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by Stephen John O’Connell

This thesis introduces a new approach to understanding the issues relating to the efficient

implementation of a binary relational database built upon a triple store.

The place of the binary relational database is established with reference to other database
models, and a detailed description of a new triple store implementation is presented, together

with a definition of the architecture.

The use of a model, which reflects the performance of the triple store database, is described,
and the results of performance investigations are presented. In the first, the use of more than
one sort order in the triple store database is analyzed, and the use of two sort orders is found
to be optimal. In the second, the effect of compression in the triple store is considered, and
compared with other approaches to compressing the non-index portion of a database

management system.

In conclusion, the model successfully predicts the effect of using two sort orders, and this
was confirmed upon subsequent incorporation into the database. It is also found that
significant performance gains can be made by the use of compression in the triple store. It is
shown that by extending the compression algorithm even greater gains could be made. In
addition, it is found that by keeping the design of the database as simple and pure as possible,
a foundation for a variety of higher level views can be achieved, leading to the possibility of

the triple store being used as the foundation for new databases.
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1 Introduction

This thesis introduces a new approach to understanding the issues relating to the efficient
implementation of a binary relational database built upon a triple store. A model has been
built which reflects the performance of a new implementation of a triple store database.
The model has been used to explore the potential benefits of extending the
implementation. In turn, this has led to a new understanding of the benefits of
compression within the triple store, which were discovered to be much greater than in a

traditional relational database.

The idea of a binary relational database is not new. Research in the area has been
ongoing, and various products have been brought to market, ranging from IBM’s Data
Mapping Program, shipped in the 1980s, to a database being shipped in 2002 by Lazy
Software Ltd.

The advantages of basing a binary relational database on a triple store include the

following aspects:

¢ The triple environment is essentially uniform, leading to efficiency and economy

* A considerable amount of processing can be carried out within the triple store
itself, without manipulating a large number of data items

* The underlying model needs relatively simple code to access and maintain the data

* The uniformity of the triple store yields very significant compression opportunities

* The triple store also has the potential to be made completely self-tuning, which
would be a significant benefit for both larger and smaller users.

* The uniform data structure is easier to spread onto multiple disks for parallelization

The background to the development of databases, and in particular the binary relational
model, is introduced in Chapter 2, and previous work on compression is also reviewed.
Chapter 3 gives a detailed description of the new triple store, while Chapter 4 covers the
architecture behind it. Chapter 4 also describes a number of different interfaces that have

been developed to provide a front end to the database.



The thesis then presents, in Chapter 5, the novel modelling technique used for
performance investigation, and contains the results of two sets of experiments using this
model, the first on the effect on performance of storing data in different ways, and the
second on the effect of compression in the triple store. There has been much work on the
compression of indexes in databases, but much less on the compression of the actual data
in a database. The triple store mechanism provides a unique opportunity for high data

compression, and the modelling exercise led to some new and interesting conclusions.

Chapter 6 then brings together the major aspects of the project, presenting conclusions
concerning the effect of compression on performance, the benefits of taking the selected
approach to performance modelling, and the achievement ofithis implementation of the

triple store, before asking the question, “Could the future be binary relational?”

® ok ok ok ok ok ok ok ¥k

This work was carried out in collaboration with Norman Winterbottom, a Visiting
Research Fellow at the University of Southampton. The design was developed jointly,
and I then produced all of the documentation, some of which forms part of this thesis.
Chapter 4 captures the essence of the design decisions that were made, and Appendix A
gives a flavour of the detail. Coding was shared; Norman Winterbottom carried out the
greater part of this task, but I wrote the code to handle the cache and the interface to the
disk. I put considerable effort into many iterations of system and performance testing,
which became a discovery process in itself as performance characteristics became clear
and the design was refined. This led to the development and calibration of the
performance model, which was entirely my work, and I undertook all of the subsequent

investigations with the model.

An important part of the project was also to demonstrate that the triple store could form
the basis for a variety of external views. I involved some final year students in this aspect,
and I was responsible for guiding them through their work to successful conclusions. This
provided further insight and feedback as to the facilities which were required at the

programming interface.



I have written two papers with Norman Winterbottom reporting new results as an outcome
of this work. The first [OCon00], which deals with sort orders in the triple store, has
already been published. The second [OCon02] has been submitted to SIGMOD Record
for consideration. This deals with the effect of compressing non-index data in the triple
store database, and the results contrast significantly with other recent published work. The

work reported in the two papers is presented in Chapter 5 of this thesis.
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2 Background: Databases and Compression

For the last twenty years, relational databases have commanded much attention in terms of
commercial investment (for example Oracle, DB2, MS SQL Server) and academic
interest, followed at some distance by object-oriented databases. However, now that the
limitations of the relational approach are beginning to restrict end users who wish to
handle many more varieties of data, some object-oriented databases are being marketed
(for example ObjectStore, Cache, Objectivity/DB), and object-relational databases, which
aim to combine elements from both traditions, are being brought to market by the
traditional RDBMS vendors. The increasingly widespread use of XML is also driving
traditional vendors to offer various levels of support, and new ‘native-XML.’ databases
such as Tamino are appearing. At the same time, there is an increasing demand for
databases to run on parallel platforms, to manage ever-growing volumes of data, to handle
high transaction rates for on-line transaction processing, and to enable new applications

such as on-line analytical processing.

In Section 2.1, the current technologies are reviewed. Standard texts such as [EIm00],
[Dat00] or [Gray93] provide full descriptions, but the particular interest here is to contrast
the way in which different database models handle the various kinds of relationship
between data items, how the data is actually stored, and to introduce some of'the issues
that must be addressed. The binary relational approach is then introduced and contrasted,

to provide the context and background for the work that has been undertaken

In Section 2.2, previous work on compression in databases is reviewed.

2.1 Database Comparison

2.1.1 Hierarchical Databases

The first hierarchical DBMS was IBM’s IMS, with its own data language, DL/1. There
are no references that precede the shipment of the product, but [McG77] gives an
overview of IMS and some aspects were later formalized [Bjo82]. IMS is fully described

in a large collection of IBM manuals. Later work considered the incorporation of



hierarchical structures within a relational database [Gys89, Jag89]. Another major

commercial offering was System 2000, now marketed by SAS inc.

A hierarchy is a tree structure, containing a number of nodes or records (also called
segments). As data is added to a hierarchical database, trees of records containing related
data values are created. Each of these is called a ‘hierarchical occurrence’. Each

hierarchical occurrence has one root record, and contains all of the child records that relate

to this particular root record.

There are various ways of holding a hierarchical occurrence in storage and on disk. One
common way is to use a ‘hierarchical record’, which stores the data in a ‘hierarchical
sequence’. For each record within the sequence (except the root) there may be a varying
number of instances, so it is necessary to store the type indicator with each record, so that

the data can subsequently be interpreted.

The hierarchical sequence has the effect of storing many of the data items that are closely
related close together in storage, so that retrieval is then efficient. However, some
requests for data will entail gathering data that is spread into different parts of the

hierarchical record, or in other records, and large amounts of data must then be retrieved.
Relationships between different elements of the data may be held in three ways:

* within the same record
* via a Parent-Child relationship

e via a Virtual Parent-Child relationship

Within the database, these are implemented by virtue of being in the same hierarchical
record or by physical pointers from record to record. They may also be combined in
various ways. However, the use of both the hierarchical record and physical pointers
means that the logical data structure is carried over into the physical representation to
some extent. Subsequent changes to the database schema may therefore involve

reorganizing all of the data in the database.



Hierarchical databases permit the reduction or elimination of duplicate data, and while
some real world systems are naturally hierarchical, extensions such as virtual pointers
allow most other systems to be modelled. However, many real world systems do not fit
the model easily, and m:n relationship types can be represented only by adding redundant
records or by using virtual parent-child relationships and pointer records. There are
various other restrictions, and database schemata can get very complicated. Some of the
first major commercial systems were built using hierarchical databases. Many major
companies have made a big investment in systems using hierarchical databases, and these

will still be in use for many years.

2.1.2 Network Databases

(Note: The word ‘network’ here refers to the organization of the data. It has nothing to

do with whether the database is distributed over a communications network or not.)

The Network Model was defined by the DBTG (Data Base Task Group) of the
CODASYL (Conference on Data Systems Languages) committee from 1971 onwards, and
is often referred to as the CODASYL network model [CODASYL], or as the DBTG
model. The various aspects were defined in considerable detail, to form a standard upon
which vendors could base their implementations. However this followed earlier work by
Charles Bachman and others during the development of the first commercial DBMS,
which was the Integrated Data Store (IDS). Bachman also introduced his ‘Bachman

diagrams’ for describing relationships in a database [Bac69].

As in the hierarchical model, data is stored in records, which are classified into record
types. However, the network model allows more complex data items to be defined. In
addition to records containing simple and composite single-valued attributes, the model
also permits records with simple multivalued attributes, which are known as vectors, and

records with composite multivalued attributes, which are known as repeating groups.

The network model also supports virtual (or derived) data items. The value of a derived
data item is not stored in the database, but is calculated ‘on the fly’ from other data that is

stored in the database, according to a procedure supplied by the user.



In the network model, the construct called a set type is used to represent relationships.

Sets in the Network model are not the same as mathematical sets.
A set type is a description of a 1:N relationship between two record types. Each set has

* A set name
°  One owner record from the owner record type
* A number (zero or more) of related member records. In addition, the member

records are ordered. (The order is immaterial in a mathematical set.)

In the relational model, described in the next section, a table is a normal mathematical set
of tuples, all of which are of the same type and which represent instances of an entity,
together with its attributes. In the network model, each set represents one instance of a
relationship, and the set type represents a relationship type. For example, there might be
a set type for the relationship ‘MANAGES’, in which each set would contain one
manager, and all of the employees who work for him. This is a fundamental difference of

approach.

In general, records will not be stored as contiguous sets in the database. Indeed, if records
participate in more than one set, it is plainly impossible to store them in this way, and for
performance reasons, alternatives may be preferable anyway. Typically, records are

linked into sets using some sort of pointer structure.

A set instance is often kept as a ring (circular linked list) linking the owner record and
all of the member records. The records carry an internal identifier to indicate which is the
owner and which are the member records. Each record also has one pointer field to point
to the next record in the ring for each set of which it is a member.

Other representations of sets include the following:



*  Doubly linked circular list:- pointers go forwards and backwards

* Owner pointer representation, in combination with a ring:- each record has an
additional pointer pointing to the owner

* Contiguous member records

* Pointer arrays:- owner has an array of pointers to the members. Usually used with
owner pointer representation

* Indexed representation:- a small index is kept with the owner for each set

occurrence

The relationships between different elements of the data may be held in three different

ways (or in combinations):

¢ within the same record
* via set membership

e via linked records belonging to more than one set

With network databases duplicate data can be reduced, or eliminated. It is easier to model
many systems with networks than with hierarchies, and the relationships are explicitly
modelled, but the actual storage of such data models is more complicated and may be less
space efficient than with hierarchical data models. Record-at-a-time processing means the
programmer has to do more work than with set-oriented processing, and navigation is
carried out in program logic, which the programmer must implement. This also means
that it may not be possible to alter the structure of the database without changing

programs, so that data independence is not fully supported.

Major commercial systems have been built using network databases, and as with
hierarchical databases, user enterprises have made a big investment in systems using

network databases.

2.1.3 Relational Databases

The relational model of data was introduced by Codd [Codd70], who went on to introduce
relational algebra and develop the theory of relational databases in a series of papers

[Codd71, Codd72, Codd72a, Codd74]. There has been much research on various aspects



of the relational model. The Peterlee Relational Test Vehicle (PRTV) [Todd76] was an
experimental database that directly implemented the relational algebra operations. The
PRTV was developed at IBM’s research centre which existed for a while at Peterlee in
County Durham. However, the dominant way to access relational databases soon became

the use of Structured Query Language (SQL), originally known as SEQUEL [Cha76].

In the relational world, a database structure is presented to the user as a collection of
relations or tables, with each table organized into rows and columns. It is important to
realize that tables are the logical structure in a relational system, not the physical structure.

The DBMS is free to use any or all of the usual structures underneath the covers.

In a relational database, the same information can be structured in many ways by
assembling the data into different tables. The number of tables can range from one to
almost the total number of columns in the database. The database designer has to decide
how tables should be laid out. However, the original relational theory imposes the first
normal form constraint which requires the attribute values in a relation to be only afomic.
This means that a column value must not itself be a tuple or a set, and rules out repeating
groups. (Post-Relational databases relax this restriction.) To avoid certain update
anomalies it is necessary to go further and reduce tables to second and third normal forms,
and possibly higher. Second normal form applies to relations with composite keys: for a
relation to be in second normal form, it must be in first normal form and every non-
primary-key attribute must be fully functionally dependant on the primary key, and not on
just a part of the key. To be in third normal form, a relation must be in second normal
form, and there must be no transitive dependencies between any non-primary-key attribute

and the primary key.

The query language in relational database systems is declarative - the user states what he
wants, and the DBMS works out how to get it. The various operations (such as joins,
restrictions and so on) always produce another relation as their output, and this relation
can be input to further relational operations if required. It is interesting to note, however,
that once a join has been carried out, there is no longer any guarantee that the resulting
relation is fully normalized - it frequently will not be. SQL is the de facto standard
relational language, but there are other approaches and front-end technologies that allow

user-friendly access to relational databases, ofien based on the Query By Example (QBE)



paradigm. With QBE, the query is formulated by filling in templates of tables displayed
on a computer screen. QBE was one of the first graphical query languages for database
systems. It was developed at IBM Research [Z1075], and can be used, for example, with

DB/2. 1t is also the approach used for one of the query interfaces into Microsoft Access

and Paradox.

These approaches to data manipulation contrast strongly with the navigational approach
needed to work with hierarchical and network databases. With the navigational approach,
the programmer essentially follows the pointers inside the database, but there are no

pointers inside a relational database. The DBMS must do the work of retrieving related

items of data.

When it comes to storing the data, each row in a table typically becomes a stored record, a
string of bytes with a prefix containing system control information and up to » stored
fields, where n is the number of columns in the base table. Internally, each record has a
unique record id (RID) within a database. The RID consists of the page number and the
byte offset from the start of the page of a slot that, in turn, contains the record’s starting
position within the page. Thus records within a page can be reorganized without changing

their RIDs. Each stored field includes three elements:

* A prefix field that contains the length of the data

* A null indicator prefix that indicates whether the field contains a null value

* An encoded data value

The only relationships that are represented physically in relational databases are between
the items of data that are members of the same record (tuple). Beyond this, relationships
are not represented physically within the database. They must be rediscovered /
reconstructed when a query or update is needed, by combining tables on the basis of
looking for equal values in specified columns of each table. In setting up the tables in the
first place, it is therefore necessary to duplicate data in different tables in order for this to
be possible. To ensure that data is kept consistent, integrity constraints are needed, in

particular, referential integrity.

10



Thus, relationships between different elements of the data may be discovered in two

different ways:

* by finding related items within the same record

* by combining (‘joining’) two or more relations to form a new relation

or by combinations of these.

The major advantage of relational databases, then, is that the database is perceived by the
user as tables, and that access 1s declarative, not navigational. Access is therefore not
dependent upon physically implemented pointers. To obtain reasonable performance, the
database management software must have powerful capabilities to interpret the user’s
queries and optimize their execution. There is a far greater degree of data independence

than with the previous two models, although there is significant data duplication.

It is perhaps important to realize, however that “the relational model of data was not really
a model at all, but rather a theory” [Dar96], based on mathematical sets. Mathematical
relations do not necessarily model the real world, and there are a number of restrictions.
Design and normalization require significant skill, and DB management software is much
more complex. Relational systems impose the first normal form constraint, which means
that the object space must be mapped onto a collection of ‘flat’ relations (i.e. tables). With
this approach much of the inherent semantics of complex object composition is lost, and

one needs to perform foreign key joins to reconstruct a complex object.

Relational databases currently occupy by far the largest part of the marketplace, with large
numbers of vendors supplying DBMSs and complementary products. The major offerings
are now IBM’s DB2 [DB2], Oracle [Oracle], Microsoft’s SQL Server [SQLServ] and
Sybase [Sybase], but there are many others, specializing in certain markets such as the

desktop or in application areas like geographic information systems.

2.1.4 Object-Oriented Databases

The models discussed so far are quite successful for handling straightforward business

data. However, there are other applications that have different requirements. These

11



include engineering design and manufacturing (CAD/CAM), image and graphics
databases, scientific databases, geographic information systems, multimedia databases and
so on. These applications require support for structures that are more complex, or for
unstructured objects such as images, which need non-standard routines to handle them.

Object-oriented databases (ODBMSs) have been developed to handle these.

There is no single way of implementing ODBMSs, and at this point in time, researchers
and manufacturers have developed a wide range of different approaches [Kho93]. The
Object Data Management Group [ODMG] is now providing a focal point for some degree
of convergence and the development of standards [Catt95]. However, one characteristic is
that ODBMSs normally support a persistent programming paradigm. The programmer
treats objects in the same way, regardless of whether they are stored in the database or not.
Objects are persistent if they are stored permanently in the database or fransient if they

only exist during execution of a program.

In the case of ObjectStore [ObDes], for example, the system is closely integrated with the
C++ language, and provides persistent storage facilities for C++ objects. This choice was
made to avoid the impedance mismatch problem between a database system and its
programming language, where the structures provided by the database system are distinct
from those provided by the programming language. Objectivity/DB [ObDb] is a
distributed ODBMS. It is designed for mission-critical and production environments, and
claims to offer high performance, virtually unlimited scalability, and interoperability

across all major platforms and operating systems.

One of the fundamental concepts of object orientation is Object Identity. Object identity
organizes the objects or instances of an application in arbitrary graph-structured object
spaces. Identity is the property of an object that distinguishes the object from all other
objects in the application. In a complete object-oriented system each object is given an
identity that will be permanently associated whatever structural or state changes take
place. Identity is independent of location, or address. Object identity provides the most
natural modelling primitive to allow the same object to be a sub-object of multiple parent

objects.

12



With object identity, objects can contain or refer to other objects. Object identity clarifies,
enhances and extends the notions of pointers, foreign keys, and file names. Using object
identity, programmers can dynamically construct arbitrary graph-structured composite or
complex objects - objects that are constructed from sub-objects. Objects can be created

and disposed of at run-time. If using an ODBMS, objects can become persistent and be

reaccessed in subsequent programs.

Two types of reference semantics exist between a complex object and its components at

each level:

* Ownership semantics applies when the sub objects of a complex object are
encapsulated within the complex object and are hence considered part of the
complex object.

* Reference semantics applies when the components of the complex object are

themselves independent objects but at times may be considered part of the complex

object.

Storage mechanisms vary widely within ODBMSs. A typical implementation might store
items of data linked by ownership close together on the disk, in a similar fashion to the
data in a ‘record’. Items linked by reference would, in C++ terms, be represented by a
pointer. Internally, the ODBMS is likely to make use of object identifiers to resolve such

pointers, so that there is no dependence on any underlying physical structure.

In summary, ODBMSs support complex objects and extensible data types, with complex
relationships between objects. The use of object identifiers divorces the ‘labelling’ of

entities from the data values associated with the entities, and makes for a much cleaner

approach.

ODBMSs are not yet as sophisticated as RDBMSs, however, and tend to be tightly linked
to a single language, most often C++. For performance reasons, ODBMSs normally run in
the same address space as the applications, whereas RDBMSs require an address space
switch, which provides a major security benefit. Although commercial users are
increasing steadily, this is likely to stay a niche market, and many of the best features are

now being adopted by object-relational databases.
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2.1.5 Object-Relational Databases

Relational DBMSs provide excellent support for simple data and simple to somewhat
complex queries. Object-oriented DBMSs provide efficient support for certain classes of
applications on complex data, but without many relational ‘goodies’ like queryablility,
security, database administration and so on. Neither the current RDBMSs nor the current
ODBMS:s find it easy to meet the growing demands of new applications requiring
complex querying on complex data, including multimedia data. Object-relational systems
(ORDBMSs) aim to combine the benefits of the RDBMSs with the modelling capabilities
of the ODBMSs, thus providing support for complex queries on complex data [Ston96].

There has been a concerted standards effort to extend SQL-92 to provide the extra
facilities needed to support ORDBMSs, resulting in SQL3 [App B in Dat00]. SQL3 aims
to be a computationally complete language for the definition and management of
persistent, complex objects. It includes generalization and specialization hierarchies,
multiple inheritance, user-defined data types, triggers and assertions, support for
knowledge-based systems, recursive query expressions, and additional data administration
tools. It also includes the specification of abstract data types, object identifiers, methods,
inheritance, polymorphism, encapsulation, and all of the other facilities normally

associated with object data management.

The production of ORDBMSs is mainly driven by the RDBMS vendors, by adding
function to their existing products to offer some of the above facilities, often starting with
the support of data types such as Binary Large Objects (BLOBs) and Character Large
Objects (CLOBs). BLOBs include images, video clips and sound tracks that have an
internal structure that cannot be handled by any of the traditional database approaches.
CLOBs are documents containing text, probably formatted in some way, maybe using
HTML or XML (see below). With demand for complex data and complex queries in
traditional business applications, ORDBMSs seem to be a natural progression for

RDBMSs, but it remains to be seen to what extent they are accepted in the marketplace.

It is also worth noting that various research efforts, such as Gamma [DeW90], Volcano

[Gra90] (which formed the basis of the parallel implementation of Informix) and others
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have found ways to adapt traditional relational database engines to run on parallel

hardware, and object extensions are being added on top of these foundations.

2.1.6 XML Databases

Extended Markup Language [XML] is increasingly being used to provide a flexible way
to capture the structure of documents and their contents, and enable information transfer
between users across networks. The relational database format is well suited for stable
information structures, and data that fits well into fully populated rows and columns, but
XML documents do not conform to this paradigm. Relational database vendors tend to
offer XML support as an add-on, and still do most of the work with SQL and tables. The

information is stored in tables, and only converted to XML when needed.

Native XML databases use XML as the primary means for structuring, organizing and
storing information. Like SQL, XML provides full searching and indexing, but XML
goes one step further by letting users modify the structure of a document without
destroying any data already stored in it. There is then no need to perform XML-RDBMS

translations or transformations.

A number of native XML databases are now appearing on the market. One is Tamino
[Tam]. (Tamino is an acronym for Transactional Architecture for Managing Internet
Objects. Tamino is also the hero in Mozart’s The Magic Flute!) An additional capability
here is that it can scan a well-formed XML document and work out what the structure is,
whereas relational data must always have its structure already specified before being
loaded into a database. Another native XML database is XIS (eXtensible Information

Server) from eXcelon [Exc].

While the native XML database (XDBMS) is an attractive idea, existing organizations
with large amounts of data already stored in RDBMSs are unlikely to convert their
databases in the short term, but XML will be increasingly used to convey information

from one database to another.
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2.1.7 Limitations and an alternative

Relational databases demand that data be partly decomposed into a series of flat tables,
which are typically stored record by record on to the disk. Elaborate normalization rules
have to be followed to ensure that this partial decomposition is carried out correctly, and it
is not difficult to lose information in the process. Object-oriented databases work in terms
of complex objects, which have to be flattened before storage on to disk, and this can
easily result in non-uniformity in data access, as some related data items are bound to end

up widely separated on the disk, while others will be held in the same block.

An alternative approach in either case is to fully decompose the data [Kho96]. At first
sight, this may not appear to be promising from a performance point of view, but studies
[Cop85, Kho87] have shown that it can work very well, and commercial databases based
on this philosophy have been successfully marketed. One of these is the so-called ‘Data
Mapping Program’ from IBM [DMP82] (a fully functional database management
system), and recently, Lazy Software has brought to market a database based on what is
termed “The Associative Model of Data” [Lazy], which is essentially an extension of the
binary relational model. Sybase have also brought out a search tool which extracts data

into a binary relational format.

Decomposed data may be stored in ‘two-column tables’, as in MONET [Bon96], [Bon99],
but a more radical approach, which was used in the Data Mapping Program is to build a
Triple Store to hold the data. A key aspect of this is the separation of relationships from
the data. As a result, much of the internal query processing can be performed on uniform
identifiers, rather than somewhat heterogeneous data strings, leading to simplification of

coding within the database, and potential performance advantages.

Above a fully decomposed data store, it is possible to build object-oriented or normal (n-
ary) relational databases or, as in the case of the Data Mapping Program, a binary-
relational view can be offered to end users. The binary-relational model is described in
[Fro86]. It offers a very easy-to-use and intuitive approach for end users. Another
characteristic of such a database built on a triple store is that catalog (or data dictionary)

information is automatically contained within the store [Shar78], and administering this is
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very straightforward. In an n-ary relational database, relationships can only be
reconstructed if duplicate data is held in more than one table, and often in several tables. If
a data item changes its value, then several tables need to be updated. If a binary relational
database is based on a triple store, data values can be held in a separate ‘lexical’ store (see
chapter 3). The triple store itself only holds tokens representing data items, and these
tokens will be duplicated as necessary to build relationships. The value of a data item will
be stored in one place only and not duplicated. The number of triples in the triple store is
related to the number of instances of each field in the database, and the structure means

that there is indexed access to every field in the database.

Initial work has shown that a Triple Store also forms a very natural basis for holding data
in the object-oriented environment, in other words, to build an object-oriented database.
By separating the relationships from the data, a more uniform pattern of access is
obtainable. It appears that the Triple Store could be an engine that would support a

number of different models at the user-interface level.

One further development that has taken place since the original work on a triple store
database is the advent of widely deployed and relatively affordable parallel computers.
The triple store is a very promising architecture for parallelization, due to its simplicity
and uniformity. No application structure is apparent in the triple store, in contrast with n-
ary relational databases. In the latter case, careful consideration has to be given to the
partitioning of tables and the collocating of the various portions to reflect application
activity, while attempting to strike a balance between various requirements. A triple store

can be split in the optimum way to facilitate the internal processing needs of the DBMS.

The original implementation of the Triple Store database [DMP82] was eclipsed by the
arrival of the n-ary relational databases, leaving many aspects of the approach completely
unexplored. Now that the limitations of the n-ary approach are becoming more apparent,
it is time to re-open examination of this simple and elegant model, to see what new ideas

and insight can be gained.
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2.1.8 Binary Relational Databases

The binary relational approach has been introduced above, and will be fully explored in
Chapter 3. Interest in binary relations goes back to the earliest days of databases. In
[Senko77], a paper which gives a fascinating insight into the debates in progress at the
time, there is discussion about the way data should be presented at the logical level. The
Data Independent Accessing Model (DIAM) [Senko73] was a data model which included
a logical-level as one of its levels, and gave rise to much subsequent development. DIAM
was developed further in DIAM II [Senko80]. [Senko77] presents two contrasting views
of data. Figure 2.1 shows what he calls a ‘meaningless relation’, originally discussed in
[Sch75]. The question posed in this example is what the appearance of FRIEND and
SALARY in the same relation implies. Does SALARY imply the “salary of the FRIEND”
or the “salary of the EMPLOYEE”? Such a relation is without semantic meaning, and
something must be added to make the meaning clear to the user, perhaps in terms of

constraints.

EMPLOYEE NUMBER NAME ADDRESS FRIEND SALARY

Figure 2.1 A meaningless relation

Senko contrasts this with the binary representation shown in Figure 2.2. In this case, it is
clear that SALARY is a direct attribute of EMPLOYEE, and it is only indirectly related to
FRIEND by way of EMPLOYEE, illustrating that binary relations seem to be a fitting

representation of facts.
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EMP NUMBER ADDRESS

Figure 2.2 A binary representation

In 1976, Chen had proposed the entity-relationship (ER) model for data modelling
[Chen76] and database design, which adopts a very similar approach. Today, the ER
model is widely used. The popularity of the ER approach stems from the fact it captures
the entities that are being modelled, together with their attributes and the relationships
between them, in a manner that is easy to understand and in line with human intuition,
while providing a formalism from which the designer can then move forward. To move
from an ER design to a relational schema, a set of rules must be carefully followed.
Entities will be represented by tables, but while some relationships can be captured using
fields duplicated between these tables, others will have to be represented by additional
tables. Whereas it is a somewhat complex process to move from an ER model to arrive at
a relational schema, it is a very simple step to move from ER to a binary relational
database design because the two approaches are so close. (There is an example of this

process in Section 4.5.2.2))

If a binary relational view is attractive at the logical level, the question then arises as to
how to implement such a database at the physical level. The hierarchical and network
views of data carry the logical structure right down to the physical level. Adopting this
approach for binary relations leads to large numbers of two column tables, and the
associated processing would be prohibitively costly. Early implementations such as
[Lev67], [Ash68] and [Feld69] followed this line of attack by storing each set of binary
relations in a separate file. Titman [Tit74] took a different approach, by storing triples in

ordered arrays, and the Non-programmer Database (NDB) [Shar79] was directly
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influenced by this work. (The contents of the triples are not necessarily the same in all

implementations. The triples used in the current work differ from these earlier databases.)

In 1982, a paper was published by Frost [Fro82] which reviewed several research efforts
under way at the time. Frost begins his introduction to binary relational storage structures
as follows: “Any part of the universe, no matter how complex, can be thought of as a set
of binary relationships. Consequently, a structure, within which representations of such
relationships can be manipulated, is logically sufficient as the storage mechanism for a
general purpose database system.” He also remarks that at that time “the binary relational

view of the universe is increasingly being used during the database analysis stage of

database design.”
Frost describes a number of different structures for holding the triples, including:

* holding triples in ordered arrays, with one array for each relation

* holding the triples as one set, replicated three times and held in three separate hash
tables, keyed on different combinations of two out of the three items

° alinked list structure

* a master file of triples, with a set of inverted lists. For each entity, there are three

inverted lists giving the addresses of the entity either as subject, relation, or object.

Subsequent work has been based on various approaches. The work by Copeland and
others referred to earlier [Cop85, Kho87] used binary relations held in what is referred to
as a decomposed storage model (DSM). Their performance comparisons with an n-ary
storage model (NSM) showed that similar results could be achieved, with each model
having particular strengths and weaknesses. There were also projects based on the use of
special hardware, such as the FACT Machine [McG80]. In [Shar88], the Universal Triple
Machine (UTM) was introduced, in which the data repository consisted of two stores: the
name store and the triple store. In [Mar92a], the implementation of an object-oriented
database (Oggetto) layered over a triple store is described, which is capable of handling
the four tasks for an object-oriented database outlined in [Atk87], and the same author

reports the development of a 3D graphical interface in [Mar92b].
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Currently, there are at least two groups actively working with binary relational models. In
Amsterdam, a novel database server known as Monet has been developed. [Bon96] gives
an overview of Monet, and discusses how it is being used to support ODBMS
applications. Monet is also based on a decomposed storage model (DSM), which is
implemented using ‘binary association tables’ (BATs). These are very much the same as
the first approach described by Frost. A BAT is a two-column table representing one
binary relation, and the database will have multiple BATs. Monet is designed to perform
all operations in main/virtual memory. For databases which exceed available physical
memory, Monet relies on virtual memory, by memory mapping large files. Work has also
been carried out with Monet on parallel machines, and a prototype has been run on an

IBM SP machine.

At Birkbeck College in London, the Triple Store Architecture Research (TriStarp) Project
[King90], [TriStarp] was set up to explore the use of the binary relational data model at all
levels in a database system. The triple store in this case was built based on three-
dimensional Grid Files, in which each dimension represents one of the three elements of a
triple. Recent work has concentrated on the higher levels of the DBMS such as Fudal
[Sut95], a functional database language, and GQL [Pap95], a Graphical Query Language,

and other aspects rather than on the underlying structure.

As mentioned above, one of the major binary relational databases described by Frost was
the Non-Programmer Database Facility (NDB) [Shar79], which was subsequently
marketed as “DMP” [DMP82]. The work on NDB led to further research [Giles82],
[Fitz90], which supported and validated the approach taken. The present research carries
forward the idea of the triple store, but with a different structure, and explores new areas

that have not been dealt with before, in particular, the aspect of data compression.

2.2 Compression in Databases

The potential benefits of compressing data in a database are twofold. First, there is the
obvious outcome of saving space on the disk or other storage medium. However, with
storage becoming ever cheaper, this is no longer so important. The second benefit is to
achieve an improvement in performance, by reducing the number of disk accesses. This

implies a trade-off between the reduction in disk I/O and the cost of compressing and
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decompressing the data. Decompression is particularly important in this context; data is
only compressed once, but decompression is likely to be required time after time for query

processing as well as for the delivery of the final answer.

Many efforts in the context of relational databases have dealt with compression in the
index. The benefit of compressing indexes in a database has long been established, as
described, for example, in [Wag73] (VSAM) and [Com79] (B-Trees). In an index,
successive entries are sequenced, and various techniques such as prefix compression and
suffix compression have been employed, as described in standard works such as [Gray93]
or [Ram00]. Appropriately chosen strategies can reduce the size of the index, and as long

as the cost of processing compressed index entries can be contained, faster retrievals can

be achieved.

When the data itself is considered, the picture is not so clear cut, as the structure that exists
in indexes does not generally apply. A major decision is the level at which to compress.

It is possible to compress at the block level, the tuple level, or at the level of individual
fields. The potential cost of having to decompress a whole block or tuple can outweigh
any benefit. [Gold98] shows that if the UNIX ‘gzip’ facility (based on the Lempel-Ziv
algorithm [Ziv77]) is used to compress a page, it will take longer to ‘gunzip’ it than to
read the page from disk. Previous work, such as [Gra91, Ray95 and Gold98], has shown
that compression in databases needs to be very fast, and also needs to be fine-grained.

This leads to consideration of compression at the field level.

This is the approach taken in [Wes00], where fields are compressed into a specially
formatted tuple, using a ‘light-weight’ approach, where only some of the fields are
compressed. Integers and dates are compressed using null suppression and encoding of
the resulting length of the compressed integer [Roth93]. For long strings, the authors
consider the use of Huffman coding [Huff52], Arithmetic coding [Wit87], or the LZW
algorithm [Welch84]. If order preservation is needed, then techniques such as those
proposed in [Blas76, Ant96] are suggested. Westmann et al [Wes00] describe how the
storage manager, the query execution engine and the query optimizer may be extended to
deal with the compressed data, in the context of a TPC-D benchmark database [TPC95].

Their results show significant speed-up for long-running TPC-D decision support queries,

22



but they remark that they do not expect to see any benefit for short On-Line Transaction

Processing (OLTP) queries.

Chen et al [ChenO1] point out that many fields in the typical relation in fact contain short
text strings, which are not compressed effectively by the algorithms listed above. They
have devised a Hierarchical Dictionary Encoding (HDE) strategy that intelligently selects
the most effective compression method for string-valued attributes. Chen et al then apply
this to the problem of compression-aware query optimization, and demonstrate speed-up
using a TPC-H benchmark database [TPC99], which again involves long-running decision

support queries.

Both of these recent approaches deal with queries in a ‘traditional’ n-ary relational
database with large numbers of records. These queries require heavy processing in query
optimization and execution. This results from the fact that in a relational database,
relationship information has to be re-discovered from the data stored in the relations every
time a query is executed. If the data items are compressed, they will generally have to be
decompressed to allow query processing to proceed, although it is sometimes possible to

work with attribute values in their compressed form.

In this thesis, the focus is on the issues which come to light when a binary relational
database architecture is employed, in this case, built on a triple store. Here, information
about relationships is stored separately from the data items, so that query processing can
be carried out without the need to decompress data items along the way. Only the data
items finally presented in the answer need to be decompressed at the end of a query.
Query execution does, however, require extensive processing of triple store records, and

the question is then whether compression in the triple store can benefit this processing.

A new compression algorithm has been developed for the database. Using this, records
could be compressed when initially inserted into the triple store, but from then on,
processing would be carried out efficiently without needing to decompress the records
again. A modelling exercise, described in Chapter 5, was carried out to explore the extent

of the performance improvement, with interesting results.
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3 The Triple Store and Binary Relational Databases

This chapter introduces in an informal manner the concepts on which this project is based.
Since the triple store lends itself very naturally to supporting binary relational databases,

the implementation is based on this model.

3.1 A Binary Relational Database

3.1.1 Sets and Domains

Real world objects can be categorized in sets, such as the set of all of the staff in an
organization, the set of all products manufactured by a company, or the set of children
belonging to one person. Any member of a set has certain properties that help to describe
it. For example, a person may be described by weight, height, age and so on. There are
also other properties that tell us something about set members, such as who their manager
is or parents are, or which flavour of ice cream they prefer. Traditionally, these properties
are termed “attributes’. In a standard (n-ary) relational database, one item, for example a

person, will be identified by some unique key, e.g. staff number.

Considering the example of ‘salaries’, it is clear that the set of all salaries can be divided
into many different, possibly overlapping sets, such as ‘managers’ salaries’, ‘women’s
salaries’, or ‘salaries of full time staff”. However, if calculations involving salaries are
carried out, it is clear that common rules apply. The format of the data must always have
exactly two places after the decimal point, and while a salary can be multiplied by a
number such as 1.05 to calculate a 5% increase, it makes no sense to multiply two salaries
by each other. One might also specify that all salaries must be divisible by 12, to make it
easy to compute monthly payments. It is useful, therefore, to develop rules for dealing
with salaries. Data to which common rules can be applied is said to belong to the same
‘domain’. Prices would not belong to the same domain as salaries, as, although some
rules are in common, such as the format of the data, other rules such as ‘divisible by 12’
would not apply. All items of data in one domain have common attributes, and common

rules governing their processing.
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3.1.2 Entities and Attributes

It is possible to think of attributes as ‘adjectives’ that describe an item. Age or sex can
easily be thought of in these terms. However, this does not really work for all attributes.
Is a person’s manager an adjective? Surely not - a manager is also an item in his’her own
right, and may even be a member of the same domain ‘employee’ as the member of staff

in his/her department.

An alternative approach is to describe all characteristics as “entities’. An entity might be
‘staff number’, ‘name’, ‘height’, ‘telephone number’, ‘manager’, ‘skill’ or ‘eye colour’.
Each of these entities is contained within its own set. There will therefore be a set
containing ‘staff numbers’, and to describe a person, we will need to have links or
connections to the appropriate member of each other set, such as ‘name’ or ‘age’ (Figure

3.1).

STAFF NUMBER

13572468 |
—

98761234

Figure 3.1 Sets of entities
In thinking about entities, it is important to be clear in the definition and meaning. When

talking about telephones, for example, do we mean ‘the number in the book’ or ‘the

gadget on the desk’? When people move offices, they may take the number and/or gadget
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or neither with them. The domain of descriptors needs to be specified. In the case of

telephone numbers, this might be ‘exactly 4 digits, beginning with 5 or 6.

In the earlier implementation of a binary relational database known as NDB, the above
approach of dealing with all characteristics as entities was taken. This places no
constraints on the data, and worked successfully. However, there is some value in placing
constraints on the way that data is being used, if this reflects the situation in the real world
better. A person can have blue eyes, and a height of six feet, but ‘blue’ cannot have a
height. Therefore, it has been decided to distinguish attributes and entities for this

implementation, as follows:-

An entity relates to some ‘thing’ in the real world being modelled. The entity
does not have any properties, except for an identifier (‘ID’) internal to the

database, until attributes have been ‘attached’ to it.

An attribute describes some property of an entity. An attribute will belong to a
domain (e.g. ‘colours’), and will have some value (e.g. ‘blue’). The attribute is
completely defined once its domain and value are known. An attribute cannot be

attached to any other attribute, but only to an entity (Figure 3.2).

PERSON

STAFF NUMBER

13572468 J

98761234

AGE

. =
Smith | | 46 |

Figure 3.2 One entity set and three attribute sets
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3.1.3 Relations and Terminology

Set Theory includes the concept of relations. To illustrate this, consider two sets, A
which is the set of playwrights, and B which is the set of plays. We could define a
propositional function, P(x, y) = “x wrote y” which would be either true or false for any

combination of the elements (a, b) of the two sets. For example,

P(Shakespeare, Hamlet) = “Shakespeare wrote Hamlet” is true, while

P(Shakespeare, Faust) = “Shakespeare wrote Faust” is not true

A relation R consists of
I)aset A
2)asetB
3) P(x,y) in which P(a,b) is either true or false for any ordered pair (a, b)

R is called a relation from A to B. Relations are not limited to just two sets, but can
include any number. The solution set R* of the relation R consists of the elements (a, b)

in the Cartesian product, A X B (Figure 3.3) for which P(a, b) is true (Figure 3.4).

Shakespeare Hamlet

Shakespeare Faust Shakespeare Hamlet
Goethe Hamlet Goethe Faust
Goethe - Faust

Figure 3.4 Solution set (R*) for R
Figure 3.3 Cartesian product for relation (R)

In the case of the triple store, which will be introduced shortly, each line only ever relates
members from each of two sets, so that all relations are binary, and the implementation is
termed ‘binary relational’. However whilst the low level implementation is binary

relational, the view of data presented to the end user could be very different.

Consider now a conventional relational database ‘relation’ or table which has four
columns: S#, SNAME, STATUS, CITY (Figure 3.5). This relates values belonging to 4
sets. The database relation (table) is the solution set of the much bigger relation that

contains all possible combinations of the members of the 4 sets (i.e. the Cartesian
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product). The solution set includes only the rows which contain valid combinations of the

values.
S# SNAME STATUS CITY

1234 Jones OK London Valid

3456 Williams Owes Us Cardiff Valid

8976 Mclntosh OK Glasgow Valid

8675 Smith Insolvent Birmingham Valid

1234 Jones OK Brighton Invalid

8976 Williams Insolvent Cardiff Invalid
Invalid

Figure 3.5 Table with four columns. The database would only contain the
solution set, i.e. the ‘valid’ rows

It is usual for conventional relational databases to store individual tables separately.
Using a triple store, however, it is possible to store all relational information in one single
‘table’. An individual line in the triple store contains one relationship or connection
(which is one occurrence of the appropriate propositional function with the value ‘true’).
All of the (non-metadata) lines in the triple store that have the same value in the relation

column correspond to one conventional database relation or table.

For ease of reference, from this point on, the term connection will normally be used to
refer to an individual instance of a relationship, and the term relation to refer to the
collection of all of the connections of the same type, which is in line with the standard
usage of the word in database literature. Each relation has a name, such as
‘HasManager’, or ‘SkillName’, and each connection uses this name to show what sort of

connection it is (Figure 3.6).
NOTE: In standard relational database tables, each row has several (‘n’) columns and

expresses the relationship between the ‘n’ attributes described in the columns. Hence

they are often referred to as ‘n-ary relational’ databases.
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HasManager

STAFF NUMBER

il . PersNum
@

PersSkill

PERSON

PersName SKILL

[m Carpenter

rm i Programmer |

=il
| Musician

Figure 3.6 Relations between entity and attribute sets

3.1.4 An Example Database

To describe a real-world item completely, it is necessary to establish the connections from
any starting point, for example, a person in the set of ‘person’ entities, to the appropriate

member of any other relevant entity or attribute set.

Although the connections are binary, there may be multiple connections between an entity
in one set and entities in another set. A person might have several different skills, and a
telephone may be shared by many users. There are four possible mappings that may be

used to describe this, which are:

1:1 ‘one to one’ m:1  ‘many to one’

I:'m  ‘one to many’ m:n  ‘many to many’

For example, 1:m mapping means that one member of one set may have several
connections, each of them formed with a different member of another set. However, it is
not necessary to use all four of these mappings. If connections can be traversed in either

direction, then only one of the mappings 1:m or m:1 is needed. In addition, an m:n
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mapping can always be replaced by introducing an additional entity and using two m:1

mappings. In the diagram that follows, all mappings are either m:1 or 1:1.

In certain situations, it may be required that for every member of a set, there must be a

connection to another set - a mandatory 1:1 mapping. It might be useful to extend the

above list to include such a mapping, but this has not been done at the moment. The

direction of the connection needs to be expressed in some way, as shown by the arrows on

the diagram. Any implementation will need to adopt a convention for this, and also

provide support for connections between members of the same set, as demonstrated by

the ‘HasManager’ connection. The direction of the connection makes clear who is the

manager, and whom is being managed. However, it will be possible to use a connection

in either direction to traverse the database, so that if we wish to discover which

employees report to a particular manager, we can use the ‘HasManager’ connection in the

reverse direction.

SEX
HasManager
— M SKILL
PNUM 1 F
m 1
13572468 [ Administrator 4]
]| Person 74 m
m ersSex Iy
98761234 e | Carpenter —|
P
m el s .
1 N » id3 m__— (PersSkil) | [Programmer l
PPNy SkillName
1 skillowner [ I
. SKILLRECORD
e id4 m
SURNAME m
Jones % m m id14 DATE
1 PersOff
PersSur m m —® 1| 1197
Smith 1 id17 QualDate 4/7/%
OFFICE
%’ersSal
SALARY 1 =
id2
OFFICENO
; @3 1
— ca3
ot J E OffONum 1
' E -

Figure 3.7 A personnel database
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All of the above points are illustrated in Figure 3.7, which shows a simple database.

There are ten sets in the example.

* Three Entity Sets: Person, Office, SkillRecord
e Seven Attribute Sets: Pnum, Surname, Salary, Sex, Skill, Date, OfficeNo

There are various connections between the sets, which are listed below. Note that all of
the connections are given either 1:1 or m:1 mappings. The m:n mapping that would have
been required by the connection ‘PersSkill’ has been eliminated by introducing the
SkillRecord entity. This has the benefit that attributes that relate to this Person to Skill
connection (termed ‘intersection data’), such as the date that a person qualified with a

new skill, can now be added to the database.

Relation name Description

* PersPNum Person’s personnel number - 1:1

e PersSur Person’s surname - m:1 (people may have the same name)
* PersSal Person’s salary - m:1

* PersSex Person’s sex - m:1

* HasManager Person’s manager - m:1

e SkillOwner The person to whom a SkillRecord relates - m:1

e SkillName The name of the skill - m:1

* QualDate The date on which the person acquired this skill - m:1
*  PersOff Person to office - m:1 (some people share offices)

*  OffONum Office to office number - 1:1

This approach, which we might call a ‘data map’, provides a very simple way to analyse

and think about relationships between data.

3.1.5 The Sets of Relations, Mappings, Formats and Sets

The relations also form a set, as do the mappings, formats and the sets themselves (i.e.
there is a set of sets). These may also be represented within the model using exactly the

same approach, as shown in Figure 3.8.

e Each set has a name and a format for the data items in the set

¢ Each member of the ‘relation’ set has a name and a mapping

*  Each member of the ‘relation’ set describes connections from a member of one set
to a member of another set - ‘from’ and ‘to’ indicating the direction of the
connections
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So data about the data, usually termed ‘metadata’, can be stored in the same database as

the data itself.

RELNAME

RELATION

HasRelName

HasSetN;ny

\ HasFormat
FORMAT

OFFICE FORM_8DIGIT
FORM_4DIGIT
SETNAME

Figure 3.8 Metadata

3.2 The Triple Store and the Lexical Store

3.2.1 Identifiers

In the preceding example, entities were given identifiers (IDs), but attributes were shown
by their values, and connections by their relation names. To preserve symmetry in the
triple store, and to permit performance to be enhanced in the implementation, attributes
and relations are also given identifiers. A second table, which is termed the ‘lexical

store’, is then used to translate the attribute IDs to and from actual values when needed.
In the following example, identifiers of the form
set-name | id-number

are used to demonstrate the principle. The form of identifier used in the implementation

is defined in Chapter 4.
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3.2.2 Lexical Store (or Semantic Store)

The lexical store provides the ‘bridge’ from the triple store to the outside world. The

lexical store maps the internal identifiers to the values that they represent.

Entities do not have values, and therefore do not appear in the lexical store. Entities
include the sets in the database. For reference, the example is using internal identifiers

for sets as follows. In operation, the end user has no knowledge of any internal

identifiers.
Set Internal Identifier
e PERSON SET id1
* OFFICE SET id2
¢ SKILLRECORD SET id3
°* PNUM SET id11
¢ SURNAME SET id12
° SALARY SET id13
* SEX SET id14
e SKILL SET id15
s OFFICENO  SET idlé6
* DATE SET id17

Figure 3.9 shows part of the lexical store for the database in Figure 3.7, including the

entries needed for the metadata shown in Figure 3.8.



| Identifiers Values
PNUM idl 13572468
PNUM_id2 98761234
PNUM id3 92847557
PNUM_id4 87364512
SURNAME idl Smith
SURNAME _id2 Williams
SURNAME _id4 Jones
SEX idl M
SEX_id2 F
SALARY id7 25,000
SALARY id9 18,000
SKILL, id31 Carpenter
SKILL id32 Administrator
SKILL_id34 Programmer
SKILL, id35 Xylophonist
DATE_id74 01/01/1997
DATE_id47 04/07/1996
OFFICENO_id2 A089
OFFICENO id44 B685
RELNAME idl PersPnum
RELNAME id2 PersSur
RELNAME id3 PersSal
RELNAME id4 PersSex
RELNAME _id6 HasManager
RELNAME id7 PersOff
RELNAME id8 OffONum
RELNAME id10 SkillOwner
RELNAME idl11 SkillName
RELNAME id12 Qualdate
RELNAME id20 HasSetName
RELNAME 1d21 HasFormat
RELNAME id30 HasRelName
RELNAME id31 HasMapping
RELNAME _id40 FromSet
RELNAME id41 ToSet
SETNAME id1 PERSON
SETNAME id2 OFFICE
SETNAME _id3 PNUM
SETNAME_id4 SURNAME
SETNAME_id8 OFFICENO
FORMAT id8 8DIGIT
FORMAT idl 1BIT
MAPPING id2 m:l

Figure 3.9 Part of a lexical store
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3.2.3 The Triple Store

The triple store is a table which is designed to contain the connections. Each line in the

table is a ‘triple’ containing

* The ID of the relation to which the connection belongs (the ‘relld’)
* The ID of the item (entity) that the connection leads ‘from’ (the ‘fromld’)
* The ID of the item (entity or attribute) that the connection leads ‘to’ (the ‘told’)

Figure 3.10 shows part of the triple store for the database in Figure 3.7, including the

entries needed for the metadata shown in Figure 3.8.
There are two sorts of entry in the triple store:

* Entries describing the connections shown Figure 3.7, which for clarity are shown
in the upper part of Figure 3.10

* Entries describing the data itself shown in Figure 3.8 - the metadata - which are
shown in the lower part of Figure 3.10

Metadata in a database is often termed ‘system catalog’ data. It is also sometimes
called the data dictionary, although this term is also used to refer to a separate
repository of information about the data in an organization.

3.2.4 How the Triple Store and Lexical Store work together

To find Smith’s office number:

1. Goto Lexical Store and find “Smith”
- returns SURNAME id1

2. Go to Triple Store with SURNAME id1 and REL id2 (PersSur)
- returns PERSON 1d2

3. Go to Triple Store with PERSON id2 and REL _id7 (PersOff)
- returns OFFICE id3

4. Go to Triple Store with OFFICE _id3 and REL_id8 (OffONum)
- returns OFFICENO id44

5. Go to Lexical Store with OFFICENO _id44
- returns the Office number - B685
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Relation From To
REL _id1 PERSON _idl1 PNUM_id2
REL id2 PERSON_id1l SURNAME _id4 (Jones)
REL id3 PERSON _id1 SALARY__id9
REL id4 PERSON_idl SEX idl
REL_id6 PERSON _idl PERSON _id3
REL_id7 PERSON_idl OFFICE_id3
REL_id10 SKILLRECORD id14 PERSON_id1
REL _id11 SKILLRECORD id14 SKILL _id34
REL _id12 SKILLRECORD _id14 DATE_id74
REL id10 SKILLRECORD _id17 PERSON_id1
REL id11 SKILLRECORD _id17 SKILL_id35
REL id12 SKILLRECORD id17 DATE_id47
REL idl PERSON_id2 PNUM id3
REL id2 PERSON _id2 SURNAME id1 (Smith)
REL id3 PERSON_id2 SALARY__id9
REL _id4 PERSON _id2 SEX_id2
REL_id6 PERSON _id2 PERSON_id3
REL id7 PERSON_id2 OFFICE _id3
REL id1 PERSON _id3 PNUM _id4
REL id2 PERSON _id3 SURNAME id2 (Williams)
REL _id3 PERSON _id3 SALARY__id7
REL_id4 PERSON id3 SEX _idl
REL id5 PERSON _id3 SKILL_id35
REL id7 PERSON _id3 OFFICE _id7
REL _id10 SKILLRECORD _id24 PERSON _id3
REL id11 SKILLRECORD _id24 SKILL_id32
REL id12 SKILLRECORD _id24 DATE_id74
REL _id8 OFFICE _id3 OFFICENO _id44
REL id8 OFFICE _id7 OFFICENO _id2
REL_id20 SET id11 SETNAME _id3 (PNUM)
REL_id21 SET id11 FORMAT id8 (8DIGIT)
REL _id20 SET id2 SETNAME id2 (OFFICE)
REL _id20 SET _id16 SETNAME id8 (OFFICENO)
REL_id21 SET id16 FORMAT id4 (4DIGIT)
REL id30 REL_id7 RELNAME id7 (PersOff)
REL_id40 REL id7 SET _idl (PERSON)
REL_id41 REL id7 SET _id2 (OFFICE)
REL _id31 REL _id7 MAPPING_id2 (m:1)
REL _id30 REL _id6 RELNAME _id6 (HasManager)
REL_id40 REL id6 SET _idl (PERSON)
REL id41 REL id6 SET idl (PERSON)
REL _id31 REL _id6 MAPPING id2 (m:1)

Figure 3.10 Part of a triple store
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3.3 Comments on the Triple Store

3.3.1 The Need for Sorting

One of the over-riding considerations in any database system is to minimize the number
of disk accesses. When searching for related data, response times are going to be much
faster if all of the required data can be read in from disk at once. If the user wants to
know all about PERSON id1, it will be better if this information is not scattered
randomly throughout the triple store. Best performance will be achieved if logically
related items are close together physically, which can be aided by sorting both the triple

store and the lexical store.

3.3.2 Sorting and Indexing the Triple Store

The three columns of the triple store can potentially be sorted in 6 different ways. Each

of these has the effect of grouping related items together. For example:

* Ifthe sort is based on the order: second column, first column, third column, in the
above table, all of the connections concerning PERSON _id1 will be stored
together. When data is read from a disk, a whole block is read at a time, which
will contain many rows of the triple store. So when any of the rows relating to
PERSON id1 is retrieved into memory for processing, all of the connections
concerning the person will almost certainly be brought in too, and further disk
access is not needed to traverse the related data.

e If, however, the sorting is done on: third column, first column, second column,
then all records for each Office_id would be grouped, so that people occupying

the same office could be traced quickly.

To optimize processing, therefore, several sort orders (but not necessarily all 6) may be
maintained within the triple store, using as many copies of each entry as there are sort
orders. There is a trade-off to be made between performance and disk space, but if good
compression techniques are used, properly sorted data will compress very significantly, so
that the space overhead is not as large as might at first appear. One aspect of the project

has been to determine how many sort orders it is worth maintaining.
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In addition to sorting the triple store, there is also a need for indexes (e.g. a B-Tree or

other index) to permit reaching the appropriate part of the triple store fast.

3.3.3 Compression

To take full advantage of the proposed structure, consideration must be given to

opportunities for compression, and the techniques that could be applied.

If the triple store is sorted on the second column, all of the entries beginning PERSON_
will be together, and so on. It would therefore be necessary to store ‘PERSON’ only once
with a count of the number of PERSON _ entries that follow. The same argument applies
to all columns, hence the need to consider sorting in more than one way to get the
maximum benefit. It is probably even possible to spot recurring groups of entries and
compress these. The use of identifiers with two parts (set_id | item_id - see Chapter 4)

lends itself well to this sort of compression, helping to conserve disk space.

3.4 Comments on the Lexical Store

3.4.1 Allocation of IDs

A mechanism is needed for the allocation of IDs as attribute values are added to the
lexical store. A number of algorithms are possible for this:~ allocate numbers
sequentially, allocate numbers randomly etc., as long as uniqueness within a set is
maintained. Another possibility is to make the ID in the triple store equal to the literal

value of the data.

A further strategy, which has been considered, is to allocate IDs in an order which reflects
the natural sort order for the domain, where this exists (e.g., alphabetic or numeric). This
would have the effect that when the triple store is sorted by ID, entries will automatically
be sorted in an appropriate order for other processing. Also, if entries are placed in the
triple store in the order of the data, then a range can be examined by locating the first and

last values via the lexical store, indexing to the appropriate entries in the triple store, and
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then working entirely within the triple store, knowing that all entries between the two

limits satisfied the criteria.

However, the difficulty of allocating IDs as more values are added, without causing an
entire renumbering operation to occur, which in turn would require every line in the triple
store that referred to the attribute to be updated too, outweighs the possible benefit. It is
not clear, either, that it is really desirable for the triple store to have the ‘partial
understanding’ of the attribute values implied by the above approach. The triple store

should really be completely indifferent to attribute values.

In the present implementation, IDs are allocated randomly within a range. The range is
initially set small, so that IDs are fairly ‘close’ to each other to facilitate subsequent
compression. If a range becomes too tightly filled, however, the range is dynamically

expanded, and further expansion will occur as necessary.

3.4.2 Sorting and Indexing the Lexical Store

The lexical store needs to be sorted on the first column to bring all items of the same type
together. This means sorting by the two parts of the identifier, SetName and ID. It may
also be desirable to sort the lexical store on the second column - this was to be

determined.

Indexing is needed to provide rapid access into the lexical store, and to support range and
other queries. (This is no worse than for a conventional relational database, where

secondary indexes are needed for searching and range queries on any field except the

primary key.)

In particular, indexing into the second column is crucial. Indexes into this column have to
cater for data stored in a variety of data formats. For example, surname, office_no, sex,

and so on all have different formats.

3.4.3 Small or Large Sets

Some sets have a limited number of values, all of which could be preloaded into the

lexical store in sorted order. Examples might be SEX, EYE COLOUR and so on. These
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may be thought of as ‘closed’ sets, and it is possible that a special algorithm might be

used to allocate IDs for these.

Other sets have a potentially large number of values. Although they may still be
technically ‘closed’, the upper limit of the possible values might be “all of the rational
numbers less than 10 million’, or ‘all possible combinations of 20 alphanumeric
characters’. As far as the database is concerned, these sets are essentially ‘open’. For
these sets, decisions will have to be made about strategies for keeping them sorted within
the lexical store, such as sorting every night, leaving spare space in the store, using a

hashing technique and so on.

3.5 Using the Metadata

3.5.1 Building the query

Consider again the example above - to find Smith’s Office number:

To find Smith’s Office number:

1. Go to Lexical Store and find “Smith”
- returns SURNAME id1

2. Go to Triple Store with SURNAME id1 and REL _id2 (PersSur)
- returns PERSON id2

3. Go to Triple Store with PERSON id2 and REL _id7 (PersOff)
- returns OFFICE id3

4. @Go to Triple Store with OFFICE id3 and REL_id8 (OffONum)
- returns OFFICENO id44

5. Go to Lexical Store with OFFICENO id44
- returns the Office number - B685

The user first has to instruct the database how to build the query. In a conventional
RDBMS, this is accomplished by writing an SQL statement, or by using some sort of
QBE interface. The user needs to understand the tables in the database, and the
relationships between them in order to carry this out, and SQL statements can become

extremely complex and hard to understand, except for the expert.
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With a binary relational database, the user will have a data map, as described earlier, and
will be provided with a friendly interactive front end with which to build up a query path.
In general, it is much easier for the end user to achieve this than when using SQL. Once a
particular query has been built, it should be possible to save it for re-use in the future. A

programming interface will also be provided.

3.5.2 Executing the query

When the query path has been determined, the system can execute it using the metadata.

There will be the following steps.

1. Find SURNAME id

User has supplied a string “Smith”

Use metadata to check

Is there a Set called SURNAME

Is data-type etc valid ( SURNAME HasFormat)

May want to do Domain check e.g. for enumerated domains
Then go to Lexical Store to find SURNAME id1 for “Smith”

2 Traverse the database from SURNAME id1 to OFFICENO id

If this is an m: I relationship (likely) then there may be more than one PERSON _id
Jfor SURNAME idl.

We will travel via the PERSON set in this example. The path is PersSur (inverse)
1:m, then PersOff m:1.

Go to the Triple store to find all of the PERSON_ids for SURNAME id1
Go to the Triple Store to get the OFFICE _ids for the PERSON ids
Go to the Triple store to find the OFFICENO _ids for the OFFICE _ids

3 Retrieve the actual value of the Office number from the Lexical Store
Go to the Lexical Store with the OFFICENO _ids to get the values.

Go to the metadata again, using OFFICENO HasFormat to present the
value to the user in the correct format.

3.6 Summary

This chapter has sought to introduce the concepts of the triple store, the lexical store and
the binary relational approach. The next chapter will set out more formally the rules and

architecture of the present implementation.



4 Implementation

This chapter begins with the working specification for the construction of the binary
relational database based on a triple store, and then describes some of the end-user
interfaces that have been constructed. The chapter concludes with discussion of other

aspects concerning the implementation.

4.1 Assumptions and Scope

The implementation adheres as strictly as possible to the binary relational model, as

described in the previous chapter.

The database is being built using object-oriented programming techniques in C++. (Note:

this does not mean that the result will necessarily be an ‘object-oriented database’).

The approach concentrates on keeping the triple store in an optimum state to ensure rapid
retrieval of information. This means that more work is needed when data is updated. Ina
real application, data is always read before being written, so the approach only impacts a
maximum of 50% of the accesses adversely, and usually many fewer. A critical statistic

will be the ratio of reads:writes for an application.

4.2 Introductory Definitions
The following terms are used:

1. The term collection to describe an arbitrary group of objects, not all drawn from

the same domain.

2 The term sef to describe a collection of items drawn from the same domain. (This
1s the normal usage in database discussions.) ‘Ser’ will normally be used to

describe all of the members of a domain.
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An entity relates to some ‘thing’ in the real world being modelled. The entity in
the database exists for the purpose of providing a unique identifier for the real
world thing. The entity itself does not have any properties, except for an identifier
internal to the database, until attributes have been ‘attached’ to it. Entities may

have relationships, called connections (see definition 6 below), one with another.

An attribute describes some property of an entity. An attribute will belong to a
domain (e.g. ‘colours’), and will have some value (e.g. ‘blue’). The attribute
instance is completely defined once its domain and value are known. An attribute
value cannot be connected to any other attribute value, but only to an entity, i.e.
there can be no connections between attributes, but only between attributes and

entities (or entities and entities, as above).

An entity or an attribute value has an identifier (‘ID’), which is assigned
internally. The end user will never be aware of this /D. The ID is unique within a
domain. If domains are unique, then specifying the entity or attribute by

domain_id.entity id is unique globally (within the database).

The ID is not the value of an attribute. The value of the attribute is obtained from

the Lexical Store. IDs are discussed further in Section 4.4 — Formats, below.

The relationships between entities or between entities and attributes are called
connections. Connections only ever exist between two entities, or one entity and

one attribute. All connections are therefore binary relationships.

A relation is the set of all connections of the same type, and a connection bears
the name of the relation of which it is a member. (See Section 3.1.3 for further

discussion.)

A ‘triple’ consists of three full identifiers, one of which is a relation identifier, one
is an entity identifier and the remaining one is either an entity identifier or an

attribute value identifier. (See Section 3.2.3 for further discussion.)
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9. Triple store: The triple store holds all of the triples in the database

10. A ‘lexical’ is made up of two parts: a full identifier, and a data value. The format

is discussed further below

11. Lexical Store: The lexical store holds all of the lexicals in the database

4.3 Rules of the Architecture

These are fundamental to the structure of the triple store and the lexical store. They apply

equally to ‘data’ and ‘metadata’.
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4.3.1 Formal Definitions

Definition Definition Dependency | Notes
number on previous
definitions

D1 An entity is some ‘thing’ in the real world being
modelled

D2 An entityld (entld) is associated with each entity Dl 1

D3 An attribute is a property which can apply to an Dl
entity (e.g. colour)

D4 A value is a value that an attribute can assume D3
(e.g. blue)

D5 A lexicalld (lexId) is associated with each lexical D4
(attribute) value

D6 A set is a group of entities or a group of values D1, D4

D7 The family is the family of all of the sets in a Dé6
database

D8 A setld (setld) is associated with each set D6

D9 An entitySet is a set of entities D1, D6

D10 A lexicalSet is a set of values relating to one D4, D6
attribute type

D11 A domain is the set of all possible values that one D4, D6
attribute may take

D12 A connection is a directed relationship with a given D1, D4 2
mapping from one entity to another, or from an
entity to a value

D13 A relation is the set of all of the connections of a D12 3
given type

D14 A relationld (relld) identifies a relation (in other D13
words, a type of connection)

Di5 The setOfRels is the set of all of the relations in the Do, D14 4
database

Figure 4.1 Definitions

Notes on the Definitions:

1.
2.
3.

4.

An entity has no properties until attribute values are attached

This implies that all connections are binary

When a relation is created, the direction of the connections, the mapping, and the
two sets being connected must be specified

A relation is itself an entity, which is described in the database through the
metadata
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4.3.2 Rules

Rule Rule Dependency on | Notes

number definitions

R1 Setlds are unique within the family D7, D8

R2 Each entity is a member of one and only one D1, D9 1
entitySet

R3 Entlds are unique within the entitySet of which the D2, D9
entity is a member

R4 An entitySet contains only entitylds (no values) D2, D9 2

RS Each value is a member of one and only one D4, D10
lexicalSet

R6 LexIds are unique within the lexicalSet of which the D3, D10
value is a member

R7 A lexicalSet contains lexIds paired with (attribute) D5, D10
values

R8 Rellds are unique within the SetOfRels D14, D15

R9 There is, at most, only one connection of a given D1, D12 3
type from any entity

R10 Connections between lexicalSets are forbidden D10, D12

R11 Domains are disjoint D11

R12 A domain contains data of only one type D11

R13 Values from one attribute domain are not D4, D11 4
comparable with values from another

Figure 4.2 Rules

Notes on the Rules

~

This implies that sets are disjoint. This is discussed further in Section 4.8.3
2. Entlds do not therefore appear in the lexical store, since there is no associated
value

3. This means that all relationships are many to one (m: 1), where m may also be 1
giving a one to one (1:1) relationship. However, it is possible to traverse
relationships in the inverse direction. Many to many (m:n) relationships will not
be supported. See Section 3.1.4 for further discussion

4. This means that a ‘strong typing’ environment will be enforced
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4.3.3 Observations and Consequences of the Rules

1. A relation must be defined before any triple that is based on it can be added to the
triple store

There cannot be two identical lines in the triple store

There cannot be a lexId in the triple store which is not in the lexical store

There can be a lexId in the lexical store which is not in the triple store

A

There cannot be two (full) lexIds in the lexical store which are the same

4.3.4 Further Objectives

A query against a database should return a complete, self-contained database, including

all of the relevant metadata.

This is analogous to a relational database, in which a query against a number of relations

returns a relation, although in that case, the relation may not be normalized.

4.4 Formats

4.41 ldentifiers

A ‘type’ is defined for the identifier (‘ID’), so that it can always be changed without
impact to the rest of the code. Initially, identifiers map down to unsigned long integers
(32 bits - 4 bytes). This gives a range of from 0 to 4,294,967,295 per set inclusive.
Further types are then defined for entld, lexId, setld and so on, in terms of the basic ID.
All IDs will therefore be based on the same underlying type, preserving symmetry

throughout the database.

Certain values will be reserved for ‘special’ usage. These are IDs which are essential to

the integrity of the database architecture.
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4.4.2 Full Identifiers versus Shortened ldentifiers

A full identifier (entld, lexId, relld, or setld) is made up of two parts, the ID representing
the set of which the item is a member, and the ID of the item within the set. In the case of
the setld, the first ID will be that of the setOfSets. In the current implementation,
therefore, the full identifier will be 8 bytes long, made up of 2 4-byte IDs, although this
would obviously change if the basic ‘ID’ type is changed. When new relations are
defined, the first part of the full identifier will contain the ID of the setOfRelations; the
second part, the newly assigned ID of the relation being added. In addition, entries must
be made in the triple store to describe the fromSet, the toSet, and the mapping for this

relation.

In principle, all items in the triple store and the lexical store would use full identifiers.
However, as items will be held in sorted groups, especially in the triple store,
considerable space can be saved by not repeating parts of the full identifier where not
necessary. In the case of small sets (such as ‘sets’ and ‘relations’) this might mean that

only one or two bytes need be stored for each entry.

In practice, the relld will always be the first of the three parts of the triple. The setld
(which is the ID for the setOfRelations) is therefore not strictly needed. In addition, the
relld implies the IDs of the two sets that are being connected, so that it is not necessary to
store these either. Thus the triple need only contain the item identifier for all three parts.
This is the approach that has been adopted, and each triple contains three 4-byte integers,
which are the item identifiers for the relld, the fromld and the told. (Fromld and told are
described in Section 3.2.3.)

4.4.3 Lexlcals

A ‘lexical’ is made up of two parts: a full identifier and a data value.

Full identifiers, which will be lexIds, are allocated when items are added to the lexical
store. The first part of the identifier will be the ID of the set (setld) to which the item is
being added; the second part will be the newly allocated ID for this item.
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The format of the data will be described via a hasFormat relationship, and the data will be

stored in accordance with this, e.g. as a string, fixed length integer etc.

4.4.4 Triples

A ‘triple’ consists of three full identifiers, one of which is a relation identifier, one is an

entity identifier and the remaining one is either an entity identifier or a value identifier.

In addition, a fourth field will be added to indicate the sort order for a particular

occurrence of a triple.

4.4.5 Special Values (System ID Constants)

In order to start a new database, it is necessary to predefine several IDs

IDs for types:
EntType, LexType, EntEntType, EntLexType

IDs for system sets:
SetSet, SetNameSet, RelSet, RelNameSet

IDs for special Relations:
SetNameRel, SetTypeRel, ReINameRel, FromSetRel, ToSetRel, RelTypeRel

IDs for various additional constants:
LowestSystemld, “None”, “Any”, HasEnt
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4.5 Interfaces

4.5.1 The Programming Interface

Access to the database is through a set of operations that together make up the “TD’
(triple datastore) programming interface. The interface is not intended for end users, but

provides a clean interface into the database system upon which graphical front-ends and

so on can be built. The operations provide the following functions:

Database operations

Create a new database

Delete a database

Open a database for processing
Close a database when finished

Set operations (on both entity
and lexical sets)

Add a new set
Delete a set
Find a set ID
Find a set name

Operations on members of
lexical and entity sets

Add a new member
Delete a member

Operations involving relations
between sets

Add/delete a new entity-entity relation
Add/delete a new entity-lexical relation
Find an entity-entity relation ID / name
Find an entity-lexical relation ID / name
Find ID of to_set / from set

Find set name of to_set / from_set

Operations to add or delete
connections between members
of sets

Add/delete connection between two entities
Add/delete connection between entity & lexical
Add lexical value and connection

Cursor operations

Various operations — see Appendix A

Figure 4.3 TD Operations

These operations are fully described in Appendix A.
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4.5.2 End-User Interfaces

Section 4.5.2 describes four different interfaces that were developed by students under my

supervision while I was teaching at the University of Southampiton.

To complement the triple store implementation, a variety of user interfaces has also been
constructed, demonstrating the versatility and validity of the triple store. These included
graphical interfaces, a web-based interface, and an SQL interface. Brief descriptions of

these follow.

4.5.2.1 General Purpose Interface

This can be used to assemble a database from scratch. Using the buttons on the toolbar,

or using menus, the user can

! Untitled - TSInterface S - [Of x}
Database Sets Relations Members Examples View Query Info

=lw] wlwlalolulalte] RelE[a] @le] of

e C(Create a database
e Add sets
e Add relations

e Add connections
e Add data
e (Obtain various views of the

contents of the database.

Ready [N 4

Figure 4.4 General Purpose Interface

This interface (Figure 4.4) demonstrated that a Windows front-end could be added to the
triple store code, using C++ and an object-oriented approach. A full description is given

in [Cjs98].
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4.5.2.2 Interface to support recruitment agency application

This was a full-scale application based on a real system. The ER diagram in Figure 4.5
shows the database in a conventional view. Figure 4.6 shows how this is translated into a

binary relational database. This interface is described in [Ejs99].

Skills
Candidate Vacancy
Skill Link Skill Link
Candidates Applications Vacancies
Employment Detail Dates Client
Company
Address
Company
Name

Figure 4.5 ER Diagram for recruitment agency

The application records job vacancies supplied by clients, along with the skills required,
shown on the right-hand side of the diagram. It also records candidates applying for jobs,
with the skills they are offering on the left. The application matches candidates to

vacancies, and records job applications made.

The following diagram shows the way in which the Triple Store holds the above data

structure.
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Application
Client Vicancies
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Date Details
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Client
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Cli dress ComparyName
Address
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Red  Entity
Green Entity Entity Relation
Blue Lexical Entity and Lexical Relation

Figure 4.6 Data model for recruitment agency
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Figure 4.7 shows a screen from the application for viewing a candidate’s details,
demonstrating that a conventional user interface can be developed for an application

based on a triple store database.

Candidte Details 2 ‘ ![-__I

Please select candidate to view [FIEmnn _‘_'J CondidateD I1—__
Sumame |B|0998 Position Required IAH}'
Fitstname lJoe Cunent Salary [zpouo
Address Somewhere =l Required Salary |25UUU
Addskil |
Skills Skills |
=
Phone Numbers 01234 567830 =]
.| DateAdded 102331 on Monday, May 031993

Figure 4.7 Recruitment application

4.5.2.3 Data Explorer Web Interface

One of the features of a binary relational database is the ability to follow links between
instances of data values in the database to discover whether there are connections between
them. Indeed, researchers at Birkbeck College [Tristarp] have developed applications for
clients, taking advantage of this. The web interface shown here [Gje00] was developed at
Southampton and was designed to support such ‘data exploration’ through the triple store

database.
' From a given starting point, such as that shown in Figure 4.8, the user can click on items

as indicated to track down connections. For example, one could click on the name field

to find any other references to the person selected, in this case, Mrs G Wood.
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_;i
person
Fields
Click on the field name to search on that field.
name Mrs G Wood
'salary 41128
\dept (IT
Related
person_telephone (person to telephone)
number (01189) 945971
Navigation: first | prev | next
Options: back | edit
{&] Done || (5F Localintranet

Figure 4.8 Web Interface - Data Explorer

4.5.2.4 SQL Interface

The last interface described here [Cwa00] was designed to explore the possibility of
creating an n-ary relational database view of the data in a binary relational database. The
aim was to design and build a text-based SQL interface. The application comprised three

sections:

e the parsing layer to collect and validate input from the user
e the relational layer to implement the relational database model

e the binary relational layer concerned with interfacing to the underlying triple store

The final system was successfully able to create relational tables, insert data into those

tables and query the tables to retrieve the data, with all data being held in a triple store.
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4.6 Preliminary Performance Comparison

To gain reassurance that the performance of the database was at least acceptable, a short
study was conducted to provide a ‘sanity check’ [Hus99]. The same database was
constructed in the triple store database and in Access, which happened to be readily
available. In order to provide a meaningful comparison, programs were written to access
the programming interface of the triple store database, and were also written to retrieve

data directly from the underlying Jet engine in Access, so bypassing the Access front end.

The study was conducted against an earlier version of the triple store database, which had
not yet had the index added to the lexical store. Nevertheless, the results were
satisfactory. The triple store was faster on some queries and Access was faster on others,
but both were in the same ‘ball park’. The results confirmed that the triple store
performance is certainly comparable with other databases, and may well be faster when
fully developed. In due course, a further comparison should be performed against a more

substantial competitor.

4.7 Other Aspects

4.7.1 Locking and Robust Cursors

The present implementation includes complete physical locking at the block level,
described below in Section 4.7.2. The largest amount of data that is locked at one time 1s
one path through the index (a small number of blocks) together with the target block.

This is adequate for current purposes, but to support multiple users, a stronger approach is
needed. It is intended to explore the use of predicate locking for this purpose, and this is

discussed further in Chapter 6.

A mechanism is already in place to support robust cursors. A cursor may be used to find
the position of data within a block. If unrelated changes are then made to the block,
causing the position of the data to change, the cursor will still return the correct data
should it be required again. To achieve this, a version count is maintained in the block,

which is recorded in the cursor. If the cursor is used again, a check is made to see
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whether the version count in the cursor matches the version count in the block. If it does
not, then changes have been made, and the index is used to re-locate the required data

item. This applies to changes in the leaf and index blocks.

4.7.2 Caching and Storing to Disk

All data is stored to disk, with a caching mechanism within the database to optimize
performance. The cache size may be selected at start up, in terms of the number of data
blocks to be held. One aspect of the performance work has been to understand the best

values for the block size and for the cache size. This is described in Chapter 5.

Each ‘slot’ in the cache can hold one block of data. A ‘status table’ holds a record for

each cache slot. The contents of each record in the table are shown in Figure 4.9.

Number of the block currently stored
Next cache slot in hash chain
Previous cache slot in hash chain
Number of read locks

Write lock indicator

Write to disk required indicator
Next cache slot in LRU chain
Previous cache slot in LRU chain

Figure 4.9 Status table record contents

A division/remainder hashing algorithm is used to locate blocks stored in the cache. The
remainder is used as the index into a separate hash table, which holds the position in the

status table of the start of a relatively short chain of blocks which all have the same hash
result. This level of indirection ensures that the usage of the cache is independent of the

hash number, as well as providing flexibility and improving performance.

When access to a block is required, the block number is hashed, and the hash chain can
quickly be followed through the status table to see if the block is in the cache, or needs to
be fetched from disk, thus avoiding the need to scan the whole status table looking for a
block-number match. (A large cache could contain thousands of blocks.) When a new

block is brought into the cache, a slot will be allocated from the ‘free chain’ (see below).
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The slot in which the new block is stored is added to the front of the appropriate hash

chain.

The status table keeps track of the current usage of the block in each slot. Whenever a
block is accessed, a read or write lock will be placed on it. Multiple read locks are
permitted, and a count is kept of the number active. When a block is released, any lock
held will be released. A read lock count will be decremented, a write lock will be
released, and if the block needs to be written to disk, the ‘write required’ indicator is set.
This mechanism ensures that active blocks are not removed from the cache. When a
flush request is sent to the cache, all blocks with outstanding write indicators set are

written to disk.

The status table also holds a ‘free chain’ of all unused and ‘free’, (i.e. unlocked) blocks.
If there are no unused slots in the cache, the least recently used block with no locks
outstanding will be discarded and the slot re-used. If the block has the write indicator set,
it will be flushed to disk first. When a slot is re-used, it is removed from its old hash

chain and added to the new one.

4.8 Discussion of Alternative Approaches

4.8.1 ldentifiers

There are various strategies that could be adopted for implementing the Triple Store. We
have chosen the identifiers to have two parts - an identifier for the set name (e.g.
PERSON) and an identifier for the individual instance within the set (egid1).

However, an alternative would be to have just the ID and have additional ‘IsMemberOf’
relations saying which ID belonged to which set. This would make for shorter, less
complex IDs, but one would then need to ensure that IDs were unique across the whole
database rather than just within the set, and many more lines would be needed in the

Triple Store.
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4.8.2 Relations

Another debate concerns whether to endow the relation itself with the additional property
of linking two specific sets. For example, one could say that “the relation PTel always

links the sets PERSON and TEL”. This is the approach that has been adopted so far.

Before adopting this strategy, however, one must consider relations such as ‘HasValueOf
or ‘IsOwnerOf’. One might use HasValueOf'to link a set of computer equipment with its

value in pounds:

COMPEQ id1 HasValueOf POUNDVALUE idl.
One might want to use the same relation to link furniture items with their value:
FURN id1 HasValueOf POUNDVALUE id2.
Similarly, one might want to use IsOwnerOf for different purposes:

PERSON id1 IsOwnerOf COMPEQ id3

PERSON id1 IsOwnerOf FURN id4
If one endows such relations with the property of linking specific sets, then different
relations will be needed for each of the above cases: ‘EquipHasValueOf’,
‘FurnHasValueOf’, and so on. If one wanted to establish the value of all items owned by
PERSON _id1, one could not simply follow all of the appropriate IsOwnerOf Relations
followed by the HasValueOf relations, but would have to issue a number of specific
enquiries. In addition to such practical considerations, one must recognize that the
Semantic notion of HasValueOf or IsOwnerOf appears to be exactly the same in all cases

and it might seem preferable to use the same relation to represent the same thing.

One way to implement this approach would be to maintain full identifiers throughout the
triple store. Other ways would involve storing additional information about relations in
the triple store. However, if the relation implies the from-set and to-set, then the triple

store can be significantly reduced in size.
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4.8.3 Sets are Disjoint

Rule 2 implies that sets are disjoint. Is this a constraint, either in the database or in the
real world? The constraint implies that the database designer will have to divide his
world up into sets, which is indeed the normal approach to database design. In the real
world, however, many things belong to more than one set, so that this is not really

satisfactory.

The possibility of using an ‘IsA’ relationship was considered, to relate an object to the
one or more sets to which it belonged, the objects being held as members of a set of the
descriptions of all entities in the universe. One would need to allow m:n mappings from
entity IDs via IsA’s to the description set. Entity ID could then be a member of as many
sets as desired. However, to start with at least, the simplifying assumption is being made
that entities will be members of one and only one set. Most problems can still be solved
by searching on attributes. For example, the set of all photographers can be found by

searching the set of people for those with the skill ‘photographer’.

A further point arises. Relationships need to know which set they are coming from and
which they are going to. This is much more straightforward to implement if there are
distinct sets for each entity type. One could track back through IsA’s to determine set

membership, but this would lead to more complex code and longer pathlengths.

4.8.4 Mappings

At the moment, it appears that the decision to allow only m:1 and 1:1 mappings leads to a
satisfactory solution in all cases. However, this has not been tested rigorously, and
further work will be needed to demonstrate that all four mappings are not actually needed.
The utility of introducing an option to make a mapping mandatory also needs
consideration. For example, there might be a mandatory 1:1 mapping to ensure that each

person was allocated a personnel number.
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5 Optimizing Data Storage for Performance

The preceding chapters have described how a binary relational database based on a triple
store was built, using an object-oriented approach. Several end-user interfaces were also
developed, which demonstrated that conventional paradigms could be used above the triple
store. This in itself was an interesting insight, as it might have been thought that a non-
standard database implies non-standard end-user interfaces. Having established, therefore,
that the database was capable of supporting standard applications, as well as less usual ones
such as the Data Explorer, it was then appropriate to carry out further investigation into the

performance of the database, to see what more general conclusions could be drawn.

One alternative at this stage would have been to code various versions of the triple store
database, and then conduct performance measurements. However, this would have been
extremely time consuming, and could have led to a considerable amount of wasted effort.
The method adopted was therefore to build a model, using an innovative approach, to

explore two particular issues.

The first issue, which is of importance to the current implementation, was to discover the
effect of using more than one sort order to hold the triples in the triple store. Did the

benefit of storing more than one sort order outweigh the cost, and if so, which sort orders

O Lw3 LN 54

The second issue is of significance to all database management systems, and concerns
compression. To what extent can performance gains be made by compressing the data, and
in particular, the non-index data, in a database? This question has become a topic of

interest recently, as has already been mentioned in Chapter 2.

In developing the model, the approach taken was to use the facilities provided by a
spreadsheet. In this chapter, the model is described, and then the results of the two

investigations are presented.
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5.1 The Model

Modelling has been applied to all aspects of computer technology from microprocessors
[Rei98], through I/O Subsystems [Gan98] to cache assignment in databases [Levy96]. The
use of a spreadsheet has also been reported in [Bond96] to reduce analysis and design time
by comparing efficiencies of converters in power electronic circuits. It was decided to

attempt this approach for the present project, to see whether the same benefits could be

obtained.

5.1.1 Summary of the model

The performance model was constructed around operations at the ‘TD’ programming
interface, at which commands are submitted to the database to enter or retrieve entities and
their attributes to or from the database. Specific applications may be developed within the
model by assembling sequences of the operations, and the model is then used to predict
behaviour as various parameters are altered. The first area of application was to determine

the order or orders in which entries in the triple store should be sorted.

5.1.2 Extent and Limitations of the Model

The object of the model was to predict the behaviour of the triple store database under
construction as a guide to continuing design and development. The operating system
obviously caches data underneath its own read/write interface, so for the model, block
retrieval times were determined empirically, as described later. The present model handles

the reading of data only, not updating or deletion, which will follow.

The intention was to develop a valid model that could be used to aid in the design process.
Various characteristics of the machine on which the database is running must be determined
in order to calibrate the model for use in predictive work. A further study could involve
extending the model to predict performance on a variety of machines, but this was not the

current aim.



A secondary aim of this work was to demonstrate that effective modelling can be achieved
relatively economically by using, as far as possible, the standard spreadsheet facilities

provided by a spreadsheet, in this case, Microsoft Excel.

5.1.3 Key Aspects of the DBMS being modelled

5.1.3.1 The cache

Within the database, two caches are maintained, one for triples and one for lexicals. In both
the database and in the model, the block size being used and the size of the cache can be
varied. Early experiments showed that it was worth maintaining these caches inside the
DBMS in addition to the caching provided by the operating system. In the cache, blocks

are maintained using a least-recently-used (LRU) algorithm.

5.1.3.2 Data store sizes

Various application parameters may be supplied to the model. These include:

ns - the number of entity sets in database

ne - the no of entities in sets

na - the no of attributes of each entity

nee - the no of relations between sets

nea - the no of entity-attribute (ea) relations per set

dbr - the no of entity-entity (ee) relations in the database

There are also constant values (Mx) related to the triples and lexicals needed to hold

metadata;

MS = 3 = no of triples to describe one entity set

MA = 8 = no of triples to describe one attribute set and its entity-attribute relation
ME = 5 = no of triples to describe one entity-entity relation

ML = 1 = no of lexical entries to describe one set

MR =2 = no of lexical entries to describe one attribute and its entity-attribute relation

MS (3) triples per entity set; MA (8) triples per attribute set; ME (5) triples per entity-entity
relation; ML (1) lexical entries per set; MR (2) lexical entries per attribute.

From these, the model derives the figures needed. The number of triples in the store (nt),

including the triples needed for the metadata, is given by:-

nt = (MS + ne + na*(MA+ne))*ns + nee*(ME+ne)
= (MS + MA#*na)*ns + ME *nee + ne*(ns*(na + 1) + nee)



The number of lexical entries in the lexical store (nl), including the lexicals needed for the

metadata, 1s given by:-

nl = dbr + ns*(ML + MR*nea + nea*ne)
In addition, system parameters are supplied to the model, including:-

idsize - identifier size

thead - the size of the header in a block in the triple store
lhead - the size of the header in a block in the lexical store
Isize - lexical size

A triple contains 3 ids, so the size is 3*idsize
A triple index entry contains 4 ids, so the size is 4¥*idsize

The user can also vary:-

tbs- the triple block size

Ibs - the lexical block size

packing factors (triple: tpf, triple index: tinpf etc)
internal cache size,

Using these, the model can determine the sizes of the triple and lexical stores, the height of

index trees (a B-tree index is used), likely cache occupancy etc. For the triple store:

Triples/Block: tb = tpf*tbs/(3*idsize)
Triple Index Entries/Block: tieb = ((tbs-thead)*tinpf)/(4*idsize)
Triple Index Height: tih = 1 + RoundUp(Ln(nt/tb)/Ln(tieb))

For the lexical store

Lexicals/Block: Ib = Ipf*lbs/isize
Lexical Index Entries/Block: lieb = ((Ibs-lhead)*linpf)/(liesize)
Lexical Index Height: lih =1 + RoundUp(Ln(nl/Ib)/Ln(lieb))

Finally, parameters are needed for the time taken to retrieve a block of data from the
operating system (bget), and to carry out various processing elements, for example, the
processing time to make one pass through the triple store index (tip) or to handle one triple

leaf node (tip). These were determined by calibration, described later.

Most calculations can be performed using spreadsheet formulae. For some calculations,
Visual Basic code was written. Two macros were used to derive the number of index levels
held in the triple and lexical caches, based on the quantity of data in the database. Two

further macros were used to calculate the number of index nodes present. Standard
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formulae give the height of an index tree, and from this one could calculate the maximum
number of nodes that would be in the tree. However, what was required was to find the
number of nodes actually being used to index the current quantity of data in the database
for each of the triple and lexical stores, a value that might well be far smaller than the

maximum possible number.

5.1.3.3 Data retrieval

To understand how data retrieval is modelled, a central aspect of the operation of the triple
store is summarized again here. The three elements that make up a triple are the Relation
Id (relld or R), the Id of the Entity from which the relationship starts (fromld or F) and the
Id of the Entity to which the relationship connects (told or T). A request at the TD
interface will normally contain two of the three elements (although sometimes only one
element will be supplied). For example, a request might supply the relld and the fromld

and require the told to be found. This will be referred to as a request of the form RF*.

The data in the triple store was initially sorted in the order: R, F, T, and was indexed using
a B-tree structure. As a consequence, a request of the form RF* could be quickly satisfied
via the index, whereas a request of the form R*T could not. In this situation, the DBMS
must use the index to find the start of the relation and then perform a sequential scan.
There are six ways that the data could be sorted, and a major objective of the modelling
exercise was to discover which of these would be the best, and whether there would be
significant benefit in holding the data in more than one sort order. If more than one sort
order were to be maintained, the assumption is that the DBMS would perform a simple
optimization to use the best sort order for a given operation. The cost of performing basic
operations (RF*, R*T, etc.) against each of the six different sort orders is calculated in the

model, and a matrix holds the results.

5.1.3.4 Formulae for triple store

At this stage, the measured values for basic elements are factored in:

tip - Triple index processing time

tlp - Triple leaf processing time

lip - Lexical index processing time

lip - Lexical leaf processing time

tsp - Triple scan processing time

bget- Time to retrieve one block at random from the file system
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Because of the intrinsic symmetry of the situation, only a small number of formulae are

actually required, which are variations of the following:

* Index direct to unique item
For data sorted in the order R, F, T, an operation of the form RF* can use the index to
retrieve the required record from the database. If (tscl) represents the number of index
levels held in the triple store cache, the formula for retrieval time is given by:
time = (ih-1)*tip+tlp+(bget*(ih-tscl))
¢ Index to first in set

For data sorted in the order R, F, T, an operation of the form R*T can use the index to reach
the first record in the required set. Thereafier, the set must be scanned sequentially, looking

for matching records.

time = 0.3*(bget*(ih-tscl))*(1+(nbr*(ifroom)))+ne*tsp)

where ifroom is a conditional expression, which determines how much, if any, space is left

in the cache after all index levels have been cached

ifroom:- if (nbr > tscr) then ifroom = (20/tscr)
else ifroom = 0

* Index to first in triple store, and then scan

For data sorted in the order R, F, T, an operation of the form *FT cannot use any index.

Therefore, the triple store must be scanned sequentially, looking for matching records.
tip + RoundUp(nt/tb)*bget

Similar formulae apply for the lexical store.

5.1.4 Calibration and Validation

5.1.4.1 Block retrieval times

A key parameter of the model is the block retrieval time - the time it takes to retrieve a

block from the triple store or the lexical store. In order to obtain values for the time taken
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to satisfy a request to the file system to retrieve a block, a small calibration program was
developed to write a file of various sizes and then to measure the time taken to retrieve
blocks of various sizes, both randomly and sequentially, on the system being modelled.

This approach treats the file system as a ‘black box’. As would be expected, the file system
itself provides very significant caching; the memory available on the experimental machine
was 64 MB. Part of the exercise was therefore to discover at what point file system caching

became a significant factor, by ranging over varying file sizes and block sizes.

File performance was measured for sequential reads and for random reads, since the triple
store software might result in either being needed. A 100 MB file was used, to reduce the

effects of caching, at least for random access. The results are shown in Figures 5.1 and 5.2.

Variation of Data Rate with Block Size for Sequential Reads
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Figure 5.1 Variation of data rate with block size for sequential reads

In Figure 5.1, it can be seen that for sequential reads, performance improves steadily up to a
block size of 1 KB, and then only slightly more before starting to fall away. Most accesses
to the triple store, however, will result in reading one block at random. The time to retrieve
a block at random is therefore of most interest, and Figure 5.2 shows that this is lowest for a
1 KB block. Sequential scans through the triple store will result in a succession of random
reads, and Figure 5.3 shows that the data rate does improve for larger block sizes.

However, since it is expected that most retrieves will be for a single block, a block size of 1

KB was chosen for the present experiment.
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Figure 5.2 Variation of block read time with block size for random reads
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Figure 5.3 Variation of data rate with block size for random reads

This decision was further reinforced by the findings shown in Figure 5.4, showing the
variation of random read time with file size. A typical request by the triple store would be
for a single triple. A block of 1 KB contains 50 or more triples (depending upon packing
density). A block size of 1 KB gives a significantly faster response than a block size of

2 KB.
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Figure 5.4 Variation of random read time with file size

At file sizes of less than 50 MB, the whole file is effectively loaded into the system cache,
and very fast retrieval times result. From this point upwards, a more regular pattern
develops, which can be approximated by logarithmic formulae. It was decided to use a

block size of 1 KB to give good block retrieval times, and to build data sets which took the

total volume of data towards 100 MB.

5.1.4.2 Processing times

Figures were obtained for processing times by measuring the performance of a sample
database with given parameters. By varying the size of the test database, the size of the

cache and so on, it was possible to factor out times for the various elements needed.

5.1.4.3 Validation

The values obtained from the calibration were used in the model, which was then validated
by comparing predicted times for queries with measured times from the database.
Adjustments were made to ensure that the model reflected known performance to within

10%.
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5.2 Investigating Sort Orders

5.2.1 Results

For this investigation, the model was calibrated against the then current implementation of

the triple store database

at the level of the basic operations, running on a 300 MHz Office

PC, with 64 MB of memory and a 4 GB disk, with Windows 95.

A database was modelled containing two sets, Person and Telephone, linked by a many to 1

(m:1) relationship, so that each person had a telephone number, but telephone numbers

could be shared. A query was set up in the model which took a person’s name and returned

their telephone number.

The model was then run a number of times with varying

parameters to investigate the effect of storing the data in different sort orders. The data

given by the model was

fed straight to the Excel graph facilities to produce Figure 5.5.
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Figure 5.5 Effect of sort order on query times

The graph shows the effect on the execution time of the query of choosing one or the other
of two sort orders - RFT or RTF - to store the data in the database. It also shows what

happens when the data is stored in both sort orders, with the DBMS optimizing the query to
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use the most efficient sort order for retrieval. If both sort orders are included, a dramatic

improvement takes place, shown by the line running just above the horizontal axis.

5.2.2 Discussion

The effect of holding both sort orders in the database is clear. With both orders present, the
need to scan a large number of triples is removed for most queries. Accesses to the triple
store when the relld is not known are comparatively rare, but are discussed later, in the

context of compression.

As a result of this exercise, the triple store database was extended to include the two sort

orders modelled here, and the predicted gains in performance were achieved.

5.3 Investigating the effect of Compression

The subject of compression was introduced in Chapter 2, which highlighted the current
interest in this topic. With the publication of recent papers by other groups, this part of the
research had immediate relevance, to see how results with the triple store would compare

with results in n-ary databases.

5.3.1 Compression in Databases

The most obvious reason to consider compression in a database context might seem to be to
reduce the space required on disk. However, as disk space becomes rapidly less expensive,
this is no longer such an important concern. The more important issue is to see whether the
processing time for queries can be reduced by limiting the amount of data that needs to be
read from disk to satisfy the query. By compressing data, can the number of blocks to be

read be reduced?

Speed-up can come from reducing the number of disk 1/0s, (as long as the CPU cost of
achieving this is not too high) and frequently the only way to do this is by reducing the
number of accesses required in traversing the index. The height of the index tree is given

by a logarithmic formula:-

71



_ Ln(RBlkNum)
Ln(INum)

where H is the height of the tree, RBIkNum is the number of blocks containing data
records, and INum is the number of index entries/block. In other words, there is an

exponential relationship between H and both RBlkNum and INum.

One option is therefore to increase INum by compressing index entries, which is the route
taken in many databases today. The second option, in which we are interested, is to
decrease RBIkNum, by compressing the data itself. In order to reduce the height of the

index tree by one, and thus eliminate one disk I/O, we could calculate

+_ Ln(RBINum")  Ln(RBIkNum') _ 1

H" -
Ln(INum") Ln(INum")

If we assume that INum, the degree of index compression, is the same in both cases, this

simplifies to

Ln(RBIKNum") — Ln(RBIkNum') = Ln(INum)

or

RBIkNum” _
RBIkNum'

INum

So if the number of index entries per block were, say, 100 (a relatively low figure), then to
achieve a consistent performance improvement by reducing the number of disk accesses by
one for all database sizes, a compression factor of over 100 is needed, a fairly aggressive

target!

This sort of analysis might lead one to abandon interest in data compression immediately,
but in fact things are not quite so simple, as the following work will show. Nevertheless,

the basic facts above should be borne in mind and will be discussed later.

5.3.2 Towards a Compression Algorithm

In the triple store, sorting ensures that the first part of the triple will be repeated for

successive entries, which immediately suggests scope for compression. Each entry in the
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triple store contains three parts: the identity of the relationship (relld), the identity of the
entity that the reiationship runs from (fromld) and the identity of the entity that the
relationship runs to (told). The triples are stored in sorted order in two ways: <relld,
fromld, told> and <relld, told, fromId>. Each logical triple is therefore actually stored
twice, and query processing is optimized to use the appropriate sort order depending on the
search criteria. As entity sets increase in size, there are increasing numbers of triples for

each relationship type.

The three identities are each currently represented by a 4-byte integer, which gives a
symmetrical implementation. The tripie store is accessed by means of a B-Tree type of
index. While compression in indexes can be lossy, (if index entries are over-compressed,
the situation can be recovered by retrieving additional data biocks), in the triple store itseif

any algorithm must not lose information.

5.3.2.1 The scope for compression in the triple store

Most queries applied to the database will result in the direct retrieval of one or a small
number of triples by means of the index. The only queries where this is not the case, and a
range of triples is retrieved in sequence, are where the database is being searched to
perform a join on a non-key field (in n-ary terms). The DBMS contains its own cache, and
the size of this will affect the number of blocks that must be read from the disk. Cache size
and block size are parameters in the performance model. If the triples can be reduced in

size, more triples can be held in a block. The size of the index is therefore reduced, and this

1s also modelled.
Two observations are worth making at this point:

1) The number of different rellds in a given database is quite small. In the database
described below, there are fewer than one hundred different relids. The ID
allocation algorithm is designed to pack numbers into as few low-order bytes as
possible, and it is likely that there will be ‘spare’ bytes at the start of the relld that

are never used.



2) A 16 KB block can store about 1000 uncompressed triples at 70% occupancy. The
triples are sorted, so with a packing density for the IDs of 50% (i.e. the IDs are
allocated so that 50% of the numbers in a given range are actually used), the range
of fromlds in a block could be as little as 2000 (Hex 7D0), needing only one and a
half bytes. This figure is even lower if a smaller block size is used. Within one
block, therefore, it is quite likely that the high order bytes will be repeated for many

successive triples.

5.3.2.2 Possible approaches

Two contrasting approaches were considered. The first was typified by an algorithm which
made use of a ‘compression byte’ prefixed to the triple. The bits in the prefix are set to
indicate which bytes in the present triple are repeated from the previous triple, and are
therefore omitted. Application of the algorithm to a sampie triple store indicated that the

store could be compressed to about 60% of its original size.

However, there is a major disadvantage to this approach, which applies in some degree to
compression in most databases. In order to carry out any processing, the block will need to
be decompressed, as the offset of a record depends on the size of the previous records in the
block. While the reduction in size potentially gives a significant reduction in 1/0, the
intensity of processing in the triple store, where relationships are followed from one entity

to another, led to consideration of another algorithm.

The second approach was designed to permit the processing of a block in its compressed
state. The principle is that once the block has been initially compressed, subsequent
operations, particularly binary searches, can be performed on the block in its compressed
state, without needing to decompress it every time, which will clearly benefit performance

considerably. The algorithm used to achieve this was termed ‘the block mask algorithm’.

5.3.2.3 The block mask algorithm

At the beginning of each block, a mask is stored, indicating which of the twelve bytes in
each triple are not constant throughout the block, as shown in Figure 5.6. The next record
in the block contains a full triple, a “starter record’, with the values of the fixed bytes in the

appropriate position. The remainder of the block stores short fixed length records
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containing only the bytes that vary. Each block will contain a different mask, so that the

length of the fixed length records in each block might be different.

Mask 0001 0011 0111
Starter Triple 0010 4000 5000
Subsequent Triples 345987 (= 0013 4045 5987)
. 446678 (= 0014 4046 5678)
...andsoon ...

Figure 5.6 Example of the block mask algorithm

When a block is retrieved into the DBMS, it is then possible to use the mask and the starter
record to reconstruct any individual triple without the need to decompress the whole block.
As described above, the algorithm works in terms of bytes. A further refinement is possible
to store only the bits that change, rather than whole bytes, which allows further

compression to be achieved.

5.3.2.4 Evaluation of algorithm

Application of this algorithm can lead to compression down to a third of the original size of
the triple, or a quarter if bit level compression is being used. Triples are compressed when
being placed in the triple store. For retrieval, the search string is compressed, the required
triple is located in the compressed block (typically using a binary search) and the selected
triple is decompressed when located. The block mask algorithm only needs a few lines of

code to pick up the mask and the starter record, and then apply these to the selected triple.

There are further detailed decisions that a final implementation would require. For
example, it would be possible to insist that each block contained only triples relating to one
relld. This would enhance compression, and if data sets are large so that one relld spans
several blocks, would lead to a worthwhile saving. For a small database, however, this
could result in an unnecessary proliferation of blocks, adversely affecting the performance.

This sort of refinement is beyond the current study, however.
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5.4 Modeliing the Performance Improvement due to Compression

5.4.1 The Database

For this exercise, a database for a wholesaler buying in goods from a number of suppliers,
and shipping smaller quantities to various customers was used. In conventional n-ary
database terms, the database had 8 tables, with a number of relationships between them.
The scenario assumed was that a variety of mainly OLTP transactions would be carried out,

at normal volumes. All queries in the present experiments were read-only.

The 8 tables represented customers, suppliers, orders, products and so on. The average
number of fields per table was taken as 10. This translates into a triple store database with
8 entity sets with 80 attribute sets, requiring 80 different entity-attribute relationships. The
foreign key relationships between the tables translate into 10 entity-entity relationships.

Thus 90 different relationships were required.

In considering the compression ratio achievable, it is necessary to consider the range of
values for various aspects. The following discussion is in terms of a triple store sorted in

the primary order, that is, on relld and fromid.

1) Relld’s: For this database, 90 different ids are required, plus the small number
required to handle metadata. The ids for this could therefore be handled within one
byte. For any database other than the smallest, however, most blocks will contain
triples relating to only one relationship. The relld will therefore compress out

completely, and be held only in the block mask.

2) Fromld’s: Following the discussion in 5.3.2.1 above, 2 bytes will be needed,
which gives a range of 64k for the values of the ids in one 16 KB block. (Ifa
smaller block size is used, the range is reduced. However, the greater compression
is not significant unless very small blocks are used, and the increase in processing

then outweighs the benefit. A 16 KB block size was used throughout this series of

experiments.)
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3) Told’s: If the database is sorted on the first two fields, then the values in the tolds
will be randomiy scattered across the range for each set. For a database up to one
million triples (which corresponds to about 50,000 entities per set or 25 MB of
actual data), 2 bytes will suffice to cover the range of ids; for a database up to 200
million triples and beyond (about 1 million entities per set, 500 MB), 3 bytes will be

needed.

The 12 bytes required before compression can therefore be reduced to 4 or 5 bytes after
compression for this scenario. 1f the compression is carried down to the bit level, then the
fromld could be held in 12 bits, and the smaller ranges for the told could also be held in 12

bits, so the compressed triple could then be just 3 bytes.

In the direction fromlId to told, each triple captures one instance of a m:1 relationship, so
that when the triple store is sorted in the primary order, the third field will not have any
particular sequence, as reflected above. In the inverse sorted triple store, the order is relld,
told, fromld, which represents the relationships in the 1:m order. Successive triples may
now have identical fields in both the relld and the told, and the fromld will be in sorted
order, so that triples can be further compressed. To model this, however, would require
more detailed examination of the distribution of data in the various domains, and this was

not deemed appropriate to the present level of analysis.

5.4.2 Establishing the Model

The size of the cache has a critical impact on performance. As the cache size increases,
more levels of index and more data records can be held in the cache, and the overall

performance will improve. Cache size was therefore varied to see the effect of this as it

interacts with compression.

The vast majority of normal queries involve searches where the relld is known and either
the fromld or the told is also known. In either of these cases, the blocks can be accessed
directly through the index, if both sort orders are held (RFT and RTF). The main interest is
therefore in the retrieval time for such queries. Sequential access to the triple store is
required only for a query where, in traditional RDB terms, there is no foreign key linking

two tables, such as might be used in some decision support enquiries. An example in the
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Wholesale database would be “Find me the suppliers and customers who share a postcode”.
In this case, all or part of the triple store has to be scanned looking for matches.

Compression will obviously speed these searches, and this was also considered.

5.5 Results of Compression Investigation

5.5.1 Direct Access

The model was run for the wholesale database. The cache size was varied, and in each

case, results were recorded for various sizes of database, both with and without
compression. Figures 5.7 and 5.8 show the results for two different cache sizes. The
graphs show the average number of disk accesses required for the retrieval of a triple. A
database operation will often require a number of triples to be retrieved, so that variations

in the number of disk accesses will be evened out, and the average is a useful figure to work
with. The complex interaction between index size, database size and cache size yields local
variations, such as that in Figure 5.8, where both the first two points for the compressed
database show the database almost entirely in the cache, but there is a broad similarity in

the results.

The effect of increasing the size of the cache by a factor of 4 can be seen in the reduction of
the number of accesses by a half to three quarters of one access, depending on the size of
the database. Increasing the cache size would be expected to improve performance, and the

model helps quantify the degree of improvement.

The particular interest, however, is in the effect of compression. Each graph shows the
effect of this, which is to reduce the number of accesses by a significant amount ranging
from a quarter to three quarters of an access. This leads to an improvement by a factor of
almost two in smaller databases, dropping to1.25 in large databases. This result
corresponds to the OLTP situation, where each query looks for a record which may be
unrelated to the previous one, and stands in contrast to the conclusions drawn by Westmann
et al [Wes00], who do not expect compression to improve the performance of OLTP-style

applications.
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Figure 5.7 Triple retrieval time with 256 kilobyte cache
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Figure 5.8 Triple retrieval time with 1 megabyte cache

5.5.2 Sequential Access

For queries which do not involve a significant degree of index access, then compression
produces a straightforward benefit. Each retrieved block contains more triples, in direct

proportion to the compression ratio, and the model confirms this. One therefore sees an
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improvement of 2:1 or better, and this is very much in line with the results from Westmann

et al and Chen et al [Chen01], which both deal with decision support situations.

5.5.3 Discussion of Compression Resuits

The operations that would be carried out by joins in a conventional database are replaced by
operations in the triple store, so that any reduction in the number of accesses has a direct
effect on performance, whether for a single query or for a sequence of related operations.
The block-mask algorithm permits processing to be carried out on compressed data,
yielding a very efficient join mechanism. The effect of this has been modelled, and shown

to produce significant benefit.
In the case of sequential operations which would be needed for decision support queries,
the results obtained demonstrate an improvement by a factor of two. However, it has also

been shown that this approach would benefit OLTP queries, giving a reduction in the

number of disk accesses by a factor in the range of 1.25 to 2.

The conclusions to be drawn are considered in the final chapter.
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6 Conclusions and Discussion

This chapter is divided into four parts. Section 6.1 draws the threads together on the effect
of compression on performance, where this research has led to some interesting
discoveries. In Section 6.2, the benefits of approaching modelling by using a spreadsheet
are weighed. Attention then turns, in Section 6.3, to the achievements of the present
implementation of the triple store database, and further developments are considered.

Finally, Section 6.4 addresses the question “Could the future be binary relational?”

6.1 Effect of Compression on Performance

The result of particular interest is the impact of compressing the non-index information
held in the triple store. Previous research, discussed in Chapter 2, has tended to suggest
that the cost of compressing and decompressing non-index data accessed randomly, as in
an OLTP application, outweighs the benefit of compressing data to reduce the amount of
disk access. What has been shown here is that, with a suitable algorithm, the processing
cost can be contained, and database access times can be reduced, with a reduction in the

number of disk accesses by a factor in the range of 1.25 to 2.

How does this compare with the results in [Wes00] and [Chen01]? They both dealt with
decision support databases, in an n-ary DBMS, with Westmann et al seeing performance
improve by a factor of 2, and Chen et al suggesting improvement by a factor of up to 10.
For the decision support scenario, the triple store can certainly match the lower figure, and
there are ways to improve this further, which are discussed below. However, neither
Westmann et al nor Chen et al present results for OLTP, but Westmann et al suggest there
would be no improvement here, partly because of the high cost of insertion using their
approach. As long as an n-ary architecture is adhered to, these conclusions seem very

reasonable.

What has been demonstrated is that by using a different architecture, it is indeed possible
to use compression to speed up OLTP queries. With an n-ary database, the approaches

taken are to compress different attributes in different ways, and then enhance the other

81



parts of the DBMS, especially the optimizer and the execution engine to deal with all the
various possibilities. With the triple store, one compression algorithm is needed, and
vitally, the algorithm developed then allows processing to proceed without the need, in

general, to decompress triples. A very uniform implementation thus results.

OLTP applications vary widely in the ratio of reading versus updating the database.
However, most transactions involve reading data initially to present data to the user
(customer information, flight details and so on) and then at the end of a transaction some
data may be written back to the database. Retrieval therefore usually constitutes at least
50% of the activity, and often much more, with insertions or changes making up the
balance. If the cost of compression on insertion is high, as in the Westmann et al approach
where specially formatted tuples are developed, even a small proportion of insertions will
clearly be a problem. However, in the triple store, the cost of compression on insertions is
not high, due to the nature of the algorithm and the integration with the DBMS. It is

perhaps not surprising, therefore, that a different result will be obtained.

6.1.1 Further Compression in the Triple Store

At present, the model takes no account of locality of reference, so is actually unduly
pessimistic. One of the advantages of fully decomposing data in the current
implementation is that related items will be stored in close proximity, so that data is
automatically clustered. This is because the whole of a binary relation is stored together in
the triple store. In practice, therefore, it is expected that the results would be better than

predicted by the model.

Further work should certainly include consideration of the additional effect of
compression on the indexes. The uniformity of the implementation means that the same
code is used to handle both the blocks in the triple store and in the index to the triple store.
Any compression algorithm will therefore benefit both, and a further modelling exercise

should capture the effect of this.

There is also the possibility of extending the degree of compression. The current

assumption is that all data domains are large, but in practice, some are quite small. In the
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extreme case of a binary domain (e.g. Male, Female), compression down to one bit per
triple is possible, as follows. If a block contains one relation, and if fromlds are densely
packed, then the initial fromld can be held in the block header, as well as the relld. If the
rest of the block is considered as an array, each bit in the array could represent the
monotonically increasing set of fromlds held in the block. Each bit could then be set to
indicate whether the told took one or other of the two possible values. This would give a
compression factor of almost 100 (12 bytes down to one bit). This could be generalized
and implemented on a block by block basis. If in the range of one block, the third field
only uses two bits, even if the potential domain is larger, the block could be compressed to
this level while retaining the higher level advantages of the triple model. This degree of

compression would have a major impact on the performance of all types of queries.

The idea outlined above would lead to an automatic optimization of compression, which
ties in with the idea of a self-tuning database. The triple store appears to offer significant
scope for this. For instance, it would be possible to adapt the allocation of identifiers in
response to the size of sets of data in order to keep number ranges compact, and the fact
that data is automatically clustered has already been mentioned above. Exploration of the

extent to which the database could be made self-tuning would be an interesting further

avenue to explore.

6.2 Performance Modelling with a Spreadsheet

The approach taken to building the performance model was to use a spreadsheet,
Microsoft Excel, rather than building a model from scratch. The spreadsheet certainly
provides an excellent framework within which to work, and provides many built-in
routines to perform calculations. However, it soon became clear that it was necessary to
be fairly sophisticated in the use of the spreadsheet, by using multiple sheets and by
naming and carrying variables and values from one sheet to another, for example. It was
also found necessary to code some routines which could not be achieved using spreadsheet
formulae. While this is perfectly possible using VBA (Visual Basic for Applications), the

novice spreadsheet user would have a further significant learning curve to travel.



The model proved versatile and easily extendable when new questions arose, and this was
a major benefit. A spreadsheet provides a natural interface for holding and organizing
large numbers of parameters which may then be varied. In contrast, the risk of coding a
model from the ground up is that all of the requirements may not be understood at the
outset, and it then becomes hard to change some of the basic assumptions. Excel also

provided ready-made facilities for presenting results.

However, constructing the model was not the only part of the exercise. Calibration proved
to be a time-consuming activity, as the machine on which the database was running had
first to be characterized, which required long running times to load up large datasets, and
then many measurements were taken using the database. This time would have to be
spent, regardless of the construction of the model. The process of calibration did, though,
ensure that the performance of the database as it then stood was examined systematically

and became better understood than might otherwise have been the case.

The initial motivation for developing the model was to provide guidance for design
decisions, and in particular, whether it would be worth adding the code to support more
than one sort order in the triple store. Success was demonstrated through the investigation
into sort orders using the model, and the results were subsequently corroborated when the
database code was extended to support two sort orders, as indicated by the model.
However, the model proved its full worth when 1t became the tool for conducting the

wider investigation into the area of compression.

There is obviously a limit to the depth and accuracy to which it is worth developing a
model. If too much time is required for model construction and calibration, it might be
quicker to develop a new version of the subject of the modelling exercise, the DBMS in
our case, and examine that. However, if one wants to examine a number of alternative
approaches, the idea of building all of them becomes too expensive, and modelling
provides the practical solution. On balance, the approach taken worked well, and
permitted a model to be developed in a timely fashion which delivered the required

results.
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6.3 The Triple Store — Achievements and Further Work

This research has resulted in a new and very effective implementation of a database
management system. From the outset, the intention was to keep the design as simple and
pure as possible, and the architecture described in Chapter 4 achieves this. Other new
aspects include the caching algorithm, the compression techniques, and the demonstration

of the variety of interfaces that can be supported.

Section 6.3.1 assesses the outcome with respect to the expectations set in Chapter 1, and
indicates areas for further work. Section 6.3.2 discusses the aspect of object-orientation in
the triple store database. Section 6.3.3 outlines in detail one specific area where further

work is essential, that of concurrency.

6.3.1 Demonstrating the Advantages of the Triple Store
Implementation

In Chapter 1, the following advantages of basing a binary relational database on a triple

store were proposed, and it is now appropriate to consider them again.

* The triple environment is essentially uniform, leading to efficiency and economy

* A considerable amount of processing can be carried out within the triple store
itself, without manipulating a large number of data items

* The underlying model needs relatively simple code to access and maintain the data

* The uniformity of the triple store yields very significant compression opportunities

e The triple store also has the potential to be made completely self-tuning, which
would be a significant benefit for both larger and smaller users.

* The uniform data structure is easier to spread onto multiple disks for parallelization

With regard to the first three of these points, the implementation which has been described
in this thesis demonstrates their veracity. The fourth point, regarding compression, has
been explored extensively, and described in the preceding chapters and sections. The fifth
point concerns the extent to which the database can be made self-tuning. This was

discussed in Section 6.1.1, with regard to the selection of the degree of compression in
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force. It is intrinsic to the design of the implementation that there are very few
parameters, and it would be a worthwhile area of study to pursue this aspect further. The
final point, regarding parallelization, has proved to be beyond the scope of the present
work, but is still believed to be applicable. This would be a fruitful area for further work,

given the increasingly widespread availability of parallel hardware in one form or another.

6.3.2 The Triple Store Database and Object Orientation

The decision was made at the outset of this project to use an object-oriented approach
throughout. The design reflects this, and all of the coding has been carried out in C++. As
a result, it would be a very natural step to use the triple store database as the basis for an

object-oriented database management system (ODBMS).

One of the distinguishing aspects of an ODBMS is that all objects are uniquely identified
by an object identifier (OID) rather than using one of the data items as an identifying key
as in an n-ary relational database. Each entity in the triple store database has its own
identifier, so that this fundamental mechanism is in place. In addition, relationships
between entities in the triple store are also dealt with entirely by the use of the identifiers,

as needed 1n an ODBMS.

More work would be needed to develop the database into a full ODBMS, but the present

implementation would provide an excellent foundation on which to build.

6.3.3 Concurrency Control in the Triple Store

Another area which needs to be the subject of further work is concurrency control. Some

thought has been given to this, which is presented in the following section.

A problem arises in databases as soon as the database is to be used by more than one user.
Multiple users may attempt to access the same data at the same time and there is the risk
that data will be updated inconsistently. In order to achieve isolation, and maintain data
integrity, some locking mechanism must be introduced. The first user to access a piece of
data will lock the data until changes are complete, and any other user must wait until the

first user unlocks the data again.
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Much research has been carried out over the years on the best way to achieve such
locking, as described in [Gray93] and [Bha99]. Predicate locking was first proposed by
[Esw76], and in theory would give the most effective form of locking, providing isolation
and dealing with the problem of ‘phantoms’ (see below). However, there are practical
difficulties in implementation, and a trade-off has to be made between concurrency and
overhead. Other techniques, most commonly some form of granular locking, are normally
used. There has been intensive study of how these work out in theory and in practice. In
[Sing97], for example, there is a detailed analysis of locking behaviour in three real
database systems, which demonstrates the need for database administrators and designers

to have an awareness of what is taking place inside the DBMS.

There remains the question of whether there are any circumstances in which it might be
possible to implement a predicate locking scheme. In [Kell96], a predicate-based caching
scheme for client-server databases is described, which returns to the idea. Their
implementation is more optimistic than predicate locking, and is similar to precision locks.
A long-term goal of the work on the triple store is to discover whether an efficient

predicate locking scheme could be implemented in this environment.

6.3.3.1 Predicate locking

When implementing a locking scheme, a decision has to be made about what to lock.

One approach is to lock a part of the physical or logical database, depending on which part
the user is trying to access. For example, one could lock the entire database, a table (or
set) in the database, an individual record, or a field within a record. An alternative
approach is to analyse the query being made in terms of the predicates. If the user wants
to work with data relating to people with blue eyes and fair hair, there is no need to lock
all of the ‘people’ records in the database, but only the records that satisfy the predicate <

eyes = “blue” AND hair = “fair”>. This is known as predicate locking.

One needs to be aware that another query using only part of the first transaction’s
predicate, perhaps seeking to raise the salaries of all blue-eyed boys (<eyes = “blue”>),
could also interfere with the first transaction, so that the predicates need to be compared

carefully, but if correctly implemented, predicate locking guarantees isolation.
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Predicate locking also deals with the problem of phantoms. Suppose that transaction T1 is
updating the salaries of all blue-eyed boys. Using a physical locking scheme, one could
lock the records relating to all of the blue-eyed boys in the database before starting the
update. However, this would not then prevent a second transaction T2 starting which
could add new blue-eyed boys to the database, while T1 was still executing. These new
records, not locked by T1, are known as phantoms, and there are other circumstances in
which phantoms can arise. Predicate locking will prevent this, as T2 would not be

allowed to start since its predicate conflicts with T1.

6.3.3.2 Predicate locking problems

[Gray93] describes the following three shortcomings of predicate locks

1) Execution cost. The predicate lock manager has to test for predicate satisfiability
as an inner loop of the locking algorithm. Predicate satisfiability is known to be
NP-complete — the best algorithms for it run in time proportional to 2", This is not
the sort of algorithm to put in the inner loop of another algorithm

2) Pessimism. Predicate locks are somewhat pessimistic. In other words, to ensure
isolation, the mechanism may lock more of the database than is actually necessary,
as it is impossible for the algorithm to comprehend constraints that exist on the
actual data.

3) In general, it is difficult to discover the predicates.

6.3.3.3 Predicate locking in the triple store

The intention is to implement a predicate locking scheme within the Triple Store. This
will be a further investigation beyond the current thesis, but discussion is included here as
indication of future direction. The triple store is a unique platform from which to
investigate the issues further, because of the elegant simplicity of the design, which

extends to the inclusion of all metadata within the uniform structure of the database.

One of the dangers of predicate locking is of excessive interference between locks in the
index. In the case of the triple store, this might seem even more acute at first sight
because there are only two indexes — one for the triple store and one for the lexical store.

However, the requirements are eased by two factors.
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1) Short sequential scans are often needed through the triple store to find a record.
During these scans, the root of the index need not be locked for long, as it can be
released once the search has started. Triples within a block are chained together,
and the links can be followed, except when moving to a fresh block.

2) It is intended to implement an optimistic scheme of refining locks, to improve
speed. When transaction T1 is started, locks will be held at a gross level. When
transaction T2 starts, if there is a lock conflict, then T1°s lock will be refined to the
point where there is no conflict with T2. If'this is not possible, then T2 will wait

until T1 has finished, and so on.

As a result of the unified architecture, it should be possible to launch any operation at any
time, including the addition or removal of sets. Updates to the dictionary (metadata) will

be treated like normal transactions.

6.4 Could the Future be Binary Relational?

The binary relational database is an idea which continues to draw interest. This is shown
not only by the number of research efforts which keep coming back to it, but also by the

fact that commercial vendors find themselves drawn back to the idea, as described in

Chapter 2.

One of the underlying reasons is possibly the fact that fully decomposing data leads to the
ability to develop a solution with elegant simplicity. The triple store implementation, for
example, permits very powerful processing with relatively few lines of code. This code

also supports the metadata, and the indexing mechanisms.

It is not at all clear that the debates that were taking place in the 1970s about how to
structure databases (see Section 2.1.8) were really resolved. Rather, they were overtaken
by the events in which large companies started rolling out relational databases. In spite of
their enormous power and widespread use, these n-ary relational databases have been
found wanting in various respects, which is why work has continued on object-oriented
and object-relational databases. Further consequences are that in analytical processing,

databases are found to need star or snowflake schemas, in which data is deliberately de-

normalized.
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The present project has extended or complemented previous work in various ways. To
take just two examples, Copeland and Khoshafian [Cop85, Kho96, Kho87] used only one
sort order in their implementation, whereas two sort orders are employed here on the triple
store, and potentially on the lexical store as well, which has been shown to be highly
beneficial. Monet [Bon96] uses Binary Association Tables, which appear to introduce a

great deal of redundancy, whereas in the lexical store described here, data values are held

just once.

In Section 2.1.8, it was shown how the binary relational view is a very attractive approach
at the logical level. The search for ways to provide an efficient implementation in
software to support this logical view has led ultimately to the triple store described here.
Given the simple and elegant solution that results, the question now is whether it would be
a better underlying mechanism to support some of the other views of data, for example, n-
ary or object-oriented. The present work has shown that it is perfectly possible to build a
variety of interfaces above a triple store, and the separation of data from relationships has
all sorts of benefits. As the n-ary relational bandwagon finally starts to slow down, it may

well be that the day of the binary relational database i1s about to dawn.
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Appendix A

A.1 General Rules

This appendix specifies the public interface of the Triple Store Database System. This
interface includes the td classes and the cursor classes.

A.1.1 Naming conventions

* Abbreviations
* The following abbreviations are used in constructing names

* Entity ent, e
* Lexical lex, 1
* Relation rel, r

e Capitalization - Standard C++ naming convention ...
* Function names are fully qualified

A.1.2 Data types

The following data types appear in the functions
esld Entity set id
Isld  Lexical set id

A.1.3 nold and anyld

These can stand in the position of any of the above identifier types

anyld an identifier of any id
nold an identifier of no id

e anyld: is equivalent to the * (wildcard) character used in other systems
* nold: if a function which requires identifier arguments is presented with ‘nold’, the

function will do nothing.

A.1.4 Statements about cursors

o All have first, next, valid members, which return 0 if cursor is validly located, and 1 if
not.
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A.1.5 Database Integrity

Use of the database functions on a valid database guarantees maintenance of the following
integrity constraints

All relations are based on existing sets

All entities belong to valid entity sets
All lexicals belong to valid lexical sets

A.2 Typical Usage of td

Example
// A database called ‘db’ has been established

eld myFromEnt;
eld myToEnt;

/I Code to set myFromEnt to some value

myToEnt = db.toEntld(myRel, myFromEnt); // Get ToEntld
if ( !myToEntId.valid()) { .... // Ent 1d Not Valid - Handle error  }
/I Carry on .....

A.3 Database Operations

Note: ** beside a function denotes a user convenience function, constructed from the basic
functions

td::td (const char* lexical file name, const char™ triple file name)
Open a database

td::~td ()
Close a database

void td::info (int lexical info_level, int entity info_level )
Provide ‘trace’ information in cout
* info level=0 Function puts out no info
* info level =1 Function puts out summary info
* info level>=2  Function puts out more detailed info

void td::info (int info level ) **
Provide ‘trace’ information for both entities and lexicals at the same level
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A.4 Dictionary - Set Operations

esld td::addEntSet (const char® entity set name)
Add a new entity set or locate an existing one
Returns: id of the entity set created or found

Isid  td::addLexSet (const char* lexical set name)
Add a new lexical set or locate an existing one
Returns: id of the lexical set created or found

void  td::delSet (esld entity set id)
Delete an entity set

void  td::delSet (IsId lexical set id)
Delete a lexical set

esld td::entSetld (const char* entity set name)
Get set id for an entity set
Returns: id of the entity set

Isid  td::lexSetld (const char® lexical set name)
Get set id for a lexical set
Returns: id of the lexical set

Note: In calls of the following type, the user supplies a pointer to the area
where the name is to be put. For convenience, the call returns the same

pointer, although strictly, this is redundant.

char* td::setName (esid entity_set_id, char* entity set name)
Sets the name of an entity set into entity set name
Returns: the char array entity set name

char* td::setName (Isid lexical set id, char* lexical set name)
Sets the name of a lexical set into entity set name
Returns: the char array lexical set name

A.5 Dictionary - Relation Operations

eerld td::addeeRel (const char* relation name, esld entity from_set id,
esld entity to_set id)
Add a new entity_entity relation between two existing sets
Returns: id of the relation added

eerld td::addeeRel (const char* relation _name, const char* entity from_set name,
const char* entity_to_set_name )

Add a new entity entity relation between two existing sets
Returns: id of the relation added
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elrld

elrld

void

void

void

void

eerid

elrid

char*

char*

esld

esld

td::

td::

td::

td:

td::

td

td::

td:

td:

td::

addelRel (const char* relation_name, esld entity set id, IsId lexical_set_id)
Add a new entity_lexical relation between two existing sets
Returns: id of the relation added

addelRel (const char* relation_name, const char® entity _set name,
const char* lexical_set_name )
Add a new entity lexical relation between two existing sets
Returns: id of the relation added

deleeRel (eerld entity entity relation  id)
Delete an entity _entity relation

:deleeRel (const char* entity entity relation name )
Delete an entity_entity relation

delelRel (elrld entity lexical relation id)
Delete an entity lexical relation

::delelRel (const char* entity lexical relation name )
Delete an entity lexical relation

eeRelld (const char* entity entity relation name )
Get entity _entity relation id
Returns: Entity to entity relation id

:elRelld (const char* entity_lexical relation_name )
Get entity lexical relation id
Returns: Entity to lexical relation id

::relName (eerld entity entity relation id, char* entity entity relation_name )
Get entity _entity relation name
Returns: the char array entity entity relation_name

::relName (elrld entity lexical relation id, char* entity lexical relation name )
Get entity to lexical relation name
Returns: the char array entity lexical relation_name

:fromSetlId (eerld entity entity relation id)
Get from_set_id for an entity to entity relation
Returns: Entity set id of the relation from_set

fromSetld (elrld entity lexical relation_id)

Get from_set_id for an entity to lexical relation
Returns: Entity set id of the relation from_set
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esld  td::toSetld (eerld entity entity relation_id)
Get to_set_id for an entity to entity relation
Returns: Entity set id of the relation to_set

Isid  td::toSetld (elrld entity lexical relation_id)
Get to_set _id for an entity to lexical relation
Returns: Lexical set id of the relation to_set

char* td::fromSetName (eerld entity entity relation_id, char* entity from set name) **
y_entity _ y_irom
Get from_set_name for an entity to entity relation
Returns: the char array entity from_set_name

char* td::fromSetName (elrld entity lexical relation_id, char* entity from set name) **
Get from_set_name for an entity to lexical relation
Returns: the char array entity _from_set name
char* td::teSetName (eerld entity entity relation_id, char* entity to set name) **
Get to_set _name for an entity to entity relation
Returns: the char array entity to_set name

char* td::toSetName (elrId entity lexical relation id, char* lexical to _set name) **
Get to_set_name for an entity to lexical relation
Returns: the char array lexical to set name

A.6 Data - (Entities)

eld td::addEnt (esld entity_set_identifier)
Add an entity to an entity set
Returns: id of the entity added

eld td::addEnt (const char* entity set name) **
Add an entity to an entity set
Returns: id of the entity added

void td::delEnt (esld entity _set identifier, eld entity identifier)

Delete an entity from a set

A.7 Data - (Lexicals)

11d td::addLex (IsId lexical set identifier, const char* lexical value)
Add a lexical to a lexical set
Returns: id of the lexical added

1d td::addLex (const char* lexical_set name, const char* lexical value) **

Add a lexical to a lexical set
Returns: id of the lexical added
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void td

void td

void td

lid td

lid td

A.8 Da
void td

void td

void td::

void td::

void td::

void  td::

eld td::

elld td::

::delLex (IsId lexical_set_identifier, IId lexical_identifier)
Delete a lexical from a lexical set

::delLex (IsId lexical_set_identifier, const char* lexical value) **
Delete a lexical from a lexical set

::delLex (const char* lexical set name, lid lexical identifier) **
Delete a lexical from a lexical set

::lexId (IsId lexical set_identifier, const char* lexical value)
Get id for a lexical value
Returns: id of the lexical value

::lexId (const char* lexical set name, const char®* lexical value) **
Get id for a lexical value
Returns: id of the lexical value

ta - (Connections)

::addCon (eerld entity entity relation identifier, eld entity id, eld entity_id)
Add a many-one connection between two entities

::addCon (elrld entity lexical relation_identifier, eld entity_id, IId lexical_id)
Add a many-one connection between an entity and a lexical

addCon (elrld entity lexical relation_identifier, eld entity id,
const char* lexical_value) **
Adds a lexical value to a lexical set and
adds a many-one connection between an entity and that lexical

addCon (const char* entity lexical relation name, eld entity_id,
const char* lexical value) **

Adds a lexical value to a lexical set identified by name and
adds a many-one connection between an entity and that lexical

delCon (eerld entity_entity relation_identifier, eld entity id, eld entity_id)
Deletes a many-one connection between two entities

delCon (elrld entity lexical relation identifier, eld entity id, 1Id lexical_id)
Deletes a many-one connection between an entity and a lexical

toEntld (eerld entity entity relation_identifier, eld entity id)
Returns the entity id of an entity in the ‘to’ set, given the relation id
and the entity id of the entity in the ‘from’ set
Returns: An entity id

toLexId (elrld entity lexical relation identifier, eld entity id)
Returns the lexical id of a lexical in the ‘to’ set, given the relation id
and the entity id of the entity in the ‘from’ set
Returns: A lexical id
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char* td::toVal (elrld entity lexical relation identifier, eld entity id, char* lexical value )
Returns the value of a lexical in the ‘to’ set, given the relation id
and the entity id of the entity in the ‘from’ set
Returns: the char array lexical value

A.9 Cursors

Cursors to do: What they do

entSetCursor Move between entity sets in a database
lexSetCursor Move between lexical sets in a database
eeRelCursor Move between e-e relations in a database
elRelCursor Move between e-1 relations in a database
entCursor Move between entities in a set

lexCursor Move between lexicals in a set

(Returns in alphabetical order within set)

entEntCursor Move between connections in an entity-entity relation
entLexCursor Move between connections in an entity-lexical relation

All cursors include first, next, valid members, which return:-
0 if cursor is not validly located

Examples

1) To loop through a set of values:

entSetCursor esc(db);

for(esc. first(); esc.valid(); esc.next()) {
// Do something

}

/[ Continue
2) To test values explicitly:

curVal = elTPers.first(myRel, anyld, myEntid); // Cursor to first entity
if (curVal == 0) {

cout << " Cursor not valid" <<endl;

/I ... take action

}

// Continue

Lexical Set Cursor

lexSetCursor::lexSetCursor (td &database)
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Create a cursor to move between lexical sets in a database

int lexSetCursor::first ()
Locate the first lexical set in the database

Isid  lexSetCursor::setld ()
Retrieve the id of a lexical set
Returns: id of the lexical set that the cursor locates

int lexSetCursor::next ()
Locate the next lexical set in the database

int lexSetCursor::valid ()

Returns the state of the cursor

Other cursors follow the same pattern.
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