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by Stephen John O'Connell 

This thesis introduces a new approach to understanding the issues relating to the efficient 

implementation of a binary relational database built upon a triple store. 

The place of the binary relational database is established with reference to other database 

models, and a detailed description of a new triple store implementation is presented, together 

with a definition of the architecture. 

The use of a model, which reflects the performance of the triple store database, is described, 

and the results of performance investigations are presented. In the first, the use of more than 

one sort order in the triple store database is analyzed, and the use of two sort orders is found 

to be optimal. In the second, the effect of compression in the triple store is considered, and 

compared with other approaches to compressing the non-index portion of a database 

management system. 

In conclusion, the model successfully predicts the effect of using two sort orders, and this 

was confirmed upon subsequent incorporation into the database. It is also found that 

significant performance gains can be made by the use of compression in the triple store. It is 

shown that by extending the compression algorithm even greater gains could be made. In 

addition, it is found that by keeping the design of the database as simple and pure as possible, 

a foundation for a variety of higher level views can be achieved, leading to the possibility of 

the triple store being used as the foundation for new databases. 
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1 Introduction 

This thesis introduces a new approach to understanding the issues relating to the efficient 

implementation of a binary relational database built upon a triple store. A model has been 

built which reflects the performance of a new implementation of a triple store database. 

The model has been used to explore the potential benefits of extending the 

implementation. In turn, this has led to a new understanding of the benefits of 

compression within the triple store, which were discovered to be much greater than in a 

traditional relational database. 

The idea of a binary relational database is not new. Research in the area has been 

ongoing, and various products have been brought to market, ranging fi-om IBM's Data 

Mapping Program, shipped in the 1980s, to a database being shipped in 2002 by Lazy 

Software Ltd. 

The advantages of basing a binary relational database on a triple store include the 

following aspects: 

• The triple environment is essentially uniform, leading to efficiency and economy 

• A considerable amount of processing can be carried out within the triple store 

itself, without manipulating a large number of data items 

• The underlying model needs relatively simple code to access and maintain the data 

• The uniformity of the triple store yields very significant compression opportunities 

• The triple store also has the potential to be made completely self-tuning, which 

would be a significant benefit for both larger and smaller users. 

• The uniform data structure is easier to spread onto multiple disks for parallelization 

The background to the development of databases, and in particular the binary relational 

model, is introduced in Chapter 2, and previous work on compression is also reviewed. 

Chapter 3 gives a detailed description of the new triple store, while Chapter 4 covers the 

architecture behind it. Chapter 4 also describes a number of different interfaces that have 

been developed to provide a front end to the database. 



The thesis then presents, in Chapter 5, the novel modelling technique used for 

performance investigation, and contains the results of two sets of experiments using this 

model, the first on the effect on performance of storing data in different ways, and the 

second on the effect of compression in the triple store. There has been much work on the 

compression of indexes in databases, but much less on the compression of the actual data 

in a database. The triple store mechanism provides a unique opportunity for high data 

compression, and the modelling exercise led to some new and interesting conclusions. 

Chapter 6 then brings together the major aspects of the project, presenting conclusions 

concerning the effect of compression on performance, the benefits of taking the selected 

approach to performance modelling, and the achievement of this implementation of the 

triple store, before asking the question, "Could the future be binary relational?" 

* * * * * * * * * 

This work was carried out in collaboration with Norman Winterbottom, a Visiting 

Research Fellow at the University of Southampton. The design was developed jointly, 

and I then produced all of the documentation, some of which forms part of this thesis. 

Chapter 4 captures the essence of the design decisions that were made, and Appendix A 

gives a flavour of the detail. Coding was shared; Norman Winterbottom carried out the 

greater part of this task, but I wrote the code to handle the cache and the interface to the 

disk. I put considerable effort into many iterations of system and performance testing, 

which became a discovery process in itself as performance characteristics became clear 

and the design was refined. This led to the development and calibration of the 

performance model, which was entirely my work, and I undertook all of the subsequent 

investigations with the model. 

An important part of the project was also to demonstrate that the triple store could form 

the basis for a variety of external views. I involved some final year students in this aspect, 

and I was responsible for guiding them through their work to successful conclusions. This 

provided further insight and feedback as to the facilities which were required at the 

programming interface. 



I have written two papers with Norman Winterbottom reporting new results as an outcome 

of this work. The first [OConOO], which deals with sort orders in the triple store, has 

already been published. The second [OCon02] has been submitted to SIGMOD Record 

for consideration. This deals with the effect of compressing non-index data in the triple 

store database, and the results contrast significantly with other recent published work. The 

work reported in the two papers is presented in Chapter 5 of this thesis. 



2 Background: Databases and Compression 

For the last twenty years, relational databases have commanded much attention in terms of 

commercial investment (for example Oracle, DB2, MS SQL Server) and academic 

interest, followed at some distance by object-oriented databases. However, now that the 

limitations of the relational approach are beginning to restrict end users who wish to 

handle many more varieties of data, some object-oriented databases are being marketed 

(for example Object Store, Cache, Objectivity/DB), and object-relational databases, which 

aim to combine elements from both traditions, are being brought to market by the 

traditional RDBMS vendors. The increasingly widespread use of XML is also driving 

traditional vendors to offer various levels of support, and new 'native-XML' databases 

such as Tamino are appearing. At the same time, there is an increasing demand for 

databases to run on parallel platforms, to manage ever-growing volumes of data, to handle 

high transaction rates for on-line transaction processing, and to enable new applications 

such as on-line analytical processing. 

In Section 2.1, the current technologies are reviewed. Standard texts such as [ElmOO], 

[DatOO] or [Gray93] provide full descriptions, but the particular interest here is to contrast 

the way in which different database models handle the various kinds of relationship 

between data items, how the data is actually stored, and to introduce some of the issues 

that must be addressed. The binary relational approach is then introduced and contrasted, 

to provide the context and background for the work that has been undertaken 

In Section 2.2, previous work on compression in databases is reviewed. 

2.1 Database Comparison 

2.1.1 Hierarchical Databases 

The first hierarchical DBMS was IBM's IMS, with its own data language, DL/1. There 

are no references that precede the shipment of the product, but [McG77] gives an 

overview of IMS and some aspects were later formalized [Bjo82]. IMS is fully described 

in a large collection of IBM manuals. Later work considered the incorporation of 



hierarchical structures within a relational database [Gys89, Jag89]. Another major 

commercial offering was System 2000, now marketed by SAS inc. 

A hierarchy is a tree structure, containing a number of nodes or records (also called 

segments). As data is added to a hierarchical database, trees of records containing related 

data values are created. Each of these is called a 'hierarchical occurrence'. Each 

hierarchical occurrence has one root record, and contains all of the child records that relate 

to this particular root record. 

There are various ways of holding a hierarchical occurrence in storage and on disk. One 

common way is to use a 'hierarchical record', which stores the data in a 'hierarchical 

sequence'. For each record within the sequence (except the root) there may be a varying 

number of instances, so it is necessary to store the type indicator with each record, so that 

the data can subsequently be interpreted. 

The hierarchical sequence has the effect of storing many of the data items that are closely 

related close together in storage, so that retrieval is then efficient. However, some 

requests for data will entail gathering data that is spread into different parts of the 

hierarchical record, or in other records, and large amounts of data must then be retrieved. 

Relationships between different elements of the data may be held in three ways: 

• within the same record 

• via a Parent-Child relationship 

• via a Virtual Parent-Child relationship 

Within the database, these are implemented by virtue of being in the same hierarchical 

record or by physical pointers from record to record. They may also be combined in 

various ways. However, the use of both the hierarchical record and physical pointers 

means that the logical data structure is carried over into the physical representation to 

some extent. Subsequent changes to the database schema may therefore involve 

reorganizing all of the data in the database. 



Hierarchical databases permit the reduction or elimination of duplicate data, and while 

some real world systems are naturally hierarchical, extensions such as virtual pointers 

allow most other systems to be modelled. However, many real world systems do not fit 

the model easily, and m;n relationship types can be represented only by adding redundant 

records or by using virtual parent-child relationships and pointer records. There are 

various other restrictions, and database schemata can get very complicated. Some of the 

first major commercial systems were built using hierarchical databases. Many major 

companies have made a big investment in systems using hierarchical databases, and these 

will still be in use for many years. 

2.1.2 Network Databases 

(Note: The word 'network' here refers to the organization of the data. It has nothing to 

do with whether the database is distributed over a communications network or not.) 

The Network Model was defined by the DBTG (Data Base Task Group) of the 

CODASYL (Conference on Data Systems Languages) committee from 1971 onwards, and 

is often referred to as the CODASYL network model [CODASYL], or as the DBTG 

model. The various aspects were defined in considerable detail, to form a standard upon 

which vendors could base their implementations. However this followed earlier work by 

Charles Bachman and others during the development of the first commercial DBMS, 

which was the Integrated Data Store (IDS). Bachman also introduced his 'Bachman 

diagrams' for describing relationships in a database [Bac69]. 

As in the hierarchical model, data is stored in records, which are classified into record 

types. However, the network model allows more complex data items to be defined. In 

addition to records containing simple and composite single-valued attributes, the model 

also permits records with simple multivalued attributes, which are known as vectors, and 

records with composite multivalued attributes, which are known as repeating groups. 

The network model also supports virtual (or derived) data items. The value of a derived 

data item is not stored in the database, but is calculated 'on the fly' from other data that is 

stored in the database, according to a procedure supplied by the user. 



In the network model, the construct called a set type is used to represent relationships. 

Sets in the Network model are not the same as mathematical sets. 

A set type is a description of a 1 ;N relationship between two record types. Each set has 

® A set name 

• One owner record from the owner record type 

® A number (zero or more) of related member records. In addition, the member 

records are ordered. (The order is immaterial in a mathematical set.) 

In the relational model, described in the next section, a table is a normal mathematical set 

of tuples, all of which are of the same type and which represent instances of an entity, 

together with its attributes. In the network model, each set represents one instance of a 

relationship, and the set type represents a relationship type. For example, there might be 

a set type for the relationship 'MANAGES', in which each set would contain one 

manager, and all of the employees who work for him. This is a fundamental difference of 

approach. 

In general, records will not be stored as contiguous sets in the database. Indeed, if records 

participate in more than one set, it is plainly impossible to store them in this way, and for 

performance reasons, alternatives may be preferable anyway. Typically, records are 

linked into sets using some sort of pointer structure. 

A set instance is often kept as a ring (circular linked list) linking the owner record and 

all of the member records. The records carry an internal identifier to indicate which is the 

owner and which are the member records. Each record also has one pointer field to point 

to the next record in the ring for each set of which it is a member. 

Other representations of sets include the following: 



• Doubly linked circular list:- pointers go forwards and backwards 

• Owner pointer representation, in combination with a ring;- each record has an 

additional pointer pointing to the owner 

• Contiguous member records 

• Pointer arrays:- owner has an array of pointers to the members. Usually used with 

owner pointer representation 

® Indexed representation:- a small index is kept with the owner for each set 

occurrence 

The relationships between different elements of the data may be held in three different 

ways (or in combinations): 

• within the same record 

® via set membership 

® via linked records belonging to more than one set 

With network databases duplicate data can be reduced, or eliminated. It is easier to model 

many systems with networks than with hierarchies, and the relationships are explicitly 

modelled, but the actual storage of such data models is more complicated and may be less 

space efficient than with hierarchical data models. Record-at-a-time processing means the 

programmer has to do more work than with set-oriented processing, and navigation is 

carried out in program logic, which the programmer must implement. This also means 

that it may not be possible to alter the structure of the database without changing 

programs, so that data independence is not fully supported. 

Major commercial systems have been built using network databases, and as with 

hierarchical databases, user enterprises have made a big investment in systems using 

network databases. 

2.1.3 Relational Databases 

The relational model of data was introduced by Codd [Codd70], who went on to introduce 

relational algebra and develop the theory of relational databases in a series of papers 

[Codd71, Codd72, Codd72a, Codd74]. There has been much research on various aspects 
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of the relational model. The Peterlee Relational Test Vehicle (PRTV) [Todd76] was an 

experimental database that directly implemented the relational algebra operations. The 

PRTV was developed at IBM's research centre which existed for a while at Peterlee in 

County Durham. However, the dominant way to access relational databases soon became 

the use of Structured Query Language (SQL), originally known as SEQUEL [Cha76]. 

In the relational world, a database structure is presented to the user as a collection of 

relations or tables, with each table organized into rows and columns. It is important to 

realize that tables are the logical structure in a relational system, not the physical structure. 

The DBMS is free to use any or all of the usual structures underneath the covers. 

In a relational database, the same information can be structured in many ways by 

assembling the data into different tables. The number of tables can range from one to 

almost the total number of columns in the database. The database designer has to decide 

how tables should be laid out. However, the original relational theory imposes the first 

normal form constraint which requires the attribute values in a relation to be only atomic. 

This means that a column value must not itself be a tuple or a set, and rules out repeating 

groups. (Post-Relational databases relax this restriction.) To avoid certain update 

anomalies it is necessary to go further and reduce tables to second and third normal forms, 

and possibly higher. Second normal form applies to relations with composite keys: for a 

relation to be in second normal form, it must be in first normal form and every non-

primary-key attribute must be fully functionally dependant on the primary key, and not on 

just a part of the key. To be in third normal form, a relation must be in second normal 

form, and there must be no transitive dependencies between any non-primary-key attribute 

and the primary key. 

The query language in relational database systems is declarative - the user states what he 

wants, and the DBMS works out how to get it. The various operations (such as joins, 

restrictions and so on) always produce another relation as their output, and this relation 

can be input to further relational operations if required. It is interesting to note, however, 

that once a join has been carried out, there is no longer any guarantee that the resulting 

relation is fully normalized - it frequently will not be. SQL is the de facto standard 

relational language, but there are other approaches and front-end technologies that allow 

user-friendly access to relational databases, often based on the Query By Example (QBE) 



paradigm. With QBE, the query is formulated by filling in templates of tables displayed 

on a computer screen. QBE was one of the first graphical query languages for database 

systems. It was developed at IBM Research [Zlo75], and can be used, for example, with 

DB/2. It is also the approach used for one of the query interfaces into Microsoft Access 

and Paradox. 

These approaches to data manipulation contrast strongly with the navigational approach 

needed to work with hierarchical and network databases. With the navigational approach, 

the programmer essentially follows the pointers inside the database, but there are no 

pointers inside a relational database. The DBMS must do the work of retrieving related 

items of data. 

When it comes to storing the data, each row in a table typically becomes a stored record, a 

string of bytes with a prefix containing system control information and up to n stored 

fields, where n is the number of columns in the base table. Internally, each record has a 

unique record id (RID) within a database. The RID consists of the page number and the 

byte offset fi-om the start of the page of a slot that, in turn, contains the record's starting 

position within the page. Thus records within a page can be reorganized without changing 

their RIDs. Each stored field includes three elements: 

• A prefix field that contains the length of the data 

• A null indicator prefix that indicates whether the field contains a null value 

• An encoded data value 

The only relationships that are represented physically in relational databases are between 

the items of data that are members of the same record (tuple). Beyond this, relationships 

are not represented physically within the database. They must be rediscovered / 

reconstructed when a query or update is needed, by combining tables on the basis of 

looking for equal values in specified columns of each table. In setting up the tables in the 

first place, it is therefore necessary to duplicate data in different tables in order for this to 

be possible. To ensure that data is kept consistent, integrity constraints are needed, in 

particular, referential integrity. 

10 



Thus, relationships between different elements of the data may be discovered in two 

different ways: 

• by finding related items within the same record 

® by combining ('joining') two or more relations to form a new relation 

or by combinations of these. 

The major advantage of relational databases, then, is that the database is perceived by the 

user as tables, and that access is declarative, not navigational. Access is therefore not 

dependent upon physically implemented pointers. To obtain reasonable performance, the 

database management software must have powerful capabilities to interpret the user's 

queries and optimize their execution. There is a far greater degree of data independence 

than with the previous two models, although there is significant data duplication. 

It is perhaps important to realize, however that "the relational model of data was not really 

a model at all, but rather a theory" [Dar96], based on mathematical sets. Mathematical 

relations do not necessarily model the real world, and there are a number of restrictions. 

Design and normalization require significant skill, and DB management software is much 

more complex. Relational systems impose the first normal form constraint, which means 

that the object space must be mapped onto a collection of ' f lat ' relations (i.e. tables). With 

this approach much of the inherent semantics of complex object composition is lost, and 

one needs to perform foreign key joins to reconstruct a complex object. 

Relational databases currently occupy by far the largest part of the marketplace, with large 

numbers of vendors supplying DBMSs and complementary products. The major offerings 

are now IBM's DB2 [DB2], Oracle [Oracle], Microsoft's SQL Server [SQLServ] and 

Sybase [Sybase], but there are many others, specializing in certain markets such as the 

desktop or in application areas like geographic information systems. 

2.1.4 Object-Oriented Databases 

The models discussed so far are quite successful for handling straightforward business 

data. However, there are other applications that have different requirements. These 
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include engineering design and manufacturing (CAD/CAM), image and graphics 

databases, scientific databases, geographic information systems, multimedia databases and 

so on. These applications require support for structures that are more complex, or for 

unstructured objects such as images, which need non-standard routines to handle them. 

Object-oriented databases (ODBMSs) have been developed to handle these. 

There is no single way of implementing ODBMSs, and at this point in time, researchers 

and manufacturers have developed a wide range of different approaches [Kho93]. The 

Object Data Management Group [ODMG] is now providing a focal point for some degree 

of convergence and the development of standards [Catt95]. However, one characteristic is 

that ODBMSs normally support a persistent programming paradigm. The programmer 

treats objects in the same way, regardless of whether they are stored in the database or not. 

Objects are persistent if they are stored permanently in the database or transient if they 

only exist during execution of a program. 

In the case of ObjectStore [ObDes], for example, the system is closely integrated with the 

C++ language, and provides persistent storage facilities for C++ objects. This choice was 

made to avoid the impedance mismatch problem between a database system and its 

programming language, where the structures provided by the database system are distinct 

from those provided by the programming language. Objectivity/DB [ObDb] is a 

distributed ODBMS. It is designed for mission-critical and production environments, and 

claims to offer high performance, virtually unlimited scalability, and interoperability 

across all major platforms and operating systems. 

One of the fundamental concepts of object orientation is Object Identity. Object identity 

organizes the objects or instances of an application in arbitrary graph-structured object 

spaces. Identity is the property of an object that distinguishes the object from all other 

objects in the application. In a complete object-oriented system each object is given an 

identity that will be permanently associated whatever structural or state changes take 

place. Identity is independent of location, or address. Object identity provides the most 

natural modelling primitive to allow the same object to be a sub-object of multiple parent 

objects. 
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With object identity, objects can contain or refer to other objects. Object identity clarifies, 

enhances and extends the notions of pointers, foreign keys, and file names. Using object 

identity, programmers can dynamically construct arbitrary graph-structured composite or 

complex objects - objects that are constructed from sub-objects. Objects can be created 

and disposed of at run-time. If using an ODBMS, objects can become persistent and be 

reaccessed in subsequent programs. 

Two types of reference semantics exist between a complex object and its components at 

each level: 

• Ownership semantics applies when the sub objects of a complex object are 

encapsulated within the complex object and are hence considered part of the 

complex object. 

• Reference semantics applies when the components of the complex object are 

themselves independent objects but at times may be considered part of the complex 

object. 

Storage mechanisms vary widely within ODBMSs. A typical implementation might store 

items of data linked by ownership close together on the disk, in a similar fashion to the 

data in a 'record'. Items linked by reference would, in C++ terms, be represented by a 

pointer. Internally, the ODBMS is likely to make use of object identifiers to resolve such 

pointers, so that there is no dependence on any underlying physical structure. 

In summary, ODBMSs support complex objects and extensible data types, with complex 

relationships between objects. The use of object identifiers divorces the 'labelling' of 

entities from the data values associated with the entities, and makes for a much cleaner 

approach. 

ODBMSs are not yet as sophisticated as RDBMSs, however, and tend to be tightly linked 

to a single language, most often C++. For performance reasons, ODBMSs normally run in 

the same address space as the applications, whereas RDBMSs require an address space 

switch, which provides a major security benefit. Although commercial users are 

increasing steadily, this is likely to stay a niche market, and many of the best features are 

now being adopted by object-relational databases. 
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2.1.5 Object-Relational Databases 

Relational DBMSs provide excellent support for simple data and simple to somewhat 

complex queries. Object-oriented DBMSs provide efficient support for certain classes of 

applications on complex data, but without many relational 'goodies' like queryablility, 

security, database administration and so on. Neither the current RDBMSs nor the current 

ODBMSs find it easy to meet the growing demands of new applications requiring 

complex querying on complex data, including multimedia data. Object-relational systems 

(ORDBMSs) aim to combine the benefits of the RDBMSs with the modelling capabilities 

of the ODBMSs, thus providing support for complex queries on complex data [Ston96]. 

There has been a concerted standards effort to extend SQL-92 to provide the extra 

facilities needed to support ORDBMSs, resulting in SQL3 [App B in DatOO]. SQL3 aims 

to be a computationally complete language for the definition and management of 

persistent, complex objects. It includes generalization and specialization hierarchies, 

multiple inheritance, user-defined data types, triggers and assertions, support for 

knowledge-based systems, recursive query expressions, and additional data administration 

tools. It also includes the specification of abstract data types, object identifiers, methods, 

inheritance, polymorphism, encapsulation, and all of the other facilities normally 

associated with object data management. 

The production of ORDBMSs is mainly driven by the RDBMS vendors, by adding 

Sanction to their existing products to offer some of the above facilities, often starting with 

the support of data types such as Binary Large Objects (BLOBs) and Character Large 

Objects (CLOBs). BLOBs include images, video clips and sound tracks that have an 

internal structure that cannot be handled by any of the traditional database approaches. 

CLOBs are documents containing text, probably formatted in some way, maybe using 

HTML or XML (see below). With demand for complex data and complex queries in 

traditional business applications, ORDBMSs seem to be a natural progression for 

RDBMSs, but it remains to be seen to what extent they are accepted in the marketplace. 

It is also worth noting that various research efforts, such as Gamma [DeW90], Volcano 

[Gra90] (which formed the basis of the parallel implementation of Informix) and others 
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have found ways to adapt traditional relational database engines to run on parallel 

hardware, and object extensions are being added on top of these foundations. 

2.1.6 XML Databases 

Extended Markup Language [XML] is increasingly being used to provide a flexible way 

to capture the structure of documents and their contents, and enable information transfer 

between users across networks. The relational database format is well suited for stable 

information structures, and data that fits well into fully populated rows and columns, but 

XML documents do not conform to this paradigm. Relational database vendors tend to 

offer XML support as an add-on, and still do most of the work with SQL and tables. The 

information is stored in tables, and only converted to XML when needed. 

Native XML databases use XML as the primary means for structuring, organizing and 

storing information. Like SQL, XML provides full searching and indexing, but XML 

goes one step fiirther by letting users modify the structure of a document without 

destroying any data already stored in it. There is then no need to perform XML-RDBMS 

translations or transformations. 

A number of native XML databases are now appearing on the market. One is Tamino 

[Tam]. (Tamino is an acronym for Transactional Architecture for Managing Internet 

Objects. Tamino is also the hero in Mozart's The Magic FluteX) An additional capability 

here is that it can scan a well-formed XML document and work out what the structure is, 

whereas relational data must always have its structure already specified before being 

loaded into a database. Another native XML database is XIS (extensible Information 

Server) from eXcelon [Exc]. 

While the native XML database (XDBMS) is an attractive idea, existing organizations 

with large amounts of data already stored in RDBMSs are unlikely to convert their 

databases in the short term, but XML will be increasingly used to convey information 

from one database to another. 
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2.1.7 Limitations and an alternative 

Relational databases demand that data be partly decomposed into a series of flat tables, 

which are typically stored record by record on to the disk. Elaborate normalization rules 

have to be followed to ensure that this partial decomposition is carried out correctly, and it 

is not difficult to lose information in the process. Object-oriented databases work in terms 

of complex objects, which have to be flattened before storage on to disk, and this can 

easily result in non-uniformity in data access, as some related data items are bound to end 

up widely separated on the disk, while others will be held in the same block. 

An alternative approach in either case is to fully decompose the data [Kho96]. At first 

sight, this may not appear to be promising from a performance point of view, but studies 

[Cop85, Kho87] have shown that it can work very well, and commercial databases based 

on this philosophy have been successfully marketed. One of these is the so-called 'Data 

Mapping Program' from IBM [DMP82] (a fully functional database management 

system), and recently. Lazy Software has brought to market a database based on what is 

termed "The Associative Model of Data" [Lazy], which is essentially an extension of the 

binary relational model. Sybase have also brought out a search tool which extracts data 

into a binary relational format. 

Decomposed data may be stored in 'two-column tables', as in MONET [Bon96], [Bon99], 

but a more radical approach, which was used in the Data Mapping Program is to build a 

Triple Store to hold the data. A key aspect of this is the separation of relationships from 

the data. As a result, much of the internal query processing can be performed on uniform 

identifiers, rather than somewhat heterogeneous data strings, leading to simplification of 

coding within the database, and potential performance advantages. 

Above a fully decomposed data store, it is possible to build object-oriented or normal (n-

ary) relational databases or, as in the case of the Data Mapping Program, a binary-

relational view can be offered to end users. The binary-relational model is described in 

[Fro86]. It offers a very easy-to-use and intuitive approach for end users. Another 

characteristic of such a database built on a triple store is that catalog (or data dictionary) 

information is automatically contained within the store [Shar78], and administering this is 

16 



very straightforward. In an n-ary relational database, relationships can only be 

reconstructed if duplicate data is held in more than one table, and often in several tables. If 

a data item changes its value, then several tables need to be updated. If a binary relational 

database is based on a triple store, data values can be held in a separate 'lexical' store (see 

chapter 3). The triple store itself only holds tokens representing data items, and these 

tokens will be duplicated as necessary to build relationships. The value of a data item will 

be stored in one place only and not duplicated. The number of triples in the triple store is 

related to the number of instances of each field in the database, and the structure means 

that there is indexed access to every field in the database. 

Initial work has shown that a Triple Store also forms a very natural basis for holding data 

in the object-oriented environment, in other words, to build an object-oriented database. 

By separating the relationships from the data, a more uniform pattern of access is 

obtainable. It appears that the Triple Store could be an engine that would support a 

number of different models at the user-interface level. 

One further development that has taken place since the original work on a triple store 

database is the advent of widely deployed and relatively affordable parallel computers. 

The triple store is a very promising architecture for parallelization, due to its simplicity 

and uniformity. No application structure is apparent in the triple store, in contrast with n-

ary relational databases. In the latter case, careful consideration has to be given to the 

partitioning of tables and the collocating of the various portions to reflect application 

activity, while attempting to strike a balance between various requirements. A triple store 

can be split in the optimum way to facilitate the internal processing needs of the DBMS. 

The original implementation of the Triple Store database [DMP82] was eclipsed by the 

arrival of the n-ary relational databases, leaving many aspects of the approach completely 

unexplored. Now that the limitations of the n-ary approach are becoming more apparent, 

it is time to re-open examination of this simple and elegant model, to see what new ideas 

and insight can be gained. 
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2.1.8 Binary Relational Databases 

The binary relational approach has been introduced above, and will be fully explored in 

Chapter 3. Interest in binary relations goes back to the earliest days of databases. In 

[Senko77], a paper which gives a fascinating insight into the debates in progress at the 

time, there is discussion about the way data should be presented at the logical level. The 

Data Independent Accessing Model (DIAM) [Senko73] was a data model which included 

a logical-level as one of its levels, and gave rise to much subsequent development. DIAM 

was developed further in DIAM II [SenkoSO], [Senko77] presents two contrasting views 

of data. Figure 2.1 shows what he calls a 'meaningless relation', originally discussed in 

[Sch75]. The question posed in this example is what the appearance of FRIEND and 

SALARY in the same relation implies. Does SALARY imply the "salary of the FRIEND" 

or the "salary of the EMPLOYEE"? Such a relation is without semantic meaning, and 

something must be added to make the meaning clear to the user, perhaps in terms of 

constraints. 

EMPLOYEE NUMBER NAME ADDRESS FRIEND SALARY 

Figure 2.1 A meaningless relation 

Senko contrasts this with the binary representation shown in Figure 2.2. In this case, it is 

clear that SALARY is a direct attribute of EMPLOYEE, and it is only indirectly related to 

FRIEND by way of EMPLOYEE, illustrating that binary relations seem to be a fitting 

representation of facts. 
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EMP NUMBER NAME 

EMPLOYEE 

ADDRESS FRIEND SALARY 

Figure 2.2 A binary representation 

In 1976, Chen had proposed the entity-relationship (ER) model for data modelling 

[Chen76] and database design, which adopts a very similar approach. Today, the ER 

model is widely used. The popularity of the ER approach stems from the fact it captures 

the entities that are being modelled, together with their attributes and the relationships 

between them, in a manner that is easy to understand and in line with human intuition, 

while providing a formalism from which the designer can then move forward. To move 

from an ER design to a relational schema, a set of rules must be carefully followed. 

Entities will be represented by tables, but while some relationships can be captured using 

fields duplicated between these tables, others will have to be represented by additional 

tables. Whereas it is a somewhat complex process to move from an ER model to arrive at 

a relational schema, it is a very simple step to move from ER to a binary relational 

database design because the two approaches are so close. (There is an example of this 

process in Section 4.5.2.2.) 

If a binary relational view is attractive at the logical level, the question then arises as to 

how to implement such a database at the physical level. The hierarchical and network 

views of data carry the logical structure right down to the physical level. Adopting this 

approach for binary relations leads to large numbers of two column tables, and the 

associated processing would be prohibitively costly. Early implementations such as 

[Lev67], [Ash68] and [Feld69] followed this line of attack by storing each set of binary 

relations in a separate file. Titman [Tit74] took a different approach, by storing triples in 

ordered arrays, and the Non-programmer Database (NDB) [Shar79] was directly 
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influenced by this work. (The contents of the triples are not necessarily the same in all 

implementations. The triples used in the current work differ fi-om these earlier databases.) 

In 1982, a paper was published by Frost [Fro82] which reviewed several research efforts 

under way at the time. Frost begins his introduction to binary relational storage structures 

as follows; "Any part of the universe, no matter how complex, can be thought of as a set 

of binary relationships. Consequently, a structure, within which representations of such 

relationships can be manipulated, is logically sufficient as the storage mechanism for a 

general purpose database system." He also remarks that at that time "the binary relational 

view of the universe is increasingly being used during the database analysis stage of 

database design." 

Frost describes a number of different structures for holding the triples, including: 

• holding triples in ordered arrays, with one array for each relation 

• holding the triples as one set, replicated three times and held in three separate hash 

tables, keyed on different combinations of two out of the three items 

® a linked list structure 

• a master file of triples, with a set of inverted lists. For each entity, there are three 

inverted lists giving the addresses of the entity either as subject, relation, or object. 

Subsequent work has been based on various approaches. The work by Copeland and 

others referred to earlier [Cop85, Kho87] used binary relations held in what is referred to 

as a decomposed storage model (DSM). Their performance comparisons with an n-ary 

storage model (NSM) showed that similar results could be achieved, with each model 

having particular strengths and weaknesses. There were also projects based on the use of 

special hardware, such as the FACT Machine [McG80]. In [Shar88], the Universal Triple 

Machine (UTM) was introduced, in which the data repository consisted of two stores: the 

name store and the triple store. In [Mar92a], the implementation of an object-oriented 

database (Oggetto) layered over a triple store is described, which is capable of handling 

the four tasks for an object-oriented database outlined in [Atk87], and the same author 

reports the development of a 3D graphical interface in [Mar92b]. 
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Currently, there are at least two groups actively working with binary relational models. In 

Amsterdam, a novel database server known as Monet has been developed. [Bon96] gives 

an overview of Monet, and discusses how it is being used to support ODBMS 

applications. Monet is also based on a decomposed storage model (DSM), which is 

implemented using 'binary association tables' (BATs). These are very much the same as 

the first approach described by Frost. A BAT is a two-column table representing one 

binary relation, and the database will have multiple BATs. Monet is designed to perform 

all operations in main/virtual memory. For databases which exceed available physical 

memory, Monet relies on virtual memory, by memory mapping large files. Work has also 

been carried out with Monet on parallel machines, and a prototype has been run on an 

IBM SP machine. 

At Birkbeck College in London, the Triple Store Architecture Research (TriStarp) Project 

[King90], [TriStarp] was set up to explore the use of the binary relational data model at all 

levels in a database system. The triple store in this case was built based on three-

dimensional Grid Files, in which each dimension represents one of the three elements of a 

triple. Recent work has concentrated on the higher levels of the DBMS such as Fudal 

[Sut95], a functional database language, and GQL [Pap95], a Graphical Query Language, 

and other aspects rather than on the underlying structure. 

As mentioned above, one of the major binary relational databases described by Frost was 

the Non-Programmer Database Facility (NDB) [Shar79], which was subsequently 

marketed as "DMP" [DMP82]. The work on NDB led to further research [Giles82], 

[Fitz90], which supported and validated the approach taken. The present research carries 

forward the idea of the triple store, but with a different structure, and explores new areas 

that have not been dealt with before, in particular, the aspect of data compression. 

2.2 Compression in Databases 

The potential benefits of compressing data in a database are twofold. First, there is the 

obvious outcome of saving space on the disk or other storage medium. However, with 

storage becoming ever cheaper, this is no longer so important. The second benefit is to 

achieve an improvement in performance, by reducing the number of disk accesses. This 

implies a trade-off between the reduction in disk I/O and the cost of compressing and 
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decompressing the data. Decompression is particularly important in this context; data is 

only compressed once, but decompression is likely to be required time after time for query 

processing as well as for the delivery of the final answer. 

Many efforts in the context of relational databases have dealt with compression in the 

index. The benefit of compressing indexes in a database has long been established, as 

described, for example, in [Wag73] (VSAM) and [Com79] (B-Trees). In an index, 

successive entries are sequenced, and various techniques such as prefix compression and 

suffix compression have been employed, as described in standard works such as [Gray93] 

or [RamOO]. Appropriately chosen strategies can reduce the size of the index, and as long 

as the cost of processing compressed index entries can be contained, faster retrievals can 

be achieved. 

When the data itself is considered, the picture is not so clear cut, as the structure that exists 

in indexes does not generally apply. A major decision is the level at which to compress. 

It is possible to compress at the block level, the tuple level, or at the level of individual 

fields. The potential cost of having to decompress a whole block or tuple can outweigh 

any benefit. [Gold98] shows that if the UNIX 'gzip' facility (based on the Lempel-Ziv 

algorithm [Ziv77]) is used to compress a page, it will take longer to 'gunzip' it than to 

read the page 6om disk. Previous work, such as [Gra91, Ray95 and Gold98], has shown 

that compression in databases needs to be very fast, and also needs to be fine-grained. 

This leads to consideration of compression at the field level. 

This is the approach taken in [WesOO], where fields are compressed into a specially 

formatted tuple, using a 'light-weight' approach, where only some of the fields are 

compressed. Integers and dates are compressed using null suppression and encoding of 

the resulting length of the compressed integer [Roth93]. For long strings, the authors 

consider the use of Huffman coding [Huff52], Arithmetic coding [Wit87], or the LZW 

algorithm [Welch84]. If order preservation is needed, then techniques such as those 

proposed in [Blas76, Ant96] are suggested. Westmann et al [WesOO] describe how the 

storage manager, the query execution engine and the query optimizer may be extended to 

deal with the compressed data, in the context of a TPC-D benchmark database [TPC95]. 

Their results show significant speed-up for long-running TPC-D decision support queries. 
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but they remark that they do not expect to see any benefit for short On-Line Transaction 

Processing (OLTP) queries. 

Chen et al [ChenOl] point out that many fields in the typical relation in fact contain short 

text strings, which are not compressed effectively by the algorithms listed above. They 

have devised a Hierarchical Dictionary Encoding (HDE) strategy that intelligently selects 

the most effective compression method for string-valued attributes. Chen et al then apply 

this to the problem of compression-aware query optimization, and demonstrate speed-up 

using a TPC-H benchmark database [TPC99], which again involves long-running decision 

support queries. 

Both of these recent approaches deal with queries in a 'traditional' n-ary relational 

database with large numbers of records. These queries require heavy processing in query 

optimization and execution. This results from the fact that in a relational database, 

relationship information has to be re-discovered from the data stored in the relations every 

time a query is executed. If the data items are compressed, they will generally have to be 

decompressed to allow query processing to proceed, although it is sometimes possible to 

work with attribute values in their compressed form. 

In this thesis, the focus is on the issues which come to light when a binary relational 

database architecture is employed, in this case, built on a triple store. Here, information 

about relationships is stored separately from the data items, so that query processing can 

be carried out without the need to decompress data items along the way. Only the data 

items finally presented in the answer need to be decompressed at the end of a query. 

Query execution does, however, require extensive processing of triple store records, and 

the question is then whether compression in the triple store can benefit this processing. 

A new compression algorithm has been developed for the database. Using this, records 

could be compressed when initially inserted into the triple store, but from then on, 

processing would be carried out efficiently without needing to decompress the records 

again. A modelling exercise, described in Chapter 5, was carried out to explore the extent 

of the performance improvement, with interesting results. 
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3 The Triple Store and Binary Relational Databases 

This chapter introduces in an informal manner the concepts on which this project is based. 

Since the triple store lends itself very naturally to supporting binary relational databases, 

the implementation is based on this model. 

3.1 A Binary Relational Database 

3.1.1 Sets and Domains 

Real world objects can be categorized in sets, such as the set of all of the staff in an 

organization, the set of all products manufactured by a company, or the set of children 

belonging to one person. Any member of a set has certain properties that help to describe 

it. For example, a person may be described by weight, height, age and so on. There are 

also other properties that tell us something about set members, such as who their manager 

is or parents are, or which flavour of ice cream they prefer. Traditionally, these properties 

are termed 'attributes'. In a standard (n-ary) relational database, one item, for example a 

person, will be identified by some unique key, e.g. staff number. 

Considering the example of'salaries', it is clear that the set of all salaries can be divided 

into many different, possibly overlapping sets, such as 'managers' salaries', 'women's 

salaries', or 'salaries of full time staff. However, if calculations involving salaries are 

carried out, it is clear that common rules apply. The format of the data must always have 

exactly two places after the decimal point, and while a salary can be multiplied by a 

number such as 1.05 to calculate a 5% increase, it makes no sense to multiply two salaries 

by each other. One might also specify that all salaries must be divisible by 12, to make it 

easy to compute monthly payments. It is useful, therefore, to develop rules for dealing 

with salaries. Data to which common rules can be applied is said to belong to the same 

'domain'. Prices would not belong to the same domain as salaries, as, although some 

rules are in common, such as the format of the data, other rules such as 'divisible by 12' 

would not apply. All items of data in one domain have common attributes, and common 

rules governing their processing. 
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3.1.2 Entities and Attributes 

It is possible to think of attributes as 'adjectives' that describe an item. Age or sex can 

easily be thought of in these terms. However, this does not really work for all attributes. 

Is a person's manager an adjective? Surely not - a manager is also an item in his/her own 

right, and may even be a member of the same domain 'employee' as the member of staff 

in his/her department. 

An alternative approach is to describe all characteristics as 'entities'. An entity might be 

'staff number', 'name', 'height', 'telephone number', 'manager', 'skill' or'eye colour'. 

Each of these entities is contained within its own set. There will therefore be a set 

containing 'staff numbers', and to describe a person, we will need to have links or 

connections to the appropriate member of each other set, such as 'name' or 'age' (Figure 

3.1). 

STAFF NUMBER 

13572468 

98761234 

Jones 

Smith 

NAME 

Figure 3.1 Sets of entities 

In thinking about entities, it is important to be clear in the definition and meaning. When 

talking about telephones, for example, do we mean 'the number in the book' or 'the 

gadget on the desk'? When people move offices, they may take the number and/or gadget 
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or neither with them. The domain of descriptors needs to be specified. In the case of 

telephone numbers, this might be 'exactly 4 digits, beginning with 5 or 6'. 

In the earlier implementation of a binary relational database known as NDB, the above 

approach of dealing with all characteristics as entities was taken. This places no 

constraints on the data, and worked successfiilly. However, there is some value in placing 

constraints on the way that data is being used, if this reflects the situation in the real world 

better. A person can have blue eyes, and a height of six feet, but 'blue' cannot have a 

height. Therefore, it has been decided to distinguish attributes and entities for this 

implementation, as follows 

An entity relates to some 'thing' in the real world being modelled. The entity 

does not have any properties, except for an identifier ( 'ID') internal to the 

database, until attributes have been 'attached' to it. 

An attribute describes some property of an entity. An attribute will belong to a 

domain (e.g. 'colours'), and will have some value (e.g. 'blue'). The attribute is 

completely defined once its domain and value are known. An attribute cannot be 

attached to any other attribute, but only to an entity (Figure 3.2). 

PERSON 

NAME 

Jones 

Smith 

STAFF NUMBER 

_ 13572468 

98761234 

AGE 

Figure 3.2 One entity set and three attribute sets 
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3.1.3 Relations and Terminology 

Set Theory includes the concept of relations. To illustrate this, consider two sets, A 

which is the set of playwrights, and B which is the set of plays. We could define a 

propositional function, P(x, y) = "x wrote y" which would be either true or false for any 

combination of the elements (a, b) of the two sets. For example, 

P(Shakespeare, Hamlet) = "Shakespeare wrote Hamlet" is true, while 

P(Shakespeare, Faust) = "Shakespeare wrote Faust" is not true 

A relation R consists of 

1) a set A 

2) a set B 

3) P(x,y) in which P(a,b) is either true or false for any ordered pair (a, b) 

R is called a relation from A to B. Relations are not limited to just two sets, but can 

include any number. The solution set R* of the relation R consists of the elements (a, b) 

in the Cartesian product, A X B (Figure 3.3) for which P(a, b) is true (Figure 3.4). 

Shakespeare Hamlet 

Shakespeare Faust 

Goethe Hamlet 

Goethe Faust 

Figure 3.3 Cartesian product for relation (R) 

Shakespeare Hamlet 

Goethe Faust 

Figure 3.4 Solution set (R*) for R 

In the case of the triple store, which will be introduced shortly, each line only ever relates 

members &om each of two sets, so that all relations are binary, and the implementation is 

termed 'binary relational'. However whilst the low level implementation is binary 

relational, the view of data presented to the end user could be very different. 

Consider now a conventional relational database 'relation' or table which has four 

columns; S#, SNAME, STATUS, CITY (Figure 3.5). This relates values belonging to 4 

sets. The database relation (table) is the solution set of the much bigger relation that 

contains all possible combinations of the members of the 4 sets (i.e. the Cartesian 
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product). The solution set includes only the rows which contain valid combinations of the 

values. 

s# SNAME STATUS CITY 

1234 Jones OK London 

3456 Williams Owes Us Cardiff 

8976 Mcintosh OK Glasgow 

8675 Smith Insolvent Birmingham 

7234 Jones OA: Brighton 

8976 Williams jfKO/vgMf 

Valid 

Valid 

Valid 

Valid 

Invalid 

TinvaW 

ZwaW 

Figure 3.5 Table with four columns. The database would only contain the 
solution set, i.e. the 'valid' rows 

It is usual for conventional relational databases to store individual tables separately. 

Using a triple store, however, it is possible to store all relational information in one single 

'table'. An individual line in the triple store contains one relationship or connection 

(which is one occurrence of the appropriate propositional function with the value 'true'). 

All of the (non-metadata) lines in the triple store that have the same value in the relation 

column correspond to one conventional database relation or table. 

For ease of reference, from this point on, the term connection will normally be used to 

refer to an individual instance of a relationship, and the term relation to refer to the 

collection of all of the connections of the same type, which is in line with the standard 

usage of the word in database literature. Each relation has a name, such as 

'HasManager', or 'SkillName', and each connection uses this name to show what sort of 

connection it is (Figure 3.6). 

NOTE: In standard relational database tables, each row has several ('n') columns and 

expresses the relationship between the 'n' attributes described in the columns. Hence 

they are often referred to as 'n-ary relational' databases. 
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PERSON 

HasManager 

NAME , 

PersName 

r 

Jones 

Smith 

PersNum 

PersSkill 

STAFF NUMBER 

13572468 

98761234 

SKILL 

Carpenter 

Programmer 

Musician 

Figure 3.6 Relations between entity and attribute sets 

3.1.4 An Example Database 

To describe a real-world item completely, it is necessary to establish the connections from 

any starting point, for example, a person in the set of 'person' entities, to the appropriate 

member of any other relevant entity or attribute set. 

Although the connections are binary, there may be multiple connections between an entity 

in one set and entities in another set. A person might have several different skills, and a 

telephone may be shared by many users. There are four possible mappings that may be 

used to describe this, which are; 

1:1 'one to one' 

1 :m 'one to many' 

m;l 'many to one' 

m; n ' many to many' 

For example, 1 :m mapping means that one member of one set may have several 

connections, each of them formed with a different member of another set. However, it is 

not necessary to use all four of these mappings. If connections can be traversed in either 

direction, then only one of the mappings 1 :m or m: 1 is needed. In addition, an m:n 
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mapping can always be replaced by introducing an additional entity and using two m:l 

mappings. In the diagram that follows, all mappings are either m: 1 or 1:1. 

In certain situations, it may be required that for every member of a set, there must be a 

connection to another set - a mandatory 1:1 mapping. It might be useful to extend the 

above list to include such a mapping, but this has not been done at the moment. The 

direction of the connection needs to be expressed in some way, as shown by the arrows on 

the diagram. Any implementation will need to adopt a convention for this, and also 

provide support for connections between members of the same set, as demonstrated by 

the 'HasManager' connection. The direction of the connection makes clear who is the 

manager, and whom is being managed. However, it will be possible to use a connection 

in either direction to traverse the database, so that if we wish to discover which 

employees report to a particular manager, we can use the 'HasManager' connection in the 

reverse direction. 

SEX 

HasManager 
SKILL 

PNUM 

PERSON 

(PersSkill) 

PersPNum 
Skil Name 

SkillOwner 
SKILLRECORD 

SURNAME 

Jones 

PersSur 

Sn#i 

SALARY 1 

18,000 14,500 

25,000 OffONum 

Administrator 

Carpenter 

Programmer 

DATE 

OFFICENO 

Im — • 1 1/1/97 
QualDate 4/7/96 

A089 

Figure 3.7 A personnel database 
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All of the above points are illustrated in Figure 3.7, which shows a simple database. 

There are ten sets in the example. 

• Three Entity Sets: Person, Office, SkillRecord 
• Seven Attribute Sets: Pnum, Surname, Salary, Sex, Skill, Date, OfFiceNo 

There are various connections between the sets, which are listed below. Note that all of 

the connections are given either 1:1 or m: 1 mappings. The m:n mapping that would have 

been required by the connection 'PersSkill' has been eliminated by introducing the 

SkillRecord entity. This has the benefit that attributes that relate to this Person to Skill 

connection (termed 'intersection data'), such as the date that a person qualified with a 

new skill, can now be added to the database. 

Relation name Description 

PersPNum Person's personnel number -1:1 
PersSur Person's surname - m: 1 (people may have the same name) 
PersSal Person's salary - m: 1 
PersSex Person's sex - m: 1 
HasManager Person's manager - m: 1 
SkillOwner The person to whom a SkillRecord relates - m: 1 
SkillName The name of the skill - m: 1 
QualDate The date on which the person acquired this skill - m: 1 
PersOfiF Person to office - m: 1 (some people share offices) 
OflfDNum Office to office number -1:1 

This approach, which we might call a 'data map', provides a very simple way to analyse 

and think about relationships between data, 

3.1.5 The Sets of Relations, Mappings, Formats and Sets 

The relations also form a set, as do the mappings, formats and the sets themselves (i.e. 

there is a set of sets). These may also be represented within the model using exactly the 

same approach, as shown in Figure 3.8. 

Each set has a name and a format for the data items in the set 
Each member of the 'relation' set has a name and a mapping 
Each member of the 'relation' set describes connections from a member of one set 
to a member of another set - 'from' and 'to' indicating the direction of the 
connections 
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So data about the data, usually termed 'metadata', can be stored in the same database as 

the data itself. 

MAPPING \ 1 

OFFICE 

PERSON 

PersOff 

SETNAME 

SET 

FromSet 

Ml 

RELATION 

HasFormat 

FORMAT 

Ml 
HasRelName 

RELNAME 

amame^ 

>5/ 

Figure 3.8 Metadata 

3.2 The Triple Store and the Lexical Store 

3.2.1 Identifiers 

In the preceding example, entities were given identifiers (IDs), but attributes were shown 

by their values, and connections by their relation names. To preserve symmetry in the 

triple store, and to permit performance to be enhanced in the implementation, attributes 

and relations are also given identifiers. A second table, which is termed the 'lexical 

store', is then used to translate the attribute IDs to and fi-om actual values when needed. 

In the following example, identifiers of the form 

set-name | id-number 

are used to demonstrate the principle. The form of identifier used in the implementation 

is defined in Chapter 4. 
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3.2.2 Lexical Store (or Semantic Store) 

The lexical store provides the 'bridge' from the triple store to the outside world. The 

lexical store maps the internal identifiers to the values that they represent. 

Entities do not have values, and therefore do not appear in the lexical store. Entities 

include the sets in the database. For reference, the example is using internal identifiers 

for sets as follows. In operation, the end user has no knowledge of any internal 

identifiers. 

Set Internal Identifier 

PERSON SETJdl 
OFFICE SET_id2 
SKILLRECORD SETJd3 
FtnJM SETjkUl 
SHJBNANE SETJdlZ 
SWJJU&Y SET_W13 
SE3C SET_W14 
SKILL SETJdlS 
OFFICENO SET_idl6 
IXATE SET_KU7 

Figure 3.9 shows part of the lexical store for the database in Figure 3.7, including the 

entries needed for the metadata shown in Figure 3.8. 



Identifiers Values 

PNUMJdl 13572468 
PNUM_id2 98761234 
PNUM_id3 92847557 
PNUM_id4 87364512 

SURNAMEJdl Smith 
SURNAME_id2 Williams 
SURNAME_id4 Jones 

SEX_idl M 
SEX_id2 F 

SALARYJd? 25,000 
SALARY id9 18,000 

SKILLJd31 Carpenter 
SKILL_id32 Administrator 
SKILL_id34 Programmer 
SKILL id35 Xylophonist 

DATE_id74 01/01/1997 
DATE_id47 04/07/1996 

OFFICENO_id2 A089 
OFFICENO_id44 B685 

RELNAME idl PersPnum 
RELNAME_id2 PersSur 
RELNAME id3 PersSal 
RELNAME_id4 PersSex 
RELNAME_id6 HasManager 
RELNAME_id7 PersOff 
RELNAMEJdg OmNurn 
RELNAMEJdlO SkillOwner 
RELNAMEJdll SkillName 
RELNAME_idl2 Qualdate 
RELNAME id20 HasSetName 
RELNAMEJd21 HasFormat 
RELNAME_id30 HasRelName 
RELNAME_id31 HasMapping 
RELNAME_id40 FromSet 
RELNAME_id41 ToSet 

SETNANEJdl PERSON 
SETNAME_id2 OFFICE 
S E n M A E J ^ PNUM 
SETNAME_id4 SURNAME 
SETNAME_id8 OFFICENO 

FOR&WVTjM SDIGIT 
FORMAT_idl iBrr 

MAPPING_id2 m:l 

Figure 3.9 Part of a lexical store 
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3.2.3 The Triple Store 

The triple store is a table which is designed to contain the connections. Each line in the 

table is a 'triple' containing 

• The ID of the relation to which the connection belongs (the 'relld') 
» The ID of the item (entity) that the connection leads 'from' (the 'fromid') 
* The ID of the item (entity or attribute) that the connection leads 'to' (the 'told') 

Figure 3.10 shows part of the triple store for the database in Figure 3.7, including the 

entries needed for the metadata shown in Figure 3.8. 

There are two sorts of entry in the triple store: 

Entries describing the connections shown Figure 3.7, which for clarity are shown 
in the upper part of Figure 3.10 

Entries describing the data itself shown in Figure 3.8 - the metadata - which are 
shown in the lower part of Figure 3.10 

Metadata in a database is often termed 'system catalog' data. It is also sometimes 
called the data dictionary, although this term is also used to refer to a separate 
repository of information about the data in an organization. 

3.2.4 How the Triple Store and Lexical Store work together 

To find Smith's office number: 

1. Go to Lexical Store and find "Smith" 
- returns SURNAME id 1 

2. Go to Triple Store with SURNAME idl and REL_id2 (PersSur) 
- returns PERSON id2 

3. Go to Triple Store with PERSON id2 and REL_id7 (PersOff) 
- returns OFFICE id3 

4. (%)toTl̂ dk^%%Te\v&h()FFBCEL;d3and]&El̂ jd8 (OfBOhhun) 
- returns OFFICENO id44 

5. Go to Lexical Store with OFFICENO id44 
- returns the Office number - B685 
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Relation From To 

RELJdl PERSONJdl PNUM idl 
REL_id2 PERSONJdl SURNAMEJd4 (Jones) 
REL_id3 PERSON idl SALARY id9 
REL_id4 PERSONJdl SEX idl 
REL_id6 PERSON idl PERSON ids 
REL_id7 PERSONJdl OFFICE ids 
RELJdlO SKILLRECORD idl4 PERSON idl 
RELJdl 1 SKILLRECORD idl4 SKILL idS4 
REL_idl2 SKILLRECORD idl4 DATE id?4 
RELJdlO SKILLRECORD idl7 PERSON idl 
RELJdl 1 SKILLRECORD idl 7 SKILL idSS 
RELJdl2 SKILLRECORD idl7 DATE id4? 

RELJdl PERSONJdl PNUMJdS 
RELJdZ PERSON id2 SURNAMEJdl (Smith) 
RELJd3 PERSONJdl SALARY_id9 
RELJd4 PERSON id2 SEX idl 
RELJd6 PERSONJdl PERSONJdS 
RELJd? PERSON idl OFFICE ids 

RELJdl PERSON id3 PNUMJd4 
RELJdZ PERSON id3 SURNAME Jdl (Williams) 
RELJd3 PERSON id3 SALARY_id? 
RELJd4 PERSON ids SEX idl 
RELJdS PERSONJdS SKILLJdSS 
RELJd? PERSONJdS OFFICEJd? 
RELJdlO SKILLRECORD id24 PERSONJdS 
RELJdl 1 SKILLRECORD idl4 SKILLJdSl 
RELJdl2 SKILLRECORD idl4 DATEJd?4 

REL ids OFFICE ids OFFICENO id44 
RELJdS OFFICE id? OFFICENO Jdl 

RELJdZO SET idll SETNAMEJdS (PMJM) 
RELJdZl SET idll FORMAT JdS (8DIG1T) 

RELJd20 SET idl SETNAME Jdl (OFFICE) 

RELJdlO SET idl6 SETNAMEJdS (OFFICENO) 
RELJd21 SET idl6 FORMATJd4 (4D1G1T) 

RELJdSO REL id? RELNAME id? (PersOfJ) 
RELJd40 REL id? SET J d l (PERSON) 
RELJd41 REL id? SET J d l (OFFICE) 
RELJdS 1 REL id? MAPPING Jdl (m:l) 

RELJdSO REL id6 RELNAMEJd6 (HasManager) 
RELJd40 REL id6 SET J d l (PERSON) 
RELJd41 REL id6 SET J d l (PERSON) 
RELJdS 1 RELJd6 MAPPING Jdl (m:l) 

Figure 3.10 Part of a triple store 
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3.3 Comments on the Triple Store 

3.3.1 The Need for Sorting 

One of the over-riding considerations in any database system is to minimize the number 

of disk accesses. When searching for related data, response times are going to be much 

faster if all of the required data can be read in from disk at once. If the user wants to 

know all about PERSON id 1, it will be better if this information is not scattered 

randomly throughout the triple store. Best performance will be achieved if logically 

related items are close together physically, which can be aided by sorting both the triple 

store and the lexical store. 

3.3.2 Sorting and Indexing the Triple Store 

The three columns of the triple store can potentially be sorted in 6 different ways. Each 

of these has the effect of grouping related items together. For example; 

• If the sort is based on the order; second column, first column, third column, in the 

above table, all of the connections concerning PERSON id 1 will be stored 

together. When data is read from a disk, a whole block is read at a time, which 

will contain many rows of the triple store. So when any of the rows relating to 

PERSON id 1 is retrieved into memory for processing, all of the connections 

concerning the person will almost certainly be brought in too, and further disk 

access is not needed to traverse the related data. 

• If, however, the sorting is done on; third column, first column, second column, 

then all records for each Office id would be grouped, so that people occupying 

the same office could be traced quickly. 

To optimize processing, therefore, several sort orders (but not necessarily all 6) may be 

maintained within the triple store, using as many copies of each entry as there are sort 

orders. There is a trade-off to be made between performance and disk space, but if good 

compression techniques are used, properly sorted data will compress very significantly, so 

that the space overhead is not as large as might at first appear. One aspect of the project 

has been to determine how many sort orders it is worth maintaining. 
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In addition to sorting the triple store, there is also a need for indexes (e.g. a B-Tree or 

other index) to permit reaching the appropriate part of the triple store fast. 

3.3.3 Compression 

To take full advantage of the proposed structure, consideration must be given to 

opportunities for compression, and the techniques that could be applied. 

If the triple store is sorted on the second column, all of the entries beginning PERSON 

will be together, and so on. It would therefore be necessary to store 'PERSON' only once 

with a count of the number of PERSON entries that follow. The same argument applies 

to all columns, hence the need to consider sorting in more than one way to get the 

maximum benefit. It is probably even possible to spot recurring groups of entries and 

compress these. The use of identifiers with two parts (set id | item id - see Chapter 4) 

lends itself well to this sort of compression, helping to conserve disk space. 

3.4 Comments on the Lexical Store 

3.4.1 Allocation of IDs 

A mechanism is needed for the allocation of IDs as attribute values are added to the 

lexical store. A number of algorithms are possible for this:- allocate numbers 

sequentially, allocate numbers randomly etc., as long as uniqueness within a set is 

maintained. Another possibility is to make the ID in the triple store equal to the literal 

value of the data. 

A further strategy, which has been considered, is to allocate IDs in an order which reflects 

the natural sort order for the domain, where this exists (e.g., alphabetic or numeric). This 

would have the effect that when the triple store is sorted by ID, entries will automatically 

be sorted in an appropriate order for other processing. Also, if entries are placed in the 

triple store in the order of the data, then a range can be examined by locating the first and 

last values via the lexical store, indexing to the appropriate entries in the triple store, and 
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then working entirely within the triple store, knowing that all entries between the two 

limits satisfied the criteria. 

However, the difficulty of allocating IDs as more values are added, without causing an 

entire renumbering operation to occur, which in turn would require every line in the triple 

store that referred to the attribute to be updated too, outweighs the possible benefit. It is 

not clear, either, that it is really desirable for the triple store to have the 'partial 

understanding' of the attribute values implied by the above approach. The triple store 

should really be completely indifferent to attribute values. 

In the present implementation, IDs are allocated randomly within a range. The range is 

initially set small, so that IDs are fairly 'close' to each other to facilitate subsequent 

compression. If a range becomes too tightly filled, however, the range is dynamically 

expanded, and further expansion will occur as necessary. 

3.4.2 Sorting and Indexing the Lexical Store 

The lexical store needs to be sorted on the first column to bring all items of the same type 

together. This means sorting by the two parts of the identifier, SetName and ID. It may 

also be desirable to sort the lexical store on the second column - this was to be 

determined. 

Indexing is needed to provide rapid access into the lexical store, and to support range and 

other queries. (This is no worse than for a conventional relational database, where 

secondary indexes are needed for searching and range queries on any field except the 

primary key.) 

In particular, indexing into the second column is crucial. Indexes into this column have to 

cater for data stored in a variety of data formats. For example, surname, office no, sex, 

and so on all have different formats. 

3.4.3 Small or Large Sets 

Some sets have a limited number of values, all of which could be preloaded into the 

lexical store in sorted order. Examples might be SEX, EYE COLOUR and so on. These 
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may be thought of as 'closed' sets, and it is possible that a special algorithm might be 

used to allocate IDs for these. 

Other sets have a potentially large number of values. Although they may still be 

technically 'closed', the upper limit of the possible values might be 'all of the rational 

numbers less than 10 million', or 'all possible combinations of 20 alphanumeric 

characters'. As far as the database is concerned, these sets are essentially 'open'. For 

these sets, decisions will have to be made about strategies for keeping them sorted within 

the lexical store, such as sorting every night, leaving spare space in the store, using a 

hashing technique and so on. 

lAamMyAhejMkfadbfa 

3.5.1 Building the query 

Consider again the example above - to find Smith's Office number; 

To find Smith's Office number; 

1. Go to Lexical Store and find "Smith" 
- returns SURNAME id 1 

2. Go to Triple Store with SURNAME_idl and REL_id2 (PersSur) 
- returns PERSON id2 

3. Go to Triple Store with PERS0N_id2 and REL_id7 (PersOfif) 
- returns OFFICE id3 

- returns OFFICENO id44 
5. Go to Lexical Store with OFFICENO_id44 

- returns the Office number - B685 

The user first has to instruct the database how to build the query. In a conventional 

RDBMS, this is accomplished by writing an SQL statement, or by using some sort of 

QBE interface. The user needs to understand the tables in the database, and the 

relationships between them in order to carry this out, and SQL statements can become 

extremely complex and hard to understand, except for the expert. 
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With a binary relational database, the user will have a data map, as described earlier, and 

will be provided with a friendly interactive front end with which to build up a query path. 

In general, it is much easier for the end user to achieve this than when using SQL. Once a 

particular query has been built, it should be possible to save it for re-use in the future. A 

programming interface will also be provided. 

3.5.2 Executing the query 

When the query path has been determined, the system can execute it using the metadata. 

There will be the following steps. 

1. IRndSUB&UUWEJd 

User has supplied a string "Smith" 
Use metadata to check 

Is there a Set called SURNAME 
Is data-type etc valid ( SURNAME HasFormat) 
May want to do Domain check e.g. for enumerated domains 

Then go to Lexical Store to find SURNAME id 1 for "Smith" 

2 Traverse the database from SURNAME id 1 to OFFICENO id 

If this is an m:l relationship (likely) then there may be more than one PERSONJd 

We will travel via the PERSON set in this example. The path is PersSur (inverse) 
1 ;m, then PersOff m: 1. 

Go to the Triple store to find all of the PERSON ids for SURNAME idl 
(j()t()tlie Store tc);get1iie (XETFICZE idsftxr die PE]RJS()I<Lji(is 
Go to the Triple store to find the OFFICENO id s for the OFFICE ids 

3 Retrieve the actual value of the Office number from the Lexical Store 

Go to the Lexical Store with the OFFICENO ids to get the values. 
Go to the metadata again, using OFFICENO HasFormat to present the 
value to the user in the correct format. 

3.6 Summary 

This chapter has sought to introduce the concepts of the triple store, the lexical store and 

the binary relational approach. The next chapter will set out more formally the rules and 

architecture of the present implementation. 
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4 Implementation 

This chapter begins with the working specification for the construction of the binary 

relational database based on a triple store, and then describes some of the end-user 

interfaces that have been constructed. The chapter concludes with discussion of other 

aspects concerning the implementation. 

4.1 Assumptions and Scope 

The implementation adheres as strictly as possible to the binary relational model, as 

described in the previous chapter. 

The database is being built using object-oriented programming techniques in C++. (Note: 

this does not mean that the result will necessarily be an 'object-oriented database'). 

The approach concentrates on keeping the triple store in an optimum state to ensure rapid 

retrieval of information. This means that more work is needed when data is updated. In a 

real application, data is always read before being written, so the approach only impacts a 

maximum of 50% of the accesses adversely, and usually many fewer. A critical statistic 

will be the ratio of reads:writes for an application. 

4.2 Introductory Definitions 

The following terms are used; 

1. The term collection to describe an arbitrary group of objects, not all drawn from 

the same domain. 

2 The term set to describe a collection of items drawn from the same domain. (This 

is the normal usage in database discussions.) 'Set' will normally be used to 

describe all of the members of a domain. 
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3. An entity relates to some 'thing' in the real world being modelled. The entity in 

the database exists for the purpose of providing a unique identifier for the real 

world thing. The entity itself does not have any properties, except for an identifier 

internal to the database, until attributes have been 'attached' to it. Entities may 

have relationships, called connections (see definition 6 below), one with another. 

4. An attribute describes some property of an entity. An attribute will belong to a 

domain (e.g. 'colours'), and will have some value (e.g. 'blue'). The attribute 

instance is completely defined once its domain and value are known. An attribute 

value cannot be connected to any other attribute value, but only to an entity, i.e. 

there can be no connections between attributes, but only between attributes and 

entities (or entities and entities, as above). 

5. An entity or an attribute value has an identifier {'ID'), which is assigned 

internally. The end user will never be aware of this ID. The ID is unique within a 

domain. If domains are unique, then specifying the entity or attribute by 

domainJd.entityJdis unique globally (within the database). 

The ID is not the value of an attribute. The value of the attribute is obtained from 

the Lexical Store. IDs are discussed further in Section 4.4 - Formats, below. 

6. The relationships between entities or between entities and attributes are called 

connections. Connections only ever exist between two entities, or one entity and 

one attribute. All connections are therefore binary relationships. 

7. A relation is the set of all connections of the same type, and a connection bears 

the name of the relation of which it is a member. (See Section 3 .1.3 for further 

discussion.) 

8. A 'triple' consists of three full identifiers, one of which is a relation identifier, one 

is an entity identifier and the remaining one is either an entity identifier or an 

attribute value identifier. (See Section 3.2.3 for further discussion.) 
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9. Triple store : The triple store holds all of the triples in the database 

10. A 'lexical' is made up of two parts: a full identifier, and a data value. The format 

is discussed further below 

11. Lexical Store : The lexical store holds all of the lexicals in the database 

4.3 Rules of the Architecture 

These are fundamental to the structure of the triple store and the lexical store. They apply 

equally to 'data' and 'metadata'. 
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4.3.1 Formal Definitions 

Definition 
number 

Definition Dependency 
on previous 
definitions 

Notes 

D1 An entity is some 'thing' in the real world being 
modelled 

D2 An entity Id (entid) is associated with each entity D1 1 

D3 An attribute is a property which can apply to an 
entity 

D1 

D4 A value is a value that an attribute can assume D3 

D5 A lexicalld (lexld) is associated with each lexical 
(attribute) value 

D4 

D6 A set is a group of entities or a group of values D1,D4 
D7 The family is the family of all of the sets in a 

database 
D6 

D8 A setid (setid) is associated with each set D6 
D9 An entitySet is a set of entities Dl, D6 
DIO A lexicalSet is a set of values relating to one 

attribute type 
D4, D6 

Dl l A domain is the set of all possible values that one 
attribute may take 

D4,D6 

D12 A connection is a directed relationship with a given 
mapping from one entity to another, or from an 
entity to a value 

D1,D4 2 

D13 A relation is the set of all of the connections of a 
given type 

D12 3 

D14 A relationid (relld) identifies a relation (in other 
words, a type of connection) 

D13 

D15 The setOfRels is the set of all of the relations in the 
database 

D6, D14 4 

Figure 4.1 Definitions 

Notes on the Definitions: 

1. An entity has no properties until attribute values are attached 
2. This implies that all connections are binary 
3. When a relation is created, the direction of the connections, the mapping, and the 

two sets being connected must be specified 
4. A relation is itself an entity, which is described in the database through the 

metadata 
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4.3.2 Rules 

Rule 
number 

Rule Dependency on 
definitions 

Notes 

R1 Setlds are unique within the family D7,D8 

R2 Each entity is a member of one and only one 
entitySet 

D1,D9 1 

R3 Entlds are unique within the entitySet of which the 
entity is a member 

D2, D9 

R4 An entitySet contains only entitylds (no values) D2, D9 2 

R5 Each value is a member of one and only one 
lexical Set 

D4, DIO 

R6 Lexids are unique within the lexicalSet of which the 
value is a member 

D5,D10 

R7 A lexicalSet contains lexids paired with (attribute) 
values 

D5,D10 

R8 Rellds are unique within the SetOfRels D14,D15 
R9 There is, at most, only one connection of a given 

type from any entity 
D1,D12 3 

RIO Connections between lexicalSets are forbidden D10,D12 

Rll Domains are disjoint D l l 
R12 A domain contains data of only one type Dl l 
R13 Values from one attribute domain are not 

comparable with values from another 
D4,D11 4 

Figure 4.2 Rules 

Notes on the Rules 

1. This implies that sets are disjoint. This is discussedfurther in Section 4.8.3 
2. Entlds do not therefore appear in the lexical store, since there is no associated 

value 
3. This means that all relationships are many to one (m:l), where m may also be 1 

giving a one to one (1:1) relationship. However, it is possible to traverse 
relationships in the inverse direction. Many to many (m:n) relationships will not 
be supported. See Section 3.1.4 for further discussion 

4. This means that a 'strong typing' environment will be enforced 
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4.3.3 Observations and Consequences of the Rules 

1. A relation must be defined before any triple that is based on it can be added to the 

triple store 

2. There cannot be two identical lines in the triple store 

3. There cannot be a lexld in the triple store which is not in the lexical store 

4. There can be a lexld in the lexical store which is not in the triple store 

5. There cannot be two (full) lexids in the lexical store which are the same 

4.3.4 Further Objectives 

A query against a database should return a complete, self-contained database, including 

all of the relevant metadata. 

This is analogous to a relational database, in which a query against a number of relations 

returns a relation, although in that case, the relation may not be normalized. 

4.4 Formats 

4.4.1 Identifiers 

A 'type' is defined for the identifier ('ID'), so that it can always be changed without 

impact to the rest of the code. Initially, identifiers map down to unsigned long integers 

(32 bits - 4 bytes). This gives a range of from 0 to 4,294,967,295 per set inclusive. 

Further types are then defined for entid, lexld, setid and so on, in terms of the basic ID. 

All IDs will therefore be based on the same underlying type, preserving symmetry 

throughout the database. 

Certain values will be reserved for 'special' usage. These are IDs which are essential to 

the integrity of the database architecture. 
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4.4.2 Full Identifiers versus Shortened Identifiers 

A fiill identifier (entid, lexld, relld, or setid) is made up of two parts, the ID representing 

the set of which the item is a member, and the ID of the item within the set. In the case of 

the setId, the first ID will be that of the setOfSets. In the current implementation, 

therefore, the full identifier will be 8 bytes long, made up of 2 4-byte IDs, although this 

would obviously change if the basic 'ID' type is changed. When new relations are 

defined, the first part of the full identifier will contain the ID of the setOfRelations; the 

second part, the newly assigned ID of the relation being added. In addition, entries must 

be made in the triple store to describe the fromSet, the toSet, and the mapping for this 

relation. 

In principle, all items in the triple store and the lexical store would use full identifiers. 

However, as items will be held in sorted groups, especially in the triple store, 

considerable space can be saved by not repeating parts of the full identifier where not 

necessary. In the case of small sets (such as 'sets' and 'relations') this might mean that 

only one or two bytes need be stored for each entry. 

In practice, the relld will always be the first of the three parts of the triple. The setId 

(which is the ID for the setOfRelations) is therefore not strictly needed. In addition, the 

relld implies the IDs of the two sets that are being connected, so that it is not necessary to 

store these either. Thus the triple need only contain the item identifier for all three parts. 

This is the approach that has been adopted, and each triple contains three 4-byte integers, 

which are the item identifiers for the relld, the fi-omid and the told. (FromId and told are 

described in Section 3.2.3.) 

4.4.3 Lexlcals 

A 'lexical' is made up of two parts: a full identifier and a data value. 

Full identifiers, which will be lexlds, are allocated when items are added to the lexical 

store. The first part of the identifier will be the ID of the set (setId) to which the item is 

being added; the second part will be the newly allocated ID for this item. 
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The format of the data will be described via a hasFormat relationship, and the data will be 

stored in accordance with this, e.g. as a string, fixed length integer etc. 

4.4.4 Triples 

A 'triple' consists of three full identifiers, one of which is a relation identifier, one is an 

entity identifier and the remaining one is either an entity identifier or a value identifier. 

In addition, a fourth field will be added to indicate the sort order for a particular 

occurrence of a triple. 

4.4.5 Special Values (System ID Constants) 

In order to start a new database, it is necessary to predefine several IDs 

IDs for types; 
EntType, LexType, EntEntType, EntLexType 

IDs for system sets: 
SetSet, SetNameSet, RelSet, RelNameSet 

IDs for special Relations; 
SetNameRel, SetTypeRel, RelNameRel, FromSetRel, ToSetRel, RelTypeRel 

IDs for various additional constants; 
Lowest Systemid, "None", "Any", HasEnt 
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4.5 Interfaces 

4.5.1 The Programming Interface 

Access to the database is through a set of operations that together make up the 'TD' 

(triple datastore) programming interface. The interface is not intended for end users, but 

provides a clean interface into the database system upon which graphical front-ends and 

so on can be built. The operations provide the following functions: 

Database operations Create a new database 
Delete a database 
Open a database for processing 
Close a database when finished 

Set operations (on both entity 
and lexical sets) 

Add a new set 
Delete a set 
Find a set ID 
Find a set name 

Operations on members of 
lexical and entity sets 

Add a new member 
Delete a member 

Operations involving relations 
between sets 

Add/delete a new entity-entity relation 
Add/delete a new entity-lexical relation 
Find an entity-entity relation ID / name 
Find an entity-lexical relation ID / name 
Find ID of to set / from set 
Find set name of to set / from set 

Operations to add or delete 
connections between members 
of sets 

Add/delete connection between two entities 
Add/delete connection between entity & lexical 
Add lexical value and connection 

Cursor operations Various operations - see Appendix A 

Figure 4.3 TD Operations 

These operations are fully described in Appendix A. 
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4.5.2 End-User Interfaces 

Section 4.5.2 describes four different interfaces that were developed by students under my 

supervision while I was teaching at the University of Southampton. 

To complement the triple store implementation, a variety of user interfaces has also been 

constructed, demonstrating the versatility and validity of the triple store. These included 

graphical interfaces, a web-based interface, and an SQL interface. Brief descriptions of 

these follow. 

4.5.2.1 General Purpose Interface 

This can be used to assemble a database from scratch. Using the buttons on the toolbar, 

or using menus, the user can 

• Create a database 

• Add sets 

• Add relations 

• Add connections 

• Add data 

• Obtain various views of the 

contents of the database. 

II — 
Database Sets Relatois Membas Example: \/iew flueiji Imfo 

#1 % 

"iNOSi'l ^ 

Figure 4.4 General Purpose Interface 

This interface (Figure 4.4) demonstrated that a Windows front-end could be added to the 

triple store code, using C++ and an object-oriented approach. A full description is given 

in [Cjs98]. 
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4.5.2.2 Interface to support recruitment agency application 

This was a fiill-scale application based on a real system. The ER diagram in Figure 4.5 

shows the database in a conventional view. Figure 4.6 shows how this is translated into a 

binary relational database. This interface is described in [Ejs99]. 

Skills 

Vacancies 

Client 

Applications 

Employment 

Candidates 

Detail Dates 

Company 
Address 

Candidate 
Skill Link 

Vacancy 
Skill Link 

Company 
Name 

Figure 4.5 ER Diagram for recruitment agency 

The application records job vacancies supplied by clients, along with the skills required, 

shown on the right-hand side of the diagram. It also records candidates applying for jobs, 

with the skills they are offering on the left. The application matches candidates to 

vacancies, and records job applications made. 

The following diagram shows the way in which the Triple Store holds the above data 

structure. 
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jci Ml \ CandSkillSkills VacSkillSkills _ 
CandSkill ) — H Skills > — /acSkill 

Vacancies SkillSkills Candidate CandSkul 
CandSalRgq 

Candidate Vacancies 

Application 

ClientV icancies Appli cation DateDetails 

Candaumame 

Date Details 
CandA 

Client 
ClientSuma 

Surname 

CliaHOWdress 

Address 

Compai yName 

Company 
Name 

Red Entity 
Green Entity Entity Relation 
Blue Lexical Entity and Lexical Relation 

Figure 4.6 Data model for recruitment agency 
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Figure 4.7 shows a screen from the application for viewing a candidate's details, 

demonstrating that a conventional user interface can be developed for an application 

based on a triple store database. 

Candidate Details 

Please select candidate to view ~3 Candidate ID f i 

Surname Bloggs Position Required jAny 

Firstname Joe Current Salary 20000 

Address Somewhere -J Required Salary 125000 

Add Skill j 

Skills Skils 1 

J 
Phone Numbers 01234 567890 

Date Added 10:23:31 on Monday, May 031993 

Figure 4.7 Recruitment application 

4.5.2.3 Data Explorer Web Interface 

One of the features of a binary relational database is the ability to follow links between 

instances of data values in the database to discover whether there are connections between 

them. Indeed, researchers at Birkbeck College [Tristarp] have developed applications for 

cUents, taking advantage of this. The web interface shown here [GjeOO] was developed at 

Southampton and was designed to support such 'data exploration' through the triple store 

database. 

From a given starting point, such as that shown in Figure 4.8, the user can click on items 

as indicated to track down connections. For example, one could click on the name field 

to find any other references to the person selected, in this case, Mrs G Wood. 
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3 TDCGI - Mictosoft Internet Explorer '- ̂  
Bte Etft %iew Favorites Took tjelp 

A êss http://focahost/cgH3in/tdĉ ex9?action=dejdi$f̂ yEntjli>teTt " 3 
3 

person 
Fields 

Click on fee field name to search on that field 

Iname {Mrs G. Wood 

'salaoT I4H28 | 

j 

Rdated 

person_telephone (person to telephone) 

number (01189} 945971 

Navigation: first | prev | nest 
Options: hack | 

;@Done Local intrafiet 
J 

Figure 4.8 Web Interface - Data Explorer 

4.5.2.4 SQL Interface 

The last interface described here [CwaOO] was designed to explore the possibility of 

creating an n-ary relational database view of the data in a binary relational database. The 

aim was to design and build a text-based SQL interface. The application comprised three 

sections; 

• the parsing layer to collect and validate input from the user 

• the relational layer to implement the relational database model 

• the binary relational layer concerned with interfacing to the underlying triple store 

The final system was successfully able to create relational tables, insert data into those 

tables and query the tables to retrieve the data, with all data being held in a triple store. 
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4.6 Preliminary Performance Comparison 

To gain reassurance that the performance of the database was at least acceptable, a short 

study was conducted to provide a 'sanity check' [Hus99]. The same database was 

constructed in the triple store database and in Access, which happened to be readily 

available. In order to provide a meaningful comparison, programs were written to access 

the programming interface of the triple store database, and were also written to retrieve 

data directly from the underlying Jet engine in Access, so bypassing the Access front end. 

The study was conducted against an earlier version of the triple store database, which had 

not yet had the index added to the lexical store. Nevertheless, the results were 

satisfactory. The triple store was faster on some queries and Access was faster on others, 

but both were in the same 'ball park'. The results confirmed that the triple store 

performance is certainly comparable with other databases, and may well be faster when 

fully developed. In due course, a further comparison should be performed against a more 

substantial competitor. 

4.7 Other Aspects 

4.7.1 Locking and Robust Cursors 

The present implementation includes complete physical locking at the block level, 

described below in Section 4.7.2. The largest amount of data that is locked at one time is 

one path through the index (a small number of blocks) together with the target block. 

This is adequate for current purposes, but to support multiple users, a stronger approach is 

needed. It is intended to explore the use of predicate locking for this purpose, and this is 

discussed further in Chapter 6. 

A mechanism is already in place to support robust cursors. A cursor may be used to find 

the position of data within a block. If unrelated changes are then made to the block, 

causing the position of the data to change, the cursor will still return the correct data 

should it be required again. To achieve this, a version count is maintained in the block, 

which is recorded in the cursor. If the cursor is used again, a check is made to see 
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whether the version count in the cursor matches the version count in the block. If it does 

not, then changes have been made, and the index is used to re-locate the required data 

item. This applies to changes in the leaf and index blocks. 

4.7.2 Caching and Storing to Disk 

All data is stored to disk, with a caching mechanism within the database to optimize 

performance. The cache size may be selected at start up, in terms of the number of data 

blocks to be held. One aspect of the performance work has been to understand the best 

values for the block size and for the cache size. This is described in Chapter 5. 

Each 'slot' in the cache can hold one block of data. A 'status table' holds a record for 

each cache slot. The contents of each record in the table are shown in Figure 4.9. 

Number of the block currently stored 
Next cache slot in hash chain 
Previous cache slot in hash chain 
Number of read locks 
Write lock indicator 
Write to disk required indicator 
Next cache slot in LRU chain 
Previous cache slot in LRU chain 

Figure 4.9 Status table record contents 

A division/remainder hashing algorithm is used to locate blocks stored in the cache. The 

remainder is used as the index into a separate hash table, which holds the position in the 

status table of the start of a relatively short chain of blocks which all have the same hash 

result. This level of indirection ensures that the usage of the cache is independent of the 

hash number, as well as providing flexibility and improving performance. 

When access to a block is required, the block number is hashed, and the hash chain can 

quickly be followed through the status table to see if the block is in the cache, or needs to 

be fetched from disk, thus avoiding the need to scan the whole status table looking for a 

block-number match. (A large cache could contain thousands of blocks.) When a new 

block is brought into the cache, a slot will be allocated from the 'free chain' (see below). 
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The slot in which the new block is stored is added to the front of the appropriate hash 

chain. 

The status table keeps track of the current usage of the block in each slot. Whenever a 

block is accessed, a read or write lock will be placed on it. Multiple read locks are 

permitted, and a count is kept of the number active. When a block is released, any lock 

held will be released. A read lock count will be decremented, a write lock will be 

released, and if the block needs to be written to disk, the 'write required' indicator is set. 

This mechanism ensures that active blocks are not removed from the cache. When a 

flush request is sent to the cache, all blocks with outstanding write indicators set are 

written to disk. 

The status table also holds a 'free chain' of all unused and 'free', (i.e. unlocked) blocks. 

If there are no unused slots in the cache, the least recently used block with no locks 

outstanding will be discarded and the slot re-used. If the block has the write indicator set, 

it will be flushed to disk first. When a slot is re-used, it is removed from its old hash 

chain and added to the new one. 

ZDWNSKZffS&S&fCNn* 

4.8.1 Identifiers 

There are various strategies that could be adopted for implementing the Triple Store. We 

have chosen the identifiers to have two parts - an identifier for the set name (e.g. 

PERSON) and an identifier for the individual instance within the set (eg idl). 

However, an alternative would be to have just the ID and have additional 'IsMemberOf 

relations saying which ID belonged to which set. This would make for shorter, less 

complex IDs, but one would then need to ensure that IDs were unique across the whole 

database rather than just within the set, and many more lines would be needed in the 

Triple Store. 
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4.8.2 Relations 

Another debate concerns whether to endow the relation itself with the additional property 

of linking two specific sets. For example, one could say that "the relation PTel always 

links the sets PERSON and TEL". This is the approach that has been adopted so far. 

Before adopting this strategy, however, one must consider relations such as 'HasValueOf 

or 'IsOwnerOf. One might use HasValueOf to link a set of computer equipment with its 

value in pounds: 

C0&CME(3jdl PCHINDWUUJEJdl. 

One might want to use the same relation to link furniture items with their value: 

IRJ&Njidl ItwVabeOf PCKOOOV/JJJEjdl 

Similarly, one might want to use IsOwnerOf for different purposes: 

PERSCmijdl kChmedDf 
Is()wiierC)f 

If one endows such relations with the property of linking specific sets, then different 

relations will be needed for each of the above cases: 'EquipHasValueOf, 

'FurnHasValueOf, and so on. If one wanted to establish the value of all items owned by 

PERSON id 1, one could not simply follow all of the appropriate IsOwnerOf Relations 

followed by the HasValueOf relations, but would have to issue a number of specific 

enquiries. In addition to such practical considerations, one must recognize that the 

Semantic notion of HasValueOf or IsOwnerOf appears to be exactly the same in all cases 

and it might seem preferable to use the same relation to represent the same thing. 

One way to implement this approach would be to maintain full identifiers throughout the 

triple store. Other ways would involve storing additional information about relations in 

the triple store. However, if the relation implies the from-set and to-set, then the triple 

store can be significantly reduced in size. 
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4.8.3 Sets are Disjoint 

Rule 2 implies that sets are disjoint. Is this a constraint, either in the database or in the 

real world? The constraint implies that the database designer will have to divide his 

world up into sets, which is indeed the normal approach to database design. In the real 

world, however, many things belong to more than one set, so that this is not really 

satisfactory. 

The possibility of using an TsA' relationship was considered, to relate an object to the 

one or more sets to which it belonged, the objects being held as members of a set of the 

descriptions of all entities in the universe. One would need to allow m:n mappings from 

entity IDs via IsA's to the description set. Entity ED could then be a member of as many 

sets as desired. However, to start with at least, the simplifying assumption is being made 

that entities will be members of one and only one set. Most problems can still be solved 

by searching on attributes. For example, the set of all photographers can be found by 

searching the set of people for those with the skill 'photographer'. 

A further point arises. Relationships need to know which set they are coming from and 

which they are going to. This is much more straightforward to implement if there are 

distinct sets for each entity type. One could track back through IsA's to determine set 

membership, but this would lead to more complex code and longer pathlengths. 

4.8.4 Mappings 

At the moment, it appears that the decision to allow only m; 1 and 1:1 mappings leads to a 

satisfactory solution in all cases. However, this has not been tested rigorously, and 

further work will be needed to demonstrate that all four mappings are not actually needed. 

The utility of introducing an option to make a mapping mandatory also needs 

consideration. For example, there might be a mandatory 1:1 mapping to ensure that each 

person was allocated a personnel number. 
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5 Optimizing Data Storage for Performance 

The preceding chapters have described how a binary relational database based on a triple 

store was built, using an object-oriented approach. Several end-user interfaces were also 

developed, which demonstrated that conventional paradigms could be used above the triple 

store. This in itself was an interesting insight as it might have been thought that a non-

standard database implies non-standard end-user interfaces. Having established, therefore, 

that the database was capable of supporting standard applications, as well as less usual ones 

such as the Data Explorer, it was then appropriate to carry out flxrther investigation into the 

performance of the database, to see what more general conclusions could be drawn. 

One alternative at this stage would have been to code various versions of the triple store 

database, and then conduct performance measurements. However, this would have been 

extremely time consuming, and could have led to a considerable amount of wasted effort. 

The method adopted was therefore to build a model, using an innovative approach, to 

explore two particular issues. 

The first issue, which is of importance to the current implementation, was to discover the 

effect of using more than one sort order to hold the triples in the triple store. Did the 

benefit of storing more than one sort order outweigh the cost, and if so, which sort orders 

should be held? 

The second issue is of significance to all database management systems, and concerns 

compression. To what extent can performance gains be made by compressing the data, and 

in particular, the non-index data, in a database? This question has become a topic of 

interest recently, as has already been mentioned in Chapter 2. 

In developing the model, the approach taken was to use the facilities provided by a 

spreadsheet. In this chapter, the model is described, and then the results of the two 

investigations are presented. 

61 



5.f 7 7 ; e M o d e / 

Modelling has been applied to all aspects of computer technology from microprocessors 

[Rei98], through I/O Subsystems [Gan98] to cache assignment in databases [Levy96]. The 

use of a spreadsheet has also been reported in [Bond96] to reduce analysis and design time 

by comparing eflFiciencies of converters in power electronic circuits. It was decided to 

attempt this approach for the present project, to see whether the same benefits could be 

obtained 

5.1.1 Summary of the model 

The performance model was constructed around operations at the 'TD' programming 

interface, at which commands are submitted to the database to enter or retrieve entities and 

their attributes to or from the database. Specific applications may be developed within the 

model by assembling sequences of the operations, and the model is then used to predict 

behaviour as various parameters are altered. The first area of application was to determine 

the order or orders in which entries in the triple store should be sorted. 

5.1.2 Extent and Limitations of the IVIodel 

The object of the model was to predict the behaviour of the triple store database under 

construction as a guide to continuing design and development. The operating system 

obviously caches data underneath its own read/write interface, so for the model, block 

retrieval times were determined empirically, as described later. The present model handles 

the reading of data only, not updating or deletion, which will follow. 

The intention was to develop a valid model that could be used to aid in the design process. 

Various characteristics of the machine on which the database is running must be determined 

in order to calibrate the model for use in predictive work. A further study could involve 

extending the model to predict performance on a variety of machines, but this was not the 

mirrept aim 
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A secondary aim of this work was to demonstrate that effective modelling can be achieved 

relatively economically by using, as far as possible, the standard spreadsheet facilities 

provided by a spreadsheet, in this case, Microsoft Excel. 

5.1.3 Key Aspects of the DBMS being modelled 

5.1.3.1 The cache 

Within the database, two caches are maintained, one for triples and one for lexicais. In both 

the database and in the model, the block size being used and the size of the cache can be 

varied. Early experiments showed that it was worth maintaining these caches inside the 

DBMS in addition to the caching provided by the operating system. In the cache, blocks 

are maintained using a least-recently-used (LRU) algorithm. 

5.1.3.2 Data store sizes 

Various application parameters may be supplied to the model. These include: 

ns - the number of entity sets in database 
ne - the no of entities in sets 
na - the no of attributes of each entity 
nee - the no of relations between sets 
nea - the no of entity-attribute (ea) relations per set 
dbr - the no of entity-entity (ee) relations in the database 

There are also constant values (Mx) related to the triples and lexicais needed to hold 
metadata; 
MS = 3 = no of triples to describe one entity set 
MA = 8 = no of triples to describe one attribute set and its entity-attribute relation 
ME = 5 = no of triples to describe one entity-entity relation 
ML = 1 = no of lexical entries to describe one set 
MR = 2 = no of lexical entries to describe one attribute and its entity-attribute relation 

MS (3) triples per entity set; MA (8) triples per attribute set; ME (5) triples per entity-entity 
relation; ML (1) lexical entries per set; MR (2) lexical entries per attribute. 

From these, the model derives the figures needed. The number of triples in the store (nt), 

including the triples needed for the metadata, is given by;-

nt = (MS + ne + na*(MA+ne))*ns + nee*(ME+ne) 
= (MS + MA*na)*ns + ME *nee + ne*(ns*(na + 1) + nee) 
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The number of lexical entries in the lexical store (nl), including the lexicals needed for the 

metadata, is given by:-

nl = dbr + ns*(ML + MR*nea + nea*ne) 

In addition, system parameters are supplied to the model, including 

idsize - identifier size 
thead - the size of the header in a block in the triple store 
Ihead - the size of the header in a block in the lexical store 
Isize - lexical size 

A triple contains 3 ids, so the size is 3*idsize 
A triple index entry contains 4 ids, so the size is 4*idsize 

The user can also vary:-

tbs- the triple block size 
lbs - the lexical block size 
packing factors (triple: tp]̂  triple index: tinpf etc) 
internal cache size. 

Using these, the model can determine the sizes of the triple and lexical stores, the height of 

index trees (a B-tree index is used), likely cache occupancy etc. For the triple store: 

Triples/Block: tb=:tpf*tbs/(3*idsize) 
Triple Index Entries/Block; tieb = ((tbs-thead)*tinpf)/(4*idsize) 
Triple Index Height: tih = 1 + RoundUp(Ln(nt/tb)/Ln(tieb)) 

For the lexical store 

Lexicals/Block: lb = Ipflbs/lsize 
Lexical Index Entries/Block: lieb = ((lbs-lhead)*linpf)/(liesize) 
Lexical Index Height: lih = 1 + RoundUp(Ln(nl/lb)/Ln(lieb)) 

Finally, parameters are needed for the time taken to retrieve a block of data from the 

operating system (bget), and to carry out various processing elements, for example, the 

processing time to make one pass through the triple store index (tip) or to handle one triple 

leaf node (tip). These were determined by calibration, described later. 

Most calculations can be performed using spreadsheet formulae. For some calculations. 

Visual Basic code was written. Two macros were used to derive the number of index levels 

held in the triple and lexical caches, based on the quantity of data in the database. Two 

further macros were used to calculate the number of index nodes present. Standard 
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formulae give the height of an index tree, and from this one could calculate the maximum 

number of nodes that would be in the tree. However, what was required was to find the 

number of nodes actually being used to index the current quantity of data in the database 

for each of the triple and lexical stores, a value that might well be far smaller than the 

maximum possible number. 

5.1.3.3 Data retrieval 

To understand how data retrieval is modelled, a central aspect of the operation of the triple 

store is summarized again here. The three elements that make up a triple are the Relation 

Id (relld or R), the Id of the Entity from which the relationship starts (fromld or F) and the 

Id of the Entity to which the relationship connects (told or T). A request at the TD 

interface will normally contain two of the three elements (although sometimes only one 

element will be supplied). For example, a request might supply the relld and the fromld 

and require the told to be found. This will be referred to as a request of the form RF*. 

The data in the triple store was initially sorted in the order; R, F, T, and was indexed using 

a B-tree structure. As a consequence, a request of the form RF* could be quickly satisfied 

via the index, whereas a request of the form R*T could not. In this situation, the DBMS 

must use the index to find the start of the relation and then perform a sequential scan. 

There are six ways that the data could be sorted, and a major objective of the modelling 

exercise was to discover which of these would be the best, and whether there would be 

significant benefit in holding the data in more than one sort order. If more than one sort 

order were to be maintained, the assumption is that the DBMS would perform a simple 

optimization to use the best sort order for a given operation. The cost of performing basic 

operations (RF*, R*T, etc.) against each of the six different sort orders is calculated in the 

model, and a matrix holds the results. 

5.1.3.4 Formulae for triple store 

At this stage, the measured values for basic elements are factored in: 

tip - Triple index processing time 
tip - Triple leaf processing time 
lip - Lexical index processing time 
lip - Lexical leaf processing time 
tsp - Triple scan processing time 
bget- Time to retrieve one block at random from the file system 
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Because of the intrinsic symmetry of the situation, only a small number of formulae are 

actually required, which are variations of the following; 

• Index direct to unique item 

For data sorted in the order R, F, T, an operation of the form RF* can use the index to 

retrieve the required record from the database. If (tscl) represents the number of index 

levels held in the triple store cache, the formula for retrieval time is given by: 

time = (ih-l)*tip+tlp+(bget*(ih-tscl)) 

® Index to first in set 

For data sorted in the order R, F, T, an operation of the form R*T can use the index to reach 

the first record in the required set. Thereafter, the set must be scanned sequentially, looking 

for matching records. 

time = 0.3*(bget*(ih-tscl))*(l+(nbr*(ifroom)))+ne*tsp) 

where ifroom is a conditional expression, which determines how much, if any, space is left 

in the cache after all index levels have been cached 

ifroom;- if (nbr > tscr) then ifroom = (20/tscr) 
else ifroom = 0 

• Index to first in triple store, and then scan 

For data sorted in the order R, F, T, an operation of the form *FT cannot use any index. 

Therefore, the triple store must be scanned sequentially, looking for matching records. 

tip + RoundUp(nt/tb)*bget 

Similar formulae apply for the lexical store. 

5.1.4 Calibration and Validation 

5.1.4.1 Block retrieval times 

A key parameter of the model is the block retrieval time - the time it takes to retrieve a 

block from the triple store or the lexical store. In order to obtain values for the time taken 
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to satisfy a request to the file system to retrieve a block, a small calibration program was 

developed to write a file of various sizes and then to measure the time taken to retrieve 

blocks of various sizes, both randomly and sequentially, on the system being modelled. 

This approach treats the file system as a 'black box'. As would be expected, the file system 

itself provides very significant caching; the memory available on the experimental machine 

was 64 MB. Part of the exercise was therefore to discover at what point file system caching 

became a significant factor, by ranging over varying file sizes and block sizes. 

File performance was measured for sequential reads and for random reads, since the triple 

store software might result in either being needed. A 100 MB file was used, to reduce the 

effects of caching, at least for random access. The results are shown in Figures 5.1 and 5.2. 

Variation of Data Rate With Btock Size for Sequential 

4000 5000 

Block Size (Bytes) 

Figure 5.1 Variation of data rate with blocic size for sequential reads 

In Figure 5.1, it can be seen that for sequential reads, performance improves steadily up to a 

block size of 1 KB, and then only slightly more before starting to fall away. Most accesses 

to the triple store, however, will result in reading one block at random. The time to retrieve 

a block at random is therefore of most interest, and Figure 5.2 shows that this is lowest for a 

1 KB block. Sequential scans through the triple store will result in a succession of random 

reads, and Figure 5.3 shows that the data rate does improve for larger block sizes. 

However, since it is expected that most retrieves will be for a single block, a block size of 1 

KB was chosen for the present experiment. 
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Figure 5.2 Variation of blocic read time with blocit size for random reads 

Vanation of Dsna Rate win Block size for Random Reads 
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Figure 5.3 Variation of data rate with Mock size for random reads 

This decision was further reinforced by the findings shown in Figure 5.4, showing the 

variation of random read time with file size. A typical request by the triple store would be 

for a single triple. A block of 1 KB contains 50 or more triples (depending upon packing 

density). A block size of 1 KB gives a significantly faster response than a block size of 

2 KB. 
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Figure 5.4 Variation of random read time with file size 

At file sizes of less than 50 MB, the whole file is effectively loaded into the system cache, 

and very fast retrieval times result. From this point upwards, a more regular pattern 

develops, which can be approximated by logarithmic formulae. It was decided to use a 

block size of 1 KB to give good block retrieval times, and to build data sets which took the 

total volume of data towards 100 MB. 

5.1.4.2 Processing times 

Figures were obtained for processing times by measuring the performance of a sample 

database with given parameters. By varying the size of the test database, the size of the 

cache and so on, it was possible to factor out times for the various elements needed. 

5.1.4.3 Validation 

The values obtained from the calibration were used in the model, which was then validated 

by comparing predicted times for queries with measured times from the database. 

Adjustments were made to ensure that the model reflected known performance to within 

10%. 
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5.2 Investigating Sort Orders 

5.2.1 Results 

For this investigation, the model was calibrated against the then current implementation of 

the triple store database at the level of the basic operations, running on a 300 MHz Office 

PC, with 64 MB of memory and a 4 GB disk, with Windows 95. 

A database was modelled containing two sets. Person and Telephone, linked by a many to 1 

(m:l) relationship, so that each person had a telephone number, but telephone numbers 

could be shared. A query was set up in the model which took a person's name and returned 

their telephone number. The model was then run a number of times with varying 

parameters to investigate the effect of storing the data in different sort orders. The data 

given by the model was fed straight to the Excel graph facilities to produce Figure 5.5. 
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Figure 5.5 Effect of sort order on query times 

The graph shows the effect on the execution time of the query of choosing one or the other 

of two sort orders - RFT or RTF - to store the data in the database. It also shows what 

happens when the data is stored in both sort orders, with the DBMS optimizing the query to 
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use the most efficient sort order for retrieval. If both sort orders are included, a dramatic 

improvement takes place, shown by the line running just above the horizontal axis. 

5.2.2 Discussion 

The effect of holding both sort orders in the database is clear. With both orders present, the 

need to scan a large number of triples is removed for most queries. Accesses to the triple 

store when the relld is not known are comparatively rare, but are discussed later, in the 

context of compression. 

As a result of this exercise, the triple store database was extended to include the two sort 

orders modelled here, and the predicted gains in performance were achieved. 

5 . 3 / n v e s f / g a f / n g f f ; e e f f e c t o f 

The subject of compression was introduced in Chapter 2, which highlighted the current 

interest in this topic. With the publication of recent papers by other groups, this part of the 

research had immediate relevance, to see how results with the triple store would compare 

with results in n-ary databases. 

5.3.1 Compression in Databases 

The most obvious reason to consider compression in a database context might seem to be to 

reduce the space required on disk. However, as disk space becomes rapidly less expensive, 

this is no longer such an important concern. The more important issue is to see whether the 

processing time for queries can be reduced by limiting the amount of data that needs to be 

read from disk to satisfy the query. By compressing data, can the number of blocks to be 

read be reduced? 

Speed-up can come from reducing the number of disk I/Os, (as long as the CPU cost of 

achieving this is not too high) and frequently the only way to do this is by reducing the 

number of accesses required in traversing the index. The height of the index tree is given 

by a logarithmic formula:-
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where H is the height of the tree, RBlkNum is the number of blocks containing data 

records, and INum is the number of index entries/block. In other words, there is an 

exponential relationship between H and both RBlkNum and INum. 

One option is therefore to increase INum by compressing index entries, which is the route 

taken in many databases today. The second option, in which we are interested, is to 

decrease RBlkNum, by compressing the data itself. In order to reduce the height of the 

index tree by one, and thus eliminate one disk I/O, we could calculate 

If we assume that INum, the degree of index compression, is the same in both cases, this 

simplifies to 

or 

= INum 
RBlkNum' 

So if the number of index entries per block were, say, 100 (a relatively low figure), then to 

achieve a consistent performance improvement by reducing the number of disk accesses by 

one for all database sizes, a compression factor of over 100 is needed, a fairly aggressive 

target! 

This sort of analysis might lead one to abandon interest in data compression immediately, 

but in fact things are not quite so simple, as the following work will show. Nevertheless, 

the basic facts above should be borne in mind and will be discussed later. 

5.3.2 Towards a Compression Algorithm 

In the triple store, sorting ensures that the first part of the triple will be repeated for 

successive entries, which immediately suggests scope for compression. Each entry in the 
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triple store contains three parts: the identity of the relationship (relld), the identity of the 

entity that the relationship runs from (fromid) and the identity of the entity that the 

relationship runs to (told). The triples are stored in sorted order in two ways: <relld, 

fromld, toId> and <relld, told, fromId>. Each logical triple is therefore actually stored 

twice, and query processing is optimized to use the appropriate sort order depending on the 

search criteria. As entity sets increase in size, there are increasing numbers of triples for 

each relationship type. 

The three identities are each currently represented by a 4-byte integer, which gives a 

symmetrical implementation. The triple store is accessed by means of a B-Tree type of 

index. While compression in indexes can be lossy, (if index entries are over-compressed, 

the situation can be recovered by retrieving additional data blocks), in the triple store itself 

any algorithm must not lose information. 

5.3.2.1 The scope for compression in the triple store 

Most queries applied to the database will result in the direct retrieval of one or a small 

number of triples by means of the index. The only queries where this is not the case, and a 

range of triples is retrieved in sequence, are where the database is being searched to 

perform a join on a non-key field (in n-ary terms). The DBMS contains its own cache, and 

the size of this will affect the number of blocks that must be read from the disk. Cache size 

and block size are parameters in the performance model. If the triples can be reduced in 

size, more triples can be held in a block. The size of the index is therefore reduced, and this 

is also modelled. 

Two observations are worth making at this point: 

1) The number of different rellds in a given database is quite small. In the database 

described below, there are fewer than one hundred different rellds. The ID 

allocation algorithm is designed to pack numbers into as few low-order bytes as 

possible, and it is likely that there will be 'spare' bytes at the start of the relld that 

are never used. 

73 



2) A 16 KB block can store about 1000 uncompressed triples at 70% occupancy. The 

triples are sorted, so with a packing density for the IDs of 50% (i.e. the IDs are 

allocated so that 50% of the numbers in a given range are actually used), the range 

of fromlds in a block could be as little as 2000 (Hex 7D0), needing only one and a 

half bytes. This figure is even lower if a smaller block size is used. Within one 

block, therefore, it is quite likely that the high order bytes will be repeated for many 

successive triples. 

5.3.2.2 Possible approaches 

Two contrasting approaches were considered. The first was typified by an algorithm which 

made use of a 'compression byte' prefixed to the triple. The bits in the prefix are set to 

indicate which bytes in the present triple are repeated from the previous triple, and are 

therefore omitted. Application of the algorithm to a sample triple store indicated that the 

store could be compressed to about 60% of its original size. 

However, there is a major disadvantage to this approach, which applies in some degree to 

compression in most databases. In order to carry out any processing, the block will need to 

be decompressed, as the offset of a record depends on the size of the previous records in the 

block. While the reduction in size potentially gives a significant reduction in I/O, the 

intensity of processing in the triple store, where relationships are followed from one entity 

to another, led to consideration of another algorithm. 

The second approach was designed to permit the processing of a block in its compressed 

state. The principle is that once the block has been initially compressed, subsequent 

operations, particularly binary searches, can be performed on the block in its compressed 

state, without needing to decompress it every time, which will clearly benefit performance 

considerably. The algorithm used to achieve this was termed 'the block mask algorithm'. 

5.3.2.3 The block mask algorithm 

At the beginning of each block, a mask is stored, indicating which of the twelve bytes in 

each triple are not constant throughout the block, as shown in Figure 5.6. The next record 

in the block contains a full triple, a 'starter record', with the values of the fixed bytes in the 

appropriate position. The remainder of the block stores short fixed length records 
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containing only the bytes that vary. Each block will contain a different mask, so that the 

length of the fixed length records in each block might be different. 

Mask 0001 0011 0111 
Starter Triple 0010 4000 5000 
Subsequent Triples 345987 ( = 0013 4045 5987) 

446678 ( = 0014 4046 5678) 
... and soon ... 

Figure 5.6 Example of the block mask algorithm 

When a block is retrieved into the DBMS, it is then possible to use the mask and the starter 

record to reconstruct any individual triple without the need to decompress the whole block. 

As described above, the algorithm works in terms of bytes. A further refinement is possible 

to store only the bits that change, rather than whole bytes, which allows further 

compression to be achieved. 

5.3.2.4 Evaluation of algorithm 

Application of this algorithm can lead to compression down to a third of the original size of 

the triple, or a quarter if bit level compression is being used. Triples are compressed when 

being placed in the triple store. For retrieval, the search string is compressed, the required 

triple is located in the compressed block (typically using a binary search) and the selected 

triple is decompressed when located. The block mask algorithm only needs a few lines of 

code to pick up the mask and the starter record, and then apply these to the selected triple. 

There are further detailed decisions that a final implementation would require. For 

example, it would be possible to insist that each block contained only triples relating to one 

relld. This would enhance compression, and if data sets are large so that one relld spans 

several blocks, would lead to a worthwhile saving. For a small database, however, this 

could result in an unnecessary proliferation of blocks, adversely affecting the performance. 

This sort of refinement is beyond the current study, however. 
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5.4 Mode///f)g f/?e due fo <]%OHiiyownGMS%»/<)#? 

5.4.1 The Database 

For this exercise, a database for a wholesaler buying in goods from a number of suppliers, 

and shipping smaller quantities to various customers was used. In conventional n-ary 

database terms, the database had 8 tables, with a number of relationships between them. 

The scenario assumed was that a variety of mainly OLTP transactions would be carried out, 

at normal volumes. All queries in the present experiments were read-only. 

The 8 tables represented customers, suppliers, orders, products and so on. The average 

number of fields per table was taken as 10. This translates into a triple store database with 

8 entity sets with 80 attribute sets, requiring 80 different entity-attribute relationships. The 

foreign key relationships between the tables translate into 10 entity-entity relationships. 

Thus 90 different relationships were required. 

In considering the compression ratio achievable, it is necessary to consider the range of 

values for various aspects. The following discussion is in terms of a triple store sorted in 

the primary order, that is, on relld and fromld. 

1) Relld s For this database, 90 different ids are required, plus the small number 

required to handle metadata. The ids for this could therefore be handled within one 

byte. For any database other than the smallest, however, most blocks will contain 

triples relating to only one relationship. The relld will therefore compress out 

completely, and be held only in the block mask. 

2) Fromld s Following the discussion in 5.3.2.1 above, 2 bytes will be needed, 

which gives a range of 64k for the values of the ids in one 16 KB block. (If a 

smaller block size is used, the range is reduced. However, the greater compression 

is not significant unless very small blocks are used, and the increase in processing 

then outweighs the benefit. A 16 KB block size was used throughout this series of 

experiments.) 
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3) Told s If the database is sorted on the first two fields, then the values in the tolds 

will be randomly scattered across the range for each set. For a database up to one 

million triples (which corresponds to about 50,000 entities per set or 25 MB of 

actual data), 2 bytes will suffice to cover the range of ids; for a database up to 200 

million triples and beyond (about 1 million entities per set, 500 MB), 3 bytes will be 

needed. 

The 12 bytes required before compression can therefore be reduced to 4 or 5 bytes after 

compression for this scenario. If the compression is carried down to the bit level, then the 

fromid could be held in 12 bits, and the smaller ranges for the told could also be held in 12 

bits, so the compressed triple could then be just 3 bytes. 

In the direction fromid to told, each triple captures one instance of a m: 1 relationship, so 

that when the triple store is sorted in the primary order, the third field will not have any 

particular sequence, as reflected above. In the inverse sorted triple store, the order is relld, 

told, fromid, which represents the relationships in the 1 :m order. Successive triples may 

now have identical fields in both the relld and the told, and the fromid will be in sorted 

order, so that triples can be further compressed. To model this, however, would require 

more detailed examination of the distribution of data in the various domains, and this was 

not deemed appropriate to the present level of analysis. 

5.4.2 Establishing the Model 

The size of the cache has a critical impact on performance. As the cache size increases, 

more levels of index and more data records can be held in the cache, and the overall 

performance will improve. Cache size was therefore varied to see the effect of this as it 

interacts with compression. 

The vast majority of normal queries involve searches where the relld is known and either 

the fromid or the told is also known. In either of these cases, the blocks can be accessed 

directly through the index, if both sort orders are held (RFT and RTF). The main interest is 

therefore in the retrieval time for such queries. Sequential access to the triple store is 

required only for a query where, in traditional RDB terms, there is no foreign key linking 

two tables, such as might be used in some decision support enquiries. An example in the 
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Wholesale database would be "Find me the suppliers and customers who share a postcode". 

In this case, all or part of the triple store has to be scanned looking for matches. 

Compression will obviously speed these searches, and this was also considered. 

5.5 Resu/fs /nyesf/gaf/on 

5.5.1 Direct Access 

The model was run for the wholesale database. The cache size was varied, and in each 

case, results were recorded for various sizes of database, both with and without 

compression. Figures 5.7 and 5.8 show the results for two different cache sizes. The 

graphs show the average number of disk accesses required for the retrieval of a triple. A 

database operation will often require a number of triples to be retrieved, so that variations 

in the number of disk accesses will be evened out, and the average is a useful figure to work 

with. The complex interaction between index size, database size and cache size yields local 

variations, such as that in Figure 5.8, where both the first two points for the compressed 

database show the database almost entirely in the cache, but there is a broad similarity in 

the results. 

The effect of increasing the size of the cache by a factor of 4 can be seen in the reduction of 

the number of accesses by a half to three quarters of one access, depending on the size of 

the database. Increasing the cache size would be expected to improve performance, and the 

model helps quantify the degree of improvement. 

The particular interest, however, is in the effect of compression. Each graph shows the 

effect of this, which is to reduce the number of accesses by a significant amount ranging 

from a quarter to three quarters of an access. This leads to an improvement by a factor of 

almost two in smaller databases, dropping to 1.25 in large databases. This result 

corresponds to the OLTP situation, where each query looks for a record which may be 

unrelated to the previous one, and stands in contrast to the conclusions drawn by Westmann 

et al [WesOO], who do not expect compression to improve the performance of OLTP-style 

applications. 
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Figure 5.7 Triple retrieval time with 256 Icilobyte cache 
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Figure 5.8 Triple retrieval time with 1 megabyte cache 

5.5.2 Sequential Access 

For queries which do not involve a significant degree of index access, then compression 

produces a straightforward benefit. Each retrieved block contains more triples, in direct 

proportion to the compression ratio, and the model confirms this. One therefore sees an 
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improvement of 2:1 or better, and this is very much in line with the results from Westmann 

et al and Chen et al [ChenOl], which both deal with decision support situations. 

5.5.3 Discussion of Compression Results 

The operations that would be carried out by joins in a conventional database are replaced by 

operations in the triple store, so that any reduction in the number of accesses has a direct 

effect on performance, whether for a single query or for a sequence of related operations. 

The block-mask algorithm permits processing to be carried out on compressed data, 

yielding a very efficient join mechanism. The effect of this has been modelled, and shown 

to produce significant benefit. 

In the case of sequential operations which would be needed for decision support queries, 

the results obtained demonstrate an improvement by a factor of two. However, it has also 

been shown that this approach would benefit OLTP queries, giving a reduction in the 

number of disk accesses by a factor in the range of 1.25 to 2. 

The conclusions to be drawn are considered in the final chapter. 
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6 Conclusions and Discussion 

This chapter is divided into four parts. Section 6.1 draws the threads together on the effect 

of compression on performance, where this research has led to some interesting 

discoveries. In Section 6.2, the benefits of approaching modelling by using a spreadsheet 

are weighed. Attention then turns, in Section 6.3, to the achievements of the present 

implementation of the triple store database, and further developments are considered. 

Finally, Section 6.4 addresses the question "Could the future be binary relational?" 

The result of particular interest is the impact of compressing the non-index information 

held in the triple store. Previous research, discussed in Chapter 2, has tended to suggest 

that the cost of compressing and decompressing non-index data accessed randomly, as in 

an OLTP application, outweighs the benefit of compressing data to reduce the amount of 

disk access. What has been shown here is that, with a suitable algorithm, the processing 

cost can be contained, and database access times can be reduced, with a reduction in the 

number of disk accesses by a factor in the range of 1.25 to 2. 

How does this compare with the results in [WesOO] and [ChenOl]? They both dealt with 

decision support databases, in an n-ary DBMS, with Westmann et al seeing performance 

improve by a factor of 2, and Chen et al suggesting improvement by a factor of up to 10. 

For the decision support scenario, the triple store can certainly match the lower figure, and 

there are ways to improve this further, which are discussed below. However, neither 

Westmann et al nor Chen et al present results for OLTP, but Westmann et al suggest there 

would be no improvement here, partly because of the high cost of insertion using their 

approach. As long as an n-ary architecture is adhered to, these conclusions seem very 

reasonable. 

What has been demonstrated is that by using a different architecture, it is indeed possible 

to use compression to speed up OLTP queries. With an n-ary database, the approaches 

taken are to compress different attributes in different ways, and then enhance the other 
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parts of the DBMS, especially the optimizer and the execution engine to deal with all the 

various possibilities. With the triple store, one compression algorithm is needed, and 

vitally, the algorithm developed then allows processing to proceed without the need, in 

general, to decompress triples. A very uniform implementation thus results. 

OLTP applications vary widely in the ratio of reading versus updating the database. 

However, most transactions involve reading data initially to present data to the user 

(customer information, flight details and so on) and then at the end of a transaction some 

data may be written back to the database. Retrieval therefore usually constitutes at least 

50% of the activity, and often much more, with insertions or changes making up the 

balance. If the cost of compression on insertion is high, as in the Westmann et al approach 

where specially formatted tuples are developed, even a small proportion of insertions will 

clearly be a problem. However, in the triple store, the cost of compression on insertions is 

not high, due to the nature of the algorithm and the integration with the DBMS. It is 

perhaps not surprising, therefore, that a different result will be obtained. 

6.1.1 Further Compression In the Triple Store 

At present, the model takes no account of locality of reference, so is actually unduly 

pessimistic. One of the advantages of fully decomposing data in the current 

implementation is that related items will be stored in close proximity, so that data is 

automatically clustered. This is because the whole of a binary relation is stored together in 

the triple store. In practice, therefore, it is expected that the results would be better than 

predicted by the model. 

Further work should certainly include consideration of the additional effect of 

compression on the indexes. The uniformity of the implementation means that the same 

code is used to handle both the blocks in the triple store and in the index to the triple store. 

Any compression algorithm will therefore benefit both, and a further modelling exercise 

should capture the effect of this. 

There is also the possibility of extending the degree of compression. The current 

assumption is that all data domains are large, but in practice, some are quite small. In the 
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extreme case of a binary domain (e.g. Male, Female), compression down to one bit per 

triple is possible, as follows. If a block contains one relation, and if fromlds are densely 

packed, then the initial fromld can be held in the block header, as well as the relld. If the 

rest of the block is considered as an array, each bit in the array could represent the 

monotonically increasing set of fromlds held in the block. Each bit could then be set to 

indicate whether the told took one or other of the two possible values. This would give a 

compression factor of almost 100 (12 bytes down to one bit). This could be generalized 

and implemented on a block by block basis. If in the range of one block, the third field 

only uses two bits, even if the potential domain is larger, the block could be compressed to 

this level while retaining the higher level advantages of the triple model. This degree of 

compression would have a major impact on the performance of all types of queries. 

The idea outlined above would lead to an automatic optimization of compression, which 

ties in with the idea of a self-tuning database. The triple store appears to offer significant 

scope for this. For instance, it would be possible to adapt the allocation of identifiers in 

response to the size of sets of data in order to keep number ranges compact, and the fact 

that data is automatically clustered has already been mentioned above. Exploration of the 

extent to which the database could be made self-tuning would be an interesting further 

avenue to explore. 

6.2 Performance Modelling with a Spreadsheet 

The approach taken to building the performance model was to use a spreadsheet, 

Microsoft Excel, rather than building a model from scratch. The spreadsheet certainly 

provides an excellent framework within which to work, and provides many built-in 

routines to perform calculations. However, it soon became clear that it was necessary to 

be fairly sophisticated in the use of the spreadsheet, by using multiple sheets and by 

naming and carrying variables and values from one sheet to another, for example. It was 

also found necessary to code some routines which could not be achieved using spreadsheet 

formulae. While this is perfectly possible using VBA (Visual Basic for Applications), the 

novice spreadsheet user would have a further significant learning curve to travel. 
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The model proved versatile and easily extendable when new questions arose, and this was 

a major benefit. A spreadsheet provides a natural interface for holding and organizing 

large numbers of parameters which may then be varied. In contrast, the risk of coding a 

model from the ground up is that all of the requirements may not be understood at the 

outset, and it then becomes hard to change some of the basic assumptions. Excel also 

provided ready-made facilities for presenting results. 

However, constructing the model was not the only part of the exercise. Calibration proved 

to be a time-consuming activity, as the machine on which the database was running had 

first to be characterized, which required long running times to load up large datasets, and 

then many measurements were taken using the database. This time would have to be 

spent, regardless of the construction of the model. The process of calibration did, though, 

ensure that the performance of the database as it then stood was examined systematically 

and became better understood than might otherwise have been the case. 

The initial motivation for developing the model was to provide guidance for design 

decisions, and in particular, whether it would be worth adding the code to support more 

than one sort order in the triple store. Success was demonstrated through the investigation 

into sort orders using the model, and the results were subsequently corroborated when the 

database code was extended to support two sort orders, as indicated by the model. 

However, the model proved its full worth when it became the tool for conducting the 

wider investigation into the area of compression. 

There is obviously a limit to the depth and accuracy to which it is worth developing a 

model. If too much time is required for model construction and calibration, it might be 

quicker to develop a new version of the subject of the modelling exercise, the DBMS in 

our case, and examine that. However, if one wants to examine a number of alternative 

approaches, the idea of building all of them becomes too expensive, and modelling 

provides the practical solution. On balance, the approach taken worked well, and 

permitted a model to be developed in a timely fashion which delivered the required 

results. 
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6.3 The Triple Store - Achievements and Further Work 

This research has resulted in a new and very effective implementation of a database 

management system. From the outset, the intention was to keep the design as simple and 

pure as possible, and the architecture described in Chapter 4 achieves this. Other new 

aspects include the caching algorithm, the compression techniques, and the demonstration 

of the variety of interfaces that can be supported. 

Section 6.3.1 assesses the outcome with respect to the expectations set in Chapter 1, and 

indicates areas for further work. Section 6.3.2 discusses the aspect of object-orientation in 

the triple store database. Section 6.3.3 outlines in detail one specific area where further 

work is essential, that of concurrency. 

6.3.1 Demonstrating the Advantages of the Triple Store 
Implementation 

In Chapter 1, the following advantages of basing a binary relational database on a triple 

store were proposed, and it is now appropriate to consider them again. 

® The triple environment is essentially uniform, leading to efficiency and economy 

® A considerable amount of processing can be carried out within the triple store 

itself, without manipulating a large number of data items 

® The underlying model needs relatively simple code to access and maintain the data 

® The uniformity of the triple store yields very significant compression opportunities 

® The triple store also has the potential to be made completely self-tuning, which 

would be a significant benefit for both larger and smaller users. 

® The uniform data structure is easier to spread onto multiple disks for parallelization 

With regard to the first three of these points, the implementation which has been described 

in this thesis demonstrates their veracity. The fourth point, regarding compression, has 

been explored extensively, and described in the preceding chapters and sections. The fifth 

point concerns the extent to which the database can be made self-tuning. This was 

discussed in Section 6 .1.1, with regard to the selection of the degree of compression in 
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force. It is intrinsic to the design of the implementation that there are very few 

parameters, and it would be a worthwhile area of study to pursue this aspect further. The 

final point, regarding parallelization, has proved to be beyond the scope of the present 

work, but is still believed to be applicable. This would be a fruitful area for further work, 

given the increasingly widespread availability of parallel hardware in one form or another. 

6.3.2 The Triple Store Database and Object Orientation 

The decision was made at the outset of this project to use an object-oriented approach 

throughout. The design reflects this, and all of the coding has been carried out in C++. As 

a result, it would be a very natural step to use the triple store database as the basis for an 

object-oriented database management system (ODBMS). 

One of the distinguishing aspects of an ODBMS is that all objects are uniquely identified 

by an object identifier (OID) rather than using one of the data items as an identifying key 

as in an n-ary relational database. Each entity in the triple store database has its own 

identifier, so that this fundamental mechanism is in place. In addition, relationships 

between entities in the triple store are also dealt with entirely by the use of the identifiers, 

as needed in an ODBMS. 

More work would be needed to develop the database into a full ODBMS, but the present 

implementation would provide an excellent foundation on which to build. 

6.3.3 Concurrency Control in tlie Triple Store 

Another area which needs to be the subject of further work is concurrency control. Some 

thought has been given to this, which is presented in the following section. 

A problem arises in databases as soon as the database is to be used by more than one user. 

Multiple users may attempt to access the same data at the same time and there is the risk 

that data will be updated inconsistently. In order to achieve isolation, and maintain data 

integrity, some locking mechanism must be introduced. The first user to access a piece of 

data will lock the data until changes are complete, and any other user must wait until the 

first user unlocks the data again. 
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Much research has been carried out over the years on the best way to achieve such 

locking, as described in [Gray93] and [Bha99]. Predicate locking was first proposed by 

[Esw76], and in theory would give the most effective form of locking, providing isolation 

and dealing with the problem of 'phantoms' (see below). However, there are practical 

difficulties in implementation, and a trade-off has to be made between concurrency and 

overhead. Other techniques, most commonly some form of granular locking, are normally 

used. There has been intensive study of how these work out in theory and in practice. In 

[Sing97], for example, there is a detailed analysis of locking behaviour in three real 

database systems, which demonstrates the need for database administrators and designers 

to have an awareness of what is taking place inside the DBMS. 

There remains the question of whether there are any circumstances in which it might be 

possible to implement a predicate locking scheme. In [Kell96], a predicate-based caching 

scheme for client-server databases is described, which returns to the idea. Their 

implementation is more optimistic than predicate locking, and is similar to precision locks. 

A long-term goal of the work on the triple store is to discover whether an efficient 

predicate locking scheme could be implemented in this environment. 

6.3.3.1 Predicate locking 

When implementing a locking scheme, a decision has to be made about what to lock. 

One approach is to lock a part of the physical or logical database, depending on which part 

the user is trying to access. For example, one could lock the entire database, a table (or 

set) in the database, an individual record, or a field within a record. An alternative 

approach is to analyse the query being made in terms of the predicates. If the user wants 

to work with data relating to people with blue eyes and fair hair, there is no need to lock 

all of the 'people' records in the database, but only the records that satisfy the predicate < 

eyes = "blue" AND hair = "fair">. This is known as predicate locking. 

One needs to be aware that another query using only part of the first transaction's 

predicate, perhaps seeking to raise the salaries of all blue-eyed boys (<eyes = "blue">), 

could also interfere with the first transaction, so that the predicates need to be compared 

carefully, but if correctly implemented, predicate locking guarantees isolation. 
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Predicate locking also deals with the problem of phantoms. Suppose that transaction T1 is 

updating the salaries of all blue-eyed boys. Using a physical locking scheme, one could 

lock the records relating to all of the blue-eyed boys in the database before starting the 

update. However, this would not then prevent a second transaction T2 starting which 

could add new blue-eyed boys to the database, while T1 was still executing. These new 

records, not locked by Tl, are known as phantoms, and there are other circumstances in 

which phantoms can arise. Predicate locking will prevent this, as T2 would not be 

allowed to start since its predicate conflicts with Tl. 

6.3.3.2 Predicate locking problems 

[Gray93] describes the following three shortcomings of predicate locks 

1) Execution cost. The predicate lock manager has to test for predicate satisfiability 

as an inner loop of the locking algorithm. Predicate satisfiability is known to be 

NP-complete - the best algorithms for it run in time proportional to 2^. This is not 

the sort of algorithm to put in the inner loop of another algorithm 

2) Pessimism. Predicate locks are somewhat pessimistic. In other words, to ensure 

isolation, the mechanism may lock more of the database than is actually necessary, 

as it is impossible for the algorithm to comprehend constraints that exist on the 

actual data. 

3) In general, it is difficult to discover the predicates. 

6.3.3.3 Predicate locking in the triple store 

The intention is to implement a predicate locking scheme within the Triple Store. This 

will be a further investigation beyond the current thesis, but discussion is included here as 

indication of future direction. The triple store is a unique platform from which to 

investigate the issues further, because of the elegant simplicity of the design, which 

extends to the inclusion of all metadata within the uniform structure of the database. 

One of the dangers of predicate locking is of excessive interference between locks in the 

index. In the case of the triple store, this might seem even more acute at first sight 

because there are only two indexes - one for the triple store and one for the lexical store. 

However, the requirements are eased by two factors. 
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1) Short sequential scans are often needed through the triple store to find a record. 

During these scans, the root of the index need not be locked for long, as it can be 

released once the search has started. Triples within a block are chained together, 

and the links can be followed, except when moving to a fresh block. 

2) It is intended to implement an optimistic scheme of refining locks, to improve 

speed. When transaction T1 is started, locks will be held at a gross level. When 

transaction T2 starts, if there is a lock conflict, then T l ' s lock will be refined to the 

point where there is no conflict with T2. If this is not possible, then T2 will wait 

until T1 has finished, and so on. 

As a result of the unified architecture, it should be possible to launch any operation at any 

time, including the addition or removal of sets. Updates to the dictionary (metadata) will 

be treated like normal transactions. 

6.4 Could the Future be Binary Relational? 

The binary relational database is an idea which continues to draw interest. This is shown 

not only by the number of research efforts which keep coming back to it, but also by the 

fact that commercial vendors find themselves drawn back to the idea, as described in 

Chapter 2, 

One of the underlying reasons is possibly the fact that fully decomposing data leads to the 

ability to develop a solution with elegant simplicity. The triple store implementation, for 

example, permits very powerful processing with relatively few lines of code. This code 

also supports the metadata, and the indexing mechanisms. 

It is not at all clear that the debates that were taking place in the 1970s about how to 

structure databases (see Section 2.1.8) were really resolved. Rather, they were overtaken 

by the events in which large companies started rolling out relational databases. In spite of 

their enormous power and widespread use, these n-ary relational databases have been 

found wanting in various respects, which is why work has continued on object-oriented 

and object-relational databases. Further consequences are that in analytical processing, 

databases are found to need star or snowflake schemas, in which data is deliberately de-

normalized. 
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The present project has extended or complemented previous work in various ways. To 

take just two examples, Copeland and Khoshafian [Cop85, Kho96, Kho87] used only one 

sort order in their implementation, whereas two sort orders are employed here on the triple 

store, and potentially on the lexical store as well, which has been shown to be highly 

beneficial. Monet [Bon96] uses Binary Association Tables, which appear to introduce a 

great deal of redundancy, whereas in the lexical store described here, data values are held 

just once. 

In Section 2.1.8, it was shown how the binary relational view is a very attractive approach 

at the logical level. The search for ways to provide an efficient implementation in 

software to support this logical view has led ultimately to the triple store described here. 

Given the simple and elegant solution that results, the question now is whether it would be 

a better underlying mechanism to support some of the other views of data, for example, n-

ary or object-oriented. The present work has shown that it is perfectly possible to build a 

variety of interfaces above a triple store, and the separation of data from relationships has 

all sorts of benefits. As the n-ary relational bandwagon finally starts to slow down, it may 

well be that the day of the binary relational database is about to dawn. 
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Appendix A 

A.1 General Rules 

This appendix specifies the public interface of the Triple Store Database System. This 
interface includes the td classes and the cursor classes. 

A.1.1 Naming conventions 

® Abbreviations 
• The following abbreviations are used in constructing names 

® Entity ent, e 
• Lexical lex, 1 
• Relation rel, r 

• Capitalization - Standard C++ naming convention ... 
• Function names are fully qualified 

A. 1.2 Datatypes 

The following data types appear in the functions 

esid Entity set id 
Isid Lexical set id 

A.1.3 nold and anyld 

These can stand in the position of any of the above identifier types 

anyld an identifier of any id 
nold an identifier of no id 

® anyld: is equivalent to the * (wildcard) character used in other systems 
• nold: if a function which requires identifier arguments is presented with 'nold', the 

function will do nothing. 

A. 1.4 Statements about cursors 

® All have first, next, valid members, which return 0 if cursor is validly located, and 1 if 
not. 
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A.1.5 Database Integrity 

Use of the database functions on a valid database guarantees maintenance of the following 
integrity constraints 

All relations are based on existing sets 
All entities belong to valid entity sets 
All lexicals belong to valid lexical sets 

A.2 Typical Usage of td 

Example 
// A database called 'db' has been established 

eld myFromEnt; 

eld myToEnt; 

// Code to set myFromEnt to some value 

myToEnt - db.toEntId(myRel, myFromEnt); // Get ToEntId 
if ( ImyToEntld.validQ) { // Ent Id Not Valid - Handle error } 

// Carry on 

A 3 D a t a b a s e O p e r a f / o n s 

Note: ** beside a function denotes a user convenience function, constructed from the basic 
functions 

td::td (const char* lexical file name, const char* triple_file name) 
Open a database 

td::~td ( ) 
Close a database 

void td::info (int lexical infb level, int entity infb level) 
Provide 'trace' information in cout 

* infb level = 0 Function puts out no info 
* infb level = 1 Function puts out summary info 

* info_level >= 2 Function puts out more detailed info 

void td::info (int infb level ) ** 
Provide 'trace' information for both entities and lexicals at the same level 
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A.4 Dictionary - Set Operations 

esid td::addEntSet (const char* entity set name) 
Add a new entity set or locate an existing one 
Returns: id of the entity set created or found 

Isid td::addLexSet (const char* lexical set name) 
Add a new lexical set or locate an existing one 
Returns; id of the lexical set created or found 

void td::delSet (esId entitysetid) 
Delete an entity set 

void td::delSet (Isid lexical set id) 
De/gfg a /exfca/ 

esId tdxentSetId (const char* entity set name) 
Get set idfor an entity set 
Returns: id of the entity set 

Isid td::IexSetId (const char* lexical set name) 
Get set idfor a lexical set 
Returns: id of the lexical set 

Note: In calls of the following type, the user supplies a pointer to the area 
where the name is to be put. For convenience, the call returns the same 
pointer, although strictly, this is redundant. 

char* td::setName (esid entity set id, char* entity set name) 
Sets the name of an entity set into entity setj^ame 
Returns: the char array entity set name 

char* td::setName (Isid lexical set id, char* lexical set name) 
Sets the name of a lexical set into entity set name 
Returns: the char array lexical set name 

A.5 Dictionary - Relation Operations 

eerld td::addeeRei (const char* relation name, esId entity from set id, 
esId entity to set id) 

Add a new entity entity relation between two existing sets 
Returns: id of the relation added 

eerld td::addeeRel (const char* relation name, const char* entity_from_set_name, 
const char* entity to set name) 

Add a new entity entity relation between two existing sets 
Returns: id of the relation added 
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elrld td::addelReI (const char* relation name, esId entity set id, Isid lexical_set_id) 
Add a new entity lexical relation between two existing sets 
Returns: id of the relation added 

elrld td::addelReI (const char* relation name, const char* entity set name, 
const char* lexical set name) 

Add a new entity lexical relation between two existing sets 
Returns: id of the relation added 

void td:: deleeRel (eerld entity_entity_relation id) 
Delete an entity entity relation 

void td::deleeRel (const char* entity_entity_relation_name ) 
Delete an entity entity relation 

void td::delelRel (elrld entityjexical relation id) 
Delete an entity lexical relation 

void td::delelRel (const char* entity_lexical_relation_name ) 
Delete an entity lexical relation 

eerid td::eeRelld (const char* entity entity relation name) 
Get entity entity relation id 
Returns: Entity to entity relation id 

elrid td::elRelId (const char* entity lexical relation name ) 
Get entity lexical relation id 
Returns: Entity to lexical relation id 

char* td::relName (eerld entity_entity_relation_id, char* entity entity relation name ) 
Get entity entity relation name 
Returns: the char array entity_entity_relation_name 

char* td::relName (elrld entity_lexical_relation_id, char* entity lexical relation name) 
Get entity to lexical relation name 
Returns: the char array entity lexical relation name 

esId td::fromSetId (eerld entity_entity_relation_id) 
Get from setJdfor an entity to entity relation 
Returns: Entity set id of the relation from set 

esId td::fromSetId (elrld entity lexical relation id) 
Get from set idfor an entity to lexical relation 
Returns: Entity set id of the relation from set 
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esid td::toSetId (eerld entityentityrelationid) 
Get to set idfor an entity to entity relation 
Returns: Entity set id of the relation to set 

Isid td::toSetId (elrld entity lexical relation id) 
Get to set idfor an entity to lexical relation 
Returns; Lexical set id of the relation to set 

char* td::fromSetNanie (eerld entity entity relation id, char* entity from set name) ** 
Get from setjrame for an entity to entity relation 
Returns; the char array entity from set name 

char* td::fromSetName (elrld entity lexical relation id, char* entity from set name) ** 
Get from setjiame for an entity to lexical relation 
Returns; the char array entity from set name 

char* td::toSetName (eerld entity entity relation id, char* entity to set name) ** 
Get to set name for an entity to entity relation 
Returns; the char array entity to set name 

char* tdxtoSetName (elrld entity lexical relation id, char* lexical to set name) ** 
Get to setjiame for an entity to lexical relation 
Returns; the char array lexical_to_set_name 

A.6 Data - (Entities) 

eld td:: addEnt (esId entity_set_identifier) 
Add an entity to an entity set 
Returns; id of the entity added 

eld td:: addEnt (const char* entity set name) ** 
Add an entity to an entity set 
Returns; id of the entity added 

void td;:deIEnt (esId entity set identifier, eld entity identifier) 
Delete an entity from a set 

A 7 D a f a - ^ e x / c a / s ^ 

lid td::addLex (Isid lexical_set_identifier, const char* lexical value) 
Add a lexical to a lexical set 
Returns; id of the lexical added 

lid td::addLex (const char* lexical set name, const char* lexical value) ** 
Add a lexical to a lexical set 
Returns; id of the lexical added 
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void td::deILex (Isid lexical set identifier, lid lexical identifier) 
Delete a lexical from a lexical set 

void td::deILex (Isid lexical set identifier, const char* lexical value) ** 
Delete a lexical from a lexical set 

void td::delLex (const char* lexical set name, lid lexical identifier) ** 
Delete a lexical from a lexical set 

lid td::lexld (Isid lexical set identifier, const char* lexical value) 
Get idfor a lexical value 
Returns: id of the lexical value 

lid td::lexld (const char* lexical set name, const char* lexical value) ** 
Get idfor a lexical value 
Returns: id of the lexical value 

A.8 Data - (Connections) 
void td::addCon (eerld entity_entity_relation_identifier, eld entity id, eld entity id) 

Add a many-one connection between two entities 

void td::addCon (elrld entity lexical relation identifier, eld entity id, lid lexical id) 
Add a many-one connection between an entity and a lexical 

void td::addCon (elrld entity_lexical_relation_identifier, eld entity id, 
const char* lexical value) ** 

Adds a lexical value to a lexical set and 
adds a many-one connection between an entity and that lexical 

void td::addCon (const char* entity lexical relation name, eld entity id, 
const char* lexical value) ** 

Adds a lexical value to a lexical set identified by name and 
adds a many-one connection between an entity and that lexical 

void td::delCon (eerld entity_entity_relation_identifier, eld entity id, eld entity id) 
Deletes a many-one connection between two entities 

void td::delCon (elrld entity lexical relation identifier, eld entity id, lid lexical id) 
Deletes a many-one connection between an entity and a lexical 

eld td::toEntId (eerld entity entity relation identifier, eld entity id) 
Returns the entity id of an entity in the 'to' set, given the relation id 
and the entity id of the entity in the from' set 
Returns: An entity id 

elld td::toLexId (elrld entity_lexical_relation_identifier, eld entity id) 
Returns the lexical id of a lexical in the 'to' set, given the relation id 
and the entity id of the entity in the from' set 
Returns: A lexical id 
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char* tdxtoVal (elrld entity lexical relation identiGer, eld entity id, char* lexical value ) 
/Ae va/z/e a /gxzca/ m Yo' giwey? zAg /-g/afzoM /(f 

OMfi fAe eM/7(y fAe ewff(y m ^ 
Returns; the char array lexical value 

A.9 Cursors 

Cursors to do: What they do 

entSetCursor Move between entity sets in a database 
lexSetCursor Move between lexical sets in a database 

eeRelCursor Move between e-e relations in a database 
elReiCursor Move between e-1 relations in a database 

entCursor Move between entities in a set 
lexCursor Move between lexical s in a set 

(Returns in alphabetical order within set) 

entEntCursor Move between connections in an entity-entity relation 
entLexCursor Move between connections in an entity-lexical relation 

All cursors include first, next, valid members, which return 
0 if cursor is not validly located 

Examples 

1) To loop through a set of values: 

entSetCursor esc(db); 
for(esc.first(); esc.validQ; esc.next()) { 

// Do something 
} 
// Continue 

2) To test values explicitly: 

curVal = elTPers.first{myRel, any Id, myEntId); // Cursor to first entity 
if (curVal == 0) { 

cout « " Cursor not valid" « endl; 
// ... take action 

} 
// Continue 

Lexical Set Cursor 

lexSetCursor::lexSetCursor (td &database) 
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Create a cursor to move between lexical sets in a database 

int lexSetCursor::first 0 
Locate the first lexical set in the database 

Isid lexSetCursor::setId () 
Retrieve the id of a lexical set 
Returns: id of the lexical set that the cursor locates 

int lexSetCursor::next () 
Locate the next lexical set in the database 

int lexSetCursor::valid () 
Returns the state of the cursor 

Other cursors follow the same pattern. 
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