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MID-FREQUENCY VIBRATION ANALYSIS OF BUILT-UP STRUCTURES 

by Lin Ji 

The thesis concerns the vibration analysis of built-up structures at frequencies where 

neither standard, low-frequency deterministic methods nor high-frequency statistical 

methods are appropriate, i.e. the so-called 'mid-frequency' vibration region. The system 

model considered is a typical form of such complex built-up structures, composed of a 

long-wavelength (low mode-count) source and a short-wavelength (high mode-count) 

receiver. The interfaces might be either discrete-point couplings or continuous couplings. 

The thesis is presented in four parts. 

The first part concerns discrete point coupling cases between a stiff source and a 

flexible receiver. A concept of 'power modes' is introduced to estimate the power 

transmitted to a flexible receiver. It allows expressions for the upper and lower bounds and 

the mean value of the transmitted power to be developed in a simple manner. The second 

part involves three cases of straight-line coupling of beam-stiffened plates. A hybrid 

Mode/FT approach and locally reacting impedance method are presented to predict simply 

and accurately the frequency response of the beam and the power transmitted to the plate, 

as well as the effective mass and damping loaded to the beam by the presence of the plate. 

The third part concerns an arbitrary continuous coupling between the long- and short-

wavelength substructures. A mode-based approach is described, which is able to 

accommodate both deterministic and statistical models. Relevant results are compared to 

those of 'Resound' and 'Fuzzy' structure theory. Following the numerical examples 

presented in the previous parts, the main theoretical developments are experimentally 

verified in Part IV. Good agreements are observed. 
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Chapter 1 

INTRODUCTION 

1.1 MID-FREQUENCY VIBRATION PROBLEMS: THE LIMITATIONS OF 

LOW-FREQUENCY DETERMINISTIC A N D HIGH-FREQUENCY 

STATISTICAL METHODS 

The analysis of vibration transmission in complex built-up structures is relevant to many 

practical structural-acoustic systems of engineering interest, such as occur in vehicles, 

aircraft structures, mechanical equipment, etc. Usually these complex systems can be 

viewed as being fabricated from many components, with quite different vibration 

properties, joined together at their interfaces. One common example of such an 

arrangement is a beam-stiffened plate structure, being broadly representative of machine 

foundations in ships. The beam is usually well-defined with long-wavelengths and/or low 

modal density, while the plate has relatively short-wavelengths and/or high modal density 

with complex boundary conditions. The mismatch between the local dynamic properties of 

the components may then present a number of challenges to predicting the vibrations of 

the coupled system, due to the limitations between the low-frequency deterministic 

methods and the high-frequency statistical methods. These vibration issues are therefore 

defined as the 'mid-frequency' vibration problem [1-8]. 

In principle, subsystems of arbitrary complexity can b e modelled across the entire 

frequency range using deterministic descriptions of the subsystem dynamics, using, for 

example, finite elements (FE). However, at high frequencies, in what might be termed the 

'mid-frequency' range, it becomes difficult to devise a precise mathematical model that 

can adequately capture the complex response pattern. This is because, in the context of 

FEA [9-10], it is generally considered that approximately four to eight elements 

(depending on the related vibration shape functions) must b e used adequately to resolve 

each structural wavelength. As the wavelengths of interest become shorter, more and more 

degrees of freedom are therefore typically required to provide a deterministic description 

of the dynamic of a subsystem. This can and does lead to unfeasibly large models at high 

frequencies. Computational limitations therefore may place a restriction on the highest 

frequency at which such a description can be maintained, for a given subsystem. 
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Computational cost is not the sole issue for a deterministic FE model. Actually, even if 

it is possible to extend the FE model to the mid-frequency range at the expense of rapidly 

increasing demands in terms of the size of the model and consequent analysis time and 

cost, the results of deterministic prediction of frequency response might be very 

unreliable. This is because the system response becomes increasingly sensitive to 

geometrical imperfections as frequency increases [11], so that even a very detailed 

deterministic mathematical model based on the nominal system properties may not yield a 

reliable response prediction. 

The statistical energy analysis (SEA) method has been successfully applied to the high-

frequency vibration analysis of coupled systems [12-17]. Vibration energy as an 

independent variable is taken to mean the time-average sum of the kinetic and potential 

energies under stationary random excitation and vibration inputs are expressed in terms of 

time-average input powers, rather than in terms of external forces or displacements. The 

primary aim of the analysis is to estimate the distribution of vibration energy among the 

coupled subsystems, and for this purpose energy balance equations are set up which 

involve expressions for power flowing from one subsystem to another. However, it 

requires that each subsystem ideally contains a number of resonant modes within the 

analysis frequency band of interest, which implies that the wavelength of the subsystem 

deformation is of the same order as, or less than, the dimensions of the subsystem [1]. In 

the mid-frequency range, however, this requirement may be only partly met, i.e. the 

frequencies are not high enough to make the wavelengths of all subsystems to be 

sufficiently short. As a result, the energy-based approach may become too broad-brush 

and lose all details of the system vibration behaviour. 

Given the difficulties arising from the limitations of a deterministic FE model and a 

statistical SEA model, there is a desire to predict the mid-frequency vibrations of built-up 

structures in a simple manner but with acceptable accuracy. 

1.2 LITERATURE REVIEW OF RELEVANT EXISTING METHODS 

Concerning the above mid-frequency vibration issue, some effort has been made in this 

research area and a number of model reduction and specialist methods have been 

developed. The foremost amongst them are briefly reviewed below. 

The component-mode-synthesis (CMS) method is one of the most commonly used 

model reduction methods, and is very useful if all the subsystems of a built-up structure 

have at most modest levels of component modal uncertainty [3]. The principle of CMS is 



to divide the system into subsystem models and then assemble them together by the 

interface boundary conditions of the subsystems, thus the size of the system model can be 

reduced greatly. CMS models can be set up both in the time-domain and in the frequency-

domain, and these two kinds of model can be transferred between each other and to 

incorporate measured data. 

Frequency-domain CMS approaches involve coupling subsystem frequency response 

function (FRF) matrices by enforcing compatibility and equilibrium between the interface 

degrees of freedom (DOFs) and forces. This involves inverting an FRF matrix and 

subsequent manipulations on a frequency-by-frequency basis rather than solving an 

algebraic eigenvalue problem. These approaches have the advantage of being able to 

incorporate experimental FRFs directly into its spectral formulations without a knowledge 

of the system modes, which can be very difficult to compute accurately especially for the 

higher order ones. However, these inherently require several matrix inversion calculations, 

and hence can be very time-consuming for large interface D O F cases, e.g., line or surface 

couphngs. 

In time-domain approaches, the response of a subsystem is described in terms of shape 

functions, or modes. The most common approaches include fixed and free interface 

normal modes of vibration together with constraint or attachment modes and perhaps also 

rigid body modes [18]. Other component modes are also suggested in [19-20]. Subsystem 

models are coupled together and solved for the global modes in terms of the local shape 

functions. These approaches can be potentially very useful to deal with the difficulties of 

many interface DOFs by the use of generalized interface DOFs, such as suggested in [21-

22], so as to alleviate the computational issue. But more research has to be done in this 

area. 

One other relevant study is that of [23-24] where FRF descriptions of subsystems 

(modelled using free interface modes without residuals) were coupled, solved and used to 

determine the vibration behaviour of the coupled system. Again they are problematic for 

coupling cases with many interface DOFs. 

Structural model reduction can also be realized by the wave-based approach [25], in 

which the vibration fields of subsystems are represented in terms of a superposition of 

travelling waves. The relationship between the subsystem wavenumbers can be 

determined by the trace-matching of the travelling waves at the junctions. Then the 

parameters can be determined to model the response of each subsystem plus its boundary 

conditions. Furthermore the parameters can be determined to model the response of the 
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complete structure by combining the separate responses of the subsystems. This approach 

is especially useful for infinite structures. 

Except for these above mentioned model reduction methods, there are also some 

specialist numerical/analytical methods developed by different authors to deal with the 

couplings of long-wavelength (low modal density) and short-wavelength waves (high 

modal density). The significant ones include 'Resound' theory [1], the local 

modal/perturbational (LM/P) method [3], fuzzy structure theory [4-6], a combination of 

FEA and analytical impedances [26-28] and multipole theory [29-30]. 

In the 'Resound' approach [1], the vibration analysis of complex dynamic systems is 

based on partitioning the system DOFs into a 'global' and a 'local' set. The global 

equations of motion are formulated and solved in a standard deterministic manner with 

due account being taken of the presence of the local DOFs. The local equations of motion 

are formulated and solved by using SEA methods with due account being taken of power 

input from the global DOFs. This hybrid approach forms a flexible framework within 

which a number of existing analytical techniques can be devised, and has been found to 

yield good results for a relatively simple system comprising two coupled rods. The 

application of this method to more complex systems, however, is still ongoing. 

In [3], a local modal/perturbational (LM/P) method is described which enables 

estimations to be made of the statistics of frequency functions of a system whose 

properties are uncertain. The global modes of the baseline system are found in terms of the 

subsystem modes by using CMS method. Uncertainty is assumed to exist in the local 

modal properties of the subsystems. A perturbation is found which relates small changes 

in the local modal properties to those in the global modal properties. This method can be 

efficiently used to determine the variability in the dynamic responses of a system caused 

by the inherent variability of its properties. But it requires that the random statistical 

distributions of the modal properties of the subsystems are known. 

Fuzzy structure theory [5-6] models a deterministic master substructure coupled to a 

fuzzy substructure modelled statistically as a continuous set of light oscillators. The key 

result of fuzzy structure theory is that the attached items act mainly to provide damping to 

the master structure, and furthermore the level of this damping is (surprisingly) 

independent of the dissipation factor of the attachments. These results agree well with 

those obtained from the resound theory. However, the fuzzy structure theory has been 

based on special examples so far rather than with a somewhat general class of cases. 
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In [26-27], it is established that for a beam/plate coupled structure, if the wavenumber 

of the plate is at least twice that of the beam, the short-wavelength plate presents a locally 

reacting impedance to the long-wavelength beam at the joints. Consequently, such a 

locally reacting plate model can be incorporated into a standard sub-structuring procedure 

to predict the vibration response of a beam-stiffened plate system by splitting the coupled 

structure into a beam attached to a set of independent narrow strips of the plate. The 

corresponding solution, however, may still be very time-consuming since the calculation 

still requires many connecting points between the beam and the plates. 

In [29-30], the vibration power transmitted by N forces can be regarded as the power 

transmitted by N independent poles of vibration. The source of vibration can thus be taken 

as moving in a set of vibrational poles and the receiver be defined by a set of polar 

mobilities and impedances, provided the structure is symmetric or if the power 

transmission by each pole is independent. This technique is extremely useful in 

measurement. In [7], it is found that the multipole theory is particularly suitable for the 

following cases: (1) both the source and the receiver structures are fully symmetric with 

respect to the common boundary; (2) the source structure is fully symmetric and the 

receiver has high modal overlap with non-distinct resonant behaviour; and (3) the source 

structure is much stiffer than the receiver, which has high modal overlap with non-distinct 

resonant behaviour. For other situations, the multipole method has no advantages over the 

conventional FRF based sub-structuring (frequency-domain CMS) method. 

It is true to say that more research is required before generally accepted methods are 

fully developed to couple long- and short-wavelength substructures in the so-called 'mid-

frequency' region. This provides the motivations of the present research. 

1.3 AIMS OF THE RESEARCH 

This research is directed at the development of new and appropriate methods for the mid-

frequency vibration analysis of built-up structures, which are composed of both long-

wavelength (low modal density) and short-wavelength (high modal density) substructures. 

The emphasis is put on estimating as accurately as possible the coupling energy flow 

between the long wave and short wave substructures. Because the number of the interface 

DOFs might be very large in many cases (e.g. line or surface coupling), computational 

cost will be a very real issue. Various possible model reduction (mainly for interface DOF 

model reduction) and approximate techniques are therefore investigated. The key is the 

ability to couple subsystems of different forms within the same system model, e.g. 



different components may be modelled using different techniques, the choice being 

determined by the characteristics of the individual component and its properties. 

The system model considered is composed of a stiff source and a flexible receiver, 

being a typical form of a built-up structure. The interfaces might be either discrete-point 

couplings (e.g. a machine resiliently mounted to a flexible foundation) or continuous 

couplings (e.g. the beam-stiffened plate machinery foundation of a ship). Conventional 

FRF-based sub-structuring method, Fourier Transform (FT), modal analysis and wave 

methods are used as appropriate. By introducing some techniques for simplifying, 

decomposing and approximating different coupling models, new methodologies are then 

developed based on these conventional approaches in certain hybrid forms of different 

theoretical models. 

For a better understanding of the whole vibration properties of the coupled system, the 

FRFs of the stiff source and the power transmitted to the flexible receiver are particularly 

of interest. (The predicted power can then be input to a S E A model, by assuming energy 

conservation of the system, i.e., the power transmitted to the receiver equals to the 

power dissipated by the receiver 7 .̂̂ ., so that the mean-square velocity response of the 

receiver structure can be predicted from = where 7;̂  and are 

respectively the damping loss factor and the total mass of the receiver, and O) is the 

vibration frequency of interest [11].) The dynamic interactions between the long wave and 

short wave substructures will be investigated at the same time. The performance of the 

newly developed approaches will be assessed against conventional methods, e.g. the FRF-

based sub-structuring method, by numerical examples, together with comparisons to some 

specialist approaches, e.g. the 'Resound' and fuzzy structure theory. Since many practical 

built-up structures are essentially assembled by thin plates and beams joined in many 

different ways, the numerical models involved will be beam/plate coupled systems, where 

a stiff beam (long wave model) coupled to a flexible plate (short wave model), an external 

time-harmonic point force being applied directly to the beam. Finally the main theoretical 

developments will be experimentally verified by laboratory measurements. 

It is expected that a general framework can be formed for coupling different types of 

subsystem models and for developing interface reduction methods for the mid-frequency 

vibration predictions. 



1.4 THESIS STRUCTURE 

The thesis is presented in four parts after this introduction. The first part concerns the 

discrete-point coupling cases for which a new technique, the power mode method, is 

developed. Two chapters are involved in this part of thesis. In Chapter 2, the concept of 

power modes is introduced and used to estimate the power transmission to a structure from 

multiple sources. In Chapter 3, this power mode approach is extended to estimating the 

power transmission between a stiff source and a flexible receiver through discrete 

coupling, where the system may be subjected to multi-directional and rotational 

vibrations. Both are presented with numerical examples. 

In the second part of the thesis, three special cases of beam-stiffened plates with 

straight-line couplings are considered, being an infinite beam attached to an infinite plate, 

a finite beam attached to an infinite plate, and a finite beam attached to a finite plate where 

the beam and the plate modal shapes are the same along the coupling. These are described, 

respectively, in Chapters 4-6. A number of methods, either conventional (Fourier 

Transform (FT), wave analysis, and FRF-based sub-structuring methods) or newly 

developed (the approximate Mode/FT and locally reacting impedance methods as well as 

the analytical mode-based method), are investigated and compared. Although only special 

cases of beam/plate coupling systems are considered in this part of thesis, it provides new 

methodologies, both analytical and approximate, on which the vibration of a general stiff 

beam/flexible plate system can be predicted in certain ways much more simply. This 

finally leads to Part III for predicting the vibration of a stiff source/flexible receiver 

system with general continuous couplings. 

Based on the methodologies provided in Part II, a so-called 'mode-based' approach is 

developed in Part III to deal with general continuous coupling cases between a stiff source 

and a flexible receiver, together with the Mode/FT and locally reacting methods. The 

theoretical procedures of this mode-based approach, either analytical or approximate, are 

described in Chapter 7. A technique of transferring the physical DOFs into generalized 

DOFs is used to reduce the system DOFs. In addition, modelling of different subsystems 

by different appropriate coupling techniques is made, the choice being determined by the 

locally dynamic properties of the individual subsystem of interest. Numerical applications 

of the mode-based approach are given in Chapter 8 for beam-stiffened plate models, where 

the rectangular plate attached is relatively very flexible compared to the source beam, and 

the beam may be either straight or L-shaped. 



Laboratory measurements, as the final part of this thesis, are arranged to experimentally 

verify the main theoretical developments of the research. These are given in Chapter 9. 

1.4.1 Original contributions of the thesis 

Much of the work presented in this thesis is original. These mainly include the power 

mode approach described in Chapters 2 and 3, the Mode/FT approach and the locally 

reacting impedance method in Chapter 5, and the Mode-based approach in Chapters 6-7. 

The predicted results are then compared with those of the conventional FRF-based sub-

structuring method as well as some lab measurements. Moreover, the dynamic interactions 

between the components of the built-up complex structures are investigated as a general 

class of cases rather than a specific example. Expressions are given for the dynamic 

stiffness modification matrix, effective mass and effective damping induced to the 

dynamics of the source by the presence of the receiver. The results are then compared with 

the 'Resound' and fuzzy structure theory in the cases of a relatively very flexible receiver 

(fuzzy-attachment) loaded on a stiff source (master-structure). All the comparisons show 

fairly good agreement. 



Parti 

DISCRETE-POINT COUPLINGS: POWER MODES 

An issue which is frequently the focus of noise and vibration control procedures is the 

prediction and control of the power transmitted from a resiliently mounted machine to a 

flexible foundation via a multiple point interface. A common arrangement of such a 

vibration system can be modelled as a stiff source connected to a flexible receiver through 

discrete point couplings. The difficulty in providing a complete solution of the transmitted 

power, due to the complex nature of the coupled system, has been widely recognised. 

Although different techniques [29-30, 32, and 36] are available to simplify the problem, 

there are certain limitations in their application (e.g. as described in section 1.2). More 

general techniques are required to predict the transmitted power in a simple manner but 

with acceptable accuracy. 

With this in mind, a concept of 'power modes' is introduced to approximate the broad 

features of the transmitted power rather than attempted to describe the detailed response 

precisely. This is the so-called 'power mode approach'. In Chapter 2, the approach is used 

to estimate the power transmission from multiple sources. Then in Chapter 3 it is further 

extended for more general cases, namely a stiff source attached to a flexible receiver 

through discrete-point couplings. In principle, the power mode approach has two main 

advantages; first, it allows expressions for the upper and lower bounds and the mean value 

of the transmitted power to be developed in a simple manner; and secondly, it can involve 

both the translational and rotational motions of the system. 



Chapter 2 

A POWER MODE APPROACH TO ESTIMATING POWER 
TRANSMISSION FROM MULTIPLE SOURCES 

2.1 INTRODUCTION 

Generally, the prediction of the power transmission f rom multiple sources requires full 

knowledge of both the strength of the source excitations and the dynamic properties of the 

receiver. It tends to be quite problematic when there is a large number of excitation points 

and/or when the receiver structure involves some dynamic uncertainties. 

On account of the difAculties arising from an exact description of the transmitted 

power, a so-called 'power mode approach' is described in this chapter for estimating the 

power transmission from multiple sources in a simple manner. A set of force sources is 

transformed into arrays of force distributions. The transformation involves the eigenvalues 

and eigenvectors of the real part of the mobility matrix of the receiver. As a result, the 

vibrational power transmitted by N forces can be considered as being transmitted by N 

independent contributions, i.e., power modes, with each of them related only to one set of 

force distribution (eigenvector) and one eigenvalue. Thus N terms contribute to the 

power, rather than the terms involving the original forces. This eigen-decomposition 

technique was first suggested in [32]. Here it is further extended and approximations are 

developed for the maximum and minimum possible values and the mean value of the 

transmitted power. 

The 'multipole' approach of [29-30] is somewhat similar, except that the 

transformation matrices are pre-selected 'Hadamard' matrices, so that the polar mobilities 

can be regarded as monopole, dipole, quadrupole terms, etc. Using this approach, the 

power injected by many of the cross terms is often negligible. However, the receiver 

structure must be geometrically symmetrical or the source a set of uncorrelated outputs. 

There are two main advantages to the power mode approach. First, it allows 

expressions for the upper and lower bounds and the mean value of the transmitted power 

to be developed in a simple manner. Secondly, this approach can be used for cases where 

both force and moment excitations are involved. 
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In the next section the power mode theory is developed for an array of point forces 

applied to a region of a structure whose properties are uniform and homogeneous. Then 

various approximations are developed. Following this, more general situations are 

considered. These include the case of combined force and moment sources and that of 

velocity source excitations. Finally some numerical examples are presented. 

2.2 POWER MODE THEORY 

Suppose an array of time harmonic forces are applied to a structure at a frequency a;. 

The time averaged power transmitted to the receiver can be expressed as 

f = l R e { F ^ V } , V = ] ^ (2.1) 

where F is the vector of amplitudes of the forces, V is the vector of amplitudes of the 

velocities of the receiving structure at the excitation points, M is the complex mobility 

matrix of the receiver structure, and the superscript H denotes the conjugate transpose. 

Equation (2.1) can be written as 

f = ^ R e { F ^ V + V " F } = ^ R e { F ^ ( M + M ' ' ) F } (2.2) 

Since ^M + M^ ^ = 2Re j M j , the transmitted power becomes 

f = ^ F ^ M F (2.3) 

where M is the real part of the complex mobility matrix M . Equation (2.3) shows that the 

power transmission depends only on the real part of the mobility matrix, whose imaginary 

part can therefore be ignored as far as power transmission is concerned. 

Since equation (2.3) is in a non-negative definite quadratic form, M is a real, 

symmetric and non-negative definite matrix. By matrix theories [33-34], M can be 

decomposed into the form 

M = (2.4) 

where A is a real and non-negative diagonal matrix of the eigenvalues of M , T is the 

orthogonal matrix composed of the corresponding eigenvectors (in columns), so that 

=: I ^ and the superscript 7 denotes the transpose. The eigenvalues are 

arranged in descending order, i.e.. 
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^ 0 (2.5) 

The eigenvalues satisfy the following relations [34] 

AT TV 
(2 6) 

n=I 

] [ ) ] [ ] ==||jkr|2 (2L7) 
n=] m=In=l 

where ||M||^ is the second order norm of matrix M . From equations (2.6) and (2.7), the 

mean value of and its standard deviation cr are found to be 

(2.8) 

(T = . 
N N- V 

(2.9) 

Let the force vector F now be weighted by W so as to give a new set of forces defined by 

Q = Y F (2.10) 

It follows that 

,2 ^ , _ , 2 
Z I & r = E | f . r (2,11) 

;t=l 

Combining equations (2.3), (2.4) and (2.10), the power transmitted to the receiver can then 

be re-written as 

P = i Q " A Q = i | ; | a f A . (2.12) 
^ ^ n=l 

Equation (2.12) shows that the vibrational power transmitted to the receiver by forces 

can be regarded as the power transmitted by independent contributions, each of them 

related only to one set of force distributions (eigenvectors) and one eigenvalue. In [35], 

'radiation modes' have been used to describe the power radiated by a vibrating surface 

into a surrounding acoustic medium, in which the sound power radiation from a set of 

velocity distributions (radiation modes) on the stmcture is independent of the amplitudes 

of the other velocity distributions. Therefore, by analogy to the 'radiation modes', 

equation (2.12) may be defined as a set of independent 'power modes'. The force vector 

Q may thus be called the power mode force vector, which i s given in terms of F and the 

12 



eigenvectors of the real part of the mobility matrix, and the eigenvalue called power 

mode mobilities. Equation (2.12) involving a sum of N terms is in contrast to equation 

(2.3) where the power is given by a sum of terms involving the physical forces F . 

Conceptually equation (2.12) is useful. However, it does not provide any practical 

advantages over equation (2.3) since full knowledge of M is required to determine its 

eigenproperties. However, advantages do occur because simple approximations can be 

developed for the transmitted power based on power mode theory. These are developed in 

the next section. 

2.3 POWER TRANSMISSION APPROXIMATION B A S E D ON THE POWER 

MODE APPROACH 

As mentioned in Section 2.1, it is often more appropriate to approximate the main 

properties of the transmitted power rather than attempt to predict precisely the detailed 

response, especially if the properties of the receiver structure are not known exactly. 

Therefore in this section the power mode theory is used to find simple approximations for 

the transmitted power. These give estimates of upper and lower bounds for the transmitted 

power, as well as its mean value. The actual power thus l ies in some range between these 

upper and lower bounds. 

2.3.1 Upper and lower bounds of the transmitted power 

Expressions for the upper and lower bounds of the transmitted power can be derived from 

power mode theory. Combining equations (2.5), (2.11), and (2.12), strict upper and lower 

bounds are given by 

' X | F „ | ' V (2.13) P =-
2 

R _ 
1 r /V 

Z l f . r K (2.14) 
n=I 

It is seen that the bounds on power depend only on the maximum and minimum power 

mode mobilities of the receiver structure ^ and as well as the magnitudes of the force 

sources |f^|, regardless of the distribution and the relative phases of the force sources 

[32]. Therefore it is a good simplification to estimate the transmitted power using upper 

and lower bounds. Since the usefulness of such an approximate approach depends on the 

width of the range formed by the upper and lower limits, equations (2.13) and (2.14) are 
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very suitable for cases where the maximum and minimum power mode mobilities of the 

receiver structures are comparable. It should be noted here the upper- and lower-bounds in 

equations (2.13) and (2.14) refer to variations in force distribution but not ensemble of 

structures. 

Generally the correlation between the individual excitation points of the receiver 

becomes of decreasing importance as the wavelength of the structure decreases. Therefore 

when the wavelength of the receiver structure is very short, it is reasonable to neglect the 

correlations between the individual excitations, at least when frequency averaged, so that 

each individual excitation is taken to be independent. If it is also assumed that the local 

driving point properties of the receiver have the same order of magnitude, the eigenvalues 

typically are then of the same order of magnitude. A s a result, both ,1, and will 

often lie within, say, one standard deviation of the mean X , so that they can be simply 

approximated, using equations (2.8) and (2.9), as 

(2.15) 

(2.16) 

As a result, equations (2.13) and (2.14) can be rewritten as 

1 / AT 
f = -

up 2 
E K I + (2.17) 

^ = -2 
V 

So far the upper and lower bounds for the power transmitted to a short-wavelength 

structure can be approximated using equations (2.17) and (2.18). In such cases, many or 

all power modes contribute significantly to the transmitted power rather than just a few of 

them. In particular, when the receiver structure is very flexible (e.g. such that k l » 1 

where k is the wavenumber and I the distance between the excitation points), so that each 

forcing point can be taken as uncorrelated with the others, the power mode mobilities and 

the power mode forces can be simply approximated by 

(2.19) 

a = F, (2.20) 

Equation (2.12) then becomes 
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M=] n=I ^ J 
C2.21) 

The above expression indicates that each power mode contributes significantly to the total 

power transmission at high frequencies. 

In other cases, however, e.g. if the wavelength is very long, individual excitations may 

be strongly correlated. For example, when the response is dominated by a single resonant 

mode, then at the resonance frequency, the driving point mobility tends to be quite close to 

the transfer mobility [29], i.e., 

Here it is still assumed that the local driving point properties of the receiver have the same 

orders of magnitude. As a result, the maximum power-mode mobility \ can be much 

larger than the minimum one , which implies that only a few of the lower power modes 

give significant power transmission. Then the power range fo rmed by equations (2.13) and 

(2.14) will be too broad to be of practical value, due to a very small lower bound. Under 

such circumstances, it is more useful to replace the lower b o u n d by the approximation for 

the power associated with only the first power mode which plays a dominant role in the 

total power transmission, while the upper bound is still approximated using equation 

(2.17). 

Equation (2.22) implies that thy; eigenvector Yi has the approximate form 

\ ] / j = : — 1 ••• l ] (2.23) 

When \ is still approximated using equation (2.15), the p o w e r transmitted by the first 

power mode can then be approximated as 

' 2Ar 
(A-K7) (2.24) 

Thus the power transmitted to a long-wavelength receiver can be estimated using the 

range formed by equations (2.17) and (2.24). 

Especially in very low frequency range such that tZ « 1 , all forces are in effect applied 

at same point. It then follows that 

N 

n=] 
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(2.26) 

Equation (2.12) then becomes 

/%=! 

2 \ 

Z M . . A (2.27) 

Equation (2.27) shows that in the low-frequency range the power can be regarded as being 

transmitted by the first-order power mode only, i.e., one power mode dominates. This is 

similar to the monopole in the multipole approach. 

2.3.2 Mean value of the transmitted power 

In the above subsection, upper and lower bounds of the transmitted power were found 

which define a fairly narrow range within which the transmitted power lies. It is also 

useful to estimate the mean value of the power over a range of frequencies. An estimate of 

the mean value of the transmitted power can be found by taking the average over all the 

power modes. 

The mean square power mode force can be found from equation (2.11) to be 

(2.28) 

The mean power modal mobility is given by equation (2.6). The mean value of the 

transmitted power, when averaged over all the power modes, can thus be approximated in 

terms of the mean square force and the mean point mobility as 

(2.29) 

Equation (2.29) is in a very simple form, being equivalent to approximating the mean of a 

product by the product of their means, and gives an estimate of the frequency average of 

the transmitted power. This result was also given in [36]. 

Thus the power transmitted to a receiver structure by an array of point forces can be 

described in terms of upper and lower bounds and a mean value. 

2.4 COMBINED FORCE AND MOMENT EXCITATIONS 

The translational motion normal to the surface of the seating is usually the dominant 

mechanism of power transmission from a machine source to a flexible supporting structure 
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[36]. However, it is known that in many cases of practical interest, vibration sources apply 

moments as well as forces. The power transmitted by moment excitations is generally 

greater at higher frequencies [37-38]. Therefore it is necessary to consider also moment 

excitations. 

Suppose the source array F is formed partly by a set of forces and partly by a set of 

moments. The real part of the mobility matrix M of the receiver structure is now 

composed of force and moment point mobilities and transfer mobilities, and the 

transmitted power can be written in the same form as equation (2.3). However, since both 

F and M consist of elements with different units, the approximations developed in 

Section 2.3 are no longer applicable. In this section, a scaling technique to deal with this 

problem is described [39-40]. The main principle of this scaling technique is to scale the 

mobility matrix M by a specified diagonal matrix to give a new "dimensionless" matrix, 

and then to weight the physical force vector using the same diagonal matrix to give a new 

set of forces with the same units. As a result, the power mode approach described in the 

previous sections can then be applied. 

Let M be scaled by such a real diagonal matrix defined as 

(2.30) 

where ^nd are the n th diagonal elements of and M , respectively, so that 

M c = D c M D c (2.31) 

Let F be weighted by so as to give a new set of forces defined by 

F c = D - ' F (2.32) 

Combining equations (2.31) and (2.32) with (2.3) gives 

f = ^ F / M , F , (2.33) 

Since the scaled mobility matrix is real, symmetric, non-negative and dimensionless 

and Fg is a vector of the scaled forces with the same units, equation (2.33) then meets all 

the requirements of the power mode theory. 

Mg is decomposed into the form 

Mc = (2.34) 
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where is the real and non-negative diagonal matrix of the eigenvalues of , and 

is the orthogonal matrix composed of the corresponding eigenvectors (in columns). 

Let the scaled force vector be weighted by . A new set of scaled power mode 

forces can then be written as 

Q c = Y c % = T / D - ^ F (2.35) 

Consequently, equation (2.33) can be written in terms of the power modes as 

1 ^ w . „ 1 N 

/ ' = - Q / A ^ Q , = - 2 | e c , . | 4 . (2.36) 
Z Z 

where is the »th diagonal element of . 

As a result, approximate expressions for the upper and lower bounds as well as the 

mean value are then developed by analogy with equations (2.17), (2.18) (or (2.24)) and 

(2.29), with F being replaced by F^ and M by . 

The above scaling technique in effect scales the individual excitations by a factor equal 

to the square root of the real part of the input mobility so that the elements of F^ have the 

same units. An alternative scaling procedure can be used, with the scaling matrix 

being given by 

where is the characteristic point mobility of the receiver structure, i.e., the point 

mobility if the receiver structure is extended to infinity. Comparing equation (2.30) with 

(2.37), one can expect that the former give better estimates of the transmitted power while 

the latter allows for uncertainties in the properties of the receiver structure, e.g. the 

boundary conditions. 

Since the scaling matrices described in equations (2.30) and (2.37) are all frequency-

dependent, different scaling matrices may have different influences on the performance of 

the power approximations. 

2.4.1 Other cases 

Similar results can be obtained for velocity/rotational velocity excitations in the same 

manner as that described above for force/moment sources. In this case, however, the 
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mobility matrix of the receiver structure is replaced by the corresponding impedance 

matrix, with the roles of the force and velocity vectors being reversed. 

In some cases there may also be force excitations which act in different directions on 

the receiver (e.g. in-plane and out-of-plane forces), so that the corresponding input 

mobilities may have different orders of magnitude - in-plane motion is usually much 

stiffer than out-of-plane motion, for example. If such excitations input significant power, 

then this situation can be treated using the same scaling approach described above. 

2.5 NUMERICAL EXAMPLES 

Numerical examples are considered in this section. The system model chosen is a thin 

rectangular plate with four simply supported edges. The material of the plate is chosen to 

be Perspex, whose material properties are given in Table 2.1. The plate is first assumed to 

be excited by point forces, and then by co-located force/moment excitations. Both the 

dimensions of the plate and the excitation points are given in Table 2.2. All the point and 

transfer mobilities of the plate are calculated using modal summation with analytical 

modal shapes and natural frequencies. These are given in Appendix I. A running 

frequency average has been taken over a frequency band of lOHz width, which is about 

three times the mean modal spacing, to illustrate the broader features of the power 

transmission. The exact results are found using equation (2.3), i.e., the classical mobility 

matrix method. 

2.5.1 Plate with force excitations 

First the plate is assumed to be excited by three point forces = 1, = 26̂ ^̂ ^̂  and 

F; at the three given positions, respectively. Since here there are three point 

forces, there are consequently three power modes. 

Using equation (2.4) a receiver structure can be characterised by a set of power mode 

mobilities. Figure 2.1 shows the three power mode mobilities of the plate as a function of 

frequency. The first power mode tends to be much larger than the others at lower 

frequencies, but becomes comparable to the other power mode mobilities as frequency 

increases. This implies that the transmitted power is usually dominated by the first power 

mode at lower frequencies while more power modes give significant contributions at 

higher frequencies. 
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This trend is further illustrated in Figure 2.2, which shows the power transmitted by 

each power mode together with the total power. It can be seen that the power transmitted 

by the first power mode dominates the total power transmission for the low modal overlap 

area (e.g. below 70 Hz where the modal overlap factor is less than unity), but the 

significance of the other two power modes increases as the modal overlap of the receiver 

increases. Therefore it is quite reasonable to estimate the lower power bound using the 

first power mode approximation for a stiff and low modal overlap receiver. It should be 

noted that the power associated with an individual power mode depends on both the power 

mode mobility and the corresponding power mode force, the latter being determined by 

not only the excitation forces themselves, but also the forcing positions, as given in 

equation (2.10). Thus there may be a small power mode mobility and a large power mode 

force, or vice versa. As a result, the lower order power modes do not necessarily transmit 

more power than the higher order ones, as shown in Figure 2.2. 

In Section 2.3, approximations for the upper and lower bounds and the mean of the 

transmitted power were developed. Figure 2.3 shows the power transmitted to the plate 

together with these approximations. It can be seen that t he mean power expression in 

equation (2.29) gives a fairly good approximation to the transmitted power. The upper and 

the lower bounds expressed by equations (2.17) and (2.18) are very useful approximations 

for the transmitted power, provided the modal overlap factor of the receiver structure is 

high enough (e.g. more than 3 (above 200 Hz) in Figure 2.3). Below this frequency the 

lower bound is more accurately approximated by the power transmitted by the first power 

mode, given in equation (2.24). 

2.5.2 Simultaneous force/moment excitations 

The power mode approach can be applied to cases where both force and moment 

excitations are involved using the scaling technique described in Section 2.4. This is 

investigated here by assuming the point force sources comprise not only the forces of the 

previous example, but also consist of co-located moment excitations = 0.05Nm, 

^ k2 - 0 .075g ' ^A/m and M = 0.05 jNm . Figure 2.4 shows the power transmitted to the 

plate and the approximations when the scaling matrix of equations (2.30) is used. It is seen 

that the bounds provide a narrow range for the power and the mean value is a good 

approximation. 

Figure 2.5 shows the power transmitted to the plate and the approximations when the 

scaling matrix of equation (2.37) is used. It is seen that the expressions plotted in Figure 
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2.4 give better estimates of the transmitted power than Figure 2.5, as we would expect. 

This is because the scaling approach for Figure 2.4 needs exact information of the point 

mobilities of the receiver, but the scaling approach for Figure 2.5 only needs the 

characteristic point mobility terms of the receiver. However, the latter scaling 

approach can be more useful when the receiver structures have some uncertainties, e.g. 

boundary condition uncertainties. 

2.6 SUMMARY 

In this chapter a power mode method for estimating the power transmitted to a flexible 

receiver by an array of point force excitations was described. Based on power mode 

theory, the vibrational power transmitted by N discrete point forces was regarded as the 

power transmitted by N independent power modes following eigen-decomposition of the 

real part of the mobility matrix of the receiving structure. Simple expressions were 

developed for approximating the upper and lower bounds and the mean value of the 

transmitted power in terms of these power modes. It also has been shown that these 

approximations can be extended to more general cases, including that where both force 

and moment excitations are applied to the structure and where there are velocity source 

excitations. Finally numerical results were presented for t h e case of a plate excited at a 

number of points. 

It is known that only under ideal, limiting cases, such as are considered here, can the 

source mobilities be neglected. In practice, however, the mobilities of the source may be 

important and thus have to be included. This leads to the application of the power mode 

technique to estimating the power transmission between a stiff source and a flexible 

receiver through discrete couplings. This is given in Chapter 3. 
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Table 2.1 Material properties of the rectangular plate 

Young's modulus Poisson's ratio Loss factor Density 

(GN/m^) (kg/m^) 

4.4 0 3 8 0.05 1152 

Table 2.2 Plate dimensions and the excitation points 

Plate dimensions Length=2m ( x -direction); 

Width=0.9m ( j -direction) 

Thickness=0.005m 

Excitation points (%; ,}'])= (0.37,0.45)m 

(^2' ^2) - (0 89,0.45 

= (1.34,0.45 )/M 
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Figure 2.1 Power mode mobilities of the plate; first order ( ), second order 
( ), and third order ( ). 
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Figure 2.2 Total power transmission and that f rom e a c h power mode; total 

power transmission ( , equation (2.3)); power transmit ted f rom the first 

( ), second ( ) and third ( ) power modes (equation (2.12)). 
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Frequency (Hz) 

Figure 2.3 Exact and approximate power transmissions to the plate subjected to 

point forces; exact value ( , equation (2.3)); approximations for the mean 

( , equation (2.29)), upper bound ( , equation (2.17)), lower 

bound ( , equation (2.18)), and first power m o d e ( , equation 

(2.24)). 
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Figure 2.4 Exact and approximate power transmissions to the plate subjected to 

co-located force/moment excitations (scaled by equation (2.30)): exact value 

( , equation (2.3)); approximations for the mean ( equation (2.29)), 

upper bound ( , equation (2.17)), lower bound ( , equation (2.18)), 

and first power mode ( , equation (2.24)). 
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Frequency (Hz) 

Figure 2.5 Exact and approximate power transmissions t o the plate subjected to 

co-located force/moment excitations (scaled by equation (2.37)): exact value 

( , equation (2.3)); approximations for the mean ( , equation (2.29)), 

upper bound ( , equation (2.17)); lower bound ( , equation (2.18)), 

and first power mode ( , equation (2.24)). 
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Chapter 3 

APPLICATION OF THE POWER MODE APPROACH TO 
ESTIMATING POWER TRANSMISSION BETWEEN A STIFF 

3.1 INTRODUCTION 

In Chapter 2, a power mode approach was developed for estimating the power 

transmission to a flexible receiver from multiple sources, where ideal force and/or moment 

excitations were assumed. However, most realistic sources depart from these ideal 

excitation sources. It is usually necessary to consider a general linear source [11, 41], that 

is the outputs of the source depend on both the properties of the source structure and the 

receiver structure. In this chapter, therefore, the power mode approach is extended to the 

estimation of the power transmitted to a flexible receiver from a stiff source through 

discrete point couplings. The coupling degrees of f reedom (DOFs) may involve both 

translational and rotational motions, and there may be simultaneous force and moment 

excitations. The difference of this chapter from the previous one is that the influences of 

the dynamics of the source structure on the transmitted power are considered. 

In the next section a general expression for the power transmission between a source 

and a receiver through discrete points is described by the FRF-based sub-structuring 

approach. In Section 3.2.1, the coupling DOFs at the interface points are assumed to be of 

the same type, e.g. the translational motion due to force coupling. Approximations are 

made for the upper and lower bounds and the frequency average of the transmitted power, 

which require less information than an exact description. Then in Section 3.2.2 a matrix 

scaling technique is introduced to extend these approximations for more general cases 

where the coupling DOFs of the system may involve different types, e.g. simultaneous 

translational and rotational motions. Finally, numerical examples are presented concerning 

a multi-point coupled beam/plate model with force and moment excitations. 
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3.2 POWER TRANSMISSION BETWEEN A STIFF SOURCE AND A 

inLE2[[BIJEItE(3EIVI%t 

Suppose a source structure is coupled to a receiver structure through # discrete points. 

The power transmitted from the source to the receiver can b e written as 

P = i F , " M , F , (3.1) 

where is the real part of the mobility matrix of the receiver at the interface points 

before coupling and Fj is the interface force vector caused by the interaction between the 

source and the receiver. By using the conventional FRF-based sub-structuring method [18-

19], the interface force vector is given by 

F,=(M,+M.fv„ (3.2) 

Here Mg is the complex mobility matrix of the source at the interface points before 

coupling, and is the free velocity vector of the source substructure at the interface 

points when the source substructure is uncoupled from the receiver, given by 

where F is a vector corresponding to the set of external force excitations, and is the 

mobility matrix composed of the transfer-mobilities (of the source structure) between the 

force excitation points and the interface points. Here free velocity is used to define the 

source strength, which has the advantage of allowing simple comparisons between 

different sources [36]. 

As a result, a general expression for the power transmission within the system can be 

written as 

(Ms+M,)"' M, (M,+M„)" 'V. , (3.3) 

Obviously equation (3.3) will be inconvenient if the number of interface DOFs is very 

large, and/or the required FRF data are not known to sufficient accuracy, due to some 

uncertainty of the receiver properties, for example. Approximations for the upper and 

lower bounds and the frequency average power are thus of interest, especially if these 

require less information than an exact description. In this section, the power mode 

approach is used in two stages: first, the coupling forces are assumed to involve only 
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translational motion at the coupling DOFs, and secondly, there may be both translational 

and rotational coupling DOFs. 

3.2.1 Translational coupling motion only 

In this case it is assumed that the coupling DOFs of the source/receiver system all act in 

the same direction, e.g. normal to the surface of a plate-like receiver. This can be further 

defined to be where all the coupling forces and DOFs are dynamically similar, e.g. all out-

of-plane, bending vibrations of a flexible plate 

^.2.7.7 fo fAe wppgr azW Zower q/'fAe power 

Similar to equation (2.14), a strict lower bound for the transmitted power of equation (3.1) 

can be expressed as 

P, ~ — 
2 

1 r A/ _ \ |2 
1^;.. Z k ' , . . (3.4) 

where is the minimum eigenvalue (power mode mobility) of . From equation 

(3.2), it follows that 

• ,2 

5 ; ( f , , " M i v. , (3.5) 

where 

M„, = ( M „ + M , ) ( M . + M s ) (3.6) 

is given by the combination of mobility matrices of the source and the receiver. (Note that 

Mjjg here does not represent a mobility matrix.) It is seen that is a Hermitian matrix, 

and thus can be decomposed into a diagonal form 

(3.7) 

Since equation (3.5) is a positive semi-definite quadratic form, A^g is a real and non-

negative diagonal matrix, and 0 is a unitary matrix ( 0 $ ' = 0 0 = 1 ) Then a strict 

^ ,2 
lower bound for ^ \ F , iM IS 

n=l 

,, r » 

n=I V n=I 

(3.8) 
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where is the maximum eigenvalue of matrix M^g, and satisfies [42] 

I + (3.9) 
V n̂ m 

Combining equations (3.4), (3.8) and (3.9), a strict lower bound of the transmitted power 

is then given by 

1 

1 _ y _ ;T (3.10) 
|2 

' S./un 

Physically, the minimum power transmission occurs either if the free-velocity 

distribution of the source structure is proportional to the eigenvector corresponding to the 

largest eigenvalue of M^g (equations (3.5) and (3.4)), or if the interface force distribution 

is proportional to the eigenvector corresponding to the smallest eigenvalue of Mg 

(equation (3.1)). 

It is difficult to find an expression for the upper bound of the transmitted power, similar 

to equation (2.13), using the above eigen-decomposition approach. However, a convenient 

approximation to the maximum transmitted power can be estimated by simply assuming 

the mobility matrix Mg in equation (3.3) is zero. As a result, the upper bound of the 

transmitted power can be written as 

(3.11) 

Although it is not a strict maximum, it tends to be a good, somewhat conservative 

approximation which is rarely exceeded in practice. Physically equation (3.11) means that 

the maximum power transmission occurs when the source can almost be treated as a set of 

free velocities. 

A flexible receiver structure usually implies a relatively short wavelength and/or high 

modal overlap. In such cases, as mentioned above, the correlations between the individual 

driving points are often relatively small, at least when frequency averaged, so that the 

local driving point properties of the receiver at different coupling points can be regarded 

as being uncorrelated. Under such circumstances, one can write the approximate relations 

^ 1 = mi" (3 12) 
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(3.13) 

Hence, the upper and lower bounds of the transmitted power can be approximated as 

n=l ^R,im 

y =1 p i 
2 ^ r ^,«i 

V"=' y max 
(3.15) 

It is seen from equations (3.14) and (3.15) that these approximations for the upper and 

lower bounds depend only on the diagonal elements of the mobility matrices of the source 

and receiver. Although these approximations are less conservative than the corresponding 

exact results, they are much easier to predict since the amount of data required is 

substantially reduced. 

From equations (3.14) and (3.15), it is seen that the width of the range of power is 

closely related to the mobility mismatch between the source and the receiver. The lower 

the mobility of the source compared to that of the receiver, or the stiffer the source 

compared to the receiver, the narrower is the range between these limits. If it is assumed 

that the local driving point mobilities of the receiver points are approximately equal, or at 

least of comparable magnitudes, the approximations to both the upper and lower bounds of 

the transmitted power can be quite close to the "exact" value, provided that the mobility 

mismatch between the source and the receiver is big enough. If the receiver structure is 

much more flexible than the source so as to meet the condition 

+ (3 16) 

the approximations to both the upper and lower limits of the power can then be very close 

to the exact value. Under such circumstances, the power can actually be treated as that 

transmitted by a set of free velocities , i.e., 

( 3 - " ) 

Equation (3.16) actually gives the condition under which the flexibility of the source 

structure itself may be neglected, so that the power transmitted to the receiver can be 

regarded as that by a set of ideal velocities, i.e., a set of point-velocities uncorrelated with 

each other. Therefore, provided the mobility-mismatch of the system meets the condition 
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of equation (3.16), the approximations developed in section 2 may be quite useful for 

estimating the power transmitted to a receiver structure which is not flexible enough to 

meet the conditions of equations (3.12) and (3.13). 

J.2.7.2 avemgg poM/gr 

In the above subsection, the upper bound is estimated by assuming that the mobilities of 

the source structure at the interface points are zero, while the approximation for the lower 

bound was made when both the mobility terms of the source and receiver at the interface 

are included. The upper bound given in equation (3.14) tends to be more conservative than 

the lower bound given in equation (3.15), especially when the local driving properties of 

the receiver at each coupling point are similar. This implies that the latter approximation is 

likely to be closer to the exact value than the former. It is also known that the frequency 

average of the real part of the point mobility of a stmcture approximates that of the 

characteristic point mobility, i.e., the point mobility of the equivalent infinite structure 

[11]. Therefore, one can write an approximation to the frequency average of the 

transmitted power as 

1 JL . .2 ^ 

I + + V ^ ( # - l ) ) m ^ |M I) 

(3.18) 

where is the characteristic point mobility of the receiver structure. This relation is 

particularly valid for non-tonal excitation or for tonal excitation if the modal overlap of the 

receiver is large enough, i.e., if the excitation excites resonant response in at least a few 

receiver modes. 

Generally, equation (3.18) is accurate if the source/receiver system has a big enough 

mobility mismatch. Otherwise, equation (3.18) tends to underestimate the true frequency 

average. 

3,2.2 Translational and rotational coupling 

In many cases of practical interest the vibration source m a y apply moments as well as 

forces. The power transmitted to the receiver then arises partly f rom the translational and 

partly from the rotational motions. The former is usually the largest, but the latter can be 

substantial at higher frequencies [37-38]. Therefore, it is important to consider combined 

translational and rotational motions of the coupling DOFs. 
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Under such circumstances, however, , Mg and are composed of elements with 

different units. The approximations made above can no longer be applied. Nevertheless, 

this problem of dimensional incompatibility can be overcome by using a matrix scaling 

technique similar to that of Section 2.4. This is described in the following subsections. 

Similar scaling approaches can be extended for more general cases where the coupling 

DOFs are of different types, e.g. the simultaneous in-plane and out-of-plane vibrations of a 

structure. 

3.2.2.7 Approximafiom fo r/za wppgr o/W /owgr q/" rAg powgr 

Let the mobility matrices Mg and be scaled by a real diagonal matrix whose M th 

diagonal element is defined as 

C L , = t 4 = ; (3.19) 

I 

SO as to give two dimensionless matrices Mg and as 

= DcMgDc (3.20) 

= D c % D c (3.21) 

It is seen from equation (3.20) that 

(3'22) 

Let F, and be weighted by to give a new set of forces and a new set of free 

velocities, whose elements all have the same units, as 

F;^=D;: 'F; (3.23) 

V . J=DiV. , (3.24) 

The power transmission in equation (3.3) can then be re-written as 

f - R e V . f ( M f + M S ) r " M 5 ( M j + M ^ f v n (3.25) 

Consequently the approximations for the upper and lower bounds of the transmitted power 

can be made in analogy to equations (3.14) and (3.15), wi th V^f, Mg and being 

replaced by , Mg and M g . 
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By replacing the terms of by its maximum possible value of unity (given by 

equation (3.22)), the approximations for the upper and lower bounds of the power can be 

further simplified as 

K 

2 
V 1 + ^ 1 + ^ N { N ~ l ) ^max |M c 

S,nn 

(3.26) 

(3.27) 

So far, the bounds of the power transmission for a stiff source/flexible receiver system 

with both translational and rotational motions of coupling DOFs can be estimated by 

equations (3.26) and (3.27). 

.F.2.2.2 ApprozffMaA'oM avgmgg 

A similar scaling approach can be used to approximate the frequency average of the 

transmitted power. Here the scaling matrix is used where 

1 

M 
(3.28) 

and where is the characteristic point mobility of the receiver. Then the 

approximation for the frequency average of the transmitted power can be written in a form 

similar to equation (3.18) as 

2 

2^ 
1 "} .1 

1 + + i j N ( N - 1 ) ) 

(3.29) 

where are a new set of scaled free velocities of the source structure, given by 

(3.30) 

and is the (n ,n) th element of the scaled matrix 

M^- =D:rMgD;r (3.31) 

The approximations of equations (3.26), (3.27) and (3.29) are thus related only to the 

scaled point mobility terms of the source and the receiver. 
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Similar scaling approaches can be extended for more general cases, where the 

transmitted power is associated with more than two different directional and/or rotational 

coupling DOFs. 

3.3 INinwnERICVlLl&X^UVDPLEB 

Numerical examples are presented here to demonstrate the approach developed in Section 

3.2. Since many of the basic features of structures of practical concern can be reduced to 

relatively simple configurations of beams and plates, the numerical model considered here 

is a beam/plate system coupled by four evenly spaced points, as shown in Figure 3.1. The 

beam is chosen to be relatively stiff and with a low modal density compared to that of the 

plate. Both the beam and the plate are simply supported for simplicity. External time 

harmonic force and moment excitations act at a distance ^ from one end of the beam. The 

dimensions of the system and the coupling positions are listed in Table 3.1. The material 

properties of the system are those of Perspex as given in Table 2.1. Three different plate 

thicknesses of 0.010m, 0.005m and 0.002m are used to vary the stiffness of the plate 

receiver, which give three wavenumber ratios of the beam and the plate =2.5, 3.5 

and 5.6. (k̂ ^ = and k̂  = , where ) is the mass per unit area 

(length) of the plate (beam), and ) is the bending stiffness of the plate (beam)). 

For convenience, here, the frequency-independent wavenumber ratio k^jk^^ is used to 

indicate the dynamic mismatch of the plate and the beam, instead of the frequency-

dependent mobility ratio of the system. Such a representation is valid provided that the 

beam and the plate satisfy the condition » 2/Mp , so that the wavelengths of the 

beam, before and after it is coupled with the plate, are comparable. (Please refer to 

equations A4.4-A4.8 in Appendix IV.) If it is not the case, e.g., the width of the beam is 

very small, k^ ĵkf̂  should not be used to represent the dynamic mismatch between the 

plate and the beam. 

Approximations to the transmitted power from the beam to the plate are made under the 

following two circumstances; first, only translational coupling DOFs are involved; 

secondly, both translational and rotational coupling DOFs are considered. These relevant 

equations have been given in Sections 3.2.1 and 3.2.2, respectively. The calculations for 

the input- and transfer mobilities of a simply supported plate, a simply supported beam 

and an infinite plate can be found in Appendices I-III. The approximate results are 
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compared to exact results found using the conventional FRF-based sub-structuring 

technique, which is given in Appendix V. A running frequency average, i.e., smoothing 

technique has been used for all figures given in this section to determine the broad features 

of the transmitted power. The plate modal densities are 0.15, 0.30 and 0.74 mode/Hz when 

the plate thickness is 0.010m, 0.005m and 0.002m, respectively. The bandwidth used in 

the smoothing is 10 Hz so that each band consists of a few (plate) vibration modes. 

3.3.1 Transmitted power with translational coupling D O F s only 

When the system is assumed have only translational coupling DOFs, the beam and the 

plate generally rotate through different angles, and the coupling moments are zero. Under 

such circumstances, the transmitted power only has contributions from the translational 

coupling DOFs, so that the estimates for the power transmitted to the plate can be found 

using the expressions given in section 3.2.1. Figures 3.2-3.4 compare the exact and the 

approximate results for the transmitted power, when a t ime harmonic force of magnitude 1 

is applied to the beam, where =2.5, 3.5 and 5.6, respectively. It is seen clearly that 

the accuracy of the approximations increases as the mobility mismatch between the beam 

and the plate increases, as expected. When the plate is much more flexible than the beam, 

the transmitted power can be simply approximated by that transmitted by a set of free 

velocities, as shown in Figure 3.4. 

The above upper and lower bound calculations need the point-mobilities of the plate at 

all the interface DOFs to be known exactly. In principle, this requires detailed knowledge 

of the modal properties of the plate. In many cases, however, this is impractical, or it may 

even be impossible to find these values accurately. In such cases, the plate receiver may be 

approximated by regarding it as extending uniformly to infinity in a manner analogous to 

that described in section 3.3.2. The upper bound can then be approximated by replacing 

equation (3.14) by j , while the lower bound expression of equation 

(3.15) becomes equation (3.18). Figure 3.5 shows such approximations for the case where 

^ p I K =2.5. By comparison with Figure 3.2, it can be seen that this further approximation 

gives reasonable results even for this case of modest wavenumber mismatch. When the 

plate receiver is relatively very flexible compared to the beam, however, one needs use 

only equation (3.18) to get good estimates for the transmitted power, as shown in Figures 

3.3-3.4. 

36 



3.3.2 Transmitted power with both translational and rotational coupling DOFs 

When the system has both translational and rotational coupling DOFs, the translation and 

the rotation dw/dy of the beam and the plate at the interface DOFs are equal. (There is 

assumed to be no coupling between the torsion in the beam and the rotation 9w/9x in the 

plate.) Under such a circumstance, the transmitted power has contributions from both 

translational and rotational coupling DOFs, and thus can be approximated by the 

expressions described in section 3.2.2.2. Figures 3.6-3.8 compare the exact transmitted 

power to the approximations, when a time harmonic force and moment of magnitudes 1 

and 0.5, respectively, are applied to the beam at the point ^ = 0.73 , where kjk,^ =2.5, 3.5 

and 5.6, respectively. Once again the approximations become closer to the exact values as 

the wavenumber ratio increases. 

The plate receiver may also be simply approximated as being an infinite structure when 

it is difficult to determine the exact values of the relevant point mobilities. Consequently, 

the upper bound of the transmitted power can be estimated by replacing Vj,, in equation 

(3.26) by y j - , while the lower bound is now given by equation (3.27). When the plate 

receiver is relatively very flexible compared to the beam, as shown in Figure 3.8, only 

equation (3.29) is needed to approximate the transmitted power accurately. If that is not 

the case, however, equation (3.26) (where ) can be used together with equation 

(3.27) to roughly approximate the broad features of the transmitted power. This is shown 

in Figure 3.9 for the case. 

3.4 SUMMARY 

In this chapter a power mode approach to estimating the power transmitted to a receiver 

structure from multiple sources was extended to the case of power transmission between a 

stiff source and a flexible receiver through discrete couplings. 

In the first instance, the coupling DOFs at the interface points were assumed to be of a 

dynamically similar type, e.g., the translational motion due to force coupling. Then more 

general source/receiver systems were considered where the coupling DOFs could be of 

different types, e.g. the simultaneous translational and rotational motions. A matrix scaling 

technique was introduced. Approximations were developed for the upper and lower 

bounds and the frequency average of the transmitted power. These approximations were 
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found depending only on the point mobilities of the source and receiver, and thus the 

amount of data required can be reduced substantially compared to an exact description. 

This power mode approach is particularly useful when the dynamic mismatch between 

the source and the receiver is big enough. 
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Table 3.1 System dimensions and coupling positions 

Dimensions Coupling positions Excitation position 

(m) (m) (m) 

Beam Length=2; 4 = 0.40, — 0.80 ^ = 0.73 

Width=0.059; 
X3 = 1.20 , X4 = 1.60 

Height=0.068. 

Plate Length=2; ( 4 ,);,) = (0.40,0.45) 

Width=0.9; 
,y2) = (0.80,0.45) 

Thickness=0.010, 0.005, 

0.002. 
( 4 

(^4: 

= (1.20,0.45) 

, ) / , ) = (1.60,0.45) 
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1 1 1 1 

Figure 3.1 Multipoint-coupled beam/plate system 

0 100 200 300 400 500 600 700 800 900 1000 
Frequency (Hz) 

Figure 3.2 Power transmitted to the plate when on ly translational coupling 

DOFs are assumed =2.5): exact ( , equation (3.3)); 

approximations to the upper bound ( , equation (3.14)), lower bound ( 

, equation (3.15)) and frequency average ( , equation (3.18)). 
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m 10 
o 
a. 

100 200 300 400 500 600 
Frequency (Hz) 

700 800 900 1000 

Figure 3.3 Power transmitted to the plate when on ly translational coupling 

DOFs are assumed ( k ^ / k ^ = 3 . 5 ) : exact ( , equation (3.3)), 

approximations to the upper bound ( , equation (3.14)), lower bound ( 

, equation (3.15)) and frequency average ( , equation (3.18)). 
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400 500 600 
Frequency (Hz) 

900 1000 

Figure 3.4 Power transmitted to the plate when o n l y translational coupling 

DOFs are assumed =5.6): exact ( , equation (3.3)), 

approximations to the upper bound ( , equation (3.14)), lower bound ( 

equation (3.15)) and frequency average ( equation (3.18)). 
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100 200 300 400 500 600 
Frequency (Hz) 

700 800 900 1000 

Figure 3.5 Power transmitted to the plate when only translational coupling 

DOFs are assumed and the plate is approximated as being infinite 

=2.5) : exact ( , equation (3.3)), approximations to the upper 

bound ( , equation (3.14)) and lower bound ( , equation (3.15)). 
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ffl 10 

100 200 300 400 500 600 
Frequency (Hz) 

700 800 900 1000 

Figure 3.6 Power transmitted to the plate when both translational and 

rotational coupling DOFs are considered {kjk^=2.5)\ exact ( 

equation (3.3)), approximations to the upper bound ( , equation (3.26)), 

lower bound ( , equation (3.27)) and frequency average ( , 

equation (3.29)). 
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Figure 3.7 Power transmitted to the plate when both translational and 

rotational coupling DOFs are considered {k^Jk,^=3.5): exact ( , 

equation (3.3)); approximations to the upper bound ( , equation (3.26)), 

lower bound ( , equation (3.27)) and f requency average ( , 

equation (3.29)). 
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100 200 300 400 500 600 700 800 900 1000 
Frequency (Hz) 

Figure 3.8 Power transmitted to the plate w h e n both translational and 

rotational coupling DOFs are considered =5 .6 ) ; exact ( 

equation (3.3)); approximations to the upper bound ( , equation (3.26)), 

lower bound ( , equation (3.27)) and f requency average ( , 

equation (3.29)). 
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Frequency (Hz) 

700 800 900 1000 

Figure 3.9 Power transmitted to the plate w h e n both translational and 

rotational coupling DOFs are considered and the plate is approximated as 

being infinite =2.5): exact ( .equation (3.3)), approximations 

to the upper bound ( , equation (3.26)) and lower bound ( , 

equation (3.27)). 
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Partn 

STRAIGHT LINE COUPLINGS: SPECIAL CASES 

Many practical engineering structures are built up from beams and plates with straight-line 

couplings. One such structure is the machinery foundation of a ship, which is constructed 

from a collection of large stiff beams and flexible plates. Usually heavy vibration sources 

are supported by the stiff beams. Therefore, as an important part for the continuous 

coupling studies in this thesis, vibration problems of beam-stiffened plates are particularly 

of interest. Being broadly representative of the machinery foundation, the system model 

considered is composed of a directly excited stiff beam and an attached large flexible 

plate. 

First of all, long-wavelength waves can be generated in the beam by applying external 

sources. As the long-wavelength waves propagate along the beam, short-wavelength 

waves can then be generated in the attached flexible plate and hence transmit some of the 

energy from the beam to the plate [26-27]. When the difference between the wavelengths 

of the beam and the plate is very large, (which is very often for many relevant practical 

cases), the vibration around the structure is largely controlled by the long-wavelength stiff 

beam, but with some modifications or damping effects from the attached short-wavelength 

flexible plate. Under such circumstances, the frequency response functions (FRFs) of the 

source beam and the power transmitted to the plate are most important for a better 

understanding of the whole vibration properties of the coupled system. 

This part of the thesis is concerned with three special cases of a plate-stiffened beam 

system: (1) an infinite beam attached to an infinite plate, (2) a finite beam attached to an 

infinite plate and (3) a finite beam attached to a finite plate where the beam and the plate 

have the same mode shapes along the coupling. Certain analytical/approximate methods 

are developed to predict simply and accurately the frequency response of the stiff beam 

and the power transmitted to the plate. Meanwhile, the interacting effects between the 

beam and the plate are investigated, being the effective mass and damping added to beam 

arising from the presence of the plate. 

Although only special cases of beam/plate coupling systems are involved in this part of 

study, it provides new methodologies, both analytical and approximate, on which the 
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vibration of a general stiff beam/flexible plate system can b e predicted in a much simpler 

way. This will finally lead to Part m for predicting the vibration of a stiff source/flexible 

receiver system with arbitrary continuous couplings. 
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Chapter 4 

VIBRATION OF AN INFINITE BEAM ATTACHED TO AN 

INFINITE PLATE 

4.1 INTRODUCTION 

In this chapter, a foundation consisting of an infinite beam attached to an infinite plate is 

studied, as shown in Figure 4.1. It can be viewed as the simplest form of a beam-stiffened 

plate system due to the infinite extent of both the beam and the plate substructures. In this 

case, conventional Fourier Transform (FT) and wave analysis methods can be used to give 

analytical solutions for the dynamic response of the coupled system. These methods are 

described separately in subsections 4.2.1 and 4.2.2. Based on these analytical solutions, 

the dynamic interactions between the beam and the plate are furthermore investigated. It 

allows the loading effects of the plate on the beam to be equivalently simulated as adding 

effective mass and damping. Numerical examples are presented in section 4.5. 

This chapter provides important theoretical background for determining the vibration 

response of a finite beam attached to an infinite plate, which will be considered in the next 

chapter. 

4.2 VIBRATION ANALYSIS OF AN INFINITE BEAM/PLATE SYSTEM 

4.2.1 Fourier Transform (FT) method 

Let the beam component in Figure 4.1 be excited directly by a harmonic external point 

force FQ with frequency co acting at x = 0 , and the beam drive the plate with a force per 

unit length / (jc) along the line y = 0 . The force loadings on the beam and the plate may 

be shown as in Figures 4.2 and 4.3, respectively. The equations of motion of the beam and 

the plate then can be written as 
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where and are, respectively, the complex bending stiffness of the beam and of the 

plate, and and are the mass per unit length of the beam and mass per unit area of 

the plate, and V* is given by 

In [43], the one-dimensional Fourier Transforms are defined by 

(4.4) 

= (4.5) 

The two-dimensional Fourier Transforms are defined by 

G ( ) 8 , y ) - j j g (^' cbcdy (4.6) 

g = A T T (4.7) 
4 ^ -L jL 

Applying one-dimensional and two-dimensional Fourier Transforms, respectively, to both 

sides of equation (4.1) and (4.2), it gives 

D, ( t ; +1;y W, (k,.K)-myw, { k , , ) = F ( t . ) (4.9) 

From a physical view, these are beam and plate equations in the wavenumber domain. By 

the definitions given in equations (4.4)-(4.7), a positive or k̂ , actually represent the 

waves travelling in negative directions. From equation (4.9), it follows that 

.or 

Then the inverse Fourier transform of the plate, by equation (4.7), is given by 

(4.10) 

An: 

Equation (4.11) yields 
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% (^ .0 ) k • K y"--dKdK 

The integral over k̂ . can then be performed to give 

(4.12) 

vAK)=^]w„(k„k,)dk, (4 13) 

Substituting equation (4.10) into (4.13), the displacement response of the plate at y = 0 in 

the wave-number domain can finally be expressed as 

I -6%., 

From the above equation, the line receptance of the plate can then be written as 

1 " 1 

(4 14) 

-d t . 0115) 
O) 

Equation (4.15) finally yields 

0L16) 

where jD^/xs, the wavenumber of the plate. Since in this case k = k^, 

combining equations (4.8), (4.14) and (4.16) the dynamic displacement of the beam can be 

derived in the wavenumber domain as 

+ f (&) 
(417) 

where is the line dynamic stiffness of the plate, i.e., the inverse of equation (4.16) 

as 

K 04 18) 

The general expression for the power transmission to the plate is given by 

f =—Rej (4.19) 

Equation (4.19) is equivalent, by Ref. [7], to 
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f = - R e j — j f * 

I , 1 (4 20) 

So far the power transmission has also been expressed in the wavenumber domain. 

It is seen from equation (4.18) that when the small damping of ± e plate is neglected 

Im(A^) = 0, 1̂ 1 (4.21) 

Therefore equation (4.20) can be re-expressed as 

n ^ T 
P ~ — Im 

4;r -k„ 

(4.22) 

Physically the above expression indicates that only the wave terms with |^ |<|^, , | can 

radiate power to the plate, and thus only the wave terms with wavenumber less than 

should be taken into account to estimate the power transmission from the beam to the 

plate. This provides a good simplification to predict the power transmission within the 

system. 

4.2.2 Wave analysis method 

Similarly, an analytical solution for the dynamic response of such a coupled beam/plate 

system can also be obtained by wave analysis method [26-27]. 

For uncoupled infinite beam, its displacements along the x-direction is expressed 

(%) = (4.23) 

After coupling, the equation of motion of the beam, being driven by / ( x ) , becomes 

The equation of motion of the plate is 

The boundary conditions at the beam/plate joint are 
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w'b(%) = wp(%,0) 0L26) 

e.. 
9w. 

0 

y=0 

2 , = 2 , 
y ( % ) 

ay ' 
- + (2 — v)-

9*2 

0L27) 

(4.28) 

The displacements of the plate after coupling can be written as 

+ Ce"*'- , y ^ 0 

+ Cg*-)' , } < 0 

(4.29) 

(4.30) 

where is the wavenumber of the beam after coupling. Combining equations (4.26), 

(4.29) and (4.30), gives 

A = g + C (4.31) 

Combining equations (4.27), (4.29) and (4.30), gives 

;A:5 + A:̂ C = 0 (4.32) 

From equations (4.25), (4.29) and (4.30), this yields 

- - \ / 

(4.33) 

(4.34) 

where the first expression represents the trace-matching of the travelling waves at the 

joint. Combining equations (4.29) to (4.34), gives 

The equation of motion of the beam after coupling becomes 

(:() = - / (^) 

where (%) = . 

Combining equations (4.35) and (4.36), it follows that 

(4.35) 

(4.36) 

(4.37) 

54 



The above equation is the general dispersion relation for an infinite beam coupled to an 

infinite plate. And also the line impedance of the plate can then be expressed as 

Substituting equations (4.33) and (4.34) into (4.38), gives 

(4.38) 

2m CO 
1 + + ,/. 1 (4.39) 

Multiplying to both sides of equation (4.39), it is seen then that is formally 

identical to i ^ ( ^ ) which is given in equation (4.18) derived from the Fourier Transform 

approach. 

4.3 VIBRATION APPROXIMATION BASED ON A LOCALLY REACTING 

PLATE MODEL 

The difference between the wavelengths of the long wave stiff beams and the short wave 

flexible plates is very often very large so that is quite small. When 1, 

equation (4.39) can be approximated by 

(4.40) 

Equation (4.40) shows that provided the plate wavenumber is much larger than the 

coupled beam wavenumber, the line impedance of the plate is independent of the beam 

properties, and also the plate can be regarded as locally reacting [26-27]. In Ref. [27] a 

locally reacting plate model is considered to be valid for cases of > 2 . 

Having determined the condition under which the plate can be considered locally 

reacting, it is appropriate to consider the dispersion relation for a beam coupled to a 

general locally reacting receiver plate. In this case, the general dispersion relation is given 

by [8] 

(4.41) 

Equation (4.41) shows that in effect the presence of the plate loads the dynamic response 

of the beam. As a result, the dynamic response and the power transmission of the coupled 

beam/plate system can then be approximated simply. 
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When subjected to point force excitation (%), the displacement response at point 

X, before coupling with the plate, is given by [11] 

(x) = — ) , X > 0 (4.42) 

^ f ^), % < 0 (4.43) 

where is the free wavenumber of the beam. After coupling the 

wavenumber of the beam becomes 

(4.44, 

In Appendix IV, the approximate relation between and , when the beam is attached 

to a locally reacting plate, is given by 

(4.45) 
4 V 

The coupled response of the beam can then be approximated as 

& 
w. (x) = ^ ) , z > 0 (4.46) 

Hence the transmitted power from the beam to the plate can b e approximated by 

f = (4.48) 

4.4 THE INTERACTIONS BETWEEN THE BEAM A N D THE PLATE 

The dynamic interactions between the beam and the plate can be quantified based on the 

dynamic analysis of the beam/plate system in Section 4.2.1. These are given below. 

Equation (4.17) yields 

w (h'X- fo (449) 
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The above equation can then be re-written as 

D, [ l + ; ( % + % ) ] A:" 

where 

R e ( f ) 
fM* = ^ — (4.51) 

" - W 

Equation (4.50) implies that when the beam vibrates with a wave propagation of 

wavenumber k , the presence of the plate is equivalent to adding a mass (density) and 

a loss factor % to this wave propagation, as given in equations (4.51) and (4.52). 

Therefore, the interacting effects between the beam and the plate can be viewed as adding 

an effective mass and an effective damping to each wave propagation of the beam. The 

energy 'dissipated' by represents the energy transmitted from the beam to the plate. 

When 1̂ 1 < k and also the plate has a small damping 77 , equation (4.18) gives 

R e ( ^ ) = -2D^ (A:; (4.53) 

Im (JiT) = 2D„ (A:; + A:' (4.54) 

Then the effective mass and effective loss factor can be respectively expressed as 

6)' 
(4.55) 

2D^ 

d / 

From equations (4.55) and (4.56), it is seen that the effective loss factor added by 

loading the plate to the beam depends on both the properties of the beam and of the plate 

but regardless of the internal damping of the plate. However, the mass added to the beam 

by the plate tends to depend on the plate properties only. Especially when |^| « k^ ,̂ these 

expressions reduce to 
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'K'"' 

J 

p p p (4 57) 

2m „ m,A„ 
,?% ==—^==__Jl_f- (zkfiS) 

From equation (4.57) one may reasonably suppose that when a set of waves travels along 

the beam, the waves with fast wave velocity (A: is very small) can transmit most of their 

energy to the plate. Equation (4.58) shows that the mass added to the beam is almost 

equivalent to the plate mass in a strip of width equal to one third of the plate wavelength. 

When the plate receiver is much more flexible than the source beam (e.g. behaves in a 

'Fuzzy' manner to the beam), it is seen then the induced effective loss factor of the beam 

by coupling the plate depends only on the wavenumber of the plate and the mass ratio 

between the beam and the plate, and is independent of the internal damping of the plate. 

This is in good agreement with the fuzzy structure theory [5-6]. 

It should be noted, however, that equations (4.53) and (4.54) are only valid when the 

plate damping is relatively very small. Otherwise the contributions of 7/ to Re (AT) 

and Im(.K') must be considered in equations (4.53) and (4.54). Under such circumstances, 

the plate internal damping may have a quite obvious influence on both the effective 

damping and effective mass, especially when 77 is very big. Therefore fuzzy structure 

theory tends to be more valid when the fuzzy attachment has a relatively small damping. 

When |A:| > , however, equation (4.18) yields 

Im(A') = 0 (4.59) 

Ke(K)= 2 D , - k ; kl ) (4.60) 

Combining equations (4.51) and (4.52), gives 

% = 0 (4.61) 

— 2 (4.62) 

It is seen that no effective damping but effective (negative) mass is added to the beam by 

the plate when |A:| > ^ . Physically it means that waves travelling along the beam with 

wavenumber greater than the plate wavenumber cannot radiate power to the plate. The 
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influence of the plate on the beam vibration, therefore, can be taken as mainly adding an 

effective mass. The negative value of equation (4.62) means that the beam mass density 

has in effect been reduced by the presence the plate. When | ) t : | » , this reduced mass 

density may be estimated as 

(4.63) 

Alternatively, from equations (4.49), (4.59) and (4.60), the dynamic interaction 

between the beam and plate in the case of |^| > A can be more reasonably taken as the 

plate loading effective stiffness to the beam. The effective stiffness is given by 

D, = ^ ^ (4.64) 

When |A: |» , equation (4.64) simply gives 

D, = (4.65) 
k K 

Therefore, it is seen that when |^| < ^ the plate loads the beam with effective mass and 

damping, while when |^| > A: the plate loads the beam with effective stiffness. 

4.5 NUMERICAL EXAMPLES 

In Section 4.2, an analytical solution of the power transmission has been given in the 

wavenumber domain as equation (4.22). Moreover in Section 4.3 it has shown that if the 

plate receiver is so flexible that » 1, the plate may then be reasonably regarded 

as locally reacting, as given in equation (4.40). Consequently, the power trzmsmission to 

the plate from the source beam can be approximated simply by equation (4.48). In this 

section, numerical models of an infinite beam-stiffened plate are set up to investigate how 

the wavenumber ratio affects the accuracy of the approximation based on the 

locally reacting theory. An external harmonic point force of amplitude 1 is introduced 

directly on the beam at the point x = 0 . All the relevant parameters of the numerical 

models are listed in Tables 4.1 and 4.2. Three different wavenumber ratios are investigated 
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by varying the thickness of the plate. These are = 1.8, 2.5, and 3.5, corresponding to 

the plate thickness 0.020m, 0.010m and 0.005m, respectively. 

Figures 4.4-4.6 compare the point mobilities at the driving point of the beam after 

coupling with the plate, predicted both by the analytical F T approach (solid line) and by 

the locally reacting method (dotted line), corresponding to 2.5 and 3.5, 

respectively. It is seen that the locally reacting method gives very good approximations for 

the dynamic response of the coupled beam, even when The bigger the 

wavenumber ratio is, the more accurate the locally reacting prediction is. 

Figures 4.7-4.9 compare the power transmission results f rom the analytical prediction 

of equation (4.22) and the approximations of equation (4.48). It can also be seen that the 

locally reacting approximation agrees well with the analytical result, provided the plate 

wavenumber is big enough, say, at least twice that of the beam. 

Figures 4.4-4.6 also give the modulus of the input mobility of the beam when it is 

uncoupled from the plate. It is seen that the point mobility of the beam after coupling 

decreases in a manner which can be viewed as the beam being loaded with effective mass 

as well as damping by the presence of the plate. Actually, the dynamic response of the 

coupled beam tends to be less affected as the plate flexibility increases. This implies the 

interacting effects between the beam and the plate decrease when the plate receiver is 

more flexible. 

4.6 SUMMARY 

In this chapter, an infinite beam-stiffened plate model was considered (i.e., an infinite 

beam attached to an infinite plate). Both Fourier Transform (FT) and wave analysis 

methods were used to give an analytical solution for the dynamic response of the coupled 

system. It has been shown that only the wave terms (propagating along the beam) with 

kl < A: should be taken into account for predicting the power transmission to the plate. 

When the wavenumber ratio between the beam and the plate is big enough, e.g. 

the locally reacting plate model can be used to approximate simply and 

accurately both the dynamic response of the beam and the power transmission to the plate. 

Moreover, it has been shown that when the plate adds effective mass and damping 

to the beam, while when k^ > A: the plate adds effective stiffness to the beam. The energy 

dissipated by the effective damping represents the energy transmitted from the beam to the 
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plate. When the plate receiver is much more flexible than the source beam (e.g. behaves in 

a fuzzy manner to the beam), the induced effective loss factor depends only on the 

wavenumber of the plate and the mass ratio between the beam and the plate, regardless of 

the internal damping of the plate. This is in good agreement with the fuzzy structure 

theory [5-6]. The effective mass is almost equivalent to the plate mass in a strip of width 

equal to one third of the plate wavelength in this case. Since the mass distribution of the 

plate m is usually relatively very small, the effective mass added is very small 

(depending on (O) consequently. Therefore, the main effect of loading a fuzzy-like plate to 

a stiff beam can be viewed as adding effective damping to the beam vibrations. 
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Table 4.1 Material properties for the beam/plate system 

Young's modulus 

(GN/m^) 

Poisson's ratio Loss factor Density 

(kg/m^) 

4.4 0 3 8 0.05 1152 

Table 4.2 System dimensions and coupling positions 

Structure Beam Plate 

Dimensions 

(m) 

Width=0.059m; Thicknes s=0.020m/0.01 Om 

Height=0.068m /0.005m 
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Figure 4.1 An infinite beam-stiffened plate model. 
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Figure 4.2 The infinite beam and its force loadings. 

Figure 4.3 The infinite plate and its force loadings. 
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Figure 4.4 Point mobility at excitation point of the beam when the plate 
thickness is 0.020m; Fourier Transform analytical result, 
reacting approximate result, ; uncoupled result, _ 
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Figure 4.5 Point mobility at excitation point of the beam when the plate 
thickness is 0.010m: Fourier Transform analytical result, ; locally 
reacting approximate result, ; uncoupled result, . 
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Figure 4.6 Point mobility at excitation point of the beam when the plate 
thickness is 0.005m; Fourier Transform analytical result, ; locally 
reacting approximate result, ; uncoupled result, 
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Figure 4.7 Power transmission to the plate when the plate thickness is 0 .020m: 
Fourier Transform analytical result, ; locally reacting result, 
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Figure 4.8 Power transmission to the plate when the plate thickness is 0.010m: 
Fourier Transform analytical result, ; locally reacting result, . 
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Figure 4.9 Power transmission to the plate when the pla te thickness is 0.005m: 
Fourier Transform analytical result, ; locally reacting result, 

66 



Chapter 5 

VIBRATION OF A FINITE BEAM ATTACHED TO AN INFINITE 

PLATE 

5.1 INTRODUCTION 

As far as an infinite beam/plate model is concerned, both Fourier Transform (FT) and 

wave analysis methods can be used in a straightforward way to provide analytical 

solutions for the vibration response of the coupled system, as described in Chapter 4. In 

this case, waves have been treated as propagating along the beam without any changes. 

However, when the beam/plate system considered is composed of a finite beam attached 

to an infinite plate, waves that propagate in the beam encounter changes at both ends of 

the beam, in directions, amplitudes and phase, and often even the basic characters [11]. 

Wave descriptions in the finite beam are now very complicated, so that the direct 

application of the above conventional methods becomes quite troublesome or problematic. 

In such cases, the source beam is more conveniently described in terms of natural 

frequencies and natural modes instead of waves. 

In this chapter, therefore, a hybrid approach is described to approximate in a simple and 

accurate way the dynamic response of a finite beam attached to an infinite plate, as shown 

in Figure 5.1. The beam wavelength is usually relatively much longer than that of the 

plate. Both the beam and the plate are here assumed as uniform and homogenous for 

simplicity. The finite beam is defined by its modal properties while the infinite plate is 

defined by wave terms. This is the so-called 'Mode/FT approach' which combines both 

the modal analysis and Fourier Transform methods. The prediction is mainly concerned 

the FRFs of the beam and the power transmitted to the plate, as well as the dynamic 

interactions between the modal properties of the beam and wave motion in the plate. 

Expressions are given for the effective mass (density) and damping added to each mode of 

the beam. 

When a locally reacting plate model is incorporated into the Mode/FT procedure, a 

simpler 'locally reacting impedance method' can be developed. The results are then 

discussed and compared to fuzzy structure theory [5-6]. 
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It is expected that the Mode/FT approach can provide a useful methodology for 

predicting the vibrations of beam/plate coupled structures, in that it is able to deal with the 

large dynamic mismatch between the beam and plate components and at the same time can 

overcome the practical difficulty in determining the exact dynamic properties of the large, 

flexible plate. In addition, it gives insight into the vibration and coupling of general built-

up structures comprising substructures which are dynamically mismatched. 

5.2 VIBRATION APPROXIMATION BASED ON A COMBINATION OF 

MODAL ANALYSIS AND FOURIER TRANSFORM METHODS 

Central to the Mode/FT approach is to enforce the equilibrium and continuity conditions 

by approximate means along the interface between the beam and the plate. This is done in 

the wavenumber domain. The dynamic interactions between the modal properties of the 

beam and the wave motions of the plate can then be determined, and hence both the FRFs 

of the stiff beam and power transmitted to the large flexible plate, as well as the dynamic 

interactions within the beam-stiffened plate system, can be found. These are given below. 

5.2.1 Modal analysis of the beam 

Figure 5.2 shows the beam and its force loadings, where is the local coordinate of the 

beam, and [x l ) and f l ' {x^) are the amplitudes of the external and interface time-

harmonic forces acting on the beam, respectively. Time dependent behaviour of the form 

exp(jA)f) is assumed, and the explicit time dependence will henceforth be suppressed. By 

conventional modal analysis [11] the beam displacement response (x^) can be defined 

in terms of its uncoupled natural modes, as 

where w,, is the modal coordinate of the nth mode of the beam, and ^ is the nth 

normalized mode shape function of the beam when it is separated from the plate, so that 

= (5.2) 

where is the length of the beam. From [11], is given by 

(An ) (5'^) 
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where is Ae nth modal receptance of the uncoupled beam, and and are, 

respectively, the nth modal forces corresponding to and / / ) . These terms are 

given by 

(5.5) 

(5.6) 

Here is the mass per unit length of the beam, and are the nth natural 

frequency and modal loss factor of the uncoupled beam, respectively. 

5.2.2 Wave analysis of the infinite plate 

Figure 5.3 shows the plate and its force loadings along the interface, where ^ 6 

the local coordinates of the plate, and and respectively, the 

interface locations on the plate, and interface force distribution. 

If it is assumed that the interface starts from the point = = ^nd 

ends at , )'̂  ) = , 0 ) along the line = 0 , the interface forces acting 

on the plate can be expressed as 

0 

By using the Fourier Transform given in equation (4.4), the above equation can be 

expressed in the wavenumber domain as 

= j A'' (5.8) 
0 

The interface displacements can then be related with interface force loading by 

where (k^) is the Fourier Transforms of given by 
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(5 10) 

and {k^) is the line impedance of the plate along the interface y = 0 . From equation 

(4.18), it is seen that 

E the damping of ± e plate is negligible, the above equation is such that 

R e [ z X ^ j ] = 0 , | ^ J > / : ^ (5.12) 

Equation (5.12) implies that only the waves propagating faster than the wave motion in the 

plate can transmit energy into the plate. Hence it is reasonable to assume that energy 

transmitting, non-reactive interaction between a beam and an infinite plate mainly 

involves wavenumbers within the range | -

5.2.3 Vibration response of the coupled system 

From the above description, it is seen that the local coordinates of the beam and plate are 

related such that =x,^=x, where Q<x<L,,. T h e equilibrium and continuity 

conditions along the interface between the beam and the plate are 

(%,0) = w^(x) 0<x<Z% (5.14) 

A new set of orthogonal functions is now defined as 

' I 0 x<OUx>; 

The interface force / / (^x)S(y) may then be decomposed into the form 

4 
(5.15) 

<y(y) (5.16) 

Taking the Fourier Transform of the above equation (k = k^) gives 

^• / ' (^) = S / , A . ( t ) (5-17) 
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where 0^^ (A:) is the Fourier Transform of „ (%) in ± e range of -oo < jc < +00, which is 

equivalent to the Fourier Transform of ^ (x) in the range of 0 < x < L,,. Substituting 

equation (5.17) into (5.9), gives 

(5.18) 

From equations (5.1) and (5.15), (%) may be re-written as 

The above equation then yields 

(5.20) 

where (k) is the Fourier Transforms of w,̂  (x) , given by 

h 
(5.21) 

0 

It is now assumed that the displacement of the plate outside of the interface region is 

set equal to zero by applying fictitious forces acting on the plate model, i.e., 

(x ,0) = 0 x < 0 U x > 4 (5.22) 

Substituting equation (5.22) into (5.10) and the combining with equations (5.14) and 

(5.21), it follows ±at 

= (5.23) 

Equation (5.23) is the displacement continuity condition of the beam-stiffened plate in the 

wavenumber domain. Physically, equation (5.23) means that when the displacements of 

the beam and the plate (along coupling) are decomposed into wave components, each 

beam wave component are almost the same as that of the plate. 

The assumption of equation (5.22) is therefore equivalent to assuming that the plate 

displacement wave components (A:) are dominated by the contribution from (x ,0) 

in the range of 0<x<L^. Substituting equation (5.20) into (5.23) and then into (5.18), 

yields 

I f A . (k)'j<l>Z, {k) (5.24) 
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The orthogonal property of ( z ) in equation (5.15) gives, by Ref. [43], 

+«» z* 

° ri _ (5 25) 

where * denotes the complex conjugate. Let both sides of equation (5.24) be multiplied 

by 0^^ (A:) and integrated over /: from - 0 ° to +00. E i t is assumed that (A;) changes 

slowly compared to 0^^ (k) so that the cross couplings between the modes of the beam 

can be ignored, it follows that 

(5.26) 

where 

Z . = ^ | K , , ( « : ) f z „ ( t ) < ; ( : (5.27) 

Physically, equation (5.27) shows the coupling relations between the line-impedance of 

the plate (k) and the mode shapes of the beam. Hence the interactions between the 

wave motion in the plate and the modal properties of the beam can be determined. 

Substituting equation (5.26) into (5.16) then into (5.13) and finally into (5.6) and (5.3), 

the Mth modal amplitude of the beam, , after coupling to the plate, can be expressed as 

- - / „ , (5.28) 

y •' n 
h,n 

Equation (5.28) shows that the nth modal impedance of the beam, after coupling to the 

plate, is increased by Z„. Hence Z„ may be called the 'plate-loaded modal impedance', 

which depends on both the plate properties k̂ , and , and the beam property (%), by 

the relations given in equations (5.11) and (5.27). Note that in equation (5.28) it is 

implicitly assumed that the plate loads each beam mode independently and hence that the 

cross-mode loading is negligible. 

Combining equations (5.1) and (5.28), the beam displacement can then be expressed as 
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— A . (^ ) <5.29) 
" — + > z . 

^h,n 

The power transmission from the beam to the plate is given by 

JO) (^) (5.30) 

Combining equations (5.25)-(5.27), the transmitted power can be expressed as 

= (5.31) 

From equations (5.11) and (5.27), it is seen that 

R e { Z j = 0 , | A : | > / : ^ (5.32) 

Therefore, equation (5.32) indicates that only the components of the mode shapes of the 

beam with wavelengths bigger than the plate wavelength can transmit significant power to 

the plate. Otherwise, the components generally only cause near-field wave motions in the 

plate. 

In summary, the Mode/FT approach can be briefly divided into the following steps; (1) 

The beam model is defined in terms of its uncoupled natural modes (section 5.2.1), while 

the plate model is described in the wavenumber domain by a line-impedance (section 

5.2.2). (2) By introducing a new set of orthogonal functions „ in the range -°o < x < -t-co 

based on the beam modes (j),^in the range 0 < x < (equation (5.15)), the plate interface 

force can then be decomposed in terms of (equation (5.16)). As a result, a new 

relation between the plate interface force and displacement can be given (equation (5.18)). 

(3) When the plate displacement outside of the interface region is ignored (equation (5.22) 

), an estimate can then be made of the relation between displacements of the plate (along 

the interface) and beam in the wavenumber domain (equation (5.23)). Consequently, an 

approximate relation between the plate interface force and the beam displacement can be 

established (equation (5.24)). (4) Assume the line-impedance of the plate changes slowly 

with ^ compared to By the orthogonal properties of and hence the 

interface force and displacement relation can then be simply estimated (equation (5.26)). 
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Finally, the beam displacement and the power transmitted to the plate can be predicted in a 

simple manner. 

In step (4) the cross-mode coupling interaction has been ignored. Such a simplification 

is quite reasonable if the uncoupled mode shape ^ has a strong sinusoidal component at 

a given wavenumber (as it generally will for a uniform, straight beam), so that „ (& )| 

is sharply peaked in the wavenumber domain. These cross-mode coupling terms are 

expected to be less important for the higher modes of the beam. 

5.2.4 Dynamic interactions between the beam and the plate 

The dynamic interactions between the beam and the plate are given by equation (5.28). 

The modal receptance of an uncoupled beam is given in equation (5.4), while the 

modal receptance 7/^ of the beam after coupling to the plate becomes 

Substituting equation (5.4) into (5.33), it follows that 

(5.34) 

( 1 + m , . ) - J + 

The term jcoZ^^ can be separated into real and imaginary parts 

(5.35) 

where and given, respectively, as 

D 
+ V 1 I * ' - " iK +l'')^k'-k';,dk (536) 

] \ 0 , , , { k f ( k l + e y e - k l d k 
" ... 

D 
^ « 2 - — j | ^6 .m(^) | (5.37) 

Equation (5.34) can then be re-written as 
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where 

= E-ir:----:; r--;- (538) 

/%* (539) 

7%, = (5.4()) 

Equation (5.38) indicates that the plate in effect adds mass m„ and damping r]̂  to each 

mode of the beam. The energy dissipated by the induced effective damping corresponds 

the energy transmitted from the beam to the plate. It is seen from equation (5.40) that 

77,, —> 00 when ^ = 0 . This means that the rigid modes of the beam can be greatly 

damped by the plate. 

Equations (5.39) and (5.40) give the approximations for the effective mass and damping 

added to the beam by the plate. These two expressions can be further simplified under 

certain circumstances, which are described below. This gives insight into the coupling 

behaviour and allows comparisons with the locally reacting models of Ref [26-27]. 

Suppose that the uncoupled mode shape (j),̂  „ of a uniform, straight beam has a strong 

sinusoidal component at a given wavenumber, e.g. 

[Y . (mix 
1 = . — 5 A,. W = J ; ^ s m - + d (5.41) 

where 6 represents a phase constant which is determined by the exact boundary 

conditions of the beam. Under such circumstances »(^)|^ tends to be sharply peaked in 

the wavenumber domain around the value of ~ but converge quickly to 

zero as |^| —> 0°. If it is assumed that the other terms in the integrands in equations (5.36) 

and (5.37) vary slowly with k compared to jo,, ^ (^)| , and K^2 can, respectively, be 

simply approximated as 

K . , ^ 2 D , ( k l - k l . y k l + k l . (5.42) 
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K . , ' 2 D ^ , { t l + k i y k l - k l , (5.43) 

Here the orthogonality condition of equation (37) has been applied. 

As a special case, when the beam is relatively very stiff compared to the plate such that 

' the above equations become 

(5/W) 

The effective mass and damping in equations (5.39) and (5.40) can then be estimated in a 

much simpler manner. Physically, equation (5.44) represents a 'locally reacting' case [26-

27]. The relevant details will be discussed in the section below. 

5.3 DISCUSSION 

In the above section, a hybrid Mode/FT approach is used to provide simple estimates of 

the vibrations of beam-stiffened plate systems, together with the approximations for the 

dynamic interactions between the source beam and the plate receiver. In this section, the 

limiting case where the beam-stiffened plate system has a very big dynamic mismatch will 

be considered, i.e., the plate is relatively very much more flexible than the beam. It then 

behaves as a locally reacting model [26-27] or a set of fuzzy attachments [5-6]. These 

discussions illustrate various features of the vibrations and coupling of a beam-stiffened 

plate. 

5.3.1 Locally reacting impedance method 

In [26-27], it was seen that when the plate wavenumber is much bigger than that of the 

beam (typically > 2 ) , the plate can be considered as being locally reacting. The 

locally reacting impedance is given by 

(5.45) 

Such a plate model was then incorporated into a standard sub-structuring procedure to 

predict the vibration response of a beam-stiffened plate system by splitting the coupled 

structure into a beam attached to a set of independent narrow strips of the plate [27]. The 

corresponding solution, however, may still be very time-consuming since the calculation 

still requires many connecting points between the beam and the plates. However, this 

locally reacting plate model can be incorporated easily into the Mode/FT approach to 

predict the response of the beam-stiffened plate system. 
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When equation (5.45) is substituted into (5.27), it follows that 

Z. = ; ) (5.46) 

Equation (5.46) implies that the plate-loaded impedance (by a locally reactive plate) to 

each mode of the beam tends to be the same. It depends only on the plate properties 

and , regardless of the beam properties since the beam is of relatively very high 

impedance. Substituting equation (5.46) into (5.28), the modal amplitudes of the beam are 

approximated by 

Y 1 
wf = ^ f = : (5.47) 

Consequently, the power transmitted to the plate can be simply determined by 

T " 
E | n , . f (5-48) 

From the above it is seen that the locally reacting impedance method can provide 

predictions of the vibration response of a beam/plate system in a much simpler manner. 

Similarly, the effective mass and loss factor added to each mode of the beam by the 

locally reacting plate model is given, from equation (5.46), by 

= ^ (5,49) 

(5.50) 

The above equations indicate that the effective loss factor (for a given mode) increases 

with frequency but the effective mass decreases. Also the effect ive loss factor depends on 

both beam and plate properties whereas the effective mass depends on only the plate 

properties, regardless of the orders of the beam modes. 

5.3.2 Comparison with fuzzy structure theory 

In [5-6], fuzzy structure theory was used to investigate the dynamic coupling relations 

between a large deterministic 'master' substructure and a continuous set of light 

oscillators, i.e., 'fuzzy attachments'. It was found that the attached items act mainly to 

provide damping to the master structure. Moreover, the level of this damping is 
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independent of the dissipation factor of the attachments. Similar conclusions were also 

given in Ref. [1] 

When the plate receiver is relatively much more flexible than the source beam, the 

former behaves like 'fuzzy attachments' to the latter. By equation (5.49), it is seen that in 

this case the ratio of can be very small since is usually very small for a 

fuzzy-like plate. As a result, the plate in effect only adds damping to each mode of the 

beam. Equation (5.50) indicates that the effective damping is independent of the internal 

damping of the plate itself. These conclusions are consistent with those of fuzzy structure 

theory. 

It is worth noting from equation (5.50) that the effective loss factor added to each mode 

of the beam by a fuzzy-like plate attachment can be simply estimated as ri[ ~ 

due to the continuity of the natural frequencies of the plate. 

5.4 NUMERICAL EXAMPLES 

Numerical examples of a finite beam attached to an infinite plate are presented to 

investigate the validity of the combined mode/FT approximation method. The same 

perspex material is used in the numerical model as that in Chapter 4. All the other relevant 

parameters are listed in Table 5.1. The beam boundary conditions are simply supported. 

Four plate thicknesses of 0.020m, 0.010m, 0.005m and 0.002m are considered, 

corresponding to wavenumber ratios =1.8 , 2.5, 3.5 and 5.6, respectively. A time 

harmonic point force of unit amplitude acts at a distance ^ = 0.73m from one end of the 

beam. Results are obtained for both the point mobility of the beam at the driving point and 

the power transmitted to the plate, as well as the plate-loaded effective mass and damping 

to the first 3 modes of the beam. 

5.4.1 Exact results from the conventional FRF-based sub-structuring method 

First the FRF-based sub-structuring method is used, where the line interface between the 

beam and the plate is modelled using many discrete points. A description for the FRF-

based sub-structuring method is given in Appendix V. Analytical solutions for the input-

and transfer mobilities of the beam and the plate have been given in Appendices II and III. 

Numerical tests are conducted to find out how many points should be used to ensure the 

FRF-based approach converged. Figures 5.4-5.5 compare the calculated results for the 

point mobility of the beam at the driving point and the power transmitted to a 0.010m 
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thick infinite plate, respectively, when the line coupling is simulated by discrete points 

spaced at a half, one-third, one-fourth and one-fifth of the plate wavelength A . It is seen 

that the conventional sub-structuring method can provide accurate predictions for the 

vibration response of the coupled system when the discrete points are spaced at no more 

than a quarter of the plate wavelength apart. The same conclusion holds for the other three 

cases when =1.8 , 3.5 and 5.6. (The relative figures are not shown here.) However, 

this FRF-based sub-structuring method can be prohibitive when very large numbers of 

interface points are needed. For example, when the plate thickness is 0.002m, at least 93 

connecting points between the beam and the plate are required at the frequency IkHz. 

5,4.2 Comparisons between the exact and approximate results 

In this subsection, the performance of the Mode/FT approach is assessed against the 

benchmark given by the FRF-based sub-structuring method, where the line coupling is 

modelled as discrete points spaced at a quarter of the plate wavelength. The approximate 

results from the former are compared to the exact ones f r o m the latter in Figures 5.6-5.11 

for the point mobility of the beam at the driving point and the power transmitted to the 

plate when =1.8 , 2.5 and 3.5. It is seen that the Mode/FT approach can provide 

fairly good approximations both for the dynamic response of the beam and for the power 

transmission to the plate, and also the accuracy of these approximations increases as the 

flexibility of the plate increases. 

Figures 5.6-5.11 also give the estimated results from the locally reacting impedance 

method. It is quite obvious that the locally reacting method is less accurate than the 

Mode/PT approach when the plate is not flexible enough compared to the beam, e.g. 

k^Jk,^ =1.8 in Figures 5.6 and 5.7. However, when the pla te is flexible enough such that 

^ > 2 , both the Mode/FT approach and the locally reacting impedance method can be 

used to predict the vibration response of the coupled beam/plate system, as shown in 

Figures 5.8-5.11, where k^Jk^^ = 2.5 and 3.5, respectively. 

It is worth noting that the Mode/FT approach, and hence the locally reacting impedance 

method, are developed by neglecting the displacements of the plate outside of the interface 

region. However, this assumption tends to be invalid when the plate wavelength is 

comparable to length of the interface (e.g. at very low frequencies), since relatively large 

displacements may occur in a quite large region of the plate, at and around the interface 
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region. This explains why relatively larger errors are observed in Figures 5.6-5.11 in the 

lower frequency range. 

The advantages of the Mode/FT approach and the locally reacting impedance method 

over the conventional sub-structuring method are particularly significant when the plate 

has a very short wavelength. For example, when the plate thickness is 0.005m, the 

computational time needed by the mode/FT approach is only about one twentieth of that of 

the FRF-based sub-structuring method, and the locally reacting impedance method is even 

more attractive than the Mode/FT approach when very flexible plate receivers are 

considered. 

5.4.3 Effective loss factor and effective mass 

In Section 5.2.4, the dynamic interactions between the beam and the infinite plate were 

generally described as the plate introducing effective mass and damping on each mode of 

the beam. These influences on the dynamic properties of the beam can be demonstrated 

well in Figure 5.12, which shows the point mobility results of the beam before and after it 

is coupled to the plate in the case of =1 .8 , 2.5 and 3.5, respectively. It is seen that 

the beam resonance frequencies are shifted downwards due to the induced effective mass 

and the resonant response is significantly decreased due to the induced effective damping. 

Moreover, it is observed that these effective mass and damping decrease as the flexibility 

of the plate increases. 

Figures 5.13-5.14 show the effective loss factor and effective mass induced to the first 

three modes of the beam when it is attached to the 0.005m thick plate (k^Jk,^ = 3.5), using 

the expressions given in equations (5.40) and (5.39), respectively. In Figure 5.14, a 

dimensionless mass is used which is defined as . T w o general trends can be found 

from Figures 5.13-5.14: first, the added damping in a given mode increases and the added 

mass decreases, as frequency increases; secondly, the lower the orders of the beam modes 

are, the bigger the induced loss factor and effective mass are, which implies that large 

interacting effects occur to the lower orders of modes of the beam. 

When the beam structure is attached to a relatively very flexible plate, e.g. the plate 

thickness is 0.002m such that k^Jk,^ = 5 . 6 , the plate-loaded dynamic effect on the beam 

tends to be mainly adding damping, as shown in Figure 5.15. This can be explained well 

from Figures 5.16 and 5.17, where the effective loss factor and dimensionless effective 

mass added to the first three modes of the beam are given b y equations (5.40) and (5.39), 

80 



respectively. It is seen that the added mass is less than 3 percent of for the frequencies 

above 130Hz. Therefore it is quite reasonable to neglect the induced mass but consider the 

induced damping only. Figures 5.16 and 5.17 also show the results corresponding to 

equations (5.50) and (5.49)where the plate is treated as a locally reacting model. Very 

good agreements are observed. This indicates again the validity of the locally reacting 

impedance method in estimating the vibration response of a beam attached to a relatively 

very flexible plate. 

Since the damping effects are really only important at the beam resonances, the 

effective damping 7;̂  in equation (5.50) can be taken as where 

corresponds to the plate wavelength at C0~(0^^. These values are shown in Figure 5.18 by 

the points marked * corresponding to the first fourteen resonance frequencies. It indicates 

that the lower the order of the beam mode is, the larger the added effective loss factor. 

It should be pointed out that although in the above numerical examples the beam modes 

used have a zero displacement at both ends, the Mode/FT approach can also give fairly 

good approximations for coupled beam-plate cases where the beam modes are not zero at 

its ends, e.g. a free-free beam, but perhaps with a little bigger errors at lower frequencies. 

This will be demonstrated in Chapter 9. 

5.5 SUMMARY 

In this chapter, a combined Mode/FT approach was developed to predict the vibration 

response of a coupled system consisting of a finite straight beam attached to an infinite 

thin plate. Then a locally reacting plate model was incorporated into the Mode/FT 

procedure to give the locally reacting impedance method in an even simpler way. The 

performance of this Mode/FT approach was assessed numerically against the conventional 

FRF-based sub-structuring method, by modelling the interface as discrete point couplings 

spaced at no more than a quarter of the plate wavelength. Fairly good agreements were 

observed in the case of k^Jkf^>2 while the computational cost is very low. This 

advantage is particularly significant when the plate receiver has a very short wavelength. 

The close relations between the Mode/FT approach and the locally reacting impedance 

method were also discussed. It was found that the results of these two methods agree very 

well when the plate receiver is relatively very flexible compared to the beam, as we 

expected. 
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Meanwhile, it was seen that the dynamic interaction between the beam and the plate 

could be interpreted as the plate adding effective mass and damping to each mode of the 

beam. When the plate behaves like fuzzy attachments to the beam, the plate can be taken 

as mainly adding damping to each mode of the beam. Moreover, the effective damping is 

independent of the internal damping of the plate itself. These are in good agreement with 

the results of fuzzy structure theory. The numerical investigations also indicated that 

relatively more damping is added to the lower orders of modes of the beam. 
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Table 5.1 Parameters of the numerical finite beam and infinite plate model 

Structure Beam Plate 

Dimensions Length=2; Width=0.059; Thickness=0.020, 0.010, 0.005, 0.002 

(m) Height=0.068 

Wavenumber , , 
= 1 8, 2.5, 3.5, 5.6 

rado 
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Figure 5.1 A beam attached to an infinite plate. 

- > % 

Figure 5.2 The beam and its loadings. 

X 
x„ 

Figure 5.3 The plate and its loadings. 
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Figure 5.4 Point mobilities of the beam at the driving point when coupled to the 

0.010m plate by discrete points spaced at: A^ /2 , ; ; and 

4 / 5 . • 
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Figure 5.5 Power transmitted to the 0.010m plate when t h e discrete points spaced at: 

A ^ / 2 , 
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Frequency (Hz) 

Figure 5.6 Point mobility of the beam at the driving poin t when the plate thickness 

is 0.020m =1 .8) : exact, ; Mode/FT, ; locally reacting, . 
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Figure 5.7 Power transmitted from the beam to the 0 .020m thick plate 

= 1 8 ) : exact, ; Mode/FT, - ; locally reacting, 
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Figure 5.8 Point mobility of the beam at the driving po in t when the plate thickness 

is 0.010m = 2.5): exact, ; Mode/FT, ; locally reacting, . 

0 100 200 300 4 0 0 500 600 7 0 0 8 0 0 9 0 0 1 0 0 0 
Frequency (Hz) 

Figure 5.9 Power transmitted f rom the beam to the 0 .010m thick plate 

2.5): exact, ; Mode/FT, — — ; local ly reacting, . 
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Frequency (Hz) 

Figure 5.10 Point mobility of the beam at the driving point when the plate 

thickness is 0.005m = 3.5): exact, ; Mode /FT, ; locally 

reacting, . 
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Figure 5.11 Power transmitted f rom the beam to the 0 .005m thick plate 

= 3 . 5 ) : exact, ; Mode/FT, ; locally reacting, . 
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Figure 5.12 Point mobility of the beam at the driving point: before coupling to a 

plate ( ); after coupling to ap la te /A:,̂  = 1 . 8 , ; k^Jk ,^=2.5 , ; 

k j 3 .5, ). 
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Frequency (Hz) 

Figure 5.13 Effective loss factors induced to the f i rs t three modes of the beam 

when = 3 . 5 : . ond )rd 
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0 100 2 0 0 3 0 0 4 0 0 500 600 7 0 0 8 0 0 900 1000 
Frequency (Hz) 

Figure 5.14 Dimensionless effective mass induced to the first three modes of the 

beam when = 3.5 ; T', . olid . qrd 

0 100 200 300 4 0 0 500 6 0 0 7 0 0 8 0 0 9 0 0 1000 
Frequency (Hz) 

Figure 5.15 Point mobility of the beam at the driving point : before coupling, 

; after coupling ( = 5.6), . 
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Figure 5.16 Effective loss factors induced to the f i r s t three modes of the beam 

; 2"^, ; 3"", ; b y equation (5.50), 

0 100 200 300 4 0 0 500 600 7 0 0 8 0 0 9 0 0 1 0 0 0 
Frequency (Hz) 

Figure 5.17 Dimensionless effective mass added to the first three modes of the 

beam = 5 . 6 ) ; f , . - 2"̂ ^ . - ; by equation (5.49), 
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Frequency (Hz) 

Figure 5.18 Effective loss factor induced to the first fourteen bending modes of 

the beam - 5 . 6 ) : by equation (5.50), (curves from upper to lower 

corresponding to the effective values added to the f to 14"^ modes of the beam, 

respectively);by atthebeamresonances = * . 
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Chapter 6 

VIBRATION OF A FINITE BEAM ATTACHED TO A FINITE 
PLATE WITH THE SAME MODE SHAPES ALONG THE 
COUPLING LINE 

6.1 INTRODUCTION 

In the Mode/FT approach, one key point is to decompose the interface 

forces/displacements between the beam and the plate in terms of the uncoupled natural 

modes of the beam. The force equilibrium and displacement compatibility can then be 

enforced at the interface region to provide the coupling relations between the beam modes 

and plate wave motions in a quite simple manner, due to the orthogonal properties of these 

mode shape functions. Similar approaches are therefore expected to extend to beam/plate 

coupling cases, where a finite beam is attached to a finite plate. For simplicity, a special 

case of a finite beam attached to a finite plate is considered in this chapter, where the beam 

and the plate are assumed to have the same mode shapes along the coupling line, as shown 

in Figure 6.1. The beam is attached to the rectangular plate parallel to one pair of the 

opposite edges of the plate. The boundary conditions of the beam and of the plate (normal 

to the coupling) are assumed to be the same and also the plate boundary conditions are 

assumed allow the plate modes be written using separation of variables. In this case, the 

analytical expressions for the FRFs of the beam and the transmitted power to the plate can 

be determined very simply by the conventional modal analysis method. The derivation 

procedure is given below. 

This chapter provides an analytical methodology for the development of a so-called 

'mode-based' approach to deal with the vibration of a general complex built-up structure, 

which will be described in Part III. 

6.2 MODAL ANALYSIS OF THE BEAM AND THE PLATE COMPONENTS 

The source beam and the receiver plate are separately illustrated as Figures 6.2 and 6.3, 

respectively, where is the external force acting on the beam at point x = 

(x) and (iX - % ) displacements of the beam and the plate, respectively. 
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occurring along the interface line, and /j,, ( z ) and ( ) ' - ^o) are the interface force 

applied to the beam and the plate, respectively. 

By modal analysis theory [11], the displacement of the beam can then be defined as 

4 
M'A ( ^ ) = ( # ) + ( ^ ) j A (^0 (^0 ) ^ 0 (6.1) 

n m o 

where 2% is the length of the beam and (%) is the nth normalized mode shape of the 

beam so that 

here is the nth modal receptance of the beam (i.e. modal displacement per unit modal 

force) 

1 1 
(6.3) 

where m,,, ^ and //f ^ are, respectively, the mass per unit length, the nth natural 

frequency, and corresponding loss factor of the beam. 

Similarly the displacement of the plate along the coupling region y = yQcm be 

determined by 

% - )'o) = Z 7 o ) j j ^ 
L, L. 

where = L,, and L,, correspond to the lengths of the plate along and normal to the 

coupling direction, and cp̂  (x, );)is the mth normalized mode shape of the plate so that 

2 ^ f 1 f}1 — n't 
j j = ^ , (6 5) 

is the mth modal receptance of the plate, given as 

1 1 
(6.6) 
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where , 6?̂ ^ and 7;̂ ^ are, respectively, the mass density, the mth natural Aequency, 

and corresponding loss factor of the plate. Here, it is assumed that can be 

separated into the form 

f'm ( y ) (6.7) 

where y/,̂  (x ) and x,- ( y ) ^re the /cth and rth normalized mode shape functions of the 

plate along the %- and y - directions, respectively, i.e., 

j " jo ^ I' 

1,. r j ̂  _ / 
= 1 (6.9) 

Since in the case of Figure 6.1, the beam and the plate mode shapes have the same spatial 

variation along the coupling line, i.e., 

(6.10) 

Substituting equation (6.10) into (6.7) and then into (6.4), gives 

( 4 z ( y o ) ^ (6.11) 
k r 

where 

" / \2 / / w . (6.12) 

Equation (6.11) can then be re-written in the form 

(y - )'o) = Z ( ^ ) j (4) (^0) A ) (6.13) 
k 0 

where 

Physically, q̂ , is the kth modal receptance of the plate along y = , which depends on 

and z X y ) -
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6.3 DYNAMIC RESPONSE OF THE BEAM/PLATE SYSTEM 

The force equilibrium and displacement compatibility at the interface yield the relations 

= = (6.15) 

= (6.16) 

Decompose f (x) and w ( x ) into the form 

/ W = I / A W (6-17) 

w 

Substituting equations (6.15)-(6.18) into (6.1), respectively, yields 

Z (̂ ) = (^)- Z (̂ ) 

where f}'''' is the corresponding modal force, caused by the external force Fg, given by 

f P = F A ( i ) (6.20) 

Similarly, substituting equations (6.15)-(6.18) into (6.13), gives 

Multiplying both sides of equations (6.19) and (6.21) by ^^{x) and integrating along the 

beam length, gives 

(6.^3) 

Equations (6.22) and (6.23) yield 

/ . = 7 " ^ / . ® (6-24) 

w. = - ^ f P (6.25) 

The power transmitted to the plate from the beam can then b e expressed as 
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n I J [_./»'/( \ /J "/ |_ nfn\ / j — i ^ 
I " 0 J I M 

Substituting equations (6.24) and (6.25) into (6.26), it gives 

I m { g : } (6.27) f = - y 
2 

f ( f ) 

where Im|(?*} can be given from equation (6.14) as 

Equation (6.27) shows that the power can be taken as transmitted from each beam 

mode independently, and each mode corresponds to an interface-impedance which is 

determined by the summation of the modal impedances of the beam and the plate along 

the coupling line. 

So far, analytical solutions for both the FRFs of the beam and the power transmitted to 

plate have been given, based on conventional modal analysis theory. 

Equations (6.24) and (6.25) imply that when the beam and the plate have the same 

mode shapes along the coupling line, each individual beam mode (%) is coupled to only 

one set of plate modes (% )» ^ 3,..., so that the equations of motion of the 

beam and the plate for each n can actually be taken as uncoupled with each other. If that 

is not the case, however, each beam mode will couple to all sets of the plate modes, and 

the coupling situations will be very complicated. Therefore, Figure 6.1 can actually be 

regarded as a simplest coupling situation between a finite beam and a finite plate. 

6.4 THE INTERACTIONS BETWEEN THE BEAM A N D THE PLATE 

Equations (6.24) and (6.25) show the coupling relation between the 'uncoupled' modes of 

the beam and the plate. 

When the uncoupled beam has a modal receptance 6̂  of equation (6.3), it is changed, 

after coupling with the plate, to be 
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Let equation (6.29) be re-expressed as 

where 

h ' = 1 (6.30) 
( i + z ) . 

JD* ==-^- (631) 

Physically, represents how the n th modal dynamic stiffness of the beam is affected by 

the presence of the plate modes. By writing equation (6.31) into a form 

D . = - D „ + j D „ (6.32) 

equation (6.30) can be re-expressed as 

h' 
)0J' 

(6.33) 

w h o ^ 

(S34) 

=^^4^ (635) 
A)" 

Therefore, the interaction effects by loading the plate to a stiff beam can be equivalently 

simulated as adding an effective loss factor (equation (6.34)) and effective mass (equation 

(6.35)) to each mode of the beam. 

By the relations of equations (6.14), (6.31) and (6.32), this gives 

(6.36) 

- ' • i f i l . 

where 
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. (6.39) 

- 6 ) " I +16;; n,r /M,r # 

6.5 NUMERICAL EXAMPLES 

In this section, numerical examples, as shown in Figure 6.1, are presented to demonstrate 

the accuracy and efGciency of this analytical approach. The same perspex material is used 

as in the numerical model as that in previous chapters, properties being given in Table 2.1. 

An external force excitation of magnitude of 1 is applied to the beam at a point 

^ = 0.73m. System dimensions and coupling positions are listed in Table 6.1. Both the 

beam and the plate considered are simply supported. 

6.5.1 The point mobility of the beam and the power transmitted to the plate 

The analytical solutions for the dynamic response of the coupled beam and the power 

transmitted can be determined by equations (6.24), (6.25) and (6.26). In this subsection, 

these analytical results are compared to the numerical results of the conventional FRF-

based sub-structuring method, where the line coupling is modelled by many discrete point 

couplings spaced at a quarter of the plate wavelength, as described in section 5.4.1. 

Figures 6.4-6.7 compare the analytical and numerical results for the input mobility of 

the beam and the power transmitted to the plate, where the plate thicknesses are 0.010m 

and 0.005m, respectively. It is seen that the analytical and numerical results are almost 

exactly the same for both cases, but the computational cost of the former is much lower 

than that of the latter. When the plate thickness is 0.005m, for example, the computing 

time of the former is only about one twentieth of that of the latter. The reason is that the 

analytical approach can transfer a large number of physical DOFs into a small number of 

generalized DOFs by decomposing the interface force and displacement into a set of 

components of beam modes. At the same time it avoids having to calculate a matrix 

inversion, which is usually prohibitive when the matrix size is large. But this analytical 

approach has a significant limitation that the beam and the attached plate should have the 

same mode shapes along the coupling line. 

6.5.2 Effective loss factor and effective mass 

In section 6.4, the interactions between the beam and the plate were simulated as an 

effective loss factor and an effective mass induced to each individual mode of the beam 
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arising from the presence of the plate modes, as described in equations (6.34) and (6.35). 

Figures 6.8-6.9 then show the effective loss factor and effective mass added to the first 

three modes of the beam, respectively, where the attached plate thickness is 0.005m. Note 

that in Figure 6.9, a dimensionless mass is used, being . It is seen that more 

significant couplings occur to lower order modes of the beam than to the higher order 

ones. And also the effective loss factor of a given mode increases as frequency increases, 

while the effective mass decreases against frequency. These observations are quite similar 

to those found for a finite beam attached to an infinite plate in Chapter 5. The peak values 

of the effective loss factor are found to occur at the frequencies where tends to be 

maximum, which are related to the anti-resonance frequencies of the plate only but 

regardless of those of the beam. Physically, the plate can absorb more energy from the 

beam at these frequencies. Note that these peak frequencies are not necessarily the exact 

anti-resonance frequencies of the plate. 

Figures 6.8-6.9 also give the effective loss factor and effective mass when the plate is 

extended uniformly to infinity, by the expressions given in Chapter 5. It is seen that the 

frequency-averaged effective damping and mass can be simply approximated by assuming 

the plate receiver as infinite. 

6.6 SUMMARY 

For a beam/plate coupled system, as shown in Figure 6.1, where the beam and the plate 

have the same mode shapes along the coupling line, an analytical solution for the vibration 

response of the system was given based on modal analysis theory. The advantage of this 

analytical approach is that a large number of physical D O F s at the interfaces can be 

reduced to a small number of generalized DOFs, by simply decomposing the interface 

force and displacement distributions into components of beam modes. As a result, this 

analytical approach was found much more efficient than the conventional FRF-based sub-

structuring method, especially when the plate receiver has very short wavelengths. 

Moreover, the interaction effects between the beam and the plate were simulated as the 

effective loss factor and effective mass induced to each individual mode of the beam 

arising from the presence of the plate modes. It was found that the lower the orders of the 

beam modes are, the bigger the induced loss factor and effective mass are. Also the 

effective damping in a given mode increases as frequency increases but the effective mass 

decreases. These are in good agreement with the results of a finite beam attached to an 

infinite plate described in Chapter 5. 
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Although this chapter concerns only the simplest coupling form of a finite beam 

attached to a finite plate, it helps to shed new light on developing a methodology to 

simplify the vibration predictions of general continuous couplings between a stiff source 

and a flexible receiver. This is the so-called 'mode-based' approach, which will be given 

in the next Chapter. 
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Table 6.1 System dimensions and coupling positions 

Structure Beam Plate 

Dimensions Length=2; Width=0.059; Length=2; Width=0.9; 

(m) Height=0.068 Thickness=0.010/0.005 

Coupling position ^0 = 0.45 

(m) 

Wavenumber ratio = 2.5, 3.5 
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Figure 6.1 Line-coupled beam-plate system. 

W, (x) 

^ % 

Figure 6.2 Dynamic illustration of the source beam. 

Figure 6.3 Dynamic illustration of the receiver plate. 
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Frequency (Hz) 

Figure 6.4 Point mobility of the beam at the excitation point when the plate thickness 
is 0.010m: numerical result, ; analytical result, 

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 
Frequency (Hz) 

Figure 6.5 Power transmitted to the plate when the plate thickness is 0.010m: 
numerical result, ; analytical result. 
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Frequency (Hz) 

Figure 6.6 Point mobility of the beam at the excitation point when the plate thickness 
is 0.005m; numerical result, ; analytical result, . 

0 100 200 300 400 500 600 7 0 0 800 900 1000 
Frequency (Hz) 

Figure 6.7 Power transmitted to the plate when the plate thickness is 0.005m: 
numerical result, ; analytical result, . 

105 



10 

10" 
0 100 2 0 0 300 4 0 0 5 0 0 600 7 0 0 8 0 0 900 1000 

Frequency (Hz) 

Figure 6.8 Effective loss factor induced to the first three modes of the beam when the 
plate is 0.005m; first, ; second, ; third, ; results when the 
plate is infinite, . 

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 
Frequency (Hz) 

Figure 6.9 Dimensionless effective mass induced to the first three modes of the 
beam when the plate is 0.005m: first, ; second, ; third, ; 
results when the plate is infinite, . 
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Part HI 

APPROACH 

Concerning the difficulty arising from limitations of the low-frequency finite element (FE) 

and high-frequency statistical (SEA) modelling methods in the so-called 'mid-frequency' 

range, a number of methods, being either conventional (Fourier Transform and wave 

analysis methods) or newly developed (Mode/FT approach, locally reacting impedance 

method, and mode-based analytical approach), have been used in Part II to deal with the 

vibration of a plate-stiffened beam system. However, these approaches only involve 

special cases of beam-stiffened plates so that certain significant simplifications can be 

made as appropriate. More general approaches are required for the vibration analysis of 

common complex built-up structures. In principle these structures can be viewed as 

constructed from many substructures with quite different dynamic properties, due to the 

differences in material and sectional properties, for example. 

This part of the research is directed at developing a new technique to deal with the 

vibration of such a complex built-up system as a long-wavelength source coupled to a 

short-wavelength receiver through general continuous interfaces. It is proposed to meet the 

following two purposes: first, it can substantially reduce the system degrees of freedom 

(DOFs) so as to ameliorate significantly the relevant computational cost issue; and 

secondly, it has the ability to couple subsystems of different form, e.g. with big dynamic 

mismatch, within the same system model. 

Based on the methodologies provided in Part II, a so-called 'mode-based approach' is 

developed in Chapter 7. It can and does meet the above two purposes: the system DOFs 

can be reduced by transferring the physical DOFs into generalized interface DOFs; and 

different subsystems may be modelled by different appropriate techniques for coupling, 

the choice being determined by the local dynamic properties of the individual subsystem 

of interest. The emphasis is put on predicting the frequency response functions (FRFs) of 

the stiff source and the coupling energy flow to the flexible receiver. Furthermore, the 

modal correlation between the source and the receiver, and hence the effective damping 

and mass, are analysed and compared to those of previous studies [1-2, 5-6]. 
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Numerical application of this mode-based approach is performed in Chapter 8 on two 

kinds of beam-stiffened plate model: one with a straight beam and the other with an L-

shaped beam. Results are compared with those from the Mode/FT approach and the 

locally reacting impedance method. 

It is expected that the mode-based approach can form a flexible framework in that it 

might be further developed for built-up systems constructed from a number of connected 

subsystems. 
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Chapter 7 

VIBRATION ANALYSIS OF A TYPICAL COMPLEX BUILT-UP 

STRUCTURE 

7.1 INTRODUCTION 

Based on the conventional modal analysis theory, an analytical solution was given in 

Chapter 6 for the vibration response of a beam/plate system in which the beam and the 

plate have the same mode shapes along the coupling line. Although it concerns only a 

special coupling form between a beam and a plate, this prediction procedure provides a 

methodology which can transfer a large number of physical DOFs into a small number of 

generalized DOFs by decomposing the interface forces/displacements in terms of a set of 

basis functions. Similar DOFs-reducing techniques have been described in other earlier 

research work, e.g., in Refs. [21-22], in which, the component coupling conditions are 

treated as generalized kinematic (for displacement) or natural (for force) boundary 

conditions. These boundary conditions (on discretized models) take the form of a finite 

number of constraints which can be treated through a direct elimination or the addition of 

Lagrange multipliers. Consequently, computationally efficient and robust direct 

elimination algorithm may be developed. However, such a reduction procedure may often 

lead to incompatible models, i.e., the interface deformations of the two components are 

described by the different number of DOFs, which can give poor predictions due to a so-

called 'locking phenomenon' [21]. With this in mind, a mode-based approach is developed 

in this chapter to predict the vibration response of such a complex built-up structure 

consisting of a long-wavelength source structure and a short-wavelength receiver 

structure, as shown in Figure 7.1. 

In what follows, the matrix form of the equation of motion of a continuous model is 

given by modal analysis theory in section 7.2. Then in section 7.3, the mode-based 

approach is described to predict the vibration response of the coupled system by 

introducing a set of complete and orthogonal basis functions along the interfaces. In the 

first instance both the dynamic properties of the source and the receiver are assumed 

known precisely. A precise solution for the FRFs of the source and the power transmitted 

to the receiver can then be given in terms of the generalised interface DOFs. Since 
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computational limitations can often place a restriction to provide a deterministic modal 

description to a given large flexible receiver structure, in section 7.4, an asymptotically 

simple standing wave receiver model is incorporated into the mode-based approach to 

provide estimations of the vibration response of the coupled system. Finally in section 7.5, 

the interaction effects between the source and the receiver are investigated and compared 

with the 'Resound' [1-2] and fuzzy structure theory [5-6]. 

Generally this mode-based approach has two main advantages: first, it can substantially 

reduce the system degrees of freedom (DOFs) by transferring the physical DOFs into 

generalized DOFs; and secondly, it can couple subsystems of different form within the 

same system model by modelling different subsystems by different appropriate 

techniques, the choice being determined by the local dynamic properties of the individual 

subsystem of interest. 

7.2 EQUATION OF MOTION OF A CONTINUOUS MODEL: MODAL 

ANALYSIS 

In the approach described here predictions are based on the conventional modal analysis 

of both the source and the receiver substructures when they are separated from each other. 

Modal analysis theory is therefore briefly reviewed in this section. The details can be 

found in many other works (e.g. Refs [11, 58]). 

For a continuous undamped model, the general form of the equation of motion is given 

by 

/ ) (x )w(x)4 -Z , [w(x) ] = F ( x ) (7.1) 

where w is the displacement at a general location x , p(x) the mass density, L a 

differential (stiffness) operator of order 2p (where p is an integer) and F the applied 

force. As a continuous function of position x , the system response w ( x ) can be 

expressed in terms of a complete set of orthogonal functions of space under the prescribed 

natural boundary conditions of the structure, i.e., the mode shape functions, as 

where is the nth mode shape function of the structure and is the associated 

generalized coordinate, or modal amplitude. The orthogonality property of gives 
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j / ) (x)^. ' (x)6fx = 0 , M (7.3) 
y 

Although theoretically an infinite number of modes are involved in any continuous 

structure, the modes required in practice are usually truncated to a convenient finite 

number, by a criterion of convergence. Combining equations (7.1), (7.2) and (7.3), the 

equation governing is then given, in a matrix form, by 

M w , + K w . = F , (7.4) 

where M and K are, respectively, the mass and stiffness matrices, and F„ is the 

generalized force vector. 

The {n,n)ih elements of M can, in general, be written in the form 

(x)(fx (7.5) 
V 

From equation (7.3), it is seen that = 0 , when » . 

The (» ,» ' ) th element of K is given by 

(^)] (7.6) 
y 

Since (j)̂  satisfy the partial differential equation (equation (7.1)) with no forcing, it 

gives 

A,, here is the eigenvalue corresponding to eigenvector When equation (7.7) is 

multiplied by and integrated over y the domain of definition, using equation (7.5), it 

is easy to see that = 0 , when n i.e., satisfy a second orthogonality relation. 

Therefore both M and K are diagonal. In the context below, the nth diagonal 

elements of M and K are simply represented by and , respectively, instead of 

and . 

The 7-zth element of general force vector F„ is given by 

^ = (7.8) 

LmmAAY Ej 
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The Fourier transform of equation (7.4) then gives 

TV. ==Tf.ir. (7^)) 

where X, is a diagonal matrix, whose nth diagonal element corresponds to the dynamic 

receptance of the nth mode of the structure. Let damping be included by assigning a 

complex value to the stiffness as (l + ' where 7;̂  is the damping loss factor 

associated with the nth mode of the structure. can then be given by 

where w^=y jK^ jM^ is the nth natural frequency of the structure (£y,J=/l„). For 

convenience, (x ) is usually mass-normalized in the form of 0 ^ (x ) such that 

(x)(fx = l (7.11) 
V 

and can then be simplified as 

= 1 , ^ ^ = 6 ) ^ (7.12) 

Consequently, the nth modal force and the modal receptance in equations (7.8) and 

(7.10), respectively, can be written as 

f ; , = j F ( x ) 0 ^ ( x ) < f x (7.13) 

(7.14) 

From equations (7.9)-(7.14), the nth modal amplitude of the structure can be given as 

«,=Y,F,_ (7.15) 

Combining equations (7.2) and (7.15), the system response can consequently be expressed 

as a summation of a set of modal displacements. The above procedure is the conventional 

modal analysis for predicting the dynamic response of a continuous structure. In what 

follows, it is combined with an interface decomposition technique to predict the response 

of the built-up structure shown in Figure 7.1. 
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APWLLYSK O F A (ZENEEUIL C O M P L E X B M L T - U P 

STRUCTURE: MODE-BASED APPROACH 

In principle, the mode-based approach can be divided into the following steps; (1) both the 

source and the receiver substructures are described in terms of their 'unloaded' modes, 

i.e., the modal properties when each individual substructure is separated from each other; 

(2) the interface forces/displacements are decomposed into a set of complete and 

orthogonal basis functions; (3) the equilibrium and continuity conditions are then enforced 

in terms of the basis functions. As a result, the vibration response of the built-up structure 

can be determined in a simple manner. Moreover, the modal correlations and hence the 

dynamic interactions between the source and the receiver across the interface can be 

found. Nevertheless, it can form a flexible framework b y incorporation with different 

modelling strategies, e.g. the stiff source is described deterministic while the large flexible 

receiver is described asymptotically. The detailed procedure is given below. 

7.3.1 Dynamic analysis of the source structure 

The source substructure and its force loadings are shown in Figure 7.2, where and 

f}' ) represent the external and interface forces acting at the local coordinates and 

x' of the source, respectively. By the modal analysis theory described in section 7.2, the 

displacement response w, of the source at a general location x , , can be written as 

where ^ is the »th generalized coordinate of the source, and 0 , ^ is its /%th mass-

normalized unloaded mode shape function, i.e., 

= i y y , (7.17) 
y Yl ^ Tl 

Here is the mass distribution of the source substructure. Consequently, ,, can be 

written, similar to equations (7.15), as 

(7.18) 
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where 7^,, is the nth modal receptance of the uncoupled source, namely, the unloaded 

modal receptance of the source, and and are, respectively, the nth modal forces 

corresponding to f], ( x , ) and (x j ) , given by 

v; 

/ ; : . = | F ; ( x | ) 4 . . „ , ( x ; ) < j x | (7.21) 

Here 6 ) , i s the nih natural frequency of the uncoupled source (called the unloaded 

natural frequency), and and V' are, respectively, the region of the source over which 

the external and interface force loadings act. When a set of truncated mode shapes are 

used, equation (7.18) can then be written in matrix form as 

(7.22) 

where and are column vectors composed of and , respectively, 

while ^ is a diagonal matrix whose nth diagonal element is „. Substituting equations 

(7.18) into (7.16), the dynamic response of the source substructure can then be expressed 

in terms of its unloaded modes. 

7.3.2 Dynamic analysis of the receiver structure 

The same analytical procedure can be applied to the receiver substructure shown in Figure 

7.3, where F/ ^x) j is the loaded interface force at the local coordinate x) of the receiver. 

Let the displacement w,. at a general location x^ of the receiver be expressed as 

(^r ) = Z (^r ) (7 23) 

where w,. is the mth generalized coordinate of the receiver, and ^ i s the mth 

unloaded mass-normalized mode shape of the receiver so that 

I m, (X, (x„ ( X , ) A , = 1^'™ (7.24) 
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Here is the mass density of the receiver, is, Aerefore, governed, under the force 

loading condition of Figure 7.3, by 

(7.25) 

where and //„, are, respectively, the mth unloaded modal receptance of the receiver 

and the modal force caused by F/ ( x l ) . These are given by 

= (7.27) 
vf 

Here is the mth unloaded natural frequency of the receiver and V/ represents the 

region of the receiver occupied by the interface. By modal truncation, equation (7.25) can 

then be written in a matrix form as 

WV. CA28) 

where and are column vectors composed of and / / , „ , respectively, and 

is a diagonal matrix whose mth diagonal element is Ŷ. . Substituting equations 

(7.25) into (7.23), the dynamic response of the receiver is then expressed in terms of the 

unloaded modes of the receiver. 

7.3,3 Decomposition of interface force/displacement 

Let X; be the local coordinates of the interface, and ( x , ) and x// ( x , ) be, respectively, 

the interface forces and displacements. Now F, (x , ) and Wj ( x , ) are decomposed in terms 

of a set of complete basis functions ( x , ) , as 

= (7.29) 
k 

= (7.30) 

k 

where ^ is the kth generalized interface force and Wj ^ is Ath generalized interface 

coordinate. Here ( x j ) is orthogonal such that 
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" jQ (7 31) 

From equations (7.29) and (7.30), it is seen that the physical coupling DOFs of the 

built-up structure have been transferred into generalized coupling DOFs. This DOFs-

transferring technique is potentially very useful to reduce the number of DOFs involved in 

the calculation. 

Let the set of infinite basis functions be truncated to a convenient finite number. The 

force equilibrium and displacement compatibility conditions can then be enforced along 

the interface in a simple manner. The analytical procedure is described below. 

7.3.4 Dynamic analysis of the coupled system 

Let T. and represent transformation matrices which relate the local coordinates of x j , 

and X, in the forms 

(7.32) 

(7.33) 

where both 1], and 1). are orthogonal matrices [9, 18] so that ' and . 

The boundary conditions at the interfaces give 

F , ( x , ) = - F / ( x ; ) = f ; ( x : ) (7.34) 

w, (x, ) = w, (x® ) = (7.35) 

Substituting equations (7.34) into (7.21) and combining with equations (7.32) and (7.29), 

gives 

= - E / - , . J ®., . W ) X , . . ( T / x ; ) d x ; (7.36) 
* y/ 

For truncated sets of 0 , „ and , equation (7.36) can be expressed in a matrix form as 

(7.37) 

where is a column vector of ,̂ and is a nxA: matrix, given by 

«„, . = l < f , . . ( ' ' : ) X , 4 T ; x | ) d x ; (7.38) 
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It is seen that a , can be regarded as a modal correlation matrix in that its {n,k)lh. term 

indicates the correlation between the source mode 0 , ^ and the basis function across 

the interface. Equation (7.22) then becomes 

Similarly, substituting equations (7.34) into (7.27) and combining with equation (7.33), it 

follows that 

/ ; „ • = S I « ) x , , ( t / x ; ) a ; (740) 
k yl 

Let equation (7.40) be written in matrix form 

(7.41) 

Here is a matrix, whose (fM,^)th element is 

v' 

The above relation indicates that a"̂  is a matrix representing the modal correlations 

between each individual receiver mode ^ and basis function over the interface. 

Equation (7.28) then becomes 

- Y, (7.43) 

Combining equations (7.16) and (7.23) with equation (7.35), it follows that 

Z N ) = Z = Z (%; ) (744) 
m m t 

Each side of equation (7.44) is multiplied by X^^ (x , ) and integrated along the interface 

V,. By the relation of equation (7.31), it follows that 

E v v , , J ® , . ( T . x , ) X , , . ( x , ) d x , (7.45) 
n V, 

= 1 j 'P.,. (T,x, ) X , , ( x , ) A , (7,46) 
m 

The above equations yield 

(7.47) 
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where p, is a A:x» matrix and is a matrix, given by 

A.,.. = jx , , .(x ,)®„,(T .x,)dx, (7,48) 
V, 

A.W = j X , , (X; ^ (T,X, )^X; (7.49) 
y, 

Comparing equations (7.48) and (7.49) with (7.38) and (7.42), it follows that 

a , = p / , a , = p / (7.50) 

Combining equations (7.39), (7.43), (7.47) and (7.50), the interface force and 

displacement distributions in terms of generalised coordinates can be found 

f , . . = K + A j ' a . % , L (7.51) 

w,,, = A, [A. + A J " (7.52) 

where 

A, (7.53) 

(7 54) 

Physically, and provide the dynamic correlations (in matrix forms) between the 

source, the receiver and the interface. The (k,k')th entries of and A^ are given by 

(7.55) 

(7-56) 

The (A:,^')th element of A^ hence represents how the unloaded modal properties of the 

source collectively affect the Ath generalised interface coordinate through the couplings 

between the source modes and the Ath and k'ih interface basis functions. Equation (7.56) 

gives the similar dynamic correlations between the receiver and the interface. Combining 

equations (7.39) and (7.51), the generalized coordinates of the source, after coupling to the 

receiver, can then be determined by 

w = Y (7.57) 
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Equation (7.57) indicates that the receiver substructure actually loads a dynamic 

modification matrix on the modal properties of the source substructure across the interface 

coupHngs. 

Finally, the power transmitted to the receiver from the source through the interface can 

thus be expressed as 

So far both the dynamic response of the coupled system and the power transmission 

within the system can be predicted. The above procedure is the newly developed mode-

based approach. 

It is seen that the key point of this mode-based approach is how to choose the set of 

basis functions appropriately for the purpose of interface force/displacement 

decomposition. Theoretically, the set of basis functions can be arbitrary, provided it is 

complete and orthogonal. In principle, the choices for the set of basis functions should 

meet the criteria of convenience, simplicity and accuracy, depending on the dynamic 

properties of the unloaded source and receiver structures as well as the coupling 

conditions between them. For example, when a stiff source structure is wholly attached to 

a large flexible receiver, which is very often in practice, the choice of the mode shape 

functions of the source, being a set of complete and orthogonal functions, is obviously one 

of the best. Other forms of basis functions may be also appropriate. 

This mode-based approach can provide a very precise solution for the coupled 

responses of the system, provided the dynamic properties of the source and the receiver 

are precisely known and enough large numbers of modes and basis functions are used in 

the calculation. If that is not the case, however, there may be errors caused by the 

truncated sets of functions and by the uncertainties of the coupled system. 

7.3.5 A special case: the simplest coupling form 

It is interesting to look at a special coupling case when the source and the receiver mode 

shapes have the same spatial variations along the interface region so that 

(^1 ) ~ ^s,k (^s ) = ^r,k (^r ) (7-59) 

In this case, equations (7.38) and (7.42) give 

a, = = I (7.60) 
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The generalized interface coordinates can then be written in a simple form as 

//,„ 

w, /,« 

y y 
y + y 

r\n 

(7 61) 

CA62) 

Equations (7.61) and (7.62) imply that for each individual substructure, its loaded modes 

(i.e., after coupling to the other substructure) remain uncoupled from each other. In this 

sense, equation (7.59) can be regarded as the simplest coupling form between a source and 

a receiver. The beam/plate case considered in Chapter 6 corresponds to just such a 

coupling situation. 

7.3,6 The dynamic interactions between a stiff source a n d a flexible receiver 

Equation (7.57) gives the dynamic response of the source substructure when the dynamic 

contributions arising from the presence of the receiver are included. In this subsection the 

dynamic effects of a flexible receiver on a stiff source are considered, being relevant to 

many practical built-up structures. 

7.3.6.1 mo&zZ marriz 

Let n = k so that a, is a square matrix. Equation (7.57) can then be written as 

1 - (Y„, + K )"' Y... If... { v : + ( Y ' ) " ' T' f , , (7.63) w.,„ = Y,. 

where is given by 

Y ; (7.64) 

It is seen from equation (7.63) that has the same units as Y^ ,̂. While Y ^ represents 

the unloaded dynamic modal stiffness matrix of the source, Y~] + ^Y^) is the loaded 

dynamic modal stiffness matrix of the source substructure. Therefore ^Y^) is in effect 

the dynamic stiffness modification matrix introduced to the source substructure by the 

presence of the receiver. Consequently, the (»,»)th diagonal element of (Y^) may be 

regarded as the (ffrgcf modification to the nth mode of the source, i.e., through the 

couplings between the nth source mode and the receiver modes across the interface, 
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whereas the off-diagonal element is the Wfrecr modification to the mth mode of 

the source, i.e., through the couplings between n'th source mode and the receiver modes 

(since the loaded nth and n'th source modes are usually coupled with each other). 

A perturbation relation can be developed from equation (7.63) by letting 

Tf = + Tfn (7.65) 

Equation (7.65) can then be expressed in a perturbation fo rm as 

Y = [ Y ] | l + [Y])"' [ Y ] j (7.66) 

where diag [Y] is a diagonal matrix comprising the diagonal elements of Y while 5 [Y] 

is a full matrix comprising the off-diagonal elements of Y , i.e., the 'perturbation matrix' 

of Y . Y~' can thus be simply calculated by using a power-series expansion [3, 33-34]. 

It is known that the vibration of the source structure tends to be largely controlled by its 

unloaded modal properties as the flexibility of the receiver substructure increases. 

Therefore, it is quite reasonable to suppose that the coupling relations between the loaded 

modes of the source are generally not very strong when the receiver substructure is 

relatively very flexible. Consequently, one may assume that (Y/^) is strongly diagonally 

dominated for a stiff source and flexible receiver. (The validity of this assumption will be 

furthermore discussed in Chapter 8.) Under such circumstances, the loaded dynamic 

response of the source, from equation (7.63), can be simply approximated as 

(7-67) 
1 + y / y 

where ^ is the nth diagonal element of Y^, given by 

(7.68) 

Here is the (n ,m)th element of matrix ' . Equation (7.67) indicates that for a 

very flexible receiver, the perturbation matrix J [ Y ] can be simply taken as zero. 

7..). 6.2 

From equation (7.67), the dynamic modifications to a stiff source, arising from the 

presence of a very flexible receiver, can then be treated as effective mass and effective 
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loss factor added to each individual mode of the source. Let equation (7.68) be re-

expressed as 

C = - X , - ; p : 2 (7.69) 

where both and real. Combining equations (7.26), (7.68) and (7.69), it follows 

that 

K m + ( W r ) 

,/ _ "y ^nm^r.mVr (7 1 
^"2 - A / 2 2 f / 2 \2 ^ ^ 

" ) + K m ; 7 j 

Substituting equations (7.19) and (7.69)-(7.71) into (7.67), gives 

4 i / „ . (7.72) 

The above equation can be re-expressed into the form 

, _ 2 
(7.73) 

where 

= - 1 2 ^ (7.74) 

a ; , = ^ 3 ^ (7.75) 
/'.i + ;^.2 

The dynamic modifications to the source by the receiver can then be interpreted as an 

effective loss factor and effective non-dimensional mass induced to each individual 

mode of the source such that 

w = F /' (7.76) 
+ ; ? . ) ] - ( ! + / » J o ; ' 

where 

(7.77) 
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; ? » = % (7.78) 
^s,n 

Note that the effective mass given in equation (7.77) is the ratio between the induced 

effective mass and the unloaded modal mass of the source (i.e., when it is uncoupled to the 

receiver). Therefore, here can preferably be called 'dimensionless effective mass'. 

Equation (7.78) shows that the effective loss factor induced to any rigid body mode of the 

source tends to infinity, due to 6),^ = 0 for these modes. Therefore, the motion of the rigid 

body modes of the source can be greatly affected by the attached receiver, as would be 

expected. 

7.4 VIBRATION APPROXIMATION BY THE MODE-BASED APPROACH 

The above mode-based prediction procedure requires that both the source and the receiver 

substructures are deOned precisely, i.e., in terms of their unloaded modes. However, it is 

increasingly difficult, or even impossible, to give such a deterministic description for 

dynamically very flexible substructures due to the large number of modes and 

uncertainties in the material properties, or boundary conditions, for example. The mode-

based approach therefore needs to accommodate substructures whose dynamic properties 

are not known exactly. 

7.4,1 Approximation of a short-wavelength structure 

For a short-wavelength structure, which usually implies high mode count and relatively 

large modal overlap, perhaps also with some uncertainties in its material properties, two 

main issues arise [1-2]: first, the computational cost of F E A is generally prohibitive, due 

to the large number of degrees of freedom that may be required; and secondly, the system 

response becomes increasingly sensitive to geometrical imperfections as the wavelength of 

the response decreases so that even a highly detailed deterministic mathematical model 

based on the nominal system properties may not yield a reliable response prediction. 

It is known in Ref. [11] that at frequencies high compared with the fundamental 

resonance frequency, the generated vibration response tends to be less sensitive to the 

detailed boundary conditions, sizes and shape, especially for points remote from their 

boundaries where the dynamic boundary effects (e.g., either evanescent waves or standing 

wave effects) can be ignored. Under such circumstances, the response can be regarded as a 

sum of propagating waves which are sinusoidal in nature. Consequently, the response 

solution can be obtained in form of a set of sinusoidal functions. Here, therefore, instead 
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of an exact description, the short-wavelength structure is described in an asymptotic (or 

statistical) way, e.g. as a simple standing wave model. (The dynamic boundary effects in 

the boundary zone, as a separated issue, however, will not be discussed here. Some 

relevant research may be found in Ref. [59].) 

7,4.2 Vibration approximation of a stiff source /flexible receiver system 

In a common arrangement of a built-up structure shown in Figure 7.1, the source 

substructure is taken to be well-defined with a low mode-count and long-wavelength, 

while the receiver substructure is relatively much more flexible with a high mode-count 

and short wavelength. Given the statistical description of the flexible receiver, the mode-

based approach can then be used to estimate the broad features of the vibration response of 

the structure in a simple manner. 

When the receiver is statistically approximated by a simple standing wave system, the 

generated modes can be estimated based on the wavelength within a subsystem, while the 

natural frequencies can be estimated from the free wavenumber within the subsystem. 

The spatial correlation between the receiver modes can also be estimated analytically 

by making certain assumptions about the receiver mode shapes. Consequently, this yields 

V 

(7.79) 

where m,. (x^) is the mass distribution of the receiver substructure at a general location 

, r is the number of the dimensions of the receiver structure (e.g. X" = 2 for a plate and 

s: = 3 for a volume), L,. ^ is the length of the receiver of each dimension and are the 

associated phase angles. The exact value of 0,. ̂  tends to be of less importance as the 

wavelength of the receiver decreases, especially in a frequency average sense. In the high 

frequency range, 0,. ̂  can be reasonably assumed to be random [36]. 

The OTth natural frequency, for a receiver structure with a 4* order differential 

equation of motion (e.g. a plate-like structure), may be approximated by 

Y 
ID,. 

L , , . 
(7.80) 

where D, corresponds to the stiffness of the receiver. For a receiver with a 2"^ order 

differential equation of motion, such as a membrane-like structure 
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m..7i 
CA81) 

Such a statistical receiver model can then be easily incorporated into the mode-based 

prediction procedure to estimate both the dynamic response of the source and the power 

transmitted to the receiver. Provided sufficient number of assumed modes are 

involved and the interfaces are located far enough from the boundaries, the predicted 

results can quite accurately represent the broad features of the vibration response of the 

coupled system, especially in a frequency average sense. 

Given the transmitted power to the receiver structure, the total energy level of the 

receiver, when time and frequency averaged, can then be determined as below. 

7.4.3 The mean-square response of the receiver 

From the power transmitted to the receiver, the total energy level of the receiver, when 

time and frequency averaged, can then be approximated by incorporating it in an energy 

flow mode] as 

==-̂ 5%- (7.8:2) 

In the above equation it is assumed [12-14] that (1) the kinetic energy and the potential 

energy, when time averaged, are equal (which is true at high frequencies); (2) sufficient 

number modes (typically 5) of the receiver subsystem are resonant with the frequency 

band of excitation; (3) energy is not created in the coupling between the subsystems; and 

(4) the damping loss factor is equal for all modes within a subsystem. The mean square 

velocity response of the receiver averaged over time, frequency and space, is thus given by 

- \ _ E . _ = = (%83) 

where M,. is the total mass of the receiver. The result of (7.83) may be further used to 

predict the sound level radiated to the surroundings from the receiver, for example. 

In equation (7.83) it has been tacitly assumed [11] that the mean square velocity can be 

defined and measured meaningfully. For example, it is not the case for a plate that is so 

large and so heavily damped that the velocities at different locations differ by more than 

an order of magnitude. 
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7.4.4 Other approximation approaches: the Mode/FT approach and the locally 

reacting impedance method 

As well as a statistical simple standing wave model, a very flexible receiver can also be 

approximated as extended uniformly to infinity. Consequently, the Mode/FT approach and 

the locally reacting impedance method, described in Chapter 5, may also be appropriate, 

e.g. in the case of a source beam joins a very flexible plate receiver by a straight line. 

These will be discussed by numerical examples in Chapter 9. 

7.5 DISCUSSION OF RESULTS 

From the above analysis, it is seen that this mode-based approach can provide either a very 

precise solution of the built-up structure when the dynamics of both the source and the 

receiver are exactly known, or an approximate one by involving a statistical simple 

standing wave model to simulate the short-wavelength deformations of the flexible 

receiver. This procedure is similar to that in the 'Resound' method [1-2] in that the 

solution consists of a deterministic model of the long-wavelength (global) response and a 

statistical model of the short-wavelength (local) response. However, the mode-based 

approach contains relatively very few assumptions. The main one required is that the 

interface locations are far from the boundaries of the receiver when a statistical model of 

section 7.4.2 is to be used. 

The mode-based approach also reveals that the dynamic interactions between a stiff 

source and a flexible receiver can be mainly taken as adding effective mass and effective 

damping to the source substructure by the presence of the receiver. These conclusions are 

in line with those obtained from the 'Resound' [1-2] and fuzzy structure [5-6] theories. 

The detailed comparisons are given below. 

7.5.1 Effective mass and damping induced by a 'fuzzy-like' receiver 

When the receiver structure is much more flexible than the source and has a high modal 

overlap such that it behaves as a set of fuzzy attachments to the source, by the 'resound' 

theory [1], the following approximate relations are taken to hold 

R e k y . . } = . = 0 (7.84) 
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, 1 5 " " : , , 3 - ^ (7.85) 

where is the modal density of the receiver. When it is assumed that (x)) are 

independent of the order number m , at least over the restricted range of the resonant 

modes, term in equation (7.68) may be replaced by its average value 

« ; = £ [ < , ] (7-86) 

Substituting equations (7.84)-(7.86) into (7.70) and (7.71), yields 

; ^ , = 0 ( 7 j ^ ) 

f :2 = (7.8:3) 
1(0 

Consequently, equations (7.77) and (7.78) give 

= 0 (7.89) 

(7.90) 
®,.. "n, a: 

It is seen that the dynamic interactions between a stiff source and a relatively very flexible 

receiver can be mainly taken as adding effective damping to each mode of the source. 

Also the induced effective damping tends to be independent of the internal damping of the 

receiver substructure itself. 

Similar conclusions can also be obtained by another approximation procedure, as used 

in Ref. [6], It is known that for a flexible receiver behaving in a ' fuzzy' manner, its 

resonances are very often close enough such that 

In this case, equations (7.70) and (7.71) yield the following approximations 

Pni = 0 (7.92) 

(7.93) 

By combining with equation (7.86), equation (7.93) can be further simplified as 
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A n2 «,;s 1 
(7.94) 

where m{co) is the number of modes of the receiver resonating within the frequency 

range of 6) ±6)77/2, and E ] represents the mean value of within the 

range of co±cor}l2. When the modal density of the receiver n^. varies little over the 

narrow frequency band, m {(o) is given by 

(ft)) ~ I n^d(0 ~ rĵ  an,. (7.95) 

Let E [ l / „ ,77 , . ] be approximated by 

1 1 2 

j ^ -dm. 
77rW-

(7.96) 

Equation (7.94) can then give 

&2 (7.97) 

As equation (7.92) gives = 0 , equation (7.97) gives 

1 1 CO 
Vn 

(7.98) 

It is seen that equations (7.90) and (7.98) differ by a factor of ;r/2. This is caused by the 

non-rigorous approximation procedure used for predicting p'̂ 2 in equation (7.88) or 

(7.97). This can be overcome by replacing the half-power bandwidth A)±Awy/2 by the 

noise bandwidth a)±n:a)T]/4. In addition, the influence of the 7r/2 factor is expected to be 

insignificant when the induced effective damping value is small, e.g., for the higher-

ordered modes of the source whose cô  „ are usually very big. 

Although the effective damping in the case of fuzzy attachments is given in a very 

simple form, it can hardly be used directly in practice d u e to the difficulty arising in 

estimating in equation (7.86). For beam/plate coupling cases, however, it is suggested 
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that the effective damping is estimated by assuming a locally reacting model as described 

in Chapter 5. 

7.5.2 Comparison with the 'Resound' [IJ and fuzzy theory [5-6] 

In 'Resound' theory [1], the degrees of freedoms of a complex dynamic system are 

partitioned into a 'global' set and a 'local' set. The presence of the local modes acts to 

damp the global modes. As a result, the local degrees of f reedom is considered to produce 

an effective loss factor of the form 

In above equation is the number of the subsystems contained in the complete system, 

is the modal density of subsystem r , and represents the average value of 

given by 

( ^ ) = j (x,x (x (7.100) 
KVr 

= (x ) (7.101) 

where k is the local mode of the subsystem r , and the symbol j{k,r) is used to indicate 

the position of this mode in the total sequence of local mode shapes, (x ) and r) (^) 

are, respectively, the mass-normalized global and local modes. In equation (7.99), only 

n = n elements are involved. Equation (7.99) is extremely simple in form but there could 

be some difficulty involved in predicting the term . 

In fuzzy theory of Ref. [5], a simplified model is considered. The master structure is 

taken as a rectangular plate in a rigid baffle, which faces an unbounded fluid medium on 

the external side. On the internal side is a fuzzy structure, consisting of a random array of 

point-attached spring-mass systems. The apparent damping (units of force per unit area 

divided by velocity) imposed on the master structure by the added fuzzy substructure can 

be simply approximated as 

(7-102) 

where fhp (ci)) is a smoothed-out total mass, per unit plate area, of all those attached 

oscillators which have their natural frequencies less than a given value O). 
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In Ref. [6], the system considered consists of a large, rigid, and dissipationless mass 

M to which are attached N small sprung masses. A simple expression for the damping 

induced in a main structure by attached small sprung masses is given, by a relatively 

simple, deterministic derivation procedure, as 

77 = - - ^ (7.103) 
2 M 

where is the incremental mass of sprung masses resonating at frequencies between 

/ and / + . 

It is seen that none of the above effective damping expressions are exactly agreed with 

each other, due to different model descriptions and simplifications/assumptions used in the 

approximating procedure. Despite of the differences in these expressions, however, they 

all indicate that the effective damping increases as frequency increases, and is independent 

of the internal damping of the fuzzy attachments. 

7.6 SUMMARY 

In this chapter a mode-based approach was presented f o r a general complex built-up 

system consisting of a long-wavelength source and a short-wavelength receiver. In 

summary the steps are as follows: 

• The source and the receiver substructures are described in terms of their uncoupled 

natural modes, i.e., the modal properties of each individual substructure when it is 

separated from the other. 

• The interface force distribution between the source and the receiver is decomposed 

into a complete set of orthogonal basis functions. In principle, the basis functions 

should meet the criteria of convenience, simplicity and accuracy. 

• The equilibrium and compatibility boundary conditions at the interface are 

enforced in terms of the generalized interface coordinates. 

• The dynamic response of the source/receiver system and the power transmitted to 

the receiver can then be determined in a simple manner. 

• The mode-based approach is able to accommodate both deterministic and 

statistical models, in that a large flexible structure is described asymptotically as a 

simple standing wave model, for example. (Note that the assumption of a simple 

standing wave model requires that the interface positions are far away from the 
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boundaries of the given receiver structure so that the influences of the near field 

wave motions can be ignored.) 

® The mode-based approach can be further extended to more general cases, where 

more than one type of wave motion may be involved, for example. 

The dynamic interactions between a stiff source and a large flexible receiver were 

investigated, which were revealed as adding effective damping and effective mass to the 

dynamic properties of the source, arising from the presence of the receiver. Expressions 

were given, being the effective loss factor and effective mass to each individual mode of 

the source. Results are compared to those of 'Resound' and fuzzy structure theory, where 

a 'fuzzy'-like receiver structure was assumed. It was found that they agreed well on the 

key result that fuzzy attachments add damping to the master structure but this is 

independent of the loss factor of the attachments, although detailed results differed. 
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Interface 

Figure 7.1 Illustration of a typical built-up structure. 

K" 

F / « ) 

Figure 7.2 Dynamic illustration of the source. 

Figure 7.3 Dynamic illustration of the receiver. 
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Chapter 8 

EXAMPLES OF BEAM/PLATE COUPLED SYSTEM 

INTRODUCTn[()N 

In Chapter 7 a mode-based approach was presented to predict the mid-frequency vibration 

of complex built-up structures, in which a large number of physical DOFs of the system 

can be reduced into a relatively small number of generalised DOFs, and also an 

asymptotic simple standing wave model of the flexible substructure can be easily 

incorporated into the prediction procedure, instead of a deterministic description. 

Following the theoretical analysis, this chapter is intended to demonstrate the validity and 

efficiency of the mode-based approach by numerical examples, together with a 

comparison with the solutions based on the Mode/FT approach and the locally reacting 

impedance method. Being broadly representative of a structure with a broad mid-

frequency range, the numerical models involved are beam-stiffened plates, as shown in 

Figure 8.1. The beam is relatively very stiff compared with the attached large plate. A 

point force of Ff^d (r-Ej is applied directly on the beam at a point of r = ^ (r is the local 

coordinates of the beam). 

For completeness, the expressions for the vibration response of the coupled system 

from the mode-based approach, the Mode/FT approach and the locally reacting impedance 

method are briefly described in sections 8.2 and 8.3. Meanwhile, the close relations 

between these three approaches are discussed. Their corresponding effective mass and 

damping predictions are given in section 8.4. Numerical results follow in section 8.5. Two 

coupling situations are involved, one with a straight beam and the other with an L-shaped 

beam, as shown in Figures 8.2 and 8.3, respectively. 

8.2 APPLICATION OF THE MODE BASED APPROACH 

For a beam-stiffened plate model as shown in Figure 8.1, the interface basis functions may 

be simply chosen as the set of beam mode functions, i.e.. 
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X . ( r ) = ® , ( r ) (8.1) 

In this case, can most easily satisfy the criteria of convenience, simplicity and 

accuracy. As a result, the dynamic response of the coupled beam/plate system can be 

predicted by using the expressions given in section 7.3 of Chapter 7. Let 

X; = = r (8.2) 

Equations (8.1) and (8.2) yield 

T . = a , = I (8.3) 

The force and displacement distributions f } ( r ) and W/(r) , in equations (7.51) and 

(7.52), can then be simplified as 

(8.4) 

Wu=A, [Y„+A, ]" 'Y . , . f„ (8.5) 

where the nth column element of modal force vector „ is given by 

(%) (8-6) 

and the (?z,n')th element of the dynamic modal correlation matrix (equation (7.54)) is 

given by 

(8-7) 

where 

= (8.8) 

4 

Equation (8.8) indicates the modal correlations between each individual mode of the 

beam and the plate due to the couplings. It is quite similar to form of a so-called 'modal 

correlation coefficient', which was given in [1] to describe the correlations between the 

local modes in a subsystem of interest. As a result, A^ is now equal to the dynamic 

modification matrix (equation (7.64)), which reveals how the plate modal receptance 

and the mode-correlations between the beam and the plate act to modify the beam modal 

stiffness and furthermore the dynamic response of the beam. 

Re-write equation (8.5) as 
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\ n f e . 0S.9) 

It follows that 

I - ( Y . . . + A , r Y . , „ e,n 
(8.1()) 

Comparing to equation (7.57), it is seen that equation (8.10) is just the modal 

amplitudes ^ of the beam, i.e., 

(8.11) 

The beam displacement response at a general position r and the transmitted power to 

the receiver can then be determined, from equations (8.4) and (8.10), as 

w. (8.12) 

7^ = - R e (8.13) 

The above two expressions can provide very precise solutions if the dynamic properties 

of both the beam and the plate are known exactly and also the numbers of the local modes 

of the beam and the plate used are big enough to meet the criterion of convergence [20]. 

8.2.1 Vibration approximation based on a simple-standing-wave plate model 

As far as many practical plate-stiffened beam systems concerned, the plate receivers 

usually have very short-wavelength waves and high mode-counts, and also maybe possess 

some uncertainties in either the material properties or the boundary conditions or both. In 

this case an asymptotic description of the plate is more appropriated. 

When the plate receiver is estimated by a simple standing wave model, from equation 

(7.79), the normalized mode shape functions can be written as 

1 2 . 
— s m — — 

2 . 
— s m — - — (8.14) 

where L'̂  and IT, are, respectively, the lengths used for the plate in the % - and y -

directions, m,. is the mass per unit area of the plate, and the phase angles 0,.^ are assumed 

to be zeros. 

The corresponding natural frequencies can then be expressed as 
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^r,m 
n: 

(8.15) 

Substituting equations (8.14) and (8.15) into (8.4) and (8.5), the vibration response of the 

couple beam/plate system can then be approximated in a simple manner. 

The above analysis indicates that this mode-based approximate approach can be used to 

deal with the vibration of a general plate-stiffened beam, in that the shape of the beam 

structure of interest may be arbitrary and the complex geometry of the plate may be 

ignored. 

8.3 APPLICATIONS OF THE MODE/FT APPROACH AND THE LOCALLY 

REACTING IMPEDANCE METHOD 

Except for a simple standing wave model, a large flexible plate can also be simply 

described as a uniformly extended infinite [11, 47-48] and/or a locally reactive model. 

Consequently, the Mode/FT approach and locally reacting impedance method developed 

in Chapter 5 can be used very simply to provide approximate results for the vibrations of 

the beam-stiffened plate system. Since the Mode/FT approach was developed when the 

beam component was assumed to be straight and uniform, this may restrict its application 

to such coupling cases as shown in Figure 8.3. 

Theoretically, these approximations have generally acceptable accuracy when the 

beam/plate system has a big dynamic mismatch (which could be either in terms of 

mobility or wavenumber or both), at least in a frequency average sense. 

8.3.1 Vibration approximation based on an infinite plate model 

When a straight and uniform beam is attached to a very flexible plate, as shown in Figure 

8.2, the force and displacement distributions of the beam can be estimated, by the 

Mode/FT approach, as 

(8.17) 

where represents a modification value to the dynamic impedance of the nth mode of 

the beam by the presence of the plate, determined by the mode shape functions of the 
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beam 0^^ and the line dynamic stiffness of the plate Z (&) in the wavenumber domain. 

These were given in equations (5.11) and (5.27). Then the FRF response of the stiff beam 

and the power transmitted to the plate can be estimated by substituting equations (8.16) 

and (8.17) into (8.12) and (8.13). 

Comparing equation (8.17) with (8.5), it is seen that fo r a very flexible plate receiver, 

the dynamic modification matrix can be regarded as diagonal such that 

' . 4 . . 0 . ( « / » ' ) (8.18) 
ja>Z, 

Equation (8.18) indicates that the 'indirect' dynamic modifications to each individual 

mode of the beam loaded by the plate modes are ignorable when the plate is very flexible. 

It implies, therefore, that the dynamic modification matrix in equation (7.64) tends to 

be diagonal as the flexibility of the plate increases. This is in a good agreement with the 

assumption made in Chapter 7 for equation (7.67). Consequently, the dynamic response 

expressions derived by the mode-based approach can be simplified. 

8.3.2 Vibration approximation based on a locally reacting plate model 

Especially, when the plate receiver is relatively very flexible compared to the beam, i.e., 

the dynamic mismatch between the interface properties of the beam and the plate is big 

enough, the plate can be simply treated as a locally reacting model, where the plate-loaded 

dynamic stiffness modification to each individual mode of the beam Z„ can be taken as 

the same, being determined by only the plate properties of D and , but regardless of 

the mode shape functions of the beam , as given in equation (5.46). This means that 

the dynamic modiOcation matrix in equation (7.64) tends to be diagonal and also each 

diagonal element value tends to be the same. 

8.4 EFFECTIVE MASS AND DAMPING 

It has been shown in the previous chapters that the dynamic interactions between a stiff 

beam and a flexible plate can be equivalently simulated as adding effective mass and 

damping to each mode of the beam. 

By the mode-based approach (section 7.3.6.2 of Chapter 7), the effective non-

dimensional mass and loss factor were given, respectively, as 
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A) 

% 
D. 

A): 

(8.19) 

(8.20) 

where D', and depend on the model used for the plate receiver, given by 

a : 
PnX 

D. 

(8.21) 

(8.22) 

where 

oc. 

K m + « m ^ r ) 

(8.23) 

(8.24) 

By the Mode/FT approach (section 5.2.4 of Chapter 5), these effective mass and 

damping can be written, respectively, as 

D ' 
1 t-K 

nl 
2;r 

1 

2D„{kl-k'),Jki^' 

'iD^(ki+e)^k]~e 

dk 

dk 

(8.25) 

(8.26) 

Here, ^ , „ { k ) corresponds to the Fourier Transform of the mass-normalised mode 

shape function of the beam. Therefore, equations (8.25) and (8.26) are a little different 

from (5.36) and (5.37). In equation (8.25) the integral terms in and in 

have been ignored due to | 0 , ^ (Â )j —> 0 in these two wavenumber ranges. 

By the locally reacting method (section 5.3.1 of Chapter 5), equations (8.25) and (8.26) 

become 

2^;D^ _ 2 m ^ ^ ' 
(8.27) 
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Physically, the 'dissipated' power by the effective damping represents the power 

transmitted from the beam to the plate, and the effective mass modifies the dynamic 

response of the beam. 

When the plate receiver is so flexible that it can be taken as a fuzzy attachment to the 

vibration of the beam, the effective loss factor and effective mass can be simply estimated 

by substituting equation (8.27) into (8.19) and (8.20). Under such circumstances, the 

effective loss factor depends on the mass density and the wavenumber of the plate 

regardless of the internal damping of the plate, while the effective mass can be neglected 

due to )-

8.5 NUMERICAL RESULTS 

Given the above solutions, numerical investigations are performed into beam/plate 

coupling models. In the first instance, the source beam concerned is straight, and then L-

shaped, as shown in Figures 8.2 and 8.3, respectively. Calculations are made by the mode-

based approach, the Mode/FT approach and locally reacting impedance method, 

respectively, for both the point-mobility of the beam and the power transmitted to the 

plate. These results are then compared with those of the conventional FRF-based sub-

structuring method. The calculated results for the effective mass and damping by using 

these three newly developed approaches are also compared and discussed. 

All the numerical models concerned here are of perspex, the material properties being 

given in Table 2.1. All the beam models and the plate models involved are simply 

supported. (The natural frequencies and mode shapes of the L-shaped beam are given in 

Appendix VI. Those for a simply supported beam and a simply supported rectangular plate 

have been given in Appendix I and II.) The dimensions and the coupling positions of the 

beam/plate models of Figures 8.2 and 8.3 are respectively given in Tables 8.1 and 8.2. For 

both coupling cases, the plate thickness and the plate material loss factor are varied, so as 

to indicate how the flexibility and the material damping of the receiver can affect the 

accuracy and efficiency of the predictions of the mode-based approach. In the calculation 

the first 20 modes of the beam models are included, while for the plate models, the 

numbers of the modes involved are 15(X), 2400 and 4800, respectively, corresponding to 

= 0.010 m, 0.005m and 0.002m. 

The relevant modal overlap factors ( M O F = ncorj) of the beam and the plate models 

(corresponding to a loss factor of 0.05) are given in Figure 8.4. (Note that the modal 
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overlap factors of the straight- and L-shaped beams are actually very close to each other 

for the cases concerned here.) It is seen that the beams have much lower modal overlap 

than the plates. Therefore, the assembled system can be taken as dominated by typical 

mid-frequency vibration in very broad range of frequency. 

8.5.1 Straight beam cases 

For the numerical model given in Figure 8.2, Figures 8.5-8.10 compare the predicted 

results for the point-mobility (at the driving point) of the beam and power transmitted to 

the plate, when the plate thicknesses are 0.010m, 0.005m and 0.002, respectively. 

It is found that the mode-based analytical results are almost the same as those of the 

FRF-based sub-structuring method, but the former cost much lower than the latter. For 

example, when the plate thickness is 0.005m =3.5) , the computational cost of the 

mode-based analytical method was only about one thirtieth of that of the FRF-based sub-

structuring method. When the plate thickness is 0.002m =5.6), this computational 

cost ratio decreased to one fiftieth. The main reason is that the former can reduce the large 

number of physical DOFs of the coupling system into a relatively small number of 

generalized interface DOFs by using an interface decomposition technique. This 

advantage is particularly significant when the plate has very short-wavelengths (in which 

case the DOFs required by conventional FRF method can be increased to an incredibly 

large number). The results corresponding to the Mode/FT method and locally reacting 

impedance method are also shown in Figures 8.5-8.10. It is seen that both of them can be 

used to predict in a simple way the frequency-averaged response of the system. Especially 

when kpfk/^ » 2 (e.g. k^Jk,^ =5.6), the locally reacting impedance method is the most 

attractive to provide very good predictions as shown in Figures 8.7 and 8.10, where the 

results of Mode/FT method and locally reacting method are indistinguishable. 

It is also found that the frequencies at which the maximum dynamic response (of the 

beam) and the power transmitted (to the plate) occur tend to be around both the resonance 

of beam ^ and the resonances of the plate co,. at which the modal correlation function 

n̂m (between the nth mode of the beam and the mth mode of the plate) happens to be a 

maximum. However, when there exists = 0 corresponding to , both the dynamic 

response of the beam and the power transmitted to the plate tend to be their minimum at 

these resonance frequencies. 
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Figures 8.11 compares the point-mobility values at the driving point of the beam before 

and after it is attached to different plate models. It is seen that the vibration pattern of the 

beam has been changed by the presence of the plate in that the resonance frequencies are 

shifted and at the same time the peak amplitudes of the FRF responses are reduced 

compared with those of the unloaded beam component. These may be explained by the 

concepts of 'effective mass' and 'effective damping' induced on the beam by the presence 

of the plate. It is also observed that the influences of the plate on the vibration pattern of 

the beam decrease as frequency and/or the plate flexibility increase. This trend is also 

reflected by such a phenomena that when the plate is very flexible compared with the 

beam, the main broad features of the response spectra are largely controlled by the stiff 

beam while only the small 'wrinkles' on these spectra are sensitive to the exact properties 

of the plate. This implies that the dynamic interactions between the beam and the plate 

decrease as the dynamic mismatch of the coupled system increases. When the plate 

receiver is much more flexible than the beam (e.g. = 5.6), the plate can be taken as 

adding only effective damping to the beam. In this case, the plate can actually be taken as 

a fuzzy-like attachment to the beam vibration [1-2, 5-6]. 

Figures 8.12-8.17 show the effective loss factor and dimensionless effective mass 

induced to the first three orders of the beam modes when the flexibility of the plate 

attached is varied, expressions being given in equations (8.21)-(8.24). Three general trends 

can be found: first, for lower orders of the beam modes, the effective mass and damping 

added are larger; second, the effective damping in a given mode increases as frequency 

increases whereas the effective mass decreases against frequency; and third, when the 

plate is much more flexible than the beam, the effective mass loaded to the beam can 

almost be taken as zero. Consequently, the influences of the plate on the vibration of the 

beam can be taken as loading effective damping only, as expected. The individual peak 

values of the effective mass and loss factor occur at the frequencies which are close to the 

natural frequencies of the plate, but also where the modal correlation functions between 

the beam mode and the corresponding plate modes happen to be minimum. This indicates 

that the positions of these peaks depend on the modal properties of the plate, the coupling 

position on the plate, and the beam mode shape functions, but are independent of the other 

properties of the beam 

Moreover, the results corresponding to equations (8.25) and (8.26) are shown in 

Figures 8.12-8.15, and those corresponding to equation (8.27) are shown in Figures 8.16-

8.17. It is seen from Figures 8.12-8.15 that the frequency average values of the effective 
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damping and mass can be simply predicted by assuming the plate as an infinite model. 

When the plate behaves as a fuzzy-like attachment, as shown in Figures 8.16-8.17, the 

effective damping and mass can be even more simply estimated by assuming the plate as a 

locally reacting model. 

Figures 8.18-8.23 compare the effective mass and loss factors induced to the first beam 

mode when the loss factor of the plate is varied between 0.01, 0.05 and 0.1 in the cases of 

= 2.5, 3.5 and 5.6, respectively. It is quite obvious that as the loss factor (and thus 

the modal overlap factor) of the plate increases, the effective mass and damping induced 

tend to be closer to the results of an extended infinite plate (i.e., the modal overlap factor 

of the plate MOF̂ ^ =°°), which just corresponds to the frequency averaged effective 

mass/damping. This observation implies that the induced damping and mass tend to be 

independent of the internal damping of the plate in terms of their frequency average level. 

Especially when the modal overlap of the plate is very high, so that it behaves like an 

infinite structure, e.g. the case shown in Figures 8.20 and 8.23, the effective loss factor can 

be reasonably treated as independent of the internal damping of the plate while the 

effective mass can be ignored. 

8.3.2 L-shaped beam cases 

The same numerical investigations are made for the model shown in Figure 8.3 as those 

for the one of Figure 8.2. The mode shape functions of the simply supported L-shaped 

beam are given in the Appendix VI, one rigid mode being included. It is assumed that the 

beam applies no torsional constraints to the plate, due to the fact that the main coupling 

interactions between the beam and the plate are in bending motions. However, more 

general cases, which may consist of more than one type of wave motion, can still be 

accommodated within the same approach. 

Figures 8.24-8.29 compare the results of different methods for the point mobility of the 

beam (at the driving point) and the power transmitted to the plate, where the plate 

thicknesses are respectively 0.010m, 0.005m and 0.002m (i.e., = 2.4, 3.5 and 5.6). 

It is seen that the results of the mode-based analytical method and the FRF-based sub-

structuring method tend to agree well as frequency increases and/or the plate flexibility 

increases, although relatively big differences can be observed at the low frequency region 

and/or where the plate receiver is not very flexible compared with the source beam (i.e., 

= 2.4). These differences may be caused by the errors arising from the choice of the 
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basis functions and the limited numbers used for the interface decomposition, in which 

case, the mode-based 'analytical' approach may actually provide an 'approximate' 

solution. 

It is known that the dynamic interactions between a beam and a plate decrease as the 

dynamic mismatch of the system increases. As a result, the system response tends to be 

less affected by the interface when the plate is relatively very flexible compared with the 

beam. With this in mind, it is reasonable to expect that such kind of basis-function-

associated errors may only be significant when the frequency of interest is low and/or the 

plate is not very flexible compared with the beam. This can explain well the trend in 

Figures 8.24-8.29, i.e., the mode-based results and the FRF-based ones get closer as the 

flexibility of the plate increases. From the relatively bigger differences (or errors) 

observed in Figures 8.24-8.29 than in Figures 8.5-8.10, however, it can be reasonably 

expected that the interface dynamic distribution along the L-shaped beam is a little more 

complex than that along the straight-shaped beam. 

The choice of the basis interface functions (used for interface decomposition) is, 

therefore, closely related to the performance of the mode-based approach, especially when 

the dynamic interactions between the beam and the plate are relatively strong, e.g. the case 

of =2.4 . In principle, the mode shape functions of the source structure may be 

simply taken as the set of basis functions, where the loading effects of the receiver on the 

source is not very strong, such that the presence of the receiver cannot greatly change the 

vibration behaviour of the source, but a somewhat modification. 

Figures 8.24-8.29 also compare the results when the plate receivers are described, 

respectively, as a 'different' simple standing wave model and a locally reacting model, 

where the so-called 'different' wave model is realized by extending the dimensions of the 

plate to 3m in the % - direction and 2m in the y - direction, but keeping the other 

conditions of the system unchanged. It is seen that the results corresponding to the 

assumed 'large' plates are quite close to those corresponding to the true plates for all the 

three cases of interest. This can be explained by such a fact that the dynamic properties of 

a flexible structure tend to those of a uniformly extended infinite structure. As a result, 

neither the dimensions nor the boundary conditions of the plate are important for 

determining the vibration response of a stiff beam/flexible plate system. Under such 

circumstances, therefore, it is reasonable to describe a large flexible receiver structure as a 

simple standing wave model. Consequently, the mode-based approach can be used to 

provide a fairly good approximation for both the FRF response of the beam and the power 
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transmitted to the plate, at least in frequency average level. The results corresponding to 

locally reacting plate models are found suitable for the predictions of FRFs of the beam, as 

shown in Figures 8.24-8.26. For the power transmitted to the plates, however, it might be 

only useful for rough frequency average predictions, unless the plate receiver is much 

more flexible than the beam, as shown in Figure 8.29. 

Figure 8.30 compares the point mobility results of the beam before and after coupling 

with the plate when = 2.4 , 3.3 and 5.3, respectively. This is quite similar to Figure 

8.11 in how the flexibility of the plate can affect the vibration pattern of the beam. Again 

the plate can be taken as a sort of fuzzy-like attachment of the beam structure in the case 

of =5.3. 

Figures 8.31-8.36 show the effective dimensionless mass and loss factor induced to the 

first three elastic modes of the beam, when =2.4, 3.3 and 5.3, respectively. (The 

rigid mode of the 'unloaded' beam is now taken as substantially 'supressed', since the 

induced effective damping to this mode tends to be infinity from equation (8.20).) The 

same trends are observed as those found in the straight beam case in Figures 8.12-8.17. 

The results corresponding to the assumed large plate models (i.e., extended to 3m in the 

X-direction and 2m in the direction) as well as locally reacting plate models are 

also given in Figures 8.31-8.36. It is seen that as the plate gets more flexible, the exact 

dimensions of the plate tend to be less important to the effective mass/damping of the 

beam, as expected. However, the locally reacting solutions (equations (8.27)) in the case 

of the L-beam seem only applicable to predict roughly the broadband frequency average 

of the effective mass/damping, even for the case of k^Jk^^ =5.3. The main reason is that 

the L-beam is located a little closer to the boundaries of the plate, especially the beam part 

along the % - direction which only has a distance of 0.13m to one edge of the plate. (This 

distance is equivalent to the wavelength of the 0.002m thick plate at frequency 453Hz, or 

the wavelength of the 0.(X)5m thick plate at frequency of 1133Hz.) Figure 8.37 then gives 

the effective damping results when the L-beam is attached to a large 3x2x0.002/«' plate 

where x, = lm and y, =0.8m. It is seen that agreements between the two sets of results 

(mode-based and locally reacting) are substantially improved. This reveals that the 

assumption of a simple standing wave model is only valid when the source structure is far 

from the boundaries of the receiver. 
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Investigations have also been made for the influences of the internal damping of the 

plate on the effective mass/damping of the L-beam. Similar trends are observed as those of 

the straight beam. For brevity the relevant figures are not given here. 

8.4 SUMMARY 

In this chapter the mode-based approach was applied to predicting the vibrations of plate-

stiffened beam systems. The set of beam modes were chosen as the basis functions used 

for interface decomposition. Consequently, the dynamic response of the coupled beam and 

the power transmitted to the plate can then be expressed in terms of unloaded modal 

properties of the beam and the plate as well as the modal correlation matrix between them. 

Numerical examples were given where both a straight- and an L-shaped beam were 

considered. The predicted results were given for both the point-mobility of the beam and 

the power transmitted to the plate and comparisons were made with the exact results 

determined by the conventional FRF-based sub-structuring method. Very good agreements 

were observed between the two sets of results. 

Three approximate techniques were applied to describe the large and flexible plate 

models, i.e., simple standing wave models, infinite models and locally reacting models. 

(Note that the assumption of a simple standing wave model requires that the interface 

positions are far away from the boundaries of the given receiver structure so that the 

influences of the near field wave motions can be ignored.) Predictions for the vibration 

response of a stiff beam/flexible plate system were then made, respectively, by the mode-

based approach, Mode/FT approach and locally reacting impedance approach. 

Comparisons showed that both the Mode/FT and the locally reacting impedance 

methods were quite useful for straight beam coupling cases, whereas for the L-beam 

coupling cases, the mode-based approach was more appropriate. However, the locally 

reacting impedance method may still be quite useful when the plate receiver is very 

flexible compared with the source beam, as in this case the dynamic interactions between 

the beam and the plate are not very significant. 

Furthermore, the effective mass and damping added to the beam models were 

investigated. For both the straight and L-shaped beam cases, three general trends were 

observed: (1) the lower the orders the beam modes are, the greater is the effective 

mass/damping added; (2) the effective damping for a given mode increases as frequency 

increases whereas the effective mass decreases against frequency; and (3) when the plate 

is much more flexible than the beam so that it behaves as a fuzzy-like attachment, the 
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plate can be taken as loading only effective damping to the beam whereas the effective 

mass can be neglected. Also it was found that the induced effective mass/damping values 

tend to be independent of the internal damping of the plate in a frequency average sense. 

Especially when the modal overlap of the plate is very high, so that it behaves like an 

infinite structure, the effective loss factor can be reasonably treated as independent of the 

internal damping of the plate while the effective mass can be ignored. 

146 



Table 8.1 System dimensions and coupling positions of Figure 8.2 

Structure Beam Plate 

Dimensions 
(m) 

Length 4 = 2 , Length = 2, Width = 0.9, 

Width = 0.059, Thickness = 0.010/0.005/0.002. 
Height hy = 0.068 . 

Coupling positions 

(m) 

;c, =0.03, =0.3, ^ = 10°. 

2̂ = X, + Z% COS 6", - 3̂1 + 4 sin 6 

Driving point 

(m) 

^ = 0.73 

Wavenumber ratio 
=2.5/3.5/5.6 

Table 8.2 System dimensions and coupling positions of Figure 8.3 

Structure Beam Plate 

Dimensions 
(m) 

Length = 1.31, 

Length = 0.69, 

Width = 0.060, 

Height hy = 0.060. 

Length h ip) 2, Width 0.9, 

Thickness =0.010/0.005/0.002, 

Coupling positions Xj =0.27, y, =0.13. 

(m) 

Driving point ^ = 0.22 

(m) 

Wavenumber ratio 
=2.4/3.3/5.3 
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Figure 8.1 Beam-stiffened plate model. 

Figure 8.2 Straight beam and plate model. 

/ 
X 

Figure 8.3 L-shaped beam and plate model. 
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Figure 8.4 Modal overlap factors of the beam and the plate when the 
system material loss factor is 0.05: beam ( •), plate ( 0.010m thick, 

0.005m thick, 0.002m thick). 
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Figure 8.5 Point mobility of the beam at the excitation point when the 
plate thickness is 0.010m: mode-based ( ), exact ( ), Mode/FT 
( ) and locally reacting method ( ). 
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Figure 8.6 Point mobility of the beam at the excitation point when the 
plate thickness is 0.005m: mode-based ( ), exact ( ), 
Mode/FT ( ) and locally reacting method ( ). 
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Figure 8.7 Point mobility of the beam at the excitation point when the 
plate thickness is 0.002m: mode-based ( ), exact ( ), 
Mode/FT ( ) and locally reacting method ( ). 
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Figure 8.8 Power transmitted to the plate when the plate thickness is 
0.010m: mode-based ( ), exact ( ), Mode/FT ( ) and 
locally reacting method ( ). 
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Figure 8.9 Power transmitted to the plate when the plate thickness is 
0.005m; mode-based ( ), exact ( ), Mode/FT ( ) and 
locally reacting method ( ). 

151 



Q 
5 O 
0_ 

) 100 200 300 400 500 600 700 800 900 1000 
Frequency (Hz) 

Figure 8.10 Power transmitted to the plate when the plate thickness is 
0.002m: mode-based ( ), exact ( ), Mode/FT ( ) and 
locally reacting method ( ). 
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Figure 8.11 Point mobility results of the beam at the excitation point; 
before coupling ( ), after coupling ( , 0.010m thick plate; , 
0.005 thick plate; , 0.002m thick plate). 
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Figure 8.12 Dimensionless effective mass added to the first three modes 
of the beam 
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Figure 8.13 Effective loss factor added to the first three modes of the 
beam (^^/^^ = 2.5): (equations (8.21-8.24) equation (8.26) ) 

; 2"'' (equations (8.21-8.24) , equation (8.26) 
(8.21-8.24) , equation (8.26) ). 
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Figure 8.14 Dimensionless effective mass added to the first three modes 
of the beam = 3.5); 1̂^ mode (equations (8.21-8.24) , equation 

(8.25) ' ) ; 2"̂  (equations (8.21-8.24) , equation (8.25) 
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Figure 8.15 Effective loss factor added to the first three modes of the 
beam = 3.5): 1̂^ (equations (8.21-8.24) equation (8.26) ) 

2"'' (equations (8.21-8.24) , equation (8.26) 
(8.21-8.24) equation (8.26) ). 
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Figure 8.16 Dimensionless effective mass added to the first three modes 
of the beam (^^/^^ = 5.6): f ^ mode (equations (8.21-8.24) , equation 

(8.27) ); 2"̂  (equations (8.21-8.24) , equation (8.27) ); 
S"' (equations (8.21-8.24) , equation (8.27) ). 
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Figure 8.17 Effective loss factor added to the first three modes of the 
beam = 5.6): 1®̂  (equations (8.21-8.24) , equation (8.27) ) 

. 2""̂  (equations (8.21-8.24) , equation (8.27) 
(8.21-8.24) , equation (8.27) ). 

); 3"̂  (equations 
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Figure 8.18 Dimensionless effective mass added to the first mode of the 
beam(/:,y^6=2.5):77,,=0.01, ; 77,,=0.05, ; 77^=0.1, ; 

MOF^^ = , . 
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Figure 8.19 Dimensionless effective mass added to the first mode of the 
beam(A,,/^6=3.5): 77^=0.01, ; 77^=0.05, j — 0.1, 

= 00. 
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Figure 8.20 Dimensionless effective mass added to the first mode of the 
beam(A:^/^t=5.6):77^=0.01, ; 7/̂ , =0.05, =0.1, ; 

MOF^ = oo, . 
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Figure 8.21 Effective loss factor added to the first order mode of the 
beam = 2.5): 7/̂  =0.01, ; 7/̂  =0.05,, 77 = 0 . 1 

MOF^^ = oo, 
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Figure 8.22 Effective loss factor added to the first order mode of the 
hG&m{kJkf, = 3.5): 7]̂ , =0.01, ; rĵ , =0.05, ; 77̂  =0.1, ; 

MOf; = oo , 
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Figure 8.23 Effective loss factor added to the first order mode of the 
hedixn {kJ=5.6): rj^ =0.01, ; =0.05, ; T]^ =0.1, ; 

MOFp = 00, 
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Figure 8.24 Point mobility of the L-beam at the excitation point when 
=2.4: mode-based (true plate .larger plate ); exact 

( ), and locally reacting method ( ). 
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Figure 8.25 Point mobility of the L-beam at the excitation point when 
— ); exact 3.3: mode-based (true plate , larger plate 

( ), and locally reacting method ( ). 
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Figure 8.26 Point mobility of the L-beam at the excitation point when 
=5.3: mode-based (true plate , larger plate ); exact 

( ), and locally reacting method ( ). 
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Figure 8.27 Power transmitted to the plate when kJk i^=2A\ mode-

based (true plate , large plate ); exact ( ); locally 
reacting method ( ). 
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Figure 8.28 Power transmitted to the plate when ^ =3.3: mode-

based (true plate , large plate ); exact ( ); locally 
reacting method ( ). 
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Figure 8.29 Power transmitted to the plate when mode-

based (true plate , large plate ); exact ( ); locally 
reacting method ( ). 
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Figure 8.30 Point mobility results of the L-beam at the excitation point: 
before coupling ( ), after coupling (0.010m thick plate , 0.005 
thick plate , 0.002m thick plate ). 
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Figure 8.31 Dimensionless effective mass added to the first three modes 
of the L-beam ( = 2.4): 1̂^ (true plate large plate ); 2'"' 

(true plate large plate ); 3"̂  (true plate large plate ); 
locally reacting plate ( ) 
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Figure 8.32 Dimensionless effective mass added to the first three modes 
of the L-beam =3.3): 1®' (true plate , large plate ); 2"̂ * 

(true plate large plate ); 3"̂  (true plate large plate ); 
locally reacting plate ( ) 
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Figure 8.33 Dimensionless effective mass added to the first three modes 
of the L-beam (k^/k^ =5.3): 1̂ ' (true plate large plate ); 2"'̂  

(true plate large plate ); 3"" (true plate large plate ); 
locally reacting plate ( ) 

163 



100 200 300 400 500 600 700 800 900 1000 
Frequency (Hz) 

Figure 8.34 Effective loss factor added to the first three modes of the L-
beam =2.4): 1"' mode (true plate , large plate ); 2"̂  

(true plate , large plate ); 3"̂  (true plate , large plate ); 
locally reacting plate ( ) 
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Figure 8.35 Effective loss factor added to the first three modes of the L-
beam =3.3): mode (true plate , 

(true plate , large plate ); (true plate 
locally reacting plate ( ). 

large plate ); 2' nd 

large plate ); 
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Figure 8.36 Effective loss factor added to the first three modes of the L-
beam { k j k ^ =5.3): 1®' mode (true plate , large plate ); 2' nd 

(true plate , large plate ); 3"̂  (true plate , large plate ); 
locally reacting plate ( ). 
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Figure 8.37 Elective loss factor added to the first three modes of the L-
beam by the 3x2x0.002m^plate: simple standing wave plate (1 '̂ , 
-.nd gid locally reacting plate ( 
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Part IV 

EXPERIMENTAL RESULTS 

All the numerical investigations in the previous parts illustrated that for a complex 

structure built-up from both long- and short-wavelength substructures, the main features of 

the vibration response of the structure tend to be largely controlled by the dynamic 

properties of the long-wavelength substructures while the knowledge of the short-

wavelength ones is only important for the exact details of the response. Consequently, it is 

appropriate to describe the long-wavelength substructures deterministically while the 

short-wavelength ones can be described statistically, so as to understand the dynamic 

behaviour of the coupled structure in a way that is simple and practical but with acceptable 

accuracy. Based on such a fact that the dynamics of a flexible structure become less 

affected by its boundary conditions, sizes and shapes as the wavelength decreases, three 

approximate techniques were given in Part II and Part III for continuous coupling cases. 

These are the mode-based approach, the Mode/FT approach and the locally reacting 

impedance method in which the short-wavelength substructure is asymptotically 

described, respectively, as a simple standing wave model, an infinite model, or even more 

simply, as a locally reacting model. 

In this final part of the thesis, a laboratory experiment is arranged on beam-stiffened 

plate models to round off these theoretical developments. The measurement results, 

together with the numerical investigations made in previous chapters, can then provide a 

sound verification for both the validity and practicality of these three approximate 

approaches. 
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Chapter 9 

PLATE MODEL 

9.1 INTRODUCTION 

This chapter describes measurements intended to verify experimentally the main 

theoretical developments made in the previous chapters. These are (1) when a receiver is 

relatively very flexible compared to a source, the vibration response of the coupled 

structure can be simply approximated by assuming the receiver either as a simple standing 

wave model, or as an infinite model or a locally reacting model; (2) the more flexible the 

receiver is, the more accurate these approximate results are; and (3) the internal damping 

of the receiver tends to have less effect on the dynamic response of the coupled structure 

as the flexibility of the receiver increases. The main contents of this chapter can be divided 

into the following parts: a description of the experimental models and arrangements, a 

presentation of the measurement results and a discussion of the practicality and limitations 

of the approximating methods, and finally a summary of the chapter. 

The laboratory measurements were made on similar beam-stiffened plate models as those 

described in previous numerical cases. The physical configuration is given in Figure 9.1, 

where the beam model is entirely attached to the rectangular plate by strong adhesives (car 

body filler) in a symmetrical manner above and below the plate. In this case, the neutral 

axis of the beam lies in the mid-plane of the plate so that the dynamic effects arising from 

the longitudinal coupling of the system can be taken as relatively very small compared to 

that of the flexural coupling. Consequently, the system vibration can be simply treated as 

involving only flexural wave motions. Such a coupling relation was realised by cutting the 

beam model along its length into two parts, each with half the height of the beam, and then 

gluing them exactly symmetrically to the surfaces of both sides of the plate. Al l the beam 

and plate components are made of aluminium whose material properties are given in Table 

9.1. Their dimensions and the coupling positions are given in Table 9.2, which were 
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chosen to let the constructed systems be characterised with the mid-frequency vibration 

properties for a very broad frequency region, as the beam model has a relatively very low 

modal density compared to those of the plate models. The frequency range of interest was 

0-2000Hz, in which appropriate numbers of resonances of the beam and the plates were 

contained. Four experimental arrangements were involved by attaching the same beam to 

four different plates, which were (1) a 2mm thick plate; (2) a 2mm plate with certain 

damping sheets added; (3) a 1mm thick plate; and (4) a 1mm thick plate with certain 

damping sheets added. 

During the measurements, the experimental models were freely suspended by soft 

strings because free boundaries are much easier to simulate in the test condition than are 

clamped or grounded ones. An external point excitation force, provided by a random 

source, was excited directly onto the beam and hence vibrational power was transmitted 

from the beam to the plate. (Note that the choice of the force driving point of the beam 

should avoid the positions at or very close to a node of one or more of the beam modes. 

Here ^ = 0.25m is used). The measurements were made of the point-mobility of the beam 

(at the driving point) and the power transmitted to the plate (by measuring the time and 

spatial averaged surface velocity of the plate). The experimental arrangement is shown in 

Figure 9.2. A pseudo random force signal, generated from Polytec Scanning Vibrometer 

(PSV), was applied to the beam through a shaker. The input force and the velocity 

response of the beam at the driving point were, respectively monitored by an attached 

force transducer (PCB Piezotronics 208C01 SN 19041) and the laser scanning head of the 

PSV. 

9.3 MEASUREMENT RESULTS AND DISCUSSION 

It is necessary to know the dynamic properties of each individual component of the 

structure when separate to get a better understanding of the vibration behaviour of the 

complete structure. Therefore, the first step of the measurements consisted of the point-

mobility of each individual beam and plate component before the responses of the 

constructed beam-stiffened plate models were measured. 

9.3.1 Point-mobility of the beam component 

The point-mobility of the beam component at ^ = 0.25/M was measured by replacing the 

beam-stiffened plate in Figure 9.2 by the freely suspended beam. (The two parts of the 

beam models were glued together firmly by strong car body filler.) The measurement 
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result is plotted in Figure 9.3. It is seen that the beam has only a few of resonances within 

the frequency range of interest and is a typical low mode-count structure. 

A comparison was shown in Figure 9.3 with the theoretical prediction obtained by 

using the natural frequencies and mode shapes of a free-free beam (which are given in 

Appendix VH). It is seen that the two plots are quite different for the first two flexural 

modes but tend to agree well for the later modes. The main reason is that the boundary 

conditions of the beam components involved in the above two plots were actually not 

exactly the same. For the experimental one the result was measured when the beam model 

was freely suspended, whereas for the theoretical one the result was predicted based on an 

idea] free-free beam. As a result, differences occurred both for the resonance frequencies 

and response amplitudes. However, such boundary influences tend to be small as 

frequency increases, as shown in Figure 9.3. Besides, it can also be observed that the 

experimental plot seemed have extra small resonance peaks not shown in the theoretical 

one. These insignificant resonances may be explained as those corresponding to the 

bending motion of the beam along another direction, perhaps together with some torsion 

motion of the beam. Since the cross section area of the beam is almost square, the 

resonances of these two sets of bending motions of the beam are quite close with each. 

However, it is quite obvious that for the excitation case of Figure 9.2, the bending motion 

along the excitation force direction dominated the beam vibration. 

9.3.2 Point-mobility of the plate components 

The point-mobility of each plate component at the off-centre point (0.300,0.197)m, when 

it was freely suspended by two soft strings, was measured using a similar experimental 

set-up to that given in Figure 9.2. Four different plates, as described in section 9.2, were 

measured. Two thicknesses (2mm and 1mm) were used to vary the flexibility of the plates, 

which correspond to modal densities 0.056 and 0.11 per Hz, respectively. Damping sheets 

were used to vary the plate damping. The increased damping loss factor of each plate, in 

this experiment, was determined experimentally by measuring the input power P to the 

plate and the plate mean-square velocity response and then using the relation 

= where M is the total mass of the plate. The input power was 

measured from the product of the force and the corresponding velocity response spectra, 

while the mean square velocity response was measured by using laser scanning. Figure 9.4 

gives the experimentally estimated internal loss factor result (solid line) for the 1mm thick 
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plate when damping sheets were pasted onto the plate. When assumed frequency 

independent, the internal loss factor of the plate here may be estimated as = 0.03. The 

same experimental result was obtained for the damping loss factor of the 2mm thick plate 

(with damping sheets attached). For brevity, it is not given here. 

The measured mobility results are plotted in Figures 9.5-9.8 corresponding to these 

four plates, where a running frequency average was taken to smooth the responses curves. 

The bandwidth used was 40Hz so that each bandwidth may contain several modes. It is 

seen that there are many discrete modes within the frequency range of interest, especially 

for the 1mm thick plate. When the plate was heavily damped, however, these distinctive 

resonances became unclear. The mobility plots drifting downwards at higher frequencies 

in Figures 9.7-9.8 can be explained by the mass loading effects of the force transducer 

[41-42]. 

Figures 9.5-9.8 also show the running-frequency-average results of the theoretical 

predictions when the plates were assumed as a simple standing wave model and a 

uniformly extended infinite plate. It can be observed that the three sets of results tend to 

get closer as the wavelength of the plate gets short and/or the damping of the plate 

increases. Such a trend implies that the boundary conditions of a structure tend to be of 

less importance as its wavelength gets short. Actually, when the wavelength is short 

enough, the changes of boundary conditions may often cause only a slight shift in 

resonance frequencies of the structure but have little effects on the envelopes of its 

spectrum [48]. Moreover, when the half power bandwidth of the resonance is greater than 

the spacing between the modes (due to heavy damping, for example), the structure tends to 

exhibit 'infinite' behaviour [47]. (Or alternatively, the 'infinite' behaviour occurs when 

the frequency is above that at which the envelopes of the peaks and the troughs in the real 

components of mobility coincide [48]). By the above criteria, therefore, it is quite 

reasonable, especially in a frequency average sense, simply to describe a high mode-count 

plate asymptotically as a simple standing wave model or an infinite model, as appropriate. 

Consequently, the mode-based approach and the Mode/FT approach are expected to give a 

reasonable estimation for the vibration response of such beam-stiffened plate models. 

These will be described and discussed below. 

9.3.3 Vibrations of the beam-stiffened plates 

The above measurements show that there were quite big dynamic mismatches (e.g., in 

terms of wavenumbers and/or modal densities) between the individual properties of the 
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beam and the plates in that the former had a very low mode-count while the latter had a 

relatively much higher mode-count. Therefore, when such beam and plate components 

were coupled to each other, as shown in Figure 9.1, the built-up structure was actually 

dominated by the mid-frequency characteristics for a very broad range of frequency. The 

construction of the experimental beam-stiffened plates has been described in Section 9.2. 

Four beam-stiffened plates were involved in the measurements, corresponding to changes 

in either the thickness or the damping of the plate. The measurements were mainly made 

of the point-mobility at the driving point of the beam and the power transmitted to the 

plate. 

The mobility measurement procedure was the same as that for the disconnected beam. 

For the power measurements, the spatially averaged mean-square velocity spectrum Iv 

was measured directly by using the PSV Scanning Head. The power can then be obtained 

from [11] 

where m , 5' and are respectively the mass density, the surface area and the material 

loss factor of the plate. 

For ease of comparisons between the experimental and theoretical results, the power 

was expressed in terms of power per unit force spectrum input (measured at the beam 

driving point), i.e., normalized to the force input as 

K (9.2) 

The measurement results are shown in Figures 9.9-9.16, together with those estimated by 

the mode-based approach (assuming a simple standing wave plate) and the Mode/FT 

approach (assuming an infinite plate). These results are compared and discussed below. 

9. J. J. 7 

Figures 9.9-9.12 show, respectively, the point mobility results of the beam when it was 

attached to the four different plates. It can be seen clearly that the measurements and the 

theoretical predictions converge as the flexibility of the plate increases and/or the modal 

overlap factor of the plate increases. Big differences between the measurement and 

theoretical results occur in low frequency range where the plate modal overlap is much 
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less than unity. This is because that at these frequencies the plate tends to exhibit discrete 

resonant behaviour and its boundary conditions have a significant effect on these 

resonances. Hence neither a simple standing wave model nor an inOnite model is 

appropriate to describe the dynamics of the plate asymptotically. As the frequency 

increases (i.e., the wavelength of the plate decreases), however, the boundary conditions 

of the plate become less important. When the plate modal overlap factor is close to or 

bigger than unity, the plate dynamic behaviour tends to be that of a simple standing wave 

model, whose mode shapes can be estimated from the wavelength within the plate and the 

natural frequencies from the free wavenumber of the plate. Consequently, the mode-based 

approach can give a quite good approximation for the vibration response of the beam-

stiffened plate. When the modal overlap factor of the plate is big enough, e.g. more than 2 

or 3, the plate tends to exhibit obvious infinite behaviour. In this case, the Mode/EH^ 

approach can be very useful to estimate the vibration response of the coupled structure. 

(Here, the modal overlap factor of the 1mm thick plate with extra damping becomes 

greater than 2 when the frequency is over 600Hz, however, for the 2mm thick plate with 

extra damping, its modal overlap factor is less than 2 up to the frequency at 1200Hz.) 

Figures 9.13-9.14 compare the measured point-mobility results of the beam when it 

was, respectively, attached to the 2mm and 1mm plates without and with damping sheets 

attached. It is seen that in Figure 9.13 the damping of the plate has an obvious effect on 

the FRFs of the beam for the 2mm thick plate, while such an effect is relatively much 

smaller for the 1mm thick plate in Figure 9.14. This observation agrees well with the 

theoretical studies presented in previous chapters 4-8, i.e., the influence of the internal 

damping of the plate on the dynamic response of the beam tends to be less important as 

the flexibility and/or mode count of the plate increase. 

9..). ̂ .2 f owgr fAg fo fAg pZafg 

Figures 9.15-9.20 are the plots corresponding to the power transmitted from the beam to 

the four different plates. It is seen that the flexibility and damping of the plate receiver 

have similar influences on the power transmitted to the plate to those on the dynamics of 

the beam. However, greater errors occurred than those observed in Figures 9.9-9.14. This 

implies that the transmitted power is more sensitive to the boundary conditions of the plate 

than the dynamic properties of the beam. Since equation (9.1) is only valid for a high-

mode-count receiver structure [10, 12], the experimental results for the power transmitted 

to the plate in the lower frequency range may not represent the actually power 
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transmission within the system. This is one important reason to explain the big differences 

between the measurements and the theoretical approximations. 

The measured input power (to the beam) results are also given in Figures 9.17-9.18. It 

is seen that at higher frequencies, the differences between the input and transmitted power 

tend to be smaller. This indicates that the power dissipated by the beam is relatively very 

small compared with that transmitted to the plate, as expected. 

9.4 SUMMARY 

This chapter was intended to verify experimentally the practicality of the theoretical 

developments made in previous chapters 5, 7 and 8. Beam-stiffened plate models were 

considered, due to the typical dynamic mismatch between the beam and plate components. 

Measurements were made to both the point-mobility of the beam and the power 

transmitted to the plate, and then compared with the theoretical predictions by the mode-

based approach, Mode/FT approach where the plate receiver was assumed, respectively, as 

a simple standing wave model and an infinite model. The influences of the flexibility and 

damping of the plate on the vibration response of the coupled structure were investigated. 

The results shown are quite encouraging and meet all our theoretical expectations. It is 

worth noting from the measurements that equation (9.1) is more valid when the receiver 

structure fulfils a flexible SEA model as described in section 7.4.3. In other cases, power 

should be measured from the product of the force and some structural frequency response 

spectra [48]. 
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Table 9.1 Material properties of aluminium 

Young's modulus Poisson's ratio Density Loss factor 

(GN/m^) (kg/m^) (Nominal) 

71 &33 2700 01^5 

Table 9.2 The dimensions and coupling positions of the beam-stiffened plate 

Structure Beam Plate 

Dimensions (m) 

Length = 0.598, Length = 0.700, 

Width = 0.0122, Width = 0.500, 

Height = 0.006x2. "Thickness = 0.002/0.001. 

Coupling positions (m) X, =0.046, >',= 0.319 ; jCj = 0.618, =0.137 

Driving point (m) ^ = 0.25 

Wavenumber ratio = 2.4/3.4 

Modal density (1/Hz) 0.056 ( = 0.002 )/0.11 ( = 0.001) 
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Figure 9.1 The beam-stiffened plate experimental model. 
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Figure 9.2 Experimental arrangement of the measurement system. 

175 



(/) 

2 
CO 
T 3 

JH O 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Frequency (Hz) 

Figure 9.3 Point mobility of the separated beam component at the driving point: 
theoretical, ; measured, . 
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Figure 9.4 Experimentally estimated loss factor of the 1 mm thick plate. 
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Figure 9.5 Point-mobility of the 2mm thick plate -0.005): theoretical (a simple 

standing wave model, ; an infinite model, ); measured, 
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Figure 9.6 Point-mobility of the 2mm thick plate with damping sheets attached 
(77̂  ~ 0.03): theoretical (a simple standing wave model, ; an infinite 

model, ); measured, . 
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Figure 9.7 Point-mobility of the 1mm thick plate =0.005): theoretical (a simple 

standing wave model, ; an infinite model, ); measured, 
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Figure 9.8 Point-mobility of the 1mm thick plate with damping sheets attached 
(z; ~ 0.03): theoretical (a simple standing wave model, ; an infinite 

model, ); measured, . 
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Figure 9.9 Point-mobility of the beam when attached to the 2mm plate =0.005): 

theoretical (mode-based, ; Mode/FT, ); measured, 
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9.10Point-mobility of the beam when attached to the 2mm plate -0.03): 

theoretical (mode-based, ; Mode/FT, ); measured, . 
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Figure 9.11 Point-mobility of the beam when attached to the 1mm plate (7/̂  =0.005): 

theoretical (mode-based, ; Mode/FT, ); measured, . 
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Figure 9.12 Point-mobility of the beam when attached to the 1mm plate =0.03): 

theoretical (mode-based, ; Mode/PT, ); measured, . 
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Figure 9.13 Measured point-mobility results of the beam when it was attached to the 
2mm thick plate; = 0.005, ; rj^ ~ 0.03, 
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Figure 9.14 Measured point-mobility results of the beam when it was attached to the 
1mm plate: 77̂, =0.005, ; 7/̂  = 0.03, . 
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Figure 9.15 Power transmitted to the 2mm thick plate (77 =0.005): theoretical (mode-

based, ; Mode/FT, ); measured, . 
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Figure 9.16Power transmitted to the 2mm thick plate {rj^ =0.03): theoretical (mode-

based, ; Mode/FT, ); measured, . 
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Figure 9.17Power transmitted to the 1mm thick plate =0.005): theoretical (mode-

based, ; Mode/FT, ); measured, 
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Figure 9.18 Power transmitted to the 1mm thick plate (7;^ =0.03): theoretical (mode-

based, _ _ ; Mode/FT, ); measured, . Input 
power to the coupled system, 
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Figure 9.19Measured power transmission from the beam to the 2mm thick plate: 
77̂  = 0.005, ; 77̂  = 0.03, . 
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Figure 9.20 Measured power transmission from the beam to the 1mm thick plate: 
77^=0.005, ; 77^=0.03, . 

184 



Chapter 10 

CONCLUSIONS 

The thesis is presented in four parts. The first part concerned discrete point coupling cases 

between a stiff source and a flexible receiver. The second part investigated a foundation 

consisting of a beam-stiffened plate. The third part involved a general complex built-up 

system consisting of a long-wavelength (low mode count) source and a short-wavelength 

(high mode count) receiver. Finally, the main theoretical developments were 

experimentally verified in part 4. The results were given at the end of each chapter. For 

completeness the main conclusions are briefly summarised below. 

10.1 DISCRETE POINT COUPLINGS 

Considering an issue on prediction and control of the power transmitted from a resiliently 

mounted machine to a flexible foundation due to the complex nature of the coupled 

system, a concept of 'power modes' was introduced and then used to estimate the power 

transmitted to a flexible receiver from an array of point force excitations in Chapter 2. 

Based on the power mode theory, the vibrational power transmitted by N discrete point 

forces was regarded as the power transmitted by N independent power modes following 

eigen-decomposition of the real part of the mobility matrix of the receiving structure. 

Simple expressions were developed for approximating the upper and lower bounds and the 

mean value of the transmitted power in terms of these power modes. It also has been 

shown that these approximations can be extended to more general cases, including that 

where both force and moment excitations are applied to the structure and where there are 

velocity source excitations. Finally numerical results were presented for the case of a plate 

excited at a number of points. 

It is known that only under ideal, limiting cases, such as are considered here, can those 

source mobilities be neglected. In practice, however, the mobilities of the source may be 

important and thus have to be included. This leads to the application of the power mode 

technique to estimating the power transmission between a stiff source and a flexible 

receiver through discrete couplings. These were given in Chapter 3. In the first instance, 

only translational coupling motion of the system was considered, where the coupling 

degrees of freedom of a source/receiver system were all of the same sense and acted in the 
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same direction, e.g. normal to the surface of a plate-like receiver. Then a more general 

source/receiver system was considered, where both the translational and rotational 

motions of the system were involved, by applying a matrix scaling technique. 

Approximations were developed for the upper and lower bounds and the frequency 

average of the transmitted power. These depend only on the point mobilities of the source 

and receiver, and thus the amount of data required is reduced substantially compared to an 

exact description. This power mode approach was particularly useful when the mobility 

mismatch between the source and the receiver is big enough. 

In principle, the power mode approach has two main advantages: first, it allows 

expressions for the upper and lower bounds and the mean value of the transmitted power 

to be developed in a simple manner; and secondly, it can involve both the translational and 

rotational motions of the system. 

10.2 STRAIGHT LINE COUPLINGS 

For continuous coupling studies in this thesis, vibration problems of a beam-stiffened plate 

system, consisting of a directly excited stiff beam attached to a large flexible plate, is 

particularly of interest, being broadly representative of the machinery foundation. When 

the difference between the wavelengths of the long wave stiff beams and the short wave 

flexible plates is very large, (which is very often for most relevant practical cases), the 

vibration around the structure is largely controlled by the long-wavelength stiff beam, but 

with some modifications or damping effects from the attached short-wavelength flexible 

plate. Under such circumstances, the frequency-response-functions (FRFs) of the source 

beam and the power transmitted to the plate are most relevant for a better understanding of 

the whole vibration properties of the coupled system. 

This part of thesis concerns three cases of plate-stiffened beam systems in the first 

instance: (1) an infinite beam attached to an infinite plate in chapter 4, (2) a finite beam 

attached to an infinite plate in chapter 5 and (3) a finite beam attached to a finite plate 

when the beam and the plate have the same mode shapes along the coupling in chapter 6. 

Certain analytical/approximate methods are developed to predict simply and accurately the 

frequency response of the stiff beam and the power transmitted to the plate. Moreover, the 

interacting effects between the beam and the plate are investigated, being the effective loss 

factor and the effective mass added to the beam by the presence of the plate. Although 

only special cases of beam/plate coupling systems are involved in this part of study, it 

provides new methodologies, both analytical and approximate, on which the vibration of a 
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general stiff beam/flexible plate system can be predicted in a much simpler manner. This 

finally leads to Part I I I for predicting the vibration of a stiff source/flexible receiver 

system with general continuous couplings. The conclusions are respectively described 

below. 

10.2.1 An infinite beam attached to an infinite plate 

In this case, both Fourier Transform (FT) and wave analysis methods were used to give an 

analytical solution for the dynamic response of the coupled system. It was shown that only 

the beam wave motion with should be taken into account for predicting the power 

transmitted to the plate. When the wavenumber ratio between the beam and the plate is big 

enough, e.g. k^Jk^^yl, the locally reacting impedance method can be used to 

approximate simply and accurately both the dynamic response of the beam and the power 

transmission to the plate. Moreover, it has been shown that the interacting effects between 

the beam and the plate may be viewed as adding an effective mass and an effective 

damping to each wave propagating in the beam. The energy 'dissipated' by the effective 

damping represents the energy transmitted from the beam to the plate. When the plate 

receiver is much more flexible than the source beam (e.g. behaves in a fuzzy manner to the 

beam), the induced effective loss factor depends on the wavenumber of the plate as well as 

the mass ratio between the beam and the plate, but is independent of the internal damping 

of the plate, being in good agreement with fuzzy structure theory. The effective mass is 

almost equivalent to the plate mass in a strip of width equal to one third of the plate 

wavelength in this case. Since the mass density of the plate is usually relatively very 

small, the effective mass added is consequently very small. Therefore, the main effect of 

loading a fuzzy-like plate to a stiff beam can be viewed as adding effective damping to the 

beam dynamics. 

10.2.2 A finite beam attached to an infinite plate 

In chapter 5, a combined Mode/FT approach was developed to predict the vibration 

response of the coupled system. The displacement of the plate beyond the beam was set 

equal to zero by applying fictitious forces in the plate. The interface force and 

displacement distributions between the beam and the plate were first decomposed into a 

set of components in terms of beam modes, and then the force equilibrium and 

displacement compatibility (at the interface region) were enforced in the wavenumber 

domain by the conventional Fourier Transforms. As a result, the relation between the 
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modal coordinates of the beam and the wave motions of the plate can be determined. 

Finally both the FRFs of the beam and power transmitted to the plate can be predicted 

simply. The performance of this Mode/FT approach was assessed numerically against the 

conventional FRF-based sub-structuring method, by modelling the interface as discrete 

point couplings spaced at no more than a quarter of the plate wavelength apart. Very good 

approximations were found both for the dynamic response of the beam and the power 

transmission to the plate. The close relations between the Mode/FT approach and the 

locally reacting impedance method were also discussed. It was found that the results of 

these two methods meet very well when the plate receiver is relatively very flexible 

compared to the beam. Moreover, the interactions between the beam and the plate were 

analysed, being that the plate mainly added an effective loss factor and an effective mass 

to each mode of the beam. Two general trends were observed: (1) the lower the orders of 

the beam modes are, the bigger the induced loss factor and effective mass; (2) the effective 

damping of a given mode increases as frequency increases while the effective mass 

decreases. As far as a fuzzy-like plate receiver concerned, it is only important to consider 

the induced effective damping whereas the effective mass can be ignored. Also it was 

found that the effective damping is independent of the internal damping of the plate. This 

agrees well with the fuzzy structure theory. 

10.2.3 A finite beam attached to a finite plate when the beam and the plate have the 

same mode shapes along the couplings 

An analytical solution for the vibration response of the system was given based on modal 

analysis theory for this special coupling case. The advantage of this analytical approach is 

that a large number of physical DOFs at the interfaces can be reduced to a small number 

of generalized DOFs, simply by decomposing the interface force and displacement 

distributions into components of beam modes. As a result, this analytical approach was 

found much more efficient than the conventional FRF-based sub-structuring method, 

especially when the plate receiver has very short wavelengths. Moreover, the interactions 

between the beam and the plate were simulated as the effective loss factor and effective 

mass induced in each individual mode of the beam arising from the presence of the plate 

modes. These effective damping and mass were found to be in good agreement with those 

obtained from the case of a finite beam attached to an infinite plate. Although this 

analytical solution concerns only the simplest coupling form between a finite beam and a 

finite plate, it helps to shed light on developing a new methodology to simplify the 
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vibration predictions for general continuous couplings between a stiff source and a flexible 

receiver, which is the so-called 'mode-based' approach described in Part III. 

10.3 GENERAL CONTINUOUS COUPLINGS 

In this part of the research a mode-based approach was presented for a general complex 

built-up system consisting of a long-wavelength source and a short-wavelength receiver. 

The source and the receiver substructures are described separately in terms of their 

uncoupled natural modes (with free-free interface). The interface displacements between 

the source and the receiver are then decomposed into a complete set of orthogonal basis 

functions. In principle, the basis functions should meet the criteria of convenience, 

simplicity and accuracy. The dynamic response of the source/receiver system and the 

power transmitted to the receiver can then be determined analytically by enforcing the 

equilibrium and compatibility boundary conditions at the interface in terms of the 

generalized interface coordinates. The mode-based approach is able to accommodate both 

deterministic and statistical models, in that a large flexible structure is described 

asymptotically as a simply standing wave model, for example. But the assumption of a 

simple standing wave model requires that the interface positions are far away from the 

boundaries of the given receiver structure so that the influences of the near field wave 

motions can be ignored. This mode-based approach can be further extended to more 

general cases, where more than one type of wave motions may be involved, for example. 

The dynamic interactions between a stiff source and a large flexible receiver were 

investigated, in a form of dynamic stiffness modification matrix loaded on the source by 

presence of the receiver. Expressions were given for the effective loss factor and effective 

mass induced in each individual mode of the source by the receiver. Results were 

compared to those of 'Resound' [1] and fuzzy structure [5-6] theory, when a fuzzy-like 

receiver structure was assumed. It was found that they agreed well on the key result that 

fuzzy attachments add damping to the master structure which is independent of the 

internal damping of the attachments. 

Numerical examples were given on plate-stiffened beam systems where both a straight-

and an L-shaped beam were considered. Three approximate techniques were applied to 

describe the large and flexible plate models, i.e., simple standing wave models, infinite 

models and locally reacting models. Accordingly, vibration response predictions were 

made, respectively, by the mode-based approach, Mode/FT approach and locally reacting 

impedance method, and the associated results were compared against the 'exact' results 

determined by the conventional FRF-based sub-structuring method. It was found that both 
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the Mode/FT and locally reacting impedance methods were quite useful for straight beam 

coupling cases, whereas for the L-beam coupling cases, the mode-based approach was 

more appropriate. The plate-loaded effective mass and effective damping on the beam 

models were found with very similar dynamic properties as those described in previous 

chapters. It was also shown that the effective mass/damping tend to be independent of the 

internal damping of the plate in frequency average level. Especially when the modal 

overlap of the plate is so high that it exhibits non-resonant behaviour, the effective 

damping can be reasonably treated as independent of the internal damping of the plate. 

10.4 EXPERIMENTAL RESULTS 

As the final part of this thesis, laboratory measurements were arranged to verify 

experimentally the practicality of the main theoretical developments of the thesis. Freely 

suspended beam-stiffened plate models were set up. Measurements were made on both the 

point-mobility of the beam and the power transmitted to the plate, and then compared with 

the theoretical predictions by the mode-based approach and the Mode/FT approach where 

the plate receiver was assumed, respectively, as a simple standing wave model and an 

infinite model. The influences of the flexibility and damping of the plate on the vibration 

response of the coupled structure were investigated. The results shown were quite 

encouraging and in agreement with the theoretical expectations. 

10.5 FURTHER RESEARCH WORK 

It is expected that the mode-based approach can be developed for built-up structures 

which may consist of more than two substructures rather than only a single stiff source 

and a single flexible receiver. Once a generalized mode-based approach is established, the 

vibration response of and the power transmitted between each individual subsystem can be 

obtained in a simple manner. In addition, the dynamic interactions, then the coupling 

strength among directly and indirectly coupled subsystems, can be quantified. 

Such a generalized mode-based approach could be potentially very useful in two 

research areas; first, it may be used to refine the conventional FEA methods to be much 

less computationally expensive by reducing significantly the DOFs involved; secondly, it 

provides a novel tool to determine the coupling loss factors (CLF) between each 

individual subsystem in a rigorous and systematic way. The effects of 'remote' 

subsystems on the 'local' energy flow may also be quantified. As a result, a so-called 

'SEA-like' method may be developed to be applicable for strong coupling regime where 
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classical SEA was seen to be unsatisfied, namely, the traditional SEA may be 

reformulated with less restrictive assumptions. 

Furthermore, when the uncertainties and variations of each subsystem are involved in 

the dynamic interaction quantification procedure, it is possible to estimate the variability 

of SEA-like parameters and system response predictions. 

Ideally, the generalized mode-based approach, by combining with the conventional 

FEA and SEA methods, shall be able to provide a rigorous and systematic technique for 

predicting vibration properties in the mid-frequency range. 
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Appendix I 

MOEMES ()F SIMPILTT SUI»P()FnrE:D T1BC04 ]&ECTrAJ4(%Ul,AR 

PLATE 

A 1.1 Natural modes and natural frequencies of the plate 

For a thin rectangular plate bounded by four edges x = 0 , x = l^, y = 0 and } = , as 

shown in Figure A 1.1, the natural modes (mass-normalized) and natural frequencies are 

given by [11] 

4 . mrtx . TiTTy 
sm sm 

mnx 

y 
+ 

r Y nTtx 

V V 

(Al . l ) 

(A1.2) 

where and D are respectively the mass distribution (mass per unit area) and the 

bending stiffness of the plate, is the total mass of the plate, and m and n are integers 

which give the orders of the modes. 

F 

g % 

M , . 

7^- (x, y) ^ 

Figure A l . l Simply supported thin rectangular plate 

A1.2 Input- and transfer- mobilities of the plate 

Let F and and M represent respectively the harmonic force and moment excitations 

at the point and w and and correspond to the displacement and rotational 
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responses at an arbitrary point (x,_y). In Ref. [11], it is shown that the plate responses 

corresponding to the force excitation F can be determined by 

(A.-3) 
m=lM=1 

(A1.5) 

For the moment excitation , the plate responses are given by [11, 51-52] 

The plate responses corresponding to the moment excitation , similar to equations 

(A1.6)-(A1.8), can be written as 

3 
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The force and moment transfer-mobilities can therefore be determined from the above 

equations as 

yFt, ^ {x.y) (Ai . l3) 
P 

F8, ^ #<9, (z,)/) (A1.14) 

^ 

^ yM,,, (A1 16) 

/ A l l ? ) 

The force and moment input-mobility terms ^ can be determined by letting (x, y) in 

equations (A1.12)-(A1.17) be replaced by (^c^'o)- For brevity, these expressions are not 

repeated here. 

It is seen then that 

(A i . i s ) 

(A1.19) 

(A1.20) 

A 1.3 Dynamic responses of the plate: Mobility matrix 

A mobility matrix can be formed to obtain the dynamic response of the plate when 

subjected to external force and moment excitations. 

For example when the plate is excited simultaneously by F^, and M^, at (x,,y,) , 

and f 2 , M^2 &nd at (x; , ) ' ; ) ' the dynamic responses at these two points can be 

expressed as 
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(A1.21) 

From equations (A1-18)-(A1.20), it is seen that the mobility matrix in equation (A1.21) 

is symmetric. 

A 1.4 Matrix scaling and input power 

Let the real part of the mobility matrix in equation (A 1.21) be scaled by a diagonal matrix 

D = diag ' . The input power can then be approximated by the power mode 

approach as described in Chapter 2. 
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Appendix n 

1W[()DEBCMF^L S I M P L Y S t n M P 0 G r r E # E l ^ L E I L J % E B J 4 O I % L L I I H & A A i 

A 1.1 Natural modes and natural frequencies of the beam 

For an Euler-Bemoulli beam with both ends simply supported, its natural modes (mass-

normalized) and natural frequencies are given by [11] 

®.(-r) = . - 4 - s i n ^ (A2.1) 

A). = (A2.2) 

V * y 

where m,, and D,, are respectively the mass distribution (mass per unit length) and 

bending stiffness of the beam, is the length of the beam, and n is the order of the beam 

mode. 

A1.2 Input- and transfer-mobilities of the beam 

Let Fq and Mq represent respectively the harmonic force and moment excitations at the 

point Xg, and w and 9 correspond to the displacement and rotational responses at an 

arbitrary point x . Similar to Appendix I, the beam responses corresponding to the force 

excitation Fg are given by 

The beam responses corresponding to the moment excitation Mg are given by 
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9;c n=I G)^(l+;77)-G)" 
(A2.6) 

The force and moment transfer-mobilities can therefore be determined from the above 

equations as 

(A2.7) 

(A2.8) 

xMw) _ (;() (A2.9) 

y M / W (A2.10) 

The input-mobility terms ^ can be obtained by letting % in equations (A2.7)-(A2.10) 

be replaced by Xq . It is seen then that 

y(Afw) _ y(™) y(Mw) _ y(™) 
"'m * fr 

(A2.11) 

The above are the modal-summation solution for the input- and transfer-mobilities of 

the beam. 

A2.3 Dynamic responses of the beam: Mobility matrix 

When the beam is excited simultaneously by and M, at %, and and at »the 

dynamic responses at these two points can be obtained by 
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0. 

y ( M 
in 

y{Mw) y ( A v ) 

/ r 

y ( M w ) 

y ( f 4 

^in 
( M e ) 

in 
y M ) 

f r 

(M@) 

f r 

y M 
tr 

yiMw) y{Fw) 
m 

y{Mw) 
in 

y ( f 4 

^tr 
( M e ) y ( ^ 4 

m 

( M e ) 

Fr 

M, 

F2 

M 2 J 

(A2.12) 

From equation (A2.11), it is seen that the mobility matrix in equation (A2.12) is 
symmetric. 
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Appendix III 

T̂ECE FORCEI) BJESPOINSE OF A TIHN ]Q\F1NIT1C IN 

BENDING 

A3.1 Boundary conditions of the thin infinite plate 

The analytical solution for the input- and transfer-mobilities of a point-excited thin infinite 

plate in bending is found by assuming the following: 

a) The displacement must be axially symmetric; 

b) At the excitation point, the angular rotation or slope must vanish by symmetry; 

c) At the excitation point, the sum of the shear forces must be equal to the exciting 

force; 

d) The displacements at large distance from the excitation point must behave like a 

decaying wave (i.e., the Sommerfeld 'radiation condition' [11]). 

A3.2 Force input- and transfer-mobilities of the plate [11, 53] 

The differential equation for small transverse displacements w of a thin plate under no 

tension, neglecting losses, rotary inertia, and transverse shear flexibility, is 

AAw + = 0 (A3.1) 

where A is the Laplace Operator in the plane of the plate and is the mass density of 

the plate. For vibrations that are harmonic (sinusoidal time-variations), by introducing the 

bending wavenumber ^ , equation (A3.1) reduces to 

A A w — ( A 3 . 2 ) 

The general solution, obtained from the above equation, may be written as 

\v(r) = (A7-)+ (-;A:r) (A3.3) 

where is the zero-order Hankel function of the second kind, and t^rm 

represents an exponentially decaying neaifield. 
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When the plate is excited by a harmonic force at the original point r = 0 , by the 

boundary conditions (b) and (c) in section A3.I, the plate transverse and rotational 

displacements w and ^ at an arbitrary point with a distance r to the original point can be 

determined by [11] 

& 
(kr)+j^K,(kr) 

Hf'(kr)-i-K,(kr) 
9r ^8D A: 

(A3.4) 

(A3.5) 

where and are respectively the zero- and the first-order Hankel functions of the 

second kind, while and are the zero- and first-order modified Bessel functions of 

the second kind. At r = 0, w and 0 are respectively 

M/ (0) = 

^^(0) = 0 

(A3.6) 

(A3.7) 

As a result, the force input- and transfer-mobilities of an infinite thin plate can be 

determined by 

" F " " F ^0 ^0 

k ( " ) = 0. 

(A3.8) 

(A3.9) 

A3.3 Moment input- and transfer-mobilities of the plate [11, 61] 

Let the localized moment Mg at r = 0 be considered as applied over a disk of radius a 

located in the plate. The disk may be assumed to be infinitely rigid and massless. The 

plate can thus be taken as excited by two oppositely directed point forces F and - F , 

applied at two neighbouring points r = a and f = —a, with Mg = 2aF . In view of 

equation (A3.4), the plate response, at an arbitrary point vyith a distance r to the original 

point, corresponding to this system of excitation forces is given by 

F 
n ( A : ( r - o ) ) - n ( A : ( r - K f ) ) ] (A3.10) 
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where 11 represents a propagation function as 

n ( x ) = f f f ' ( x ) + y - / r . ( x ) (A3.11) 

In the expansion of equation (A3.10) for small arguments, when only the lower order 

terms are indicated, it gives 

n ( / : ( r - a ) ) = l + 2 A " ( r - a y 

n(A:(r + a)) = l + 2A:"(r + ay 

where and x are defined as 

+ OJ, In — yk (r — a )——(%2 In ) 

ar, +ar2ln^/A:(/' + a ) - ^a !2 ln (-_/) 

(A3.12) 

(A3.13) 

(A3.14) 

By differentiating equation (A3.10) with respect to r and letting a —> 0 , the rotational 

displacements of the plate, can be written as 

(A3.15) 

At r = 0, the plate rotational displacement, after some manipulation, is given by [11] 

(A3.16) ^ (0 ) = - ^ \ - i — \v[ — Yka 
2 

From equations (A3.15) and (A3.16), the moment input- and transfer mobilities can be 

determined by 

(Me) # ^ ( 0 ) (M@) (A3.17) 

It is clear that the moment input-mobility depends upon the size of applied 'point'. In 

fact the practical values of ka are usually much less than 10"'. In Ref. [61], it is pointed 

out that the successful application of the above results requires the two conditions: (1) 

1 (̂ he thickness of the plate) to retain the thin plate assumption; (2) 

» 1 to neglect the transverse shear effects in the plate. Thus the appropriate 

value of a should meet both » 1 and ^ < 10"'. 
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Appendix IV 

WAVENUMBER OF THE BEAM AFTER IT IS COUPLED TO A 

LOCALLY REACTING PLATE 

Based on the analytical procedure given in Chapter 4, it is seen when a beam is coupled to 

a locally reacting plate, the wavenumber of the beam can be simply determined by 

A; = 4, (A4.1) 

where 

(A4.2) 

The real part of , from the above two equations, is given as 

'm.co^ 2D„k 

a 
- + -

3 

P"P 

D,, 
(A4.3) 

Equation (A1.3) can then be re-written as 

2D A:'' 1 
^>^6 ,41 + — = A:.4|1 + 2 

where k,^ ~ . It finally yields 

(A4.4) 

(A4.5) 

The locally reacting condition k^jk'^ > 2 given in Refs. [26-27] can then be estimated as 

k.. 
> 2 (A4.6) 

When the plate component is relatively very flexible compared to the beam such that 

71 
(A4.7) 
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equation (A 1.5) gives 

~ 4, (A4.8) 

In this case, the locally reacting condition may be simply determined by 

l^h ^ ^ • 
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Appendix V 

FRF-BASED SUB-STRUCTURING METHOD FOR A GENERAL 

SOURCE-RECEIVER SYSTEM 

To model the dynamic characteristic of complex built-up structures, the frequency 

response function (FRF)-based sub-structuring technique is found to be a rather 

convenient and attractive [23-24], The fundamental concept of this technique is to utilize 

the individual uncoupled component FRFs to construct the total system response based on 

dynamic compliance formulation. Figure A5.1 illustrates a general source-receiver system, 

of which, both the source and the receiver has, in general, infinite number of degrees of 

freedom, and the two structures coupled at a finite number of points. The connections 

between the source and the receiver can be either rigid or flexible with dynamic stiffness 

characteristics. For simplicity, here, these coupling stiffness terms have been assumed to 

be included as part of one component. 

Source 

Rece iver 

Interface 

Figure A5.1 a general source-receiver system 

Let Mgg be the mobility matrix of the source from the excitation coordinates to the 

coupling points when it separated from the receiver, and Mg and Mg be the mobility 

matrices of the uncoupled source and receiver at the interface coupling points. When the 

source structure is excited by a set of external forces F,,, the dynamic response of the 

coupled system can be obtained by applying compatibility and equilibrium between the 

interface DOFs and forces, as below. 

For the source structure, there is 

Vg =MQsFg+MsFs 
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where Vg and Fg are respectively the velocity and force vectors of the source structure at 

the interface points. 

For the receiver structure, there is 

(A5.2) 

where and are respectively the velocity and force vectors of the receiver structure 

at the interface points. 

The compatibility and equilibrium boundary conditions at the interface give 

V s = V ^ , F , z . _ F ^ (A5.3) 

The dynamic responses of the receiver at the coupling positions are then given by 

F , = [ M s + M , J ' M „ F . (A5.4) 

V „ = M , [ M , + M „ J ' M , s F . (A5.5) 

Consequently, the power transmitted from the source to the receiver can be written as 

1 I - , 
1 ̂  I „ // ; ^ = - R e ^ F , 
2 

(Ms + M , ) M , (Ms + M „ f M F« (A5.6) 

Equation (A5.6) is the general expression of the power transmission from the source to the 

receiver. It can be re-written as 

P„ = | R e | v / ([Ms + M . 7 ' ) " M „ [ M s + M , J ' V . , | (A5.7) 

where = M^gF^ is the free velocity vector of the source structure at its interface points 

when it is uncoupled from the receiver structure. 

The FRF-based sub-structuring method has the advantage of being able to incorporate 

experimental FRFs directly into its spectral formulations. However, it inherently requires 

several matrix inversion calculations, which provide two major computational difficulties: 

one is the amplification of errors in the FRF-matrix inversion process, and the other is that 

the inversion computation could be very expensive for the large interface DOF cases, e.g., 

line coupling. The Orst difficulty can be overcome by applying least squares (LS) and 

singular value decomposition (SVD) approaches [55-56], while the second problem can be 

ameliorated by modern high-speed digital computers. 
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Appendix VI 

viNL-SBL&PioD 

B E A M 

When an L-shaped beam is excited by an external point force as shown in Figure 

A6.1, Ae dynamic response of the beam structure can be determined using the modal 

summation approach. 

Figure A6.1 The L-shaped beam model 

Let the "L"-shaped beam be viewed as two beam components rigidly connected at one 

joint, and the other ends of the beam components keep being described by their original 

boundary conditions, as shown in Figure A6.2. Here both the other ends of the beam 

components are simply supported, and also both the components of the beam are assumed 

to be uniform with same material properties and constant square cross sections. 

Beam 2 

Beam 1 

Figure A6.2 Decomposition of the L-shape beam 

210 



The displacements, deformations and stresses at the joint end of the L-beam are given 

in Figure A6.3. 

/i\ 

A 

Figure A6.3 Displacements, deformations and stresses at the joint end of the L-beam 

The equations of free flexural and torsional motions of the beams have the well-known 

forms as [10] 

D - + m-
w, 

dt-
= 0 

D 
a x 
9 / 

- + m- = 0 

a / 

(A6.1) 

(A6.2) 

(A6.3) 

(A6.4) 

where w, (x ) , Wg ();), (%) and ^̂ 2 (iy) ^ 6 the flexural and torsional displacements of 

the beam components 1 and 2 in z -direction, z -direction and y -directions, respectively, 

D and T are the flexural and torsional stiffness of the beam components, respectively, 

and m, J^ and 7,, are the mass distribution, the mass moment of the inertia per unit 

length about the x - and y - directions, respectively. Since it is assumed that the two beam 

components have the same square cross sections, J^ = J^. = J . The complementary 

solutions of the above equations then give 

w, ( x ) = cosh sinh(/=c)+C, cos (A%)4-D, sin (A6.5) 
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W; ( } ) = ^ cosh )+ ^2 (A};)+Q cos (Ay )+D2 sin (Ay) (A6.6) 

(^) - (^f^)+^ (^f^) (A6.7) 

^)2 ()') = ^2 cos (A,)')+ 7^ sin (A,)/) (A6.8) 

where k = -^Jma^/D and — •sJj/Tco are the corresponding bending and torsional 

wavenumbers of the beam components, respectively. 

Enforcing force equilibrium and displacement compatibility at the joint end of the L -

beam, yields 

M/, (4Uo"^2 W|,=0 (A6.9) 

Gel (4| .=0=-G,2()') |y=0 (A6.10) 

(^)|.c=0=-^y2()')|).=0 (A6.11) 

(^)|x=0 - ^ ) ' 2 ()')|)-0 (A6.12) 

(:()|jM)=^.r2()')| )=0 (A6.13) 

(4 |;M)=-'^.2() ') | ,=o (A6.14) 

where and &re the shear forces at the cross sections of beam 1 and 2, respectively, 

given as 

a , W = D ^ (A6.15) 

e , A y ) = D ' ^ (Af>.16) 

M , and M ^ r e the bending moments at the cross sections of beam 1 and 2, 

respectively, given as 

M „ = - D ^ (A6.17) 

M,, (A6.18) 
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and the torsional moments at the cross sections of beam 1 and 2, 

respectively, given as 

30^ 

ox 

M,2= r . y2 
ay 

(A6.19) 

(A6.20) 

and ^̂ 2 the angular rotation of the beam at ± e cross sections of beam 1 and 2, 

respectively, given as 

Bw, 

= 

9% 
(A6.21) 

(A6.22) 

The boundary conditions at the other two simply supported ends of the beam components 

are 

)'=4 

(x) 

MAy) 

= 0 

= 0 

y=Lp 
= 0 

= 0 

MAy) y=L, 
= 0 

Combining equations (A6.5), (A6.6) and (A6.9), gives 

+ C, = Aj + C2 

Combining equations (A6.5), (A6.6), (A6.10), (A6.I5) and (A6.16), gives 

s , - D , = - ( B 2 - A ) 

Combining equations (A6.5), (A6.8), (A6.12), (A6.17) and (A6.19), gives 

- D A ; X A - Q ) = 7%,f;, 

(A6.23) 

(A6.24) 

(A6.25) 

(A6.26) 

(A6.27) 

(A6.28) 

(A6.29) 

(A6.30) 

(A6.31) 
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Combining equations (A6.5), (A6.8), (A6.11) and (A6.21), gives 

A:(B,+D,) = -E2 (A6.32) 

Combining equations (A6.6), (A6.7), (A6.14), (A6.18) and (A6.19), gives 

= (A6.33) 

Combining equations (A6.6), (A6.7), (A6.13) and (A6.22), gives 

A:(B2+Dj = E, (A6.34) 

Combining equations (A6.5) and (A6.23), (A6.6) and (A6.24), respectively, yields 

cosh ) + s i n h ) + C, cos )+Z), sin ) = 0 (A6.35) 

A2 cosh {kL^^ + B^ sinh {kL^,)+ Q cos {kL^)+ sin {kL^, ) = 0 (A6.36) 

Combining equations (A6.5), (A6.17), and (A6.25), yields 

A, c o s h ) + B , s i n h ) - C , c o s ) - D , s i n ) = 0 (A6.37) 

Combining equations (A6.6), (A6.18) and (A6.26), yields 

A; cosh ( ) + ^ 2 sinh cos sin ) = 0 (A6.38) 

Combining equations (A6.7), (A6.8), (A6.19), (A6.20), (A6.27) and (A6.28), gives 

-E, sin ) + f ; cos (^,1,) = 0 (A6.39) 

-Ez sin ) + E , c o s (X:,!, ) = 0 (A6.40) 

From equations (A6.35) and (A6.37), it yields 

y4,=-tanh(jkLj^, (A6.41) 

C, =-D,tan(A:Lj (A6.42) 

From equations (A6.36) and (A6.38), it yields 

/42=-tanh(H,J^2 (A6.43) 

Q = - D 2 t a n ( A L j (A6.44) 

From equations (A6.39) and (A6.40), it follows that 

f ;=E,tan(^,Z,J (A6.45) 
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(A6.46) 

Equations (A6.32) and (A6.34) yield 

(fi,+i3,)+(S,+A) = ̂ (£,-£,) (AS.47) 

Combining equations (A6.30) and (A6.47), it follows 

g, + ^2 = D, + ^ (E, - ) (A6.48) 

Equations (A6.31) and (A6.33) yield 

(A-C,)+(4-Q) = |t(f,-F,) (A6.49) 

Combining equations (A6.29) and (A6.49), it gives 

A , - Q = ^ - C , = ^ ( F , - F , ) (A6.50) 

Combining equations (A6.31), (A6.41) and (A6.42), it follows 

Tk 
- tanh (JcL^. )B^+tan {kL^) A = ~ ^ (A6.51) 

Combining equations (A6.32) and (A6.51), it gives 

V ^ y 
tanh {kL^) - ^ + D, + tan (kL^) D, = — % (A6.52) 

Substituting equation (A6.46) into (A6.52), it gives 

where 

D, (A6.53) 

. tanh (kL ) + — tan ik^L ) 
Q, = i ^ (A6.54) 

A tanh (Af,,) + tan ) 

Substituting equation (A6.53) into (A6.42), it gives 

q=tan( jLLjQ,E2 (A6.55) 

Then equations (A6.32) and (A6.55) yield 

^ 1 ^ 
" T + Q i 
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Equations (A6.41) and (A6.56) yield 

A, = tanh {kL^) C, 01 E. (A6.57) 

Similarly, combining equations (A6.33), (A6.43) and (A6.44), it gives 

- tanh {kL ,̂ + tan { k ^ 
Tk, 

2 ^ 1 

Combining equations (A6.34) and (A6.58), it yields 

r . \ \ i _ 71k, 
- tanh (kL^,)— + tanh ] + tan (kL ,̂ D. 

Substituting equation (A6.45) into (A6.59), it gives 

where 

^2 ~ ^02^1 

tanh tan 
C, m 

02 
tanh ̂  ) + tan ) 

Substituting equation (A6.44) into (A6.60), it gives 

Q =-tan(^^,)Co2^] 

Combining equations (A6.34) and (A6.60), it follows 

_ F 

(A6.58) 

(A6.59) 

(A6.60) 

(A6.61) 

(A6.62) 

•C, 02 
(A6.63) 

Substituting equation (A6.43) into (A6.63), it gives 

Ag = - tanh (kL^.) 
1 

— C, 02 
(A6.64) 

Substituting equations (A6.55), (A6.57), (A6.62) and (A6.64) into (A6.29), it gives 

where 

c ; , E , + c ; , E , = o 

Co, = - [tanh ) - tan (kL, ) ] C, 

(A6.65) 

01 
(A6.66) 
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c; 02 tanh (AL, ) - tan ) C, 02 
(A6.67) 

Substituting equations (A6.53), (A6.56), (A6.60) and (A6.63) into equation (A6.30), and 

then combining with equation (A6.65), the frequency equation of the L-shaped beam can 

be written as 

1 
[ c ; + c ; ] = 2 [ Q , c ; + Q , c ] (A6.68) 

The natural frequencies of the L-shaped beam can then be determined by solving the set of 

roots of equation (A6.68) by the relations 

\EI 9 \T 
= J — M = 1,2,... 

V m V J 
(A6.69) 

Consequently, the elastic mode shape functions of the beam components can be expressed 

as 

(^) = 4!'^ sink (^„z) + cos sin (A6.70) 

( } ) = cosh sinh cos ( ) ; ) + s i n y ) (A6.71) 

where 

C' 

C, 01 

• c 01 

f~i' f 1 A 
(1) _ ^02 

C' '-'01 
C, 

01 

c ' 
^ - - - ; ^ t a n )Co; 

C, 
01 

D ( ' ) = ^ C 
C, / ^01 

01 

•C 02 

02 

C,[ ^ - tan {kn^y )C'o2 

(A6.72) 

(A6.73) 

(A6.74) 

(A6.75) 

(A6.76) 

(A6.77) 

(A6.78) 
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flf = C„ (A6.79) 

And the torsional mode shapes of the beam components are 

cos (/:, , % ) + s i n (A6.80) 

(}') = cos s i n ( A 6 . 8 1 ) 

where 

Ef) = 1 (A6.82) 

F.'" = ten(j:,.4) (A6.83) 

£:P)=-£k (A6.84) 

Q i 

(A6.85) 
^01 

Combining equations (A6.70) and (A6.71), the nth elastic mode shape function of the 

beam can be re-written as 

Except the above elastic mode shape functions, a complete set of mode shape functions 

of the L-shaped beam considered here also include a rigid mode, which is defined as 

1 , 0 < X < Z/j,, y — 0 

(A6.87) 

and the associated natural frequency (Wg = 0. 

So far a complete set of mode shapes as well as the associated natural frequencies 

(0„ have been derived for an L-shaped beam with simply supported boundary conditions. 

, of course, can be furthermore normalized as required. 

Especially, when L̂ . = 1,̂ , L,, = 0 , i.e., a straight beam with both ends simply 

supported, no torsion waves are included so that = 0 . By the relations given in 
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equations (A6.54), (A6.61), (A6.66) and (A6.67), the frequency equation (A6.68) becomes 

C Q I — 01 i.e., 

which yields 

tan(Ai%) = 0 => sin(tZ^) = 0 (A6.89) 

The above equation is just the frequencies of a straight beam with both ends simply 

supported, being given by 

(A6.90) 
4 
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Appendix VII 

NATURAL MODES AND NATURAL FREQUENCIES OF A FREE-

FREE BEAM 

A7.1 Natural frequencies of the beam 

For an Euler-Bernoulli free-free beam (i.e., with both ends free), in Ref. [40], the natural 

frequencies of the beam can be determined by solving the following equation 

l-cosh(/:[^)cos(AZ%) = 0 (A7.1) 

where ^ is the wavenumber of the beam and is the length of the beam. The set of roots 

of equation (A7.1) therefore can be obtained as 

4.730 (A7.2) 

O H— 
V 2 

;r « > 2 (A7.3) 

By the relation k = ^ln%Q)^/D^ , where m,̂  and are respectively the mass distribution 

(mass per unit length) and bending stiffness of the beam, the nth natural frequency of the 

beam can be given as 

(A7.4) 
m, 

hi.2 Natural modes of the beam 

The Mth natural mode of a free-free beam is give by [40] 

(%) = cosh(A:,%)+cos(^^%)-E^[sinh(^^%)+sin(^^z)] (A7.5) 

where 

^ ^ sinh(/[^Z^)+sin(^^Zt) 6) 

cosh cos 

It should be noted that the expression given in equation (A7.5) is not in a normalized 

form. 
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