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Natural evolutionary systems exhibit a complex mapping between the genetic encod-
ing carried by cells, to the body and form of a hving species. The nature of this 
mapping facilitates the hereditary transfer of parental features to oSspring through 
genes. Adaptation to this mapping occurs during the reproduction process, when 
parental chromosomes are blended together, and random mutations creep into this 
process. 

Genetic Algorithms, which mimic evolutionary processes such as natural selection, 
reproduction, and survival of the httest, can be apphed to the problem of aerody-
namic design, by breeding shapes together in the hope of finding better ones. Fixed 
chromosome structures are currently used to map the genetic encoding adapted by 
the Genetic Algorithm, to a geometric language that can be used to describe shapes 
such as airfoil sections or wings. To adequately encapsulate high quality aerodynamic 
shapes, large numbers of genes are required by this mapping at signihcant expense to 
the evolutionary process. 

Suitable methods that reduce the computational time required to evolve aerodynamic 
shapes, may be sought by using an encoding that can add necessary detail to shapes, 
and adapting the complexity of its description. 

In this thesis, the complexity and adaptation of shape encoding is explored. A dis-
tributed Genetic Algorithm has been created over clusters of networked PC's to per-
form aerodynamic optimisation. DiSerent representations for describing shapes have 
been used to design airfoil sections. In order to reduce computational cost, meta-
modeling techniques were successfully implemented to predict which newly created 
shapes will be useful to the Genetic Algorithm, repairing breeding errors to increase 
design survivability. An object orientated chromosome framework haa been devel-
oped, to facilitate adaptation of both genes and chromosome structure by Genetic 
Algorithms. A new hierarchical crossover operator is explored on evolving simple 
curves from straight lines, by adapting the complexity of the chromosome mapping 
used by Genetic Algorithm. Finally, the new adaptive encoding is exploited to evolve 
aerofoil sections, resulting in improvements to design quality and performance cost. 
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Adaptation: The general advance in a members ability to smrvive within a changing 

environment. 

Allele: An element found at a specific position (locus) on the chromosome. 

Chromosome: Rod-shaped bodies in the nucleus of a cell, which contain the genes. 

Clgissifier System: Dynamic, rule based systems that are capable of learning and 

classifying information sets. 

Crossover: A process by which genetic information is exchanged between chromo-

somes. 

Deme: An independent population of evolving members based on a migration model. 

DNA: Deoxyribonucleic acid, a double stranded helix structure of base pairs that 

determine the makeup of protein during embryology. 

Elitism: A process by which the most 6t members from one generation are copied 

to the next. 

Fitness: A user defined measure that is used by the Genetic Algorithm to determine 

how well a candidate performs against the objective function. 

Gene: An encoding for the synthesis for a protein that can be passed from parent 

to offspring. 

Genetic Algorithm: An evolutionary algorithm based on the mechanics of natural 

selection and survival of the fittest. 

Genetic Programming: An evolving computer algorithm based on the principles 

of the Genetic Algorithm. 

Genome: A member of an evolving population that contains the total genetic infor-

mation of the organism. 

Genotype: The genetic construction of the design variables contained within the 

chromosome. 
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Gradient Method: Local optimisation algorithms based on the Arst partial derivar 

tives of the objective function. 

Hamming Distance: For two binary vectors, the Hamming distance is the number 

of diEerent positions. 

Infeasible: A solution that cannot be fully obtained through the Etness function. 

JavaSpaces: A persistent distributed Java implementation for the exchange of ob-

jects between Java processes. 

Meta-Modeling: A pseudo model that attempts to represent real information or 

models. 

Migration: The transfer of an individual from one sub-population to another. 

Natural Selection: The result of competitive exclusion as organisms compete to fill 

a finite resource space. 

Neural Network: An artihcial implementation of the data processing capabihties 

of brains on a computer. 

Niche: The set of possible environments that permit survival of a species. 

Objective Function: A user defined function used by the GA to determine the 

htness of a candidate. 

Penalty Function: A constraint handhng function that depreciates objective per-

formance depending on the violation of constraints. 

Parameterisation: The definition used to determine the range and length of the 

design variables, and hence the size of a members chromosome. 

Phenotype: Resultant features of a members genetic makeup such as colour, height 

and shape. 

Population: A group of individuals that may interact with each other within an 

evolutionary process. 
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Representation: The process of constructing the object whose htness is to be mea-

sured from its chromosome. 

RMI: Remote Method Invocation, a distributed Java server implementation. 

Schema: A schema describes a subset of all binary vectors of fixed length that have 

similarities at certain positions. 

Species: A population of similarly constructed organisms, capable of producing fer-

tile o&pring. Members of one species occupy the same ecological niche. 
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Chapter 1 

Introduction 

The world we hve in exhibits complexity and richness beyond our level of compre-

hension. Wis are surrounded by complex objects, whether they are biological such as 

ants, birds, fungi, elephants, or human made hke a car, a telescope, or an aircraft. 

What diEerentiates these objects hrom other simple objects such as rocks, planets, 

and clouds is that in some way their design appears to have evolved around purpose. 

It is not that a rock, cloud or planet cannot have a purpose, indeed rocks are used 

to provide terrain or shelter, clouds provide weather systems, eind planets provide 

habitation and resources that are a necessity for hfe. What differentiates these objects 

&om others like cars, jellyfish, birds etc., is that their design does not appear to have 

been influenced by any useful purpose such as transportation or survival. Instead, 

they are just clouds of tiny particles, lumps of uniform matter like crystals, or piles 

of matter haphazardly arranged into the planet, mountains, and clouds that we see. 

A caz, however, is designed specifically to transport people and objects. It consists of 

many other specifically designed components like a body, four wheels, a crankshaft, 

pistons, and a combustion chamber. What is more interesting about these components 

is not just that they too have been purposely designed, but that they all interact in 

unique ways with other components. Therefore a car is a collection of objects that 

purposely interact with one another to satisfy their combined purpose. 

On the other extreme, the purpose that a bird serves is less transparent. If one accepts 

the Darwinian argument that the purpose of a species is to survive and pass on its 



genes to further generations through breeding, then we can easily accept that the 

purpose of the birds wings are not deliberate, but a consequence that was able to help 

the bird in its greater purpose. The fact that wings can make a bird fly is amazing by 

itself, and even more so when considering their design. Feathers which are particular 

to that species, have become a common component in the wing construction. The 

design of the feather changes shghtly depending on their location on the wing and 

species of bird. Yet they work seamlessly together with the wing bones, muscle, flesh 

and other feathers to provide a bird with the means to fly with perfect aerodynamics 

and control when compared to the latest human Eying contraptions. 

If complex objects are merely a consequence of purpose, then the components of an 

aircraft do not by themselves justi^ a complex system capable of flying, any different 

to a mountain being a collection of objects. To actually fulfil the purpose, the aircraft 

components must be put together in one of only several out of millions of arrangements 

This is the miracle of evolution. So many things can go wrong! 

1.1 The Evolution of Shape 

Natural evolution is a system found in nature that many naturahsts believe to have 

had great bearing on the evolution of prehistoric living organisms, into the natural hfe 

that we know today. Although we have only a basic insight into the actual mechanics 

of such a comphcated system, evolutionary mechanisms borrowed from nature can be 

employed in artificial evolutionary processes. 

Evolutionary Algorithms (EA) [1] attempt to mirror the fundamental processes of 

natural evolution, and have been applied to a variety of design search problems. Such 

algorithms use processes such as natural selection, and reproduction to ensure that 

productive traits are propagated into future generations. Movement in the direc-

tion of improvement, and successful combinations of design properties from several 

members are ensured through artihcial analogies to natural selection, survival of the 

fittest, and sexual reproduction. Although evolutionary algorithms can outperform 

traditional optimisation approaches when apphed to problems such as aerodynamic 



design, they have yet to produce any design that exhibits the characteristics of com-

plexity dominant in the man made objects that have changed omr way of hving today. 

1.1.1 Evolving Aerodynamic Shape 

In aerodynamic design, a shght change in the shape of a body may have complex and 

even chaotic non-hnear eSects on the resulting flow system. For example, in the design 

of an airfoil, aerodynamicists may push the traihng edge surface for improved drag 

performance, at the risk of introducing How separation at other speeds of operation. 

Such responses can easily cause search processes to become trapped where neither 

search direction can oSer any improvement over the existing design. Such a design 

point is known as a local optimum. No search algorithm is immune to such traps, 

although one type of evolutionary algorithm, the Genetic Algorithm (GA) has proved 

to be significantly more robust in searching such an environment than traditional 

approaches. This abihty has aJlowed GAs to End more novel and significajitly better 

designs than other search processes when applied to aerodynamic shape optimisation 

problems. 

The main restriction to the use of Genetic Algorithms in shape optimisation is the 

associated cost of evaluating each design candidate. A means of easing this cost has 

focused research efforts in two areas: more eGicient algorithms that can End good 

solutions with fewer design evaluations, and more efBcient shape descriptions that 

require fewer design variables to be specified by search processes. Both of these 

quests carry a risk of deteriorating the ability of the Genetic Algorithm to find the 

optima. 

One important motivation of evolutionary design that has been almost forgotten by 

the aerodynamic design community is the synthesis of adaptation. The introduction 

of such an important feature in shape design, could allow the iterative adaption of 

shape to arbitrary complexity. The benefits to the design process that this featiure 

could offer include: the creation of complex shapes from simple idea's or components; 

the ability to traverse larger search spaces; a decoupling of the search algorithm's 

relationship with the initial design, and its definition; the reuse of solutions; solution 

adaptation to changes in the objective environment; the potential to search complex 



spaces more eSciently. 

One of the main bottlenecks in shape adaptivity in traditional apphcations of GAs for 

shape optimisation, is the fixed pre-de6ned coupling between the language and words 

used to de6ne a shape, and its genetic implementation used in GAs to apply breeding 

and mutation operations. The description of curves and surfaces is well known, and 

a variety of methods are available to ensure that accurate geometric representations 

are weU de&ned. This rich knowledge base provides a suitable platform from which to 

explore the adaptabihty of shapes using GAs in a shape optimisation environment. 

1.1.2 Towards Shape Adap t iv i ty 

To write down the form of a circle, one may choose to describe its properties in terms 

of the coordinates of its centre, and the length of its radius. For a very diEerent 

shape such aa a square, the coordinates of each vertex may be used. However neither 

description would be suScient to describe a square with arced sides. 

In order to describe all these objects, we may need to adopt a more complex language 

of description. One such language may use four arcs, describing a circle as a collection 

of ajTcs of the same curvature, and a square as a collection of arcs of infinite curvature. 

Now, this language can adequately include our box with arced edges, as well as a whole 

collection of other four sided shapes. However, to go on describing even more complex 

shapes such as hexagons and stars, we would need to add more arcs to this language. 

Two and three dimensional shapes can be constructed from a variety of descriptions 

including primitive forms such as arcs, circles and hues, to interpolated curves such as 

those used in Computer Aided Design (CAD). However, when such shape representa-

tions are used for the purpose of adapting a shape in an evolutionary cycle, thought 

must also be given to the manner in which these shapes can be mutated and bred 

together. 

To evolve shape within a computer assisted evolutionary system, the following oper-

ations are required. 

# A language for describing shapes. 



# The abihty to mutate shapes. 

e A means of breeding shapes together. 

e A measmre to evaluate the performance of one shape relative to another. 

This work focuses on the hrst three of these requirements, paying close interest to the 

range and geometric sensitivity of the shape description scheme used when apphed 

to a simple airfoil design problem. An airfoil may appear to be a relatively simple 

shape, but in the presence of a SowGeld, its shape becomes the critical component of 

a complex non-hnear system. A slight shift in position or change in shape will effect 

the entire flow system surrounding the body, from aSecting the forces acting on the 

body, to creating chaotic turbulent Sows. 

The particular question under investigation in this work, is how to improve the adap-

tiveness and complexity of an evolving shape. Through such an improvement, a 

potentially larger search space can be explored, without signihcantly increasing the 

number of designs that need to be evaluated during the evolution process. Complex-

ity, shape refinement and sensitivity can be sought, that would not have been possible 

without using a large number of design parameters in previous implementations. 

Previous research [2] [3] [4] [5], has tended to focus on how a shape should be described 

in a GA process for e&ciency reasons. This work is set out to examine how a descrip-

tion for shape can best support adaptation. 

1.2 Aims and Objectives 

The aim of this work is an improved language for describing the form of shapes used 

in an evolutionary based aerodynamic design process. Both the language and its 

complexity should be allowed to adapt in order to define high quality aerodynamic 

shapes. 

1.2.1 Object ives 

In order to attain this aim, the objectives of this work are to: 



# understand the performance and limitations of a Genetic Algorithm in evolving 

simple language descriptions; 

# establish a cheap distributed computational platform for evaluating aerody-

namic designs sampled during an optimisation process; 

# produce and optimised aerofoil and investigate the effectiveness of diSerent ge-

ometric representation techniques in supporting the evolution of aerodynamic 

shapes; 

# develop a framework for adapting the complexity of a language, and demon-

strate the ability of a Genetic Algorithm to use this framework to evolve com-

plexity; 

# evolve shape complexity using a Genetic Algorithm and incorporate this facihty 

into an aerodynamic optimisation process; 

# explore new opportunities to reduce the computational cost of aerodynamic 

evolution, without depreciating search performance. 



1.3 Layout of Thesis 

The apphcation, background, and motivation for using Genetic Algorithms with aero-

dynamic design methods is introduced in the next chapter, with reference to concerns 

and observations made throughout the research community into the quahty of shape 

that can be evolved by such a system. Methods for representing curves for airfoil 

description are reviewed and possible approaches and hmitations towards improving 

shape adaption explored. 

Chapter three presents the development of a Genetic Algorithm for searching difficult 

optimisation problems. Focus is given to the problem of population diversity mainte-

nance to ensure tolerance towards local optima traps. The convergence and dynamics 

of evolving populations are explored to encourage adaption and robustness, through 

the apphcation of a variety of speciation schemes. 

In chapter four the performance of a distributed computational platform built hrom a 

network of OSce PC's is discussed. The speedup performance and platform stability 

of the network is evaluated on a parallel CFD problem. An e&cient asynchronous 

communication algorithm has been developed for the GA to make effective use of the 

network for aerodynamic shape optimisation. To address problems concerning PC 

network rehability and robustness within an oSce environment, a scalable backup 

facility has been developed to allow the quick backup of distributed data using a 

process motivated by disk raid storage. 

A study into the use of several geometric modehng techniques with Genetic Algo-

rithms is given in chapter Sve. The ability for each representation to obtain smooth 

airfoil shapes is investigated, following apphcation of a GA to several aerodynamic 

design problems. A new representation technique based on ortho-normahsed airfoil 

function analysis has been developed and tested on an airfoil design problem us-

ing the GA. A novel design problem seeking a reversible airfoil whose performance 

characteristics are equal in either Aow direction, was also explored using the GA. 

Chapter six investigates the problem of adapting the language used to describe shape, 

to improve the design range and adaptiveness of the evolution process on shape design 

problems. A framework is proposed to facihtate this adaption, and includes several 



object based genetic operators to assist in breeding different shapes together. A 

hierarchical chromosome framework is implemented for the encoding of curves that 

ensures the principle of gradual evolution. The new chromosome is allowed to adapt 

its genetic complexity by adding and deleting new genes. Several curve reconstruction 

problems are explored using the new encoding, starting from a simple line defined 

by just two points. Finally, the adaptive encoding is apphed to aerodynamic shape 

optimisation based on a B-Sphne representation. 

To approach the problem of infeasible shapes produced by the crossover process, that 

can lead to non-convergence in the CFD analysis, a form of genetic repair is explored 

in Chapter seven. A meta-modehng process is proposed to predict aerodynamic 

analyse failure, so that wasteful computation in obtaining fitness results for airfoil 

shapes can be avoided. A Multi-Layer Perception model and a Gaussian Process was 

apphed to classihcation and regression problems involving fitness landscapes. The 

gaussian process was also apphed to predicting evaluation failures in aerodynamic 

shape optimisation. 

Chapter eight concludes the research presented in this work, and draws on observa-

tions made from this research, and recommends new directions for future research. 



Chapter 2 

Background 

This work is concerned with the idea of "Design by Evolution", and in particular 

on the properties, characteristics and environment necessary to form highly adapted 

aerodynamic shapes. In this chapter, a foundation into evolutionary shape optimisa/-

tion is given, and issues affecting the adaptation of shape discussed, defining the key 

areas of research detailed by this thesis. 

2.1 Design by Evolution 

Estabhshing the behaviour and characteristics that determine whether a system is 

complex or not, is a subject of much debate. Dawkins [6] indicated that 'design 

for purpose' would provide a good guideline towazds this question. It is easy to 

understand that an eye may have evolved from the purpose of enabling animals to 

survive better assisted by sight, whereas it seems more diGcult to accept that the 

precise layout of rocks evolved from a need for mountains and hills. However, design 

for piupose alone is not enough to define whether an object is complex or not. For 

example, would one caU an object such as a hammer complex? The hammer is a weU-

evolved design, which originally introduced its function to mankind as a rock. Today, 

hammers are weh balanced, consist of a heavy head and a light handle designed to pass 

maximum kinetic energy from the hammer to the object being struck. Dawkins went 

onto re&ne his definition by suggesting that hierarchy or composition of components 
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that interact with each other to fnlhl their mutual purpose could be a characteristic 

of complexity. 

Nature needs no understanding of its complexity to marvel at its creation. Complex 

organisms live, learn and adapt to their environment, passing on their instincts and 

habits from parent to oSspring in their quest for survival. So inept, it is hardly 

surprising that we have httle understanding of how nature really works. TheinkfuHy, 

through generations of scientific discovery, humans have gained some insight into this 

remarkable design process, harnessing knowledge of genetics - the building block of 

life; a basic concept of evolution - hfe's design process; molecular biology - material 

for creating life; and neural networks - the essence of intelligence. 

The fundamental key to the evolution of every living organism is the heredity transfer 

of genetic information from parent to offspring through genes. Through the apphcar 

tion of this process over millions of years, nature has found a way to create the most 

complex and precise hving organisms. 

2.1.1 A d a p t a t i o n and N a t u r a l Select ion 

Part of the theory of evolution is a concept called 'Adaptation'. This refers to living 

organisms, and the assets that enable them to survive and reproduce. Darwin [7], 

demonstrated this concept by illustrating the characteristics of a woodpecker. Its 

beaJc allows them to make holes in trees, giving them access to food all year round, 

and the ability to make nests within their holes. Their long tongue allows them to 

hnd insects inside the tree hole for food. Their tail is stiE, and enables them to brace, 

short legs and long toes can grip the bark. The moulting of feathers leaves the most 

essential feathers until last. 

The catalyst of adaptation is the preservation of useful variation, however shght. Any 

variation that may help an individual to survive, Snd food, attract a mate, produce 

offspring etc., with a higher chance of survival, if captured and passed on to oSspring 

through inheritance will help that species to adapt to its environment. This principle, 

by which shght variations if useful, are preserved, is called Natural Selection. 

In natural selection certain individuals will make more of a contribution to the next 
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generation than others because of their better adaption to the environment. If these 

attributes can be passed from parent to oSspring, then over time they will increase 

in occurrence and will therefore cause population change to occur. 

Individuals of all species must Eght for their share of the common resources that 

they depend on to survive, denying the environment of their destruction. Individuals 

must compete for resources against members of their own species, aa well aa from 

other species. Variations that help to achieve this purpose, are occasionally captured 

through inheritance, and passed on to oSspring. Selection will operate on survival 

amongst individuals of all genotypes, or those individuals that produce higher num-

bers of offspring, thereby operating on the basis of fertility. Darwin concluded in his 

work "On the Origin of Species" that, 

"eacA goTTze penod 0/ gome geaaoM 0/ 

eac/i or /tog (o OMcf (o 

deŝ TT/ĉ zoM. we reyZec( OM g^n/p^Ze, we ma?/ co/wo/e owaeZreg 

Âe /uZZ 6eZ%e_/̂  (Ae war 0/ Mâ wre Mot mceasan^, MO /ear 

is deô A peMeraH^ prompt, OMcf tAe fz^oro?^, (Ae AeaM;/, 

(ZM(f (/le Aapp!/ s^rfwe and Darwin, C [8]. 

2.1.2 Reproduc t ion and Genet ics 

In the natural world, no two individuals are the same. Identical twins may share the 

same genetics, but are never exactly alike. This uniqueness comes partly from genes 

which act as guidelines in determining the way we look and how the body works. 

Genetics is the branch of biology concerned with studying heredity and variation. 

The word heredity simply means the transmission of characteristics from parents to 

their offspring, while variation means the observable diSerences between aU living 

things. 

During reproduction, genes are transferred between parent and child. Chromosomes 

carry the genes in a hnear line up pattern, like a string of beads. The number of 

chromosomes are different between species as shown in Table 2, however, in mammals 

it is always an even number. This is because, chromosomes come in pairs, one from 
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Table 2: A Sam pie of the Number of Chromosomes Found in Several Species 
SPECIES No. OF CHROMOSOMES 
Human 46 
Chimpanzee 48 
Dog 78 
Horse 64 
Fruit Fly 8 
Pea 14 

the mother, and the other from the father. A single parent wiH only be giving their 

offspring half of their own genetic recipe. 

Genes are made up of acid molecules called Deoxyribonucleic acid or DNA. These 

molecules consist of chemical units called nucleotides. Nucleotides always come in 

pairs forming the characteristic double helix; two strands that intertwine with the 

nucleotide pairs forming links across the middle. From genes, proteins are created via 

several intermediate stages of which the main two stages are known as transcription, 

where a copy of the DNA is made using ribonucleic acid (RNA), and translation 

where the amino acids required to make the protein are fixed together. The amino 

acid coding for the proteins is what ultimately will enable an adult body to develop 

from an egg cell, through a process called embryology. 

OSspring receive their gene makeup by inheriting genes from each parent via a pro-

cess called reproduction. Recombination involves a process in which complementary 

stands of two parental duplex DNA, bind and exchange genes forming hybrid DNA. 

First, copies are made of each parent chromosome by separating the hehx strands 

of the parental DNA to act as templates for the synthesis of the complement. The 

parental duplex is replicated from the original DNA to form two daughter duplexes, 

each consisting of one parental stand from the original unwound DNA helix, and a 

newly synthesised strand. The two daughter strands are then recombined to form a 

complementary pair via a process called crossover. 

Figure 1, illustrates the crossover process involving two daughter strands where a 

stretch of Hybrid DNA is formed through the recombination intermediate (when a 

single strand crosses over from one duplex to the other). 

The formation of hybrid DNA, requires the sequences of the two recombining duplexes 
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Figure 1: Schematic Illustration of the Crossover process 
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Table 3: Different Types of Mutation 
Type of Mutation Original Sequence Mutated Sequence 
Subsitution 
Deletion 
Insertion 
Inversion 
Duphcation 

ATCGTTAGGC 
ATCGTTAGGC 
ATCGTTAGGC 
ATCGTTAGGC 
ATCGTTAGGC 

ATCCTTAGGC 
ATCGGGC 
ATCGTCCATAGGC 
ATTTGCAGGC 
ATCGTTCGTTAGGC 

to be close enough to allow pairing between the complementary strands. Where 

genetic differences exist, correction is attempted to repair dajnage to DNA. 

During this process of rephcation, errors may accidently occur, known as mutation. 

Synonymous or silent mutations are those that occur between two codings for the 

same amino acids that have no effect on the protein sequence. Non-synonymous or 

meaningful, point mutations do change the amino acid. 

For a more detailed description of genetics and the recombination process, the texts 

of [9] and [10] are recommended. 

2.2 Artificial Evolution and The Genetic Algo-

ri thm 

Natural evolution is adept at discovering highly precise functional solutions to par-

ticular problems posed by an organism's environment. Although the mechanics of 

evolution are highly complex, several key processes such as natural selection, recom-

bination and mutation, continuously emerge as key components in natures iterative 

optimisation cycle. 

It is quite natural therefore to describe evolution in terms of an algorithm that can 

be used to solve diScult non-linear engineering optimisation problems. It is this goal 

that has lead to a relatively new held of computing; Evolutionary Computing. 
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2.2.1 Evolut ionary Algor i thms 

In general, since evolutionary algorithms are based on a simphhcation of the organic 

model, several characteristic properties are generally shared amongst them. 

1. Search is a parallel process provided through a collective population of learning 

individuals. Each individual represents a point in the search space of potential 

solutions to the problem. 

2. Descendants of individuals are generated by stochastic processes based on mod-

els of mutation and recombination. 

3. Natural selection is modeled to ensure that good genetic traits propagate from 

one generation to another. This generally involves a stochastic process that 

mimics survival of the fittest by means of comparing individuals performance 

in their environment. Such a selection process favours better individuals to 

reproduce more than those that are relatively worse. 

Although most evolutionary computing algorithms follow a similar set of naturally 

inspired rules or models, two distinct classifications of algorithms have emerged. Ge-

netic Algorithms and Evolution Strategies: 

1. Genetic Algorithms evolve populations of chromosome structures called 

Genotypes using genetic operators such as crossover and mutation to adapt the 

encoding of the structure. Probabilistic selection is used to ensure that highly 

fit members recombine and produce offspring. When determining the fitness of 

a Genotype, it is decoded from its genetic form, into its real and useable form 

called the Phenotype. Typically, GAs can be used for search and optimisation 

of a wide range of problems by changing the Genotype-Phenotype mapping. 

Genetic Programming is a subset of GAs that apply evolution directly onto a 

rule based language that can be used aa a computer program. 

2. Evolution Strategies [1] were originally developed to adapt rule sets by breed-

ing and mutating members of a search space, as well as evolutionary parameters 

that aSFect mutation. Mutation is based on normal distributions whose shape 
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and eSect are controDed by the members evolutionary parameters. Typically 

selection is deterministic. These algorithms differ from Genetic Algorithms as 

they are based dominantly around mutation and the evolution of controlling 

parameters, whereas GAs are baaed around the breeding of members. 

Evolutionary Programming embraces normally distributed mutation as the key ge-

netic operator, with probabilistic selection. Evolutionary Programming was originally 

developed to evolve Finite-State Machines, they seek to iteratively generate increas-

ingly better solutions to a static or dynamically changing environment. 

2.2.2 T h e Genet ic Algor i thm 

The basic principles of Genetic Algorithms are based upon the analogy of natural 

behaviour. In nature, individuals compete with each other for resources such as food, 

water and shelter. Members of the same species will also compete with one another to 

attract a mate. Those individuals that are most successful in surviving and attracting 

mates, will have a higher chance of producing more oSspring and propagating some of 

their genes into future generations. The propagation of genes from highly adapted or 

"Et" members forms the basis for evolution, as the combination of good characteristics 

from parents can sometimes produce "fitter" oSspring. 

Based upon this analogy, GAs evolve a population of candidates, each representing 

a possible solution to a given problem. A Atness score is assigned to each individual 

according to how good that individual is with respect to a given goal. Highly fit 

individuals are selected to participate in cross breeding with another individual to 

produce oSspring sharing features from each of its parents. Members that are not 

selected to reproduce die out, and the process is restarted on the new generation of 

members. 

The basic or simple GA as described by Goldberg [11] comprises four important steps 

illustrated in Figiue 2; initiahsation, evaluation, reproduction and convergence. 

The initial population of chromosomes is created either randomly or by perturbing an 

input chromosome. How the initialisation is done is not critical as long as the initial 

population spans a wide range of variable settings (i.e., has a diverse population). 
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Figure 2: Schematic Diagram of the Main Processes in a Genetic Algorithm 

The population of candidates are evaluated and given a fitness score, which should 

provide a measure of improvement against a pre-defined objective. In single-objective 

and multi-objective problems, this measure will be based on an evaluation function 

and then scaled against an average or best fitness within the population. 

In the third stage, reproduction, a breeding process is simulated by selecting members 

of the population to participate in the next generation. These selected members, 

termed Parents, undergo a breeding process typically using two genetic operators, 

crossover and mutation. The crossover genetic operator combines aspects of two 

parent genes to produce two subsequent children genes. This type of gene combination 

serves to produce children that have a high probability of having a higher fitness than 

their parents, while maintaining some of the genetic history of their ancestors. In 

order to maintain diversity in the search space, genetic mutation is introduced into 

the population. These new members will either be automatically entered into the 

new generation of candidates to participate further in the evolution process or will 

be added to the existing solutions pool and undergo further stochastic selection. 

The new child gnomes created from the reproduction process are evaluated for their 

fitness. The parent gnomes die out and no longer participate in the evolution process. 

The last two steps are repeated until a convergence criteria is met. The basic process 
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Figure 3: Simplified Flow Diagram for a Simple Genetic Algorithm 

for a simple GA is shown in Figure 3. 

W h y Genetic Algori thms work 

Several idea's have been offered aa to how Genetic Algorithms are able to effectively 

explore complex search area's. One such theory that has emerged azid received sig-

nificaat attention amongst the evolutionary computing community, is the Schema 

Theory [12]. 

Schema Theory considers the chromosome strings as subsets or hyperplaaes of the 

search space. If we take a three dimensional space for example as shown in Figure 

4, encoded with the string "000" at the origin, using three bits. The corners are 

numbered by bit strings with all corners dl(fering by exactly "1" bit. Representing 

as a wild card match symbol, then the front plane of the cube can be represented 
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Figure 4: Hypercube Representation of GA Search Space Encoding 

by the special string and each of the other five planes by 

and Strings containing are referred to as schemata, and each schema 

corresponds to a hyperplane in the search space. In a GA, a population of sample 

points provides information about numerous hyperplanes, with low order (the order 

refers to the actual number of real bit values represented in the schema) schema 

sampled by numerous points in the population. In this context, GAs are intrinsically 

parallel, because they sample many diSerent hyperplanes simultaneously in a parallel 

faahion, but it is the cumulative effect of sampling a population of points that provides 

important statistical information about any particular subset of hyperplanes. 

By necessitating competitions between the various hyperplanes iu parallel, competing 

hyperplanes increase or decrease their representation in the population according to 

the relative htness of the strings that he in those hyperplane partitions [13]. Recom-

bination through crossover, recycles hyperplane subsets, which can be propagated if 

good schema are represented and survive disruption from the operation. Mutation 

acts to generate new schema combinations, adding new hyperplanes to the competi-

tion. Forrest and Mitchell [12] illustrate in detail the importance of schema order in 

GA search, on several theoretical optimisation examples. 

Despite this formulation, this theory does not easily extend to all GA observations 
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such as the eSect of union crossover [14] involving the exchange genetic information 

between chromosomes at every other string bit. The schema theory would suggest 

that this operation would be disruptive to the evolution process. Experiments by 

Goldberg [15] have indicated that the ordering of the hyperplanes is critical to the 

success of the search, particularly when GAs are apphed to many real problems. These 

deceptive problems can arise if the schema is ordered incorrectly, such that following 

samples of the good schema, does not necessary lead the search process towards the 

optima. The correct ordering of schema is unknown at the start of a given problem. To 

help encourage correct schema ordering, the Messy GA formulation was introduced 

[16], which allows the evolution of the ordering of genes along the length of the 

chromosome structure aa well as the genetic information that they contain. Goldberg 

has shown that Messy GA's are able to solve some problems that exhibit deceptive 

characteristics better them simple Genetic Algorithm implementations. However their 

implementation on real problems is diKcult and has yet to be ELchieved. 

2.2.3 Searching for t h e O p t i m a 

Mathemat ica l Definition of an Optimisat ion P r o b l e m 

An optimisation problem is defined by a set F and an objective function / : F —> R. 

Each candidate ?/ G Y is given a value /(;/) by the objective function / . The objective 

of aji optimisation problem P o ( y , / ) is to 6nd the value 6 F that gives the 

minimal objective fimction / , that is E < / ( ^ ) . If -P(F) represents the 

set of subsets of Y, a neighbourhood function : K — P ( y ) is defined where a 

candidate that verifies E < /(z/) is called a local optimum. The 

solution is usually called the global optimum to avoid confusion. 

A combinational problem is de6ned by a finite search space ^ where the problem is 

formulated by the set of constraints C = {c^, Cg,...}. A candidate that satishes all 

constraints Q of a combinational problem Pc('$', C) is said to be a feasible solution of 

Pc(5', C) (an infeasible solution otherwise). The objective of a combinational optimi-

sation problem Pco(;5', (7,/) is to find Sgpt where E % and 

where % G 5" of all feasible solutions Pc('S', C). 



21 

Global and Local Search Techniques 

There are many methods available to engineers to search a given landscape for an 

optimum. The success and practicality of these methods, are usually dependent on 

the complexity of the problem, the modality of the landscape to be traversed and 

the availabihty of gradients. A full overview of the different approaches available is 

beyond the scope of this work, a comprehensive overview of the optimisation problem 

and optimisation techniques is oEered by Bishop [17] and Siddal [18]. This section is 

a generalisation of approaches used. 

In searching a solution space, a tradeoS must be established between two conflicting 

objectives: exploiting the information contained in the previously obtained solutions, 

and exploring new regions. Pure exploitation makes exclusive use of existing infor-

mation; pure exploration abandons all known solutions on the premise that better 

solutions exist elsewhere. HiH chmbing, or perturbation routines are good examples of 

exploitative methods, where the best known solution is always used as a starting point 

for improvement. Such techniques take a very narrow view of where opportunities 

for improvement lie; they are extremely dependent upon their starting locations and 

are susceptible to becoming trapped at local optima. At the other extreme, totally 

random search processes provide excellent exploration but make no use whatsoever 

of acquired knowledge. Random search is a good example of such a process. 

An example of using exploitative search methods is given in Figure 5. Suppose for 

this one dimensional problem /(a;), we wish to use the derivative with respect to 

the design parameter a; to indicate the best direction of search. Using Taylor series 

expansion, an approximation for the derivative is given as 

where is the step size. However to implement any approach that uses such a 

gradient, evaluations of the objective function wiH be required for each sample 

point, where is the number of design veiriables. This can not only become expensive 

if TV is large, but Equation 1 may also include roundoE and truncation error due to 

the finite size of and truncation of higher order terms. If the problem domain is 
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Figure 5: Search Space Representation Featuring Several Local Optima's 

constrained, then a derivative with respect to each constraint will also be required. 

In the relatively simple problem given in Figure 5, the starting point of the search 

will also play an important factor to the success of locating the global optimum. In 

this illustration, starting at point 2, will provide a gradient that would indicate the 

appropriate direction of the global optimum. However, starting at points 3, or 4 

would indicate the direction to a local optimum, requiring many restarts to achieve 

the goal using this approach. Implementations of other similarly based methodologys 

such as 'divide and conquer' algorithms eind Powell's Direction Set Method [19], will 

also suEer similar consequences. 

In an eSort to strike a balance between these two extremes, various techniques have 

been developed that process information on many candidate solutions within each 

search iteration. The Simplex method [20] is such an attempt to achieve this balance 

by setting up n+1 points enclosing a finite n-dimensional voliune called a simplex. The 

Simplex method gropes towards the optimum by flipping, expanding or contracting 

the simplex. The logic used to operate the simplex is determined by the evaluation 

at each corner, and always moves in the direction of improvement. Although this 

method samples # + 1 points in parallel, it is still prone to local optima traps. A 
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more explorative teckmque is the method of Simulated Annealing [21], which applies 

random perturbations to a search point. Simulated Annealing is based on a principle 

of slow decent inspired by the annealing nature of metals. Newly formed solutions are 

retained if they improve the solution, and sometimes if they do not depending on a 

Boltzman probabihty function. An anneahng temperature parameter is used to con-

trol the eSect of the Boltzman function. By lowering the anneahng temperature, the 

likelihood of retaining weaker solutions reduces. Typically the anneahng temperature 

is reduced on several occasions during the search process. 

Lately, evolutionary computing techniques have been employed to caat a better bal-

ance between exploitation and exploration by learning from processes found in nature. 

Such techniques which generally fall under the ArtiAcial Intelligence umbrella, mimic 

natural processes such as evolution and genetic theory to simultaneously exploit im-

portant information obtained from multiple solutions. Stochastic processes are added 

to the mechanics of the methods introducing a variable degree of exploration. 

With any optimisation approach in complex multi-modal landscapes, a consideration 

of objective function evaluation cost wiH often determine the type of approach taken. 

A trade off must often be made between restarting a cheaper gradient based method 

many times, and using a more expensive but more robust stochastic approach such 

as Simulated Anneahng or Genetic Algorithm. 

2.3 Approaches to Aerodynamic Shape Optimisa-

tion 

Typically, two approaches have been taken in automated design involving CFD. In-

direct methods [5] offer signihcant savings in computational cost, through iteratively 

redesigning airfoil shapes in the direction of achieving a pre-described pressure or ve-

locity distribution. Such methods generally involve the use of calculated derivatives 

of the objective function, making the process fast enough for day to day design and 

analysis. The main drawback to this approach, is that the objective may be infeasible 

(an airfoil design prescribing the required pressure distribution may not exist). Also, 

iP drag is a component of the objective, then attempts to define a presstue distribution 
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that minimises Cg, can lead to poor solutions. The evaluation of pressure drag from 

Cop — y Cpdy (2) 

is typically swamped with numerical noise. 

Direct shape optimisation attempts to optimise directly against the objective func-

tion, such as requiring minimum drag. This more expensive approach either requires 

the calculation of cost function sensitivities for use with gradient based optimisers, 

or employs black-box type optimisation tools that can work directly with the design 

variables and the cost function. Examples of these would be the Simplex Method, 

Powell's Direction Set method [19], Simulated Aimealing, and Genetic Algorithms. 

The more advanced tools such as GAs and Simulated Anneahng, are generally more 

robust to local optima and noise, and aj-e well suited to preliminary design investi-

gations rather than the fine tuning of detailed designs. Because they require large 

numbers of design solutions, such methods are typically used with less expensive CFD 

tools such as Panel Method implementations. 

Prehminary investigations into the use of sensitivity analysis with CFD solvers by 

Hicks and Henne [22], found that the solution of cost sensitivities by perturbing the 

design space with respect to each design variable, was too expensive for use with high 

fidehty CFD solvers. A more suitable solution based on Control Theory described 

by Jameson [23] [24] [25], achieved the solution of cost sensitivities via an adjoint 

formulation of the Cost function and FlowReld Solution. 

If the governing flow equation A expresses the dependence of the How variables w on 

the physical boundary this can be written as 

F) = 0, (3) 

then a change in F results in a change 

=(E)+(H) 
If the cost function 7 is determined by the change in Sow w, due to a modification of 
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boundary F, such that 

i = f (w,F) , (5) 

then a change in F results in a change 

ow 
(6) 

Using control theory, the flow equation is considered as a constraint in such a way 

that the cost equation does not require multiple How solutions. This is achieved by 

eliminating By introducing a Lagrange Multiplier we have 

ow ,9^ 

which can be rewritten as 

(7) 

6 7 = ^ 

a / ^ 

By choosing ^ to satisfy the adjoint equation 

(8) 

the gradient is deHned through 

/ i9w (9) 

6F 
(10) 

Through this approach, the gradient can be determined indirectly by solving an ad-

joint equation which has coelScients determined by the solution of the flow equation. 

The basic implementation process is given in Figure 6. 

The cost of solving the adjoint is comparable to that of solving the Sow equation. 

Hence a single design iteration will cost approximately the cost of two field solutions. 

In Jameson's implementation, approximately 100 design iterations were required to 
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Figure 6: Process for the calculation of cost sensitivities via the adjoint formulation 

achieve convergence. Burgreen and Baysal [26] implemented an adjoint formulation 

of the three dimensional Euler fluid equations using a Bezier pazameterisation for 

the wing. A novel approach to three dimensional adjoint formulation on unstruc-

tured meshes was implemented by Cross [27], by coupling a structured mesh based 

adjoint formulation to an imstructured How solution through interpolation. Such an 

approach can facihtate the use of optimisation on complex geometric configurations 

with advanced flow solvers. 

2.3.1 T h e Appl icat ion of GAs to C F D Op t imi sa t i on 

The global search capabilities of Genetic Algorithms have recently been introduced 

to aerodynamic design problems. Gage [28] examined the possibility of a role be-

ing played by a Genetic Algorithm in prehminary aircraft design. Gage found the 

tool highly robust and effective to apply in the design of a wing planform for mini-

mum induced drag, but commented on the large computational time required while 

using simplified analysis theory. Studies into the role of Genetic Algorithms in the 

conceptual design of aircraft has also been made by Crispin [29]. A step towards aero-

dynamic shape optimisation was reported by Yamamoto [30] who apphed a Genetic 
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Algorithm to a 2D wing section design for maximum Lift to Drag ratio (L/D) using a 

Navier-Stokes code parallelised on a 32 Node Super-Computer. Although the optimi-

sation schemes proved successful in 2D wing optimisation, little was known about the 

modality of the objective surface or how a Genetic Algorithm would compare with 

other much credited methods. Obayashi and Tsukahara [31] attempted to address this 

issue by first examining the objective surface and then comparing three very diSerent 

optimisation methods based on, Gradient Method, Simulated Annealing, and a Ge-

netic Algorithm. The airfoil section was represented as a linear function of four cubic 

splines. Obayashi and Tsukahara examined a two variable aerofoil design problem, 

and found the objective surface to be peaky and convex. This problem was deemed 

to be unsuitable for Gradient Methods, whose solution is rehant on the initial start-

ing point. The surface was improved however through the introduction of a penalty 

function to constrain the foil thickness, which in eSect reduced and concentrated the 

number of peaks to a much more attainable problem domain. The comparison of 

the three optimisers showed a marked increase in design performance in the case of 

the Genetic Algorithm. Analysis into the starting point was made, showing that the 

performance of the Gradient Method and Simulated Annealing implementation were 

highly dependent on the initial starting point. In contrast, the performance of the 

Genetic Algorithm was considered to be independent of the starting population. The 

CPU cost of using the Genetic Algorithm was signiScant, almost 80 times that of a 

single use of a Gradient Method. This was however deemed to be an acceptable cost 

for this type of optimiser since it resulted in a near twofold gain in performance, while 

maintaining a good level of robustness. Apphcation of Simulated Annealing methods 

has been further approached by Aly aZ. [32] achieving signihcantly improved per-

formance over a Gradient Method at comprisable cost. His application however was 

signiGcantly hampered by local optima. 

There has been significant activity within the literature over the past three years in-

volving the couphng of Genetic Algorithms to CFD solvers. Poloni [3], P&iaux aZ. 

[33], and Holden [2] have successfully shown that good aerofoil shapes can be found 

with Genetic Algorithms. Doorly [34] has highlighted concern over the modality of the 

objective surface for airfoil design problems, with GAs tending to converge quickly. 
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and j&nding different solutions on each search. The quality of the geometric represen-

tations used with GAs haa alao been questioned by Reuther and Jameson [35], and 

Holden [36], who have found that some representations are more suited to GA design 

than others, but may not necessarily provide the high level of geometric sensitivity 

required for aerodynamic design. Lepine a/. [37] demonstrated that geometric ac-

curacy can be found using Non-Uniform Rational B-Spline (NURBS) representations, 

but its parameterisation would require over 13 control points, requiring a total of 52 

design variables for a single 2D Section. 

2.4 Representation and Parameterisation of Shape 

for Evolutionary Design 

The expression of the shapes we seek to design, plays a most important role in design 

optimisation. In evolutionary approaches, Genetic Algorithms can be used to adapt a 

parameterised encoding called a genotype, using crossover and mutation operations. 

This encoding can then be mapped to the 6nal shape called a phenotype, through 

the use of geometric representation. The mapping between genotype and a geometric 

phenotype can be divided into two separate processes, representation of shape from 

a set of parameters, and the parameterisation of these parameters into the design 

variables used to form the resultant chromosome. 

2.4.1 Airfoil Represen ta t ion and P a r a m e t e r i s a t i o n in Shape 

Opt imisa t ion 

For a numerical optimisation process, a surface representation is sought that wiU oEer 

a detailed description of a surface, with an enriched design space whilst maintaining 

the smallest number of parameters to be defined. The descriptions of two-dimensional 

curves is well known, and several techniques are readily used throughout the engi-

neering optimisation community [2]. Such techniques have been extended to sim-

ple three-dimensional objects using chordwise sections on a known or set planform. 

Whilst this method has been elective for a small number of applications, it only 
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offers a limited scope for novel design search. The ability to deEne accurate three-

dimensional surfaces is an essential component of an automated design process. The 

construction and definition of geometry in engineering is a vast and complex prob-

lem. Most engineers use dedicated Computer Aided Design (CAD) facilities for the 

accurate development of 2D and 3D drawings. However these sophisticated, complex 

programs usually require thousands of input parameters for the complete dehnition of 

most modern designs, and are inadequate for design optimisation [35]. In aircraft de-

sign for example, the accurate definition of a single airfoil section may require several 

hundred points to be dehned in three dimensional space. 

For the representation of airfoil sections, approaches taken generally fall in to two 

categories, Shape Functions, and Curve Interpolations. Parametric representations 

are taken as an exception to these categories. Parametric methods are considered 

beyond the scope of this work, and are more suited to preliminary investigations into 

target design specihcation, rather than to accurate shape optimisation. An example 

of parametric apphcation to airfoil design was given by Giunta and Sobieski [38] who 

used a parametric definition for airfoil camber and twist in their aeroelastic analysis 

of a supersonic transport aircraft. 

Shape Functions 

Basis Vectors [39] [40], express new design points through linear combinations of base 

shapes or functions through the generahsed form 

(11) 

where R is the design shape, f is the baseline shape, ^ are the basis functions/vectors, 

and i/i is a vector of scalar weights or design variables. In some apphcations of this 

approach to airfoil design, airfoil shapes themselves have been used as basis vectors 

[31], leading to a significantly reduced parameterisation ([/;). However, this approach 

would be restrictive in novel design and Eexibihty since all new design points offered 

by this approach are indirectly dehned by the given basis vectors. The choice of 

airfoil basis vectors is critical to the success of implementation, with the additional 
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danger that each basis shape could represent locally determined optimum if chosen 

as a result from previous designs and optimisation analysis. 

A similar but more flexible approach which has become popular in CFD apphcations, 

is the use of analytical functions to provide basis vectors which are applied 

to a base shape f . Hicks and Henne [41] demonstrated the suitability of this method 

with their compact set of 'Bump' functions 

r / loK(0.5) \ -| <2 
= sin f Tra; j , 0 < a; < 1 (12) 

where and control the intensity and location of the bump. This method was 

implemented by Reuther and Jameson [35] using 25 ftinctions. Hager et al. [42], Lee 

and Eyi [43], and EUiott and Peraire [44] used 10 shape coeScients based on different 

shape functions. The Aexibihty of this method may be limited through both the baae 

shape f and modlGcation scalars 0;. Further refinements to this method have been 

made by Hicks and Vanderplaats [22], introducing a second set of basis functions to 

offer increased sensitivity to assist in the presence of shockwaves. This method can 

also be extended to three dimensional shapes to a limited degree as demonstrated by 

Elliott and Peraire [45]. 

The value of shape functions can be enhanced by finding an orthogonal set. The use 

of orthogonal shape functions in the representation of airfoil sections was adopted by 

Kmruvila et al. [46] based on the NACA four series. Chueng [47] and Drela [48] also 

demonstrated the effectiveness of this method based on a sinusoidal series. 

2.4.2 In te rpo la t ion Funct ions 

In early studies involving gradient optimisers with CFD, the computational domain 

grid points themselves were used directly in the parameterisation [49]. This approach 

is easy to implement and geometry changes are limited only to the number of dis-

crete points. However it is difhcult to maintain a smooth geometry and a significant 

presence of noise is usually present in the final design. 

The use of polynomial and spline representations are popular in CAD [50] and are well 

suited to automated design. A polynomial can describe a curve in a very compact 
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form with a small set of design variables, with many of the curve noise problems 

encountered with discrete approaches automatically smoothed out as pointed out by 

Braibant [51], Reuther and Jameson [35]. If the curve is parametric, almost any 

curve or surface could potentially be described with the use of polynomial and spline 

interpolation techniques. 

The simplest description using such an interpolation approach, is a polynomial such 

as 

n~l 

^ (13) 
1 = 0 

where M is the number of design variables, and is the parametric length along the 

curve. The q is a set of coeScient vectors corresponding to the three dimensional 

coordinates 

The Bezier representation is another mathematical form for representing curves and 

surfaces. The general form of the Bezier curve may be written as 

= (14) 

where n is the number of control points (design variables), and the B{_p(î ) are degree 

p Bernstein functions. The are the control points (creating the control polygon), 

and are typically used as design variables. The Bezier form is far better than the power 

basis of Equation (13) with the control points relating to the curve much more closely. 

The convex hull enclosed by joining the control points together, contains the resulting 

curve which is a very useful property when defining the geometric constraints. 

The Bezier form is highly efhcient in representing simple curves, however more com-

plex curves require a high-degree Bezier form which increases the round-oS error. A 

composite form of the Bezier curve which uses several low-degree Bezier segments is 

the B-spline described by 

&,(«) = (15) 
1 = 1 
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where Pi are the B-sphne control points, p is the degree, and is the %-th 

B-spline basis function of degree p. Reuther and Jameson [35] used 18 control points 

to deAne a fourth order B-Spline to represent an airfoil section, but found that the 

resultant solution contained to many waves on the surface to be useful for aerody-

namic design. Similar Endings have also been reported by Doorly oZ. [52], and 

Yamamoto and Inoue [30]. The only real geometric drawback to the regular B-spline 

is their inabihty to represent implicit conic sections accurately. However a special 

form of the B-spline, the Non-Uniform Rational B-8pline (NURBS), can represent 

most parametric and imphcit curves and surfaces without loss of accuracy as illus-

trated by Ventura for the representation of complex hull geometries [53]. A NURBS 

curve is defined as 

where the are the control points, are the weights, and the are degree 

p basis functions. With this representation, both the control points P* and their 

corresponding weights can be used as the design variables. 

2.4.3 T h r e e Dimensional Descr ip t ion of A e r o d y n a m i c Bodies 

B-sphne based methods are probably the most popular representations used in auto-

mated design today [54] [55]. Their popularity is mainly due to their ease of imple-

mentation and smooth results, but also because such techniques can be integrated 

with suitable design databases found on many CAD systems. However, despite re-

cent progress in using these representations, it is still difhcult to parameterise and 

construct accurate, complex three-dimensional models for use in optimisation based 

solely on polynomial and spline representations. 

Generally, 2^D approaches are often employed in 3D surface descriptions, dehning 

the surface as an interpolation across several different 2D sections. Through this 

approach, many of the techniques highhghted in Sections 2.4.1 and 2.4.2, can be 

used for the sections. One novel approaxzih to the complete description of a surface is 

the treatment of surface generation as a boundary-value partial diSerential equation 
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problem [56]. Using this technique it is possible to represent a geometry such ag an 

aircraft wing or ship hull form, with a compact set of design variables. Included with 

this definition are surface grids, volume grids, and sensitivity derivatives. Parame-

terisation using PDE's for complex bodies is however time consuming and can only 

parameterise surfaces [57] [58]. 

Separate attempts have been made at designing the geometric planform alone, based 

on the 2^D approach. Gage [59] applied Genetic Algorithm's to the problem of wing 

planform optimisation for minimal induced drag, using the computational panels 

themselves as the representation. In Gage's unique parameterisation of the represen-

tation, the complexity of the panels were adapted [28], by allowing arbitrary panel 

encodings to crossover with one another. For instance, the panel representing a 

winglet, could be crossed with a centre wing panel. Although this parameterisation 

would be dlBicult to apply to more precise geometric forms, Gage was able to evolve 

quite unique planforms demonstrating the ability for a Genetic Algorithm to navi-

gate the most complex search spaces. Other, more traditional approaches to planform 

optimisation can be found in [60]. 

There are significant similarities in the parameterisation problems encountered in 

2D and 3D representations. To ensure accurate and highly evolved geometric def-

initions can be obtained, a large number of parameters are required. Some of the 

geometric representation schemes, such as the use of basis vectors, or Bezier inter-

polation functions, offer a relatively smaU parameterisation and hence search space 

to the optimiser. However, to extend optimisation towards more detailed geometric 

dehnition, the use of more sensitive techniques such as NURBS representations must 

be adopted. So far, similar attempts with BSphne interpolation with Genetic Algo-

rithms has proved difFicult due to the large number of design variables required for 

their dehnition, surface waves that are often encountered through their adoption. 
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2.5 Evolving Geometric Complexity 

Almost all applications of GAs to shape optimisation problems are based on fixed 

parameterisation of the landscape domain. Genetic Programming [61] has been suc-

cessful in the apphcation of evolving Lisp programs, by allowing adaption of the par 

rameterisation structure. Yamamoto oZ. [30], apphed a similar concept to adapting 

the number of parameters used to define the curvature of an airfoil, by representing 

the B-Sphne nodes via radius and emgle expressions relative to another node. By 

including a knowledge of geometry into the chromosome encoding, they were able to 

add and remove new nodes from the chromosome structure in a similaz way as adding 

or deleting structures and expressions from a Genetic Program. Gage [62] adopted 

a similar process to evolving the topology of wmg shapes by allowing the GA to 

adapt both the basic shape as well as the complexity of defining parameterisation. 

Both of these implementations allowed the crossover process the freedom to randomly 

combme very different structures together, m a fashion that could be compared to a 

reproduction process trying to combine the structure of a leg with one &om a hand. 

Bentley [63] highlighted concern for the large number of lethal mutations that could 

arise through such crossover processes, and proposed a more restrictive hierarchical 

crossover operator. One important feature of Bentley's implementation, waa that 

new genes added to the representation were seeded with values such that the resul-

tant phenotype remained as unchanged as possible. For primitive types, new gene 

values were interpolated from the existing shape, as illustrated in Figure 7. Hierar-

chical crossover was successfully apphed to evolving Lego hke geometric structures, 

and could be extended to other geometric descriptions such as sphne methods. 

The process for automated design is generally m the form shown m Figure 8, treating 

each sub process such as design analysis, and geometry definition, as separate entities. 

How information is passed between entities is not important in this analysis, but the 

use of formatted files is normally adopted in both the manual and automated imple-

mentations. For this work, the automated design process will be represented by the 

Genetic Algorithm, the geometric representation hbraries will replace the geometry 

generator, and CFD tools will be used for airfoil performance analysis. File stores 

wUl generally be used for maintaining a database of solutions and designs. 
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2.6 Summary 

Evolutionary algorithms are expensive and slow, requiring large numbers of new de-

signs to be sampled. Genetic Algorithms are most suited to explorative aerodynamic 

design rather than improving existing ones, because new candidates are sampled in 

parallel at each iteration which requires a large and diverse pool of candidate designs. 

GA evolution of aerofoil shapes to arbitrary detail is hampered by several key prob-

lems. The implementation of the Genetic Algorithm with the flow solver can restrict 

its abihty to adapt aerodynamic shapes due to range of geometries oSered by the 

hxed chromosome encoding uaed. The evolution process can become trapped in local 

optima, converge too quickly, or suffer from high levels of bad DNA encodings within 

the population, thus weakening candidate diversity. Increased robustness, and toler-

ance to local optima could improve the Genetic Algorithms ability to adapt shape. 

Some form of genetic repair of bad DNA would also improve evolution eSciency. 

A wide selection of geometric representations have been used in the literature to 

define airfoil and wing shapes. Prom this wide selection, only Bezier curves and some 

baais shape approaches appear to be able to oSer smooth optimised shapes when 

used with a relatively small parameterisation. Some instances in the successful use 

of the more sensitive B-Sphne and NURBS methods have been recorded, but these 

have generally required a much larger parameterisation, and would not be suitable if 

extended to three dimensional wing-body design. A more thorough investigation into 

the interaction of different geometric representations with Genetic Algorithms may 

oSer some indication of how this problem should be approached, especially if further 

adaptation and rehnement is sought. 

A hierarchical genetic encoding of both representation and parameterisation may 

allow for increase in shape adaptivity by including the complexity of the parameteri-

sation into the genetic encoding for adaption. Hierarchical crossover and representa-

tion aware mutation operators, have been used successfully to adapt the complexity 

of primitive objects in simple designs. The application of this approach to more 

sensitive representations such as B-Sphne curves should be investigated. 

This work describes the development of a framework for evolving geometric structures 

to arbitrary detail. The scope of this approach will encompass the problem of defining 
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simple curve shapes capable of describing aerofoil sections to a high degree of detail, 

and their adaptation to a given problem via a process of simulated evolution. 



Chapter 3 

Evaluation of Fluid dynamic 

Characteristics 

Automated design encompasses the practice of iteratively searching for a design that 

meets some predefined criteria without human intervention. The manual design pro-

cess is well known and practiced to a finite degree. The automation of this process 

is highly sought after, oSering many potential savings in cost and time, as well as 

substantial gains in the final performance of the design. 

The apphcation of the automated design philosophy has been made available to engi-

neering design by the recent swing seen in the paat few decades from using experimen-

tal based analysis of design performance, to computational analysis using theoretical, 

analytical and first principle based methods. The recent advances in computer hard-

ware and software resources have allowed the use of Computational Fluid Dynamics 

(CFD) [64] in automated design. Previously, the use of CFD in iterative design cycles 

required expensive and often specialised computing facilities [65]. 

The abihty to uae these solvers in an automated design environment can oSer con-

siderable cost, as well as performance benefits, to the design management process. If 

apphed early in the preliminary or conceptual design phase, resources can be diverted 

in the later design stages to other important design areas, while under the assurance 

that the design is close to its final description. The adoption of this idea could also 

be of great benefit in the scoping of contractual proposals as the conceptual design is 

38 
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already close to its maximum performance. 

3.1 Ducted Thruster Units 

One problem investigated in this work, is a section shape sought for use in a thruster 

unit suitable for deep sea Tethered Unmanned Underwater Vehicles (TUUV). These 

units are commonly used for operations such as oil rig maintenance, and operate 

mainly at depths where cavitation will not occur. 

Ducted thruster units offer several efhciency advantages over traditional propeller 

arrangements by o&ring a lower propeller loading, by using the duct to draw a larger 

volume of water into the propeller. Additional thrust is also generated due to the 

acceleration of Sow over the duct. An advantage oSered by the arrangement of the 

duct, is the duct wall proximity to the blades reduces the effect of tip vortices. 

In an attempt to ehminate this vortex drag, a ring propeller arrangement has been 

proposed where the propeller is mounted on a thin ring that sits Hush within the 

external duct. This arrangement tends to lack the efficiency oSered by traditional 

ducted propeller units using a much simpler arrangement with a small gap between the 

propeller ajid duct to reduce tip vortices. The main drawbacks to the ring propeller 

arrangement are mainly the mechanical problems of power transmission, seals and 

centrifugal bearing problems associated with the new designs. 

Remote Operated Vehicles (ROVs), or Tethered Unmanned Underwater Vehicles 

(TUUVs), require propulsion units that oSer high efficiency while relatively light 

weight and good flexibihty for the positioning of the thrusters. Such units currently 

use small electrical imits driving the shaft of the propeller, and are mounted from the 

nozzle using a 'spider' type bracket. However one drawback to this arrangement is 

that the position of the motor disrupts the Aow of water into the propeller. 

A natural progression, drawn from the basis of ducted ring-propellers, has been the 

idea of tip-driven propellers (TDPs). This concept involves having either a mechanical 

drive or electrical motor encased within the duct walls. The use of an electromagnetic 

drive with the absence of physical contact between the drive system and propulsor, 

oEers signiAcant advantages to the mechanical layout which still involves issues such 
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Figure 9; Ducted Thruster Unit 

as sealing problems associated with the mechanical drive. 

The hydrodynamic performance of a TDP shown in Figure 9 was investigated by 

Hughes [66] for a unit using a highly efficient permanent magnetic motor design. 

The efficiency performance still lagged that of traditional ducted units and it was 

proposed that the unit should be hydrodynamically optimised to examine whether 

such performance could be recovered. One of the non-optimised and novel features 

of the tested unit, was the bi-directional characteristics of the section used for the 

propeller. This bi-directional characteristic was added to enhance the positioning 

efficiency and effectiveness required by TUUVs. 

3.2 Characteristics of Propellers 

When a propeller is rotated, a torque is applied on the propeller by the fluid which 

acts in opposition to the rotation force resulting in a loss in angular momentum. In 

addition, a thrust is produced by the displacement of fluid by the propeller, causing 

an increase in rearward momentum. 

The non-dimensional coefficient of Thrust Kt is defined as 

T 
Kt = 

prfiD'^ 
(17) 

and the coefficient of Torque Kg is defined as 
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(18) 

where M is the number of revolutions per second turned by the propeller and D is the 

propeller diameter. 

The eSciency of the propeller is defined as the ratio of thrust power produced by the 

propeller to the input power and is defined as 

T] = 

fowenn 

= (19) 

1 27r A'g 
J 

where J is the propeller advance ratio 

and ^ is the distance advanced by the propeller per second. 

In an eEort to improve the thrust and torque performance of a propeller, the analysis 

and design of a blade section taken at 70% propeller radius wiU be considered via 

section shape optimisation. 

3.3 Description of Aerodynamic Forces 

The components of Lift and Moment in relation to the free stream are shown in Figure 

10. These basic forces often form the basis for objective comparisons between designs 

in section shape optimisation. A summary of the basic fliiiddynamic coefEcients used 

for comparison are given below. 
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Figure 10: Components of Forces acting on an Airfoil 

3.3.1 Lift 

Lift is generated by a foil (aerodynamic or hydrodynamic) through the generation 

of a pressure distribution around the upper and lower sections. The nature of the 

distribution is determined by a non-linear relationship between the shape of the foil, 

and the physical characteristics of the applied Sow-Geld (direction, temperature, den-

sity, entropy, etc.). For the illustrative pressure distribution given in Figure 11, lift is 

generated by the suction of the combined upper surface pressure, overwhehning that 

of the lower surface. 

The net hft produced by such an airfoil at zero angle of attack is given by 

(Pz; — Po) + (% — Po)] (21) 

where are the respective upper and lower surface pressures over an element (fz. 

The non-dimengional form of hft, is given by 

C 
L 

(22) 

where c is the chord (unit length) of the airfoil. This can also be written as 

Cz, — - ^ (Cpiy - C^^) (23) 

since by definition. 
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Figure 11: Upper and Lower Surface Pressure Distributions for a NACA0012 Airfoil 
at Cl = 0.6 

C„ = ^ - P o 
" \pV' 

(24) 

For an airfoil at an angle of attack a, lift is defined in a direction perpendicular to 

the air direction. 

Here, 

Cy = ^ (CpCf - Q)!,) ( (25) 

and 

Cx = 
Zz/c 

zi/2 
(26) 

where C%, are the coeSicients of forces acting in the a; and z directions. 

The coeScient of lift is given by 

Cn = GyCOSO! — C X sma. (27) 
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3.3.2 Drag 

Pressure drag is the resistance to the Aow due to the pressure diEerential in the How 

direction. The pressure drag coeScient may be calculated from the force coeSicients 

by 

C'dp = sin a - (7% cos a. (28) 

The total drag force acting on a hfting body (Net force acting against the free stream 

flow), is described by the force corresponding to the rate of decrease in momentum, 

in a direction parallel to the undisturbed stream of the external How around the 

body. This decrease in momentum, is usually calculated between sections at inhnite 

distances upstream and downstream of the body. 

For low speed two dimensional Sow over aerofoil sections, the dominant drag force 

component is known as profile drag and is defined as: 

+ C'du (29) 

where represents the eEect of viscous forces over the aerofoil. 

3.3.3 P i tch ing M o m e n t 

The pitching moment may also be calculated from the pressure distribution. Around 

the Oz, Oz axis, the pitching moment due to Z — /orce is 

y [(;)[/ - %) - (% - f'o)] (30) 

since by dehnition 

the pitching moment about the Z — /orce is given by 
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, /a; 
(/Mz — — y j d 1̂ —j . (32) 

Similarly, the contribution to due to the % — /orce may be obtained as 

Cmx — / f—^ d f—^ . (33) 
• J z \ / c V C / V C / 

Finally the total pitching moment coeScient is 

= C'Mx + . (34) 

3.4 Computational Analysis Techniques and the 

Panel Method 

Computational Fluid Dynamics (CFD) considers the numerical evaluation of physics 

acting on a fluid, due to a disturbance in the Eow-held. First principle analysis allows 

for the exact solution of Euid dynamics by considering the forces acting on a fluid 

element. The basis for CFD forms from three physical considerations: 

# The Conservation of Mass 

JVet yZow owt o / CoMtro/ = o / cfecreaae o / maas 

yoZwTTze (Arottp/i awr/ace yoZitme 

# The Forces acting on a Suid element (The Momentum Equation) 

= ma ( Newton's Second Law) 

Net forces acting directly on the mass of the fluid, and surface forces (pressure 

and shear) acting on a surface of a fluid element. 

# The Conservation of Energy 

gw/oce /orces 
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From this baais, the general Navier-Stokes equations can be obtained to describe the 

state of Sow supporting both laminar and turbulent flow conditions. Their exact 

solution is a time-consuming process and require a high degree of numerical accuracy 

and stabihty to adequately capture the high order viscous terms necessary to yield a 

satisfactory solution. 

In this work, it is assumed that a design is sought for smooth bodies that maintain 

fully attached Eow around the body when operating at their design point. Then the 

viscous e&cts are most important in a smaU region near the body profile. In this 

region, viscous eSects may be approximated by describing the flow using boundary 

layer theory. Outside, an inviscid flow model can be used, and viscous eSects assumed 

negligible. 

3.4.1 T h e Pane l M e t h o d 

In considering irrotational flow where vorticity is zero at every point, the velocity is 

given by the gradient of the velocity potential ^ such that 

y = V(^. (35) 

Substituting Equation 35, into the continuity equation for inviscid incompressible 

Sow gives the Laplace Equation ag shown in Equation 36 

For the Sow past a slender body such as an airfoil, a general solution to the Laplace 

equation can be obtained by adding a distribution of vorticies 'y on the airfoil surface, 

to the potential of the free stream. The solution at a point f due to the distribution 

of vorticities as illustrated in Figure 12 is given as 

= ttooZ + 'Uoo?/ + / (37) 
Va 

where is the potential of a unit strength vortex dehned as 
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X 

Figure 12: Velocity potential at a point away from a vorticity distribution 

(38) 

with (r, giving the polar coordinates of f relative to ""/(s). 

To satisfy Laplace's equation at every point on the airfoil surface, the Neumann 

boundary condition gives 

where %& = 0 would determine a physical boundary with zero Aow through it. 

(39) 

3.4.2 Solut ion of Panel Charac te r i s t i cs 

Prom Laplace's Equation 36, Equation 37 can be written as 

(ti.ti),^ = 14- (40) 



By discretising the body surface into TV Panels and placing a potential source on 

each panel, a set of simultaneous equations can be found such that 

(M, -u) - ^ (41) 
\Jpanel / 

where = 0 for zero normal flow at the surface of the panel. 

Treatment of the Kutta condition requires that zero circulation exists at the traihng 

edge. A simple implementation such as = ^i+TAr+i = 0 may lead to unacceptable 

solutions such as 'yi = and I'Ar+i = —le^. An improved treatment can be apphed 

through the requirement that vorticites must be small, such as 'yi = 'yAr+i = 0, which 

can be achieved through the addition of a constant potential at the wake. 

The addition of the Kutta condition to Equation 41, lends to the solution of unknown 

strengths ŷ̂ . The velocity components at each panel may then be obtained from the 

tangental components of (w, such that 

(42) 

which apphed to Equation 37, the panel velocities can be obtained from 

% = t + ^ / L ^ d s ) . (43) 

j=l -J panel V J 

Finally, the coefhcient of pressure Q, for each panel is obtained from 

Cp = l - # ' (44) 
*-̂oo 

3.5 XFoil - Viscous Coupled Potent ia l Solver 

A viscous coupled Panel method XFoil [67] is used extensively throughout this work. 

Viscous couphng is added to the inviscid irrotational Panel method by including the 

solution to the integral momentum and kinetic energy momentum equations that 
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describe two-dimensional boundary layer Sow. The inclusion of the boundary layer 

has the eSect of eSectively modifying the shape of the body as seen by the external 

Aow. To include this effect within the XFoil Panel method solution, the boundary 

layer displacement thickness is added to the transpirational velocity condition in 

Equation 39, such that the normal flow boundary condition becomes: 

" • " = S • (45) 

One approach to applying this two-way coupling, is to solve the panel method equa-

tions starting with the Neumann boundary condition y - n, = 0. Then solve the 

boundary layer using the panel solution velocity field [/g as an initial input condition. 

The process can then be repeated iteratively replacing the simple Neumann condition 

with Equation 45 calculated from the boundary layer solution. 

It is possible that convergence of the viscous couphng applied through such a method 

may not always be easily achieved. XFoil adopts a more robust approach by solving 

the entire non-hnear equation set of both Panel method and boundary layer equations 

simultaneously by a Newton-Raphson method. 

A full description of the viscous equations and their solution in XFoil is given in [67]. 

A brief introduction to their formulation is given below. 

3.5.1 Laminar B o u n d a r y Layer A p p r o x i m a t i o n 

For laminar boundary layer How, the Navier-Stokes equations can be reduced to derive 

the Prandtl botmdary layer equations 

^ + ^ = 0 (46) 

8 , r ° 

where it is assumed that: 
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e The boundary layer thickness is very small compared to L for large Reynolds 

numbers, 

# The tangential velocity % is much larger than the normal component i;, 

# The pressure is essentially constant across the boundary layer in the ^ direction. 

By combining the boundary layer equations, and integrating the resulting expressions 

to inhnity with respect to ?/, the Von Karmen integral momentum equation is obtained 

as derived in 49. 

where the shape factor the displacement thickness momentum thickness 

^ and skin friction coeSicient C/ are defined as follows. 

(̂ * = / (̂ 1 - (50) 

"4 
„ Tw du 

= Twwr " " ^ ~ 
(52) 

y=0 

By multiplying the momentum integral equation by if and integrating, the kinetic 

energy integral equation is obtained: 

where the kinetic energy thickness and the dissipation coefficient are defined 

as 

n 1 r ^"'•'.1 
= w i L ' - ' w " < ' 
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The system of equations 49 and 53 contains too many unknowns, and therefore must 

be complemented by other equations. XFoil uses the semi-empirical relations from 

the Falkner-Skan velocity profile family to close the system, which are solved using a 

backward Euler discretisation. A full description of the solution used by XFoil to the 

Laminar boundary equations is discussed by Drela [67]. 

3.5.2 Implementa t ion of t h e Turbu len t B o u n d a r y Equa t ions 

In turbulent How conditions, fluid motion becomes unsteady. In such a caae, foUowiug 

the fluid motion in detail becomes impractical, and therefore a description of the 

average motion of the flow is substituted. 

If we define the time average of any How quantity by: 

2 rto+T 
lim - / (56) 

r-^oo ^ 

where 

a(a;, ?/) + 

such that a' represents the fluctuations from (o — o). 

By time-averaging and comparing the order of magnitude of terms of the steady in-

compressible Navier-Stokes equations, the following turbulent boundary layer equa^ 

tions can be derived: 

("I -
The Von Karmen integral equations can be derived from the tiubulent boundary 

layer equations. The main differences to the laminar cases include the inclusion of 

a Reynolds stress term — a n d the integral quantities and Cy are also 
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expressed as time-averaged velocities. As in the laminar cage, solution of the Von Kar-

men integral equations requires the inclusion of additional equation relationships to 

complete the system. XFoil incorporates relationships derived from the Falkner-Skan 

profile family to complete the solution which is detailed by Drela in [67]. Turbulent 

separation is predicted to occur when approaches 3.3. 

3.5.3 Locat ion of Transi t ion 

During the growth of the laminar boundary layer, disturbances can make the flow layer 

become unstable. Eventually the disturbances cause the boundary layer to become 

turbulent, which is known as transition. The accurate prediction of the transition 

region is important in drag estimation as it defines regions of laminar Aow where 

skin-friction is low, and turbulent regions where skin-friction drag increases rapidly. 

XFoil adopts a procedmre for transition prediction known as the method, which 

computes the maximum spacial amphhcation ratio formed from the growth of wave 

hke disturbances in shear layers. Transition is most likely to occur when the amplitude 

has grown by more than a factor of although the ratio can vary between to 

owing to factors such as surface roughness and free stream turbulence. 

From the Falker-Skan profile family, the spatial amplification curves based on the 

Orr-Sommerheld equation can be related to the local boundary layer parameters [67]. 

The ampliBcation curve envelopes are approximated such that 

f j f ) 
ft = ^ (H) [Re, - Re,,], (60) 

where is the logarithm of the maximum amphfication ratio, and the 

critical Reynolds number are expressed by the following empirical formulas: 

0.01 ([2.4^ - 3.7 + 2.5 tanh (1.5^7 - 4.65)]^ 0.25) 
0 

logio ^ — 0.489^ - tanh ^ ^ — 12.9^ -|- ^ ^ + 0.44 

The amplification rate is obtained by integrating the amplification rate downstream 
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from the instability point â criticoz where giving: 

(61) 
ĉrtticaf 

The conversion from to spatial a; is accomphshed by: 

dM (fM dM 1 / a; (̂ [/g \ 1 
" + 1 —Z—Z (62) da; (fJ?eg da; d-Reg 2 \ C/g da: y ^ 

The ELmplihcation rate is expressed in terms of and ^ by: 

and 

= p ( ^ ) = (6.54n - 14.07) / 
/̂ a; 

= ™ m = L ) 5 8 < f ^ - 0 . 0 6 8 ) ^ (64) 

3.5.4 Imp lemen ta t ion of B o u n d a r y Layer Calculat ion and 

Pred ic t ion of Drag 

The numerical approximation for the Laminar boundary layer is hrst calculated by 

growing the solution from the stagnation point near the leading edge of the airfoil. 

Boundary layer transition is then added to the solution. Since no method exists for 

describing the transition process, a Actions transition point is used to define a point 

where the boundary layer instantaneously changes from a laminar boundary layer to 

a turbulent one. This transition point is located from the laminar boundary layer 

where M(a;) = 9. In XFoil, an interval + l) is first found such that ^(a;,) < 9 

and M(a;i+i) > 9, and then hnear interpolation is used to hnd the exact point, re-

evaluating the brackets at each iteration. The turbulent boundary layer calculation 

is then applied from the transition point starting with initial values taken from the 

end of the boundary layer calculation. 
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In two dimensions, the components of total drag reduce to that of profile drag which 

can be calculated from the loss of momentum across the wake. The Squire-Young 

formula is used to calculate profile drag at the last computational point in the wake. 

T~) 
Cz) = ^ ( ^ ) ^ - (65) 

3.5.5 Pa rame te r i s a t i on of XFoil for Op t imisa t ion 

The setting of XFoil parameters should appropriately reSect the solvers abihty to 

capture aerodynamic sensitivity to a wide range of designs. The accurate prediction 

of boundary layer transition will have a critical impact on drag calculation. To help 

dehne boundary layer parameters, the drag polar of the NACA0012 airfoil has been 

reconstructed and presented in Figure 13. In XFoil, the transition point is given aa 

the lesser of = Mcrî icof a]:id a; = where is the maximum amplification 

ratio for disturbance growth described in Section 3.5.3, and defines a point where 

the boundary layer becomes turbulent if not already so. The parameter McriticoZ is 

mainly determined by surface roughness and external parameters such as temperature 

and free stream turbulence. These factors are considered beyond the scope of this 

study and therefore the value of 9 is used. The values for for the upper and 

lower surface were set at a;/c = 0.3 for the upper surface where the How is expected 

to become turbulent early in normal operation, and z / c = 0.5 for the lower surface 

where the How is expected to trip later owing to the reduced curvature normally found 

in the 6rst part of the section. 

The drag polar produced by XFoil for Ae — 3e^ is compared in Figure 13 to experi-

mental results obtained from [68]. The results obtained by introducing boundary layer 

tripping, compares more favourably, than the results obtained where the boundary 

layer is allowed to trip freely as determined by This difference is expected 

to be largely attributed to the manual tripping of the boundary layer on the experi-

mental model at a;/c = 0.3. The pressure coe&cient distribution for the upper surface 

at zero angle of attack is compared with experimental results in Figure 14. 

Overall, a reasonable capture of the aerodynamic characteristics important in this 
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Figure 13: XFoil Drag Polar Reconstruction for a NACA0012 Airfoil 
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Figure 14: XFoil Pressure Distribution Reconstruction for a NACA0012 Airfoil at 
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work can be made by XFoil, which oSers a cheaper alternative to the more expensive 

viscous solutions of the Navier-Stokes equations. 

3.6 Unstructured Cell Vertex Euler Solver 

The Euler equations describing the conservation laws of mass, momentum, and energy, 

can be written in vector form as: 

+ V . F = 0 (66) 

where F = (/, g, A), and 

U = 

p pw 

pw% 
f = + f h = pwf 

pw p7;w pw^ + f 

_pE _ pt ;^ pwjf 

E' and ^ are the total energy and stagnation enthalpy per unit mass respectively. 

Equation 66 can be integrated over an arbitrary finite volume O to construct the 

integral form of the equation. 

Using Gauss' Divergence Theorem this can be expressed as 

d 

Vn Van 
(67) 

where <9̂2 represents the contour around the volume H and 6" represents the surface 

of the volume. An average change of the conserved variables, denoted by [/can be 

expressed for a discrete Gnite volume as 

a 

-1 

Fo 
5 ] ( / S , + gSy + hS,)dS (68) 

A:=l 

where the summation is over all the faces of the discrete volume, 6"̂  and 5'z 

represent the projected areas of these faces, and is the volume. Equation 68 

can be used over any discrete volume thus the method can be apphed on any grid 

topology. 
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A Cell Vertex scheme is used to simph^ the boundary condition implementation. 

Additional volumes or 'Control Volumes' are constructed over which the equations 

are integrated. The flux values on the faces are calculated using Roe's upwind scheme 

[69], in which an approximation to the Riemann problem is sought on the control 

volume faces. 

The numerical Hux, equivalent to the terms inside the right hand integral of Equation 

67, can be expressed as 

/ i i / 2 = 5 im")+m'-) -\A^\(u" - u'-)] (69) 

Where is the Aux Jacobeaa, evaluated using Roe's Auid state [69]. 

In the implementation used. Equation 68 is used to calculate from for each 

volume by calculating the numerical flux given by 69 on each face and then integrat-

ing the result with respect to ^ via Runge Kutta numerical integration. A detailed 

description of the implementation of the solver is given by Rycroft [70]. 

3.7 Summary 

Two How solvers have been described in this Chapter, XPoil and an unstructured 

3D Euler solver. XFoil has been found to suitably reAect the incompressible flow 

characteristics of a NACA0012 section. It will be used for the optimisation study of 

the ducted thruster foil section, due to its rapid evaluation of the flow solution. The 

Euler solver will be used to measure the scalability and performajice of a distributed 

PC network for aerodynamic calculation. 



Chapter 4 

The Formation of Species and 

Optima Finding with Genetic 

Algorithms 

For this work, a robust Genetic Algorithm capable of discovering novel design featm-es 

amidst mnlti optima and deceiving search landscapes is required. Without this basic 

capability, research into shape adaptivity may become inAuenced by the noise of 

unnecessary disruption due to local optima traps, population dominance by a single 

species or member, or through other biaaes that may hamper the convergence and 

adaptation ability of the algorithm. This chapter is concerned with the construction 

of such an algorithm. 

4.1 The Canonical Genetic Algorithms 

The evolutionary cycle that encapsulates the Genetic Algorithm discussed in section 

2.2.2 has been implemented using C++. The Canonical Genetic Algorithm which 

features binary string chromosome structures, has been used as a starting point model 

due to its success in previous implementations [2] [36], and the large amount of research 

that has been carried out around it. Other implementations of the GA may also be 

used for this work including Real encoding as described by Esheknan and SchaSer 

58 
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[71], as well as the more advanced Breeder GA [72], and Messy GA [16]. However 

these are generally harder to implement on real problems, and may not necessarily 

help any more in achieving the goals of this research. 

A description of the Object Orientated implementation of the GA used in this work is 

given in Appendix B. This section discusses the key algorithms and operators used, 

and their eSect on its performance when apphed to a simple but diKcult optimisation 

problem, 'The Bump Problem'. 

4.1.1 T h e B u m p P rob l em 

The bump problem, introduced by Keane [73], is a diScult problem for most optimi-

sation methods to deal with. Good local optima are found in small islands or bumps, 

surrounded by vast areas of poor solutions. Such a landscape is diScult to explore aa 

the global optimum which hes on a constraint boundary cannot be found by simply 

following a path improving Etness or good solutions. It is assumed that the periodic 

formation of the peaks will not assist the search process. The orthogonal structure of 

the bumps may assist operations such as genetic crossover, however the occurrence of 

such an event it considered to be extremely small, and its advantage to the operator 

ignored. The bump problem is ideal for testing search algorithms (Schoenauer and 

Michalaewicz, 1996 [74];Michalewicz etaZ., 1998 [75]; and Keane, 1995 [73]) includ-

ing those destined for aerodynamic design where a shght perturbation in the design 

parameters can lead to disastrous results. 

The problem is defined aa: 

(EILi c o g ' ^ W - 2 n iLi 

for 

subject to 

(70) 

0 < 3 ; { < 1 0 2—1,...,M (71) 

Z; > 0.75 aW ^2^* < 15M/2 (72) 
i = l 
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Figure 15; 2D Bump Problem 

starting from Xi = 5, i = 1, Figure 15 shows the 3D plot of the bump problem 

for n = 2. For n > 2 this problem becomes more demanding, with families of peaks 

occurring within a complex constraint surface. 

4.1.2 GA initialisation, establishing generation zero 

The initial population is usually setup by random generation of member chromo-

somes, which are then evaluated and stored until the initial population is complete. 

The length, type and structure of the chromosome string depends on the number 

of parameters to be discretised, the size of the individual parameter space, and the 

representation scheme used. 

The structure of the chromosome is defined by genes representing the individual 

parameters. As with any optimisation process the number of parameters used will 

increase the number of objective functions to be evaluated. 

Binary Encoding 

A simple but extremely effective genetic coding is achieved using finite length binary 

strings to encode the search variables. A variable can be represented by enforcing 

limits on the variable range such that mini < Xi < maxi where Xi is the parameter to 
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be searched. A gene string is encoded for each variable by subdividing the parameter 

by the number of binary bits to be used. 

To ensure that the encoding can survive mutation and crossover to the best of its 

abihty, Grey Coding has been used here to reduce the binary 'Hamming Distance' 

between genes. Hamming Distance is the number of diSerent positions between two 

binary vectors. For example "01" would represent the Integer value of 1, whereas 

flipping the left bit to "11" would now yield a value of 4. Using Grey coding, the 

vector "11" would yield a value of 2. Davis [76] found that the introduction of 

Grey Coding to the chromosome encoding helped members survive after undergoing 

mutation operations where binary code bits were randomly flipped. The Grey Code 

implementation given in [19] was used in this work. 

The chromosome is made by concatenating all the gene strings together. Each bit of 

the combined chromosome string is known as an allele, and its position is called the 

locus. Genetic operators can be performed on this chromosome string, before it is 

decoded back into its real number components for evaluation. 

Populat ion Sizing 

Population size is one of the most important parameters to be considered on tailoring a 

GA. Despite the depth of literature found evaluating various strategies for determining 

the appropriate population size, there are stiU no firm guidelines of how large a 

population should be used for a particular problem. If the population is too small, 

progress can be hindered by the lack of schema sampling available within its members, 

and increased stochastic eSects are required to alleviate this problem. Too large a 

population and computational cost can become a concern. 

Convergence time is dependent on population size. Goldberg[77] showed that typical 

GAs converge on 0(P(opP) generations, where P is the population size. Since con-

vergence is used to indicate the low rate in which the populations fitness progresses 

at each generation (stops improving), it would be suggested that large populations 

should be used to avoid premature convergence. 
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Initialisation 

The initial starting point of the GA is not critical as in other optimisation methods. 

It is still important to ensure that the initial population is spread over a diverse area 

of the search space. 

The three main methods used to initialise a population are random generation, deviate 

and injection. In random initialisation, chromosomes of each population member are 

created bit by bit via random number generation. In its simplest form, a binary 

chromosome is created by generating random numbers of 0 or 1 for each bit until the 

chromosome is complete, without any knowledge of individual gene representation. In 

deviate initialisation, a given set of chromosomes are perturbed by a random amount. 

This is done by real/integer number perturbation on a gene by gene bases. The third 

initialisation method, injection initialisation, reads the chromosome representation 

from hie either directly in their binary string form or from their actual parameters 

which are converted to binary. Ah three schemes are included in the GA. The deviate 

method is necessary where the feasible solution space is sparse and formulation of 

a diverse population with a relatively high degree of feaaibihty diSicult. Injection 

allows for restarts and structured experiments to be performed. 

On creation of all the population chromosomes, the population is evaluated estab-

lishing generation zero. In search areas containing a high degree of infeasibihty, it 

may be necessary to continue initialising new members until a predefined proportion 

of feasible members is reached in generation zero. 

Evaluation of the objective values is then performed to assign each Genome with its 

raw fitness measure for the selection process. 

Constraint Handling 

In order to solve a constrained optimisation problem, it is important to ensure that 

any optima found satisfy all constraints. A variety of constraint handling methods 

can be used with the various optimisation techniques and a general discussion of 

the approaches that can be used is given by Siddal [18]. Penalty functions are a 

simple approach to handhng the constraint problem commonly adopted to work with 
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evolutionary algorithms due to their simplicity, robustness and the fact that they do 

not require knowledge of sensitivity. Penalty function methods, work by combining 

the objective function with some penalty fimction that penahses the objective value 

when a constraint is violated. 

The simplest form of a penalty function is given in Equation 73. 

M z, 
= [/(a;) + 1 0 " ° ^ |c^| + jcj"! (73) 

j=i j=i 

The expression represents a distorted objective function which tends to force the 

search towards feasible areas. If the search either begins in the infeasible region, or 

wanders into it, it is urged towards the feasible region by the distortion of the surface. 

In this work, Fiacco and McCormick Penalty functions are used: 

1 ^ M . 
%(3;) = [/(a;) + - ^ ^ (74) 

j = l ; ^ / 

where r = [0,1) is a penalty relajcation factor used to control the intensity of the 

apphed penalty. 

Stochastic search methods may find it dlGicult to satisfy an equality constraint, and 

therefore in this work only inequahty constraints aze considered (equality constraints 

can easily be treated aa inequahty constraints). The constraint functions are defined 

as: 

Cj = CT - C(a;) (75) 

where C(a;) is the value of the constraint and Cy is the constraint target value. 

This method contains mixed penalty functions in both the interior (feasible) regions 

which are a component of the satisfied constraints, and an exterior (infeasible) com-

ponent which is a function of the violated constraints. The internal term increases 

in size as the constraint boundary is approached, trying to prevent the solution from 

crossing the boundary region. As the solution matures and becomes less erratic, the 

penalty given by the interior and exterior terms close to or at the constraint boundary 
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is reduced sharply, thug allowing the solution to approach the boundary if required. 

The penalty reduction factor r is typically reduced at a rate of 0.04 per generation. 

4.1.3 Pa ren t a l Selection 

The objective of the selection process is to ensure that only good quality schema 

participate in the reproduction stage. The selection method must therefore be biased 

towards members of above average htness, such that high quality schema are likely 

to propagate into future generations. Since the selection stage determines the type of 

schema sampled by the Genetic Algorithm it is often considered as the most important 

phase in the evolution process. In order that a judgement can be made between 

good and poor candidates, some measure of the solution fitness must be made. The 

members fitness is a relative term which indicates the individuals standing among its 

contemporaries. If is the set of input parameters and $ = is the vector of 

objective variables returned by the objective function, then fitness F is given by 

(76) 

where ( is the generation index of the algorithm. The success of a GA hes in exploiting 

existing information from its members while exploring new areas of the search space, 

by samphng schema from a diverse population. Selection therefore plays a key role 

in this process. If the selection is too ehtist, and heavily biased towards selecting 

the best members of each population, then this intensive selection pressure can lead 

to a significant reduction in the phenotypical diversity of the reproduction pool [78], 

thus reducing the exploration advantage of the GA. The result can lead to premature 

convergence of the evolution process. Problems of population take-over where the 

population becomes swamped with elitist members, are frequently reported with such 

applications. 

To examine such key performance characteristics, several terms were defined by Baker 

[79] and Back [80] as summarised below. 

Selection Pressure: the probabihty of the best individual being selected compared to 

the average probability of selection of all the individuals. 
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Bias: the diSerence between an individual's normahsed fitness and its expected prob-

ability of reproduction. 

Spread: the range of possible values for the number of oSspring of an individual. 

Loss of Diversity: the proportion of individuals of a population that are not selected 

during the selection phase. 

Selection Intensity: the expected average htness value of the population after applying 

the selection method to the normalised Gaussian distribution. 

Selection Variance: the expected variance of the fitness distribution of the population 

after applying the selection method to the normahsed Gaussian distribution. 

Fitness Assignment 

The first stage of a selection process is to award each individual of the current popular 

tion pool, a weighting based on its relative performance amongst the other competing 

members. The weighting which is based on the notion of member fitness, win give the 

individual an appropriate probability of being selected in the reproductive selection 

process. 

Fitness assignment essentially provides a measure of the performance of an individ-

ual's relative strength amongst the other candidates, against the objective of the 

evolution problem. The original or raw fitness measure of a member is usually de-

termined by the objective function. Although some selection methods can work with 

this raw assignment, it is sometimes more useful to re-scale this performance measure 

so that the differences between members becomes more subtly defined. 

Linear scahng is simple to implement, where member fitness is scaled using a hnear 

function dependent on a predetermined value. 

J- "T Jmax,t Ji.t 

where is the positive fitness assigned to an individual % in generation is 

the maximum member's raw fitness assigned by the objective function and is the 

objective fitness for member 2 in generation The resultant htness using this simple 
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linear assignment lies in the range of (0,1]. 

This method, can however lead to intense local selective pressure on the elitist pro-

portion of the population, reducing the phenotypical diversity of future generations. 

Exponential and power based proportionate scaling methods, can be introduced to 

alleviate the pressure on local selection. However phenotypical distances are still the 

main measure on which the method is based and are not necessarily conducive to 

exploration. 

Ranking methods (i.e. first, second, third, ....) [81] ignore phenotypical distances 

where the measurement of htness is based on the members position relative to the rest 

of the population. If two or more individuals have equal standing, they are assigned 

an equal averaged rank. Three types of ranking scales are generally adopted, hnear, 

power and exponential, and the way these are used generally depends on how much 

selection pressure is to be apphed. The hnear ranking scheme used was assigned such 

as 

^ ^rank ~l~ [TCink(̂ î / ( f (̂ ) 1)] {Prank ^rank) /^Q\ 

where CKront is the expected number of oSspring to be allocated to the worst member 

and is an adjustable parameter that defines the proportion to be allocated to 

the best ranked member such that CKramt = 2 — a^id 1 < < 2. f (^) is the 

population size of generation 

If this fitness assignment yields excessive convergence times, then a higher level of 

selection pressure can be apphed using an exponential scale. For the exponential 

scheme, 6tness from best to worst are assigned as 1,5^, ...,, where g < 1.0 (such 

as g = and j is a positive integer. Both a and j can be varied to apply the 

appropriate level of selection pressure. 

Fi tness Selection 

The objective of fitness selection is to create the pool of new parents from the current 

population, by associating higher chances of selection with members of higher assigned 

fitness. 
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"Roulette Wheel" selection [11] is the most baaic mechanism used by many GAs due 

to its simphcity. This method is analogous to replacing the numbers usually given on 

a roulette wheel with differently spaced pockets for each member. The size of each 

spacing is determined by that member's cumulative probabihty % which is given by: 

= where 

R = | f . f (i) = E S " " " ' f . . . 

where is given by Equation 78. The roulette wheel is then spun by randomly 

diahng a number (0,1], and the member with the cumulative probabihty that spans 

the dialled number, is selected to participate in the next generation. If the selection 

scheme allows the replacement of individuals drawn from the candidate pool, then 

the wheel is simply spun popgtze times. If a no-replacement scheme is desired, then 

the cumulative probabihty gi must be recalculated each time a member is selected. 

Although this scheme is simple and versatile, compared to the diEerent fitness assign-

ment schemes available, it is prone to generating numerical noise; i.e. the variance of 

the probabihty density function for selecting a member of given fitness is relatively 

large. Numerical noise generated by the roulette wheel and reproduction operators, 

tends to obscure the signal di^erence between good and bad schemata. 

The Stochastic Universal Sampling (SUS) scheme was proposed by Baker [79] to 

ehminate the numerical noise found in the Roulette Selection. The implementation 

of this scheme is illustrated in 6gure 16. 

This scheme works in the same way as roulette selection, but only requires a single 

random number to define the location of the hrst selection point. Then n-1 points are 

chosen from this Erst point at constant intervals. Because only one number is drawn 

from a random process, the appearance of each member in the reproduction pool is 

proportional to its expected probabihty of selection. A disadvantage of this scheme 

is that similar members with poor htness are severely screened from the selection 

process, ehminating a substantial part of the stochastic behaviour of the selection 

role. 

Another simple selection scheme that has become popular amongst researchers is 

Tournament Selection [82] [83]. In this scheme a tournament is held among a set of 
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RqxtsemaUon of a member in the selection pool 
_ Size of member is proponional to assigned fitness 

n i i s member is to be s e l e c i e ^ 

Randomly iHaUcdpou* [0.1) 

N equally spaced markers are arranged starting a single randomly chosen pofni. 
Where cach qwce aligns on a proportionally represented member, that member 
is selected to pardcipaie in the next generation 

Figure 16: Stochastic Universal Sampling Scheme 

individuals. The set is chosen at random from the selection pool, and the tournament 

winner is selected to become a parent, and the process repeated until the parent pool 

is filled. Like the Roulette Wheel and SUS, this method can be used both with or 

without replacement of candidates in the selection pool. The size of the sub-pool 

is dehned by the tournament size Tc/ur, taking values ranging from 2 to 

Numerical noise is reduced as roulette type routines are no longer required, while 

randomness is maintained through the selection of the member set participating in 

the tournament. Tournament victory is usually determined using any of the fitness 

assignment methods mentioned above. 

Elitism 

"Elitism", was Erst introduced by Kenneth De Jong(1975), as an addition to many 

selection methods forcing the GA to retain a number of best candidates at each 

generation. Such individuals can be lost if they are not selected to reproduce, or 

are destroyed through the reproduction process. A parameter is used in this 

implementation to define the proportion of best individuals that are to be preserved 

to the next generation without undergoing selection or reproduction processes. 
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Figure 17: Two Point Crossover Scheme 

4.1.4 Reproduction 

In the reproduction process, two individuals share genetic information to produce 

offspring that contain characteristics of their parents. In the GA implemented here, 

two of the basic operators are used, crossover and mutation. 

Crossover 

Traditional binary crossover takes the two parents, cuts their chromosome strings at 

randomly chosen locations, which are then swapped over from one chromosome string 

to the other as illustrated in Figure 17. 

The offspring thus inherit some genes from each parent with a small amount of genetic 

disruption. Two common parameters, crossover rate and the number of crossover 

points are usually used to define the type of crossover that takes place. Crossover 

rate defines the probability of crossover occurring during the reproduction phase 

(typically between 0.6 and 1.0). If the crossover rate is 1.0 then all offspring will 

contain genetic material from both parents, if a rate of 0.6 is used, then approximately 

60% of individuals undergo crossover. The number of crossover points determines the 

number of times the parent chromosome is cut and swapped with a second parent 

chromosome. Generally single point crossover is used, but other common rates include 
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two point crossover as indicated in Egure 17, and nniform crossover [14] where every 

other allele is exchanged between chromosomes. 

Muta t ion 

Mutation is applied to each oSspring (after crossover), randomly altering each gene 

with a small probabihty (typically 0.001 to 0.01). The role of mutation is to provide 

a smah amount of random search, and helps to ensure that no point in the search 

space has zero probability of being explored. 

Inversion 

Inversion is applied in a similar manner to mutation, except the result is a shght 

reordering of allele bits, such that 110 would become Oil. The implementation used 

in this work will allow three bits of a chromosome string to undergo inversion at a 

probability 

4.1.5 D e a t h 

The occiurence of death to each member is generational. That is, at each generation, 

a new population is created from the selected parents. New children are created by 

taking two parents at a time and performing crossover. If crossover is not performed, 

then the parents are copied into the new population as new members. Mutation 

and inversion is performed on all members of the new population. Finally elitism is 

apphed to ensure the previously best member is represented in the new population. 

The previous population is completely destroyed. 

4.1.6 Implemen ta t ion 

The GA and evolutionary operations described above, haa been implemented using 

C++ as described in Appendix B. The basic logical Aow process describing the 

artificial evolution process is illustrated in Figure 18. 
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1. Inidal ise t e m p l a t e D N A S t r u c t u r e . 

2. Initialise f a r e n t G e n o m e P o p u l a t i o n wi th t e m p l a t e DNA. 

3. P e r t u r b a t e P a r e n t DNA. 

4. Eva lua t e Popu la t i on r o t u f i t n e a a . 

5. S a v e G e n e r a t i o n 0 S t a t s . 

6. NC/tiZd = opaize — 

7. For t = 0 t o t = T V G e n a — 1 

( a ) So r t P a r e n t Popu la t i on by r a w f t f n e s a . 

( b ) R a n k Popu la t i on by r a - t i / f t t n e a a , ^ a c o f e d f t t n e a a . 

( c ) Ca lcu l a t e 22 a c a f e d f t t n e a a 

(d ) Ca lcu l a t e a r ray of a c c u m u l a t i v e a c o Z e d f i f n e 8 a / ( ^ a c a Z e d f t f n e a a ) . 

(e ) S d e c t W C k t f d p a r e n t s via S U S Se lec t ion s c h e m e a n d copy t o f o r e T t t f o o f . 

( f ) W h i l e o r e n t f ooZ) > 0 

i. R e m o v e r a n d o m G e n o m i e y i a n d G e n o m e g . 

ii. For J = 0 t o J = N C r o a a — 1 

A. Crossover G e n o m e y ^ wi th C c T i o m e g . 

iii. Apply m u t a t i o n t o G e n o f f i C y i a n d G c f i o m e g . 

iv. Apply inversion t o a n d G c T i o m e g . 

V. A d d G e n o ? 7 i e / i a n d C e f t o m e g t o C / i i f d f o o f 

( g ) E v a l u a t e o o f . 

( h ) C o p y N g f i t e m e m b e r s f r o m f o r c T i t f o o Z t o C / i t f d f o o f . 

(i) S a v e Gene ra t i on S t a t s fo r G e T i e r o t i o n t . 

( j ) Copy C / i i f d f o o f t o f o r c T i f a . 

8. S a v e S t a t s t o file. 

9. End. 

Figure 18: Implementation of the Canonical Genetic Algorithm 

4.2 Performance Evaluation of t h e Canonical Ge-

netic Algorithm 

Proportionate, linear ranking, exponential ranking and tournament selection methods 

have been explored for their suitabihty for use with diScult objective functions such 

as the Bump problem. The probability of mutation occurring during reproduction 

was maintained at 2%, and a crossover probability of 0.6 was investigated. The bump 

problem was used with M = 2, 5,20 scenarios and the tolerance of the binary encoding 

set to 20bit8 per gene. The population size was set to 50 members for M = 2 and 300 

members for M = 5 and M = 20. Ehtism was used to ensure that the best member of 

each generation survived to the next one. The penalty function given in Equation 74 

was used to steer the solution away from infeasible areas, with the reduction factor r 
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initiated at 1.0, and reduced by an amount of 0.04 per generation. The results matrix 

for each GA configuration is shown in Table 4 for M = 2 case, Table 5 for M = 5, and 

Table 6 for % = 20 bump problem. 

GA Scheme Pcross 1 2 3 4 5 Avg 
Linear Ranking 0.6 0.18 0.21 0.24 0.19 0.24 0.21 
Linear Ranking 0.85 0.15 0.15 0.18 0.13 0.13 0.15 
Exponential Ranking 0.6 0.12 0.11 0.10 0.12 0.14 0.12 
Exponential Ranking 0.85 0.11 0.12 0.15 0.09 0.11 0.12 
Tournament Selection 0.6 0.21 0.15 0.18 0.22 0.16 0.18 
Tournament Selection 0.85 0.18 0.20 0.18 0.19 0.15 0.18 

Table 4: Performance of Various Selection Schemes on 2D Bump problem (5 Samples) 

GA Scheme 1 2 3 4 5 Avg 
Linear Ranking 0.42 0.38 0.26 0.34 0.41 0.36 
Exponential Ranking 0.24 0.32 0.36 0.28 0.40 0.32 
Tournament Selection 0.32 0.36 0.27 0.33 0.38 0.33 

Table 5: Performance of Various Selection Schemes on 5D Bump problem (5 Sa 

GA Scheme 1 2 3 4 5 Avg 
Linear Ranking 0.54 0.46 0.52 0.37 0.41 0.46 
Exponential Ranking 0.34 0.30 0.42 0.28 0.32 0.33 
Tournament Selection 0.42 0.25 0.43 0.38 0.34 0.36 

Table 6: Performance of Various Selection Schemes on 20D Bump problem(5 Samples) 

The selection pressure offered by Exponential ranking and Tournament selection were 

found to be far too excessive for the bump problem when starting from a 6xed initiah-

sation point. The solutions converged extremely quickly for these conSgurations, and 

population takeover (where clones of the ehte members dominate in the population) 

was observed to occur after just 20 generations for the yi = 20 bump problem. Linear 

ranking with a selection intensity of 1.6 wag able to prolong convergence for at least 

40 generations for the same case, while consistently Ending superior results. Figure 

19 shows a resultant population produced by Linear ranking with Pcroag = 0.85. This 

result shows population convergence on a large local optimum in a path between the 

starting point at = 5,2:2 = 5, and the optimum. Of course if a totally random 
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Figure 19: Typical Population Convergence (popsize 50, nGens 40) 

starting generation was used instead of perturbing a point, we would expect some 

members to find the optimum some of the time. However from a fixed starting point, 

only six solutions found the optimum out of 50 trials. 

For populations created through pure random generation as opposed to some pertur-

bation around some starting chromosome string, a slight improvement in convergence 

can be gained as shown in Figure 20 for a series of five trials. For this solution, 

higher mutation and inversion rates were applied to a faster converging Tournament 

selection scheme. Without the complete random generation, premature convergence 

was found to occur nine out of ten solutions. 

The results shown here could possibly be improved slightly through further param-

eter tuning, however the results from the different selection and crossover schemes 

illustrate the limit in improvement that is available particularly at higher dimensions 

where fitness values in excess of 0.7 exist for the 20D Bump problem [73]. One aspect 

that is absent from the present GA implementation, is that of population diversity 

control, where different species co-exist but share different resources. 
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Generation 

Figure 20: Convergence of the Bmnp Problem with Tournament Selection (popSize 
50) 

4.3 Maintaining Population Diversity 

4.3.1 T h e Island Genet ic Algor i thm 

The Parallel Genetic Algorithm (PGA) was first proposed by Tanese [84] [85], as a way 

of eGiciently parallehsing the canonical genetic algorithm on hypercube computers. 

The implementation divides the population into several sub-populations, one per pro-

cessor. Each subpopulation is evolved as a separate canonical genetic algorithm. At 

certain generational intervals, inter-processor communication occurs, where members 

from each subpopulation are allowed to move across to another subpopulation. This 

process is known as the migration phase. Migrated members are either added to the 

existing population, or replace existing members of its new subpopulation by some 

replacement process. Once migration has occurred, the evolution process is resumed, 

until the next migration phase. 

Tanese foimd that not only did this implementation produce near linear speedup in 

the evaluation of candidates through parallel processing of the separate populations, 

but it also produced better results than the ordinal canonical genetic algorithm. 

The isolation of sub-populations has lead to significant research into Island Genetic 
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Algorithms (iGAs), whose term denotes a population split into many semi-isolated 

islands. There are several diEerent but equally accepted hypotheses about why iGAs 

are able to evolve better then Canonical GAs (GGA). Generally the subdivision of the 

population forms some basis of speciation, whereby separated groups of individuals 

may evolve genetically similar individuals likened to species in nature. The mixing of 

properties from each species during the migration phase leads to an injection of new 

schema into the evolution process, allowing iGAs to maintain diversity better than 

GGAs. 

The implementation of an iGA, requires the specification of several additional param-

eters including the number of sub-populations or demes, the number of generations 

that occur between migration periods, termed the migration interval, and the num-

ber of members allowed to migrate from one population to another, termed migration 

size. Belding [86] and Cantu-Paz [87] have analysed the importance of deme size, 

migration interval and rate on the convergence and solution quality of iGAs, Snding 

that iGAs are able to sustain several solutions if the migration process is moderately 

apphed. A description of the iGA implementation into the existing GA is shown in 

Figure 21 

1. Initialise t e m p l a t e DNA. 

2. Initialise N D e m e Gene t i c A lgo r i t hms wi th t e m p l a t e D N A . 

3. Initialise J y y i m i g r a t t o T t C o n t r o Z ibr is lands. 

4. For % = 0 t o i = J V G e n — 1 

( a ) For j = 0 t o j — 1 

i. Receive f r o m / T n f n i g r a t t o n C o n t r o Z . 

ii. Rep lace wi th a t r a n d o m in f a r e n t a . 

iii. Evofve O n e G e n e r a t i o n . 

iv. Save Global S t a t s . 

V. If r eached 

A. Se jec t N M i g b e s t m e m b e r s a n d copy t o f m T T i t g r a t t O T i C o n t r o Z . 

5. S a v e Global S t a t s . 

6. End . 

Figure 21: Implementation of the Island Genetic Algorithm 

An iGA scheme was tested on the bump problem with linear rank scaling for breed-

ing selection within the subpopulation. Migration interval, migration rates and deme 

size were investigated for the M = 20 bump problem. Two ring based topologies 
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+1 Deme Migraiion Topology +1+2 Demc Migration Topology 

Figure 22: Deme Topology and Migration Strategies 

were used for migration coordination, with demes sharing members with other demes 

immediately topologically adjacent for the first test case, and with demes within a 

topological neighbourhood of two as illustrated in Egure 22. At the heart of the migra-

tion process, is the immigration control algorithm that is responsible for coordinating 

Genome migration as dictated through the topology description. The immigration 

control process implemented is shown in Figure 23. 

The results of the iGA implementation on the M = 20 bump problem is shown in 

Table 7 based on a total population size of 300 members. Superior results to that 

of the basic GA are observed, particularly at migration intervals between 10 and 20 

generations. For larger deme sizes for a chosen migration rate of 0.2, at migration 

intervals of 10 generations, a small improvement in optimal fitness can be obtained 

but at a signiGcantly larger evaluation cost. This would imply that although more 

populations are used, a better and more stable optimal solution can be obtained 

in comparison to a standard GA implementation. For high dimensional problems, 

the associated cost vs htness obtained by employing several additional demes, will 

converge to that of a standard single population GA implementation. 
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1. Initialise for islands. 

2. Create t a ( a n d a = L i n k e d L i s t [ N f ) e m e ] . 

3. Create —1, 2, —2}. 

4. On A d d / T T i m i g r o M f a Function Call(int S e n d i n g G A , LinkedList t7?%?7i igronts) 

(a) For % = 0 t o i < 5 t z e ( 7 m T n t g r a f t o n S < r a t e g 2 / ) 

i. while 5 t z e ( % 7 ? i m i g r o 7 i t a ) > 0 

A. t a r g e t G j 4 = g e T t d i n g G / l + 7??%n%tgrat%o?%Strategy[i]. 

B. If t o r g e t C A > = A T C e m e then t a r g e f G A — = jVZ)e77te. 

C. If t a r g e t G A < Othen t a r g e t G A 4 - = N D e m e . 

D. Remove f t r 8 t ( t m ? T t i g r o n f 3 ) arwj add t o t 3 f o n d a [ f a r g e t G A ] . 

(b) Return. 

5. On G e t / m m i g r a f i t a Function Call(int A e c e i i i i n - g G A ) 

(a) R e a t i Z t = t a Z a n d a l R g c e i i ^ i n g G A ] . 

(b) Clear i 8 Z ( i ? i d 6 [ R e c e i v i n g G j 4 ] . 

(c) Re tum(J2e3uZt ) . 

6. End. 

Figure 23: Immigration Control Algorithm for iGA (+1+2 Strategy) 

Migration Migration Rate 
Interval 0.1 0.2 0.4 0.5 
5 0.46 0.50 0.46 0.35 
10 0.55 0.63 0.51 0.43 
20 0.51 0.62 0.38 0.42 
50 0.38 0.37 0.42 0.39 

Table 7: EfFect of Migration Rate and Interval on an iGA (6 demes of size 50) 

4.3.2 T h e Concept of Niche Format ion 

Speciation in natural ecosystems is the process whereby a single species dlEerentiates 

into several different species to occupy different niches. Such a process aids the evolu-

tion cycle to become more adaptive to changes in chmates/environments through the 

preservation of diversity. In GAs, diversihcation can be aided by restricting mating 

between diSerent species (dehned by niche occupation or through a separate DNA 

speciEcation) where niches represent different peaks of local optima. DiversiBcation is 

particularly important where more than one maxima peak is required. Unfortunately 

a GA's population will naturally converge on a single peak due to genetic drift [88]. 

Three approaches that are generally used to inSuence population diversity are species 

control, population crowding prevention, and to share the payoff associated with a 
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Number Deme Size 
Demes 20 75 
5 0.26 0.64 
10 0.32 0.64 
20 0.35 0.69 

Table 8: Importance of Deme Size on an iGA = 20, = 0 2 ) 

niche. 

Species Control 

Species control restricts the way in which a member mates with another. Restrictive 

mating is usually employed to contain a niche, either by preventing members of a 

dominated pealc mating with members outside the peak, or if several species with 

dlEerent DNA maikeups are present, to prevent some key species characteristic genes 

being exchanged with different species. The second case can be used if several different 

designs are considered that share some gene similarity, and diversity is required so 

that initially weaker design types are not ehminated from the design too early. The 

implementation of non-interbreeding species is easily implemented using a similarity 

template called an external scheme [88]. The concept of using restrictive mating to 

contain a niche, requires identification of the niche and niche size. 

Populat ion Crowding Control 

Population crowding was Grst proposed by DeJong and implemented by Goldberg 

[11] and Baker [79]. In the original crowding model, each offspring is compared to a 

number of parent members replacing the most similar parent. The number of parent 

members used in each comparison is termed the crowd-size, and can range from 1 

to # where is the population size. Although this method shares many basic 

foundations with nature, it was unable to maintain more than two peaks on most 

multi modal problems. This was demonstrated by Mahfoud [89], who showed that 

the scheme exhibited a large degree of replacement error (child replacing a parent 

that had better fitness), which degraded GA performance through increased schema 
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noise. Mahfoud proposed a new crowding scheme called 'deterministic crowding', 

where oSspring replaced their nearest parent if they performed better. To reduce 

parental replacement error, a similarity check is achieved by calculating the Euchdean 

distance between members, as deGned by the absolute difference between chromosome 

normalised values. This scheme therefore imposed its own deterministic selection 

scheme oSering significant parallelization opportunities. 

Sharing Niche Payoff 

Members occupying the same niche can be made to share the fitness payoS between 

them until the niche reaches its carrying capacity. At this point, the htness payoff of 

occupying that niche is less attractive than that of other niches. 

The shared htness of individual i is given by 

= — = — — (80) 

where a basic sharing function [90] may be dehned as 

/ 7 \ I- ^ { d i j / C F s h a r e ) " i f d i j < CTakare \ 

and the distance dij is usually the separating distance between two individuals in 

Euchdian space. 

This method can maintain diversity better than crowding [88] [91], but is more di@cult 

to implement as the niche locations and radii are usually unknown. Members closely 

grouped together have their htness de-rated by how close they are to the fitness centre 

and the number of individuals within a niche radius. If the niche is signi&cantly good, 

a group of members will remain on that niche allowing other members to continue 

the search. Speciation techniques can also be employed to prevent members of a 

niche mating with members outside, preventing population dilution and encouraging 

increased search within the niche. 

Several methods for implementing niche sharing have been proposed, with earlier 



80 

approaches based on the aasumption that niches are known and distributed evenly 

throughout the solution space. Implementation of niche schemes aze particularly 

diScult where many local maxima are located near the global optimum. The location 

of the optima will be dependent on members of the population being left once all the 

local niches are filled [89]. A sequential niche method has been proposed [92] involving 

many sequential runs of the GA, each locating one niche. The fitness function is then 

modihed on successive runs to cancel out the previous niche. 

The original sharing scheme proposed by Goldberg [88] requires knowledge of the 

number of niches 'a priori'. Such prior knowledge is obviously not available for the 

majority of problems found in engineering. Yin and Germay [93] proposed the use of 

an adaptive cluster identification algorithm given in Appendix A, based around the 

KMEANS clustering algorithm. Here a set of A; members are allocated a cluster each. 

The pairwise distances between all clusters Eire computed, and if they are less thaji 

a predetermined distance, the cluster is collapsed to another. Merging is continued 

until all centroid's are separated by at least a predetermined value. The rest of the 

population are then assigned to their nearest niche, and cluster merging or separation 

is continued until the cluster constraints are met. 

Application of Niching to Control Populat ion Divers i ty 

A larger population size was required for deterministic crowding to su&ciently 611 

niches whilst maintaining diversity. Using only the deterministic selection pressure, 

convergence was found to be too slow for practical use. Addition of further selection 

pressure was attempted, first using tournament selection which resulted in prema^ 

ture convergence. With apphcation of rank selection with deterministic crowding, 

the resultant population found is shown in Figure 24 with several niches identified, 

including the optimum. 

Sharing and tournament selection are not ideally suited together [82] (Tournament 

selection wants to select the best members, while sharing wants to de-rate members). 

The adaptive KMEANS algorithm was implemented using rank selection. A popular 

tion size of 100 members was used to ensure that the niches were adequately covered. 

The convergence of the solution is shown in figure 25, showing the optimum was foimd 
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0.25 

Figure 24: Optimal Found with Deterministic Crowding (popSize 100, nGen 300) 

on all five runs, the second series of lines show the average fitness of the population. 

The final population is shown in Figure 26. 

A trace of population best members throughout the GA evolution is shown in Figure 

27, illustrating how sharing allows the GA to move from one peak to the next. 

4.3.3 Specification of Key GA Pa rame te r s 

In the simple GA model, key parameters such as steady state population size, 

crossover rate, mutation rate, and fitness scaling, needed to be carefully implemented. 

With the inclusion of niching, large population sizes are required such that the niches 

found can be adequately populated without significant loss of diversity in the remain-

ing population. For the two dimensional bump problem, population sizes of up to 100 

were required to significantly improve the probability of locating the optimum. This 

is an increase by a factor of 2-3 on original hit and miss attempts. Since the number 

of design variables will also dictate the number of niches available within the search 

space, population size still depends partially on the search dimension size. Some 

guidance to the size of populations, crossover and mutation rates to be considered 

are given by DeJong [94] and Back [80], although pre-testing final parameter values 
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Optima 

Figure 27: Search Trace of Best Members (popSize 100, nGen 300) 

on problems such as the bump case with the same number of dimensions is always 

advisable. 

The adoption of deterministic crowding reduces the chance of good parents being 

replaced by poor oSspring. In the original deterministic crowding scheme without 

further selection pressure, the maximum crossover rate of 1.0 was used. When some 

additional selection pressure waa added, this rate wag reduced to help niche forma-

tion. In general, crossover rates between 0.8 to 1.0 are most constructive for the 

deterministic crowding schemes. Mutation rates that ranged between 0.5% and 2% 

were found to be most constructive towards the evolution process. 

4.3.4 Analysis of Speciat ion and O p t i m a F ind ing 

Diversification of population DNA has been a critical characteristic of Genetic Algo-

rithms in finding the optima in multi-modal landscapes. Speciation methods such as 

crowding and fitness sharing, can help to maintain diversity while the generation ma-

tures preventing population takeover. However in their implementation, it has been 

clear that the adoption of such techniques still cannot guarantee success in finding 
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the optima. Due to the nature of the binary crossover operator used, a new species 

generally is created through cross-breeding two other species. The more diSerent the 

parent species, the more combinations of new species there are that can be developed, 

and the further away from their parents they could become. 

To gain some insight into why the optima can remain elusive despite the diversity of 

the population, an analysis of how new species are formed and survive in the presence 

of fitness sharing has been performed. 

In this analysis, a new species is said to have been created if 

^ -̂ species 

where is the Euchdian distance of child from its parents and j , and Dgpecigg 

is the minimum distance between two species. 

For the 2D bump problem, an analysis of new species creation has been made using 

a genetic algorithm with a population size of 50, crossover rate of 0.85, hnear rank 

htness assignment and SUS selection. Mutation and inversion was not used, and a 

single elitist member survival strategy has been implemented. Figure 28, shows the 

number of species present in each generation, divided into the number that survived 

to the next generation, and the number that failed to be selected to become parents. 

The rate of population convergence is clear in this figure, with population takeover 

occurring after just 10 generations due to the high crossover rate used. A high rate 

at which new species are formed at the beginning of the evolution process is shown, 

as well aa the large probability of these new species surviving. 

The same analysis is presented in Figure 29, with a fitness sharing scheme applied 

to the selection process. Once again a large number of new species has quickly been 

established early on in the evolution process, but the e&ct of species diverslGcation 

through the application of htness sharing has maintained this diversity throughout 

the maturing population. Despite the increased diversity, an equilibrium was soon 

estabhshed between creation of new species, and survival to the next generation. 

Through investigation into the family tree of an optimum, on four out of Eve occasions, 

the optimal niche was found through cross-breeding two similar species within the hrst 
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Figure 28: Rate of Species Creation for a Non-Niching GA 

six generations where the chance of a new species surviving remained high. In the 

fifth instance, the optimal niche was established at generation 37, although this niche 

had been hit with non-surviving children on 27 instances preceding this. This final 

instance arose more out of an evolution of fluke, rather than a result of continuous 

gradual adaption. 

Analysis of the fitness of new species created in the presence of fitness sharing through-

out the evolution process shown in Figure 30, illustrates that despite the fitness of its 

parents, new species are likely to rank less favourably in the selection process. With a 

low population maturity, species created were found to share a fitness comparable to 

the population average, and therefore likely to rank amongst selected parents. How-

ever, the population average fitness soon increases as the population matures, and by 

generation five it becomes difficult for new species to survive parent selection. 

The problem of species creation is acute for the bump problem, since successful and 

non-successful candidates can lie very closely together. For a GA that is only able 

to evolve members within a single environment, this problem can severely affect its 

performance in finding the optimum. The rate of species death could be reduced by 

encouraging species to inter-breed. However this will not aid the establishment of 
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new species which has been the aim of the work presented here. To encourage the 

GA to allow tolerance towards new species during parental selection, environmental 

changes will need to be explored, to provide some sort of temporary stepping stone 

between the creation and long term establishment of species. 

4.4 Summary 

A Genetic Algorithm has been established, based on the Canonical GA by combining 

both island migration schemes with htness sharing. This work has presented evidence 

indicating that resource sharing allows newly formed species to survive and contribute 

better to the evolutionary process, because new members are able to compare better 

with the average population fitness. The introduction of resource sharing has also 

prevented the problem of population takeover, producing a significantly more robust 

algorithm on which to baae research into adaptivity. A downside consequence of this 

increased robustness, is the signihcant increase in evaluation cost associated with 

the larger population sizes required for both island models and resource sharing. 

Near optimal solutions to the 20D bump problem can be found to a large degree of 

robustness with a population size of 300 members across four demes, each requiring 

at leaat 50 generations to converge. This leads to a cost in excess of 1000 times 

that indicated by Jameson aZ. [25] in his Adjoint formulation approach to airfoil 

design. Although higher quality solutions may be found using Genetic Algorithms, 

signihcant computing resources are required for use in engineering design such as 

shape optimisation. 



Chapter 5 

Distributing Expensive Objective 

Function Evaluations over an 

Office P C Netv^ork 

The use of Genetic Algorithms in aerodynamic optimisation necessitates the need for 

high performance computational facilities. Genetic Algorithms are implicitly parallel, 

and this chapter discusses the algorithms used to distribute some of the computational 

aspects of GAs across an o@ce PC network, its distributed performance, and the 

reliabihty aad scalability of the PC network for Eierodynamic computation. 

5.1 Introduction to Parallel Genetic Algorithms 

Parallel genetic algorithms (PGAs) have been used to solve computationally expensive 

problems [34]. Such problems need a bigger population, and hence require more 

processing resources. The motivation behind early studies into PGAs waa to reduce 

the processing time needed to reach an acceptable solution. This was achieved by 

implementing GAs on parallel architectures. In some cases, it wag noted that PGAs 

found better solutions than comparably sized serial GAs. 

Shape optimisation using CFD to evaluate the objective function, provides several 

motivations for using PGAs. Parallel architectures are widely incorporated in the 



89 

held of CFD [95] [70] with many resources solely configured for the purpose of CFD 

analysis and development. CFD parallelisation is necessary, not only to reduce the 

computing time required to reach a solution, but also to provide the computer mem-

ory resources needed to store the large computational domain and millions of flow 

variables associated with solving many complex problems, while maintaining some 

degree of elective cache utilisation, parallehsation of the GA can become neces-

sary when the evaluation of the population requires large computational resources. 

Thus, the problem of interfacing a GA with CFD can draw on three types of parallel 

resources: 

# a Serial GA evaluating population members in-tum using a parallehsed evalu-

ation function, 

# a PGA evaluating single or clusters of members over several processor nodes 

using a serial evaluation function, 

# a hybrid interface using a PGA, using further processor nodes for parallel im-

plementation of the evaluation function. 

In this chapter, the global paraUehsation of Genetic Algorithms involving computa-

tionally expensive htness functions ,wiH be investigated over a medium size network 

of existing Personal Computers (PCs). 

5.2 Utilising Existing Computational Resources to 

Create a Commodity P C Network Suitable for 

Fast CFD Computation 

Over the past decade, the cost of computing has reduced significantly and the conver-

gence of the price and performance of high-end workstations with aSordable PCs has 

been particularly rapid over the past few years. Through such advances in computing 

technology it is now feasible to consider the long-term role of PC's in the 6eld of 

CFD. 
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Through the utihsatiou of network technology it is possible to connect clusters of PCs 

together. When used with parallel and distributed computing software libraries such 

as MPI [96], it is possible to obtain Super-Computer level machines at the fraction 

of the cost [97] of their stand-alone predecessor machines such as the CRAY T3E. 

These machines are burdened with enormously high setup and support costs, whereas 

a PC cluster o&rs a minimal cost environment with the potential for incremental 

improvements in performance. 

This section explores the development and performance evaluation of such a system, 

developed from an existing cluster of teaching PCs used for the Ship Science courses 

at the University of Southampton. The teaching cluster was purchased to service 

the need of students for dedicated ship design softweire, CAD packages, programming 

skills and general o@ce software. For a small cost (jC9,000), the network was adapted 

to allow dual use - providing a teaching resource during term time between 8 am and 

9 pm and for the remainder acting as a networked cluster available for carrying out 

CFD computations. 

5.2,1 Crea t ion of a Dual use c o m p u t a t i o n a l facility 

The original network of PCs consisted of 52 PC units of at least 350Mhz processing 

speed, and 64Mb-|- RAM available, connected via lOMHz Ethernet directly to the 

NT4 server through lOMHz switches. This network is then cormected to the main 

UNIX computing facility via an Internet connection. Red Hat Linux 6 was selected 

as the target operating system for the high performance network, for its increased 

stability over Windows, its ease of porting and similar environment to UNIX. A dual 

boot fatuity was targeted to accommodate both teaching support through NT and 

high performance processing using Linux. 

Two high-end dual processing PC workstations were purchased to provide a base 

for building computationally intensive problems, which could be extended later in 

future purchasing plans. One of these workstations was chosen to serve as the Linux 

server, as well as a desktop workstation during the daytime. To accommodate a finite 

budget, a hardware trade-oS waa made in favour of network requirements for high 

processor speed, 10/100 Ethernet and a fast 36Gb Ultra2 Wide SCSI hard drive. An 
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Figure 31: Schematic Diagram of the Departmental Teaching and Research Network 

affordable 512Mb of memory was added to both workstations such that small CFD 

problems could utilise the dual 500MHz PHI processors. A file server was created 

using NFS, and user and password authentication through the existing UNIX server. 

File backup is currently carried out through the UNIX file server, but will later use 

the University global backup facility via the Intranet, significantly reducing costs. 

The speedup scalability of the commodity cluster is mainly limited to network speed 

performance [98], originally lOMHz, and an upgrade to an affordable lOOMHz was 

carried out as shown in Figure 31, so that high performance CFD computations could 

be realised. The original computing facility was based around two networks, the NT 

and UNIX, which remained as separate entities so that the performance of one would 

not degrade the other. Communication between networks was carried out through 

the external communication line that connected the UNIX network to the University 

Intranet and outside world. High speed cabling that could accommodate a faster 

lOOMHz network already existed for the PC cluster, and its full network upgrade to 
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lOOMHz required only new network switches. To allow scalability of the conunodity 

cluster beyond the 52 PCs housed in a single computer room, any new PCs entering 

the department for research uae, should also be accommodated. The research ofEces 

are networked through the UNIX lOOMHz switches, and a simple upgrade of network 

cabhng was needed to offer full scalabihty. 

The Linux server carries out parallel process scheduling to avoid either processor or 

network overload. The MPI hbraries are in current use for three in-house Bow solvers, 

as weU as for a parallel processor Genetic Algorithm and would form the main software 

for use on the network. 

5.2.2 Evaluat ion of t h e computa t iona l r e source 

In order to evaluate the performance of the new computing resource, tests have been 

conducted using two di%rent computational problems typical of the day-to-day com-

putational work carried out within the department. An unstructured Euler solver 

[99], hag been ported into Linux using GNU gcc compiler. The MPICH 1.2.2 hbrary 

from Argonne National Laboratory was used for message passing between mesh par-

titions distributed on separate processors. A distributed Genetic Algorithm haa been 

implemented, and tested for optimisation using a modi&ed bump problem that ne-

cessitates the need for eScient inter-processor communication. MPICH is used to 

facihtate a global Master-Slave distributed implementation of the GA. Porting into 

Linux WELs achieved using GNU g-l—1-, recompiling source code for both the Euler 

solver and GA. Only minor porting problems were found with the Euler solver where 

the communication buffers created using procedures, required some ex-

tra attention to ensure that the data was correctly ahgned within the buSer, without 

overwriting itself. 

The Message Passing Model 

The three main types of parallel architectures are: vector machines, shared memory 

and distributed memory machines. Vector machines exploit vector manipulations 

such as vector multiphcation and matrix inversion. Shared memory machines, group 
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processing units around a global memory bank. The control of memory access is pro-

cessor baaed rather than user based, simphiying the process of paraUehsing programs 

which share a common data base. The complexity of memory access increases as the 

number of shared processors increases, which has tended to limit their scalabihty. 

Distributed machines group processor units that use their own local memory. Their 

scalabihty is simplified as there are no conEicts with memory access, the sharing of 

memory between processors is defined by the software, and so the development of 

distributed programs is more dif&cult than shared memory programs. 

The implementation of the control strategy is baaed on the use of apphcations devel-

oped within Ship Science using MPI and C/C-l—|-. Distributed memory architectures 

are more scalable than shared memory architectures due to the memory being local 

to a processing unit. They may also be implemented on shared memory architectures 

whereas the opposite is not true. 

The message passing model is a distributed memory model which diners from the 

6'mgZe approach, in that each process is associated with an 

individual data set on which non-identical instructions may be performed. Processes 

may communicate with any other through executions of commands on both the 'send-

ing' and 'receiving' processes. The advantages of the model have been summarised 

[100] as allowing compatibihty with many different architectures; a great deal of con-

trol compared with data paraUehsm and compiler based methods; and an increase in 

processor performance that can be reahsed on cache based machine8[101]. This is the 

most common choice of message passing implementation, and is used in this work. 

The Message faaamp f7i(e7yGce[102] (MPI) is the result of collaboration by many 

developers of message passing models, which aimed at standardising previous imple-

mentations. The result is a library of functions which, at their lowest level provide the 

basic send and receive functions necessary for the implementation of the message 

passing model, whilst at a higher level, provide routines which aid the developer in 

the efficient parallehsm, debugging, and monitoring of codes. Each process executes 

identical codes within which logical statements are used to separate process tasks. 

This approach haa been termed Program MuZtipZe which is a subset of 

the model. 
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Dis t r ibuted Implementat ion of t h e U n s t r u c t u r e d Euler Solver 

For the imstructured Euler solver introduced in Chapter 3.6, the parallel strategy 

for the exphcit Held method is straightforward, in that the domain is partitioned 

according to the number of processors available. A satisfactory decomposition is 

achieved through the Jostle [103] graph-partitioning program. Using a knowledge 

of the Cell ordering, each cell is allocated to a process, followed by the remaining 

geometrical objects required to describe the Cells. 

On partition interfaces, the Cells are duplicated in order to complete their descriptions 

on both partitions, and to provide enough information for the numerical Hux calcula-

tion. To ensure that Eux calculations Eire not duphcated on neighbouring processes, 

a root processor is assigned to each interface Cell to carry out its flux calculations. 

The locations of interface cells that shadow the root Cell on neighbouring partitions 

are assigned a 'shadow' flag, holding the location of the root CeU. 

To implement the parallel solver algorithm given in Figure 32, the partitioned grid is 

based around a Node to Node coimectivity map, joined together by Edges. Control 

volumes are constructed around each of the Nodes, forming the Cells with a dual grid 

associating each Cell face cutting between a Node-Node Edge on the original grid. 

The calculation of the face Huxes, is carried out by an Edge based loop, updating 

residuals on all nodes except those that are shadows. Contributing boundary faces 

to the node residuals are then included. 

A semi-scheduled message-passing algorithm is implemented to update the shadow 

residuals residing on neighbouring partitions. Essentially the sending of residuals 

from the host partition is implemented through a message-scheduhng algorithm with 

non-blocking communication. This allows the send process to start before a matching 

receive is posted, minimising dead-time events where processes are held waiting for 

recipient partitions. An illustrative algorithm for the semi-scheduled message passing 

algorithm is shown in hgure 33 

A node sweep is used to update all non-shadow nodes, with root partitioned nodes 

communicated to their adjacent shadows via the same semi-scheduled algorithm as 

before. Residual statistics are updated on the master process, which determines and 
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Figure 32: Distributed Upwind Algorithm 
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Figure 33: Serai-Scheduled Message Passing Algorithm 

implements convergence, and full 6eld-data checkpointing requirements. Checkpoint-

ing is achieved through a full sweep of processors sending aU How variables to the 

master for storage. 

Distr ibut ion per formance on the Linux cluster 

To determine the eSciency of the network for Euler solver computation, network 

performance timings were measured during the computation of a 2D NACA0012 wing 

illustrated in Figure 34. The two dimensional Sow effect is simulated by enclosing the 

wing ends by boundary walls shown in Figure 35 which shows the boundaries of the 

computational domain. The discretised computational domain shown in Figure 36, 

consisted of a three-dimensional grid made out of 48672 control volume Cells. For a 

Aow simulation at M = 0.85, and a wing angle of attach of 0°, the pressure contours 

given in Figure 37 are obtained. For the performance test, timing measurements were 
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Figure 34; NACA 0012 Uniform Wing 

based on 1000 flow solver iterations of the time integration loop, for each partition 

topology. Performance tests were made on the original lOMHz network before upgrade 

as well as on the new lOOMHz network. Separate tests were conducted, allowing for 

regular checkpointing at 20 iteration intervals on both networks. 

Speedup performance results are shown in Figures 38 and 39, where speedup is defined 

as 

^ (27726 (o fZow aoWzoM TV proca 
Speedup = — — :— , (83) 

(zyne /o r azftgZe proceasor 

and iteration efficiency as 

jVet time ta/cG/i itteratioM Zoop . . 

and total efficiency: 

caZcu/G(2077 (*77ie A f f f opeT-atzo/is . . 
Vitteration ^ 7.7 , J 11 

Aet 50W2077, (27716 

The single processor result used in Equations 83,84, and 85, is based on the same dis-

tributed algorithm given in Figure 33 as for the multi processor results. The speedup 

measured shows substantial gain in computation speed for up to 16 processors at 
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Figure 37: Mach Contours NACA 0012 M^o = 0.85 

lOOMHz-network speed. Even with regular saving of flow values to disk, a reasonable 

performance is sustained. The results from the original lOMHz network highlight the 

need for good network speed for such solutions. Closer evaluation of iteration effi-

ciency of the cluster, reveals that further improvements to speedup performance can 

be sought if the size of the partition domains were maximised for the performance 

tests. By partitioning the domain to maximise processor memory use, iteration ef-

ficiency can be further recovered. The maximum partition size for an unstructured 

grid that can adequately be used on each processor, consists of approximately 30,000 

nodes. Using just 16 of the 52 available processors a 0.5M cell solution can be ex-

pected with good speedup. The maximum domain size available through the entire 

cluster is approximately 1.5-2M cells. 

Distribution Performance for a Genetic Algorithm 

In the implementation considered here, the 20D Bump problem used in Section 4.1.1, 

has been modified such that the time taken to compute the objective function is 

0{TbuTnp), where Tbump is randomly perturbed from a defined amount. In this exercise, 

Tbump is defined as 1 minute with a random perturbation of up to 20%. This represents 

a typical time for evaluating a single airfoil using XFoil. This additional feature 

places the emphasis of distributed GA performance on asynchronous communication 
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implement ation. 

A global parallelisation strategy was originally used to distribute the evaluation phase 

of the population members only, based on the Master-Slave implementation given in 

[11]. This scheme waa constructed using the MPICH library distributing an initial 

subset of the population to the available processors, and then passing the remainder 

on to each processor in turn on its completion with its current member. Due to the 

non-synchronous time dependent nature of the modified bump function, the e&ciency 

of this method is degraded on larger cluster sizes when all members have been paased 

for evaluation, and processors are left waiting for remainder slaves to complete before 

the next generation can be created and the distribution process continued. For a 

population size of 200, distributed using 50 slave processors, distribution ineGiciencies 

of up to 35% were found on some generations. 

To alleviate this problem, an asynchronous strategy vyas sought that decouples the 

evaluation processes from the synchronised selection phase of the GA. Asynchronisa-

tion waa achieved based on the island Genetic Algorithm (iGA) used by Doorly [34]. 

In the iGA implementation, sub-populations known as demes, are used to partition 

the population, each evolving independently with occasional exchange of genetic in-

formation between demes via a process termed migration. In this implementation, 

all evolving demes are contained within the master process, with members sent to 

slaves for evaluation using an asynchronous communication strategy. When a deme 

has passed all its members through for evaluation, but remains idle waiting for the 

last few evaluated members to return from their slave processors, members from the 

next deme are used to occupy idle slave processors. 

Algorithm Number Processors 
4 8 16 32 

Sync GA 3.5 6.9 12.7 23 
Async iGA 3.96 7.94 15.93 31.96 

Table 9: Communication Speedup Performance of Synchronous and Asynchronous 
GA on Modified Bump Problem 

Table 9, shows the distributed speedup performance of the GA using both synchronous 
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and asynckronons island implementations, when compared to a non-distributed syn-

chronous GA. The results were based on the total time spent to calculate 100 gen-

erations, with a population size of 300 members. The iGA used 6 demes. For the 

synchronous scheme, idle process time arose due to poor synchronisation of the objec-

tive function calculation across the processor farm, as well as time spent waiting for 

the master processor to perform GA selection which includes CPU intensive clustering 

and vector sorting routines. The Asynchronous iGA implementation was successful 

in decouphng distributed communication from selection as rejected in the results. In 

both cases, speedup has not taken into account the extra processor needed for the 

master processor to GA calculation, hence only communication speedup is considered 

in this test. 

The iGA implementation reduced signiGcant idle time previously found on slave pro-

cessors between generations. Residual traces of idle time found on slave processors 

was signiRcantly smaU in comparison to the evaluation time of the objective function 

resulting in a net iteration e@ciency of over 99% for 32 processors. 

5.2.3 Clus ter pe r fo rmance issues concern ing dual boot im-

plication 

The creation of a Linux computational facihty from resources intended for a diEerent 

daily purpose using Windows NT was easily achieved through the use of a dual boot 

facihty. Several issues were highhghted while implementing CFD problems using this 

strategy. 

The dual boot feature poses an immediate barrier in gaining access to the compu-

tational resource when it is booted into the wrong operating system. Where the 

intention is to use the resource primarily for overnight computation, the individual 

processors can be configured to automatically reboot into the default Linux boot 

partition, at a designated time, which is the case used for this work. This strategy 

although very simple to implement, can cause problems both to NT users wishing to 

work during such times and computational resource users requiring access to Linux 

processors during the daytime. In this implementation, a small cluster of processors 
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resides in a separate room to the rest of the processors. These processors reboot into 

Linux at a designated time, without causing significant disruption to users who are 

made aware in advance of this feature. 

The second problem regarding the robust use of the facihty for larger distributed 

processing using MPI, is when a processor is manually rebooted during computation. 

Without controlled management, such a reboot will cause the entire MPI process 

to crash on all associated processors losing all data. This problem is unavoidable 

since the primary use of the cluster is for NT based activities. The devastation of 

such an activity has been limited through encouragement of regular checkpointing 

of program data with a small associated computational cost as illustrated in Figure 

39. Additionally, rebooting through the action of pressing CTRL-ALT-DEL on the 

keyboard has been trapped on all processors, sending an appropriate signal to aU 

residing programs. On Linux, this signal is trapped in both the GA and Euler solver, 

and activates a final checkpointing procedure before a controlled exit of the program 

on all associated processors. A restart script residing on the master processor re-

establishes a new set of available processors and attempts to continue the distributed 

computational job. 

Some conhguration time was required to estabhsh the various processors required to 

increase the robustness and usability of the cluster when using a dual boot feature, 

however the process was straightforward and leads to substeintial gains in the overall 

performance of the facility. 

5.3 Robust marine CFD on a dual-use distributed 

network 

The use of a Windows NT orientated network for Linux based computation can re-

sult in significant interruption to distributed jobs due to continuous rebooting of the 

processor by users into Windows NT diuring the day. For the majority of the year, 

most of the PCs are redundant (during a 24hr cycle every day of a year) and sig-

nificant benefit can be oSered for distributed computation. However a large risk of 

computation disruption exists during the day, which if unsupported would require a 
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degree of human monitoring. In order to ensure a larger degree of stability during 

busy periods of PC usage, a control algorithm has been implemented. This allows 

individual processor shutdown, with a minimum user wait for access to the proces-

sor for teaching use while maintaining a high e&ctive throughput. In addition, a 

rapid archive system using a tree XOR operation on the local distributed memory 

calculation state has been implemented to majdmise throughput. 

5.3.1 Teaching Load on Network 

There are three main user groups of the Ship Science P C network: 

# Formal Teaching sessions. Typically consisting of between 40 to 50 students, 

the timetabled sessions take place during 24 weeks and occupy 3 hour slots. In 

total of each term week, there are 5 to 6 such slots 

# Individual taught Ship science students at present are of the order of 160 in 

total, evenly distributed between Yisars 1 to 4 of undergraduates and about 25 

M.Sc. students. These students have access to the machines during oSce hours 

(8am to 6pm)for the 30 week academic year. A limited number of students ( 50) 

have access outside oSce hours. 

# In addition to individual research student and staE. There are 40 postgraduate 

students, 20 staif, and visiting academics who have access to the computer room 

aU year round. 

Informal monitoring of usage, indicates that outside the formal sessions usage varies 

widely during the day and at weekends, but with typically a small number of individ-

uals always requiring access 7 days a week but with access rare between midnight and 

8 am. Based on the observed usage, it is estimated that the average annual load on 

each machine is only 10% for teaching purposes. The remaining processing time, if 

it can be accessed in a robust manner, oSers considerable scope for use as a low-cost 

medium scale computational machine. 
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5.3.2 Failure Modes 

The following important modes of possible failure which could aSect the successful 

completion of a CFD calculation have been identified: 

1. Power supply failure: Programmed outages occur 1 or 2 times a year with at 

least two weeks notice. Whereas, power supply interruption occurs no more 

than once every two years. 

2. Network server failure (disk or machine): Again, a raze occurrence in an uncon-

trolled manner but dehberate shut down happens once every 1 or 2 months. 

3. An individual machine or network connection failure. 

4. Individual machine power oS. 

5. Request to use machine in teaching mode via ctrl-alt-del. 

6. Lock up of MPI process when running on a given processor. 

7. Insu&cient memory space or processor capacity to continue calculation. 

5.3.3 Consequence of C F D Calcula t ion Fai lure 

The computational cost of a calculation failure can be assessed in terms of: 

1. The total amount of computational processing lost since the last secure record 

of the calculation state from which the calculation can be restarted. A trade-oS 

needs to be made between the amount of time required to periodically save state 

and the risk of calculation failure. 

2. Loss of available processing time. If a calculation is unable to restart automat-

ically then this period could vary from minutes to days. 

In each case a simple measiue of the loss L, can be expressed as: 

L = (86) 
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where is the number of cycles lost since the last secure archive, tc is the processor 

time per cycle, TVp the number of distributed machines in use, and the time delay 

to restart. 

5.3.4 Robus t C F D Contro l S t ra tegy 

Any control needs to assure that the is minimised and yet because of the primary 

demand of the machines for teaching within term time, any user requiring access 

must have a minimum user wait. Typically no more than a few seconds is deemed 

acceptable. 

Having identified the possible failure modes a robuat control strategy has been devised 

to ensure calculation stabihty. The objectives of the strategy can be identihed as: 

1. No. of lost cycles is minimised for aJl failure modes. 

2. The cost of archiving intermediate calculation states is minimised. 

3. The mELximum possibility of restart within a minimum 

4. Minimum eSort to encapsulate existing distributed applications. 

5. Minimum of effect on teaching access to machines. 

A specific strategy is identified for each of the six possible failure modes. Each control 

strategy rehes on the use of a control process running in parallel with every calculation 

process on every processor. 

5.3.5 Cont ro l process 

The CTRL-ALT-DELETE action usually used by students to reboot the computer 

into NT has been trapped, and now runs a quick program 'controlnet'. The program 

checks local control hies for computational resources using the robust control algo-

rithms developed as part of this work. Essentially the Process IDentihcation number 

(PID) of any such computational programs are sent a signal similar to that of CTRL-

Z. This signal is captured within the program and necessary data is saved directly 
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to the hie server for recovery, the program then proceeds to exit. Any other remote 

processors working in parallel with this program are sent a 'Hang np' signal via a 

remote sheH. On capture, data is saved to local hard disc, and the program exits. 

The computer that received the reboot signal then proceeds to reboot. 

This elaborate algorithm was necessary to ensure all information is saved within the 

smallest amount of time. By minimising network tra&c to only one processor save 

(the rebooting proc.) and MPI shutdown, an acceptable network Aushmg time is 

achieved, which should not be of great inconvenience (user wait) to the user requesting 

NT service. 

A recovery program (user supphed) is then initiated to piece together all hies necessary 

to restart the computational process from the above last saved position. 

5.3.6 Contro l Implemen ta t ion on an E u l e r Solver 

For uncontrolled failure (i.e. someone pressing the reset button or o5 switch) the 

control system rehes on last saved data. Pull data dumps within the Euler solution 

is costly requiring a total of 0(7%) where n, is the time required for n processors to 

send all flow variables to the master process where the server is used as a master, or 

0(271) if the saved data is sent to the server from master upon receipt. 

Small intervals between data dumps are required if interruption is likely. If the inter-

vals are too large, computational progress may not be achieved if interruption occurs 

before the next save. For the small interval times deemed necessary for reasonable 

progress to be oEered, the cost of data dump is too great resulting in poor solution 

speedup through paraUelisation (i.e. no gain in using the commodity network). To 

reduce the cost of data save, an intermittent strategy has been adopted similar to the 

'RAID' process used for quick backup of network filestore's. 

The RAID strategy creates an XOR checksmn of all processor Eow variables over a 

distributed PC architectme. The distributed RAID process is carried out by passing 

all flow variables to the master processor through a tree communication process. The 

basic schematics of the distributed RAID process implemented within the modified 

Euler solver is shown in Figure 40. 
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1. R e c e i v e f r o m 

2. E x t r a c t f i o w v a r i a b l e s f o r b a c k u p a n d s t o r e in loca l a r ray . 

3 . S e n d S i z e o f f l ow v a - i a W e a r r a y t o A f 

4. Receive M AX ARRAY S I Z E f r o m M A S T E R and a l locate RAI DArraylM AX A R R A Y S I Z E]. 

5 . C o p y loca l f l ow v a r i a b l e s i n t o fill r e m a i n d e r w i t h 0. 

6. NPROC = number of Proceaaora. 

7. wh i le NPROC > 1 

( a ) If m y t d < N f R O C 

i. If > = A O C / 2 ) 

A. Send RA7Z)Array to Proceaaor/Z) = ntytd — Round[/p(Nf J20C/2). 
B. S a v e loca l f l o w v a r i a b l e a r r a y t o local d i sk a s 5 t n a r y ( ( i o t t 6 f e ) . 

ii, Elsel f {myid — RoundUp{NPROC/2)) > — 0 the 

A. Receive Arrô / from frocesaor = myid + AO(7/2). 
B. A r r a y w i t h J Z A / D A r r a y . 

A T f R O C = R O C / 2 ) 

8. If myid — M A S T E R 

( a ) S a v e R / l f D A r r a y t o n e t w o r k d i s c a s . B i y t o r 2 / ( f o 7 i g ( o f t g ) 

9. End. 

Figure 40: XOR RAID Process 

At eELch processor in the tree, all Sow variables received are merged together through 

an XOR checksum such as = 1 2 3 4 as illustrated in 

Figure 41. The time required for the merge operation is 0(1,0^2(72)) and therefore 

significantly more efhcient them the full Sow dump which will take 0(M) to pass all 

variables back to the master processor. The hnai checksum is saved to server as a 

compact binary file, and each processor saves its own 8ow variables to local disc. 

In the event of uncontrolled processor failure, information lost can be recovered by 

passing the remaining processors locally saved data, back through the XOR checksum 

such as ^ 1 3 4. 

Recovery from a RAID backup is implemented as a separate process, so that it does 

not interfere with the solver itseh. The recovery algorithm is shown in Figure 42, 

which must be distributed ax:ross all remaining processors except that which haa 

failed. A simple UNIX shell script has been used to create a hosts file containing 

all remaining processors, and to identify the missing failed processor id which is 

passed to the distributed recovery process. The recovery process itself, recovers all 

processors Sow variables to network hlesystem, from where it can be re-distributed 
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Figure 41: Distributed XOR RAID Communicatiori Process between 8 Processors 

back to the designated processor id's during the How solver startup process. If too 

many failures occur, the missing Sow data cannot be recovered from this simple XOR 

implementation, and the computation will be forced to revert back to the last full 

data dump. 

The speedup loss in performing the XOR Merge Tree at regular intervals of 5 Euler 

iterations plus an additional full data backup every 20 iterations, is shown in Figure 43 

which was measured over 1000 iterative cycles in total, each consisting of four pseudo 

Rimge-Kutta time iterations. The performance of a full data save every 5 iterations is 

also shown for comparison. The recovery in speedup loss is signihcEint, and the burden 

of incorporating the operation at such frequency required for unstable networks is 

justifiable, especially over medium distributed networks. The total time to recover 

a single lost processor from 16 PCs, was 2.6g compared to 8.25 to redistribute last 

saved data to all processors again. For larger networks, more sophisticated checksum 

operations could be used to reduce the expense as well as to provide irmnediate backup 

for the loss of more than one processor. 
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1. D e t e r m i n e Fa i led P r o c e s s o r . 

2. S t a r t M P I R e c o v e r P r o c e s s a c r o s s all r e m a i n i n g p r o c e s s e s a n d a s s i g n M A S T E R = p r o c e a 3 o r t d ( 0 ) . 

3 . L o a d u p f l o w v a r i a b l e s f r o m loca l d i s k t o A r r a y . 

4. Send Size{ATray) to M A S T E R . 

5. R e c e i v e f r o m M A g T f ^ R a n d a l l o c a t e R A J Z ) A r r a y [ M A X A R A A y g J Z . B ] . 

6. C o p y local f l o w v a r i a b l e s i n t o A A 7 Z ) A r r a y , fill r e m a i n d e r w i t h 0. 

( a ) If f n y W > A f A g T f ^ R 

i. S e n d R A / i ) A r r a y t o A f A S T ' . B R . 

( b ) Else l f M A S T B R 

i. Load BtTtary(foTtgZong) Array from network disk 
ii. Array with j2A7Z)Array. 

- 1 to * < Nf ROC. 
Receive Array from A?iy. 
Load P r e v i o u s I n p u t D a t a f o r R e c e i v e d F l o w In fo . 

B a c k u p P r e v i o u s D a t a . 

O v e r w r i t e w i t h R e c e i v e d F l o w I n f o a n d s a v e a s C u r r e n t I n p u t D a t a . 

jyOR Array with RAZZ)Array. 
iv. L o a d P r e v i o u s I n p u t D a t a ^ M i s s i n g F l o w Info . 

V. B a c k u p P r e v i o u s D a t a . 

vi. O v e r w r i t e w i t h R A Z Z ) A r r a y F l o w I n f o a n d s a v e a s C u r r e n t I n p u t D a t a . 

Figure 42: XOR RAID Recovery Process 

5.3.7 Control Process for Genet ic A l g o r i t h m Search wi th 

Pane l Solver 

A simple strategy is implemented to control processor interruptions during GA search. 

On completion of each member evaluation, the result is returned to the Master process 

where it is appended to a file on the server. In the event of processor interruption 

of any type, the 'controlnet' program is activated which informs all other processors 

of the shutdown status. All objective function calculations are aborted immediately 

so that a quick shutdown time is acquired. Once the Master processor has returned 

to console status, the GA is restarted with a continuation flag. The GA loads the 

population and convergence status details required and sends any members that have 

yet to be evaluated to the remote slaves so that they can restart their evaluation. 
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Figure 43: Speedup Performance for Euler Solver Using Regular RAID Tree Merge 
of Local Data 

5.4 Summary 

A commodity-processing network has been established from existing resources with-

out conflicting with their original usage intent. Ahnost linear speedup performance 

has been achieved for the parallel computation of over 300,000 objective function cal-

culations when using a Genetic Algorithm for design optimisation. Good speedup was 

measured during the computation of an Euler solver based on an unstructured grid 

for up to 16 processors. The use of dual boot can signiGcantly affect the robustness 

of the computation facility, and some progress was made in this implementation to 

reduce this effect. Overall, an excellent computational facility can be harnessed from 

existing PC resources at little additional cost. 



Chap te r 6 

Evaluat ion of airfoil s h a p e 

parameter i sa t ion Using a Genetic 

Algor i thm 

In order to examine how different geometric representation schemes can be used with 

a GA, an airfoil optimisation study has been conducted on several objective functions. 

A variety of parameterisation techniques have been used with CFD orientated search, 

within the hterature. Samereh [55] generalised geometry parameterisation techniques 

into the following categories: basis vector, domain element approach, partial differen-

tial equations, discrete, polynomial and sphne, CAD-Based, analytical and free-form 

deformation (FFD). The suitabihty of these methods is based upon the eSciency, 

eSectiveness, ease of implementation, and scope for global and perturbation search. 

Two techniques of particular interest were those based on sphne techniques which are 

the most popular representation used by the research community, and the analytical 

fimction approach. To analysis their practical use to airfoil optimisation, the viscous 

coupled 2D panel solver XFoil [67] has been used to judge the htness of candidate 

airfoil sections based on design point performance. 

112 
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6.1 Evaluating the Performance of Airfoil Sections 

Suitable for Ducted Thrus ter Units 

For this design problem, an airfoil section is sought for use in a thruster unit suit-

able for deep sea Tethered Unmanned Underwater Vehicles (TUUV). These units 

commonly used for operations such as oil rig maintenance, operate mainly at depths 

where cavitation will not occur based on the pressure exerted on the foil. 

Ducted thruster units oEer several efhciency advantages over traditional propeller 

arrangements by offering a lower propeher loading (the loading is oSset by using the 

duct to draw a larger volume of water into the propeller), and additional thrust due 

to the acceleration of Sow over the duct. An additional advantage offered is that 

the duct waU proximity to the blades reduces the eSects of tip vortexes, particulary 

strong due to the Gnite span of the propeller. 

In an attempt to eliminate this vortex drag, a ring propeller arrangement has been 

proposed where the propeller is mounted to a thin ring that sits Eush within the 

external duct. This arrangement tends to lack the efficiency oSered by traditional 

ducted propeller units using a much simpler arrangement with a small gap between the 

propeller and duct to reduce tip vortexes. The main drawbacks to the ring propeller 

arrangement are mainly the mechanical problems of power transmission, seals and 

centrifugal bearing problems associated with the new designs. 

Remote Operated Vehicles (ROVs), or Tethered Unraanned Underwater Vehicles 

(TUUVs), require propulsion units that offer high e&ciency while relatively light 

weight and good flexibility for the positioning of the thrusters. Such units currently 

use small electrical units driving the shaft of the propeller, and are mounted from the 

nozzle using a 'spider' type bracket. However one drawback to this arrangement is 

that the position of the motor disrupts the flow of water into the propeller. 

A natural progression, drawn from the basis of ducted ring-propellers, has been the 
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idea of tip-driven propellers (TDPs). This concept involves having either a mechan-

ical drive or electrical motor encased within the nozzle walls. The use of an electro-

magnetic drive with the absence of physical contact between the drive system and 

propulsor, oEers significant advantages to the mechanical layout which stiH involves 

issues such aa the seals problems associated with the mechanical drive. 

The hydrodynamic performance of a TDP waa investigated by Hughes [66] for a unit 

using a highly eSicient permanent magnetic motor design. The eSciency perfor-

mance still lagged that of traditional ducted units and it was proposed that the unit 

should be hydrodynamically optimised to examine whether such performance could 

be recovered. One of the non-optimised and novel features of the tested unit, was 

the bi-directional characteristics of the TDP, oEered to enhance positioning e@ciency 

and eSectiveness required by TUUVs. 

The hydrodynamic optimisation of the bi-directional t ip driven thruster unit using 

the Geometric GA will be investigated in this chapter. 

The two dimensional performance of airfoil sections will be examined for low lift 

coefBcients of 0.3 and 0.6, frequently found with propeller designs to enhance e@ciency 

by reducing the propeller load. Single point optimisation using the Geometric GA on 

hxed 2D topologies, is currently considered at a similar Reynolds number as that of 

the tested propeller section at 70% radius. 

The investigation will initially focus on the parameterisation of traditional airfoil 

sections for the above design problem. Successful solutions will then be tried on the 

bi-directional problem investigated by Hughes. 

6.1.1 T h e Cost Funct ion 

The objective of both airfoil problems is to minimise the drag coe@cient for a given 

hft coefEcient, and Reynolds number. 

= Mm(Cc) (87) 

subject to and Ae = 0.95 x 10^ 
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To engure that practical designs are found several geometric constraints are used such 

that 

Vupperip^^ ^ Vlowerip^) • 0 < 3̂  < 1 

VupperiO) = yiower(0) ~ 0.0 

Z/upper(1.0) = —Z/fower(l-0) = —0.0025 (88) 

ẑ=0.25 > 6% chord 

Iz/upperW - Z/((wer(a;)| > 2% chord for 0.05 < a; < 0.9 

An additional constraint wag also placed on the pitching moment such that 

-0 .1 < < 0.02 (89) 

To accommodate these constraints, the dynamic penalty scheme given in Chapter 4 is 

used, with equahty constraints treated as inequality constraints to ease the stochastic 

search process. The construction of the penalty scheme is orientated to provide a 

objective function of which a minimum is to be found. The hnal form of the objective 

function is given as: 

(7 = C 

ci - 10(Cf, -

C2 = 100(M7A/^((5^o<i<i) - 0.005) 
V / 

C3 = 100(̂ a;=o.25 — 0.06 X c/^ord) 

C4 = 100(M7A/̂ ((5^o.o5<i<o.9) - 0.02 x c/iord) 

Cs — 10(CM + 0.1) 

C6 - 10(0.02 - CM) 

6.1.2 T h e Genet ic Algor i thm 

To provide a robust analysis of geometric parameterisation techniques, the distributed 

asynchronous iGA with sharing, will be used as detailed in Section 4.3.1. Such an 

algorithm allows some facihtation of niching control through both the island popula-

tion scheme as well as the use of resomrce sharing, thug allowing several good solutions 
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to propagate through the evolution process without the risk of population takeover. 

The solution quahty gain from using niching control has been highhghted by Doorly 

[52] through the use of iGA's, and the rugged surfaces illustrated by Holden [2]. 

One consequence of using both island and sharing schemes, is that larger populations 

are required to support multiple niche formation. For 20 parameter optimisation, a 

population size of 200 will be used with 50 members per deme. The use of only four 

demes will provide the computational performance gain of adopting asynchronous 

migration, while providing enough population resources for each deme to support 

between 8-15 niches. 

Linear Rank scaling with a selection intensity of 1.6 is used with Ehtist Stochastic 

Universal Selection within each deme. Two point crossover with a rate of 85% is 

used, combined with a mutation rate of 2%. All simulations will be initialised hrom 

a base foil section, allowing 15% random perturbation of the design space to form 

generation zero. 

6.1.3 Issues Concerning t h e Coupl ing of XFoil wi th t he G A 

Problems encountered when running XFoil from the Objective Function, highhghted 

several problems when semi-random airfoils are considered. Main problems high-

hghted, includes: XFoil program craah, excessive non-convergent calculation cycles, 

permanent program freeze imtil user intervention (via use of system kill command), 

excessive or inadequate panel distributions, non-converged boundary layer solutions, 

divide by zero segmentation faults, and inhnite numbers being returned. 

For the majority or problems, the use of constraint analysis could be used. To assist 

in the basic running of XFoil, airfoil pre-constraints were analysed to impose a feasible 

section condition. This ensured that only true sections with a positive volume (i.e. 

the upper surface remained above the lower surface for all points along the x-axis), 

and that either minimum or maximum thickness requirements were met. These were 

imposed as hard penalty functions that simply ensured that the objective function 

returned a poor htness result with appropriate penalty violations without using XFoil 

itself. 
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Figure 44: A Misleading Solution that Appears as a Good Solution 

Careful post-processing of the XFoil log hie, paased separation or non convergent 

problems to the appropriate penalty functions. Other penalty conditions used, en-

sured that key performance parameters were met. Only inequahty constraints were 

used with the fixing of lift coeScient for all runs to avoid use of an equality condition. 

Earher attempts of introducing equality conditions resulted in very poor GA conver-

gence, thought to be a problem of using such conditions with stochastic processes. 

Despite the use of geometrical and performance constraints, several of the problems 

discussed above hampered productive use of XFoil with GA search. Source code 

modihcation was finally used to prevent excessive calculation cycle runs. In addition 

to this, a separate program was run at GA startup that monitored the process status 

of XFoil runs, sending any sleeping or long process runs the UNIX SIGINT signal if 

required, so that the GA could continue with the next candidate. 

Several problems are still emerging during the GA search process such as misleading 

results as shown in hgure 44, with an incredible drag coefRcient, or implementation of 

penalty conditions demonstrated in hgure 45 which returned a very good drag result, 

but is almost impossible to manufacture. The use of niching with the GA ensures 

that the rest of the population can remain generally unaffected by any misleading 

results. 
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Figure 45: Poor Constraint Consideration May Lead to Unpractical Optima's 

6.2 Spline Representation Techniques 

SpHne interpolation techniques [50] are readily used by engineers through Computer 

Aided Design. Such interpolation techniques appear frequently in the hterature, 

popular for their generality and ease of implementation. Bezier, BSpline and NURBS 

are such representations that have been used for optimisation, using the control points 

as design variables. 

6.2.1 B-Spl ine Pa rame te r i s a t i on 

B-Spline's are commonly adopted in CAD systems to define smooth curve shapes, 

and have shown some success in their application to automated design[35][36][37]. B-

Spline curves are interpolated from a set of control points which are generally defined 

aa coordinate sets Pi(a;, i/). The B-Sphne curve is then given as Equation 91 

R,(«) = ^ P . % , , .u (91) 
i = l 

where are the Bernstein basis functions of p-degree (c/rderp + 1 ) defined as 

= 
1 2/ < 'U < 

0 
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N.A^) = (92) 
tti+p — tti ^i+p+1 — ^ti+i 

where are called knots. The tightness of the curve to a given control point can be 

controlled by the form of knot vector given, whereas the number of control points that 

aSect the position of a point is controlled by the ortfer of the curve. Guidance to the 

form of the knots is given in [50], however only uniform knot vectors are considered 

in this study such aa (7(0,0,0,0.25,0.5,0.75,1,1,1) for a 2™̂  order curve with five 

control points. Of course there is no reason why pajrameterisation of the knot vector 

itself could not be part of the overall design vector to be optimised. 

To reduce the number of design variables considered, the control points were fixed 

in the chordwise positions (z), allowing freedom in the ^ direction to define section 

curvature. A total of 20 poles were used as design variables, with leading edge and 

trailing edge poles 6xed. 

For the most basic of implementations, a 'delta' peirameterisation was used where 

pole movement was defined as a percentage of a given position. In this test the given 

position was dehned by a NACA0012 section [104]. The extent of parameterisation for 

50% perturbation is shown in Figure 47, along with the resultant section found from a 

single pass with the GA using a population size of 200 members. It is clear that such a 

parameterisation is too restrictive for GA search (since GA's are generally used to End 

a near global optima rather than a local optima), and therefore a fuU parameterisation 

of the BSphne method has been attempted. The full range of sections oSered by the 

scheme is shown in Figure 46, with the optimised section compared to the perturbation 

results demonstrated in Figure 48. 

One problem that most of these interpolation techniques exhibit, is the tendency to 

produce 'wiggly' shapes. Figure 49 illustrates the problem more predominantly with 

regards to the pressure distribution. Reuther and Jameson [35] observed such prob-

lems and proposed the use of a low-pass filter to smooth the curve. The use of filtering 

is expected to introduce redundancy into the parameterisation. Careful examination 

of the leading edge of the resultant design reveals a poorly defined nose. The defini-

tion of the leading edge could be significantly improved by imposing tangency. This is 

easily achieved through the use of two sphne sections for the upper and lower smface 
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Figure 46: Limits used for B-spline representation with resulting section 

section 
minimum section 

O' upper bound poles 
a lower bound poles 

— Optimised secfion 

Figure 47: Optimised b-spline section by perturbating ordinals about a reference 
section 
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Figure 48; Resultant best sections from implementations of full and delta parameter-
isations 

with the second control point fixed at x=0 but allowed to move upwards. Lepine 

and Trapanier [37] obtained practical smooth sections using BSpline and NURBS 

representations. In their implementations, the control points were not restricted to 

movement in one dimension which is thought to cause excessive wiggles in surfaces 

through inefficient bunching of the Bernstein interpolation functions. However their 

representation required over 40 design variables to define a simple airfoil section. 

Increased Freedom of BSpline Pole Movement 

By allowing the BSpline poles to adapt in both x and y directions, much smoother 

shapes were achieved using 16 poles which required 32 design points to be optimised. 

Figure 50 shows the resultant section and defining BSpline poles, when allowed to 

move freely. The pressure distribution for the optimised section given in Figure 51, 

is a significant improvement to that of Figure 49. 

6 . 2 . 2 B e z i e r R e p r e s e n t a t i o n s 

The Bezier curve is a special non-piecewise form of the B-Spline which can be used 

to produce smooth curves providing that the order of the curve is kept low, as higher 

orders can lead to oscillations in the shape. The Bezier interpolation of control points 
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Figure 49: Comparison of optimised pressure distributions 

Figure 50: Resultant section when allowing BSpline poles to move in x and y directions 
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Figure 51: Pressure distribution attained by allowing BSpline poles to move in x and 
y directions 

Pj is defined as 

(93) 
1=1 

where the basis fimctions are the classical degree Bernstein polynomials 

given in Equation 94 

n! 
(94) 

— 2)! 

The use of Bezier curves in shape optimisation has successfully been used by Holden 

[2], Reuther and Jameson [35], Lepanier [37] and Doorly [34], producing smooth sec-

tions without the oscillatory pressure distribution characteristics seen in Section 6.2.1. 

This method has been investigated due to its ability to produce smooth geometries 

without the need to introduce more design vectors that are required by B-Splme 

methods to reduce oscillation. Once again, 20 moveable control points are used to 

represent the section shape, with movement restricted to the vertical direction only. 

The resultant section produced for the — 0.6 test caae is shown in Figure 52. 

The section produced is signiGcantly smoother than the equivalent B-Spline result, 

an observation echoed by Holden [2] and Reuther and Jameson [35]. It should be 
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Figure 52: The resultant Optimised Section from a Bezier Sphne Representation 

0 0.1 0.2 0.3 0.4 0^ 0.8 0.7 0.8 0.9 1 

Figure 53: Pressure distribution obtained using the Bezier representation (Cf, = 0.6) 
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Figure 54: Comparison of optimised Bezier sections obtained using an iGA = 0.6) 

noted that this representation may not be able to capture the detail that can be dis-

covered by B-8pline methods, due to the high order implementation of the Bernstein 

interpolation functions. Bezier methods would therefore make an excellent represen-

tation technique for initial searches of the design space. Full B-Spline or even NURBS 

curves can then be used to continue the search, either with GAs or higher fidelity 

hill-climbing search methods such as PoweUs Direction Set Method [105]. 

To investigate the eSect of switching oE the asynchronous island scheme on the quahty 

of the result found, the previous problem was tried on a niching GA with a popu-

lation size of 200. A shghtly different section was obtained, and is compared to the 

iGA result in Figure 54. The convergence to the two methods in Figure 55 shows 

that although different section shapes were obtained, in objective terms they both 

represented different local optima of similar quality. The robustness and repeatability 

of results from the same representation is still an ongoing problem. 

6.3 Analytical Functions 

Hicks and Henne [41] introduced a compact formulation for the parameterisation of 

airfoil sections . This method is based on adding sets of sine bump fimctions linearly 

to an existing basehne airfoil section. The amount of each biunp added to the baseline 
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Figure 55: Superior convergence obtained through island Genetic Algorithm 

section is defined by a coefhcient (design variable). If all the coeScients aze set to 

zero, the resultant gives the base section. This method was implemented by Reuther 

and Jameson [35] using 25 functions, acquiring much smoother sections than those 

found based on spline representations. Hager et al. [42] and EUiott and Peraire [44] 

used 10 shape coe&cients based on different shape functions. 

The value of shape fimctions can be enhanced by finding an orthogonal set. The 

use of ortho-normahsed shape functions in the representation of airfoil sections was 

adopted by Kuruvila et al. [46] based on the NACA four series. Chueng [47] and 

Drela [48] also demonstrated the effectiveness of this method based on a sine series. 

Chang, Torres, and Tung [106] demonstrated the parameter eSciency of ortho-

normalising base functions, recovering a NACA0012 section to an acceptable error 

with just the hrst four modes, and with eight modes to completely recover a tran-

sonic section. To evaluate the parameter eSciency of ortho-normahsed modes further, 

the hrst fomr modes of ortho-normahsed shape functions are to be considered in the 

aerofoil optimisation problem. 

The base functions used by Kiruvila et al. are given in Equation 95, as 
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Figure 56: NACA Series Shape Functions 

yi{x) = l - x 

%/2(z) = a;(l - z) 

2 / 5 ( z ) = X^{1 - X ) 

^5(3;) = - z) 

(95) 
3/3(2;) = a;^(l - a;) ^8(z) = ^ 

3/4(2;) = z^(l - z) 2/9(3;) = ig/z — ^ 

2/io(z) = .yz - {/E 

and plotted out in Figure 56. 

The ortho-normalised modes that are to become the parameterisation for the problem 

were obtained by Gram Schmidt ortho-normalisation process and are shown in figure 

57. The Gram Schmidt process used is detailed in Appendix C. 

The final aerofoil shape is obtained by adding each normalised function as a weighted 

sum such as; 

(96) 

i=l 

where a, are the design variables to be optimised, and gi(x) are the ortho-normalised 
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Figure 57: Ortho-normalised modes of NACA Series Shape Functions 

functions of % which are the base functions given in Equation 95. 

In the apphcation of the orthogonal modes to an airfoil design optimisation problem, 

the first four modes were used for each surface, resulting in only eight design param-

eters. The resultant solution for the Cl = 0.3 design point is shown in Figure 58. 

This section obtained a far superior objective solution, to that of the Bezier solution, 

with a much smoother and useable section. Examination of the parameterisation of 

the delta b-spline method in Figure 59, reveals that such a section lies outside its 

bounds, highlighting the limitations of the delta approach for global optimisation. 

The pressure profile of the resultant section shown in Figure 60, has changed signifi-

cantly from the NACA0012 section. A sharp join is noticeable at the leading edge of 

the foil. Since there is no continuity of curvature properties in the join between the 

upper and lower surfaces, it is not surprising to find these features common in such 

implementations as also observed by [46]. 

In an attempt to impose tangency at the leading edge, BSpline curves were used for 

the upper and lower surface with an additional control point placed above the leading 

edge point imposing the tangency condition. Ortho-normalised functions were used 

as the design variables, with the resultant profile used to define the fourth order 
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Figure 58: Resultant sections obtained using orthogonal functions 
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Figure 59: Optimal section of the orthogonal representation exceeds the delta b-spline 
boundaries 
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ortho result 

Figure 60; Optimised pressure distribution from orthogonal representation 

BSpline control points. For the first design case investigating airfoil sections at a 

low lift coefficient, which is often required in propeller sections, the resultant airfoil 

section shown in Figure 61, was significantly improved. A large similarity is evident 

despite the improved leading edge condition between the pressure distributions shown 

in Figures 61 and 59. At a much higher lift coefficient, the rearward loading found 

in the previous case study was abandoned for a more traditional leading edge loaded 

section. 

The current set of orthogonal modes can be applied to a new Bi-Directional airfoil 

section proposed by Huges [66] for a thruster unit with equal bi-directional thrust 

performance, suitable for deep sea Tethered Unmanned Underwater Vehicles (TUUV). 

Hughes used the upper surface of a Kaplan K4-70 [107] airfoil section to construct 

the bi-directional airfoil, with the upper edge rotated 180 degrees to form the lower 

edge. 

To optimise such sections, the same principle was applied in the parameterisation 

based on the first four ortho-normalised modes, using BSpline control points imposing 

tangency conditions at both leading and trailing edge. The final parameterisation 

required ten design variables in total. The optimised sections shown in Figures 63 and 

64 for lift coefficients of 0.3 and 0.6 respectively, were comparable in performance to a 

NACA0012 section in forward direction only. This is a significant improvement to the 
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Figure 61: CL = 0.3 Result with Tangential Geometric Condition Apphed to Leading 
Edge 
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Figiu-e 62: CL = 0.6 Result with Tangential Geometric Condition Apphed to Leading 
Edge 
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Figure 63: Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV 
Thruster Unit, Cf, = 0.3 

section used by Hughes shown in Figure 65. The drag polar of the three airfoil sections 

given in Figure 66, illustrate this improvement. The 'S' shape feature of the optimised 

sections produce a Sat polar characteristic over a wide range of hft coeScients. This 

performance characteristic would be significantly advantageous to a manoeuvring 

vehicle as there would be httle performance cost associated with operating away from 

the design point. One of the disadvantages of basing optimisation on a single design 

point is featured in the Cf, = 0.3 polar, where the drag polar increases drastically 

about Cf, = 0.6. A combined objective may be more suitable for a final design study 

in order to provide performance strengths that include both design points. 

6.4 Efficient Parameterisation Through Ortho-

Normalised Aero-Functions 

Although some success was made in obtaining a smooth leading edge when ortho-

normahsed fimctions are applied to airfoil design, a fiurther opportunity to reduce 

parameterisation potentially exists through the ortho-normahsation of functions that 
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Figure 64: Solution of a Foil Suitable for the Bi-Directional Operation of a TUUV 
Thruster Unit, = 0.6 
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Figure 65: Original Proposed Section formed through a rotated Kaplan K4-70 Section 
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Figure 66: Drag Polar Comparison of Optimised Sections for Reversible Section 

define the entire airfoil section instead of just the upper or lower surfaces. 

6.4.1 Construction of the orthogonal set 

In order to explore this idea, an ortho-normalisation process has been implemented 

for the reduction of a discrete set of curves. Instead of using mathematical functions, 

existing aerofoils are used to form the basis set. Gram Schmidt ortho-normalisation 

is applied to each airfoil which are treated as discrete curves. Twenty base airfoil 

candidates were chosen from over 1000 airfoil sections available in [108], for the wide 

contrast in shapes offered between them. The airfoil basis sections are shown in 

Figures 67 and 68. 

In Gram Schmidt ortho-normalisation, basis functions must cover the range 0 < z < 

1, so the upper surface is rotated about the Y — axis from the LE, and the new curve 

scaled and translated to satisfy the required range. The resultant base 'Aerofunctions' 

are shown in Figures 69 and 70. The effectiveness of the normalisation process is 

enhanced by ordering the functions in terms of maximal differences between each of 

them. The distance between two functions can be found from 
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Figure 67: Basis Airfoils for Constructing the Orthogonal Set 
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Figure 68: Additional Basis Airfoils for Constructing the Orthogonal Set 
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Figure 69: Basis Functions for Gram Schmidt Process 
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Figure 70: Basis Functions from Additional Basis Airfoils 
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Figure 71: Ortho-Normalised Airfoil Functions Modes 1-6 

dist= f Abs{fi{x) — f2(x))dx 
Jo 

(97) 

where fi and /g are the y coordinates from the base aero-functions. 

The resultant ortho-normalised set of aero-functions, obtained by applying Gram 

Schmidt normalisation are shown in Figures 71 and 72. Due to the discrete applica-

tion of the normalisation procedure, a small amount of numerical noise is found to 

accumulate in each consecutive function. This noise can be attributed to the poor ge-

ometrical quality of the original imported sections, and to the round off error inherent 

by the discrete implementation of the approximation process. 

Table 10 shows the total cumulative error in reconstructing all 20 airfoils using n 

airfoils as basis functions for the ortho-normalisation process. The cumulative error 

is given by 

20 
CumulativeError = dist{upper) -t- dist{lower) (98) 

i = l 

where dist{upper) is the error between the actual upper section and the reconstructed 

upper section as defined by Equation 97, and dist(lower) is the error for the lower 
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Figure 72: Ortho-Normalised Airfoil Functions Modes 7-10 

section as calculated in the same way. 

At 20 basis functions, a significant error of 0.0117 is present, and this is largely 

attributed to numerical noise. However this error threshold is easily reached to within 

2% with just eight basis airfoils, and a similar but only slightly larger error is attained 

with six basis airfoils. 

6.4.2 Implementat ion of Ortho-Normal ised Aero-Functions 

in Shape Optimisation 

The first eight orthogonal aero-function modes were used in the shape optimisation 

problems given in Section 6.1.1. The resultant airfoil for C l=0.6 test case is shown in 

Figure 73. The new ortho-normalised functions were significantly easier to implement 

than the previous ones, and did not need any additional smoothing about the leading 

edge to obtain this solution. In this implementation, the functions were not able 

to improve on the result obtained using the previous functions. Once again, large 

frequencies of non-convergent results were observed during this implementation with 
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Number of Included Cumulative Error 
Foils in Airfoil for Reconstructing 20 
Base Set Airfoi l s 

1 NACA-SC2 1.2913 
2 M21 0.4573 
3 UI1720 0.3222 
4 RAF32 0.1743 

5 NGhlS 0.1276 
6 17769 0.0985 
7 E856 0.0564 
8 NACA2301 0.0327 
9 RAE5212 0.02711 

10 N8hl2 0.0246 
11 E625 0.0216 
12 NCAMBRE 0.0207 
13 E793 0.0176 
14 E850 0.0123 
15 U8A408 0.0117 
16 N6409 0.0117 
17 M5 0.0117 
18 E1210 0.0117 
19 JN153 0.0117 

20 RAF26 0.0117 

Table 10: Airfoil Reconstruction Error from using Ortho-Normalised Aerofunctions 
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Figure 73: Resultant Section Obtained using Ortho-Normalised Aerofunctions 

the GA, and concerns should be noted about the ability of the functions to fully 

capture smooth leading and trailing edges due to the large amount of numerical noise 

present in these areas. The severe number of infeasible candidates are the most likely 

cause for a poor GA solution. 

6.5 The Performance of Different Parameterisa-

tion Approaches 

Several spline based parameterisation techniques were used on a simple airfoil design 

problem, with the best drag results obtained from each representation, shown in Table 

11. 

The deltarBSphne approach was the simplest to implement, but was found to be too 

restrictive for optimal design search. In general the BSpline approaches produced 

wavy pressure distributions as previously observed by Jameson. By allowing the 

BSplines poles to move in both x and y directions, much smoother pressure distribu-

tions and sections were achieved. The use of NURBS curves with parameter freedom 
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Representation Test Case 
= 0.3 C2, = 0.6 

Delta B-Spline with 50% freedom 0.0059 0.00873 
B-Spline with x knot direction fixed 0.0068 0.00881 
B-Sphne with Moveable (x,y) knots 0.0061 0.00876 

Bezier 0.0051 0.00851 
Ortho-Normaiised NACA Functions 0.0048 0.00846 
Ortho-Normahsed Aero-Functions 0.0051 0.00845 

Extended B-Sphne Trial with 12 knots 0.00862 
Extended B-Sphne Trial with 16 knots 0.00858 
Extended B-Spline Trial with 20 knots 0.00861 

Table 11: Resultant Best Drag Results Obtained from each Representation 

in chordwise, thickness and rational directions have been used by Lepine oZ. [37], 

without producing this characteristic, highlighting further search opportunities of-

fered through B-Spline representations. However more than 40 design parameters 

were required for these implementations. 

The leading edge was particularly difhcult to define by all the methods used. Some 

imposition of tangency was required by all representation methods to produce ad-

equate pressure distribution in this area. The Bezier implementation produced the 

smoothest definition, including some peakedness in the leading edge pressure dis-

tribution. Further dehnition in the region could be achieved either by additional 

Bezier poles, or through the implementation of a higher Edehty spline method such 

as NURBS. The orthogonal functions were able to produce a reasonable result in the 

Cf, = 0.6 test case, after smoothing was apphed to the leading edge, however this 

solution may reduce its abihty to define sharply peaked pressure distributions. 

The study of bidirectional airfoils presented the opportunity to examine the suitabil-

ity of orthogonal functions to a slightly different geometry. The parameterisation 

was simplified signihcantly in this problem since only definition for one surface was 

required, and rotated about 180° forming the other surface. Suitable results were 

found for both design points. 

The implementation of ortho-normalised aerofunctions demonstrated the abihty to 

adopt orthogonal functions in the description of the entire airfoil without additional 

smoothing about the leading edge. Despite the advantages oSered by this approach. 
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the solution failed to improve on the result found by the ortho-normalised NACA 

functions. The frequency of infeasible candidates generated by orthogonal represen-

tations is the most hkely cause for this disruption. Numerical noise generated from 

both surface inaccuracies in the base airfoils, and round off error in the discrete Gram 

Schmidt implementation were found to be a significant handicap to the adoption of 

this approach. Opportunities to further reduce this noise exists through using ana-

lytical functions that have similar characteristics to the aerofunctions, and through 

the reduction of round oS error in the ortho-normalisation process. 

Overall, the orthogonal functions provided the most dynamic geometries, defining 

slender sections for the Cf, = 0.3 design point, and well posed pressure distributions 

in the = 0.6 case. Parameterisation required less than half the number of design 

variables than the other methods. Doubts however remain on the ability of such func-

tions to dehne leading edge curvature, and the coarseness of the resultant geometrical 

definition. The Bezier curve method provided smooth curvature throughout, but with 

a more limited search range. The resultant geometries agreed with that found using 

orthogonal functions, although it is expected that the global optima continues to re-

main elusive, due to the poor evolution convergence observed when applying more 

high Edelity representations. 

6.6 Sensitivity of a B-Spline Representation to Pa-

rameter isat ion 

B-Sphne and NURBS representations oSer the opportunity to adapt shape to a finite 

degree for any given parameterisation. By increasing the parameterisation through 

more control points, further shape adaptation can be offered. However, so far B-

Spline based implementations have been diGicult to implement successfully, in GA 

search processes. 

One idea into why B-Spline representations behave so poorly in GA shape optimi-

sation, is that such representations may lead to a deceptive [15] search landscape. 
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Figure 74; Effect of adding more control points to B-Spline parameterisation 

Figure 74, shows the effect of increasing the number of BSpline control points on the 

final pressure distribution achieved. With just 12 moveable points (ignoring those 

that are fixed at the trailing and leading edge), a nicely smoothed pressure distri-

bution can be maintained. A total of 20 control points or 40 design variables were 

required to adequately capture the leading edge pressure peak, showing the enormous 

expense involved, or using genotype-phenotype mappings that do not allow adaption 

of the number of genes. 

However, the shape obtained using 20 control points was achieved following extensive 

re-runs of the GA, with each run starting from the previous best solution. In addition, 

a constraint was also placed on the pressure distribution, limiting the number of 

curvature inflections to five. In total, 10 re-runs were used to obtain the final result. 

A more interesting result is that obtained using just 12 control points, six on each 

surface. With this parameterisation, the solution converged quickly, and a nicely 

formed pressure distribution was formed as shown in Figure 74. 
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6.7 Summary 

An investigation into the performance of several geometric representation techniques 

including spline interpolation and analytical functions has been explored in GA based 

aerodynamic shape optimisation. The popular Bezier spline representation was found 

to be the eaaiest technique to implement, and produced smooth sections following op-

timisation. In contrast, B-Sphne curves were found to be the most diScult represen-

tation to implement, resulting in unwanted wiggles within the pressure distribution. 

Following an additional constraint to reduce unwanted pressure distribution Suctua-

tions and additional expensive re-running of the GA from previous solutions, highly 

satisfactory results were eventually achieved from B-Spline based representations. 

The use of ortho-normahsed analytical functions with GA's were explored as a means 

of producing more eScient geometric parameterisations. This type of implementation 

was able to outperform the performance obtained using spline based representation 

approaxzhes. The idea was extended to using existing airfoils to construct the orthog-

onal function set. Although, a successful result was found, concerns were highlighted 

over the amount of munerical noise generated through the implementation used. Such 

numerical noise may limit the representations abihty to adapt the leading and trail-

ing edges of airfoil sections where the eSects of noise are the strongest. Orthogonal 

functions were also found to generate a high frequency of infeasible designs whose 

performance could not be determined via the implemented CFD solver. This charac-

teristic is detrimental to the GA evolution process, and is a signiGcant restriction in 

the ability of these representations to adapt geometry. 

Opportunities to increase the abihty for sphne based representations to adapt, ex-

ist through the extension of their parameterisation to cover larger design spaces. 

However, in the adoption of B-Spline curves, larger parameterisations were found to 

reduce the ability of the GA to evolve an airfoil shape. A further opportunity for 

increased adaptivity exists for all representations, through the abihty to provide some 

aerodynamic performance evaluation of candidates that were found to be infeasible in 

this implementation due to CFD convergence issues. More computationally expensive 

CFD methods could provide this improvement, but at a considerable computational 

cost. A potential opportimity for improvement in this field, may exist through the 
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to solvable ones. 



C h a p t e r 7 

Adap t ion of Chromosome 

Complexi ty 

The requirement of adaptation considered in this chapter, is the ability to either in-

crease or decrease the Sexibihty of search offered through the genotype-phenotype 

map within an adaptive evolutionary process. To incorporate this feature within 

a GA which generally requires an external mapping between genotype and pheno-

type, hierarchical structures or components can be used within the de6nition of the 

chromosome string. 

Hierarchical based chromosome structures have been successfully used in a variety 

of problems [109]. In previous implementations, strings of child genes are grouped 

together via a container gene which will be referred to as the parent. By allowing 

a parent gene to contain other parents, complex hierajrchical genetic representations 

can readily be established. Genetic operators such as crossover and mutation can 

be applied to these chromosome strings in a similar pattern to that used on simple 

canonical binary string representations. Mutation operations can alter the value of 

each gene bit of a child gene, and crossover can allow the exchange of genes between 

two parents by exchanging similarly ordered genes between parents. These operators 

can be apphed to any level of the hierarchy. 

One of the key dlEerences between hierarchical and canonical chromosome repre-

sentations, is the genetic operation offered by 'Hierarchical Mutation'. Hierarchical 
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mutation can be used to adapt the complexity of the chromosome string by switching 

on and oS child branches or structures within the chromosome dehnition. Switching 

oS gene branches is a simple operation that requires the affected genes to be removed 

or disabled from the chromosome structure. When switching on genes, new gene 

encodings need to be seeded, which is usually achieved through random generation. 

Evolution is a gradual process of cumulative small changes, and not one of large 

random flukes. When using hierarchical encodings in the definition of geometry, 

switching oS strings will generally have a small mutational eSect on the overall shape. 

However, when switching on a gene from its oE state, care should be taken to ensure 

that the resultant phenotype is changed only by a small mutational e&ct. The 

hierarchical mapping used by [62], and in [109], showed little concern for the eSect 

of hierarchial mutation on the resultant phenotype, using a random generator to 

reseed the genes that were switched on. On a geometrical structure in a critical 

design environment such as aerodynamic shape formation, such random generation 

can lead to large changes to the resultant phenotype or shape. It would be diGicult to 

see how any chromosome undergoing such transhguration would survive to the next 

generation. 

Bently [110], addressed such an issue in his work with primitive geometrical objects. 

To facilitate the addition of new genes and structures into a hierarchial encoding, the 

new genes were seeded with interpolated values from the existing genes. Since the 

primitive types used by Bently, exhibited no curvature eSects, this method was easy 

to adopt, and expressed directly in the hierarchical chromosome implementation. 

The adoption of an explicit hierarchical chromosome implementation will be di@cult 

for curvature shapes, where more elaborate means of interpolation would be needed 

to minimise the e&ct of adding a new gene to the resultant shape. In this work, 

an object based approach to the same methodology will be implemented for the 

hierarchical encoding and mutation of advanced geometrical shapes. This approach 

will allow for the flexible adoption of diSerent geometric representation techniques 

using the same pattern. 

The basis for the framework proposed, is that of a hierarchical relationship between 

Form, Surface, Curve, and Point. That is to say that a Form is composed of many 
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Form 

Surface 

Curve 

Point 

Figure 75: Hierarchical relationship between Form, Surface, Curve and Point entities 

Surfaces, a Surface is composed of many Curves, eind a Curve is composed of many 

Points. This relationship is illustrated in Figure 75. By using a hierarchy of en-

tity objects, reproductive operators applied at a high level such as on a curve, are 

passed down appropriately to lower level entities such as a point. By allowing the 

genotype objects to contain knowledge of its phenotype mapping, complex chromo-

some operations such as hierarchical mutation can be facilitated more appropriately 

while ensuring that a philosophy of evolution through small changes persists. For 

example, a fifth knot can be added to a B-Sphne curve by interpolating its values 

such that the shape of the resultant curve does not change unless a point mutation 

is applied as illustrated in Figure 76. A crossover operator can also be added to deal 

with two parent chromosomes that are hierarchically different to one another. The 

disadvantage of using an object hierarchy to represent the chromosome structure is 

the increased amount of programming required to re-implement an encoding for a 

different representation. 

7.1 Hierarch ica l C h r o m o s o m e F r a m e w o r k 

In order to capture geometric detail within the genotype, it is important to maintain 

a complete DNA specification of the geometric phenotype, which can be achieved 

through allowing both mutable and non-mutable values to co-exist within the same 

encoding structure. Reproductive operators should then copy non-mutable values 
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I.) Line Defined by 
Two Poles 

2.) Insert Mutation add an 
Extra Pole Without Altering 
the Shape 

3.) Mutate the New Pole to 
Alter the Shape 

Figure 76: Adapting a line into a curve using a B-Spline representation, under the 
Hierarchical Framework this adaption can use two mutations, one to add the extra 
genes (new Point), the other to mutate the new genes 

into the oSspring chromosome structure directly without modiEcation, and treat mu-

table values through the appropriate reproductive operators such as crossover and bit 

mutation. 

A sample chromosome structure is given in Figure 77 for an object based hierarchy 

capable of describing the evolution given in Figure 76. Each parent entity is re-

sponsible for activating reproductive operators on its child objects, including seeding 

appropriate values when hierarchical mutation is called in order to reduce the eSect 

of hierarchical mutation to small changes only. An example of how hierarchical mu-

tation will cause the structure of the chromosome to change is given in Figure 78, 

and the 6nal curve is described following a second mutation in Figure 79. 

To implement the new hierarchical chromosome framework within a GA, the GA used 

in Chapter 4 waa re-implemented using the JAVA programming language. A baaic 

description of the new implementation is described in Appendix D, which illustrates 

the important relationship between the evolution process encapsulated by the GA, 

and the Hierarchical DNA interface implementation described here. The migration 

from C-t-+ to Java was straightforward, aasisted through the exploitation of the vast 

and well documented Java 1.3 API [111]. The Java API provides significantly more 
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(0,0) (2,0) 

Hierarchical Tree S t ruc ture fo r L ine C h r o m o s o m e 

PoinI 
<Fixed> 

Poini 

X y 
0.0 0.0 2.0 0.0 

<Flxed> <Faed> <Fixed> <Fixed> 

Figure 77: Hierarchical Implementation of a Simple Curve Chromosome 

Adapted L ine with N e w Third Point , M o v e a b l e in Y D i r e c t i o n 

(1,0) 

(0,0) (2,0) 

Adap ted Hierarchical Tree St ructure fo r L ine C h r o m o s o m e 

Polnl Point 

1 t 

Figure 78: Adaption of Hierarchical Curve Chromosome by Adding New Genes in 
the Form of an Extra Point 
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Final Point Mutation Reveals New Shape 

(1,1) 
Kcsuiiant new 
B-Splinc curve 

(0,0) (2,0) 

Hierarchical Tree Structure for Adapted Line Chromosome 

Pohl Pohl 
<Fk#4l» <FlMd» 

Figure 79: New shapes can easily be created once new points have been added 

support for container types such as vectors, strings and haah maps than STL, allowing 

development to focus clearly on the implementation logic of the GA rather than on 

extra support for value types. 

The key reason for choosing the Java platform over C + + for the implementation of the 

hierarchical GA, is Java's abihty for Serialisation and Reflection, used in Java Remote 

Method Invocation (RMI) for distributed computing over networks. Unlike other 

distributed technologies such as Corba 3.0 [112], Java is able to completely serialise 

and marshal its objects at runtime so they can easily be communicated between 

distributed computers, requiring only a small amount of extra programming. Because 

the new chromosome structures contain a collection of problem specific objects to 

describe the genotype, other distributed technologies such as Corba or MPI, would 

require an external description of the signature types that are to be communicated 

between processors, burdening distributed development. 

7.1.1 A Pers i s tent A s y n c h r o n o u s D i s t r i b u t e d C o m p u t i n g 

E n v i r o n m e n t v ia J INI -JavaSpaces 
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To contmue to evaluate expensive objective functions over distributed computing 

networks, Java's object serialisation capability enables the definition of phenotype 

orientated chromosome objects without the need to define further socket serialisation 

mechanisms. Distributed communication amongst Java processes is generally made 

available through socket hbraries, or RMI. In addition to these basic services, one 

other high level service API has been made available for network based communicar 

tion. JINI technology is orientated around distributed services and provides support 

for network services such aa lookup, communication, synchronisation, leasing, dis-

tributed events and notihcation, and distributed transactions. One powerful service 

provided through JINI, is JavaSpaces. 

The JavaSpace model provides persistent object exchange areas in which remote Java 

processes can coordinate their actions and exchange data. Motivated by the Linda 

language [113], JavaSpace views a distributed application as a collection of processes 

cooperating through the flow of objects into and out of one or more distributed spaces. 

A space is a shared, persistent network repository for Java objects. Instead of the 

process talking to other processes directly, they exchange data by reading, writing 

and taking objects from a space. In support to the JavaSpaces concept, JINI provides 

the additional services such as lookup, events, leasing, transactions, etc. 

A space based object is deAned from the Entry interface. Instance values can be 

used to look up entries within a space. Hence an Entry instance with a param-

eter 'String status', will allow the lookup of objects via string matches such as 

In fact, this lookup mechanism is extended to aU Java value 

types including objects. It is this envelope or 'template' that provides the important 

capabihty to read, write, take and receive notifications on speciSc object events. 

JavaSpaces provide a basic scalable and persistent service on which to base a Java 

implementation of the farm-worker model described in Chapter 5.2.2. A basic spaced 

based model can be created as described in Figure 80. 
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1. If GA 

(a) Look Up work' JavaSpace. 

(b) Add objects tha t require evaluating t o space with s ta tus= 'Evalua te ' . 

(c) Remove all objects from space with s ta tus= 'Evaluated ' . 

2. If Worker 

(a) Look Up 'work' JavaSpace. 

(b) Register with space k»r object additions where s ta tus= 'Evaluate ' . 

(c) Take object. 

(d) Evaluate. 

(e) Return object t o space with s ta tus= 'Evalua ted ' . 

Figure 80: Simple JavaSpace Model of Farmer-Worker 

7.1.2 A R o b u s t Farm-Worker Spaced B a s e d I m p l e m e n t a t i o n 

The above algorithm will enable the Farm-Worker features needed for the distributed 

GA. In order to provide a more robust asynchronous evaluation system, the following 

requirements have been included in the following implementation. 

# Persistent availability of a 'work' object for a given length of time or until it 

has been evaluated, regardless of network and computer failure. 

# Object evaluation can be passed to selected resources. 

These requirements basically ensure that regardless of computer, apphcation crashes 

or network failure, for as long as the given space is available, once a 'work' object 

enters the space, it is available for evaluation until evaluated, is taken for evaluation, 

or expired. Even if the job submission process has failed, the object remains available. 

If a long enough lease time is allocated to the work object, then evaluation must be 

allowed to complete. This apphes even if a remote process has removed the object for 

evaluation, but failed to return the completed result due to some failure. The second 

requirement allows the job submitter to dehne the type of resource that should carry 

out the work. 

For the GA, the basic algorithm for submitting job objects remains relatively un-

changed to that in Figure 80. Only the additional specification of a maximum work 

lease time is required, as well as a destination indicator that describes what type of 
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worker should carry out the work. On the lease expiring, the object will be removed 

from the JavaSpace. 

For the worker, the problem of object persistence within the JavaSpace in the event of 

partial faikne is handled through the JINI transaction and leaae model. The worker 

process removes jobs from the space under a transaction, barring other processes from 

accessing or reading the object. Upon completion of the objective function evaluation, 

the fitness and constraint violations are recorded within the object envelope, and the 

status value set to 'Evaluated'. The object can then be written back to the space 

under the same tranaaction. Applying the transaction 'commit' operation, applies the 

transacted JavaSpace event to the space. The object is now available to other space 

chents to read and remove. In the event of partial failure such as process crashes or 

JavaSpace/GA or Worker computers being switched off in an uncontrolled environ-

ment, the original object will be fuHy restored when the transaction leaae eventually 

expires. This model imphes that if an object is given unlimited lease lifetime, and 

that a worker process is available to carry out objective function evaluation, a fully 

completed evaluation will always be carried out regardless of the number of partial 

failures. 

The hnal Farm-Worker algorithms are available in Figures 81 and 82. 

7.2 Hierarchica l Crossover a n d A d a p t i v e M u t a -

t ion of a Line 

A curve described by a collection of straight hnes between points, provides a simple 

but practical problem on which to examine the genetic interaction between adapting 

the complexity of the genotype on its phenotype within an evolutionary process. The 

Hierarchical implementation is shown in Figure 83. The Point objects contain the 

underlying DNA sequence if the chromosome, and the objective of the curve object, 

is to facilitate calls passed from the GA, onto these underlying points. Two of the 

most important methods that Line must implement are, Crossover, and Mutation, 

which allow the structure of the chromosome to adapt by adding or deleting genes, 

as well as to alter the genes already present. 
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1. Look Up 'work' JavaSpace. 

2. Create CounterEntry instance. 

3. Set cur5or=0, process=myid. 

4. Write CounterEntry to space. 

5. ForEach Genome in population 

(a) Create GenomeEntry instance. 

(b) Set s ta tus= 'Evaluate ' . 

(c) Set type= 'xfoi r 

(d) Set lease='unlimited' . 

(e) Set process=myid and id=Genomeld. 

( f ) Create Transaction with short lease. 

(g) Write efitry to space under transaction. 

(h) Take CounterEntry from ^ c e under transaction. 

(i) Set c i t r @ o r + = 1 and write CounterEntry t o space under transaction. 

(j) Commit transaction. 

6. While > 0 

(a) Request events for GenomeEntry write where process=myid and s ta tus= 'Evaluated ' . 

(b) Upon event notification 

i. Create transaction with short lease. 

ii. Take GenomeEntry from space where process=myid and s ta tus= 'Evaluated ' u n d e r transaction. 

iii. Take CounterEntry from space under transaction. 

iv. Set c u r a o r — = 1 and write CounterEntry t o space urtder transaction. 

V. Commit transaction. 

7. Return. 

Figure 81: JavaSpace Farm Implementation within GA Evaluate 

7.2.1 Hierarchical Crossover 

Hierarchical Crossover mimics the crossover operation usually performed on the sim-

ple binary string chromosome described in Chapter 4.1.4, but within the hierarchical 

tree structure. Hiereirchical Crossover consists of two genetic exchange operations 

between parents. Branch exchange illustrated in Figure 84, essentially cuts the gene 

sequence between two different parent genes. In this operation, all parent genes to 

the right of the cut within the same branch are swapped with the corresponding 

genes of the second Genome. All children branches of afFected parent genes are also 

transferred to the second Genome. The second crossover operation available, allows 

a gene of any branch level to be cut as illustrated in Figure 85. A portion of this 

gene to the right of the cut, along with all remaining genes to the right of the cut are 

transferred to the second Genome. 
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1. Look Up 'work' JavaSpace. 

2. While True 

(a) Request events for GenomeEntry write where type='xf6ir and status='Evaluate ' . 

(b) Upon event notification 

Create transacdon with long lease. 

Take GenomeEntry under transaction. 

Create WorkerProcess entry. 

iv. Set worker=myid and id=GenomeEntry.id and write entry (no transaction). 

V. Evaluate GenomeEntry and write fitness and constraint violations to GenomeEntry. 

Write GenomeEntry to space under transaction. 

Commit transaction. 

Take WorkerProcess (no transaction). 

Figure 82: Algorithm for JavaSpace Worker 

Simple Curve Defined by Lines Joining Points 

( l . l ) 

m) (2.0) 

Hierarchical Tree Slructure for Simple Curve Chromosome 

Figure 83: Chromosome Structure for a Set of Comiected Lines 

In a simple implementation of this process, the position of the crossover point is 

determined by only one parent. If the crossover point is not found to exist on a 

mutable or switched on gene on the other parent, then the cross-point will mark a 

position from which all genes are swapped without crossover being performed on a 

gene. If the gene belonging to the second parent is also mutable, then the task is 

passed down to their implementations. N-Point crossover is achieved by calhng the 

crossover function N times. 

The algorithm for Hierarchical Crossover of a Line is summarised in Figure 86. The 

Point crossover method is summarised in Figure 87. 
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Paren t s 

O f f s p r i n g 

Figure 84: Parent gene exchange via sub-tree swapping 

Paren t s 

i^niiifiSii 
Crowovcr Ram 

Offspring 

Figure 85: Hierarchical crossover at sub-level 
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1. create array of mutable points 

2. select random point from mutable point array 

3. if ( chosen point is available in other parent ) then 

(a) crossover genes between points 

(b) swapover remaining points in curve 

4. else 

(a) swapover points in curve from chosen point 

Figure 86: Hierarchical Crossover Algorithm 

1. randomly pick eithe- x or y as the mutable value if both their mutable methods return true, o the rwi se pick the mutable value 

2. select same value on other parent 

3. pass one value t o others crossover method 

4. if both X and y are mutable, the non-crossed value can be swapped on a random basis 

Figure 87: Point Crossover Implementation 

Improved Hierarchical Crossover 

To increase schema samphng through a more productive crossover operator, a filter 

can be applied such that only common genes that are present and available between 

both genomes are passed to the gene crossover operation. To achieve this, the chro-

mosomes are searched to create a list of common indices. Each index represents a 

mutable gene that is present in both genome encodings. The index that is to be used 

to pass the respective points to the genes crossover operation, is then randomly cho-

sen from this List. The Algorithm used to filter the genes, and its use in the modihed 

Hierarchical Crossover operation is shown in Figure 88. 

This algorithm is now almost identical in eSect to Benley's [110], Hierarchical 

Crossover implementation. In Bentley's algorithm, a more complex search was carried 

out to find a point of similarity between the two parent chromosome strings. This 

search was carried out by randomly choosing a gene, and attempting to discover the 

same gene on the second parent. If the gene was not found, a search was conducted 

to find all similar genes within the same hierarchy. A random gene would then be 

sampled from this list. If no similar genes were foimd, the search would move up in 

the hierarchy until the top level is reached without any crossover occurring within a 
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1. for each point 

(a) if point exists in other parent curve 

i. add point to common list 

2. if Size( common point list ) ^ 0 then 

(a) select random point from common point list 

(b) crossover genes between points 

3. else 

(a) select random sub-tree from first chromosome 

4. swapover remaining points in curve 

Figure 88: Algorithm for Hierarchical Crossover about Common Gene Points 

gene. The algorithm implemented here facilitates a more elective crossover opera-

tion, as it will always provide a set of common genes to the gene crossover operator, 

if such genes exist within the curve structure. If no common genes are found, then a 

simple gene swap is performed between chromosomes from a randomly chosen point. 

7.2.2 Hierarchical M u t a t i o n - G e n e A d d i t i o n and De le t i on 

The mutation operators made available to aasist the evolution of both chromosome 

structure and genes are: 

1. Gene bit mutation 

2. Sub-branch inversion 

3. Child node deletion 

4. Child node addition 

In some hierarchical chromosome implementations, bit mutation, node deletion, and 

node addition are implemented equally as part of the same operation. This usually 

entails that the gene switches which determine whether a gene is active or not, be-

come part of the chromosome string. These additional gene components, undergo 

aU breeding operations during reproduction. This introduces further chromosome 
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complexity, increasing the overall length of the chromosome string. In this implemen-

tation, the determination of whether a gene is active or not, remains hidden from the 

main breeding processes. Valuable genetic processes such as crossover and inversion 

do not wasted genetic operations altering the contents of genes that are not active, 

leaving this process solely to a separate mutation operation, 'Sub-Tree Mutation'. 

Gene Bit Mutat ion and Inversion within an Object Hierarchy 

Gene bit mutation simply tries earh mutable bit in the chromosome string recursively 

for mutation. For each trial, a random number is drawn in the range [0,1). If 

the condition, is satisfied, then that bit is mutated, and 

the next one sampled. The hierarchical tree is traversed from parent to child, with 

all genes within the chromosome string sampled. 

In inversion, a condition roMcZ < is tested for each chromosome. 

If the condition is satished, each child branch belonging to the chromosome head 

parent is chosen for inversion. The node inversion operator is called passing the second 

Genome's chromosome as an argument. Each node's inversion operator repeats this 

process, recursively applying the operator on all child nodes. Under a node branch, 

an invertible bit within randomly selected node is selected to become the starting 

point for the inversion process, and the end point chosen from within any node under 

the same parent branch. AU bits between the start and end point are inverted aa 

described in Chapter 4.1.4. In this implementation, the end point can be placed to 

either the left or right hand side of the start point. 

Sub-Tree Mutat ion Operator 

For a simple hne described through a composition of points, the process for point ad-

dition and deletion are relatively simple. For sub-tree mutation involving the deletion 

of a point object, the point is simply removed (the child node is switched oS), and 

the resultant curve is altered by only a small localised amount as shown in Figure 

89. For insertion, the gene is switched on, and the seeded position of the point is 

calculated through the algorithm briefly described in Figure 7.2.2. 
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Simple Curve defined by four points 

i l . l ) (1.3.1.0) 

(0,0) (2:0) 

Resultant curvc following point deletion via subtree mutation 

jl.l) 

(0.0) (2̂ )) 

Figure 89: The effect of sub-tree deletion on a simple curve 

Figure 90: Line Curve Point Insertion Algorithm 

1. Find o , 6 such t h a t ; / = a z 4- 6 for all points between 

2. Find range of z [ z y n i n , that satisfies ;/ i/Trtaz) where 3/ = o z + 6. 

3. Randomly choose a value z within the valid range, and yield 

4. Seed newly enabled gene with ( i , y ) values 

The eSect on the curve, and chromosome structure following point insertion on the 

curve shown in Figure 83, is illustrated in Figure 91. 

7.2.3 Appl i ca t ion of G A t o evolve c o m p l e x i t y of a s imple 

curve 

A simple hue reconstruction problem has been used to explore the capabihty of the 

hierarchical scheme to evolve shape complexity. Three problems are considered in-

volving the reconstruction of lines dehned by the coordinates given in Table 12. The 

objective of the problem is to re-construct each solution using the hierarchical GA 

described above, from a two point starting solution with coordinates (0,0) and (1,0). 

The encoding used to dehne the scope of the chromosome map is shown in Table 13. 
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Adapted Curve with Point Insertion 

(0,0) (2.0) 

Resultant Hierarchical Tree Siruciurc for Curve (Chromosome 

Figure 91: The eEect of sub-tree addition on the curve and deSning chromosome 
structure 

Point 1 Point 2 Point 3 Point 4 P o i n t 5 Point 6 
(0,0) (0.5,1) (1,0) 
(0,0) (0.25,0.5) (0.5,1) (1,0) 
(0,0) (0.25,0.5) (0.5,1) (0.75,0.5) (0.85,-1) (1.0) 

Table 12: Coordinates of the hne problems considered 

Distance Between Two Curves 

The objective fitness function is constructed from the distance between two curves. 

This distance is taken as the actual cartesian area between them as given in Equation 

99 

error = r ~ P 2 . { x , ) f + { P , , { X , ) - P 2 , ( X . ) ) ' S X , 

Jo 

(99) 

where % is the normalised parametric length of the curve (usually normahsed to 1.0), 

and is the point given at the x-coordinate found at parametric length a on 

the first curve. Equation 99, applies only for curves that cover the same range in the 

x-axis. For the implementation used in this chapter, the mapping of f (a;, ?/) —> it is 

approximated to /(a;, 2/), the error is discretely approximated by Equation 100. 
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Point Line 1 Line 2 Line 3 
l:min 
l:max 

Fixed 
(0,0) 

Fixed 
(0,0) 

Fixed 
(0,0) 

2: mill 
2:max 

(0,0) 
(1.1) 

(Orl) 
(0.35,1) 

(0,-1) 
(0.35,1) 

3;min 
3:max 

Fixed 
(1.0) 

(0.35,-1) 
(0.65,1) 

(0.35,-1) 
(0.6,1) 

4:min 
4:max 

Fixed 
(1,0) 

(0.6,-1) 
(0.8,1) 

5:min 
5:max 

(0.8,-1) 
(1.0,1 

6:min 
6:max 

Fixed 
(1,0) 

Table 13: Hierarchical Encoding Limits for Curve Points 

error = ^ \ / - da; (100) 
n = l 

where (ia; = and M mazJterations—1' 

The final objective function was constructed as 1 — error where error is found using 

equation 100. 

Analysis of Line Adaptation using a Hierarchical Encoding 

The performance gain due to hierarchical adaptivity, has been measured against a 

fixed canonical binary string encoding for the three given test cases. In the case of 

hierarchical tree adaptivity, an additional tree mutation rate was introduced with 

mutation rates of 5%, 10% and 15% tested. The performance improvement gained 

through the use of adaptive chromosome encoding for the three test cases are shown 

in Table 14, where performance improvement is measured against a traditional hxed 

binary string encoding of Table 13. 

For case 1, a line defined by just three points, the performance measiured indicates 

a substantial performance loss when applying Hierarchical Mutation. Similar results 

can be seen in the 2nd test case involving 4 points. In the more complex six point 



164 

Test Case No Mutation 5% Mutation 10% Mutation 15% Mutation 
Case 1 100% 61% 64% 62% 
Case 2 100% 69% 72% 68% 
Case 3 100% 104% 1139% 102% 

Table 14: Performance of Adaptive Line Tree Mutation when Compared with a Simple 
GA Implementation 

—Case 1 — —Case 2 • 

Figure 92: Evolution of fitness 

problem, a small performance increase was seen. The fitness evolution for each test 

case with tree Mutations 10% are shown in Figure 92. In all three test cases, the 

adaptive encoding required approximately 15 generations to converge. 

To provide some analysis into the effect that the adaptive encoding has on the evolu-

tion convergence, the number of unique individuals per generation is shown in Figure 

93, with tree Mutation = 10%. In the first 10 generations there are significantly fewer 

unique individuals when tree adaptation is applied in comparison to the fixed encod-

ing. GAs are believed to require a high rate of schema sampling, and a reduction 

in unique individuals would reduce evolution performance. For the more complex 

Case 3 problem, the standard GA was observed to converge quickly, with the number 

of unique individuals available falling sharply before the optimum is found. For the 

adaptive GA, the large rise in available unique individuals may assist the evolution 

process to converge on the optimum. 

Figure 94, shows the number of common genes shared between mating parents. In 
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Figure 93: Number of unique individuals in each population 

Figure 95, a measure of crossover efficiency is shown, given by the percentage of new 

children that differ by at least one allele bit from either parent. For the standard fixed 

GA, crossover is most productive in the first 10 generations while for the adaptive 

encoding, crossover is most efficient after 10 generations when the number of common 

genes between breeding parents increases. 

7.3 Adap t ing the Complexity of a B-Spline curve 

To extend the notion of chromosome complexity adaption demonstrated in Section 

7.2.3 to the difficult problem of airfoil design, a B-Spline representation is adopted 

to facilitate adaption of the genetic language. The success behind using the B-Spline 

curve and surface representation to achieve the same aim depends on the fact that 

there are an infinite number of defining B-Spline polygons that can describe exactly 

the same shape. 

With B-Splines, the fiexibility of the defining curve can be adjusted either by raising 

or lowering the degree of the curve, or by inserting / removing additional knot values 

into the defining knot vector. This second approach is considered here as it allows 

the gradual adaption of shape flexibility. 
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Figure 94: Number of similar genes shared between breeding parents 
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Figure 95: Crossover efficiency 
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7.3.1 B-Spl ine K n o t Insert ion and D e l e t i o n 

An essential property of this work, is a respect for gradual evolution. It is important 

to ensure that the adaptation of chromosome complexity only aSects the phenotype 

by a small amount. This can be achieved with B-Splines through a process of knot 

insertion. The subsequent eEect of knot insertion, is to split the piecewise polynomial 

segment for a given knot interval into two segments. Several methods are available 

for knot insertion, one of the most popular is the Oslo algorithm, implemented by 

Cohen et al. [114], which allows for the simultaneous insertion of multiple knot 

values into the dehning knot vector. The insertion of just a single knot, wiU lead to 

a slight local adjustment of neighbouring control points. In the genetic algorithm, 

such movement may be constrained due to the parameterisation of the chromosome 

genes which require upper and lower bounds. It may therefore become necessary, to 

recompute such knot insertion for diEerent knot values. Therefore a simpler knot 

insertion algorithm has been implemented here, based on an algorithm hrst proposed 

by Bdhm [115], that allows the insertion of a single knot value M times into the knot 

vector. 

For aji original curve f (t) defined by 

n+l 

P(t) = Y.B,N,.k{t) (101) 
i=l 

with a knot vector 

[X] = [ii, zg, - " , 3:n+k+i] (102) 

insert a knot into the interval [a;j, z ĵ+i]. The objective is to determine the new dehning 

polygon vertices Cy such that f (() = and 

R{t) = Y , (103) 
i=i 

where m M + 1 and the new knot vector with the additional knot is 

[^] = [2/1, 2/2, , 2/m+k+l] (104) 
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I 7Knot Reconstruction — 7 B - S p l i n e Knots • • • NACA0012 — • Try 1 (12 Knots) — —Try 2 (12 Knots) | 

Figure 96: Reconstruction of NACA0012 using GA with Fixed Encoding 

From Bohm's knot insertion algorithm, the new polygon vertices are 

n+l 

Cj = ^2 1 < « < n (105) 
i=l 

where a / s are given by 

a t = J l i 

0 

2 < J - A 

Z J - t + l < 2 < J 

* > ; + 2 

(106) 

7.3.2 Implementat ion of Knot Insertion W i t h i n Complexity 

G A 

To examine the effectiveness of implementing the adaptive B Spline representation, 

a geometry reconstruction problem is examined. The reconstruction of the upper 

surface of a NACA0012 airfoil is considered using 7 and 12 B-Spline knots. For the 

adaptive case, all five knots are switched off initially requiring activating and seeding 

on tree mutation which is set with a probability of 10%. 

Figures 96 and 97 show the resultant sections and B-Spline polygons obtained follow-

ing 100 generations evolving a population of 200 members. For the fixed encoding 
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- 9 Knot Reconstruction - - B-Spline Knots * • - NACA00121 

Figure 97: Reconstruction of NACA0012 using GA with Adaptive Encoding 

attempts shown in Figure 96, the GA failed to reconstruct the curve to an adequate 

quality, while the adaptive encoding provided a more satisfactory result, requiring 9 

knots from 12 available. 

One interesting aspect of the investigation, is the inability of the fixed 10 knot solution 

to capture the geometric detail of the curve. From the objective function convergence 

shown in Figure 98, the fixed 12 knot solution was found to be inferior to that of the 

7 point solution. This was a surprising result since B-Splines are commonly used for 

curve reconstructing in CAD using Least Squares Minimisation techniques. To verify 

the feasibility of the solution, a 12 knot B-Spline was successfully used to reconstruct 

the given curve using Powell's Direct Search [19], starting from an approximation 

curve using NACA0012 curve ordinates as knot vectors. Powell's search was used to 

find the set of knot positions that minimises reconstruction error as defined in Equa-

tion 100. The reconstruction result is shown in Figure 99. Powell's method was able 

to reconstruct the airfoil section to a more satisfactory result than that found by the 

Genetic Algorithm. The poor Genetic Algorithm performance found in comparison to 

that of the Powell method, may indicate a large element of GA deception [15] that is 

introduced by the B-Spline representation. From the Schema Theory, GA deception 

denotes the inability of a Genetic Algorithm to traverse the objective landscape due 

to a lack of correlation between improvements in fitness vyithin the search landscape. 
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- 7 Points — —12 Points I 

Figure 98; NACA0012 Reconstruction Convergence for Fixed Gene Encoding 

and the Schema hyperplanes that represent good chromosome building blocks. Since 

Genetic Algorithms search primarily using chromosome crossover, if an improving Rt-

ness landscape cannot be found through the sampling and exchange of good schema( 

hyperplanes in the landscape) using this mechanism, then the landscape is denoted 

as 'GA Deceptive'. 

7.3.3 Applicat ion of Adapt ive Encoding on Aerodynamic 

Shape Optimisation 

An adaptive B-Spline encoding has been applied to the aerodynamic design problem 

studied in Chapter 6.1.1. The upper and lower surfaces were represented by separate 

spline curves. The hierarchical chromosome encoding has been parameterised to allow 

10 mutable knots to exist on each curve, giving a total of 40 design points available 

for optimisation (each knot dehned by an x and y coordinate). The initial starting 

point used for the GA consisted of only three moveable points on each curve. 

The GA was conGgured in the same manner aa in Section 6.1.2, with the additional 

tree mutation rate set at 10%. The results from Ave GA runs for each of the two 

design conditions are shown in Table 15. Seven out of the ten results shown were able 

to exceed the performance of the final designs obtained with Bezier and Orthogonal 
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Figure 99: Reconstruction of NACA0012 using Powell's Direction Set Method 

Test Ci = 0.3 Ci = 0.6 

1 0.0047 0.00782 
2 0.0045 0.0078 
3 0.0050 0.0083 
4 0.0051 0.0079 
5 0.0048 0.00792 

Table 15; Resultant Airfoil Performance Obtained Using Complexity BSpline Encod-
ing 

Aerofunction representations. Previous results obtained in Section 6.1.2 were Cd = 

0.0048 for the Cl = 0.3 case, and Co = 0.00845 for the C l = 0.6 case. 

The convergence plot of the best run for the Cl = 0.6 test is shown in Figure 100. The 

average number of genes per generation is shown in Figure 101, alongside the number 

of genes used to define the elitist member of each generation. One interesting aspect 

shown by this result, is the limited number of B-Spline knots selected by the GA 

to define the optimum section. The initial investigations in the the role of B-Spline 

representations in shape optimisation given in Section 6.2.1, had always assumed 

that larger design spaces would yield more highly adapted results. The final resultant 

section given in Figure 102, shows a more simply defined BSpline polygon choosing to 

use only 9 knots for the upper surface. The resultant pressure distribution obtained 

from the optimised section is shown in Figure 103. The pressure distribution does not 
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Figure 100: Airfoil Optimisation Convergence Using Complexity BSpline 

exhibit the wavy characteristics found in Figure 49. In addition, a different pressure 

distribution has been obtained with the loading focused azound the leading edge. An 

improved leading edge representation is one factor that would allow such a loading 

to exist and may be a factor in this result. 

7.4 S u m m a r y 

The concept of complexity adaptation has been explored in this chapter as a potential 

means of improving the ability to form highly adapted shapes using a GA. The idea of 

complexity adaption waa implemented through a hierarchical component based chro-

mosome encoding, that allowed one component to remove or add another dependent 

component. One significant divergence that was made to previous implementations 

of this concept, was the requirement on the chromosome operators to ensure that 

evolution is maintained through the accumulation of small changes. This required 

that new component structures, formed through complexity mutation are initially 

seeded with values interpolated from the phenotype. 
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Average Num. Genes — B e s t Num. Genes 

Figure 101: Number of Genes Used per Generation in the Evolution of Cl = 0.6 
Complexity Airfoil 

- F o i l Section — U p p e r Bspline Knots —A—Lower Bspline Knots | 

Figure 102: Resultant Airfoil Section from Using Complexity BSpline Representation 

Figure 103: Resultant Airfoil Pressure Distribution Obtained Using Complexity 
BSpline Representation 
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The implementation of the new hierarchical encoding, required signihcantly more ef-

fort than the traditional binary string chromosome. On application to simple geom-

etry reconstmction problems, the new encoding was found to require several genera-

tions before the evolutionary breeding operator 'crossover' became elective. Although 

this feature acted as a handicap on simple parameterisations, on more complex prob-

lems, the hierarchial encoding wag found to outperform traditional hxed chromosome 

strings. 

On application to aerodynamic shape optimisation using B-Spline representations, 

a knot insertion algorithm was implemented to ensure integrity in the phenotype 

during complexity adaptation. The implementation was found to successively out-

perform previous representation trials, while selecting to use fewer design points in 

the encoding. 



Chapter 8 

D N A Repair for Infeasible 

Offspring 

The high frequency of bad solutions that provide no useful information to the opti-

misation cycle can lead to weak GA convergence. In aerodynamic shape optimisation 

involving sensitive CFD analysis, this problem can become acute where the CFD tool 

is unable to analyse design candidates due to numerical convergence problems. 

In nature, genetic repair is used to mend broken combinations of DNA formed during 

reproduction. Implementing a repair scheme within a GA could signiBcantly improve 

the rate of sampling schema within the candidate solution population, and hence the 

adaptiveness and search eSciency of the GA. 

Genetic repair in GAs is diScult to implement, as it is almost impossible to determine 

how the chromosome structure should be chajiged in order to encourage feasibility. 

One simple solution, would be to try new crossover variations from the two parents 

until a satisfactory ceindidate is found. For expensive analysis tools such as CFD, 

this does not provide a satisfactory approach as it could require many samples until 

a feasible combinant is found. Also, there is a chance that a suitable solution may 

not even exist between parents. 

One solution to this approach, is to use a secondary, computationally cheaper analysis 
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tool to suggest whether a candidate will provide a feasible solution or not. Meta-

modehng techniques may be used for this task, by learning responses from previ-

ous solutions, and using the derived knowledge to evaluate a candidates suitability 

for CFD analysis based on convergence likelihood. This chapter explores such an 

approach to assist in the evolution of hi-fidehty geometric representations such aa 

B-Sphne curves and orthogonal functions. 

8.1 T h e Effects of R e p r e s e n t a t i o n on Le tha l 

Crossover 

The frequency of hnding infeasible solutions when using GA search with CFD, has 

been well noted by Obayashi [31], Yamamoto and Inoue [30], Jones et al [116], Oyama 

et al [117], and Periaux et al [33]. The resultant eEect of large occurrences of infeasible 

solutions can disrupt the GA search leading to poor convergence to a wealt solution 

[117]. It was observed during a search of the bump function earher, that with niching, 

the number of infeasible solutions that did not contribute to the next generation, 

increased substantially when population sharing was introduced. 

To obtain further insight into the amount of disruption caused by diEerent represen-

tation schemes on the quahty of the solution space, an investigation into the infeasible 

solution spa<;e has been made for the problems used in Chapter 6. The number of in-

feasible solutions considered, was measured for an Airfoil Design problem using a GA 

with a constant population size of 100, and probabihty of crossover of 60% without 

niching or clustering. No mutation was used. For the simplest case where B-Spline 

poles are perturbed from a given design point, the number of infeasible design points 

required increases substantially with the design space illustrated in Figure 104. Ex-

amination of the 6nal drag solution indicates an optimum was successfully located, 

but without niching, and amongst signihcant infeasible space, further tests need to 

be conducted to determine whether the optimmn is global or local. 

The effect on infeasible points located by dlEerent representation schemes was ap-

proached in Figiure 105. Although the size of the design spaces are diEerent, the use 

of ortho-normalised fimctions resulted in the smallest search space, but also in the 
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Figure 104: Resultant drag reduction from perturbation method, and the effect of 
increasing the search space on infeasible solutions 

a m 

Ortho Func's 
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Figure 105: Effect of different representation methods on infeasible solutions 
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Figure 106: Objective surface for using first two orthogonal modes of the ortho-
normalised Aerofunctions at C/, = 0.6 

highest number of recorded disruptions. 

8.2 Neural Network Classification of Infeasible 

Space 

If the fitness landscape were known in advance, expensive CFD computation would no 

longer be necessary. This is the approach of this section, which considers techniques 

for modeling the fitness landscape from limited known information. Evolutionary 

search is ideal for landscape modeling since the population can quickly gather the 

diverse information needed. To test the type of landscape to be considered, a two 

dimensional search space is visually shown in Figure 106, based on modifying the 

first two orthogonal modes of the ortho-normalised aerofunction problem examined 

in Chapter 6.4.2. 

The landscape is effectively divided into three regions, the Infeasible region is coloured 

black, where a solution could not be obtained using XFoil. The light colour repre-

sents low fitness values, which darkens as fitness improves. The optimum is located 
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on an island surrounded by infeasible solutions. Several methods have been used to 

approximate the htness landscape obtained through evolutionary search. El-Beltagy 

[118] showed that a reduction in computational eSort can be achieved through this 

approach. For an initial investigation, the modehng of infeasible space could signifi-

cantly reduce the computational time of CFD orientated search. 

8.2.1 Feed Forward Neura l Network 

The basic feed forward neural network consists of a layered connection map of non-

hnear neurons, with the outputs from one layer of neurons, feeding signals into the 

input of the next layer. By allowing each neuron to express itself as a non-hnear sum 

of weighted input signals, a highly complex non-linear system can easily be created. 

A typical output from one neuron to another is given as 

^ -t- (107) 
I 

^ i 2/i = (108) 
j 

where for example, /^^^(a) = tanh(a), and /(^^(a) = a, and are the neuron input 

signals from other neurons/inputs, and are the resultant output signals. Each 

signal is multiphed by a weight Wij and a phase shift 

8.2.2 Classification using a Mul t i Layer Pe rcep t ion Network 

A classification system is easily created from a Multi Layer Perception (MLP) net-

work, by expressing the output neurons as associations to the classification rules. For 

example, if a MLP model can classify a problem of two classes a and b, with two 

output neurons Mi and Mg, the likelihood of the solution being associated with each 

class can be inferred by the activation level of the output neurons. Thus, activation 

levels of Ml = 0.7 and = 0.2 will infer that the input solution is more closely 

associated with claas a. 
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To provide a more definite classification to a given input solution, conSdence limits 

can be placed on the output neuron activation levels. The conhdence limit used here, 

is a threshold limit that an associated output neuron activation must exceed for the 

input solution to be considered for that claas. An input solution will be classified 

only if at least one output neuron activation level exceeds the threshold limit. 

8.2.3 Training t h e Network 

The size of the input variables to a multi layer perception model, must be similar 

in scale so that the network does not become biased to a dominantly strong input 

level. To ensure that all input levels are similar, re-scaling of the input parameters is 

adopted. A simple hnear transformation can be used. 

rpTl . 

(109) 

where M = 1 , l a b e l s the training data set, and is a variable for a given training 

set. and <7̂  are the mean and standard deviation for that variable with respect to 

the training set. 

In principle, hnear scahng for the case of a multi-layer perception model is redundant, 

since it is often combined with the hnear transformation in the first layer of the 

network. However, it does ensure that all the input and target variables are of the 

order of unity which provides a suitable range for random initiahsation of the weights, 

prior to network training. 

It is important to select a training set that will not cause biaa in the multi-layer 

perception weights. To ensure that an appropriate set is presented for training, a 

minimal distance criteria is used in that for each one of the training members 

is at leagt a distance from another member, where the distance between each 

member is given in Equation 110. 

=nDiin 

Y , (110) 
2=1 
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Figure 107: Infeasible Search Space (no solution obtained from Xfoil) 

where n and m are the members of the training set between which the distance is 

being calculated. 

8.2.4 Classification of Infeasible Airfoil Shapes 

A Multi-Layer Perception model given in [119], has been used to reconstruct the in-

feasible space shown in Figure 107, by treating it as a classification problem. Using 

just six hidden neurons, a 93% accurate approximation to the infeasible landscape 

was achieved in Figure 108 by tightening the decision threshold to 70% output signal 

strength to define the two answers. Results that did not meet the threshold limits 

are shown in Gray. The accuracy of the approximation was determined by the num-

ber of landscape points that were wrongly classified as either feasible or unfeasible. 

Points entering the gray area were treated as correct, and would need to be evaluated. 

Although a reasonable accuracy in results can be maintained through this implemen-

tation, a significant reduction of infeasible shape evaluations cannot be expected from 

using this model. 
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Figure 108: Neural Network Prediction of Infeasible Space 

8.3 M e t a - M o d e l i n g Using a G a u s s i a n Process 

Although some measure of accuracy from Forward Feed work Neural Networks can be 

used successfully to determine whether a given design point should be evaluated or 

not, a higher fidelity method is required to acquire the landscape detail lost in Figure 

108. El-Beltagy demonstrated the resolution capability of Gaussian processes on 

such landscapes, and this approach is explored further, for use as a feasible candidate 

classifier system. 

8.3.1 Gauss ian Processes 

Given a data set D consisting of N pairs of L dimensional input vectors x, we may 

infer tjv+i given the observed scalar output vector tjv- The conditional predicted 

distribution P(ijv+i | D,Xjv+i) may be inferred through Equation 111, and can be 

used to make predictions about tiv+i-

P {tN+l I -D, XAT+I) = 
P (tjv+11 D, Xjv+i) 

(111) 
f (tjv I {%#}) 

If the joint density P( t jv+i | D, x^r+i) where tAr+i}, is a Gaussian, 

then the inference of given t^r is simple as the conditional distribution 
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-P(^Ar+i I is also a Gaussian. 

A Gaussian Process is concerned with evaluating the joint density probability 

f I D, for a given training set D of TV pairs of inputs and scalar 

outputs The Gaussian Process is a collection of variables t = (f(xi),t(x2), - - -) 

which have a joint gaussian distribution given by 

f ( t | C,{x^}) = |Q| (a; - j (112) 

where // is an M dimensional vector representing the distribution mean, and C the 

variance is a M x M covariance matrix which satisfy, 

C = e[(a;-/ /)(a; —//)^]. (114) 

where 6[.] denotes the expectation. The covariance matrix C is a parameterised 

covariance function with hyper-parameters 8 . By solving the hyper-parameters @, 

the conditional distribution _P((;̂ _,_i | _D, x^y+i) can be obtained through relationship 

111, and the value predicted. 

This work uses the Gaussian process implemented by Gibbs azid MacKay [120], of 

which a further description of the solution of the hyper-parameters 8 is given in 

Appendix E. 

8.3.2 Gauss ian Regression of t h e B u m p P r o b l e m 

To understand the strengths and weaknesses of using Gaussian Processes in prediction 

amongst highly modal landscapes, a regression problem is considered here on the 

fitness surface of the 2D Bump problem given in Chapter 4.1.1. The training set was 

constructed from equidistant points across the parameter domain. 

A regression problem is considered here to demonstrate the sensitivity of the GP to a 

highly modal surface. The Bump problem has been reconstructed by GP regression 
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Figure 109: The Bump Function 

for 2D, 5D and 20D cases. To measure the accuracy of the surface reconstruction, 

1000 random sample points have been compared to the exact solution for each test 

case. 

Figure 109 illustrates the resolution that can be obtained through fitting a bi-cubic 

spline surface over 400 uniformly sampled points. 

By applying a Gaussian Process to the same 400 points, the surface given in Figure 

110 is obtained. The accuracy between the surfaces is shown as the in Figure 111, 

as the difference between the absolute bump surface, and the generated surface using 

the Gaussian Process. 

8.3.3 Integration of Prediction Models wi th a Genetic Algo-

rithm 

The meta-model based on Gaussian Process regression, is to be used in parallel with 

a GA search, to determine the likelihood of a new member surviving to another 

generation before expensive computational resources are lost calculating its fitness. 

To provide a classification surface through a GP regression model, the problem is 
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« m 

Figure 110: Gaussian Process Metamodel of Bump Function 

Figure 111: The Absolute Difference Between Bump Metamodel and Bump Function 
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modeled on the accurate prediction of the htness surface. For the GP inputs, 20 y 

co-ordinates are taken from each candidate and presented to the GP pre-processor for 

normalisation. The y co-ordinates were taken at pre-selected x co-ordinate stations 

around the airfoil. Co-ordinates were chosen as suitable input parameters instead 

of the design values being optimised, in order to provide a generic scalable airfoil 

classification that is independent of problem representation or parameterisation. 

Implementa t ion of Genetic Repair Algori thm 

The new airfoil classiBcation service was made available to the GA, via JINI-

JAVASpace distributed technology used in the distributed GA described in Chapter 

7.1.1. In order to maximise genetic samphng productivity with the GA, the classi-

hcation service is included during the reproduction process. For each time a child 

fails the classihcation test, two parents are drawn from the parent pool to reproduce 

new candidate oSspring. This process is continued until su&cient numbers of chil-

dren pass the initial examination. The candidates are then evaluated as normal by 

the fitness function. For the distributed classification process, a distributed object is 

created for each new child. The candidates genetic encoding which implements the 

curve interface is added to the Distributed Object along with an indicator for the 

designated analysis model ('gp' or 'xfoU' in this case). 

In this work, a pre-trained GP is used for analysis, although a separate training scheme 

and even on-line training can be incorporated into the JavaSpace implementation, to 

provide suitable members for the GP, to be included in the training set. A separate 

process will probably be required to implement this additional feature. 

The Implantation algorithm for the integration of distributed classiAcation service is 

given in Figure 112. 

Airfoil Feasibility Classification Service 

JINI is a Java dependent networking framework. Components and services can only 

be made available via JINI as Java Objects. To facilitate the addition of the GP, a 

Java class wag purposely written to act as the Java JINI GP proxy service, passing 
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( a ) R e m o v e 2 P a r e n t s f r o m P a r e n t P o o l 

( b ) C r e a t e 2 C h i l d r e n 
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2. R e s t o r e P a r e n t P o o ! 

3. F o r e a c h in C l a s s i f y P o o l 

( a ) C r e a t e n e w D i s t r i b u t e d M e s s a g e O b j e c t 

( b ) S e t O b j e c t M e s s a g e S t o t t t a f f o g = " E v a l u a t e " 

( c ) A d d m e m b e r t o O b j e c t 

( d ) A d d O b j e c t t o J a v a S p a c e 

4 . R e m o v e all D i s t r i b u t e d O b j e c t s f r o m J a v a S p a c e 

5 . F o r E a c h D i s t r i b u t e d O b j e c t R e t r i e v e d 

(a) If Classi f icat ion Message— " Feasible" O i ? " Undecided' ' AND ChildPool < N 

# A d d Chi ld t o C / i t Z d f ooZ 

Figure 112: Distributed Genetic Repair and IdentiRcation Algorithm 

calls to the GP via JNI (Java Native Interface) which enables Java to invoke hbrary 

methods. In addition to servicing the JavaSpace architecture, the Java wrapper took 

care of the additional pre GP processing such as calculating the 20 static coordinates 

from a given section, normalising the GP inputs, and post processing the GP output 

to determine the airfoil classihcation. An algorithm describing the Distributed Airfoil 

Classification service is given in Figure 113 

8.4 Appl ica t ion of Airfoil Class i f ica t ion Service t o 

G A C h r o m o s o m e Repa i r 

For the Airfoil Optimisation problems in Chapter 6, the taaks were re-run using the 

Airfoil Claasihcation Service to aasist in pre-determination of feasible solutions. First, 

the GP was used as a regression system, offering predictions of the candidates' htness 

instead of using CFD analysis. The GP was trained on the actual Atness values scored 

by 400 members presented, and then used to evaluate each airfoil as the primary and 

only CFD analysis service to the GA, used instead of XFoil. The convergence results 

for using both the Bezier Spline representations and ortho-normal cmrves are shown in 

Figmre 114. In comparison, it is clear that the GP failed to capture the aerodynamic 
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1. If C o n t e n t s of O b j e c t Received d o e s n o t s u p p o r t i n t e r / a c e Curve 

( a ) R e j e c t O b j e c t i S t a t t i a F I o p = " E r r o r " 

(b ) Re inse r t D i s t r i bu t ed O b j e c t i n to J a v a S p a c e 

(c) Dismiss a n d awai t next Even t 

2. c a l c u l a t e y c o o r d i n a t e s a t 2 0 equal ly spaced p a r a m e t r i c c u r v e l e n g t h s 0 < u < 1 

3. Sca le y c o o r d i n a t e s a s C P inpu t 

4. G e t G P Regress ion for i n p u t a n d resca le o u t p u t 

5. If o u t p u t is wi th in fa i lu re limit A N D va r i ance wi th in var iance l imit: Class i fy a s F e a s i b l e 

6. Elself o u t p u t is no t wi thin fa i lure limit A N D va r i ance wi thin v a r i a n c e l imit: Class i fy a s InFeas iWe 

7. Else Class i fy a s UnDec ided 

8. A d d Class i f ica t ion t o Di s t r ibu ted O b j e c t M e s s a g e 

9. S e t S t a f t i g f f o g = " E v a l u a t e d " on Dis t r ibu ted O b j e c t 

10. Re inse r t D i s t r ibu ted O b j e c t i n to J a v a S p a c e 

Figure 113: Distributed Airfoil Classification Service 

properties of each section appropriately, leading to convergence on a weak solution. 

Similar results were also revealed when an initial training set of 1600 candidates was 

used. This finding mirrors a similar result found by El-Beltagy who used a GP to 

construct a meta-model of a Structure design problem. El-Beltagy went on to use 

online data addition to continuously train the GA Cycle. This additional training 

data stin did not Seld good GA solutions. 

For the Classihcation Approach, the GA waa found to converge faster than that of 

previous solutions. Both the orthogonal Curve and the Bezier Spline representations, 

Beld good GA solutions, with the Bezier surpassing it 's original best convergence 

result. The rapid convergence is most likely due to the more productive and increased 

rate of schema sampling achieved by using Genetic Screening as a repair service by re-

sampling. By screening poor candidate solutions, forcing new chromosome structures 

to be produced, the schema sample rate is signiScantly increased. An increase in 

scheme sampling is more likely to yield good solutions and fast convergence. Another 

possible aEect of candidate screening, is that of increased diversity of good candidates. 
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—Bezier Wittiom-GP — —Bezier-GPRegression 0800samples* » • Oftho-GPRegrssston @800samplesj 

Figure 114: Airfoil Regression 

I -2 

—Beaar Wthoul-GP • • * Onho-GP Repair— —Bezier-GP Repair | 

Figure 115: The effect of airfoil repair 
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8.5 Summary 

Meta modeHng Techniques have been considered for assisting a genetic repair service 

through a genetic screening process during the breeding phase of the GA cycle. Multi-

Layer Perception systems were found to be difBcnlt to train as a classihcation system. 

This was mainly due to the Bias in the mix of feasible/infeasible candidate solutions 

available for training. Once a good training set was achieved, good solution accuracy 

was achieved, although the model was rarely able to completely classic a solution as 

infeaaible, electing for undecided in many cases. 

GP is a more accurate model and is less affected by bias in the training set. It 

can facihtate the use of online data addition to the training set during use, without 

restarting. It was found to cope well with constructing a regression Meta Model 

for the Bump problem. However, when used to predict the Stness of the Airfoil 

sections during a GA cycle, it was unable to capture the htness surface enough for 

design/optimisation use. 

When apphed to an Airfoil Candidate Screening Service, a more healthy convergence 

was found for the GA. A stronger convergence performance was seen which is most 

likely attributed to the increase in schema sampling by the GA due to the screening, 

and more abundant good candidates in the parent pool. To facihtate the Classihcation 

Services, the existing JavaSpace was employed in distributing candidates between 

GA, GP and XFoil, by setting a simple text Eag in the distributed object envelope. 

This allowed the GA to send candidates to the GP using existing infrastructure with 

minimal modification. 

Scalability is always a concern when utihsing meta-modeling tools, especially at high 

dimensions. This work haa demonstrated the practical benefit from employing such 

techniques within an engineering design cycle where the evolution of fitness is an 

expensive process. However no work has been attempted here to look into scalabihty 

issues, which should be examined in more detail before its apphcation into large 

problems. 



Chapter 9 

Conclusions and Recommendations 

This work has considered the adaptation of aerodynamic shape, and the introduction 

of complexity adaption within the psendo chromosome structure used by Genetic 

Algorithms to evolve design problems. The main conclusions drawn, and important 

observations, are given below alongside the author's recommendations for further 

research in the Gelds discussed. 

9.1 Conclus ions 

The objectives of the work have been met by the foDowing: 

1. The rate of successfully crossbreeding species on a dlBcult objective landscape 

fell sharply as the maturity of the population increased. On such landscapes, 

Ending the optima often required an element of random Suke, rather than the 

consequence of evolving numerous small changes. Adapting the behaviour of 

the environment through adoption of dynamic penalty functions and niching 

control were foimd to signihcantly increase the chance for such random flukes 

surviving to the next generations and hence finding the optimum. 

2. A robust distributed computing platform has been established using networked 
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dual boot PC clusters with near optimal speedup, achieved using an asyn-

chronous iGA. A new distributed data backup facility was created based on an 

XOR merge tree. Implementation of this merge tree with a parallel CFD Solver 

provided an eScient facility for the frequent backup of data across all processes. 

3. Spline methods were generally highly tolerant of the number of design points 

used. Waves in the airfoil pressure distribution frequently observed in the lit-

erature where B-8phne representations had been apphed, were found to be a 

result of poor parametric implementation. Orthogonal representations were also 

investigated and found to be more efhcient than that of a simple Bezier curve 

implementation. Implementation of sphne based representations used would 

beneEt from complexity adaptation. 

4. A Hierarchical Genetic Algorithm framework for evolving complexity in geomet-

ric encodings was established. The chromosome structure was successfully able 

to adapt its complexity in order to hnd correct reconstructions of several curves 

presented, using both segmented hnes and B-Spline representations. For the B-

Spline case, adaption of knot complexity signihceintly improved reconstruction 

performance over traditional fixed gene encodings. 

5. When applied to aerodynamic shape optimisation, B-Sphne representations 

evolved quickly to End suitable airfoil shapes that match the order of per-

formance, previously only found using ortho-normahsed functions. Both the 

adaptive abihty and evolutionary eGiciency of the GA had been greatly en-

hanced through the adaptation of curve complexity when applied to B-Sphne 

representations. 

6. Many airfoil shapes produced by GA analysis could not be examined for aero-

dynamic performance using the given CFD analysis tool. It is beheved that 

high frequencies of such infeasible solutions degrade the evolution of a GA. A 

simple repair mechanism was implemented using a Gaussian Process to predict 

model failure. Using such predictions, new solutions were presented to increase 

the rate of sampling of the GA. The convergence of the evolution process was 

found to greatly improve, through the removal of infeasible solutions. 
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9.2 F u r t h e r Conclus ions and Obse rva t ions 

1. The use of population niching is an essential process that ensures the main-

tenance of diversity. This diversity may become essential in providing the 

evolution process new schema hyperplanes, on which to search. Any process 

that aided the competitive advantage of weak species was found to assist the 

evolutionary robustness of the search. 

2. The evolution process of elite members within a GA, often involves many small 

leaps in objective function Etness rather than a gradual process of cumulative 

small changes. Often, elite members created from the result of such leaps, 

found it di&cult to participate in the successful breeding of new members. Any 

process that reduces the average 6tness of the population, thus increasing the 

probabihty of new members surviving, would generally improve the evolutionary 

process. 

3. The integration of CFD analysis programs with GAs is diScult as the range 

of design sample produced by the GA, is generally greater than the evaluation 

envelope of the analysis tool. A high frequency of unsolvable candidate solutions 

can disrupt the process of evolution within a GA. 

4. Sometimes, the aerodynamic analysis tool used with the GA, will lead to an elite 

solution that may not be representative of the candidate. Niching will allow 

several ehtist solutions to co-exist and can reduce the problem of misleading 

solutions propagating. Convergence related penalty functions may also help to 

remove misleading solutions from the evolution, but at a risk of rejecting good 

candidates. 

5. B-Sphne representations are expected to lead to highly evolved shapes. How-

ever in practice, the high modality of their implementation waa found to pro-

duce deceptive search landscapes for the GA to traverse. In contrast, Bezier 

implementations produced successful results for a wide variety of problems. 
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6. Ortho-normalised aerofunctions produced though the Gram-Schmidt normali-

sation of airfoil sections, can lead to a greatly reduced parameter space. Im-

plementation to airfoil design and regression, was shghtly prohibited by large 

fluctuations in numerical noise produced through the discrete implementation of 

the normalisation process. An improved implementation of ortho-normalisation, 

of use of improved base geometries may allow the more elective use and analysis 

of this representation. 

7. Complexity adaption produced slower convergence than traditional fixed prob-

lem encodings. This can be attributed to the low diversity of genes available for 

sampling at the beginning of the evolutionary cycle. Crossover efficiency was 

found to be signihcantly increased through complexity, particularly in the latter 

phase of evolution. This is a reversal of the characteristics seen in traditional 

GA implementations. An application to a previously found deceptive problem, 

a complexity based GA, was found to evolve more eSectively than traditional 

GAs. 

8. Apphcation of the complexity GA to shape optimisation, was found to en-

hance the robustness of search. Also good solutions were easily obtained using 

B-8phne baaed representations. Previous hxed based implementations had re-

quired several restarts of the solution to obtain quality results. 

9. Regression analysis of shape optimisation landscapes using MLP and GP meta-

modeling techniques, are unable to capture detail necessary for GA optimisar 

tion. Good, accurate classifications of search characteristics were observed, and 

successfully employed in a simple genetic repair process. 

9.3 R e c o m m e n d a t i o n s 

From the results and observations made throughout this work, the following recom-

mendations are given for fiuther research into some of the subjects covered. 

# The problem of species formation and population diversity is key to the success 

of GA search. The use of resource sharing has offered significant help to the 
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formation of species. The technique used, rehed on the abihty to identify clus-

ters using an adaptive KMEANS algorithm. Implementation of the KMEANS 

algorithm requires several key parameters to be deEned. The correct defini-

tion of niche size, and sharing distance are unknown a priori and are one of 

the main drawbacks of the KMEANS method. A second problem, is that the 

accuracy of niche identiAcation by KMEANS, degrades at higher dimensions 

as demonstrated by Keim [121]. Several improvements to the KMEANS clus-

ter identiScation algorithm have been proposed, including using an averaged 

density centred gaussian to identi^ the cluster, but these all suffered the same 

fate at high dimensions. A diSerent strategy has been used to cluster data sets 

in high dimensional space, known as Optigrid [122]. This method is based on 

mathematical foundations, using the clustering of one dimensional projections 

of the data set. Using contracting projections, data is merged towards cluster 

intensities. By Ending a point between these intensities allows for simple par-

titioning of the cluster. This process is repeated within each partition until no 

more cluster intensities are found. 

* Weaker species tend to die out quicker than strong species, which may hmit 

the abihty of the GA to traverse seeirch landscape. Interspecies breeding or 

sexual selection mechanisms that allow members to choose their mates, should 

be explored in an eSort to raise the survival rate of new or weak species. 

* The farmer-worker resource sharing scheme, applied through JINI-JavaSpaces, 

lacked sensitivity to worker failure through the loose asynchronous framework 

used. Sharing work in this loose fashion has many advantages over treuditional 

direct synchronous procedures, available through RMI and Corba. The better 

handhng of remote network / process / computer exceptions, may allow this 

approach to eventually become part of a PC background process, accepting 

processing jobs from a lookup facihty similar to JavaSpaces, and processing 

them when their CPU's are not being used by users. This approach could 

provide significant processing resources to any oSce. 

* A highly flexible, and powerful distributed computing platform has been pro-

vided by couphng olBce PC's together. Parallel CFD solvers are traditionally 
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implemented on highly eScient parallel libraries. In this work, two robust, com-

mercial standard distributed programming techniques have been implemented 

(CORBA and Java JINI) to provide a strong, flexible and highly rehable dis-

tributed Genetic Algorithm. The performance gain through continuous access 

to PC computers using such hbraries may outv^eigh that advantage given by 

highly optimised, but less robust standards such as MPI. Further development 

would be encouraged in the area of robust parallel computing on NT PCs, that 

would allow resources to enter or leave parallel CFD process computations, 

without the need for manual restarts and load-balancing. If automatic load-

balancing or partition sharing were available, the use of such PC networks in 

CFD computation conld be harnessed more readily. 

# A framework for chromosome structure adaptation has been developed and 

employed in this work. The variation of encoding complexity was found to 

assist GA evolution in the held of shape optimisation, and other apphcations of 

this idea should be explored. 

# The development of complexity in Evolutionary Algorithms is a relatively new 

held of research [123] and further development in this area, with particular 

interest to GA apphcation is enconraged. 

# Many other ideas such as embryology, borrowed from nature have yet to be 

applied to evolutionary design. Some limitations have been seen in the costly 

application of advanced GAs to engineering problems, bnt with the constant 

increase in computational power now available to the design oGice, even some 

of the most expensive techniques could be useful in this held. Chromosome 

complexity was found to increase adaptation eSectiveness, without increasing 

GA cost. Preliminary embryology implementations have reported similar obser-

vations, although these techniques have yet to be introduced to real engineering 

problems. 

# The evolution of geometric complexity is substantially underdeveloped. Some 

performance gains given though encoding schemes that adopt this feature have 

been illustrated by this work. Further experimentation and analysis is strongly 
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encouraged, and may play a pivotal role in the successful application of Genetic 

Algorithms in the design of complex objects. 
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Append ix A 

Adapt ive K M E A N S Algor i thm 

Adaptive MacQueen's KMEANS algorithm allows the number of clusters to vary dur-

ing initial assignment of data members. To control cluster formation, two parameters 

dmin, the mmzmaZ distance between cluster centres, and the radius of 

the cluster, are required before cluster analysis. 

To define the size and position of clusters, the foDowing proceedure is used. 

1. For an initial number of clusters A;, take the first A; data units and assign eeich one 

to a seperate cluster. Calculate all pairwise distances between cluster centroids, 

and merge clusters together if cfzgtaMce < Continue merging 

clusters while this condition is satihed. 

2. Assign remaining data points to nearest clusters. If 

member pmrwzse dzata^ce > dnwn for all cluster - point relationships, 

assign point to a new cluster. Attempt to merge clusters after each point 

insertion. 

3. Take all centroids as fixed seed points, and reassign all data members to nearest 

centroid. 

To enchance the use of this algorithm with a GA, the points are Erst sorted in relation 

to their htness. 
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Append ix B 

Genet ic Algor i thm Implemen ta t ion 

The Genetic Algorithm described in Chapter 4, has been implemented using the 

object relationship described loosely in Figures 116 to 117. These diagrams only show 

hierarchical relationships between key classes in order to simplify this description. 

The Population claas manages each population of members throughout the evolution 

cycle. Individuals are represented through the Genome class, which contains refer-

ences to their encoding, and objective function. Thus a Genome is able to evaluate 

itself, as well ag to pass caHs to its recombination processes (Crossover, Inversion 

and Mutation) on to their implementing Representation class. The key breeding 

processes are controlled by a separate Breeding class, and the Genetic Algorithm 

acts as a administrative object for controlling and documenting the complete evo-

lution of a population. For the island implementation, involving several GAs, an 

Immigration-Control object referenced by all Generic Algorithm instances is used as 

an intermediate to pass member Genome's from one GA to another. 

B . l Genome Management Classes 

GeneticAlgorithm: The GA is responsible for initialising and managing the evolu-

tion process. From a template Chromosome structure, the GA creates a number 

of Genomes either by perturbating the members design values, or from file. The 

members are loaded into a Population container class where the members initial 
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Figure 120: UML diagram of Stness evaluation via a penalty scheme 

fitness is evaluated. The Population is evolved generation by generation until 

the meiximum number of generations is reached. At each generation, population 

statistics are measured and recorded. 

Population: The Population is a container class of Genome objects. It is mainly 

responsible for managing access to individual members. 

Genome: The Genome class represents an individual in the Population, and contains 

important evolutionary information such as its fitness and dna encoding. The 

Genome is able to breed with other Genomes through crossover, mutation and 

inversion operators that paas calls on to its dna encoding. 

GenerationStatistics: The vital statistics of each generation are recorded in this 

object. In this implementation. Population size, best htness, average fitness, 

fitness variance, generation, elite member index and elitist members details are 

recoded. 

EvolutionaryGA: In order that several instances of GA can evolve their populations 

in parallel, EvolutionaryGA represents the top most level Object called from 

the main function. This object manages the iGA implementation. 
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GAStats: This class is required to record generational statistics for multiple GA 

instances. 

ImmigrationControl: This class manages the migration process of member 

Genomes from one GA instance to another in an iGA implementation. GA's 

pass members for migration to the ImmigrationControl instance, where it is 

stored until retrieved by its destined GA instance. 

EvaluationStrategy: This proxy provides a means for distributed processing of 

Genome htness evaluation. For the MPIDistributedEvaluate claas, a farmer-

worker fazm distribution strategy is used with asynchronous coupling. 

B.2 Breeding Classes 

The relationship of classes associated with specialised breeding control aze loosely 

described in Figures 118 and 117. 

Scaling: This class scales a Genome's fitness by some amount depending on its per-

formance relative to the other members of the population. The type of scaling 

apphed is dehned on the generalisation of this class, but typically rank selection 

is used ag a default implementation. 

ResourceSharing: Niching control is e&ctively applied through resource sharing, 

which reduces the scaled htness of an individual depending on the phenotypical 

distance between to the niche centre and the number of members sharing the 

niche. 

KMEANSClustering: KMEANS clustering implementation used to group 

Genomes into relative resource niches. 

SelectingScheme: This class is responsible for parental selection. Three schemes 

are implemented; SUS, Roulette and Tournament Selection. 

Evaluator: The Evaluator class calculates the Genome's htness using the appropri-

ate Penalty scheme. The raw htness assigned to the Genome is usually some 



217 

function of objective function Gtness minus some penalty reflecting the non-

feasibleness of the Genome. 

ObjectiveFunction: The objective function is an abstract class intended to be gen-

erahsed by a user's implementation of their objective problem. In this imple-

mentation, on maximisation is considered 

PopulationRelnsertion: Once the children have been created and evaluated, they 

are normally re-inserted back into the 6nal population via this class. If elitist 

strategies are to be employed, they would normally be defined here. 

PopulationCrowding: A population reinsertion implementation where children at-

tempt to replace the phenotypically closest parents found hi smaU random sam-

phng of some predehned size. 

B.3 Genetic Encoding Classes 

Chromosome: The Chromosome represents the Genotype DNA encoding that is 

vital for the Genetic Algorithm evolution process. The main function of the 

Chromosome class is the manipulation of the genes components via crossover, 

mutation and inversion. The Chromosome is also able to encode and decode 

the gene strings. 

Encoding: The encoding represents the Genotype-Phenotype map used to encode 

and decode the genes contained in the chromosome, into real design values. In 

this implementation, each gene has one encoding instance associated. 

BinaryDNA: A binary string generalisation of an encoding, that uses grey coding 

to reduce the e&ct of hamming distance. 

RealEncodlng: A real munber encoding generalisation offering an alternative to 

binary strings. 



Append ix C 

Normal Mode Analysis 

A Gram-Sckmidt procedure for ortho-normalisation can be developed from the prop-

erty of orthonormal functions such that, 

Jq fmip^^fnip^^dx = 0 {jTl ^ 77.) 

(115) 

= 1 

Let Â:(a;) be the functions that are not orthogonal. Then the orthogonal set ^(a;) is 

formed from the following relations: 

A W = m W 

A W = a s i A W 

(116) 

where 0̂ =̂  is the projection of gt in the direction of 

jj) gA:(2;)/m(a;)dz 
Gtm - rl 72 / \ 7 ' ^ 

jo 
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Finally, the orthonormal functions are found by normalising as follows: 

A - (118) 
r 72/ \ J 

Jo 



Append ix D 

Java Implementa t ion of Adapt ive 

Chromosome Encoding 

The Java implementation of the Genetic Algorithm, uses a class hbrary similar to 

that detailed in Appendix B, which was made possible through the relatively straight 

forward conversion between the C + + code, and Java implementation. One important 

modification introduced, is a Java Interface between the Genome, and its Chromo-

some encoding. The interface used, 'DNAEncoding', separates Chromosome specihc 

implementation from the genetic operations and other methods required of an encod-

ing by the Genetic Algorithm. Using this interface, the Genetic Algorithm is able to 

pass calls to the encoding, regardless of its implementation. 

A simplihed UML diagram is shown in Figure 121, to illustrate the relationship 

between the chromosome classes and the 'DNAEncoding' interface. 

In Figure 121, GenoCurve is an implementable chromosome encoding and thus imple-

ments the DNAEncoding interface. The lower level component of GenoCurve, is the 

GenoPoint class which represents a mutable implementation of a three dimensional 

point. Although these classes belong to the chromosome encoding family (Geno-

type), they also contain characteristics of geometry (phenotype). Further phenotype 

implementations can be built from these base classes. The complexity based B-Sphne 

chromosome implementation is shown in Figure 122, and the airfoil implementation 

based on the complex B-Spline representation is illustrated in Figure 123 
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Append ix E 

Implementa t ion of Gauss ian 

Process 

For the conditional Gaussian distribution given by 

f (t I C, {Xn}) — - y = = = = = exp ^-"2 ^ - At) j , (119) 

the predictive probability distribution for is 

= = e x p - t^C^HAr)] . 
(2%) J "AT+ll 

The covariance matrix for is C/f plus an additional column and row: 

Civ+i — 
C N 

K T 

where the K vector and A scalar are de&ned as 

(121) 

K — [C(Xi,X^+i);''-,C(XjY,X;v+i^ (122) 
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k — C ( X j \ r + l , X t v - i - i ) . (123) 

By collecting the terms that are a fimction of ^̂ +̂1 in Equation 120, the Gaussian 

distribution can be expressed as 

-P (̂ AT+i I = 
1 

(27 |Cjv+il 
(^^+1 " ÂT+l) 

2cr? 
(124) 

where 

(125) 

(126) 

Hence, the prediction given by fAr+i, provide a measure of the conhdence in the 

prediction. 

Elements of the covariance matrix C;v are calculated using the covariance fimction 

C(x;,xj). Thus (CN)y = C(x;,xj). The covariance function used, is given by 

C(xi ,xj ) = E 
Z=1 

+ 02 + (127) 

where is the 2*/̂  component of and the hyperparameters are dehned as 8 = 

^0^(^1,^2,^3,1') and are used to control the scale, correction bias, noise level, emd 

input difference. The hyperparameters are dehned as the log of the variables in 

Equation 127 to restrict their values to be positive. 

Using Bayes theorem, the posterior probability of the hyperpazameters given the 

training data is 

P(g I D) -
f ( t ^ | { x ; v } , g ) f ( ^ | { x A r } ) 

(128) 
P(t ,v | {xK}) 

Rather than maximising Equation 128 directly to determine the maximum a postenor? 

estimate for 8 , the logarithm of the probabihty is maximised. The logarithm of the 

posterior probability is hence 
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L — - - / o p |Civ| — —~log2Tr. ( 1 2 9 ) 

The maximisation is usually carried out using a gradient based optimiser where the 

gradient is given by 

ao + (130) 

Once the hyperparameters are obtained, the covariance matrix can be used to deter-

mine the prediction for and the conSdence factors given in Equations 125 and 

126. 


