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Abstract
UNIVERSITY OF SOUTHAMPTON
FACULTY OF SCIENCE
CHEMISTRY
Doctor of Philosophy

THE DEVELOPMENT
OF FREE ENERGY METHODS
FOR PROTEIN-LIGAND COMPLEXES
by Christopher Woods

Methods for the calculation of the relative binding free energies of ligands to a protein are
investigated and developed. The aim of these investigations was to improve the reliability
and speed of free energy methods, such that they become practical tools for commercial
rational drug design. To this end, the relative hydration free energy of water and methane,
and the relative binding free energies of halides to a calix[4]pyrrole derivative were in-
vestigated by three established free energy methods (Free Energy Perturbation (FEP), Fi-
nite Difference Thermodynamic Integration (FDTI) and Adaptive Umbrella WHAM (Ad-
UmWHAM)). The results of these applications showed that inconsistencies in sampling
led to unreliable free energy predictions. To overcome these problems, a series of four new
free energy methods were developed (Bivariate Multicanonical WHAM (BMW), Parallel
Tempering Thermodynamic Integration (PTTI), Replica Exchange Free Energy Pertur-
bation (REFEP) and Replica Exchange Thermodynamic Integration (RETI)). These ap-
proaches all combined traditional free energy methods with generalised ensembles. Test-
ing of these methods revealed that Replica Exchange Thermodynamic Integration was the
superior of all seven methods. FDTI and RETI were then tested by calculating the relative
binding free energies of a group of SB1-like ligands to p38 MAP kinase. The results of
this test showed that RETI was still the superior method. This test also revealed that there
were still sampling issues that needed to be resolved. A new Monte Carlo code was de-
veloped to run the tests on p38. The optimised data structure of the code led to a ten to
twelve fold speed up compared to an established MC code. This, combined with the use
of a large Linux Beowulf cluster, enabled each protein-ligand free energy calculation to be

run within 1.5 days. We predict that, using the latest computers, these calculations could

take less than 12 hours.
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Chapter 1

Introduction

1.1 Aims

The aim of this work is to allow the reliable and accurate calculation of the relative

binding affinities of a range of ligands to a protein. For these calculations to be-
come generally useful and accepted, they must be able to proceed with knowledge
of only the crystal structures of the bound complexes, and be performed under the
time and user constraints that apply within the pharmaceutical industry. That is to
say that the calculations should take days rather than weeks or months to complete,

and should require as little user intervention as possible.

1.2 Rational Drug Design

Drug design today is far from the random “hit and miss” of the early twentieth
century. Today, effort may be applied to understand how and why particular ligands

bind to proteins, and by using this knowledge, to design further molecules that can
bind more strongly. This process is generally called rational drug design.! The

process can be represented as a sequence of steps;
1. The structure of the target protein is obtained.

2. The binding mode of a potential ligand in the protein must be determined.

This could either be via an experimental structure of the complex, or via

computational docking? of the ligand into the active site.
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3. The affinity of the ligand for the protein is then estimated. This can either

be via a simple scoring function, or via simulations aimed at calculating the

binding constant.

4. The information provided by the simulations is used to propose modifi-

cations to the ligand. These modified ligands are also docked and scored

against the target protein.

5. The most promising ligands are synthesised, and assays performed to ex-
perimentally determine the binding constants.®> The information from these

experiments is then fed back into the simulations.

6. More simulations are run. These should be of a higher quality, as they have
access to more experimental data on the ligands (e.g. the protein-ligand crys-

tal structures). They may also be run at a higher level of theory.

7. The information from the simulations is then fed back into step 4. This cycle

is repeated until a sufficiently potent ligand is developed.

A key part of this process is the accurate and reliable prediction of the binding
affinity of the potential ligands to the target protein. In particular, this process
requires the dependable prediction of the effect of ligand modifications on the
binding affinity. The development of methods which can do this is a primary goal
of this field of study, and the achievement of this goal, in the absence of extensive
experimental data, has so far eluded current workers. This is despite the potential
rewards that a solution to the binding problem could bring to the pharmaceutical
industry. The achievment of this goal requires the development of methods that
can accurately and reliably predict the binding affinities of a range of ligands to
a single protein. While a ‘correct’ solution to this problem lies in the equations
of statistical thermodynamics, the difficulties involved in solving these equations
have left many to pursue alternative, less rigorous routes. Rigour and reliability
are a primary goal of this work, so current methods that are correctly derived from
the underlying statistical thermodynamics will be investigated. The strengths and

weaknesses of these methods will be assessed on a range of challenging test cases,

and new methods will be developed.



CHAPTER 1. INTRODUCTION 3

1.3 Roadmap

First, this thesis will provide a background to molecular modeling, and will ex-
plore how biomolecular systems may be represented in the computer. Statistical
thermodynamics will be introduced as a method to explore these models and esti-
mate real thermodynamic properties. The most important thermodynamic property
examined will be free energy, and rigorous procedures to calculate relative free en-
ergies of binding will be discussed. The huge expense of free energy simulations
has led some workers to abandon theoretical rigour, and pursue less expensive, yet

less exact methods. Some of these methods will be discussed.

The aim of this thesis is to identify the problems that exist in current, rigorous
free energy simulations. Through identification, ideas to overcome any problems
or inefficiencies may be developed. The first experimental section will introduce
a conceptually simple, yet physically challenging test case, the relative hydration
free energy of water and methane. Three of the established free energy methods
will be examined in the context of this test case, and their strengths and weak-
nesses will be highlighted. The second experimental section will take the lessons
learned, and use them to develop four further free energy methods. These too will
be evaluated on the water-methane system, and their results compared. The third
experimental section will introduce a simple binding free energy test case, the
binding of halide ions to a calix[4]pyrrole derivative. All of the established and
new methods will be applied to this system, and their éfﬁciency and reliability
compared. The final experimental section will then take the best established, and
best new free energy method, and will use them to investigate a real protein-ligand
system, namely the binding of SB1-like ligands to p38 MAP kinase. The results

from these applications will then be used as an indicator of the success of this

research.

1.4 Conclusion

One of the great challenges of rational drug design is the solution of the bind-
ing problem, namely the reliable and efficient calculation of the relative affinities

of a range of potential ligands to a protein. A solution to this problem lies in the
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equations of statistical thermodynamics, so this work will evaluate established free
energy methods, and will develop and test new free energy methods. These meth-
ods will be tested on three challenging systems, the relative hydration free energy
of water and methane, the binding of halide ions to a calix[4]pyrrole derivative,

and the binding of ligands to p38 kinase.



Chapter 2

Biomolecular Simulations

2.1 Introduction

Computer simulations rely on good models for the systems to which they are be-
ing applied. Such models must be sufficiently detailed to represent accurately the
problem being investigated, yet not overly elaborate, lest they are too expensive for
a computer to calculate. The best models in this field rely on Quantum Mechanics
(QM) to predict charge densities and intermolecular interactions.* The solution of

the QM equations for large biomolecular systems is not trivial. While techniques

such as divide and conquer* may allow a single large system to be divided into sev-
eral connected small systems, these methods are not sufficiently fast to allow the
full configurational exploration that was necessary for the work presented in this
thesis. Instead, simplified models, based on point charges and springs were used.
Such models are typically referred to as Molecular Mechanics (MM) models. A
Jorcefield is the complete set of molecular mechanics terms needed to model a
system. The complexity of such terms depends on the system under investigation,

and what properties the forcefield is trying to predict.

2.2 Molecular Mechanics Forcefields

Molecular mechanics forcefields provide simple models of a system which com-

puters can calculate in a reasonable time. There are many forcefields that may
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be used to represent biomolecules, for example OPLS,>® AMBER,” MM3® and

CHARMM?22.° The OPLS forcefield, which evolved from AMBER, was specif-
ically parameterised to reproduce condensed phase properties, and as such, was

chosen for this work.
The OPLS forcefield models the protein-ligand system as a collection of atoms

with charges, held together with springs. Partial atomic charges, g, are placed on

each atom, and the intermolecular interaction energy, E®(r), between charges

g; and g; on different molecules, separated by distance r, is calculated via the

Coulomb equation,6

9id;
E“(r) = 47;-:;# (2.1)

where € is the permittivity of free space.

In addition to an intermolecular coulombic energy, a term is also needed to rep-
resent the intermolecular electron dispersion forces. In reality, these interactions
depend on the positions of many atoms. However, such many body interactions
are difficult to evaluate, as they involve the sum over all triplets of atoms, quadru-
plets of atoms etc. To avoid this expense, the dispersion forces are approximated

by effective pair potentials. One such approximation is the Lennard-Jones (LJ)

EY(r) =4£<(g> c G)é) 2.2)

This equation returns the pair potential, E-/(r), for a homonuclear pair of atoms

potential,

separated by distance r. The parameters, ¢ and € are determined empirically. This

determination implicitly includes the effects of many-body interactions. The OPLS

forcefield uses the LJ equation to calculate the intermolecular dispersion energy,®

so-a(%)"-(2))
d 4 (2.3)
where Cij =4/ (0‘,‘(5]') and €ij =1/ (8,'81').

Since the LJ function was parameterised on homonuclear pairs, combining rules
must be used to obtain the values of ¢ and € for heteronuclear pairs. In the case of

OPLS, o;; and ¢;; are obtained by the geometric average shown. Other combining
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rules are used in other forcefields, e.g. AMBER uses the arithmetic mean to obtain
(o]} j.7 The total intermolecular energy between molecules is thus given by the sum
over all pairs of atoms between molecules, of the Coulomb and Lennard-Jones
energies.

The OPLS forcefield models the intramolecular interactions via bond, angle,
dihedral and non-bonded terms.® All the bonds between atoms are determined,
and all of the directly bonded (1-2), directly angled (1-3) and dihedral (1-4) sets
of atoms are identified. The interactions between bonded, 1-2 pairs, are then sim-
ply modelled as springs, using a harmonic potential, around the equilibrium bond

length, ry. The strength of the bond is assigned from a parameter, kpong, and the

bond energy, E2"¢(r), as a function of bond-length, r, is given by,°
Ebond(,_) = kbond(r — ro)z. 2.4

The angles, which act between 1-3 atoms, are treated in a similar fashion, with a

harmonic potential acting around the equilibrium angle, 6p. The strength of the an-

gle is taken from a parameter, Kgpgle, and the angle energy, £ angle (), as a function

of angle, 6, is given by,®
Eangle(e) _ kangle(e . 90)2. (2.5)

The dihedral angles, which act over 1-4 atoms, are slightly more complicated, and
their energy is evaluated via three terms. The first term is a Fourier series over
cosine functions. This is used to represent the broad shape of the dihedral energy
surface. The next two terms allow for angle bending in the eclipsed conforma-
tion, and are represented by the Coulomb and Lennard-Jones interaction energies
between the 1 and 4 atoms in the dihedral. These last two energies are normally
scaled by a factor, 514, which typically is equal to two, though some implementa-
tions use different values for the Coulomb and Lennard-Jones terms. The param-
eters used in this evaluation are the amplitudes, Vo to v3, and phases, p; to p3, of

the cosines, and the charges and LJ parameters of the atoms. The total dihedral

energy, E4hedral (. o), for 1-4 atoms separated by distance, r, and dihedral angle,
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- ¢, is given by,5’10

. 1
Edzhedral(r, q)) =vy+ 5 Z Vi (1 + (._1>m+l COS(m¢+Pnz)>
m=

1
(2.6)

T (Ewul(r) +EU(r)>.

514

The remaining intramolecular interactions, between 1-5 and above pairs of
atoms, are modelled identically to the intermolecular interactions. This non-bonded
term in the OPLS forcefield, E "b(r), between a pair of intramolecular atoms, sep-

arated by distance r, is given by,
E™(r) = E““(r) + EX(r). 2.7

The total energy of the system is taken as the sum over all inter- and intramolec-
ular terms. As it stands, this forcefield may still become too expensive for use on
biomolecules, so the intermolecular terms are normally truncated such that inter-
actions between atoms separated by more than a cut-off distance are ignored.!!+12
This cutoff may be applied between pairs of atoms, or it may be based on the dis-
tance between pairs of groups, e.g. if the closest distance between two residues of
molecules is greater than the cutoff distance, then all of the pair-pair interactions
between the two groups are ignored.'? This truncation of the non-bonded terms

can lead to discontinuities in the potential energies and forces associated with the

interaction.!? To overcome this problem, the non-bonded terms, Eyz(r), may be

scaled by multiplying by a switching function, S(r),'?
E™(r)=S(r) x E"™(r), (2.8)

where r is the distance between atoms. The aim of the switching function is to pre-
serve the nature of the non-bonded interaction at low r, while gradually smoothing
the energy to zero by the cutoff distance. This switching function may be applied

over the entire range of distances, or only for a short range of distances before the
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cutoff,12
E"b’(r) = E”b(r) for r < 7fearher

Enbl(r) = S(r) X Enb(r) fOI T feather Sr< rou (29)
E”bl(r) =0 for r> ryy,

where rey, is the cutoff distance, and rgeqner is the distance beyond which the
switching function feathers the non-bonded interaction down to zero. The OPLS
forcefield, as implemented in MCPRO,!? uses an harmonic switching function
that quadratically scales down the non-bonded interaction energy to zero between
7 feather and ;. When using group-based cutoffs, it is important to ensure that
the switching function has the same value for each pair of atoms between the
interacting groups.!? This may be achieved by calculating a single value of the
switching function for the interacting groups, and multiplying it by the total non-

bonded interaction energy between the groups.

This forcefield does not explicitly take polarisation effects into account. Real
physical systems polarise substantially when placed in a high-dielectric medium,
such as water.!# Such polarisation could affect the energies and structures adopted
by the system.14 Fixed charge forcefields, such as OPLS, implicitly include the
effects of polarisation by increasing the partial charges such that molecular or

fragment dipoles are approximately 10-20% larger than those in the gas phase.'*

Forcefields have been developed that explicitly include terms to account for polar-
isation effects.!# Inducible dipole forcefields place point dipoles over the system

to represent the polarisable groups.!*1> In these models, the size of the dipole

moment is determined by minimising the total interaction energy between all of
the dipoles, and all of the fixed charges.!® This represents a ‘self-consistent field’

determination of dipole moments,!> and is performed for every configuration of
the system. Induced charge models take a different approach. In these methods,
the partial charges themselves are allowed to fluctuate in response to their envi-
ronment. ¢ Point dipoles are still placed on polarisable groups, and the magnitude
of each induced dipole is calculated. This dipole can then be explicitly represented

by a set of point charges.!® These induced charges are added to the fixed charges
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on the atom sites. This allows the partial charges on each atom to fluctuate in re-
sponse to their environment. The benefit of the using a point charge representation

of the induced dipole is that it avoids the costly calculation of the dipole-dipole

and charge-dipole interaction energies. !

2.3 Statistical Thermodynamics

Given a model, or forcefield, it then becomes possible to calculate the total en-
ergy of the system for every single possible configuration of that system. The col-

lection of all possible configurations and momenta for a system is called phase

space, and it has a dimension for every single degree of freedom of the system.!”
Plotting the total energy for each point within phase space yields a hypersurface,
called the energy surface. Such surfaces for proteins are known to be rugged and
frustrated,'® filled with many, near-isoenergetic minima, separated by mid-level
transition states. As the system vibrates and moves, it will tend to spend more
time in certain regions of phase space than others. To calculate the probability that
the system will be at a particular point in phase space, we need to use statistical

thermodynamics, and in particular, the Boltzmann distribution.

2.3.1 The Boltzmann Distribution

The Boltzmann distribution lies at the heart of statistical thermodynamics. It was
initially derived for a closed system of identical, independent atoms, which could
adopt a range of discrete energy levels (see appendix A). The atoms were allowed
to exchange energy through elastic collisions, and the entire system was subjected
to the constraints that the total energy, and total number of atoms, were a con-
stant. The derivation uses statistical theory to show that, for a given temperature,
T, there will be one overwhelmingly probable configuration of this system. As-
suming that the system adopts this configuration, it becomes possible to calculate
the probability, p;, that a particular energy level, g;, is occupied, via,

_ exp(=t:/kpT) (2.10)

[ 2 )

q
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where kp is the Boltzmann constant, and ¢ is the molecular partition function,

given by the sum over all of the accessible energy levels,

g= exp(—¢;/ksT). (2.11)
J

The molecular Boltzmann distribution was derived to operate on a collection of
identical particles, which could only share energy in a specific manner, under the
constraints of constant total energy and numbers of particles. To apply this to an
entire system of molecules, all interacting through complex inter- and intramolec-
ular potentials, requires the introduction of the concept known as the ensemble.
An ensemble is a collection of identical replicas of the system. Each system is
allowed to evolve independently, though they are allowed to share defined prop-
erties, subject to specific constraints. The properties shared, and constraints ap-
plied, determine the type of the ensemble. For example, in the NVT, or canonical
ensemble, the total number of atoms (N), volume (V) and temperature (T) are
constrained to be constant. This means that each of the replicas are constrained
to a constant volume, number of particles and temperature. The temperature is

constant as the replicas are placed in thermal contact with one another, and are al-

lowed to exchange energy.!® Each of the replicas are allowed to equilibrate under
these conditions. At equilibrium, the probabilities that a replica will adopt par-
ticular configurations will become constant. At this steady-state, for temperature

T, the probability, pr(i), that a replica adopts a particular configuration, i, with

associated energy, E;, is given by the canonical Boltzmann equation,'?

_ exp(=Ei/ksT) (2.12)
Onvr ’

pr(i)

where Qyyr is the canonical partition function. Many ensembles exist, e.g. the
isothermal-isobaric ensemble (constant Number of particles, Pressure and Tem-
perature, NPT), or the microcanonical ensemble (constant Number of particles,
Volume and Energy, NVE). Each ensemble has its own partition function, the im-

portance of which will become apparent in the next section.
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2.3.2 Free Energy

The thermodynamic quantity known as “free energy” is perhaps one of the most
important of all the thermodynamic quantities. This is because free energy points
in the direction of spontaneous change. The binding free energy is the change in
free energy associated with the binding of a guest to a host, and is a direct measure
of the strength of that binding. The more negative the binding free energy, the

stronger the binding between the host and guest. The free energy of a system, G

can be related directly to its partition function,!!

G=—kpTInQ. (2.13)

If the partition function was calculated over the canonical ensemble, then G rep-
resents the Helmholtz free energy, while if the partition function was calculated
over the NPT ensemble, then G represents the Gibbs free energy. This is because

the partition function for any ensemble, (,,,, can be related to the thermodynamic

potential for the ensemble, ¥ s,
Wens = —1InQeps. (2.14)

The thermodynamic potential for an ensemble has a minimum value at thermody-
namic equilibrium.!! For the canonical ensemble, the thermodynamic function is
GHeimhonrz/ k8T, while for the NPT ensemble the function is Ggpps/kBT .
Equation 2.13 shows that the calculation of the absolute free energy of a system
requires the calculation of its partition function. The canonical partition function,
Q, is formed as a sum over all possible configurations, I, of the system, of the
exponential of the energy of each configuration, E(I"), normalised by the temper-

ature, 7,

_ —E(T) '
Q—;eXp< o7 ) (2.15)

At the classical limit, the partition function for an atomic system can be expressed

as an integral'! over all possible configurations,

11 _E(D)\ .
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In this equation, N is the number of atoms, £ is Planck’s constant, introduced to
define the volume of the system, and the factor of 1% is used to account for the
indistinguishability of particles.!!

The total energy of the system is formed as a sum of the potential energy, Ej,,
and the kinetic energy, Ej. The potential energy is a function of the coordinates,

g, of the system, while the kinetic energy is a function of the momenta, p, and

thus the partition function may be expressed as an integral over all coordinates and

_ 11 —Ep(q) — Ex(p)
ij—v—!;l—gﬁ/q/pexp< iaT >dpa’q. (2.17)

The coordinates and momenta of the system are independent, and thus the kinetic

momenta,

and potential energies of the system may be separated. This allows the partition

function to be expressed as a product of kinetic and potential parts,!!

—Eu(p)
N'h3N// < T >dpdq
11
Nzhf’N/p/le < kT > ( ) | (2.18)
11 —Ei(p) —Ep(q)
_mﬁ?ﬁ/,,eXp< 7T )dP/leP< s T )d‘f

= Qk-Qp:

where the factors, - 77 18 absorbed into O, and h3N is absorbed into Q.

The integral over momenta, known as the ideal gas part, can be solved analyt-

ically via quantum mechanics using the “particle in the box” model,!-17

1% 1
O = g Where A= (h?/2mmksT)?, (2.19)

where V is the volume of the system, and m is the mass of each atom.

The remaining potential energy partition function (the excess part) cannot be
solved analytically, due to the large number of coupled inter- and intramolecular
energy terms that would need to be evaluated. The evaluation of this integral over

all possible configurations of the system must be performed numerically. In doing
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this, many workers drop the factor of =, and instead work with the configuration
y p h3N g

integral, Z,

N "Ep(9)>
Z—/qexp< iaT dg. (2.20)

where Z has units of V.11
Unfortunately, the numerical integration of the configuration integral converges

very slowly for all but the most simple of systems.!! The absolute free energy of a
system depends directly on the configurational integral, and is thus too difficult to

calculate for protein sized systems.

2.3.3 Relative Free Energies
It is too difficult to calculate the absolute free energy of large systems. However, it
is possible to calculate the relative free energy of two different systems. This was

first realised in the derivation by Zwanzig,?°
AGs_g=Gp— Gy
= (—ksTInQp) — (—kzTInQn)

- —kBT In ,:g;ﬂ
Jexp(—=Ep(q)/kgT)dq
Jexp(—Ea(q)/ksT)dq

- —kBTln {

multiply by 1 =exp(—Ea(q)/ksT) exp(Ea(q)/ksT) gives,

[ [ exp(—Ep(q)/ksT) x exp(—Ea(q)/ksT) exp(Ea(q)/ksT)dq

=~hsTln| Joxp(~Ealq)/kT)dq

— oo [ LEXP(=Ea(@)/ksT) x exp(= (Es(q) — Ea(q) /ksT) dq}
S Jexp(—Ea(q)/ksT)dgq

— —kyThn| / eXp(_EAQiq> [%8T) + exp(—AEas(q) /ksT) dq}

= —kgTIn / pa(gq) x eXP(—AEAB(q)/kBT)dq},
) 2.21)

|
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where P4(q) is the Boltzmann probability of configuration ¢ in the ensemble of
state A, and AE4p is the difference in energy between system A and system B.
This equation shows that the relative free energy is the integral over all config-
urations of system A, of the Boltzmann weighted exponential of the difference in
energy between the two states. The vast majority of the configurations of system
A will be high in energy, and will have a very low Boltzmann prbbability. Because
of this, only the low energy, thermally significant configurations of A should be
needed to obtain the relative free energy of the two states. The question now arises

as to how these highly probable configurations are generated.

2.4 Sampling Methods

The biomolecular system has been modelled using a molecular mechanics force-
field. From this forcefield, a potential energy surface can be generated. The Boltz-
mann equation can be used‘to calculate the probability of various points on the
energy surface, thus giving information about which configurations a single sys-
tem would prefer. However, while we can only look at a single system of molecules
( 10 K to 100 K atoms) on a computer, in the “real World” we experience unimag-
inably huge numbers of these systems. To bridge the macroscopic and molecular
- worlds, statistical thermodynamics assumes that the thermodynamically observ-
able property of a system, A,ps, is equal to the time average of the corresponding

molecular property, A, calculated from a single system, providing it has evolved

for a sufficiently long time,!!

1 lobs

Anps = (A1), = lim — [  A(L(r))dr, (2.22)

time tops—™® tops JO

where A(T'(¢)) is the value of A calculated for configuration T at time 7, and

(-++),ime TEPTESENLS AN average over time.

If the time trajectory of the system can visit every point in phase space which
has a non-zero Boltzmann probability, then the trajectory is termed ergodic. If this
were the case, then we could imagine a large ensemble of systems, all following

this time trajectory. Each system would be at a different point along the trajectory.
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While all of the systems are dynamically moving along the trajectory, at thermal
equilibrium, the density of systems at each region of phase space will become
constant. The probability of finding a system in a particular configuration along
the trajectory will thus be a constant, and, from the work in the previous sections,
will be equal to the Boltzmann probability for that configuration in the ensemble.
The ergodic hypothesis thus proposes that the time average of a property for a

single system is equal to the Boltzmann weighted property calculated over a whole

ensemble of systems, !

Aobs = <A (r(t)> >time

= (A(D)p(I)) (2.23)

= <A>ens’

where p(I") is the Boltzmann probability for configuration I'" in the ensemble, and
<. . .>ens represents the average of A calculated over the whole ensemble of configu-

rations. The ergodic hypothesis thus proposes that the observable thermodynamic
properties of the macroscopic world are equal to the ensemble average of the cor-
responding molecular property. Sampling methods exist which can generate en-

sembles of structures with the correct Boltzmann probabilities. Two such methods

are Molecular Dynamics!? and Metropolis Monte Carlo.?!

2.4.1 Molecular Dynamics

Molecular Dynamics!!>1? is a method to locate and sample the significant regions
of the energy surface. It takes the most obvious route available to generate the en-
semble of configurations, namely that of evolving the time trajectory. The system
is placed in a starting configuration, at a particular point on the energy surface.
The gradient at that point on the surface can be evaluated. The negative of this gra-
dient is a force, which can be converted into an acceleration via Newton’s laws of
motion. The direct solution of Newton’s laws requires the solution of 3N coupled,
second order differential equations, where N is the number of atoms in the system.

This is too difficult to solve analytically, so numerical, finite difference approaches

must be used.!? These numerically integrate the forces over time to yield a trajec-



CHAPTER 2. BIOMOLECULAR SIMULATIONS 17

tory. Since Newton’s laws conserve energy, the resulting trajectories sample from
the NVE, microcanonical ensemble. To sample at constant temperature, the system
must be connected to a thermostat. In addition, a piston may be used to make the

trajectory sample at constant pressure. Assuming that the trajectory has evolved

for sufficiently long, the ergodic hypothesis!! states that the time trajectory will

have formed the complete and correct ensemble.

2.4.2 Monte Carlo

Molecular Dynamics samples the energy surface by taking one system, and evolv-
ing from it, a trajectory over time. Monte Carlo takes the opposing view, and ran-

domly generates many configurations of the system, and then weights each one

according to its probability within the desired ensemble.!! It does this by form-
ing a Markov chain, by making random changes of configuration, and accepting
or rejecting these changes via a test. The form of the test depends on how the
Monte Carlo equations are solved, and many such solutions exist. Appendix B

details some MC tests, and how they are obtained from the underlying Markov

chain. The most important solution to these equations is the Metropolis solution.?!

Indeed, this solution is so important, that the many workers equate Monte Carlo

with Metropolis Monte Carlo.

2.4.3 Metropolis Monte Carlo

Normal Monte Carlo randomly generates configurations of the system, and weights

each one according to its probability within the ensemble. However, these proba-

bilities are rarely known a priori. Metropolis Monte Carlo?! cleverly solves this
by randomly generating each configuration such that it appears with its correct en-
semble probability, and then weighting each configuration in the set equally. The
Metropolis solution can achieve this, as it includes the Boltzmann equation (equa-
tion 2.12, and see appendix B). Metropolis Monte Carlo takes a configuration of

the system, and calculates its energy. A random move is made, and the energy re-

calculated.?! A Monte Carlo test uses this change in energy, AE, to evaluate the
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move, via,2!

exp(—AE /kgT) > rand(0,1). (2.24)

If this test is passed, then the new configuration is accepted, otherwise the old
configuration is restored, and is recounted in the average. Using this method, at
the end of the MC run, the thermally important regions of the energy surface have
been explored with the correct probability. This particular Monte Carlo test will
sample from the canonical, NVT ensemble. Different tests exist which sample

from different ensembles, e.g. isothermal-isobaric, NPT. Some of these tests are

discussed in appendix B.

2.5 Calculating Relative Free Energies

In equation 2.21, the relative free energy between two different states was seen to

be,

AGp—.p = —kpTIn [/pA (q) x exp(—AEap(q)/ksT) dq:l . (2.25)
q

This integral represents the ensemble average of the exponential of the difference

in energy between states A and B, formed over the ensemble of states of system A.

The equation can be rewritten as,?

AGp—p = —kpT In{exp(—AEap(q)/ksT)) ,, (2.26)

where (...), represents an average taken over the ensemble of structures of sys-
A P =)

tem A. This is known as the Zwanzig equation,?® and it shows that the relative
free energies between two systems can be calculated over an MD or MC sampled
trajectory. An MC or MD simulation is performed on system A. This is called the
reference state. At each step of the simulation, the difference in energy between the
configuration in system A, and the same configuration in system B is calculated,
and averaged according to the Zwanzig equation. System B is called the perturbed
state. The difference in free energy between the two systems will only converge
well if they are very similar, and thus the fluctuations of AE are small. The reason

for this is made clear by recasting the Zwanzig equation in terms of an integral
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Py(AE) 1

exp(-AE/ kyT)

exp{-AE/ kHT)

AE AE

(a) Low fluctuations in AE (b) Large fluctuations in AE

Figure 2.1: Plots of exp(—AE /kgT) and po(AE) for two hypothetical free energy
simulations. Plot (a) shows the probability density two systems with good overlap,
while plot (b) shows the density for two systems which have poor overlap.

over AE !

AGA__)B = —kBTln [/PA(Q) X exp(~—AE(q)/kBT) dq}
q .
(2.27)

= —taThn| [ po(a) xexp(-aE kaT)alaE) |

where po(AE) is the normalised number of configurations of system A that have a

difference in energy with system B that is equal to AE, i.e. Eg(q) — Ea(q) = AE.!!
po includes the ensemble probabilities of system A, and also contains the factors

necessary to go from the integral over the 3N spatial coordinates to the integral

over a single AE coordinate.'!

The Zwanzig equation represents an integral over all AE, of the product of the
probability of configurations which have that value of AE, and exp(—AE /kgT).
These two terms are shown in figure 2.1, This figure shows these terms for two
different free energy simulations. In the first simulation, the two systems are very
similar. The fluctuations in the difference in energy between the systems, AE, are
small, and thus the probability density along AE is tightly peaked, with small tails.
In the second simulation, there are larger differences between the systems, and
thus the fluctuations in AE are larger. The probability density is more spread out,
with a wider peak, and longer tails. The MC or MD simulation will generate values

of AE according to the probability density po(AE). If the simulation was run for
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an infinite time, then the histogram of values of AE collected from the simulation
would be exactly equal to the underlying probability distribution. However, for a
finite time simulation, the histogram of values of AE will only approximate the
true underlying probability density.?? The errors in this approximation, per unit
AE, will be larger for the tails than they would be for the peak of the distribution.
Since this tail is more significant when there are larger fluctuations in AE, then
the error associated with the numerical sampling of this tail will also be more
significant.?? These errors are magnified by the exponential function that, in the
product of the two terms, greatly increases the contribution from the left tail of
the probability distribution. This suggests that, for a finite time simulation, the
fluctuations in AE should be as small as possible to allow the Zwanzig equation to
convérge in a reliable and rapid manner.?? These fluctuations can be minimised by
ensuring that the two systems are as similar as possible, i.e. there is high similarity
and overlap of their potential energy surfaces. If there is poor overlap, then this
analysis suggests that the Zwanzig equation could require an unattainably long

simulation to sample adequately the tails of the probability distribution.

2.5.1 The A-coordinate

The Zwanzig equation relates the difference in free energy between two systems,
with differences between their respective energies. This equation will only work
well when there is a high degree of overlap between the two systems. To ensure that
this is the case, it is possible to use the technique of morphing to gradually change
one system into the other. A A-coordinate is used to gradually morph the forcefield
such that at A = 0.0, the forcefield represents system A, and at A = 1.0 it represents
system B. At A-values in-between, the system is a non-physical hybrid of A and

B. This morphing may be achieved by linearly changing the OPLS parameters

between those for A = 0.0, and those for A = 1.0, e.g.13

kband;L = }"kbondl + (1 - k‘)kbondo
(2.28)

- or gy, =Agq1+(1-2)qo.

The use of A allows two related systems to be slowly morphed from one to the
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AGfree(A—B)
—,.,»
AGuind(A) ’ AGoind(B)
AGbound(A—B)
AGbind (B) - AGbind (A) = AGbound (A — B) . AGfree (A — B) (2~29)

Figure 2.2: The free energy cycle used to calculate relative binding free energies
of ligands A and B to a protein (shown in grey). The relative binding free energy
of ligands A and B to a protein is equal to the perturbation free energy of A to B
while bound to the protein, minus the perturbation free energy of the free ligands

in solvent.

other. This allows the relative free energy between the two systems to be calculated

as a potential of mean force along the A-coordinate that connects them.

2.5.2 Relative Binding Free Energies

The relative binding free energy between two ligands for the same protein can
be calculated by morphing the first ligand into the second. From the free energy
cycle? in figure 2.2 it is seen that this perturbation must be performed while the
ligands are bound to the protein (the bound leg), and while the ligands are free in
solvent (the free leg). This is due to the fact that any host-guest binding can be
viewed from the perspective of a competition between the host and solvent for the
guest. Thus when we ask the question of which of a pair of ligands binds best to a
protein, we are really asking which ligand has the greater affinity for the protein,
and the lower affinity for the solvent. However the calculation of the free energy
changes associated with these legs can be expensive, and there are many ways in
- which it can be achieved. These methods broadly fall into two groups; rigorous

techniques that rigidly stick to derivations from statistical thermodynamics, and
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non-rigorous methods that sacrifice rigour in return for assumptions that speed up
the convergence of the calculations. This work is only interested in rigorous free

energy methods, although both types will now be discussed.

2.6 Rigorous Free Energy Methods

Rigorous free energy methods adhere to the derivations from statistical thermo-
dynamics. That is to say that the methods use a A-coordinate to connect different
systems, and use exact equations to calculate the change in free energy with re-
spect to A across the entire perturbation. The methods used to calculate the change
in free energy with respect to A are however different. Three such methods will
be discussed, Free Energy Perturbation (FEP), Thermodynamic Integration (TI),

and Adaptive Umbrella WHAM (AdUmWHAM). The methods discussed here are

also described in various reviews.?>2* In addition, the recently developed, Fast

Growth method will also be discussed.23:26

2.6.1 Free Energy Perturbation

Free Energy Perturbation®® (FEP) is a rigorous free energy method that has been
used to calculate binding free energies in many successful studies, i.e. calculating

7

the specificities of various ligands for the COX-1 or COX-2 enzymes,?’ investi-

gating the enantioselective binding of peptide based ligands to a small host,? the
binding of ligands to SH2,2%-3% or FK506 binding protein,3! and the binding of
alkali metal cations to spherands.’? FEP calculates the free energy change along
the A-coordinate through direct use of the Zwanzig equation (equation 2.26). To
ensure that this equation converges, the A-coordinate is split into a series of win-
dows (figure 2.3). The width between each window must be sufficiently small to
ensure good overlap between the reference and perturbed states.'> An MC or MD
simulation is then run within each window, and the Zwanzig equation applied to
calculate the free energy change between each window and its neighbour. The rel—'
ative free energy along fhe A-coordinate can then be achieved by summing each of

the individual free energy differences between each window (figure 2.3). The free
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Figure 2.3: The use of windows in FEP simulations. In this figure, the A-coordinate
is split up into 6 windows, spaced evenly every 0.2 A-units. A simulation (repre-
sented by a filled circle) is run in each window. The A = 0.4 window is highlighted.
The forwards free energy to the next window, and backwards free energy to the
previous window are calculated during the simulation. The sum of all the forwards
free energies yields the forwards estimate of the relative free energy, while the
negative of the sum of all of the backwards free energies yields the backwards
estimate. Obviously, both estimates should be the same.

energy differences could be calculated between each window and the next neigh-
bour. Summing these values would yield the free energy change for the forwards
perturbation from state A to state B. Conversely, the free energy differences could
be calculated between each window and its previous neighbour. Summing these
would yield the free energy change for the backwards perturbation from state B
to state A. If the calculation has converged, then the forwards and backwards free
energies should be equal. Any difference between them is known as hysteresis,
and examination of where hysteresis occurs can be used to position better the
A-windows for any subsequent calculations. To enable this analysis, FEP simu-

lations typically calculate both the forwards and backwards perturbations, using a

technique known as double-wide sampling 3 Using this technique, a free energy
simulation is performed at each A-window, and the free energy difference simulta-
neously estimated between the next and previous window.

FEP accumulates the exponential of the difference in energy between neigh-
bouring windows. If the A-windows are well positioned, then these differences in
energy will be well-behaved, and their fluctuations will be small. However, the

initial positioning of the windows is difficult, as there is no a priori knowledge
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of the shape of the potential of mean force (PMF) along A. More windows are
needed in regions where the PMF changes rapidly, while fewer are needed in re-
gions where the PMF is flat. The technique of dynamically modified windows>*
tries to alleviate this problem by using the free energy change in one window to es-
timate the optimum width of the next window. It achieves this by fitting a straight
line through previously calculated free energies to estimate the current gradient of
the PMF. The value of this gradient can then be used to decide where to place the
next A-value. A problem with this method is that it was developed at a time when
computer resources required that each A-window were run serially, and thus the
gradient information from the previous A-windows was readily available. How-
ever, the advent of cheap, yet powerful Beowulf clusters (see appendix D) means
that all A-windows can now be run simultaneously in parallel, and thus the spacing

between all A-windows must be determined before the simulation starts.

2.6.2 Thermodynamic Integration

Thermodynamic Integration (TI) is another rigorous free energy method with a

significant history of successful applications, e.g. the calculation of the relative
binding free energies of ligands to p38,%> the estrogen receptor ligand-binding do-

main’® or acetylcholinesterase,?’ the relative hydration free energy of n-alkanes,

the binding of ions to a calix[4]pyrrole derivative,* and investigating the inter-
actions between amino acid residues in the binding site of trypsin.*® While FEP
directly uses the Zwanzig equation to calculate the difference in free energy along
the A-coordinate, TI takes a different approach. The method still looks at discrete
A-values along the coordinate, and generates an MC or MD trajectory at each A-
value. However, instead of calculating the difference in energy between neigh-
bouring A-values, it calculates the rate of change of free energy, with respect to

A at each point. TI thus avoids the problems of low overlap experienced in FEP,

as this free energy gradient, (%%)k is a property of the system at each value of A

only. Once all of these free energy gradienté are obtained, they may be integrated
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to yield the relative free energy along the A-coordinate.

170G
Gk=1 “‘G}\;Q :/(; <§5\,~))\d}' (230)

This integral can be evaluated numerically, e.g. via the trapezium rule.?> The free
energy gradients themselves may be obtained analytically or numerically. The an-
alytical route uses a modified forcefield to calculate the gradient of each forcefield

term directly with respect to A. The ensemble average of the gradient of forcefield,

%%> ,» 18 equal to the free energy gradient (as shown in appendix C.1).

1 /3G WY
/o<'a‘>?>kd}‘“/0 <é—}:>kd7& (2.31)

The numerical route approximates the gradient, (%—g) a» via the finite difference,

( %%)k» This free energy difference can be calculated via the Zwanzig equation,

with the reference state at A, and the perturbed state at A + AA. This would give a
forwards estimate of the free energy gradient. A perturbed state of A — AA yields
the backwards estimate. These two estimates should of course be equal if AA were
sufficiently small, and the trajectory ran until the Zwanzig equation had converged.
This method is normally referred to as Finite Difference Thermodynamic Integra-
tion*! (FDTI), and again, there is a significant body of literature that demonstrates
its successful application. These include its application to the relative binding free
energy of thrombin inhibitors**~** and ligands to DHFR.*> Most workers who
use FDTI position their windows, and integrate the results, through the use of a
Gaussian quadrature.*® This is a technique that was developed by Gauss in the
early nineteenth century to integrate definite functions. It works by recasting the
integral of the function into the class of integrals known as ‘polynomials times a
known weighting function’. Given a function, f(x), the method allows the optimal
choice of the points along x to evaluate the function, and the optimal weights to
give each of those points. This can be achieved by multiplying f(x) by a known
weighting function, W (x). If f(x) is a polynomial, then, given an integer number

of evaluation points, &, it is possible to find a set of weights, w;, and abscissas, x;,
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such that the approximation,
b N
/ W F@dra Y wiflx), (2.32)
a j=1

is exact. The values of w; and x; depend only on the choice of the weighting func-

tion, and the number of evaluation points.*® Most workers use Gauss-Legendre
quadrature, which uses a weighting function of W (x) = 1. The values of x; and w;
are obtained from a lookup table, and are not in any way based on the shape of
the PMF along A. It is our opinion that this method of integration is not best suited
for application to free energy calculations, as it was designed to integrate definite
functions, and only has high accuracy for functions that are well approximated by
polynomials. The gradients obtained along A will have associated errors, and the
underlying PMF could contain sharp peaks or troughs. The positioning of the A-
windows should thus reflect the shape of the PMF, with more A-windows in places
where there are large changes in the free energy gradient. All gradients should also
be weighted equally, so as to avoid the possibility of points with large errors be-
ing highly weighted, while reducing the contribution from points with low errors.
In addition, the use of Gaussian quadrature has, in our opinion, led to the use of
far too few A-windows along the perturbation. Previous studies*> have used as
few as 6 A-windows, while another study45 stated that increasing the number of A-
windows from 6 to 8 reduced the quality of the results. Such a reduction in quality
would have been the result of poor positioning of A windows, not an increase in
their number. Our application of FDTI will thus use the same integration methods
that have been used successfully in standard TI simulations,?’ namely trapezium
rule integration over many, closely spaced A-windows. Using this scheme, FDTI
is very similar to FEP, and can be run with the same system conditions and refer-
ence states. In the case of FEP, the perturbed states are the neighbouring windows,
while in the case of FDTI, the perturbed states are AA above and below each win-

dow. FDTI and FEP become identical in the limit of the window width becoming

equal to AA.
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2.6.3 Fast Growth

One of the most recently developed free energy methods is the so-called ‘Fast
Growth’ method.?*26 This is an evolution of the Slow Growth method, which is
the subject of a recent review.*’ The slow growth method estimates the free energy
change between two systems within a single simulation. It achieves this by slowly
increasing the value of A by a constant amount, dA, at each simulation step, such

that at the start of the simulation, A = Ag, and by the end of the simulation, A = A,.

If the simulation consists of M steps, then A is given by,*’

sh= Ao (2.33)
M

The system is constantly being perturbed at every step of the simulation. This

perturbation requires an amount of work. The work required to perform the entire

perturbation, W, is formed as a sum over all of the simulation steps,*’

M
w=> Bx<a—E> . (2.34)
i=1 oA A=Ag+i0A

If 8A were infinitesimally small, then this perturbation would occur infinitely slowly.
This would mean that the system would stay in thermodynamic equilibrium through-
out the mutation, and the perturbation would occur reversibly. If this were the case,
then the work required to perform this change would be equal to the free energy

associated with the change, i.e. W = AG. However, if the change occurred in a

finite time, then the response of the system would lag behind the perturbation,23

and the simulation would move out of equilibrium. The resulting change would

not be reversible, and some of the work would be dissipated. The amount of work

required would be larger than the free energy change,? giving the slow growth
inequality,

W > AG. (2.35)

The problem with the slow growth method is that the system is constantly

being moved out of equilibrium. This leads to the inequality in equation 2.35. Re-

cently, Jarzynski examined this inequality, and derived a remarkable equality,?>-26
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now known as the Jarzynski identity.*® Jarzynski realised that the problem with

the slow growth method was that the individual system moved away from equilib-

rium in an unpredictable manner.*’ Tt is quite possible that there exists no general

formula that describes the nonequilibrium distribution of the system at the end of

the perturbation.*® Jarzynski then showed that if an ensemble of systems were per-
turbed away from equilibrium, then the behaviour of the ensemble as a whole was
predictable. Thus the ensemble of non-equilibrium statistics could be related to an
average over the equilibrated ensemble. Using these ideas, the Jarzynski identity
relates the change in free energy of a perturbation, to the average of the work cal-

culated for a slow growth simulation for each member of the original equilibrated

ensemble,?

exp(—W /kgT) = exp(—AG/kgT). (2.36)

The overbar in this equation denotes an average over an ensemble of slow growth

simulations. The beauty of this equality is that it is independent of the speed of the

perturbation.?

To use this equality, an equilibrated ensemble of structures at A = Ag must be
generated. A slow growth simulation should be performed for each member of this
ensemble, although it can be performed with a fewer number of steps, and thus a
larger OA than normal slow growth. The work necessary for each simulation should
be calculated, and the average of the exponential obtained. This average will then

equal exp(—AG/kgT). Because the rate of change of A is higher than for slow

growth, this method is referred to as fast growth.’® This method has been tested

on the calculation of the excess chemical potential of a Lennard Jones fluid, >

the potential of mean force between a pair of methane molecules in water,*® and
the charging of a sodium ion in water.>! These tests demonstrated that similar re-
sults were obtained via the fast growth method compared with other free energy
methods, using comparable amounts of processor time. This was despite the appli-
cations only averaging the results from a small subset of starting points from the
initial ensemble (between 10 and 3334). The main benefit of the method appears
to be its huge potential for coarse level parallelisation over a very large Beowulf

cluster. Once the initial generation of the equilibrated ensemble is complete, each
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fast growth simulation could be performed in parallel on independent nodes.*% 0
The drawback of the method is that the average will only converge reliably if the
fluctuations in the work are not too large.?’ This reasons for this-are very similar to
those used for the Zwanzig equation, which also collects the ensemble average of
an exponential. In practice, this means that applications of this method also need to

split up the A-coordinate into a series of windows, and apply fast growth between

neighboring windows.*3

2.6.4 Adaptive Umbrella WHAM

Methods have been presented that treat A as a simulation parameter. Through spe-
cial treatment of A, these methods are able to integrate the free energy along the
A-coordinate, and in so doing, produce the potential of mean force (PMF) across
1.2 A totally different approach becomes apparent when it is realised that A is
just another coordinate of the system. A does not have to be treated specially, and
thus it is possible to make dynamic changes in A throughout a simulation. The cal-
culation of the free energy along A then becomes equivalent to the calculation of
the PMF along a normal structural coordinate, for which many methods have been
derived. One such method is Adaptive Umbrella WHAM (AdUmWHAM),3374
a method that combines adaptive umbrella sampling>-° with the Weighted His-
togram Analysis Method (WHAM).”’

AdUmWHAM is typically used to derive the potential of mean force along
structural coordinates, e.g. for dihedral angles in a small peptide.”> AdUmWHAM
can be applied to perturbations by realising that A can be treated as a dynamic
coordinate, and that it is possible to make moves in A throughout a trajectory. This

realisation was first made in a precursor to AAUmWHAM, A-dynamics.>®

A-dynamics

A-dynamics is another rigorous free energy method that was designed to achieve

enhanced sampling of ligand configurations and orientations within a binding free

energy calculation.”®% The method treats A as a dynamic coordinate, and allows
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motion along the A-coordinate during normal configurational sampling. In this
way, the ligands are dynamically morphing between each other during a single
trajectory. This has the advantage that the ligands spend most of their time be-
tween A = 0.0 and A = 1.0, and thus the forcefield is much softer for the perturbing
atoms. This should enhance the many configurational changes that are necessary
to move through the A-coordinate.’® A potential disadvantage of the method is that
A could be changed too rapidly for the rest of the system to respond. The config-
urational sampling will thus lag behind the A-sampling. This Hamiltonian lag is
exactly the problem that is addressed by the Jarzynski equality in section 2.6.3. If
the A-sampling is too rapid, then the system will move out of equilibrium, and the
change in free energy will contain systematic error. Unfortunately, a priori knowl-
edge of the system’s relaxation time is not possible, so the A-sampling must be
performed as slowly as possible within the constraints of the simulation.
A-dynamics uses a variable A-coordinate to calculate the free energy. To ensure
that the entire A-coordinate is sampled fully, the motion along A must be encour-

aged through the use of an umbrella potential.

Umbrella Sampling

Umbrella sampling was first developed in the late 1970s, and originally applied to
a small LT fluid test system.®! The aim of the method is to direct the sampling along
a reaction coordinate to unfavourable regions. This is achieved through biasing the
simulation through use of an umbrella potential. The umbrella is implemented as
an additional term to the forcefield of the system, and acts to penalise or encourage
particular configurations. This has the effect of making the system sample from a
biased distribution. For example, figure 2.4 shows the potential of mean force,
P(A), for a reaction coordinate, A, for a hypothetical system. The PMF has two
important minima, A and B, separated by a transition state, C. An umbrella poten-
tial, U(A), can be added to this system. This term is added to the forcefield, and has
the effect of encouraging sampling where U () is low, and discouraging sampling
where U(A) is high. In this case, the umbrella potential will encourage sampling

of the transition state, thus allowing conformations A and B to interconvert freely.
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Figure 2.4: A hypothetical umbrella potential which could be used to enhance
sampling of the reaction coordinate, A.

The umbrella potential forces sampling from a biased probability distribution.
If, in the general case, the reaction coordinate, A, is a function of the system coor-

dinates, r, then the biased probability, Py, for the particular point A = Ag is given

by,56
_ [exp [—~B(E(r) + U(X))]S(k —Xo)dr

Jexp[-B(E(r) +UM)]dr (2.37)

1

Py(Ao)

where B = 1/kgT, E(r) is the normal energy of the system for coordinates r, U(A)
is the value of the umbrella potential, and & is the Dirac § function, which is equal
to one for 6(0), and zero for all other values. The use of 8 ensures that only config-
urations of r that map to A = A contribute to the probability at P,(Ag). Since the

form of U () is known, it is possible to re-weight this biased probability distribu-

tion to return a Boltzmann weighted distribution along A.%® Looking at the specific
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case of the point A = A,

_ Jexp[—B(E(r)+UN))]8(A—Ao)dr
[exp[—B(E(r)+U(N))]dr

Py(ho)

Multiplying both sides by exp(BU(%o)),

_ Jexp[—B(E(r) +U(M))]8(A—Ao)dr x exp(BU (Ao))
[exp[-B(E(r)+UX))]dr

Py(o) exp (BU (ho))

Since exp (BU (Ap)) is a constant, it can be moved inside the integral,

B Jexp[=B(E(r) +U(M))]8(A—Xo)exp(BU (Mo))dr
Po(Ro)exp(BU (R0)) = fexp[—B(E(r)+U(K))]dr

The § function has eliminated all points where A # Ag. U(Ag) now cancels,

_ Jexp [—BE(r)]8(A—Ao)dr

Py(ho) exp(BU (o)) = Texp[—B(E(r) + U(M)]dr

using Qpias =/exp[—B(E(r)+U(?»))]dr

and Qpon, = /exp[—BE(r)]dr gives

sz'as _ fexp [—BE(r)}ﬁ(K——ko)dr 5 Qbias

Py(ho) exp(BU (Ao)) x

QBoltz Qbias QBoltz
| . —BE()]8(h=no)d
P exp(BU () x 2 = L2 =P 452],,1( )

The biased probability for A = A is thus related to its

Boltzmann probability, Ppyj,

Py(ho) exp(BU (Xo)) o Ppoizz(ho).

In the general case for any A,

Pgoisz (M) = Py(A)exp (BU(X)).
(2.38)

The unbiased probability distribution can be used to calculate the potential of mean
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force along A,

G\ = —ém [Proiz(1)]

Qbias }

- ——1—ln Py CXP(BU(}")) X
B Boltz

(2.39)

B ~l ! 3 l Obias
= Bln[PbeXP(BU(M)] BIH(QBoltz:{

—%ln [Prexp(BU(ML))] +C.

The constant, C, is undetermined, though its only effect is to shift the entire PMF

up or down in free energy. The value of C does not affect the shape of the PMF
nor the values of any relative free energies.

The form of the umbrella potential is not a priori known, so some workers
use many sequential umbrella potentials, e.g. harmonic potentials, to encourage
the sampling to scan successive windows along the reaction coordinate.®? The
sampling within each window can be re-weighted, and as long as the windows are
overlapping, the resulting probabilities may be combined to form the PMF along
the entire reaction coordinate. The combination of each of the small pieces of PMF
is based on changing the values of C from equation 2.39, such that the overlap

between neighbouring windows is maximised. The optimal way to accomplish

this is through the use of the Weighted Histogram Analysis Method.’

The Weighted Histogram Analysis Method

The Weighted Histogram Analysis Method?’ (WHAM) represents the optimal
method of combining the statistics of multiple umbrella simulations into a sin-
gle, self-consistent PMF. It achieves this by maximising the overlap in the PMF by
weighting the statistics for each of the individual umbrella simulations.

The method works by dividing the reaction coordinate into a series of bins. The
number of times that the sampling falls within each bin during simulation j, n;(i),
is collected for each of the umbrella simulations. The value of the umbrella, for

simulation j, at the centre of each bin #, U;(i) is also collected. The complete, un-

biased probability for each histogram bin, #, across the reaction coordinate, Py(i),
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is then estimated via the self-consistent solution to the WHAM equations,

Po(i) = k(i) x Enj(i)

2 N;fie(0)
where fj= ! (2.40)

Yici(D)Ro(i)
¢j(i) = exp(~U;(i)/ksT)

NjZan(i).

A solution to these equations is obtained via an iteration. An initial estimate of
Po(i) is made for each bin along the reaction coordinate. This estimate is used
to calculate the weighting factor, f;, for each simulation, which can then be used
to estimate the unbiasing factor, k(i), for each bin in the histogram. This is then
pléced in the first equation to unbias the collected statistics along the reaction
coordinate, and return a new estimate of Py(i). This iteration is repeated until ‘the

differences between the estimates of Py (i) are sufficiently small.

The use of these equations may be extended over multiple reaction coordinates,

thus allowing the use of multidimensional umbrellas.364

Adaptive Umbrella Sampling

The use of the WHAM equations allows the facile unbiasing and combination of
multiple umbrella sampling simulations. The method does not however solve the
main problem of umbrella sampling, namely that of identifying the best umbrella

potential. The best umbrella potential to use would be the negative of the PMF,
U (M) = kgT In Pgoiro (1), (2.41)

where Ppyy;,(A) is the Boltzmann probability for each value of A. This is the op-
timal umbrella, as it yields even sampling of the reaction coordinate.’” Recalling

that equation 2.38 shows that the biased probability along A, P,(.), is proportional
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to the Boltzmann probability, Pgyj; (1),
Py(A)exp(U(X)/kBT) =< Pgoisz(A)
Multiply both sides by exp(—U (A)/ksT)
Py(M) o< Pgoiz (L) x exp(=U(A) /ksT)
Using the ‘best’ umbrella potential from equation 2.41

Py(\) o< Ppojrz (M) x exp(—kpT In Pgyy;;(A) /ksT)
Py(A) o< Poirz(A) x exp(—In Pgoyz (1))
Py(A) < Ppourz (M) / Proirz(A)

Thus the biased sampling along A will be even,

Py(A) = 1.
(2.42)

Adaptive Umbrella Sampling uses iterative simulations to refine an initial es-

timate of the umbrella potential until it is equal to the negative of the PMF.35-36
A modification to adaptive umbrella sampling uses the WHAM equations to com-

bine the statistics of each iteration. The combination of these two techniques is

known as Adaptive Umbrella WHAM?3>* (AdUmWHAM). The simulations are
performed using the following protocol;>63

1. An initial simulation is performed using a null, or zero umbrella. The system

is free to sample the A reaction coordinate. This coordinate has been divided

into a series of histogram bins, i. The number of times that the system spends

in each of these bins, ng (i), is recorded throughout the simulation.

2. The probability density for each bin along the reaction coordinate, Py (i), is

estimated from the sampling histogram via,
Po(i) = no(i)/N, (2.43)

where N is the total number of simulation steps.



CHAPTER 2. BIOMOLECULAR SIMULATIONS 36

3. A new umbrella potential for the next simulation, U; (i), is estimated from

the estimated probability density via,

Ui (i) = kgT In Py (i) for Py(i) # 0
(2.44)

U, (i) = Upin for Py(i) =1,

where Uy, is the minimum value of the umbrella from all of the occupied
bins. To prevent discontinuities, the umbrella potential can be processed via

a smoothing function. A suitable smoothing function may replace each value

of the umbrella in each bin, U (i), by,

U(i) = = (=0.3U(i—2) +1.3U(i — 1) + U (i) + 13U (i+1) = 0.3U (i +2)).

[SS R

(2.45)
Multiple passes of this function may be used, and a continuous umbrella
may be returned via fitting to a series of functions. The number of functions

should not exceed the number of bins, and typically a combination of simple

polynomials, sine and cosine functions are used,>3-6365

4. This umbrella is then used to bias a new simulation. The statistics along the

reaction coordinate are collected into a new histogram.

5. This histogram, together with the umbrella potential, are processed via the
WHAM equétions. These unbias the sampling, and combine it with all pre-
vious iterations to estimate a new probability density along the reaction co-
ordinate, P; (i). This is used to obtain a new refinement of the umbrella po-

tential, U(i). This umbrella may be processed and smoothed as in step 3.

6. This new umbrella is used to bias a new simulation, which leads to a new
probability histogram. This can be processed via WHAM to unbias it and
combine it with all previous iterations, returning a new refinement of the
umbrella potential. This sequence is then repeated until even sampling along

the reaction coordinate has been achieved.

7. Once even sampling has been achieved, the umbrella equals the negative of

the PME.% Relative free energies along the PMF can be obtained by taking
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differences of points along the umbrella potential.5

2.7 Fast “Free Energy’”’ Methods

Rigorous free energy simulations have the benefit that given sufficient time, they
will converge onto the correct result for the forcefield representation of the sys-
tem. However, “sufficient time” can mean millenia, depending on the complexity
of the free energy change under investigation! Recent studies have shown that even
simple free energy changes, for example the relative hydration free energy of ac-
etaldehyde and acetone, require significant amounts of simulation (over 510 ps of
MD).%6 Most of this simulation is on partially morphed, non-physical intermedi-
ates. To avoid spending so much simulation effort on non-physical systems, some
workers have tried to develop methods that approximate the absolute binding free
energies of ligands to proteins. Two such methods will be discussed; those based
on the Linear Response approximation, and those based on the use of implicit

solvents.

2.7.1 Linear Response Methods

The Linear Interaction Energy method (LIE)®7 allows the estimation of the ab-
solute binding free energy of a ligand to a protein based on just two simulations.
One is of the ligand free in solution, and the other is of the ligand bound to the
protein. The absolute binding free energy, AG, is estimated from the simulation

average of the difference in electrostatic energy between the ligand and the envi-

ronment in the two simulations, <AU€1€C>, and a similar average for the van der

Waals ligand-environment energy, <AUW1W>,

AG = 0.5(AUsec) + 0{AUygyy ) - (2.46)

Justification for this equation comes from the Linear Response approximation,®7-68

which provides the factor of 0.5. The linear relationship with the van der Waals en-
ergy was justified by the linear relationship between the number of carbons in an

n-alkane, and its free energy of solvation. To obtain the value of @, equation 2.46
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was fitted to the experimental binding free energies of a series of four endothia-
pepsin inhibitors. This yielded a value of 0.161, which has since been applied with
varying degrees of success to a glucose/galactose receptor® and HIV-1 proteinase
inhibitors.”

LIE has since been extended by other workers,”!~73 who have retrained equa-
tion 2.46 on new experimental binding data. These workers modified the original

equation such that the electrostatic parameter is also optimised, and a third term is

included to account for changes in solvent accessible surface area (SASA),
AG = B(AU,sec) + 0{ AUpgyw ) +Y(ASASA). (2.47)

Other workers have expanded this equation even further, and developed models
which include terms that relate the change in the number of hydrogen bonds to
the solute, or the change in the aromatic surface area, to the absolute binding free

energy.’”! The problem with the LIE method is that coefficients derived from one

system and model are not readily transferable to another.”* This means that the
equation should be retrained for each protein-ligand set that it is applied to. This
is an expensive procedure, and requires a large number of experimental protein-
ligand binding free energies to have been previously determined. Wall ez al. exten-
sively studied the LIE equation,’* and conclude that the version shown in equation
2.47 ideally requires a training set of 27 binding free energies. Also in this study,
advanced statistical methods were used to investigate the correlation between the
binding free energy and many individual forcefield components. The conclusion
of this analysis was that, while the electrostatic and van der Waals parameters were
the most important components to determine ligand binding, other forcefield com-
ponents could also be used. There thus exists no generally applicable model equa-
tion on which to base any LIE model, and a complete statistical analysis should be

performed for any system on which the method would be used.

2.7.2 Implicit Solvent Methods

The Linear Interaction Energy method suffers from the need to train the equation

on existing experimental data. Implicit solvent methods avoid this problem, as they
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use continuum electrostatics theory to calculate the free energy of solvation of lig-
ands and proteins directly. The most rigorous implicit solvent models are based
on the Poisson equation.!? This equation describes the change in electrostatic po-

tential, V¢(r), with respect to the change in dielectric constant, Ve(r), and the

underlying charge density, p(r),
Ve(r).Vo(r) = —4np(r). (2.48)

This equation is valid under conditions of zero ionic strength.* If mobile elec-

trolytes are present in solution, then the Poisson-Boltzmann equation is used in-

stead,!?

Ve(r).Vo(r) — K sinh[o(r)] = —4np(r), (2.49)

where ¥’ is related to the Debye-Hiickel inverse length, %, by,* 12

12 2
2 K . Sﬂ:NAe I
K== (2.50)

where ¢ is the electronic charge, [ is the ionic strength of the solution and N, is
Avogadro’s number.

Since the Poisson equation can be considered a special case of the Poisson-
Boltzmann (PB) equation, it is common for articles in the literature to describe the
use of the PB equation when only the Poisson equation has been used.* The ap-
plication of these equatidns to biomolecular systems has been well described.” 76
Such applications must solve these equations numerically, most frequently through
the use of a finite difference grid.!?> The molecule is represented on a cubic grid.
Partial charges are spread over grid points, and the dielectric constant between grid
points determined based on whether the points are inside the protein (€ = €cqyiry),
or in the solvent (€ = €,). Having defined the system on the grid, the potential
at each grid point can be determined through the finite difference equations. Two
PB calculations are needed to calculate the solvation free energy of a molecule.
One of these is the solvent phase calculation, with €p,x = Esoivens, and the other
is the gas-phase calculation, with €p,x = €caviry. From the potential at each point,

0(i, j, k), where i, j and k are the indices of the grid point, and the total atomic
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Phase
AGsolv(P ) AGsolv(L) ; AGsolv(P L) {
Solvent
Phase @ AGbind @
AGping = AGbind—gas -+ AGSOZV(P : L) - AGsolv(P) - AGsolv(L) (2.53)

Figure 2.5: The free energy cycle used by the PB/SA method to estimate the abso-
lute binding free energy of a ligand (L) to a protein (P), AGp;nq, from the solvation
free energies of the ligand, protein and protein-ligand complex, AG;,y, and the
binding free energy of the complex in the gas phase, AGp;ng—gas-

charge, p(i, j,k), at that grid point, the electrostatic contribution to the solvation

77

free energy, AG;’fiﬁ may be calculated via,

ié% _zzzp(l ]7k) (I)solvent(l Js )-q)gas(i:j,k))- (2.51)

The non-electrostatic contributions to the solvation free energy, AG;,;,, may be

estimated via a solvent accessible surface area (SASA) term, AGf(flf)A,

AGgory = AGES+AGHS!. (2.52)

solv

This combination of PB with a SASA calculation is normally termed PB/SA.7®
The absolute binding free energy of a ligand to a protein may be obtained from the
free energy cycle in figure 2.5.77-7° This equation may be used by taking a single
protein-ligand structure, and using PB/SA to calculate the solvation free energies
of each of the protein, ligand and complex, while they are in the bound configura-

tion. The gas phase single structure binding free energy is then just the coulomb

association energy between the protein and ligand.””>® While this method is quick
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and easy to implement, it neglects the effect of different protein-ligand configura-

tions, and the loss of ligand entropy upon binding. Woods ez al.”” have shown that
this method can predict widely different binding free energies for protein-ligand
complexes that differ only slightly in configuration. This configurational depen-
dence, of up to 10 kcal mol~!, means that it is difficult to even qualitatively rank
the binding of a group of ligands to a protein using this method.

The MM/PBSA method was developed to overcome this problem.30-83 This
technique combines molecular mechanics (MM) energies with PB/SA by averag-
ing the PB/SA analysis over multiple snapshots from a single molecular dynamics
trajectory. The MD trajectory is run in explicit solvent. Periodic snapshots are

taken from the simulation, and a PB/SA analysis is performed. The absolute bind-

ing free energy is then estimated via,30

AGping = {Epm) + AGyop, — TAS. (2.54)

The configurational energies are taken into account through <Emm>, which rep-
resents the difference in the average molecular mechanics energies between the
complex, and free protein and ligand. AGy,, also represents the average differ-
ence between the solvation free energy of the complex, and that of the free protein

and ligand. The change in entropy upon binding, AS, is estimated from the final

snapshot, using a normal mode analysis.’% 33

While the MM/PBSA method attempts to account for configurational and en-
tropy effects, it does so in an approximate fashion. Its use of snapshots from an
explicit MD trajectory means that the different configurations are not properly
weighted, and in any case, are generated using a different forcefield to the one
used during analysis. The main problem with the method is that it requires the
taking of differences of very large numbers to return the final free energy. The
molecular mechanics term represents the average difference in molecular mechan-
ics energy between the complex, and free protein and ligand. These energies are
of the order of thousands, to tens of thousands of kcal mol~!.89 The difference of

the solvation free energies also asks for differences between numbers which are of

the order of thousands of kcal mol~!.77-80 Since the final result is of the order of
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one to ten kcal mol~!, the potential for error is large.

2.8 Conclusion

Protein-ligand free energy simulations represent the system using simple molecu-
lar mechanics forcefields. The energy surfaces generated by these forcefields can
be explored using sampling techniques such as Monte Carlo, or Molecular Dynam-
ics, which preferentially sample thermally significant configurations. Through the
use of a perturbing A-coordinate, the techniques of FEP, FDTI or AAUmWHAM
can be used to calculate relative free energies between different systems, assuming
that the systems are not too dissimilar, These relative free energies may be com-
bined via a cycle to obtain the relative binding free energies of different ligands
to the same protein. While these methods are exact, and will eventually return the
correct results for the forcefield, they could take a very long time to converge. To
avoid this problem, non-rigorous free energy methods can avoid the sampling of
non-physical intermediates, by attempting to estimate the absolute binding free
energies of each ligand to the target protein directly. Such estimation is not triv-
ial, and requires many assumptions to be taken. These assumptions could lead to

problems of reliability and transferability.



Chapter 3

The Testing of Established Free
Energy Methods

3.1 Introduction

The aim of the work presented in this thesis is to develop theoretically rigorous
methods to calculate the relative binding free energies of several ligands to a target
protein. Ideally, these methods must be sufficiently fast to be used in commercial
drug discovery, as in such an environment they could be applied to dozens, or even
hundreds, of different ligands. The use of such large numbers of ligands means
that the amount of user intervention with the method should be as low as possible.
By this, we mean that the free energy calculation should work first time, and not
require .endless analysis of results, tweaking of parameters, or rerunning of the
simulation. Thus a single, blind application of the method should reliably and
reproducibly return the true result. It should do so with little prior knowledge of
the system, other than the crystal structure, or any prior exploratory simulation
on the system. To develop such methods, the behaviour of established free energy
techniques needs to be investigated under these strict conditions. To this end, three
such methods will be applied to a simple test system, and their reliability, and
suitability for robust use will be appraised. For this evaluation to be useful, the
test system must be sufficiently small to allow rapid simulations, yet sufficiently -

complex to represent the major features found in protein-ligand binding. To this
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end, the solvation of methane in water was chosen, as it involves disruption of

hydrogen bond networks, and large changes in solvent structure.

3.2 The Water-Methane System

The water-methane system, chosen as a test case in this work, has been the subject
of much experimental and simulation study by other workers. The primary moti-
vation for such study is to gain a better understanding of the hydrophobic effect,
the tendency for hydrophobic solutes to self-aggregate in solutions of water. The

hydrated methane system represents such cases in their simplest form, and thus
permits the study of the experimental thermodynamics,®* solvation shell struc-

~ture® and the running of detailed molecular simulations.3¢ The results of these

studies reveal that the hydration of methane is thermodynamically unfavourable,

with an experimental absolute free energy of +2.00 kcal mol ™! at 298 K .87 Neutron

diffraction experiments suggest that the first solvation shell contains 19 4 2 water
molecules, with a peak in both the hydrogen-methane and oxygen-methane ra-

dial distribution functions occurring at 3.5 A. Owing to the symmetrical nature

of methane, no attempt was made to deconvolute these functions into hydrogen-

carbon or oxygen-carbon RDFs.85 The hydrogen peak is broader than the oxygen

peak, suggesting that the hydrating water molecules point their O-H bonds towards
the bulk.?> These properties can be compared to those of pure water, which has
an experimental absolute hydration free energy of -6.31 kcal mol~! at 298 K.%7
Recent X-ray and neutron scattering results®® show a single, sharp peak in the
oxygen-oxygen RDF of height 2.8, at 2.8 A. A second solvation shell is seen at

about 4.5 A, and a third at about 6.8 A. The oxygen-hydrogen RDF shows a double

peak, at 1.8 A and 3.5 A.88

Previous studies have attempted to calculate the absolute hydration free energy
of methane.86 However, such simulations still represent a significant challenge,
and are not suitable as test cases at this stage. It was decided that the best test
case would be the calculation of the relative hydration free energy of water and

methane. The reasons behind this decision are made clear in the free energy cy-
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Figure 3.1: The free energy cycle used to calculate the relative hydration free en-
ergy of water and methane.

cle for this calculation (figure 3.1). The calculation of the absolute hydration free
energy of methane requires the creation of a methane molecule into an already
densely packed solution of liquid water. This is difficult, as a cavity would first
have to be made in the solution to accommodate the methane. Fortunately, it can
be seen from figure 3.1 that the relative hydration free energy of water and methane
is equal to the non-physical perturbation of a single water molecule into methane in
solvent, minus the same perturbation in the gas phase. If a rigid water model, and a
rigid methane model were used, then the gas phase perturbation would have a free
energy change of zero. The entire relative hydration free energy calculation could
thus be achieved through a single perturbation of a hydrated water molecule into
a hydrated methane molecule. This would mean that the change in solute dipole,
and solvent rearrangement, hydrophobic effect and change in hydrogen bonding,
would all occur in a single simulation. This simulation would produce a result that
could be compared with the experimental value of 8.31 kcal mol~!. This value is

obtained from the difference of the absolute hydration free energy of methane®’

and the absolute hydration free energy of water.3”
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CH,
104.5°
H H
Atom Charge Sigma Epsilon
(0] 0.000 3.15365 0.1550
M -1.040 0.00000 0.0000
H 0.520 0.00000 0.0000
CH4 0.000 3.730 0.294

Figure 3.2: The TIP4P water, and united-atom methane models.

3.2.1 Simulation Model

Good simulations rely on good models of the system in question. In this case,
the methane was modelled as a single OPLS united atom CHy particle,” while
water was modelled as a rigid OPLS TIP4P molecule®® (figure 3.2). This model
enhances the dipole of water by offsetting the oxygen’s charge onto an “M” atom.
The perturbation was designed to morph the oxygen atom of the water into the
united-atom CHy particle. The remaining hydrogens and “M” atom were morphed
into dummy atoms, by gradually scaling their charge and LJ parameters to zero.
To improve convergence, and prevent abrupt changes as the hydrogen atoms dis-
appeared, the hydrogens were gradually pulled into the oxygen as the perturbation
progressed.?® The O-H bond lengths started at 0.96 A, and were linearly scaled
downto 0.2 Aby A= 1.0.

A single water-methane particle was then placed in an orthorhombic box of
1679 TIP4P waters, of initial dimension 37.3 A x 37.9 A x 37.4 A. This system
was then equilibrated for 2 M Monte Carlo (MC) steps, according to the param-
eters in table 3.1. The aim of this equilibration was to rattle out any bad contacts

in the constructed solvent box, and its quality was ensured by monitoring the to-

tal energy of the system. The equilibration, and all subsequent simulations, were
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Parameter Value
Ensemble Isothermal-Isobaric (NPT)
Simulation Temperature 25 °C
Simulation Pressure 1 atm
Boundary Type Orthorhombic periodic boundaries
Solute / solvent move ratio 1/1600
Non-bonded cutoff 15A
Maximum solute translation / rotation 0.1A/50°
Maximum solvent translation / rotation 0.1A/25°
Frequency of volume moves 1 every 10375 MC moves
Maximum volume change 830 A3
Preferential sampling centre Oxygen / CHy of the solute
Preferential sampling parameter (WKC) 200
Number of MC moves per simulation 250 K
block
Number of simulation blocks 8

Table 3.1: Parameters used to control the simulations on the water-methane sys-
tem.

performed by a modified version of MCPRO 1.5.13 The modifications were to al-
low the code to run all of the free energy methods that are under investigation in
this work, and were checked to ensure that they did not interfere with the nor-
mal running of the code. All simulations also used preferential sampling of the
solvent,”1%? as implemented within MCPRO (see appendix B). This scheme al-
lowed the solvent molecules nearest to the perturbing solute to be moved more

frequently than those further away, and its use has been shown to improve the rate

of convergence of liquid phase MC simulations.”> The use of these parameters
gave a solute move acceptance rate of about 65% to 70%, a solvent move rate of
about 65% to 70%, and a volume move rate of about 20% to 30%. Unless other-
wise stated, these simulation conditions were used for all subsequent simulations

on the water-methane system, and the final equilibrated structure was used as the

starting structure.
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3.3 Free Energy Perturbation

The water-methane system was investigated using Free Energy Perturbation (FEP).
This method is described in detail in chapter 2 (section 2.6.1). The aim of this in-
vestigation was to see how FEP copes when it has no prior knowledge of the sys-
tem. The FEP windows were thus spaced evenly over the entire A-coordinate, 0.05
A-units apart. This spacing represents a balance between using sufficiently small
FEP windows, while keeping their number, 21, sufficiently low such that all win-
dows may be run in parallel over a Beowulf cluster. 10 M steps of simulation were
run within each window, with statistics collected over 20 blocks of 500 K steps.
These 20 blocks can be divided into equilibration and production at the end of the
simulation, when the predicted free energy change from each block can be calcu-
lated, and the convergence of that prediction ascertained. The complete simulation
therefore totals 210 M Monte Carlo steps. This is in addition to the 2 M steps used
during general equilibration to provide the starting structure for each A-window.
To investigate the reliability of the calculation, four copies were run, each starting
from the same equilibrated structure. Each copy used a different random number

seed, thus giving rise to four different sets of trajectories.

3.3.1 Results

The results for each simulation were generated by calculating the individual for-
wards and backwards free energies from each block of 500 K steps. The free en-
ergies were seen to converge after the first 3 M steps (figure 3.3). The first 3 M
steps of sampling within each A-window were therefore discarded as equilibra-
tion, and the data from the remaining 7 M steps per window used to calculate the
free energy averages. The average free energies from each A-window were then
summed to yield the total forwards and backwards free energy across the entire
A-coordinate. The standard error was also estimated for each average, and then
propagated across A to estimate a maximum error on the calculation. A full de-
scription of the error analysis is given in appendix E. The results from the four

FEP simulations are shown in table 3.2, and the predicted potentials of mean force

are shown in figure 3.4.
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Figure 3.3: The convergence of the predicted relative hydration free energy of wa-
ter and methane, as predicted by four independent FEP simulations, as a function
of simulation step. The forwards (solid) and backwards (dashed) values at each
step are based on their average calculated from the previous 500 K steps. The
convergence for both the forwards and backwards predictions are also collected
together into single plots.

Simulation Forwards Free Energy Backwards Free Energy
/ kcal mol™! / kcal mol~!
1 8.8 (0.7) 8.3(0.7)
2 9.9(0.7) 9.5 (0.6)
3 8.3 (0.6) 7.3 (0.6)
4 8.7 (0.7) 8.1(0.7)
Average 9.0 (0.6) 8.3 (0.8)

Table 3.2: The relative hydration free energy of water and methane as predicted
by four independent FEP simulations. One standard error is shown in parenthesis.
The averages of the four forwards, and four backwards free energy results are also
shown. The standard deviations of these averages are shown in parenthesis.

3.3.2 Analysis

Within error, the results from the four FEP simulations are in agreement with each
other and with the‘experimental value of 8.31 kcal mol~!. However, the spread

of the results, from 7.3 to 9.9 kcal mol~! is quite large. In addition, the results
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Relative Hydration Free Energy / keal mol”

Figure 3.4: The potential of mean force for the relative hydration free energy of
water and methane, as calculated by four independent FEP simulations. The error
bars represent one standard error. Both the forwards (solid line) and backwards
(dashed line) free energies are shown.

show significant difference in the forwards and backwards predicted free energies.
This hysteresis, of 0.4 to 1.0 kcal mol™!, shows that some of the A-windows are
not sufficiently close to converge the FEP simulations. Section 2.5 discussed how
poor overlap between the reference and perturbed states could lead to a poor con-
vergence of the Zwanzig equation. The shape of the PMF suggests that the overlap
between the reference and perturbed states at low A is not as good as the overlap
at high A. This is revealed by the high gradient of the PMF in this region, and by
the growing hysteresis of the forwards and backwards free energies. This indicates
that the parts of the simulation at low A, between A = 0.0 and A = 0.3, should be
rerun with a larger number of windows. However this would be against the spirit of
this test, which required that the simulation proceeds with no prior knowledge of
the system. These results could also have been improved through methods which
optimise the window widths throughout the simulation, for example through the
use of dynamically modified windows.3* However, this technique requires that the
simulations within each A-window are run serially. Current computer technology

mitigates against this approach.
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Error Analysis

Three methods have been used to analyse the errors on these simulations. The
first was through taking a simple average and standard deviation of the results of
the four simulations. As the four simulations were run independently, their results
should not be correlated, and thus the size of any random errors should be correctly
determined. This anaiysis suggests that the error on the results of the simulation
are between 0.6 kcal mol~! and 0.8 kcal mol~!. The second form of error analysis
involved calculating the standard error for each individual trajectory, over blocks
of 500 K steps. This standard error was then added to the free energy of each A-
window, and propagated across A to get a total error on the relative hydration free
energy. The blocks of 500 K steps were not independent, as they were calculated
within single trajectories. This analysis suggests that the error on the simulation
results is between 0.6 kcal mol~! and 0.7 kcal mol~!. The final method of error
analysis employed during these simulations was the use of double-wide sampling
to calculate both the forwards and backwards free energies. This suggests that the

error was between 0.4 kcal mol~! and 1.0 kcal mol~!. It is useful to note that the

magnitudes of all three error analyses are similar, and that the analysis over blocks

of 500 K steps returns an error that is comparable to the standard deviation over

four independent simulations.

Fluctuations in Interaction Energy

The results from all four FEP simulations show significant hysteresis between the
forwards and backwards free energies. The analysis in section 2.5 suggests that
this is the result from insufficient overlap between adjacent A-windows. This in-
sufficient overlap should result in large fluctuations in the difference in energy
between the reference and perturbed states. To investigate whether this were the
case, the difference between the perturbed state, average solute-solvent energy, and
the reference state average solute-solvent energy was calculated for each value of
A, over blocks of 500 K steps. This analysis was performed for the last 7 M steps
of simulations within each A-window, and the results are shown in figure 3.5. The

magnitude of the difference in interaction energy is at its largest between A = 0.0
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Figure 3.5: The difference between the average solute-solvent energy for the per-
turbed state, and reference state, as calculated over blocks of 500 K steps for the
last 7 M steps of each A-window, for each for the four simulations. The differences
to the forwards perturbed state (crosses) and backwards perturbed state (pluses)
are shown. There is no backwards perturbed state for A = 0.0, nor forwards state

for A = 1.0.

and A = 0.3. The fluctuations in this difference are significant in this range, giving

a spread of interaction energies at A = 0.0 of approximately 2.0 kcal mol~. This
confirms the earlier hypothesis that poor overlap at low A-values was the cause of
the hysteresis in the free energy results.

Figure 3.5 shows that the forwards and backwards differences for each A-value
approximately mirror each other. This is against expectation, as the forwards dif-
ference represents the difference in interaction energy between the system at A and
A+ AA, while the backwards difference is between the system at A and A — AA. The
reason for this observation is most likely because both energy differences were cal-
culated over structures collected over the same reference state. Since the change in
solute-solvent energy is approximately linear over small AA, the magnitude of the

average will be determined by the range of configurations that have contributed.
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Radial Distribution Function

Analysis of the results of four independent FEP simulations has demonstrated that
poor overlap between the reference and perturbed states at low A-values is respon-
sible for the hysteresis between the forwards and backwards free energies. The
source of this poor overlap is likely to be in the range of solvent structures sam-
pled within each A-window. To probe the solvent structures, the radial distribution
function®® (RDF) for each A-window was accumulated. The RDF was derived from
structures of the system taken every 50 K steps, for the last 7 M steps of simula-
tion. The RDF between the solute oxygen and solvent oxygen, and solute oxygen
and solvent hydrogen was calculated. At A = 0.0 this yields g(o_o) and g(o_p)-
At A = 1.0, where the solute oxygen has been fully perturbed into the united-atom
methane, it yields gc_p) and g(c_py. Since the RDFs were only evaluated be-
tween the central solute and the remaining solvent, they are quite noisy. They are,
however, sufficiently detailed to yield information about the effect of the mutation
on the primary hydration shell. The RDFs were collected with a histogram bin size
of 0.1 A. The RDFs for A = 0.0 and A = 1.0 are shown in figure 3.6. The RDFs

produced from the simulations are seen to agree with those reported by other work-

ers.85-86.88 The water-water RDFs display a double-peak in 8(o—-m)» atabout 1.9 A
and 3.3 A, while 8(0-0) shows a sharp single peak of height 2.8 at about 2.8 A.

The methane-water RDFs show a broader single peak in g(c_p), at about 3.5 A,

while the double peak in g/p_g) has become a very broad single peak in gic_g
p 8(0-H) (C-H)

at about 3.5 - 4.0 A. These RDFs thus clearly demonstrate a large difference in

solvent structure between water in water, and methane in water.

To see how the RDFs changed throughout the perturbation, they are plotted as
a function of A (figure 3.7). This figure shows that the majority of the change in
solvent structure occurs at low A-values, from A = 0.0 to about A = 0.25. This is
characterised by the loss of a double peak in the hydrogen RDEF, and a shift of the
primary hydration shell in the oxygen RDF. The A-range that contains the most
structural change almost exactly corresponds to the range where most of the free

energy change occurs in the PMF (figure 3.4). The large change in solvent struc-
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ture is thus the reason why there is little overlap between neighbouring windows
at low A-values. This explains the hysteresis in the FEP results, however it does
not explain their wide variation. This large spread of predicted results, from 7.3
to 9.9 kcal mol~!, is however explained by the noisiness of the RDFs. The statis-

tics to generate these plots are derived from a single simulation trajectory at each
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Figure 3.8: The individual average forwards (dark line) and backwards (light line)
free energies for each A-window, from four independent applications of FEP to
calculate the relative hydration free energy of water and methane. There is no
backwards free energy for A = 0.0, nor forwards free energy for A = 1.0.

A-window. Each trajectory samples only a subset of all possible solute-solvent con-
figurations. The subset sampled determines the RDF for that value of A, and it is
seen in figure 3.7 that the exact detail of the RDF varies from one value of A to an-
other. For example, since the perturbation over A involves smooth, linear changes
in potential functions, then the change in position and width of the second peak in
the hydrogen RDF is also expected to change smoothly with A. This is not seen,
with the second peak starting at random between 2.5 A and 3.0 A for different A-
values. This random sampling error is also manifest in the individual free energies
between neighbouring windows predicted by each of the four simulations. Figure
- 3.8 shows the average forwards and backwards free energies for each A-window,
from each of the four FEP simulations. Each free energy in this plot is generated
from only a single trajectory. It is seen that each of the four different trajectories
give rise to a slightly different predicted free energy. This effect is particularly

acute at low A-values, where the change of the solvent structure is at its greatest.

In this region, the spread of predictions can be up to 1.0 kcal mol~!. The effect
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of random sampling error is thus easily observed through the running of multiple
simulations. However, while it may be desirable to reduce this error through av-
eraging the results of multiple trajectories, there is no mechanism through which
this may be correctly achieved. To see why this is the case, let us consider the
free energies predicted by two independent simulations, A and B, within a single
A-window. The most obvious method of averaging the free energy results of the

two trajectories, AG4 and AGg, is through a mean average,

AGs+AGp

> (3.2)

AGavg =

However, the individual free energies are calculated via the Zwanzig equation,
AGy = —kgT In{exp(—AE /kpT)) ,, (3.3)

where AE is the difference in energy between the reference and perturbed states, -
and <> 4 Tepresents an average over the subset of configurations generated by

simulation A. The Zwanzig equation forms the relative free energy over an aver-
age of the exponentials of the differences in energy. This suggests that the average

free energy over multiple trajectories should also be formed as an average of ex-

ponentials,

A
AGayg =In ( eXpAGA — GB) . (3.4)

Substituting the Zwanzig equation into this average, and using <> 4 to represent
the subset of configurations sampled during simulation A, and ...) , to represent

the subset sampled during simulation B, gives,

AGue =1n B— (exp(—kBT1H<€XP(“AE/kBT)>A)
+exp (—kBT1n<exp(—AE//<BT)>B)>}
(3.5)

=In B <<exp(—AE/kt)>A + (exp(—AE /kt)) , -+ Zexp(—kBT)>J

= —kgTIn E— <<exp(—AE/kt)>A + <exp(—AE/kt)>B} .
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The average over the set of configurations sampled during simulation A represents
the sum over all configurations of the system, I', of the product of the probability
of that configuration, p4(I"), with the exponential of the energy difference from
that configuration, exp(—AE(T")/kgT). The probability, p4(T) is the probability
of configuration I" within the subset of configurations sampled by simulation A.
The same correspondence can be made for the average over the subset of config-
urations from simulation B. Using this representation, the above equation can be

represented as,

AGusg = —ksTn E @pm exp(~AE(T) /ksT)
+Zr',ps(1“) exp(—AE(T )/kBT)>J (3.6)

— kTl [; Ef‘-(l?’f—@ exp(—AE(T) /kBT)J .

This equation shows that AGgye will only equal the correct value of AG if the
average of the probabilities from each simulation, for each configuration, is equal
to the Boltzmann probability for that configuration, pgo;, 1.€.

PA(F____);F Pel) _ e(T) forall T, (3.7)

This will only be true in two cases. The first is when ppo,(I) = pa(T') = pa(I),
i.e. when both simulations A and B are fully converged. The other is when simula-
tions A and B are both subsets of the same simulation trajectory. This conclusion
is best illustrated by considering the following limiting case. The free energy cal-
culated over a simulation of 5 M steps would not equal the average free energy
calculated over 5 M trajectories each consisting of a single step, as this would rep-
resent an average over the 5 M starting configurations, and not an average over
a correctly weighted ensemble. The average over 5 M steps will however equal
the average free energy over 5 M trajectories, each consisting of 1 step taken in
sequence from the ensemble of configurations generated via the 5 M step simula-
tion. In this case, each of the 5 M trajectories represents a subset of configurations
from the original 5 M step simulation, and thus the complete set of 5 M trajecto-

ries forms a complete and consistent ensemble that is equal to that generated by
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the 5 M step trajectory. This analysis shows that there will be an error associated
with the forming of a free energy average over multiple independent trajectories.
While this error will be very small if the independent trajectories are long, it has

the potential to become significant if the individual trajectories are short.

3.3.3 Summary

Free Energy Perturbation was applied to the calculation of the relative hydration
free energy of water and methane. While the results were, within error, consistent
and in agreement with experiment, the simulations produced a wide spread of
results with a significant hysteresis. The source of these problems was traced to the
challenges posed by the changing solvent configuration. The solvent configuration
changed dramatically at low A-values, leading to poor overlap in this region, and
thus large hysteresis. The use of only a single trajectory at each A-value led to a
significant random sampling error. Each trajectory sampled only a subset of all
possible configurations, leading to a random error in the individual free energies.
FEP provides no mechanism for averaging this random error, as it provides no
method to combine the statistics of multiple independent trajectories correctly.
The results of these simulations suggest that FEP is-a good method to use
if there is already a good understanding of the nature of the free energy change,
though it may perform poorly if it is applied blindly to a new system. These simula-
tions also suggest that multiple applications of FEP would be necessary to quantify

the effect of random sampling error.

3.4 Thermodynamic Integration

The water-methane system was next investigated via the method of Thermody-
namic Integration, (TI). This method is described in detail in chapter 2 (section
2.6.2). Unlike FEP, which calculates differences in free energy between two dif-

ferent A-values, TI calculates merely the free energy gradient with respect to A,
for a particular value of A, (%%)x The free energy gradients for a collection of

A-values can then be evaluated and integrated to return the PMF across A, and

thus the value of the free energy change. Because TI only needs to sample a sin-
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gle A-value, it should not suffer from the problems of poor overlap and hysteresis
that reduced the quality of the FEP results on water-methane. However, unlike
standard T1I, the free energy gradients for this study were evaluated numerically,
as described in section 2.6.2. This was to prevent substantial modifications of the
simulation code, and to allow an almost identical simulation setup to the FEP sim-
ulations in the previous section. A reference state was defined for the value of A
for which the gradient was desired, and perturbed states were placed AA above and
below this value. In this way, the Zwanzig equation®® from FEP could be used to
approximate (%g\—;);\ by ( %)x- Since AA was very small, the’forwards and back-
wards calculations of the gradient should be equal, and any deviation between the
two could be used a sign of error. In addition, the small value of A) means that
the reference and perturbed states are so similar, that there should be little problem
from poor overlap. This approach of obtaining free energy gradients is typically

referred to as Finite Difference Thermodynamic Integration (FDTI).*!

3.4.1 Simulation Conditions

The application of FDTI to the water-methane system was almost identical to that
used for the FEP simulations (sections 3.2.1 and 3.3). The same starting structure
as in the FEP simulations was taken, and four identical FDTI simulations were run
with different random number seeds. The value of AA used was 0.001, chosen to
be sufficiently small to give good agreement between the forwards and backwards
estimated gradients, and yet sufficiently large to prevent numerical precision prob-
lems during the running of the simulations. All other parameters and simulation

lengths were identical to the FEP runs.

3.4.2 Results

The results were generated by calculating ( %)k for each block of 500 K steps
of simulation per A-value. The forwards and backwards gradients were seen to
converge after about 3 M steps (figure 3.9). The values from the last 7 M steps
were thus averaged and integrated via the trapezium rule to obtain the forwards and

backwards predicted potentials of mean force. To deal with the ends of the PMF,
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Figure 3.9: The convergence of the predicted relative hydration free energy of wa-
ter and methane, as predicted by four independent FDTI simulations, as a function
of simulation step. The forwards (solid) and backwards (dashed) values at each
step are based on their average calculated from the previous 500 K steps, and are
almost equal for each step. The convergence for both the forwards and backwards
predictions are also collected together into single plots.

Simulation Forwards Free Energy / Backwards Free Energy /
kcal mol ™! kcal mol ™!
1 8.4 (0.6) 8.4 (0.6)
2 9.4(0.7) 9.4 (0.7)
3 9.3(0.7) 930.7
4 9.2(0.7) 9.2(0.7)
Average 9.1(0.4) 9.1(0.4)

Table 3.3: The relative hydration free energy of water and methane as predicted
by four independent FDTI simulations. The standard error is given in parenthesis.
The averages of the four forwards, and four backwards free energy results are also

shown. The standard deviations of these averages are shown in parenthesis.
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Figure 3.10: The potential of mean force for the relative hydration free energy of
water and methane, as calculated by four independent FDTI simulations. The error
bars represent one standard error. Both the forwards (solid line) and backwards

(dashed line) free energies are shown.

the backwards predicted gradient for A = 0.0 was obtained from the negative of
the forwards gradient at that value. A similar scheme was used to get the forwards
gradient at A = 1.0. The error on the calculations were obtained in an identical
manner to FEP. The results of the four FDTI simulations are shown (table 3.3), as

are the PMFs (figure 3.10).

3.4.3 Analysis

Within error, the results from all four FDTI simulations agree with each other, the
four FEP simulations, and with experiment. Unlike FEP, the results show almost
no hysteresis, due to the very small AA used between the reference and perturbed
states. The values from the four simulations are very consistent, though simulation
1 predicts a free energy which is about 1 kcal mol~! lower than simulations 2 to 4.
While the spread of results is much improved over FEP, the standard error on the
individual results is of the same magnitude.

The radial distribution functions of the FDTI simulations are essentially the

same as those generated by the FEP simulations, as both FEP and FDTI shared
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Figure 3.11: The difference between the average solute-solvent energy for the per-
turbed state, and reference state, as calculated over blocks-of 500 K steps for the
last 7 M steps of each A-window, for each for the four simulations. The differences
to the forwards perturbed state (crosses) and backwards perturbed state (pluses)
are shown. There is no backwards perturbed state for A = 0.0, nor forwards state

for A =1.0.

the same reference states. However, the perturbed states for both methods were
different, with FDTI using perturbed states which had a much smaller AA to the
reference states (0.001 compared to 0.05). The difference between the perturbed
state, and reference state average interaction energies were calculated as in section
3.3.2 for each A-value of each simulation. These are shown in figure 3.11. These
differences show very similar patterns to FEP, with mirroring of the forwards and
backwards differences, and the absolute values being larger at low A-values. How-
ever, the magnitude of the differences is significantly lower, being around 50 to 60
times smaller than those from FEP. This corresponds to the use of a AA which was
also 50 times smaller than FEP. The reduced magnitudes of the free energy differ-
ences are translated into reduced fluctuations of the differences in energy. This is

the reason behind the almost non-existant hysteresis on the results from the FDTI

simulations.
Unlike FEP, the FDTI simulations do not show any hysteresis. They do how-

ever exhibit random sampling error. This is clearly seen in the average free energies
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Figure 3.12: The average free energies from four FDTI simulations calculated be-
tween the reference and perturbed states for each value of A. Both the forwards
(solid line) and backwards (dashed line) are shown. The first plot shows the ac-
tual free energies, while the remaining plots show the difference between the free
energies from the first simulation and each of the other three simulations.

calculated by each simulation at each A-value (figure 3.12). This figure shows the
individual free energies calculated between the reference and perturbed states for
each value of A, for simulation 1. It also shows the differences between the free
energies calculated for simulation 1, with those calculated for each of the other 3
simulations. It is clear from this figure that there is much variation between the
free energies calculated from each simulation at each A-value. This variation is at
a maximum at low A-values, where its magnitude is about 0.01 kcal mol~!. While
this may seem small, it must be remembered that the numerical integration of these
free energies involves their mulﬁplication by —2—%‘, where OA is the difference in A
between adjacent windows, and AA is the difference in A between the reference
and perturbed states. Since, for these simulations, AA = 0.001, and SA = 0.05,
this variation of 0.1 kcal mol~! is multiplied into a random sampling error of ap-
proximately 0.5 kcal mol~!. The repetition of this error for the first two,vaiues

along A is enough to explain the 1.0 kcal mol~! random safnpling error in the final

free energy results. The reason for this random sampling error is the same as for
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FEP, namely that only a single trajectory is run at each A-value. Each trajectory
will have independently covered a particular subset of configurations, leading to
a slightly different free energy result. As in the case of FEP, FDTI provides no
mechanism for correctly averaging the results of several trajectories to allow this

random sampling error to be reduced.

34.4 Summary

FDTI was applied to calculate the relative hydration free energies of hydration of
water and methane. The results show less spread than FEP, though have a similar
standard error. The spread of predicted results was seen to arise from a spread of
estimates of the free energy values at low A-values. This spread highlights the main
problem of FDTI, namely that an individual free energy is estimated from only a
single simulation trajectory. This free energy will therefore be strongly dependent
on the peculiarities of the subset of configurations covered by that single trajectory.
As in the case of FEP, FDTI provides no framework for averaging out this random

sampling error by averaging multiple trajectories at each A-value.

3.5 Adaptive Umbrella WHAM

The relative hydration free energy of water and methane has been investigated via
the established free energy methods of FEP and FDTI. Both methods estimate the
potential of mean force across a A-coordinate by placing trajectories at individ-
ual points along A. The use of a single trajectory at each A-point means that the
values calculated are subject to a random sampling error. This random error can-
not be reduced by averaging over multiple independent trajectories, as the method
provides no mechanism to correctly combine their statistics. Adaptive Umbrella
WHAM (AJdUmWHAM) is a method that overcomes this problem as it uses the
Weighted Histogram Analysis Method®” (WHAM) to correctly combine the statis-
tics of multiple trajectories. It is described in detail in chapter 2, section 2.6.4. The
method uses a dynamic A-coordinate, by allowing each trajectory to make moves
along A, as well as in normal coordinate space. Sampling along the A-coordinate

is enhanced by an umbrella potential,®! which is gradually refined throughout the
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simulation. Once converged, the umbrella will encourage even sampling of the 7»-_
coordinate. At this point, the umbrella will equal the negative of the potential of
mean force along A. Multiple trajectories could be run in parallel, and the results
from each trajectory, and each iteration, combined via WHAM.3’ In this way, mul-
tiple trajectories visit each point along the A-coordinate, and their contributions to

the free energy change are correctly weighted.

3.5.1 Simulation Conditions

The application of AdUmWHAM to the calculation of the relative hydration free
energy of water and methane was designed to be as similar to the applications of
FEP and FDTI as possible. This was to ensure that valid comparisons could be
made between the three methods. Four identical simulations were run, each start-

ing from the same initial structure as used by the FEP and FDTI simulations. The
simulation parameters were identical to those used in FEP and FDTI (table 3.1),
and the simulation protocol is described in section 2.6.4. Each of the four simula-
tions were identical, except for the use of a different random number seed. A A-
move was made every 500 normal MC moves. This value was chosen to maximise
the number of steps between A-moves, thus minimising the affect of Hamiltonian
lag discussed in section 2.6.4. The size of each A-move was randomly chosen to
be between -0.05 and +0.05. This move size was chosen to allow good sampling
of A, without moving A too quickly for the system to respond. Each simulation
comprised two trajectories running in parallel. Both trajectories were generated
simultaneously, and when each one finished, it submitted its A-sampling statistics
to a custom program that performed the WHAM analysis. The WHAM analysis
was performed according to the protocol described in section 2.6.4. The result-
ing umbrella was then smoothed, twice, according to the protocol in section 2.6.4,

and fitted to the sum of 3 polynomial functions, 50 sine functions and 50 cosine

functions,

3 50 50
UML) = i x MY i3 x sin(2mid) + ) cins3 x cos(2mi), (3.8)

=1 i=1 i=1
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where the 103 coefficients, ¢;, were obtained through a single value decomposi-

tion algorithm.® This umbrella was immediately returned to continue the simu-
lation that submitted the trajectory, which then continued sampling. In this way,

two trajectories were run in parallel, with both contributing statistics to refine the

umbrella.
Each trajectory ran in blocks of 200 K steps, starting with a new, random value

of A at the start of each block, but otherwise using the coordinates from the end of
the previous block. Each block used 40 K steps of equilibration, and 160 K steps of
data collection. When a block completed its 200 K steps, it returned the results to a
server, which processed these results via WHAM, and returned a new estimate of
the umbrella potential. The new umbrella was immediately taken by the trajectory
to start a new block, and thus both trajectories ran asynchronously in parallel. The
simulation was run for 500 completed WHAM iterations. This corresponded to a
total simulation length of 100 M MC steps, which was about half of the 210 M
used in FEP and FDTI. However, FEP and FDTI ran 21 trajectories in parallel,
with each trajectory only covering 10 M steps. AdUmWHAM is not as coarsely
parallel, as each trajectory must cover the entire A-coordinate, and share its results
via WHAM with the other trajectory. The simulation thus took five times longer

than FEP or FDTI, as it used 50 M steps per trajectory.

3.5.2 Results

The results of the four AdUmWHAM simulations are shown (table 3.4), as are the
predicted PMFs (figure 3.13). The results were obtained by taking the negative
of the umbrella from the final iteration. The error on these results is difficult to
quantify, and requires knowledge of the underlying A-sampling. Because of this,

the presentation and discussion of errors will wait until after the analysis and dis-

cussion of the underlying A-sampling.

3.5.3 Analysis

The results from the four AdUmWHAM simulations on water-methane show poor
agreement with FEP, FDTI or experiment. The spread of results is also quite large

(5.6 kcal mol~! to 7.2 kcal mol™!). A possible reason for the poor results is that
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Simulation Free Energy /
kcal mol !
1 6.2
2 7.1
3 6.4
4 5.6
Average 6.4 (0.5)

Table 3.4: The relative hydration free energy of water and methane as predicted by
four independent AdUmWHAM simulations. The average over the four results is
also shown, together with the standard deviation in parenthesis.
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Figure 3.13: The predicted PMF of the relative hydration free energy of water and
methane, as predicted by four equivalent AAUmWHAM simulations. The PMF is

taken as the negative of the final iteration’s umbrella.
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Figure 3.14: The convergence of the predicted relative hydration free energy of wa-
ter and methane as a function of AAUmWHAM iteration. The relative free energy
is taken as the difference between the ends of the umbrella for each iteration.

the method has not converged after 500 iterations. To investigate whether this were
the case, the predicted relative hydration free energy was plotted as a function of
iteration (figure 3.14). This plot was obtained from the difference between the ends
of the umbrella produced by each iteration. It shows that the predicted free energy
changes greatly in the first 50 to 100 iterations, and then settles down, slowly
oscillating around a mean value. This implies that the AdUmWHAM simulations
all converged rapidly. This view is reinforced through investigation of the actual
sampling along A, which shows that even sampling had been obtained by the end

of the four simulations.
Since the results seem to suggest that the AdUmWHAM simulations have con-

verged, another reason must be sought to explain why the four simulations give
such varied results, and disagree with FEP and FDTI. One possible avenue of
exploration is the amount and type of solvent sampling. The radial distribution
function was calculated for the system structure at the end of each iteration, and
histogrammed according to the value of A at the end of the iteration. This procedure
produced an RDF with respect to A, and the use of a A-histogram bin size of 0.05

leads to comparable plots to figure 3.6 on page 54 from the first FEP simulation.
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Comparisons between these RDFs and those calculated via FEP should be made
with caution, as the total number of data points within the FEP RDF:s is larger than
for those calculated via AAUmWHAM. Also, the FEP results are evenly spread
over A, while the dynamic A-coordinate means that the AAUmWHAM results are
less evenly distributed. The RDF with respect to A was calculated for all four sim-
ulations. All four sets of plots were similar, so only those from the first simulation
are shown (figure 3.15).

While the oxygen RDF showing the same main features as those seen in the
RDF from the FEP simulations (figure 3.6), the hydrogen RDF fails to show the
distinct double-peak at low A-values. While a double peak can be seen, it is very
poorly defined, and the main peak is quite similar over the entire A-coordinate,

remaining broad and noisy. There is no sharp peak at 3.0 A at A = 0.0 in this

hydrogen RDF. Instead there is a broad and noisy peak from 3.0 to 4.0 A. This
suggests that AAUmWHAM is failing to sample the key solvent configurational
change for this calculation. Since the methods appears to have converged, the rea-
son for this must lie within the simulation protocol. Given that the results of the
simulations show some form of systematic error, an analysis of the data in terms

of random errors would be misleading.

3.6 Changing the AdUmWHAM Protocol

Four AdUmWHAM simulations were applied to calculate the relative hydration
free energy of water and methane. The results produced were contradictory and
failed to agree with either experiment, or previous simulations. Analysis of the
results suggested that the A-sampling had become even, and that the umbrellas had
converged. However, investigation of the RDFs showed that the system was not
sampling solvent configurations correctly. The source of this problem is likely to
reside in the protocol used to run the AAUmWHAM simulations. A key part of this
protocol is the randomisation of A after each iteration, i.e. that the value of A was
re-assigned at random after each iteration. This was done to ensure that the value of
A did not become stuck between iterations, and thus hinder the convergence of the

calculation. At the start of each iteration, the system was given 40 K steps to adjust
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Figure 3.15: The oxygen and hydrogen RDFs calculated from the first FEP and
first AdUmWHAM simulation. The colour scale is the same as in figure 3.7.

to the new A-value. In retrospect, this was insufficient, and indeed the uniform
randomisation of A could bias the statistics to make it appear that the A-sampling
was more even than it actually was. This would also explain the poor RDFs, as a
predominantly ‘methane’ solvent structure may suddenly find that it is hydrating a
water molecule, as A is randomly changed from near 1.0 to near 0.0. The solvent is
unlikely to respond in 40 K steps, and thus the statistics collected will be incorrect,

and the RDF will show a methane-like structure at low A-values. To see if this

were the case, four further AAUmWHAM simulations were run which did not

randomise A after each iteration. The value of A at the end of one simulation block

was preserved for the next block. In all other respects, these four AAUmWHAM

simulations were identical to the original four.
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Simulation Free Energy/
kcal mol ™!
1 9.7
2 8.0
3 7.7
4 7.9
Average 8.3(0.8)

Table 3.5: The relative hydration free energy of water and methane as predicted
by four independent AdUmWHAM simulations which preserved A after each iter-
ation. The average over the four results is also shown, together with the standard
deviation in parenthesis.

ey (2

-
<
s
LA
—
oo O
1

FrT 7T
Sy
L
I

[T S T - - -
PO ST T B |

02 04 06 08 62 04 06 08 1

3 ()
10

- 8 - [
e 6 —i -

<
[
<

—
o
L

4 L

Relative Hydration Free Energy / kcal mol”’

f— 2__ -

[ S N -
PR SIS BT B |
T

L e e o471 7T
1 0 02 04 06 08 1
A

(=)
(]
o
<
=~
(=]
s
[en]
oo

Figure 3.16: The predicted PMF of the relative hydration free energy of water and
methane, as predicted by four equivalent AdUmWHAM simulations. The PMF is
taken as the negative of the last iteration’s umbrella, and the value of A is preserved
between each iteration.

3.6.1 Results

The results of the four new AdUmWHAM simulations are shown (table 3.5), as are
the PMFs (figure 3.16). As in the previous simulations, the results were obtained
from the negative of the final iteration’s umbrella, and a discussion of the error on

the calculation will be postponed until after a deeper analysis of the sampling.
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Figure 3.17: The convergence of the predicted relative hydration free energy of
water and methane as a function of AdUmWHAM iteration for four independent
AdUmWHAM simulations. The value of A was preserved between iterations.

3.6.2 Analysis

The results from the four new applications of AdUmWHAM show much better
agreement with experiment, FEP and FDTI. The spread of results is quite good,
although the results from simulation 1 are around 2 kcal mol~! higher than the
other three simulations. The convergence of these calculations was plotted (figure
3.17) using the identical method as that used to obtain figure 3.14. The four simu-
lations are seen to converge in a similar manner up to around iteration 100. At this
point, the predicted result from simulation 1 rises quickly to nearly 10 kcal mol~!,
and stays there for the remaining 250 iterations. The predicted values from all four
simulations appear stable for the last 200 to 300 iterations, implying that the um- |
brella has converged. To see if the simulations had truly converged, the A-sampling
was plotted over sets of iterations. The sampling for all four simulations are quite
similar, so only those from simulations 1 and 2 are shown (figure 3.18). These
figures show that the total A-sampling was reasonably even. This is what the sim-
ulations should give if the umbrella is the negative of the PMF.

An explanation for the pattern of convergence of the AAUmWHAM simula-
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tions may be found through the comparison of figures 3.17 and 3.18. There was
no umbrella at the start of the simulation. The A-sampling was thus biased towards
low values of A, as water in water has a lower free energy than methane in water.
This is apparent in the set of iterations from 1 to 100, which shows a sharp peak
around A = 0.0. As the data is processed by subsequent iterations of the WHAM
equations, the umbrella is refined to encourage broader sampling of A. The dif-
ference between the ends of the umbrella is increased to discourage sampling of
low A, and encourage sampling of high A. This quickly works, and the sampling
becomes more even by the end of the first 100 iterations. The increase in the dif-
ference between the ends of the umbrella is seen as a sharp peak in figure 3.17,
at approximately 9 to 13 kcal mol~!, during the first 50 iterations. Unfortunately,
this is an overestimate of the free energy difference between water and methane.
If the free energy difference is overestimated, then the umbrella would be biasing
the A-sampling too much, and thus the sampling would be biased towards high
A. This is seen between iterations 150 and 250 for simulation 2, and is especially
acute for simulation 1, which shows a bias towards high A before iteration 100.
The iterations of the WHAM equations now seek to reduce the difference between
the ends of the umbrella, and thus to correct this over-bias towards high A. The
difference between the ends of the umbrella is thus reduced, and the sampling
becomes more even. However, this correction is also overestimated, and now the
predicted free energy drops to as low as 6 kcal mol~!. This underestimate is the
result of an umbrella that is too small, and thus the sampling returns to being bi-
ased towards low A. Continued iterations of the WHAM‘equations now seek to
increase the magnitude of the umbrella, to correct for this overcorrection. This
process continues throughout the simulation, and the umbrella “see-saws” around
the correct PMF. In theory, this should mean that the umbrella potential should
converge in an oscillatory fashion, as each overcorrection is corrected. However,
this profile is complicated by the contribution from previous iterations. As the sim-
ulation progresses, the weight of the current iteration’s data decreases compared to
the weight of all previous iteration’s data. The contribution of sampling from the

current iteration becomes small compared to the history of sampling from the pre-
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vious n — 1 iterations. Thus the influence of the current A-sampling statistics on the
umbrella will become increasingly small: This explains why the rate of change of
the predicted free energy seems to slow as the number of iterations increases. This
hypothesis is reinforced by the observation that despite the changing A-sampling
throughout sets of iterations, the total A-sampling across the entire simulation is
almost completely even. This would also explain why the results from simulation
1 are so poor compared to the other three simulations. Since the A-sampling during
the initial part of simulation 1 was strongly biased to low A, the resulting oscilla-
tions had a large amplitude. By iteration 200, the weight of total sampling was
then too great to allow the following iterations to correct this overestimate, and
thus simulation 1 appears to converge onto a result which is too high. The other
three simulations also have this oscillatory convergence, but the amplitude of the
swings are smaller, and thus by iteration 200, the predicted result is close to the

actual result. Iterations 351 to 450 for simulation 2 (figure 3.18) shows sampling

that is more or less even, reinforcing its predicted result of 8.0 kcal mol~!. Efforts
have been made to reduce the weight of the preceding iterations, either via dis-
carding the statistics from the initial iterations, or applying the WHAM analysis to
a moving window of the 50 previous iterations, though neither of these techniques
proved to be successful.

Because of this oscillatory convergence, the sampling of A does not become
totally even within the 500 iterations, and thus any long simulation based on a
single iteration’s umbrella is unlikely to fully sample the entire A-coordinate. This

means that it is difficult to use a statistical method to estimate the error on the

umbrella, since the simulation has not fully converged.

Radial Distribution Functions

The error in the protocol for the original application of AAUmWHAM to the water-
methane system was exposed via plots of the radial distribution function with re-
spect to A (figure 3.15). Similar plots were made to see if the revised protocol gave
better results. These were all very similar, so only those from simulation 1 are
shown (figure 3.19). These plots show much better agreement with those for FEP

and FDTI (figure 3.6), and clearly show the double-peak in the hydrogen RDF.
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The second peak in the hydrogen RDF is also much sharper than in the RDFs
from the original protocol (figure 3.15). However, the double peak in the hydrogen
RDF persists at A = 0.3, while it disappears more quickly in the RDFs from FEP,
at around A = 0.2. This difference hints that there may still be a problem with
the solvent not responding sufficiently quickly to the solute as it changes between
water and methane. These results may be improved by reducing the frequency of
A-moves from one every 500 MC steps to perhaps one every 1000. However, this
would increase the overall run-time of the simulation, which is already five times
that of FEP or FDTL Also, it is difficult to know in advance what the relaxation
time of the system with respect to A-moves would be, without first running ex-
ploratory simulations. A blind application can thus only use the lowest possible
frequency of A-moves that will collect sufficient data to run the simulation in a

reasonable time.

3.6.3 Summary

AdUmWHAM was applied to calculate the relative hydration free energy of water
and methane. The initial application of the method failed, due to the randomi-
sation of A between iterations. A further application which preserved A between
iterations was successful, and predicted results that were in agreement with exper-
iment, FEP and FDTI. However, the AdUmWHAM simulations failed to converge
properly, and while they estimated the free energy well near the start of the itera-
tion, the weight of statistics collected at the beginning reduced the rate of change
of the umbrella, and hence reduced the rate of convergence. The method appears
very sensitive to sampling in the early stages of the simulation, and any peculiar-
ities there, as occurred in the case of simulation 1, can destabilise the oscillatory
convergence, and lead to poor quality results. In addition, the difference in the
hydrogen RDF between AdUmWHAM and FEP implies that the solvent may not
be responding sufficiently quickly to the dynamically changing A-value. While this
problem may be overcome through the use of less frequent A-moves, this would in-
crease the time required to run a simulation which already takes five times longer
than FEP or FDTI. In addition, it is not possible for a blind application of Ad-

UmWHAM to know the relaxation time of the system with respect to A-moves,
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Figure 3.19: The oxygen and hydrogen RDFs calculated from the first FEP and
first modified AAUmWHAM simulation. The colour scale is the same as in figure
3.7.

and thus know in advance whether A would be changing too quickly. Despite these
problems, AAUmWHAM still managed to produce results in agreement with the
other methods, and it produced a good estimate of the results within the first fifth
of the simulation. This ability to give a good, yet quick estimate of the free en-

ergy could perhaps be exploited through the use of AAUmWHAM as a free energy

scoring function.

3.7 Conclusion

Free Energy Perturbation, Finite Difference Thermodynamic Integration and Adap-
tive Umbrella WHAM have been applied to calculate the relative hydration free
energy of water and methane. While the results from all three methods gave good

agreement with each other and experiment, they all suffered from poor precision.
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There was a large spread of results within each method. In the case of FEP and
FDTI this was caused by random sampling error due to the use of only a single
trajectory at each A-value. In the case of AAUmWHAM, which allows multiple
trajectories to visit each A-value, the variability appears to be a result of poor con-
vergence in the latter half of the simulation due to the weight of statistics in the
initial stages. There was also the suggestion of Hamiltonian lag, due to the change
in the value of A throughout the trajectory. The results presented in this chapter

can be summarised via a comparison of the advantages and disadvantages of each

method;

1. Free Energy Perturbation

(a) Advantages
i. Calculated free energy agrees with the experimental value.
ii. Use of a fixed A-value minimises problems due to Hamiltonian
lag.
(b) Disadvantages
i. The quality of the results was reduced by problems converging the
Zwanzig equation. This resulted in significant hysteresis.
ii. The use of a single trajectory at each A-value led to random sam-
pling errors.
iii. Improvement in the quality of the results requires the rerunning
of windows with different widths. The original data for these win-

dows would be discarded.

2. Finite Difference Thermodynamic Integration

(a) Advantages

i. Has the same advantages as FEP.
ii. Additionally, the use of a small AA leads to small fluctuations
in the difference in energy between the reference and perturbed

states, and thus the calculation has very small hysteresis.
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1ii. Improvement in the quality of the results may be achieved by cal-
culating the free energy gradient at extra A-values. No previously
collected data needs to be discarded.
(b) Disadvantages
i. Again, the use of a single trajectory at each A-value leads to ran-

dom sampling errors.
3. Adaptive Umbrella WHAM

(a) Advantages
1. Calculated free energy agrees with the experimental value.
ii. The relative free energy is quickly estimated. This could lead to
use of the method as a simple free energy score.

iii. The use of multiple trajectories at each A-value helps to reduce the

random sampling error seen in FEP and FDTI.

(b) Disadvantages

i. The method fails to fully converge in a reasonable time on the
water-methane system.

ii. While the number of simulation steps is lower than FEP or FDT],
the method is not as parallisable, so the total simulation time is
much longer.

iii. The changing value of A may lead to errors resulting from Hamil-

tonian lag.

The advantages of Thermodynamic Integration over FEP have been noted in

previous studies.?®?* These studies compared the two methods on a variety of
small test systems, and conclude that while FEP and TI produce comparable re-
sults for equivalent amounts of simulation, if the overlap between the two systems
is poor, then the quality of the FEP results is reduced compared to those from
FDTI. The results presented in this chapter demonstrates that FDTI has the same
advantages over FEP as TI. The benefit of FDTI is that it may be performed in
any FEP-capable simulation code, without the need to program the modifications

necessary to generate the analytical gradients required for TI.
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In conclusion, the results presented in this chapter demonstrate the problems
faced by the application of established free energy methods to the calculation of
the relative hydration free energy of water and methane. The root cause of these
problems is that the water-methane system is deceptively complicated, with the
hydration free energy change strongly depending on a significant solvent rear-
rangement. It can thus be concluded from these results that the main drawback of
current free energy methods is their reliability. Research must now be undertaken
to improve the consistency of results, and in so doing, reduce the statistical errors
on the calculations. These results suggest that the route to achieving this aim is to
generally improve the sampling of the system, either by removing random sam-
pling error through the correct combination of multiple trajectories, or through

increasing the rate or quality of sampling.



Chapter 4

The Development of Advanced Free
Energy Methods

4.1 Introduction

The aim of this work is to develop free energy methods that may be reliably
and routinely applied to calculate the relative binding free energies of a group
of ligands to a protein. In the last chapter, established free energy methods (Free
Energy Perturbation, Finite Difference Thermodynamic Integration and Adaptive
Umbrella WHAM) were tested through the calculation of the relative hydration
free energy of water and methane. This proved to be a challenging test case, as the
perturbation involved the elimination of the solute dipole, and the significant re-
arrangement of the solvent configuration. All three free energy methods predicted
relative hydration free energies that were, within error, in agreement with each
other and with the experimental value of 8.31 kcal mol—!.87 However, it was found
that repeated application of the same method on the same system could sometimes
yield significantly different results, and thus the precision of the methods was a
major problem. Significant random sampling error was present in the free ener-
gies calculated via FEP and FDTI. This was a result of the use of only a single
trajectory at each A-value. This error could be estimated and reduced through the
running of multiple FEP or FDTI simulations, though this of course increases the

expense of the methods. AdUmWHAM avoids this problém as it uses a dynamic A-
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coordinate, and thus effectively allows multiple trajectories to visit each A-value.
While AdUmWHAM enhanced sampling of A, it did not enhance the sampling
of the solvent. The solvent’s significant configurational change was thus insufﬁ;
ciently relaxed as the value of A changed and the solute was dynamically morphed
back and forth between water and methane. This resulted in Hamiltonian lag, and
a possible error in the results. In addition, the rate of convergence of the method
seemed to slow as the iteration progressed, due to the weight of statistics already
accumulated. This meant that any peculiarities in the initial convergence of the cal-

culation were not corrected, and that one of the four simulations failed to converge

in a reasonable time.
The aim of this chapter is to take the lessons learned from the application of the

established free energy methods and use them to develop methods which are more
reliable and reproducible. To achieve this, sampling error will need to be reduced
through the correct averaging of multiple simulation trajectories. In addition, the

rate of sampling of the entire system, as well as A, needs to be improved.

4.2 Bivariate Multicanonical WHAM

Adaptive Umbrella WHAM solves one of the two main problems of current free
energy methods, namely it reduces random sampling error by treating the per-
turbing A-coordinate as a normal degree of freedom. A is changed dynamically
throughout the simulation, and the sampling of A is enhanced through an um-
brella potential. The umbrella potential is created through a sequence of iterations,
throughout which multiple trajecfories refine the umbrella potential until it en-
courages even sampling of the A-coordinate. At this point, the umbrella potential
is equal to the negative of the potential of mean force (PMF), and the relative
free energy is simply read from the difference in energy between the umbrella’s
endpoints. While AdUmWHAM successfully enhances the sampling of the A-
coordinate, it does not enhance the sampling of the rest of the system. It does
nothing to enhance the sampling of an associated configurational change, like for
example the configurational change in the solvent between hydrated water and

hydrated methane. AdUmWHAM relies on the rate of sampling of the system be-
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ing sufficiently high such that any associated configurational changes can occur.
Unfortunately, if the configurational change is large, then the rate of sampling of
that change will be slow, and the umbrella can have the effect of driving the A-
sampling through unfavourable system configurations. While such short-cuts may
lead to a converged AdUmWHAM simulation, and an even A-distribution, they
are also likely to put an unquantifiable error into the free energy calculati