension and rotation produced by just a torsional moment. These revised
vectors are given in Appendix 4.D, where it can be seen why the equivalent Poisson’s
ratio contraction was referred to above, as apparent. The left hand column of the
tension pair, T(:,17), shows that all nodal displacements on the left hand side of the cell

are zero, while the nodal displacements on the right hand side, T(:,18), consists of an

extension u =1x10"" m, together with nodal displacements equivalent to a cross-

23 3 HO

: : 3 _ 8 qe . :
sectional rotation of 6 = —L—-XIO = ;{—XlO ® indicating the relationship u = ER
however, there are no displacements (on either side of the cell) consistent with a cross-
sectional contraction, suggesting that the equivalent Poisson’s ratio is zero. The reason

behind this simple relationship between u and € is discussed in Section 4.4.2.

The torsion pair has a cross-sectional rotation on the right hand side of

~9.8958x10°°
2H /3

suggesting an anomalous value of Poisson’s ratio. The equivalent strain in the x-

=5%107* radian ; also indicated is a cross-sectional expansion, again

direction may be expressed as €, =1.0247x107°/ L, where L is the length of the cell;

the equivalent strains in the y- and z-directions turn out to have identical value, which
would suggest an equivalent Poisson’s ratio of v=-1. These issues are discussed
further in Section 4.4.2; however it is sufficient at this stage to note that calculation of
the equivalent continuum properties for employment within simple dynamic theories are
unaffected by this dilemma. In particular, an incorrect designation of equivalent
Poisson’s ratio would lead to an incorrect value for the shear modulus G and, in turn, the
torsion constant J; however, the product G.J employed in the dynamic theories remains

constant, irrespective of the choice of Poisson’s ratio.

¢) The fifth and sixth columns of the transmission matrix T(:,5) and T(;,6) are

determined from the principal vector describing rigid body rotation about the z-axis,
which is coupled to rigid body displacement in the y-direction, in the principal vector

chain. Similarly, the eleventh and twelfth columns T(;,11) and T(;,12) are determined

from the principal vector describing rigid body rotation about the y-axis, which is
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coupled to rigid body displacement in the z-direction, in the principal vector chain.

These two vector pairs are shown in Figure 4.12(a, b) and are termed the rigid rotation

pairs.

(a) (b)

Figure 4.12. (a) Rigid body rotation about the z-axis; (b) Rigid body rotation about the y-axis.

d) The seventh and eighth columns T(,7) and T(;,8) are determined from the principal
vector describing a bending moment the xy-plane, which is coupled to rigid body
rotation about the z-axis, in the principal vector chain. The force components of these
two vectors show a pure bending moment in the xy-plane on both sides of the cell.
However, the displacement components in the x-direction indicate not solely a bending
curvature in the xy-plane, but rather rotations in the two principal planes and can be

expressed in the form

dl ) 1(,7) d] . 1(.5) d] ) I(:,11) dl ) 1(:,8) ‘ l’l ) 1(:,6) dl ) (:,12)
d,, =axXd, | +bXd,, , | dy, =cX|d, | +dx|d, . (4.24)
de d3x de de de d3x

Similarly, the thirteenth and fourteenth columns T(:,13) and T(:,14) are determined

from a bending moment vector in the xz-plane which is coupled to rigid body rotation

about the y-axis, in the principal vector chain. Again the force components show a pure
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bending moment in the xz-plane, while the displacement components in the x-direction

can be decomposed as

( dlx 1(:,13) d]x (1) dlx 1(.5) N T(:,14) dlx —11‘(;,12) dlx T(.6)
d,. =eX|d,, + fX|d,, , | dy, = gX| d,_ + hx|d,, .(4.25)
dy, d, d, d;, ds, ds,

Simple calculations from equations (4.24) and (4.25) give the values of a =-0.5,
b=-0.28849, ¢c=0.5, d =—0.28849; e=—-0.5, f=0.28849, g=0.5 and
h=0.28849.

The sign of the coefficients in the above decomposition allows one to characterise the

nature of the coupling through interpretation of the cross-sectional rotations; for

T(,5) d T(,11)

dl,\‘ Ix
example, the two columns | d,, and | d,. represent rotations of the left hand
de d3x
d,. (.6 d,. T(,12)
face of the cell about the y- and z-axes, respectively, while | d;_ and | d,, are
d().v d()x

rotations of the right hand face cell about the y- and z-axes, respectively. Thus the fact

that coefficients a and ¢ are of equal magnitude but opposite sign indicates that this is a
curvature in the xy-plane; on the other hand, the fact that coefficients b and d are equal

indicates equal rotation of both faces of the cell, which is equivalent to a shear of the

cell in the xz-plane.

The nature of the above coupling has been confirmed through an ANSYS model of the
ten cell pin-jointed structure loaded by a bending moment in the xy-plane according to
the force components of the bending vector T(:,8), as in Figure 4.13. The nodal
displacement solutions in the y- and z-directions from this numerical experiment are
shown in Figure 4.14, from which bending curvature in the xy-plane and a shear
deformation in the xz-plane are obvious. The analytical expressions shown were

obtained by curve fitting and, as will be seen, are in complete agreement with the above

decomposition. Similar agreement is found when the bending moment is in the xz-
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plane. Vector pairs T(;,7) and T(;,8), and T(:,13) and T(:,14), are each one of two

bending moment pairs.

NS SN N
A
<

X, U

zZ,w

Figure 4.13. Ten cell 3-D pin-jointed satellite truss subject to bending moment in accordance with the

force components of the bending vector T(:,8).

v, w (m)A

6x1077
51077
4x107"
3x1077
2x10771

1x1077]
0 A

(m)

y=4.2549%1078 x2 w=8.4212x10"x

Figure 4.14. The nodal displacement solution of the numerical experiment shown in Figure 4.13.

According to the reciprocal theorem, just as a bending moment produces curvature, with
a coupled shear deformation, so one would expect a shearing force to produce a shear

deformation, with a coupled curvature; accordingly, the coupled equations for bending

and shear in the two principal planes are written as
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M. =EI -a—‘”-z—+1<yz(y/‘ —-a—VKJ
: 7 ox U7 ox
: (4.26)
o=t Wik ( —@’-)
! 7 ox | Ve ox
\
0. = K(\AZAG(% —%KJJFK.\-Z %‘/_’_
* * 427)
0, =« AG[/ —Qﬁju( W,
v T l/z ax v ax

where K and K, are defined as the coupling coefficients for bending and shear in the

two orthogonal principal planes, xz and xy, respectively

The bending moment vector pairs T(;,7)and T(;,8), and T(;,13)and T(;,14) are shown in

Figures 4.15 and 4.16, respectively, from which geometric consideration yields the two

bending curvatures in the xy-and xz-planes
I/R, =1.4434x107/(H/3x L/2)=8.5098x10" m™,
/R =2.5x107°/(L/2x L/2)=8.5098x10* m™",
and their coupled shear angles

¥, =1.4434x107/(1/2) =8.4211x107

in the xz-plane, and

7, =8.3333x10"°/(H/3)=8.4211x10"

in the xy-plane, respectively.

According to the definitions of bending curvature and shear angle, one has

2
14y (4.28)
R, dx
Ve = %- (4.29)

Integrating equation (4.28) twice and imposing dv/dx =0 and v =0 at the fixed end

x =0, and insert the calculated curvature gives

\/———2—;—/\*2 =4.2549x107% x* m, (4.30)

¥
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1.4434%107° 1.4434x107°

2.8868x107 Ay
—| | 3.7337x107 ﬁ’l_ [+ —
— - = |
3.7337x107%! ! ! !
] i ] |
s s |
> >
2><1.8868><]O"2/§ \ ! !
— | ; — S i
o e 2%1.8868x1072 i j
1.4434x107° Y “
T(.,7) T(.8) T(:,7) T(.8)

Figure 4.15. Single cell subject to pure bending moment in the xy-plane; vectors T(:,7) and T(:,8)

describe the displacement and force components on the left and right hand sides of the cell respectively.

2.5%107 2.5%107 1.6667x107° 1.6667x10™°
m — Je- S = T S e
<« 1 i - -
3.2334x1072 ; g 3.2334x1072 :r i
E i s s
i | i |
> X » X
i | i i
: ! | i
i H
3.2334x107% | I 3.2334x1072
A | e e
8.3333x10" 8.3333%x10~
\ X
T(:;,13) T(,14) T(;,13) T(;,14)

Figure 4.16. Single cell subject to pure bending moment in the xz-plane; vectors T(:,13) and T(:,14)

describe the displacement and force components on the left and right hand sides of the cell respectively.

while integrating equation (4.29) and imposing w =0 at the fixed end x =0, and
inserting the calculated coupled shear angle gives

w=y_x=84211x10"xm. (4.31)

Equations (4.30) and (4.31) are in near exact agreement (error = 0.001%) with the two
corresponding curves fits shown in Figure 4.14, obtained from the ANSYS model. Last,
note that there are no Poisson’s ratio effects evident within these bending moment

vectors, again indicating v= 0.
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e) Finally, the ninth and tenth columns T(:,9)and T(:,10), and the fifteenth and sixteenth
columns T(;,15)and T(;,16) of the transmission matrix describe the displacement and

force components when the cell is subjected to both a shearing force and a bending
moment in the xy-and xz-planes, respectively, and each is termed a shearing force pair.
These shear pairs are determined from two principal vectors: the shear vectors in the xy-
and xz-planes which are coupled with bending moments in the principal vector chains,
and also coupled with the two bending vectors in the two orthogonal planes. The two
shear pairs are shown in Figures 4.17 and 4.18, and are decomposed as shown in Figures

4.19 - 4.22.

5 Y i 1.4434x107°
9.2923x10 A 6.4056x10 N '
<«
3.7337><10"2‘*| |*— —’l ;‘— -
— T T - l 1.6167x1072 !
I | |
1.6167x1072\ 1 | |
| . X
2x8.0836x107 > >
i i ?
—t TT :_\ :\u2x8.0836x10‘3 !
2x1.8668x1072 | |— e !
-9 -9 1
4.6462x10 3.2028x10 vz
T(.,9) T(;,10) T(:,9) T(;,10)

Figure 4.17. Single cell subject to shearing force and bending moment in the xy-plane; vectors T(:,9) and
T(:,10) describe the displacement and force components on the left and right hand side of the cell

respectively.

As in Chapter 2, the shear angle is defined according to the relationship ¥ =y —dv/dx,
in which dv/dx is the centreline slope and w is rotation of the cross-section. Now since

the centreline slope rotations shown in both Figures 4.17 and 4.18 are already zero, one

has dv/dx=dw/dx=0. Thus, from Figures 4.19(a) and 4.21(a), cross-sectional rotations

on either side of the cell give the shear angles

¥, =3.9245x107°/(H/3)=3.9658x10%,

7. =6.7974x107 /(1/2) =3.9658x107% (4.32a, b)
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The coupled bending curvatures can be determined from Figures 4.20(a) and 4.22(a),

and are
o /(L S|
I/RZ:1.4434><10 EXL =2.4566%x10"m"™,
~10 H ~8 a1
l/R‘y:8.3333><10 /[—3—><sz2.4566><10 m . (4.33a, b)
8.0473x107° 5.5474x107° | 6667510
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5.3891x107/ 1 ;
— | Pt ol fe
3.2334x10™ l ) 8.3333x107"
‘( Z -2
1.3473%1072 1.3473%10
T(,15) T(;,16) T(;,15) T(,16)

Figure 4.18. Single cell subject to shearing force and bending moment in the xz-plane; vectors T(:,15)
and T(:,16) describe the displacement and force components on the left and right hand side of the cell

respectively.
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Figure 4.19. Decomposition of the displacements of Figure 4.17 in the xy-plane; (a) shows shear angle

and (b) shows bending curvature.
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Figure 4.20. Decomposition of displacements of Figure 4.17 in the xz-plane; (a) shows bending curvature
coupled with shear angle in the xy-plane due to shearing force, and (b) shows shear angle coupled with

bending curvature in the xy-plane due to bending moment.
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Figure 4.21. Decomposition of displacements of Figure 4.18 in the xz-plane; (a) shows the shear angle

and (b) shows the bending curvature.
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Figure 4.22. Decomposition of displacements of Figure 4.18 in the xy-plane; (a) shows bending curvature
coupled with shear angle in the xz-plane due to the shearing force, and (b) shows shear angle coupled with

bending curvature in the xz-plane due to the bending moment.

As with the previous analysis of the rigid jointed planar structure, a shearing force gives
rise to a bending moment which is effectively one-half, in magnitude, of the full
bending vector, but averaged over the cell length, which in turn produces half curvature,
which is coupled with half shear angle, as shown in Figures 4.19(b) and 4.21(b). This

gives the curvatures due to the bending moments within the two shear vectors as

R =7.2170x107"/(H/3x L/2)=4.2549x10° m™",

/R =125x107°/(L/2x L/2)=4.2549%x 107 m™, (4.34a, b)
while Figures 4.20(b) and 4.22(b) gives the coupled shear angles in the perpendicular
planes

7., =7.2170x10"°/(L/2) =4.2106x107,
y;, =4.1667x107°/(H/3) =4.2106x107". (4.35a, b)

Compared with the bending curvatures and coupled shear angles obtained in the bending
vectors, it is gratifying to see these Aalf deformations are consistent with the above

argument.

From equations (4.26) and (4.27), the stiffness relationship for the bending and shear

coupling of M, and Q, can be expressed in the matrix form
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ow
QZ _ (KYZ A G K,\'Z l//y - —g
M, | | K. EI ay, |
ox

However, in order to determine the equivalent second moment of area, and the shear

(4.36)

coefficient, it is more convenient to write the above in the inverted form

2] w
R, z

where N, is now a compliance matrix, and

ow 1 dy
=Y e, — =t 4.38
Va =¥ ox R, ox (4-38)
El -K
N . l’l” n]Z _ K\'ZAG ]<,\‘z B . KYZAGE[Z_K,VZ2 K.,\‘ZAGEIZ*K,\'ZZ (4 39)
o nZl n22 - ]<xz E]z - K.\'z *K‘szG . ‘
KXZAGE[Z - I<XZZ KYZAGE]Z - K.\’Z ’
For the bending vector pair in the xy-plane, T(:,7)andT(:,8), one has, Q, =0,
M. =1.10842x107 Nm, 1/R =8.5098x10"m™, 7, =8.4211x107*, and
substituting into equation (4.37) gives
- ?/,\’Z . -7
n, =-—==175974x10"", (4.40)
MZ
I/R‘, »
n,, = 7 =7.6774x107". (4.41)

From the shear vector pair in the xz-plane, T(;,15)and T (:,16), one has M, =0 Nm,

0. =3.2334x107 N, 1/R, =2.4566x10*m™, y_ =3.9658x10™*, and substituting

into equation (4.37) gives

n, =1 =12265%107, (4.42)
0.
R,

ny = LB 5 s97x107 (4.43)
0
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Note that n,, and n,, are found to be identical from the two vector pairs, which is as
one would expect from the reciprocal theorem. Inversion of the matrix N, gives

k. AG K] [m, m, | [86857x10° —8.5952x10° (4.44)
K. EL| |n, ny —8.5952x10*  1.3876x10° |

The equivalent second moment of area /,, shear coefficient x_, and the coupling
coefficient for bending and shear K _, are then determined as: x _ =0.2612,
I.=1.9823x10"°m", K _ =-8.5952x10*Nm. As with the single face, note that the

shear coefficient is again a (now single) multiple of the apparent Poisson’s ratio.

Consideration of the bending vector pair in the xz-plane, T(:,11) and T (:,12) , and the
shear vector pair in the xy-plane, T(;,9) andT(:,10), and following similar procedures,

itis found that x , =x., [, =1, and K =K .

4.4.2 Coupling Behaviour

All of the observed couplings for the 3-D structure can be explained in terms of the
tension-shear coupling seen in the single face 2-D planar structure; recall that an
extension u (= 1 x 107 m) was coupled with a shear angle of #/L. During tension, each
of the three faces would both extend, and undergo a shear deformation, if the three faces
were disconnected; however, compatibility of nodal displacement of the three faces,
requires an out-of-plane rotation of the face, for which it is a mechanism and so does not
affect the stiffness. Thus shear deformation in the three planes at 120°, together with
this out-of-plane rotation, is nothing other than a rotation of the cross-section as a
whole; hence a tensile force produces both an extension and a rotation, as in the fension

pair, T(:,18); as with the single face, there is no Poisson’s ratio contraction associated
with this extension. Moreover, the relationship u = Tnoted in Section 4.4.1, is

entirely consistent with the shear of the single face.

Bending-shear coupling is easily understood by considering a cell having a square cross-

section, comprised of four 2-D planar face cells, as depicted in Figure 4.23a.
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Decompose this into two side faces, and an upper and lower face, Figure 4.23b, with the
nodal forces that constitute the pure bending moment being shared accordingly. Now,
the side faces contribute nothing towards coupling, and there is zero Poisson’s ratio
contraction in the y-direction. The lower face is in tension and will both extend and
shear; the upper face is in compression, and will both contract and shear in the same
sense as the lower face, since the diagonal is in the opposite direction to that of the
lower face. Thus the pure bending moment would produce a bending curvature in the
xy-plane, coupled with shear in the xz-plane. These arguments may be transferred to the
triangular structure by imagining that the upper face is removed, and the two side faces
are folded in, to meet at the apex, nodes 3 and 6 of the cell. Now the shear deformation

arises from just the lower face being in tension.

¥, v TN N
~ [
h 3
AN !
. <«
\\\ :
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X, U \‘IL
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(a)
—> “«— —» “— —> “«—
AR —> < — —> +— < —
Far face Near face Upper face Lower face
(b)

Figure 4.23. (a) Single repeating cell of an asymmetric framework with square cross section subjected to

bending moment; (b) four decomposed faces subject to tension or compression

At first sight, the tension-torsion coupling, and the bending curvature-shear coupling, of
this asymmetric structure, may seem unusual; however this is solely because one is

trying to characterise the equivalent continuum behaviour according to the precepts of
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isotropic, rather than anisotropic, elasticity. This is particularly evident in attempts to
determine an equivalent value for Poisson’s ratio: suppose that the single diagonal bar in
each face of the structure were to be replaced two such diagonals, each having a one-
half cross-sectional area; the equivalent cross-sectional area would remain unchanged.
However the now symmetry of the structure leads to a quite unambiguous value for
Poisson’s ratio as v=10.2612; indeed this value of vand the equivalent cross-sectional
area, are given in Chapter 7, where a pre-twisted structure having two such diagonals is
considered over a wide range of pre-twist angles, ¢, including the straight case, o= 0.
For this latter case, one has a cross-sectional contraction (the Poisson’s ratio effect),
rather than a rotation, coupled to an extension — however the term coupling is rarely, if
ever, employed, since this Poisson’s ratio effect is regarded as normal within the field of
isotropic elasticity. Returning to the 3-D asymmetric structure, and the extension pair,
one requires a twisting moment to suppress cross-sectional rotation, when one has an
apparent Poisson’s ratio of the same expected valuev=0.2612. Thus one sees an
entirely consistent #rade-off between Poisson’s ratio coupling (normally contraction)

and rotational coupling, according to the symmetry or asymmetry of the structure.
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TRANSMISSION MATRIX OF A SINGLE-FACE CELL OF THE 3-D SATELLITE TRUSS, FIGURE 4.2
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APPENDIX 4.B

TRANSMISSION MATRIX FOR THE 3-D PIN-JOINTED ASYMMETRIC FRAMEWORK, FIGURE 4.3
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APPENDIX 4.C

STIFFNESS MATRIX OF THE SINGLE FACE OF THE 3-D SATELLITE TRUSS, FIGURE 4.2

11_2

o o o o
~
o ~la o 1__

1~_2 o o o
— N O ) =)

1_2

~

< | e o o o o

R I LN R ETE
_m 1“20ﬁ_4ﬁ_4

T J

e W e

4.36



APPENDIX 4.D

TENSION AND TORSION PAIRS FOR THE 3-D ASYMMETRIC PIN-JOINTED FRAMEWORK, FIGURE 4.3
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CHAPTER FIVE

DYNAMIC ANALYSIS OF A REPETITIVE STRUCTURE

5.1 INTRODUCTION

In this Chapter, continuum dynamic beam theories are constructed for the asymmetric
structure considered in Chapter 4, which allow for the tension-torsion and bending-shear
couplings revealed between these displacement modes. The analysis employs a
generalised stiffness matrix for the cell, whose elements are the equivalent continuum
properties as determined in Chapter 4, and the use of Hamilton’s principle. Inertia

properties are determined from first principles, and may be regarded as exact.

The frequency predictions are compared with those obtained from ANSYS, the latter
being regarded as the benchmark for accuracy. However, unlike static FEA of pin-
jointed structures, dynamic analysis may no longer be regarded as exact; one has a
choice of lumped or consistent mass matrices, neither of which will lead to the exact
frequency. The lumped mass matrix is diagonal, which is computationally
advantageous, and usually leads to an underestimate of natural frequencies. Its use is
considered essential in problems involving wave propagation, and is generally regarded
as better for skinny structures [74]. The consistent mass matrix is symmetric and
banded, and according to Desai and Abel [75], the principal advantage is more accurate
modes shapes and frequencies that are proven upper bounds. On the other hand, use of
the consistent matrix can lead to spurious modes of oscillation, and this was found with

an ANSYS model of a rigid-jointed truss.

The ANSYS predictions employed here, are those which provide best agreement with
the continuum models derived below; for the flexural frequency predictions of the
coupled Timoshenko beam theory, this is achieved using the lumped mass option; on the
other hand, for the coupled tension-torsion frequency predictions, better agreement is

found using the consistent mass matrix.
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5.2 MASS AND MOMENT OF INERTIA PER UNIT LENGTH

a) The mass per unit length is calculated simply as the sum of the individual masses of
the members that constitute the generic cell, divided by the length of the cell

(0.3428 m), and is found to be 0.8758 kg/m. Note that cross-sectional members are

regarded as being shared between adjacent cells, so their contribution is halved.

b) The moments of inertia of the cell are calculated as follows: first, the moments of
inertia of each member is calculated about its own centre of gravity, taken as the origin

of a local coordinate system, with the local x-axis along the length of the member, and

using the simple formulae J, = J, =mL’/12,and J, =mr* / 2 ; however, for the
structure under consideration, the moment of inertia J_ of a typical member is
approximately 1/2000" of J, , so the former is ignored. These are then converted to

moments of inertia about the three global principal axes, using coordinate
transformations and the parallel axis theorem, as appropriate [76]. Last, they are added
to give the moments of inertia for the complete cell, which is then divided by the length.
The moments of inertia about the x-, y- and z-axes per unit length are found to be

J, =22177x107 kgmand J, =J, =2.4689x107 kgm .

Again note that contributions from the members that constitute the cross-section are
halved. It should be noted that these properties may be regarded as exact, not
withstanding the above approximation, while the equivalent continuum properties

determined through eigenanalysis are regarded as approximate.

5.3 CONTINUUM DYNAMIC THEORY

5.3.1 Dynamic Equations

The generalised stiffness for the truss examined in Chapter 4 may be written as

F=Kd, .1)

or in full
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Note that this matrix is block diagonal, so the tension-torsion coupling can be treated
separately; at first sight the same is true for bending in the two planes, but closer
inspection shows that cross-sectional rotations, and their derivatives provide coupling in

the displacement vector.

According to Hamilton’s principle [77], the governing equations and boundary

conditions may be generated according to
s [(r-uvydi=o, (5.3)
h

where the kinetic and strain energies are

_ el al//y 2 ow,, a‘!/z 2
T= { 1(— ) +J( ) + (——) +Jy(—a—;-) +m(~é—t—) +JZ(?) }dx, (5.4)

U= L{ dTKd} (5.5)

Carry out the first variation of equation (5.3), and integrate by parts in the usual way,

gives the dynamic equations:

0%u 9%0 o%u
FA—+K, —=m—-, 5.6a)
ox* ox* ot (

2 2 2
ng ?+K,,g S =, ?)ﬂe : (5.6b)
X X

9% dy, v ’w,
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o> v ( ox  ox’ Y ox? (
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azv o’w 0’y
J —EI =0, (5.6
z a N2 zx ,\z axz z axz ( f)
together with the boundary conditions:
either EA%-F K, 8—9 =0;0r ou=0, u is specified, (5.7a)
ox ox
cither GJ Q—q+ K, —aﬂ =0;o0r 00 =0, 0 is specified, (5.7b)
Ox ox
dy, : :
either x, AG(y, —-—)+K\y -a—— =0;or ov=0, v is specified, (5.7¢)
i Wy, is specified 5.7d
either K (. =0;0r 8y, =0, w, is specified, (5.7d)

either K AG(y, — )+K\z aa*// =0;o0r ow=0, w is specified, (5.7¢)

dy.

either K (v, — )+EI =0;o0r oy, =0, y, is specified. (5.7%)
. x

5.3.2  Solution of the Dynamic Equations
a) Coupled Tension-Torsion

First separate variables by writing

u(x,1)=U(x)sinewr and 6 (x,1)=O(x)sinwr (5.8)
in equations (5.6a, b), which leads to the coupled ordinary differential equations
2
& U +K, ix(,?ana)zU:O
2 2
GJd—?—ﬂ—Kﬁd—g]—-%—Jxa)z@:O. (5.92, b)
dx

These may be uncoupled, which leads to the two fourth order equations

7777

U” U
(EAGJ—K,,Z){ ,,,,}Jra)z(GJm%—EAJx)[@,,}+a)4(]xm{®}=0, (5.10)

where prime denotes differentiation with respect to x. Setting
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{ggﬂ{gk (5.1.1)

leads to a characteristic equation whose roots are

A ~(BAL + GIm)T(EAT = GIm)' +amI K,
2 | |

@ 2(EAGT-K,?)

and hence general solutions

u(x)] [v]. ., [u, [u. U,
{ }—[ }smﬂpﬂ{@ :]cosﬂq;w{@ Jsmﬂ?ﬁ[@ }cos@x. (5.13)

@(X) @i 2 3 4

The eight constants in the above are not independent, but are related by

(ma)2 —EAA? ) (ma)2 — EAA” )
O, = rE U, 0,= P .
Hi 1 (514)
(ma)2 — EAL} ) (ma)2 —EAA} )
3= 7 Uy, 4= 7 U,
Klt 22 Kll 22
End conditions are free, fixed, or mixed.: at a free end, U and © are unspecified, so
conditions (5.7a, b) become
dU
EA K, dx
ey (5.15)
K, GJ]| d©
dx
The determinant of the above continuum property matrix will, in general, not be equal to
: . dU do : o~
zero, in which case one has o =—=0. Ata fixed end, one has simply U= © =0.
X
Two types of mixed end conditions are possible: it is possible to allow extension but not
rotation, in which case one has ® = 0 and aw = _k, do ; alternatively, if rotation is
dx EA dx
allowed, but not extension, then U = 0 and a© = _K, dU .
dx GJ dx

For a free-free beam, application of the boundary condition at the end x = 0 leads to the

equations
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UAL+UA =0, O4+0,4,=0 (5.16)
which, combined with equations (5.14), provides the condition
4 4
maw’ —EAA®  ma’ — EAL} [
Kltﬂl ]<Ifﬂ’2

The determinant in the above is only zero for the degenerate case 4, = 4, ; the more

Y =0 (5.17
U, | 17

3

general requirement is U, =U,; =0, and hence ©, =0, =0. Application of the
boundary conditions at the end x = L, leads to the frequency equations

sin4L=0, sin4,L=0 (5.18)
and hence the natural frequency predictions are

1) torsional

J+EJ A- J—EJ A +4mJ K,’
oo™ [MGTHES, JnG A HAmI Ky (5.19)
/ 2mJ
i1)  extensional
J+EJ A —EJ A +4mJ K,}
a):fﬂ mGJ +EJ +\/(mGJ A +4amJ K, (5.20)
[ 2mJ
with mode shapes
U(x)=U, cosﬁz—)ﬁ, O(x)=0, cosﬁ%{, (n=1,2,3-- etc). (5.21)
For a fixed-free (cantilevered) beam, one finds from the conditions at x =0,
U,=U0,=0,=0,=0 (5.22)
while the conditions at x = L lead to the frequency equations
cosAL=0, cosA,L=0 (5.23)
and hence the frequency predictions are
1) torsional
2
L |mGJ + EJ A~ J(mGJ = EJ A)? +4mJ K, o
2L 2mJ

ii)  extensional
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ni |mGJ + EJ A+ \(mGJ - EJ AY* +4mJ K}
) = — - - - ’ (525)
2L 2mJ
with modes shapes
nwx . HTX
Ulx)=Usin——, O(x)=0,sin—— (n=13,5--- etc). 5.26
(x)=Usin==, ©(x) =0 sin—r ( ) (5.26)

It is noted that equations (5.24) and (5.25) are also equally applicable to fixed-fixed end

conditions.

b) Coupled Bending-Shear

Separate variables by writing

v(x, )=V (x)sinwr, w(x,t)=W (x)sinar,
w,(x,0)="Y, (x)sinart, . (x,0)=Y¥, (x)sinaox, (5.27)
in equations (5,6c, d, ¢, f), which leads to the coupled ordinary differential equations
-ma’V + Kk, AGY,-V")+K ¥, =0,
—-ma’W + Kk, AG(Y, -W")+K ¥, =0,
—J @'V, +x, AGY, -W)+K V' —-ELY, =0,
I K, AGY, -V )+K W' —EI[Y,=0. (528a,Db,c, d)
For the structure under consideration, one has (Chapter4) /, =1, and «,, =k, , and

also we know that J =/, so set

g : E[ oz Jv (z K\’f Xz
R gy e el (5.29)
Bl Ky AG m Sl
when equations (5.28) reduce to
—k'qV +(¥,-V")+b¥; =0,
—k g W + (¥, -W")+ DY, =0,
—/c4pq‘}’y +(¥, - WHh+bV" -~ q‘{’;' =0,
—kt g, + (¥, =V )+ bW —q¥, =0. (5.30a, b, ¢, d)
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Uncoupling the variables in equation (5.30) leads to four fourth order ordinary

differential equations

V" +eV +¢V =0,
W e, W+ e, W =0,

nn ”
oVl +o, ¥, +a¥, =0,

Ve, ¥ +c¥, =0. (5.31a,b, ¢, d)
where
¢ =q-b
c, = k*pq+kiq’
¢, =k pg’ ~k'q
Setting
14 (x) A
W) || Bl (5.32)
b4 y ( X C
Y. (x D
leads to the characteristic equation
A+ +e, =0 (5.33)

with roots

I+

/11,2 =

2
\/—62 +4/c,” —4cc,

2c,
: (5.34)
ey +4je,” —4ec
Ay =i '
’ 2¢
The general solutions are then
V(x) 4 4, R A,
Wi(x B B B B
) =| " |sinhsx+| 2 |coshrx+| ° |sinsx+| ' |cossx, (5.35a,b, ¢, d)
\Py (x) G G G o
LPZ (x) Dl DZ D3 D4

where

2 3
—c, +4/c,” —4cic,
2¢,

c, +4/c,’ —4cc,
5= :
2¢,
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Only half of the constants in equations (5.35) are independent, being related as
B =K..C,+K,,4,
B, =KC +K,,4
By = KC, — K4, ’
B,=-K, C,+K,,4,

D =K, 4,-K,,C,
D, = KnAl _Kzzcl

. (5.36a, b)
D, =K4,+K,,C,
D, =—-Kyd, - Ky, C,
where
kg +r
K, =
’r‘
K,, =br
kg —s*
Ky=—"
s
K, =bs
4 2
K = k" pg+1—qr
7/‘
K - ~k* pg +1+gs*
66 s
Substitution of equation (5.36) into equations (5.35b) and (5.35d) gives
W(x)=(KC, + K,,4,)sinh rx+ (K, C, + K,,4,) cosh rx
+(K,C, — K, 4,)sinsx+ (K, C, + K, ,A,)cos sx,
Y, (x)=(K, 4, - K,,C,)sinhrx+ (K, 4, — K,,C,)cosh rx
+(K3 4, +K,,C,)sinsx+ (=K, 4, — K,,C;) cos sx. (5.37a, b)
Application of boundary conditions leads to a matrix equation of the form
[F(o)][4 4, 4, 4, C, C, C, C4]T =0. (5.38)

where

[F@)]=[1,], i=1,2,...8,j=1,2,..8.
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Non-trivial solution of equation (5.38) requires that the determinant of [F (a))] be equal

to zero, from which the natural frequencies are determined. The coefficients f;; are

derived in Appendix 5 for free-free and fixed-fixed end conditions.

5.4 COMPARISON OF NATURAL FREQUENCY PREDICTIONS

Table 5.1 shows bending frequency predictions for a slender truss having thirty cells,
length L =10.284 m, for free-free and fixed-fixed boundary conditions, compared with
the ANSYS predictions, employing the /umped mass matrix option. Because the
continuum properties are identical in the xz- and xy-planes, the continuum dynamic
theory predicts double natural frequencies for each flexural mode, and this is confirmed

by the ANSYS prediction; for brevity only one is shown.

Table 5.1 Comparison of natural frequencies (Hz) in bending according to ANSY'S and present method;
free-free and fixed-fixed beam, L = 10.284 m (30 cells)

Free-free beam Fixed-fixed beam

p ANSYS Flexural n ANSYS Flexural
Lo 12769 oy | b set By
2 34.194 (3_’4(1) 1)682/3) 2 33.333 (i?)(;iij)
3 64428 (54&9622) 3 62398 (6—116216%/3)
4 10105 (1_(_)8 28;)()22) 4 97.884 (?_6117?;%/8)
5 143.65 (1_455_;1;5) 5 138.21 (1325;)68;3
6  189.29 (1_2_317 fg% 6 182 (1_727 622352;
7 237.12 (2_314;55;)2) 7 228.15 (2_2218638(;3
8 286.07 (2_812 17 73(% § 27571 (2—627;86‘;3
9 335.3 (3_359222(;3 o 32392 ?—125’(/)50;,6)
o s ATy gy 2006
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The frequency predictions of the modified Timoshenko beam model shows excellent
agreement with the ANSYS predictions, with an accuracy of +0.12% to —1.18% for the
free-free beam, and —0.28% to —2.88% for the fixed-fixed beam, for the first 10 modes.

For the short (10 cell) beam, Table 5.2, agreement is very good for the first four modes
of the free-free beam (+0.59% to +3.72%), and the first six modes of the fixed-fixed
beam (+4.79% to —4%). For the higher bending modes of a short beam, with the
wavelength being closer to the depth of the truss, the in-depth vibration or local effect
become important and even dominates, however, the continuum model does not

represent local effects accurately.

Table 5.2 Comparison of natural frequencies (Hz) in bending according to ANSYS and present method;
free-free and fixed-fixed beam, L = 3.428 m (10 cells)

Free-free beam Fixed-fixed beam

n ANSYS Flexural n ANSYS Flexural

Lo Lo
7 I L R
3 38221 ?518 6329;,5) i 470 ?fj.gg%
4 519.2 53387522;7) ‘ 484.84 ?_72252970049)
5 639.24 (65;1 ! 39;)9) 5 612.78 (6:05:55;1)
6 741.43 (fllgfg% ) 6 725.49 (139&29%/?)
7 82571 (31337,'5215%) ’ 819.17 (3103.55?;,)

Next, consider the coupled torsion-extension predictions, Table 5.3, for the long (30

cell) beam, length L =10.284 m, again for free-free and fixed-fixed end conditions.

Better agreement with ANSY'S predictions arises when the latter employs the consistent
mass matrix, and only these are shown. Again, the results show excellent agreement;
for the predominantly torsional modes, the accuracy is within +0.02% to +1.30% for the

free-free beam, and +0.02% to +1.25% for the fixed-fixed beam for the first 9 modes.
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For the first two extensional modes, the maximum error is —0.05% and —0.33% for free-

free and fixed-fixed beams, respectively.

Table 5.3 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and
present method; free-free and fixed-fixed beam, L = 10.284 m (30 cells)

Free-free beam Fixed-fixed beam
n  ANSYS Torsional Extensional | n ANSYS Torsional Extensional
B osss PN
2 75111 (E)}{éﬁ/i) 2 75618 (3215795)
s 11ass (143517;;2) 3 113.31 (1_15295;2)
4 149.86 (L%(?ﬁj) 4 15089 (1_?)(_)3%4:/3)
5 15181 (lf(}gf;os) 5 152,12 (1_5(}275;,5)
o rsooy 87T o s SO
1o 25140 1 msas Loos
8 260.51 ffg:;g% 8§ 26239 (25321;)%3)
9 29682 0 o 288 gt
10 303.73 (3_03557(;}) 10 304.59 (3_(())%3'532/}))
11 33277 ? _35‘9222;(; I 33529 (3312 22520142

For the short (10 cell) beam, Table 5.4, good agreement is obtained up to the fourth
torsional mode for free-free (0.21% to +3.49%) and up to the sixth torsional mode for
fixed-fixed beam end conditions (—1.81% to +2.76%); again the agreement for the
extensional modes is excellent. Similar accuracy and trends for the natural frequency

agreement can be seen in Table 5.5, for both long and short cantilevered beams.
Generally, as noted by many other authors, for any type of mode, it is found that the

long beam always gives better accuracy for the natural frequency prediction. According

to Lee [14]: Physically, the number of repeating cells per wave-length increases as the
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Table 5.4 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and

present method; free-free and fixed-fixed beam, L = 3.428m (10 cells)

Free-free beam

Fixed-fixed beam

n  ANSYS  Torsional Extensional | »  ANSYS  Torsional Extensional
T IR [ ww T

2 e 2SS I

S TR 3 33942 ?_308321;;

4 a8 e 4 w674 ocn

5 455.84 ?_50513 " (56) 5 45885 ?557365026)
6 SBS3 e 6 BT e

7 622.63 (61?95;‘.’% 76472 (61565;;7)

Table 5.5 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and

present method; cantilever beam

10 cell structure

30 cell structure

n  ANSYS Torsional Extensional | #  ANSYS  Torsional Extensional
Csem ST TN
2 oo 1013 2 sesat S0
3 22846 (2_207 36:023) 3 75973 (338191%/7 )
4 28130 (2552819%2) 4 o4led (?g.ﬁf;))
5 389.06 ?fﬁﬁ% 5 13167 (135395(302)
6 49181 5(()];‘10%8 6 169.02 253573029)
7 587.52 ?ﬁgégf 7 206.17 ?fg;?%
s emas 1o s 2708 o1
9 688.20 (6_85;)329) o 24311 ?féjg;,l)
10 745.46 (%53'.212/?) 10 279.72 ?fg;%;(;z)
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total length of lattice structure increases. Thus the wavelength of a mode spans more
repeating cells so that the effect of the nonbeam-like characteristic of lattice structure

become less important.
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APPENDIX 5
DERIVATION OF MATRIX F(w)

Free-free beam. Insert equation (5.27) into (5.7¢, d, e, f) gives the boundary conditions

in matrix form

z

K. EL, 0 0| W
. ’ > =0 (A1)

Kk, AG K, 0 07w, -V

kK, AG K, 0 0 —l
K, 6 EI 0 0 .
because det ” Y # 0, the boundary conditions become
O ’(‘,\'ZAG ]<v\‘Z
0 0 K. EL
V. -V'=0,
¥ =0,
v, - w'=0,
¥ =0. (A2a,b, c, d)

Substitution of equation (5.35a) into (A2a) gives
(K, 4, - K,,C))sinhrx + (K, 4 — K,,C,)coshrx +
(K34, +K,,C,)sinsx+ (=K, 4, — K, C,) cos sx —
Ajrcoshrx — A,rsinhrx — Ayscossx + A,ssinsx =0 (A3)
at x =0, equation (A3) becomes
(K, -4 +(-Ky; -s)4,-K,,C, -K,,C, =0, (Ada)
at x = L, equation (A3) becomes
(K, —r)4,coshrl + (K, —r)A4, sinhrL +(—K,, —s) 4, cos sL +(K,; +5) A, sinsL
~K,,C, coshrL—K,,C,sinhrL - K,,C,cossL+K,,sinsL =0. (A4b)
Substitution of equation (5.35¢) into (A2b) gives
C,rcoshrx+C,rsinhrx+ C,scossx—C ssinsx =0; (AS)

at x =0, equation (A5) becomes

rC,+sC, =0, (Aba)
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at x = L, equation (AS) becomes

rC, coshrL+rC, sinhrL +sC; cossL—sC, sinsL =0.

Substitution of equation (5.37a) into (A2c¢) gives

C,sinhrx + C, coshrx + C, sinsx+ C, cos sx — (K ,C, + K, 4,)r coshrx

—(KsC + Ky, A))rsinhry — (K C, — K,, A, )s cossx +

(—K G+ K, 4 )ssinsx=0;

at x =0, equation (A7) becomes

C,+C, = (K Cy+ Ky A — (Ko Cy — Ky A,)s =0,

at x = L, equation (A7) becomes

-K,,ArsinhrL —K,, A,y coshrL + K, A,ssinsL+ K, A,s cossL +

(1-rK,,)C sinhrL +(1-7K,,)C, coshrL + (15K )C; sinsL +

(I-sK)C,cossL=0.

Substitution of equation (5.37b) into (A2d) gives

(K, 4 - K,,C)rsinhrx+(K, 4, - K,,C,)rcoshrx+

(K4, +K,,C)scos sx+ (K, 4, + K,,Cy)ssinsx =0;

at x =0, equation (A9) becomes

(K, Ay = K ,C,)r + Koy, + K ,,C,)s =0,

at x = L, equation (A9) becomes

K, ArsinhrL, + K, A,y coshrL + K, A,ssinsL+ K, 4,5 cos sL

(AGb)

(A7)

(A8a)

(A8D)

(A9)

(A10a)

~-K,,CrsinhrL - K,,C,rcoshrL+K,,C,ssinsL+ K,,C,scossL =0. (A10b)

equations (A4), (A6), (A8) and (A10) give the coefficient ( /i J.) matrix [F (a))] under

free-free boundary conditions.

fu=K,-r | f, =(K, —r)coshrL
Jio = Jy =(K,, —r)sinhrL
Jin=—Ks—=5 | fr3 = (=K —s)cossL
J f1a=0 Jfon = (K53 +5)sinsL
fs=-K,, | fis =—K,, coshrL
fie = Jfos ==K, sinhrL
Jir =K, Jay =—K,y cossL
Jis = fos =K, sinsL

5.16

f31 -
S =
Ju =

S

fss_

S

S =

e

Ju =0
S =0
Ji3=0
S =0

>
Jas =rcoshrL
Ju =1 sinhrL
f4; =scossL

Jfug =—ssinsL



Js =0 Jo =—1K,,sinhrL fn= Sy =K, sinhrL
fs ==1K,, Jio =—1K,, coshrL S =K, Jo =1K, coshrL

S =0 S =K, sinsL S = fay = 5K, sinsL
Jsa = 5Ky, Jss = 8K, cossL Jru = 5K, Joa = 8K, (A11)
Si5=0 | fis=(1=rKy)sinhrL ™| f,5=0 | fis =—rK,,sinhrL

Jso =1=1Kg | fio, =(=rKs)coshrl | foo =—rK,, | fou =—1K,, coshrL
fs =0 fi =(1—=sK)sinsL S =0 for =5K, sinsL
f58 :1_SK66 f68=(1—SK'66)COSSL f78 :SK44 ﬁs =SK44 COSSL

Fixed-fixed beam. Insert equation (5.27) into (5.7c, d, e ) gives the boundary

conditions

V=w=¥ =¥ =0. (Al2)
At the fixed end, x =0, substitution of equation (5.35a), (5.35c¢), (5.37a) and (5.37b)
into above equation gives
A,+4,=0,
K .4 -K,C-K;;4,-K,,C, =0,
C,+C,=0,
K.C+K,4-K,C,+K, A, =0. (Al3a,b,c,d)
At the fixed end, x = L, substitution of equation (5.35a), (5.35c¢), (5.37a) and (5.38b)
into (A12) gives
A, sinhrL + A, coshrL + A, sinsL+ A, cossL =0, (Al4a)

C, sinhrL +C, coshrL + C;sinsL+C, cossL =0, (Al4b)
A K,, coshrL + A,K,, sinhrL + 4,K,, cossL — A,K,, sin L

+C,K; coshrL + C,K s sinhrl — C,K  cossL + C K sinsL =0, (Al4c)

A K, coshrL+ A4,K, sinhrl — 4,K,, cos sL + A,K, sinsL
—-C\K,, coshrL - C,K,, sinhrL —C,K ,, cossL+C,K,, sinsL =0. (Al4d)
Combining equation (A13) together with (A14) gives the coefficients ( ¥ j) of the

matrix [F(a))] under fixed-fixed boundary conditions
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Jfs, =sinhrL
fs; =coshrL

fs3 =sinsL

Jsa =cC0OsSL
J5s=0
J3s =0
Js=0
S5 =0

Ju=0 1/, =0
S = J2 =0
Jin=0 |/5=0
Ju = S =0
Sis = 5 f25=0’
Ji6 =0 | [ =1
Si2=0 /=0
fis = S =1
Ja =0

S =0
S =0
f(>4:0

f,s =sinhrL’
Jos =coshrL
s =sinsL
Jos =cossL

o =K,, coshrL
oy =K, sinhrL
Sy =K, cossL
Sy ==K, sinsL
fos =K coshrL’
S = Kgssinh L
Jr7 ==K, cossL
Jrg =K g sinsL

5.18

S =Ky Ju =K,
S =0 S =0
S =Ky S ="Kz
) S1a=0 ) S =0
Jis = Kss ’ Jis ==Ky
J3=0 Jis =
f37 =-K f47 =-K,
Js=0 Jus =

Ja =K, coshrL
Joo =K, sinhrL

Jo =—K5;cossL
Jea =Ky sinsL

Js

5 -

K,,coshrL’

Jss =—K,, sinhrL
S =—K,, cossL
Jes =K,y smnsL

(Al

5)



CHAPTER SIX
EIGENANALYSIS OF PRE-TWISTED REPETITIVE STRUCTURES

6.1 INTRODUCTION
In this Chapter, the transfer matrix approach described in Chapter 2 is extended to
structures having a pre-twisted form; again the structure is regarded as pin-jointed,

allowing comparison of the results to be checked against exact FEA predictions.

Y ’ Y
A y A
(04
3 6
Z/
o
> Z » Z
\ 5
1 2 4
n=0 n=1
(a) (b)

Figure 6.1. Local and global coordinate systems on the left and right hand side of the first cell, respectively

6.2 EXAMPLE AND THEORY

To focus ideas, consider a pin-jointed beam-like framework whose cross-section is in
the form of an equilateral triangle of side length L = 0.3428 m. The zero™ nodal cross-
section is assumed to align with a global x y z coordinate system (x is the axial
direction), Figure 6.1(a), while the adjacent » = 1 nodal cross-section, Figure 6.1(b), is
pre-twisted through angle o radians, here taken as & =7 /8 ; also shown is a local
coordinate system x” 3" z" which rotates with the cross-section. The axial length of the
cell is also taken to be L = 0.3428 m. Individual members of the cell are of aluminium,
having Young’s modulus £ = 70 x 10> N/mm? and diameter d = 6.35 mm. The

longitudinal (helical) members, together with the two diagonals in each external face of
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the cell, have length as demanded by the relevant nodal locations, that is, the pre-twisted
structure is free of any residual stress or deformation prior to loading. The complete

first cell of the framework, Figure 6.2, is shown in bold.
6

2

Figure 6.2. A six cell pin-jointed pre-twisted framework; the first cell is shown in bold.

6.2.1 Transfer Matrix
For a straight repetitive structure, a stiffness matrix K for a typical cell is first
constructed employing the global coordinate system, which, of course, is applicable to
all cells. Symbolically, the stiffness matrix relates nodal force and displacement
components as
F=Kd, 6.1)
and the transfer matrix G in global coordinates is calculated from K, as in
equation (2.7), and relates state vectors on either side of the cell as
s, =Gs,. (6.2)
In the above, the subscripts L and R are employed to denote left and right hand sides of
the cell, while G shows no dependence on the cell index; this is an adequate description
for the straight structure, which possesses translational symmetry, but is quite
inadequate for the pre-twisted structure, when, in global coordinates, the transfer matrix
for each cell within a cycle is different. Instead we write for the first cell, Figure 6.2,
s() =G(1) s(0), (6.3)
and for the typical n™ cell
s(n)=G(n)s(n-1), (6.4)
where the state vector subscript has been replaced by an argument, to denote the nodal

location, and the transfer matrix G also requires an index to identify the cell.
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Assuming that the pre-twist angle « for each cell is constant, then the transfer matrix
G(n) 1s periodic, with period p =27/, that is
G(n+p)=Gn), (6.5)

and for the present example p = 16.

For simplicity, suppose that the N'™ nodal cross-section aligns with the global coordinate

th

system; so too will the (N + p)”. Suppose that one constructs a stiffness matrix for all

p cells, and then condense this to form a superelement matrix K, relating force and

displacement components on the N™ and the (N + p)” nodal locations. Note that the
subscript p has been employed to denote a complete cycle of p cells. From this one
could construct a transfer matrix G ,, using equation (2.7), which is known as the
monodromy matrix, and perform eigenanalysis in the usual way; that is, denoting the
state vectors as s (N) and s (N + p), respectively, then

s,(N+p)=G,s,(N)ands,(N+p)=4,s,(N), (6.6)

P Sp
to give the eigenproblem

(G,-4,Ds, (N)=0. (6.7)
Denote the square matrix comprised of the eigen- and principal vectors of the above as

S, (N); this transforms the transfer matrix to the Jordan canonical form J ,, according
to
S,(N)'G,S,(N)=1J,. (6.8)
Pre-multiply by S (V) to give
G,S,(N)=S,(N)J,. (6.9)
But S (N +p)=G S, (N), so we have
S,(N+p)=S,(N)J,. (6.10)

The process described above allows one to treat the pre-twisted beam as if it were
straight; however, state vectors are only defined at those cross-sections that align with
the global coordinate system, and the information contained within the eigen- and
principal vectors describes the behaviour of a complete cycle of p cells. However, no

information is available at other cross-sections. Such a procedure is exactly how
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periodic systems are usually treated using Floquet theory. The eigenvalues A, are

known as Floquet multipliers, and they define the stability of a (usually dynamic)
periodic system, and this information is all that is normally required.

It is not difficult to define an autonomous transfer matrix G”, which does not depend
upon the index of the cell, n, by employing a local coordinate system. Refer to Figure
6.1(a) for the first cell, and note that the left hand side aligns with the global x y z

coordinate system. The local right hand side nodal coordinates transform as

x 1 0 0 X
Y |=10 cosa sincx ||y (6.11)
z 0 —sin@ cos|| z

or, symbolically

X, =T, x, (6.12)
where the 3 X 3 orthogonal transformation matrix T; is defined accordingly. On the
other hand, nodal displacement and force components transform, Figure 6.1(b), referring

to node 4, as

B, |=|0 cosax —sina|| P, (6.13)
P.| |0 sin coscx || B,
and
4 Tt 0 0 1[d,,
dy, |=|0 cosa —sina||d,, (6.14)
d,,| |0 sina cose ||d,,
or
P, =T,’P, and d}, =T,'d,,. (6.15)

Extending the above to the other nodes, the state vector on the right hand side may be

written in the local coordinate system as

s'(1)="T;" s(1) (6.16)
where T, is the 18 x 18 transformation matrix consisting of T," blocks on the leading

diagonal. Pre-multiply equation (6.3) by TlgT to give

§'(1)=G’s(0) (6.17)
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where
G'=T, G; (6.18)
note that s"(0)=s(0), since for this first cell, the local and global coordinate systems

coincide on the left hand side. It will be asserted that this transfer matrix G for the first
cell applies equally to all cells within the structure. In principle, each cell within the
period requires a transformation matrix to relate the local coordinate system with the
global; the pattern is easily discerned by considering the second cell, Figure 6.3, whose

local right hand side coordinates transform as

2

x” 1 0 0 x 1 0 0 X
¥ 1=|0 cosa sinal|y |=|0 cosa sina| |y (6.19)
z" 0 -sina cosa ||z 0 —sina cosa| |z
or
X[ 0 0 x
¥y =10 cos2o sin2e ||y (6.20)
z" 0 —-sin2a cos2x ||z
or, symbolically,
X'=T,(2) x,, (6.21)

where the index 2 denotes a rotation by angle 2, and the transformation matrices

previously introduced require index 1. Indeed, using this notation, transformations for

the first cell may be re-written as follows: in global coordinates s(1)=G(1)s(0). Inthe
local coordinate for this cell, one has (1) =T,," (1)s(1), s"(0) =T (0)s(0)=5(0),
since T, (0) is the identity matrix. Pre-multiply by T,,' (1) in the above to

give T, (1)s(1)=T,, (1)G(1)s(0) or s'(1)=G’(1)s’(0) where

G'(1)=T, ()G(1). (6.22)
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Figure 6.3. Coordinates of the right hand side of the second cell.

For the second cell, suppose that the transfer matrix had been calculated in global

coordinates according to s(2) =G(2)s(1). However, in the local coordinates for this
particular cell, one has §'(2)="T,," (2)s(2), and s'(1)=T," (1)s(1), or
s(1) =T, (1)s'(1), since the transformation matrix is orthogonal. Pre-multiply by

T, (2) in the above to give T, (2)s(2) =T, (2)G(2)s(1) or s'(2) =G’(2)s'(1)

where
G'(2)=T, (2)G(2)T,(1). (623)
For the n" cell, one has in global coordinates, s(n) =G (n)s(n—1). Inthe local
coordinates, s'(n) =T, (n)s(n), s(n—1)=T,(n-1)s'(n—1); pre-multiply by T;;" (n)
in the above to give T, (n)s(n) =T (n)G (n)s(n—1) or §'(n)=G’(n)s (n—1)where
G/ (n) =T, ()G (n) Ty (n-1). (6:24)

We now make the assertion that the transfer matrix expressed in the local coordinates
pertaining to the cell under consideration, is invariant; that is

G'=G'(1)=G'(2)=--G'(n)---=G'(p). (6.25)
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6.2.2 Floquet Theory

The pre-twisted rod is a realisation of discrete Floquet theory for which the following

general results are relevant:

a)
b)

©)

d)

g)
h)

let s(n) be a vector solution to the periodic system s(n+1) = G(n+1)s(n) .
the matrix analogue of (a) is S(n +1) = G(n+1)S(n) where S(n) is a square matrix of

column vector solutions to (a ).

S(n) is a fundamental matrix of (b) provided that it is a solution such that

det S(n) # 0, for all integer n; in principle there are an infinite number of
fundamental matrix solutions; indeed, set » =0 in b), then S (0) represents the

infinite number of (initial) end conditions which are possible on the left hand side of
the first cell of the structure. Fundamental matrix solutions are characterised as
follows:

if S(n) is a fundamental matrix, then ¥ (rz) is another fundamental matrix if and

only if there 1s a constant non-singular matrix C such that ¥ (n) =S(n)C for all n.

There is a unique fundamental matrix solution defined according to the imposed end

condition on the left hand side being equal to the identity matrix, thatis S(0)=1I, in

which case ¥ (O) = C, the monodromy matrix.

if C is a nonsingular matrix and p is a positive integer, there is a constant

nonsingular matrix L such that L” =C.

if W(n) is a fundamental matrix, then so is W(n+ p) and, ¥(n+ p) = ¥(n)C, where
C=G(p)G(p-1)-GQ@)G(1).

Furthermore, there is a nonsingular matrix function P(n) such that S(n) =P(n)L";

further, P(n) is periodic, with period p.

the eigenvalues ¢ of matrix C are known as the Floquet multipliers of the system

s(n) is a solution of the Floquet system if and only if z(n) = P(n) 's(n) where z(n) is

a solution of the autonomous system z(n + 1) = L z(n); this is the Floquet

decomposition, that is s(n) = P(n)z(n).

6.7



The above are largely from Kelley and Peterson [70], but with the notations modified to

conform with those already introduced.

In h), one may readily identify the autonomous matrix L with the transfer matrix,
written in local coordinates, G”, and vector solution z(n) with s’(n). Moreover, the
matrix function P(n) is identified as Ty;(n). Intum, L =(G')" =G, so one may

identify matrix C with G, as in ¢) and f). The Floquet multipliers & are then equivalent

to the A

P2

as in g).

From the knowledge of Equations (6.22-6.25), the following expression can be given,
(G') =G/ (n)G'(n-1)--G'(2)G'(1)

=T, (1) G (1) Ty (n=1) T, (n=1)G (n=1) T (n-2)- T, (2)G(2) T, (VT (G (1)
=T, (n)G(n)G(n-1)---G(2)G(1) (6.26)

According to (6.2.2.1), if ¥(n) is a fundamental matrix for the Floquet system
s(n+1)=G (n+1)s(n), (6.27)
¥(n+ p) is also a fundamental matrix and
¥(n+p)=¥(n)C, (6.28)
where C=G(p)G(p-1)---G(1).
Furthermore, there is a non-singular matrix function T,,(r) and a non-singular matrix
G’ such that
Y (n)="T(n)(G")", (6.29)
where T (n+p)=Ty(n).
According to equation (6.29), left-hand side of equation (6.28) becomes
¥ (n+p)=Tg(n+p)(G)"", (6.30)
or
Y(n+p)=T,(n)(G) (G . (6.31)

Consideration of (6.26) gives
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n

¥ (n+p) =T (n)(G')' T (p)C, (6.32)
but, T, (p)=1, so the above equation becomes
¥(n+p)=T,(n)(G) C. (6.33)
While considering equation (6.29), the right hand side of (6.28) becomes
¥(n)C =T, (n)(G) C. (6.34)
Therefore, equations (6.33) and (6.34) do satisfy equation (6.28).
According to (6.2.2.h), let ¥ (1) =T,; (n)(G’)" as in Floquet Theorem. Then s(n) is a
solution of the Floquet system, equation (6.27), if and only if
s'(n)=T," (n)s(n) (6.35)
is a solution of the autonomous system
s'(n+1)=G’s'(n). (6.36)

Hence, the autonomous system is verified.

6.2.3 Eigenanalysis
Two consecutive state vectors are related by the scalar 1 as
s'(n+l)=/’Ls'(n), (6.37)
which, together with the transfer matrix relation, equation (6.36), immediately leads to
the eigenvalue problem
G’s’(n)=4s"(n). (6.38)
The eig command within MATLAB gives the eigenvalues of the transfer matrix G’ as

the three reciprocal pairs

—-22.3303] [-10.0110-10.0110{] [-10.0110+10.0110i
—0.0488 |” | —0.0499+0.0499; | | —0.0499 —0.0499;

which pertain to decay of self-equilibrated loading, and four real unity eigenvalues
pertaining to rigid body displacement in, and rigid body rotation about, the x-direction,

together with tension and torsion. Also there are eight complex unity eigenvalues of the

form 4xe™, in which o is the angle of pre-twist per cell and i =+/—1, and these
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pertain to rigid body displacements in, and rigid body rotations about, both the y"-and z’-

directions, together with bending moments and shearing forces in both planes.

As with the eigenanalysis described in Chapter 2, the eigenvectors associated with the
distinct decay eigenvalues are correctly calculated by the QR algorithm employed
within MATLAB, and these are designated v, to v,. The four (real) unity eigenvalues
pertain to eigenvectors describing rigid body displacements in the x-direction, v,, and
rotation about the x-axis, v, these being unaffected by the choice of global or local

coordinates. The reduced row echelon form of G'—1 yields these two independent

eigenvectors, which may be written as

v,=[100100100000000000]",

T
v, = on"Hgo'w “H9002H9000000000 , (6.39a, b)
’ 2 3 2 3 3

where the angle of rotation @is taken to be small, 8 = 5x107® radians. Two principal
vectors w, and w are coupled to the eigenvectors v, and v,, respectively and are
found using the MATLAB rref command on the augmented matrix, again as described
in Chapter 2, followed by appropriate interpretation. Principal vector wy, consists of

the necessary combination of tensile force and twisting moment which, when applied to
the left and right hand sides of the cell, produces the unit extension defined by vector

v,. Principal vector w , consists of the necessary combination of twisting moment and

tensile force which, when applied to the left and right hand sides of the cell, produces

the rotation defined by vector v,. Therefore, there are two 2x2 Jordan blocks

associated with these vectors, which are

I 1 11
J'aa = , I = . (6.40)
0 1 0 1

This coupling between tension and torsion is similar in nature to that described in

Chapter 4, for the asymmetric NASA structure.
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For determination of the eigen- and principal vectors associated with the multiple
complex unity eigenvalues, 4Xe", a variety of strategies are possible. For example,

two chains of equations relating eigen- and principal vectors may be expressed as
(G'—e’”l)v11 =0 (G'—e_"‘)‘l)v15 =0
(G'—e'“‘l)w12 =v, (G'—e"'“‘l)w16 =v,

: . (6.41a, b)
(G'—e’“l)w13 =W, (G'—e‘“"l)w17 =W,
(G’—e""‘I)w14 =W, (G'—e"“l)w18 =W,
The reduced row echelon forms of the matrices (G'——e'“I) and (G'—e”"‘l) ,
respectively, yields the two eigenvectors
v,=[0i10i10i1000000000],
ve=[0 =i 10-10-1000000000]; (6.42a, b)

which is a combination of real and imaginary rigid body displacements in the y- and z-
directions.

The principal vectors w,, to w,, and w,, to w,; can then be determined by following
the chains, equations (6.41a) and (6.41b), respectively. If one then constructs a
similarity matrix V from these eigen- and principal vectors, this gives the JCF in its

simplest form

24 0 0 0 0 O O 0 0 O
o4 0 0 O 0 0 0 0 0
0o 04 0 O 0 O 0 0 0
o 0 0o A" 0 o0 O 0 0 O

J=V'GV= 0.0 0 0 & _O_ 0 000 (6.43)

o 00 0 o 4" 0 o0 0 O
o0 0 0 0 o J, O 0 0
o 0 0 0 0 0 0 J, 0 0
0o 0 0 0 0 0 0 0 J, O

00 0 0 0 0 0 0 0 Ji

where the two 4x4 Jordan blocks associated with the multiple complex unity

eigenvalues are
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0 &% 1 0 0 e 1 0
J,u= , Y= 6.44a, b
o0 e 1 L0 0 e ( )
0 0 0 ¢ 0 0 0 e

and the 2 X 2 Jordan blocks associated with the real unity eigenvalues are as equation
(6.40)

Now, while the JCF may be in its simplest form, because of the complex eigenvalues,
and complex eigen- and principal vectors, interpretation of the vectors is at its most
difficult. Obviously a complex vector is not physically permissible, but when
considered in conjunction with its conjugate, the (real) displacement and force
components are the real and imaginary parts, in turn. Indeed, if one replaces the
complex conjugate columns of the similarity matrix by their real and imaginary parts,

one obtains the real JCF

A 0 0 0 0 0 0 0 0
0 real(4,) -—imag(4,) O 0 0 0 0 O
0 imag(4,) real(4,) O 0 0 0 0 0
0 0 0 A 0 0 0 0 0
J=|0 0 0 0 real(Z,) -imag(/@) 0 0 0 (645
0 0 0 0 imag(%4,) real(Z,) 0 0 0
0 0 0 0 0 0 J, 0 0
0 0 0 0 0 0 0 ¥, 0
|0 0 0 0 0 0 0 0 Jig
where
[cosar —sinar 1 0 0 0 0 0 |
sin@ coso 0 1 0 0 0 0
0 0 cos¢ —sing 1 0 0 0
3. - 0 0 sin@  cosa 0 .1 0 0 ; (6.46)
0 0 0 0 cosa —sino 1 0
0 0 0 0 sinx  cos¢x 0 1
0 0 0 0 0 0 cos@ —sina
| 0 0 0 0 0 0 sin@  cose |
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note that the single complex unity eigenvalues on the leading diagonal are replaced by

2 x 2 real blocks. Within this formulation, the principal vectors w,, and w,, describe

rigid body rotations of the left-hand side of the cell, but employ the local y’-and
z’- axes of the right-hand cross section, respectively. In turn, their coupled principal

vectors W5, w,,, w,; and w,, describe bending moment and shear vectors applied to

the left-hand side of the cell, but employ the local coordinate system of the right-hand
side of the cell. For interpretation of these vectors it is easier if they are expressed
within the local coordinate system of the left-hand side, for which the local and global
coordinate systems coincide. This is achieved by employing a near diagonal Jordan
decomposition in which the complex unity eigenvalue replaces the real unity on the
super diagonal; the chains then become
(G'~e"°‘l)vll =0 (G'—e"“l)v15 =0
’ i i r o ~iot
(G —-e I)W]2 =ev, ’ (G —-e I)W16 =e "V, (6472, b)
(G’——e’o‘l)w13 =e%w,, (G'—e_ial)wl7 =e "W,
(G'—e’vo‘l)w14 =ew,, (G'—e_"“‘I)W18 =ew,,
The new complex similarity matrix V comprised of these eigen- and principal vectors
transforms the transfer matrix G’ into a new JCF, which remains broadly as in

equation (6.43), but with two new 4 x4 blocks, which are

el(x ez(x O O e—i(x e-—loc O O
Il = © ¢ 0 , Jaxa = ¢ e_ ~ (6.48a, b)
0 €% e“ 0 0 * e
0O 0 0 ¢&° 0 0 0 ™

Again, this leads to complex conjugate eigen- and principal vectors, and replacing these
by their real and imaginary parts, allows one to construct a new real similarity matrix
which transforms G’ into a new real JCF, which differs from equation (6.46), in that the

8% 8 block becomes
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[cosa —sina cosa —sina 0 0 0 0
sin cosa sin@@ cosd 0 0 0 0
0 0 cos@ —sin@ cos@ —sina 0 0
3, = 0 0 sin@  cos@ sino co's o 0 O . (6.49)
0 0 0 0 cosx —sino cosa —sind
0 0 0 0 sin cosa sin@  cos
0 0 0 0 0 0 cos —sine
|0 0 0 0 0 0 sina cos |

This real similarity matrix V and the associated JCF are given in Appendix 6.A. The
eigen- and principal vectors pertaining to the multiple complex unity eigenvalues are
now expressed within the local/global coordinate system of the left-hand cross section.
This greatly simplifies the physical interpretation of these vectors and, in turn,

determination of the equivalent continuum properties.

6.2.4 Equivalent Continuum Properties
a) The two vectors v, and w, are coupled according to

G wy=w,+v,, (6.50)
as shown in Figure 6.4, where it is seen that a tensile force and a twisting moment are

applied on both hand sides of the cell in order to produce unit extension in the x-

direction, only. The two vectors v, and w,, are coupled according to
G W, =W, +V,, (6.51)

as shown in Figure 0.5, where it is seen that a twisting moment and a compressive force

are applied on both sides of the cell in order to produce rotation about the x-axis, only.

For a pre-twisted structure, the coupled force-displacement equations for tension and

torsion may be written exactly as in Chapter 4, as

T zg-{l—wr& ,
L L

X

M, :EJ—H-{-i{—”—u. (6.52a, b)
L L
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where K, is the coupling coefficient for tension-torsion.

A . ALY
1x10°
1.6883 x 10~ __:,( +— 2
—r—————t———— s 9.1274x 10

7.6469 x 107 i I

<4

2x7.6469 x 107
< L <

8.4417x 107"

14612 x10°  1.4612x10”

W, W,+V,

Figure 6.4. Coupling of eigenvector v, for rigid body displacement in the x-direction, with principal

vector w, for extension; displacement are exaggerated. Dotted lines show initial configuration

A y y
9.0323 x 10~ 9.0323x10° 8.6146x 107
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i
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I i
1 1 B 3 » Z
2x9.0323x 107 | :
— !
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e | —
2x9.0323x 107
5x10°
W]O W10+v9

Figure 6.5. Coupling of eigenvector v, for rigid body rotation about the x-axis, with principal vector w,

for torsion.

From vectors w, and v,, the quantities 7., M, and u are known (6is zero), and the

equivalent cross-sectional area and coupling coefficient are calculated

as A=(2.2941x107 )/(7x10" x1x10%)=1.1234x10"m?, K, =—1.8578X10° Nm.
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Additionally, there is a Poisson’s ratio effect on the cross section; the strain in the x-

direction £, =1x107*° / 0.3428=2.9172x107*, and the strains in the y-and z-directions
arez, = (~1.6883—0.8442)x 10 /(0.3428 x4/3/2)=-8.5306 10",

e, =—(1.6214x107 )/0.3428 =-8.5306x 10~ . Employing v =—¢, /¢, =—¢. /£, , the
Poisson’s ratio is calculated as v =0.2924 . In turn, the equivalent shear modulus is
found to be G =E/2(1+v)=2.7081x10" N/m?, with Young’s modulus £ being

regarded as invariant.

From vectors w,, and v, quantities 7., M, and 6 are known (u is zero), and equation

(6.52) gives the equivalent torsion constant and coupling coefficient as
7 =(8.6146x10 x0.3428/+/3 )/(2.7081x 10 x 5x10™* )=1.2949x10“ m*,

K, =-1.8578x10° Nm ; the latter is identical to that found from vectors w, and v,, as

one would expect from the reciprocal theorem.

b) The two principal vectors w, and w,, are coupled to the eigenvectors v,, and v ,,

describing rigid body displacements in the y- and z-directions, respectively, according to

G'w,=cosa v, +sin v, +cosaw,+sinaw,,

’ . .
G 'w,, =—sina v,,+cosc v, —sin&¥ w,; +COsS& W,,. (6.53a,b)

Vectors w, and w,, describe rigid body rotations ofithe left-hand cross section about
the z-and y-axes, respectively, within the global coordinate system. Pre-multiplication
of these vectors by the transfer matrix G” will give rigid body rotations of the right-hand
side about the local z’-and y”-axes, respectively, as indicated by equation (6.53).
However, for interpretation of these vectors, it is preferable that these right-hand
rotations be expressed within the global coordinate system, which is achieved by pre-

multiplication by G, according to

Wisr = G Wi, Wyp= G Wi, (654)
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where G is the transfer matrix defined within the global coordinate system and the

additional subscript R denotes the right-hand side vector. The physical representation of

vectors w,, W, and w, and w,,,, is shown in Figure 6.6.

57734 x 107

— ]

I S

2.8867x 107

Wis Wisg Wi Wik
(a) (b)
Figure 6.6(a). Principal vector w,, for rigid body rotation about the z-axis; (b) principal vector w,, for

rigid body rotation about the y-axis.

¢) Vectors w, and w,, describe the bending moments on the left-hand side of the cell

in the xy-and xz-planes, respectively, within the global coordinate system, and are

coupled to the rotations according to

G w, =cos@w,+sinaxw, +cosa w,, +sinax w,,
G’ W, =—sinow,+cosa w,, —sina w,; +cosa w,, . (6.55a, b)

Again, pre-multiplication by G” would give the two bending moment vectors on the
right-hand side of the cell in the local )" - and xz"-planes, and for interpretation of the
vectors, it is preferable that these right hand vectors be expressed within the global
coordinate system, which is achieved by pre-multiplication by G, to give

WISR = G Vv15 ) wl()R :G Wm - (656)
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Analysis of the x-direction displacement components within vectors w,, and w,,,

shows that they are comprised of two rotations of the left-hand cross section, about the

y- and z-axes, and can therefore be decomposed into

dlx e dlx e dl,\‘ e dlx e dlx e dlx e
d,,| =ax|d, | +bx|d, | , |d, | =cX|d, | +dx|d, | . (6.57a,Db)
d3 X d3 X d3 X d3 X d3 X d3x

On the other hand, analysis of the x-direction displacement components within the right-
hand side vectors w,,, and w,,,, shows that they are comprised of two rotations of the

left-hand cross section, about the y- and z-axes, and can therefore be decomposed as

Wisg Wise Wiar Wisk Wisn Wisr
dl X dl x dl x dl x dl x d] x
dy, =eX|d,, + x| d,, , | d, =gX|d,, +hXx| d,, .(6.58a,b)
d3 X d3 x d3 X d3 X a,3x dS,\'

Simple calculations from equations (6.57) and (6.58) give a =—0.5, »=0.2109,
c=-05,d=-0.2109; e=0.5, f=0.2109, g=0.5 and 7 =-0.2109.

The physical representations of these bending moment vectors are shown in Figures 6.7
and 6.8. Geometric consideration of Figures 6.7(a) and 6.8(a) gives the two bending
curvatures in the xy-and xz-planes, respectively, as

IR, =1 .4434><10‘9/(~3H—><—§—) =8.5098x10"m™",

I/R. = 2.5x10‘9/(§><—§i) =8.5098x10"°m™, (6.59a, b)

while consideration of Figures 6.7(b) and 6.8(b) gives the two coupled shear angles in

the xz- and xy-planes, respectively, as

¥, = 1.0546><10‘9/(§J =6.1527x107,

Vo = 6.0886x10"‘°/ [g) =6.1527%10°. (6.60a, b)
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Figure 6.7. Principal vector w, for bending moment in the xy-plane; (a) and (b) show the displacement

and force components in the xy- and xz-planes, respectively.
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Figure 6.8. Principal vector w , for bending moment in the xz-plane; (a) and (b) show the displacement

and force components in the xz- and xy-planes, respectively.

The above indicates that a bending moment produces a bending curvature, and shear
deformations in both the plane of bending and the perpendicular plane. This contradicts

widely accepted theory, but partially agrees with Tabarrok’s bending theory of pre-
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twisted beams [52], since his coupled equations also suggest that a coupled shear

deformation takes place in the plane perpendicular to the bending curvature.

¢) Vectors w,, and w,, are coupled to the bending moments on the left-hand side of

the cell, according to

, . .
G’ 'w,, =cosa W, +sinax w,, +cosa w, +sina wg,

V4 - .
G W, =—sino w; +cosa w,;, —SIno W, +cos Wg. (6.61a, b)
Previous experience from the eigenanalysis of a straight repetitive structure suggests
that these two vectors should describe shear; however analysis of the force components

within vectors w; and w,, gives a resultant shear force Q,, and moments M., M, for
the former, and a resultant shear force O, and moments M v M, for the latter. In fact,
only O and M, ,and O and M, are required to define the simplest left-hand shear
vectors in the xy-and xz-planes, respectively, and the unnecessary bending moments are

removed according to the scheme

resultant (M p ) within w,;

*

W, =W

- XwW
" resultant (M ) within w 1’

1

resultant (A4, ) within w g

Wig =W,y — (6.62a, b)

resultant (A7, ) within w,

The two new shear vectors w,, and w;, are given in Appendix 6.B. Again, it is
preferable that the shear vectors on the right-hand side of the cell should be given within
the global coordinate system, and these are determined by

Wip =G W, Wi, =G wy. (6.63)
These describe the shear vectors in the xy-and xz-planes on both sides of the single cell,

in global coordinates, in their simplest forms.

. . . . . . #* *
Consideration of the x-direction displacement components in the vectors w, and wg

shows that they can be decomposed into rotations about the z- and y-axes, as
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Wi Wi Wia Wi w Wi3
dl X dlx dl X dlx dlx ) dl X
dy | =aX|dy | +bX|\dy |, |dy | =cX{dy | +dX|d, | (0643, b)

d?

32X

d3 X d3 X d3 x dB X d} x

On the other hand, consideration of the x-direction displacement components in the

vectors wy,, and W, shows that they are also comprised of rotations of the right-hand

side about the y- and z-axes, as

dlx ’I“’me d] i Wisg d] . Wiar dlx Wigr dlx Wisr dlx Wiz
d, | =ex|d,| +fx|d,| ., |d,| =gXd,| +hx|d,| .(6.65ab)
(13 x J d3 x d3 x (13 x dB x d3 X

Simple calculations from equations (6.64) and (6.65) gives a =1.1678, b=0.0307,
c¢=1.1678, and d =—-0.0307; e=0.6678, f =-0.2416, g =0.6678and 2 =0.2416.
Physical representations of the shear vectors w, and w,,,, and w;, and Wy, are given

in Figures 6.9 and 6.10, respectively. The x-direction displacement components in the

shear vectors can be further decomposed, as illustrated in Figures 6.11-6.14.
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Figure 6.9. Principal vector w',, for shearing force and bending moment in the xy-plane; (a) and (b)

show the displacement and force components in the xy- and xz-planes, respectively.
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Figure 6.10. Principal vector w', for shearing force and bending moment in the xz-plane; (a) and (b)

show the displacement and force components in the xz- and xy-planes, respectively.
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Figure 6.11. Decomposition of the displacements in the xy-plane of Figure 6.9; (a) shows the shear

angle due to shearing force, and (b) shows the bending curvature due to bending moment.
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Figure 6.12. Decomposition of the displacements in the xz-plane of Figure 6.9; (a) shows the bending
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curvature coupled with the shear angle in the xz-plane due to shearing force, and (b) shows the shear

angle coupled with the bending curvature in the xz-plane due to bending moment.
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Figure 6.13. Decomposition of the displacements in the xz-plane of Figure 6.10; (a) shows the shear

angle due to shearing force, and (b) shows the bending curvature due to bending moment.
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Figure 6.14. Decomposition of the displacements in the xy-plane of Figure 6.10; (a) shows the bending
curvature coupled with the shear angle in the xy-plane due to shearing force, and (b) shows the shear

angle coupled with the bending curvature in the xy-plane due to bending moment.

As in Chapter 2, the shear angle is defined according to the relationship y =y — dv/dx,
in which dv/ dx is the centreline slope and ¥ is rotation of the cross-section. Again, the

simplest method of evaluating the shear angle is to impose a rotation on the cell to bring
the centreline slope to the horizontal, and then take the average of the cross- sectional
rotation on both sides of the cell. Geometric consideration of Figures 6.11(a) and

6.13(a) then gives the cross-sectional rotation on either end of the cell in the two planes,

as
-9
v, = 2.6496x10 " _ 2.6775%x107%,
H/3
-9
v, :5%19—:2.6775x10“8. (6.66a, b)

Moreover, the y-and z-direction displacements within vectors wy,and w,,,, and w
and w,,, suggests a shift of the centre of area on the left-hand side of the cell for both,
as shown in Figures 6.15 and 6.16, respectively. The centre line slope rotations within
the two shear vectors can then be determined by geometric consideration as

dv _ 7.1807x107"
dx 0.3428

=2.0947x107°,
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(6.67a, b)

-10
dw_TI807XI07 _» 947107,
dr 0.3428

so the shear angles in the two planes are
& 2468010,

7/,\‘)/ = l//y dx
W _ 5 4680%10°°. (6.68a, b)
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Figure 6.15. Displacements in the y-direction for the principal vector w',, on the left hand (a)

and right hand (b) sides of the cell, respectively.
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Figure 6.16. Displacements in the z-direction for the principal vector w',, on the left hand (a)

and right hand (b) sides of the cell, respectively.
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From the above discussion of the bending moment vectors, it is known that when a pure
bending moment is applied to the typical cell, a bending curvature in the principal plane
is coupled with a shear deformation in the perpendicular plane. According to the
reciprocal theorem, when the cell is subject to a shear, it should result in a shear
deformation in the principal plane, coupled with a bending curvature in the
perpendicular plane; from Figures 6.12(a) and 6.14(a), these two secondary bending

curvatures are, respectively

—10
iR, =98056X10 7 s 41 66x10Fm
L/2x1)2
~10
/R, _39292x10 7 _ ) 3166%10 " m. (6.69a, b)
: H/3xL/2

Moreover, the bending moments M, and M, applied on the left-hand side of the cell,

vectors w,, and w,, can be regarded as being linearly distributed along the cell from

the left side to the right which, from Figures 6.11(b) and 6.13(b) gives the bending
curvatures as

, 7.2169x107"

= =4.2549%10"m™,
/R, H/3xL/2

-9
& - 1:25x10

= =4.2549x10"m™". 6.70a, b
/ T L/2xL)2 ( )
Also, geometric consideration of Figures 6.12(b) and 6.14(b) gives the coupled shear

angles due to the applied bending moments in the perpendicular planes, respectively, as

, 5.2729x107

8 =3.0764%x107°,
Yy L2

, 3.0443%107"

7. . 3.0764x107. (6.71a, b)

It is noted that the bending curvatures and shear angles obtained in equation (6.70) and
(6.71) are exactly one-half of those obtained in equation (6.59) and (6.60), respectively.

This 1s consistent with the view that the bending moments resident within the two shear

vectors are exactly one-half of those within the bending moment vectors w,; and w,,,

respectively.
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For the pin-jointed pre-twisted repetitive structure examined here, having equal second
moments of area, analysis of the bending and shear vectors for the single cell suggests a
bending and shear coupling, similar to the asymmetric NASA4 truss examined in

Chapter 4. However, such coupling cannot be explained by any existing bending theory
for pre-twisted beams; equation (2b,c) of [30] suggests no such coupling, while
Tabarrok’s pre-twisted bending theory [52] suggests that a displacement rather than a
bending curvature should occur in the plane perpendicular to that of the shear. In the
following section, the equivalent continuum properties of second moment of area, shear
coefficient and the bending-shear coupling coefficient of the pre-twisted structure are

determined using the procedures described in Chapter4.

As with equation (4.30), the coupled force-displacement equation for bending moment

in the xy- plane and shear in the xz-plane can be written in the matrix form

v -3
[QZ}[KHAG KﬂJ T (6.72)
Mz sz E]Z .a_l’yf_
ox

However, in order to determine the equivalent second moment of area and shear

coefficient, it is more convenient to write equation (6.72) in its inverted form

Ve
~1_ =N, L\Qj } (6.73)
Ry z
where
ow 1 Jdy.
—y -2 = 6.74
}/\Z ¥ av Ry ax ( )
and N, is the compliance matrix
-1
NC — nll nIZ — K-,\‘ZAG ]<xz . (675)
My Ny K., ET,

From the bending vector in the xy-plane, w,,, one has M, =9.9185x10”°Nm, O, =0,

I/Ry =8.5098x10" m™, y_ =6.1527x107, and substituting into equation (6.73) gives

n, =% = 62033x107,
M

z
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VR,
n,, ::—[A}—y- =8.5797x107°, (6.76a, b)

zZ

From the shear vector in the xz-plane w,g, one has M, =0 Nm, Q, =2.8934x107° N,

I/R, =2.3166x10"m™, 7, =2.4680x10°®, and substituting into equation (6.73) gives

n, =2 =8.5298x107
0.
R,

=8.0064x107" . (6.77a, b)

Inversion of the matrix N, gives
k. AG K. [my m, " [ 1.2577x10°  -9.0935x10"
K EI ~1.1737x10°  1.2504x10°

Xz

}. (6.78)

nyy Ny
From the above, the equivalent second moment of area is /. = 1.7863%x10°m*, and
shear coefficient x_ =0.4134. However, equation (6.78) clearly suggests two unequal

coupling coefticients for bending and shear, since n,, # n,, . Therefore, the coupled

equations are modified, to read

, o
Qz - K.xz‘/j{G K,\‘z ! a.x , (679)
MZ K.\'Z E]Z _a_lﬂi
ox

and the two coupling coefficients are K, =-9.0935x10*Nm, K/ =-1.1737x10°Nm.

Similarly, from the bending vector in the xz-plane, w,,, and the shear vector in the xy-

xz? xz?

plane, wy,, it is found that x,, =x,_, I, =1,K =K _ and K| =K , within the

coupled equations

Jdv

0,1 [x,46 &,7|Y- "%
=| "o . (6.80)
M, K, EL | Jy,

xy

ox
Thus, equation (6.79) and (6.80) suggest two asymmetric stiffness matrices coupling the
moment and shearing force, which is contrary to the usual expectations of the reciprocal

theorem.
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This asymmetry in the stiffness matrix may imply that the coupled bending-shear model
employed for the straight, but asymmetric, 3-D NASA truss is not adequate for the pre-
twisted structure examined here. However, other interpretations are possible. First,
note that the cross-sectional displacements, that is, rotation and shear, are based on the
three nodal axial displacements on both sides of the cell, and that it is always possible
for a plane to pass through three given points. Thus it is entirely possible, at least for
this triangular cross-section, for a cross-sectional warping to be misinterpreted as a
rotation. This possibility could be confirmed, or discounted by the analysis of a pre-
twisted rod having, say, a square cross-section. Another possibility is a lack of work
conjugacy in relation to moments and rotations, which is known to lead to asymmetric

tangent matrices in large displacement, small strain analysis.

It is quite possible that the particular way of presenting the moment-shear coupling
needs modification for a pre-twisted structure: thus when one calculates the nodal
stiffness matrix K, in global coordinates, which is the first step of the analysis
procedure, one is relating nodal force and displacement components on both sides of the
cell. However, in writing relationships such as those expressed in equation (6.80),
moment and shearing force are only explicitly given for the left hand side of the cell,
while those on the right hand are understood; likewise, curvature and shear are
interpreted from the rotation of the cross-section on both sides of the cell. For the
straight NASA truss, this appears to be acceptable — for example, moment equilibrium
would require that there is an equal but opposite moment on the right hand side, while
cross-sectional rotations are always expressed within a global coordinate system. For
the pre-twisted cell, the implied right hand side moment is only equal and opposite
within the global coordinate system, not the local; the greater difficulty lies with the
cross-sectional rotation, as finite rotations are known not to commute. Thus, while the
curvature and shear have been calculated from cross-sectional rotations of both sides of
the cell in the global system, it is possible that one should in some way be treating these
in the local coordinate system on the right hand side. Of course, none of these problems
arise in the case of tension-torsion coupling, since the cross-sectional rotation
(deformation) does commute with angle of pre-twist, as they are both about the same

axis.
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The inability to resolve this issue highlights the need for further research in the general
area of bending of pre-twisted structures — for both the idealised structure considered
here, and also for continuum rods, as in a pre-twisted turbine blade. However, one
should emphasise that this issue represents a weakness in interpretation and current
understanding, not an error in the principal vectors obtained by the eigenanalysis
described in this Chapter — these must be correct, otherwise one would not obtain the

correct Jordan canonical form.
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TRANSFORMATION MATRIX AND JORDAN CANONICAL FORM FOR 3D PIN-JOINTED PRE-TWISTED
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V7'G'V =J, where J is the Real Jordan block matrix
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TWO PURE SHEAR VECTORS FOR THE PIN-JOINTED PRE-TWISTED FRAMEWORK, FIGURE 6.2
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CHAPTER SEVEN

TENSION-TORSION COUPLING OF PRE-TWISTED REPETITIVE
STRUCTURES

7.1 INTRODUCTION

In this Chapter, the tension-torsion coupling of the pre-twisted structure is further
investigated. First, there is a detailed study of the natural frequencies of vibration of a
pre-twisted structure having o= 22.5° (as in Chapter 6). The governing equations of
motion for tension-torsion developed in Chapter 5 for the asymmetric structure are
equally applicable to the pre-twisted structure, and application of the approach requires
calculation of the mass and rotational moment of inertia about the x-axis, per unit
length. As with the asymmetric structure, these inertia properties are calculated from
first principles, and their values may be regarded as exact. Natural frequency
predictions, for structures of different lengths and boundary conditions, are compared
with predictions provided by ANSY'S, the latter again being taken as the benchmark for
accuracy, in order to gauge the range of applicability of the present equivalent

continuum approach.

Following the procedures developed in Chapter 6, the equivalent continuum properties
relevant to tension-torsion are determined for angles of pre-twist per cell over the range
0" to 1807; this allows one to gauge the sensitivity of the various parameters to the
angle of pre-twist and, in turn, allows one to qualify the remarks of previous researchers
on the effects of pre-twist. For example, Di Prima [47] concluded that both changes of
pre-twist rate and the depth-to-width ratios of a bar’s rectangular cross section would
have considerable effect on the natural frequencies of the predominantly torsional
modes, but the predominantly extensional modes would not be affected significantly.
An understanding of the dependence of these equivalent continuum properties on the
angle of pre-twist is gained largely from a knowledge of how the lengths of individual

members in the cell depend on pre-twist, which is explored in some detail.
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Finally, the natural frequencies for the fundamental modes of both torsional and

extensional modes under various boundary conditions are determined for a 10-cell

structure with pre-twist angle over the range 0° to 180" per cell; comparison with

ANSYS predictions shows very nice agreement.

Table 7.1 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and

present method; free-free and cantilever beam, L = 10.284 m (30 cells)

Free-free beam Cantilever beam
n  ANSYS Torsional Extensional | n  ANSYS  Torsional Extensional
I 56.4051 (i%‘_‘ééi/f) I 282216 (?;%_%ﬁ)
2 1127111 gjgf;;z) z 737293 (Z)élég/i)
3 1472962 (1_4;_ 527;3 3 846157 (ié(l)..%gz%/j)
4 168.8179 (lfgg‘g;% 4 140.8601 ff&'m
5 224.6235 ?fgff;‘; 5 196.8542 (lfgg;?
6 280.0243 (255712% 6 221.2605 (238192;5)
7 294.7308 (2_93 Sg’;(; 72324977 (2335859;,2)
8 334903 ot 83076788 ok
9 389.1687 (33?35;2) 9 3622828 (3+61627§1%
10 442.4367 ?fol_‘f foig 10 369.0115 (3_6(?215;5)
[l 442.6843 ?ff;’g;g 11 4162216 ?4313617602%3
12 4953336 )l 12 4693422 ?129588‘;)6)
13 546.9881 ff;’f;;g 13 517.0671 ffg;‘ff)
14 590.5353 (5_85 ;f;(; 14 521.5608 (5 326;);)502)
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7.2 VIBRATION ANALYSIS FOR PRE-TWIST ANGLE OF 22.5° PER CELL
First the mass and rotational moment of inertia, both per unit length, are calculated from
first principles as m = 0.8794 kg/m, and J, =2.2203x107 kgm. The natural

frequency predictions shown in Tables 7.1 and 7.2 employ the relevant equations from
Chapter 5, and are compared with those from ANSYS, again employing consistent mass

matrices; the latter are regarded as the benchmark for accuracy.

Table 7.2 Comparison of natural frequencies (Hz) in torsion and extension according to ANSYS and

present method; free-free and fixed-fixed beam, L = 3.428m (10 cells)

Free-free beam Cantilever beam

n ANSYS  Torsional Extensional | n ANSYS  Torsional Extensional
1 168.8107 gfg 22;,65 I 84.6916 ﬁ@‘f@";j)

5 3348527 (33;%155%6) 2 221.7947 ?_28_ }498;)5)
3 4423925 ?féf 31020) 3 2527148 (233579‘;)2)

4 4951505 (5327 ] 59;3 4 416.984 ?«313 6106‘5(;

s eac3e02 (/008 55720175 D

6 7847169 ?ff; 52;00) 6 667.2068 (6—6567;/2‘55;
7 887.8699 (ngfg "ig 7 7184749 (7*?618;}4’6)

For the slender rod, Table 7.1, there is excellent agreement up to the 10" torsional mode
(+0.03% to +3.15% for the free-free beam, —0.04% to +2.77% for the cantilever beam),
and up to the 4" extensional mode (=0.02% to —0.24% for the free-free beam, and
—0.13% to —0.31% for the cantilever beam). For the short beam, Table 7.2, the
agreement is still very good up to the 5" torsional mode (+0.26% to +7.85% for the
free-free beam, —0.07% to +6.02% for the cantilever beam), and up to the 2™
extensional mode (-0.13% to —0.48% for the free-free beam, and —0.40% to —0.67% for

the cantilever beam).
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7.3  EQUIVALENT CONTINUUM PROPERTIES FOR ANGLES OF PRE-
TWIST OVER THE RANGE 0" TO 180°

Here, interest is focused on the two principal vectors of tension and torsion, which,

together with their coupled eigenvectors of rigid body displacement in the x-direction,

and rigid body rotation about the x-axis, are associated with the fourfold multiple (real)

unity eigenvalue. These allow calculation of the equivalent stiffness properties within

the coupled equations

]1:_1241&_[{49’ (7.1)
’ L L

M, =gy By, (7.2)
L L

Here A is the equivalent cross-sectional area, J is the equivalent torsion constant and

K, is the coupling coefficient for tension-torsion. The shear modulus G is determined
from the expression G=FE / 2(1+v), in which Young’s modulus £ is regarded as the
same as the members that make up the framework; Poisson’s ratio v is calculated from
the cross-sectional contraction contained within the tension vector. These quantities

were calculated in Chapter 6 for an angle of pre-twist 0f22.5" ; now they have been

calculated and plotted over the range 0° to 180°, with steps of 1°.

However, before discussing these results, first consider Figure 7.1, which shows how
the lengths of three typical members depend upon pre-twist angle, o. Hig denotes the
length of the member joining nodes 3 and 6, and for the straight structure it is horizontal
and parallel to the x-axis. D, and Djs are the lengths of the diagdnals in the face
defined by nodes 2, 3, 6 and 5. Each is representative of three of its type; obviously, the
angle of pre-twist has no effect on the length of the members that constitute the cross-
sections. It is convenient to consider three distinct ranges (A, B and C) of pre-twist
angle: for 0° < <60° (A), H6 and Dyg both increase in length, while D;s decreases.
For 60" <o <120° (B), Hjs increases rapidly while both (initially) diagonal members
decrease in length, and for 120° <« <180° (C), Hzg and D35 both increase in length,

while D, decreases.
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Figure 7.1. Variation of the lengths of different members with pre-twist angle.
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Now the mass per unit length, m, depends solely on the length of the members; but in
the example structure, the initially horizontal member H;s has a cross-sectional area
double that of a diagonal member, so its contribution is dominant. Thus over range A,
the contributions from the (initially) diagonal members lead to a reduction in 1, but this
is more than offset by the increasing contribution from Hzs. Over range B, the
contribution from Hj4 increases at a near linear rate, while both diagonal members lead
to a near linear reduction, and the net effect is again a linear increase. Finally, in range
C, the contribution from Hje increases at a declining rate, while the contributions from
the diagonals leads to a reduction in m, as in range A; however, the contribution from

Hjg is still dominant. Thus the length changes clearly explain the characteristic shown

in Figure 7.2.
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Figure 7.3. Variation of rotary moment of inertia per unit length with pre-twist angle.

The variation in moment of inertia per unit length, .J,, is shown in Figure 7.3; again this
may be discussed over the three ranges. However, at first sight, one might expect the
increase in mass per unit length to automatically lead to an increase in J,, which is not
the case. Rather, the moment of inertia is linearly dependent on the mass of a member,

but depends also on the square of the distance from the centroidal x-axis, through the
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parallel axes theorem, and this is the dominant feature. Moreover, inclination of the
members changes throughout the range, so one has several factors contributing to the

characteristic.
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Figure 7.4. Variation of the distances of different members from the centroidal x-axis with pre-twist angle.

Figure 7.4 shows how the distances of three typical members from the centroidal x-axis
depend upon pre-twist angle, & DHjs denotes the distance of the horizontal member
joining nodes 3 and 6 from the centroidal x-axis, and DD,g and DDjss are the distances of
the diagonals in the face defined by nodes 2, 3, 6 and 5 from the centroidal x-axis. Over
range A, the initially horizontal members move closer to the x-axis, but not by much; of
the diagonal members, one will move close, while the other will move further away, and
the net result is that J, remains essentially constant. Over range B, as indicated in
Figure 7.4, the initial horizontal members move toward the x-axis at a rather fast rate,
while both diagonal members move away from the x-axis. Consider two pre-twist
angles, 0° and 120°: the length of DDyg at ov= 120° is equal to DD3s at ¢= 0°, while
DHjq and DDjg at v = 120° are equal to DD, and DHze at o= 0°, respectively.
Therefore, only three horizontal members and three diagonal members are considered

for their contribution to the overall variations of J;. Note that the horizontal members

7.7



are dominant. Thus, over this range, J, decreases at a near constant rate, as does DHj.
Over range C, DH36 keeps on decreasing at a constant rate, which is slightly faster than
that of range B, and DD, increases at a similar rate as that of range B, while DDss
decreases slowly. Therefore, compared with range B, one would expect an even faster
decreasing rate of J, over range C. However, the net result is that J, decreases at a
slower rate, and this may be due to contributions from other factors such as the overall

increase of mass and more inclination of members.
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Figure 7.5. Variation of cross-sectional area with pre-twist angle.

Figure 7.5 shows variation in the equivalent cross-sectional area, and this is equivalent
to axial stiffness; again it is convenient to consider the three regions. For the straight
structure the equivalent axial stiffness is equal to that of the horizontal members
together with necessarily positive contribution from the diagonal members and also
from the members which constitute the cross-section, as discussed in Chapter 3. Over
range A, the length of the (initially) horizontal bars increases as Hig, Figure 7.1, and
since the stiffness of a member is inversely proportional to its length, this leads to a
reduction in axial stiffness. In addition, the inclination of these members to the x-axis,

compounds this reduction, since inclined members contribute less. The length changes
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for the diagonal members leads to an overall increase in stiffness, and the angle changes
will be largely neutral, but the horizontal members are dominant.

For range B, the equivalent stiffness remains essentially constant; the lengths of all
diagonal members decrease, leading to increased stiffness, while the horizontal
members increase in length, leading to reduction in stiffness. Clearly, the two effects
more or less cancel. Over the region C, lengths of three originally diagonal members
will decrease and lengths of another three will increase, again, the effect of three
originally horizontal members on the changing of the equivalent axial stiffness will

dominates, therefore it starts to decrease more rapidly again.
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Figure 7.6. Variation of Poisson’s ratio with pre-twist angle.

The variation in Poisson’s ratio v is shown in Figure 7.6; for zero pre-twist one has a
value of v= 0.26120, and this increases throughout range A to give a maximum value
of v=0.38246 at = 71". Poisson’s ratio contraction implies a decrease in length of
the cross-sectional members. For the straight structure, if there were no diagonal
members, then one would have v = 0; it is the presence of the diagonal bars which leads
to compressive loads in these cross-sectional members, and their reduction in length.

Over range A, the initially horizontal members, which have dominant stiffness, become
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inclined to the x-axis, leading to increased compressive loads on the cross-sectional
members, and hence increased contraction, and Poisson’s ratio. Over range B, initially
diagonal members become horizontal, leading to a reduction in the compressive loads in
the cross-sectional members, and hence a reduction in Poisson’s ratio to a local
minimum, v =0.34613, at 124°. Over range C, these members again become inclined
to the x-axis, which leads to an increase in the cross-sectional contraction, and hence an
increase to a local maximum, v = 0.37595, at 180°. The trend for the shear modulus

G is shown in Figure 7.7, and is a direct consequence of the relationship of

G= E/ 2(1+V), in which £ is treated as constant.
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Figure 7.7. Variation of shear modulus with pre-twist angle.

Variation in the torsion constant, J/, is shown in Figure 7.8; for the straight structure,
J =8.2972x1077 m*, and this increases over range A to a maximum of
J =2.4868x107° m* at o = 64°; this is almost exactly a threefold increase, and

represents the largest sensitivity to pre-twist angle. Again, imagine a straight structure
having no diagonal members: its torsional stiffness would be zero, as the cell would be a
mechanism under torsional loading. Under torsion, it is the diagonal members that

provide torsional stiffness, as they undergo tension or compression. As the pre-twist
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angle increases, so the initially horizontal members become inclined, and start to
withstand tension or compression during torsion. At o= 60°, all of the initially
horizontal and diagonal members are inclined to the x-axis, leading to the maximum
stiffness at 64°. Over range B, three (initially) diagonal members gradually shift to
become parallel to the x-axis, and this leads to the decrease in torsional stiffness. Last,
over range C, all these members shift away from being parallel to the x-axis, and hence

the increase in the torsional stiffness.
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Figure 7.8. Variation of torsion constant with pre-twist angle.

Since Young’s modulus £ is constant, the axial stiffness £A varies in a manner
identical to area A, Figure 7.9; however, both parameters within the torsional stiffness,
GJ , vary with pre-twist angle, and their product is shown in Figure 7.10. These results
show that the axial stiffness decreases while the torsional stiffness increases, with
increased angle of pre-twist, when the latter is small, which agrees with previous results
of [46]. Bearing in mind the relevant axis scales in Figures 7.7 and 7.8, the shear
modulus G is much less sensitive to variations in the pre-twist angle ¢, than the torsion
constant J, so it is the latter which dominates their conflicting trends in the torsional

stiffness product G J ; thus the trends in Figures 7.10 and 7.8 are near identical.
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In contrast, the characteristic of the axial stiffness product £ A4, which is the same as the

equivalent cross-sectional area characteristic, Figure 7.9, does not show the same
sensitivity, or indeed fluctuations, to pre-twist angle. Thus it is no surprise that torsional
natural frequencies should be more sensitive to pre-twist angle than are the extensional

frequencies.
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Figure 7.11. Variation of tension-torsion coupling coefficient with pre-twist angle.

Tension-torsion coupling is caused by asymmetry of the structure, and variation in the

coefficient X, is shown in Figure 7.11. The coefficient is zero for the straight structure,

and decreases to a global minimum of K, =—-2.3571x10° Nm at & =40°, which

represents the largest coupling between tension and torsion; in contrast to the other
equivalent properties, this minimum does not occur close to a pre-twist angle of 60° or
120°, so discussion does not fall neatly into ranges A, B and C.

For small angles of pre-twist, the initially horizontal members become inclined to the x-
axis; under tension they attempt to re-align themselves with the x-axis, resulting in
rotation of the cross-section. In the absence of (initially) diagonal members in the faces

of'the cell, the cross-section would be free to rotate, and the cell would fully straighten
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before becoming stiff; thus it is the relative stiffness’ of these diagonals (compared to
the horizontals) that controls the degree of rotation induced by the tensile force. Indeed,
under tension, coupling is encouraged by axial stiffness (the horizontals) being greater
than torsional stiffness (the diagonals). Equivalently, under a twisting moment, in the
absence of the (initially) horizontal members, the cross-sections would be free to move
apart (or closer together, according to the sense of the moment); again that elongation is
controlled by the relative stiffness’ of the horizontals and diagonals. Indeed, under a
twisting moment, coupling is encouraged by the torsional stiffness (the diagonals) being
greater than the axial stiffness (the horizontals). Additional to the above, as pre-twist
angle increases, so (initially) horizontals become diagonals, and vice-versa, with further
stiffness changes on account of the differing cross-sectional areas. So again one has

many factors contributing to the overall characteristic.

74  VIBRATION ANALYSIS OVER THE RANGE 0° TO 180°.

The variation in natural frequency of the fundamental torsional and extensional modes,
with pre-twist angle, is shown in Figures 7.12 and 7.13, respectively, for a ten-cell
structure. First one notes that coupling has the effect of depressing the higher natural
frequency of the predominantly extensional mode, while increasing the lower natural
frequency of the predominantly torsional mode; coupling brings the frequencies closer
together. For small angles, one can also see that the torsional frequencies are more
affected than the extensional, which is consistent with Di Prima [47]. Indeed, the
torsional frequencies are much more sensitive to angle of pre-twist over the entire range
considered. The differences between the equivalent continuum predictions, and those
provided by ANSYS, are shown in Figure 7.14, indicating that the errors are confined

within the range of —1.5% to +1.0%.
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CHAPTER EIGHT

CONCLUSIONS AND RECOMMDENDATIONS

The research presented in this thesis is largely concerned with the continuum modelling
of repetitive beam-like structures; the main method employed is the eigenanalysis of a
state variable transfer matrix G, which can be derived by manipulation of the stiffness
matrix K of a single cell. Non-unity eigenvalues describe the rate of decay of the
associated eigenvector, as anticipated by Saint-Venant’s principle, while the multiple
(possibly complex) unity eigenvalues pertain to the transmission of end loading, as in

Saint-Venant’s problem, together with the rigid body displacements and rotations.

The majority of the structures considered are treated as pin-jointed, as the Finite Element
Analysis of such structures may be regarded as exact; in turn, the predictions of the
methods developed here have been verified by comparison with these FE simulations.
Justification is provided in Chapter 2, where the general theory of the state variable
transfer matrix method is presented, and employed to analyse a 2-D rigid-jointed planar
framework; both the Saint-Venant decay rates and the equivalent continuum beam
properties are determined. Compared with the pin-jointed case examined in [10], a
direct consequence of introducing a rotational degree of freedom for the rigid-jointed
framework is a 50% increase in size of the transfer matrix and state vector, leading to
three new pairs of decay eigenvalues, whose associated eigenvectors are characterised by
comparatively large self-equilibrated nodal moments and shearing forces within the
generalised force vector. Rigid-jointing has no effect on the multiplicity of the unity
eigenvalues, which remains at six, and is fixed by the planar nature of the structure; it
does have the effect of introducing small nodal moments — indeed just sufficient that the
nodal rotation components should transmit with unity eigenvalue — and these moments
are included in the calculation of the resultant bending moment for determination of the
equivalent second moment of area. Comparison of the decay rates and equivalent beam
properties of the two frameworks lead to the conclusion that rigid jointing does make the

structure stiffer, but the increase is quite negligible. The treatment of rigid-jointed
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structures as pin-jointed is thus justified, at least as far as determination of the equivalent
continuum beam properties is concerned, and the assumption of pin-jointing is employed

throughout the remainder of the thesis.

In Chapter 3, rather independently, an alternative analytical method is presented for
determination of the equivalent continuum properties of the symmetric repetitive
structure considered in Chapter 2, but now treated as pin-jointed. The method requires
only knowledge of the stiffness matrix K, and relies upon the ability to deduce the cell
displacement vectors for tension, bending moment and shearing force, a process aided by
the planar nature and symmetry of the structure. The tension displacement vector
contains the Poisson’s ratio as an unknown, and this is determined by a once and for all
minimisation of strain energy. For less symmetric structure, and those involving torsion,
deduction of the vector is slightly more complicated, but still quite straightforward.

Extension of the process to two-dimensional, plate-like structure is also possible.

In Chapter 4, eigenanalysis is applied to a 3-D (space) asymmetric framework, which
has seen practical use by NASA as a deployable boom, in connection with the
International Space Station. Since a particular partition of the stiffness matrix K is
singular (when treated as pin-jointed), construction of the transfer matrix G is
impossible. Instead, a generalised eigenvalue problem is presented, which does not
require inversion of the partitioned stiffness matrix and thus can be applied to repetitive
structures of a more general character. The presence of zero decay eigenvalues implies
that self-equilibrated loading does not penetrate into the structure at all, and that one can
have loads and displacements on the left hand side of the cell which are quite unrelated
with those on the right hand side — indeed this is precisely why the partition of K is
singular, and the conventional transfer matrix does not exist. The vectors associated
with the multiple unity eigenvalues reveal some unexpected coupling between various
displacement modes. First, tension is coupled with torsion, which is the known
behaviour of pre-twisted structures. Second, bending is coupled with a shear deflection
in the perpendicular plane. In order to understand the cause of this coupling,
eigenanalysis of a simpler 2-D planar asymmetric framework, representing a single face

of the 3-D NASA truss, shows a tension-shear coupling, which is sufficient to explain the
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tension-torsion and bending-shear couplings of the 3-D NASA truss. The generalised
coupled force-displacement equations for the tension-torsion and bending-shear
couplings are provided which allows one to determine the equivalent continuum beam

properties of the truss, which in turn also validates the static coupled equations assumed.

In Chapter 5, the dynamic continuum beam theories for coupled tension-torsion and
bending-shear of the 3-D NASA truss are derived through the use of Hamilton’s
principle, and solved for a variety end conditions. The equivalent continuum properties
employed are those found in Chapter 4, while the inertia properties were calculated by
elementary means. The predicted natural frequencies are in fairly good agreement with
those obtained from the FEM. For best agreement, the lumped mass matrix is employed
for the flexural modes predictions, while the consistent mass matrix is used for the
extensional and torsional modes predictions, within the FEM. This shows that the
combined approach of the periodic structure method and substitute continuum method,
two of Noor’s classifications, can provide an efficient and accurate means for the

prediction of the global dynamic behaviour of the repetitive structure.

In part motivated by the unexpected tension-torsion coupling of the asymmetric NASA
truss, Chapter 6 presents an extension of the transfer matrix approach to pin-jointed
structures having a pre-twisted form, which are known to possess such coupling.
Employing a local coordinate system that rotates with the cross-section, allows one to
construct an autonomous transfer matrix G’, which is the same for each of the repeating
cells; within global coordinates, the transfer matrix depends on the index of the cell. The
existence of such an autonomous matrix forms part of Floquet theory, and the structural
example presented, with its inherent spatial periodicity, is perhaps easier to visualise
than systems possessing temporal periodicity, where this theory is more usually applied.
Besides the non-unity eigenvalues that describe Saint-Venant decay, eight of the twelve
unity eigenvalues which one expects for a 3-D beam-like framework become complex;
the real and imaginary parts are the cosine and sine of the angle of pre-twist per cell,

respectively, and occur as conjugates as they must.
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The four real unity eigenvalues are associated with rigid body displacements in, and
rotation about, the axial direction, together with tension and torsion; these are coupled
within a 4 X 4 Jordan block, indicating the expected tension-torsion coupling. The
equivalent continuum beam properties such as cross-sectional area, Poisson’s ratio,
torsion constant and the tension-torsion coupling coefficients, are determined through
physical interpretation of the vectors; the resulting coupled equations are in agreement
with existing theories which have been developed for continuum pre-twisted structures,
such as a turbine blade. Much of the simplicity of this tension-torsion coupling can no
doubt be attributed to the well-known fact that finite rotations do not commute; for
tension-torsion coupling, however, this is not a problem, as the rotation during
deformation either adds to, or subtracts from, the existing pre-twist of the structure,

according to the sense of the applied loads.

For the eight complex unity eigenvalues, pertaining to the remaining transmission modes
— transverse rigid body displacements, rotations, bending moments and shearing forces —
a variety of strategies have been presented for determination of the eigen- and principal
vectors, each of which leads to a different Jordan decomposition of the transfer matrix
G’. Those which lead to the simplest, standard Jordan canonical form, which has the
repeating eigenvalue on the diagonal, and a unity on the super-diagonal, lead to complex
vectors which are the most difficult to interpret. On the other hand, the simplest possible
interpretation of the vectors is when the force and displacement components on both
sides of the cell are expressed within a global coordinate system, and this leads to a
block Jordan decomposition in which a real block replaces not only the complex unity
eigenvalue on the leading diagonal, but also the customary real unity on the super-

diagonal.

However, reconciliation of these bending moment and shearing force vectors with
existing theories for bending/flexure of pre-twisted structures has proved frustrating.
While the tension-torsion coupling model employed for the asymmetric 3-D NASA truss,
Chapter 4, readily extends to the pre-twisted structure; the same cannot be said for the
moment-shear coupling, as it leads to asymmetric coupling coefficients within the matrix

constitutive relationship. This is not what one expects within the context of a linear
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theory, being contrary to the reciprocal theorem. On the other hand, none of the known
existing theories for the bending of pre-twisted structures makes allowance for the

coupling of bending curvature with shear in a perpendicular plane, as found.

Reconciliation of these differences represents a major recommendation for further
research — either construction of a continuum beam theory for bending of structures
having pre-twisted form which can accommodate the presently observed coupling, or an
alternative interpretation of the vectors for bending moment and shearing force which is
in agreement with an existing theory. Or perhaps something in between: after all, the
present eigenanalysis of an, albeit idealised, pin-jointed structure is probably the only
exact elastic analysis of a structure having pre-twisted form, and deserves

accommodation.

Bearing in mind the above dilemma, Chapter 7 concentrates on the tension-torsion
coupling of a pin-jointed pre-twisted repetitive structure, for which the nature of the
coupling appears to be unambiguous, and fully investigates the variation of the
equivalent continuum beam properties over the range of 0° to 180° of pre-twist angle per
cell. The variation of these stiffness properties can be largely understood from an
appreciation of the changes in length of individual members with angle of pre-twist,
together with their inclination to the axis of the rod. Just as in Chapter 4, these
equivalent continuum properties, together with the mass and rotary moment of inertia
per unit length, are then employed into suitably modified continuum dynamic beam
theories for vibration analysis. For the specific case of pre-twist angle per cell of

o= 22.5°, as considered in Chapter 6, natural frequencies under free-free and fixed-free
end conditions are predicted for rods consisting of 10 and 30 repeating cells, and
compared with FEM predictions. Not surprisingly, better agreement is found for the
longer 30 cell case, when the maximum difference between the FEM predictions, and
those according to the methods described in the present thesis are about 3% for the
lowest 14 modes of vibration. For the shorter, 10 cell rod, the same accuracy is obtained

for the lowest four or five modes of vibration.
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In any vibration analysis, knowledge of the lowest, fundamental, frequency is of prime
importance — damping tends to be smallest, so that amplitudes of forced vibration at
resonance tend to be the largest. Moreover, if one seeks to avoid excitation of any
resonance, so long as the highest frequency of excitation is lower than that of the lowest
natural frequency, it is obviously lower than a/l natural frequencies. For coupled
tension-torsion, these fundamental natural frequencies, again for free-free and fixed-free
end conditions and for the more onerous, shorter, 10 cell structure, are compared with
FE predictions over the range of 0° to 180° of pre-twist angle per cell. Differences in
natural frequency prediction are less than = 1.5%, which lends considerable support to

the accuracy of the methods employed within this thesis.

The major new avenues for research, building on the work described in this thesis, are in
the area of pre-twisted structures; the first challenge is a resolution the constitutive
relationships describing coupled bending-shear, in particular those issues leading to
asymimetry of the coupling coefficients. For tension-torsion coupling, this issue does not
arise, and one can envisage a more in-depth study of this aspect of the elastic behaviour
of pre-twisted structures, initially for pin-jointed structures not having the equilateral
cross-section considered here, but for a range of more general cross-sections, for
example a rectangle, or an isosceles triangle, and cross-sections for which the shear
centre and centre of area (and mass) do not coincide, leading to tension-torsion-flexure
coupling. Extension of these methods to continuum rods, rather than the discrete pin-
jointed structures considered here, is possible using the super-element techniques
described in [12]; initially these were employed as a procedure for determination of
Saint-Venant decay rates for straight rods of arbitrary cross-section for which analytical
solution is impossible — stiffness properties were not determined, as the most important
properties of cross-sectional and second moment of area can be determined by familiar

methods.

In the real world, the concept of a perfect periodic structure is an idealisation. The
theory originated in the study of the behaviour of the constituent atoms of crystalline
solids, which come closest to perfect periodicity; however, the existence of atomic

isotopes introduces some disorder. In an engineering context, due to reasons such as
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material variance, manufacturing tolerances, etc, many periodic structures can only be
regarded as near-periodic. Near-periodic structures can be categorised into two major
classes: single disordered, which contain only one element that is not identical to the
others, and disordered, having many elements which deviate from the averaged element
regarded as repeating. Periodic structure methods have been extended to analyse wave
propagation in near-periodic structures, in which perturbation, deterministic and
probabilistic, and other statistical approaches are incorporated, and have proven to be

very successful, see [78] for a review.

Single disorder can be readily accommodated within the methods described in this
thesis: a lack of fit, or the presence of a more flexible element, may be regarded as a
local self-equilibrated load which will decay according to Saint-Venant’s principle and
the equivalent beam properties will be largely unchanged, so long as the deviation is not
large. For general disorder, so long as the probability distributions are spatially
invariant, one can reduce the analysis of the imperfect structure to an equivalent one for

the ideal, [79].

Thus, the existence of disorder does not detract from the value of periodic structure
theory — after all, if one were to analyse a complete, nominally periodic, structure, the
location of any disorder is unlikely to be known in advance; manufacturing tolerances
are always present, but less frequently modelled. Adequate quality control should ensure
that elements having material defect and unacceptable dimensional tolerance are not
present. Rather, it is more important that the possible consequences of disorder are taken
into account. In dynamic analysis, disorder can produce the phenomenon of localisation,
where the amplitude of one of the nominally identical elements, is significantly greater
than the others; this is thought to be the cause of premature fatigue failure of turbine
blades. Localisation also has implications for the design of systems for the control of
large space structures, including vibration suppression, and shape and directional

control: control schemes can become effective or unstable.
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