UNIVERSITY OF SOUTHAMPTON

An Adaptive Encoding of Geometric Shapes suitable for

Aerodynamic Design using Genetic Algorithms

By
Robert Andrew Law

Thesis submitted for the degree of
Doctor of Philosophy

SCHOOL OF ENGINEERING SCIENCES, FLUID-STRUCTURE
INTERACTION RESEARCH GROUP
April 2002

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCES

SCHOOL OF ENGINEERING SCIENCES, FLUID-STRUCTURE INTERACTION
RESEARCH GROUP

Doctor of Philosophy

An Adaptive Encoding of Geometric Shapés suitable for Aerodynamic Design using
Genetic Algorithms

by Robert Andrew Law

Natural evolutionary systems exhibit a complex mapping between the genetic encod-
ing carried by cells, to the body and form of a living species. The nature of this
mapping facilitates the hereditary transfer of parental features to offspring through
genes. Adaptation to this mapping occurs during the reproduction process, when
parental chromosomes are blended together, and random mutations creep into this

process.

Genetic Algorithms, which mimic evolutionary processes such as natural selection,
reproduction, and survival of the fittest, can be applied to the problem of aerody-
namic design, by breeding shapes together in the hope of finding better ones. Fixed
chromosome structures are currently used to map the genetic encoding adapted by
the Genetic Algorithm, to a geometric language that can be used to describe shapes
such as airfoil sections or wings. To adequately encapsulate high quality aerodynamic
shapes, large numbers of genes are required by this mapping at significant expense to
the evolutionary process.

Suitable methods that reduce the computational time required to evolve aerodynamic
shapes, may be sought by using an encoding that can add necessary detail to shapes,

and adapting the complexity of its description.

In this thesis, the complexity and adaptation of shape encoding is explored. A dis-
tributed Genetic Algorithm has been created over clusters of networked PC’s to per-
form aerodynamic optimisation. Different representations for describing shapes have
been used to design airfoil sections. In order to reduce computational cost, meta-
modeling techniques were successfully implemented to predict which newly created
shapes will be useful to the Genetic Algorithm, repairing breeding errors to increase
design survivability. An object orientated chromosome framework has been devel-
oped, to facilitate adaptation of both genes and chromosome structure by Genetic
Algorithms. A mnew hierarchical crossover operator is explored on evolving simple
curves from straight lines, by adapting the complexity of the chromosome mapping
used by Genetic Algorithm. Finally, the new adaptive encoding is exploited to evolve
aerofoil sections, resulting in improvements to design quality and performance cost.

i

Contents

Abstract

Table of Contents

List of Tables

List of Figures

Nomenclature

Glossary of Terminology Used
Acknowledgments

Dedication

1 Introduction

1.1 The Evolution of Shape

1.1.1 Evolving Aerodynamic Shape
1.1.2 Towards Shape Adaptivity

1.2 Aims and Objectives
1.2.1 Objectives
1.3 Layout of Thesis

2 Background

iii

ii

iii

ix

XV

xvii

XX

xx1

~N Ot Ot ok W -

2.1 Design by Evolution L 9

2.1.1 Adaptation and Natural Selection 10

2.1.2 Reproduction and Genetics 11

2.2 Artificial Evolution and The Genetic Algorithm 14

2.2.1 Evolutionary Algorithms 15

2.2.2 The Genetic Algorithm 16

2.2.3 Searching for the Optima 20

2.3 Approaches to Aerodynamic Shape Optimisation 23

2.3.1 The Application of GAs to CFD Optimisation 26

2.4 Representation and Parameterisation of Shape for Evolutionary Design 28
2.4.1 Airfoil Representation and Parameterisation in Shape Optimi-

sationo 28

2.4.2 Interpolation Functions 30

2.4.3 Three Dimensional Description of Aerodynamic Bodies 32

2.5 Evolving Geometric Complexity 34

2.6 SUMMArY . . .« o o e e e e e 36

Evaluation of Fluid dynamic Characteristics 38

3.1 Ducted Thruster Units 39

3.2 Characteristics of Propellers 40

3.3 Description of Aerodynamic Forces 41

3.3.1 Lift . .. 42

3.32 Drago e 44

3.3.3 Pitching Moment 44

3.4 Computational Analysis Techniques and the Panel Method 45

3.4.1 The Panel Method 46

3.4.2 Solution of Panel Characteristics 47

3.5 XFoil - Viscous Coupled Potential Solver 48

3.5.1 Laminar Boundary Layer Approximation 49

3.5.2 Implementation of the Turbulent Boundary Equations 51

3.5.3 Location of Transition 52

iv

3.5.4 Implementation of Boundary Layer Calculation and Prediction

of Drago 53

3.5.5 Parameterisation of XFoil for Optimisation 54

3.6 Unstructured Cell Vertex Euler Solver 56
3.7 SUMINATY .« . v v v v e e e e e e e 57

The Formation of Species and Optima Finding with Genetic Algo-

rithms 58
4.1 The Canonical Genetic Algorithms 58
4.1.1 The Bump Problem 59
4.1.2 GA initialisation, establishing generation zero 60
4.1.3 Parental Selection oL 64
4.1.4 Reproduction 69
4.1.5 Death 70
4.1.6 Implementation 70
4.2 Performance Evaluation of the Canonical Genetic Algorithm 71
4.3 Maintaining Population Diversity 74
4.3.1 The Island Genetic Algorithm 74
4.3.2 The Concept of Niche Formation 77
4.3.3 Specification of Key GA Parameters 81
4.3.4 Analysis of Speciation and Optima Finding 83
4.4 SUMMATY . . o v o v v e e e e e e e e e 87

Distributing Expensive Objective Function Evaluations over an Of-

fice PC Network 88
5.1 Introduction to Parallel Genetic Algorithms 88
5.2 Utilising Existing Computational Resources to Create a Commodity
PC Network Suitable for Fast CFD Computation 89
5.2.1 Creation of a Dual use computational facility 90
5.2.2 Evaluation of the computational resource 92
5.2.3 Cluster performance issues concerning dual boot implication . 102
5.3 Robust marine CFD on a dual-use distributed network 103

5.3.1 Teaching Load on Network 104

vV

5.3.2 Failure Modes 1056

5.3.3 Consequence of CFD Calculation Failure 105
5.3.4 Robust CFD Control Strategy 106
5.3.5 Control process 106
5.3.6 Control Implementation on an Euler Solver 107

5.3.7 Control Process for Genetic Algorithm Search with Panel Solver 110
5.4 SUMIMATY © « o o v v v et e e e e e 111

Evaluation of airfoil shape parameterisation Using a Genetic Algo-

rithm 112
6.1 Evaluating the Performance of Airfoil Sections Suitable for Ducted

Thruster Units e 113

6.1.1 The Cost Function 114

6.1.2 The Genetic Algorithm 115

6.1.3 Issues Concerning the Coupling of XFoil with the GA 116

6.2 Spline Representation Techniques 118

6.2.1 B-Spline Parameterisation 118

6.2.2 Bezier Representationso 121

6.3 Analytical Functions o oo 125

6.4 Efficient Parameterisation Through Ortho-Normalised Aero-Functions 132

6.4.1 Construction of the orthogonal set 134
6.4.2 Implementation of Ortho-Normalised Aero-Functions in Shape

Optimisation 138

6.5 The Performance of Different Parameterisation Approaches 140

6.6 Sensitivity of a B-Spline Representation to Parameterisation 142

6.7 SUIMMATY o ot e e e e e e e 144

Adaption of Chromosome Complexity 146

7.1 Hierarchical Chromosome Framework 148
7.1.1 A Persistent Asynchronous Distributed Computing Environ-

ment via JINI-JavaSpaces 151

7.1.2 A Robust Farm-Worker Spaced Based Implementation 153

7.2 Hierarchical Crossover and Adaptive Mutation of a Line 154

vi

7.2.1 Hierarchical Crossover 155

7.2.2 Hierarchical Mutation - Gene Addition and Deletion 159
7.2.3 Application of GA to evolve complexity of a simple curve . . . 161
7.3 Adapting the Complexity of a B-Spline curve 165
7.3.1 B-Spline Knot Insertion and Deletion 167
7.3.2 Implementation of Knot Insertion Within Complexity GA . . 168

7.3.3 Application of Adaptive Encoding on Aerodynamic Shape Op-
timisation 170
T4 SUMIATY« oo e e e e e e e 172
8 DNA Repair for Infeasible Offspring 175
8.1 The Effects of Representation on Lethal Crossover 176
8.2 Neural Network Classification of Infeasible Space 178
8.2.1 Feed Forward Neural Network 179
8.2.2 Classification using a Multi Layer Perception Network 179
8.2.3 Training the Network 180
8.2.4 Classification of Infeasible Airfoil Shapes 181
8.3 Meta-Modeling Using a Gaussian Process 182
8.3.1 Gaussian Processes Lo 182
8.3.2 Gaussian Regression of the Bump Problem 183
8.3.3 Integration of Prediction Models with a Genetic Algorithm . . 184
8.4 Application of Airfoil Classification Service to GA Chromosome Repair 187
8.5 SUIINATY o e e e e 190
9 Conclusions and Recommendations 191
9.1 Conclusions e 191
9.2 Further Conclusions and Observations 193
9.3 Recommendations 194
REFERENCES 198
APPENDICES 210

vii

Adaptive KMEANS Algorithm

Genetic Algorithm Implementation

B.1 Genome Management Classes
B.2 Breeding Classes
B.3 Genetic Encoding Classes

Normal Mode Analysis

Java Implementation of Adaptive Chromosome Encoding

Implementation of Gaussian Process

viii

211

212
212
216
217

218

220

223

List of Tables

10
11

12
13
14

15

A Sample of the Number of Chromosomes Found in Several Species . 12

Different Types of Mutation 14

Performance of Various Selection Schemes on 2D Bump problem (5

Samples) 72
Performance of Various Selection Schemes on 5D Bump problem (5
Samples) 72
Performance of Various Selection Schemes on 20D Bump problem(5
Samples) 72

Effect of Migration Rate and Interval on an iGA (6 demes of size 50) 77

Importance of Deme Size on an iGA (migy,, = 20, migrge =0.2) . . T8

Communication Speedup Performance of Synchronous and Asyn-
chronous GA on Modified Bump Problem 101

Airfoil Reconstruction Error from using Ortho-Normalised Aerofunctions139

Resultant Best Drag Results Obtained from each Representation . . . 141
Coordinates of the line problems considered 162
Hierarchical Encoding Limits for Curve Points 163

Performance of Adaptive Line Tree Mutation when Compared with a
Simple GA Implementation 164

Resultant Airfoil Performance Obtained Using Complexity BSpline En-
coding

ix

List of Figures

0 = O T A W N

10
11

12
13
14

15
16
17
18
19
20

21

Schematic Illustration of the Crossover process 13
Schematic Diagram of the Main Processes in a Genetic Algorithm . . 17
Simplified Flow Diagram for a Simple Genetic Algorithm 18
Hypercube Representation of GA Search Space Encoding 19
Search Space Representation Featuring Several Local Optima’s 22

Process for the calculation of cost sensitivities via the adjoint formulation 26

Mutation of a Primitive Type 35
Automated Design Process Lo 35
Ducted Thruster Unit 40
Components of Forces acting on an Airfoil 42
Upper and Lower Surface Pressure Distributions for a NACA0012 Air-

foillat CpL,=0.6 e 43
Velocity potential at a point away from a vorticity distribution 47
XFoil Drag Polar Reconstruction for a NACA0012 Airfoil 55
XFoil Pressure Distribution Reconstruction for a NACA0012 Airfoil at

Cr=00 e 55
2D Bump Problem oo 60
Stochastic Universal Sampling Scheme 68
Two Point Crossover Scheme 69
Implementation of the Canonical Genetic Algorithm 71
Typical Population Convergence (popsize 50, nGens 40) 73
Convergence of the Bump Problem with Tournament Selection (pop-

Size 50) 74
Implementation of the Island Genetic Algorithm 75

22
23

25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47

48

49

Deme Topology and Migration Strategies 76
Immigration Control Algorithm for iGA (+1+2 Strategy) 77
Optimal Found with Deterministic Crowding (popSize 100, nGen 300) 81

Convergence of the Bump Problem with Niching (popSize 100) 82
Effect of Niching (popSize 100, nGen 300) 82
Search Trace of Best Members (popSize 100, nGen 300) 83
Rate of Species Creation for a Non-Niching GA 85
Rate of Species Creation for a Niching GA 86

Fitness Distribution of New Species vs Overall Best and Average Fitness 86

Schematic Diagram of the Departmental Teaching and Research Network 91

Distributed Upwind Algorithm 95
Semi-Scheduled Message Passing Algorithm 96
NACA 0012 Uniform Wing 97
Computational Domain for NACA 0012 Uniform Wing 98
NACA 0012 Uniform Wing Mesh 98
Mach Contours NACA 0012 M, =085 99
Speedup performance of Euler Solver on PC Cluster 100
Parallel efficiency of Euler Solver on PC Cluster 100
XOR RAID Process 108
Distributed XOR RAID Communication Process between 8 Processors 109
XOR RAID Recovery Process 110
Speedup Performance for Euler Solver Using Regular RAID Tree Merge
of Local Data 111
A Misleading Solution that Appears as a Good Solution. 117
Poor Constraint Consideration May Lead to Unpractical Optima’s . . 118
Limits used for B-spline representation with resulting section 120
Optimised b-spline section by perturbating ordinals about a reference
SECHION 120
Resultant best sections from implementations of full and delta param-

121

eterisations

Comparison of optimised pressure distributions 122

Xi

50

51

592
53
54

55
56
57
53
29

60
61

62

63

64

65

66
67
68
69
70
71
72
73
74

Resultant section when allowing BSpline poles to move in x and y
directions 122
Pressure distribution attained by allowing BSpline poles to move in x
and y directions oL 123

The resultant Optimised Section from a Bezier Spline Representation 124
Pressure distribution obtained using the Bezier representation (Cr = 0.6)124

Comparison of optimised Bezier sections obtained using an iGA (Cf =

0.6) .« o o 125
Superior convergence obtained through island Genetic Algorithm . . . 126
NACA Series Shape Functions 127
Ortho-normalised modes of NACA Series Shape Functions 128
Resultant sections obtained using orthogonal functions 129
Optimal section of the orthogonal representation exceeds the delta b-
spline boundaries Lo Lo 129
Optimised pressure distribution from orthogonal representation . . . 130
CL = 0.3 Result with Tangential Geometric Condition Applied to
Leading Edge o 131
CL = 0.6 Result with Tangential Geometric Condition Applied to
Leading Edge 131
Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV
Thruster Unit, C;, =0.3 o 132
Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV
Thruster Unit, Cp, =06 133

Original Proposed Section formed through a rotated Kaplan K4-70

Section v e e e e 133

Drag Polar Comparison of Optimised Sections for Reversible Section . 134

Basis Airfoils for Constructing the Orthogonal Set 135
Additional Basis Airfoils for Constructing the Orthogonal Set 135
Basis Functions for Gram Schmidt Process 136
Basis Functions from Additional Basis Airfoils 136
Ortho-Normalised Airfoil Functions Modes 1-6 137
Ortho-Normalised Airfoil Functions Modes 7-10 138
Resultant Section Obtained using Ortho-Normalised Aerofunctions. . 140
Effect of adding more control points to B-Spline parameterisation . . 143

xii

75
76

77
78

79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101

Hierarchical relationship between Form, Surface, Curve and Point entities148

Adapting a line into a curve using a B-Spline representation, under the
Hierarchical Framework this adaption can use two mutations, one to
add the extra genes (new Point), the other to mutate the new genes .

Hierarchical Implementation of a Simple Curve Chromosome

Adaption of Hierarchical Curve Chromosome by Adding New Genes in
the Form of an Extra Point

New shapes can easily be created once new points have been added

Simple JavaSpace Model of Farmer-Worker
JavaSpace Farm Implementation within GA Evaluate
Algorithm for JavaSpace Worker
Chromosome Structure for a Set of Connected Lines
Parent gene exchange via sub-tree swapping
Hierarchical crossover at sub-level
Hierarchical Crossover Algorithm
Point Crossover Implementation
Algorithm for Hierarchical Crossover about Common Gene Points . .
The effect of sub-tree deletion on a simple curve
Line Curve Point Insertion Algorithm

The effect of sub-tree addition on the curve and defining chromosome
structure oL Lo Lo s e

Evolution of fitness
Number of unique individuals in each population
Number of similar genes shared between breeding parents
Crossover efficiencyo
Reconstruction of NACA0012 using GA with Fixed Encoding

Reconstruction of NACA0012 using GA with Adaptive Encoding . . .
NACAO0012 Reconstruction Convergence for Fixed Gene Encoding . .
Reconstruction of NACAO0012 using Powell’s Direction Set Method . .
Airfoil Optimisation Convergence Using Complexity BSpline

Number of Genes Used per Generation in the Evolution of Cf = 0.6
Complexity Airfoil

149
150

173

102 Resultant Airfoil Section from Using Complexity BSpline Representation173

xiii

103

104

105
106

107
108
109
110
111
112
113
114
115

116

117
118
119
120

121

122

123

Resultant Airfoil Pressure Distribution Obtained Using Complexity
BSpline Representation L. 173

Resultant drag reduction from perturbation method, and the effect of

increasing the search space on infeasible solutions 177
Effect of different representation methods on infeasible solutions . . . 177
Objective surface for using first two orthogonal modes of the ortho-

normalised Aerofunctions at Cr, =06 178
Infeasible Search Space (no solution obtained from Xfoil) 181
Neural Network Prediction of Infeasible Space 182
The Bump Function 184
Gaussian Process Metamodel of Bump Function 185

The Absolute Difference Between Bump Metamodel and Bump Function185

Distributed Genetic Repair and Identification Algorithm 187
Distributed Airfoil Classification Service 188
Airfoil Regression L 189
The effect of airfoil repeir L. 189
A Simplified UML diagram showing hierarchical relationships of the

main classes that implement the GA 213
Population reinsertion scheme implementation for Crowding control . 213
Genome fitness scaling implementation UML 214
Parent selection scheme implementation UML 214
UML diagram of fitness evaluation via a penalty scheme 215

UML Diagram of the Hierarchical Chromosome Encoding Framework
Used to Adapt Encoding Complexity 221

UML Diagram of the Complexity Based B-Spline Encoding Implemen-
tation . . . L. e e

Airfoil Encoding Using Complexity Based B-Splines for the Upper and
Lower Curves e

Xiv

NOMENCLATURE

c foil chord length

Ch drag coefficient

Cy skin friction coefficient

Cr lift coefficient

Cu moment coeflicient

Cp pressure coefficient

D drag force

fr numerical flux

F flux vector with components f, g, h

H boundary layer shape factor

L lift force

M pitching moment

n normal vector

D pressure

q dynamic pressure

Q torque

Re reynolds number

S control volume face area

t time

T thrust

u scalar quantity
U state vector

U Free Stream Velocity

v velocity with Cartesian components u, v, w
v disturbed velocity

14 vector of primitive variables, volume, velocity
T,Y, 2 cartesian coordinates

o angle of attack

0* boundary layer displacement thickness
Q control volume

L doublet strength

XV

I BT S A

velocity potential
total velocity potential
density

source strength

angle, boundary layer momentum thickness

Xvi

GLOSSARY OF TERMINOLOGY USED

Adaptation: The general advance in a members ability to survive within a changing

environment.
Allele: An element found at a specific position (locus) on the chromosome.
Chromosome: Rod-shaped bodies in the nucleus of a cell, which contain the genes.

Classifier System: Dynamic, rule based systems that are capable of learning and

classifying information sets.

Crossover: A process by which genetic information is exchanged between chromo-

somes.

Deme: An independent population of evolving members based on a migration model.

DNA: Deoxyribonucleic acid, a double stranded helix structure of base pairs that

determine the makeup of protein during embryology.

Elitism: A process by which the most fit members from one generation are copied

to the next.

Fitness: A user defined measure that is used by the Genetic Algorithm to determine

how well a candidate performs against the objective function.

Gene: An encoding for the synthesis for a protein that can be passed from parent

to offspring.

Genetic Algorithm: An evolutionary algorithm based on the mechanics of natural

selection and survival of the fittest.

Genetic Programming: An evolving computer algorithm based on the principles

of the Genetic Algorithm.

Genome: A member of an evolving population that contains the total genetic infor-

mation of the organism.

Genotype: The genetic construction of the design variables contained within the

chromosome.

Xvii

Gradient Method: Local optimisation algorithms based on the first partial deriva-

tives of the objective function.

Hamming Distance: For two binary vectors, the Hamming distance is the number

of different positions.

Infeasible: A solution that cannot be fully obtained through the fitness function.

JavaSpaces: A persistent distributed Java implementation for the exchange of ob-

jects between Java processes.

Meta-Modeling: A pseudo model that attempts to represent real information or

models.

Migration: The transfer of an individual from one sub-population to another.

Natural Selection: The result of competitive exclusion as organisms compete to fill

a finite resource space.

Neural Network: An artificial implementation of the data processing capabilities

of brains on a computer.
Niche: The set of possible environments that permit survival of a species.

Objective Function: A user defined function used by the GA to determine the

fitness of a candidate.

Penalty Function: A constraint handling function that depreciates objective per-

formance depending on the violation of constraints.

Parameterisation: The definition used to determine the range and length of the

design variables, and hence the size of a members chromosome.

Phenotype: Resultant features of a members genetic makeup such as colour, height

and shape.

Population: A group of individuals that may interact with each other within an

evolutionary process.

xviii

Representation: The process of constructing the object whose fitness is to be mea-

sured from its chromosome.
RMI: Remote Method Invocation, a distributed Java server implementation.

Schema: A schema describes a subset of all binary vectors of fixed length that have

similarities at certain positions.

Species: A population of similarly constructed organisms, capable of producing fer-

tile offspring. Members of one species occupy the same ecological niche.

XixX

ACKNOWLEDGEMENTS

I would like to thank the staff and students of the Fluid-Structure Interaction Research
Group for their help and friendship throughout this work, and Dr. Denis Nicole
for his advise and assistance in creating the distributed computing facility. I would
particulary like to thank Dr. Steve Turnock for his boundless support and enthusiasm
for my work, especially through difficult times, and various extended escapades across

the world.

I would especially like to give thanks to Carren Holden of BAESYSTEMS who in-
troduced me to this wonderful field of research. She has become a great friend since
we met at Airbus, and who's inspiration and the countless enthusiastic discussions on

this subject, has helped to guide and shape the direction of my work.

Mere thanks is not enough acknowledgement of how much support my parents have
given me over the past four years. Nor to my friend and best man Alistair, to whom

I am grossly in debt (literally), for the number of drinks he has bought me to support

the burden of postgraduate life.

Finally, to the patience and love of my wife Louise, who’s countless support I have

depended on so much, it is to her I dedicate this thesis.

This work has been supported by BAESYSTEMS, and an EPSRC grant.

XX

To Louise

xXxi

Chapter 1

Introduction

The world we live in exhibits complexity and richness beyond our level of compre-
hension. We are surrounded by complex objects, whether they are biological such as
ants, birds, fungi, elephants, or human made like a car, a telescope, or an aircraft.
What differentiates these objects from other simple objects such as rocks, planets,

and clouds is that in some way their design appears to have evolved around purpose.

It is not that a rock, cloud or planet cannot have a purpose, indeed rocks are used
to provide terrain or shelter, clouds provide weather systems, and planets provide
habitation and resources that are a necessity for life. What differentiates these objects
from others like cars, jellyfish, birds etc., is that their design does not appear to have
been influenced by any useful purpose such as transportation or survival. Instead,
they are just clouds of tiny particles, lumps of uniform matter like crystals, or piles

of matter haphazardly arranged into the planet, mountains, and clouds that we see.

A car, however, is designed specifically to transport people and objects. It consists of
many other specifically designed components like a body, four wheels, a crankshaft,
pistons, and a combustion chamber. What is more interesting about these components
is not just that they too have been purposely designed, but that they all interact in
unique ways with other components. Therefore a car is a collection of objects that

purposely interact with one another to satisfy their combined purpose.

On the other extreme, the purpose that a bird serves is less transparent. If one accepts

the Darwinian argument that the purpose of a species is to survive and pass on its

genes to further generations through breeding, then we can easily accept that the
purpose of the birds wings are not deliberate, but a consequence that was able to help
the bird in its greater purpose. The fact that wings can make a bird fly is amazing by
itself, and even more so when considering their design. Feathers which are particular
to that species, have become a common component in the wing construction. The
design of the feather changes slightly depending on their location on the wing and
species of bird. Yet they work seamlessly together with the wing bones, muscle, flesh
and other feathers to provide a bird with the means to fly with perfect aerodynamics

and control when compared to the latest human flying contraptions.

If complex objects are merely a consequence of purpose, then the components of an
aircraft do not by themselves justify a complex system capable of flying, any different
to a mountain being a collection of objects. To actually fulfil the purpose, the aircraft
components must be put together in one of only several out of millions of arrangements

This is the miracle of evolution. So many things can go wrong!

1.1 The Evolution of Shape

Natural evolution is a system found in nature that many naturalists believe to have
had great bearing on the evolution of prehistoric living organisms, into the natural life
that we know today. Although we have only a basic insight into the actual mechanics

of such a complicated system, evolutionary mechanisms borrowed from nature can be

employed in artificial evolutionary processes.

Evolutionary Algorithms (EA) [1] attempt to mirror the fundamental processes of
natural evolution, and have been applied to a variety of design search problems. Such
algorithms use processes such as natural selection, and reproduction to ensure that
productive traits are propagated into future generations. Movement in the direc-
tion of improvement, and successful combinations of design properties from several
members are ensured through artificial analogies to natural selection, survival of the
fittest, and sexual reproduction. Although evolutionary algorithms can outperform

traditional optimisation approaches when applied to problems such as aerodynamic

design, they have yet to produce any design that exhibits the characteristics of com-

plexity dominant in the man made objects that have changed our way of living today.

1.1.1 Evolving Aerodynamic Shape

In aerodynamic design, a slight change in the shape of a body may have complex and
even chaotic non-linear effects on the resulting flow system. For example, in the design
of an airfoil, aerodynamicists may push the trailing edge surface for improved drag
performance, at the risk of introducing flow separation at other speeds of operation.
Such responses can easily cause search processes to become trapped where neither
search direction can offer any improvement over the existing design. Such a design
point is known as a local optimum. No search algorithm is immune to such traps,
although one type of evolutionary algorithm, the Genetic Algorithm (GA) has proved
to be significantly more robust in searching such an environment than traditional
approaches. This ability has allowed GAs to find more novel and significantly better

designs than other search processes when applied to aerodynamic shape optimisation

problems.

The main restriction to the use of Genetic Algorithms in shape optimisation is the
associated cost of evaluating each design candidate. A means of easing this cost has
focused research efforts in two areas: more efficient algorithms that can find good
solutions with fewer design evaluations, and more efficient shape descriptions that
require fewer design variables to be specified by search processes. Both of these
quests carry a risk of deteriorating the ability of the Genetic Algorithm to find the

optima.

One important motivation of evolutionary design that has been almost forgotten by
the aerodynamic design community is the synthesis of adaptation. The introduction
of such an important feature in shape design, could allow the iterative adaption of
shape to arbitrary complexity. The benefits to the design process that this feature
could offer include: the creation of complex shapes from simple idea’s or components;
the ability to traverse larger search spaces; a decoupling of the search algorithm’s
relationship with the initial design, and its definition; the reuse of solutions; solution

adaptation to changes in the objective environment; the potential to search complex

spaces more efficiently.

One of the main bottlenecks in shape adaptivity in traditional applications of GAs for
shape optimisation, is the fixed pre-defined coupling between the language and words
used to define a shape, and its genetic implementation used in GAs to apply breeding
and mutation operations. The description of curves and surfaces is well known, and
a variety of methods are available to ensure that accurate geometric representations
are well defined. This rich knowledge base provides a suitable platform from which to

explore the adaptability of shapes using GAs in a shape optimisation environment.

1.1.2 Towards Shape Adaptivity

To write down the form of a circle, one may choose to describe its properties in terms
of the coordinates of its centre, and the length of its radius. For a very different
shape such as a square, the coordinates of each vertex may be used. However neither

description would be sufficient to describe a square with arced sides.

In order to describe all these objects, we may need to adopt a more complex language
of description. One such language may use four arcs, describing a circle as a collection
of arcs of the same curvature, and a square as a collection of arcs of infinite curvature.
Now, this language can adequately include our box with arced edges, as well as a whole
collection of other four sided shapes. However, to go on describing even more complex

shapes such as hexagons and stars, we would need to add more arcs to this language.

Two and three dimensional shapes can be constructed from a variety of descriptions
including primitive forms such as arcs, circles and lines, to interpolated curves such as
those used in Computer Aided Design (CAD). However, when such shape representa-
tions are used for the purpose of adapting a shape in an evolutionary cycle, thought

must also be given to the manner in which these shapes can be mutated and bred
together.

To evolve shape within a computer assisted evolutionary system, the following oper-

ations are required.

e A language for describing shapes.

ot

o The ability to mutate shapes.
e A means of breeding shapes together.

e A measure to evaluate the performance of one shape relative to another.

This work focuses on the first three of these requirements, paying close interest to the
range and geometric sensitivity of the shape description scheme used when applied
to a simple airfoil design problem. An airfoil may appear to be a relatively simple
shape, but in the presence of a flowfield, its shape becomes the critical component of
a complex non-linear system. A slight shift in position or change in shape will effect
the entire flow system surrounding the body, from affecting the forces acting on the

body, to creating chaotic turbulent flows.

The particular question under investigation in this work, is how to improve the adap-
tiveness and complexity of an evolving shape. Through such an improvement, a
potentially larger search space can be explored, without significantly increasing the
number of designs that need to be evaluated during the evolution process. Complex-
ity, shape refinement and sensitivity can be sought, that would not have been possible

without using a large number of design parameters in previous implementations.

Previous research [2][3][4][5], has tended to focus on how a shape should be described
in a GA process for efficiency reasons. This work is set out to examine how a descrip-

tion for shape can best support adaptation.

1.2 Aims and Objectives

The aim of this work is an improved language for describing the form of shapes used
in an evolutionary based aerodynamic design process. Both the language and its

complexity should be allowed to adapt in order to define high quality aerodynamic

shapes.

1.2.1 Objectives

In order to attain this aim, the objectives of this work are to:

understand the performance and limitations of a Genetic Algorithm in evolving

simple language descriptions;

establish a cheap distributed computational platform for evaluating aerody-

namic designs sampled during an optimisation process;

produce and optimised aerofoil and investigate the effectiveness of different ge-

ometric representation techniques in supporting the evolution of aerodynamic
shapes;

develop a framework for adapting the complexity of a language, and demon-
strate the ability of a Genetic Algorithm to use this framework to evolve com-

plexity;

evolve shape complexity using a Genetic Algorithm and incorporate this facility

into an aerodynamic optimisation process;

explore new opportunities to reduce the computational cost of aerodynamic

evolution, without depreciating search performance.

1.3 Layout of Thesis

The application, background, and motivation for using Genetic Algorithms with aero-
dynamic design methods is introduced in the next chapter, with reference to concerns
and observations made throughout the research community into the quality of shape
that can be evolved by such a system. Methods for representing curves for airfoil

description are reviewed and possible approaches and limitations towards improving

shape adaption explored.

Chapter three presents the development of a Genetic Algorithm for searching difficult
optimisation problems. Focus is given to the problem of population diversity mainte-
nance to ensure tolerance towards local optima traps. The convergence and dynamics
of evolving populations are explored to encourage adaption and robustness, through

the application of a variety of speciation schemes.

In chapter four the performance of a distributed computational platform built from a
network of Office PC’s is discussed. The speedup performance and platform stability
of the network is evaluated on a parallel CFD problem. An efficient asynchronous
communication algorithm has been developed for the GA to make effective use of the
network for aerodynamic shape optimisation. To address problems concerning PC
network reliability and robustness within an office environment, a scalable backup
facility has been developed to allow the quick backup of distributed data using a

process motivated by disk raid storage.

A study into the use of several geometric modeling techniques with Genetic Algo-
rithms is given in chapter five. The ability for each representation to obtain smooth
airfoil shapes is investigated, following application of a GA to several aerodynamic
design problems. A new representation technique based on ortho-normalised airfoil
function analysis has been developed and tested on an airfoil design problem us-
ing the GA. A novel design problem seeking a reversible airfoil whose performance

characteristics are equal in either flow direction, was also explored using the GA.

Chapter six investigates the problem of adapting the language used to describe shape,
to improve the design range and adaptiveness of the evolution process on shape design

problems. A framework is proposed to facilitate this adaption, and includes several

object based genetic operators to assist in breeding different shapes together. A
hierarchical chromosome framework is implemented for the encoding of curves that
ensures the principle of gradual evolution. The new chromosome is allowed to adapt
its genetic complexity by adding and deleting new genes. Several curve reconstruction
problems are explored using the new encoding, starting from a simple line defined
by just two points. Finally, the adaptive encoding is applied to aerodynamic shape

optimisation based on a B-Spline representation.

To approach the problem of infeasible shapes produced by the crossover process, that
can lead to non-convergence in the CFD analysis, a form of genetic repair is explored
in Chapter seven. A meta-modeling process is proposed to predict aerodynamic
analyse failure, so that wasteful computation in obtaining fitness results for airfoil
shapes can be avoided. A Multi-Layer Perception model and a Gaussian Process was
applied to classification and regression problems involving fitness landscapes. The
gaussian process was also applied to predicting evaluation failures in aerodynamic
shape optimisation.

Chapter eight concludes the research presented in this work, and draws on observa-

tions made from this research, and recommends new directions for future research.

Chapter 2

Background

This work is concerned with the idea of “Design by Evolution”, and in particular
on the properties, characteristics and environment necessary to form highly adapted
aerodynamic shapes. In this chapter, a foundation into evolutionary shape optimisa-
tion is given, and issues affecting the adaptation of shape discussed, defining the key

areas of research detailed by this thesis.

2.1 Design by Evolution

Establishing the behaviour and characteristics that determine whether a system is
complex or not, is a subject of much debate. Dawkins [6] indicated that ‘design
for purpose’ would provide a good guideline towards this question. It is easy to
understand that an eye may have evolved from the purpose of enabling animals to
survive better assisted by sight, whereas it seems more difficult to accept that the
precise layout of rocks evolved from a need for mountains and hills. However, design
for purpose alone is not enough to define whether an object is complex or not. For
example, would one call an object such as a hammer complex? The hammer is a well-
evolved design, which originally introduced its function to mankind as a rock. Today,
hammers are well balanced, consist of a heavy head and a light handle designed to pass
maximum kinetic energy from the hammer to the object being struck. Dawkins went

onto refine his definition by suggesting that hierarchy or composition of components

10

that interact with each other to fulfil their mutual purpose could be a characteristic
of complexity.

Nature needs no understanding of its complexity to marvel at its creation. Complex
organisms live, learn and adapt to their environment, passing on their instincts and
habits from parent to offspring in their quest for survival. So inept, it is hardly
surprising that we have little understanding of how nature really works. Thankfully,
through generations of scientific discovery, humans have gained some insight into this
remarkable design process, harnessing knowledge of genetics - the building block of
life; a basic concept of evolution - life’s design process; molecular biology - material

for creating life; and neural networks - the essence of intelligence.

The fundamental key to the evolution of every living organism is the heredity transfer
of genetic information from parent to offspring through genes. Through the applica-

tion of this process over millions of years, nature has found a way to create the most

complex and precise living organisms.

2.1.1 Adaptation and Natural Selection

Part of the theory of evolution is a concept called ’Adaptation’. This refers to living
organisms, and the assets that enable them to survive and reproduce. Darwin [7],
demonstrated this concept by illustrating the characteristics of a woodpecker. Its
beak allows them to make holes in trees, giving them access to food all year round,
and the ability to make nests within their holes. Their long tongue allows them to
find insects inside the tree hole for food. Their tail is stiff, and enables them to brace,

short legs and long toes can grip the bark. The moulting of feathers leaves the most

essential feathers until last.

The catalyst of adaptation is the preservation of useful variation, however slight. Any
variation that may help an individual to survive, find food, attract a mate, produce
offspring etc., with a higher chance of survival, if captured and passed on to offspring
through inheritance will help that species to adapt to its environment. This principle,

by which slight variations if useful, are preserved, is called Natural Selection.

In natural selection certain individuals will make more of a contribution to the next

11

generation than others because of their better adaption to the environment. If these
attributes can be passed from parent to offspring, then over time they will increase

in occurrence and will therefore cause population change to occur.

Individuals of all species must fight for their share of the common resources that
they depend on to survive, denying the environment of their destruction. Individuals
must compete for resources against members of their own species, as well as from
other species. Variations that help to achieve this purpose, are occasionally captured
through inheritance, and passed on to offspring. Selection will operate on survival
amongst individuals of all genotypes, or those individuals that produce higher num-
bers of offspring, thereby operating on the basis of fertility. Darwin concluded in his

work “On the Origin of Species” that,

“each at some period of its life, during some season of the year, during
each generation or at intervals, has to struggle for life, and to suffer great
destruction. When we reflect on this struggle, we may console ourselves
with the full belief, that the war of nature is not incessant, that no fear
is felt, that death is generally prompt, and that the vigorous, the healthy,
and the happy survive and multiply.” Darwin, C [8].

2.1.2 Reproduction and Genetics

In the natural world, no two individuals are the same. Identical twins may share the
same genetics, but are never exactly alike. This uniqueness comes partly from genes
which act as guidelines in determining the way we look and how the body works.
Genetics is the branch of biology concerned with studying heredity and variation.
The word heredity simply means the transmission of characteristics from parents to
their offspring, while variation means the observable differences between all living
things.

During reproduction, genes are transferred between parent and child. Chromosomes
carry the genes in a linear line up pattern, like a string of beads. The number of
chromosomes are different between species as shown in Table 2, however, in mammals

it is always an even number. This is because, chromosomes come in pairs, one from

12

Table 2: A Sample of the Number of Chromosomes Found in Several Species

SPECIES No. OF CHROMOSOMES
Human 46

Chimpanzee | 48

Dog 78

Horse 64

Fruit Fly 8

Pea 14

the mother, and the other from the father. A single parent will only be giving their

offspring half of their own genetic recipe.

Genes are made up of acid molecules called Deoxyribonucleic acid or DNA. These
molecules consist of chemical units called nucleotides. Nucleotides always come in
pairs forming the characteristic double helix; two strands that intertwine with the
nucleotide pairs forming links across the middle. From genes, proteins are created via
several intermediate stages of which the main two stages are known as transcription,
where a copy of the DNA is made using ribonucleic acid (RNA), and translation
where the amino acids required to make the protein are fixed together. The amino
acid coding for the proteins is what ultimately will enable an adult body to develop

from an egg cell, through a process called embryology.

Offspring receive their gene makeup by inheriting genes from each parent via a pro-
cess called reproduction. Recombination involves a process in which complementary
stands of two parental duplex DNA, bind and exchange genes forming hybrid DNA.
First, copies are made of each parent chromosome by separating the helix strands
of the parental DNA to act as templates for the synthesis of the complement. The
parental duplex is replicated from the original DNA to form two daughter duplexes,
each consisting of one parental stand from the original unwound DNA helix, and a
newly synthesised strand. The two daughter strands are then recombined to form a

complementary pair via a process called crossover.

Figure 1, illustrates the crossover process involving two daughter strands where a
stretch of Hybrid DNA is formed through the recombination intermediate (when a

single strand crosses over from one duplex to the other).

The formation of hybrid DNA, requires the sequences of the two recombining duplexes

a)
oo v v o v oo viovVvio v v 1o
00 A A 0 A 0 0O A 0O A 0O A A O

!

Recombination intermediate

Recombinants

=
=
=
=
==}
=
=
=
-
=
=
=
=
=

Figure 1: Schematic Illustration of the Crossover process

13

Table 3: Different Types of Mutation

14

Type of Mutation | Original Sequence | Mutated Sequence
Subsitution ATCGTTAGGC | ATCCTTAGGC
Deletion ATCGTTAGGC | ATCGGGC

Insertion ATCGTTAGGC | ATCGTCCATAGGC
Inversion ATCGTTAGGC | ATTTGCAGGC
Duplication ATCGTTAGGC | ATCGTTCGTTAGGC

to be close enough to allow pairing between the complementary strands. Where

genetic differences exist, correction is attempted to repair damage to DNA.

During this process of replication, errors may accidently occur, known as mutation.
Synonymous or silent mutations are those that occur between two codings for the
same amino acids that have no effect on the protein sequence. Non-synonymous or

meaningful, point mutations do change the amino acid.

For a more detailed description of genetics and the recombination process, the texts

of [9] and [10] are recommended.

2.2 Artificial Evolution and The Genetic Algo-

rithm

Natural evolution is adept at discovering highly precise functional solutions to par-
ticular problems posed by an organism’s environment. Although the mechanics of
evolution are highly complex, several key processes such as natural selection, recom-

bination and mutation, continuously emerge as key components in natures iterative
optimisation cycle.
It is quite natural therefore to describe evolution in terms of an algorithm that can

be used to solve difficult non-linear engineering optimisation problems. It is this goal

that has lead to a relatively new field of computing; Evolutionary Computing.

15

2.2.1 Evolutionary Algorithms

In general, since evolutionary algorithms are based on a simplification of the organic

model, several characteristic properties are generally shared amongst them.

1. Search is a parallel process provided through a collective population of learning
individuals. Each individual represents a point in the search space of potential

solutions to the problem.

2. Descendants of individuals are generated by stochastic processes based on mod-

els of mutation and recombination.

3. Natural selection is modeled to ensure that good genetic traits propagate from
one generation to another. This generally involves a stochastic process that
mimics survival of the fittest by means of comparing individuals performance
in their environment. Such a selection process favours better individuals to

reproduce more than those that are relatively worse.

Although most evolutionary computing algorithms follow a similar set of naturally
inspired rules or models, two distinct classifications of algorithms have emerged, Ge-

netic Algorithms and Evolution Strategies:

1. Genetic Algorithms evolve populations of chromosome structures called
Genotypes using genetic operators such as crossover and mutation to adapt the
encoding of the structure. Probabilistic selection is used to ensure that highly
fit members recombine and produce offspring. When determining the fitness of
a Genotype, it is decoded from its genetic form, into its real and useable form
called the Phenotype. Typically, GAs can be used for search and optimisation
of a wide range of problems by changing the Genotype-Phenotype mapping.
Genetic Programming is a subset of GAs that apply evolution directly onto a

rule based language that can be used as a computer program.

2. Evolution Strategies [1] were originally developed to adapt rule sets by breed-
ing and mutating members of a search space, as well as evolutionary parameters

that affect mutation. Mutation is based on normal distributions whose shape

16

and effect are controlled by the members evolutionary parameters. Typically
selection is deterministic. These algorithms differ from Genetic Algorithms as
they are based dominantly around mutation and the evolution of controlling

parameters, whereas GAs are based around the breeding of members.

Evolutionary Programming embraces normally distributed mutation as the key ge-
netic operator, with probabilistic selection. Evolutionary Programming was originally
developed to evolve Finite-State Machines, they seek to iteratively generate increas-

ingly better solutions to a static or dynamically changing environment.

2.2.2 The Genetic Algorithm

The basic principles of Genetic Algorithms are based upon the analogy of natural
behaviour. In nature, individuals compete with each other for resources such as food,
water and shelter. Members of the same species will also compete with one another to
attract a mate. Those individuals that are most successful in surviving and attracting
mates, will have a higher chance of producing more offspring and propagating some of
their genes into future generations. The propagation of genes from highly adapted or
“fit” members forms the basis for evolution, as the combination of good characteristics

from parents can sometimes produce “fitter” offspring.

Based upon this analogy, GAs evolve a population of candidates, each representing
a possible solution to a given problem. A fitness score is assigned to each individual
according to how good that individual is with respect to a given goal. Highly fit
individuals are selected to participate in cross breeding with another individual to
produce offspring sharing features from each of its parents. Members that are not

selected to reproduce die out, and the process is restarted on the new generation of

members.

The basic or simple GA as described by Goldberg [11] comprises four important steps

illustrated in Figure 2; initialisation, evaluation, reproduction and convergence.

The initial population of chromosomes is created either randomly or by perturbing an
input chromosome. How the initialisation is done is not critical as long as the initial

population spans a wide range of variable settings (i.e., has a diverse population).

17

Population Mating Pool

[(- Selection

(] - (E—]
Individuals
Mutation

Crossover - Mating
[S — Parents

.

=1

Offspring

Figure 2: Schematic Diagram of the Main Processes in a Genetic Algorithm

The population of candidates are evaluated and given a fitness score, which should
provide a measure of improvement against a pre-defined objective. In single-objective
and multi-objective problems, this measure will be based on an evaluation function

and then scaled against an average or best fitness within the population.

In the third stage, reproduction, a breeding process is simulated by selecting members
of the population to participate in the next generation. These selected members,
termed Parents, undergo a breeding process typically using two genetic operators,
crossover and mutation. The crossover genetic operator combines aspects of two
parent genes to produce two subsequent children genes. This type of gene combination
serves to produce children that have a high probability of having a higher fitness than
their parents, while maintaining some of the genetic history of their ancestors. In
order to maintain diversity in the search space, genetic mutation is introduced into
the population. These new members will either be automatically entered into the
new generation of candidates to participate further in the evolution process or will

be added to the existing solutions pool and undergo further stochastic selection.

The new child gnomes created from the reproduction process are evaluated for their
fitness. The parent gnomes die out and no longer participate in the evolution process.

The last two steps are repeated until a convergence criteria is met. The basic process

18

N
Initialise
Population

—

Evaluate
Population

Select
Parents

L

Breed
Parents via
crossover &

Mutation

o

Evaluate
New
Population

Y
Finish

Figure 3: Simplified Flow Diagram for a Simple Genetic Algorithm

for a simple GA is shown in Figure 3.

Why Genetic Algorithms work

Several idea’s have been offered as to how Genetic Algorithms are able to effectively
explore complex search area’s. One such theory that has emerged and received sig-

nificant attention amongst the evolutionary computing community, is the Schema
Theory [12].

Schema Theory considers the chromosome strings as subsets or hyperplanes of the
search space. If we take a three dimensional space for example as shown in Figure
4, encoded with the string “000” at the origin, using three bits. The corners are
numbered by bit strings with all corners differing by exactly “1” bit. Representing

“*7 as a wild card match symbol, then the front plane of the cube can be represented

19

110 111

010 011

100 101

000 001

Figure 4: Hypercube Representation of GA Search Space Encoding

by the special string “0**”, and each of the other five planes by “¥0*”, “¥*(” «“1%%7
“H1%7 and “**17. Strings containing “*” are referred to as schemata, and each schema
corresponds to a hyperplane in the search space. In a GA, a population of sample
points provides information about numerous hyperplanes, with low order (the order
refers to the actual number of real bit values represented in the schema) schema
sampled by numerous points in the population. In this context, GAs are intrinsically
parallel, because they sample many different hyperplanes simultaneously in a parallel
fashion, but it is the cumulative effect of sampling a population of points that provides

important statistical information about any particular subset of hyperplanes.

By necessitating competitions between the various hyperplanes in parallel, competing
hyperplanes increase or decrease their representation in the population according to
the relative fitness of the strings that lie in those hyperplane partitions [13]. Recom-
bination through crossover, recycles hyperplane subsets, which can be propagated if
good schema are represented and survive disruption from the operation. Mutation
acts to generate new schema combinations, adding new hyperplanes to the competi-
tion. Forrest and Mitchell [12] illustrate in detail the importance of schema order in

GA search, on several theoretical optimisation examples.

Despite this formulation, this theory does not easily extend to all GA observations

20

such as the effect of union crossover [14] involving the exchange genetic information
between chromosomes at every other string bit. The schema theory would suggest
that this operation would be disruptive to the evolution process. Experiments by
Goldberg [15] have indicated that the ordering of the hyperplanes is critical to the
success of the search, particularly when GAs are applied to many real problems. These
deceptive problems can arise if the schema is ordered incorrectly, such that following
samples of the good schema, does not necessary lead the search process towards the
optima. The correct ordering of schema is unknown at the start of a given problem. To
help encourage correct schema ordering, the Messy GA formulation was introduced
[16], which allows the evolution of the ordering of genes along the length of the
chromosome structure as well as the genetic information that they contain. Goldberg
has shown that Messy GA’s are able to solve some problems that exhibit deceptive
characteristics better than simple Genetic Algorithm implementations. However their

implementation on real problems is difficult and has yet to be achieved.

2.2.3 Searching for the Optima
Mathematical Definition of an Optimisation Problem

An optimisation problem is defined by a set Y and an objective function f : ¥ — R.
Each candidate y € Y is given a value f(y) by the objective function f. The objective
of an optimisation problem P,(Y,f) is to find the value y,,; € Y that gives the
minimal objective function f, that is Vy € Y, f(yop:) < f(y). If P(Y) represents the
set of subsets of Y, a neighbourhood function N : ¥ — P(Y) is defined where a
candidate y,, that verifies Vy € N(yn), f(ym) < f(y) is called a local optimum. The

solution Y,y is usually called the global optimum to avoid confusion.

A combinational problem is defined by a finite search space S where the problem is
formulated by the set of constraints C = {c¢;, ¢s,...}. A candidate that satisfies all
constraints ¢, of a combinational problem P (.5, C) is said to be a feasible solution of
P (S, C) (an infeasible solution otherwise). The objective of a combinational optimi-
sation problem P, (S, C, f) is to find s, where s,,; € X and f(sop) = minsexf(s)
where X C S of all feasible solutions P (S, C).

21

Global and Local Search Techniques

There are many methods available to engineers to search a given landscape for an
optimum. The success and practicality of these methods, are usually dependent on
the complexity of the problem, the modality of the landscape to be traversed and
the availability of gradients. A full overview of the different approaches available is
beyond the scope of this work, a comprehensive overview of the optimisation problem
and optimisation techniques is offered by Bishop [17] and Siddal [18]. This section is

a generalisation of approaches used.

In searching a solution space, a tradeoff must be established between two conflicting
objectives: exploiting the information contained in the previously obtained solutions,
and exploring new regions. Pure exploitation makes exclusive use of existing infor-
mation; pure exploration abandons all known solutions on the premise that better
solutions exist elsewhere. Hill climbing, or perturbation routines are good examples of
exploitative methods, where the best known solution is always used as a starting point
for improvement. Such techniques take a very narrow view of where opportunities
for improvement lie; they are extremely dependent upon their starting locations and
are susceptible to becoming trapped at local optima. At the other extreme, totally
random search processes provide excellent exploration but make no use whatsoever

of acquired knowledge. Random search is a good example of such a process.

An example of using exploitative search methods is given in Figure 5. Suppose for
this one dimensional problem f(z), we wish to use the derivative with respect to
the design parameter z to indicate the best direction of search. Using Taylor series

expansion, an approximation for the derivative is given as

£ (z) ~ f(”h});f(m) Lo R, (1)

where h is the step size. However to implement any approach that uses such a
gradient, N evaluations of the objective function will be required for each sample
point, where N is the number of design variables. This can not only become expensive
if NV is large, but Equation 1 may also include roundoff and truncation error due to

the finite size of h, and truncation of higher order terms. If the problem domain is

22

Local Optimum

f(x)

Local Optimum

Global Optimum

Figure 5: Search Space Representation Featuring Several Local Optima’s

constrained, then a derivative with respect to each constraint will also be required.
In the relatively simple problem given in Figure 5, the starting point of the search
will also play an important factor to the success of locating the global optimum. In
this illustration, starting at point 2, will provide a gradient that would indicate the
appropriate direction of the global optimum. However, starting at points 3, or 4
would indicate the direction to a local optimum, requiring many restarts to achieve
the goal using this approach. Implementations of other similarly based methodologys

such as ‘divide and conquer’ algorithms and Powell’s Direction Set Method [19], will

also suffer similar consequences.

In an effort to strike a balance between these two extremes, various techniques have
been developed that process information on many candidate solutions within each
search iteration. The Simplex method [20] is such an attempt to achieve this balance
by setting up n+1 points enclosing a finite n-dimensional volume called a simplex. The
Simplex method gropes towards the optimum by flipping, expanding or contracting
the simplex. The logic used to operate the simplex is determined by the evaluation
at each corner, and always moves in the direction of improvement. Although this

method samples N + 1 points in parallel, it is still prone to local optima traps. A

23

more explorative technique is the method of Simulated Annealing [21], which applies
random perturbations to a search point. Simulated Annealing is based on a principle
of slow decent inspired by the annealing nature of metals. Newly formed solutions are
retained if they improve the solution, and sometimes if they do not depending on a
Boltzman probability function. An annealing temperature parameter is used to con-
trol the effect of the Boltzman function. By lowering the annealing temperature, the
likelihood of retaining weaker solutions reduces. Typically the annealing temperature

is reduced on several occasions during the search process.

Lately, evolutionary computing techniques have been employed to cast a better bal-
ance between exploitation and exploration by learning from processes found in nature.
Such techniques which generally fall under the Artificial Intelligence umbrella, mimic
natural processes such as evolution and genetic theory to simultaneously exploit im-
portant information obtained from multiple solutions. Stochastic processes are added

to the mechanics of the methods introducing a variable degree of exploration.

With any optimisation approach in complex multi-modal landscapes, a consideration
of objective function evaluation cost will often determine the type of approach taken.
A trade off must often be made between restarting a cheaper gradient based method
many times, and using a more expensive but more robust stochastic approach such

as Simulated Annealing or Genetic Algorithm.

2.3 Approaches to Aerodynamic Shape Optimisa-
tion

Typically, two approaches have been taken in automated design involving CFD. In-
direct methods [5] offer significant savings in computational cost, through iteratively
redesigning airfoil shapes in the direction of achieving a pre-described pressure or ve-
locity distribution. Such methods generally involve the use of calculated derivatives
of the objective function, making the process fast enough for day to day design and
analysis. The main drawback to this approach, is that the objective may be infeasible
(an airfoil design prescribing the required pressure distribution may not exist). Also,

if drag is a component of the objective, then attempts to define a pressure distribution

24

that minimises Cp, can lead to poor solutions. The evaluation of pressure drag from

C, = § Cyig 2)

is typically swamped with numerical noise.

Direct shape optimisation attempts to optimise directly against the objective func-
tion, such as requiring minimum drag. This more expensive approach either requires
the calculation of cost function sensitivities for use with gradient based optimisers,
or employs black-box type optimisation tools that can work directly with the design
variables and the cost function. Examples of these would be the Simplex Method,
Powell’s Direction Set method [19], Simulated Annealing, and Genetic Algorithms.
The more advanced tools such as GAs and Simulated Annealing, are generally more
robust to local optima and noise, and are well suited to preliminary design investi-
gations rather than the fine tuning of detailed designs. Because they require large
numbers of design solutions, such methods are typically used with less expensive CFD

tools such as Panel Method implementations.

Preliminary investigations into the use of sensitivity analysis with CFD solvers by
Hicks and Henne [22], found that the solution of cost sensitivities by perturbing the
design space with respect to each design variable, was too expensive for use with high
fidelity CFD solvers. A more suitable solution based on Control Theory described
by Jameson [23] [24][25], achieved the solution of cost sensitivities via an adjoint

formulation of the Cost function and Flowfield Solution.

If the governing flow equation R expresses the dependence of the flow variables w on

the physical boundary F', this can be written as

R(w, F) =0, (3)

then a change in F' results in a change

R = <g—§> ow + <g§) OF = 0. (4)

If the cost function [is determined by the change in flow w, due to a modification of

boundary F', such that

I =1(w, F), (5)

then a change in F results in a change

o1 oI
61 = 5w+ ==0F. (6)

Using control theory, the flow equation is considered as a constraint in such a way
that the cost equation does not require multiple flow solutions. This is achieved by

eliminating dw. By introducing a Lagrange Multiplier ¥, we have

1 oI OR OR
61 = o—buw + 5=0F — U {(5@) Sw + (5?> 5F} : (7)

which can be rewritten as

S 7) O e) AR

N

Field Boundary

By choosing ¥ to satisfy the adjoint equation

(m) i o)

dw) ow

the gradient is defined through

51 oI IR
;5?_8—5’_“@(5?)‘ (10)

Through this approach, the gradient can be determined indirectly by solving an ad-
joint equation which has coefflcients determined by the solution of the flow equation.

The basic implementation process is given in Figure 6.

The cost of solving the adjoint is comparable to that of solving the flow equation.
Hence a single design iteration will cost approximately the cost of two field solutions.

In Jameson’s implementation, approximately 100 design iterations were required to

26

Solve Flowtield

Set BC's for
Adjoint

Solve Adjoint
!

Calc Gradient

Modify Geometry
& Mesh

Figure 6: Process for the calculation of cost sensitivities via the adjoint formulation

achieve convergence. Burgreen and Baysal [26] implemented an adjoint formulation
of the three dimensional Euler fluid equations using a Bezier parameterisation for
the wing. A novel approach to three dimensional adjoint formulation on unstruc-
tured meshes was implemented by Cross [27], by coupling a structured mesh based
adjoint formulation to an unstructured flow solution through interpolation. Such an
approach can facilitate the use of optimisation on complex geometric configurations

with advanced fow solvers.

2.3.1 The Application of GAs to CFD Optimisation

The global search capabilities of Genetic Algorithms have recently been introduced
to aerodynamic design problems. Gage [28] examined the possibility of a role be-
ing played by a Genetic Algorithm in preliminary aircraft design. Gage found the
tool highly robust and effective to apply in the design of a wing planform for mini-
mum induced drag, but commented on the large computational time required while
using simplified analysis theory. Studies into the role of Genetic Algorithms in the
conceptual design of aircraft has also been made by Crispin [29]. A step towards aero-

dynamic shape optimisation was reported by Yamamoto [30] who applied a Genetic

Algorithm to a 2D wing section design for maximum Lift to Drag ratio (L/D) using a
Navier-Stokes code parallelised on a 32 Node Super-Computer. Although the optimi-
sation schemes proved successful in 2D wing optimisation, little was known about the
modality of the objective surface or how a Genetic Algorithm would compare with
other much credited methods. Obayashi and Tsukahara [31] attempted to address this
issue by first examining the objective surface and then comparing three very different
optimisation methods based on, Gradient Method, Simulated Annealing, and a Ge-
netic Algorithm. The airfoil section was represented as a linear function of four cubic
splines. Obayashi and Tsukahara examined a two variable aerofoil design problem,
and found the objective surface to be peaky and convex. This problem was deemed
to be unsuitable for Gradient Methods, whose solution is reliant on the initial start-
ing point. The surface was improved however through the introduction of a penalty
function to constrain the foil thickness, which in effect reduced and concentrated the
number of peaks to a much more attainable problem domain. The comparison of
the three optimisers showed a marked increase in design performance in the case of
the Genetic Algorithm. Analysis into the starting point was made, showing that the
performance of the Gradient Method and Simulated Annealing implementation were
highly dependent on the initial starting point. In contrast, the performance of the
Genetic Algorithm was considered to be independent of the starting population. The
CPU cost of using the Genetic Algorithm was significant, almost 80 times that of a
single use of a Gradient Method. This was however deemed to be an acceptable cost
for this type of optimiser since it resulted in a near twofold gain in performance, while
maintaining a good level of robustness. Application of Simulated Annealing methods
has been further approached by Aly et al. [32] achieving significantly improved per-
formance over a Gradient Method at comprisable cost. His application however was

significantly hampered by local optima.

There has been significant activity within the literature over the past three years in-
volving the coupling of Genetic Algorithms to CFD solvers. Poloni [3], Périaux et al.
[33], and Holden [2] have successfully shown that good aerofoil shapes can be found
with Genetic Algorithms. Doorly [34] has highlighted concern over the modality of the

objective surface for airfoil design problems, with GAs tending to converge quickly,

28

and finding different solutions on each search. The quality of the geometric represen-
tations used with GAs has also been questioned by Reuther and Jameson [35], and
Holden [36], who have found that some representations are more suited to GA design
than others, but may not necessarily provide the high level of geometric sensitivity
required for aerodynamic design. Lépine et al. [37] demonstrated that geometric ac-
curacy can be found using Non-Uniform Rational B-Spline (NURBS) representations,
but its parameterisation would require over 13 control points, requiring a total of 52

design variables for a single 2D Section.

2.4 Representation and Parameterisation of Shape

for Evolutionary Design

The expression of the shapes we seek to design, plays a most important role in design
optimisation. In evolutionary approaches, Genetic Algorithms can be used to adapt a
parameterised encoding called a genotype, using crossover and mutation operations.
This encoding can then be mapped to the final shape called a phenotype, through
the use of geometric representation. The mapping between genotype and a geometric
phenotype can be divided into two separate processes, representation of shape from
a set of parameters, and the parameterisation of these parameters into the design

variables used to form the resultant chromosome.

2.4.1 Airfoil Representation and Parameterisation in Shape

Optimisation

For a numerical optimisation process, a surface representation is sought that will offer
a detailed description of a surface, with an enriched design space whilst maintaining
the smallest number of parameters to be defined. The descriptions of two-dimensional
curves is well known, and several techniques are readily used throughout the engi-
neering optimisation community [2]. Such techniques have been extended to sim-
ple three-dimensional objects using chordwise sections on a known or set planform.

Whilst this method has been effective for a small number of applications, it only

29

offers a limited scope for novel design search. The ability to define accurate three-
dimensional surfaces is an essential component of an automated design process. The
construction and definition of geometry in engineering is a vast and complex prob-
lem. Most engineers use dedicated Computer Aided Design (CAD) facilities for the
accurate development of 2D and 3D drawings. However these sophisticated, complex
programs usually require thousands of input parameters for the complete definition of
most modern designs, and are inadequate for design optimisation [35]. In aircraft de-
sign for example, the accurate definition of a single airfoil section may require several

hundred points to be defined in three dimensional space.

For the representation of airfoil sections, approaches taken generally fall in to two
categories, Shape Functions, and Curve Interpolations. Parametric representations
are taken as an exception to these categories. Parametric methods are considered
beyond the scope of this work, and are more suited to preliminary investigations into
target design specification, rather than to accurate shape optimisation. An example
of parametric application to airfoil design was given by Giunta and Sobieski [38] who
used a parametric definition for airfoil camber and twist in their aeroelastic analysis

of a supersonic transport aircraft.

Shape Functions

Basis Vectors [39][40], express new design points through linear combinations of base

shapes or functions through the generalised form

R=r+> 0 (11)

where R is the design shape, 7 is the baseline shape, @; are the basis functions /vectors,
and U; is a vector of scalar weights or design variables. In some applications of this
approach to airfoil design, airfoil shapes themselves have been used as basis vectors
[31], leading to a significantly reduced parameterisation (U;). However, this approach
would be restrictive in novel design and flexibility since all new design points offered
by this approach are indirectly defined by the given basis vectors. The choice of

airfoil basis vectors is critical to the success of implementation, with the additional

30

danger that each basis shape could represent locally determined optimum if chosen

as a result from previous designs and optimisation analysis.

A similar but more flexible approach which has become popular in CFD applications,
is the use of analytical functions to provide basis vectors (@;(z)), which are applied
to a base shape 7. Hicks and Henne [41] demonstrated the suitability of this method

with their compact set of ’Bump’ functions

log(0.5) t2
b(z) = [Sin <7m: log(t1))J 0<x <1 (12)

where ¢; and ?s control the intensity and location of the bump. This method was
implemented by Reuther and Jameson [35] using 25 functions. Hager et al. [42], Lee
and Eyi [43], and Elliott and Peraire [44] used 10 shape coefficients based on different
shape functions. The flexibility of this method may be limited through both the base
shape 7 and modification scalars U;. Further refinements to this method have been
made by Hicks and Vanderplaats [22], introducing a second set of basis functions to
offer increased sensitivity to assist in the presence of shockwaves. This method can
also be extended to three dimensional shapes to a limited degree as demonstrated by

Elliott and Peraire [45].

The value of shape functions can be enhanced by finding an orthogonal set. The use
of orthogonal shape functions in the representation of airfoil sections was adopted by
Kuruvila et al. [46] based on the NACA four series. Chueng [47] and Drela [48] also

demonstrated the effectiveness of this method based on a sinusoidal series.

2.4.2 Interpolation Functions

In early studies involving gradient optimisers with CFD, the computational domain
grid points themselves were used directly in the parameterisation [49]. This approach
is easy to implement and geometry changes are limited only to the number of dis-
crete points. However it is difficult to maintain a smooth geometry and a significant

presence of noise is usually present in the final design.

The use of polynomial and spline representations are popular in CAD [50] and are well

suited to automated design. A polynomial can describe a curve in a very compact

31

form with a small set of design variables, with many of the curve noise problems
encountered with discrete approaches automatically smoothed out as pointed out by
Braibant [51], Reuther and Jameson [35]. If the curve is parametric, almost any
curve or surface could potentially be described with the use of polynomial and spline

interpolation techniques.

The simplest description using such an interpolation approach, is a polynomial such

as

Ry(w) =Y Gu (13)

1=

where n is the number of design variables, and u is the parametric length along the

curve. The ¢; is a set of coefficient vectors corresponding to the three dimensional

coordinates u'.

The Bezier representation is another mathematical form for representing curves and

surfaces. The general form of the Bezier curve may be written as

R,(w) = Y BB, (u) (14)

where n is the number of control points (design variables), and the B, ,(u) are degree
p Bernstein functions. The P; are the control points (creating the control polygon),
and are typically used as design variables. The Bezier form is far better than the power
basis of Equation (13) with the control points relating to the curve much more closely.
The convex hull enclosed by joining the control points together, contains the resulting

curve which is a very useful property when defining the geometric constraints.

The Bezier form is highly efficient in representing simple curves, however more com-
plex curves require a high-degree Bezier form which increases the round-off error. A
composite form of the Bezier curve which uses several low-degree Bezier segments is

the B-spline described by

Ry(u) = Zf’@»Ni,p(u) (15)

32

where P; are the B-spline control points, p is the degree, and N, ,(u) is the i-th
B-spline basis function of degree p. Reuther and Jameson [35] used 18 control points
to define a fourth order B-Spline to represent an airfoil section, but found that the
resultant solution contained to many waves on the surface to be useful for aerody-
namic design. Similar findings have also been reported by Doorly et al. [52], and
Yamamoto and Inoue [30]. The only real geometric drawback to the regular B-spline
is their inability to represent implicit conic sections accurately. However a special
form of the B-spline, the Non-Uniform Rational B-Spline (NURBS), can represent
most parametric and implicit curves and surfaces without loss of accuracy as illus-
trated by Ventura for the representation of complex hull geometries [53]. A NURBS

curve is defined as

R . Z?:l Ni,p(u) WP,

S N, 1)

where the P; are the control points, W; are the weights, and the N, are degree
p basis functions. With this representation, both the control points P; and their

corresponding weights W, can be used as the design variables.

2.4.3 Three Dimensional Description of Aerodynamic Bodies

B-spline based methods are probably the most popular representations used in auto-
mated design today [54][55]. Their popularity is mainly due to their ease of imple-
mentation and smooth results, but also because such techniques can be integrated
with suitable design databases found on many CAD systems. However, despite re-
cent progress in using these representations, it is still difficult to parameterise and
construct accurate, complex three-dimensional models for use in optimisation based

solely on polynomial and spline representations.

Generally, Z%D approaches are often employed in 3D surface descriptions, defining
the surface as an interpolation across several different 2D sections. Through this
approach, many of the techniques highlighted in Sections 2.4.1 and 2.4.2, can be
used for the sections. One novel approach to the complete description of a surface is

the treatment of surface generation as a boundary-value partial differential equation

33

problem [56]. Using this technique it is possible to represent a geometry such as an
aircraft wing or ship hull form, with a compact set of design variables. Included with
this definition are surface grids, volume grids, and sensitivity derivatives. Parame-

terisation using PDE’s for complex bodies is however time consuming and can only

parameterise surfaces [57][58].

Separate attempts have been made at designing the geometric planform alone, based
on the 24D approach. Gage [59] applied Genetic Algorithm’s to the problem of wing
planform optimisation for minimal induced drag, using the computational panels
themselves as the representation. In Gage’s unique parameterisation of the represen-
tation, the complexity of the panels were adapted [28], by allowing arbitrary panel
encodings to crossover with one another. For instance, the panel representing a
winglet, could be crossed with a centre wing panel. Although this parameterisation
would be difficult to apply to more precise geometric forms, Gage was able to evolve
quite unique planforms demonstrating the ability for a Genetic Algorithm to navi-
gate the most complex search spaces. Other, more traditional approaches to planform

optimisation can be found in [60].

There are significant similarities in the parameterisation problems encountered in
2D and 3D representations. To ensure accurate and highly evolved geometric def-
initions can be obtained, a large number of parameters are required. Some of the
geometric representation schemes, such as the use of basis vectors, or Bezier inter-
polation functions, offer a relatively small parameterisation and hence search space
to the optimiser. However, to extend optimisation towards more detailed geometric
definition, the use of more sensitive techniques such as NURBS representations must
be adopted. So far, similar attempts with BSpline interpolation with Genetic Algo-
rithms has proved difficult due to the large number of design variables required for

their definition, surface waves that are often encountered through their adoption.

34

2.5 Evolving Geometric Complexity

Almost all applications of GAs to shape optimisation problems are based on fixed
parameterisation of the landscape domain. Genetic Programming [61] has been suc-
cessful in the application of evolving Lisp programs, by allowing adaption of the pa-
rameterisation structure. Yamamoto et al. [30], applied a similar concept to adapting
the number of parameters used to define the curvature of an airfoil, by representing
the B-Spline nodes via radius and angle expressions relative to another node. By
including a knowledge of geometry into the chromosome encoding, they were able to
add and remove new nodes from the chromosome structure in a similar way as adding
or deleting structures and expressions from a Genetic Program. Gage [62] adopted
a similar process to evolving the topology of wing shapes by allowing the GA to
adapt both the basic shape as well as the complexity of defining parameterisation.
Both of these implementations allowed the crossover process the freedom to randomly
combine very different structures together, in a fashion that could be compared to a
reproduction process trying to combine the structure of a leg with one from a hand.
Bentley [63] highlighted concern for the large number of lethal mutations that could
arise through such crossover processes, and proposed a more restrictive hierarchical
crossover operator. One important feature of Bentley’s implementation, was that
new genes added to the representation were seeded with values such that the resul-
tant phenotype remained as unchanged as possible. For primitive types, new gene
values were interpolated from the existing shape, as illustrated in Figure 7. Hierar-
chical crossover was successfully applied to evolving Lego like geometric structures,

and could be extended to other geometric descriptions such as spline methods.

The process for automated design is generally in the form shown in Figure 8, treating
each sub process such as design analysis, and geometry definition, as separate entities.
How information is passed between entities is not important in this analysis, but the
use of formatted files is normally adopted in both the manual and automated imple-
mentations. For this work, the automated design process will be represented by the
Genetic Algorithm, the geometric representation libraries will replace the geometry
generator, and CFD tools will be used for airfoil performance analysis. File stores

will generally be used for maintaining a database of solutions and designs.

1.) Original Shape

2.) Insert Mutation adds extra
genes to shape definition such
that original shape is
expresses as two joint shapes

3.) Each part of the new joint
shape are now separately
available to mutation

Figure 7: Mutation of a Primitive Type

Objective function and design inputs

l

Geometry Parameters to Store

 Design System
>
P :
Desigid Final Desngn Objective, Constraints, design info
DataBase
4 Ar r Member Information, design variables
Algorithm L

Objective function, penalty functions, values to store

Figure 8: Automated Design Process

35

36

2.6 Summary

Evolutionary algorithms are expensive and slow, requiring large numbers of new de-
signs to be sampled. Genetic Algorithms are most suited to explorative aerodynamic
design rather than improving existing ones, because new candidates are sampled in
parallel at each iteration which requires a large and diverse pool of candidate designs.
GA evolution of aerofoil shapes to arbitrary detail is hampered by several key prob-
lems. The implementation of the Genetic Algorithm with the flow solver can restrict
its ability to adapt aerodynamic shapes due to range of geometries offered by the
fixed chromosome encoding used. The evolution process can become trapped in local
optima, converge too quickly, or suffer from high levels of bad DNA encodings within
the population, thus weakening candidate diversity. Increased robustness, and toler-
ance to local optima could improve the Genetic Algorithms ability to adapt shape.

Some form of genetic repair of bad DNA would also improve evolution efficiency.

A wide selection of geometric representations have been used in the literature to
define airfoil and wing shapes. From this wide selection, only Bezier curves and some
basis shape approaches appear to be able to offer smooth optimised shapes when
used with a relatively small parameterisation. Some instances in the successful use
of the more sensitive B-Spline and NURBS methods have been recorded, but these
have generally required a much larger parameterisation, and would not be suitable if
extended to three dimensional wing-body design. A more thorough investigation into
the interaction of different geometric representations with Genetic Algorithms may
offer some indication of how this problem should be approached, especially if further

adaptation and refinement is sought.

A hierarchical genetic encoding of both representation and parameterisation may
allow for increase in shape adaptivity by including the complexity of the parameteri-
sation into the genetic encoding for adaption. Hierarchical crossover and representa-
tion aware mutation operators, have been used successfully to adapt the complexity
of primitive objects in simple designs. The application of this approach to more

sensitive representations such as B-Spline curves should be investigated.

This work describes the development of a framework for evolving geometric structures

to arbitrary detail. The scope of this approach will encompass the problem of defining

37

simple curve shapes capable of describing aerofoil sections to a high degree of detail,

and their adaptation to a given problem via a process of simulated evolution.

Chapter 3

Evaluation of Fluid dynamic

Characteristics

Automated design encompasses the practice of iteratively searching for a design that
meets some predefined criteria without human intervention. The manual design pro-
cess is well known and practiced to a finite degree. The automation of this process
is highly sought after, offering many potential savings in cost and time, as well as

substantial gains in the final performance of the design.

The application of the automated design philosophy has been made available to engi-
neering design by the recent swing seen in the past few decades from using experimen-
tal based analysis of design performance, to computational analysis using theoretical,
analytical and first principle based methods. The recent advances in computer hard-
ware and software resources have allowed the use of Computational Fluid Dynamics
(CFD) [64] in automated design. Previously, the use of CFD in iterative design cycles

required expensive and often specialised computing facilities [65].

The ability to use these solvers in an automated design environment can offer con-
siderable cost, as well as performance benefits, to the design management process. If
applied early in the preliminary or conceptual design phase, resources can be diverted
in the later design stages to other important design areas, while under the agsurance
that the design is close to its final description. The adoption of this idea could also

be of great benefit in the scoping of contractual proposals as the conceptual design is

38

39

already close to its maximum performance.

3.1 Ducted Thruster Units

One problem investigated in this work, is a section shape sought for use in a thruster
unit suitable for deep sea Tethered Unmanned Underwater Vehicles (TUUV). These
units are commonly used for operations such as oil rig maintenance, and operate

mainly at depths where cavitation will not occur.

Ducted thruster units offer several efficiency advantages over traditional propeller
arrangements by offering a lower propeller loading, by using the duct to draw a larger
volume of water into the propeller. Additional thrust is also generated due to the
acceleration of flow over the duct. An advantage offered by the arrangement of the

duct, is the duct wall proximity to the blades reduces the effect of tip vortices.

In an attempt to eliminate this vortex drag, a ring propeller arrangement has been
proposed where the propeller is mounted on a thin ring that sits flush within the
external duct. This arrangement tends to lack the efficiency offered by traditional
ducted propeller units using a much simpler arrangement with a small gap between the
propeller and duct to reduce tip vortices. The main drawbacks to the ring propeller
arrangement are mainly the mechanical problems of power transmission, seals and

centrifugal bearing problems associated with the new designs.

Remote Operated Vehicles (ROVs), or Tethered Unmanned Underwater Vehicles
(TUUVs), require propulsion units that offer high efficiency while relatively light
weight and good flexibility for the positioning of the thrusters. Such units currently
use small electrical units driving the shaft of the propeller, and are mounted from the
nozzle using a ’spider’ type bracket. However one drawback to this arrangement is

that the position of the motor disrupts the flow of water into the propeller.

A natural progression, drawn from the basis of ducted ring-propellers, has been the
idea of tip-driven propellers (TDPs). This concept involves having either a mechanical
drive or electrical motor encased within the duct walls. The use of an electromagnetic
drive with the absence of physical contact between the drive system and propulsor,

offers significant advantages to the mechanical layout which still involves issues such

40

Figure 9: Ducted Thruster Unit

as sealing problems associated with the mechanical drive.

The hydrodynamic performance of a TDP shown in Figure 9 was investigated by
Hughes [66] for a unit using a highly efficient permanent magnetic motor design.
The efficiency performance still lagged that of traditional ducted units and it was
proposed that the unit should be hydrodynamically optimised to examine whether
such performance could be recovered. One of the non-optimised and novel features
of the tested unit, was the bi-directional characteristics of the section used for the
propeller. This bi-directional characteristic was added to enhance the positioning

efficiency and effectiveness required by TUUVs.

3.2 Characteristics of Propellers

When a propeller is rotated, a torque is applied on the propeller by the fluid which
acts in opposition to the rotation force resulting in a loss in angular momentum. In
addition, a thrust is produced by the displacement of fluid by the propeller, causing

an increase in rearward momentum.

The non-dimensional coefficient of Thrust K7 is defined as

i

Kr=——
a pn2 D4

and the coefficient of Torque K is defined as

41

Q

q = anDS (18)

where 7 is the number of revolutions per second turned by the propeller and D is the

propeller diameter.

The efficiency of the propeller is defined as the ratio of thrust power produced by the

propeller to the input power and is defined as

Poweru;
Power;,
Krpn?D* .V
_ TPZ - (19)
Kopn?D? - 2mn
1 K
— Ty
2 K,

where J is the propeller advance ratio

v

=5 (20)

J

and ln/— is the distance advanced by the propeller per second.
In an effort to improve the thrust and torque performance of a propeller, the analysis

and design of a blade section taken at 70% propeller radius will be considered via

section shape optimisation.

3.3 Description of Aerodynamic Forces

The components of Lift and Moment in relation to the free stream are shown in Figure
10. These basic forces often form the basis for objective comparisons between designs

in section shape optimisation. A summary of the basic fluiddynamic coefficients used

for comparison are given below.

42

- Q
c

K

Figure 10: Components of Forces acting on an Airfoil

3.3.1 Lift

Lift is generated by a foil (aerodynamic or hydrodynamic) through the generation
of a pressure distribution around the upper and lower sections. The nature of the
distribution is determined by a non-linear relationship between the shape of the foil,
and the physical characteristics of the applied flow-field (direction, temperature, den-
sity, entropy, etc.). For the illustrative pressure distribution given in Figure 11, lift is

generated by the suction of the combined upper surface pressure, overwhelming that

of the lower surface.

The net lift produced by such an airfoil at zero angle of attack is given by

L= /C [—(pv —po) + (P — po)] dz (21)

where py, py, are the respective upper and lower surface pressures over an element dx.

The non-dimensional form of lift, lift coefficient, is given by

L

— 22
%pVQC (22)

Cr =

where ¢ is the chord (unit length) of the airfoil. This can also be written as

Cp=- / (Cp ~ G (%) (23)

C

since by definition,

43

0.4

0.6

0.8 4

~ ~ ~ Lower Surface Upper Surface

Figure 11: Upper and Lower Surface Pressure Distributions for a NACAQ0012 Airfoil
at C L = 0.6

P~ Do
C =L 2 24
p %pvQ ()

For an airfoil at an angle of attack «, lift is defined in a direction perpendicular to

the air direction.

Here,
1
xT
Cr == [(Co - Co)d (2) (25)
and
‘ZQ/C z
Cy = /21/2 acyd (%) (26)

where Cx, Cy are the coeflicients of forces acting in the z and z directions.

The coefficient of lift is given by

Cr=Cgzcosax — Cyxsina. (27)

44

3.3.2 Drag

Pressure drag is the resistance to the flow due to the pressure differential in the low

direction. The pressure drag coefficient may be calculated from the force coefficients

by

Cy, = Czsina — Cx cosa. (28)

The total drag force acting on a lifting body (Net force acting against the free stream
flow), is described by the force corresponding to the rate of decrease in momentum,
in a direction parallel to the undisturbed stream of the external flow around the
body. This decrease in momentum, is usually calculated between sections at infinite

distances upstream and downstream of the body.

For low speed two dimensional flow over aerofoil sections, the dominant drag force

component is known as profile drag and is defined as:

C,

profile

= Cdp + Cy, (29)

where Cy, represents the effect of viscous forces over the aerofoil.

3.3.3 Pitching Moment

The pitching moment may also be calculated from the pressure distribution. Around

the Oz, Oz axis, the pitching moment due to Z — force is

My, = / C [((pv — po) — (P — po)] zdx (30)

since by definition

M
%pVQCQ

OA,] = (31)

the pitching moment about the Z — force is given by

45

Cuiy = — /0 e (52-) d (%) . (32)

Similarly, the contribution to Cy; due to the X — force may be obtained as

= [06, (2)a (). (33)

1/c

Finally the total pitching moment coefficient is

CIW = OMX + CMZ' (34)

3.4 Computational Analysis Techniques and the
Panel Method

Computational Fluid Dynamics (CFD) considers the numerical evaluation of physics
acting on a fluid, due to a disturbance in the flow-field. First principle analysis allows
for the exact solution of fluid dynamics by considering the forces acting on a fluid

element. The basis for CFD forms from three physical considerations:

e The Conservation of Mass
Net mass flow out of Control = Time Rate of decrease of mass

Volume through sur face inside Control Volume

e The Forces acting on a fluid element (The Momentum Equation)
F =ma (Newton’s Second Law)

Net forces acting directly on the mass of the fluid, and surface forces (pressure

and shear) acting on a surface of a fluid element.

e The Conservation of Energy
Rate of change of Net flux of heat Rate of work done on

energy inside fluid = intoelement -+ element due to body

element and sur face forces

46

From this basis, the general Navier-Stokes equations can be obtained to describe the
state of flow supporting both laminar and turbulent How conditions. Their exact
solution is a time-consuming process and require a high degree of numerical accuracy

and stability to adequately capture the high order viscous terms necessary to yield a
satisfactory solution.

In this work, it is assumed that a design is sought for smooth bodies that maintain
fully attached flow around the body when operating at their design point. Then the
viscous effects are most important in a small region near the body profile. In this
region, viscous effects may be approximated by describing the flow using boundary

layer theory. Outside, an inviscid flow model can be used, and viscous effects assumed

negligible.

3.4.1 The Panel Method

In considering irrotational flow where vorticity is zero at every point, the velocity is
given by the gradient of the velocity potential ¢ such that

V=V (35)

Substituting Equation 35, into the continuity equation for inviscid incompressible

flow gives the Laplace Equation as shown in Equation 36

ou Ov Po 0?9

—_— — e 2 _
5t 3 e A (36)

For the flow past a slender body such as an airfoil, a general solution to the Laplace
equation can be obtained by adding a distribution of vorticies v on the airfoil surface,
to the potential of the free stream. The solution at a point P due to the distribution

of vorticities as illustrated in Figure 12 is given as

Op = UseT + Vsl + / Youds, (37)
S

where ¢, is the potential of a unit strength vortex defined as

47

P(x,y)

A\ 4

Figure 12: Velocity potential at a point away from a vorticity distribution

1

with (r,0) giving the polar coordinates of P relative to y(s).

To satisfy Laplace’s equation at every point on the airfoil surface, the Neumann

boundary condition gives

dp
Foe Va (39)

where V,, = 0 would determine a physical boundary with zero flow through it.

3.4.2 Solution of Panel Characteristics

From Laplace’s Equation 36, Equation 37 can be written as

(u,v) - n+ / “/aa% ds = V,. (40)
S i

48

By discretising the body surface into /N Panels and placing a potential source y¢, on

each panel, a set of simultaneous equations can be found such that

N o ¢
woyn+ Y ([aFras) =, (41)
G=1 panel anz

where V,, = 0 for zero normal flow at the surface of the panel.

Treatment of the Kutta condition requires that zero circulation exists at the trailing
edge. A simple implementation such as yrg = v1+7vy11 = 0 may lead to unacceptable
solutions such as v; = 1e® and yy41 = —1e8. An improved treatment can be applied
through the requirement that vorticites must be small, such as v; = yy.1 = 0, which

can be achieved through the addition of a constant potential at the wake.

The addition of the Kutta condition to Equation 41, lends to the solution of unknown

strengths ;. The velocity components at each panel may then be obtained from the

tangental components of (u,v); such that

v, = 2n (42)

’ 68,- ’

which applied to Equation 37, the panel velocities can be obtained from

N
Dby,
Ue = Uoo -t + Z/ 1 <"/i 8¢52 dS) . (43)

j=17P

Finally, the coefficient of pressure C), for each panel is obtained from

Cp=1-— =2 (44)

3.5 XFoil - Viscous Coupled Potential Solver

A viscous coupled Panel method XFoil [67] is used extensively throughout this work.
Viscous coupling is added to the inviscid irrotational Panel method by including the

solution to the integral momentum and kinetic energy momentum equations that

49

describe two-dimensional boundary layer flow. The inclusion of the boundary layer
has the effect of effectively modifying the shape of the body as seen by the external
flow. To include this effect within the XFoil Panel method solution, the boundary
layer displacement thickness 0* is added to the transpirational velocity condition in

Equation 39, such that the normal flow boundary condition becomes:

d £
Ven=— (U5, (45)

One approach to applying this two-way coupling, is to solve the panel method equa-
tions starting with the Neumann boundary condition V' -n = 0. Then solve the
boundary layer using the panel solution velocity field U_'; as an initial input condition.
The process can then be repeated iteratively replacing the simple Neumann condition

with Equation 45 calculated from the boundary layer solution.

It is possible that convergence of the viscous coupling applied through such a method
may not always be easily achieved. XFoil adopts a more robust approach by solving
the entire non-linear equation set of both Panel method and boundary layer equations

simultaneously by a Newton-Raphson method.

A full description of the viscous equations and their solution in XFoil is given in [67].
A brief introduction to their formulation is given below.
3.5.1 Laminar Boundary Layer Approximation

For laminar boundary layer flow, the Navier-Stokes equations can be reduced to derive

the Prandt]l boundary layer equations

ou Ov
T2 46
oz * dy 0 (46)
ou Ou Op H%u
2z ——) = — 47
p(“ax”ay) 6a:+u8y2 (47)
dp
et 48
=0 (19)

where it is assumed that:

50

e The boundary layer thickness is very small compared to L for large Reynolds

numbers,
e The tangential velocity u is much larger than the normal component v,

e The pressure is essentially constant across the boundary layer in the y direction.

By combining the boundary layer equations, and integrating the resulting expressions

to infinity with respect to y, the Von Karmen integral momentum equation is obtained
as derived in 49.
a6 0 dU, 1

YT oL H —
i Rl bk

o (49)

where the shape factor H = §*/0, the displacement thickness §*, momentum thickness

@ and skin friction coefficient Cy are defined as follows.

5. = /OOO <1—-g;>dy (50)

- i) o

Tw ou
Of = m, where : Tw = K a—y (52)

y=0

By multiplying the momentum integral equation by w and integrating, the kinetic

energy integral equation is obtained:

o 0" dU,
+ 3=

dx U, dx = 2Cp, (53)

where the kinetic energy thickness 6%, and the dissipation coefficient Cp are defined

as

L) e

51

The system of equations 49 and 53 contains too many unknowns, and therefore must
be complemented by other equations. XFoil uses the semi-empirical relations from
the Falkner-Skan velocity profile family to close the system, which are solved using a
backward Euler discretisation. A full description of the solution used by XFoil to the

Laminar boundary equations is discussed by Drela [67].

3.5.2 Implementation of the Turbulent Boundary Equations

In turbulent flow conditions, fluid motion becomes unsteady. In such a case, following
the fluid motion in detail becomes impractical, and therefore a description of the

average motion of the flow is substituted.

If we define the time average of any flow quantity by:

to+1"

a(z,y) = Thjloo 7 alz,y, t)dt (56)
to

where

a(z,y,t) = alz,y) +d'(z,y,t)

such that a’ represents the fluctuations from (a — a).

By time-averaging and comparing the order of magnitude of terms of the steady in-
compressible Navier-Stokes equations, the following turbulent boundary layer equa-

tions can be derived:

55‘1“6—& =0 (57)
ou _0u op 0 (ou —
p<u5;+vé—y->—~—%+5§<u8—y—mpuv> (58)
op 0 ov —
dy Oy <May e))

The Von Karmen integral equations can be derived from the turbulent boundary
layer equations. The main differences to the laminar cases include the inclusion of

a Reynolds stress term —pu/v/, and the integral quantities 6*,0, H and C; are also

52

expressed as time-averaged velocities. As in the laminar case, solution of the Von Kar-
men integral equations requires the inclusion of additional equation relationships to
complete the system. XFoil incorporates relationships derived from the Falkner-Skan
profile family to complete the solution which is detailed by Drela in [67]. Turbulent

separation is predicted to occur when H approaches 3.3.

3.5.3 Location of Transition

During the growth of the laminar boundary layer, disturbances can make the flow layer
become unstable. Eventually the disturbances cause the boundary layer to become
turbulent, which is known as transition. The accurate prediction of the transition
region is important in drag estimation as it defines regions of laminar flow where

skin-friction is low, and turbulent regions where skin-friction drag increases rapidly.

XFoil adopts a procedure for transition prediction known as the e method, which
computes the maximum spacial amplification ratio formed from the growth of wave
like disturbances in shear layers. Transition is most likely to occur when the amplitude
has grown by more than a factor of €%, although the ratio can vary between e to ell

owing to factors such as surface roughness and free stream turbulence.

From the Falker-Skan profile family, the spatial amplification curves based on the
Orr-Sommerfield equation can be related to the local boundary layer parameters [67].

The amplification curve envelopes are approximated such that

- dn
"= R (H)[Rey — Rey,) , (60)

where 71 is the logarithm of the maximum amplification ratio, Rey = Rel.#, and the

critical Reynolds number Rey, are expressed by the following empirical formulas:

dn : 1
dRZ = 0.01([24H — 3.7+ 2.5tanh (1L.5H — 4.65)]° ++ 0.25)
0
1.415 20 3.295
1Oglo (Reeo) = (']'_]_'_——1‘ - 0-489> - tanh ('B,‘TI — 12.9) -+ Ff—_—_I + 0.44

The amplification rate is obtained by integrating the amplification rate downstream

53

from the instability point Zcriticar where Rey = Reg,, giving:

A(z) = / %d:ﬁ. (61)

critical

The conversion from Rey to spatial z is accomplished by:

Eijz _ dn dReg _ dn 1 idUe 1 pU3021 (62)
dr dRes dz dRey2 \ U, dx ux 6
The amplification rate is expressed in terms of H and 6 by:
dn dn m(H)+ 1 1
- 9) = Hy. 22/ T - il
and
U.0?
pm = p(H)= (6.54H — 14.07) / H?
x dU, (H — 4)? 1
Sl =m(H) = 058 2 . -
0 dr m(H) (O 058 71 0 068> o) (64)

3.5.4 Implementation of Boundary Layer Calculation and

Prediction of Drag

The numerical approximation for the Laminar boundary layer is first calculated by
growing the solution from the stagnation point near the leading edge of the airfoil.
Boundary layer transition is then added to the solution. Since no method exists for
describing the transition process, a fictious transition point is used to define a point
where the boundary layer instantaneously changes from a laminar boundary layer to
a turbulent one. This transition point is located from the laminar boundary layer
where n(z) = 9. In XFoil, an interval (¢,4 + 1) is first found such that f(x;) < 9
and 7(z;+1) > 9, and then linear interpolation is used to find the exact point, re-
evaluating the brackets at each iteration. The turbulent boundary layer calculation
is then applied from the transition point starting with initial values taken from the

end of the boundary layer calculation.

o4

In two dimensions, the components of total drag reduce to that of profile drag which
can be calculated from the loss of momentum across the wake. The Squire-Young

formula is used to calculate profile drag at the last computational point in the wake.

D Hrp+s

= W = 804 = 20rE (Ue) 2. (65)

Cp

3.5.5 Parameterisation of XFoil for Optimisation

The setting of XFoil parameters should appropriately reflect the solvers ability to
capture aerodynamic sensitivity to a wide range of designs. The accurate prediction
of boundary layer transition will have a critical impact on drag calculation. To help
define boundary layer parameters, the drag polar of the NACA0012 airfoil has been
reconstructed and presented in Figure 13. In XFoil, the transition point is given as
the lesser of () = Neriticar a0 T = Typsp, Where e™eritical is the maximum amplification
ratio for disturbance growth described in Section 3.5.3, and x4, defines a point where
the boundary layer becomes turbulent if not already so. The parameter neiica 1S
mainly determined by surface roughness and external parameters such as temperature
and free stream turbulence. These factors are considered beyond the scope of this
study and therefore the value of 9 is used. The values for z.;, for the upper and
lower surface were set at z/c = 0.3 for the upper surface where the flow is expected
to become turbulent early in normal operation, and /¢ = 0.5 for the lower surface
where the flow is expected to trip later owing to the reduced curvature normally found

in the first part of the section.

The drag polar produced by XFoil for Re = 3e® is compared in Figure 13 to experi-
mental results obtained from [68]. The results obtained by introducing boundary layer
tripping, compares more favourably, than the results obtained where the boundary
layer is allowed to trip freely as determined by n(z) = €°. This difference is expected
to be largely attributed to the manual tripping of the boundary layer on the experi-
mental model at /¢ = 0.3. The pressure coeflicient distribution for the upper surface

at zero angle of attack is compared with experimental results in Figure 14.

Overall, a reasonable capture of the aerodynamic characteristics important in this

55

0.02
o
0.015 T
\.)
o
U .
o o001 O fo! © Experimental
O /6 - Free Trip
/ | U_tr=0.3
o ‘0/4 B
a © o o
i
0.005] |
| ‘ |
| H
} | {
0] 5
- - o o 0.5 1 1.5
Ci

Figure 13: XFoil Drag Polar Reconstruction for a NACA0012 Airfoil

-0.6

O Experimental

0.4
e XF 01

0.6

0.8

Figure 14: XTFoil Pressure Distribution Reconstruction for a NACA0012 Airfoil at
Cr =00

56

work can be made by XFoil, which offers a cheaper alternative to the more expensive
viscous solutions of the Navier-Stokes equations.

3.6 Unstructured Cell Vertex Euler Solver

The Euler equations describing the conservation laws of mass, momentum, and energy,

can be written in vector form as:

ou

=+ V-F=0 (66)
where F = (f,g,h), and
p pu pv pw
PU pu® + P pvU PWU
U=| pv f= pUY g=| pv? +P h = pwY
pw puw PUW pw? + P
pE puH | pvH pwH

E and H are the total energy and stagnation enthalpy per unit mass respectively.

Equation 66 can be integrated over an arbitrary finite volume) to construct the

integral form of the equation.

Using Gauss’ Divergence Theorem this can be expressed as

e,
— [UdQ) = —7{ (fng + gny + hn,)dS (67)
It Jo 0

where 0€) represents the contour around the volume) and S represents the surface
of the volume. An average change of the conserved variables, denoted by Ucan be

expressed for a discrete finite volume as

mn

oU ~1
(5;) = 5= D (FS: +95, + hS.)ds (68)
& k=1

where the summation is over all the faces of the discrete volume, S,,S, and S,
represent the projected areas of these faces, and V4, is the volume. Equation 68

can be used over any discrete volume thus the method can be applied on any grid

topology.

57

A Cell Vertex scheme is used to simplify the boundary condition implementation.
Additional volumes or 'Control Volumes’ are constructed over which the equations
are integrated. The flux values on the faces are calculated using Roe’s upwind scheme
[69], in which an approximation to the Riemann problem is sought on the control

volume faces.

The numerical flux, equivalent to the terms inside the right hand integral of Equation

67, can be expressed as
. 1
finp =35 [FUT) + F(UL) = |Apee| (UF = UY)] (69)

Where |Apee| is the flux Jacobean, evaluated using Roe’s fluid state [69].

In the implementation used, Equation 68 is used to calculate Ui”Jrl from U] for each
volume by calculating the numerical flux given by 69 on each face and then integrat-
ing the result with respect to ¢ via Runge Kutta numerical integration. A detailed

description of the implementation of the solver is given by Rycroft [70].

3.7 Summary

Two flow solvers have been described in this Chapter, XFoil and an unstructured
3D Euler solver. XFoil has been found to suitably reflect the incompressible flow
characteristics of a NACAQ012 section. It will be used for the optimisation study of
the ducted thruster foil section, due to its rapid evaluation of the flow solution. The

Euler solver will be used to measure the scalability and performance of a distributed

PC network for aerodynamic calculation.

Chapter 4

The Formation of Species and
Optima Finding with Genetic
Algorithms

For this work, a robust Genetic Algorithm capable of discovering novel design features
amidst multi optima and deceiving search landscapes is required. Without this basic
capability, research into shape adaptivity may become influenced by the noise of
unnecessary disruption due to local optima traps, population dominance by a single
species or member, or through other biases that may hamper the convergence and

adaptation ability of the algorithm. This chapter is concerned with the construction

of such an algorithm.

4.1 The Canonical Genetic Algorithms

The evolutionary cycle that encapsulates the Genetic Algorithm discussed in section
2.2.2 has been implemented using C++. The Canonical Genetic Algorithm which
features binary string chromosome structures, has been used as a starting point model
due to its success in previous implementations [2][36], and the large amount of research
that has been carried out around it. Other implementations of the GA may also be

used for this work including Real encoding as described by Eshelman and Schaffer

o8

59

[71], as well as the more advanced Breeder GA [72], and Messy GA [16]. However
these are generally harder to implement on real problems, and may not necessarily

help any more in achieving the goals of this research.

A description of the Object Orientated implementation of the GA used in this work is
given in Appendix B. This section discusses the key algorithms and operators used,
and their effect on its performance when applied to a simple but difficult optimisation

problem, "The Bump Problem’.

4.1.1 The Bump Problem

The bump problem, introduced by Keane [73], is a difficult problem for most optimi-
sation methods to deal with. Good local optima are found in small islands or bumps,
surrounded by vast areas of poor solutions. Such a landscape is difficult to explore as
the global optimum which lies on a constraint boundary cannot be found by simply
following a path improving fitness or good solutions. It is assumed that the periodic
formation of the peaks will not assist the search process. The orthogonal structure of
the bumps may assist operations such as genetic crossover, however the occurrence of
such an event it considered to be extremely small, and its advantage to the operator
ignored. The bump problem is ideal for testing search algorithms (Schoenauer and
Michalaewicz, 1996 [74];Michalewicz etal., 1998 [75]; and Keane, 1995 [73]) includ-
ing those destined for aerodynamic design where a slight perturbation in the design

parameters can lead to disastrous results.

The problem is defined as:

b TL Yxy) - 2118 Yz,
MagimiseZ> (2izy cos’(z)n [[;, cos®(x:)) (70)
Zi::l Z‘r’LQ
for
O0<z; <10 i=1,...n (71)
subject to
[[zi>07 and > 2 <15n/2 (72)

i=1 1=]

60

10 49

Figure 15: 2D Bump Problem

starting from z; = 5, i = 1,...,n. Figure 15 shows the 3D plot of the bump problem
for n = 2. For n > 2 this problem becomes more demanding, with families of peaks

occurring within a complex constraint surface.

4.1.2 GA initialisation, establishing generation zero

The initial population is usually setup by random generation of member chromo-
somes, which are then evaluated and stored until the initial population is complete.
The length, type and structure of the chromosome string depends on the number
of parameters to be discretised, the size of the individual parameter space, and the
representation scheme used.

The structure of the chromosome is defined by genes representing the individual

parameters. As with any optimisation process the number of parameters used will

increase the number of objective functions to be evaluated.

Binary Encoding

A simple but extremely effective genetic coding is achieved using finite length binary
strings to encode the search variables. A variable can be represented by enforcing

limits on the variable range such that min; < z; < max; where z; is the parameter to

61

be searched. A gene string is encoded for each variable by subdividing the parameter

by the number of binary bits to be used.

To ensure that the encoding can survive mutation and crossover to the best of its
ability, Grey Coding has been used here to reduce the binary ‘Hamming Distance’
between genes. Hamming Distance is the number of different positions between two
binary vectors. For example “01” would represent the integer value of 1, whereas
flipping the left bit to “11” would now yield a value of 4. Using Grey coding, the
vector “11” would yield a value of 2. Davis [76] found that the introduction of
Grey Coding to the chromosome encoding helped members survive after undergoing
mutation operations where binary code bits were randomly flipped. The Grey Code

implementation given in [19] was used in this work.

The chromosome is made by concatenating all the gene strings together. Each bit of
the combined chromosome string is known as an allele, and its position is called the
locus. Genetic operators can be performed on this chromosome string, before it is

decoded back into its real number components for evaluation.

Population Sizing

Population size is one of the most important parameters to be considered on tailoring a
GA. Despite the depth of literature found evaluating various strategies for determining
the appropriate population size, there are still no firm guidelines of how large a
population should be used for a particular problem. If the population is too small,
progress can be hindered by the lack of schema sampling available within its members,
and increased stochastic effects are required to alleviate this problem. Too large a

population and computational cost can become a concern.

Convergence time is dependent on population size. Goldberg[77] showed that typical
GAs converge on O(PlogP) generations, where P is the population size. Since con-
vergence is used to indicate the low rate in which the populations fitness progresses
at each generation (stops improving), it would be suggested that large populations

should be used to avoid premature convergence.

Initialisation

The initial starting point of the GA is not critical as in other optimisation methods.

It is still important to ensure that the initial population is spread over a diverse area

of the search space.

The three main methods used to initialise a population are random generation, deviate
and injection. In random initialisation, chromosomes of each population member are
created bit by bit via random number generation. In its simplest form, a binary
chromosome is created by generating random numbers of O or 1 for each bit until the
chromosome is complete, without any knowledge of individual gene representation. In
deviate initialisation, a given set of chromosomes are perturbed by a random amount.
This is done by real/integer number perturbation on a gene by gene bases. The third
initialisation method, injection initialisation, reads the chromosome representation
from file either directly in their binary string form or from their actual parameters
which are converted to binary. All three schemes are included in the GA. The deviate
method is necessary where the feasible solution space is sparse and formulation of
a diverse population with a relatively high degree of feasibility difficult. Injection

allows for restarts and structured experiments to be performed.

On creation of all the population chromosomes, the population is evaluated estab-
lishing generation zero. In search areas containing a high degree of infeasibility, it
may be necessary to continue initialising new members until a predefined proportion

of feasible members is reached in generation zero.

Evaluation of the objective values is then performed to assign each Genome with its

raw fitness measure for the selection process.

Constraint Handling

In order to solve a constrained optimisation problem, it is important to ensure that
any optima found satisfy all constraints. A variety of constraint handling methods
can be used with the various optimisation techniques and a general discussion of
the approaches that can be used is given by Siddal [18]. Penalty functions are a

simple approach to handling the constraint problem commonly adopted to work with

63

evolutionary algorithms due to their simplicity, robustness and the fact that they do
not require knowledge of sensitivity. Penalty function methods, work by combining
the objective function with some penalty function that penalises the objective value

when a constraint is violated.

The simplest form of a penalty function is given in Equation 73.

Up(z) = U@U—%MFOE:léﬂ%—HFOE:}@W (73)

The expression represents a distorted objective function which tends to force the
search towards feasible areas. If the search either begins in the infeasible region, or
wanders into it, it is urged towards the feasible region by the distortion of the surface.

In this work, Fiacco and McCormick Penalty functions are used:

Up(z) = U(z) + = z:c}/(x):2 + 72 Z csia:) (74)

where 7 = [0,1) is a penalty relaxation factor used to control the intensity of the
applied penalty.
Stochastic search methods may find it difficult to satisfy an equality constraint, and

therefore in this work only inequality constraints are considered (equality constraints

can easily be treated as inequality constraints). The constraint functions are defined

as:

¢; = Cp — C(x) (75)

where C(x) is the value of the constraint and Cr is the constraint target value.

This method contains mixed penalty functions in both the interior (feasible) regions
which are a component of the satisfied constraints, and an exterior (infeasible) com-
ponent which is a function of the violated constraints. The internal term increases
in size as the constraint boundary is approached, trying to prevent the solution from
crossing the boundary region. As the solution matures and becomes less erratic, the

penalty given by the interior and exterior terms close to or at the constraint boundary

64

is reduced sharply, thus allowing the solution to approach the boundary if required.

The penalty reduction factor r is typically reduced at a rate of 0.04 per generation.

4.1.3 Parental Selection

The objective of the selection process is to ensure that only good quality schema
participate in the reproduction stage. The selection method must therefore be biased
towards members of above average fitness, such that high quality schema are likely
to propagate into future generations. Since the selection stage determines the type of
schema sampled by the Genetic Algorithm it is often considered as the most important
phase in the evolution process. In order that a judgement can be made between
good and poor candidates, some measure of the solution fitness must be made. The
members fitness is a relative term which indicates the individuals standing among its
contemporaries. If z; is the set of input parameters and ® = E (@E) is the vector of

objective variables returned by the objective function, then fitness F' is given by

ﬁ(&) = f(E(’l,/j), t) = f((i;a t)? (76)

where ¢ is the generation index of the algorithm. The success of a GA lies in exploiting
existing information from its members while exploring new areas of the search space,
by sampling schema from a diverse population. Selection therefore plays a key role
in this process. If the selection is too elitist, and heavily biased towards selecting
the best members of each population, then this intensive selection pressure can lead
to a significant reduction in the phenotypical diversity of the reproduction pool [78],
thus reducing the exploration advantage of the GA. The result can lead to premature
convergence of the evolution process. Problems of population take-over where the

population becomes swamped with elitist members, are frequently reported with such

applications.

To examine such key performance characteristics, several terms were defined by Baker

[79] and Back [80] as summarised below.

Selection Pressure: the probability of the best individual being selected compared to

the average probability of selection of all the individuals.

65

Bias: the difference between an individual’s normalised fitness and its expected prob-

ability of reproduction.
Spread: the range of possible values for the number of offspring of an individual.

Loss of Diversity: the proportion of individuals of a population that are not selected

during the selection phase.

Selection Intensity: the expected average fitness value of the population after applying

the selection method to the normalised Gaussian distribution.

Selection Variance: the expected variance of the fitness distribution of the population

after applying the selection method to the normalised Gaussian distribution.

Fitness Assignment

The first stage of a selection process is to award each individual of the current popula-
tion pool, a weighting based on its relative performance amongst the other competing
members. The weighting which is based on the notion of member fitness, will give the

individual an appropriate probability of being selected in the reproductive selection

process.

Fitness assignment essentially provides a measure of the performance of an individ-
ual’s relative strength amongst the other candidates, against the objective of the
evolution problem. The original or raw fitness measure of a member is usually de-
termined by the objective function. Although some selection methods can work with
this raw assignment, it is sometimes more useful to re-scale this performance measure

so that the differences between members becomes more subtly defined.

Linear scaling is simple to implement, where member fitness is scaled using a linear

function dependent on a predetermined value.

1

- 1 +fmao:,t - fi,t <77)

Dt

where @, is the positive fitness assigned to an individual 7 in generation ¢, fiaz¢ 1S
the maximum member’s raw fitness assigned by the objective function and f;; is the

objective fitness for member 7 in generation ¢. The resultant fitness using this simple

66

linear assignment lies in the range of (0, 1].

This method, can however lead to intense local selective pressure on the elitist pro-
portion of the population, reducing the phenotypical diversity of future generations.
Exponential and power based proportionate scaling methods, can be introduced to
alleviate the pressure on local selection. However phenotypical distances are still the

main measure on which the method is based and are not necessarily conducive to

exploration.

Ranking methods (i.e. first, second, third,) [81] ignore phenotypical distances
where the measurement of fitness is based on the members position relative to the rest
of the population. If two or more individuals have equal standing, they are assigned
an equal averaged rank. Three types of ranking scales are generally adopted, linear,
power and exponential, and the way these are used generally depends on how much

selection pressure is to be applied. The linear ranking scheme used was assigned such

as

D, = Olrank + [rank(z)/ (P(t) - 1)] (ﬁTka — aﬂmk) (78)
’ P(t)

where Qg is the expected number of offspring to be allocated to the worst member
and [rqne is an adjustable parameter that defines the proportion to be allocated to
the best ranked member such that qpenk = 2 — Brank, and 1 < Grgnre < 2. P(%) is the

population size of generation .

If this fitness assignment yields excessive convergence times, then a higher level of
selection pressure can be applied using an exponential scale. For the exponential
scheme, fitness from best to worst are assigned as 1, 7, s7*1, ... where s < 1.0 (such
as § = E}?—l) and 7 is a positive integer. Both s and j can be varied to apply the

appropriate level of selection pressure.

Fitness Selection

The objective of fitness selection is to create the pool of new parents from the current

population, by associating higher chances of selection with members of higher assigned

fAtness.

67

“Roulette Wheel” selection [11] is the most basic mechanism used by many GAs due
to its simplicity. This method is analogous to replacing the numbers usually given on
a roulette wheel with differently spaced pockets for each member. The size of each

spacing is determined by that member’s cumulative probability ¢; which is given by:

g = Zé‘:ﬂ% where (79)
®. A
b= FO)= D0,

where ®;, is given by Equation 78. The roulette wheel is then spun by randomly
dialing a number (0, 1], and the member with the cumulative probability that spans
the dialled number, is selected to participate in the next generation. If the selection
scheme allows the replacement of individuals drawn from the candidate pool, then
the wheel is simply spun popsize times. If a no-replacement scheme is desired, then

the cumulative probability ¢; must be recalculated each time a member is selected.

Although this scheme is simple and versatile, compared to the different fitness assign-
ment schemes available, it is prone to generating numerical noise; i.e. the variance of
the probability density function for selecting a member of given fitness is relatively
large. Numerical noise generated by the roulette wheel and reproduction operators,

tends to obscure the signal difference between good and bad schemata.

The Stochastic Universal Sampling (SUS) scheme was proposed by Baker [79] to

eliminate the numerical noise found in the Roulette Selection. The implementation

of this scheme is illustrated in figure 16.

This scheme works in the same way as roulette selection, but only requires a single
random number to define the location of the first selection point. Then n-1 points are
chosen from this first point at constant intervals. Because only one number is drawn
from a random process, the appearance of each member in the reproduction pool is
proportional to its expected probability of selection. A disadvantage of this scheme
is that similar members with poor fitness are severely screened from the selection

process, eliminating a substantial part of the stochastic behaviour of the selection
role.

Another simple selection scheme that has become popular amongst researchers is

Tournament Selection [82][83]. In this scheme a tournament is held among a set of

63

Representation of a member in the selection pool
Size of member is proportional to assigned fitness

—

This member is to be selected

L

Randomtly dialled point [0,1)

N equally spaced markers are arranged starting a single randomly chosen point.
Where each space aligns on a proportionaily represented member, that member
is selected to participate in the next generation

Figure 16: Stochastic Universal Sampling Scheme

individuals. The set is chosen at random from the selection pool, and the tournament
winner is selected to become a parent, and the process repeated until the parent pool
is filled. Like the Roulette Wheel and SUS, this method can be used both with or
without replacement of candidates in the selection pool. The size of the sub-pool
is defined by the tournament size Tour, taking values ranging from 2 to popsize.
Numerical noise is reduced as roulette type routines are no longer required, while
randomness is maintained through the selection of the member set participating in
the tournament. Tournament victory is usually determined using any of the fitness

assignment methods mentioned above.

Elitism

“Elitism”, was first introduced by Kenneth De Jong(1975), as an addition to many
selection methods forcing the GA to retain a number of best candidates at each
generation. Such individuals can be lost if they are not selected to reproduce, or
are destroyed through the reproduction process. A parameter pp.s; is used in this
implementation to define the proportion of best individuals that are to be preserved

to the next generation without undergoing selection or reproduction processes.

69

1 5.
Chromosome | Chromosome 1
111111 000000 111100 110000
Gene 1 Gene 2 Gene 1 Gene 2
2. / 3. 4. \
111111000000 11111100p000 111100110000
000000111111 0000p011f1111 000011001111
\ 2-Point-Crossover
Chromosome 2 Chromosome 2
000000 111111 000011 001111
Gene 1 Gene 2 Gene 1 Gene 2

Figure 17: Two Point Crossover Scheme

4.1.4 Reproduction

In the reproduction process, two individuals share genetic information to produce
offspring that contain characteristics of their parents. In the GA implemented here,

two of the basic operators are used, crossover and mutation.

Crossover

Traditional binary crossover takes the two parents, cuts their chromosome strings at
randomly chosen locations, which are then swapped over from one chromosome string

to the other as illustrated in Figure 17.

The offspring thus inherit some genes from each parent with a small amount of genetic
disruption. Two common parameters, crossover rate and the number of crossover
points are usually used to define the type of crossover that takes place. Crossover
rate defines the probability of crossover occurring during the reproduction phase
(typically between 0.6 and 1.0). If the crossover rate is 1.0 then all offspring will
contain genetic material from both parents, if a rate of 0.6 is used, then approximately
60% of individuals undergo crossover. The number of crossover points determines the
number of times the parent chromosome is cut and swapped with a second parent

chromosome. Generally single point crossover is used, but other common rates include

70

two point crossover as indicated in figure 17, and uniform crossover [14] where every

other allele is exchanged between chromosomes.

Mutation

Mutation is applied to each offspring (after crossover), randomly altering each gene
with a small probability (typically 0.001 to 0.01). The role of mutation is to provide
a small amount of random search, and helps to ensure that no point in the search

space has zero probability of being explored.

Inversion

Inversion is applied in a similar manner to mutation, except the result is a slight
reordering of allele bits, such that 110 would become 011. The implementation used

in this work will allow three bits of a chromosome string to undergo inversion at a

probability pi,..

4.1.5 Death

The occurrence of death to each member is generational. That is, at each generation,
a new population is created from the selected parents. New children are created by
taking two parents at a time and performing crossover. If crossover is not performed,
then the parents are copied into the new population as new members. Mutation
and inversion is performed on all members of the new population. Finally elitism is
applied to ensure the previously best member is represented in the new population.

The previous population is completely destroyed.

4.1.6 Implementation

The GA and evolutionary operations described above, has been implemented using
C++ as described in Appendix B. The basic logical flow process describing the

artificial evolution process is illustrated in Figure 18.

71

1. Initialise template DNA Structure.

2. Initialise Parent Genome Population with template DNA,
3. Perturbate Parent DNA.

4, Evaluate Population raw Fitness.

5. Save Generation 0 Stats.

6. NChild = NPopsize — NElite

7. Fori=0toi=NGens—1

(a) Sort Parent Population by raw Fitness.

(b) Rank Population by raw Fitness, = scaledFitness.

(c) Calculate 3 scaledFitness

(d) Calculate array of accumulative scaledFitness/(3. scaledFitness).

(e} Select NChild parents via SUS Selection scheme and copy to ParentPool.
(f} While Size{ParentPool) > 0

i. Remove random Genome s and Genomepg.
ii. Forj=0toj=NCross—1

A. Crossover Genome 4 with Genomepg.
iii. Apply mutation to Genome 4 and Genomepg.
iv. Apply inversion to Genome 4 and Genomepg.
v. Add Genomey and Genomepg to ChildPool.

(g) Evaluate ChildPool.
(h) Copy N Elite members from ParentPool to ChildPool.
(i) Save Generation Stats for Generation 7.

(j) Copy ChildPool to Parents.
8. Save Stats to file.

9. End.
Figure 18: Implementation of the Canonical Genetic Algorithm

4.2 Performance Evaluation of the Canonical Ge-

netic Algorithm

Proportionate, linear ranking, exponential ranking and tournament selection methods
have been explored for their suitability for use with difficult objective functions such
as the Bump problem. The probability of mutation occurring during reproduction
was maintained at 2%, and a crossover probability of 0.6 was investigated. The bump
problem was used with n = 2, 5, 20 scenarios and the tolerance of the binary encoding
set to 20bits per gene. The population size was set to 50 members for n = 2 and 300
members for n = 5 and n = 20. Elitism was used to ensure that the best member of
each generation survived to the next one. The penalty function given in Equation 74

was used to steer the solution away from infeasible areas, with the reduction factor r

initiated at 1.0, and reduced by an amount of 0.04 per generation. The results matrix

for each GA configuration is shown in Table 4 for n = 2 case, Table 5 for n = 5, and

Table 6 for n = 20 bump problem.

GA Scheme Peross | 1 2 3 4 5 Avg
Linear Ranking 0.6 0.18 0.21 0.24 0.19 0.24 0.21
Linear Ranking 0.85 0.15 0.15 0.18 0.13 0.13 0.15

Exponential Ranking 0.6 0.12 0.11 0.10 0.12 0.14 0.12
Exponential Ranking 0.85 0.11 0.12 0.15 0.09 0.11 0.12
Tournament Selection 0.6 0.21 0.15 0.18 0.22 0.16 0.18
Tournament Selection 0.85 0.18 0.20 0.18 0.19 0.15 0.18

Table 4: Performance of Various Selection Schemes on 2D Bump problem (5 Samples)

GA Scheme 1 2 3 4 5 Avg
Linear Ranking 042 038 026 034 041 0.36
Exponential Ranking 024 032 036 0.28 040 0.32
Tournament Selection 032 036 027 033 038 0.33

Table 5: Performance of Various Selection Schemes on 5D Bump problem (5 Samples)

GA Scheme 1 2 3 4 5 Avg
Linear Ranking 0.54 046 052 037 041 0.46
Exponential Ranking 0.34 030 042 0.28 0.32 0.33
Tournament Selection 0.42 025 043 0.38 0.34 0.36

Table 6: Performance of Various Selection Schemes on 20D Bump problem(5 Samples)

The selection pressure offered by Exponential ranking and Tournament selection were
found to be far too excessive for the bump problem when starting from a fixed initiali-
sation point. The solutions converged extremely quickly for these configurations, and
population takeover (where clones of the elite members dominate in the population)
was observed to occur after just 20 generations for the n = 20 bump problem. Linear
ranking with a selection intensity of 1.6 was able to prolong convergence for at least
40 generations for the same case, while consistently finding superior results. Figure
19 shows a resultant population produced by Linear ranking with pe.oss = 0.85. This
result shows population convergence on a large local optimum in a path between the

starting point at x; = 5,29 = 5, and the optimum. Of course if a totally random

73

Objective Function

10 "4

Figure 19: Typical Population Convergence (popsize 50, nGens 40)

starting generation was used instead of perturbing a point, we would expect some
members to find the optimum some of the time. However from a fixed starting point,

only six solutions found the optimum out of 50 trials.

For populations created through pure random generation as opposed to some pertur-
bation around some starting chromosome string, a slight improvement in convergence
can be gained as shown in Figure 20 for a series of five trials. For this solution,
higher mutation and inversion rates were applied to a faster converging Tournament
selection scheme. Without the complete random generation, premature convergence

was found to occur nine out of ten solutions.

The results shown here could possibly be improved slightly through further param-
eter tuning, however the results from the different selection and crossover schemes
illustrate the limit in improvement that is available particularly at higher dimensions
where fitness values in excess of 0.7 exist for the 20D Bump problem [73]. One aspect
that is absent from the present GA implementation, is that of population diversity

control, where different species co-exist but share different resources.

74

0.4

-

B
g
i

0.1

Objective Function
[

0.05

50 100 150 200 250 300
Generation

=3

Figure 20: Convergence of the Bump Problem with Tournament Selection (popSize
50)

4.3 Maintaining Population Diversity

4.3.1 The Island Genetic Algorithm

The Parallel Genetic Algorithm (PGA) was first proposed by Tanese [84][85], as a way
of efficiently parallelising the canonical genetic algorithm on hypercube computers.
The implementation divides the population into several sub-populations, one per pro-
cessor. Bach subpopulation is evolved as a separate canonical genetic algorithm. At
certain generational intervals, inter-processor communication occurs, where members
from each subpopulation are allowed to move across to another subpopulation. This
process is known as the migration phase. Migrated members are either added to the
existing population, or replace existing members of its new subpopulation by some
replacement process. Once migration has occurred, the evolution process is resumed,

until the next migration phase.

Tanese found that not only did this implementation produce near linear speedup in
the evaluation of candidates through parallel processing of the separate populations,
but it also produced better results than the ordinal canonical genetic algorithm.

The isolation of sub-populations has lead to significant research into Island Genetic

75

Algorithms (iGAs), whose term denotes a population split into many semi-isolated
islands. There are several different but equally accepted hypotheses about why iGAs
are able to evolve better then Canonical GAs (CGA). Generally the subdivision of the
population forms some basis of speciation, whereby separated groups of individuals
may evolve genetically similar individuals likened to species in nature. The mixing of
properties from each species during the migration phase leads to an injection of new

schema into the evolution process, allowing iGAs to maintain diversity better than
CGAs.

The implementation of an iGA, requires the specification of several additional param-
eters including the number of sub-populations or demes, the number of generations
that occur between migration periods, termed the migration interval, and the num-
ber of members allowed to migrate from one population to another, termed migration
size. Belding [86] and Canti-Paz [87] have analysed the importance of deme size,
migration interval and rate on the convergence and solution quality of iGAs, finding
that iGAs are able to sustain several solutions if the migration process is moderately

applied. A description of the iGA implementation into the existing GA is shown in

Figure 21

1. Initialise template DNA.

2. Initialise N Deme Genetic Algorithms with template DNA.
3. Initialise ImmigrationControl for N Deme islands.
4 Fori=0toi= NGen —1

(a) Forj=0toj= NDeme~—1
i. Receive I'mmigrants from ImmigrationControl.
ii. Replace Size(Immigrants) with I'mmigrants at random in Parents.
iii. Evolve GA[j] One Generation.
iv. Save Global Stats.
v. If reached migrationInterval
A. Select N Mig best members and copy to ImmaigrationControl.

5. Save Global Stats.

6. End.
Figure 21: Implementation of the Island Genetic Algorithm

An iGA scheme was tested on the bump problem with linear rank scaling for breed-
ing selection within the subpopulation. Migration interval, migration rates and deme

size were investigated for the n = 20 bump problem. Two ring based topologies

76

+1 Deme Migration Topology +142 Deme Migration Topology

Figure 22: Deme Topology and Migration Strategies

were used for migration coordination, with demes sharing members with other demes
immediately topologically adjacent for the first test case, and with demes within a
topological neighbourhood of two as illustrated in figure 22. At the heart of the migra-
tion process, is the immigration control algorithm that is responsible for coordinating
Genome migration as dictated through the topology description. The immigration

control process implemented is shown in Figure 23.

The results of the iGA implementation on the n = 20 bump problem is shown in
Table 7 based on a total population size of 300 members. Superior results to that
of the basic GA are observed, particularly at migration intervals between 10 and 20
generations. For larger deme sizes for a chosen migration rate of 0.2, at migration
intervals of 10 generations, a small improvement in optimal fitness can be obtained
but at a significantly larger evaluation cost. This would imply that although more
populations are used, a better and more stable optimal solution can be obtained
in comparison to a standard GA implementation. For high dimensional problems,
the associated cost vs fitness obtained by employing several additional demes, will

converge to that of a standard single population GA implementation.

77

1. Initialise for N Deme islands.

2. Create islands=LinkedList[N Deme].

3. Create ImmigrationStrategy={1, ~1,2, —2}.

4. On AddImmigrants Function Call(int SendingG A, LinkedList éimmigrants)

(a) Fori=0toi < Size(ImmigrationStrategy)

i, while Size(immigrants) > 0
A targetGA=SendingGA + ImmigrationStrategyli].
B. If targetGA >= NDeme then targetGA— = NDeme.
C. IftargetGA < Othen targetGA+ = NDeme.
D. Remove First(immigrants) and add to islands[targetG Al.

(b} Return.
5. On GetImmigrants Function Call(int ReceivingGA)

(a) Result = islands[ReceivingG Al
(b) Clear islands[ReceivingG A].
(c) Return(Result).

6. End.

Figure 23: Immigration Control Algorithm for iGA (+1+2 Strategy)

Migration Migration Rate

Interval 0.1 0.2 0.4 0.5
5 0.46 0.50 0.46 0.35
10 0.55 0.63 0.51 0.43
20 0.51 0.62 0.38 0.42
50 0.38 0.37 0.42 0.39

Table 7: Effect of Migration Rate and Interval on an iGA (6 demes of size 50)

4.3.2 The Concept of Niche Formation

Speciation in natural ecosystems is the process whereby a single species differentiates
into several different species to occupy different niches. Such a process aids the evolu-
tion cycle to become more adaptive to changes in climates/environments through the
preservation of diversity. In GAs, diversification can be aided by restricting mating
between different species (defined by niche occupation or through a separate DNA
specification) where niches represent different peaks of local optima. Diversification is
particularly important where more than one maxima peak is required. Unfortunately
a GA’s population will naturally converge on a single peak due to genetic drift [88].
Three approaches that are generally used to influence population diversity are species

control, population crowding prevention, and to share the payoff associated with a

78

Number | Deme Size

Demes 20 75

5 0.26 0.64
10 0.32 0.64
20 0.35 0.69

Table 8: Importance of Deme Size on an iGA (mign, = 20, migrqee = 0.2)

niche.

Species Control

Species control restricts the way in which a member mates with another. Restrictive
mating is usually employed to contain a niche, either by preventing members of a
dominated peak mating with members outside the peak, or if several species with
different DNA makeups are present, to prevent some key species characteristic genes
being exchanged with different species. The second case can be used if several different
designs are considered that share some gene similarity, and diversity is required so
that initially weaker design types are not eliminated from the design too early. The
implementation of non-interbreeding species is easily implemented using a similarity
template called an external scheme [88]. The concept of using restrictive mating to

contain a niche, requires identification of the niche and niche size.

Population Crowding Control

Population crowding was first proposed by DelJong and implemented by Goldberg
[11] and Baker [79]. In the original crowding model, each offspring is compared to a
number of parent members replacing the most similar parent. The number of parent
members used in each comparison is termed the crowd-size, and can range from 1
to N where N is the population size. Although this method shares many basic
foundations with nature, it was unable to maintain more than two peaks on most
multi modal problems. This was demonstrated by Mahfoud [89], who showed that
the scheme exhibited a large degree of replacement error (child replacing a parent

that had better fitness), which degraded GA performance through increased schema

79

noise. Mahfoud proposed a new crowding scheme called ’deterministic crowding’,
where offspring replaced their nearest parent if they performed better. To reduce
parental replacement error, a similarity check is achieved by calculating the Euclidean
distance between members, as defined by the absolute difference between chromosome
normalised values. This scheme therefore imposed its own deterministic selection

scheme offering significant parallelization opportunities.

Sharing Niche Payoff

Members occupying the same niche can be made to share the fitness payoff. between
them until the niche reaches its carrying capacity. At this point, the fitness payoff of

occupying that niche is less attractive than that of other niches.

The shared fitness of individual 7 is given by

SharedFitness = ActualFitness (80)
> 8(dij)

where a basic sharing function s(d;;) [90] may be defined as

1~ (dij/gshare) Zfdzj < Oshare

0 otherwise

(81)

and the distance d;; is usually the separating distance between two individuals in

Euclidian space.

This method can maintain diversity better than crowding [88][91], but is more difficult
to implement as the niche locations and radii are usually unknown. Members closely
grouped together have their fitness de-rated by how close they are to the fitness centre
and the number of individuals within a niche radius. If the niche is significantly good,
a group of members will remain on that niche allowing other members to continue
the search. Speciation techniques can also be employed to prevent members of a
niche mating with members outside, preventing population dilution and encouraging

increased search within the niche.

Several methods for implementing niche sharing have been proposed, with earlier

80

approaches based on the assumption that niches are known and distributed evenly
throughout the solution space. Implementation of niche schemes are particularly
difficult where many local maxima are located near the global optimum. The location
of the optima will be dependent on members of the population being left once all the
local niches are filled [89]. A sequential niche method has been proposed [92] involving
many sequential runs of the GA, each locating one niche. The fitness function is then

modified on successive runs to cancel out the previous niche.

The original sharing scheme proposed by Goldberg [88] requires knowledge of the
number of niches ’a priori’. Such prior knowledge is obviously not available for the
majority of problems found in engineering. Yin and Germay [93] proposed the use of
an adaptive cluster identification algorithm given in Appendix A, based around the
KMEANS clustering algorithm. Here a set of £ members are allocated a cluster each.
The pairwise distances between all clusters are computed, and if they are less than
a predetermined distance, the cluster is collapsed to another. Merging is continued
until all centroid’s are separated by at least a predetermined value. The rest of the
population are then assigned to their nearest niche, and cluster merging or separation

is continued until the cluster constraints are met.

Application of Niching to Control Population Diversity

A larger population size was required for deterministic crowding to sufficiently fill
niches whilst maintaining diversity. Using only the deterministic selection pressure,
convergence was found to be too slow for practical use. Addition of further selection
pressure was attempted, first using tournament selection which resulted in prema-
ture convergence. With application of rank selection with deterministic crowding,

the resultant population found is shown in Figure 24 with several niches identified,

including the optimum.

Sharing and tournament selection are not ideally suited together [82] (Tournament
selection wants to select the best members, while sharing wants to de-rate members).
The adaptive KMEANS algorithm was implemented using rank selection. A popula-
tion size of 100 members was used to ensure that the niches were adequately covered.

The convergence of the solution is shown in figure 25, showing the optimum was found

81

Objective Function

Figure 24: Optimal Found with Deterministic Crowding (popSize 100, nGen 300)

on all five runs, the second series of lines show the average fitness of the population.

The final population is shown in Figure 26.

A trace of population best members throughout the GA evolution is shown in Figure

27, illustrating how sharing allows the GA to move from one peak to the next.

4.3.3 Specification of Key GA Parameters

In the simple GA model, key parameters such as steady state population size,
crossover rate, mutation rate, and fitness scaling, needed to be carefully implemented.
With the inclusion of niching, large population sizes are required such that the niches
found can be adequately populated without significant loss of diversity in the remain-
ing population. For the two dimensional bump problem, population sizes of up to 100
were required to significantly improve the probability of locating the optimum. This
is an increase by a factor of 2-3 on original hit and miss attempts. Since the number
of design variables will also dictate the number of niches available within the search
space, population size still depends partially on the search dimension size. Some
guidance to the size of populations, crossover and mutation rates to be considered

are given by DeJong [94] and Back [80], although pre-testing final parameter values

L R T
035 ~
03 - .
il PR
2 AN A Jy N iy
i N W I
L 08 - ,’,?::;N\'“‘QR"\VN ij"—'i‘«'f&i::&/ LA V\.\l,-‘
$ ‘\f""‘d"‘j, [N ”J . .
2 T o B s R s DB o N P o R
: o E NPy S IINH r ARatCY
g 02 77 W S v e ke
2 e oL
3 . N
o /- i
- oL
s
P "l
-
/ /j ~
/ fipo
/
s06 Lt
#~
©
o 50 100 150 200 250 300

Generation Number

Figure 25: Convergence of the Bump Problem with Niching (popSize 100)

Figure 26: Effect of Niching (popSize 100, nGen 300)

83

Figure 27: Search Trace of Best Members (popSize 100, nGen 300)

on problems such as the bump case with the same number of dimensions is always

advisable.

The adoption of deterministic crowding reduces the chance of good parents being
replaced by poor offspring. In the original deterministic crowding scheme without
further selection pressure, the maximum crossover rate of 1.0 was used. When some
additional selection pressure was added, this rate was reduced to help niche forma-
tion. In general, crossover rates between 0.8 to 1.0 are most constructive for the
deterministic crowding schemes. Mutation rates that ranged between 0.5% and 2%

were found to be most constructive towards the evolution process.

4.3.4 Analysis of Speciation and Optima Finding

Diversification of population DNA has been a critical characteristic of Genetic Algo-
rithms in finding the optima in multi-modal landscapes. Speciation methods such as
crowding and fitness sharing, can help to maintain diversity while the generation ma-
tures preventing population takeover. However in their implementation, it has been

clear that the adoption of such techniques still cannot guarantee success in finding

84

the optima. Due to the nature of the binary crossover operator used, a new species
generally is created through cross-breeding two other species. The more different the
parent species, the more combinations of new species there are that can be developed,

and the further away from their parents they could become.

To gain some insight into why the optima can remain elusive despite the diversity of
the population, an analysis of how new species are formed and survive in the presence

of fitness sharing has been performed.

In this analysis, a new species is said to have been created if

O”Childiﬁj > Dspecies (82)

where ocpig, ; is the Buclidian distance of child from its parents 7, and j, and Djpecies

is the minimum distance between two species.

For the 2D bump problem, an analysis of new species creation has been made using
a genetic algorithm with a population size of 50, crossover rate of 0.85, linear rank
fitness assignment and SUS selection. Mutation and inversion was not used, and a
single elitist member survival strategy has been implemented. Figure 28, shows the
number of species present in each generation, divided into the number that survived

to the next generation, and the number that failed to be selected to become parents.

The rate of population convergence is clear in this figure, with population takeover
occurring after just 10 generations due to the high crossover rate used. A high rate
at which new species are formed at the beginning of the evolution process is shown,

as well as the large probability of these new species surviving.

The same analysis is presented in Figure 29, with a fitness sharing scheme applied
to the selection process. Once again a large number of new species has quickly been
established early on in the evolution process, but the effect of species diversification
through the application of fitness sharing has maintained this diversity throughout
the maturing population. Despite the increased diversity, an equilibrium was soon
established between creation of new species, and survival to the next generation.
Through investigation into the family tree of an optimum, on four out of five occasions,

the optimal niche was found through cross-breeding two similar species within the first

85

30

25

n
o

Total Species Discovered
5 @

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Generation

[Species Surviving O Species Dying |

Figure 28: Rate of Species Creation for a Non-Niching GA

six generations where the chance of a new species surviving remained high. In the
fifth instance, the optimal niche was established at generation 37, although this niche
had been hit with non-surviving children on 27 instances preceding this. This final

instance arose more out of an evolution of fluke, rather than a result of continuous

gradual adaption.

Analysis of the fitness of new species created in the presence of fitness sharing through-
out the evolution process shown in Figure 30, illustrates that despite the fitness of its
parents, new species are likely to rank less favourably in the selection process. With a
low population maturity, species created were found to share a fitness comparable to
the population average, and therefore likely to rank amongst selected parents. How-
ever, the population average fitness soon increases as the population matures, and by

generation five it becomes difficult for new species to survive parent selection.

The problem of species creation is acute for the bump problem, since successful and
non-successful candidates can lie very closely together. For a GA that is only able
to evolve members within a single environment, this problem can severely affect its
performance in finding the optimum. The rate of species death could be reduced by

encouraging species to inter-breed. However this will not aid the establishment of

86

45

40

paianoasig se1oeds |810)L

19 20 21 22 23 24 25

12 13 14 15 16 17 18

Generation

10 1

9

[m Species Surviving O Species Dying |

Figure 29: Rate of Species Creation for a Niching GA

Besl Fitness
Average Fitness

New Species Fitness

-

. "o o <oonem

. sane to0 smsenl

< *q e some
® 0900 sneen

LRI TR
sesm gmese o

040000 same

o s4am o wmed

o | sorommn g

04

0.35
03

0.25 1

o
o

ssaully

15 20 Genemtion 30 35 40 45 50

10

Figure 30: Fitness Distribution of New Species vs Overall Best and Average Fitness

87

new species which has been the aim of the work presented here. To encourage the
GA to allow tolerance towards new species during parental selection, environmental
changes will need to be explored, to provide some sort of temporary stepping stone

between the creation and long term establishment of species.

4.4 Summary

A Genetic Algorithm has been established, based on the Canonical GA by combining
both island migration schemes with fitness sharing. This work has presented evidence
indicating that resource sharing allows newly formed species to survive and contribute
better to the evolutionary process, because new members are able to compare better
with the average population fitness. The introduction of resource sharing has also
prevented the problem of population takeover, producing a significantly more robust
algorithm on which to base research into adaptivity. A downside consequence of this
increased robustness, is the significant increase in evaluation cost associated with
the larger population sizes required for both island models and resource sharing.
Near optimal solutions to the 20D bump problem can be found to a large degree of
robustness with a population size of 300 members across four demes, each requiring
at least 50 generations to converge. This leads to a cost in excess of 1000 times
that indicated by Jameson et al. [25] in his Adjoint formulation approach to airfoil
design. Although higher quality solutions may be found using Genetic Algorithms,

significant computing resources are required for use in engineering design such as

shape optimisation.

Chapter 5

Distributing Expensive Objective
Function Evaluations over an

Oftice PC Network

The use of Genetic Algorithms in aerodynamic optimisation necessitates the need for
high performance computational facilities. Genetic Algorithms are implicitly parallel,
and this chapter discusses the algorithms used to distribute some of the computational
aspects of GAs across an office PC network, its distributed performance, and the

reliability and scalability of the PC network for aerodynamic computation.

5.1 Introduction to Parallel Genetic Algorithms

Parallel genetic algorithms (PGAs) have been used to solve computationally expensive
problems [34]. Such problems need a bigger population, and hence require more
processing resources. The motivation behind early studies into PGAs was to reduce
the processing time needed to reach an acceptable solution. This was achieved by
implementing GAs on parallel architectures. In some cases, it was noted that PGAs

found better solutions than comparably sized serial GAs.

Shape optimisation using CFD to evaluate the objective function, provides several

motivations for using PGAs. Parallel architectures are widely incorporated in the

88

89

field of CED [95][70] with many resources solely configured for the purpose of CFD
analysis and development. CFD parallelisation is necessary, not only to reduce the
computing time required to reach a solution, but also to provide the computer mem-
ory resources needed to store the large computational domain and millions of flow
variables associated with solving many complex problems, while maintaining some
degree of effective cache utilisation. parallelisation of the GA can become neces-
sary when the evaluation of the population requires large computational resources.

Thus, the problem of interfacing a GA with CFD can draw on three types of parallel

resources:

e a Serial GA evaluating population members in-turn using a parallelised evalu-

ation function,

e a PGA evaluating single or clusters of members over several processor nodes

using a serial evaluation function,

e o hybrid interface using a PGA, using further processor nodes for parallel im-

plementation of the evaluation function.

In this chapter, the global parallelisation of Genetic Algorithms involving computa-
tionally expensive fitness functions ,will be investigated over a medium size network

of existing Personal Computers (PCs).

5.2 Utilising Existing Computational Resources to
Create a Commodity PC Network Suitable for
Fast CFD Computation

Over the past decade, the cost of computing has reduced significantly and the conver-
gence of the price and performance of high-end workstations with affordable PCs has
been particularly rapid over the past few years. Through such advances in computing

technology it is now feasible to consider the long-term role of PC’s in the field of

CFD.

90

Through the utilisation of network technology it is possible to connect clusters of PCs
together. When used with parallel and distributed computing software libraries such
as MPT [96], it is possible to obtain Super-Computer level machines at the fraction
of the cost [97] of their stand-alone predecessor machines such as the CRAY T3E.
These machines are burdened with enormously high setup and support costs, whereas

a PC cluster offers a minimal cost environment with the potential for incremental

improvements in performance.

This section explores the development and performance evaluation of such a system,
developed from an existing cluster of teaching PCs used for the Ship Science courses
at the University of Southampton. The teaching cluster was purchased to service
the need of students for dedicated ship design software, CAD packages, programming
skills and general office software. For a small cost (£9,000), the network was adapted
to allow dual use - providing a teaching resource during term time between 8 am and

9 pm and for the remainder acting as a networked cluster available for carrying out

CFD computations.

5.2.1 Creation of a Dual use computational facility

The original network of PCs consisted of 52 PC units of at least 350Mhz processing
speed, and 64Mb+ RAM available, connected via 10MHz Ethernet directly to the
NT4 server through 10MHz switches. This network is then connected to the main
UNIX computing facility via an Internet connection. Red Hat Linux 6 was selected
as the target operating system for the high performance network, for its increased
stability over Windows, its ease of porting and similar environment to UNIX. A dual
boot facility was targeted to accommodate both teaching support through NT and

high performance processing using Linux.

Two high-end dual processing PC workstations were purchased to provide a base
for building computationally intensive problems, which could be extended later in
future purchasing plans. One of these workstations was chosen to serve as the Linux
server, as well as a desktop workstation during the daytime. To accommodate a finite
budget, a hardware trade-off was made in favour of network requirements for high

processor speed, 10/100 Ethernet and a fast 36Gb Ultra2 Wide SCST hard drive. An

91

100MHz Teaching NT/Linux Network
51x (350MHz PII + 64MB)+

[[[[

NT Server =m == =n ===
[[[[Cb

=m _=Aw =AW _=Ew

] b CF b O
L} Zn =8 _=m _=mn
[[L[L[

== == _=m _==n

Linux Server

Dll o To University/WWW
B> L
=5a Q SUCS Backup Facility
]
BN Emm _=am _==w
o [= == == =
T (. | ! | |
Research Office W orkstations
UNIX Server Sun W orkstations + NT/Linux PC’s

Figure 31: Schematic Diagram of the Departmental Teaching and Research Network

affordable 512Mb of memory was added to both workstations such that small CFD
problems could utilise the dual 500MHz PIII processors. A file server was created
using NF'S, and user and password authentication through the existing UNIX server.
File backup is currently carried out through the UNIX file server, but will later use
the University global backup facility via the Intranet, significantly reducing costs.
The speedup scalability of the commodity cluster is mainly limited to network speed
performance [98], originally 10MHz, and an upgrade to an affordable 100MHz was
carried out as shown in Figure 31, so that high performance CFD computations could
be realised. The original computing facility was based around two networks, the NT
and UNIX, which remained as separate entities so that the performance of one would
not degrade the other. Communication between networks was carried out through
the external communication line that connected the UNIX network to the University
Intranet and outside world. High speed cabling that could accommodate a faster

100MHz network already existed for the PC cluster, and its full network upgrade to

92

100MHz required only new network switches. To allow scalability of the commodity
cluster beyond the 52 PCs housed in a single computer room, any new PCs entering
the department for research use, should also be accommodated. The research offices
are networked through the UNIX 100MHz switches, and a simple upgrade of network

cabling was needed to offer full scalability.

The Linux server carries out parallel process scheduling to avoid either processor or
network overload. The MPI libraries are in current use for three in-house flow solvers,

as well as for a parallel processor Genetic Algorithm and would form the main software

for use on the network.

5.2.2 Evaluation of the computational resource

In order to evaluate the performance of the new computing resource, tests have been
conducted using two different computational problems typical of the day-to-day com-
putational work carried out within the department. An unstructured Euler solver
[99], has been ported into Linux using GNU gcc compiler. The MPICH 1.2.2 library
from Argonne National Laboratory was used for message passing between mesh par-
titions distributed on separate processors. A distributed Genetic Algorithm has been
implemented, and tested for optimisation using a modified bump problem that ne-
cessitates the need for efficient inter-processor communication. MPICH is used to
facilitate a global Master-Slave distributed implementation of the GA. Porting into
Linux was achieved using GNU g+, recompiling source code for both the Euler
solver and GA. Only minor porting problems were found with the Euler solver where
the communication buffers created using M PI_Struct procedures, required some ex-

tra attention to ensure that the data was correctly aligned within the buffer, without

overwriting itself.

The Message Passing Model

The three main types of parallel architectures are: vector machines, shared memory
and distributed memory machines. Vector machines exploit vector manipulations

such as vector multiplication and matrix inversion. Shared memory machines, group

93

processing units around a global memory bank. The control of memory access is pro-
cessor based rather than user based, simplifying the process of parallelising programs
which share a common data base. The complexity of memory access increases as the
number of shared processors increases, which has tended to limit their scalability.
Distributed machines group processor units that use their own local memory. Their
scalability is simplified as there are no conflicts with memory access, the sharing of
memory between processors is defined by the software, and so the development of

distributed programs is more difficult than shared memory programs.

The implementation of the control strategy is based on the use of applications devel-
oped within Ship Science using MPI and C/C++. Distributed memory architectures
are more scalable than shared memory architectures due to the memory being local

to a processing unit. They may also be implemented on shared memory architectures

whereas the opposite is not true.

The message passing model is a distributed memory model which differs from the
Single Instruction Multiple Data approach, in that each process is associated with an
individual data set on which non-identical instructions may be performed. Processes
may communicate with any other through executions of commands on both the ‘send-
ing’ and ‘receiving’ processes. The advantages of the model have been summarised
[100] as allowing compatibility with many different architectures; a great deal of con-
trol compared with data parallelism and compiler based methods; and an increase in
processor performance that can be realised on cache based machines[101]. This is the

most common choice of message passing implementation, and is used in this work.

The Message Passing Interface[102] (MPI) is the result of collaboration by many
developers of message passing models, which aimed at standardising previous imple-
mentations. The result is a library of functions which, at their lowest level provide the
basic send and receive functions necessary for the implementation of the message
passing model, whilst at a higher level, provide routines which aid the developer in
the efficient parallelism, debugging, and monitoring of codes. Each process executes
identical codes within which logical statements are used to separate process tasks.
This approach has been termed Single Program Multiple Data which is a subset of
the Multiple Instruction Multiple Data model.

94

Distributed Implementation of the Unstructured Euler Solver

For the unstructured Euler solver introduced in Chapter 3.6, the parallel strategy
for the explicit field method is straightforward, in that the domain is partitioned
according to the number of processors available. A satisfactory decomposition is
achieved through the Jostle [103] graph-partitioning program. Using a knowledge
of the Cell ordering, each cell is allocated to a process, followed by the remaining

geometrical objects required to describe the Cells.

On partition interfaces, the Cells are duplicated in order to complete their descriptions
on both partitions, and to provide enough information for the numerical flux calcula-
tion. To ensure that flux calculations are not duplicated on neighbouring processes,
a root processor is assigned to each interface Cell to carry out its flux calculations.
The locations of interface cells that shadow the root Cell on neighbouring partitions

are assigned a ’shadow’ flag, holding the location of the root Cell.

To implement the parallel solver algorithm given in Figure 32, the partitioned grid is
based around a Node to Node connectivity map, joined together by Edges. Control
volumes are constructed around each of the Nodes, forming the Cells with a dual grid
associating each Cell face cutting between a Node-Node Edge on the original grid.
The calculation of the face fluxes, is carried out by an Edge based loop, updating
residuals on all nodes except those that are shadows. Contributing boundary faces

to the node residuals are then included.

A semi-scheduled message-passing algorithm is implemented to update the shadow
residuals residing on neighbouring partitions. Essentially the sending of residuals
from the host partition is implemented through a message-scheduling algorithm with
non-blocking communication. This allows the send process to start before a matching
receive is posted, minimising dead-time events where processes are held waiting for
recipient partitions. An illustrative algorithm for the semi-scheduled message passing
algorithm is shown in figure 33

A node sweep is used to update all non-shadow nodes, with root partitioned nodes

communicated to their adjacent shadows via the same semi-scheduled algorithm as

before. Residual statistics are updated on the master process, which determines and

95

1. Input & Distribute Data
2. Fori =1 to? = ROOT EDGES :

(a) Evaluate control volume face normal #i; and area S;.

(b) Evaluate §V(y associated with control volume face and distribute to edge nodes.

3. End Loop.
4, Fori = 1toi= (nomnodes):

(a) Initialise Residual §U; = 0.0

(b} Store Runge-Kutta Reference Values U? =U;
5. End Loop.
6. Initialise FLAG = FALSE
7. Initialise COUNT = 0
8. Do:

(a) COUNT = COUNT + 1
(b) Forl=1tol=4:
i. Fork =1tok = ROOT EDGES :
A, Evaluate Numerical Flux f* using Roe’s Approximate Riemann Solver in the normal direction 7y,
B. Update edge node residuals. 8U; = 8U; + S f* 8U; = §U; — Sy f*
ii. End Loop.
iii. Fori = 1to{ = ROOT FACES :
e If face lies on solid boundary :
A. Evaluate flux F with zero mass flow imposed.
B. Evaluate directed face areas §;.
C. Distribute contribution §; - F to face nodes.
e |If face lies on open boundary :
A. Evaluate face normal #; and areas S;.
B. Evaluate numerical flux f* using free-stream conditions as the appropriate Riemann state in the direction of the face
normal 7.
C. Distribute contribution S; f* to face nodes.
iv. End Loop.
v. Pass Residual Contributions From Duplicate Nodes to Root Nodes
vi. Fori=1toi=ROOT NODES:
e Evaluate At.

e Update Conserved Variables U/LZ = Uf,) — a\l'/ét SU;

e Reset Residual §U; = 0.0

vit, End Loop.
viii. Pass Updated Conserved Variables From Root to Duplicate Nodes

(¢) End Loop.
(d) Reset Maximum Error U qq = 0.0
(e) Fori=1to:= ROOT NODES :
LU~ U 2 6Umazn : 8Umas = |U; = U2
ii. Update Runge-Kutta Reference Variables U,O = U;
(f) End Loop.
(g) Communicate Local Maximum Errors to MASTER Process
(h) Check for Convergence on MASTER Process:

i lf(Sme::: S 6Ucon,1)e1‘gcnce FLAG=TRUE
ii. Else
A. If COUNT = DUMP
o FLAG Gather and Output Data
® Reset output counter COUNT =0

(i) Distribute Convergence FLAG
9. While FLAG = FALSE

10. Gather and Output Data

Figure 32: Distributed Upwind Algorithm

96

1 lInitialise Integer Send Flag SendFlaggi,,y = NULL.

2. Initialise Message Send Flag SendFlag(mssg) = NULL.

3. Fill Message Lists.

4 Fori=1toi=N—1
(a) Post an integer Receive (size of message ¢) from any Process g where 0 < ¢ < (N — 1) and q # p, with FLAG = RechlagUntr
(b) Wait for SendFlag ;n,) to return NULL OR TRUE.

(c) Wait for SendFlag(,, 4y to return NULL OR TRUE.

(d) Post an integer Send (size of message %) to process ¢ above p with FLAG = SendFlag(z;nt).
(e) Wait for RecvFlag(;ns) to return TRUE.

(F) If size of message ¢ > O

i. Allocate Buffer.
ii. Post a message Receive from the Process ¢ with FLAG = RecvFlag ,nssg)-

(g) If size of message i > O
i. Post a message Send to Process i above p with FLAG = SendFlag ,pssgy-

(h) If size of message ¢ = O
i. Set SendFlag(,,ssqy = NULL.

(i} W size of message g > O
i. Wait for RecvFlagg,,) to return TRUE.
ii. Empty Buffer.

5. End Loop.

6. Wait for SendFlag(;ny) to return NULL OR TRUE.

7. Wait for SendFlag(,, s4) to return NULL OR TRUE.
Figure 33: Semi-Scheduled Message Passing Algorithm

implements convergence, and full field-data checkpointing requirements. Checkpoint-

ing is achieved through a full sweep of processors sending all flow variables to the

master for storage.

Distribution performance on the Linux cluster

To determine the efficiency of the network for Euler solver computation, network
performance timings were measured during the computation of a 2D NACA0012 wing
illustrated in Figure 34. The two dimensional flow effect is simulated by enclosing the
wing ends by boundary walls shown in Figure 35 which shows the boundaries of the
computational domain. The discretised computational domain shown in Figure 36,
consisted of a three-dimensional grid made out of 48672 control volume Cells. For a
flow simulation at M = 0.85, and a wing angle of attach of 0°, the pressure contours

given in Figure 37 are obtained. For the performance test, timing measurements were

97

Figure 34: NACA 0012 Uniform Wing

based on 1000 flow solver iterations of the time integration loop, for each partition
topology. Performance tests were made on the original 10MHz network before upgrade
as well as on the new 100MHz network. Separate tests were conducted, allowing for
regular checkpointing at 20 iteration intervals on both networks.

Speedup performance results are shown in Figures 38 and 39, where speedup is defined

as

Net time to compute flow solution with N procs

Speedup = 83
3 Net solution time for single processor ’ 53)
and iteration efficiency as
. o Net time taken within itteration loop (84)
Hitteration = Net solution time ’
and total efficiency:
Net calculation time excluding M PI operations
Nitteration = ; (85)

Net solution time

The single processor result used in Equations 83,84, and 85, is based on the same dis-
tributed algorithm given in Figure 33 as for the multi processor results. The speedup

measured shows substantial gain in computation speed for up to 16 processors at

/

P A ~ Il
V;ﬁl?///ll/%” hr i"‘?"'.‘#';’.-..-.‘.‘.'.'.'.‘.’.'.'.‘-’llﬁ "'Il’

i ,mn.an—'l...-_ulﬁl!@.l
AT A VAN A N)./)Y l'l

”‘55.‘?.&&"’#—‘!.!."!‘.!’» fla

(]

LD

PO Y T DO ll"i’lh'
Wl'"..l.l. ..I N T '.’h"l
/ Ir,;mr.-m.f..- 7 .0:
//}n'n-- N 'hi Ih; A/

98

99

Figure 37: Mach Contours NACA 0012 M., = 0.85

100MHz-network speed. Even with regular saving of flow values to disk, a reasonable
performance is sustained. The results from the original 10MHz network highlight the
need for good network speed for such solutions. Closer evaluation of iteration effi-
ciency of the cluster, reveals that further improvements to speedup performance can
be sought if the size of the partition domains were maximised for the performance
tests. By partitioning the domain to maximise processor memory use, iteration ef-
ficiency can be further recovered. The maximum partition size for an unstructured
grid that can adequately be used on each processor, consists of approximately 30,000
nodes. Using just 16 of the 52 available processors a 0.5M cell solution can be ex-
pected with good speedup. The maximum domain size available through the entire

cluster is approximately 1.5-2M cells.

Distribution Performance for a Genetic Algorithm

In the implementation considered here, the 20D Bump problem used in Section 4.1.1,
has been modified such that the time taken to compute the objective function is
O(Thump), where Tpymp is randomly perturbed from a defined amount. In this exercise,
Thump is defined as 1 minute with a random perturbation of up to 20%. This represents
a typical time for evaluating a single airfoil using XFoil. This additional feature

places the emphasis of distributed GA performance on asynchronous communication

Speedup

Figure 38: Speedup performance of Euler Solver on PC Cluster

Parallel Efficiency

Figure 39: Parallel efficiency of Euler Solver on PC Cluster

15 4

14 4

13

124

10 -

Q

8

4 4

2 4

g 100MHz
——Linear
= = 10MHz

-~ .
- S - e - - =
I el

T T T T T T

7 8 9 10 11 12 13 14 15 16

No. Processors

0.7 4

o
=}
!

ol
[
L

N
'S

0.3 -

0.2 4

0.14

| ——100 MHz Iteration Efficisncy
| == 100MHz Total Efficiency
| = = 10MHz Total Efficiency

7

8 9 10 11 12 13 14 15 16

No. Processors

100

101

implementation.

A global parallelisation strategy was originally used to distribute the evaluation phase
of the population members only, based on the Master-Slave implementation given in
[11]. This scheme was constructed using the MPICH library distributing an initial
subset of the population to the available processors, and then passing the remainder
on to each processor in turn on its completion with its current member. Due to the
non-synchronous time dependent nature of the modified bump function, the efficiency
of this method is degraded on larger cluster sizes when all members have been passed
for evaluation, and processors are left waiting for remainder slaves to complete before
the next generation can be created and the distribution process continued. For a
population size of 200, distributed using 50 slave processors, distribution inefficiencies

of up to 35% were found on some generations.

To alleviate this problem, an asynchronous strategy was sought that decouples the
evaluation processes from the synchronised selection phase of the GA. Asynchronisa-
tion was achieved based on the island Genetic Algorithm (iGA) used by Doorly [34].
In the iGA implementation, sub-populations known as demes, are used to partition
the population, each evolving independently with occasional exchange of genetic in-
formation between demes via a process termed migration. In this implementation,
all evolving demes are contained within the master process, with members sent to
slaves for evaluation using an asynchronous communication strategy. When a deme
has passed all its members through for evaluation, but remains idle waiting for the
last few evaluated members to return from their slave processors, members from the

next deme are used to occupy idle slave processors.

Algorithm Number Processors

4 8 16 32
Sync GA 3.5 6.9 12.7 23
Async iGA | 3.96 7.94 15.93 31.96

Table 9: Communication Speedup Performance of Synchronous and Asynchronous
GA on Modified Bump Problem

Table 9, shows the distributed speedup performance of the GA using both synchronous

102

and asynchronous island implementations, when compared to a non-distributed syn-
chronous GA. The results were based on the total time spent to calculate 100 gen-
erations, with a population size of 300 members. The iGA used 6 demes. For the
synchronous scheme, idle process time arose due to poor synchronisation of the objec-
tive function calculation across the processor farm, as well as time spent waiting for
the master processor to perform GA selection which includes CPU intensive clustering
and vector sorting routines. The Asynchronous iGA implementation was successful
in decoupling distributed communication from selection as reflected in the results. In
both cases, speedup has not taken into account the extra processor needed for the

master processor to GA calculation, hence only communication speedup is considered

in this test.

The iGA implementation reduced significant idle time previously found on slave pro-
cessors between generations. Residual traces of idle time found on slave processors
was significantly small in comparison to the evaluation time of the objective function

resulting in a net iteration efficiency of over 99% for 32 processors.

5.2.3 Cluster performance issues concerning dual boot im-

plication

The creation of a Linux computational facility from resources intended for a different
daily purpose using Windows N'T was easily achieved through the use of a dual boot

facility. Several issues were highlighted while implementing CFD problems using this
strategy.

The dual boot feature poses an immediate barrier in gaining access to the compu-
tational resource when it is booted into the wrong operating system. Where the
intention is to use the resource primarily for overnight computation, the individual
processors can be configured to automatically reboot into the default Linux boot
partition, at a designated time, which is the case used for this work. This strategy
although very simple to implement, can cause problems both to NT users wishing to
work during such times and computational resource users requiring access to Linux

processors during the daytime. In this implementation, a small cluster of processors

103

resides in a separate room to the rest of the processors. These processors reboot into
Linux at a designated time, without causing significant disruption to users who are

made aware in advance of this feature.

The second problem regarding the robust use of the facility for larger distributed
processing using MPI, is when a processor is manually rebooted during computation.
Without controlled management, such a reboot will cause the entire MPI process
to crash on all associated processors losing all data. This problem is unavoidable
since the primary use of the cluster is for NT based activities. The devastation of
such an activity has been limited through encouragement of regular checkpointing
of program data with a small associated computational cost as illustrated in Figure
39. Additionally, rebooting through the action of pressing CTRL-ALT-DEL on the
keyboard has been trapped on all processors, sending an appropriate signal to all
residing programs. On Linux, this signal is trapped in both the GA and Euler solver,
and activates a final checkpointing procedure before a controlled exit of the program
on all associated processors. A restart script residing on the master processor re-

establishes a new set of available processors and attempts to continue the distributed

computational job.

Some configuration time was required to establish the various processors required to
increase the robustness and usability of the cluster when using a dual boot feature,

however the process was straightforward and leads to substantial gains in the overall

performance of the facility.

5.3 Robust marine CFD on a dual-use distributed

network

The use of a Windows NT orientated network for Linux based computation can re-
sult in significant interruption to distributed jobs due to continuous rebooting of the
processor by users into Windows N'T' during the day. For the majority of the year,
most of the PCs are redundant (during a 24hr cycle every day of a year) and sig-
nificant benefit can be offered for distributed computation. However a large risk of

computation disruption exists during the day, which if unsupported would require a

104

degree of human monitoring. In order to ensure a larger degree of stability during
busy periods of PC usage, a control algorithm has been implemented. This allows
individual processor shutdown, with a minimum user wait for access to the proces-
sor for teaching use while maintaining a high effective throughput. In addition, a
rapid archive system using a tree XOR operation on the local distributed memory

calculation state has been implemented to maximise throughput.

5.3.1 Teaching Load on Network

There are three main user groups of the Ship Science PC network:

e Formal Teaching sessions. Typically consisting of between 40 to 50 students,
the timetabled sessions take place during 24 weeks and occupy 3 hour slots. In

total of each term week, there are 5 to 6 such slots

e Individual taught Ship science students at present are of the order of 160 in
total, evenly distributed between Years 1 to 4 of undergraduates and about 25
M.Sc. students. These students have access to the machines during office hours
(8am to 6pm)for the 30 week academic year. A limited number of students (50)

have access outside office hours.

e In addition to individual research student and staff. There are 40 postgraduate

students, 20 staff, and visiting academics who have access to the computer room

all year round.

Informal monitoring of usage, indicates that outside the formal sessions usage varies
widely during the day and at weekends, but with typically a small number of individ-
uals always requiring access 7 days a week but with access rare between midnight and
8 am. Based on the observed usage, it is estimated that the average annual load on
each machine is only 10% for teaching purposes. The remaining processing time, if
it can be accessed in a robust manner, offers considerable scope for use as a low-cost

medium scale computational machine.

105

5.3.2 Failure Modes

The following important modes of possible failure which could affect the successful

completion of a CFD calculation have been identified:

1. Power supply failure: Programmed outages occur 1 or 2 times a year with at
least two weeks notice. Whereas, power supply interruption occurs no more

than once every two years.

2. Network server failure (disk or machine): Again, a rare occurrence in an uncon-

trolled manner but deliberate shut down happens once every 1 or 2 months.
3. An individual machine or network connection failure.
4. Individual machine power off.
5. Request to use machine in teaching mode via ctrl-alt-del.
6. Lock up of MPI process when running on a given processor.

7. Insufficient memory space or processor capacity to continue calculation.

5.3.3 Consequence of CFD Calculation Failure

The computational cost of a calculation failure can be assessed in terms of:

1. The total amount of computational processing lost since the last secure record
of the calculation state from which the calculation can be restarted. A trade-off
needs to be made between the amount of time required to periodically save state

and the risk of calculation failure.

2. Loss of available processing time. If a calculation is unable to restart automat-

ically then this period could vary from minutes to days.

In each case a simple measure of the loss L, can be expressed as:

L= Cpt.Ny + 1N, (86)

106

where C, is the number of cycles lost since the last secure archive, ¢, is the processor

time per cycle, N, the number of distributed machines in use, and ¢, the time delay

to restart.

5.3.4 Robust CFD Control Strategy

Any control needs to assure that the C7, is minimised and yet because of the primary
demand of the machines for teaching within term time, any user requiring access

must have a minimum user wait. Typically no more than a few seconds is deemed

acceptable.

Having identified the possible failure modes a robust control strategy has been devised

to ensure calculation stability. The objectives of the strategy can be identified as:

1. No. of lost cycles ', is minimised for all failure modes.

2. The cost of archiving intermediate calculation states is minimised.
3. The maximum possibility of restart within a minimum ¢,.

4. Minimum effort to encapsulate existing distributed applications.

5. Minimum of effect on teaching access to machines.

A specific strategy is identified for each of the six possible failure modes. Each control
strategy relies on the use of a control process running in parallel with every calculation

Process o1 every processor.

5.3.5 Control process

The CTRL-ALT-DELETE action usually used by students to reboot the computer
into NT has been trapped, and now runs a quick program ‘controlnet’. The program
checks local control files for computational resources using the robust control algo-
rithms developed as part of this work. Essentially the Process IDentification number
(PID) of any such computational programs are sent a signal similar to that of CTRL-

Z. This signal is captured within the program and necessary data is saved directly

107

to the file server for recovery, the program then proceeds to exit. Any other remote
processors working in parallel with this program are sent a ‘Hang up’ signal via a
remote shell. On capture, data is saved to local hard disc, and the program exits.

The computer that received the reboot signal then proceeds to reboot.

This elaborate algorithm was necessary to ensure all information is saved within the
smallest amount of time. By minimising network traffic to only one processor save
(the rebooting proc.) and MPI shutdown, an acceptable network flushing time is

achieved, which should not be of great inconvenience (user wait) to the user requesting

NT service.

A recovery program (user supplied) is then initiated to piece together all files necessary

to restart the computational process from the above last saved position.

5.3.6 Control Implementation on an Euler Solver

For uncontrolled failure (i.e. someone pressing the reset button or off switch) the
control system relies on last saved data. Full data dumps within the Euler solution
is costly requiring a total of O(n) where n is the time required for n processors to
send all flow variables to the master process where the server is used as a master, or

O(2n) if the saved data is sent to the server from master upon receipt.

Small intervals between data dumps are required if interruption is likely. If the inter-
vals are too large, computational progress may not be achieved if interruption occurs
before the next save. For the small interval times deemed necessary for reasonable
progress to be offered, the cost of data dump is too great resulting in poor solution
speedup through parallelisation (i.e. no gain in using the commodity network). To
reduce the cost of data save, an intermittent strategy has been adopted similar to the

'RAID’ process used for quick backup of network filestore’s.

The RAID strategy creates an XOR checksum of all processor flow variables over a
distributed PC architecture. The distributed RAID process is carried out by passing
all low variables to the master processor through a tree communication process. The
basic schematics of the distributed RAID process implemented within the modified

Euler solver is shown in Figure 40.

108

1. Receive RAID flag from MASTER.
2. Extract flow variables for backup and store in focal array.
3. Send Sizeof flow variable array to MASTER.

4. Receive MAXARRAY SIZE from MASTER and allocate RAIDArray[MAX ARRAYSIZE).
5. Copy local flow variables into RAID Array, fill remainder with 0.

6. NPRQOC = number of Processors.

7. while NPROC > 1

(a) myid < NPROC

i. If myid >= RoundUp(NPROC/2)
A Send RAIDArray to ProcessorlID = myid — RoundUp(N PROC/2).
B. Save local flow variable array to local disk as Binary(double).
ii. Elself (myid — RoundUp(NPROC/2)) >= 0 the
A. Receive Array from Processor = myid + RoundUp(NPROC/2).
B. XOR Array with RAID Array.

NPROC = RoundUp(NPROC/2)
8 I myid= MASTER
(a) Save RAIDArray to network disc as Binary(longlong)

9. End.

Figure 40: XOR RAID Process

At each processor in the tree, all flow variables received are merged together through
an XOR checksum such as Checksum =1 XOR 2 XOR 3 XOR 4 as illustrated in
Figure 41. The time required for the merge operation is O(Logs(n)) and therefore
significantly more efficient than the full flow dump which will take O(n) to pass all
variables back to the master processor. The final checksum is saved to server as a
compact binary file, and each processor saves its own flow variables to local disc.
In the event of uncontrolled processor failure, information lost can be recovered by
passing the remaining processors locally saved data, back through the XOR checksum

such as B = Checksum XOR 1 XOR 3 XOR 4.

Recovery from a RAID backup is implemented as a separate process, so that it does
not interfere with the solver itself. The recovery algorithm is shown in Figure 42,
which must be distributed across all remaining processors except that which has
failed. A simple UNIX shell script has been used to create a hosts file containing
all remaining processors, and to identify the missing failed processor id which is
passed to the distributed recovery process. The recovery process itself, recovers all

processors flow variables to network filesystem, from where it can be re-distributed

109

—
=

[le=[=]
[=]=[-]

[]e=[=]
[~ =[]

=

2)

[sle=[+]
[=le=[-]

3)

Figure 41: Distributed XOR RAID Communication Process between 8 Processors

back to the designated processor id’s during the flow solver startup process. If too
many failures occur, the missing flow data cannot be recovered from this simple XOR

implementation, and the computation will be forced to revert back to the last full

data dump.

The speedup loss in performing the XOR Merge Tree at regular intervals of 5 Euler
iterations plus an additional full data backup every 20 iterations, is shown in Figure 43
which was measured over 1000 iterative cycles in total, each consisting of four pseudo
Runge-Kutta time iterations. The performance of a full data save every 5 iterations is
also shown for comparison. The recovery in speedup loss is significant, and the burden
of incorporating the operation at such frequency required for unstable networks is
justifiable, especially over medium distributed networks. The total time to recover
a single lost processor from 16 PCs, was 2.6s compared to 8.2s to redistribute last
saved data to all processors again. For larger networks, more sophisticated checksum
operations could be used to reduce the expense as well as to provide immediate backup

for the loss of more than one processor.

1. Determine Failed Processor.

2. Start MPI Recover Process across all remaining processes and assign M ASTER = processorid(0).

3. Load up Binary{double) flow variables from local disk to Array.

4. Send Size(Array)to MASTER.

5. Receive MAXARRAY SIZE from MASTER and allocate RAIDArray[MAXARRAYSIZE].

6. Copy local flow variables into RAID Array, fill remainder with 0.

(a) ¥ myid > MASTER

Send RAIDArray to MASTER.

(b) Elself MASTER

i.
ii.

i

vi.

7. End

Load Binary(longlong) Array from network disk.
XOR Array with RAIDArray.

Fori=1toi: < NPROC.

Receive Array from Any.

Load Previous Input Data for Received Flow Info.

Backup Previous Data.

ONnw>

E. XOR Array with RAIDArray.
Load Previous Input Data for Missing Flow Info.
Backup Previous Data,
Overwrite with RAID Array Flow Info and save as Current Input Data.

Figure 42: XOR RAID Recovery Process

Overwrite with Received Flow Info and save as Current Input Data.

110

5.3.7 Control Process for Genetic Algorithm Search with

Panel Solver

A simple strategy is implemented to control processor interruptions during GA search.

On completion of each member evaluation, the result is returned to the Master process

where it is appended to a file on the server. In the event of processor interruption

of any type, the 'controlnet’ program is activated which informs all other processors

of the shutdown status. All objective function calculations are aborted immediately

so that a quick shutdown time is acquired. Once the Master processor has returned

to console status, the GA is restarted with a continuation flag. The GA loads the

population and convergence status details required and sends any members that have

yet to be evaluated to the remote slaves so that they can restart their evaluation.

111

14 4 —o—100MHz + Backup
-4~ 100MHz + Raid + B
13 1 ~z- 100MHz
12 4 Linear
Lo doMbHz

Speedup

- W A O N ©
. PR A S T VO

1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16
No. Processors

Figure 43: Speedup Performance for Euler Solver Using Regular RAID Tree Merge
of Local Data

5.4 Summary

A commodity-processing network has been established from existing resources with-
out conflicting with their original usage intent. Almost linear speedup performance
has been achieved for the parallel computation of over 300,000 objective function cal-
culations when using a Genetic Algorithm for design optimisation. Good speedup was
measured during the computation of an Euler solver based on an unstructured grid
for up to 16 processors. The use of dual boot can significantly affect the robustness
of the computation facility, and some progress was made in this implementation to

reduce this effect. Overall, an excellent computational facility can be harnessed from

existing PC resources at little additional cost.

Chapter 6

Evaluation of airfoil shape

parameterisation Using a Genetic

Algorithm

In order to examine how different geometric representation schemes can be used with
a GA, an airfoil optimisation study has been conducted on several objective functions.
A variety of parameterisation techniques have been used with CFD orientated search,
within the literature. Samereh [55] generalised geometry parameterisation techniques
into the following categories: basis vector, domain element approach, partial differen-
tial equations, discrete, polynomial and spline, CAD-Based, analytical and free-form
deformation (FFD). The suitability of these methods is based upon the efficiency,

effectiveness, ease of implementation, and scope for global and perturbation search.

Two techniques of particular interest were those based on spline techniques which are
the most popular representation used by the research community, and the analytical
function approach. To analysis their practical use to airfoil optimisation, the viscous
coupled 2D panel solver XFoil [67] has been used to judge the fitness of candidate

airfoil sections based on design point performance.

112

113

6.1 Evaluating the Performance of Airfoil Sections

Suitable for Ducted Thruster Units

For this design problem, an airfoil section is sought for use in a thruster unit suit-
able for deep sea Tethered Unmanned Underwater Vehicles (TUUV). These units
commonly used for operations such as oil rig maintenance, operate mainly at depths

where cavitation will not occur based on the pressure exerted on the foil.

Ducted thruster units offer several efficiency advantages over traditional propeller
arrangements by offering a lower propeller loading (the loading is offset by using the
duct to draw a larger volume of water into the propeller), and additional thrust due
to the acceleration of flow over the duct. An additional advantage offered is that
the duct wall proximity to the blades reduces the effects of tip vortexes, particulary

strong due to the finite span of the propeller.

In an attempt to eliminate this vortex drag, a ring propeller arrangement has been
proposed where the propeller is mounted to a thin ring that sits flush within the
external duct. This arrangement tends to lack the efficiency offered by traditional
ducted propeller units using a much simpler arrangement with a small gap between the
propeller and duct to reduce tip vortexes. The main drawbacks to the ring propeller
arrangement are mainly the mechanical problems of power transmission, seals and

centrifugal bearing problems associated with the new designs.

Remote Operated Vehicles (ROVs), or Tethered Unmanned Underwater Vehicles
(TUUVs), require propulsion units that offer high efficiency while relatively light
weight and good flexibility for the positioning of the thrusters. Such units currently
use small electrical units driving the shaft of the propeller, and are mounted from the
nozzle using a ’spider’ type bracket. However one drawback to this arrangement is

that the position of the motor disrupts the flow of water into the propeller.

A natural progression, drawn from the basis of ducted ring-propellers, has been the

114

idea of tip-driven propellers (TDPs). This concept involves having either a mechan-
ical drive or electrical motor encased within the nozzle walls. The use of an electro-
magnetic drive with the absence of physical contact between the drive system and
propulsor, offers significant advantages to the mechanical layout which still involves

issues such as the seals problems associated with the mechanical drive.

The hydrodynamic performance of a TDP was investigated by Hughes [66] for a unit
using a highly efficient permanent magnetic motor design. The efficiency perfor-
mance still lagged that of traditional ducted units and it was proposed that the unit
should be hydrodynamically optimised to examine whether such performance could
be recovered. One of the non-optimised and novel features of the tested unit, was
the bi-directional characteristics of the TDP, offered to enhance positioning efficiency
and effectiveness required by TUUVs.

The hydrodynamic optimisation of the bi-directional tip driven thruster unit using

the Geometric GA will be investigated in this chapter.

The two dimensional performance of airfoil sections will be examined for low lift
coefficients of 0.3 and 0.6, frequently found with propeller designs to enhance efficiency
by reducing the propeller load. Single point optimisation using the Geometric GA on
fixed 2D topologies, is currently considered at a similar Reynolds number as that of
the tested propeller section at 70% radius.

The investigation will initially focus on the parameterisation of traditional airfoil
sections for the above design problem. Successful solutions will then be tried on the

bi-directional problem investigated by Hughes.

6.1.1 The Cost Function

The objective of both airfoil problems is to minimise the drag coefficient for a given

lift coefficient, and Reynolds number.

Objective = Min(Cp) (87)

subject to C, = defined and Re = 0.95 x 10°

115

To ensure that practical designs are found several geometric constraints are used such

that

Yupper (T) > Yiower (z) 1 for 0 <z < 1

Yupper (0) = Yiower (0) = 0.0

Yupper (1.0) = —Yiower (1.0) = —0.0025 (88)
tr—0.25 > 6% chord

Wupper () = Yiower (2)] > 2% chord for 0.05 < z < 0.9

An additional constraint was also placed on the pitching moment such that

—0.1 < (), < 0.02 (89)

To accommodate these constraints, the dynamic penalty scheme given in Chapter 4 is
used, with equality constraints treated as inequality constraints to ease the stochastic
search process. The construction of the penalty scheme is orientated to provide a

objective function of which a minimum is to be found. The final form of the objective

function is given as:
U = CDtotal

1 =10(CL = CL,puired)

¢y = 100(MIN (Syjpner) — 0.005)

cg = 100(tz=p.25 — 0.06 x chord)

ca = 100(MIN (6yo.05<z<09) — 0.02 X chord)
cs = 10(Cy + 0.1)

c6 = 10(0.02 — Cy)

(90)

6.1.2 The Genetic Algorithm

To provide a robust analysis of geometric parameterisation techniques, the distributed
asynchronous iGA with sharing, will be used as detailed in Section 4.3.1. Such an
algorithm allows some facilitation of niching control through both the island popula-

tion scheme as well as the use of resource sharing, thus allowing several good solutions

116

to propagate through the evolution process without the risk of population takeover.
The solution quality gain from using niching control has been highlighted by Doorly

[52] through the use of iGA’s, and the rugged surfaces illustrated by Holden [2].

One consequence of using both island and sharing schemes, is that larger populations
are required to support multiple niche formation. For 20 parameter optimisation, a
population size of 200 will be used with 50 members per deme. The use of only four
demes will provide the computational performance gain of adopting asynchronous

migration, while providing enough population resources for each deme to support

between 8-15 niches.

Linear Rank scaling with a selection intensity of 1.6 is used with Elitist Stochastic
Universal Selection within each deme. Two point crossover with a rate of 85% is
used, combined with a mutation rate of 2%. All simulations will be initialised from

a base foil section, allowing 15% random perturbation of the design space to form

generation zero.

6.1.3 Issues Concerning the Coupling of XFoil with the GA

Problems encountered when running XFoil from the Objective Function, highlighted
several problems when semi-random airfoils are considered. Main problems high-
lighted, includes: XFoil program crash, excessive non-convergent calculation cycles,
permanent program freeze until user intervention (via use of system kill command),
excessive or inadequate panel distributions, non-converged boundary layer solutions,

divide by zero segmentation faults, and infinite numbers being returned.

For the majority or problems, the use of constraint analysis could be used. To assist
in the basic running of XFoil, airfoil pre-constraints were analysed to impose a feasible
section condition. This ensured that only true sections with a positive volume (i.e.
the upper surface remained above the lower surface for all points along the x-axis),
and that either minimum or maximum thickness requirements were met. These were
imposed as hard penalty functions that simply ensured that the objective function

returned a poor fitness result with appropriate penalty violations without using XFoil

itself.

117

Figure 44: A Misleading Solution that Appears as a Good Solution

Careful post-processing of the XFoil log file, passed separation or non convergent
problems to the appropriate penalty functions. Other penalty conditions used, en-
sured that key performance parameters were met. Only inequality constraints were
used with the fixing of lift coeflicient for all runs to avoid use of an equality condition.
Earlier attempts of introducing equality conditions resulted in very poor GA conver-

gence, thought to be a problem of using such conditions with stochastic processes.

Despite the use of geometrical and performance constraints, several of the problems
discussed above hampered productive use of XFoil with GA search. Source code
modification was finally used to prevent excessive calculation cycle runs. In addition
to this, a separate program was run at GA startup that monitored the process status
of XFoil runs, sending any sleeping or long process runs the UNIX SIGINT signal if

required, so that the GA could continue with the next candidate.

Several problems are still emerging during the GA search process such as misleading
results as shown in figure 44, with an incredible drag coefficient, or implementation of
penalty conditions demonstrated in figure 45 which returned a very good drag result,
but is almost impossible to manufacture. The use of niching with the GA ensures

that the rest of the population can remain generally unaffected by any misleading

results.

118

Figure 45: Poor Constraint Consideration May Lead to Unpractical Optima’s

6.2 Spline Representation Techniques

Spline interpolation techniques [50] are readily used by engineers through Computer
Aided Design. Such interpolation techniques appear frequently in the literature,
popular for their generality and ease of implementation. Bezier, BSpline and NURBS
are such representations that have been used for optimisation, using the control points

as design variables.

6.2.1 B-Spline Parameterisation

B-Spline’s are commonly adopted in CAD systems to define smooth curve shapes,
and have shown some success in their application to automated design[35][36][37]. B-
Spline curves are interpolated from a set of control points which are generally defined

as coordinate sets P;(x,y). The B-Spline curve is then given as Equation 91

Ry(u) = > Pl (1) oD

where N; ,(u) are the Bernstein basis functions of p-degree (orderp + 1) defined as

i,00\U) =
0 otherwise

119

U — U;

Uitp+1 — U
Nip(u) = ——N,;p_1(u) + ——————— N, 1, 2
»(u) Uy — 1(w) Urrpit — iy VL 1(u) (92)

where u; are called knots. The tightness of the curve to a given control point can be
controlled by the form of knot vector given, whereas the number of control points that
affect the position of a point is controlled by the order of the curve. Guidance to the
form of the knots is given in [50], however only uniform knot vectors are considered
in this study such as U(0,0,0,0.25,0.5,0.75,1,1,1) for a 27 order curve with five
control points. Of course there is no reason why parameterisation of the knot vector

itself could not be part of the overall design vector to be optimised.

To reduce the number of design variables considered, the control points were fixed
in the chordwise positions (z), allowing freedom in the ¥ direction to define section
curvature. A total of 20 poles were used as design variables, with leading edge and

trailing edge poles fixed.

For the most basic of implementations, a 'delta’ parameterisation was used where
pole movement was defined as a percentage of a given position. In this test the given
position was defined by a NACA0012 section [104]. The extent of parameterisation for
50% perturbation is shown in Figure 47, along with the resultant section found from a
single pass with the GA using a population size of 200 members. It is clear that such a
parameterisation is too restrictive for GA search (since GA’s are generally used to find
a near global optima rather than a local optima), and therefore a full parameterisation
of the BSpline method has been attempted. The full range of sections offered by the
scheme is shown in Figure 46, with the optimised section compared to the perturbation

results demonstrated in Figure 48.

One problem that most of these interpolation techniques exhibit, is the tendency to
produce wiggly’ shapes. Figure 49 illustrates the problem more predominantly with
regards to the pressure distribution. Reuther and Jameson [35] observed such prob-
lems and proposed the use of a low-pass filter to smooth the curve. The use of filtering
is expected to introduce redundancy into the parameterisation. Careful examination
of the leading edge of the resultant design reveals a poorly defined nose. The defini-
tion of the leading edge could be significantly improved by imposing tangency. This is

easily achieved through the use of two spline sections for the upper and lower surface

Figure 46: Limits used for B-spline representation with resulting section

T T T T T T T T ™
0.1 4
0.05
~ 9
-0.05 4
-0.1
L L L 1 L L L ! L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

xle

0.08

T
—— maximum section
—— minimum section
O upper bound poles
© lower bound poles
S, — Optimised section

120

Figure 47: Optimised b-spline section by perturbating ordinals about a reference

section

121

0.08 T T T T -

T
= delta50% result
— full b—spline result

L . . . L . E R L
0 0.1 0.2 03 0.4 0.5 06 07 0.8 09 1
x/c

Figure 48: Resultant best sections from implementations of full and delta parameter-
isations

with the second control point fixed at x=0 but allowed to move upwards. Lepine
and Trapanier [37] obtained practical smooth sections using BSpline and NURBS
representations. In their implementations, the control points were not restricted to
movement in one dimension which is thought to cause excessive wiggles in surfaces
through inefficient bunching of the Bernstein interpolation functions. However their

representation required over 40 design variables to define a simple airfoil section.

Increased Freedom of BSpline Pole Movement

By allowing the BSpline poles to adapt in both x and y directions, much smoother
shapes were achieved using 16 poles which required 32 design points to be optimised.
Figure 50 shows the resultant section and defining BSpline poles, when allowed to
move freely. The pressure distribution for the optimised section given in Figure 51,

is a significant improvement to that of Figure 49.

6.2.2 Bezier Representations

The Bezier curve is a special non-piecewise form of the B-Spline which can be used
to produce smooth curves providing that the order of the curve is kept low, as higher

orders can lead to oscillations in the shape. The Bezier interpolation of control points

[} 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
xc

Figure 49: Comparison of optimised pressure distributions

[——OCptimised Airfoit
-0~ Control Ponts

0.0 0.1 02 03 04 05 06 07 08 09

122

Figure 50: Resultant section when allowing BSpline poles to move in x and y directions

123

a5

Figure 51: Pressure distribution attained by allowing BSpline poles to move in x and
y directions

P, is defined as

n
Ry(u) = PiB;n(u) (93)
i=1
where the basis functions B; ,(u) are the classical n'* degree Bernstein polynomials
given in Equation 94

B;n(u) = n! ut(1 —)" (94)

’ il(n —)
The use of Bezier curves in shape optimisation has successfully been used by Holden
[2], Reuther and Jameson [35], Lépanier [37] and Doorly [34], producing smooth sec-
tions without the oscillatory pressure distribution characteristics seen in Section 6.2.1.
This method has been investigated due to its ability to produce smooth geometries
without the need to introduce more design vectors that are required by B-Spline
methods to reduce oscillation. Once again, 20 moveable control points are used to

represent the section shape, with movement restricted to the vertical direction only.

The resultant section produced for the (', = 0.6 test case is shown in Figure 52.
The section produced is significantly smoother than the equivalent B-Spline result,

an observation echoed by Holden [2] and Reuther and Jameson [35]. It should be

124

FW’

xlc

Iigure 52: The resultant Optimised Section from a Bezier Spline Representation

-05

Cp

0.5 -

[+ 0.1 0.2 G.3 04 05 0.8 07 Q.8 0.9 1
xlc

Figure 53: Pressure distribution obtained using the Bezier representation (C7 = 0.6)

125

f——nacaooTz\
== GAopt |
== iGAopt |

xfc

Figure 54: Comparison of optimised Bezier sections obtained using an iGA (Cf, = 0.6)

noted that this representation may not be able to capture the detail that can be dis-
covered by B-Spline methods, due to the high order implementation of the Bernstein
interpolation functions. Bezier methods would therefore make an excellent represen-
tation technique for initial searches of the design space. Full B-Spline or even NURBS
curves can then be used to continue the search, either with GAs or higher fidelity

hill-climbing search methods such as Powells Direction Set Method [105].

To investigate the effect of switching off the asynchronous island scheme on the quality
of the result found, the previous problem was tried on a niching GA with a popu-
lation size of 200. A slightly different section was obtained, and is compared to the
iGA result in Figure 54. The convergence to the two methods in Figure 55 shows
that although different section shapes were obtained, in objective terms they both
represented different local optima of similar quality. The robustness and repeatability

of results from the same representation is still an ongoing problem.

6.3 Analytical Functions

Hicks and Henne [41] introduced a compact formulation for the parameterisation of
airfoil sections . This method is based on adding sets of sine bump functions linearly

to an existing baseline airfoil section. The amount of each bump added to the baseline

126

140 +—

130 P e ey

120

110

Fitness

Figure 55: Superior convergence obtained through island Genetic Algorithm

section is defined by a coeflicient (design variable). If all the coefficients are set to
zero, the resultant gives the base section. This method was implemented by Reuther
and Jameson [35] using 25 functions, acquiring much smoother sections than those
found based on spline representations. Hager et al. [42] and Elliott and Peraire [44]

used 10 shape coefficients based on different shape functions.

The value of shape functions can be enhanced by finding an orthogonal set. The
use of ortho-normalised shape functions in the representation of airfoil sections was
adopted by Kuruvila et al. [46] based on the NACA four series. Chueng [47] and

Drela [48] also demonstrated the effectiveness of this method based on a sine series.

Chang, Torres, and Tung [106] demonstrated the parameter efficiency of ortho-
normalising base functions, recovering a NACAQ012 section to an acceptable error
with just the first four modes, and with eight modes to completely recover a tran-
sonic section. To evaluate the parameter efficiency of ortho-normalised modes further,

the first four modes of ortho-normalised shape functions are to be considered in the

aerofoil optimisation problem.

The base functions used by Kiruvila et al. are given in Equation 95, as

127

03 03
0.25 0.25
02 0.2
L o5 L 015
04 | 0.1
005 0.05

0

0 02 04 0.6 0.8 1

xlc
Shapei ----Shape2| | T Shape s Crnogpapet
------- Shape3 ----- Shape4 ~..—.Shape9 ----Shape10

Figure 56: NACA Series Shape Functions

)
I
8
N’

ot
I
8
N—

—~
8
~
Il

<
ot
—~
8
~—
Il
8 8
/\/&

yi(z)=1-z Ye
) =z(l-2) y
ys(z) =2*(1 —z) s
ya(z) =2*(1—1z) o

|

~
8
N—r
I
RS
8l 8
I

SR

Il
=]

8
I

8

~~ /N
8

~— N
Il
o
8
I
8

and plotted out in Figure 56.

The ortho-normalised modes that are to become the parameterisation for the problem
were obtained by Gram Schmidt ortho-normalisation process and are shown in figure

57. The Gram Schmidt process used is detailed in Appendix C.

The final aerofoil shape is obtained by adding each normalised function as a weighted

sum such as:

Rg(:c) = Z a;gi(z) (96)

where a; are the design variables to be optimised, and g;(x) are the ortho-normalised

128

25

1.5 4
1
0.5 -

y/c
o

05

-1.5 1
-2
-25 T ; T T 0 02 04 06 08 1

0 02 04,06 08 xfc
x/c —Mode5 ----Modeb

....... Mode7 -----Mode8
~..—. Mode9 ----Mode10

y/c
A L Ao 2w s oo

——Mode 1 - - -~ Mode 2
....... Mode3,._._Mode4’

Figure 57: Ortho-normalised modes of NACA Series Shape Functions

functions of y; which are the base functions given in Equation 95.

In the application of the orthogonal modes to an airfoil design optimisation problem,
the first four modes were used for each surface, resulting in only eight design param-
eters. The resultant solution for the Cp = 0.3 design point is shown in Figure 58.
This section obtained a far superior objective solution, to that of the Bezier solution,
with a much smoother and useable section. Examination of the parameterisation of
the delta b-spline method in Figure 59, reveals that such a section lies outside its
bounds, highlighting the limitations of the delta approach for global optimisation.
The pressure profile of the resultant section shown in Figure 60, has changed signifi-
cantly from the NACAQ012 section. A sharp join is noticeable at the leading edge of
the foil. Since there is no continuity of curvature properties in the join between the
upper and lower surfaces, it is not surprising to find these features common in such

implementations as also observed by [46].

In an attempt to impose tangency at the leading edge, BSpline curves were used for
the upper and lower surface with an additional control point placed above the leading
edge point imposing the tangency condition. Ortho-normalised functions were used

as the design variables, with the resultant profile used to define the fourth order

129

0.08 T T T T

T T T
— - delta50% result
= full b-spline result
— ortho mode result

0.06 - - ~

Figure 58: Resultant sections obtained using orthogonal functions

0.1 T T T T T T
— ortho mode result
it TR o delta50% max boundary
0.08 - o Tron, 2 _delta50% min boundar
a % e,
0.06 L) . ‘a,

006F . " g
.o
a
-0.08f B . 1
° - "
_04 1 L L L L) I L L
o 0.1 0.2 03 04 0.5 0.6 07 08 0.9 1
xic

Figure 59: Optimal section of the orthogonal representation exceeds the delta b-spline
boundaries

130

T T T T T T T
T —— ortho result
~ ~= nNacat0i12

0.8l

L s L L L . L s L
[o1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/c

Figure 60: Optimised pressure distribution from orthogonal representation

BSpline control points. For the first design case investigating airfoil sections at a
low lift coefficient, which is often required in propeller sections, the resultant airfoil
section shown in Figure 61, was significantly improved. A large similarity is evident
despite the improved leading edge condition between the pressure distributions shown
in Figures 61 and 59. At a much higher lift coefficient, the rearward loading found

in the previous case study was abandoned for a more traditional leading edge loaded

section.

The current set of orthogonal modes can be applied to a new Bi-Directional airfoil
section proposed by Huges [66] for a thruster unit with equal bi-directional thrust
performance, suitable for deep sea Tethered Unmanned Underwater Vehicles (TUUV).
Hughes used the upper surface of a Kaplan K4-70 [107] airfoil section to construct
the bi-directional airfoil, with the upper edge rotated 180 degrees to form the lower

edge.

To optimise such sections, the same principle was applied in the parameterisation
based on the first four ortho-normalised modes, using BSpline control points imposing
tangency conditions at both leading and trailing edge. The final parameterisation
required ten design variables in total. The optimised sections shown in Figures 63 and
64 for lift coefficients of 0.3 and 0.6 respectively, were comparable in performance to a

NACAO0012 section in forward direction only. This is a significant improvement to the

131

-2.0 v
[Ves 1
Re = 0.97510°
i Alfa = 0.1850
-1.5 €L = 0.3000
C M = -0.0753
P (0 = 0.00u80
-1.0 LD = 62,48
Nerit = 8.00
0.5
J\/\‘”‘*"\
0.0 | ; o
/

Figure 61: CL = 0.3 Result with Tangential Geometric Condition Applied to Leading
Edge

-2. 0 pxeon, runl
¥ 5.8
Re = 0.975:10°
. flfa = 3.2908
13 L. = 0.6000
r = -0.0318
e , b = 0.0086
1.0 / > \ LD = 70.89
N Neezt = 5.00
/ \\‘
-0.5 /
i
0.5
0.5
1.9

Figure 62: CL = 0.6 Result with Tangential Geometric Condition Applied to Leading
Edge

132

= U prroit ~
ey R runl
Re = 0.97541(F
Blfs = 26505
L3 - 0.3000
C o= 0.01%
P (b = 0.00878
0 | LD = 3.6
i Nerst = 0,00
2
-0.5
\
0.0 T I \i//‘
N 7
F {
~——

Figure 63: Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV
Thruster Unit, Cr, = 0.3

section used by Hughes shown in Figure 65. The drag polar of the three airfoil sections
given in Figure 66, illustrate this improvement. The 'S’ shape feature of the optimised
sections produce a flat polar characteristic over a wide range of lift coefficients. This
performance characteristic would be significantly advantageous to a manoeuvring
vehicle as there would be little performance cost associated with operating away from
the design point. One of the disadvantages of basing optimisation on a single design
point is featured in the C1 = 0.3 polar, where the drag polar increases drastically
about Cy, = 0.6. A combined objective may be more suitable for a final design study

in order to provide performance strengths that include both design points.

6.4 Efficient Parameterisation Through Ortho-

Normalised Aero-Functions

Although some success was made in obtaining a smooth leading edge when ortho-
normalised functions are applied to airfoil design, a further opportunity to reduce

parameterisation potentially exists through the ortho-normalisation of functions that

-2.0 rxro1L
v 6.93

OptimalReverse?
Re = (0.975x10°

Q@ = 4.9578°
C, = 0.8000
Cy = 0.0196
Cp, = 0.01050
/D= 57,12
Ner = 8.00

133

Figure 64: Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV

Thruster Unit, Cp = 0.6

-0.15

0.1

02

03 04 0.5 0.6 0.7 0.8 0.9 1
xfc

-~ Reversed Kaplan Section— Optimised @ CL=0.6

Figure 65: Original Proposed Section formed through a rotated Kaplan K4-70 Section

134

0.03 +—

0.025 —_—
by
.
.

002 5 #

0.005

o 0.1 0.2 03 0.4 05 0.6 0.7 08 09
cL

=——Optimised for CL=0.6 === ==Optimised for CL=0.3 = = = Reversed Kaplan SGGE

Figure 66: Drag Polar Comparison of Optimised Sections for Reversible Section

define the entire airfoil section instead of just the upper or lower surfaces.

6.4.1 Construction of the orthogonal set

In order to explore this idea, an ortho-normalisation process has been implemented
for the reduction of a discrete set of curves. Instead of using mathematical functions,
existing aerofoils are used to form the basis set. Gram Schmidt ortho-normalisation
is applied to each airfoil which are treated as discrete curves. Twenty base airfoil
candidates were chosen from over 1000 airfoil sections available in [108], for the wide

contrast in shapes offered between them. The airfoil basis sections are shown in

Figures 67 and 68.

In Gram Schmidt ortho-normalisation, basis functions must cover the range 0 < z <
1, so the upper surface is rotated about the Y —azis from the LFE, and the new curve
scaled and translated to satisfy the required range. The resultant base ’Aerofunctions’
are shown in Figures 69 and 70. The effectiveness of the normalisation process is
enhanced by ordering the functions in terms of maximal differences between each of

them. The distance between two functions can be found from

135

0.15 0.15

0 02 04 0.6 08 1 0 0.2 04 0.6 038 I

NACA-SC2 M21
ve 0000 iN6DS RAF32

UEIT20 769 E856
sess00RAES2D NACA2301

Figure 67: Basis Airfoils for Constructing the Orthogonal Set

0.4 0.2

E625 NCambre E793 N6409 M5 ERI0
sss0000E850 USA408 L seveeasJNIS3 RAF26

Figure 68: Additional Basis Airfoils for Constructing the Orthogonal Set

136

o 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
x

AeroFunction 1 — ~—AeroFunction 2 = - = AeroFunction 3 == = AeroFunction 4 — = AeroFunction 5 — —AeroFunction 6]

[

Figure 69: Basis Functions for Gram Schmidt Process

0.15 -

|
o 0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9 1
x

——AeroFunction 7 — —AeroFunction 8 = = = AeroFunction 9 — = AeroFunction 10

Figure 70: Basis Functions from Additional Basis Airfoils

137

[——mode 1 mode 2 mode 3 mode4 = = =mode5= = = mode 6

Figure 71: Ortho-Normalised Airfoil Functions Modes 1-6

dist = /0 Abs(fi(z) — fo(z))dz (97)

where f; and f, are the y coordinates from the base aero-functions.

The resultant ortho-normalised set of aero-functions, obtained by applying Gram
Schmidt normalisation are shown in Figures 71 and 72. Due to the discrete applica-
tion of the normalisation procedure, a small amount of numerical noise is found to
accumulate in each consecutive function. This noise can be attributed to the poor ge-
ometrical quality of the original imported sections, and to the round off error inherent

by the discrete implementation of the approximation process.

Table 10 shows the total cumulative error in reconstructing all 20 airfoils using n

airfoils as basis functions for the ortho-normalisation process. The cumulative error

is given by

20
CumulativeError = Z dist(upper) + dist(lower) (98)

i=1
where dist(upper) is the error between the actual upper section and the reconstructed

upper section as defined by Equation 97, and dist(lower) is the error for the lower

138

4 A

IS

[7 mode 8 9= = =mode 10]

Figure 72: Ortho-Normalised Airfoil Functions Modes 7-10

section as calculated in the same way.

At 20 basis functions, a significant error of 0.0117 is present, and this is largely
attributed to numerical noise. However this error threshold is easily reached to within
2% with just eight basis airfoils, and a similar but only slightly larger error is attained

with six basis airfoils.

6.4.2 Implementation of Ortho-Normalised Aero-Functions

in Shape Optimisation

The first eight orthogonal aero-function modes were used in the shape optimisation
problems given in Section 6.1.1. The resultant airfoil for C',=0.6 test case is shown in
Figure 73. The new ortho-normalised functions were significantly easier to implement
than the previous ones, and did not need any additional smoothing about the leading
edge to obtain this solution. In this implementation, the functions were not able
to improve on the result obtained using the previous functions. Once again, large

frequencies of non-convergent results were observed during this implementation with

139

Number of | Included Cumulative Error
Foils in Airfoil for Reconstructing 20
Base Set Airfoils
1 NACA-SC2 1.2913
2 M21 0.4573
3 UI1720 0.3222
4 RAF32 0.1743
5 N6h15 0.1276
6 17769 0.0985
7 E856 0.0564
8 NACA2301 0.0327
9 RAES212 0.02711
10 N8h12 0.0246
11 E625 0.0216
12 NCAMBRE 0.0207
13 E793 0.0176
14 E850 0.0123
15 USA408 0.0117
16 N6409 0.0117
17 M5 0.0117
18 E1210 0.0117
19 JN153 0.0117
20 RAF26 0.0117

Table 10: Airfoil Reconstruction Error from using Ortho-Normalised Aerofunctions

140

004

-0.04

-0.06 T #
0.6 a7 0.8 09 .0

e
@

0.0 o1 a2 o3 04

Figure 73: Resultant Section Obtained using Ortho-Normalised Aerofunctions

the GA, and concerns should be noted about the ability of the functions to fully
capture smooth leading and trailing edges due to the large amount of numerical noise

present in these areas. The severe number of infeasible candidates are the most likely

cause for a poor GA solution.

6.5 The Performance of Different Parameterisa-

tion Approaches

Several spline based parameterisation techniques were used on a simple airfoil design

problem, with the best drag results obtained from each representation, shown in Table
11.

The delta-BSpline approach was the simplest to implement, but was found to be too
restrictive for optimal design search. In general the BSpline approaches produced
wavy pressure distributions as previously observed by Jameson. By allowing the
BSplines poles to move in both x and y directions, much smoother pressure distribu-

tions and sections were achieved. The use of NURBS curves with parameter freedom

141

Representation Test Case
CrL=03|C,=06
Delta B-Spline with 50% freedom 0.0059 | 0.00873
B-Spline with x knot direction fixed 0.0068 | 0.00881
B-Spline with Moveable (x,y) knots 0.0061 | 0.00876
Bezier 0.0051 0.00851
Ortho-Normalised NACA Functions 0.0048 0.00846
Ortho-Normalised Aero-Functions 0.0051 0.00845

Extended B-Spline Trial with 12 knots 0.00862
Extended B-Spline Trial with 16 knots 0.00858
Extended B-Spline Trial with 20 knots 0.00861

Table 11: Resultant Best Drag Results Obtained from each Representation

in chordwise, thickness and rational directions have been used by Lépine et al. [37],
without producing this characteristic, highlighting further search opportunities of-
fered through B-Spline representations. However more than 40 design parameters

were required for these implementations.

The leading edge was particularly difficult to define by all the methods used. Some
imposition of tangency was required by all representation methods to produce ad-
equate pressure distribution in this area. The Bezier implementation produced the
smoothest definition, including some peakedness in the leading edge pressure dis-
tribution. Further definition in the region could be achieved either by additional
Bezier poles, or through the implementation of a higher fidelity spline method such
as NURBS. The orthogonal functions were able to produce a reasonable result in the
C; = 0.6 test case, after smoothing was applied to the leading edge, however this

solution may reduce its ability to define sharply peaked pressure distributions.

The study of bidirectional airfoils presented the opportunity to examine the suitabil-
ity of orthogonal functions to a slightly different geometry. The parameterisation
was simplified significantly in this problem since only definition for one surface was

required, and rotated about 180° forming the other surface. Suitable results were
found for both design points.
The implementation of ortho-normalised aerofunctions demonstrated the ability to

adopt orthogonal functions in the description of the entire airfoil without additional

smoothing about the leading edge. Despite the advantages offered by this approach,

142

the solution failed to improve on the result found by the ortho-normalised NACA
functions. The frequency of infeasible candidates generated by orthogonal represen-
tations is the most likely cause for this disruption. Numerical noise generated from
both surface inaccuracies in the base airfoils, and round off error in the discrete Gram
Schmidt implementation were found to be a significant handicap to the adoption of
this approach. Opportunities to further reduce this noise exists through using ana-
lytical functions that have similar characteristics to the aerofunctions, and through

the reduction of round off error in the ortho-normalisation process.

Overall, the orthogonal functions provided the most dynamic geometries, defining
slender sections for the Cr, = 0.3 design point, and well posed pressure distributions
in the C, = 0.6 case. Parameterisation required less than half the number of design
variables than the other methods. Doubts however remain on the ability of such func-
tions to define leading edge curvature, and the coarseness of the resultant geometrical
definition. The Bezier curve method provided smooth curvature throughout, but with
a more limited search range. The resultant geometries agreed with that found using
orthogonal functions, although it is expected that the global optima continues to re-
main elusive, due to the poor evolution convergence observed when applying more

high fidelity representations.

6.6 Sensitivity of a B-Spline Representation to Pa-

rameterisation

B-Spline and NURBS representations offer the opportunity to adapt shape to a finite
degree for any given parameterisation. By increasing the parameterisation through
more control points, further shape adaptation can be offered. However, so far B-

Spline based implementations have been difficult to implement successfully, in GA

search processes.

One idea into why B-Spline representations behave so poorly in GA shape optimi-

sation, is that such representations may lead to a deceptive [15] search landscape.

143

== =12 Control Points
= = 16 Control Points
====20 Control Points

Figure 74: Effect of adding more control points to B-Spline parameterisation

Figure 74, shows the effect of increasing the number of BSpline control points on the
final pressure distribution achieved. With just 12 moveable points (ignoring those
that are fixed at the trailing and leading edge), a nicely smoothed pressure distri-
bution can be maintained. A total of 20 control points or 40 design variables were
required to adequately capture the leading edge pressure peak, showing the enormous
expense involved, or using genotype-phenotype mappings that do not allow adaption

of the number of genes.

However, the shape obtained using 20 control points was achieved following extensive
re-runs of the GA, with each run starting from the previous best solution. In addition,
a constraint was also placed on the pressure distribution, limiting the number of
curvature inflections to five. In total, 10 re-runs were used to obtain the final result.
A more interesting result is that obtained using just 12 control points, six on each
surface. With this parameterisation, the solution converged quickly, and a nicely

formed pressure distribution was formed as shown in Figure 74.

144

6.7 Summary

An investigation into the performance of several geometric representation techniques
including spline interpolation and analytical functions has been explored in GA based
aerodynamic shape optimisation. The popular Bezier spline representation was found
to be the easiest technique to implement, and produced smooth sections following op-
timisation. In contrast, B-Spline curves were found to be the most difficult represen-
tation to implement, resulting in unwanted wiggles within the pressure distribution.
Following an additional constraint to reduce unwanted pressure distribution fluctua-
tions and additional expensive re-running of the GA from previous solutions, highly

satisfactory results were eventually achieved from B-Spline based representations.

The use of ortho-normalised analytical functions with GA’s were explored as a means
of producing more efficient geometric parameterisations. This type of implementation
was able to outperform the performance obtained using spline based representation
approaches. The idea was extended to using existing airfoils to construct the orthog-
onal function set. Although, a successful result was found, concerns were highlighted
over the amount of numerical noise generated through the implementation used. Such
numerical noise may limit the representations ability to adapt the leading and trail-
ing edges of airfoil sections where the effects of noise are the strongest. Orthogonal
functions were also found to generate a high frequency of infeasible designs whose
performance could not be determined via the implemented CFD solver. This charac-
teristic is detrimental to the GA evolution process, and is a significant restriction in

the ability of these representations to adapt geometry.

Opportunities to increase the ability for spline based representations to adapt, ex-
ist through the extension of their parameterisation to cover larger design spaces.
However, in the adoption of B-Spline curves, larger parameterisations were found to
reduce the ability of the GA to evolve an airfoil shape. A further opportunity for
increased adaptivity exists for all representations, through the ability to provide some
aerodynamic performance evaluation of candidates that were found to be infeasible in
this implementation due to CFD convergence issues. More computationally expensive
CFD methods could provide this improvement, but at a considerable computational

cost. A potential opportunity for improvement in this field, may exist through the

145

implementation of a genetic repair scheme that is able to mend infeasible candidates

to solvable ones.

Chapter 7

Adaption of Chromosome

Complexity

The requirement of adaptation considered in this chapter, is the ability to either in-
crease or decrease the flexibility of search offered through the genotype-phenotype
map within an adaptive evolutionary process. To incorporate this feature within
a GA which generally requires an external mapping between genotype and pheno-

type, hierarchical structures or components can be used within the definition of the

chromosome string.

Hierarchical based chromosome structures have been successfully used in a variety
of problems [109]. In previous implementations, strings of child genes are grouped
together via a container gene which will be referred to as the parent. By allowing
a parent gene to contain other parents, complex hierarchical genetic representations
can readily be established. Genetic operators such as crossover and mutation can
be applied to these chromosome strings in a similar pattern to that used on simple
canonical binary string representations. Mutation operations can alter the value of
each gene bit of a child gene, and crossover can allow the exchange of genes between
two parents by exchanging similarly ordered genes between parents. These operators

can be applied to any level of the hierarchy.

One of the key differences between hierarchical and canonical chromosome repre-

sentations, is the genetic operation offered by ’Hierarchical Mutation’. Hierarchical

146

147

mutation can be used to adapt the complexity of the chromosome string by switching
on and off child branches or structures within the chromosome definition. Switching
off gene branches is a simple operation that requires the affected genes to be removed
or disabled from the chromosome structure. When switching on genes, new gene

encodings need to be seeded, which is usually achieved through random generation.

Evolution is a gradual process of cumulative small changes, and not one of large
random flukes. When using hierarchical encodings in the definition of geometry,
switching off strings will generally have a small mutational effect on the overall shape.
However, when switching on a gene from its off state, care should be taken to ensure
that the resultant phenotype is changed only by a small mutational effect. The
hierarchical mapping used by [62], and in [109], showed little concern for the effect
of hierarchial mutation on the resultant phenotype, using a random generator to
reseed the genes that were switched on. On a geometrical structure in a critical
design environment such as aerodynamic shape formation, such random generation

can lead to large changes to the resultant phenotype or shape. It would be difficult to

see how any chromosome undergoing such transfiguration would survive to the next

generation.

Bently [110], addressed such an issue in his work with primitive geometrical objects.
To facilitate the addition of new genes and structures into a hierarchial encoding, the
new genes were seeded with interpolated values from the existing genes. Since the
primitive types used by Bently, exhibited no curvature effects, this method was easy

to adopt, and expressed directly in the hierarchical chromosome implementation.

The adoption of an explicit hierarchical chromosome implementation will be difficult
for curvature shapes, where more elaborate means of interpolation would be needed
to minimise the effect of adding a new gene to the resultant shape. In this work,
an object based approach to the same methodology will be implemented for the
hierarchical encoding and mutation of advanced geometrical shapes. This approach

will allow for the flexible adoption of different geometric representation techniques

using the same pattern.

The basis for the framework proposed, is that of a hierarchical relationship between

Form, Surface, Curve, and Point. That is to say that a Form is composed of many

148

Form

Surface

Curve

Point

Figure 75: Hierarchical relationship between Form, Surface, Curve and Point entities

Surfaces, a Surface is composed of many Curves, and a Curve is composed of many
Points. This relationship is illustrated in Figure 75. By using a hierarchy of en-
tity objects, reproductive operators applied at a high level such as on a curve, are
passed down appropriately to lower level entities such as a point. By allowing the
genotype objects to contain knowledge of its phenotype mapping, complex chromo-
some operations such as hierarchical mutation can be facilitated more appropriately
while ensuring that a philosophy of evolution through small changes persists. For
example, a fifth knot can be added to a B-Spline curve by interpolating its values
such that the shape of the resultant curve does not change unless a point mutation
is applied as illustrated in Figure 76. A crossover operator can also be added to deal
with two parent chromosomes that are hierarchically different to one another. The
disadvantage of using an object hierarchy to represent the chromosome structure is
the increased amount of programming required to re-implement an encoding for a

different representation.

7.1 Hierarchical Chromosome Framework

In order to capture geometric detail within the genotype, it is important to maintain
a complete DNA specification of the geometric phenotype, which can be achieved
through allowing both mutable and non-mutable values to co-exist within the same

encoding structure. Reproductive operators should then copy non-mutable values

149

1.) Line Defined by
Two Poles

2.) Insert Mutation add an
Extra Pole Without Altering
the Shape

3.) Mutate the New Pole to
Alter the Shape

Figure 76: Adapting a line into a curve using a B-Spline representation, under the
Hierarchical Framework this adaption can use two mutations, one to add the extra
genes (new Point), the other to mutate the new genes

into the offspring chromosome structure directly without modification, and treat mu-

table values through the appropriate reproductive operators such as crossover and bit
mutation.

A sample chromosome structure is given in Figure 77 for an object based hierarchy
capable of describing the evolution given in Figure 76. Each parent entity is re-
sponsible for activating reproductive operators on its child objects, including seeding
appropriate values when hierarchical mutation is called in order to reduce the effect
of hierarchical mutation to small changes only. An example of how hierarchical mu-
tation will cause the structure of the chromosome to change is given in Figure 78,

and the final curve is described following a second mutation in Figure 79.

To implement the new hierarchical chromosome framework within a GA, the GA used
in Chapter 4 was re-implemented using the JAVA programming language. A basic
description of the new implementation is described in Appendix D, which illustrates
the important relationship between the evolution process encapsulated by the GA,
and the Hierarchical DNA interface implementation described here. The migration
from C++ to Java was straightforward, assisted through the exploitation of the vast

and well documented Java 1.3 API [111]. The Java API provides significantly more

Simple Line Defined with Two Fixed Points

0,0) 2,0)

Hierarchical Tree Structure for Line Chromosome

X y X y
0.0 0.0 2.0 0.0
<Fixed>| [<Fixed> | |<Fixed>| |<Fixed>

Figure 77: Hierarchical Implementation of a Simple Curve Chromosome

Adapted Line with New Third Point, Moveable in Y Direction

(LO)

(0,0) 2,0

Adapted Hierarchical Tree Structure for Line Chromosome

Point Point Point
<Fired> <Fixed> <Fixed>

X ¥ ¥ X Yy
0.0 0.0 1.0 0.0 2.0 0.0
<Variable>

>

150

Figure 78: Adaption of Hierarchical Curve Chromosome by Adding New Genes in

the Form of an Extra Point

151

Final Point Mutation Reveals New Shape

(LY
Resultant new
B-Spline curve

(0,0) 20

Hierarchical Tree Structure for Adapted Line Chromosome

Point Point Paint
<Fixed> <Fixed> <Fixed>
¥
.0 0.

¥ X ¥
Q 1.0 1.0 2.0 0.0

x
0
<Variable>

Figure 79: New shapes can easily be created once new points have been added

support for container types such as vectors, strings and hash maps than STL, allowing

development to focus clearly on the implementation logic of the GA rather than on

extra support for value types.

The key reason for choosing the Java platform over C++ for the implementation of the
hierarchical GA, is Java’s ability for Serialisation and Reflection, used in Java Remote
Method Invocation (RMI) for distributed computing over networks. Unlike other
distributed technologies such as Corba 3.0 [112], Java is able to completely serialise
and marshal its objects at runtime so they can easily be communicated between
distributed computers, requiring only a small amount of extra programming. Because
the new chromosome structures contain a collection of problem specific objects to
describe the genotype, other distributed technologies such as Corba or MPI, would
require an external description of the signature types that are to be communicated

between processors, burdening distributed development.

7.1.1 A Persistent Asynchronous Distributed Computing

Environment via JINI-JavaSpaces

152

To continue to evaluate expensive objective functions over distributed computing
networks, Java’s object serialisation capability enables the definition of phenotype
orientated chromosome objects without the need to define further socket serialisation
mechanisms. Distributed communication amongst Java processes is generally made
available through socket libraries, or RMI. In addition to these basic services, one
other high level service API has been made available for network based communica-
tion. JINI technology is orientated around distributed services and provides support
for network services such as lookup, communication, synchronisation, leasing, dis-
tributed events and notification, and distributed transactions. One powerful service

provided through JINI, is JavaSpaces.

The JavaSpace model provides persistent object exchange areas in which remote Java
processes can coordinate their actions and exchange data. Motivated by the Linda
language [113], JavaSpace views a distributed application as a collection of processes
cooperating through the flow of objects into and out of one or more distributed spaces.
A space is a shared, persistent network repository for Java objects. Instead of the
process talking to other processes directly, they exchange data by reading, writing
and taking objects from a space. In support to the JavaSpaces concept, JINI provides

the additional services such as lookup, events, leasing, transactions, etc.

A space based object is defined from the Entry interface. Instance values can be
used to look up entries within a space. Hence an Entry instance with a param-
eter ’String status’, will allow the lookup of objects via string matches such as
status =" HelloWorld'. In fact, this lookup mechanism is extended to all Java value
types including objects. It is this envelope or ‘template’ that provides the important

capability to read, write, take and receive notifications on specific object events.

JavaSpaces provide a basic scalable and persistent service on which to base a Java
implementation of the farm-worker model described in Chapter 5.2.2. A basic spaced

based model can be created as described in Figure 80.

153

1. HGA

(a) Look Up 'work’ JavaSpace.
(b) Add objects that require evaluating to space with status='Evaluate’.

(¢) Remove all objects from space with status="Evaluated'.
2. If Worker

(a) Look Up 'work’ JavaSpace.

(b) Register with space for object additions where status='Evaluate’.
(¢) Take object.

(d) Evaluate.

(e} Return object to space with status="Evaluated’.

Figure 80: Simple JavaSpace Model of Farmer-Worker
7.1.2 A Robust Farm-Worker Spaced Based Implementation

The above algorithm will enable the Farm-Worker features needed for the distributed
GA. In order to provide a more robust asynchronous evaluation system, the following

requirements have been included in the following implementation.

e Persistent availability of a 'work’ object for a given length of time or until it

has been evaluated, regardless of network and computer failure.

e Object evaluation can be passed to selected resources.

These requirements basically ensure that regardless of computer, application crashes
or network failure, for as long as the given space is available, once a 'work’ object
enters the space, it is available for evaluation until evaluated, is taken for evaluation,
or expired. Even if the job submission process has failed, the object remains available.
If a long enough lease time is allocated to the work object, then evaluation must be
allowed to complete. This applies even if a remote process has removed the object for
evaluation, but failed to return the completed result due to some failure. The second

requirement allows the job submitter to define the type of resource that should carry
out the work.
For the GA, the basic algorithm for submitting job objects remains relatively un-

changed to that in Figure 80. Only the additional specification of a maximum work

lease time is required, as well as a destination indicator that describes what type of

154

worker should carry out the work. On the lease expiring, the object will be removed

from the JavaSpace.

For the worker, the problem of object persistence within the JavaSpace in the event of
partial failure is handled through the JINI transaction and lease model. The worker
process removes jobs from the space under a transaction, barring other processes from
accessing or reading the object. Upon completion of the objective function evaluation,
the fitness and constraint violations are recorded within the object envelope, and the
status value set to 'Evaluated’. The object can then be written back to the space
under the same transaction. Applying the transaction ‘commit’ operation, applies the
transacted JavaSpace event to the space. The object is now available to other space
clients to read and remove. In the event of partial failure such as process crashes or
JavaSpace/GA or Worker computers being switched off in an uncontrolled environ-
ment, the original object will be fully restored when the transaction lease eventually
expires. This model implies that if an object is given unlimited lease lifetime, and
that a worker process is available to carry out objective function evaluation, a fully
completed evaluation will always be carried out regardless of the number of partial

failures.

The final Farm-Worker algorithms are available in Figures 81 and 82.

7.2 Hierarchical Crossover and Adaptive Muta-

tion of a Line

A curve described by a collection of straight lines between points, provides a simple
but practical problem on which to examine the genetic interaction between adapting
the complexity of the genotype on its phenotype within an evolutionary process. The
Hierarchical implementation is shown in Figure 83. The Point objects contain the
underlying DNA sequence if the chromosome, and the objective of the curve object,
is to facilitate calls passed from the GA, onto these underlying points. Two of the
most important methods that Line must implement are, Crossover, and Mutation,
which allow the structure of the chromosome to adapt by adding or deleting genes,

as well as to alter the genes already present.

155

1. Look Up 'work’ JavaSpace.

2. Create CounterEntry instance.
3. Set cursor=0, process=myid.
4. Write CounterEntry to space.
5. ForEach Genome in population

(a) Create GenomeEntry instance.

(b) Set status="Evaluate’.

(c) Set type="xfoil’

(d) Set lease="unlimited".

{e) Set process=myid and id=Genomeld.

(f) Create Transaction with short lease.

(g) Write entry to space under transaction.

(h)} Take CounterEntry from space under transaction.

(i} Set cursor+ = 1 and write CounterEntry to space under transaction.

() Commit transaction.

6. While CounterEntry > 0

(a) Request events for GenomeEntry write where process=myid and status='Evaluated’.
(b} Upon event notification

i. Create transaction with short lease.
it. Take GenomeEntry from space where process=myid and status='Evaluated’ under transaction.

iii. Take CounterEntry from space under transaction.
iv. Set cursor— = 1 and write CounterEntry to space under transaction.

v. Commit transaction.

7. Return.
Figure 81: JavaSpace Farm Implementation within GA Evaluate

7.2.1 Hierarchical Crossover

Hierarchical Crossover mimics the crossover operation usually performed on the sim-
ple binary string chromosome described in Chapter 4.1.4, but within the hierarchical
tree structure. Hierarchical Crossover consists of two genetic exchange operations
between parents. Branch exchange illustrated in Figure 84, essentially cuts the gene
sequence between two different parent genes. In this operation, all parent genes to
the right of the cut within the same branch are swapped with the corresponding
genes of the second Genome. All children branches of affected parent genes are also
transferred to the second Genome. The second crossover operation available, allows
a gene of any branch level to be cut as illustrated in Figure 85. A portion of this

gene to the right of the cut, along with all remaining genes to the right of the cut are

transferred to the second Genome.

156

1. Look Up 'work’ JavaSpace.

2. While True

(a) Request events for GenomeEntry write where type="xfoil’ and status='Evaluate’.
(b) Upon event notification
i. Create transaction with long lease.
ii. Take GenomeEntry under transaction.
iii. Create WorkerProcess entry.
iv. Set worker=myid and id=GenomeEntry.id and write entry (no transaction).
v. Evaluate GenomeEntry and write fitness and constraint violations to GenomeEntry.
vi. Write GenomeEntry to space under transaction.
vii. Commit transaction.
viii. Take WorkerProcess {no transaction).

3. Return.

Figure 82: Algorithm for JavaSpace Worker

Simple Curve Defined by Lines Joining Points

(LD

0,0 2.0

Hierarchical Tree Structure for Simple Curve Chromosome

{ H
| Point I Point
<Fixed> <Fixed>
T T
[1 I 1

Point
<Fixed>
X X

¥ ¥
0.0 0.0 1.0 1.0 2.0 0.0
<Variable>

B3

Figure 83: Chromosome Structure for a Set of Connected Lines

In a simple implementation of this process, the position of the crossover point is
determined by only one parent. If the crossover point is not found to exist on a
mutable or switched on gene on the other parent, then the cross-point will mark a
position from which all genes are swapped without crossover being performed on a
gene. If the gene belonging to the second parent is also mutable, then the task is
passed down to their implementations. N-Point crossover is achieved by calling the

crossover function N times.

The algorithm for Hierarchical Crossover of a Line is summarised in Figure 86. The

Point crossover method is summarised in Figure 87.

157

Parents

[— ; 4— Crossover Point

Offspring o

Figure 84: Parent gene exchange via sub-tree swapping

Parents

5 5 O R

Offspring

Figure 85: Hierarchical crossover at sub-level

158

1. create array of mutable paints
2. select random point from mutable point array
3. if { chosen point is available in other parent } then

(a) crossover genes between points

(b) swapover remaining points in curve

4. else

(a) swapover points in curve from chosen point

Figure 86: Hierarchical Crossover Algorithm

1. randomly pick either x or y as the mutable value if both their mutable methods return true, otherwise pick the mutable value

2. select same value on other parent
3. pass one value to others crossover method

4. if both x and y are mutable, the non-crossed value can be swapped on a random basis

Figure 87: Point Crossover Implementation

Improved Hierarchical Crossover

To increase schema sampling through a more productive crossover operator, a filter
can be applied such that only common genes that are present and available between
both genomes are passed to the gene crossover operation. To achieve this, the chro-
mosomes are searched to create a list of common indices. Each index represents a
mutable gene that is present in both genome encodings. The index that is to be used
to pass the respective points to the genes crossover operation, is then randomly cho-
sen from this List. The Algorithm used to filter the genes, and its use in the modified

Hierarchical Crossover operation is shown in Figure 88.

This algorithm is now almost identical in effect to Benley’s [110], Hierarchical
Crossover implementation. In Bentley’s algorithm, a more complex search was carried
out to find a point of similarity between the two parent chromosome strings. This
search was carried out by randomly choosing a gene, and attempting to discover the
same gene on the second parent. If the gene was not found, a search was conducted
to find all similar genes within the same hierarchy. A random gene would then be
sampled from this list. If no similar genes were found, the search would move up in

the hierarchy until the top level is reached without any crossover occurring within a

159

1. for each point

(a) if point exists in other parent curve

i. add point to common list
2. if Size{ common point list) j O then

(a) select random point from common point list

(b) crossover genes between points

3. else

(a) select random sub-tree from first chromosome

4. swapover remaining points in curve

Figure 88: Algorithm for Hierarchical Crossover about Common Gene Points

gene. The algorithm implemented here facilitates a more effective crossover opera-
tion, as it will always provide a set of common genes to the gene crossover operator,
if such genes exist within the curve structure. If no common genes are found, then a

simple gene swap is performed between chromosomes from a randomly chosen point.

7.2.2 Hierarchical Mutation - Gene Addition and Deletion

The mutation operators made available to assist the evolution of both chromosome

structure and genes are:

1. Gene bit mutation

. Sub-branch inversion

[\

3. Child node deletion

. Child node addition

N

In some hierarchical chromosome implementations, bit mutation, node deletion, and
node addition are implemented equally as part of the same operation. This usually
entails that the gene switches which determine whether a gene is active or not, be-
come part of the chromosome string. These additional gene components, undergo

all breeding operations during reproduction. This introduces further chromosome

160

complexity, increasing the overall length of the chromosome string. In this implemen-
tation, the determination of whether a gene is active or not, remains hidden from the
main breeding processes. Valuable genetic processes such as crossover and inversion
do not wasted genetic operations altering the contents of genes that are not active,

leaving this process solely to a separate mutation operation, 'Sub-Tree Mutation’.

Gene Bit Mutation and Inversion within an Object Hierarchy

Gene bit mutation simply tries each mutable bit in the chromosome string recursively
for mutation. For each trial, a random number rand is drawn in the range [0,1). If
the condition, rand < probability Mutation is satisfied, then that bit is mutated, and
the next one sampled. The hierarchical tree is traversed from parent to child, with

all genes within the chromosome string sampled.

In inversion, a condition rand < probabilityInversion is tested for each chromosome.
If the condition is satisfied, each child branch belonging to the chromosome head
parent is chosen for inversion. The node inversion operator is called passing the second
Genome’s chromosome as an argument. Each node’s inversion operator repeats this
process, recursively applying the operator on all child nodes. Under a node branch,
an invertible bit within randomly selected node is selected to become the starting
point for the inversion process, and the end point chosen from within any node under
the same parent branch. All bits between the start and end point are inverted as
described in Chapter 4.1.4. In this implementation, the end point can be placed to

either the left or right hand side of the start point.

Sub-Tree Mutation Operator

For a simple line described through a composition of points, the process for point ad-
dition and deletion are relatively simple. For sub-tree mutation involving the deletion
of a point object, the point is simply removed (the child node is switched off), and
the resultant curve is altered by only a small localised amount as shown in Figure
89. For insertion, the gene is switched on, and the seeded position of the point is

calculated through the algorithm briefly described in Figure 7.2.2.

161

Simple Curve defined by four points
(1.1) (1.5.1.0)

0.0) 2.0

Resultant curve following point deletion via subtree mutation
(1.1)

0.0) 2.0

Figure 89: The effect of sub-tree deletion on a simple curve

Figure 90: Line Curve Point Insertion Algorithm

1. Find a, b such that y = ax + b for all points between Py andPs.
2. Find range of @ [Tynin, Tmae) that satisfies ¥ [Ymin, Ymaz) where y = ax + b.
3. Randomly choose a value x within the valid range, and yield y.

4. Seed newly enabled gene with (x, y) values

The effect on the curve, and chromosome structure following point insertion on the

curve shown in Figure 83, is illustrated in Figure 91.

7.2.3 Application of GA to evolve complexity of a simple

curve

A simple line reconstruction problem has been used to explore the capability of the
hierarchical scheme to evolve shape complexity. Three problems are considered in-
volving the reconstruction of lines defined by the coordinates given in Table 12. The
objective of the problem is to re-construct each solution using the hierarchical GA
described above, from a two point starting solution with coordinates (0,0) and (1, 0).

The encoding used to define the scope of the chromosome map is shown in Table 13.

162

Adapted Curve with Point Insertion

a1

(1.5,0.5)

0,0 20

Resultant Hierarchical Tree Structure for Curve Chromosome

X U
0.0 0.0 1.0 1.0 1.5 0.5
<Varfable> <Vatiable>

Figure 91: The effect of sub-tree addition on the curve and defining chromosome

structure

Point 1 | Point 2 | Point 3| Point 4 Point 5 | Point 6 |
(0,0) (0.5,1) (1,0)
(0,0) (0.25,0.5) | (0.5,1) (1,0)
(0,0) (0.25,0.5) { (0.5,1) | (0.75,0.5) | (0.85,-1) (1,0)

Table 12: Coordinates of the line problems considered

Distance Between Two Curves

The objective fitness function is constructed from the distance between two curves.

This distance is taken as the actual cartesian area between them as given in Equation

99

error = /Ou \/(Plz(:zrs) — Py () + (P, (zs) — P, (:rs)>25a:5 (99)

where u is the normalised parametric length of the curve (usually normalised to 1.0),
and P, ,(z,) is the point given at the x-coordinate found at parametric length s on
the first curve. Equation 99, applies only for curves that cover the same range in the
x-axis. For the implementation used in this chapter, the mapping of P(z,y) — u is

approximated to f(z,y), and the error is discretely approximated by Equation 100.

[Point] Line 1 ‘ Line 2 J Line 3

|

163

| L:min | Fixed [Fixed Pixed
I:max | (0,0) | (0,0) (0,0)
2:min | (0,0) | (0,-1) (0,-1)
2max | (1,1) | (0.35,1) | (0.35,1)
3:min | Fixed | (0.35,-1) | (0.35,-1)
3:max | (1,0) | (0.65,1) | (0.6,1)
4:min Fixed (0.6,-1)
4:max (1,0) (0.8,1)
5:min (0.8,-1)
5:max (1.0,1
6:min Fixed
6:max (1,0)

Table 13: Hierarchical Encoding Limits for Curve Points

n=maxits

error = E ﬁx (xs,)

+ x5, _,)and s, =n -

— fou(@s))* + (fo, (@s,) — fo, (25,))" - da (100)

U
mazlterations—1"

where dz = 3 (s,
The final objective function was constructed as 1 — error where error is found using

equation 100.

Analysis of Line Adaptation using a Hierarchical Encoding

The performance gain due to hierarchical adaptivity, has been measured against a
fixed canonical binary string encoding for the three given test cases. In the case of
hierarchical tree adaptivity, an additional tree mutation rate was introduced with
mutation rates of 5%, 10% and 15% tested. The performance improvement gained
through the use of adaptive chromosome encoding for the three test cases are shown
in Table 14, where performance improvement is measured against a traditional fixed
binary string encoding of Table 13.

For case 1, a line defined by just three points, the performance measured indicates

a substantial performance loss when applying Hierarchical Mutation. Similar results

can be seen in the 2nd test case involving 4 points. In the more complex six point

164

Test Case | No Mutation | 5% Mutation | 10% Mutation | 15% Mutation
Case 1 100% 61% 64% 62%
Case 2 100% 69% 72% 68%
Case 3 100% 104% 113% 102%

Table 14: Performance of Adaptive Line Tree Mutation when Compared with a Simple
GA Implementation

0.1

0.5

0.6
o 5 10 15 20 25 30

Generarion

Case { = =Case 2 - = = Case 3|

[

Figure 92: Evolution of fitness

problem, a small performance increase was seen. The fitness evolution for each test
case with tree Mutations 10% are shown in Figure 92. In all three test cases, the

adaptive encoding required approximately 15 generations to converge.

To provide some analysis into the effect that the adaptive encoding has on the evolu-
tion convergence, the number of unique individuals per generation is shown in Figure
93, with tree Mutation = 10%. In the first 10 generations there are significantly fewer
unique individuals when tree adaptation is applied in comparison to the fixed encod-
ing. GAs are believed to require a high rate of schema sampling, and a reduction
in unique individuals would reduce evolution performance. For the more complex
Case 3 problem, the standard GA was observed to converge quickly, with the number
of unique individuals available falling sharply before the optimum is found. For the
adaptive GA, the large rise in available unique individuals may assist the evolution

process to converge on the optimum.

Figure 94, shows the number of common genes shared between mating parents. In

165

nr

x

)

Number of Unique Chromosome Structures
o ® o

IS

n

o

0 5 10 15 20 25 30
Generation

[=—=cCase 1= =< Case2 = = Case 3 Case 3 with Fixed Genes

Figure 93: Number of unique individuals in each population

Figure 95, a measure of crossover efficiency is shown, given by the percentage of new
children that differ by at least one allele bit from either parent. For the standard fixed
GA, crossover is most productive in the first 10 generations while for the adaptive
encoding, crossover is most efficient after 10 generations when the number of common

genes between breeding parents increases.

7.3 Adapting the Complexity of a B-Spline curve

To extend the notion of chromosome complexity adaption demonstrated in Section
7.2.3 to the difficult problem of airfoil design, a B-Spline representation is adopted
to facilitate adaption of the genetic language. The success behind using the B-Spline
curve and surface representation to achieve the same aim depends on the fact that
there are an infinite number of defining B-Spline polygons that can describe exactly
the same shape.

With B-Splines, the flexibility of the defining curve can be adjusted either by raising

or lowering the degree of the curve, or by inserting / removing additional knot values

into the defining knot vector. This second approach is considered here as it allows

the gradual adaption of shape flexibility.

Average number of similar genes between breeding parents

Figure 94: Number of similar genes shared between breeding parents

Crossover Efficiency / Population (%)

35

25

0.5

o
©

4
®

o
N

o
o

o
o

o
>

o
w

o
N

o

=)

5 10 15 20 25

Generation

[——DNA with Fixed Genes — —DNA with Free Genes 1 = = = DNA with Free Genes 2|

30

5 10 15 20 25
Generation

[= —Case 1= = = Case 2 = - Case 3 ——Case 3 with Fixed Genes

Figure 95: Crossover efficiency

30

166

167

7.3.1 B-Spline Knot Insertion and Deletion

An essential property of this work, is a respect for gradual evolution. It is important
to ensure that the adaptation of chromosome complexity only affects the phenotype
by a small amount. This can be achieved with B-Splines through a process of knot
insertion. The subsequent effect of knot insertion, is to split the piecewise polynomial
segment for a given knot interval into two segments. Several methods are available
for knot insertion, one of the most popular is the Oslo algorithm, implemented by
Cohen et al. [114], which allows for the simultaneous insertion of multiple knot
values into the defining knot vector. The insertion of just a single knot, will lead to
a slight local adjustment of neighbouring control points. In the genetic algorithm,
such movement may be constrained due to the parameterisation of the chromosome
genes which require upper and lower bounds. It may therefore become necessary, to
recompute such knot insertion for different knot values. Therefore a simpler knot
insertion algorithm has been implemented here, based on an algorithm first proposed

by Bohm [115], that allows the insertion of a single knot value n times into the knot

vector.

For an original curve P(t) defined by

n+1

P(t) = Z BiNix(1) (101)

with a knot vector
[X] =[x, 29, -+ s Tngpra] (102)

insert a knot into the interval [z;, z;41]. The objective is to determine the new defining

polygon vertices C; such that P(t) = R(t) and

m-+1

R(t) =Y CiN;u(t) (103)
j=1
where m = n + 1 and the new knot vector with the additional knot y; is

[Y} = [yla Yo, o 5 Yjy e ;y7n+k+l] (104)

168

0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 1
xlc

|—7Knot Reconstruction —s— 7 B-Spline Knots = = - NACA0012 — - Try 1 (12 Knots) == =Try 2 (12 Knots)

Figure 96: Reconstruction of NACA0012 using GA with Fixed Encoding

From Bohm’s knot insertion algorithm, the new polygon vertices are

n+1
Cj=) ;B,1<i<n (105)
i=1
where o;’s are given by
1 1<j—k
o = ﬁ% j—k+1<i<j (106)
0 it 2 g+d

7.3.2 Implementation of Knot Insertion Within Complexity
GA

To examine the effectiveness of implementing the adaptive B Spline representation,
a geometry reconstruction problem is examined. The reconstruction of the upper
surface of a NACAQ012 airfoil is considered using 7 and 12 B-Spline knots. For the
adaptive case, all five knots are switched off initially requiring activating and seeding

on tree mutation which is set with a probability of 10%.

Figures 96 and 97 show the resultant sections and B-Spline polygons obtained follow-

ing 100 generations evolving a population of 200 members. For the fixed encoding

169

0.06

0.05

0.01

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
xlc

[—— 9 Knot Reconstruction —— B-Spline Knots - - - NACA0012]

Figure 97: Reconstruction of NACAQ0012 using GA with Adaptive Encoding

attempts shown in Figure 96, the GA failed to reconstruct the curve to an adequate
quality, while the adaptive encoding provided a more satisfactory result, requiring 9

knots from 12 available.

One interesting aspect of the investigation, is the inability of the fixed 10 knot solution
to capture the geometric detail of the curve. From the objective function convergence
shown in Figure 98, the fixed 12 knot solution was found to be inferior to that of the
7 point solution. This was a surprising result since B-Splines are commonly used for
curve reconstructing in CAD using Least Squares Minimisation techniques. To verify
the feasibility of the solution, a 12 knot B-Spline was successfully used to reconstruct
the given curve using Powell’s Direct Search [19], starting from an approximation
curve using NACAQ0012 curve ordinates as knot vectors. Powell’s search was used to
find the set of knot positions that minimises reconstruction error as defined in Equa-
tion 100. The reconstruction result is shown in Figure 99. Powell’s method was able
to reconstruct the airfoil section to a more satisfactory result than that found by the
Genetic Algorithm. The poor Genetic Algorithm performance found in comparison to
that of the Powell method, may indicate a large element of GA deception [15] that is
introduced by the B-Spline representation. From the Schema Theory, GA deception
denotes the inability of a Genetic Algorithm to traverse the objective landscape due

to a lack of correlation between improvements in fitness within the search landscape,

170

—7 Points — =12 Points

Fitness

Figure 98: NACA0012 Reconstruction Convergence for Fixed Gene Encoding

and the Schema hyperplanes that represent good chromosome building blocks. Since
Genetic Algorithms search primarily using chromosome crossover, if an improving fit-
ness landscape cannot be found through the sampling and exchange of good schema(
hyperplanes in the landscape) using this mechanism, then the landscape is denoted

as 'GA Deceptive’.

7.3.3 Application of Adaptive Encoding on Aerodynamic
Shape Optimisation

An adaptive B-Spline encoding has been applied to the aerodynamic design problem
studied in Chapter 6.1.1. The upper and lower surfaces were represented by separate
spline curves. The hierarchical chromosome encoding has been parameterised to allow
10 mutable knots to exist on each curve, giving a total of 40 design points available
for optimisation (each knot defined by an x and y coordinate). The initial starting

point used for the GA consisted of only three moveable points on each curve.

The GA was configured in the same manner as in Section 6.1.2, with the additional
tree mutation rate set at 10%. The results from five GA runs for each of the two
design conditions are shown in Table 15. Seven out of the ten results shown were able

to exceed the performance of the final designs obtained with Bezier and Orthogonal

171

0.06

0.05

0.04

yle

0.03

0.02

0.01

] 0.1 0.2 03 04 05 0.6 07 0.8 0.9 1
xle

[——Powell Reconstruction —=— B-Spline Knots - - - NACA0012]

Figure 99: Reconstruction of NACA0012 using Powell’s Direction Set Method

| Test | Cr=03 Cr=06 |
1 0.0047 0.00782
2 0.0045 0.0078
3 0.0050 0.0083
4 0.0051 0.0079
o 0.0048 0.00792

Table 15: Resultant Airfoil Performance Obtained Using Complexity BSpline Encod-
ing

Aerofunction representations. Previous results obtained in Section 6.1.2 were Cp =

0.0048 for the C'r, = 0.3 case, and Cp = 0.00845 for the C, = 0.6 case.

The convergence plot of the best run for the C, = 0.6 test is shown in Figure 100. The
average number of genes per generation is shown in Figure 101, alongside the number
of genes used to define the elitist member of each generation. One interesting aspect
shown by this result, is the limited number of B-Spline knots selected by the GA
to define the optimum section. The initial investigations in the the role of B-Spline
representations in shape optimisation given in Section 6.2.1, had always assumed
that larger design spaces would yield more highly adapted results. The final resultant
section given in Figure 102, shows a more simply defined BSpline polygon choosing to
use only 9 knots for the upper surface. The resultant pressure distribution obtained

from the optimised section is shown in Figure 103. The pressure distribution does not

172

-0.07

-0.075

-0.08

-0.085 <

-0.09 -

Fitness

-0.095

-0.1

-0.108

-0.11 - : . - T : -
0 10 20 30 40 50 60 70 80 a0 100
Generation

Figure 100: Airfoil Optimisation Convergence Using Complexity BSpline

exhibit the wavy characteristics found in Figure 49. In addition, a different pressure
distribution has been obtained with the loading focused around the leading edge. An

improved leading edge representation is one factor that would allow such a loading

to exist and may be a factor in this result.

7.4 Summary

The concept of complexity adaptation has been explored in this chapter as a potential
means of improving the ability to form highly adapted shapes using a GA. The idea of
complexity adaption was implemented through a hierarchical component based chro-
mosome encoding, that allowed one component to remove or add another dependent
component. One significant divergence that was made to previous implementations
of this concept, was the requirement on the chromosome operators to ensure that
evolution is maintained through the accumulation of small changes. This required
that new component structures, formed through complexity mutation are initially

seeded with values interpolated from the phenotype.

173

1-—Average Num. Genes — Best Num. Genesl

o ~ @

Number of Genes
«

0 10 20 30 40 50 60 70 80 20 100
Generation

Figure 101: Number of Genes Used per Generation in the Evolution of C; = 0.6
Complexity Airfoil

)
L
2
0.2 0.4 0.6
-0.02 < s |
-0.04 \‘/ J
x/c
[=——Foll Section —=— Upper Bspline Knots —a&— Lower Bspline Knots |

Figure 102: Resultant Airfoil Section from Using Complexity BSpline Representation

o
ol 01 02 03 04 : 07 08 0s

Figure 103: Resultant Airfoil Pressure Distribution Obtained Using Complexity
BSpline Representation

174

The implementation of the new hierarchical encoding, required significantly more ef-
fort than the traditional binary string chromosome. On application to simple geom-
etry reconstruction problems, the new encoding was found to require several genera-
tions before the evolutionary breeding operator 'crossover’ became effective. Although
this feature acted as a handicap on simple parameterisations, on more complex prob-
lems, the hierarchial encoding was found to outperform traditional fixed chromosome

strings.

On application to aerodynamic shape optimisation using B-Spline representations,
a knot insertion algorithm was implemented to ensure integrity in the phenotype
during complexity adaptation. The implementation was found to successively out-

perform previous representation trials, while selecting to use fewer design points in

the encoding.

Chapter 8

DNA Repair for Infeasible
Offspring

The high frequency of bad solutions that provide no useful information to the opti-
misation cycle can lead to weak GA convergence. In aerodynamic shape optimisation
involving sensitive CFD analysis, this problem can become acute where the CFD tool

is unable to analyse design candidates due to numerical convergence problems.

In nature, genetic repair is used to mend broken combinations of DNA formed during
reproduction. Implementing a repair scheme within a GA could significantly improve
the rate of sampling schema within the candidate solution population, and hence the

adaptiveness and search efficiency of the GA.

Genetic repair in GAs is difficult to implement, as it is almost impossible to determine
how the chromosome structure should be changed in order to encourage feasibility.
One simple solution, would be to try new crossover variations from the two parents
until a satisfactory candidate is found. For expensive analysis tools such as CFD,
this does not provide a satisfactory approach as it could require many samples until

a feasible combinant is found. Also, there is a chance that a suitable solution may

not even exist between parents.

One solution to this approach, is to use a secondary, computationally cheaper analysis

175

176

tool to suggest whether a candidate will provide a feasible solution or not. Meta-
modeling techniques may be used for this task, by learning responses from previ-
ous solutions, and using the derived knowledge to evaluate a candidates suitability
for CFD analysis based on convergence likelihood. This chapter explores such an
approach to assist in the evolution of hi-fidelity geometric representations such as

B-Spline curves and orthogonal functions.

8.1 The Effects of Representation on Lethal

Crossover

The frequency of finding infeasible solutions when using GA search with CFD, has
been well noted by Obayashi [31], Yamamoto and Inoue [30], Jones et al [116], Oyama
et al [117], and Periaux et al [33]. The resultant effect of large occurrences of infeasible
solutions can disrupt the GA search leading to poor convergence to a weak solution
[117]. It was observed during a search of the bump function earlier, that with niching,
the number of infeasible solutions that did not contribute to the next generation,

increased substantially when population sharing was introduced.

To obtain further insight into the amount of disruption caused by different represen-
tation schemes on the quality of the solution space, an investigation into the infeasible
solution space has been made for the problems used in Chapter 6. The number of in-
feasible solutions considered, was measured for an Airfoil Design problem using a GA
with a constant population size of 100, and probability of crossover of 60% without
niching or clustering. No mutation was used. For the simplest case where B-Spline
poles are perturbed from a given design point, the number of infeasible design points
required increases substantially with the design space illustrated in Figure 104. Ex-
amination of the final drag solution indicates an optimum was successfully located,
but without niching, and amongst significant infeasible space, further tests need to

be conducted to determine whether the optimum is global or local.

The effect on infeasible points located by different representation schemes was ap-
proached in Figure 105. Although the size of the design spaces are different, the use

of ortho-normalised functions resulted in the smallest search space, but also in the

177

0.9 T T T T T T 10
~©- Infeasible Solutions

Resultant Cd (x100)

o
©
&

T

L

)

Average infeasible solutions per generation (%)

08 . s L L L L n 1
5 10 15 20 25 30 35 40
B-Spline node Pertabation (% NACA0012)

Figure 104: Resultant drag reduction from perturbation method, and the effect of
increasing the search space on infeasible solutions

100 T T T T T T
— Ortho Func's
— perturbatsd b-spline (50%)
920 —— b-spline
sol 4

Infeasible Solutions (%)
8
L

Generation

Figure 105: Effect of different representation methods on infeasible solutions

178

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

'0'003.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.078
1

Figure 106: Objective surface for using first two orthogonal modes of the ortho-
normalised Aerofunctions at Cr, = 0.6

highest number of recorded disruptions.

8.2 Neural Network Classification of Infeasible
Space

If the fitness landscape were known in advance, expensive CFD computation would no
longer be necessary. This is the approach of this section, which considers techniques
for modeling the fitness landscape from limited known information. Evolutionary
search is ideal for landscape modeling since the population can quickly gather the
diverse information needed. To test the type of landscape to be considered, a two
dimensional search space is visually shown in Figure 106, based on modifying the
first two orthogonal modes of the ortho-normalised aerofunction problem examined
in Chapter 6.4.2.

The landscape is effectively divided into three regions, the Infeasible region is coloured

black, where a solution could not be obtained using XFoil. The light colour repre-

sents low fitness values, which darkens as fitness improves. The optimum is located

179

on an island surrounded by infeasible solutions. Several methods have been used to
approximate the fitness landscape obtained through evolutionary search. El-Beltagy
[118] showed that a reduction in computational effort can be achieved through this
approach. For an initial investigation, the modeling of infeasible space could signifi-

cantly reduce the computational time of CFD orientated search.

8.2.1 Feed Forward Neural Network

The basic feed forward neural network consists of a layered connection map of non-
linear neurons, with the outputs from one layer of neurons, feeding signals into the
input of the next layer. By allowing each neuron to express itself as a non-linear sum

of weighted input signals, a highly complex non-linear system can easily be created.

- A typical output from one neuron to another is given as

HiddenLayer aﬁ-” = Zw](-ll)a:l + 0](1); h; = f(l)(ag.l)) (107)
I

Output Layer ag‘?) = ngf)xj + 92-(2); Yi = f(Q)(aZ(Q)) (108)

J
where for example, fV(a) = tanh(a), and f?(a) = a, and x; are the neuron input
signals from other neurons/inputs, and h;, y; are the resultant output signals. Each

signal is multiplied by a weight w;; and a phase shift 0;.

8.2.2 Classification using a Multi Layer Perception Network

A classification system is easily created from a Multi Layer Perception (MLP) net-
work, by expressing the output neurons as associations to the classification rules. For
example, if a MLP model can classify a problem of two classes a and b, with two
output neurons n; and ng, the likelihood of the solution being associated with each
class can be inferred by the activation level of the output neurons. Thus, activation

levels of ny = 0.7 and ny, = 0.2 will infer that the input solution is more closely

associated with class a.

180

To provide a more definite classification to a given input solution, confidence limits
can be placed on the output neuron activation levels. The confidence limit used here,
is a threshold limit that an associated output neuron activation must exceed for the
input solution to be considered for that class. An input solution will be classified

only if at least one output neuron activation level exceeds the threshold limit.

8.2.3 Training the Network

The size of the input variables to a multi layer perception model, must be similar
in scale so that the network does not become biased to a dominantly strong input
level. To ensure that all input levels are similar, re-scaling of the input parameters is

adopted. A simple linear transformation can be used.

gp=1 1 (109)

where n = 1, ..., N labels the training data set, and z; is a variable for a given training
set. 7; and o; are the mean and standard deviation for that variable with respect to
the training set.

In principle, linear scaling for the case of a multi-layer perception model is redundant,
since it is often combined with the linear transformation in the first layer of the
network. However, it does ensure that all the input and target variables are of the
order of unity which provides a suitable range for random initialisation of the weights,
prior to network training.

It is important to select a training set that will not cause bias in the multi-layer
perception weights. To ensure that an appropriate set is presented for training, a
minimal distance criteria is used in that for each one of the training members z™
is at least a distance dmin from another member, where the distance between each

member is given in Equation 110.

distance = Z (77 — zm)? (110)

181

3

0.9

0.8

07

0.6

0.5

0.4

03

0.2

0.1

0
0 01 0.2 0.3 0.4 05 0.8 0.7 0.8 0.8 1

Figure 107: Infeasible Search Space (no solution obtained from Xfoil)

where n and m are the members of the training set between which the distance is

being calculated.

8.2.4 Classification of Infeasible Airfoil Shapes

A Multi-Layer Perception model given in [119], has been used to reconstruct the in-
feasible space shown in Figure 107, by treating it as a classification problem. Using
just six hidden neurons, a 93% accurate approximation to the infeasible landscape
was achieved in Figure 108 by tightening the decision threshold to 70% output signal
strength to define the two answers. Results that did not meet the threshold limits
are shown in Gray. The accuracy of the approximation was determined by the num-
ber of landscape points that were wrongly classified as either feasible or unfeasible.
Points entering the gray area were treated as correct, and would need to be evaluated.
Although a reasonable accuracy in results can be maintained through this implemen-

tation, a significant reduction of infeasible shape evaluations cannot be expected from

using this model.

182

Normalised Ortho Coeff2
o
@

03

0 0.1 02 0.3 0.7 0.8 0.9 1

0.4 . 0.6
Normalised Ortho Coeff 1

Figure 108: Neural Network Prediction of Infeasible Space

8.3 Meta-Modeling Using a (Gaussian Process

Although some measure of accuracy from Forward Feedwork Neural Networks can be
used successfully to determine whether a given design point should be evaluated or
not, a higher fidelity method is required to acquire the landscape detail lost in Figure
108. El-Beltagy demonstrated the resolution capability of Gaussian processes on

such landscapes, and this approach is explored further, for use as a feasible candidate

classifier system.

8.3.1 Gaussian Processes

Given a data set D consisting of N pairs of L dimensional input vectors x, we may
infer ¢ty,1 given the observed scalar output vector tp. The conditional predicted
distribution P (ty41| D,Xn+1) may be inferred through Equation 111, and can be

used to make predictions about x.

P (tni1| D, xn+41)
Pt D = 111
(N+1 l ’XN-Fl) P(tN ’ {XN}) ()
If the joint density P (tyy1|D,Xny1) where tyyn = {ty,tn+1}, is a Gaussian,

then the inference of tyy1 given ty is simple as the conditional distribution

183

P(tyy1] D, xny1), is also a Gaussian.

A Gaussian Process is concerned with evaluating the joint density probability
P(tns1| D, xny1) for a given training set D of N pairs of inputs xy and scalar
outputs ty. The Gaussian Process is a collection of variables t = (¢(x}),#(x2), - - -)

which have a joint gaussian distribution given by

P@!Ci&J)=—TE%WEVKP{—%@~40TC*CV~M} (112)

where p is an n dimensional vector representing the distribution mean, and C the

variance is a n X n covariance matrix which satisfy,

p=cla] (113)

C=cllz—p)(z—wT]. (114)

where ¢[.] denotes the expectation. The covariance matrix C is a parameterised
covariance function with hyper-parameters ©. By solving the hyper-parameters O,
the conditional distribution P (ty11| D,Xn41) can be obtained through relationship
111, and the value ty41 predicted.

This work uses the Gaussian process implemented by Gibbs and MacKay [120], of
which a further description of the solution of the hyper-parameters © is given in

Appendix E.

8.3.2 Gaussian Regression of the Bump Problem

To understand the strengths and weaknesses of using Gaussian Processes in prediction
amongst highly modal landscapes, a regression problem is considered here on the
fitness surface of the 2D Bump problem given in Chapter 4.1.1. The training set was

constructed from N equidistant points across the parameter domain.

A regression problem is considered here to demonstrate the sensitivity of the GP to a

highly modal surface. The Bump problem has been reconstructed by GP regression

184

0
o
<
<
_.©°
Z o
o
s R ..,-ff
o GO
%’ “.__}?"\‘ e . 7
v"»::?‘ “
= 7 "*\ kg ©

Figure 109: The Bump Function

for 2D, 5D and 20D cases. To measure the accuracy of the surface reconstruction,
1000 random sample points have been compared to the exact solution for each test
case.

Figure 109 illustrates the resolution that can be obtained through fitting a bi-cubic

spline surface over 400 uniformly sampled points.

By applying a Gaussian Process to the same 400 points, the surface given in Figure
110 is obtained. The accuracy between the surfaces is shown as the in Figure 111,
as the difference between the absolute bump surface, and the generated surface using

the Gaussian Process.

8.3.3 Integration of Prediction Models with a Genetic Algo-

rithm

The meta-model based on Gaussian Process regression, is to be used in parallel with
a GA search, to determine the likelihood of a new member surviving to another

generation before expensive computational resources are lost calculating its fitness.

To provide a classification surface through a GP regression model, the problem is

185

M ¥
LSRR
Rz
g IS LA
ﬁ&%%ﬁf?
. i

W

¢0 ¥0 £0 20 VO 00

S0 Y0 €0 20 VO Op (04 - (ODseE

ey

Figure 110: Gaussian Process Metamodel of Bump Function

Figure 111: The Absolute Difference Between Bump Metamodel and Bump Function

186

modeled on the accurate prediction of the fitness surface. For the GP inputs, 20 y
co-ordinates are taken from each candidate and presented to the GP pre-processor for
normalisation. The y co-ordinates were taken at pre-selected x co-ordinate stations
around the airfoil. Co-ordinates were chosen as suitable input parameters instead
of the design values being optimised, in order to provide a generic scalable airfoil

classification that is independent of problem representation or parameterisation.

Implementation of Genetic Repair Algorithm

The new airfoil classification service was made available to the GA, via JINI-
JAVASpace distributed technology used in the distributed GA described in Chapter
7.1.1. In order to maximise genetic sampling productivity with the GA, the classi-
fication service is included during the reproduction process. For each time a child
fails the classification test, two parents are drawn from the parent pool to reproduce
new candidate offspring. This process is continued until sufficient numbers of chil-
dren pass the initial examination. The candidates are then evaluated as normal by
the fitness function. For the distributed classification process, a distributed object is
created for each new child. The candidates genetic encoding which implements the
curve interface is added to the Distributed Object along with an indicator for the
designated analysis model ("gp’ or "xfoil’ in this case).

In this work, a pre-trained GP is used for analysis, although a separate training scheme
and even on-line training can be incorporated into the JavaSpace implementation, to
provide suitable members for the GP, to be included in the training set. A separate

process will probably be required to implement this additional feature.

The Implantation algorithm for the integration of distributed classification service is

given in Figure 112.

Airfoil Feasibility Classification Service

JINT is a Java dependent networking framework. Components and services can only
be made available via JINI as Java Objects. To facilitate the addition of the GP, a

Java class was purposely written to act as the Java JINI GP proxy service, passing

187

While sizeof ChildPool < N
1. While sizeof Classify Pool < N - sizeof ChildPool

{a) Remove 2 Parents from Parent Pool
(b) Create 2 Children
(c) Add Children to Classify Pool

2. Restore Parent Pool
3. For each in Classify Pool

(a) Create new Distributed Message Object

(b) Set Object Message StatusFlag = "Evaluate”
(c) Add member to Object

(d) Add Object to JavaSpace

4. Remove ail Distributed Objects from JavaSpace
5. For Each Distributed Object Retrieved

(a) M Classification Message = "Feasible” O R "Undecided” AND ChildPool < N
e Add Child to ChildPool

Figure 112: Distributed Genetic Repair and Identification Algorithm

calls to the GP via JNI (Java Native Interface) which enables Java to invoke library
methods. In addition to servicing the JavaSpace architecture, the Java wrapper took
care of the additional pre GP processing such as calculating the 20 static coordinates
from a given section, normalising the GP inputs, and post processing the GP output
to determine the airfoil classification. An algorithm describing the Distributed Airfoil

Classification service is given in Figure 113

8.4 Application of Airfoil Classification Service to
GA Chromosome Repair

For the Airfoil Optimisation problems in Chapter 6, the tasks were re-run using the
Airfoil Classification Service to assist in pre-determination of feasible solutions. First,
the GP was used as a regression system, offering predictions of the candidates’ fitness
instead of using CFD analysis. The GP was trained on the actual fitness values scored
by 400 members presented, and then used to evaluate each airfoil as the primary and
only CFD analysis service to the GA, used instead of XFoil. The convergence results
for using both the Bezier Spline representations and ortho-normal curves are shown in

Figure 114. In comparison, it is clear that the GP failed to capture the aerodynamic

188

s Initialise GP
e Register for JavaSpace Entry Events where Evaluator="Airfoil Classification” AND StatusFlag = "Evaluate”;
o Upon Receiving JavaSpace Entry Event for Evaluator="AirfoilClassification”

1. If Contents of Object Received does not support inter face Curve

(a) Reject Object:StatusFlag = "Error’
(b) Relnsert Distributed Object into JavaSpace

(c) Dismiss and await next Event
calculate y coordinates at 20 equally spaced parametric curve lengths 0 < u < 1
Scale y coordinates as GP input
Get GP Regression for input and rescale output
If output is within failure limit AN D variance within variance limit: Classify as Feasible
Elself output is not within failure limit AN D variance within variance limit: Classify as InFeasible
Else Classify as UnDecided

Add Classification to Distributed Object Message

© @ N e o oA woN

Set StatusFlag = "Evaluated” on Distributed Object

Relnsert Distributed Object into JavaSpace

=
o

Figure 113: Distributed Airfoil Classification Service

properties of each section appropriately, leading to convergence on a weak solution.

Similar results were also revealed when an initial training set of 1600 candidates was
used. This finding mirrors a similar result found by El-Beltagy who used a GP to
construct a meta-model of a Structure design problem. El-Beltagy went on to use
online data addition to continuously train the GA Cycle. This additional training

data still did not field good GA solutions.

For the Classification Approach, the GA was found to converge faster than that of
previous solutions. Both the orthogonal Curve and the Bezier Spline representations,
field good GA solutions, with the Bezier surpassing it’s original best convergence
result. The rapid convergence is most likely due to the more productive and increased
rate of schema sampling achieved by using Genetic Screening as a repair service by re-
sampling. By screening poor candidate solutions, forcing new chromosome structures
to be produced, the schema sample rate is significantly increased. An increase in
scheme sampling is more likely to yield good solutions and fast convergence. Another

possible affect of candidate screening, is that of increased diversity of good candidates.

Fitness

Fitness

189

50 100 150 200 250 300
Generation
[——Bezier Without-GP == = Bozier-GP Regression @800 samples = = = Ortho-GP Regression @800 samples |
Figure 114: Airfoil Regression
!
i
50 100 150 200 250 :wo
Generation

[——nBezier Without-GP = = = Ortho-GP Repair — =Bazier-GP Rapair |

Figure 115: The effect of airfoil repeir

190

8.5 Summary

Meta modeling Techniques have been considered for assisting a genetic repair service
through a genetic screening process during the breeding phase of the GA cycle. Multi-
Layer Perception systems were found to be difficult to train as a classification system.
This was mainly due to the Bias in the mix of feasible/infeasible candidate solutions
available for training. Once a good training set was achieved, good solution accuracy
was achieved, although the model was rarely able to completely classify a solution as

infeasible, electing for undecided in many cases.

GP is a more accurate model and is less affected by bias in the training set. It
can facilitate the use of online data addition to the training set during use, without
restarting. It was found to cope well with constructing a regression Meta Model
for the Bump problem. However, when used to predict the fitness of the Airfoil

sections during a GA cycle, it was unable to capture the fitness surface enough for

design/optimisation use.

When applied to an Airfoil Candidate Screening Service, a more healthy convergence
was found for the GA. A stronger convergence performance was seen which is most
likely attributed to the increase in schema sampling by the GA due to the screening,
and more abundant good candidates in the parent pool. To facilitate the Classification
Services, the existing JavaSpace was employed in distributing candidates between
GA, GP and XFoil, by setting a simple text flag in the distributed object envelope.
This allowed the GA to send candidates to the GP using existing infrastructure with

minimal modification.

Scalability is always a concern when utilising meta-modeling tools, especially at high
dimensions. This work has demonstrated the practical benefit from employing such
techniques within an engineering design cycle where the evolution of fitness is an
expensive process. However no work has been attempted here to look into scalability

issues, which should be examined in more detail before its application into large

problems.

Chapter 9

Conclusions and Recommendations

This work has considered the adaptation of aerodynamic shape, and the introduction
of complexity adaption within the pseudo chromosome structure used by Genetic
Algorithms to evolve design problems. The main conclusions drawn, and important

observations, are given below alongside the author’s recommendations for further

research in the fields discussed.

9.1 Conclusions
The objectives of the work have been met by the following:

1. The rate of successfully crossbreeding species on a difficult objective landscape
fell sharply as the maturity of the population increased. On such landscapes,
finding the optima often required an element of random fluke, rather than the
consequence of evolving numerous small changes. Adapting the behaviour of
the environment through adoption of dynamic penalty functions and niching
control were found to significantly increase the chance for such random flukes

surviving to the next generations and hence finding the optimum.

2. A robust distributed computing platform has been established using networked

191

192

dual boot PC clusters with near optimal speedup, achieved using an asyn-
chronous iGA. A new distributed data backup facility was created based on an
XOR merge tree. Implementation of this merge tree with a parallel CFD Solver

provided an efficient facility for the frequent backup of data across all processes.

. Spline methods were generally highly tolerant of the number of design points
used. Waves in the airfoil pressure distribution frequently observed in the lit-
erature where B-Spline representations had been applied, were found to be a
result of poor parametric implementation. Orthogonal representations were also
investigated and found to be more efficient than that of a simple Bezier curve

implementation. Implementation of spline based representations used would

benefit from complexity adaptation.

. A Hierarchical Genetic Algorithm framework for evolving complexity in geomet-
ric encodings was established. The chromosome structure was successfully able
to adapt its complexity in order to find correct reconstructions of several curves
presented, using both segmented lines and B-Spline representations. For the B-
Spline case, adaption of knot complexity significantly improved reconstruction

performance over traditional fixed gene encodings.

. When applied to aerodynamic shape optimisation, B-Spline representations
evolved quickly to find suitable airfoil shapes that match the order of per-
formance, previously only found using ortho-normalised functions. Both the
adaptive ability and evolutionary efficiency of the GA had been greatly en-
hanced through the adaptation of curve complexity when applied to B-Spline

representations.

. Many airfoil shapes produced by GA analysis could not be examined for aero-
dynamic performance using the given CFD analysis tool. It is believed that
high frequencies of such infeasible solutions degrade the evolution of a GA. A
simple repair mechanism was implemented using a Gaussian Process to predict
model failure. Using such predictions, new solutions were presented to increase
the rate of sampling of the GA. The convergence of the evolution process was

found to greatly improve, through the removal of infeasible solutions.

193

9.2 Further Conclusions and Observations

1. The use of population niching is an essential process that ensures the main-
tenance of diversity. This diversity may become essential in providing the
evolution process new schema hyperplanes, on which to search. Any process
that aided the competitive advantage of weak species was found to assist the

evolutionary robustness of the search.

2. The evolution process of elite members within a GA, often involves many small
leaps in objective function fitness rather than a gradual process of cumulative
small changes. Often, elite members created from the result of such leaps,
found it difficult to participate in the successful breeding of new members. Any
process that reduces the average fitness of the population, thus increasing the

probability of new members surviving, would generally improve the evolutionary

process.

3. The integration of CFD analysis programs with GAs is difficult as the range
of design sample produced by the GA, is generally greater than the evaluation
envelope of the analysis tool. A high frequency of unsolvable candidate solutions

can disrupt the process of evolution within a GA.

4. Sometimes, the aerodynamic analysis tool used with the GA, will lead to an elite
solution that may not be representative of the candidate. Niching will allow
several elitist solutions to co-exist and can reduce the problem of misleading
solutions propagating. Convergence related penalty functions may also help to

remove misleading solutions from the evolution, but at a risk of rejecting good

candidates.

5. B-Spline representations are expected to lead to highly evolved shapes. How-
ever in practice, the high modality of their implementation was found to pro-
duce deceptive search landscapes for the GA to traverse. In contrast, Bezier

implementations produced successful results for a wide variety of problems.

194

6. Ortho-normalised aerofunctions produced though the Gram-Schmidt normali-
sation of airfoil sections, can lead to a greatly reduced parameter space. Im-
plementation to airfoil design and regression, was slightly prohibited by large
fluctuations in numerical noise produced through the discrete implementation of
the normalisation process. An improved implementation of ortho-normalisation,

of use of improved base geometries may allow the more effective use and analysis

of this representation.

7. Complexity adaption produced slower convergence than traditional fixed prob-
lem encodings. This can be attributed to the low diversity of genes available for
sampling at the beginning of the evolutionary cycle. Crossover efficiency was
found to be significantly increased through complexity, particularly in the latter
phase of evolution. This is a reversal of the characteristics seen in traditional
GA implementations. An application to a previously found deceptive problem,

a complexity based GA, was found to evolve more effectively than traditional

GAs.

8. Application of the complexity GA to shape optimisation, was found to en-
hance the robustness of search. Also good solutions were easily obtained using
B-Spline based representations. Previous fixed based implementations had re-

quired several restarts of the solution to obtain quality results.

9. Regression analysis of shape optimisation landscapes using MLP and GP meta-
modeling techniques, are unable to capture detail necessary for GA optimisa-

tion. Good, accurate classifications of search characteristics were observed, and

successfully employed in a simple genetic repair process.

9.3 Recommendations

From the results and observations made throughout this work, the following recom-

mendations are given for further research into some of the subjects covered.

e The problem of species formation and population diversity is key to the success

of GA search. The use of resource sharing has offered significant help to the

195

formation of species. The technique used, relied on the ability to identify clus-
ters using an adaptive KMEANS algorithm. Implementation of the KMEANS
algorithm requires several key parameters to be defined. The correct defini-
tion of niche size, and sharing distance are unknown a priori and are one of
the main drawbacks of the KMEANS method. A second problem, is that the
accuracy of niche identification by KMEANS, degrades at higher dimensions
as demonstrated by Keim [121]. Several improvements to the KMEANS clus-
ter identification algorithm have been proposed, including using an averaged
density centred gaussian to identify the cluster, but these all suffered the same
fate at high dimensions. A different strategy has been used to cluster data sets
in high dimensional space, known as Optigrid [122]. This method is based on
mathematical foundations, using the clustering of one dimensional projections
of the data set. Using contracting projections, data is merged towards cluster
intensities. By finding a point between these intensities allows for simple par-
titioning of the cluster. This process is repeated within each partition until no

more cluster intensities are found.

Weaker species tend to die out quicker than strong species, which may limit
the ability of the GA to traverse search landscape. Interspecies breeding or
sexual selection mechanisms that allow members to choose their mates, should

be explored in an effort to raise the survival rate of new or weak species.

The farmer-worker resource sharing scheme, applied through JINI-JavaSpaces,
lacked sensitivity to worker failure through the loose asynchronous framework
used. Sharing work in this loose fashion has many advantages over traditional
direct synchronous procedures, available through RMI and Corba. The better
handling of remote network / process / computer exceptions, may allow this
approach to eventually become part of a PC background process, accepting
processing jobs from a lookup facility similar to JavaSpaces, and processing
them when their CPU’s are not being used by users. This approach could

provide significant processing resources to any office.

A highly flexible, and powerful distributed computing platform has been pro-
vided by coupling office PC’s together. Parallel CFD solvers are traditionally

196

implemented on highly efficient parallel libraries. In this work, two robust, com-
mercial standard distributed programming techniques have been implemented
(CORBA and Java JINI) to provide a strong, flexible and highly reliable dis-
tributed Genetic Algorithm. The performance gain through continuous access
to PC computers using such libraries may outweigh that advantage given by
highly optimised, but less robust standards such as MPI. Further development
would be encouraged in the area of robust parallel computing on NT PCs, that
would allow resources to enter or leave parallel CF'D process computations,
without the need for manual restarts and load-balancing. If automatic load-
balancing or partition sharing were available, the use of such PC networks in

CFD computation could be harnessed more readily.

A framework for chromosome structure adaptation has been developed and
employed in this work. The variation of encoding complexity was found to
assist GA evolution in the field of shape optimisation, and other applications of

this idea should be explored.

The development of complexity in Evolutionary Algorithms is a relatively new
field of research [123] and further development in this area, with particular

interest to GA application is encouraged.

Many other ideas such as embryology, borrowed from nature have yet to be
applied to evolutionary design. Some limitations have been seen in the costly
application of advanced GAs to engineering problems, but with the constant
increase in computational power now available to the design office, even some
of the most expensive techniques could be useful in this field. Chromosome
complexity was found to increase adaptation effectiveness, without increasing
GA cost. Preliminary embryology implementations have reported similar obser-

vations, although these techniques have yet to be introduced to real engineering

problems.

The evolution of geometric complexity is substantially underdeveloped. Some
performance gains given though encoding schemes that adopt this feature have

been illustrated by this work. Further experimentation and analysis is strongly

197

encouraged, and may play a pivotal role in the successful application of Genetic

Algorithms in the design of complex objects.

REFERENCES

1]

T. Back, D.B. Fogel, and T. Michalewicz. “Evolutionary Computation 1 basic
algorithms and operators”. Institute of Physics Publishing, Bristol and Philadel-

phia, 1982.

C.M. Holden and W.A. Wright. “Optimisation methods for wing design”.
ATAA, ATAA-00-0842, 1999.

C. Poloni. “Hybrid ga for multi objective aerodynamic shape optimisation”.

Genetic Algorithms in Engineering and Computer Science, pages 397-415, 1995.

M. Selig and M. Maughmer. “Multipoint inverse airfoil design method based
on conformal mapping”. Aiaa, 30(5):1162-1170, May 1992.

S. Takahashi, S. Obayashi, and K. Nakahashi. “Transonic shock-free wing

design with multiobjective genetic algorithms.

R. Dawkins. “The Blind Watchmaker”. W.W. Norton and Company, New York
London, 1987.

C.R. Darwin. “On the origin of species”. John Murray, London, 1959.

C.R. Darwin. “On the origin of species”, chapter Chapter 3: "The Struggle for
Existance’, pages 71-90. John Murray, London, 1859.

M. Ridley. “Bvolution”. Blackwell Science, 2nd edition edition, 1996.
B. Lewin. “Genes VII”. Oxford University Press, 2000.

D. E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine
Learning”. Addison-Wesley, 1989.

198

[12]

[13]

16]

[17]

[18]

[19]

199

Z. Michalewicz. “Genetic Algorithms + Data structures = evolution programs”.

Springer, Berlin, 1996.

J.J. Grefenstette and J.E. Baker. “How genetic algorithms work: A critical
look at implicit parallelism”. In J.D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan

Kaufmann.

G. Syswerda. “Uniform crossover in genetic algorithms”. Proceedings of the

Third International Conference on Genetic Algorithms, pages 2-9, 1989.

D.E. Goldberg. “Simple genetic algorithms and the minimal deceptive prob-
lem”. Genetic algorithms and simulated annealing (Research notes in artificial

intelligence), 1987.

D.E. Goldberg, B. Korb, and K. Deb. “Messy genetic algorithms: Motivation,
analysis, and first results”. In Complex Systems, volume 3, pages 493-530, 1989.

C. Bishop. “Neural Networks for Pattern Recognition”. Oxford University Press,
New York, 1995.

J.N. Siddall. “Optimal Engineering Design:principles and applications”. Marcel
Dekker Inc., New York, 1982.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. “Numerical
recipes in C: the art of scientific computing”. Cambridge University Press,

second edition edition, 1996.

J.A. Nelder and R. Meade. “A simplex method for function minimisation”.

Computer Journal, 7:308-313, 1965.

5. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. “Optimization by simulated an-
nealing”. Science, 220(4598):671-681, May 1983.

R. Hicks and G. Vanderplaats. “Application of numerical optimization to the
design of supercritical airfoils without drag-creep”. Society of automotive engi-

neers, (770440), March 29-April 1 1977.

23]

[24]

[26]

[27]

28]

200

A. Jameson. “Aerodynamic design via control theory”. Journal of Scientific

Computing, 3:233-260, 1988.

J. Reuther and A. Jameson. “Aerodynamic shape optimization of wing and
wing-body configurations using control theory”. In 33rd Aerospace Sciences

Meeting and FEzhibit, number ATAA paper 95-0123, Nevada, January 1995.

Reno.

A. Jameson, J.J. Alonso, J. Reuther, L. Martinelli, and J.C. Vassberg. “Aero-
dynamic shape optimization techniques based on control theory”. In 29th AIAA
Fluid Dynamics Conference, number ATAA paper 98-2538, Albuquerque, June
1998.

G.W. Burgreen and O. Baysal. “Three-dimensional aerodymanic shape opti-

mization using discrete sensitivity analysis”. ATAA Journal, 34(9):1761-1969,
September 1996.

M.R. Cross. “Aerodynamic design using the euler adjoint approach”. In 22nd

ICAS Congress, Harrogate, UK, August 2000.

P. Gage and I. Kroo. “A role for genetic algorithms in a preliminary design

environment”. AIAA Paper 93-3933, 1993.

Y. Crispin. “Aircraft conceptual optimization using simulated evolution”. ATAA

Paper 94-0092, 1994.

K. Yamamoto and O. Inoue. “Applications of genetic algorithm to aerodynamic

shape optimization”. AIAA Paper 95-1650, 1995.

S. Obayashi and T. Tsukahara. “Comparison of optimization algorithms for

aerodynamic shape design”. AIAA Paper 96-2394-CP, pages pp. 181-188.,
1996.

S. Aly, M. Ogot, and R. Pelz. “Stochastic approach to optimal aerodynamic
shape design”. Journal of aircraft, 33(5):956-961, sept-oct 1996.

J. Periaux, M. Sefrioui, B. Stoufflet, B. Mantel, and E. Laporte. Genetic Al-

gorithms in Engineering and Computational Science, chapter “Robust genetic

[34]

[36]

37]

[38]

[39]

[41)

[42]

201

algorithms for optimisation problems in aerodynamic design”, pages 371-395.

J.Wiley, 1995.

D.J. Doorly, J. Peird, T. Kuan, and J.P. Oesterle. “Optimisation of airfoils using
parallel genetic algorithms”. Proceedings of 15th International Conference on

Numerical Fluid Mechanics, Monterey, 1995.

J. Reuther and A. Jameson. “A comparison of design variables for control
theory based airfoil optimization”. 6th International Symposium on CFD, Lake

Tohoe, Nevada, Sept 1995.

W.A. Wright and C.M.E. Holden. “Adaptive computing in design and manu-
facture”. Spring Verlag London Limited, 1988.

J. Lepine and J. Trepanier. “Wing aerodynamic design using optimised nurbs
geometrical regression”. ATAA Paper, AIAA 2000-0669, 2000.

A.A. Giunta and J. Sobieski. “Progress toward using sensitivity derivatives in
a high-fidelity aeroelastic analysis of a supersonic transport”. (AIAA paper

08-4763), September 1998.

R.M. Pickett, M.F. Rubinstein, and R.B. Nelson. “Automated structural syn-
thesis using a reduced number of design coordinates”. ATAA Journal, 11(4):498—
494, 1973.

J.P. Leiva and B.C. Watson. “Automatic generation of basis vectors for shape
optimization in GENESIS program”. 7th AIAA/USAF/NASA/ISSMO sympo-
stum on multidiscplinary analysis and optimisation, (ATAA-98-4852-CP):1115—
1122, September 1998.

R.M. Hicks and P.A. Henne. “Wing design by numerical optimization”. Journal

of Aircraft, 15(7), 1978.

J.O. Hager, S. Eyi, and K.D. Lee. “Design efficiency evaluation of transonic
airfoil optimization: a case study for navier-stokes design”. AIAA 2/th Fluid

Dynamacs Conference, Orlando, July 1993.

202

[43] K. Lee and S. Eyi. “Aerodynamic design via optimization”. Journal of aircraft,

[44]

[47]

[48]

[49]

[50]

[51]

[52]

29(6):1012-1019, nov-dec 1992.

J. Elliott and J. Peraire. “Practical three-dimensional aerodynamic design and

optimization using unstructured meshes”. AIAA Journal, 35(9):1479-1486,
1997.

J. Elliott and J. Peraire. “Constrained, multipoint shape optimisation for
complex 3d configurations”. The aeronautical journal, pages 365-375, august-

september 1998.

G. Kiruvila, S. Tadsan, and M.D. Salas. “Airfoil design and optimization by

the one-shot method”. Proceedings of the 33rd Aerospace Sciences Meeting and

Ezhabit, 1995.

S. Cheung. “Parallel optimization of a theoratical minimum-drag body”. 6th

International Symposium on CFD, Lake Tahoe, Nevada, pages 193-199, Sept
1995.

M. Drela. “Design and optimization methods for multi-element airfoils”.

ATAA/AHS/ASEE Aerospace Design Conference, February 1993.

J. Reuther, A. Jameson, J.J. Alonso, M.J. Rimlinger, and D. Saunders. “Con-
strained multipoint aerodynamic shape optimization using an adjoint formula-
tion and parallel computers”. In 35th Aerospace Sciences Meeting and Exhibit,

number ATAA paper 97-0103, Nevada, 1997. Reno.

G. Farin. “Curves and surfaces for computer aided geometric design”. Academic

Press, New York, 1990.

V. Braibant and C. Fleury. “Shape optimal design using B-splines”. Computer
Methods in Applied Mechanics and Engineering, pages 247267, August 1984.

D.J. Doorly, J. Peiré, and J.P. Oesterie. “Optimisation of aerodynamic and cou-
pled aerodynamic structural design using parallel genetic algorithms”. Proceed-

wngs of the 6th AIAAUSAFISSMO MDO Conference, AIAA paper 964027CP,
1996.

[53]

[55]

[63]

203

M. Ventura and C. Guedes Soares. “Hull form modelling using nurbs curves
and surfaces”. Proceeding of the 7th Practical Design of Ships and Mobile Units,
pages 289-295, 1998.

J.A. Samareh. “Use of cad geometry in mdo”. 6th AIAA / USAF / NASA /
ISSMO symposium on multidiscplinary analysis and optimisation, (ATAA-96-
3991), September 4-6 1996.

J.A. Samareh. “A survey of shape parameterization techniques”. CEAS-ATAA-
ICASE-NASA Langley International Forum on Aeroelasticity and structural dy-

namics, June 1999.

M.I.G. Bloor and M.J.Wilson. “Generating blend surfaces using partial differ-
ential equations”. Computer-Aided Design, 21(3):165-171, April 1989.

C.W. Dekanski, M.I.G. Bloor, and M.J.Wilson. “The generation of propeller
blade geometries using the pde method”. Journal of Ship Research, 39(2):108—

116, June 1995.

M.I.G. Bloor and M.J. Wilson. “Efficient parameterization of generic aircraft

geometry”. Journal of Aircraft, (6):1269-1275, 1995,

P.J. Gage. “New approaches to optimization in aerospace conceptual design”.
Technical Report NASA Contractor Report 196695, Ames Research Center,
Mottett Field, CA, March 1995.

S. Wakayama and I. Kroo. “Subsonic wing planform design using multidisci-

plinay optimization”. Journal of Aircraft, 32(4):746-753, july-august 1995.

J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane. “Genetic Programming

111”7, Morgan Kaufamann, San Francisco, 1999.

P.J. Gage, I.M. Kroo, and I.P. Sobieski. “Variable-complexity genetic algorithm
for topological design”. AIAA Journal, 11(4):498-494, 1973.

P.J. Bentley. “Generic Evolutionary Design of Solid Objects using a Genetic
Algorithm”. Phd, School of Engineering, University of Huddersfield, 1996.

[64]

[65]

[68]

[69]

[70]

[71]

[72]

[74]

204

C. Hirsch. “Numerical computation of internal and external flows”, volume 1.

John Wiley & Sons, 1990.

N. Hirose, T. Nakamura, and M. Fukuda. “Recent progress on Numerical Wind
Tunnel at the national aerospace laboratory, Japan”. Parallel Computational

Fluid Dynamics. Recent Developments and Advances Using Parallel Computers,

pages 415-422, 1997.

A.W. Hughes. “Investigation of tip-driven thruster and waterjet propulsion

systems”. Ph.d. thesis, University of Southampton, 2000.

M. Drela and M.B. Giles. “Viscous-inviscid analysis of transonic and low

reynolds number airfoils”. ATAA Journal, 25(10):1347-1355, 1987.

I.H. Abbott and A.E. Von Doenhoff. “Theory of wing sections”. Dover Publi-
cations Inc, New York, 1959.

P.L. Roe. “Approximate Riemann solvers, parameter vectors and difference

schemes”. Journal of Computational Physics, 43:357-372, 1981.

N.C. Rycroft. “An adaptive three-dimensional finite volume FEuler solver for

distributed architectures using arbitary polyhedral cells”. Ph.d. thesis, University
of Southampton, 1998.

L.J. Eshelman and J.D. Schaffer. “Real-coded genetic algorithms and interval
schemata”. Foundations of Genetic Algorithms I, pages 187-202, 1993.

H. Muhlenbein and D. Schlierkamp-Voosen. “The science of breeding and
its application to the breeder genetic algorithm”. FEvolutionary Computation,

1(4):335-360, 1994.

A.J. Keane. “Genetic algorithm optimisation of multi-peak problems:studies in
convergence and robustness”. Artificial Intelligence in Engineering, 9(4):75-83,

1995.

M. Schoenauer and Z. Michalewicz. “Evolutionary computation at the edge of

feasibility”. Parallel Problem Solving from Nature, PPSN IV, 4:245-254, 1996.

205

[75] Z. Michalewicz, S. Esquivel, R. Gallard, M. Michalewicz, and G. Tao. “Some

[79]

[30]

[81]

[82]

[83]

[84]

remarks on design of evolutionary algorithms”. Proceedings of the 3rd On-Line
World Conference on Soft Computing in Engineering Design and Manufacture

(WSC3), 1998.

L. Davis. “Handbook of Genetic Algorithms”. Van Nostrand Reinhold, New
York, 1990.

D.E. Goldberg. “Genetic algorithms, noise, and the sizing of populations”.
Complex Systems, 6:333-362, 1992.

T. Blickle and T. Lothar. “A comparison of selection schemes used in ge-
netic algorithms”. Tik-report, Computer Engineering and Communication Net-
works Lab, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich,
Switzerland, 1995.

J. E. Baker. “Reducing bias and inefficiency in the selection algorithm”. Pro-

ceedings of 2nd International Conference on Genetic Algorithm, 1987.

T. Back. “The interaction of mutation rate, selection, and self-adaptation within

a genetic algorithm”. Parallel Problem Solving from Nature, 2:85-94, 1992.

D. Goldberg and K. Deb. “A compararative analysis of selection schemes used

in genetic algorithms”. Foundations of Genetic Algorithms, pages 69-93, 1991.

C.K. Oei, D.E. Goldberg, and Chang S.J. “Tournament selection, niching, and
the preservation of diversity”. IliGAL Report No. 91011, Illinois Genetic Al-
gorithms Laboratory, Uinversity of Illinois, Urbana, IL 61801, December 1991.

T. Blickle and T. Lothar. “A mathematical analysis of tournament selection”. In
L. Eshelman, editor, Proceedings of the 6th International Conference on Genetic

Algorithms, pages 9-16. Morgan Kaufmann, July 1995.

R. Tanese. “Parallel genetic algorithms for a hypercube”. In J. Grefenstette,
editor, Proceedings of the Second International Conference on Genetic Algo-

rithms and Their Applications, pages 177-183. Lawrence Erlbaum Associates,

1987.

[85]

[86]

[38]

[89]

[91]

[92]

[93]

206

R. Tanese. “Distributed genetic algorithms”. Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, San Mateo, California, USA, pages
434-439, 1989.

T.C. Belding. “The distributed genetic algorithm revisited”. Proceedings of the
Sixth international conference on genetic algorithms, 1995. Morgan Kaufmann,

San Francisco CA.

E. Cantu-Paz. “Topologies, migration rates, and multi-population parallel ge-
netic algorithms”. IlIGAL Report No. 99007, Illinois Genetic Algorithms Lab-
oratory, Uinversity of Illinois, Urbana, IL 61801, January 1997.

D.E. Goldberg and J. Richardson. “Genetic algorithms with sharing for multi-
modal function optimization”. Proceedings of the Second International Confer-

ence on Genetic Algorithms, pages 41-49, 1987.

S.W. Mahfoud. “Niching methods for genetic algorithms”. IlliGAL Report No.
99007, Illinois Genetic Algorithms Laboratory, Uinversity of Illinois, Urbana,
IL 61801, May 1995.

K. Deb and D.E. Goldberg. “An investigation of Niche and Species forma-
tion in genetic function optimization”. Proceedings of the Third International

Conference on Genetic Algorithms, pages 42-50, 1989.

M. Pelikan and D. Goldberg. “Genetic algorithms, clustering, and the break-
ing of symmetry”. IIliGAL Report No. 2000013, Illinois Genetic Algorithms
Laboratory, Uinversity of Illinois, Urbana, IL 61801, March 2000.

J.E. Beasley and P.C. Chu. “A genetic algorithm for the set covering problem”.
European Journal of Operational Research, 94:392—404, 1996.

X. Yin and N. Germay. “A fast genetic algorithm with sharing scheme using
cluster methods in multimodal function optimization”. Proceedings of the In-
ternational Conference on artificial neural nets and genetic algorithms, pages

450-457, 1993.

[94]

[95]

[97]

(98]

[99]

[100]

[101]

[102]

207

K.A. DeJong and W.M. Spears. “An analysis of the interacting roles of popu-
lation size and crossover in genetic algorithms”. Parallel Problem Solving from

Nature, In H.P.Schwefel and R.M’Ianner, pages 38-47, 1990.

S.R. Turnock. “Prediction of ship rudder-propeller interaction using parallel

computations and wind tunnel tests”. Ph.d. thesis, University of Southampton,

1993.

W. Gropp, E. Lusk, and N. Doss. “A high performance, portable implemen-

tation of the mpi message passing interface standard”. Parallel Computing,

22(6):789-828, 1996.

D.A. Nicole, K. Takeda, and 1.C. Wolton. “HPC on DEC Alpha and Windows
NT”. Proc. HPCI Conf. 98, Manchester 12-14 1998.

K. Takeda, O.R. Tutty, and D.A. Nicole. “Parallel discrete vortex methods on
commodity supercomputers; An investigation into bluff body far wake behav-
ior”. Proc. 8rd International Workshop on Vortex Flow and Related Numerical

Methods, Toulose, August 1998.

N.C. Rycroft and S.R. Turnock. “Hybrid cell finite volume Euler solutions of
flow around a Main-Jib sail using an IBM SP2”. Parallel Computational Fluid
Dynamics. Recent Developments and Advances Using Parallel Computers, pages

263-272, 1997.

W. Gropp, E. Lusk, and A. Skjellum. “Using MPI. portable parallel program-
ming with the Message Passing Interface”. MIT Press, 1994.

B.L. Bihari, V. Shankar, and S. Palaniswamy. “Massively parallel implemen-
tation of an explicit CFD algorithm on unstructured grids, II”. Parallel Com-
putational Fluid Dynamics. Recent Developments and Advances Using Parallel

Computers, pages 241-248, 1997.

Message Passing Interface Forum. “MPI: A message-passing interface stan-

dard”. Technical Report CS-94-230, University of Tennessee, Knoxville, TN,
1994,

[103]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

208

C. Walshaw, M. Cross, and M. Everett. “Mesh partitioning and load-balancing
for distributed memory parallel systems”. Proc. Parallel and Distributed Com-

puting for Computational Mechanics, 1997.

T.H. Abbott and A. Doenhoff. “Theory of Wing Sections”. Dover Publications,
1949.

M.J.D. Powel. “An efficient method for finding the minimum of a function of
several variables without calculating derivatives”. Computer Journal, 7(4):304—

307, 1964.

I. Chang, F.J. Torres, and C Tung. “Geometric analysis of wing sections”.

NASA Technical Memorandum 110346, Ames Research Center, NASA, Moffett
Field, California, April 1995.

M.W.C. Qosterveld. “Ducted propeller characteristics”. Symposium on Ducted
Propellers, pages 3569, 1973.

M. Selig. “UIUC airfoil data site”. http://amber.aae.uiuc.edu/ m-
selig/ads.html, 2002.

K.F. Man, K.S. Tang, and S. Kwong. “Genetic Algorithms”. Springer, 1999.

P.J. Bentley and J.P. Wakefield. “Hierarchical crossover in genetic algorithms”.

Proceedings of the 1st online workshop on soft computing (WSC1), 1996.

J. Gosling, B. Joy, G. Steele, and G. Bracha. “The Java Language Specification,
Second Edition”. Addison Wesley, 2000.

J. Siegel. “Corba 3: Fundamentals and Programming”. John Wiley and Sons,

2000.

D. Gelernter. “Generative communication in linda”. ACM Transactions on

Programming Languages and Systems, 7(1):80-112, January 1985.

E. Cohen, T. Lyche, and R.F. Riesenfield. “Discrete B-splines and subdivi-
sion techniques in Computer Aided Design and computer graphics”. Computer

Graphics and Image Processing, 14:87-111, 1980.

http://amber.aae.uiuc.edu/

[115]

[116]

[117]

18]

[119]

[120]

[121]

[122]

[123]

209

W. Boehm. “Inserting new knots into B-spline curves”. Computer Aided Design,

12:199-201, 1980.

B.R. Jones, W.A. Crossley, and A.S. Lyrintzis. “Aerodynamic and aeroacoustic
optimization of airfoils via a parallel genetic algorithm”. AIAA Paper, AIAA

98-4811, 1998.

S. Oyama, S. Obayashi, K. Nakahashi, and T. Nakamura. “Transonic wing
optimization using genetic algorithm”. AIAA Paper 97-1854, 1997.

M.A. El-Beltagy. “A natural approach to multilevel optimisation in engineering

design”. Ph.d. thesis, University of Southampton, 1999.
T .Masters. “Practical Neural Network Recipes in C++". Academic Press, 1993.

M.N. Gibbs. “Bayesian Gaussian Processes for Regression and Classification”.

Phd, University of Cambridge, 1997.

A. Hinneburg and D.A. Keim. “An efficient approach to clustering in large
multimedia databases with noise”. Proc. 4th Int. Conf. on Knowledge Discovery

and Data Mining, AAAI Press, 1998.

D.A. Keim and A. Hinneburg. “Optimal grid-clustering towards breaking the

curse of dimensionality in high-dimensional clustering”. Proceedings of the 25th

VLDB Conference, 1999.

AK. Seth. “The evolution of complexity and the value of variability”. In
C. Adami, R.K Belew, H. Kitano, and C.E. Taylor, editors, Artificial Life VI:
Proceedings of the Sizth International Conference on the Simulation and Syn-

thesis of Living Systems, pages 209-221, Cambridge, MA, 1998. MIT Press.

APPENDICES

210

Appendix A

Adaptive KMEANS Algorithm

Adaptive MacQueen’s KMEANS algorithm allows the number of clusters to vary dur-
ing initial assignment of data members. To control cluster formation, two parameters
min, the minimal distance between cluster centres, and d,,,,, the mazimal radius of

the cluster, are required before cluster analysis.

To define the size and position of clusters, the following proceedure is used.

1. For an initial number of clusters k, take the first k data units and assign each one
to a seperate cluster. Calculate all pairwise distances between cluster centroids,
and merge clusters together if pairwise distance < d,,;,. Continue merging

clusters while this condition is satified.

2. Assign remaining data points to nearest clusters. If
member pairwise distance > dp.. for all cluster - point relationships,

assign point to a new cluster. Attempt to merge clusters after each point

insertion.

3. Take all centroids as fixed seed points, and reassign all data members to nearest

centroid.

To enchance the use of this algorithm with a GA | the points are first sorted in relation

to their fitness.

211

Appendix B

Genetic Algorithm Implementation

The Genetic Algorithm described in Chapter 4, has been implemented using the
object relationship described loosely in Figures 116 to 117. These diagrams only show

hierarchical relationships between key classes in order to simplify this description.

The Population class manages each population of members throughout the evolution
cycle. Individuals are represented through the Genome class, which contains refer-
ences to their encoding, and objective function. Thus a Genome is able to evaluate
itself, as well as to pass calls to its recombination processes (Crossover, Inversion
and Mutation) on to their implementing Representation class. The key breeding
processes are controlled by a separate Breeding class, and the Genetic Algorithm
acts as a administrative object for controlling and documenting the complete evo-
lution of a population. For the island implementation, involving several GAs, an
Immigration-Control object referenced by all Generic Algorithm instances is used as

an intermediate to pass member Genome’s from one GA to another.

B.1 Genome Management Classes

GeneticAlgorithm: The GA is responsible for initialising and managing the evolu-
tion process. From a template Chromosome structure, the GA creates a number
of Genomes either by perturbating the members design values, or from file. The

members are loaded into a Population container class where the members initial

212

213

Genome

Population | -Member

ga

@isawFilngss()

[+evaluated()

sevolveOneGen)) | 1 +Statistics() VF

+evolveNGens(j[T 1 I

slats
1 -dna

Breeding

+breed(} 1

GAStats

Scaling,
rencode()

+crossover()
+invert(}

-genes

Encoding

{——H Evaluator
. ’,—4&_

MPIDistril

Figure 116: A Simplified UML diagram showing hierarchical relationships of the main
classes that implement the GA

PopulationRelnsertion,

+reinsertChildren()

|

PopulationCrowding;

Figure 117: Population reinsertion scheme implementation for Crowding control

Scaling

+scaleFitness()

JA)

-scalingScheme

LinearRanking

Proportior 1g

ExponentialRanking]

NoScaling

Figure 118: Genome fitness scaling implementation UML

scalingScheme::scaleFitness
this->scaleFitness();

ResourceSharing

-clusteralg

KMEANSClustering

SelectingScheme

+selectiNMembers()|

JAN

sus

Roulet

nBinaryTournamant

Figure 119: Parent selection scheme implementation UML

214

215

o ObjectiveFunction
Evaluator -objective
k> S —
+maximise() : double|
+getFitness() : double| 1 1 |HeasiblePenalty()
4 +infeasiblePenalty()
SimplePenaltyScheme FiaccoMcCormickPenaity| BumpProblem

Figure 120: UML diagram of fitness evaluation via a penalty scheme

fitness is evaluated. The Population is evolved generation by generation until
the maximum number of generations is reached. At each generation, population

statistics are measured and recorded.

Population: The Population is a container class of Genome objects. It is mainly

responsible for managing access to individual members.

Genome: The Genome class represents an individual in the Population, and contains
important evolutionary information such as its fitness and dna encoding. The
Genome is able to breed with other Genomes through crossover, mutation and

inversion operators that pass calls on to its dna encoding.

GenerationStatistics: The vital statistics of each generation are recorded in this
object. In this implementation, Population size, best fitness, average fitness,
fitness variance, generation, elite member index and elitist members details are

recoded.

EvolutionaryGA: In order that several instances of GA can evolve their populations
in parallel, EvolutionaryGA represents the top most level Object called from

the main function. This object manages the iGA implementation.

216

GAStats: This class is required to record generational statistics for multiple GA

instances.

ImmigrationControl: This class manages the migration process of member
Genomes from one GA instance to another in an iGA implementation. GA’s
pass members for migration to the ImmigrationControl instance, where it is

stored until retrieved by its destined GA instance.

EvaluationStrategy: This proxy provides a means for distributed processing of
Genome fitness evaluation. For the MPIDistributedEvaluate class, a farmer-

worker farm distribution strategy is used with asynchronous coupling.

B.2 Breeding Classes

The relationship of classes associated with specialised breeding control are loosely

described in Figures 118 and 117.

Scaling: This class scales a Genome’s fitness by some amount depending on its per-
formance relative to the other members of the population. The type of scaling
applied is defined on the generalisation of this class, but typically rank selection

is used as a default implementation.

ResourceSharing: Niching control is effectively applied through resource sharing,
which reduces the scaled fitness of an individual depending on the phenotypical

distance between to the niche centre and the number of members sharing the

niche.

KMEANSClustering: KMEANS clustering implementation used to group

Genomes into relative resource niches.

SelectingScheme: This class is responsible for parental selection. Three schemes

are implemented; SUS, Roulette and Tournament Selection.

Evaluator: The Evaluator class calculates the Genome’s fitness using the appropri-

ate Penalty scheme. The raw fitness assigned to the Genome is usually some

217

function of objective function fitness minus some penalty reflecting the non-

feasibleness of the Genome.

ObjectiveFunction: The objective function is an abstract class intended to be gen-
eralised by a user’s implementation of their objective problem. In this imple-

mentation, on maximisation is considered

PopulationRelInsertion: Once the children have been created and evaluated, they
are normally re-inserted back into the final population via this class. If elitist

strategies are to be employed, they would normally be defined here.

PopulationCrowding: A population reinsertion implementation where children at-
tempt to replace the phenotypically closest parents found in small random sam-

pling of some predefined size.

B.3 Genetic Encoding Classes

Chromosome: The Chromosome represents the Genotype DNA encoding that is
vital for the Genetic Algorithm evolution process. The main function of the
Chromosome class is the manipulation of the genes components via crossover,

mutation and inversion. The Chromosome is also able to encode and decode

the gene strings.

Encoding: The encoding represents the Genotype-Phenotype map used to encode
and decode the genes contained in the chromosome, into real design values. In

this implementation, each gene has one encoding instance associated.

BinaryDNA: A binary string generalisation of an encoding, that uses grey coding

to reduce the effect of hamming distance.

RealEncoding: A real number encoding generalisation offering an alternative to

binary strings.

Appendix C

Normal Mode Analysis

A Gram-Schmidt procedure for ortho-normalisation can be developed from the prop-

erty of orthonormal functions such that,

fol fm(z) folx)dr =0 (m # n)
(115)

fol 2 (z)dx =1

Let gi(z) be the functions that are not orthogonal. Then the orthogonal set fi(z) is

formed from the following relations:

filz) = 91(z)
fQ(ﬂf) = a21f1(33)
. (116)
fk(x) - 251—:11 afkmfm(aj)
where ag,, is the projection of g, in the direction of f,,,
1 _
) o (2)d

219

Finally, the orthonormal functions are found by normalising f;(z) as follows:

fr(z)

i R e

Jr =

Appendix D

Java Implementation of Adaptive

Chromosome Encoding

The Java implementation of the Genetic Algorithm, uses a class library similar to
that detailed in Appendix B, which was made possible through the relatively straight
forward conversion between the C++ code, and Java implementation. One important
modification introduced, is a Java Interface between the Genome, and its Chromo-
some encoding. The interface used, 'DNAEncoding’, separates Chromosome specific
implementation from the genetic operations and other methods required of an encod-
ing by the Genetic Algorithm. Using this interface, the Genetic Algorithm is able to

pass calls to the encoding, regardless of its implementation.

A simplified UML diagram is shown in Figure 121, to illustrate the relationship

between the chromosome classes and the 'DNAEncoding’ interface.

In Figure 121, GenoCurve is an implementable chromosome encoding and thus imple-
ments the DNAFEncoding interface. The lower level component of GenoCurve, is the
GenoPoint class which represents a mutable implementation of a three dimensional
point. Although these classes belong to the chromosome encoding family (Geno-
type), they also contain characteristics of geometry (phenotype). Further phenotype
implementations can be built from these base classes. The complexity based B-Spline
chromosome implementation is shown in Figure 122, and the airfoil implementation

based on the complex B-Spline representation is illustrated in Figure 123

220

221

«interface»
Mutable

+mutate() : Boolean q

+invert() : Boolean

«interface»
DNAEncoding;

+cross() : Boolean +instream()
<interface» +randomise() : Boolean +outstreamy)
NumberEncoding| +mutable() : Boolean
-+value() : double
A
FixedNumber BinaryDouble 1 GenoPoint " 1 | GenoCurve
L — @ S
R «interface»
«mten_‘ace» . 4 o
Point urve
————
istance!() - doubl +az“ParametricDistance():double
+distance() : double +distance() : double

Figure 121: UML Diagram of the Hierarchical Chromosome Encoding Framework
Used to Adapt Encoding Complexity

«interface» -
1 GenoCurve Curve « mlt?eor:i?e»
¥ —> >
+atParametricDistance() : double] 4 * - -
+distance() : double +distance() : double

Point3d

BSplineCurveEncoding BSpIineCurve¢

KnotVector

GenoPoint Bezier

Figure 122: UML Diagram of the Complexity Based B-Spline Encoding Implementa-
tion

1 GenoCurve

«interface»
Curve

—

«interface»
Point

+atParametricDistance() : double

+distance() : double

+distance() : double

BSplineCurveEncoding

GenoPoint

BSplineCurve

Point3d

Bezier

KnotVector

222

Figure 123: Airfoil Encoding Using Complexity Based B-Splines for the Upper and

Lower Curves

Appendix E

Implementation of Gaussian

Process

For the conditional Gaussian distribution given by

1
v (2m)*[C

the predictive probability distribution for ¢y, is

P(t]C, {x)) = exp {3 (6~)" €7 (x =) .

Pt D,x
P(tyi1| D,xyq1) = _fgﬁﬁfl

—————cap [~ (tR Ol tv — tE O tw)]

\/(2,”) \Cg;ﬂ

The covariance matrix for Cy1 is Cy plus an additional column and row:

ON k
Cny =

K" |k

where the K vector and & scalar are defined as

K’ = [C(XuXNH); Ty C(XJVaX]\’+1)])

223

(119)

(120)

(121)

(122)

224

k= C(va+1,XN+1>‘ (123)

By collecting the terms that are a function of ¢x4; in Equation 120, the Gaussian

distribution can be expressed as

~ 2
1 t; —t
P(tvir| D, xng1) = RPN TR ,i“(V+21 5 wi1) } 7 (124)
(QW)“‘SNLI U£N+1
where
tnve1 =k Crlty, (125)
07y, =k =k Cylty. (126)

Hence, the prediction given by ty.1, 01?2N+1 provide a measure of the confidence in the
prediction.
Elements of the covariance matrix Cy are calculated using the covariance function

C(xi,x;). Thus (Cn)ij = C(xi4,%;). The covariance function used, is given by

1 (xz‘l) - 37;'1))
C (xi,%;) = brexp “52"‘73_“ + 62 + 6,505 (127)
=1 !

where 7!, is the I, component of z,, and the hyperparameters are defined as © =
log(6y, 02,03, 1) and are used to control the scale, correction bias, noise level, and
input difference. The hyperparameters are defined as the log of the variables in

Equation 127 to restrict their values to be positive.

Using Bayes theorem, the posterior probability of the hyperparameters given the

training data is

Pty | {xn},0) P (0] {xn})
Pln o)) (128)

Rather than maximising Equation 128 directly to determine the maximum a posteriori

P(0| D) =

estimate for ©, the logarithm of the probability is maximised. The logarithm of the

posterior probability is hence

225

1 1 N
L = _.élog ICNI — 51}%0]}1‘31\[— '2“109271”. (129)

The maximisation is usually carried out using a gradient based optimiser where the
gradient is given by

oL 1 ,0Cx\ 1.p.._.8Cx
50 = 5trace (CN 50) + 2tNCN TR (130)

Once the hyperparameters are obtained, the covariance matrix can be used to deter-

mine the prediction for £x11, and the confidence factors given in Equations 125 and

126.

