
Optimizing Data Storage for Performance in a

(Vtodern Binary Relational Database based on a

Triple Store

by

Stephen J O'Connell, MA

Department of Electronics and Computer Science,
University of Southampton

Southampton, 8017 IB J
Email: soc@ecs.soton.ac.uk

December 2002

Thesis submitted by Stephen O'Connell
in candidature for the degree of

Master of Philosophy
at the University of Southampton

Supervisors: Prof A J G Hey, Dr D A Nicole
and N Winterbottom

mailto:soc@ecs.soton.ac.uk

LnyryEfu%TircMFSCMJTiLWVQrrcM4

ABSTRACT

ELECTRONICS AM) COMPUTER SCIENCE

Master of Philosophy

()rr̂ IA/̂ 2rÎ fCr]0V :̂̂ /L STCXPLAXjE FOR PIIBLFCDItlvLAJSWCIilON /L

)d[CM[)E]R]SlI3I]SL\Illf IIE[[.ALTI()]NLAJL I]VlT/lByLSIE I3j\j3ED Off [IlIEqLE STCDRIi

by Stephen John O'Connell

This thesis introduces a new approach to understanding the issues relating to the efficient

implementation of a binary relational database built upon a triple store.

The place of the binary relational database is established with reference to other database

models, and a detailed description of a new triple store implementation is presented, together

with a definition of the architecture.

The use of a model, which reflects the performance of the triple store database, is described,

and the results of performance investigations are presented. In the first, the use of more than

one sort order in the triple store database is analyzed, and the use of two sort orders is found

to be optimal. In the second, the effect of compression in the triple store is considered, and

compared with other approaches to compressing the non-index portion of a database

management system.

In conclusion, the model successfully predicts the effect of using two sort orders, and this

was confirmed upon subsequent incorporation into the database. It is also found that

significant performance gains can be made by the use of compression in the triple store. It is

shown that by extending the compression algorithm even greater gains could be made. In

addition, it is found that by keeping the design of the database as simple and pure as possible,

a foundation for a variety of higher level views can be achieved, leading to the possibility of

the triple store being used as the foundation for new databases.

Contents

List of Figures v

Acknowledgements vi

1 Introduction 1

2 Background: Databases and Compression 4

2.1 Database Comparison 4

2.1.1 Hierarchical Databases 5

2.1.2 Network Databases 6

2.1.3 Relational Databases 8

2.1.4 Obj ect-Oriented Databases 11

2.1.5 Obj ect-Relational Databases 14

2.1.6 XML Databases 15

2.1.7 Limitations and an Alternative 16

2.1.8 Binary Relational Databases 18

2.2 Compression in Databases 21

3 The Triple Store and Binary Relational Databases 24

3.1 A Binary Relational Database 24

3.1.1 Sets and Domains 24

3.1.2 Entities and Attributes 25

3.1.3 Relations and Terminology 27

3.1.4 An Example Database 29

3.1.5 The Sets of Relations, Mappings, Formats and Sets 31

3.2 The Triple Store and the Lexical Store 32

3.2.1 Identifiers 32

3.2.2 Lexical Store (or Semantic Store) 33

3.2.3 The Triple Store 35

3.2.4 How the Triple Store and the Lexical Store Work Together 35

3.3 Comments on the Triple Store 37

3.3.1 The Need for Sorting 3 7

3.3.2 Sorting and Indexing the Triple Store 37

3.3.3 Compression 38

3.4 Comments on the Lexical Store 38

3.4.1 Allocation of IDs 38

3.4.2 Sorting and Indexing the Lexical Store 39

3 .4.3 Small or Large Sets 39

3.5 Using the Metadata 40

3.5.1 Building the Query 40

3.5.2 Executing the Query 41

3.6 Summary 41

Implementation 42

4.1 Assumptions and Scope 42

4.2 Introductory Definitions 42

4.3 Rules of the Architecture 44

4.3.1 Formal Definitions 45

4.3.2 Rules 46

4.3.3 Observations and Consequences of Rules 47

4.3.4 Further Obj ectives 47

4.4 Formats 47

4.4.1 Identifiers 47

4.4.2 Full Identifiers versus Shortened Identifiers 48

4.4.3 Lexical s 48

4.4.4 Triples 49

4.4.5 Special Values (System ID Constants) 49

4.5 Interfaces 50

4.5.1 The Programming Interface 5 0

4.5.2 End User Interfaces 51

4.5.2.1 General purpose interface 51

4.5.2.2 Interface to support recruitment agency application 52

4.5.2.3 Data explorer web interface 54

4.5.2.4 SQL interface 55

11

4.6 Preliminary Performance Comparison 56

4.7 Other Aspects 56

4.7.1 Locking and Robust Cursors 56

4.7.2 Caching and Storing to Disk 57

4.8 Discussion of Alternative Approaches 58

4.8.1 Identifiers 58

4.8.2 Relations 59

4.8.3 Sets are Disjoint 60

4.8.4 Mappings 60

Optimizing Data Storage for Performance 61

5.1 The Model 62

5.1.1 Summary of the Model 62

5.1.2 Extent and Limitations of the Model 62

5.1.3 Key Aspects of the DBMS being modelled 63

5.1.3.1 The cache 63

5.1.3.2 Data store sizes 63

5.1.3.3 Data retrieval 65

5.1.3.4 Formulae for triple store 65

5.1.4 Calibration and Validation 66

5.1.4.1 Block retrieval times 66

5.1.4.2 Processing times 69

5.1.4.3 Validation 69

5.2 Investigating Sort Orders 70

5.2.1 Results 70

5.2.2 Discussion 71

5.3 Investigating the Effect of Compression 71

5.3.1 Compression in Databases 71

5.3.2 Towards a Compression Algorithm 72

5.3.2.1 The scope for compression in the triple store 73

5.3.2.2 Possible approaches 74

5.3.2.3 The block mask algorithm 74

5.3.2.4 Evaluation of algorithm 75

ni

5.4 Modelling the Performance Improvement due to Compression 76

5.4.1 The Database 76

5.4.2 Establishing the Model 77

5.5 Results of Compression Investigation 78

5.5.1 Direct Access 7 8

5.5.2 Sequential Access 79

5.5.3 Discussion of Compression Results 80

6 Conclusions and Discussion 81

6.1 Effect of Compression on Performance 81

6.1.1 Further Compression in the Triple Store 82

6.2 Performance Modelling with a Spreadsheet 83

6.3 The Triple Store - Achievements and Further Work 85

6.3.1 Demonstrating the Advantages of the Triple Store Implementation 85

6.3.2 The Triple Store Database and Object Orientation 86

6.3.3 Concurrency Control in the Triple Store 86

6.3.3.1 Predicate locking 8 7

6.3.3.2 Predicate locking problems 8 8

6.3.3.3 Predicate locking in the triple store 88

6.4 Could the Future be Binary Relational? 89

Appendix A 91

References 99

IV

List of Figures

Figure 2.1 A meaningless relation

Figure 2.2 A binary representation

18

19

Figure 3.1 Sets of entities

Figure 3.2 One entity set and three attribute sets

Figure 3.3 Cartesian product for relation (R)

Figure 3.4 Solution set (R*) for R

Figure 3.5 Table with four columns

Figure 3.6 Relations between entity and attribute sets

Figure 3.7 A personnel database

Figure 3.8 Metadata

Figure 3.9 Part of a lexical store

Figure 3.10 Part of a triple store

25

26

27

27

28

29

30

32

34

36

Figure 4.1 Definitions

Figure 4.2 Rules

Figure 4.3 TD Operations

Figure 4.4 General Purpose Interface

Figure 4.5 ER diagram for recruitment agency

Figure 4.6 Data model for recruitment agency

Figure 4.7 Recruitment application

Figure 4.8 Web interface - Data Explorer

Figure 4.9 Status table record contents

45

46

50

51

52

53

54

55

57

Figure 5.1 Variation of data rate with block size for sequential reads

Figure 5.2 Variation of block read time with block size for random reads

Figure 5.3 Variation of data rate with block size for random reads

Figure 5.4 Variation of random read time with file size

Figure 5.5 Effect of sort order on query times

Figure 5.6 Example of the block mask algorithm

Figure 5.7 Triple retrieval time with 256 kilobyte cache

Figure 5.8 Triple retrieval time with 1 megabyte cache

67

68

68

69

70

75

79

79

Acknowledgements

My most sincere thanks are due to Norman Winterbottom, my guide and mentor. Norman

was a pioneer of binary relational databases, and has been the inspiration behind this work,

and collaborator in many parts of it. Without his never-failing enthusiasm, patience, and

encouragement, this thesis would never have come to fruition.

My warmest thanks are also due to Professor Anthony J G Hey, the original supervisor of this

research, for his support, and to Dr Denis A Nicole, who became joint supervisor, and who

has gave me great assistance in the final preparation of the thesis.

Finally, this work would never have been completed without the unfailing encouragement of

my wife, Margaret, who kept on believing in the project, even when the going was tough.

Thank you to you most of all.

VI

1 Introduction

This thesis introduces a new approach to understanding the issues relating to the efficient

implementation of a binary relational database built upon a triple store. A model has been

built which reflects the performance of a new implementation of a triple store database.

The model has been used to explore the potential benefits of extending the

implementation. In turn, this has led to a new understanding of the benefits of

compression within the triple store, which were discovered to be much greater than in a

traditional relational database.

The idea of a binary relational database is not new. Research in the area has been

ongoing, and various products have been brought to market, ranging fi-om IBM's Data

Mapping Program, shipped in the 1980s, to a database being shipped in 2002 by Lazy

Software Ltd.

The advantages of basing a binary relational database on a triple store include the

following aspects:

• The triple environment is essentially uniform, leading to efficiency and economy

• A considerable amount of processing can be carried out within the triple store

itself, without manipulating a large number of data items

• The underlying model needs relatively simple code to access and maintain the data

• The uniformity of the triple store yields very significant compression opportunities

• The triple store also has the potential to be made completely self-tuning, which

would be a significant benefit for both larger and smaller users.

• The uniform data structure is easier to spread onto multiple disks for parallelization

The background to the development of databases, and in particular the binary relational

model, is introduced in Chapter 2, and previous work on compression is also reviewed.

Chapter 3 gives a detailed description of the new triple store, while Chapter 4 covers the

architecture behind it. Chapter 4 also describes a number of different interfaces that have

been developed to provide a front end to the database.

The thesis then presents, in Chapter 5, the novel modelling technique used for

performance investigation, and contains the results of two sets of experiments using this

model, the first on the effect on performance of storing data in different ways, and the

second on the effect of compression in the triple store. There has been much work on the

compression of indexes in databases, but much less on the compression of the actual data

in a database. The triple store mechanism provides a unique opportunity for high data

compression, and the modelling exercise led to some new and interesting conclusions.

Chapter 6 then brings together the major aspects of the project, presenting conclusions

concerning the effect of compression on performance, the benefits of taking the selected

approach to performance modelling, and the achievement of this implementation of the

triple store, before asking the question, "Could the future be binary relational?"

* * * * * * * * *

This work was carried out in collaboration with Norman Winterbottom, a Visiting

Research Fellow at the University of Southampton. The design was developed jointly,

and I then produced all of the documentation, some of which forms part of this thesis.

Chapter 4 captures the essence of the design decisions that were made, and Appendix A

gives a flavour of the detail. Coding was shared; Norman Winterbottom carried out the

greater part of this task, but I wrote the code to handle the cache and the interface to the

disk. I put considerable effort into many iterations of system and performance testing,

which became a discovery process in itself as performance characteristics became clear

and the design was refined. This led to the development and calibration of the

performance model, which was entirely my work, and I undertook all of the subsequent

investigations with the model.

An important part of the project was also to demonstrate that the triple store could form

the basis for a variety of external views. I involved some final year students in this aspect,

and I was responsible for guiding them through their work to successful conclusions. This

provided further insight and feedback as to the facilities which were required at the

programming interface.

I have written two papers with Norman Winterbottom reporting new results as an outcome

of this work. The first [OConOO], which deals with sort orders in the triple store, has

already been published. The second [OCon02] has been submitted to SIGMOD Record

for consideration. This deals with the effect of compressing non-index data in the triple

store database, and the results contrast significantly with other recent published work. The

work reported in the two papers is presented in Chapter 5 of this thesis.

2 Background: Databases and Compression

For the last twenty years, relational databases have commanded much attention in terms of

commercial investment (for example Oracle, DB2, MS SQL Server) and academic

interest, followed at some distance by object-oriented databases. However, now that the

limitations of the relational approach are beginning to restrict end users who wish to

handle many more varieties of data, some object-oriented databases are being marketed

(for example Object Store, Cache, Objectivity/DB), and object-relational databases, which

aim to combine elements from both traditions, are being brought to market by the

traditional RDBMS vendors. The increasingly widespread use of XML is also driving

traditional vendors to offer various levels of support, and new 'native-XML' databases

such as Tamino are appearing. At the same time, there is an increasing demand for

databases to run on parallel platforms, to manage ever-growing volumes of data, to handle

high transaction rates for on-line transaction processing, and to enable new applications

such as on-line analytical processing.

In Section 2.1, the current technologies are reviewed. Standard texts such as [ElmOO],

[DatOO] or [Gray93] provide full descriptions, but the particular interest here is to contrast

the way in which different database models handle the various kinds of relationship

between data items, how the data is actually stored, and to introduce some of the issues

that must be addressed. The binary relational approach is then introduced and contrasted,

to provide the context and background for the work that has been undertaken

In Section 2.2, previous work on compression in databases is reviewed.

2.1 Database Comparison

2.1.1 Hierarchical Databases

The first hierarchical DBMS was IBM's IMS, with its own data language, DL/1. There

are no references that precede the shipment of the product, but [McG77] gives an

overview of IMS and some aspects were later formalized [Bjo82]. IMS is fully described

in a large collection of IBM manuals. Later work considered the incorporation of

hierarchical structures within a relational database [Gys89, Jag89]. Another major

commercial offering was System 2000, now marketed by SAS inc.

A hierarchy is a tree structure, containing a number of nodes or records (also called

segments). As data is added to a hierarchical database, trees of records containing related

data values are created. Each of these is called a 'hierarchical occurrence'. Each

hierarchical occurrence has one root record, and contains all of the child records that relate

to this particular root record.

There are various ways of holding a hierarchical occurrence in storage and on disk. One

common way is to use a 'hierarchical record', which stores the data in a 'hierarchical

sequence'. For each record within the sequence (except the root) there may be a varying

number of instances, so it is necessary to store the type indicator with each record, so that

the data can subsequently be interpreted.

The hierarchical sequence has the effect of storing many of the data items that are closely

related close together in storage, so that retrieval is then efficient. However, some

requests for data will entail gathering data that is spread into different parts of the

hierarchical record, or in other records, and large amounts of data must then be retrieved.

Relationships between different elements of the data may be held in three ways:

• within the same record

• via a Parent-Child relationship

• via a Virtual Parent-Child relationship

Within the database, these are implemented by virtue of being in the same hierarchical

record or by physical pointers from record to record. They may also be combined in

various ways. However, the use of both the hierarchical record and physical pointers

means that the logical data structure is carried over into the physical representation to

some extent. Subsequent changes to the database schema may therefore involve

reorganizing all of the data in the database.

Hierarchical databases permit the reduction or elimination of duplicate data, and while

some real world systems are naturally hierarchical, extensions such as virtual pointers

allow most other systems to be modelled. However, many real world systems do not fit

the model easily, and m;n relationship types can be represented only by adding redundant

records or by using virtual parent-child relationships and pointer records. There are

various other restrictions, and database schemata can get very complicated. Some of the

first major commercial systems were built using hierarchical databases. Many major

companies have made a big investment in systems using hierarchical databases, and these

will still be in use for many years.

2.1.2 Network Databases

(Note: The word 'network' here refers to the organization of the data. It has nothing to

do with whether the database is distributed over a communications network or not.)

The Network Model was defined by the DBTG (Data Base Task Group) of the

CODASYL (Conference on Data Systems Languages) committee from 1971 onwards, and

is often referred to as the CODASYL network model [CODASYL], or as the DBTG

model. The various aspects were defined in considerable detail, to form a standard upon

which vendors could base their implementations. However this followed earlier work by

Charles Bachman and others during the development of the first commercial DBMS,

which was the Integrated Data Store (IDS). Bachman also introduced his 'Bachman

diagrams' for describing relationships in a database [Bac69].

As in the hierarchical model, data is stored in records, which are classified into record

types. However, the network model allows more complex data items to be defined. In

addition to records containing simple and composite single-valued attributes, the model

also permits records with simple multivalued attributes, which are known as vectors, and

records with composite multivalued attributes, which are known as repeating groups.

The network model also supports virtual (or derived) data items. The value of a derived

data item is not stored in the database, but is calculated 'on the fly' from other data that is

stored in the database, according to a procedure supplied by the user.

In the network model, the construct called a set type is used to represent relationships.

Sets in the Network model are not the same as mathematical sets.

A set type is a description of a 1 ;N relationship between two record types. Each set has

® A set name

• One owner record from the owner record type

® A number (zero or more) of related member records. In addition, the member

records are ordered. (The order is immaterial in a mathematical set.)

In the relational model, described in the next section, a table is a normal mathematical set

of tuples, all of which are of the same type and which represent instances of an entity,

together with its attributes. In the network model, each set represents one instance of a

relationship, and the set type represents a relationship type. For example, there might be

a set type for the relationship 'MANAGES', in which each set would contain one

manager, and all of the employees who work for him. This is a fundamental difference of

approach.

In general, records will not be stored as contiguous sets in the database. Indeed, if records

participate in more than one set, it is plainly impossible to store them in this way, and for

performance reasons, alternatives may be preferable anyway. Typically, records are

linked into sets using some sort of pointer structure.

A set instance is often kept as a ring (circular linked list) linking the owner record and

all of the member records. The records carry an internal identifier to indicate which is the

owner and which are the member records. Each record also has one pointer field to point

to the next record in the ring for each set of which it is a member.

Other representations of sets include the following:

• Doubly linked circular list:- pointers go forwards and backwards

• Owner pointer representation, in combination with a ring;- each record has an

additional pointer pointing to the owner

• Contiguous member records

• Pointer arrays:- owner has an array of pointers to the members. Usually used with

owner pointer representation

® Indexed representation:- a small index is kept with the owner for each set

occurrence

The relationships between different elements of the data may be held in three different

ways (or in combinations):

• within the same record

® via set membership

® via linked records belonging to more than one set

With network databases duplicate data can be reduced, or eliminated. It is easier to model

many systems with networks than with hierarchies, and the relationships are explicitly

modelled, but the actual storage of such data models is more complicated and may be less

space efficient than with hierarchical data models. Record-at-a-time processing means the

programmer has to do more work than with set-oriented processing, and navigation is

carried out in program logic, which the programmer must implement. This also means

that it may not be possible to alter the structure of the database without changing

programs, so that data independence is not fully supported.

Major commercial systems have been built using network databases, and as with

hierarchical databases, user enterprises have made a big investment in systems using

network databases.

2.1.3 Relational Databases

The relational model of data was introduced by Codd [Codd70], who went on to introduce

relational algebra and develop the theory of relational databases in a series of papers

[Codd71, Codd72, Codd72a, Codd74]. There has been much research on various aspects

8

of the relational model. The Peterlee Relational Test Vehicle (PRTV) [Todd76] was an

experimental database that directly implemented the relational algebra operations. The

PRTV was developed at IBM's research centre which existed for a while at Peterlee in

County Durham. However, the dominant way to access relational databases soon became

the use of Structured Query Language (SQL), originally known as SEQUEL [Cha76].

In the relational world, a database structure is presented to the user as a collection of

relations or tables, with each table organized into rows and columns. It is important to

realize that tables are the logical structure in a relational system, not the physical structure.

The DBMS is free to use any or all of the usual structures underneath the covers.

In a relational database, the same information can be structured in many ways by

assembling the data into different tables. The number of tables can range from one to

almost the total number of columns in the database. The database designer has to decide

how tables should be laid out. However, the original relational theory imposes the first

normal form constraint which requires the attribute values in a relation to be only atomic.

This means that a column value must not itself be a tuple or a set, and rules out repeating

groups. (Post-Relational databases relax this restriction.) To avoid certain update

anomalies it is necessary to go further and reduce tables to second and third normal forms,

and possibly higher. Second normal form applies to relations with composite keys: for a

relation to be in second normal form, it must be in first normal form and every non-

primary-key attribute must be fully functionally dependant on the primary key, and not on

just a part of the key. To be in third normal form, a relation must be in second normal

form, and there must be no transitive dependencies between any non-primary-key attribute

and the primary key.

The query language in relational database systems is declarative - the user states what he

wants, and the DBMS works out how to get it. The various operations (such as joins,

restrictions and so on) always produce another relation as their output, and this relation

can be input to further relational operations if required. It is interesting to note, however,

that once a join has been carried out, there is no longer any guarantee that the resulting

relation is fully normalized - it frequently will not be. SQL is the de facto standard

relational language, but there are other approaches and front-end technologies that allow

user-friendly access to relational databases, often based on the Query By Example (QBE)

paradigm. With QBE, the query is formulated by filling in templates of tables displayed

on a computer screen. QBE was one of the first graphical query languages for database

systems. It was developed at IBM Research [Zlo75], and can be used, for example, with

DB/2. It is also the approach used for one of the query interfaces into Microsoft Access

and Paradox.

These approaches to data manipulation contrast strongly with the navigational approach

needed to work with hierarchical and network databases. With the navigational approach,

the programmer essentially follows the pointers inside the database, but there are no

pointers inside a relational database. The DBMS must do the work of retrieving related

items of data.

When it comes to storing the data, each row in a table typically becomes a stored record, a

string of bytes with a prefix containing system control information and up to n stored

fields, where n is the number of columns in the base table. Internally, each record has a

unique record id (RID) within a database. The RID consists of the page number and the

byte offset fi-om the start of the page of a slot that, in turn, contains the record's starting

position within the page. Thus records within a page can be reorganized without changing

their RIDs. Each stored field includes three elements:

• A prefix field that contains the length of the data

• A null indicator prefix that indicates whether the field contains a null value

• An encoded data value

The only relationships that are represented physically in relational databases are between

the items of data that are members of the same record (tuple). Beyond this, relationships

are not represented physically within the database. They must be rediscovered /

reconstructed when a query or update is needed, by combining tables on the basis of

looking for equal values in specified columns of each table. In setting up the tables in the

first place, it is therefore necessary to duplicate data in different tables in order for this to

be possible. To ensure that data is kept consistent, integrity constraints are needed, in

particular, referential integrity.

10

Thus, relationships between different elements of the data may be discovered in two

different ways:

• by finding related items within the same record

® by combining ('joining') two or more relations to form a new relation

or by combinations of these.

The major advantage of relational databases, then, is that the database is perceived by the

user as tables, and that access is declarative, not navigational. Access is therefore not

dependent upon physically implemented pointers. To obtain reasonable performance, the

database management software must have powerful capabilities to interpret the user's

queries and optimize their execution. There is a far greater degree of data independence

than with the previous two models, although there is significant data duplication.

It is perhaps important to realize, however that "the relational model of data was not really

a model at all, but rather a theory" [Dar96], based on mathematical sets. Mathematical

relations do not necessarily model the real world, and there are a number of restrictions.

Design and normalization require significant skill, and DB management software is much

more complex. Relational systems impose the first normal form constraint, which means

that the object space must be mapped onto a collection of ' f lat ' relations (i.e. tables). With

this approach much of the inherent semantics of complex object composition is lost, and

one needs to perform foreign key joins to reconstruct a complex object.

Relational databases currently occupy by far the largest part of the marketplace, with large

numbers of vendors supplying DBMSs and complementary products. The major offerings

are now IBM's DB2 [DB2], Oracle [Oracle], Microsoft's SQL Server [SQLServ] and

Sybase [Sybase], but there are many others, specializing in certain markets such as the

desktop or in application areas like geographic information systems.

2.1.4 Object-Oriented Databases

The models discussed so far are quite successful for handling straightforward business

data. However, there are other applications that have different requirements. These

11

include engineering design and manufacturing (CAD/CAM), image and graphics

databases, scientific databases, geographic information systems, multimedia databases and

so on. These applications require support for structures that are more complex, or for

unstructured objects such as images, which need non-standard routines to handle them.

Object-oriented databases (ODBMSs) have been developed to handle these.

There is no single way of implementing ODBMSs, and at this point in time, researchers

and manufacturers have developed a wide range of different approaches [Kho93]. The

Object Data Management Group [ODMG] is now providing a focal point for some degree

of convergence and the development of standards [Catt95]. However, one characteristic is

that ODBMSs normally support a persistent programming paradigm. The programmer

treats objects in the same way, regardless of whether they are stored in the database or not.

Objects are persistent if they are stored permanently in the database or transient if they

only exist during execution of a program.

In the case of ObjectStore [ObDes], for example, the system is closely integrated with the

C++ language, and provides persistent storage facilities for C++ objects. This choice was

made to avoid the impedance mismatch problem between a database system and its

programming language, where the structures provided by the database system are distinct

from those provided by the programming language. Objectivity/DB [ObDb] is a

distributed ODBMS. It is designed for mission-critical and production environments, and

claims to offer high performance, virtually unlimited scalability, and interoperability

across all major platforms and operating systems.

One of the fundamental concepts of object orientation is Object Identity. Object identity

organizes the objects or instances of an application in arbitrary graph-structured object

spaces. Identity is the property of an object that distinguishes the object from all other

objects in the application. In a complete object-oriented system each object is given an

identity that will be permanently associated whatever structural or state changes take

place. Identity is independent of location, or address. Object identity provides the most

natural modelling primitive to allow the same object to be a sub-object of multiple parent

objects.

12

With object identity, objects can contain or refer to other objects. Object identity clarifies,

enhances and extends the notions of pointers, foreign keys, and file names. Using object

identity, programmers can dynamically construct arbitrary graph-structured composite or

complex objects - objects that are constructed from sub-objects. Objects can be created

and disposed of at run-time. If using an ODBMS, objects can become persistent and be

reaccessed in subsequent programs.

Two types of reference semantics exist between a complex object and its components at

each level:

• Ownership semantics applies when the sub objects of a complex object are

encapsulated within the complex object and are hence considered part of the

complex object.

• Reference semantics applies when the components of the complex object are

themselves independent objects but at times may be considered part of the complex

object.

Storage mechanisms vary widely within ODBMSs. A typical implementation might store

items of data linked by ownership close together on the disk, in a similar fashion to the

data in a 'record'. Items linked by reference would, in C++ terms, be represented by a

pointer. Internally, the ODBMS is likely to make use of object identifiers to resolve such

pointers, so that there is no dependence on any underlying physical structure.

In summary, ODBMSs support complex objects and extensible data types, with complex

relationships between objects. The use of object identifiers divorces the 'labelling' of

entities from the data values associated with the entities, and makes for a much cleaner

approach.

ODBMSs are not yet as sophisticated as RDBMSs, however, and tend to be tightly linked

to a single language, most often C++. For performance reasons, ODBMSs normally run in

the same address space as the applications, whereas RDBMSs require an address space

switch, which provides a major security benefit. Although commercial users are

increasing steadily, this is likely to stay a niche market, and many of the best features are

now being adopted by object-relational databases.

13

2.1.5 Object-Relational Databases

Relational DBMSs provide excellent support for simple data and simple to somewhat

complex queries. Object-oriented DBMSs provide efficient support for certain classes of

applications on complex data, but without many relational 'goodies' like queryablility,

security, database administration and so on. Neither the current RDBMSs nor the current

ODBMSs find it easy to meet the growing demands of new applications requiring

complex querying on complex data, including multimedia data. Object-relational systems

(ORDBMSs) aim to combine the benefits of the RDBMSs with the modelling capabilities

of the ODBMSs, thus providing support for complex queries on complex data [Ston96].

There has been a concerted standards effort to extend SQL-92 to provide the extra

facilities needed to support ORDBMSs, resulting in SQL3 [App B in DatOO]. SQL3 aims

to be a computationally complete language for the definition and management of

persistent, complex objects. It includes generalization and specialization hierarchies,

multiple inheritance, user-defined data types, triggers and assertions, support for

knowledge-based systems, recursive query expressions, and additional data administration

tools. It also includes the specification of abstract data types, object identifiers, methods,

inheritance, polymorphism, encapsulation, and all of the other facilities normally

associated with object data management.

The production of ORDBMSs is mainly driven by the RDBMS vendors, by adding

Sanction to their existing products to offer some of the above facilities, often starting with

the support of data types such as Binary Large Objects (BLOBs) and Character Large

Objects (CLOBs). BLOBs include images, video clips and sound tracks that have an

internal structure that cannot be handled by any of the traditional database approaches.

CLOBs are documents containing text, probably formatted in some way, maybe using

HTML or XML (see below). With demand for complex data and complex queries in

traditional business applications, ORDBMSs seem to be a natural progression for

RDBMSs, but it remains to be seen to what extent they are accepted in the marketplace.

It is also worth noting that various research efforts, such as Gamma [DeW90], Volcano

[Gra90] (which formed the basis of the parallel implementation of Informix) and others

14

have found ways to adapt traditional relational database engines to run on parallel

hardware, and object extensions are being added on top of these foundations.

2.1.6 XML Databases

Extended Markup Language [XML] is increasingly being used to provide a flexible way

to capture the structure of documents and their contents, and enable information transfer

between users across networks. The relational database format is well suited for stable

information structures, and data that fits well into fully populated rows and columns, but

XML documents do not conform to this paradigm. Relational database vendors tend to

offer XML support as an add-on, and still do most of the work with SQL and tables. The

information is stored in tables, and only converted to XML when needed.

Native XML databases use XML as the primary means for structuring, organizing and

storing information. Like SQL, XML provides full searching and indexing, but XML

goes one step fiirther by letting users modify the structure of a document without

destroying any data already stored in it. There is then no need to perform XML-RDBMS

translations or transformations.

A number of native XML databases are now appearing on the market. One is Tamino

[Tam]. (Tamino is an acronym for Transactional Architecture for Managing Internet

Objects. Tamino is also the hero in Mozart's The Magic FluteX) An additional capability

here is that it can scan a well-formed XML document and work out what the structure is,

whereas relational data must always have its structure already specified before being

loaded into a database. Another native XML database is XIS (extensible Information

Server) from eXcelon [Exc].

While the native XML database (XDBMS) is an attractive idea, existing organizations

with large amounts of data already stored in RDBMSs are unlikely to convert their

databases in the short term, but XML will be increasingly used to convey information

from one database to another.

15

2.1.7 Limitations and an alternative

Relational databases demand that data be partly decomposed into a series of flat tables,

which are typically stored record by record on to the disk. Elaborate normalization rules

have to be followed to ensure that this partial decomposition is carried out correctly, and it

is not difficult to lose information in the process. Object-oriented databases work in terms

of complex objects, which have to be flattened before storage on to disk, and this can

easily result in non-uniformity in data access, as some related data items are bound to end

up widely separated on the disk, while others will be held in the same block.

An alternative approach in either case is to fully decompose the data [Kho96]. At first

sight, this may not appear to be promising from a performance point of view, but studies

[Cop85, Kho87] have shown that it can work very well, and commercial databases based

on this philosophy have been successfully marketed. One of these is the so-called 'Data

Mapping Program' from IBM [DMP82] (a fully functional database management

system), and recently. Lazy Software has brought to market a database based on what is

termed "The Associative Model of Data" [Lazy], which is essentially an extension of the

binary relational model. Sybase have also brought out a search tool which extracts data

into a binary relational format.

Decomposed data may be stored in 'two-column tables', as in MONET [Bon96], [Bon99],

but a more radical approach, which was used in the Data Mapping Program is to build a

Triple Store to hold the data. A key aspect of this is the separation of relationships from

the data. As a result, much of the internal query processing can be performed on uniform

identifiers, rather than somewhat heterogeneous data strings, leading to simplification of

coding within the database, and potential performance advantages.

Above a fully decomposed data store, it is possible to build object-oriented or normal (n-

ary) relational databases or, as in the case of the Data Mapping Program, a binary-

relational view can be offered to end users. The binary-relational model is described in

[Fro86]. It offers a very easy-to-use and intuitive approach for end users. Another

characteristic of such a database built on a triple store is that catalog (or data dictionary)

information is automatically contained within the store [Shar78], and administering this is

16

very straightforward. In an n-ary relational database, relationships can only be

reconstructed if duplicate data is held in more than one table, and often in several tables. If

a data item changes its value, then several tables need to be updated. If a binary relational

database is based on a triple store, data values can be held in a separate 'lexical' store (see

chapter 3). The triple store itself only holds tokens representing data items, and these

tokens will be duplicated as necessary to build relationships. The value of a data item will

be stored in one place only and not duplicated. The number of triples in the triple store is

related to the number of instances of each field in the database, and the structure means

that there is indexed access to every field in the database.

Initial work has shown that a Triple Store also forms a very natural basis for holding data

in the object-oriented environment, in other words, to build an object-oriented database.

By separating the relationships from the data, a more uniform pattern of access is

obtainable. It appears that the Triple Store could be an engine that would support a

number of different models at the user-interface level.

One further development that has taken place since the original work on a triple store

database is the advent of widely deployed and relatively affordable parallel computers.

The triple store is a very promising architecture for parallelization, due to its simplicity

and uniformity. No application structure is apparent in the triple store, in contrast with n-

ary relational databases. In the latter case, careful consideration has to be given to the

partitioning of tables and the collocating of the various portions to reflect application

activity, while attempting to strike a balance between various requirements. A triple store

can be split in the optimum way to facilitate the internal processing needs of the DBMS.

The original implementation of the Triple Store database [DMP82] was eclipsed by the

arrival of the n-ary relational databases, leaving many aspects of the approach completely

unexplored. Now that the limitations of the n-ary approach are becoming more apparent,

it is time to re-open examination of this simple and elegant model, to see what new ideas

and insight can be gained.

17

2.1.8 Binary Relational Databases

The binary relational approach has been introduced above, and will be fully explored in

Chapter 3. Interest in binary relations goes back to the earliest days of databases. In

[Senko77], a paper which gives a fascinating insight into the debates in progress at the

time, there is discussion about the way data should be presented at the logical level. The

Data Independent Accessing Model (DIAM) [Senko73] was a data model which included

a logical-level as one of its levels, and gave rise to much subsequent development. DIAM

was developed further in DIAM II [SenkoSO], [Senko77] presents two contrasting views

of data. Figure 2.1 shows what he calls a 'meaningless relation', originally discussed in

[Sch75]. The question posed in this example is what the appearance of FRIEND and

SALARY in the same relation implies. Does SALARY imply the "salary of the FRIEND"

or the "salary of the EMPLOYEE"? Such a relation is without semantic meaning, and

something must be added to make the meaning clear to the user, perhaps in terms of

constraints.

EMPLOYEE NUMBER NAME ADDRESS FRIEND SALARY

Figure 2.1 A meaningless relation

Senko contrasts this with the binary representation shown in Figure 2.2. In this case, it is

clear that SALARY is a direct attribute of EMPLOYEE, and it is only indirectly related to

FRIEND by way of EMPLOYEE, illustrating that binary relations seem to be a fitting

representation of facts.

18

EMP NUMBER NAME

EMPLOYEE

ADDRESS FRIEND SALARY

Figure 2.2 A binary representation

In 1976, Chen had proposed the entity-relationship (ER) model for data modelling

[Chen76] and database design, which adopts a very similar approach. Today, the ER

model is widely used. The popularity of the ER approach stems from the fact it captures

the entities that are being modelled, together with their attributes and the relationships

between them, in a manner that is easy to understand and in line with human intuition,

while providing a formalism from which the designer can then move forward. To move

from an ER design to a relational schema, a set of rules must be carefully followed.

Entities will be represented by tables, but while some relationships can be captured using

fields duplicated between these tables, others will have to be represented by additional

tables. Whereas it is a somewhat complex process to move from an ER model to arrive at

a relational schema, it is a very simple step to move from ER to a binary relational

database design because the two approaches are so close. (There is an example of this

process in Section 4.5.2.2.)

If a binary relational view is attractive at the logical level, the question then arises as to

how to implement such a database at the physical level. The hierarchical and network

views of data carry the logical structure right down to the physical level. Adopting this

approach for binary relations leads to large numbers of two column tables, and the

associated processing would be prohibitively costly. Early implementations such as

[Lev67], [Ash68] and [Feld69] followed this line of attack by storing each set of binary

relations in a separate file. Titman [Tit74] took a different approach, by storing triples in

ordered arrays, and the Non-programmer Database (NDB) [Shar79] was directly

19

influenced by this work. (The contents of the triples are not necessarily the same in all

implementations. The triples used in the current work differ fi-om these earlier databases.)

In 1982, a paper was published by Frost [Fro82] which reviewed several research efforts

under way at the time. Frost begins his introduction to binary relational storage structures

as follows; "Any part of the universe, no matter how complex, can be thought of as a set

of binary relationships. Consequently, a structure, within which representations of such

relationships can be manipulated, is logically sufficient as the storage mechanism for a

general purpose database system." He also remarks that at that time "the binary relational

view of the universe is increasingly being used during the database analysis stage of

database design."

Frost describes a number of different structures for holding the triples, including:

• holding triples in ordered arrays, with one array for each relation

• holding the triples as one set, replicated three times and held in three separate hash

tables, keyed on different combinations of two out of the three items

® a linked list structure

• a master file of triples, with a set of inverted lists. For each entity, there are three

inverted lists giving the addresses of the entity either as subject, relation, or object.

Subsequent work has been based on various approaches. The work by Copeland and

others referred to earlier [Cop85, Kho87] used binary relations held in what is referred to

as a decomposed storage model (DSM). Their performance comparisons with an n-ary

storage model (NSM) showed that similar results could be achieved, with each model

having particular strengths and weaknesses. There were also projects based on the use of

special hardware, such as the FACT Machine [McG80]. In [Shar88], the Universal Triple

Machine (UTM) was introduced, in which the data repository consisted of two stores: the

name store and the triple store. In [Mar92a], the implementation of an object-oriented

database (Oggetto) layered over a triple store is described, which is capable of handling

the four tasks for an object-oriented database outlined in [Atk87], and the same author

reports the development of a 3D graphical interface in [Mar92b].

20

Currently, there are at least two groups actively working with binary relational models. In

Amsterdam, a novel database server known as Monet has been developed. [Bon96] gives

an overview of Monet, and discusses how it is being used to support ODBMS

applications. Monet is also based on a decomposed storage model (DSM), which is

implemented using 'binary association tables' (BATs). These are very much the same as

the first approach described by Frost. A BAT is a two-column table representing one

binary relation, and the database will have multiple BATs. Monet is designed to perform

all operations in main/virtual memory. For databases which exceed available physical

memory, Monet relies on virtual memory, by memory mapping large files. Work has also

been carried out with Monet on parallel machines, and a prototype has been run on an

IBM SP machine.

At Birkbeck College in London, the Triple Store Architecture Research (TriStarp) Project

[King90], [TriStarp] was set up to explore the use of the binary relational data model at all

levels in a database system. The triple store in this case was built based on three-

dimensional Grid Files, in which each dimension represents one of the three elements of a

triple. Recent work has concentrated on the higher levels of the DBMS such as Fudal

[Sut95], a functional database language, and GQL [Pap95], a Graphical Query Language,

and other aspects rather than on the underlying structure.

As mentioned above, one of the major binary relational databases described by Frost was

the Non-Programmer Database Facility (NDB) [Shar79], which was subsequently

marketed as "DMP" [DMP82]. The work on NDB led to further research [Giles82],

[Fitz90], which supported and validated the approach taken. The present research carries

forward the idea of the triple store, but with a different structure, and explores new areas

that have not been dealt with before, in particular, the aspect of data compression.

2.2 Compression in Databases

The potential benefits of compressing data in a database are twofold. First, there is the

obvious outcome of saving space on the disk or other storage medium. However, with

storage becoming ever cheaper, this is no longer so important. The second benefit is to

achieve an improvement in performance, by reducing the number of disk accesses. This

implies a trade-off between the reduction in disk I/O and the cost of compressing and

21

decompressing the data. Decompression is particularly important in this context; data is

only compressed once, but decompression is likely to be required time after time for query

processing as well as for the delivery of the final answer.

Many efforts in the context of relational databases have dealt with compression in the

index. The benefit of compressing indexes in a database has long been established, as

described, for example, in [Wag73] (VSAM) and [Com79] (B-Trees). In an index,

successive entries are sequenced, and various techniques such as prefix compression and

suffix compression have been employed, as described in standard works such as [Gray93]

or [RamOO]. Appropriately chosen strategies can reduce the size of the index, and as long

as the cost of processing compressed index entries can be contained, faster retrievals can

be achieved.

When the data itself is considered, the picture is not so clear cut, as the structure that exists

in indexes does not generally apply. A major decision is the level at which to compress.

It is possible to compress at the block level, the tuple level, or at the level of individual

fields. The potential cost of having to decompress a whole block or tuple can outweigh

any benefit. [Gold98] shows that if the UNIX 'gzip' facility (based on the Lempel-Ziv

algorithm [Ziv77]) is used to compress a page, it will take longer to 'gunzip' it than to

read the page 6om disk. Previous work, such as [Gra91, Ray95 and Gold98], has shown

that compression in databases needs to be very fast, and also needs to be fine-grained.

This leads to consideration of compression at the field level.

This is the approach taken in [WesOO], where fields are compressed into a specially

formatted tuple, using a 'light-weight' approach, where only some of the fields are

compressed. Integers and dates are compressed using null suppression and encoding of

the resulting length of the compressed integer [Roth93]. For long strings, the authors

consider the use of Huffman coding [Huff52], Arithmetic coding [Wit87], or the LZW

algorithm [Welch84]. If order preservation is needed, then techniques such as those

proposed in [Blas76, Ant96] are suggested. Westmann et al [WesOO] describe how the

storage manager, the query execution engine and the query optimizer may be extended to

deal with the compressed data, in the context of a TPC-D benchmark database [TPC95].

Their results show significant speed-up for long-running TPC-D decision support queries.

22

but they remark that they do not expect to see any benefit for short On-Line Transaction

Processing (OLTP) queries.

Chen et al [ChenOl] point out that many fields in the typical relation in fact contain short

text strings, which are not compressed effectively by the algorithms listed above. They

have devised a Hierarchical Dictionary Encoding (HDE) strategy that intelligently selects

the most effective compression method for string-valued attributes. Chen et al then apply

this to the problem of compression-aware query optimization, and demonstrate speed-up

using a TPC-H benchmark database [TPC99], which again involves long-running decision

support queries.

Both of these recent approaches deal with queries in a 'traditional' n-ary relational

database with large numbers of records. These queries require heavy processing in query

optimization and execution. This results from the fact that in a relational database,

relationship information has to be re-discovered from the data stored in the relations every

time a query is executed. If the data items are compressed, they will generally have to be

decompressed to allow query processing to proceed, although it is sometimes possible to

work with attribute values in their compressed form.

In this thesis, the focus is on the issues which come to light when a binary relational

database architecture is employed, in this case, built on a triple store. Here, information

about relationships is stored separately from the data items, so that query processing can

be carried out without the need to decompress data items along the way. Only the data

items finally presented in the answer need to be decompressed at the end of a query.

Query execution does, however, require extensive processing of triple store records, and

the question is then whether compression in the triple store can benefit this processing.

A new compression algorithm has been developed for the database. Using this, records

could be compressed when initially inserted into the triple store, but from then on,

processing would be carried out efficiently without needing to decompress the records

again. A modelling exercise, described in Chapter 5, was carried out to explore the extent

of the performance improvement, with interesting results.

23

3 The Triple Store and Binary Relational Databases

This chapter introduces in an informal manner the concepts on which this project is based.

Since the triple store lends itself very naturally to supporting binary relational databases,

the implementation is based on this model.

3.1 A Binary Relational Database

3.1.1 Sets and Domains

Real world objects can be categorized in sets, such as the set of all of the staff in an

organization, the set of all products manufactured by a company, or the set of children

belonging to one person. Any member of a set has certain properties that help to describe

it. For example, a person may be described by weight, height, age and so on. There are

also other properties that tell us something about set members, such as who their manager

is or parents are, or which flavour of ice cream they prefer. Traditionally, these properties

are termed 'attributes'. In a standard (n-ary) relational database, one item, for example a

person, will be identified by some unique key, e.g. staff number.

Considering the example of'salaries', it is clear that the set of all salaries can be divided

into many different, possibly overlapping sets, such as 'managers' salaries', 'women's

salaries', or 'salaries of full time staff. However, if calculations involving salaries are

carried out, it is clear that common rules apply. The format of the data must always have

exactly two places after the decimal point, and while a salary can be multiplied by a

number such as 1.05 to calculate a 5% increase, it makes no sense to multiply two salaries

by each other. One might also specify that all salaries must be divisible by 12, to make it

easy to compute monthly payments. It is useful, therefore, to develop rules for dealing

with salaries. Data to which common rules can be applied is said to belong to the same

'domain'. Prices would not belong to the same domain as salaries, as, although some

rules are in common, such as the format of the data, other rules such as 'divisible by 12'

would not apply. All items of data in one domain have common attributes, and common

rules governing their processing.

24

3.1.2 Entities and Attributes

It is possible to think of attributes as 'adjectives' that describe an item. Age or sex can

easily be thought of in these terms. However, this does not really work for all attributes.

Is a person's manager an adjective? Surely not - a manager is also an item in his/her own

right, and may even be a member of the same domain 'employee' as the member of staff

in his/her department.

An alternative approach is to describe all characteristics as 'entities'. An entity might be

'staff number', 'name', 'height', 'telephone number', 'manager', 'skill' or'eye colour'.

Each of these entities is contained within its own set. There will therefore be a set

containing 'staff numbers', and to describe a person, we will need to have links or

connections to the appropriate member of each other set, such as 'name' or 'age' (Figure

3.1).

STAFF NUMBER

13572468

98761234

Jones

Smith

NAME

Figure 3.1 Sets of entities

In thinking about entities, it is important to be clear in the definition and meaning. When

talking about telephones, for example, do we mean 'the number in the book' or 'the

gadget on the desk'? When people move offices, they may take the number and/or gadget

25

or neither with them. The domain of descriptors needs to be specified. In the case of

telephone numbers, this might be 'exactly 4 digits, beginning with 5 or 6'.

In the earlier implementation of a binary relational database known as NDB, the above

approach of dealing with all characteristics as entities was taken. This places no

constraints on the data, and worked successfiilly. However, there is some value in placing

constraints on the way that data is being used, if this reflects the situation in the real world

better. A person can have blue eyes, and a height of six feet, but 'blue' cannot have a

height. Therefore, it has been decided to distinguish attributes and entities for this

implementation, as follows

An entity relates to some 'thing' in the real world being modelled. The entity

does not have any properties, except for an identifier ('ID') internal to the

database, until attributes have been 'attached' to it.

An attribute describes some property of an entity. An attribute will belong to a

domain (e.g. 'colours'), and will have some value (e.g. 'blue'). The attribute is

completely defined once its domain and value are known. An attribute cannot be

attached to any other attribute, but only to an entity (Figure 3.2).

PERSON

NAME

Jones

Smith

STAFF NUMBER

_ 13572468

98761234

AGE

Figure 3.2 One entity set and three attribute sets

26

3.1.3 Relations and Terminology

Set Theory includes the concept of relations. To illustrate this, consider two sets, A

which is the set of playwrights, and B which is the set of plays. We could define a

propositional function, P(x, y) = "x wrote y" which would be either true or false for any

combination of the elements (a, b) of the two sets. For example,

P(Shakespeare, Hamlet) = "Shakespeare wrote Hamlet" is true, while

P(Shakespeare, Faust) = "Shakespeare wrote Faust" is not true

A relation R consists of

1) a set A

2) a set B

3) P(x,y) in which P(a,b) is either true or false for any ordered pair (a, b)

R is called a relation from A to B. Relations are not limited to just two sets, but can

include any number. The solution set R* of the relation R consists of the elements (a, b)

in the Cartesian product, A X B (Figure 3.3) for which P(a, b) is true (Figure 3.4).

Shakespeare Hamlet

Shakespeare Faust

Goethe Hamlet

Goethe Faust

Figure 3.3 Cartesian product for relation (R)

Shakespeare Hamlet

Goethe Faust

Figure 3.4 Solution set (R*) for R

In the case of the triple store, which will be introduced shortly, each line only ever relates

members &om each of two sets, so that all relations are binary, and the implementation is

termed 'binary relational'. However whilst the low level implementation is binary

relational, the view of data presented to the end user could be very different.

Consider now a conventional relational database 'relation' or table which has four

columns; S#, SNAME, STATUS, CITY (Figure 3.5). This relates values belonging to 4

sets. The database relation (table) is the solution set of the much bigger relation that

contains all possible combinations of the members of the 4 sets (i.e. the Cartesian

27

product). The solution set includes only the rows which contain valid combinations of the

values.

s# SNAME STATUS CITY

1234 Jones OK London

3456 Williams Owes Us Cardiff

8976 Mcintosh OK Glasgow

8675 Smith Insolvent Birmingham

7234 Jones OA: Brighton

8976 Williams jfKO/vgMf

Valid

Valid

Valid

Valid

Invalid

TinvaW

ZwaW

Figure 3.5 Table with four columns. The database would only contain the
solution set, i.e. the 'valid' rows

It is usual for conventional relational databases to store individual tables separately.

Using a triple store, however, it is possible to store all relational information in one single

'table'. An individual line in the triple store contains one relationship or connection

(which is one occurrence of the appropriate propositional function with the value 'true').

All of the (non-metadata) lines in the triple store that have the same value in the relation

column correspond to one conventional database relation or table.

For ease of reference, from this point on, the term connection will normally be used to

refer to an individual instance of a relationship, and the term relation to refer to the

collection of all of the connections of the same type, which is in line with the standard

usage of the word in database literature. Each relation has a name, such as

'HasManager', or 'SkillName', and each connection uses this name to show what sort of

connection it is (Figure 3.6).

NOTE: In standard relational database tables, each row has several ('n') columns and

expresses the relationship between the 'n' attributes described in the columns. Hence

they are often referred to as 'n-ary relational' databases.

28

PERSON

HasManager

NAME ,

PersName

r

Jones

Smith

PersNum

PersSkill

STAFF NUMBER

13572468

98761234

SKILL

Carpenter

Programmer

Musician

Figure 3.6 Relations between entity and attribute sets

3.1.4 An Example Database

To describe a real-world item completely, it is necessary to establish the connections from

any starting point, for example, a person in the set of 'person' entities, to the appropriate

member of any other relevant entity or attribute set.

Although the connections are binary, there may be multiple connections between an entity

in one set and entities in another set. A person might have several different skills, and a

telephone may be shared by many users. There are four possible mappings that may be

used to describe this, which are;

1:1 'one to one'

1 :m 'one to many'

m;l 'many to one'

m; n ' many to many'

For example, 1 :m mapping means that one member of one set may have several

connections, each of them formed with a different member of another set. However, it is

not necessary to use all four of these mappings. If connections can be traversed in either

direction, then only one of the mappings 1 :m or m: 1 is needed. In addition, an m:n

29

mapping can always be replaced by introducing an additional entity and using two m:l

mappings. In the diagram that follows, all mappings are either m: 1 or 1:1.

In certain situations, it may be required that for every member of a set, there must be a

connection to another set - a mandatory 1:1 mapping. It might be useful to extend the

above list to include such a mapping, but this has not been done at the moment. The

direction of the connection needs to be expressed in some way, as shown by the arrows on

the diagram. Any implementation will need to adopt a convention for this, and also

provide support for connections between members of the same set, as demonstrated by

the 'HasManager' connection. The direction of the connection makes clear who is the

manager, and whom is being managed. However, it will be possible to use a connection

in either direction to traverse the database, so that if we wish to discover which

employees report to a particular manager, we can use the 'HasManager' connection in the

reverse direction.

SEX

HasManager
SKILL

PNUM

PERSON

(PersSkill)

PersPNum
Skil Name

SkillOwner
SKILLRECORD

SURNAME

Jones

PersSur

Sn#i

SALARY 1

18,000 14,500

25,000 OffONum

Administrator

Carpenter

Programmer

DATE

OFFICENO

Im — • 1 1/1/97
QualDate 4/7/96

A089

Figure 3.7 A personnel database

30

All of the above points are illustrated in Figure 3.7, which shows a simple database.

There are ten sets in the example.

• Three Entity Sets: Person, Office, SkillRecord
• Seven Attribute Sets: Pnum, Surname, Salary, Sex, Skill, Date, OfFiceNo

There are various connections between the sets, which are listed below. Note that all of

the connections are given either 1:1 or m: 1 mappings. The m:n mapping that would have

been required by the connection 'PersSkill' has been eliminated by introducing the

SkillRecord entity. This has the benefit that attributes that relate to this Person to Skill

connection (termed 'intersection data'), such as the date that a person qualified with a

new skill, can now be added to the database.

Relation name Description

PersPNum Person's personnel number -1:1
PersSur Person's surname - m: 1 (people may have the same name)
PersSal Person's salary - m: 1
PersSex Person's sex - m: 1
HasManager Person's manager - m: 1
SkillOwner The person to whom a SkillRecord relates - m: 1
SkillName The name of the skill - m: 1
QualDate The date on which the person acquired this skill - m: 1
PersOfiF Person to office - m: 1 (some people share offices)
OflfDNum Office to office number -1:1

This approach, which we might call a 'data map', provides a very simple way to analyse

and think about relationships between data,

3.1.5 The Sets of Relations, Mappings, Formats and Sets

The relations also form a set, as do the mappings, formats and the sets themselves (i.e.

there is a set of sets). These may also be represented within the model using exactly the

same approach, as shown in Figure 3.8.

Each set has a name and a format for the data items in the set
Each member of the 'relation' set has a name and a mapping
Each member of the 'relation' set describes connections from a member of one set
to a member of another set - 'from' and 'to' indicating the direction of the
connections

31

So data about the data, usually termed 'metadata', can be stored in the same database as

the data itself.

MAPPING \ 1

OFFICE

PERSON

PersOff

SETNAME

SET

FromSet

Ml

RELATION

HasFormat

FORMAT

Ml
HasRelName

RELNAME

amame^

>5/

Figure 3.8 Metadata

3.2 The Triple Store and the Lexical Store

3.2.1 Identifiers

In the preceding example, entities were given identifiers (IDs), but attributes were shown

by their values, and connections by their relation names. To preserve symmetry in the

triple store, and to permit performance to be enhanced in the implementation, attributes

and relations are also given identifiers. A second table, which is termed the 'lexical

store', is then used to translate the attribute IDs to and fi-om actual values when needed.

In the following example, identifiers of the form

set-name | id-number

are used to demonstrate the principle. The form of identifier used in the implementation

is defined in Chapter 4.

32

3.2.2 Lexical Store (or Semantic Store)

The lexical store provides the 'bridge' from the triple store to the outside world. The

lexical store maps the internal identifiers to the values that they represent.

Entities do not have values, and therefore do not appear in the lexical store. Entities

include the sets in the database. For reference, the example is using internal identifiers

for sets as follows. In operation, the end user has no knowledge of any internal

identifiers.

Set Internal Identifier

PERSON SETJdl
OFFICE SET_id2
SKILLRECORD SETJd3
FtnJM SETjkUl
SHJBNANE SETJdlZ
SWJJU&Y SET_W13
SE3C SET_W14
SKILL SETJdlS
OFFICENO SET_idl6
IXATE SET_KU7

Figure 3.9 shows part of the lexical store for the database in Figure 3.7, including the

entries needed for the metadata shown in Figure 3.8.

Identifiers Values

PNUMJdl 13572468
PNUM_id2 98761234
PNUM_id3 92847557
PNUM_id4 87364512

SURNAMEJdl Smith
SURNAME_id2 Williams
SURNAME_id4 Jones

SEX_idl M
SEX_id2 F

SALARYJd? 25,000
SALARY id9 18,000

SKILLJd31 Carpenter
SKILL_id32 Administrator
SKILL_id34 Programmer
SKILL id35 Xylophonist

DATE_id74 01/01/1997
DATE_id47 04/07/1996

OFFICENO_id2 A089
OFFICENO_id44 B685

RELNAME idl PersPnum
RELNAME_id2 PersSur
RELNAME id3 PersSal
RELNAME_id4 PersSex
RELNAME_id6 HasManager
RELNAME_id7 PersOff
RELNAMEJdg OmNurn
RELNAMEJdlO SkillOwner
RELNAMEJdll SkillName
RELNAME_idl2 Qualdate
RELNAME id20 HasSetName
RELNAMEJd21 HasFormat
RELNAME_id30 HasRelName
RELNAME_id31 HasMapping
RELNAME_id40 FromSet
RELNAME_id41 ToSet

SETNANEJdl PERSON
SETNAME_id2 OFFICE
S E n M A E J ^ PNUM
SETNAME_id4 SURNAME
SETNAME_id8 OFFICENO

FOR&WVTjM SDIGIT
FORMAT_idl iBrr

MAPPING_id2 m:l

Figure 3.9 Part of a lexical store

34

3.2.3 The Triple Store

The triple store is a table which is designed to contain the connections. Each line in the

table is a 'triple' containing

• The ID of the relation to which the connection belongs (the 'relld')
» The ID of the item (entity) that the connection leads 'from' (the 'fromid')
* The ID of the item (entity or attribute) that the connection leads 'to' (the 'told')

Figure 3.10 shows part of the triple store for the database in Figure 3.7, including the

entries needed for the metadata shown in Figure 3.8.

There are two sorts of entry in the triple store:

Entries describing the connections shown Figure 3.7, which for clarity are shown
in the upper part of Figure 3.10

Entries describing the data itself shown in Figure 3.8 - the metadata - which are
shown in the lower part of Figure 3.10

Metadata in a database is often termed 'system catalog' data. It is also sometimes
called the data dictionary, although this term is also used to refer to a separate
repository of information about the data in an organization.

3.2.4 How the Triple Store and Lexical Store work together

To find Smith's office number:

1. Go to Lexical Store and find "Smith"
- returns SURNAME id 1

2. Go to Triple Store with SURNAME idl and REL_id2 (PersSur)
- returns PERSON id2

3. Go to Triple Store with PERSON id2 and REL_id7 (PersOff)
- returns OFFICE id3

4. (%)toTl̂ dk^%%Te\v&h()FFBCEL;d3and]&El̂ jd8 (OfBOhhun)
- returns OFFICENO id44

5. Go to Lexical Store with OFFICENO id44
- returns the Office number - B685

35

Relation From To

RELJdl PERSONJdl PNUM idl
REL_id2 PERSONJdl SURNAMEJd4 (Jones)
REL_id3 PERSON idl SALARY id9
REL_id4 PERSONJdl SEX idl
REL_id6 PERSON idl PERSON ids
REL_id7 PERSONJdl OFFICE ids
RELJdlO SKILLRECORD idl4 PERSON idl
RELJdl 1 SKILLRECORD idl4 SKILL idS4
REL_idl2 SKILLRECORD idl4 DATE id?4
RELJdlO SKILLRECORD idl7 PERSON idl
RELJdl 1 SKILLRECORD idl 7 SKILL idSS
RELJdl2 SKILLRECORD idl7 DATE id4?

RELJdl PERSONJdl PNUMJdS
RELJdZ PERSON id2 SURNAMEJdl (Smith)
RELJd3 PERSONJdl SALARY_id9
RELJd4 PERSON id2 SEX idl
RELJd6 PERSONJdl PERSONJdS
RELJd? PERSON idl OFFICE ids

RELJdl PERSON id3 PNUMJd4
RELJdZ PERSON id3 SURNAME Jdl (Williams)
RELJd3 PERSON id3 SALARY_id?
RELJd4 PERSON ids SEX idl
RELJdS PERSONJdS SKILLJdSS
RELJd? PERSONJdS OFFICEJd?
RELJdlO SKILLRECORD id24 PERSONJdS
RELJdl 1 SKILLRECORD idl4 SKILLJdSl
RELJdl2 SKILLRECORD idl4 DATEJd?4

REL ids OFFICE ids OFFICENO id44
RELJdS OFFICE id? OFFICENO Jdl

RELJdZO SET idll SETNAMEJdS (PMJM)
RELJdZl SET idll FORMAT JdS (8DIG1T)

RELJd20 SET idl SETNAME Jdl (OFFICE)

RELJdlO SET idl6 SETNAMEJdS (OFFICENO)
RELJd21 SET idl6 FORMATJd4 (4D1G1T)

RELJdSO REL id? RELNAME id? (PersOfJ)
RELJd40 REL id? SET J d l (PERSON)
RELJd41 REL id? SET J d l (OFFICE)
RELJdS 1 REL id? MAPPING Jdl (m:l)

RELJdSO REL id6 RELNAMEJd6 (HasManager)
RELJd40 REL id6 SET J d l (PERSON)
RELJd41 REL id6 SET J d l (PERSON)
RELJdS 1 RELJd6 MAPPING Jdl (m:l)

Figure 3.10 Part of a triple store

36

3.3 Comments on the Triple Store

3.3.1 The Need for Sorting

One of the over-riding considerations in any database system is to minimize the number

of disk accesses. When searching for related data, response times are going to be much

faster if all of the required data can be read in from disk at once. If the user wants to

know all about PERSON id 1, it will be better if this information is not scattered

randomly throughout the triple store. Best performance will be achieved if logically

related items are close together physically, which can be aided by sorting both the triple

store and the lexical store.

3.3.2 Sorting and Indexing the Triple Store

The three columns of the triple store can potentially be sorted in 6 different ways. Each

of these has the effect of grouping related items together. For example;

• If the sort is based on the order; second column, first column, third column, in the

above table, all of the connections concerning PERSON id 1 will be stored

together. When data is read from a disk, a whole block is read at a time, which

will contain many rows of the triple store. So when any of the rows relating to

PERSON id 1 is retrieved into memory for processing, all of the connections

concerning the person will almost certainly be brought in too, and further disk

access is not needed to traverse the related data.

• If, however, the sorting is done on; third column, first column, second column,

then all records for each Office id would be grouped, so that people occupying

the same office could be traced quickly.

To optimize processing, therefore, several sort orders (but not necessarily all 6) may be

maintained within the triple store, using as many copies of each entry as there are sort

orders. There is a trade-off to be made between performance and disk space, but if good

compression techniques are used, properly sorted data will compress very significantly, so

that the space overhead is not as large as might at first appear. One aspect of the project

has been to determine how many sort orders it is worth maintaining.

37

In addition to sorting the triple store, there is also a need for indexes (e.g. a B-Tree or

other index) to permit reaching the appropriate part of the triple store fast.

3.3.3 Compression

To take full advantage of the proposed structure, consideration must be given to

opportunities for compression, and the techniques that could be applied.

If the triple store is sorted on the second column, all of the entries beginning PERSON

will be together, and so on. It would therefore be necessary to store 'PERSON' only once

with a count of the number of PERSON entries that follow. The same argument applies

to all columns, hence the need to consider sorting in more than one way to get the

maximum benefit. It is probably even possible to spot recurring groups of entries and

compress these. The use of identifiers with two parts (set id | item id - see Chapter 4)

lends itself well to this sort of compression, helping to conserve disk space.

3.4 Comments on the Lexical Store

3.4.1 Allocation of IDs

A mechanism is needed for the allocation of IDs as attribute values are added to the

lexical store. A number of algorithms are possible for this:- allocate numbers

sequentially, allocate numbers randomly etc., as long as uniqueness within a set is

maintained. Another possibility is to make the ID in the triple store equal to the literal

value of the data.

A further strategy, which has been considered, is to allocate IDs in an order which reflects

the natural sort order for the domain, where this exists (e.g., alphabetic or numeric). This

would have the effect that when the triple store is sorted by ID, entries will automatically

be sorted in an appropriate order for other processing. Also, if entries are placed in the

triple store in the order of the data, then a range can be examined by locating the first and

last values via the lexical store, indexing to the appropriate entries in the triple store, and

38

then working entirely within the triple store, knowing that all entries between the two

limits satisfied the criteria.

However, the difficulty of allocating IDs as more values are added, without causing an

entire renumbering operation to occur, which in turn would require every line in the triple

store that referred to the attribute to be updated too, outweighs the possible benefit. It is

not clear, either, that it is really desirable for the triple store to have the 'partial

understanding' of the attribute values implied by the above approach. The triple store

should really be completely indifferent to attribute values.

In the present implementation, IDs are allocated randomly within a range. The range is

initially set small, so that IDs are fairly 'close' to each other to facilitate subsequent

compression. If a range becomes too tightly filled, however, the range is dynamically

expanded, and further expansion will occur as necessary.

3.4.2 Sorting and Indexing the Lexical Store

The lexical store needs to be sorted on the first column to bring all items of the same type

together. This means sorting by the two parts of the identifier, SetName and ID. It may

also be desirable to sort the lexical store on the second column - this was to be

determined.

Indexing is needed to provide rapid access into the lexical store, and to support range and

other queries. (This is no worse than for a conventional relational database, where

secondary indexes are needed for searching and range queries on any field except the

primary key.)

In particular, indexing into the second column is crucial. Indexes into this column have to

cater for data stored in a variety of data formats. For example, surname, office no, sex,

and so on all have different formats.

3.4.3 Small or Large Sets

Some sets have a limited number of values, all of which could be preloaded into the

lexical store in sorted order. Examples might be SEX, EYE COLOUR and so on. These

39

may be thought of as 'closed' sets, and it is possible that a special algorithm might be

used to allocate IDs for these.

Other sets have a potentially large number of values. Although they may still be

technically 'closed', the upper limit of the possible values might be 'all of the rational

numbers less than 10 million', or 'all possible combinations of 20 alphanumeric

characters'. As far as the database is concerned, these sets are essentially 'open'. For

these sets, decisions will have to be made about strategies for keeping them sorted within

the lexical store, such as sorting every night, leaving spare space in the store, using a

hashing technique and so on.

lAamMyAhejMkfadbfa

3.5.1 Building the query

Consider again the example above - to find Smith's Office number;

To find Smith's Office number;

1. Go to Lexical Store and find "Smith"
- returns SURNAME id 1

2. Go to Triple Store with SURNAME_idl and REL_id2 (PersSur)
- returns PERSON id2

3. Go to Triple Store with PERS0N_id2 and REL_id7 (PersOfif)
- returns OFFICE id3

- returns OFFICENO id44
5. Go to Lexical Store with OFFICENO_id44

- returns the Office number - B685

The user first has to instruct the database how to build the query. In a conventional

RDBMS, this is accomplished by writing an SQL statement, or by using some sort of

QBE interface. The user needs to understand the tables in the database, and the

relationships between them in order to carry this out, and SQL statements can become

extremely complex and hard to understand, except for the expert.

40

With a binary relational database, the user will have a data map, as described earlier, and

will be provided with a friendly interactive front end with which to build up a query path.

In general, it is much easier for the end user to achieve this than when using SQL. Once a

particular query has been built, it should be possible to save it for re-use in the future. A

programming interface will also be provided.

3.5.2 Executing the query

When the query path has been determined, the system can execute it using the metadata.

There will be the following steps.

1. IRndSUB&UUWEJd

User has supplied a string "Smith"
Use metadata to check

Is there a Set called SURNAME
Is data-type etc valid (SURNAME HasFormat)
May want to do Domain check e.g. for enumerated domains

Then go to Lexical Store to find SURNAME id 1 for "Smith"

2 Traverse the database from SURNAME id 1 to OFFICENO id

If this is an m:l relationship (likely) then there may be more than one PERSONJd

We will travel via the PERSON set in this example. The path is PersSur (inverse)
1 ;m, then PersOff m: 1.

Go to the Triple store to find all of the PERSON ids for SURNAME idl
(j()t()tlie Store tc);get1iie (XETFICZE idsftxr die PE]RJS()I<Lji(is
Go to the Triple store to find the OFFICENO id s for the OFFICE ids

3 Retrieve the actual value of the Office number from the Lexical Store

Go to the Lexical Store with the OFFICENO ids to get the values.
Go to the metadata again, using OFFICENO HasFormat to present the
value to the user in the correct format.

3.6 Summary

This chapter has sought to introduce the concepts of the triple store, the lexical store and

the binary relational approach. The next chapter will set out more formally the rules and

architecture of the present implementation.

UBRARY

4 Implementation

This chapter begins with the working specification for the construction of the binary

relational database based on a triple store, and then describes some of the end-user

interfaces that have been constructed. The chapter concludes with discussion of other

aspects concerning the implementation.

4.1 Assumptions and Scope

The implementation adheres as strictly as possible to the binary relational model, as

described in the previous chapter.

The database is being built using object-oriented programming techniques in C++. (Note:

this does not mean that the result will necessarily be an 'object-oriented database').

The approach concentrates on keeping the triple store in an optimum state to ensure rapid

retrieval of information. This means that more work is needed when data is updated. In a

real application, data is always read before being written, so the approach only impacts a

maximum of 50% of the accesses adversely, and usually many fewer. A critical statistic

will be the ratio of reads:writes for an application.

4.2 Introductory Definitions

The following terms are used;

1. The term collection to describe an arbitrary group of objects, not all drawn from

the same domain.

2 The term set to describe a collection of items drawn from the same domain. (This

is the normal usage in database discussions.) 'Set' will normally be used to

describe all of the members of a domain.

42

3. An entity relates to some 'thing' in the real world being modelled. The entity in

the database exists for the purpose of providing a unique identifier for the real

world thing. The entity itself does not have any properties, except for an identifier

internal to the database, until attributes have been 'attached' to it. Entities may

have relationships, called connections (see definition 6 below), one with another.

4. An attribute describes some property of an entity. An attribute will belong to a

domain (e.g. 'colours'), and will have some value (e.g. 'blue'). The attribute

instance is completely defined once its domain and value are known. An attribute

value cannot be connected to any other attribute value, but only to an entity, i.e.

there can be no connections between attributes, but only between attributes and

entities (or entities and entities, as above).

5. An entity or an attribute value has an identifier {'ID'), which is assigned

internally. The end user will never be aware of this ID. The ID is unique within a

domain. If domains are unique, then specifying the entity or attribute by

domainJd.entityJdis unique globally (within the database).

The ID is not the value of an attribute. The value of the attribute is obtained from

the Lexical Store. IDs are discussed further in Section 4.4 - Formats, below.

6. The relationships between entities or between entities and attributes are called

connections. Connections only ever exist between two entities, or one entity and

one attribute. All connections are therefore binary relationships.

7. A relation is the set of all connections of the same type, and a connection bears

the name of the relation of which it is a member. (See Section 3 .1.3 for further

discussion.)

8. A 'triple' consists of three full identifiers, one of which is a relation identifier, one

is an entity identifier and the remaining one is either an entity identifier or an

attribute value identifier. (See Section 3.2.3 for further discussion.)

43

9. Triple store : The triple store holds all of the triples in the database

10. A 'lexical' is made up of two parts: a full identifier, and a data value. The format

is discussed further below

11. Lexical Store : The lexical store holds all of the lexicals in the database

4.3 Rules of the Architecture

These are fundamental to the structure of the triple store and the lexical store. They apply

equally to 'data' and 'metadata'.

44

4.3.1 Formal Definitions

Definition
number

Definition Dependency
on previous
definitions

Notes

D1 An entity is some 'thing' in the real world being
modelled

D2 An entity Id (entid) is associated with each entity D1 1

D3 An attribute is a property which can apply to an
entity

D1

D4 A value is a value that an attribute can assume D3

D5 A lexicalld (lexld) is associated with each lexical
(attribute) value

D4

D6 A set is a group of entities or a group of values D1,D4
D7 The family is the family of all of the sets in a

database
D6

D8 A setid (setid) is associated with each set D6
D9 An entitySet is a set of entities Dl, D6
DIO A lexicalSet is a set of values relating to one

attribute type
D4, D6

Dl l A domain is the set of all possible values that one
attribute may take

D4,D6

D12 A connection is a directed relationship with a given
mapping from one entity to another, or from an
entity to a value

D1,D4 2

D13 A relation is the set of all of the connections of a
given type

D12 3

D14 A relationid (relld) identifies a relation (in other
words, a type of connection)

D13

D15 The setOfRels is the set of all of the relations in the
database

D6, D14 4

Figure 4.1 Definitions

Notes on the Definitions:

1. An entity has no properties until attribute values are attached
2. This implies that all connections are binary
3. When a relation is created, the direction of the connections, the mapping, and the

two sets being connected must be specified
4. A relation is itself an entity, which is described in the database through the

metadata

45

4.3.2 Rules

Rule
number

Rule Dependency on
definitions

Notes

R1 Setlds are unique within the family D7,D8

R2 Each entity is a member of one and only one
entitySet

D1,D9 1

R3 Entlds are unique within the entitySet of which the
entity is a member

D2, D9

R4 An entitySet contains only entitylds (no values) D2, D9 2

R5 Each value is a member of one and only one
lexical Set

D4, DIO

R6 Lexids are unique within the lexicalSet of which the
value is a member

D5,D10

R7 A lexicalSet contains lexids paired with (attribute)
values

D5,D10

R8 Rellds are unique within the SetOfRels D14,D15
R9 There is, at most, only one connection of a given

type from any entity
D1,D12 3

RIO Connections between lexicalSets are forbidden D10,D12

Rll Domains are disjoint D l l
R12 A domain contains data of only one type Dl l
R13 Values from one attribute domain are not

comparable with values from another
D4,D11 4

Figure 4.2 Rules

Notes on the Rules

1. This implies that sets are disjoint. This is discussedfurther in Section 4.8.3
2. Entlds do not therefore appear in the lexical store, since there is no associated

value
3. This means that all relationships are many to one (m:l), where m may also be 1

giving a one to one (1:1) relationship. However, it is possible to traverse
relationships in the inverse direction. Many to many (m:n) relationships will not
be supported. See Section 3.1.4 for further discussion

4. This means that a 'strong typing' environment will be enforced

46

4.3.3 Observations and Consequences of the Rules

1. A relation must be defined before any triple that is based on it can be added to the

triple store

2. There cannot be two identical lines in the triple store

3. There cannot be a lexld in the triple store which is not in the lexical store

4. There can be a lexld in the lexical store which is not in the triple store

5. There cannot be two (full) lexids in the lexical store which are the same

4.3.4 Further Objectives

A query against a database should return a complete, self-contained database, including

all of the relevant metadata.

This is analogous to a relational database, in which a query against a number of relations

returns a relation, although in that case, the relation may not be normalized.

4.4 Formats

4.4.1 Identifiers

A 'type' is defined for the identifier ('ID'), so that it can always be changed without

impact to the rest of the code. Initially, identifiers map down to unsigned long integers

(32 bits - 4 bytes). This gives a range of from 0 to 4,294,967,295 per set inclusive.

Further types are then defined for entid, lexld, setid and so on, in terms of the basic ID.

All IDs will therefore be based on the same underlying type, preserving symmetry

throughout the database.

Certain values will be reserved for 'special' usage. These are IDs which are essential to

the integrity of the database architecture.

47

4.4.2 Full Identifiers versus Shortened Identifiers

A fiill identifier (entid, lexld, relld, or setid) is made up of two parts, the ID representing

the set of which the item is a member, and the ID of the item within the set. In the case of

the setId, the first ID will be that of the setOfSets. In the current implementation,

therefore, the full identifier will be 8 bytes long, made up of 2 4-byte IDs, although this

would obviously change if the basic 'ID' type is changed. When new relations are

defined, the first part of the full identifier will contain the ID of the setOfRelations; the

second part, the newly assigned ID of the relation being added. In addition, entries must

be made in the triple store to describe the fromSet, the toSet, and the mapping for this

relation.

In principle, all items in the triple store and the lexical store would use full identifiers.

However, as items will be held in sorted groups, especially in the triple store,

considerable space can be saved by not repeating parts of the full identifier where not

necessary. In the case of small sets (such as 'sets' and 'relations') this might mean that

only one or two bytes need be stored for each entry.

In practice, the relld will always be the first of the three parts of the triple. The setId

(which is the ID for the setOfRelations) is therefore not strictly needed. In addition, the

relld implies the IDs of the two sets that are being connected, so that it is not necessary to

store these either. Thus the triple need only contain the item identifier for all three parts.

This is the approach that has been adopted, and each triple contains three 4-byte integers,

which are the item identifiers for the relld, the fi-omid and the told. (FromId and told are

described in Section 3.2.3.)

4.4.3 Lexlcals

A 'lexical' is made up of two parts: a full identifier and a data value.

Full identifiers, which will be lexlds, are allocated when items are added to the lexical

store. The first part of the identifier will be the ID of the set (setId) to which the item is

being added; the second part will be the newly allocated ID for this item.

48

The format of the data will be described via a hasFormat relationship, and the data will be

stored in accordance with this, e.g. as a string, fixed length integer etc.

4.4.4 Triples

A 'triple' consists of three full identifiers, one of which is a relation identifier, one is an

entity identifier and the remaining one is either an entity identifier or a value identifier.

In addition, a fourth field will be added to indicate the sort order for a particular

occurrence of a triple.

4.4.5 Special Values (System ID Constants)

In order to start a new database, it is necessary to predefine several IDs

IDs for types;
EntType, LexType, EntEntType, EntLexType

IDs for system sets:
SetSet, SetNameSet, RelSet, RelNameSet

IDs for special Relations;
SetNameRel, SetTypeRel, RelNameRel, FromSetRel, ToSetRel, RelTypeRel

IDs for various additional constants;
Lowest Systemid, "None", "Any", HasEnt

49

4.5 Interfaces

4.5.1 The Programming Interface

Access to the database is through a set of operations that together make up the 'TD'

(triple datastore) programming interface. The interface is not intended for end users, but

provides a clean interface into the database system upon which graphical front-ends and

so on can be built. The operations provide the following functions:

Database operations Create a new database
Delete a database
Open a database for processing
Close a database when finished

Set operations (on both entity
and lexical sets)

Add a new set
Delete a set
Find a set ID
Find a set name

Operations on members of
lexical and entity sets

Add a new member
Delete a member

Operations involving relations
between sets

Add/delete a new entity-entity relation
Add/delete a new entity-lexical relation
Find an entity-entity relation ID / name
Find an entity-lexical relation ID / name
Find ID of to set / from set
Find set name of to set / from set

Operations to add or delete
connections between members
of sets

Add/delete connection between two entities
Add/delete connection between entity & lexical
Add lexical value and connection

Cursor operations Various operations - see Appendix A

Figure 4.3 TD Operations

These operations are fully described in Appendix A.

50

4.5.2 End-User Interfaces

Section 4.5.2 describes four different interfaces that were developed by students under my

supervision while I was teaching at the University of Southampton.

To complement the triple store implementation, a variety of user interfaces has also been

constructed, demonstrating the versatility and validity of the triple store. These included

graphical interfaces, a web-based interface, and an SQL interface. Brief descriptions of

these follow.

4.5.2.1 General Purpose Interface

This can be used to assemble a database from scratch. Using the buttons on the toolbar,

or using menus, the user can

• Create a database

• Add sets

• Add relations

• Add connections

• Add data

• Obtain various views of the

contents of the database.

II —
Database Sets Relatois Membas Example: \/iew flueiji Imfo

#1 %

"iNOSi'l ^

Figure 4.4 General Purpose Interface

This interface (Figure 4.4) demonstrated that a Windows front-end could be added to the

triple store code, using C++ and an object-oriented approach. A full description is given

in [Cjs98].

51

4.5.2.2 Interface to support recruitment agency application

This was a fiill-scale application based on a real system. The ER diagram in Figure 4.5

shows the database in a conventional view. Figure 4.6 shows how this is translated into a

binary relational database. This interface is described in [Ejs99].

Skills

Vacancies

Client

Applications

Employment

Candidates

Detail Dates

Company
Address

Candidate
Skill Link

Vacancy
Skill Link

Company
Name

Figure 4.5 ER Diagram for recruitment agency

The application records job vacancies supplied by clients, along with the skills required,

shown on the right-hand side of the diagram. It also records candidates applying for jobs,

with the skills they are offering on the left. The application matches candidates to

vacancies, and records job applications made.

The following diagram shows the way in which the Triple Store holds the above data

structure.

52

CandSkiUDuration

Duration

Skill

Sk ill

Va cSkiI IDuration

jci Ml \ CandSkillSkills VacSkillSkills _
CandSkill) — H Skills > — /acSkill

Vacancies SkillSkills Candidate CandSkul
CandSalRgq

Candidate Vacancies

Application

ClientV icancies Appli cation DateDetails

Candaumame

Date Details
CandA

Client
ClientSuma

Surname

CliaHOWdress

Address

Compai yName

Company
Name

Red Entity
Green Entity Entity Relation
Blue Lexical Entity and Lexical Relation

Figure 4.6 Data model for recruitment agency

53

Figure 4.7 shows a screen from the application for viewing a candidate's details,

demonstrating that a conventional user interface can be developed for an application

based on a triple store database.

Candidate Details

Please select candidate to view ~3 Candidate ID f i

Surname Bloggs Position Required jAny

Firstname Joe Current Salary 20000

Address Somewhere -J Required Salary 125000

Add Skill j

Skills Skils 1

J
Phone Numbers 01234 567890

Date Added 10:23:31 on Monday, May 031993

Figure 4.7 Recruitment application

4.5.2.3 Data Explorer Web Interface

One of the features of a binary relational database is the ability to follow links between

instances of data values in the database to discover whether there are connections between

them. Indeed, researchers at Birkbeck College [Tristarp] have developed applications for

cUents, taking advantage of this. The web interface shown here [GjeOO] was developed at

Southampton and was designed to support such 'data exploration' through the triple store

database.

From a given starting point, such as that shown in Figure 4.8, the user can click on items

as indicated to track down connections. For example, one could click on the name field

to find any other references to the person selected, in this case, Mrs G Wood.

54

3 TDCGI - Mictosoft Internet Explorer '- ̂
Bte Etft %iew Favorites Took tjelp

A êss http://focahost/cgH3in/tdĉ ex9?action=dejdi$f̂ yEntjli>teTt " 3
3

person
Fields

Click on fee field name to search on that field

Iname {Mrs G. Wood

'salaoT I4H28 |

j

Rdated

person_telephone (person to telephone)

number (01189} 945971

Navigation: first | prev | nest
Options: hack |

;@Done Local intrafiet
J

Figure 4.8 Web Interface - Data Explorer

4.5.2.4 SQL Interface

The last interface described here [CwaOO] was designed to explore the possibility of

creating an n-ary relational database view of the data in a binary relational database. The

aim was to design and build a text-based SQL interface. The application comprised three

sections;

• the parsing layer to collect and validate input from the user

• the relational layer to implement the relational database model

• the binary relational layer concerned with interfacing to the underlying triple store

The final system was successfully able to create relational tables, insert data into those

tables and query the tables to retrieve the data, with all data being held in a triple store.

55

http://focahost/cgH3in/tdc%5eex9?action=dejdi$f%5eyEntjli%3eteTt

4.6 Preliminary Performance Comparison

To gain reassurance that the performance of the database was at least acceptable, a short

study was conducted to provide a 'sanity check' [Hus99]. The same database was

constructed in the triple store database and in Access, which happened to be readily

available. In order to provide a meaningful comparison, programs were written to access

the programming interface of the triple store database, and were also written to retrieve

data directly from the underlying Jet engine in Access, so bypassing the Access front end.

The study was conducted against an earlier version of the triple store database, which had

not yet had the index added to the lexical store. Nevertheless, the results were

satisfactory. The triple store was faster on some queries and Access was faster on others,

but both were in the same 'ball park'. The results confirmed that the triple store

performance is certainly comparable with other databases, and may well be faster when

fully developed. In due course, a further comparison should be performed against a more

substantial competitor.

4.7 Other Aspects

4.7.1 Locking and Robust Cursors

The present implementation includes complete physical locking at the block level,

described below in Section 4.7.2. The largest amount of data that is locked at one time is

one path through the index (a small number of blocks) together with the target block.

This is adequate for current purposes, but to support multiple users, a stronger approach is

needed. It is intended to explore the use of predicate locking for this purpose, and this is

discussed further in Chapter 6.

A mechanism is already in place to support robust cursors. A cursor may be used to find

the position of data within a block. If unrelated changes are then made to the block,

causing the position of the data to change, the cursor will still return the correct data

should it be required again. To achieve this, a version count is maintained in the block,

which is recorded in the cursor. If the cursor is used again, a check is made to see

56

whether the version count in the cursor matches the version count in the block. If it does

not, then changes have been made, and the index is used to re-locate the required data

item. This applies to changes in the leaf and index blocks.

4.7.2 Caching and Storing to Disk

All data is stored to disk, with a caching mechanism within the database to optimize

performance. The cache size may be selected at start up, in terms of the number of data

blocks to be held. One aspect of the performance work has been to understand the best

values for the block size and for the cache size. This is described in Chapter 5.

Each 'slot' in the cache can hold one block of data. A 'status table' holds a record for

each cache slot. The contents of each record in the table are shown in Figure 4.9.

Number of the block currently stored
Next cache slot in hash chain
Previous cache slot in hash chain
Number of read locks
Write lock indicator
Write to disk required indicator
Next cache slot in LRU chain
Previous cache slot in LRU chain

Figure 4.9 Status table record contents

A division/remainder hashing algorithm is used to locate blocks stored in the cache. The

remainder is used as the index into a separate hash table, which holds the position in the

status table of the start of a relatively short chain of blocks which all have the same hash

result. This level of indirection ensures that the usage of the cache is independent of the

hash number, as well as providing flexibility and improving performance.

When access to a block is required, the block number is hashed, and the hash chain can

quickly be followed through the status table to see if the block is in the cache, or needs to

be fetched from disk, thus avoiding the need to scan the whole status table looking for a

block-number match. (A large cache could contain thousands of blocks.) When a new

block is brought into the cache, a slot will be allocated from the 'free chain' (see below).

57

The slot in which the new block is stored is added to the front of the appropriate hash

chain.

The status table keeps track of the current usage of the block in each slot. Whenever a

block is accessed, a read or write lock will be placed on it. Multiple read locks are

permitted, and a count is kept of the number active. When a block is released, any lock

held will be released. A read lock count will be decremented, a write lock will be

released, and if the block needs to be written to disk, the 'write required' indicator is set.

This mechanism ensures that active blocks are not removed from the cache. When a

flush request is sent to the cache, all blocks with outstanding write indicators set are

written to disk.

The status table also holds a 'free chain' of all unused and 'free', (i.e. unlocked) blocks.

If there are no unused slots in the cache, the least recently used block with no locks

outstanding will be discarded and the slot re-used. If the block has the write indicator set,

it will be flushed to disk first. When a slot is re-used, it is removed from its old hash

chain and added to the new one.

ZDWNSKZffS&S&fCNn*

4.8.1 Identifiers

There are various strategies that could be adopted for implementing the Triple Store. We

have chosen the identifiers to have two parts - an identifier for the set name (e.g.

PERSON) and an identifier for the individual instance within the set (eg idl).

However, an alternative would be to have just the ID and have additional 'IsMemberOf

relations saying which ID belonged to which set. This would make for shorter, less

complex IDs, but one would then need to ensure that IDs were unique across the whole

database rather than just within the set, and many more lines would be needed in the

Triple Store.

58

4.8.2 Relations

Another debate concerns whether to endow the relation itself with the additional property

of linking two specific sets. For example, one could say that "the relation PTel always

links the sets PERSON and TEL". This is the approach that has been adopted so far.

Before adopting this strategy, however, one must consider relations such as 'HasValueOf

or 'IsOwnerOf. One might use HasValueOf to link a set of computer equipment with its

value in pounds:

C0&CME(3jdl PCHINDWUUJEJdl.

One might want to use the same relation to link furniture items with their value:

IRJ&Njidl ItwVabeOf PCKOOOV/JJJEjdl

Similarly, one might want to use IsOwnerOf for different purposes:

PERSCmijdl kChmedDf
Is()wiierC)f

If one endows such relations with the property of linking specific sets, then different

relations will be needed for each of the above cases: 'EquipHasValueOf,

'FurnHasValueOf, and so on. If one wanted to establish the value of all items owned by

PERSON id 1, one could not simply follow all of the appropriate IsOwnerOf Relations

followed by the HasValueOf relations, but would have to issue a number of specific

enquiries. In addition to such practical considerations, one must recognize that the

Semantic notion of HasValueOf or IsOwnerOf appears to be exactly the same in all cases

and it might seem preferable to use the same relation to represent the same thing.

One way to implement this approach would be to maintain full identifiers throughout the

triple store. Other ways would involve storing additional information about relations in

the triple store. However, if the relation implies the from-set and to-set, then the triple

store can be significantly reduced in size.

59

4.8.3 Sets are Disjoint

Rule 2 implies that sets are disjoint. Is this a constraint, either in the database or in the

real world? The constraint implies that the database designer will have to divide his

world up into sets, which is indeed the normal approach to database design. In the real

world, however, many things belong to more than one set, so that this is not really

satisfactory.

The possibility of using an TsA' relationship was considered, to relate an object to the

one or more sets to which it belonged, the objects being held as members of a set of the

descriptions of all entities in the universe. One would need to allow m:n mappings from

entity IDs via IsA's to the description set. Entity ED could then be a member of as many

sets as desired. However, to start with at least, the simplifying assumption is being made

that entities will be members of one and only one set. Most problems can still be solved

by searching on attributes. For example, the set of all photographers can be found by

searching the set of people for those with the skill 'photographer'.

A further point arises. Relationships need to know which set they are coming from and

which they are going to. This is much more straightforward to implement if there are

distinct sets for each entity type. One could track back through IsA's to determine set

membership, but this would lead to more complex code and longer pathlengths.

4.8.4 Mappings

At the moment, it appears that the decision to allow only m; 1 and 1:1 mappings leads to a

satisfactory solution in all cases. However, this has not been tested rigorously, and

further work will be needed to demonstrate that all four mappings are not actually needed.

The utility of introducing an option to make a mapping mandatory also needs

consideration. For example, there might be a mandatory 1:1 mapping to ensure that each

person was allocated a personnel number.

60

5 Optimizing Data Storage for Performance

The preceding chapters have described how a binary relational database based on a triple

store was built, using an object-oriented approach. Several end-user interfaces were also

developed, which demonstrated that conventional paradigms could be used above the triple

store. This in itself was an interesting insight as it might have been thought that a non-

standard database implies non-standard end-user interfaces. Having established, therefore,

that the database was capable of supporting standard applications, as well as less usual ones

such as the Data Explorer, it was then appropriate to carry out flxrther investigation into the

performance of the database, to see what more general conclusions could be drawn.

One alternative at this stage would have been to code various versions of the triple store

database, and then conduct performance measurements. However, this would have been

extremely time consuming, and could have led to a considerable amount of wasted effort.

The method adopted was therefore to build a model, using an innovative approach, to

explore two particular issues.

The first issue, which is of importance to the current implementation, was to discover the

effect of using more than one sort order to hold the triples in the triple store. Did the

benefit of storing more than one sort order outweigh the cost, and if so, which sort orders

should be held?

The second issue is of significance to all database management systems, and concerns

compression. To what extent can performance gains be made by compressing the data, and

in particular, the non-index data, in a database? This question has become a topic of

interest recently, as has already been mentioned in Chapter 2.

In developing the model, the approach taken was to use the facilities provided by a

spreadsheet. In this chapter, the model is described, and then the results of the two

investigations are presented.

61

5.f 7 7 ; e M o d e /

Modelling has been applied to all aspects of computer technology from microprocessors

[Rei98], through I/O Subsystems [Gan98] to cache assignment in databases [Levy96]. The

use of a spreadsheet has also been reported in [Bond96] to reduce analysis and design time

by comparing eflFiciencies of converters in power electronic circuits. It was decided to

attempt this approach for the present project, to see whether the same benefits could be

obtained

5.1.1 Summary of the model

The performance model was constructed around operations at the 'TD' programming

interface, at which commands are submitted to the database to enter or retrieve entities and

their attributes to or from the database. Specific applications may be developed within the

model by assembling sequences of the operations, and the model is then used to predict

behaviour as various parameters are altered. The first area of application was to determine

the order or orders in which entries in the triple store should be sorted.

5.1.2 Extent and Limitations of the IVIodel

The object of the model was to predict the behaviour of the triple store database under

construction as a guide to continuing design and development. The operating system

obviously caches data underneath its own read/write interface, so for the model, block

retrieval times were determined empirically, as described later. The present model handles

the reading of data only, not updating or deletion, which will follow.

The intention was to develop a valid model that could be used to aid in the design process.

Various characteristics of the machine on which the database is running must be determined

in order to calibrate the model for use in predictive work. A further study could involve

extending the model to predict performance on a variety of machines, but this was not the

mirrept aim

62

A secondary aim of this work was to demonstrate that effective modelling can be achieved

relatively economically by using, as far as possible, the standard spreadsheet facilities

provided by a spreadsheet, in this case, Microsoft Excel.

5.1.3 Key Aspects of the DBMS being modelled

5.1.3.1 The cache

Within the database, two caches are maintained, one for triples and one for lexicais. In both

the database and in the model, the block size being used and the size of the cache can be

varied. Early experiments showed that it was worth maintaining these caches inside the

DBMS in addition to the caching provided by the operating system. In the cache, blocks

are maintained using a least-recently-used (LRU) algorithm.

5.1.3.2 Data store sizes

Various application parameters may be supplied to the model. These include:

ns - the number of entity sets in database
ne - the no of entities in sets
na - the no of attributes of each entity
nee - the no of relations between sets
nea - the no of entity-attribute (ea) relations per set
dbr - the no of entity-entity (ee) relations in the database

There are also constant values (Mx) related to the triples and lexicais needed to hold
metadata;
MS = 3 = no of triples to describe one entity set
MA = 8 = no of triples to describe one attribute set and its entity-attribute relation
ME = 5 = no of triples to describe one entity-entity relation
ML = 1 = no of lexical entries to describe one set
MR = 2 = no of lexical entries to describe one attribute and its entity-attribute relation

MS (3) triples per entity set; MA (8) triples per attribute set; ME (5) triples per entity-entity
relation; ML (1) lexical entries per set; MR (2) lexical entries per attribute.

From these, the model derives the figures needed. The number of triples in the store (nt),

including the triples needed for the metadata, is given by;-

nt = (MS + ne + na*(MA+ne))*ns + nee*(ME+ne)
= (MS + MA*na)*ns + ME *nee + ne*(ns*(na + 1) + nee)

63

The number of lexical entries in the lexical store (nl), including the lexicals needed for the

metadata, is given by:-

nl = dbr + ns*(ML + MR*nea + nea*ne)

In addition, system parameters are supplied to the model, including

idsize - identifier size
thead - the size of the header in a block in the triple store
Ihead - the size of the header in a block in the lexical store
Isize - lexical size

A triple contains 3 ids, so the size is 3*idsize
A triple index entry contains 4 ids, so the size is 4*idsize

The user can also vary:-

tbs- the triple block size
lbs - the lexical block size
packing factors (triple: tp]̂ triple index: tinpf etc)
internal cache size.

Using these, the model can determine the sizes of the triple and lexical stores, the height of

index trees (a B-tree index is used), likely cache occupancy etc. For the triple store:

Triples/Block: tb=:tpf*tbs/(3*idsize)
Triple Index Entries/Block; tieb = ((tbs-thead)*tinpf)/(4*idsize)
Triple Index Height: tih = 1 + RoundUp(Ln(nt/tb)/Ln(tieb))

For the lexical store

Lexicals/Block: lb = Ipflbs/lsize
Lexical Index Entries/Block: lieb = ((lbs-lhead)*linpf)/(liesize)
Lexical Index Height: lih = 1 + RoundUp(Ln(nl/lb)/Ln(lieb))

Finally, parameters are needed for the time taken to retrieve a block of data from the

operating system (bget), and to carry out various processing elements, for example, the

processing time to make one pass through the triple store index (tip) or to handle one triple

leaf node (tip). These were determined by calibration, described later.

Most calculations can be performed using spreadsheet formulae. For some calculations.

Visual Basic code was written. Two macros were used to derive the number of index levels

held in the triple and lexical caches, based on the quantity of data in the database. Two

further macros were used to calculate the number of index nodes present. Standard

64

formulae give the height of an index tree, and from this one could calculate the maximum

number of nodes that would be in the tree. However, what was required was to find the

number of nodes actually being used to index the current quantity of data in the database

for each of the triple and lexical stores, a value that might well be far smaller than the

maximum possible number.

5.1.3.3 Data retrieval

To understand how data retrieval is modelled, a central aspect of the operation of the triple

store is summarized again here. The three elements that make up a triple are the Relation

Id (relld or R), the Id of the Entity from which the relationship starts (fromld or F) and the

Id of the Entity to which the relationship connects (told or T). A request at the TD

interface will normally contain two of the three elements (although sometimes only one

element will be supplied). For example, a request might supply the relld and the fromld

and require the told to be found. This will be referred to as a request of the form RF*.

The data in the triple store was initially sorted in the order; R, F, T, and was indexed using

a B-tree structure. As a consequence, a request of the form RF* could be quickly satisfied

via the index, whereas a request of the form R*T could not. In this situation, the DBMS

must use the index to find the start of the relation and then perform a sequential scan.

There are six ways that the data could be sorted, and a major objective of the modelling

exercise was to discover which of these would be the best, and whether there would be

significant benefit in holding the data in more than one sort order. If more than one sort

order were to be maintained, the assumption is that the DBMS would perform a simple

optimization to use the best sort order for a given operation. The cost of performing basic

operations (RF*, R*T, etc.) against each of the six different sort orders is calculated in the

model, and a matrix holds the results.

5.1.3.4 Formulae for triple store

At this stage, the measured values for basic elements are factored in:

tip - Triple index processing time
tip - Triple leaf processing time
lip - Lexical index processing time
lip - Lexical leaf processing time
tsp - Triple scan processing time
bget- Time to retrieve one block at random from the file system

65

Because of the intrinsic symmetry of the situation, only a small number of formulae are

actually required, which are variations of the following;

• Index direct to unique item

For data sorted in the order R, F, T, an operation of the form RF* can use the index to

retrieve the required record from the database. If (tscl) represents the number of index

levels held in the triple store cache, the formula for retrieval time is given by:

time = (ih-l)*tip+tlp+(bget*(ih-tscl))

® Index to first in set

For data sorted in the order R, F, T, an operation of the form R*T can use the index to reach

the first record in the required set. Thereafter, the set must be scanned sequentially, looking

for matching records.

time = 0.3*(bget*(ih-tscl))*(l+(nbr*(ifroom)))+ne*tsp)

where ifroom is a conditional expression, which determines how much, if any, space is left

in the cache after all index levels have been cached

ifroom;- if (nbr > tscr) then ifroom = (20/tscr)
else ifroom = 0

• Index to first in triple store, and then scan

For data sorted in the order R, F, T, an operation of the form *FT cannot use any index.

Therefore, the triple store must be scanned sequentially, looking for matching records.

tip + RoundUp(nt/tb)*bget

Similar formulae apply for the lexical store.

5.1.4 Calibration and Validation

5.1.4.1 Block retrieval times

A key parameter of the model is the block retrieval time - the time it takes to retrieve a

block from the triple store or the lexical store. In order to obtain values for the time taken

66

to satisfy a request to the file system to retrieve a block, a small calibration program was

developed to write a file of various sizes and then to measure the time taken to retrieve

blocks of various sizes, both randomly and sequentially, on the system being modelled.

This approach treats the file system as a 'black box'. As would be expected, the file system

itself provides very significant caching; the memory available on the experimental machine

was 64 MB. Part of the exercise was therefore to discover at what point file system caching

became a significant factor, by ranging over varying file sizes and block sizes.

File performance was measured for sequential reads and for random reads, since the triple

store software might result in either being needed. A 100 MB file was used, to reduce the

effects of caching, at least for random access. The results are shown in Figures 5.1 and 5.2.

Variation of Data Rate With Btock Size for Sequential

4000 5000

Block Size (Bytes)

Figure 5.1 Variation of data rate with blocic size for sequential reads

In Figure 5.1, it can be seen that for sequential reads, performance improves steadily up to a

block size of 1 KB, and then only slightly more before starting to fall away. Most accesses

to the triple store, however, will result in reading one block at random. The time to retrieve

a block at random is therefore of most interest, and Figure 5.2 shows that this is lowest for a

1 KB block. Sequential scans through the triple store will result in a succession of random

reads, and Figure 5.3 shows that the data rate does improve for larger block sizes.

However, since it is expected that most retrieves will be for a single block, a block size of 1

KB was chosen for the present experiment.

67

100 MB File

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Block Size (Bytes)

Figure 5.2 Variation of blocic read time with blocit size for random reads

Vanation of Dsna Rate win Block size for Random Reads

4000 5000

Block Size gn Bytes}

Figure 5.3 Variation of data rate with Mock size for random reads

This decision was further reinforced by the findings shown in Figure 5.4, showing the

variation of random read time with file size. A typical request by the triple store would be

for a single triple. A block of 1 KB contains 50 or more triples (depending upon packing

density). A block size of 1 KB gives a significantly faster response than a block size of

2 KB.

68

I

Vanation of Random Read time with file size y = 3.048Ln(X)-27.488

y = 3.3719Ln(Jt)-33.874

y=3.1485Lne() -31 .038

• Block Size 1024
• Block Size 2048
• Block Size 512

Log. (Block Size 1024)
Log. (Block Size 2048)
Log. (Block Size 512)

200,000 400,000 600,000

File Size in K^tes
800,000 1,000,000

Figure 5.4 Variation of random read time with file size

At file sizes of less than 50 MB, the whole file is effectively loaded into the system cache,

and very fast retrieval times result. From this point upwards, a more regular pattern

develops, which can be approximated by logarithmic formulae. It was decided to use a

block size of 1 KB to give good block retrieval times, and to build data sets which took the

total volume of data towards 100 MB.

5.1.4.2 Processing times

Figures were obtained for processing times by measuring the performance of a sample

database with given parameters. By varying the size of the test database, the size of the

cache and so on, it was possible to factor out times for the various elements needed.

5.1.4.3 Validation

The values obtained from the calibration were used in the model, which was then validated

by comparing predicted times for queries with measured times from the database.

Adjustments were made to ensure that the model reflected known performance to within

10%.

69

5.2 Investigating Sort Orders

5.2.1 Results

For this investigation, the model was calibrated against the then current implementation of

the triple store database at the level of the basic operations, running on a 300 MHz Office

PC, with 64 MB of memory and a 4 GB disk, with Windows 95.

A database was modelled containing two sets. Person and Telephone, linked by a many to 1

(m:l) relationship, so that each person had a telephone number, but telephone numbers

could be shared. A query was set up in the model which took a person's name and returned

their telephone number. The model was then run a number of times with varying

parameters to investigate the effect of storing the data in different sort orders. The data

given by the model was fed straight to the Excel graph facilities to produce Figure 5.5.

0.4000

0.3500

0.3000

I 0.2500

^ 0.2000
0)
a 0.1500

0.1000

0.0500

0.0000

m

m - • •RTF
* —A -RFT

4
m -Both 4
m

9

— F » » » — • * — f
200000 400000 600000 800000

Set Size (No of Entities)

1000000 1200000

Figure 5.5 Effect of sort order on query times

The graph shows the effect on the execution time of the query of choosing one or the other

of two sort orders - RFT or RTF - to store the data in the database. It also shows what

happens when the data is stored in both sort orders, with the DBMS optimizing the query to

70

use the most efficient sort order for retrieval. If both sort orders are included, a dramatic

improvement takes place, shown by the line running just above the horizontal axis.

5.2.2 Discussion

The effect of holding both sort orders in the database is clear. With both orders present, the

need to scan a large number of triples is removed for most queries. Accesses to the triple

store when the relld is not known are comparatively rare, but are discussed later, in the

context of compression.

As a result of this exercise, the triple store database was extended to include the two sort

orders modelled here, and the predicted gains in performance were achieved.

5 . 3 / n v e s f / g a f / n g f f ; e e f f e c t o f

The subject of compression was introduced in Chapter 2, which highlighted the current

interest in this topic. With the publication of recent papers by other groups, this part of the

research had immediate relevance, to see how results with the triple store would compare

with results in n-ary databases.

5.3.1 Compression in Databases

The most obvious reason to consider compression in a database context might seem to be to

reduce the space required on disk. However, as disk space becomes rapidly less expensive,

this is no longer such an important concern. The more important issue is to see whether the

processing time for queries can be reduced by limiting the amount of data that needs to be

read from disk to satisfy the query. By compressing data, can the number of blocks to be

read be reduced?

Speed-up can come from reducing the number of disk I/Os, (as long as the CPU cost of

achieving this is not too high) and frequently the only way to do this is by reducing the

number of accesses required in traversing the index. The height of the index tree is given

by a logarithmic formula:-

71

where H is the height of the tree, RBlkNum is the number of blocks containing data

records, and INum is the number of index entries/block. In other words, there is an

exponential relationship between H and both RBlkNum and INum.

One option is therefore to increase INum by compressing index entries, which is the route

taken in many databases today. The second option, in which we are interested, is to

decrease RBlkNum, by compressing the data itself. In order to reduce the height of the

index tree by one, and thus eliminate one disk I/O, we could calculate

If we assume that INum, the degree of index compression, is the same in both cases, this

simplifies to

or

= INum
RBlkNum'

So if the number of index entries per block were, say, 100 (a relatively low figure), then to

achieve a consistent performance improvement by reducing the number of disk accesses by

one for all database sizes, a compression factor of over 100 is needed, a fairly aggressive

target!

This sort of analysis might lead one to abandon interest in data compression immediately,

but in fact things are not quite so simple, as the following work will show. Nevertheless,

the basic facts above should be borne in mind and will be discussed later.

5.3.2 Towards a Compression Algorithm

In the triple store, sorting ensures that the first part of the triple will be repeated for

successive entries, which immediately suggests scope for compression. Each entry in the

72

triple store contains three parts: the identity of the relationship (relld), the identity of the

entity that the relationship runs from (fromid) and the identity of the entity that the

relationship runs to (told). The triples are stored in sorted order in two ways: <relld,

fromld, toId> and <relld, told, fromId>. Each logical triple is therefore actually stored

twice, and query processing is optimized to use the appropriate sort order depending on the

search criteria. As entity sets increase in size, there are increasing numbers of triples for

each relationship type.

The three identities are each currently represented by a 4-byte integer, which gives a

symmetrical implementation. The triple store is accessed by means of a B-Tree type of

index. While compression in indexes can be lossy, (if index entries are over-compressed,

the situation can be recovered by retrieving additional data blocks), in the triple store itself

any algorithm must not lose information.

5.3.2.1 The scope for compression in the triple store

Most queries applied to the database will result in the direct retrieval of one or a small

number of triples by means of the index. The only queries where this is not the case, and a

range of triples is retrieved in sequence, are where the database is being searched to

perform a join on a non-key field (in n-ary terms). The DBMS contains its own cache, and

the size of this will affect the number of blocks that must be read from the disk. Cache size

and block size are parameters in the performance model. If the triples can be reduced in

size, more triples can be held in a block. The size of the index is therefore reduced, and this

is also modelled.

Two observations are worth making at this point:

1) The number of different rellds in a given database is quite small. In the database

described below, there are fewer than one hundred different rellds. The ID

allocation algorithm is designed to pack numbers into as few low-order bytes as

possible, and it is likely that there will be 'spare' bytes at the start of the relld that

are never used.

73

2) A 16 KB block can store about 1000 uncompressed triples at 70% occupancy. The

triples are sorted, so with a packing density for the IDs of 50% (i.e. the IDs are

allocated so that 50% of the numbers in a given range are actually used), the range

of fromlds in a block could be as little as 2000 (Hex 7D0), needing only one and a

half bytes. This figure is even lower if a smaller block size is used. Within one

block, therefore, it is quite likely that the high order bytes will be repeated for many

successive triples.

5.3.2.2 Possible approaches

Two contrasting approaches were considered. The first was typified by an algorithm which

made use of a 'compression byte' prefixed to the triple. The bits in the prefix are set to

indicate which bytes in the present triple are repeated from the previous triple, and are

therefore omitted. Application of the algorithm to a sample triple store indicated that the

store could be compressed to about 60% of its original size.

However, there is a major disadvantage to this approach, which applies in some degree to

compression in most databases. In order to carry out any processing, the block will need to

be decompressed, as the offset of a record depends on the size of the previous records in the

block. While the reduction in size potentially gives a significant reduction in I/O, the

intensity of processing in the triple store, where relationships are followed from one entity

to another, led to consideration of another algorithm.

The second approach was designed to permit the processing of a block in its compressed

state. The principle is that once the block has been initially compressed, subsequent

operations, particularly binary searches, can be performed on the block in its compressed

state, without needing to decompress it every time, which will clearly benefit performance

considerably. The algorithm used to achieve this was termed 'the block mask algorithm'.

5.3.2.3 The block mask algorithm

At the beginning of each block, a mask is stored, indicating which of the twelve bytes in

each triple are not constant throughout the block, as shown in Figure 5.6. The next record

in the block contains a full triple, a 'starter record', with the values of the fixed bytes in the

appropriate position. The remainder of the block stores short fixed length records

74

containing only the bytes that vary. Each block will contain a different mask, so that the

length of the fixed length records in each block might be different.

Mask 0001 0011 0111
Starter Triple 0010 4000 5000
Subsequent Triples 345987 (= 0013 4045 5987)

446678 (= 0014 4046 5678)
... and soon ...

Figure 5.6 Example of the block mask algorithm

When a block is retrieved into the DBMS, it is then possible to use the mask and the starter

record to reconstruct any individual triple without the need to decompress the whole block.

As described above, the algorithm works in terms of bytes. A further refinement is possible

to store only the bits that change, rather than whole bytes, which allows further

compression to be achieved.

5.3.2.4 Evaluation of algorithm

Application of this algorithm can lead to compression down to a third of the original size of

the triple, or a quarter if bit level compression is being used. Triples are compressed when

being placed in the triple store. For retrieval, the search string is compressed, the required

triple is located in the compressed block (typically using a binary search) and the selected

triple is decompressed when located. The block mask algorithm only needs a few lines of

code to pick up the mask and the starter record, and then apply these to the selected triple.

There are further detailed decisions that a final implementation would require. For

example, it would be possible to insist that each block contained only triples relating to one

relld. This would enhance compression, and if data sets are large so that one relld spans

several blocks, would lead to a worthwhile saving. For a small database, however, this

could result in an unnecessary proliferation of blocks, adversely affecting the performance.

This sort of refinement is beyond the current study, however.

75

5.4 Mode///f)g f/?e due fo <]%OHiiyownGMS%»/<)#?

5.4.1 The Database

For this exercise, a database for a wholesaler buying in goods from a number of suppliers,

and shipping smaller quantities to various customers was used. In conventional n-ary

database terms, the database had 8 tables, with a number of relationships between them.

The scenario assumed was that a variety of mainly OLTP transactions would be carried out,

at normal volumes. All queries in the present experiments were read-only.

The 8 tables represented customers, suppliers, orders, products and so on. The average

number of fields per table was taken as 10. This translates into a triple store database with

8 entity sets with 80 attribute sets, requiring 80 different entity-attribute relationships. The

foreign key relationships between the tables translate into 10 entity-entity relationships.

Thus 90 different relationships were required.

In considering the compression ratio achievable, it is necessary to consider the range of

values for various aspects. The following discussion is in terms of a triple store sorted in

the primary order, that is, on relld and fromld.

1) Relld s For this database, 90 different ids are required, plus the small number

required to handle metadata. The ids for this could therefore be handled within one

byte. For any database other than the smallest, however, most blocks will contain

triples relating to only one relationship. The relld will therefore compress out

completely, and be held only in the block mask.

2) Fromld s Following the discussion in 5.3.2.1 above, 2 bytes will be needed,

which gives a range of 64k for the values of the ids in one 16 KB block. (If a

smaller block size is used, the range is reduced. However, the greater compression

is not significant unless very small blocks are used, and the increase in processing

then outweighs the benefit. A 16 KB block size was used throughout this series of

experiments.)

76

3) Told s If the database is sorted on the first two fields, then the values in the tolds

will be randomly scattered across the range for each set. For a database up to one

million triples (which corresponds to about 50,000 entities per set or 25 MB of

actual data), 2 bytes will suffice to cover the range of ids; for a database up to 200

million triples and beyond (about 1 million entities per set, 500 MB), 3 bytes will be

needed.

The 12 bytes required before compression can therefore be reduced to 4 or 5 bytes after

compression for this scenario. If the compression is carried down to the bit level, then the

fromid could be held in 12 bits, and the smaller ranges for the told could also be held in 12

bits, so the compressed triple could then be just 3 bytes.

In the direction fromid to told, each triple captures one instance of a m: 1 relationship, so

that when the triple store is sorted in the primary order, the third field will not have any

particular sequence, as reflected above. In the inverse sorted triple store, the order is relld,

told, fromid, which represents the relationships in the 1 :m order. Successive triples may

now have identical fields in both the relld and the told, and the fromid will be in sorted

order, so that triples can be further compressed. To model this, however, would require

more detailed examination of the distribution of data in the various domains, and this was

not deemed appropriate to the present level of analysis.

5.4.2 Establishing the Model

The size of the cache has a critical impact on performance. As the cache size increases,

more levels of index and more data records can be held in the cache, and the overall

performance will improve. Cache size was therefore varied to see the effect of this as it

interacts with compression.

The vast majority of normal queries involve searches where the relld is known and either

the fromid or the told is also known. In either of these cases, the blocks can be accessed

directly through the index, if both sort orders are held (RFT and RTF). The main interest is

therefore in the retrieval time for such queries. Sequential access to the triple store is

required only for a query where, in traditional RDB terms, there is no foreign key linking

two tables, such as might be used in some decision support enquiries. An example in the

77

Wholesale database would be "Find me the suppliers and customers who share a postcode".

In this case, all or part of the triple store has to be scanned looking for matches.

Compression will obviously speed these searches, and this was also considered.

5.5 Resu/fs /nyesf/gaf/on

5.5.1 Direct Access

The model was run for the wholesale database. The cache size was varied, and in each

case, results were recorded for various sizes of database, both with and without

compression. Figures 5.7 and 5.8 show the results for two different cache sizes. The

graphs show the average number of disk accesses required for the retrieval of a triple. A

database operation will often require a number of triples to be retrieved, so that variations

in the number of disk accesses will be evened out, and the average is a useful figure to work

with. The complex interaction between index size, database size and cache size yields local

variations, such as that in Figure 5.8, where both the first two points for the compressed

database show the database almost entirely in the cache, but there is a broad similarity in

the results.

The effect of increasing the size of the cache by a factor of 4 can be seen in the reduction of

the number of accesses by a half to three quarters of one access, depending on the size of

the database. Increasing the cache size would be expected to improve performance, and the

model helps quantify the degree of improvement.

The particular interest, however, is in the effect of compression. Each graph shows the

effect of this, which is to reduce the number of accesses by a significant amount ranging

from a quarter to three quarters of an access. This leads to an improvement by a factor of

almost two in smaller databases, dropping to 1.25 in large databases. This result

corresponds to the OLTP situation, where each query looks for a record which may be

unrelated to the previous one, and stands in contrast to the conclusions drawn by Westmann

et al [WesOO], who do not expect compression to improve the performance of OLTP-style

applications.

78

Queries using Direct Access -•—Without Compression

-•—With Compression

2.00

w 1.50

§ 0.50

' X S ,

Database Size (No of Triples)

Figure 5.7 Triple retrieval time with 256 Icilobyte cache

Queries using Direct Access

2.00

-•—Without Compression

-•—With Compression

Database Size (No of Triples)

Figure 5.8 Triple retrieval time with 1 megabyte cache

5.5.2 Sequential Access

For queries which do not involve a significant degree of index access, then compression

produces a straightforward benefit. Each retrieved block contains more triples, in direct

proportion to the compression ratio, and the model confirms this. One therefore sees an

79

improvement of 2:1 or better, and this is very much in line with the results from Westmann

et al and Chen et al [ChenOl], which both deal with decision support situations.

5.5.3 Discussion of Compression Results

The operations that would be carried out by joins in a conventional database are replaced by

operations in the triple store, so that any reduction in the number of accesses has a direct

effect on performance, whether for a single query or for a sequence of related operations.

The block-mask algorithm permits processing to be carried out on compressed data,

yielding a very efficient join mechanism. The effect of this has been modelled, and shown

to produce significant benefit.

In the case of sequential operations which would be needed for decision support queries,

the results obtained demonstrate an improvement by a factor of two. However, it has also

been shown that this approach would benefit OLTP queries, giving a reduction in the

number of disk accesses by a factor in the range of 1.25 to 2.

The conclusions to be drawn are considered in the final chapter.

80

6 Conclusions and Discussion

This chapter is divided into four parts. Section 6.1 draws the threads together on the effect

of compression on performance, where this research has led to some interesting

discoveries. In Section 6.2, the benefits of approaching modelling by using a spreadsheet

are weighed. Attention then turns, in Section 6.3, to the achievements of the present

implementation of the triple store database, and further developments are considered.

Finally, Section 6.4 addresses the question "Could the future be binary relational?"

The result of particular interest is the impact of compressing the non-index information

held in the triple store. Previous research, discussed in Chapter 2, has tended to suggest

that the cost of compressing and decompressing non-index data accessed randomly, as in

an OLTP application, outweighs the benefit of compressing data to reduce the amount of

disk access. What has been shown here is that, with a suitable algorithm, the processing

cost can be contained, and database access times can be reduced, with a reduction in the

number of disk accesses by a factor in the range of 1.25 to 2.

How does this compare with the results in [WesOO] and [ChenOl]? They both dealt with

decision support databases, in an n-ary DBMS, with Westmann et al seeing performance

improve by a factor of 2, and Chen et al suggesting improvement by a factor of up to 10.

For the decision support scenario, the triple store can certainly match the lower figure, and

there are ways to improve this further, which are discussed below. However, neither

Westmann et al nor Chen et al present results for OLTP, but Westmann et al suggest there

would be no improvement here, partly because of the high cost of insertion using their

approach. As long as an n-ary architecture is adhered to, these conclusions seem very

reasonable.

What has been demonstrated is that by using a different architecture, it is indeed possible

to use compression to speed up OLTP queries. With an n-ary database, the approaches

taken are to compress different attributes in different ways, and then enhance the other

81

parts of the DBMS, especially the optimizer and the execution engine to deal with all the

various possibilities. With the triple store, one compression algorithm is needed, and

vitally, the algorithm developed then allows processing to proceed without the need, in

general, to decompress triples. A very uniform implementation thus results.

OLTP applications vary widely in the ratio of reading versus updating the database.

However, most transactions involve reading data initially to present data to the user

(customer information, flight details and so on) and then at the end of a transaction some

data may be written back to the database. Retrieval therefore usually constitutes at least

50% of the activity, and often much more, with insertions or changes making up the

balance. If the cost of compression on insertion is high, as in the Westmann et al approach

where specially formatted tuples are developed, even a small proportion of insertions will

clearly be a problem. However, in the triple store, the cost of compression on insertions is

not high, due to the nature of the algorithm and the integration with the DBMS. It is

perhaps not surprising, therefore, that a different result will be obtained.

6.1.1 Further Compression In the Triple Store

At present, the model takes no account of locality of reference, so is actually unduly

pessimistic. One of the advantages of fully decomposing data in the current

implementation is that related items will be stored in close proximity, so that data is

automatically clustered. This is because the whole of a binary relation is stored together in

the triple store. In practice, therefore, it is expected that the results would be better than

predicted by the model.

Further work should certainly include consideration of the additional effect of

compression on the indexes. The uniformity of the implementation means that the same

code is used to handle both the blocks in the triple store and in the index to the triple store.

Any compression algorithm will therefore benefit both, and a further modelling exercise

should capture the effect of this.

There is also the possibility of extending the degree of compression. The current

assumption is that all data domains are large, but in practice, some are quite small. In the

82

extreme case of a binary domain (e.g. Male, Female), compression down to one bit per

triple is possible, as follows. If a block contains one relation, and if fromlds are densely

packed, then the initial fromld can be held in the block header, as well as the relld. If the

rest of the block is considered as an array, each bit in the array could represent the

monotonically increasing set of fromlds held in the block. Each bit could then be set to

indicate whether the told took one or other of the two possible values. This would give a

compression factor of almost 100 (12 bytes down to one bit). This could be generalized

and implemented on a block by block basis. If in the range of one block, the third field

only uses two bits, even if the potential domain is larger, the block could be compressed to

this level while retaining the higher level advantages of the triple model. This degree of

compression would have a major impact on the performance of all types of queries.

The idea outlined above would lead to an automatic optimization of compression, which

ties in with the idea of a self-tuning database. The triple store appears to offer significant

scope for this. For instance, it would be possible to adapt the allocation of identifiers in

response to the size of sets of data in order to keep number ranges compact, and the fact

that data is automatically clustered has already been mentioned above. Exploration of the

extent to which the database could be made self-tuning would be an interesting further

avenue to explore.

6.2 Performance Modelling with a Spreadsheet

The approach taken to building the performance model was to use a spreadsheet,

Microsoft Excel, rather than building a model from scratch. The spreadsheet certainly

provides an excellent framework within which to work, and provides many built-in

routines to perform calculations. However, it soon became clear that it was necessary to

be fairly sophisticated in the use of the spreadsheet, by using multiple sheets and by

naming and carrying variables and values from one sheet to another, for example. It was

also found necessary to code some routines which could not be achieved using spreadsheet

formulae. While this is perfectly possible using VBA (Visual Basic for Applications), the

novice spreadsheet user would have a further significant learning curve to travel.

83

The model proved versatile and easily extendable when new questions arose, and this was

a major benefit. A spreadsheet provides a natural interface for holding and organizing

large numbers of parameters which may then be varied. In contrast, the risk of coding a

model from the ground up is that all of the requirements may not be understood at the

outset, and it then becomes hard to change some of the basic assumptions. Excel also

provided ready-made facilities for presenting results.

However, constructing the model was not the only part of the exercise. Calibration proved

to be a time-consuming activity, as the machine on which the database was running had

first to be characterized, which required long running times to load up large datasets, and

then many measurements were taken using the database. This time would have to be

spent, regardless of the construction of the model. The process of calibration did, though,

ensure that the performance of the database as it then stood was examined systematically

and became better understood than might otherwise have been the case.

The initial motivation for developing the model was to provide guidance for design

decisions, and in particular, whether it would be worth adding the code to support more

than one sort order in the triple store. Success was demonstrated through the investigation

into sort orders using the model, and the results were subsequently corroborated when the

database code was extended to support two sort orders, as indicated by the model.

However, the model proved its full worth when it became the tool for conducting the

wider investigation into the area of compression.

There is obviously a limit to the depth and accuracy to which it is worth developing a

model. If too much time is required for model construction and calibration, it might be

quicker to develop a new version of the subject of the modelling exercise, the DBMS in

our case, and examine that. However, if one wants to examine a number of alternative

approaches, the idea of building all of them becomes too expensive, and modelling

provides the practical solution. On balance, the approach taken worked well, and

permitted a model to be developed in a timely fashion which delivered the required

results.

84

6.3 The Triple Store - Achievements and Further Work

This research has resulted in a new and very effective implementation of a database

management system. From the outset, the intention was to keep the design as simple and

pure as possible, and the architecture described in Chapter 4 achieves this. Other new

aspects include the caching algorithm, the compression techniques, and the demonstration

of the variety of interfaces that can be supported.

Section 6.3.1 assesses the outcome with respect to the expectations set in Chapter 1, and

indicates areas for further work. Section 6.3.2 discusses the aspect of object-orientation in

the triple store database. Section 6.3.3 outlines in detail one specific area where further

work is essential, that of concurrency.

6.3.1 Demonstrating the Advantages of the Triple Store
Implementation

In Chapter 1, the following advantages of basing a binary relational database on a triple

store were proposed, and it is now appropriate to consider them again.

® The triple environment is essentially uniform, leading to efficiency and economy

® A considerable amount of processing can be carried out within the triple store

itself, without manipulating a large number of data items

® The underlying model needs relatively simple code to access and maintain the data

® The uniformity of the triple store yields very significant compression opportunities

® The triple store also has the potential to be made completely self-tuning, which

would be a significant benefit for both larger and smaller users.

® The uniform data structure is easier to spread onto multiple disks for parallelization

With regard to the first three of these points, the implementation which has been described

in this thesis demonstrates their veracity. The fourth point, regarding compression, has

been explored extensively, and described in the preceding chapters and sections. The fifth

point concerns the extent to which the database can be made self-tuning. This was

discussed in Section 6 .1.1, with regard to the selection of the degree of compression in

85

force. It is intrinsic to the design of the implementation that there are very few

parameters, and it would be a worthwhile area of study to pursue this aspect further. The

final point, regarding parallelization, has proved to be beyond the scope of the present

work, but is still believed to be applicable. This would be a fruitful area for further work,

given the increasingly widespread availability of parallel hardware in one form or another.

6.3.2 The Triple Store Database and Object Orientation

The decision was made at the outset of this project to use an object-oriented approach

throughout. The design reflects this, and all of the coding has been carried out in C++. As

a result, it would be a very natural step to use the triple store database as the basis for an

object-oriented database management system (ODBMS).

One of the distinguishing aspects of an ODBMS is that all objects are uniquely identified

by an object identifier (OID) rather than using one of the data items as an identifying key

as in an n-ary relational database. Each entity in the triple store database has its own

identifier, so that this fundamental mechanism is in place. In addition, relationships

between entities in the triple store are also dealt with entirely by the use of the identifiers,

as needed in an ODBMS.

More work would be needed to develop the database into a full ODBMS, but the present

implementation would provide an excellent foundation on which to build.

6.3.3 Concurrency Control in tlie Triple Store

Another area which needs to be the subject of further work is concurrency control. Some

thought has been given to this, which is presented in the following section.

A problem arises in databases as soon as the database is to be used by more than one user.

Multiple users may attempt to access the same data at the same time and there is the risk

that data will be updated inconsistently. In order to achieve isolation, and maintain data

integrity, some locking mechanism must be introduced. The first user to access a piece of

data will lock the data until changes are complete, and any other user must wait until the

first user unlocks the data again.

86

Much research has been carried out over the years on the best way to achieve such

locking, as described in [Gray93] and [Bha99]. Predicate locking was first proposed by

[Esw76], and in theory would give the most effective form of locking, providing isolation

and dealing with the problem of 'phantoms' (see below). However, there are practical

difficulties in implementation, and a trade-off has to be made between concurrency and

overhead. Other techniques, most commonly some form of granular locking, are normally

used. There has been intensive study of how these work out in theory and in practice. In

[Sing97], for example, there is a detailed analysis of locking behaviour in three real

database systems, which demonstrates the need for database administrators and designers

to have an awareness of what is taking place inside the DBMS.

There remains the question of whether there are any circumstances in which it might be

possible to implement a predicate locking scheme. In [Kell96], a predicate-based caching

scheme for client-server databases is described, which returns to the idea. Their

implementation is more optimistic than predicate locking, and is similar to precision locks.

A long-term goal of the work on the triple store is to discover whether an efficient

predicate locking scheme could be implemented in this environment.

6.3.3.1 Predicate locking

When implementing a locking scheme, a decision has to be made about what to lock.

One approach is to lock a part of the physical or logical database, depending on which part

the user is trying to access. For example, one could lock the entire database, a table (or

set) in the database, an individual record, or a field within a record. An alternative

approach is to analyse the query being made in terms of the predicates. If the user wants

to work with data relating to people with blue eyes and fair hair, there is no need to lock

all of the 'people' records in the database, but only the records that satisfy the predicate <

eyes = "blue" AND hair = "fair">. This is known as predicate locking.

One needs to be aware that another query using only part of the first transaction's

predicate, perhaps seeking to raise the salaries of all blue-eyed boys (<eyes = "blue">),

could also interfere with the first transaction, so that the predicates need to be compared

carefully, but if correctly implemented, predicate locking guarantees isolation.

87

Predicate locking also deals with the problem of phantoms. Suppose that transaction T1 is

updating the salaries of all blue-eyed boys. Using a physical locking scheme, one could

lock the records relating to all of the blue-eyed boys in the database before starting the

update. However, this would not then prevent a second transaction T2 starting which

could add new blue-eyed boys to the database, while T1 was still executing. These new

records, not locked by Tl, are known as phantoms, and there are other circumstances in

which phantoms can arise. Predicate locking will prevent this, as T2 would not be

allowed to start since its predicate conflicts with Tl.

6.3.3.2 Predicate locking problems

[Gray93] describes the following three shortcomings of predicate locks

1) Execution cost. The predicate lock manager has to test for predicate satisfiability

as an inner loop of the locking algorithm. Predicate satisfiability is known to be

NP-complete - the best algorithms for it run in time proportional to 2^. This is not

the sort of algorithm to put in the inner loop of another algorithm

2) Pessimism. Predicate locks are somewhat pessimistic. In other words, to ensure

isolation, the mechanism may lock more of the database than is actually necessary,

as it is impossible for the algorithm to comprehend constraints that exist on the

actual data.

3) In general, it is difficult to discover the predicates.

6.3.3.3 Predicate locking in the triple store

The intention is to implement a predicate locking scheme within the Triple Store. This

will be a further investigation beyond the current thesis, but discussion is included here as

indication of future direction. The triple store is a unique platform from which to

investigate the issues further, because of the elegant simplicity of the design, which

extends to the inclusion of all metadata within the uniform structure of the database.

One of the dangers of predicate locking is of excessive interference between locks in the

index. In the case of the triple store, this might seem even more acute at first sight

because there are only two indexes - one for the triple store and one for the lexical store.

However, the requirements are eased by two factors.

88

1) Short sequential scans are often needed through the triple store to find a record.

During these scans, the root of the index need not be locked for long, as it can be

released once the search has started. Triples within a block are chained together,

and the links can be followed, except when moving to a fresh block.

2) It is intended to implement an optimistic scheme of refining locks, to improve

speed. When transaction T1 is started, locks will be held at a gross level. When

transaction T2 starts, if there is a lock conflict, then T l ' s lock will be refined to the

point where there is no conflict with T2. If this is not possible, then T2 will wait

until T1 has finished, and so on.

As a result of the unified architecture, it should be possible to launch any operation at any

time, including the addition or removal of sets. Updates to the dictionary (metadata) will

be treated like normal transactions.

6.4 Could the Future be Binary Relational?

The binary relational database is an idea which continues to draw interest. This is shown

not only by the number of research efforts which keep coming back to it, but also by the

fact that commercial vendors find themselves drawn back to the idea, as described in

Chapter 2,

One of the underlying reasons is possibly the fact that fully decomposing data leads to the

ability to develop a solution with elegant simplicity. The triple store implementation, for

example, permits very powerful processing with relatively few lines of code. This code

also supports the metadata, and the indexing mechanisms.

It is not at all clear that the debates that were taking place in the 1970s about how to

structure databases (see Section 2.1.8) were really resolved. Rather, they were overtaken

by the events in which large companies started rolling out relational databases. In spite of

their enormous power and widespread use, these n-ary relational databases have been

found wanting in various respects, which is why work has continued on object-oriented

and object-relational databases. Further consequences are that in analytical processing,

databases are found to need star or snowflake schemas, in which data is deliberately de-

normalized.

89

The present project has extended or complemented previous work in various ways. To

take just two examples, Copeland and Khoshafian [Cop85, Kho96, Kho87] used only one

sort order in their implementation, whereas two sort orders are employed here on the triple

store, and potentially on the lexical store as well, which has been shown to be highly

beneficial. Monet [Bon96] uses Binary Association Tables, which appear to introduce a

great deal of redundancy, whereas in the lexical store described here, data values are held

just once.

In Section 2.1.8, it was shown how the binary relational view is a very attractive approach

at the logical level. The search for ways to provide an efficient implementation in

software to support this logical view has led ultimately to the triple store described here.

Given the simple and elegant solution that results, the question now is whether it would be

a better underlying mechanism to support some of the other views of data, for example, n-

ary or object-oriented. The present work has shown that it is perfectly possible to build a

variety of interfaces above a triple store, and the separation of data from relationships has

all sorts of benefits. As the n-ary relational bandwagon finally starts to slow down, it may

well be that the day of the binary relational database is about to dawn.

90

Appendix A

A.1 General Rules

This appendix specifies the public interface of the Triple Store Database System. This
interface includes the td classes and the cursor classes.

A.1.1 Naming conventions

® Abbreviations
• The following abbreviations are used in constructing names

® Entity ent, e
• Lexical lex, 1
• Relation rel, r

• Capitalization - Standard C++ naming convention ...
• Function names are fully qualified

A. 1.2 Datatypes

The following data types appear in the functions

esid Entity set id
Isid Lexical set id

A.1.3 nold and anyld

These can stand in the position of any of the above identifier types

anyld an identifier of any id
nold an identifier of no id

® anyld: is equivalent to the * (wildcard) character used in other systems
• nold: if a function which requires identifier arguments is presented with 'nold', the

function will do nothing.

A. 1.4 Statements about cursors

® All have first, next, valid members, which return 0 if cursor is validly located, and 1 if
not.

91

A.1.5 Database Integrity

Use of the database functions on a valid database guarantees maintenance of the following
integrity constraints

All relations are based on existing sets
All entities belong to valid entity sets
All lexicals belong to valid lexical sets

A.2 Typical Usage of td

Example
// A database called 'db' has been established

eld myFromEnt;

eld myToEnt;

// Code to set myFromEnt to some value

myToEnt - db.toEntId(myRel, myFromEnt); // Get ToEntId
if (ImyToEntld.validQ) { // Ent Id Not Valid - Handle error }

// Carry on

A 3 D a t a b a s e O p e r a f / o n s

Note: ** beside a function denotes a user convenience function, constructed from the basic
functions

td::td (const char* lexical file name, const char* triple_file name)
Open a database

td::~td ()
Close a database

void td::info (int lexical infb level, int entity infb level)
Provide 'trace' information in cout

* infb level = 0 Function puts out no info
* infb level = 1 Function puts out summary info

* info_level >= 2 Function puts out more detailed info

void td::info (int infb level) **
Provide 'trace' information for both entities and lexicals at the same level

92

A.4 Dictionary - Set Operations

esid td::addEntSet (const char* entity set name)
Add a new entity set or locate an existing one
Returns: id of the entity set created or found

Isid td::addLexSet (const char* lexical set name)
Add a new lexical set or locate an existing one
Returns; id of the lexical set created or found

void td::delSet (esId entitysetid)
Delete an entity set

void td::delSet (Isid lexical set id)
De/gfg a /exfca/

esId tdxentSetId (const char* entity set name)
Get set idfor an entity set
Returns: id of the entity set

Isid td::IexSetId (const char* lexical set name)
Get set idfor a lexical set
Returns: id of the lexical set

Note: In calls of the following type, the user supplies a pointer to the area
where the name is to be put. For convenience, the call returns the same
pointer, although strictly, this is redundant.

char* td::setName (esid entity set id, char* entity set name)
Sets the name of an entity set into entity setj^ame
Returns: the char array entity set name

char* td::setName (Isid lexical set id, char* lexical set name)
Sets the name of a lexical set into entity set name
Returns: the char array lexical set name

A.5 Dictionary - Relation Operations

eerld td::addeeRei (const char* relation name, esId entity from set id,
esId entity to set id)

Add a new entity entity relation between two existing sets
Returns: id of the relation added

eerld td::addeeRel (const char* relation name, const char* entity_from_set_name,
const char* entity to set name)

Add a new entity entity relation between two existing sets
Returns: id of the relation added

93

elrld td::addelReI (const char* relation name, esId entity set id, Isid lexical_set_id)
Add a new entity lexical relation between two existing sets
Returns: id of the relation added

elrld td::addelReI (const char* relation name, const char* entity set name,
const char* lexical set name)

Add a new entity lexical relation between two existing sets
Returns: id of the relation added

void td:: deleeRel (eerld entity_entity_relation id)
Delete an entity entity relation

void td::deleeRel (const char* entity_entity_relation_name)
Delete an entity entity relation

void td::delelRel (elrld entityjexical relation id)
Delete an entity lexical relation

void td::delelRel (const char* entity_lexical_relation_name)
Delete an entity lexical relation

eerid td::eeRelld (const char* entity entity relation name)
Get entity entity relation id
Returns: Entity to entity relation id

elrid td::elRelId (const char* entity lexical relation name)
Get entity lexical relation id
Returns: Entity to lexical relation id

char* td::relName (eerld entity_entity_relation_id, char* entity entity relation name)
Get entity entity relation name
Returns: the char array entity_entity_relation_name

char* td::relName (elrld entity_lexical_relation_id, char* entity lexical relation name)
Get entity to lexical relation name
Returns: the char array entity lexical relation name

esId td::fromSetId (eerld entity_entity_relation_id)
Get from setJdfor an entity to entity relation
Returns: Entity set id of the relation from set

esId td::fromSetId (elrld entity lexical relation id)
Get from set idfor an entity to lexical relation
Returns: Entity set id of the relation from set

94

esid td::toSetId (eerld entityentityrelationid)
Get to set idfor an entity to entity relation
Returns: Entity set id of the relation to set

Isid td::toSetId (elrld entity lexical relation id)
Get to set idfor an entity to lexical relation
Returns; Lexical set id of the relation to set

char* td::fromSetNanie (eerld entity entity relation id, char* entity from set name) **
Get from setjrame for an entity to entity relation
Returns; the char array entity from set name

char* td::fromSetName (elrld entity lexical relation id, char* entity from set name) **
Get from setjiame for an entity to lexical relation
Returns; the char array entity from set name

char* td::toSetName (eerld entity entity relation id, char* entity to set name) **
Get to set name for an entity to entity relation
Returns; the char array entity to set name

char* tdxtoSetName (elrld entity lexical relation id, char* lexical to set name) **
Get to setjiame for an entity to lexical relation
Returns; the char array lexical_to_set_name

A.6 Data - (Entities)

eld td:: addEnt (esId entity_set_identifier)
Add an entity to an entity set
Returns; id of the entity added

eld td:: addEnt (const char* entity set name) **
Add an entity to an entity set
Returns; id of the entity added

void td;:deIEnt (esId entity set identifier, eld entity identifier)
Delete an entity from a set

A 7 D a f a - ^ e x / c a / s ^

lid td::addLex (Isid lexical_set_identifier, const char* lexical value)
Add a lexical to a lexical set
Returns; id of the lexical added

lid td::addLex (const char* lexical set name, const char* lexical value) **
Add a lexical to a lexical set
Returns; id of the lexical added

95

void td::deILex (Isid lexical set identifier, lid lexical identifier)
Delete a lexical from a lexical set

void td::deILex (Isid lexical set identifier, const char* lexical value) **
Delete a lexical from a lexical set

void td::delLex (const char* lexical set name, lid lexical identifier) **
Delete a lexical from a lexical set

lid td::lexld (Isid lexical set identifier, const char* lexical value)
Get idfor a lexical value
Returns: id of the lexical value

lid td::lexld (const char* lexical set name, const char* lexical value) **
Get idfor a lexical value
Returns: id of the lexical value

A.8 Data - (Connections)
void td::addCon (eerld entity_entity_relation_identifier, eld entity id, eld entity id)

Add a many-one connection between two entities

void td::addCon (elrld entity lexical relation identifier, eld entity id, lid lexical id)
Add a many-one connection between an entity and a lexical

void td::addCon (elrld entity_lexical_relation_identifier, eld entity id,
const char* lexical value) **

Adds a lexical value to a lexical set and
adds a many-one connection between an entity and that lexical

void td::addCon (const char* entity lexical relation name, eld entity id,
const char* lexical value) **

Adds a lexical value to a lexical set identified by name and
adds a many-one connection between an entity and that lexical

void td::delCon (eerld entity_entity_relation_identifier, eld entity id, eld entity id)
Deletes a many-one connection between two entities

void td::delCon (elrld entity lexical relation identifier, eld entity id, lid lexical id)
Deletes a many-one connection between an entity and a lexical

eld td::toEntId (eerld entity entity relation identifier, eld entity id)
Returns the entity id of an entity in the 'to' set, given the relation id
and the entity id of the entity in the from' set
Returns: An entity id

elld td::toLexId (elrld entity_lexical_relation_identifier, eld entity id)
Returns the lexical id of a lexical in the 'to' set, given the relation id
and the entity id of the entity in the from' set
Returns: A lexical id

96

char* tdxtoVal (elrld entity lexical relation identiGer, eld entity id, char* lexical value)
/Ae va/z/e a /gxzca/ m Yo' giwey? zAg /-g/afzoM /(f

OMfi fAe eM/7(y fAe ewff(y m ^
Returns; the char array lexical value

A.9 Cursors

Cursors to do: What they do

entSetCursor Move between entity sets in a database
lexSetCursor Move between lexical sets in a database

eeRelCursor Move between e-e relations in a database
elReiCursor Move between e-1 relations in a database

entCursor Move between entities in a set
lexCursor Move between lexical s in a set

(Returns in alphabetical order within set)

entEntCursor Move between connections in an entity-entity relation
entLexCursor Move between connections in an entity-lexical relation

All cursors include first, next, valid members, which return
0 if cursor is not validly located

Examples

1) To loop through a set of values:

entSetCursor esc(db);
for(esc.first(); esc.validQ; esc.next()) {

// Do something
}
// Continue

2) To test values explicitly:

curVal = elTPers.first{myRel, any Id, myEntId); // Cursor to first entity
if (curVal == 0) {

cout « " Cursor not valid" « endl;
// ... take action

}
// Continue

Lexical Set Cursor

lexSetCursor::lexSetCursor (td &database)

97

Create a cursor to move between lexical sets in a database

int lexSetCursor::first 0
Locate the first lexical set in the database

Isid lexSetCursor::setId ()
Retrieve the id of a lexical set
Returns: id of the lexical set that the cursor locates

int lexSetCursor::next ()
Locate the next lexical set in the database

int lexSetCursor::valid ()
Returns the state of the cursor

Other cursors follow the same pattern.

98

References

[Ant96] G Antoshenkov, D Lomet and J Murray, "Order Preserving
Compression", Proc IEEE Conference on Data Engineering,
pp 655-663, New Orleans, LA, USA, 1996

[Ash68] W L Ash and E H Sibley, "TRAMP; An Interactive Associative
Processor with Deductive Capabilities", Proceedings of the ACM 23'^'^
National Conference, pp 144-156, Brandon/Systems Press, Princeton,
]NJ, 1968

[Atk87] M P Atkinson and O P Bunaman, "Types and Persistence in Database
Programming Languages", ACM Computing Surveys, 19(2),
pp 105-190,1987

[Bac69] C Bachman, "Data Structure Diagrams", Data Base (Bulletin of ACM
7.2, March 1969

[Bha99] B Bhargava, "Concurrency Control in Databases", IEEE Transactions
on Knowledge and Data Engineering, Vol 11, No 1, pp 3-16, 1999

[Bjo82] D Bjomer and H Lovengren, "Formalization of Database Systems and a
Formal Definition of IMS", Proceedings of the International
Conference on Very Large Databases, 1982

[Blas76] M Blasgen, R Casey and K Eswaran, "An Encoding Method for
Multifield Sorting and Indexing", Technical Report RJ1753, IBM
Research, San Jose, CA, USA, 1976

[Bon96] P A Boncz, F Kwakkel and M L Kersten, "High Performance Traversals
in Monet", Proceedings of the British National Conference on
Databases (BNCOD), pp 152-169, 1996

[Bon99] P A Boncz and M L Kersten, "MIL Primitives for Querying a
Fragmented World", VLDB Journal, Vol 8, No 2, pp 101-119, 1999

[Bond96] E Bond, J Wang, WG Dunford, K Mauch, "A Simple Spreadsheet-
Based Converter Performance Model Reduces Analysis and Design
Time", Ch 355,
pp 891-897, 1996

[Catt95] R G G Cattell (ed), "The Object Database Standard: ODMG-93 Release
1.2", Morgan Kaufmann, 1995

[Cha76] D Chamberlin et al, "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control", IBM Journal of Research and
Development 20:6, November 1976

99

[Chen76] P Chen, "The Entity-Relationship Model - Towards a Unified View of
Data", ACM Transactions on Database Systems (TODS), Vol 1(1),
ACM, January 1976

[ChenOl] Z Chen, J Gehrke, F Korn, "Query Optimization in Compressed
Database Systems", ACM SIGMOD Record Vol 30, No 2, pp 271-282,
June 2001

[Cjs98] C J Smith, "Graphical User Interface for a Triple Store Database
Engine", Project Report, Department of Electronics and Computer
Science, University of Southampton, May 1998

[CODAS YL] Data Description Language Journal of Development, Canadian
Government Publishing Centre, 1978

[Codd70] E Codd, "A Relational Model for Large Shared Data Banks",
Communications of the ACM Vol 13, No 6, June 1970

[Codd?I] E Codd, "A Database Sublanguage Founded on the Relational
Calculus", f O M Da&z
Description, Access and Control, November 1971

[Codd72] E Codd, "Relational Completeness of Data Base Sublanguages",
in [Rus72]

[Codd72a] E Codd, "Further Normalization of the Data Base Relational Model",
in [Rus72]

[Codd74] E Codd, "Recent Investigations in Relational Database Systems",
Proceedings of the IFIP Congess, 1974

[Com79] D Comer, "The Ubiquitous B-tree", ACM Computing Surveys, 11(2),
pp 121-137, 1979

[Cop85] G P Copeland and S N Khoshafian, "A Decomposition Storage Model",
Proc 1985 ACM SIGMOD International Conference on the
Management of Data, pp 268-279, ACM 1985

[CwaOO] C W Adams, "SQL Interface for a Triple Store Binary Relational
Database", Project Report, Department of Electi'onics and Computer
Science, University of Southampton, May 2000

[Dar96] H Darwen, "In Reply to Domains, Relations and Religious Wars",
SIGMOD Record Vol 25, No 4, pp 6-7, December 1996

[DatOO] C J Date, Database Systems, 7th Edition, Addison-Wesley, 2000

[DB2] IBM's DB2 Web Site: http://www-3.ibm.com/software/data/db2/

100

http://www-3.ibm.com/software/data/db2/

[DeW90] D J DeWitt et al, "The Gamma Database Machine Project", IEEE
Transactions on Data and Knowledge Engineering 2(1), pp 44-63,
March 1990

[DMP82] Data Mapping Program - User's Guide, SBl 1-5340, IBM, 1982

[ElmOO] R Elmasri & S B Navathe, Fundamentals of Database Systems, 3rd
Edition, Addison-Wesley, 2000

[Ejs99] E Sutherland, "User Interface for a Triple Store Database", Project
Report, Department of Electronics and Computer Science, University of
Southampton, May 1999

[Esw76] K P Eswaran, J Gray, R Lorie and IL Traiger, "The Notions of
Consistency and Predicate Locks in a Database System", CACM
19(11): pp 624-633, 1976

[Exc] EXcelon coporation web site: http ://www. exceloncorp.com

[Feld69] J A Feldman and P D Rovner, "An ALGOL-based Associative
Language", Communications of the ACM 12, No 8, pp 439-449,1969

[Fitz90] J S Fitzgerald and C B Jones, "Modularizing the Formal Description of
a Database System", University of Manchester Technical Report,
UMCS-90-1-1, 1990

[Fro82] R A Frost, "Binary-Relational Storage Structures, The Computer
Journal Vol 25, No 3, pp 358-367, 1982

[Fro86] R A Frost, "Introduction to Knowledge Base Systems", ISBN 0-00-
383114-0, Collins, 1986

[Gan98] G R Ganger, "Using System-Level Models to Evaluate I/O Subsystem
Designs", IEEE Transactions on Computers, Vol 47, No 6, pp 667-678,
June 1998

[Giles82] D A Giles, "A Formal Approach to Database Design - The Triple
Model", DPhil Thesis, Wolfson College, Oxford, 1982

[GjeOO] G J Estey, "A Web-Based User Interface for the Triple Store Database",
Project Report, Department of Electronics and Computer Science,
University of Southampton, May 2000

[Gold98] J Goldstein, R Ramakrishnan and U Shaft, "Compressing relations and
indexes", Proc IEEE Conference on Data Engineering, Orlando, FL,
USA 1998

[Gra90] G Graefe, "Encapsulation of Parallelism in the Volcano Query
Processing System", Proc 1990 ACM SIGMOD International
Conference on the Management of Data, pp 102-111, ACM 1990

101

[Gra91] G Graefe and L Shapiro, "Data Compression and Database
Performance", Proc ACM/IEEE-CS Symposium on Applied Computing,
Kansas City, MO, USA, April 1991

[Gray93] J Gray and A Reuter, Transaction Processing; Concepts and Techniques,
Morgan Kaufmann, 1993

[Gys89] M Gyssens, J Paradaens and D Van Gucht, "A Grammar-Based
Approach Towards Unifying Hierarchical Data Models", Proc 1989
ACM SIGMOD International Conference on the Management of Data,
ACM 1989

[Hu£f52] D Huffman, "A Method for the Construction of Minimum Redundancy
Codes", P r o c 4 0 (9) , pages 1098-1101, Sept 1952

[Hus99] A-T Hussain, "Triple Store versus Conventional DBMSs", Project
Report, Department of Electronics and Computer Science, University of
Southampton, May 1999

[Jag89] H Jagadish, "Incorporating Hierarchy in a Relational Model of Data",
Proc 1989 ACM SIGMOD International Conference on the
Management of Data, ACM 1989

[Kar97] K Karadimitriou, J M Tyler, "Min-Max Compression Methods for
Medical Image Databases", SIGMOD Record, Vol 26, No 1, March
1997

[KelI96] A M Keller and J Basu, "A Predicate-Based Caching Scheme for Client-
Server Based Architectures", VLDB Journal, Vol 5, No 1, pp 35-47,
1996

[Kho87] S Khoshafian, G Copeland, T Jagodits, H Boral and P Valduriez, "A
Query Processing Strategy for the Decomposed Storage Model", Proc
3rd International Conference on Data Engineering, pp 636-643, IEEE
1987

[Kho93] S Khoshafian, "Object-Oriented Databases", Wiley, 1993

[Kho96] S Khoshafian and A B Baker, "Multimedia and Imaging Databases",
pp 448-451, ISBN 1-55860-312-3, Morgan Kaufmann, 1996

[King90] P King, M Derakhshan, A Poulovassilis and C Small, "TriStarp - An
Investigation into the Implementation and Exploitation of Binary
Relational Storage Structures", Proceedings of the British National
Conference on Databases (BNCOD) 8, pp 64-84, 1990

[Lazy] Lazy Software Web Site: http://www.lazvsoft.com

102

http://www.lazvsoft.com

[Lev67] R E Levien and M E Maron, "A Computer System for Inference
Execution and Data Retrieval", Communications of the ACM 10,
pp 715-721, 1967

[Levy96] H Levy, "The Cache Assignment Problem and Its Application to
Database Buffer Management", IEEE Transactions on Software
Engineering, Vol 22, No 11, Nov 1996

[Mar92a] J A Mariani, "Ogetto; An Object Oriented Database Layered on a Triple
Store", The Computer Journal, Vol 35, No 2, pp 108-118, 1992

[Mar92b] J A Mariani and R Lougher, "TripleSpace: An Experiment in a 3D
Graphical Interface to a Binary Relational Database", Interacting with
Computers, Vol 4, No 2, pp 147-162, 1992

[McG77] W McGee, "The Information Management System IMS/VS, Part 1:
General Structure and Operation", IBM Systems Journal 16:2,
June 1977

[McGSO] D R McGregor and J R Malone, "The FACT Database System",
Proceedings of Symposium on Research and Development in
Information Retrieval, Cambridge, Butterworths, Sevenoaks, Kent,
1980

[Mof97] A Moffatt, J Zobel, "Text Compression for Dynamic Document
Databases", IEEE Transactions on Knowledge and Data Engineering,
Vol 9, No 2, March-April 1997

[ObDb] Objectivity/DB Web Site; http://www.objectivity, com

[ObDes] Object Design Web Site, suppliers of ObjectStore; http://www.odi.com

[OConOO] S J O'Connell and N Winterbottom, "A Performance Model of Sort
Orders in a Triple Store Database", Proceedings of the Fifth
International Conference on Computer Science and Informatics (CS&I
2000), 2000

[OCon02] S J O'Connell and N Winterbottom, "Performing Joins without
Decompression in a Compressed Database System", Submitted in Feb
2002for consideration for publication inACMSIGMOD Record

[ODMG] Object Data Management Group Web Site; http://www.odmg.org

[Oracle] Oracle Web Site; http://www.oracle.com

[Pap95] A Papantonakis and P J H King, "Syntax and Semantics of Gql, a
Graphical Query Language", Journal of Visual Languages and
Computing Vol 6, pp 3-25, 1995

103

http://www.objectivity
http://www.odi.com
http://www.odmg.org
http://www.oracle.com

[RamOO] R Ramakrishnan & J Gehrke, Database Management Systems, McGraw
Hill, 2000

[Ray95] G Ray, J Haritsa and S Seshadri, "Database Compression: A
Performance Enhancement Tool", Proc COMAD, Pune, India,
Dec 1995

[Rei98] M Reilly, J Edmondson, "Performance Simulation of an Alpha
Microprocessor", Computer, Vol 31, No 5, pp 50-58, IEEE 1998

[Roth93] M Roth and S Van Horn, "Database Compression ACMSIGMOD
Record, 22(3), pp 31-39, September 1993

[Rus72] R Rustin (ed), "Data Base Systems", Prentice-Hall, 1972.

[Sch75] H A Schmid and J R Swenson, "On the Semantics of the Relational
Model", Proceedings of the SIGMOD Conference, San Jose, CA, USA
pp 211-223, 1975

[SenOl] "Sentences DB", based on the Associative Model of Data, from Lazy
Software, www.lazysoft.com

[Senko73] M E Senko, E B Altman, M M Astrahan and P L Fehder, "Data
Structures and Accessing in Data-base Systems", IBM Systems Journal
72^;, pp 30-93, 1973

[Senko77] M E Senko, "Data Structures and Data Accessing in Data Base Systems,
Past, Present, Future", IBM Systems Journal 16(3), pp 208-257, 1977

[SenkoSO] M E Senko, "A Query-Maintenance Language for the Data Independent
Accessing Model 11", Information Systems Vol5, pp 257-272, 1980

[Shar78] G C H Sharman and N Winterbottom, "The Data Dictionary Facilities of
NDB", Proc 4th Int. Conf on Very Large Databases (VLDB), pp 186-
197, IEEE 1978

[Shar79] G C H Sharman and N Winterbottom, "NDB: Non-Programmer
Database Facility", IBM Technical Report TR 12.179, IBM UK
Laboratories Ltd, Hursley Park, Winchester, UK, 1979

[Shar88] G C H Sharman and N Winterbottom, "The Universal Triple Machine: a
Reduced Instruction Set Repository Manager", Proceedings of the
British National Conference on Databases (BNCOD) 6, pp 189-214,
1988

[Sing97] V Singhal and A J Smith, "Analysis of Locking Behavior in Three Real
Database Systems", VLDB Journal, Vol 6, No 1, pp 40-52, 1997

[SQLServ] Microsoft SQL Server web site: http ://www. micro soft. com/sql

104

http://www.lazysoft.com

[Ston96] M Stonebraker with D Moore, "Object-Relational DBMSs: The Next
Great Wave", Morgan Kaufmann, 1996.

[Sut95] D R Sutton and P J H King, "Incomplete Information and the Functional
Data Model", The Computer Journal, Vol 38 No i , pp 31-42, 1995

[Sybase] Sybase Web Site; http://www.svbase.com

[Tarn] Software AG Web Site for Tamino; http;// www.softwareag.com/tamino

[Tit74] P Titman, "An Experimental Database using Binary Relations", Data
Base Management, Proceedings of the IFIP-TC-2 Working Conference,
Cargese, Corsica, Jan 1974, J W Klimbie and K L KofiFeman editors,
North-Holland Publishing Co, Amsterdam, 1974

[Todd76] S Todd, "The Peterlee Relational Test Vehicle", IBM Systems Journal,
15:4, pp 285-308, Dec 1976

[TPC95] Transaction Processing Performance Council (TPC) benchmark D
(Decision Support), May 1995 www.tpc.org

[TPC99] Transaction Processing Performance Council. TPC-H benchmark
www.tpc.org. 1999

[TriStarp] TriStarp Web Site; http;//www.dcs.bbk.ac.uk/tristarp

[Wag73] R Wagner, "Indexing Design Considerations", IBM Systems Journal
12(4), pp 351-367, 1973

[Welch84] T Welch, "A Technique for High Performance Data Compression",
IEEE Computer, 17(6), pp 8-19, June 1984

[WesOO] T Westmann, D Kossmann, S Helmer, G Moerkotte, "The
Implementation and Performance of Compressed Databases", ACM
SIGMOD Record Vol 29, No 3, pp 55-67, September 2000

[Wit87] I Witten, R Neal and J Cleary, "Arithmetic Coding for Data

Compression", Communications of the ACM 30(6), pp 520-540, 1987

[XML] W3C site on XML; http;//www.w3 .org/XML

[Ziv77] J Ziv, A Lempel, "A Universal Algorithm for Sequential Data
Compression", IEEE Transactions on Information Theory, 22(1),
pp 337-343, 1977

[Zlo75] M Zloof, "Query by Example", Proceedings of the National Computer
Conference (NCC), published by American Federation of Information
Processing Societies (AFIPS) 44, 1975

105

http://www.svbase.com
http://www.softwareag.com/tamino
http://www.tpc.org
http://www.tpc.org
http://www.dcs.bbk.ac.uk/tristarp
http://www.w3

