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by Christopher Woods 

Methods for the calculation of the relative binding free energies of ligands to a protein are 

investigated and developed. The aim of these investigations was to improve the reliability 

and speed of free energy methods, such that they become practical tools for commercial 

rational drug design. To this end, the relative hydration free energy of water and methane, 

and the relative binding free energies of halides to a calix[4]pyrrole derivative were in-

vestigated by three established free energy methods (Free Energy Perturbation (FEP), Fi-

nite Difference Thermodynamic Integration (FDTI) and Adaptive Umbrella WHAM (Ad-

UmWHAM)). The results of these applications showed that inconsistencies in sampling 

led to unreliable free energy predictions. To overcome these problems, a series of four new 

free energy methods were developed (Bivariate Multicanonical WHAM (BMW), Parallel 

Tempering Thermodynamic Integration (PTTI), Replica Exchange Free Energy Pertur-

bation (REFEP) and Replica Exchange Thermodynamic Integration (RETI)). These ap-

proaches all combined traditional free energy methods with generalised ensembles. Test-

ing of these methods revealed that Replica Exchange Thermodynamic Integration was the 

superior of all seven methods. FDTI and RETI were then tested by calculating the relative 

binding free energies of a group of SB 1-like ligands to p38 MAP kinase. The results of 

this test showed that RETI was still the superior method. This test also revealed that there 

were still sampling issues that needed to be resolved. A new Monte Carlo code was de-

veloped to run the tests on p38. The optimised data structure of the code led to a ten to 

twelve fold speed up compared to an established MC code. This, combined with the use 

of a large Linux Beowulf cluster, enabled each protein-ligand free energy calculation to be 

run within 1.5 days. We predict that, using the latest computers, these calculations could 

take less than 12 hours. 
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Chapter 1 

Introduction 

1.1 Aims 

The aim of this work is to allow the reliable and accurate calculation of the relative 

binding affinities of a range of ligands to a protein. For these calculations to be-

come generally useful and accepted, they must be able to proceed with knowledge 

of only the crystal structures of the bound complexes, and be performed under the 

time and user constraints that apply within the pharmaceutical industry. That is to 

say that the calculations should take days rather than weeks or months to complete, 

and should require as little user intervention as possible. 

1.2 Rational Drug Design 

Drug design today is far from the random "hit and miss" of the early twentieth 

century. Today, effort may be applied to understand how and why particular ligands 

bind to proteins, and by using this knowledge, to design further molecules that can 

bind more strongly. This process is generally called rational drug design} The 

process can be represented as a sequence of steps; 

1. The structure of the target protein is obtained. 

2. The binding mode of a potential ligand in the protein must be determined. 

This could either be via an experimental structure of the complex, or via 

computational docking^ of the ligand into the active site. 
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3. The affinity of the ligand for the protein is then estimated. This can either 

be via a simple scoring function, or via simulations aimed at calculating the 

binding constant. 

4. The information provided by the simulations is used to propose modifi-

cations to the ligand. These modified ligands are also docked and scored 

against the target protein. 

5. The most promising ligands are synthesised, and assays performed to ex-

perimentally determine the binding constants.^ The information from these 

experiments is then fed back into the simulations. 

6. More simulations are run. These should be of a higher quality, as they have 

access to more experimental data on the ligands (e.g. the protein-ligand crys-

tal structures). They may also be run at a higher level of theory. 

7. The information from the simulations is then fed back into step 4. This cycle 

is repeated until a sufficiently potent ligand is developed. 

A key part of this process is the accurate and reliable prediction of the binding 

affinity of the potential ligands to the target protein. In particular, this process 

requires the dependable prediction of the effect of ligand modifications on the 

binding affinity. The development of methods which can do this is a primary goal 

of this field of study, and the achievement of this goal, in the absence of extensive 

experimental data, has so far eluded current workers. This is despite the potential 

rewards that a solution to the binding problem could bring to the pharmaceutical 

industry. The achievment of this goal requires the development of methods that 

can accurately and reliably predict the binding affinities of a range of ligands to 

a single protein. While a 'correct' solution to this problem lies in the equations 

of statistical thermodynamics, the difficulties involved in solving these equations 

have left many to pursue alternative, less rigorous routes. Rigour and reliability 

are a primary goal of this work, so current methods that are correctly derived from 

the underlying statistical thermodynamics will be investigated. The strengths and 

weaknesses of these methods will be assessed on a range of challenging test cases, 

and new methods will be developed. 



CHAPTER 1. INTRODUCTION 

1.3 Roadmap 

First, this thesis will provide a background to molecular modeling, and will ex-

plore how biomolecular systems may be represented in the computer. Statistical 

thermodynamics will be introduced as a method to explore these models and esti-

mate real thermodynamic properties. The most important thermodynamic property 

examined will he free energy, and rigorous procedures to calculate relative free en-

ergies of binding will be discussed. The huge expense of free energy simulations 

has led some workers to abandon theoretical rigour, and pursue less expensive, yet 

less exact methods. Some of these methods will be discussed. 

The aim of this thesis is to identify the problems that exist in current, rigorous 

free energy simulations. Through identification, ideas to overcome any problems 

or inefficiencies may be developed. The first experimental section will introduce 

a conceptually simple, yet physically challenging test case, the relative hydration 

free energy of water and methane. Three of the established free energy methods 

will be examined in the context of this test case, and their strengths and weak-

nesses will be highlighted. The second experimental section will take the lessons 

learned, and use them to develop four further free energy methods. These too will 

be evaluated on the water-methane system, and their results compared. The third 

experimental section will introduce a simple binding free energy test case, the 

binding of halide ions to a calix[4]pyrrole derivative. All of the established and 

new methods will be applied to this system, and their efficiency and reliability 

compared. The final experimental section will then take the best established, and 

best new free energy method, and will use them to investigate a real protein-ligand 

system, namely the binding of SB 1-like ligands to p38 MAP kinase. The results 

from these applications will then be used as an indicator of the success of this 

research. 

1.4 Conclusion 

One of the great challenges of rational drug design is the solution of the bind-

ing problem, namely the reliable and efficient calculation of the relative affinities 

of a range of potential ligands to a protein. A solution to this problem lies in the 
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equations of statistical thermodynamics, so this work will evaluate established free 

energy methods, and will develop and test new free energy methods. These meth-

ods will be tested on three challenging systems, the relative hydration free energy 

of water and methane, the binding of halide ions to a calix[4]pyrrole derivative, 

and the binding of ligands to p38 kinase. 



Chapter 2 

Biomolecular Simulations 

2.1 Introduction 

Computer simulations rely on good models for the systems to which they are be-

ing applied. Such models must be sufficiently detailed to represent accurately the 

problem being investigated, yet not overly elaborate, lest they are too expensive for 

a computer to calculate. The best models in this field rely on Quantum Mechanics 

(QM) to predict charge densities and intermolecular interactions.^ The solution of 

the QM equations for large biomolecular systems is not trivial. While techniques 

such as divide and conquer"^ may allow a single large system to be divided into sev-

eral connected small systems, these methods are not sufficiently fast to allow the 

full configurational exploration that was necessary for the work presented in this 

thesis. Instead, simplified models, based on point charges and springs were used. 

Such models are typically referred to as Molecular Mechanics (MM) models. A 

forcefield is the complete set of molecular mechanics terms needed to model a 

system. The complexity of such terms depends on the system under investigation, 

and what properties the forcefield is trying to predict. 

2.2 Molecular Mechanics Forcefields 

Molecular mechanics forcefields provide simple models of a system which com-

puters can calculate in a reasonable time. There are many forcefields that may 
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be used to represent biomolecules, for example OPLS, '̂® AMBER/ MM3® and 

CHARMM22.^ The OPLS forcefield, which evolved from AMBER, was specif-

ically parameterised to reproduce condensed phase properties, and as such, was 

chosen for this work. 

The OPLS forcefield models the protein-ligand system as a collection of atoms 

with charges, held together with springs. Partial atomic charges, q, are placed on 

each atom, and the intermolecular interaction energy, between charges 

qi and qj on different molecules, separated by distance r, is calculated via the 

Coulomb equation,^ 

== (2.1) 

where Sq is the permittivity of free space. 

In addition to an intermolecular coulombic energy, a term is also needed to rep-

resent the intermolecular electron dispersion forces. In reality, these interactions 

depend on the positions of many atoms. However, such many body interactions 

are difficult to evaluate, as they involve the sum over all triplets of atoms, quadru-

plets of atoms etc. To avoid this expense, the dispersion forces are approximated 

by ejfective pair potentials. One such approximation is the Lennard-Jones (LJ) 

potential, 

(2.2) 

This equation returns the pair potential, E ^ ( r ) , for a homonuclear pair of atoms 

separated by distance r. The parameters, a and 8 are determined empirically. This 

determination implicitly includes the effects of many-body interactions. The OPLS 

forcefield uses the LJ equation to calculate the intermolecular dispersion energy,® 

(2.3) 

where = -i/(a,G;) and 6/; = W(E.E;). 

Since the LJ function was parameterised on homonuclear pairs, combining rules 

must be used to obtain the values of 0 and 8 for heteronuclear pairs. In the case of 

OPLS, CT/y and E,y are obtained by the geometric average shown. Other combining 
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rules are used in other forcefields, e.g. AMBER uses the arithmetic mean to obtain 

(5ij? The total intermolecular energy between molecules is thus given by the sum 

over all pairs of atoms between molecules, of the Coulomb and Lennard-Jones 

energies. 

The OPLS forcefield models the intramolecular interactions via bond, angle, 

dihedral and non-bonded terms.^ All the bonds between atoms are determined, 

and all of the directly bonded (1-2), directly angled (1-3) and dihedral (1-4) sets 

of atoms are identified. The interactions between bonded, 1-2 pairs, are then sim-

ply modelled as springs, using a harmonic potential, around the equilibrium bond 

length, ro. The strength of the bond is assigned from a parameter, kbond, and the 

bond energy, as a function of bond-length, r, is given by/* 

g^('"^(r) = - ro) .̂ (2.4) 

The angles, which act between 1-3 atoms, are treated in a similar fashion, with a 

harmonic potential acting around the equilibrium angle, Go- The strength of the an-

gle is taken from a parameter, kangie, and the angle energy, as a function 

of angle, 9, is given by,® 

f;*"2'f(8) = tang,,(8 C2.5) 

The dihedral angles, which act over 1-4 atoms, are slightly more complicated, and 

their energy is evaluated via three terms. The first term is a Fourier series over 

cosine functions. This is used to represent the broad shape of the dihedral energy 

surface. The next two terms allow for angle bending in the eclipsed conforma-

tion, and are represented by the Coulomb and Lennard-Jones interaction energies 

between the 1 and 4 atoms in the dihedral. These last two energies are normally 

scaled by a factor, ^14, which typically is equal to two, though some implementa-

tions use different values for the Coulomb and Lennard-Jones terms. The param-

eters used in this evaluation are the amplitudes, vq to V3, and phases, pi to pg, of 

the cosines, and the charges and LJ parameters of the atoms. The total dihedral 

energy, for 1-4 atoms separated by distance, r, and dihedral angle. 
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(|), is given by, 5,10 

=vo + 5 i v „ ( l + (-l)'"+'cos(».(|) + p„,) 
^ m = l 

(2.6) 

The remaining intramolecular interactions, between 1-5 and above pairs of 

atoms, are modelled identically to the intermolecular interactions. This non-bonded 

term in the OPLS forcefield, E"^{r), between a pair of intramolecular atoms, sep-

arated by distance r, is given by, 

+E^(r) . (2.7) 

The total energy of the system is taken as the sum over all inter- and intramolec-

ular terms. As it stands, this forcefield may still become too expensive for use on 

biomolecules, so the intermolecular terms are normally truncated such that inter-

actions between atoms separated by more than a cut-off distance are ignored. 

This cutoff may be applied between pairs of atoms, or it may be based on the dis-

tance between pairs of groups, e.g. if the closest distance between two residues of 

molecules is greater than the cutoff distance, then all of the pair-pair interactions 

between the two groups are ignored. This truncation of the non-bonded terms 

can lead to discontinuities in the potential energies and forces associated with the 

interaction.^^ To overcome this problem, the non-bonded terms, may be 

scaled by multiplying by a switching function, S{r)}^ 

E ' ^ ( / . ) = ^ ( r ) x E ' ^ ( r ) , (2.8) 

where r is the distance between atoms. The aim of the switching function is to pre-

serve the nature of the non-bonded interaction at low r, while gradually smoothing 

the energy to zero by the cutoff distance. This switching function may be applied 

over the entire range of distances, or only for a short range of distances before the 
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cutoff, 12 

for r < r/gwAgr 

JfnA'Or) = s(r) X j?"b(r) itir <:r <: rcw (2.9) 

= 0 for r > rgur, 

where rem is the cutoff distance, and rfgather is the distance beyond which the 

switching function feathers the non-bonded interaction down to zero. The OPLS 

forcefield, as implemented in MCPRO/^ uses an harmonic switching function 

that quadratically scales down the non-bonded interaction energy to zero between 

ffeather and Tcut- When using group-based cutoffs, it is important to ensure that 

the switching function has the same value for each pair of atoms between the 

interacting g roups .Th i s may be achieved by calculating a single value of the 

switching function for the interacting groups, and multiplying it by the total non-

bonded interaction energy between the groups. 

This forcefield does not explicitly take polarisation effects into account. Real 

physical systems polarise substantially when placed in a high-dielectric medium, 

such as water. Such polarisation could affect the energies and structures adopted 

by the sys tem.F ixed charge forcefields, such as OPLS, implicitly include the 

effects of polarisation by increasing the partial charges such that molecular or 

fragment dipoles are approximately 10-20% larger than those in the gas phase. 

Forcefields have been developed that explicitly include terms to account for polar-

isation effects.Inducible dipole forcefields place point dipoles over the system 

to represent the polarisable g r o u p s . I n these models, the size of the dipole 

moment is determined by minimising the total interaction energy between all of 

the dipoles, and all of the fixed charges .This represents a 'self-consistent field' 

determination of dipole m o m e n t s , a n d is performed for every configuration of 

the system. Induced charge models take a different approach. In these methods, 

the partial charges themselves are allowed to fluctuate in response to their envi-

ronment.^^ Point dipoles are still placed on polarisable groups, and the magnitude 

of each induced dipole is calculated. This dipole can then be explicitly represented 

by a set of point charges .These induced charges are added to the fixed charges 
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on the atom sites. This allows the partial charges on each atom to fluctuate in re-

sponse to their environment. The benefit of the using a point charge representation 

of the induced dipole is that it avoids the costly calculation of the dipole-dipole 

and charge-dipole interaction energies. 

2.3 Statistical Thermodynamics 

Given a model, or forcefield, it then becomes possible to calculate the total en-

ergy of the system for every single possible configuration of that system. The col-

lection of all possible configurations and momenta for a system is called phase 

space, and it has a dimension for every single degree of freedom of the system. 

Plotting the total energy for each point within phase space yields a hypersurface, 

called the energy surface. Such surfaces for proteins are known to be rugged and 

frustrated, filled with many, near-isoenergetic minima, separated by mid-level 

transition states. As the system vibrates and moves, it will tend to spend more 

time in certain regions of phase space than others. To calculate the probability that 

the system will be at a particular point in phase space, we need to use statistical 

thermodynamics, and in particular, the Boltzmann distribution. 

2.3.1 The Boltzmann Distribution 

The Boltzmann distribution lies at the heart of statistical thermodynamics. It was 

initially derived for a closed system of identical, independent atoms, which could 

adopt a range of discrete energy levels (see appendix A). The atoms were allowed 

to exchange energy through elastic collisions, and the entire system was subjected 

to the constraints that the total energy, and total number of atoms, were a con-

stant. The derivation uses statistical theory to show that, for a given temperature, 

T, there will be one overwhelmingly probable configuration of this system. As-

suming that the system adopts this configuration, it becomes possible to calculate 

the probability, pi, that a particular energy level, e,-, is occupied, via, 

^ _ e x p ( - e , A , 7 - ) ^ (2.10) 
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where kg is the Boltzmann constant, and q is the molecular partition function, 

given by the sum over all of the accessible energy levels, 

g = ^exp( -E; /A:gr ) . (2.11) 
j 

The molecular Boltzmann distribution was derived to operate on a collection of 

identical particles, which could only share energy in a specific manner, under the 

constraints of constant total energy and numbers of particles. To apply this to an 

entire system of molecules, all interacting through complex inter- and intramolec-

ular potentials, requires the introduction of the concept known as the ensemble. 

An ensemble is a collection of identical replicas of the system. Each system is 

allowed to evolve independently, though they are allowed to share defined prop-

erties, subject to specific constraints. The properties shared, and constraints ap-

plied, determine the type of the ensemble. For example, in the NVT, or canonical 

ensemble, the total number of atoms (N), volume (V) and temperature (T) are 

constrained to be constant. This means that each of the replicas are constrained 

to a constant volume, number of particles and temperature. The temperature is 

constant as the replicas are placed in thermal contact with one another, and are al-

lowed to exchange energy. Each of the replicas are allowed to equilibrate under 

these conditions. At equilibrium, the probabilities that a replica will adopt par-

ticular configurations will become constant. At this steady-state, for temperature 

r , the probability, that a replica adopts a particular configuration, i, with 

associated energy, £"/, is given by the canonical Boltzmann equation, 

= (2.12) 
ywyr 

where Qnvt is the canonical partition function. Many ensembles exist, e.g. the 

isothermal-isobaric ensemble (constant Number of particles. Pressure and Tem-

perature, NPT), or the microcanonical ensemble (constant Number of particles. 

Volume and Energy, NVE). Each ensemble has its own partition function, the im-

portance of which will become apparent in the next section. 
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2.3.2 Free Energy 

The thermodynamic quantity known as "free energy" is perhaps one of the most 

important of all the thermodynamic quantities. This is because free energy points 

in the direction of spontaneous change. The binding free energy is the change in 

free energy associated with the binding of a guest to a host, and is a direct measure 

of the strength of that binding. The more negative the binding free energy, the 

stronger the binding between the host and guest. The free energy of a system, G 

can be related directly to its partition function, 

G=-A:grinG. (2.13) 

If the partition function was calculated over the canonical ensemble, then G rep-

resents the Helmholtz free energy, while if the partition function was calculated 

over the NPT ensemble, then G represents the Gibbs free energy. This is because 

the partition function for any ensemble, Qens, can be related to the thermodynamic 

potential for the ensemble, ^ens,^^ 

^ens = — In Qens • (2.14) 

The thermodynamic potential for an ensemble has a minimum value at thermody-

namic equilibrium.^' For the canonical ensemble, the thermodynamic function is 

Gneimholtz/kBT, while for the NPT ensemble the function is Gaibbs/^BT. 

Equation 2.13 shows that the calculation of the absolute free energy of a system 

requires the calculation of its partition function. The canonical partition function, 

<2, is formed as a sum over all possible configurations, F, of the system, of the 

exponential of the energy of each configuration, E( r ) , normalised by the temper-

ature, r . 

At the classical limit, the partition function for an atomic system can be expressed 

as an integral'' over all possible configurations, 

1 1 f / - E ( r ) \ 
(2.16) 
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In this equation, N is the number of atoms, h is Planck's constant, introduced to 

define the volume of the system, and the factor of ^ is used to account for the 

indistinguishability of particles. 

The total energy of the system is formed as a sum of the potential energy, Ep, 

and the kinetic energy, E^. The potential energy is a function of the coordinates, 

q, of the system, while the kinetic energy is a function of the momenta, p, and 

thus the partition function may be expressed as an integral over all coordinates and 

momenta, 

1 1 /• /"„ f ~Ep{q) — E/c{p) 
^ ( 2 . 1 7 ) 

The coordinates and momenta of the system are independent, and thus the kinetic 

and potential energies of the system may be separated. This allows the partition 

function to be expressed as a product of kinetic and potential parts, 

(218) 

— Qk-Qp) 

where the factors, ^ is absorbed into Qk, and ^ is absorbed into Qp. 

The integral over momenta, known as the ideal gas part, can be solved analyt-

ically via quantum mechanics using the "particle in the box" model/ 

y/V I 

^ ^ %, (2.19) 

where V is the volume of the system, and m is the mass of each atom. 

The remaining potential energy partition function (the excess part) cannot be 

solved analytically, due to the large number of coupled inter- and intramolecular 

energy terms that would need to be evaluated. The evaluation of this integral over 

all possible configurations of the system must be performed numerically. In doing 
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this, many workers drop the factor of and instead work with the configuration 

(MfggmZ, Z, 

(2.20) 

where Z has units of 

Unfortunately, the numerical integration of the configuration integral converges 

very slowly for all but the most simple of systems. The absolute free energy of a 

system depends directly on the configurational integral, and is thus too difficult to 

calculate for protein sized systems. 

2.3.3 Relative Free Energies 

It is too difficult to calculate the absolute free energy of large systems. However, it 

is possible to calculate the relative free energy of two different systems. This was 

first realised in the derivation by Zwanzig,^^ 

^Ga-^B = GB — GA 

= ( -&gr in (2g ) - ( -*g r ingA) 

-/Sgfln 

= —^sTln 
J'exp(-Eg(g)/^gr)(/g 

multiply by l=exp(-E/i(g)/^g7)exp(E/t(g)/tgr) gives, 

'J'exp(-Eg(g)//:ar) x exp(-EA(g)/^ar) exp(EA(g)/X:gr)6fg' 
= —kBT In 

— —kgT hi 

— —ksT In 

= — fcsTln 

j'exp(-EA(g)Aa7')c^9 

/exp(-EA(9)Ag^) X exp(-(Eg(9) ^9 

/- exp(-EA(9) A a r ) 

6A 
X exp(-Ag/)g(g)//:gr)(/g 

PA(g) X exp(-AEAa(g)/^gT)(f9 

(2.21) 
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where is the Boltzmann probability of configuration q in the ensemble of 

state A, and I^Eab is the difference in energy between system A and system B. 

This equation shows that the relative free energy is the integral over all config-

urations of system A, of the Boltzmann weighted exponential of the difference in 

energy between the two states. The vast majority of the configurations of system 

A will be high in energy, and will have a very low Boltzmann probability. Because 

of this, only the low energy, thermally significant configurations of A should be 

needed to obtain the relative free energy of the two states. The question now arises 

as to how these highly probable configurations are generated. 

2.4 Sampling Methods 

The biomolecular system has been modelled using a molecular mechanics force-

field. From this forcefield, a potential energy surface can be generated. The Boltz-

mann equation can be used to calculate the probability of various points on the 

energy surface, thus giving information about which configurations a single sys-

tem would prefer. However, while we can only look at a single system of molecules 

( 10 K to 100 K atoms) on a computer, in the "real World" we experience unimag-

inably huge numbers of these systems. To bridge the macroscopic and molecular 

worlds, statistical thermodynamics assumes that the thermodynamically observ-

able property of a system, Aghs, is equal to the time average of the corresponding 

molecular property. A, calculated from a single system, providing it has evolved 

for a sufficiently long time,^^ 

^06.; = ^ (2.22) 

where A(r(t)) is the value of A calculated for configuration F at time t, and 

represents an average over time. 

If the time trajectory of the system can visit every point in phase space which 

has a non-zero Boltzmann probability, then the trajectory is termed ergodic. If this 

were the case, then we could imagine a large ensemble of systems, all following 

this time trajectory. Each system would be at a different point along the trajectory. 
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While all of the systems are dynamically moving along the trajectory, at thermal 

equilibrium, the density of systems at each region of phase space will become 

constant. The probability of finding a system in a particular configuration along 

the trajectory will thus be a constant, and, from the work in the previous sections, 

will be equal to the Boltzmann probability for that configuration in the ensemble. 

The ergodic hypothesis thus proposes that the time average of a property for a 

single system is equal to the Boltzmann weighted property calculated over a whole 

ensemble of systems, 

= (A(r)p(r)) (2.23) 

where p ( r ) is the Boltzmann probability for configuration F in the ensemble, and 

(...) represents the average of A calculated over the whole ensemble of configu-

rations. The ergodic hypothesis thus proposes that the observable thermodynamic 

properties of the macroscopic world are equal to the ensemble average of the cor-

responding molecular property. Sampling methods exist which can generate en-

sembles of structures with the correct Boltzmann probabilities. Two such methods 

are Molecular Dynamicsand Metropolis Monte Carlo. 

2.4.1 Molecular Dynamics 

Molecular Dynamics'^' is a method to locate and sample the significant regions 

of the energy surface. It takes the most obvious route available to generate the en-

semble of configurations, namely that of evolving the time trajectory. The system 

is placed in a starting configuration, at a particular point on the energy surface. 

The gradient at that point on the surface can be evaluated. The negative of this gra-

dient is a force, which can be converted into an acceleration via Newton's laws of 

motion. The direct solution of Newton's laws requires the solution of 3N coupled, 

second order differential equations, where N is the number of atoms in the system. 

This is too difficult to solve analytically, so numerical, finite difference approaches 

must be used.^^ These numerically integrate the forces over time to yield a trajec-
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tory. Since Newton's laws conserve energy, the resulting trajectories sample from 

the NVE, microcanonical ensemble. To sample at constant temperature, the system 

must be connected to a thermostat. In addition, a piston may be used to make the 

trajectory sample at constant pressure. Assuming that the trajectory has evolved 

for sufficiently long, the ergodic hypothesis^^ states that the time trajectory will 

have formed the complete and correct ensemble. 

2.4.2 Monte Carlo 

Molecular Dynamics samples the energy surface by taking one system, and evolv-

ing from it, a trajectory over time. Monte Carlo takes the opposing view, and ran-

domly generates many configurations of the system, and then weights each one 

according to its probability within the desired ensemble. It does this by form-

ing a Markov chain, by making random changes of configuration, and accepting 

or rejecting these changes via a test. The form of the test depends on how the 

Monte Carlo equations are solved, and many such solutions exist. Appendix B 

details some MC tests, and how they are obtained from the underlying Markov 

chain. The most important solution to these equations is the Metropolis solution. 

Indeed, this solution is so important, that the many workers equate Monte Carlo 

with Metropolis Monte Carlo. 

2.4.3 Metropolis Monte Carlo 

Normal Monte Carlo randomly generates configurations of the system, and weights 

each one according to its probability within the ensemble. However, these proba-

bilities are rarely known a priori. Metropolis Monte Carlo^' cleverly solves this 

by randomly generating each configuration such that it appears with its correct en-

semble probability, and then weighting each configuration in the set equally. The 

Metropolis solution can achieve this, as it includes the Boltzmann equation (equa-

tion 2.12, and see appendix B). Metropolis Monte Carlo takes a configuration of 

the system, and calculates its energy. A random move is made, and the energy re-

calculated.^^ A Monte Carlo test uses this change in energy, AE, to evaluate the 
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move, via,̂ ^ 

exp(—AE/^gr) > 1). (2.24) 

If this test is passed, then the new configuration is accepted, otherwise the old 

configuration is restored, and is recounted in the average. Using this method, at 

the end of the MC run, the thermally important regions of the energy surface have 

been explored with the correct probability. This particular Monte Carlo test will 

sample from the canonical, NVT ensemble. Different tests exist which sample 

from different ensembles, e.g. isothermal-isobaric, NPT. Some of these tests are 

discussed in appendix B. 

2.5 Calculating Relative Free Energies 

In equation 2.21, the relative free energy between two different states was seen to 

be, 

AGa-+S = —ksTln (2.25) 

This integral represents the ensemble average of the exponential of the difference 

in energy between states A and B, formed over the ensemble of states of system A. 

The equation can be rewritten as,^° 

AGx-^g = -A;grin(exp(-AEAB(^)/^gr))^, (2.26) 

where (...)^ represents an average taken over the ensemble of structures of sys-

tem A. This is known as the Zwanzig equation,^^ and it shows that the relative 

free energies between two systems can be calculated over an MD or MC sampled 

trajectory. An MC or MD simulation is performed on system A. This is called the 

reference state. At each step of the simulation, the difference in energy between the 

configuration in system A, and the same configuration in system B is calculated, 

and averaged according to the Zwanzig equation. System B is called the perturbed 

state. The difference in free energy between the two systems will only converge 

well if they are very similar, and thus the fluctuations of AE are small. The reason 

for this is made clear by recasting the Zwanzig equation in terms of an integral 
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Mp(̂ /k.T) 

(a) Low fluctuations in AE (b) Large fluctuations in AE 

Figure 2.1: Plots of exp(—AE/tg?) and pq{^E) for two hypothetical free energy 
simulations. Plot (a) shows the probability density two systems with good overlap, 
while plot (b) shows the density for two systems which have poor overlap. 

over AE, 11 

AGa-»B = —^sTln 

= —ksTln 

X exp(-AE(g)/A;gr)(fg 

po(AE) X exp(-AE/^gr)(^(AE) 

(2.27) 

where po{AE) is the normalised number of configurations of system A that have a 

difference in energy with system B that is equal to AE, i.e. Egiq) — EA{q) = 

Pq includes the ensemble probabilities of system A, and also contains the factors 

necessary to go from the integral over the 3N spatial coordinates to the integral 

over a single AE coordinate.'^ 

The Zwanzig equation represents an integral over all AE, of the product of the 

probability of configurations which have that value of AE, and exp(-AE/^gr). 

These two terms are shown in figure 2.1, This figure shows these terms for two 

different free energy simulations. In the first simulation, the two systems are very 

similar. The fluctuations in the difference in energy between the systems, AE, are 

small, and thus the probability density along AE is tightly peaked, with small tails. 

In the second simulation, there are larger differences between the systems, and 

thus the fluctuations in AE are larger. The probability density is more spread out, 

with a wider peak, and longer tails. The MC or MD simulation will generate values 

of AE according to the probability density po{AE). If the simulation was run for 
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an infinite time, then the histogram of values of AE collected from the simulation 

would be exactly equal to the underlying probability distribution. However, for a 

finite time simulation, the histogram of values of AE will only approximate the 

true underlying probability dens i ty .The errors in this approximation, per unit 

AE, will be larger for the tails than they would be for the peak of the distribution. 

Since this tail is more significant when there are larger fluctuations in AE, then 

the error associated with the numerical sampling of this tail will also be more 

significant.^^ These errors are magnified by the exponential function that, in the 

product of the two terms, greatly increases the contribution from the left tail of 

the probability distribution. This suggests that, for a finite time simulation, the 

fluctuations in AE should be as small as possible to allow the Zwanzig equation to 

converge in a reliable and rapid manner .These fluctuations can be minimised by 

ensuring that the two systems are as similar as possible, i.e. there is high similarity 

and overlap of their potential energy surfaces. If there is poor overlap, then this 

analysis suggests that the Zwanzig equation could require an unattainably long 

simulation to sample adequately the tails of the probability distribution. 

2.5.1 The A-coordinate 

The Zwanzig equation relates the difference in free energy between two systems, 

with differences between their respective energies. This equation will only work 

well when there is a high degree of overlap between the two systems. To ensure that 

this is the case, it is possible to use the technique of morphing to gradually change 

one system into the other. A X-coordinate is used to gradually morph the forcefield 

such that atX — 0.0, the forcefield represents system A, and at X = 1.0 it represents 

system B. At X-values in-between, the system is a non-physical hybrid of A and 

B. This morphing may be achieved by linearly changing the OPLS parameters 

between those for X — 0.0, and those for X = 1.0, e.g.^^ 

^bondx ~ '^^bond\ (1 
(2.28) 

or g x = ^ i + ( l - ^ ) 9 o . 

The use of X allows two related systems to be slowly morphed from one to the 
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AGfree(A—>B) 

A 1 </ B 

AGbmd(A) AGbind(B) 

^Gt,ind{B) - AGbindiA) = AGbound{A B) - diGfree{A —> B) (2.29) 

Figure 2.2: The free energy cycle used to calculate relative binding free energies 
of ligands A and 5 to a protein (shown in grey). The relative binding free energy 
of ligands A and 5 to a protein is equal to the perturbation free energy of A to 5 
while bound to the protein, minus the perturbation free energy of the free ligands 
in solvent. 

other. This allows the relative free energy between the two systems to be calculated 

as a potential of mean force along the X-coordinate that connects them. 

2.5.2 Relative Binding Free Energies 

The relative binding free energy between two ligands for the same protein can 

be calculated by morphing the first ligand into the second. From the free energy 

cycle^^ in figure 2.2 it is seen that this perturbation must be performed while the 

ligands are bound to the protein (the bound leg), and while the ligands are free in 

solvent (the/ree leg). This is due to the fact that any host-guest binding can be 

viewed from the perspective of a competition between the host and solvent for the 

guest. Thus when we ask the question of which of a pair of ligands binds best to a 

protein, we are really asking which ligand has the greater affinity for the protein, 

and the lower affinity for the solvent. However the calculation of the free energy 

changes associated with these legs can be expensive, and there are many ways in 

which it can be achieved. These methods broadly fall into two groups; rigorous 

techniques that rigidly stick to derivations from statistical thermodynamics, and 
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non-rigorous methods that sacrifice rigour in return for assumptions that speed up 

the convergence of the calculations. This work is only interested in rigorous free 

energy methods, although both types will now be discussed. 

2.6 Rigorous Free Energy Methods 

Rigorous free energy methods adhere to the derivations from statistical thermo-

dynamics. That is to say that the methods use a X-coordinate to connect different 

systems, and use exact equations to calculate the change in free energy with re-

spect to X across the entire perturbation. The methods used to calculate the change 

in free energy with respect to X are however different. Three such methods will 

be discussed, Free Energy Perturbation (FEP), Thermodynamic Integration (TI), 

md. Adaptive Umbrella WHAM (AdUmWHAM). The methods discussed here are 

also described in various r e v i e w s . I n addition, the recently developed, Fast 

Growth method will also be discussed.^^'^^ 

2.6.1 Free Energy Perturbation 

Free Energy Perturbation^^ (FEP) is a rigorous free energy method that has been 

used to calculate binding free energies in many successful studies, i.e. calculating 

the specificities of various ligands for the COX-1 or COX-2 enzymes,^^ investi-

gating the enantioselective binding of peptide based ligands to a small host,̂ ® the 

binding of ligands to or FK506 binding protein,^ ̂  and the binding of 

alkali metal cations to spherands.^^ FEP calculates the free energy change along 

the ^-coordinate through direct use of the Zwanzig equation (equation 2.26). To 

ensure that this equation converges, the X-coordinate is split into a series of win-

dows (figure 2.3). The width between each window must be sufficiently small to 

ensure good overlap between the reference and perturbed states. An MC or MD 

simulation is then run within each window, and the Zwanzig equation applied to 

calculate the free energy change between each window and its neighbour. The rel-

ative free energy along the ^-coordinate can then be achieved by summing each of 

the individual free energy differences between each window (figure 2.3). The free 
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backwards | forwards 

Figure 2.3: The use of windows in FEP simulations. In this figure, the X-coordinate 
is split up into 6 windows, spaced evenly every 0.2 X-units. A simulation (repre-
sented by a filled circle) is run in each window. The A, = 0.4 window is highlighted. 
The forwards free energy to the next window, and backwards free energy to the 
previous window are calculated during the simulation. The sum of all the forwards 
free energies yields the forwards estimate of the relative free energy, while the 
negative of the sum of all of the backwards free energies yields the backwards 
estimate. Obviously, both estimates should be the same. 

energy differences could be calculated between each window and the next neigh-

bour. Summing these values would yield the free energy change for the forwards 

perturbation from state A to state B. Conversely, the free energy differences could 

be calculated between each window and its previous neighbour. Summing these 

would yield the free energy change for the backwards perturbation from state B 

to state A. If the calculation has converged, then the forwards and backwards free 

energies should be equal. Any difference between them is known as hysteresis, 

and examination of where hysteresis occurs can be used to position better the 

X-windows for any subsequent calculations. To enable this analysis, FEP simu-

lations typically calculate both the forwards and backwards perturbations, using a 

technique known as double-wide sampling?^ Using this technique, a free energy 

simulation is performed at each A,-window, and the free energy difference simulta-

neously estimated between the next and previous window. 

FEP accumulates the exponential of the difference in energy between neigh-

bouring windows. If the X-windows are well positioned, then these differences in 

energy will be well-behaved, and their fluctuations will be small. However, the 

initial positioning of the windows is difficult, as there is no a priori knowledge 
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of the shape of the potential of mean force (PMF) along X. More windows are 

needed in regions where the PMF changes rapidly, while fewer are needed in re-

gions where the PMF is flat. The technique of dynamically modified windows^^ 

tries to alleviate this problem by using the free energy change in one window to es-

timate the optimum width of the next window. It achieves this by fitting a straight 

line through previously calculated free energies to estimate the current gradient of 

the PMF. The value of this gradient can then be used to decide where to place the 

next X-value. A problem with this method is that it was developed at a time when 

computer resources required that each X-window were run serially, and thus the 

gradient information from the previous X-windows was readily available. How-

ever, the advent of cheap, yet powerful Beowulf clusters (see appendix D) means 

that all X-windows can now be run simultaneously in parallel, and thus the spacing 

between all A-windows must be determined before the simulation starts. 

2.6.2 Thermodynamic Integration 

Thermodynamic Integration (TI) is another rigorous free energy method with a 

significant history of successful applications, e.g. the calculation of the relative 

binding free energies of ligands to p38,^^ the estrogen receptor hgand-binding do-

main^® or acetylcholinesterase,^^ the relative hydration free energy of n-alkanes,^^ 

the binding of ions to a calix[4]pyrrole derivative,and investigating the inter-

actions between amino acid residues in the binding site of trypsin.'^^ While FEP 

directly uses the Zwanzig equation to calculate the difference in free energy along 

the ^-coordinate, TI takes a different approach. The method still looks at discrete 

X-values along the coordinate, and generates an MC or MD trajectory at each A,-

value. However, instead of calculating the difference in energy between neigh-

bouring X-values, it calculates the rate of change of free energy, with respect to 

X at each point. TI thus avoids the problems of low overlap experienced in FEP, 

as this free energy gradient, ( |^)x, is a property of the system at each value of X 

only. Once all of these free energy gradients are obtained, they may be integrated 
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to yield the relative free energy along the X-coordinate. 

Gx=i -Gi=o = ^ 

This integral can be evaluated numerically, e.g. via the trapezium rule.^^ The free 

energy gradients themselves may be obtained analytically or numerically. The an-

alytical route uses a modified forcefield to calculate the gradient of each forcefield 

term directly with respect to X. The ensemble average of the gradient of forcefield, 

( i l ) x ' equal to the free energy gradient (as shown in appendix C.l). 

'o 

The numerical route approximates the gradient, ( | f )x> via the finite difference, 

( ^ ) x . This free energy difference can be calculated via the Zwanzig equation, 

with the reference state at X, and the perturbed state at A, + AX. This would give a 

forwards estimate of the free energy gradient. A perturbed state of A, — AX yields 

the backwards estimate. These two estimates should of course be equal if AX were 

sufficiently small, and the trajectory ran until the Zwanzig equation had converged. 

This method is normally referred to as Finite Difference Thermodynamic Integra-

tion^^ (FDTI), and again, there is a significant body of literature that demonstrates 

its successful application. These include its application to the relative binding free 

energy of thrombin inhibitors'*^"^ and ligands to DHFR."̂ ^ Most workers who 

use FDTI position their windows, and integrate the results, through the use of a 

Gaussian quadrature.'^ This is a technique that was developed by Gauss in the 

early nineteenth century to integrate definite functions. It works by recasting the 

integral of the function into the class of integrals known as 'polynomials times a 

known weighting function'. Given a function, f{x), the method allows the optimal 

choice of the points along x to evaluate the function, and the optimal weights to 

give each of those points. This can be achieved by multiplying /(x) by a known 

weighting function, W{x). If f{x) is a polynomial, then, given an integer number 

of evaluation points, N, it is possible to find a set of weights, wj, and abscissas, xj, 



CHAPTER 2. BIOMOLECULAR SIMULATIONS ^ 

such that the approximation, 

/ (2.32) 

is exact. The values of wj and xj depend only on the choice of the weighting func-

tion, and the number of evaluation points."̂ ® Most workers use Gauss-Legendre 

quadrature, which uses a weighting function of W(x) = 1. The values ofxj and wj 

are obtained from a lookup table, and are not in any way based on the shape of 

the PMF along X. It is our opinion that this method of integration is not best suited 

for application to free energy calculations, as it was designed to integrate definite 

functions, and only has high accuracy for functions that are well approximated by 

polynomials. The gradients obtained along X will have associated errors, and the 

underlying PMF could contain sharp peaks or troughs. The positioning of the X-

windows should thus reflect the shape of the PMF, with more A,-windows in places 

where there are large changes in the free energy gradient. All gradients should also 

be weighted equally, so as to avoid the possibility of points with large errors be-

ing highly weighted, while reducing the contribution from points with low errors. 

In addition, the use of Gaussian quadrature has, in our opinion, led to the use of 

far too few X-windows along the perturbation. Previous studies'^^"^ have used as 

few as 6 X-windows, while another s tudys ta ted that increasing the number of X-

windows from 6 to 8 reduced the quality of the results. Such a reduction in quality 

would have been the result of poor positioning of X windows, not an increase in 

their number. Our application of FDTI will thus use the same integration methods 

that have been used successfully in standard TI simulations,^^ namely trapezium 

rule integration over many, closely spaced A-windows. Using this scheme, FDTI 

is very similar to FEP, and can be run with the same system conditions and refer-

ence states. In the case of FEP, the perturbed states are the neighbouring windows, 

while in the case of FDTI, the perturbed states are AX above and below each win-

dow. FDTI and FEP become identical in the limit of the window width becoming 

equal to AA.. 
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2.6.3 Fast Growth 

One of the most recently developed free energy methods is the so-called 'Fast 

Growth' method.^ '̂̂ ® This is an evolution of the Slow Growth method, which is 

the subject of a recent r ev iew.The slow growth method estimates the free energy 

change between two systems within a single simulation. It achieves this by slowly 

increasing the value of A, by a constant amount, 5X, at each simulation step, such 

that at the start of the simulation. A, = A,o, and by the end of the simulation, A, = A-i. 

If the simulation consists of M steps, then 5A, is given by,"̂ ^ 

(2.33) 

The system is constantly being perturbed at every step of the simulation. This 

perturbation requires an amount of work. The work required to perform the entire 

perturbation, W, is formed as a sum over all of the simulation steps, 

- (2 34) 

If 5A, were infinitesimally small, then this perturbation would occur infinitely slowly. 

This would mean that the system would stay in thermodynamic equilibrium through-

out the mutation, and the perturbation would occur reversibly. If this were the case, 

then the work required to perform this change would be equal to the free energy 

associated with the change, i.e. W = AG. However, if the change occurred in a 

finite time, then the response of the system would lag behind the perturbation,^^ 

and the simulation would move out of equilibrium. The resulting change would 

not be reversible, and some of the work would be dissipated. The amount of work 

required would be larger than the free energy change,giving the slow growth 

inequality, 

C2 35) 

The problem with the slow growth method is that the system is constantly 

being moved out of equilibrium. This leads to the inequality in equation 2.35. Re-

cently, Jarzynski examined this inequality, and derived a remarkable equality, 
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now known as the Jarzynski identityJarzynski realised that the problem with 

the slow growth method was that the individual system moved away from equilib-

rium in an unpredictable m a n n e r . I t is quite possible that there exists no general 

formula that describes the nonequilibrium distribution of the system at the end of 

the perturbation."^^ Jarzynski then showed that if an ensemble of systems were per-

turbed away from equilibrium, then the behaviour of the ensemble as a whole was 

predictable. Thus the ensemble of non-equilibrium statistics could be related to an 

average over the equilibrated ensemble. Using these ideas, the Jarzynski identity 

relates the change in free energy of a perturbation, to the average of the work cal-

culated for a slow growth simulation for each member of the original equilibrated 

ensemble, 

exp(—W/tg?) = exp(-AG//:g7'). (2.36) 

The overbar in this equation denotes an average over an ensemble of slow growth 

simulations. The beauty of this equality is that it is independent of the speed of the 

perturbation.^ 

To use this equality, an equilibrated ensemble of structures at X = Xq must be 

generated. A slow growth simulation should be performed for each member of this 

ensemble, although it can be performed with a fewer number of steps, and thus a 

larger 5A. than normal slow growth. The work necessary for each simulation should 

be calculated, and the average of the exponential obtained. This average will then 

equal exp(—AG/^bT). Because the rate of change of X is higher than for slow 

growth, this method is referred to as fast growth.^° This method has been tested 

on the calculation of the excess chemical potential of a Leonard Jones fluid,^® 

the potential of mean force between a pair of methane molecules in water,^ and 

the charging of a sodium ion in water.^^ These tests demonstrated that similar re-

sults were obtained via the fast growth method compared with other free energy 

methods, using comparable amounts of processor time. This was despite the appli-

cations only averaging the results from a small subset of starting points from the 

initial ensemble (between 10 and 3334). The main benefit of the method appears 

to be its huge potential for coarse level parallelisation over a very large Beowulf 

cluster. Once the initial generation of the equilibrated ensemble is complete, each 
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fast growth simulation could be performed in parallel on independent nodes 

The drawback of the method is that the average will only converge reliably if the 

fluctuations in the work are not too large.^^ This reasons for this are very similar to 

those used for the Zwanzig equation, which also collects the ensemble average of 

an exponential. In practice, this means that applications of this method also need to 

split up the X-coordinate into a series of windows, and apply fast growth between 

neighboring windows."*^ 

2.6.4 Adaptive Umbrella WHAM 

Methods have been presented that treat A, as a simulation parameter. Through spe-

cial treatment of A, these methods are able to integrate the free energy along the 

^.-coordinate, and in so doing, produce the potential of mean force (PMF) across 

X.52 A totally different approach becomes apparent when it is realised that X is 

just another coordinate of the system. X does not have to be treated specially, and 

thus it is possible to make dynamic changes in X throughout a simulation. The cal-

culation of the free energy along X then becomes equivalent to the calculation of 

the PMF along a normal structural coordinate, for which many methods have been 

derived. One such method is Adaptive Umbrella WHAM (AdUmWHAM),^^-^"^ 

a method that combines adaptive umbrella sampling^ '̂̂ ® with the Weighted His-

togram Analysis Method (WHAM).^^ 

AdUmWHAM is typically used to derive the potential of mean force along 

structural coordinates, e.g. for dihedral angles in a small peptide.AdUmWHAM 

can be applied to perturbations by realising that X can be treated as a dynamic 

coordinate, and that it is possible to make moves in X throughout a trajectory. This 

realisation was first made in a precursor to AdUmWHAM, l-dynamics.^^ 

X-dynamics 

^.-dynamics is another rigorous free energy method that was designed to achieve 

enhanced sampling of ligand configurations and orientations within a binding free 

energy calculation.̂ ®"®® The method treats X as a dynamic coordinate, and allows 
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motion along the A,-coordinate during normal configurational sampling. In this 

way, the ligands are dynamically morphing between each other during a single 

trajectory. This has the advantage that the ligands spend most of their time be-

tween X = 0.0 and X = 1.0, and thus the forcefield is much softer for the perturbing 

atoms. This should enhance the many configurational changes that are necessary 

to move through the X-coordinate.^® A potential disadvantage of the method is that 

X could be changed too rapidly for the rest of the system to respond. The config-

urational sampling will thus lag behind the X-sampling. This Hamiltonian lag is 

exactly the problem that is addressed by the Jarzynski equality in section 2.6.3. If 

the ^.-sampling is too rapid, then the system will move out of equilibrium, and the 

change in free energy will contain systematic error. Unfortunately, a priori knowl-

edge of the system's relaxation time is not possible, so the X-sampling must be 

performed as slowly as possible within the constraints of the simulation. 

X-dynamics uses a variable X-coordinate to calculate the free energy. To ensure 

that the entire X-coordinate is sampled fully, the motion along X must be encour-

aged through the use of an umbrella potential. 

Umbrella Sampling 

Umbrella sampling was first developed in the late 1970s, and originally applied to 

a small LJ fluid test system.®' The aim of the method is to direct the sampling along 

a reaction coordinate to unfavourable regions. This is achieved through biasing the 

simulation through use of an umbrella potential. The umbrella is implemented as 

an additional term to the forcefield of the system, and acts to penalise or encourage 

particular configurations. This has the effect of making the system sample from a 

biased distribution. For example, figure 2.4 shows the potential of mean force, 

P{X), for a reaction coordinate, X, for a hypothetical system. The PMF has two 

important minima, A and B, separated by a transition state, C. An umbrella poten-

tial, U(X), can be added to this system. This term is added to the forcefield, and has 

the effect of encouraging sampling where [/ (X) is low, and discouraging sampling 

where U{X) is high. In this case, the umbrella potential will encourage sampling 

of the transition state, thus allowing conformations A and B to interconvert freely. 
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U(A,) 

B 

Figure 2.4; A hypothetical umbrella potential which could be used to enhance 
sampling of the reaction coordinate, A. 

The umbrella potential forces sampling from a biased probability distribution. 

If, in the general case, the reaction coordinate, X, is a function of the system coor-

dinates, r, then the biased probability, Pt, for the particular point X = Xq is given 

/exp[—P(E(r) + — 
Pb{Xo) = 

/ exp [-P(E(r) + [/(A.))] dr 
(237) 

where (3=1 /ksT, E{r) is the normal energy of the system for coordinates r, V(k) 

is the value of the umbrella potential, and 5 is the Dirac 5 function, which is equal 

to one for 5(0), and zero for all other values. The use of 5 ensures that only config-

urations of r that map IoX — Xq contribute to the probability at Ph{Xo). Since the 

form of U{X) is known, it is possible to re-weight this biased probability distribu-

tion to return a Boltzmann weighted distribution along X.̂ ^ Looking at the specific 



case of the point X — Xq, 

P _ /exp[-P(E(/-) + [/(%))]6(% -

; e x p [ - P ( E W + [/(X))]^r 

Multiplying both sides by exp((3t,'(^o)). 

P fl ^ ARf/f) Vi yexp[-P(E(r) + [/(X))]6(X-XoXr x exp(p[/(Xo)) 
m o ) c x p [ m M ) ) = / e x p [ - P ( £ ( r ) + f / (X))] ir 

Since exp(|3[/ (A,o)) is a constant, it can be moved inside the integral, 

f) f) ^ /exp[-P(E(r) + [/(X))]6(X -Xp)exp(p[/(Xo))6(r 
P.(A„)exp(pt/(A„)) = / e x p [ - P ( £ M + £ / W ) ] i r 

The 6 function has eliminated all points where X^Xq. U(Xq) now cancels, 

5 [ S ! ; a i : 

using = yexp[ -P(E(r) + [/(X))](^r 

and = y e x p g i v e s 

/>.(Xo)exp(pt/(A„)) X A w = ; e x p [ - P E W ] g ( X _ 4 ) , r ^ &, 
QBOUZ Qbias QBOUZ 

P,(A„)exp(pc/(^)) X = ; « p [ _ p m ] 5 ( % - 4 ) ^ r 

The biased probability for X = A,o is thus related to its 

Boltzmann probability, PboUz 

/^(io)exp(p[/(Xo)) '>=fgo/rz(Xo). 

In the general case for any X, 

f!Bo/rz(̂ ) exp(pC/(X)). 

(2.38) 

The unbiased probability distribution can be used to calculate the potential of mean 
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force along X, 52 

G(X) — —-ln[P5o/,2(A,)] 

1, 
- p i n P;,exp(pt/(X)) X 

QBOUZ 

= -^In[f6exp(p[/(X))] - l l n 

= -^ln[f!;,exp(p[/(X))] +C. 

(2.39) 

. QBOUZ 

The constant, C, is undetermined, though its only effect is to shift the entire PMF 

up or down in free energy. The value of C does not affect the shape of the PMF 

nor the values of any relative free energies. 

The form of the umbrella potential is not a priori known, so some workers 

use many sequential umbrella potentials, e.g. harmonic potentials, to encourage 

the sampling to scan successive windows along the reaction coordinate .The 

sampling within each window can be re-weighted, and as long as the windows are 

overlapping, the resulting probabilities may be combined to form the PMF along 

the entire reaction coordinate. The combination of each of the small pieces of PMF 

is based on changing the values of C from equation 2.39, such that the overlap 

between neighbouring windows is maximised. The optimal way to accomplish 

this is through the use of the Weighted Histogram Analysis Method.^^ 

The Weighted Histogram Analysis Method 

The Weighted Histogram Analysis Method^^ (WHAM) represents the optimal 

method of combining the statistics of multiple umbrella simulations into a sin-

gle, self-consistent PMF. It achieves this by maximising the overlap in the PMF by 

weighting the statistics for each of the individual umbrella simulations. 

The method works by dividing the reaction coordinate into a series of bins. The 

number of times that the sampling falls within each bin during simulation j, nj{i), 

is collected for each of the umbrella simulations. The value of the umbrella, for 

simulation j, at the centre of each bin i, Uj(i) is also collected. The complete, un-

biased probability for each histogram bin, i, across the reaction coordinate, Po{i), 
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is then estimated via the self-consistent solution to the WHAM equations, 

fb(;) =K(f) 
j 

K ^ ) = ^ 

where f j = 
1 (2.40) 

c X i ) = e x p ( - [ / X O A a r ) 

i 

A solution to these equations is obtained via an iteration. An initial estimate of 

Po(0 is made for each bin along the reaction coordinate. This estimate is used 

to calculate the weighting factor, f j , for each simulation, which can then be used 

to estimate the unbiasing factor, K(/), for each bin in the histogram. This is then 

placed in the first equation to unbias the collected statistics along the reaction 

coordinate, and return a new estimate of Po(0- This iteration is repeated until the 

differences between the estimates of %(/) are sufficiently small. 

The use of these equations may be extended over multiple reaction coordinates, 

thus allowing the use of multidimensional umbrellas.^^'^ 

Adaptive Umbrella Sampling 

The use of the WHAM equations allows the facile unbiasing and combination of 

multiple umbrella sampling simulations. The method does not however solve the 

main problem of umbrella sampling, namely that of identifying the best umbrella 

potential. The best umbrella potential to use would be the negative of the PMF, 

[/(%,) =/:8]rinjPa,%z(;L), (2.41) 

where PboUzQ^) is the Boltzmann probability for each value of X. This is the op-

timal umbrella, as it yields even sampling of the reaction coordinate.Recalling 

that equation 2.38 shows that the biased probability along X, Pb{X), is proportional 
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to the Boltzmann probability, PboUzQ^)' 

f6(X)exp([/(X)/*8r) .= 

Multiply both sides by exp(-[/(X)/Agr) 

= f%k,kz(a.) X exi)(--[/(A,)/'t8jr) 

Using the 'best' umbrella potential from equation 2.41 

0= X exp(-A:grin;^offz(^)AgZ') 

«: fko/;z(X) X exp(-lnfbo;,z(A')) 

Thus the biased sampling along X will be even, 

fb(X) = l . 

(2.42) 

Adaptive Umbrella Sampling uses iterative simulations to refine an initial es-

timate of the umbrella potential until it is equal to the negative of the PMF.^^'^^ 

A modification to adaptive umbrella sampling uses the WHAM equations to com-

bine the statistics of each iteration. The combination of these two techniques is 

known as Adaptive Umbrella (AdUmWHAM). The simulations are 

performed using the following protocol;^^'^^ 

1. An initial simulation is performed using a null, or zero umbrella. The system 

is free to sample the X reaction coordinate. This coordinate has been divided 

into a series of histogram bins, i. The number of times that the system spends 

in each of these bins, «o(0' is recorded throughout the simulation. 

2. The probability density for each bin along the reaction coordinate, PQ{i), is 

estimated from the sampling histogram via, 

7^(:)=Mo(;)/Ar, (2.43) 

where N is the total number of simulation steps. 



(:fL4LPTrER2. ]3i()iw[C)L]S(:i;i.AJ& s]nwiiLjMri()ffs ^ 

3. A new umbrella potential for the next simulation, Ui{i), is estimated from 

the estimated probability density via, 

for Po(f) ^ 0 
(2.44) 

Ul (/) = Umin f o r f b ( z ) = 1, 

where Umin is the minimum value of the umbrella from all of the occupied 

bins. To prevent discontinuities, the umbrella potential can be processed via 

a smoothing function. A suitable smoothing function may replace each value 

of the umbrella in each bin, U(/), 

^ (-0.3(/(z - 2) + - 1) + [/(z) + + 1 ) - 0.3(/(z + 2)). 

(245) 

Multiple passes of this function may be used, and a continuous umbrella 

may be returned via fitting to a series of functions. The number of functions 

should not exceed the number of bins, and typically a combination of simple 

polynomials, sine and cosine functions are used.̂ '̂® '̂®^ 

4. This umbrella is then used to bias a new simulation. The statistics along the 

reaction coordinate are collected into a new histogram. 

5. This histogram, together with the umbrella potential, are processed via the 

WHAM equations. These unbias the sampling, and combine it with all pre-

vious iterations to estimate a new probability density along the reaction co-

ordinate, Pi{i). This is used to obtain a new refinement of the umbrella po-

tential, U2{i)- This umbrella may be processed and smoothed as in step 3. 

6. This new umbrella is used to bias a new simulation, which leads to a new 

probability histogram. This can be processed via WHAM to unbias it and 

combine it with all previous iterations, returning a new refinement of the 

umbrella potential. This sequence is then repeated until even sampling along 

the reaction coordinate has been achieved. 

7. Once even sampling has been achieved, the umbrella equals the negative of 

the PMF,^^ Relative free energies along the PMF can be obtained by taking 
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65 differences of points along the umbrella potential. 

2.7 Fast ^Tree Energy'' Methods 

Rigorous free energy simulations have the benefit that given sufficient time, they 

will converge onto the correct result for the forcefield representation of the sys-

tem. However, "sufficient time" can mean millenia, depending on the complexity 

of the free energy change under investigation! Recent studies have shown that even 

simple free energy changes, for example the relative hydration free energy of ac-

etaldehyde and acetone, require significant amounts of simulation (over 510 ps of 

MD).^ Most of this simulation is on partially morphed, non-physical intermedi-

ates. To avoid spending so much simulation effort on non-physical systems, some 

workers have tried to develop methods that approximate the absolute binding free 

energies of ligands to proteins. Two such methods will be discussed; those based 

on the Linear Response approximation, and those based on the use of implicit 

solvents. 

2.7.1 Linear Response Methods 

The Linear Interaction Energy method (LIE)^^ allows the estimation of the ab-

solute binding free energy of a ligand to a protein based on just two simulations. 

One is of the ligand free in solution, and the other is of the ligand bound to the 

protein. The absolute binding free energy, AG, is estimated from the simulation 

average of the difference in electrostatic energy between the ligand and the envi-

ronment in the two simulations, {AUgiec), and a similar average for the van der 

Waals ligand-environment energy, {MJvdw), 

AG = 0.5(A%gc) + (2.46) 

Justification for this equation comes from the Linear Response approximation,® '̂̂ ® 

which provides the factor of 0.5. The linear relationship with the van der Waals en-

ergy was justified by the linear relationship between the number of carbons in an 

n-alkane, and its free energy of solvation. To obtain the value of a, equation 2.46 
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was fitted to the experimental binding free energies of a series of four endothia-

pepsin inhibitors. This yielded a value of 0.161, which has since been applied with 

varying degrees of success to a glucose/galactose receptor^® and HIV-1 proteinase 

inhibitors/^ 

LIE has since been extended by other w o r k e r s / w h o have retrained equa-

tion 2.46 on new experimental binding data. These workers modified the original 

equation such that the electrostatic parameter is also optimised, and a third term is 

included to account for changes in solvent accessible surface area (SASA), 

AG = cx(At/vrfvv) -l-Y(A&45'Ay (2.47) 

Other workers have expanded this equation even further, and developed models 

which include terms that relate the change in the number of hydrogen bonds to 

the solute, or the change in the aromatic surface area, to the absolute binding free 

energy.^' The problem with the LIE method is that coefficients derived from one 

system and model are not readily transferable to another .This means that the 

equation should be retrained for each protein-ligand set that it is applied to. This 

is an expensive procedure, and requires a large number of experimental protein-

ligand binding free energies to have been previously determined. Wall et al. exten-

sively studied the LIE e q u a d o n / ^ and conclude that the version shown in equation 

2.47 ideally requires a training set of 27 binding free energies. Also in this study, 

advanced statistical methods were used to investigate the correlation between the 

binding free energy and many individual forcefield components. The conclusion 

of this analysis was that, while the electrostatic and van der Waals parameters were 

the most important components to determine ligand binding, other forcefield com-

ponents could also be used. There thus exists no generally applicable model equa-

tion on which to base any LIE model, and a complete statistical analysis should be 

performed for any system on which the method would be used. 

2.7.2 Implicit Solvent Methods 

The Linear Interaction Energy method suffers from the need to train the equation 

on existing experimental data. Implicit solvent methods avoid this problem, as they 
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use continuum electrostatics theory to calculate the free energy of solvation of lig-

ands and proteins directly. The most rigorous implicit solvent models are based 

on the Poisson equation. This equation describes the change in electrostatic po-

tential, V(|)(r), with respect to the change in dielectric constant, Ve(r), and the 

underlying charge density, p(r), 

VE(/-).V(|)(r) = -47ip(r). (2.48) 

This equation is valid under conditions of zero ionic strength.If mobile elec-

trolytes are present in solution, then the Poisson-Boltzmann equation is used in-

stead, 

VE(r).V(|)(r) - K'sinh[(|)(/')] = -47:p(r), (2.49) 

where K' is related to the Debye-Hiickel inverse length, K, by,^' 

where e is the electronic charge, / is the ionic strength of the solution and A(4 is 

Avogadro's number. 

Since the Poisson equation can be considered a special case of the Poisson-

Boltzmann (PB) equation, it is common for articles in the literature to describe the 

use of the PB equation when only the Poisson equation has been used.'^ The ap-

plication of these equations to biomolecular systems has been well described.^^'^^ 

Such applications must solve these equations numerically, most frequently through 

the use of a finite difference grid.^^ The molecule is represented on a cubic grid. 

Partial charges are spread over grid points, and the dielectric constant between grid 

points determined based on whether the points are inside the protein (8 — ĉavity) ̂  

or in the solvent (e = ^bui]d- Having defined the system on the grid, the potential 

at each grid point can be determined through the finite difference equations. Two 

PB calculations are needed to calculate the solvation free energy of a molecule. 

One of these is the solvent phase calculation, with Ewt = ŝolvent, and the other 

is the gas-phase calculation, with = ^cavity From the potential at each point, 

([)(/,7, A:), where i, j and k are the indices of the grid point, and the total atomic 
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Figure 2.5: The free energy cycle used by the PB/SA method to estimate the abso-
lute binding free energy of a ligand (L) to a protein (P), AC^w, from the solvation 
free energies of the ligand, protein and protein-ligand complex, A.Gsoiv, and the 
binding free energy of the complex in the gas phase, /S.Gt,ind-gas-

charge, p(i,j,k), at that grid point, the electrostatic contribution to the solvation 

free energy, AGf^f may be calculated via, 77 

^ Z Z Z P ( ' ' ( z , ^ ) ) . (Z51) 

The non-electrostatic contributions to the solvation free energy, AGsoiv, may be 

estimated via a solvent accessible surface area (SASA) term, AG solv ' 

(2.52) 

This combination of PB with a SASA calculation is normally termed PB/SA.^^ 

The absolute binding free energy of a ligand to a protein may be obtained from the 

free energy cycle in figure 2.5.^^'^^ This equation may be used by taking a single 

protein-ligand structure, and using PB/SA to calculate the solvation free energies 

of each of the protein, ligand and complex, while they are in the bound configura-

tion. The gas phase single structure binding free energy is then just the coulomb 

association energy between the protein and ligand.^^'^^ While this method is quick 
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and easy to implement, it neglects the effect of different protein-ligand configura-

tions, and the loss of ligand entropy upon binding. Woods et aV have shown that 

this method can predict widely different binding free energies for protein-ligand 

complexes that differ only slightly in configuration. This configurational depen-

dence, of up to 10 kcal mol" \ means that it is difficult to even qualitatively rank 

the binding of a group of ligands to a protein using this method. 

The MM/PBS A method was developed to overcome this problem.®®"®^ This 

technique combines molecular mechanics (MM) energies with PB/SA by averag-

ing the PB/SA analysis over multiple snapshots from a single molecular dynamics 

trajectory. The MD trajectory is run in explicit solvent. Periodic snapshots are 

taken from the simulation, and a PB/SA analysis is performed. The absolute bind-

ing free energy is then estimated via,®° 

^Gbind = (Emm) + AGjo/v " TAS. (2.54) 

The configurational energies are taken into account through {Emm), which rep-

resents the difference in the average molecular mechanics energies between the 

complex, and free protein and ligand. AG ô/v also represents the average differ-

ence between the solvation free energy of the complex, and that of the free protein 

and ligand. The change in entropy upon binding, AS, is estimated from the final 

snapshot, using a normal mode analysis. 

While the MM/PBS A method attempts to account for configurational and en-

tropy effects, it does so in an approximate fashion. Its use of snapshots from an 

explicit MD trajectory means that the different configurations are not properly 

weighted, and in any case, are generated using a different forcefield to the one 

used during analysis. The main problem with the method is that it requires the 

taking of differences of very large numbers to return the final free energy. The 

molecular mechanics term represents the average difference in molecular mechan-

ics energy between the complex, and free protein and ligand. These energies are 

of the order of thousands, to tens of thousands of kcal The difference of 

the solvation free energies also asks for differences between numbers which are of 

the order of thousands of kcal mol~'.^^'^° Since the final result is of the order of 
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one to ten kcal mol"\ the potential for error is large. 

2.8 Conclusion 

Protein-ligand free energy simulations represent the system using simple molecu-

lar mechanics forcefields. The energy surfaces generated by these forcefields can 

be explored using sampling techniques such as Monte Carlo, or Molecular Dynam-

ics, which preferentially sample thermally significant configurations. Through the 

use of a perturbing X-coordinate, the techniques of FEP, FDTI or AdUmWHAM 

can be used to calculate relative free energies between different systems, assuming 

that the systems are not too dissimilar. These relative free energies may be com-

bined via a cycle to obtain the relative binding free energies of different ligands 

to the same protein. While these methods are exact, and will eventually return the 

correct results for the forcefield, they could take a very long time to converge. To 

avoid this problem, non-rigorous free energy methods can avoid the sampling of 

non-physical intermediates, by attempting to estimate the absolute binding free 

energies of each ligand to the target protein directly. Such estimation is not triv-

ial, and requires many assumptions to be taken. These assumptions could lead to 

problems of reliability and transferability. 



Chapter 3 

The Testing of Established Free 
Energy Methods 

3.1 Introduction 

The aim of the work presented in this thesis is to develop theoretically rigorous 

methods to calculate the relative binding free energies of several ligands to a target 

protein. Ideally, these methods must be sufficiently fast to be used in commercial 

drug discovery, as in such an environment they could be applied to dozens, or even 

hundreds, of different ligands. The use of such large numbers of ligands means 

that the amount of user intervention with the method should be as low as possible. 

By this, we mean that the free energy calculation should work first time, and not 

require endless analysis of results, tweaking of parameters, or rerunning of the 

simulation. Thus a single, bHnd application of the method should reliably and 

reproducibly return the true result. It should do so with little prior knowledge of 

the system, other than the crystal structure, or any prior exploratory simulation 

on the system. To develop such methods, the behaviour of established free energy 

techniques needs to be investigated under these strict conditions. To this end, three 

such methods will be applied to a simple test system, and their reliability, and 

suitability for robust use will be appraised. For this evaluation to be useful, the 

test system must be sufficiently small to allow rapid simulations, yet sufficiently 

complex to represent the major features found in protein-ligand binding. To this 
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end, the solvation of methane in water was chosen, as it involves disruption of 

hydrogen bond networks, and large changes in solvent structure. 

3.2 The Water-Methane System 

The water-methane system, chosen as a test case in this work, has been the subject 

of much experimental and simulation study by other workers. The primary moti-

vation for such study is to gain a better understanding of the hydrophobic effect, 

the tendency for hydrophobic solutes to self-aggregate in solutions of water. The 

hydrated methane system represents such cases in their simplest form, and thus 

permits the study of the experimental thermodynamics,^ solvation shell struc-

ture®^ and the running of detailed molecular simulations.®® The results of these 

studies reveal that the hydration of methane is thermodynamic ally unfavourable, 

with an experimental absolute free energy of +2.00 kcal mol"' at 298 Neutron 

diffraction experiments suggest that the first solvation shell contains 19 ± 2 water 

molecules,®^ with a peak in both the hydrogen-methane and oxygen-methane ra-

dial distribution functions occurring at 3.5 A. Owing to the symmetrical nature 

of methane, no attempt was made to deconvolute these functions into hydrogen-

carbon or oxygen-carbon RDFs.®^ The hydrogen peak is broader than the oxygen 

peak, suggesting that the hydrating water molecules point their 0-H bonds towards 

the bulk.®^ These properties can be compared to those of pure water, which has 

an experimental absolute hydration free energy of -6.31 kcal mol"^ at 298 

Recent X-ray and neutron scattering results®® show a single, sharp peak in the 

oxygen-oxygen RDF of height 2.8, at 2.8 A. A second solvation shell is seen at 

about 4.5 A, and a third at about 6.8 A. The oxygen-hydrogen RDF shows a double 

peak, at 1.8 A and 3.5 A.^^ 

Previous studies have attempted to calculate the absolute hydration free energy 

of methane.®® However, such simulations still represent a significant challenge, 

and are not suitable as test cases at this stage. It was decided that the best test 

case would be the calculation of the relative hydration free energy of water and 

methane. The reasons behind this decision are made clear in the free energy cy-
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(3.1) 

Figure 3.1; The free energy cycle used to calculate the relative hydration free en-
ergy of water and methane. 

cle for this calculation (figure 3.1). The calculation of the absolute hydration fi-ee 

energy of methane requires the creation of a methane molecule into an already 

densely packed solution of liquid water. This is difficult, as a cavity would first 

have to be made in the solution to accommodate the methane. Fortunately, it can 

be seen fi-om figure 3.1 that the relative hydration fi-ee energy of water and methane 

is equal to the non-physical perturbation of a single water molecule into methane in 

solvent, minus the same perturbation in the gas phase. If a rigid water model, and a 

rigid methane model were used, then the gas phase perturbation would have a free 

energy change of zero. The entire relative hydration free energy calculation could 

thus be achieved through a single perturbation of a hydrated water molecule into 

a hydrated methane molecule. This would mean that the change in solute dipole, 

and solvent rearrangement, hydrophobic effect and change in hydrogen bonding, 

would all occur in a single simulation. This simulation would produce a result that 

could be compared with the experimental value of 8.31 kcal mol~^ This value is 

obtained from the difference of the absolute hydration free energy of methane^^ 

and the absolute hydration free energy of water.^^ 
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15 A e 
CH, 

Atom Charge Sigma Epsilon 

0 0.000 3.15365 0.1550 

M -1.040 0.00000 0.0000 

H 0.520 0.00000 0.0000 

CH4 0.000 3.730 0.294 

Figure 3.2: The TIP4P water, and united-atom methane models. 

3.2.1 Simulation Model 

Good simulations rely on good models of the system in question. In this case, 

the methane was modelled as a single OPLS united atom CH4 particle,^ while 

water was modelled as a rigid OPLS TIP4P molecule^^ (figure 3.2). This model 

enhances the dipole of water by offsetting the oxygen's charge onto an "M" atom. 

The perturbation was designed to morph the oxygen atom of the water into the 

united-atom CH4 particle. The remaining hydrogens and "M" atom were morphed 

into dummy atoms, by gradually scaling their charge and LJ parameters to zero. 

To improve convergence, and prevent abrupt changes as the hydrogen atoms dis-

appeared, the hydrogens were gradually pulled into the oxygen as the perturbation 

progressed.^® The 0-H bond lengths started at 0.96 A, and were linearly scaled 

down to 0.2 A by X = 1.0. 

A single water-methane particle was then placed in an orthorhombic box of 

1679 TIP4P waters, of initial dimension 37.3 A x 37.9 A x 37.4 A. This system 

was then equilibrated for 2 M Monte Carlo (MC) steps, according to the param-

eters in table 3.1. The aim of this equilibration was to rattle out any bad contacts 

in the constructed solvent box, and its quality was ensured by monitoring the to-

tal energy of the system. The equilibration, and all subsequent simulations, were 
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Parameter Value 

Ensemble Isothermal-lsobaric (NPT) 

Simulation Temperature 25 

Simulation Pressure 1 atm 

Boundary Type Orthorhombic periodic boundaries 

Solute / solvent move ratio 1 / 1 6 0 0 

Non-bonded cutoff 15 A 

Maximum solute translation / rotation & l A / 5 ^ ° 

Maximum solvent translation / rotation & l A / 2 5 ° 

Frequency of volume moves 1 every 10375 MC moves 

Maximum volume change 830 /13 

Preferential sampling centre Oxygen / CH4 of the solute 

Preferential sampling parameter (WKC) 2 0 0 

Number of MC moves per simulation 
block 

2 5 0 K 

Number of simulation blocks 8 

Table 3.1: Parameters used to control the simulations on the water-methane sys-
tem. 

performed by a modified version of MCPRO 1 . 5 . T h e modifications were to al-

low the code to run all of the free energy methods that are under investigation in 

this work, and were checked to ensure that they did not interfere with the nor-

mal running of the code. All simulations also used preferential sampling of the 

s o l v e n t , a s implemented within MCPRO (see appendix B). This scheme al-

lowed the solvent molecules nearest to the perturbing solute to be moved more 

frequently than those further away, and its use has been shown to improve the rate 

of convergence of liquid phase MC simulations.^^ The use of these parameters 

gave a solute move acceptance rate of about 65% to 70%, a solvent move rate of 

about 65% to 70%, and a volume move rate of about 20% to 30%. Unless other-

wise stated, these simulation conditions were used for all subsequent simulations 

on the water-methane system, and the final equilibrated structure was used as the 

s t a r t i n g structure. 
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3.3 Free Energy Perturbation 

The water-methane system was investigated using Free Energy Perturbation (FEP). 

This method is described in detail in chapter 2 (section 2.6.1). The aim of this in-

vestigation was to see how FEP copes when it has no prior knowledge of the sys-

tem. The FEP windows were thus spaced evenly over the entire X-coordinate, 0.05 

X-units apart. This spacing represents a balance between using sufficiently small 

FEP windows, while keeping their number, 21, sufficiently low such that all win-

dows may be run in parallel over a Beowulf cluster. 10 M steps of simulation were 

run within each window, with statistics collected over 20 blocks of 500 K steps. 

These 20 blocks can be divided into equilibration and production at the end of the 

simulation, when the predicted free energy change from each block can be calcu-

lated, and the convergence of that prediction ascertained. The complete simulation 

therefore totals 210 M Monte Carlo steps. This is in addition to the 2 M steps used 

during general equilibration to provide the starting structure for each A-window. 

To investigate the reliability of the calculation, four copies were run, each starting 

from the same equilibrated structure. Each copy used a different random number 

seed, thus giving rise to four different sets of trajectories. 

3.3.1 Results 

The results for each simulation were generated by calculating the individual for-

wards and backwards free energies from each block of 500 K steps. The free en-

ergies were seen to converge after the first 3 M steps (figure 3.3). The first 3 M 

steps of sampling within each X-window were therefore discarded as equilibra-

tion, and the data from the remaining 7 M steps per window used to calculate the 

free energy averages. The average free energies from each X-window were then 

summed to yield the total forwards and backwards free energy across the entire 

^.-coordinate. The standard error was also estimated for each average, and then 

propagated across A, to estimate a maximum error on the calculation. A full de-

scription of the error analysis is given in appendix E. The results from the four 

FEP simulations are shown in table 3.2, and the predicted potentials of mean force 

are shown in figure 3.4. 
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Figure 3.3: The convergence of the predicted relative hydration free energy of wa-
ter and methane, as predicted by four independent FEP simulations, as a function 
of simulation step. The forwards (solid) and backwards (dashed) values at each 
step are based on their average calculated from the previous 500 K steps. The 
convergence for both the forwards and backwards predictions are also collected 
together into single plots. 

Simulation Forwards Free Energy 
/ kcal mol" ' 

Backwards Free Energy 
/kcal mol~' 

1 8.8 (0.7) 8.3 (0.7) 

2 9.5 (0.6) 

3 8.3 (0.6) 7 .3 (0.6) 

4 8.7 (0.7) 

Average 9.0 (0.6) 8.3 (0.8) 

Table 3.2: The relative hydration free energy of water and methane as predicted 
by four independent FEP simulations. One standard error is shown in parenthesis. 
The averages of the four forwards, and four backwards free energy results are also 
shown. The standard deviations of these averages are shown in parenthesis. 

3.3.2 Analysis 

Within error, the results from the four FEP simulations are in agreement with each 

other and with the experimental value of 8.31 kcal mol~^ However, the spread 

of the results, from 7.3 to 9.9 kcal mol~^ is quite large. In addition, the results 
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0.0 0.2 0.4 0.6 
(3) 

1.0 0.0 0.2 0.4 0.6 0.8 1.0 
(4) 

Figure 3.4: The potential of mean force for the relative hydration free energy of 
water and methane, as calculated by four independent FEP simulations. The error 
bars represent one standard error. Both the forwards (solid Hne) and backwards 
(dashed line) free energies are shown. 

show significant difference in the forwards and backwards predicted free energies. 

This hysteresis, of 0.4 to 1.0 kcal m o l " \ shows that some of the A,-windows are 

not sufficiently close to converge the FEP simulations. Section 2.5 discussed how 

poor overlap between the reference and perturbed states could lead to a poor con-

vergence of the Zwanzig equation. The shape of the PMF suggests that the overlap 

between the reference and perturbed states at low X is not as good as the overlap 

at high X. This is revealed by the high gradient of the PMF in this region, and by 

the growing hysteresis of the forwards and backwards free energies. This indicates 

that the parts of the simulation at low X, between X = 0.0 and X = 0.3, should be 

rerun with a larger number of windows. However this would be against the spirit of 

this test, which required that the simulation proceeds with no prior knowledge of 

the system. These results could also have been improved through methods which 

optimise the window widths throughout the simulation, for example through the 

use of dynamically modified windows.However, this technique requires that the 

simulations within each X-window are run serially. Current computer technology 

mitigates against this approach. 
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Error Analysis 

Three methods have been used to analyse the errors on these simulations. The 

first was through taking a simple average and standard deviation of the results of 

the four simulations. As the four simulations were run independently, their results 

should not be correlated, and thus the size of any random errors should be correctly 

determined. This analysis suggests that the error on the results of the simulation 

are between 0.6 kcal mol~' and 0.8 kcal mol~^ The second form of error analysis 

involved calculating the standard error for each individual trajectory, over blocks 

of 500 K steps. This standard error was then added to the free energy of each X-

window, and propagated across X to get a total error on the relative hydration free 

energy. The blocks of 500 K steps were not independent, as they were calculated 

within single trajectories. This analysis suggests that the error on the simulation 

results is between 0.6 kcal mol"^ and 0.7 kcal mol"^. The final method of error 

analysis employed during these simulations was the use of double-wide sampling 

to calculate both the forwards and backwards free energies. This suggests that the 

error was between 0.4 kcal mol~^ and 1.0 kcal mol~^ It is useful to note that the 

magnitudes of all three error analyses are similar, and that the analysis over blocks 

of 500 K steps returns an error that is comparable to the standard deviation over 

four independent simulations. 

Fluctuations in Interaction Energy 

The results from all four FEP simulations show significant hysteresis between the 

forwards and backwards free energies. The analysis in section 2.5 suggests that 

this is the result from insufficient overlap between adjacent X-windows. This in-

sufficient overlap should result in large fluctuations in the difference in energy 

between the reference and perturbed states. To investigate whether this were the 

case, the difference between the perturbed state, average solute-solvent energy, and 

the reference state average solute-solvent energy was calculated for each value of 

X, over blocks of 500 K steps. This analysis was performed for the last 7 M steps 

of simulations within each X-window, and the results are shown in figure 3.5. The 

magnitude of the difference in interaction energy is at its largest between X = 0.0 
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Figure 3.5: The difference between the average solute-solvent energy for the per-
turbed state, and reference state, as calculated over blocks of 500 K steps for the 
last 7 M steps of each A,-window, for each for the four simulations. The differences 
to the forwards perturbed state (crosses) and backwards perturbed state (pluses) 
are shown. There is no backwards perturbed state for X = 0.0, nor forwards state 
for X = 1.0. 

and X = 0.3. The fluctuations in this difference are significant in this range, giving 

a spread of interaction energies at X = 0.0 of approximately 2.0 kcal mol~^. This 

confirms the earlier hypothesis that poor overlap at low A,-values was the cause of 

the hysteresis in the free energy results. 

Figure 3.5 shows that the forwards and backwards differences for each X-value 

approximately mirror each other. This is against expectation, as the forwards dif-

ference represents the difference in interaction energy between the system at A, and 

A -t- AA., while the backwards difference is between the system at A, and A, — AA,. The 

reason for this observation is most likely because both energy differences were cal-

culated over structures collected over the same reference state. Since the change in 

solute-solvent energy is approximately linear over small AA, the magnitude of the 

average will be determined by the range of configurations that have contributed. 
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Radial Distribution Function 

Analysis of the results of four independent FEP simulations has demonstrated that 

poor overlap between the reference and perturbed states at low X-values is respon-

sible for the hysteresis between the forwards and backwards free energies. The 

source of this poor overlap is likely to be in the range of solvent structures sam-

pled within each X-window. To probe the solvent structures, the radial distribution 

function^^ (RDF) for each X-window was accumulated. The RDF was derived from 

structures of the system taken every 50 K steps, for the last 7 M steps of simula-

tion. The RDF between the solute oxygen and solvent oxygen, and solute oxygen 

and solvent hydrogen was calculated. At A. = 0.0 this yields g(^o-o) and g(o-H)-

AtX= 1.0, where the solute oxygen has been fully perturbed into the united-atom 

methane, it yields g(c-o) and Since the RDFs were only evaluated be-

tween the central solute and the remaining solvent, they are quite noisy. They are, 

however, sufficiently detailed to yield information about the effect of the mutation 

on the primary hydration shell. The RDFs were collected with a histogram bin size 

of 0.1 A. The RDFs for X — 0.0 and X = 1.0 are shown in figure 3.6. The RDFs 

produced from the simulations are seen to agree with those reported by other work-

gj.g_85,86,88 Yhe water-water RDFs display a double-peak in at about 1.9 A 

and 3.3 A, while g(o-O) shows a sharp single peak of height 2.8 at about 2.8 A. 

The methane-water RDFs show a broader single peak in g(c-o), at about 3.5 A, 

while the double peak in g{^o-H) has become a very broad single peak in g{c-H) 

at about 3.5 - 4.0 A. These RDFs thus clearly demonstrate a large difference in 

solvent structure between water in water, and methane in water. 

To see how the RDFs changed throughout the perturbation, they are plotted as 

a function of X (figure 3.7). This figure shows that the majority of the change in 

solvent structure occurs at low X-values, from X = 0.0 to about X — 0.25. This is 

characterised by the loss of a double peak in the hydrogen RDF, and a shift of the 

primary hydration shell in the oxygen RDF. The X-range that contains the most 

structural change almost exactly corresponds to the range where most of the free 

energy change occurs in the PMF (figure 3.4). The large change in solvent struc-
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Figure 3.6; The radial distribution functions between the central solute atom and 
the solvent oxygens and hydrogens. Both the RDFs for X = 0.0, which corresponds 
to water {g[o-H) and and A, = 1.0, which corresponds to methane {g{c-H) 
andgi^c-o)) are shown. 
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(a) Oxygen (b) Hydrogen 

Figure 3.7; The radial distribution fiinctions between the central solute atom and 
(a) solvent oxygens, and (b) solvent hydrogens, as a function of A,. The scale runs 
from blue (0.0), through white (1.0) up to red (greater than 2.0). 

ture is thus the reason why there is little overlap between neighbouring windows 

at low X-values. This explains the hysteresis in the FEP results, however it does 

not explain their wide variation. This large spread of predicted results, from 7.3 

to 9.9 kcal mol~', is however explained by the noisiness of the RDFs. The statis-

tics to generate these plots are derived from a single simulation trajectory at each 
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0.9 1.0 

Figure 3.8: The individual average forwards (dark line) and backwards (light line) 
free energies for each X-window, from four independent applications of FEP to 
calculate the relative hydration free energy of water and methane. There is no 
backwards free energy for X — 0.0, nor forwards free energy for A, = 1.0. 

A,-window. Each trajectory samples only a subset of all possible solute-solvent con-

figurations. The subset sampled determines the RDF for that value of X, and it is 

seen in figure 3.7 that the exact detail of the RDF varies from one value of X to an-

other. For example, since the perturbation over X involves smooth, linear changes 

in potential functions, then the change in position and width of the second peak in 

the hydrogen RDF is also expected to change smoothly with X. This is not seen, 

with the second peak starting at random between 2.5 A and 3.0 A for different X-

values. This random sampling error is also manifest in the individual free energies 

between neighbouring windows predicted by each of the four simulations. Figure 

3.8 shows the average forwards and backwards free energies for each X-window, 

from each of the four FEP simulations. Each free energy in this plot is generated 

&om only a single trajectory. It is seen that each of the four different tr^ectories 

give rise to a slightly different predicted free energy. This effect is particularly 

acute at low X-values, where the change of the solvent structure is at its greatest. 

In this region, the spread of predictions can be up to 1.0 kcal mol^^ The effect 
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of random sampling error is thus easily observed through the running of multiple 

simulations. However, while it may be desirable to reduce this error through av-

eraging the results of multiple trajectories, there is no mechanism through which 

this may be correctly achieved. To see why this is the case, let us consider the 

free energies predicted by two independent simulations, A and B, within a single 

X-window. The most obvious method of averaging the free energy results of the 

two trajectories, AGA and AGg, is through a mean average, 

== (3 2) 

However, the individual free energies are calculated via the Zwanzig equation, 

AG/t = -^arin(exp(-AE/tar))^, (3.3) 

where AE is the difference in energy between the reference and perturbed states, 

and (•••)^ represents an average over the subset of configurations generated by 

simulation A. The Zwanzig equation forms the relative free energy over an aver-

age of the exponentials of the differences in energy. This suggests that the average 

free energy over multiple trajectories should also be formed as an average of ex-

ponentials, 

= (3.4) 

AGuvg — In 

Substituting the Zwanzig equation into this average, and using (...)^ to represent 

the subset of configurations sampled during simulation A, and to represent 

the subset sampled during simulation B, gives, 

^ ^exp(-&grin(exp(-AE/&gr))^) 

-l-exp(-&g71ii(exp(-AE/&ar))2) 

(3.5) 

( e x p ( - A E / ^ ) ) ^ 4- ( e x p ( - A g / ^ ) ) g 4- 2 e x p ( - ^ g r ) 

(exp(-AE/^))^ -I- (exp(-AE/^))^ 

In 
2 ^ 
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The average over the set of configurations sampled during simulation A represents 

the sum over all configurations of the system, F, of the product of the probability 

of that configuration, py^(r), with the exponential of the energy difference from 

that configuration, exp(—AE(r)/^g7). The probability, pA(r) is the probability 

of configuration F within the subset of configurations sampled by simulation A. 

The same correspondence can be made for the average over the subset of config-

urations from simulation B. Using this representation, the above equation can be 

represented as, 

^Gavg — —ksTln ^ ' 2 p , , ( r ) e x p ( - A g ( r ) / ^ 8 r ) 
2 \ p 

+ 2 P a ( r ) e x p ( - A E ( r ) / t a r ) j (3.6) 

-A:8rin Z exp(-AE(r)/X:8n 
L P 

This equation shows that AGavg will only equal the correct value of AG if the 

average of the probabilities from each simulation, for each configuration, is equal 

to the Boltzmann probability for that configuration, pBoitz' i e. 

p ; , ( r ) + p a ( r ) f m a u r (3J) 

This will only be true in two cases. The first is when pBoitzi^) = ^ ^ ( 0 = Pb(F), 

i.e. when both simulations A and B are fully converged. The other is when simula-

tions A and B are both subsets of the same simulation trajectory. This conclusion 

is best illustrated by considering the following limiting case. The free energy cal-

culated over a simulation of 5 M steps would not equal the average free energy 

calculated over 5 M trajectories each consisting of a single step, as this would rep-

resent an average over the 5 M starting configurations, and not an average over 

a correctly weighted ensemble. The average over 5 M steps will however equal 

the average free energy over 5 M trajectories, each consisting of 1 step taken in 

sequence from the ensemble of configurations generated via the 5 M step simula-

tion. In this case, each of the 5 M trajectories represents a subset of configurations 

from the original 5 M step simulation, and thus the complete set of 5 M trajecto-

ries forms a complete and consistent ensemble that is equal to that generated by 
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the 5 M step trajectory. This analysis shows that there will be an error associated 

with the forming of a free energy average over multiple independent trajectories. 

While this error will be very small if the independent trajectories are long, it has 

the potential to become significant if the individual trajectories are short. 

3.3.3 Summary 

Free Energy Perturbation was applied to the calculation of the relative hydration 

free energy of water and methane. While the results were, within error, consistent 

and in agreement with experiment, the simulations produced a wide spread of 

results with a significant hysteresis. The source of these problems was traced to the 

challenges posed by the changing solvent configuration. The solvent configuration 

changed dramatically at low X-values, leading to poor overlap in this region, and 

thus large hysteresis. The use of only a single trajectory at each X-value led to a 

significant random sampling error. Each trajectory sampled only a subset of all 

possible configurations, leading to a random error in the individual free energies. 

PEP provides no mechanism for averaging this random error, as it provides no 

method to combine the statistics of multiple independent trajectories correctly. 

The results of these simulations suggest that FEP is a good method to use 

if there is already a good understanding of the nature of the free energy change, 

though it may perform poorly if it is applied blindly to a new system. These simula-

tions also suggest that multiple applications of FEP would be necessary to quantify 

the effect of random sampling error. 

3.4 Thermodynamic Integration 

The water-methane system was next investigated via the method of Thermody-

namic Integration, (TI). This method is described in detail in chapter 2 (section 

2.6.2). Unlike FEP, which calculates differences in free energy between two dif-

ferent X-values, TI calculates merely the free energy gradient with respect to X, 

for a particular value of X, The free energy gradients for a collection of 

X-values can then be evaluated and integrated to return the PMF across X, and 

thus the value of the free energy change. Because TI only needs to sample a sin-
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gle X-value, it should not suffer from the problems of poor overlap and hysteresis 

that reduced the quality of the FEP results on water-methane. However, unlike 

standard TI, the free energy gradients for this study were evaluated numerically, 

as described in section 2.6.2. This was to prevent substantial modifications of the 

simulation code, and to allow an almost identical simulation setup to the FEP sim-

ulations in the previous section. A reference state was defined for the value of X 

for which the gradient was desired, and perturbed states were placed AX above and 

below this value. In this way, the Zwanzig equation^® from FEP could be used to 

approximate (|^)a, by {^)x- Since AX was very small, the forwards and back-

wards calculations of the gradient should be equal, and any deviation between the 

two could be used a sign of error. In addition, the small value of AX means that 

the reference and perturbed states are so similar, that there should be little problem 

from poor overlap. This approach of obtaining free energy gradients is typically 

referred to as Finite Dijference Thermodynamic Integration (FDTI)."^' 

3.4.1 Simulation Conditions 

The application of FDTI to the water-methane system was almost identical to that 

used for the FEP simulations (sections 3.2.1 and 3.3). The same starting structure 

as in the FEP simulations was taken, and four identical FDTI simulations were run 

with different random number seeds. The value of AX used was 0.001, chosen to 

be sufficiently small to give good agreement between the forwards and backwards 

estimated gradients, and yet sufficiently large to prevent numerical precision prob-

lems during the running of the simulations. All other parameters and simulation 

lengths were identical to the FEP runs. 

3.4.2 Results 

The results were generated by calculating for each block of 500 K steps 

of simulation per X-value. The forwards and backwards gradients were seen to 

converge after about 3 M steps (figure 3.9). The values from the last 7 M steps 

were thus averaged and integrated via the trapezium rule to obtain the forwards and 

backwards predicted potentials of mean force. To deal with the ends of the PMF, 
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Figure 3.9: The convergence of the predicted relative hydration free energy of wa-
ter and methane, as predicted by four independent FDTI simulations, as a function 
of simulation step. The forwards (solid) and backwards (dashed) values at each 
step are based on their average calculated from the previous 500 K steps, and are 
almost equal for each step. The convergence for both the forwards and backwards 
predictions are also collected together into single plots. 

Simulation Forwards Free Energy / 
kcal m o P ' 

Backwards Free Energy / 
kcal mol~' 

1 8.4 (0.6) 8.4 (0.6) 

2 9 .4 (0.7) 9 .4 (0.7) 

3 9.3 (0.7) 9 3 ( O J ) 

4 9.2 (0.7) 9 .2 (0.7) 

Average 9.1 (0.4) 9 .1 (0.4) 

Table 3.3: The relative hydration free energy of water and methane as predicted 
by four independent FDTI simulations. The standard error is given in parenthesis. 
The averages of the four forwards, and four backwards free energy results are also 
shown. The standard deviations of these averages are shown in parenthesis. 
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Figure 3.10: The potential of mean force for the relative hydration free energy of 
water and methane, as calculated by four independent FDTI simulations. The error 
bars represent one standard error. Both the forwards (solid line) and backwards 
(dashed line) free energies are shown. 

the backwards predicted gradient for A, = 0.0 was obtained from the negative of 

the forwards gradient at that value. A similar scheme was used to get the forwards 

gradient at A, = 1.0. The error on the calculations were obtained in an identical 

manner to FEP. The results of the four FDTI simulations are shown (table 3.3), as 

are the PMFs (figure 3.10). 

3.4.3 Analysis 

Within error, the results from all four FDTI simulations agree with each other, the 

four FEP simulations, and with experiment. Unlike FEP, the results show almost 

no hysteresis, due to the very small AX used between the reference and perturbed 

states. The values from the four simulations are very consistent, though simulation 

1 predicts a free energy which is about 1 kcal mol"^ lower than simulations 2 to 4. 

While the spread of results is much improved over FEP, the standard error on the 

individual results is of the same magnitude. 

The radial distribution functions of the FDTI simulations are essentially the 

same as those generated by the FEP simulations, as both FEP and FDTI shared 



CHAPTER 3. TESTING ESTABLISHED FREE ENERGY METHODS 62 

>, 0.00 
M 
s -0.03 
c 

o 
00 

oa 0^ 04 0^ 0^ 
(3) 

0.09 

&0 0^ 04 oa Oj 1^ 
(4) 

- 0.06 

- 0.00 

- -0.03 

- -0.06 

o 
00 
6 &w-

&%-

am-
8 am-
8 4 . 0 3 -

^ - 0 . 0 6 -
Q 

ao &2 a4 ae as LO oa oj 04 o^ o^ LO 
X 

Figure 3.11: The difference between the average solute-solvent energy for the per-
turbed state, and reference state, as calculated over blocks of 500 K steps for the 
last 7 M steps of each X-window, for each for the four simulations. The differences 
to the forwards perturbed state (crosses) and backwards perturbed state (pluses) 
are shown. There is no backwards perturbed state for A = 0.0, nor forwards state 
for A = 1.0. 

the same reference states. However, the perturbed states for both methods were 

different, with FDTI using perturbed states which had a much smaller AA, to the 

reference states (0.001 compared to 0.05). The difference between the perturbed 

state, and reference state average interaction energies were calculated as in section 

3.3.2 for each X-value of each simulation. These are shown in figure 3.11. These 

differences show very similar patterns to FEP, with mirroring of the forwards and 

backwards differences, and the absolute values being larger at low X-values. How-

ever, the magnitude of the differences is significantly lower, being around 50 to 60 

times smaller than those from FEP. This corresponds to the use of a AA which was 

also 50 times smaller than FEP. The reduced magnitudes of the free energy differ-

ences are translated into reduced fluctuations of the differences in energy. This is 

the reason behind the almost non-existant hysteresis on the results from the FDTI 

simulations. 

Unlike FEP, the FDTI simulations do not show any hysteresis. They do how-

ever exhibit random sampling error. This is clearly seen in the average free energies 
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Figure 3.12; The average free energies from four FDTI simulations calculated be-
tween the reference and perturbed states for each value of X. Both the forwards 
(solid line) and backwards (dashed line) are shown. The first plot shows the ac-
tual free energies, while the remaining plots show the difference between the free 
energies from the first simulation and each of the other three simulations. 

calculated by each simulation at each X-value (figure 3.12). This figure shows the 

individual free energies calculated between the reference and perturbed states for 

each value of X, for simulation 1. It also shows the differences between the free 

energies calculated for simulation 1, with those calculated for each of the other 3 

simulations. It is clear from this figure that there is much variation between the 

free energies calculated from each simulation at each X-value. This variation is at 

a maximum at low A,-values, where its magnitude is about 0.01 kcal mol" \ While 

this may seem small, it must be remembered that the numerical integration of these 

free energies involves their multiplication by | ^ , where 5A. is the difference in X 

between adjacent windows, and AX is the difference in X between the reference 

and perturbed states. Since, for these simulations, AX = 0.001, and 5X = 0.05, 

this variation of 0.1 kcal mol"^ is multiplied into a random sampling error of ap-

proximately 0.5 kcal mol"^. The repetition of this error for the first two values 

along X is enough to explain the 1.0 kcal mol~' random sampling error in the final 

free energy results. The reason for this random sampling error is the same as for 
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FEP, namely that only a single trajectory is run at each X-value. Each trajectory 

will have independently covered a particular subset of configurations, leading to 

a slightly different free energy result. As in the case of FEP, FDTI provides no 

mechanism for correctly averaging the results of several trajectories to allow this 

random sampling error to be reduced. 

3.4.4 Summary 

FDTI was applied to calculate the relative hydration free energies of hydration of 

water and methane. The results show less spread than FEP, though have a similar 

standard error. The spread of predicted results was seen to arise from a spread of 

estimates of the free energy values at low X-values. This spread highlights the main 

problem of FDTI, namely that an individual free energy is estimated from only a 

single simulation trajectory. This free energy will therefore be strongly dependent 

on the peculiarities of the subset of configurations covered by that single trajectory. 

As in the case of FEP, FDTI provides no framework for averaging out this random 

sampling error by averaging multiple trajectories at each A,-value. 

3.5 Adaptive Umbrella WHAM 

The relative hydration free energy of water and methane has been investigated via 

the established free energy methods of FEP and FDTI. Both methods estimate the 

potential of mean force across a ^-coordinate by placing trajectories at individ-

ual points along X. The use of a single trajectory at each X-point means that the 

values calculated are subject to a random sampling error. This random error can-

not be reduced by averaging over multiple independent trajectories, as the method 

provides no mechanism to correctly combine their statistics. Adaptive Umbrella 

WHAM (AdUmWHAM) is a method that overcomes this problem as it uses the 

Weighted Histogram Analysis Method^^ (WHAM) to correctly combine the statis-

tics of multiple trajectories. It is described in detail in chapter 2, section 2.6.4, The 

method uses a dynamic A-coordinate, by allowing each trajectory to make moves 

along X, as well as in normal coordinate space. Sampling along the X-coordinate 

is enhanced by an umbrella potential,®^ which is gradually refined throughout the 
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simulation. Once converged, the umbrella will encourage even sampling of the X-

coordinate. At this point, the umbrella will equal the negative of the potential of 

mean force along X. Multiple trajectories could be run in parallel, and the results 

from each trajectory, and each iteration, combined via WHAM.^^ In this way, mul-

tiple trajectories visit each point along the X-coordinate, and their contributions to 

the free energy change are correctly weighted. 

3.5.1 Simulation Conditions 

The application of AdUmWHAM to the calculation of the relative hydration free 

energy of water and methane was designed to be as similar to the applications of 

FEP and FDTI as possible. This was to ensure that valid comparisons could be 

made between the three methods. Four identical simulations were run, each start-

ing from the same initial structure as used by the FEP and FDTI simulations. The 

simulation parameters were identical to those used in FEP and FDTI (table 3.1), 

and the simulation protocol is described in section 2.6.4. Each of the four simula-

tions were identical, except for the use of a different random number seed. A X-

move was made every 500 normal MC moves. This value was chosen to maximise 

the number of steps between %-moves, thus minimising the affect of Hamiltonian 

lag discussed in section 2.6.4. The size of each X-move was randomly chosen to 

be between -0.05 and +0.05. This move size was chosen to allow good sampling 

of X, without moving X too quickly for the system to respond. Each simulation 

comprised two trajectories running in parallel. Both trajectories were generated 

simultaneously, and when each one finished, it submitted its X-samphng statistics 

to a custom program that performed the WHAM analysis. The WHAM analysis 

was performed according to the protocol described in section 2.6.4. The result-

ing umbrella was then smoothed, twice, according to the protocol in section 2.6.4, 

and fitted to the sum of 3 polynomial functions, 50 sine functions and 50 cosine 

functions. 

3 50 %) 

U { X ) = ^ Ci X - h ^ C i+3 X s i n ( 2 7 i f X ) - h ^ C/+53 x cos(2mi), (3.8) 
/= 1 i= 1 /= 1 
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where the 103 coefficients, c/, were obtained through a single value decomposi-

tion algorithm."''® This umbrella was immediately returned to continue the simu-

lation that submitted the trajectory, which then continued sampling. In this way, 

two trajectories were run in parallel, with both contributing statistics to refine the 

umbrella. 

Each trajectory ran in blocks of 200 K steps, starting with a new, random value 

of X at the start of each block, but otherwise using the coordinates from the end of 

the previous block. Each block used 40 K steps of equilibration, and 160 K steps of 

data collection. When a block completed its 200 K steps, it returned the results to a 

server, which processed these results via WHAM, and returned a new estimate of 

the umbrella potential. The new umbrella was immediately taken by the trajectory 

to start a new block, and thus both trajectories ran asynchronously in parallel. The 

simulation was run for 500 completed WHAM iterations. This corresponded to a 

total simulation length of 100 M MC steps, which was about half of the 210 M 

used in FEP and FDTI. However, FEP and FDTI ran 21 trajectories in parallel, 

with each trajectory only covering 10 M steps. AdUmWHAM is not as coarsely 

parallel, as each trajectory must cover the entire X-coordinate, and share its results 

via WHAM with the other trajectory. The simulation thus took five times longer 

than FEP or FDTI, as it used 50 M steps per trajectory. 

3.5.2 Results 

The results of the four AdUmWHAM simulations are shown (table 3.4), as are the 

predicted PMFs (figure 3.13). The results were obtained by taking the negative 

of the umbrella from the final iteration. The error on these results is difficult to 

quantify, and requires knowledge of the underlying X-sampling. Because of this, 

the presentation and discussion of errors will wait until after the analysis and dis-

cussion of the underlying A-sampling. 

3.5.3 Analysis 

The results from the four AdUmWHAM simulations on water-methane show poor 

agreement with FEP, FDTI or experiment. The spread of results is also quite large 

(5.6 kcal mol~^ to 7.2 kcal mol~^). A possible reason for the poor results is that 
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Simulation Free Energy / 
kcal mol~' 

1 6.2 

2 7.1 

3 6.4 

4 5.6 

Average 6.4 (0.5) 

Table 3.4: The relative hydration free energy of water and methane as predicted by 
four independent AdUmWHAM simulations. The average over the four results is 
also shown, together with the standard deviation in parenthesis. 

Figure 3.13: The predicted PMF of the relative hydration free energy of water and 
methane, as predicted by four equivalent AdUmWHAM simulations. The PMF is 
taken as the negative of the final iteration's umbrella. 
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Figure 3.14: The convergence of the predicted relative hydration free energy of wa-
ter and methane as a function of AdUmWHAM iteration. The relative free energy 
is taken as the difference between the ends of the umbrella for each iteration. 

the method has not converged after 500 iterations. To investigate whether this were 

the case, the predicted relative hydration free energy was plotted as a function of 

iteration (figure 3.14). This plot was obtained from the difference between the ends 

of the umbrella produced by each iteration. It shows that the predicted free energy 

changes greatly in the first 50 to 100 iterations, and then settles down, slowly 

oscillating around a mean value. This implies that the AdUmWHAM simulations 

all converged rapidly. This view is reinforced through investigation of the actual 

sampling along X, which shows that even sampling had been obtained by the end 

of the four simulations. 

Since the results seem to suggest that the AdUmWHAM simulations have con-

verged, another reason must be sought to explain why the four simulations give 

such varied results, and disagree with FEP and FDTI. One possible avenue of 

exploration is the amount and type of solvent sampling. The radial distribution 

function was calculated for the system structure at the end of each iteration, and 

histogrammed according to the value of X at the end of the iteration. This procedure 

produced an RDF with respect to A,, and the use of a X-histogram bin size of 0.05 

leads to comparable plots to figure 3.6 on page 54 from the first FEP simulation. 
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Comparisons between these RDFs and those calculated via FEP should be made 

with caution, as the total number of data points within the FEP RDFs is larger than 

for those calculated via AdUmWHAM. Also, the FEP results are evenly spread 

over X, while the dynamic X-coordinate means that the AdUmWHAM results are 

less evenly distributed. The RDF with respect to X was calculated for all four sim-

ulations. All four sets of plots were similar, so only those from the first simulation 

are shown (figure 3.15). 

While the oxygen RDF showing the same main features as those seen in the 

RDF from the FEP simulations (figure 3.6), the hydrogen RDF fails to show the 

distinct double-peak at low X-values. While a double peak can be seen, it is very 

poorly defined, and the main peak is quite similar over the entire ^.-coordinate, 

remaining broad and noisy. There is no sharp peak at 3.0 A at X — 0.0 in this 

hydrogen RDF. Instead there is a broad and noisy peak from 3.0 to 4.0 A. This 

suggests that AdUmWHAM is failing to sample the key solvent configurational 

change for this calculation. Since the methods appears to have converged, the rea-

son for this must lie within the simulation protocol. Given that the results of the 

simulations show some form of systematic error, an analysis of the data in terms 

of random errors would be misleading. 

3.6 Changing the AdUmWHAM Protocol 

Four AdUmWHAM simulations were applied to calculate the relative hydration 

free energy of water and methane. The results produced were contradictory and 

failed to agree with either experiment, or previous simulations. Analysis of the 

results suggested that the X-sampling had become even, and that the umbrellas had 

converged. However, investigation of the RDFs showed that the system was not 

sampling solvent configurations correctly. The source of this problem is likely to 

reside in the protocol used to run the AdUmWHAM simulations. A key part of this 

protocol is the randomisation of X after each iteration, i.e. that the value of X was 

re-assigned at random after each iteration. This was done to ensure that the value of 

X did not become stuck between iterations, and thus hinder the convergence of the 

calculation. At the start of each iteration, the system was given 40 K steps to adjust 
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Figure 3.15; The oxygen and hydrogen RDFs calculated from the first FEP and 
first AdUmWHAM simulation. The colour scale is the same as in figure 3.7. 

to the new X-value. In retrospect, this was insufficient, and indeed the uniform 

randomisation of A, could bias the statistics to make it appear that the X-sampling 

was more even than it actually was. This would also explain the poor RDFs, as a 

predominantly 'methane' solvent structure may suddenly find that it is hydrating a 

water molecule, as X is randomly changed from near 1.0 to near 0.0. The solvent is 

unlikely to respond in 40 K steps, and thus the statistics collected will be incorrect, 

and the RDF will show a methane-like structure at low A-values. To see if this 

were the case, four further AdUmWHAM simulations were run which did not 

randomise A, after each iteration. The value of A at the end of one simulation block 

was preserved for the next block. In all other respects, these four AdUmWHAM 

simulations were identical to the original four. 
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Simulation Free Energy/ 
kcal mol~' 

1 9.7 

2 8.0 

3 7.7 

4 7.9 

Average 8.3 (0.8) 

Table 3.5; The relative hydration free energy of water and methane as predicted 
by four independent AdUmWHAM simulations which preserved X after each iter-
ation. The average over the four results is also shown, together with the standard 
deviation in parenthesis. 
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Figure 3.16: The predicted PMF of the relative hydration free energy of water and 
methane, as predicted by four equivalent AdUmWHAM simulations. The PMF is 
taken as the negative of the last iteration's umbrella, and the value of X is preserved 
between each iteration. 

3.6.1 Results 

The results of the four new AdUmWHAM simulations are shown (table 3.5), as are 

the PMFs (figure 3.16). As in the previous simulations, the results were obtained 

from the negative of the final iteration's umbrella, and a discussion of the error on 

the calculation will be postponed until after a deeper analysis of the sampling. 
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Figure 3.17: The convergence of the predicted relative hydration free energy of 
water and methane as a function of AdUmWHAM iteration for four independent 
AdUraWHAM simulations. The value of X was preserved between iterations. 

3.6.2 Analysis 

The results from the four new applications of AdUmWHAM show much better 

agreement with experiment, FEP and FDTI. The spread of results is quite good, 

although the results from simulation 1 are around 2 kcal mol~^ higher than the 

other three simulations. The convergence of these calculations was plotted (figure 

3.17) using the identical method as that used to obtain figure 3.14. The four simu-

lations are seen to converge in a similar manner up to around iteration 100. At this 

point, the predicted result from simulation 1 rises quickly to nearly 10 kcal mol~\ 

and stays there for the remaining 250 iterations. The predicted values from all four 

simulations appear stable for the last 200 to 300 iterations, implying that the um-

brella has converged. To see if the simulations had truly converged, the X-sampling 

was plotted over sets of iterations. The sampling for all four simulations are quite 

similar, so only those from simulations 1 and 2 are shown (figure 3.18). These 

figures show that the total X-sampling was reasonably even. This is what the sim-

ulations should give if the umbrella is the negative of the PMF. 

An explanation for the pattern of convergence of the AdUmWHAM Simula-
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Figure 3.18; The normalised sampling of X for ranges of iterations, for both simu-
lation 1 and simulation 2. 
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tions may be found through the comparison of figures 3.17 and 3.18. There was 

no umbrella at the start of the simulation. The ^.-sampling was thus biased towards 

low values of X, as water in water has a lower free energy than methane in water. 

This is apparent in the set of iterations from 1 to 100, which shows a sharp peak 

around A, = 0.0. As the data is processed by subsequent iterations of the WHAM 

equations, the umbrella is refined to encourage broader sampling of X. The dif-

ference between the ends of the umbrella is increased to discourage sampling of 

low X, and encourage sampling of high X. This quickly works, and the sampling 

becomes more even by the end of the first 100 iterations. The increase in the dif-

ference between the ends of the umbrella is seen as a sharp peak in figure 3.17, 

at approximately 9 to 13 kcal m o P ^ during the first 50 iterations. Unfortunately, 

this is an overestimate of the free energy difference between water and methane. 

If the free energy difference is overestimated, then the umbrella would be biasing 

the X-sampling too much, and thus the sampling would be biased towards high 

X. This is seen between iterations 150 and 250 for simulation 2, and is especially 

acute for simulation 1, which shows a bias towards high X before iteration 100. 

The iterations of the WHAM equations now seek to reduce the difference between 

the ends of the umbrella, and thus to correct this over-bias towards high X. The 

difference between the ends of the umbrella is thus reduced, and the sampling 

becomes more even. However, this correction is also overestimated, and now the 

predicted free energy drops to as low as 6 kcal mol~^ This underestimate is the 

result of an umbrella that is too small, and thus the sampling returns to being bi-

ased towards low X. Continued iterations of the WHAM equations now seek to 

increase the magnitude of the umbrella, to correct for this overcorrection. This 

process continues throughout the simulation, and the umbrella "see-saws" around 

the correct PMF. In theory, this should mean that the umbrella potential should 

converge in an oscillatory fashion, as each overcorrection is corrected. However, 

this profile is complicated by the contribution from previous iterations. As the sim-

ulation progresses, the weight of the current iteration's data decreases compared to 

the weight of all previous iteration's data. The contribution of sampling from the 

current iteration becomes small compared to the history of sampling from the pre-
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vious n — 1 iterations. Thus the influence of the current X-sampling statistics on the 

umbrella will become increasingly small. This explains why the rate of change of 

the predicted free energy seems to slow as the number of iterations increases. This 

hypothesis is reinforced by the observation that despite the changing X-sampling 

throughout sets of iterations, the total X-sampling across the entire simulation is 

almost completely even. This would also explain why the results from simulation 

1 are so poor compared to the other three simulations. Since the X-sampling during 

the initial part of simulation 1 was strongly biased to low X, the resulting oscilla-

tions had a large amplitude. By iteration 200, the weight of total sampling was 

then too great to allow the following iterations to correct this overestimate, and 

thus simulation 1 appears to converge onto a result which is too high. The other 

three simulations also have this oscillatory convergence, but the amplitude of the 

swings are smaller, and thus by iteration 200, the predicted result is close to the 

actual result. Iterations 351 to 450 for simulation 2 (figure 3.18) shows sampling 

that is more or less even, reinforcing its predicted result of 8.0 kcal mol~^ Efforts 

have been made to reduce the weight of the preceding iterations, either via dis-

carding the statistics from the initial iterations, or applying the WHAM analysis to 

a moving window of the 50 previous iterations, though neither of these techniques 

proved to be successful. 

Because of this oscillatory convergence, the sampling of X does not become 

totally even within the 500 iterations, and thus any long simulation based on a 

single iteration's umbrella is unlikely to fully sample the entire X-coordinate. This 

means that it is difficult to use a statistical method to estimate the error on the 

umbrella, since the simulation has not fully converged. 

Radial Distribution Functions 

The error in the protocol for the original application of AdUmWHAM to the water-

methane system was exposed via plots of the radial distribution function with re-

spect to X (figure 3.15). Similar plots were made to see if the revised protocol gave 

better results. These were all very similar, so only those from simulation 1 are 

shown (figure 3.19). These plots show much better agreement with those for FEP 

and FDTI (figure 3.6), and clearly show the double-peak in the hydrogen RDF. 
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The second peak in the hydrogen RDF is also much sharper than in the RDFs 

from the original protocol (figure 3.15). However, the double peak in the hydrogen 

RDF persists at A = 0.3, while it disappears more quickly in the RDFs from FFP, 

at around X = 0.2. This difference hints that there may still be a problem with 

the solvent not responding sufficiently quickly to the solute as it changes between 

water and methane. These results may be improved by reducing the frequency of 

X-moves from one every 500 MC steps to perhaps one every 1000. However, this 

would increase the overall run-time of the simulation, which is already five times 

that of FEP or FDTI. Also, it is difficult to know in advance what the relaxation 

time of the system with respect to X-moves would be, without first running ex-

ploratory simulations. A blind application can thus only use the lowest possible 

frequency of X-moves that will collect sufficient data to run the simulation in a 

reasonable time. 

3.6.3 Summary 

AdUmWHAM was applied to calculate the relative hydration free energy of water 

and methane. The initial application of the method failed, due to the randomi-

sation of X between iterations. A further application which preserved X between 

iterations was successful, and predicted results that were in agreement with exper-

iment, FEP and FDTI. However, the AdUmWHAM simulations failed to converge 

properly, and while they estimated the free energy well near the start of the itera-

tion, the weight of statistics collected at the beginning reduced the rate of change 

of the umbrella, and hence reduced the rate of convergence. The method appears 

very sensitive to sampling in the early stages of the simulation, and any peculiar-

ities there, as occurred in the case of simulation 1, can destabilise the oscillatory 

convergence, and lead to poor quality results. In addition, the difference in the 

hydrogen RDF between AdUmWHAM and FEP implies that the solvent may not 

be responding sufficiently quickly to the dynamically changing X-value. While this 

problem may be overcome through the use of less frequent X-moves, this would in-

crease the time required to run a simulation which already takes five times longer 

than FEP or FDTI. In addition, it is not possible for a blind application of Ad-

UmWHAM to know the relaxation time of the system with respect to A-moves, 
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Figure 3.19: The oxygen and hydrogen RDFs calculated from the first FEP and 
first modified AdUmWHAM simulation. The colour scale is the same as in figure 
3.7. 

and thus know in advance whether X would be changing too quickly. Despite these 

problems, AdUmWHAM still managed to produce results in agreement with the 

other methods, and it produced a good estimate of the results within the first fifth 

of the simulation. This ability to give a good, yet quick estimate of the free en-

ergy could perhaps be exploited through the use of AdUmWHAM as a free energy 

scoring function. 

3.7 Conclusion 

Free Energy Perturbation, Finite Difference Thermodynamic Integration and Adap-

tive Umbrella WHAM have been applied to calculate the relative hydration free 

energy of water and methane. While the results from all three methods gave good 

agreement with each other and experiment, they all suffered from poor precision. 



There was a large spread of results within each method. In the case of FEP and 

FDTI this was caused by random sampling error due to the use of only a single 

trajectory at each X-value. In the case of AdUmWHAM, which allows multiple 

trajectories to visit each X-value, the variability appears to be a result of poor con-

vergence in the latter half of the simulation due to the weight of statistics in the 

initial stages. There was also the suggestion of Hamiltonian lag, due to the change 

in the value of X throughout the trajectory. The results presented in this chapter 

can be summarised via a comparison of the advantages and disadvantages of each 

method; 

1. Free Energy Perturbation 

(a) Advantages 

i. Calculated free energy agrees with the experimental value. 

ii. Use of a fixed A,-value minimises problems due to Hamiltonian 

lag. 

(b) Disadvantages 

i. The quality of the results was reduced by problems converging the 

Zwanzig equation. This resulted in significant hysteresis. 

ii. The use of a single trajectory at each A-value led to random sam-

pling errors. 

iii. Improvement in the quality of the results requires the rerunning 

of windows with different widths. The original data for these win-

dows would be discarded. 

2. Finite Difference Thermodynamic Integration 

(a) Advantages 

i. Has the same advantages as FEP. 

ii. Additionally, the use of a small AX leads to small fluctuations 

in the difference in energy between the reference and perturbed 

states, and thus the calculation has very small hysteresis. 
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iii. Improvement in the quality of the results may be achieved by cal-

culating the free energy gradient at extra X-values. No previously 

collected data needs to be discarded. 

(b) Disadvantages 

i. Again, the use of a single trajectory at each A,-value leads to ran-

dom sampling errors. 

3. Adaptive Umbrella WHAM 

(a) Advantages 

i. Calculated free energy agrees with the experimental value. 

ii. The relative free energy is quickly estimated. This could lead to 

use of the method as a simple free energy score. 

iii. The use of multiple trajectories at each X-value helps to reduce the 

random sampling error seen in FEP and FDTI. 

(b) Disadvantages 

i. The method fails to fully converge in a reasonable time on the 

water-methane system. 

ii. While the number of simulation steps is lower than FEP or FDTI, 

the method is not as parallisable, so the total simulation time is 

much longer. 

iii. The changing value of X may lead to errors resulting from Hamil-

tonian lag. 

The advantages of Thermodynamic Integration over FEP have been noted in 

previous s t u d i e s . T h e s e studies compared the two methods on a variety of 

small test systems, and conclude that while FEP and TI produce comparable re-

sults for equivalent amounts of simulation, if the overlap between the two systems 

is poor, then the quality of the FEP results is reduced compared to those from 

FDTI. The results presented in this chapter demonstrates that FDTI has the same 

advantages over FEP as TI. The benefit of FDTI is that it may be performed in 

any FEP-capable simulation code, without the need to program the modifications 

necessary to generate the analytical gradients required for TI. 
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In conclusion, the results presented in this chapter demonstrate the problems 

faced by the application of established free energy methods to the calculation of 

the relative hydration free energy of water and methane. The root cause of these 

problems is that the water-methane system is deceptively complicated, with the 

hydration free energy change strongly depending on a significant solvent rear-

rangement. It can thus be concluded from these results that the main drawback of 

current free energy methods is their reliability. Research must now be undertaken 

to improve the consistency of results, and in so doing, reduce the statistical errors 

on the calculations. These results suggest that the route to achieving this aim is to 

generally improve the sampling of the system, either by removing random sam-

pUng error through the correct combination of multiple trajectories, or through 

increasing the rate or quality of sampling. 



Chapter 4 

The Development of Advanced Free 

Energy Methods 

4.1 Introduction 

The aim of this work is to develop free energy methods that may be reliably 

and routinely applied to calculate the relative binding free energies of a group 

of ligands to a protein. In the last chapter, established free energy methods (Free 

Energy Perturbation, Finite Difference Thermodynamic Integration and Adaptive 

Umbrella WHAM) were tested through the calculation of the relative hydration 

free energy of water and methane. This proved to be a challenging test case, as the 

perturbation involved the elimination of the solute dipole, and the significant re-

arrangement of the solvent configuration. All three free energy methods predicted 

relative hydration free energies that were, within error, in agreement with each 

other and with the experimental value of 8.31 kcal However, it was found 

that repeated application of the same method on the same system could sometimes 

yield significantly different results, and thus the precision of the methods was a 

major problem. Significant random sampling error was present in the free ener-

gies calculated via FEP and FDTI. This was a result of the use of only a single 

trajectory at each A - v a l u e . This error could be estimated and reduced through the 

running of multiple FEP or FDTI simulations, though this of course increases the 

expense of the methods. AdUmWHAM avoids this problem as it uses a dynamic X-
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coordinate, and thus effectively allows multiple trajectories to visit each %-value. 

While AdUmWHAM enhanced sampling of K it did not enhance the sampling 

of the solvent. The solvent's significant configurational change was thus insuffi-

ciently relaxed as the value of X changed and the solute was dynamically morphed 

back and forth between water and methane. This resulted in Hamiltonian lag, and 

a possible error in the results. In addition, the rate of convergence of the method 

seemed to slow as the iteration progressed, due to the weight of statistics already 

accumulated. This meant that any peculiarities in the initial convergence of the cal-

culation were not corrected, and that one of the four simulations failed to converge 

in a reasonable time. 

The aim of this chapter is to take the lessons learned from the application of the 

established free energy methods and use them to develop methods which are more 

reliable and reproducible. To achieve this, sampling error will need to be reduced 

through the correct averaging of multiple simulation trajectories. In addition, the 

rate of sampling of the entire system, as well as X, needs to be improved. 

4.2 Bivariate Multicanonical WHAM 

Adaptive Umbrella WHAM solves one of the two main problems of current free 

energy methods, namely it reduces random sampling error by treating the per-

turbing X-coordinate as a normal degree of freedom. X is changed dynamically 

throughout the simulation, and the sampling of X is enhanced through an um-

brella potential. The umbrella potential is created through a sequence of iterations, 

throughout which multiple trajectories refine the umbrella potential until it en-

courages even sampling of the X-coordinate. At this point, the umbrella potential 

is equal to the negative of the potential of mean force (PMF), and the relative 

free energy is simply read from the difference in energy between the umbrella's 

endpoints. While AdUmWHAM successfully enhances the sampling of the X-

coordinate, it does not enhance the sampling of the rest of the system. It does 

nothing to enhance the sampling of an associated configurational change, like for 

example the configurational change in the solvent between hydrated water and 

hydrated methane. AdUmWHAM relies on the rate of sampling of the system be-
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ing sufficiently high such that any associated configurational changes can occur. 

Unfortunately, if the configurational change is large, then the rate of sampling of 

that change will be slow, and the umbrella can have the effect of driving the X-

sampling through unfavourable system configurations. While such short-cuts may 

lead to a converged AdUmWHAM simulation, and an even ^-distribution, they 

are also likely to put an unquantifiable error into the free energy calculation. To 

better illustrate this point, let us consider a simulation that aims to calculate the 

relative binding free energy of two binding modes, A and B, of the same ligand to 

a protein (figure 4.1). The relative binding free energy in this case could be calcu-

lated through the use of a dual topology m o d e l . T w o non-interacting copies of 

the ligand are placed in the active site of the protein, one in each binding mode. 

The interactions between each ligand and the rest of the system are scaled as a 

function of A,. At X = 0.0, the ligand in binding mode A is fully on, and the ligand 

in binding mode B is fully off, while at A, = 1.0, the situation is reversed, and B is 

fully on, while A is fully off. In this way, the motion along A, acts to switch between 

the two binding modes. The protein configuration may be slightly different for the 

two binding modes. For example, the value of the dihedral angle of the GLU(5) 

residue is 50 ° for binding mode A, and 160 ° for binding mode B (figure 4.1). 

This dihedral angle has a high barrier to rotation, so it is unlikely to be properly 

sampled during the course of the AdUmWHAM simulation. The dihedral angle 

will thus not change conformation readily as X changes the ligand between the 

two binding modes. If the dihedral angle starts in the A conformation, then since 

the umbrella potential can only directly affect the sampling along X, it will keep 

pushing the sampling of X until the ligand is in the B binding mode, regardless of 

the value of this important dihedral angle. It may be the case that the change in 

the dihedral angle is sampled so poorly that the umbrella pushes binding mode A 

all the way to binding mode B, while the dihedral angle is still in conformation 

A. This example represents an extreme form of Hamiltonian lag, where the relax-

ation time of the system is significantly longer than the rate of motion along X. To 

solve this problem, a new method must be developed which not only enhances the 

sampling of X, but also enhances the sampling of the rest of the system, and in so 

doing, improves the relaxation time of such important configurational changes. 
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(a) Binding mode A with correct dihe-

dral conformation. 

(b) Binding mode B with correct dihe-

dral conformation. 

GLU(S) 

(c) Binding mode A with incorrect dihe-

dral conformation. 

GLU(g) 

(d) Binding mode B with incorrect dihe-

dral conformation. 

Figure 4.1; (a) and (b) show the two different binding modes of the ligand to the 
protein. The dihedral angle of the GLU(5) residue has a different conformation for 
the two binding modes ((]) = 50 ° for binding mode A, and (|) = 160 ° for binding 
mode B). This dihedral angle is poorly sampled, thus the effect of the umbrella 
is to drive ^.-sampling such that in (c) and (d), the binding modes may see the 
incorrect conformation. 

4.2.1 Generalised Ensembles 

The rate of configurational sampling within a system depends on the ensemble 

conditions for that system, e.g. there will be more sampling for a higher tempera-

ture ensemble than for that of a lower temperature. However, the free energies pro-

duced depend on the ensemble conditions, and thus the results from high temper-

ature simulations are irrelevant if the interest is in ambient temperature behaviour. 

Generalised or extended ensembles have been developed to overcome this prob-

lem. They are reviewed in detail by Iba,^^ and comparative simulations have been 
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performed by Hansmann and Okamoto.^^'^^ One such generalised ensemble is the 

multicanonical ensemble?'^ 

4.2.2 Multicanonical Ensemble 

The multicanonical ensemble is a generalised ensemble over energy.This means 

that the algorithm attempts to form an ensemble where there is even sampling 

of potential energy. Once this is achieved, there is a random walk over the energy 

coordinate, and all potential energy barriers are removed. At this limit, it is possible 

to re-weight the probabilities to obtain the canonical ensemble for a wide range of 

temperatures.^^ The method is applied iteratively.^^° 

1. A conventional Monte Carlo simulation is run, and the energies sampled are 

saved in a histogram. This histogram can be used to estimate the probability 

of sampling each energy, PQ{E), from which the density of states, no{E) can 

be estimated via,^^ 

/io(E)=;t(^)exp(E/X:ar). (4.1) 

The temperature for this simulation is set sufficiently high such that the sys-

tem can overcome the potential energy barriers of interest. This temperature 

can be found through a process of trial and error. 

2. Now the multicanonical simulation starts. This uses a modified Monte Carlo 

acceptance test, which evaluates the energy of the new configuration, Emw, 

versus the old configuration, Eoui, based on the estimated density of states 

of two energies. 

:> 1) (4.2) 
^Q\Enew} 

This test has the effect of pushing the sampling to regions of energy that 

are comparatively under-sampled. This test is derived in appendix C.2. The 

energies sampled during the run are again stored in a histogram, which is 

used to estimate the new probability of sampling each energy, PI{E). 

3. A new estimate of the density of states, ni{E) is made from the probability 

estimate from the previous run, and the previous estimate of the density of 
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states, Mo(^), 

Mi(E)=fi(E)/2o(^). (4.3) 

4. A new multicanonical simulation is run, using n\ {E) for the acceptance test. 

This cycle is then repeated until the density of states converges, i.e. «/(£') = 

ni-\{E). 

5. Once the density of states has converged, the ensemble can be re-weighted 

to obtain the probability of an energy, PT(E), at a particular temperature, T, 

via,^°° 

fr(^)«:M(^)exp(-E/^gr) (4.4) 

This method was first developed to look at phase transitions,®^ though it has since 

been applied to peptide-protein docking,investigation of the interaction be-

tween an amino-acid side chain and a DNA base pair,'°^ and peptide configura-

tional sampling. The method can also be extended into multiple dimensions, 

as in the technique of bivariate multicanonical sampling. This works in an iden-

tical manner to normal multicanonical, with the additional collection of statistics 

along a second reaction coordinate, r. In this way, the probability density along 

both E and r can be histogrammed, Poi-E., r), and used to obtain a two-dimensional 

density of states, Mo(g, r). The acceptance test is then based on the new density of 

states, and the simulations are run until it has converged in both dimensions. 

4.2.3 Comparison with AdUmWHAM 

Multicanonical sampling is very similar to adaptive umbrella sampling, in that the 

multicanonical method aims to sample the potential energy evenly, while adaptive 

umbrella sampling aims to sample an arbitrary reaction coordinate evenly. This 

similarity was first realised by Bartels and Karplus^°^ who showed that adaptive 

umbrella sampling over potential energy was equivalent to multicanonical sam-

pling. They went on to develop multidimensional adaptive umbrella sampling 

over potential energy and another reaction coordinate,®^ which is equivalent to bi-

variate multicanonical sampling. The equivalence of the two methods is shown in 
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appendix C.2. The protocol for umbrella sampling version of the multicanonical 

simulation is as follows; 

1. An initial simulation is run at the temperature that is of interest for the study, 

e.g. room temperature. 

2. The energies, E, and the values of the reaction coordinate, r, which are sam-

pled during this simulation, are stored in a two-dimensional histogram. 

3. The probability of being in a particular histogram bin, p{E,r), is estimated, 

and used to obtain an umbrella potential, U(E, r), over energy and r, 

[/(E,r) = /:gnn(p(E,/-)) (4.5) 

4. As in the case of AdUmWHAM, the value of the umbrella where there was 

no sampling is obtained through extrapolation,^^'by setting their values to 

the smallest umbrella potential that has been sampled. This results in some 

discontinuities, so the umbrella has to be smoothed. This is achieved by 

replacing the umbrella potential for bin ( i j ) , with,^^ 

(4.6) 

—- ^—03U{i — 2,j) + l.3U{i— I J ) 

+ U(Uj) + l-3t/(z'+ 1, j) — 0.3U{i + 2, j )^ . 

This smoothing is applied sequentially in strips to each dimension. It has 

been shown that this smoothing works best when it is apphed twice. 

5. The smoothed umbrella is used to bias a new umbrella sampling simulation, 

again run at the temperature of interest. The sampling along energy and r is 

recorded in another histogram. 

6. At the end of the iteration, the sampling is unbiased and combined with all 

previous statistics via the WHAM equations, to obtain a new estimate of the 

umbrella potential, U{E,r). 

7. This cycle is repeated until the umbrella has converged, and even sampling 

along energy and r has been obtained. 
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8. At this point, the umbrella that would be needed to obtain even sampling of 

r for a normal AdUmWHAM simulation at temperature T, Ujir), can be 

obtained from the probability, p{r), of each point along r. This is calculated 

from the probability, /?(£", r), of each of the histogram bins along energy and 

r, which is obtained from the final umbrella potential, U{E,r), across the 

histogram, 

p(E,/-) =exp([/(E,r)/^g7},n,) 

where 7},̂  is the temperature that the simulation was run at, 

(4J) 

E 

C/rW =tg71n(p(r)). 

This umbrella is the negative of the PMF along r at temperature T, which can 

be used to obtain relative free energies in an identical way to AdUmWHAM. 

Note that the temperature for this umbrella, 7, does not have to be the same 

as the temperature of the umbrella simulations, TsUn- As in the case of stan-

dard multicanonical, it is possible to reweight the statistics to a range of 

temperatures. It is our experience that the appearance of exponential terms 

in these equations means that this reweighting is only practical for a small 

range of temperatures, perhaps 5 to 10 °C, around 7^^-

The AdUmWHAM versions of the multicanonical algorithm have been applied to 

configurational sampling of small s y s t e m s . T h e y have not, to our knowledge, 

been applied in the field of free energy calculations, though such appHcation rep-

resents the trivial extension of either bivariate multicanonical or multidimensional 

adaptive umbrella sampling to using A, as the second reaction coordinate. To sim-

plify nomenclature, and to recognise the fact that multidimensional adaptive um-

brella sampling over potential energy and another reaction coordinate is equivalent 

to bivariate multicanonical sampling, the application of this method over potential 

energy and X shall be referred to as Bivariate Multicanonical WHAM (BMW). 

While BMW and bivariate multicanonical are equivalent, and should converge on 

the same result, we believe the form of convergence of the two methods will be 
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very different. In the case of bivariate multicanonical, the use of the modified ac-

ceptance test should mean that there will be an initial random walk in energy space. 

This random walk will occur in an energy range between the global minimum of 

the system and the energy range of the initial, high temperature simulation. The 

sampling should thus fill this range in a reasonably even manner. In contrast, BMW 

starts off as a normal NVT or NPT simulation, running at the desired simulation 

temperature. This means that the simulation will initially sample from the energy 

range for that temperature. As the umbrella potential is refined, it has the effect 

of discouraging the sampling of energy-X regions that have already been sampled. 

The umbrella potential acts to push the sampling to regions outside that for the 

desired simulation temperature. Since the MC test is automatically accepted for 

changes which reduce the total energy, the umbrella will effectively push the sam-

pling down to an energy range below that which is expected for the simulation 

temperature. Only when the umbrella has been refined for all lower temperatures 

will it then act to push the sampling above the expected energy range. In this sense, 

we expect BMW and bivariate multicanonical to converge in opposite directions, 

i.e. BMW will converge from low energies up to high energies, while bivariate 

multicanonical will converge from high energies down to low energies. 

4.2.4 Simulation Conditions 

The application of AdUmWHAM to the calculation of the relative hydration free 

energy of water and methane was described in the previous chapter. This method 

failed to sample the solvent configurational change correctly as the solute was 

rapidly morphed between the water and methane states. The aim of this section is 

to use BMW to calculate the relative hydration free energy, and examine whether 

this multicanonical extension of the AdUmWHAM method is able to overcome the 

problems presented by slow system configurational changes. To allow comparison 

with the AdUmWHAM simulations in section 3.5, the simulation protocol was 

kept as similar as possible. Thus an identical system and set of starting coordinates 

were used, and 500 WHAM iterations were performed in an asynchronous, par-

allel fashion over two independent trajectories. Each iteration consisted of 200 K 

steps of simulation, split into 40 K steps of equilibration, and 160 K steps of data 
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collection. Each trajectory preserved the value of X between iterations. The simu-

lations were run in the NPT ensemble, at a temperature of 25 °C, and a pressure 

of 1 atm. The X-coordinate was split up into 100 histogram bins, of width 0.01. 

Investigation of the energies sampled during the FEE and FDTI simulations from 

the previous chapter suggested that the energy range sampled at 25 °C was be-

tween -16400 kcal mol^^ and -16200 kcal mol~^. Owing to the limitations of 

computer memory, this energy range could only be spanned by 100 bins, as the 

WHAM equations required the storage of each of the 10 000 sampling and um-

brella histograms produced during the simulation. The iterative solution to the 

WHAM equations was implemented within a Perl script. This script required over 

500 megabytes of memory to store all the information necessary to process the 

500 iterations. The use of a compiled language, such as C or Fortran, would re-

duce these memory requirements. Such languages, however, are not best suited to 

the additional roles of the Perl script, namely the management of the submission 

and processing of each of the individual iterations. Owing to the limited number 

of bins along the energy coordinate, different energy ranges and resolutions were 

investigated. To check for reliability, some of these ranges were simulated multiple 

times. 

It is important to restrict the range of energy sampling to fall within the energy-

X histogram. This is because the umbrella implementation of the multicanonical 

ensemble will cause the system to seek out the global minimum on the energy sur-

face, and thus the energy sampling would be pushed far below the values expected 

at the desired simulation t empera tu re . In the case of the water-methane system, 

the umbrella potential could be used to freeze the water into ice. To prevent this 

from happening, some workers set the umbrella potential to zero outside the range 

of the energy-A histogram. Our initial investigations using this method have in-

stead led us to use an harmonic potential that penalises the system when it falls 

outside this specified range. These same investigations have also suggested that 

the smoothing of the umbrella should be performed over more than just the neigh-

bouring 4 bins. We have thus implemented a smoothing function that works over 
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the neighbouring 10 bins, 

[/(;, y) =0.0222C/(z - 5,;) + 0.0455[/(; - 4 , ; ) + 0.0798C/(; - 3,y) 

+ 0.1191[/(:-2,y) + 0 .1513[ / ( ; - l , ; )+0 .1640( / ( : , ; ) 
(4.8) 

+ 0.1513[/(z+l, ;) + 0.1191[/(; + 2, ;) + 0.0798[/(z + 3,;) 

+ 0.0455[/(; + 4, ;) + 0.0222[/(; + 5 , . 

The coefficients to this equation, for the position a bins away from the central bin, 

are calculated via a Gaussian kernel. 

where n is the number of bins to the right of the central bin, which in this case is 5. 

The coefficients are then normalised by dividing by their sum. This is just a linear 

filter'^ using a gaussian function with a = n to obtain the individual coefficients. 

4.2.5 Results 

To investigate the effect of the energy range on the results, multiple energy ranges 

and resolutions were tested. Some of these ranges were repeated multiple times to 

check for reliability. The predicted relative hydration free energies, as calculated 

from the final umbrella at 25 °C via equation 4.7, are shown in table 4.1. 

4.2.6 Analysis 

These results are disappointing, with a range of predicted free energies between 

4.1 and 8.0 kcal mol~^ What makes the result worse, is that the spread of results 

within a set of identical conditions (e.g. set 1 or set 5) is equally poor. Indeed, the 

variability of results is so large that it is not possible to derive any pattern with the 

changing energy histogram resolution or size. Despite the incorrect free energies, 

the potentials of mean force do have approximately the correct shape. Those from 

set 5 are shown (figure 4.2). 
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Set Bin Width 
/ kcal mol~' 

Energy Range 
/ kcal mol^ ' 

Relative hydration 
free energy 

/ kcal mol~' 

1 2.0 -16600 to -16400 4.1, 6.9,5.8,6.5 

2 2.0 -16400 to-16200 8.0, 6.9 

3 2.0 -16300 to-16100 6.3 

4 2.0 -16200 to-16000 7.5 

5 1.0 -16400 to -16300 6.2, 6.7,7.1,5.6 

6 1.0 -16350 to-16250 7.1 

7 1.0 -16300 to -16200 7.5 

8 0.5 -16400 to-16350 7.2 

9 0.5 -16350 to-16300 7.3 

10 0.5 -16300 to-16250 4.9 

Table 4.1: Effect of energy histogram parameters on the predicted relative hydra-
tion free energy of water and methane. 

Figure 4.2; The predicted PMFs for four applications of BMW from set 5, to the 
calculation of the relative hydration free energy of methane. (1) Solid line, (2) 
dashed Une, (3) thick solid line, (4) thick dashed line. 
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Figure 4.3: The convergence of the predicted relative hydration free energy of 
water and methane as a function of BMW iteration, for four appUcations of BMW 
from set 5. 

Sampling and Convergence 

The results of the application of BMW to calculate the relative hydration free en-

ergy of water and methane are very poor. Figure 4.3 shows the convergence of 

four simulations from set 5, as a function of WHAM iteration. The convergence 

of these simulations show the same main features as those using AdUmWHAM 

(figure 3.17), namely a spike in the estimated free energy near the beginning of 

the simulation, followed by a slow fall to the converged value. The main differ-

ence between the convergence of BMW and the convergence of AdUmWHAM is 

that BMW takes many more iterations to follow this pattern. While AdUmWHAM 

spikes at about iteration 25, and is converging around iteration 200, BMW spikes 

around iterations 75 to 100, and does not converge properly until iterations 200 to 

300. Simulation 4 does not appear to converge until iteration 400. It was expected 

that BMW would take longer to converge than AdUmWHAM, as the umbrella 

has an extra dimension, and should thus require more sampling. The slow rate of 

convergence leads to the suspicion that despite the results appearing to have con-

verged, as was the case of AdUmWHAM, the underlying sampling has not yet 

become even. Investigation of the sampling demonstrates that this was indeed the 
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(a) Iterations 1-200 (b) Iterations 101-300 

(c) Iterations 201-400 (d) Iterations 301-500 

Figure 4.4: The total sampling over windows of iterations for the third BMW sim-
ulation from set 4. The colour scale runs from no sampling (blue), though average 
sampling (white), up to high sampling (red). 

case. Figure 4.4 shows the ^-energy sampling for windows of iterations from sim-

ulation 3 of set 5. The sampling is clearly not uniform, and is concentrated at the 

bottom of the energy range. The simulation does go some way to pushing the sam-

pling over the entire 1-coordinate, though more simulation would be needed before 

it has properly converged. Unfortunately, the slow rate of convergence, the huge 

memory requirements, and the increasing processor overhead to actually solving 

the WHAM equations after iteration 100 to 200, makes the running of yet more 
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Figure 4.5: The RDF as a function of A, for BMW simulation 3, set 5. The scale 
runs from blue (0.0), through white (1.0) up to red (greater than 2.0). 

iterations completely impractical. 

To see if the use of a generalised ensemble has improved the problem of Hamil-

tonian lag encountered during the AdUmWHAM simulations, the RDFs with re-

spect to X were plotted. Figure 4.5 shows the oxygen and hydrogen RDFs for 

simulation 3 of set 5. Compared to the RDFs from FEP and AdUmWHAM (fig-

ure 3.19), these RDFs are poorly defined, and show definite signs of Hamiltonian 

lag. The double-peak in the hydrogen RDF is visible up to A = 0.4 compared to 

X = 0.3 for AdUmWHAM, and X = 0.2 for FEP. Since the umbrella has not con-

verged, the random walk in energy space promised by the multicanonical ensemble 

has not occurred, and thus it has not been able to solve this fundamental problem 

of AdUmWHAM. 

4.2.7 Summary 

A new technique, Bivariate Multicanonical WHAM, formed as a synthesis be-

tween the bivariate multicanonical ensemble, and adaptive umbrella WHAM, has 

been developed and applied to calculate the relative hydration free energy of water 

and methane. Unfortunately, this method performed poorly on the water-methane 

system. The large memory and processor requirements of the method prevented 

it from being run to convergence. A full multicanonical ensemble was thus not 

achieved, and the method failed to overcome the problems of Hamiltonian lag that 

were apparent in the AdUmWHAM results. 



( z i i / L p r n s R 4. /LiyvyirqczEiD inRjEJE msnEiMiif &iiSTrHC)DS % 

4.3 Parallel Tempering 

The two main problem areas apparent from the application of the established free 

energy methods were the consistency of the results, and the range and speed of 

configurational sampling. BMW attempted to solve these problems through the use 

of AdUmWHAM's multiple trajectories to average out random sampling error, and 

the multicanonical ensemble to enhance general system sampling and overcome 

problems of Hamiltonian lag. BMW failed, as it was unable to converge on the 

challenging water-methane test system. This was because of the inherent conver-

gence problems of AdUmWHAM, and the large CPU and memory requirements 

needed to store and process the two dimensional umbrellas. 

The main idea behind BMW, the use of generalised ensembles to enhance 

configurational sampling, is a good one. A method could be developed to apply a 

generalised ensemble in the context of an FEP- or FDTI-like simulation. One pos-

sible candidate would be the combination of FDTI with the generalised ensemble 

known as Parallel Tempering^^^ (PT). 

4.3.1 Background 

Parallel T e m p e r i n g f o r m s a generalised ensemble over temperature.^® That 

is to say that temperature is treated as a dynamic variable, and an ensemble is 

constructed that samples over many temperatures. At the end of the simulation, 

the probabilities can be re-weighted to obtain the correct statistics for the desired 

temperature. Parallel tempering forms this generalised ensemble through the run-

ning in parallel of multiple replicas of the system (figure 4.6). Each replica has a 

different temperature, within which normal NVT or NPT sampling is performed. 

Periodically, neighbouring replicas are tested according to a special Monte Carlo 

test. If this test is passed, then the coordinates of the two replicas are swapped. 

The sampling then continues until convergence. The major benefit of this tech-

nique is that while a generalised ensemble has been formed over the complete 

set of replicas, the complete set of configurations at each temperature still forms 

a correct NVT or NPT ensemble (figure 4.6). There is thus no need to perform 

an iteration to find the relative weights of the trajectories, which was the case for 
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(e.g. 'i, i, k...' for temperature 'A', or 
'j, k, i..,' for temperature 'B') form a 
correct ensemble distribution for that 
temperature. 

Figure 4.6: The Parallel Tempering algorithm. 

AdUmWHAM or BMW, as the individual trajectories are already correctly Boltz-

mann weighted. The implementation of PT is also very simple, as the exchange 

of coordinates between two temperatures is equivalent to the exchange of tem-

peratures between two trajectories. The method is thus well-suited to application 

over multiple nodes of a Beowulf cluster, as the only information that needs to be 

exchanged between nodes is the temperatures and final energies of each replica. 

The parallel tempering test has different forms depending on the type of the 

individual sub-ensembles. For example, if replica i, with temperature A, was swap-

ping with replica j, with temperature B, then the test for a set of NVT ensembles 

would be,̂ ^^ 

exp 
1 1 

kgTB ksTA 
( E U ) - E ( O ) > rand{0,1), (4^0) 

while in the NPT ensemble, the test would also depend on the volumes of the two 
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replicas, y(z) and y(j) , giving, 

1 1 
exp 

^BTB ksTA 
>rand{0,l). (4.11) 

Details of the derivation of these, and other tests are given in appendix C.3. 

The probability of accepting the PT tests depends strongly on the difference 

in temperature between replicas, and the number of degrees of freedom, no 

The probability of accepting a temperature-swap move is directly related to the 

overlap in energies of the two replicas, which is directly related to the fluctuations 

in energies of the r e p l i c a s . S i n c e the energy fluctuations scale with approx-

imately the difference in temperatures between replicas should also 

scale with This would mean that the number of replicas required to span 

a given temperature range would grow with (9(yi/2^_i07,iio 

Parallel Tempering improves the sampling of the system as it allows configu-

rational changes that occur at high temperature to "rain down" to low temperatures 

through successive PT moves. A low temperature replica could have its tempera-

ture raised such that an important configurational change occurred, upon which it 

could then return to the temperature whence it came. The benefit of this method 

over simulated annealing"^ is that replicas are continually moving up and down in 

temperature, and most importantly, the relative weighting of the configurations are 

correct for each of the sub-ensembles. Applications of PT are predominantly to 

enhance configurational sampling, either for a polymer melt," ' for small peptide 

or protein s y s t e m s . , ^ ^ or for a simplified protein-ligand system. 

4 .3 .2 P T T I 

Parallel Tempering Thermodynamic Integration (PTTI) represents the combina-

tion of PT with FDTI. Parallel Tempering is applied independently to each window 

along the X-coordinate. There will thus be multiple replicas and temperatures for 

A, = 0.0, multiple replicas and temperatures for A, — 0.05 etc. The immediate ben-

efit of this scheme is that there will be multiple trajectories at each X-value and 

thus the effect of random sampling error should be reduced. However, a disad-
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vantage of this method will be that the total number of trajectories will be equal 

to the number of X-windows multiplied by the number of temperatures. With 21 

windows along X, this could reach a very large number, and stretch the resources 

of even the biggest Beowulf clusters. 

4.3.3 Simulation Conditions 

The application of the PTTI method to the water-methane system will be as sim-

ilar as possible to the application of FDTI from section 3.4, thus enabling a fair 

comparison between methods. Initial investigations suggested that a difference in 

temperature between replicas of 5 °C gave a sufficiently high acceptance rate of 

the PT moves. To keep the number of replicas reasonable, only 16 were used, 

spaced evenly between 10 °C and 85 °C. Since the X-coordinate was split into 21 

windows, this gave 336 individual trajectories per simulation. Four copies of the 

simulation were run, each starting from the same structure as the four FDTI simu-

lations. Owing to the expense of the calculations, the first two simulations only ran 

for 5 M steps per trajectory (1.68 billion (B) steps per simulation), while the last 

two simulations ran for the full 10 M steps (3.36 B steps per simulation). Parallel 

tempering moves were attempted between neighbouring replicas, every 50 K steps. 

The pairs chosen followed an even-odd pattern, with even replicas swapping with 

the neighbour above on one move, and odd replicas swapping with the neighbour 

above on the next PT move. The trajectory run at each A,-value and temperature 

originally started from the same initial structure as used in the FDTI simulations. 

However, to enable each system to equilibrate correctly, a further 900 K MC steps 

were performed for each temperature and X-value before the start of data collec-

tion. 

4.3.4 Results 

The results at 25 °C for the four simulations are shown in table 4.2. Simulations 

1 and 2 consisted of only 5 M steps, while simulations 3 and 4 had the full 10 M. 

The results of 3 and 4 are thus shown after 5 M steps, and also after 10 M steps. 
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Simulation 
Total number of Relative free energy at 25 °C / kcal mol ' 

Simulation 
MC steps / M Forwards Backwards 

1 5 8.3 (0.9) 8.3 (0.9) 

2 5 7.3 (1.0) 7.4(1.0) 

3 5 7.6 (0.8) 7 J ( & ^ 

4 5 8.2(1.1) 8.2(1.1) 

3 10 7.8 (0.5) 7.9 (0.5) 

4 10 8.1 (0.7) 8.2 (0.7) 

Table 4.2: The results of 4 independent applications of PTTI to calculate the rel-
ative hydration free energy of water and methane. The first 2 M steps of each 
trajectory were discarded as equilibration. The standard error is shown in paren-
thesis, and is calculated over blocks of 500 K steps, in an identical manner to the 
FDTI simulations from section 3.4.2. 

4.3.5 Analysis 

These results show good agreement with the results from FDTI in section 3.4.2. 

Indeed, the spread of results and magnitude of the errors are very similar. Only 

the results from simulations 3 and 4 after 10 M steps show slight improvement 

over standard FDTI. The PMFs (not shown) are also similar, as are the plots of 

the convergence of the simulations (figure 4.7). However, the results do not show 

the marked improvement necessary to justify the sixteen-fold increase in resources 

needed for these simulations. 

Temperature Exploration 

The results from four application of PTTI to calculate the relative hydration free 

energy of water and methane are of almost the same quality as those from standard 

FDTI. This is despite the PTTI simulations using sixteen times the number of pro-

cessors / simulation steps as standard FDTI. The reason for this apparent lack of 

improvement can be seen in the temperatures that each replica adopted throughout 

the simulation. These temperature trajectories all look very similar for all values 

of X, and all four simulations, so only those from for X — 0.0 for simulation 3 

are shown (figure 4.8). To make this figure clearer, only 7 of the 21 replicas are 

shown. There is not much motion in temperature, and each replica lingers at the 

temperature from which it started. While there is a satisfactory acceptance rate 
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Figure 4.7: The predicted relative hydration free energy of water and methane as a 
function of simulation step at 25 °C, as calculated by four independent applications 
of PTTI. Simulations 1 and 2 ran for 5 M steps, while 3 and 4 ran for 10 M 
steps. The relative hydration free energy was calculated every 50 K steps over the 
sampling from the previous 50 K steps. 
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(a) Temperature Exploration (b) Travel 

Figure 4.8; (a) Temperatures visited by seven of the sixteen replicas, for X = 0.0 
from simulation 3, as a function of iteration, (b) The travel for each temperature 
for this simulation. This shows the range of temperatures previously visited by 
replicas that contributed data for the free energy calculation at each temperature. 
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for these simulations (approximately 40%), most of the accepted moves are pair-

swaps, where replicas repeatedly swap back-and-forth between neighbouring tem-

peratures (e.g. the top two replicas in figure 4.8). This is because the method does 

not drive the temperature swapping. Instead, it swaps the temperatures of replicas 

if their trajectories are ready to swap, e.g. if a low temperature trajectory has a 

higher than normal potential energy, or a high temperature replica has a lower than 

normal potential energy. The trajectories thus drive the temperature swapping, not 

the other way around. 

To visualise this temperature exploration better, we can define the travel of a 

temperature as the range of temperatures that contribute to its statistics. For exam-

ple, the travel at 25 °C may be 10 °C to 45 °C. This would mean that no replica 

swapped to 25 °C that had previously been at a temperature of above 45 °C, or 

below 10 °C. The free energy calculated at 25 °C would thus only contain statis-

tics that had been collected between 10 °C and 45 °C. Ideally, the free energy 

calculated at each temperature would contain statistics that were collected at all 

available temperatures. The travel plot in this case would show a filled square over 

the temperature range. At this point the travel of the simulation would be total, and 

the PT ensemble is likely to have converged. 

The travel for all values of A. and all simulations were calculated, and were 

all very similar. The travel for X — 0.0 for simulation 3 is shown in figure 4.8. 

The travel plots for all of the simulations show the same key features, namely a 

near linear increase in the values of travel with respect to temperature, and a near 

constant range of travel for each temperature. 

To investigate whether the poor travel of the four PTTI simulations was re-

sponsible for the lack of improvement of results, two further PTTI simulations 

were run which used smaller temperature separations. Fifteen replicas used tem-

peratures from 20 °C to 55 °C with a gap of 2.5 °C, and a final sixteenth rephca 

was used at 60 °C. Each simulation was otherwise identical to those in section 

4.3.3, and both ran for the full 10 M steps per trajectory. The temperature explo-

ration was much improved, with an acceptance rate of approximately 65%, and a 

travel that was almost total (figure 4.9). Despite the increase in travel, the range 

of temperatures sampled was comparable to the previous simulations, as a smaller 
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Figure 4.9; (a) Temperatures visited by seven of the sixteen replicas, for A, = 0.0 
from simulation 5, as a function of iteration, (b) The travel for each temperature 
from this simulation. 

Simulation 
Relative free energy at 25 °C / kcal mol ^ 

Simulation 
Forwards Backwards 

5 

6 

8.5 (0.5) 

8.4 (0.5) 

8.6 (0.5) 

8.5 (0.5) 

Table 4.3; The results of 2 further applications of PTTI to calculate the relative hy-
dration free energy of water and methane, using more closely spaced temperatures. 
The standard error is shown in parenthesis. 

range of temperatures were available. The results of these simulations are shown 

in table 4.3. 

These two results are much better than those from FDTI, showing a very low 

spread and a smaller standard error. This improvement is most likely the result of 

the averaging out of random sampling error through the use of multiple trajecto-

ries at each A,-value. To see if the sampling was improved over PEP or FDTI, the 

RDFs with respect to X were calculated for simulations 5 and 6. Those calculated 

for simulation 5 are shown in figure 4.10, together with those calculated in section 

3.3.2 from the first PEP simulation. The amount of data contributing to all of these 

RDFs were identical, so valid comparison can be made. These RDFs show slight 

improvement over those from FEP or FDTI, and show less noise in the second sol-

vation peaks. However there is still some noise at the beginning of the main peak 

of the hydrogen solvation shell, and like FEP, the RDFs do not change smoothly 

across the X-coordinate. 
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Figure 4.10; The hydrogen and oxygen RDF with respect to X as calculated from 
the fifth PTTI simulation, and for comparison, fi-om the first FEP simulation. The 
scale runs from blue (0.0), through white (1.0) up to red (greater than 2.0). 

4.3.6 Free Energies with Respect to Temperature 

PTTI is a computationally expensive free energy method, as it runs so many more 

trajectories than standard FDTI. The extra expense could be justified if the method 

could reliably return the temperature dependence of relative free energies, thus 

providing a route to the relative entropies and enthalpies (since entropy is the gra-

dient of the free energy with respect to temperature). The temperature dependence 

of the relative hydration free energy predicted by simulations 5 and 6 is shown 

in figure 4.11. While simulation 5 shows a pronounced trend in free energy with 

temperature, this is not seen in simulation 6. Indeed, the trend in results from sim-

ulation 6 from 20 °C to 45 °C is the exact opposite of that seen in simulation 5. 

These results demonstrate that the firee energies are not yet sufficiently converged 

to extract reliable trends with respect to temperature. 
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Figure 4.11: The temperature dependence of the relative hydration free energy of 
water and methane, as calculated by simulations 5 and 6. The error bars represent 
a single standard deviation. Both the forwards (solid line) and backwards (dashed 
line) free energies are shown. 

4.3.7 Summary 

Parallel Tempering Thermodynamic Integration was successfully applied to calcu-

late the relative hydration free energy of water and methane. The method allows 

multiple trajectories to visit each A,-value, thus minimising random sampling error, 

and also enhances sampling through the use of higher temperature simulations. 

However, large numbers of replicas and small differences in temperature were 

needed to ensure adequate temperature exploration. This led to a highly expensive 

calculation, which is not justified by the only modest improvements in the spread 

of results and their associated error. These runs required sixteen times the CPU 

than the FDTI simulations, and thus would need to be running on 336 processors 

to run all 21 values of X simultaneously. Also, as 336 trajectories are generated, 

the data storage requirements become significant (each simulation requires several 

gigabytes), and the total number of MC steps becomes huge (3.3 billion per simu-

lation). Disappointingly, the resulting free energies are too noisy to reliably obtain 

their temperature dependence, and thus the vast majority of the results, 3.1 B, of 

the 3.3 B steps of simulation, are effectively discarded. The only modest improve-

ment in the results for this system is probably due to the lack of any significant en-

ergy barriers encountered as water is perturbed into methane. This system presents 

more of an entropic challenge, as it seems to be the number and range of solvent 

configurations accessible that determines the free energy. PTTI partially rises to 
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this challenge through the use of multiple trajectories at each X-value, though its 

expense suggests that its application should be limited to systems which present 

enthalpic challenges, and where high temperature sampling is required to over-

come large energy barriers, e.g. in the case of the dihedral angle barrier discussed 

in section 4.2. 

4.4 Hamiltonian Replica Exchange 

Parallel Tempering is a special case of general replica exchange (see appendix 

C.3). There are other special cases, for example the technique of Hamiltonian 

Replica Exchange}^^ 

4.4.1 Background 

Hamiltonian Replica Exchange is the special case of general replica exchange, 

where trajectories are set up with different Hamiltonians, and swap moves are 

made between different Hami l tonians .This method is very similar to Parallel 

Tempering, and both methods share a common derivation (see appendix C.3). In 

the original application of this m e t h o d , t h e potential of mean force was derived 

along a structural coordinate for an alanine tripeptide in implicit solvent. This 

was achieved through the use of umbrella sampling, where a harmonic umbrella 

potential was applied in sections along the structural coordinate, r. These umbrella 

potentials, Um{r), modified the potential energy of the system, Eo(g,r) via, 

(g, r) = Eo (9, r) + (/m (r). (4.12) 

Fourteen replicas of the system were then spread over the reaction coordinate, 

each replica using a different umbrella potential, which were centred on succes-

sive windows along the structural coordinate. A replica exchange simulation was 

then performed, which ran each of the fourteen replicas in parallel. Periodically, 

neighbouring repUcas, i and j, in neighbouring umbrella potentials, m and n, were 

tested via. 

GXp >rand{0,l). (4.13) 
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If this test was successful, then the coordinates of the replicas were swapped, other-

wise the replicas were left where they were. Once the simulations had converged, 

the statistics within each umbrella potential window were unbiased and recom-

bined via WHAM to construct the PMF along the reaction coordinate. 

Despite the obvious potential of this method, its application seems to be limited 

to only this original test case; the structural sampling of blocked alanine tripeptide 

using a distance dependent dielectric representation of the solvent. The only other 

application of Hamiltonian Replica Exchange has been in the simulation of protein 

f o l d i n g / w h e r e multiple Hamiltonians change the hydrophobicity of the solvent 

in a simplified forcefield. This allows the protein folding pathways to escape from 

local minima by swapping up into a more hydrophobic environment, which acts to 

partially denature it. We propose to develop this promising technique of Hamilto-

nian Replica Exchange in the context of free energy calculations over a perturbing 

^.-coordinate. 

4.4.2 Replica Exchange over X 

Hamiltonian Replica Exchange forms a generalised ensemble over a collection 

of Hamiltonians, or forcefields. The ^.-coordinate acts by perturbing the force-

field of the system, and thus creates a whole sequence of different Hamiltonians 

(see section 2.5.1). We can thus form a generalised ensemble over X, and perform 

replica exchange moves between different X-windows (see figure 4.12). This sim-

ulation would be set up in an identical manner to an PEP or FDTI simulation, with 

one trajectory within each X-window. Periodically, trajectories in neighbouring X-

windows, with coordinates / at X = A, and j at X — B, would be tested according 

to, 

1 
exp >rand{0,l). (4.14) 

This equation is derived in appendix C.3. If the test is accepted then the coor-

dinates are swapped between the two A,-windows. At the end of simulation, the 

complete set of statistics for each X-window represents a correct ensemble distri-

bution for that X-value, so normal PEP or PDTI analysis could be used obtain the 

relative free energies. The simulation is thus no more expensive or complicated 
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Figure 4.12; The algorithm used for RETI and REFEP. 

than normal FEP or FDTI. Indeed, the only extra step is this periodic testing and 

swapping between neighbouring ^.-windows, and the need for additional book-

keeping to record which trajectory is at which A,-value. As in the case of Parallel 

Tempering, the amount of information to exchange for each move is very small, 

so the method is well suited to application over a Beowulf cluster. The probabil-

ity of accepting a move is dependent on the amount of overlap between the pair's 

Hamiltonians. Since this overlap is already high, to allow good convergence of the 

free energy equations, the acceptance rate of the A.-swap moves is also expected to 

be high. Since this method is equally applicable to FEP or FDTI, we shall look at 

both methods. Replica Exchange Thermodynamic Integration (RETI) and Replica 

Exchange Free Energy Perturbation (REFEP). 

4.4.3 Simulation Conditions 

Four copies of REFEP and RETI were performed, using identical starting coor-

dinates and conditions as the corresponding FEP (section 3.3) and FDTI (section 
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Method Simulation 
Relative free energy at 25 °C / kcal mol ' 

Method Simulation 
Forwards Backwards 

REFEP I 9.3 (0.6) 

REFEP 2 8.7 (0.5) 8.6 (0.5) 

REFEP 3 9.0 (0.5) 8.4 (0.5) 

REFEP 4 8.7 (0.5) 8.4 (0.5) 

RETI 1 8.3 (0.5) 8.4 (0.5) 

RETI 2 8.5 (0.5) 8.6 (0.5) 

RETI 3 8.3 (0.5) 8.4 (0.5) 

RETI 4 8.4 (0.5) 8.4 (0.5) 

Table 4.4: The results of four applications each of REFEP and RETI to the calcu-
lation of the relative hydration free energy of water and methane. The results are 
calculated over the last 7 M steps of simulation per A, value, with the standard error 
calculated shown in parenthesis. 

3.4) simulations. The simulations were run for 10 M steps per trajectory, over 200 

blocks of 50 K steps. A X-swap move was attempted at the end of each block. To 

make sure that the starting coordinates were properly equilibrated for each of their 

respective X-values, an extra 900 K steps of equilibration were performed for each 

trajectory before the start of each simulation. 

4.4.4 Results 

The predicted free energies from the four REFEP and four RETI simulations are 

shown in table 4.4. The results were calculated over the last 7 M steps, and the 

standard errors calculated in an identical manner to the FEP and FDTI simulations. 

The predicted PMFs from each of the eight simulations are shown in figure 4.13. 

4.4.5 Analysis 

The use of the X-swap move has improved the quality of these results over standard 

FEP and FDTI. The REFEP results show a smaller hysteresis (0.1 to 0.4 kcal mol~^) 

compared to FEP (0.4 to 1.0 kcal mol~ ̂ ), a smaller spread of results (8.4 kcal mol~' 

to 9.7 kcal mol^ \ compared to 7.3 kcal mol"^ to 9.9 kcal moP^), and a smaller 

standard deviation (0.5 to 0.6 kcal mol~^ compared to 0.6 to 0.7 kcal mol'^). 
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Figure 4.13; The PMF for the relative hydration free energy of water and methane 
as calculated by (a) four independent REFEP, and (b) four independent RETI sim-
ulations. The results are calculated over the last 7 M steps of simulation, and both 
the forwards (solid line) and backwards (dashed line) free energies are shown. The 
standard errors propagated over X are also shown. 
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While the A-move has helped the hysteresis, it has not overcome it, and thus the 

results still show the same errors that the FEP results show. These could be im-

proved by redistributing the A-windows, though this requires prior knowledge of 

the system, and is not valid for a blind application of the method to a new system. 

RETI, like FDTI, shows almost no hysteresis, and thus the estimates of the 

free energy are of a higher quality than the REFEP results. RETI shows a very 

low spread of results (8.31 kcal mol~^ to 8.57 kcal mol"^) compared to FDTI 

(8.4 kcal mol"^ to 9.4 kcal mol~^) and the results have a lower standard devia-

tion (0.5 kcal mol"^ compared to 0.6 to 0.7 kcal mol"'). The level of agreement 

between the four RETI results is graphically shown in the similarity of the four 

predicted PMFs (figure 4.13). These four PMFs are almost identical in shape and 

size. What makes the results even more pleasing is that the results are in excellent 

agreement with the experimental value of 8.31 kcal mol~^. This is a very positive 

result, especially given the simplicity of the water and methane forcefields used in 

this study. 

4.4.6 A,-exploration 

The results from these simulations show that the use of replica exchange has 

markedly improved the quality of the free energy results. The reason for this can 

be seen in the X-trajectories. All eight simulations have very similar X-trajectories, 

so only those from the first RETI simulation are shown (figure 4.14). For the sake 

of clarity, only six of the 21 replicas are shown. The acceptance rate for the X-

moves was very high, at over 80%. This was expected, as the free energy calcu-

lation required that there was good overlap between neighbouring X-values. The 

trajectories show a high degree of motion, travelling up and down the X-coordinate 

multiple times throughout the simulation. The travel of the trajectory can be cal-

culated in a similar manner to that for PTTI (section 4.3.5). All eight simulations 

show total travel, in other words the statistics at each 1-value include statistics 

gathered at all other X-values. 

\ / 
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Figure 4.14; The value of A. with respect to iteration for six of the 21 replicas from 
the first RETI simulation. 

4.4.7 Radial Distribution Functions 

The high quality of the RETI and REFEP results arises because the individual tra-

jectories are free to move through X. This can be clearly seen in the plots of the 

radial distribution functions with respect to X (figure 4.15). These were composed 

in an identical manner to those in section 3.3.2, and they are very similar across 

all eight simulations. Only the RDFs fi-om the first RETI simulation are shown, 

and are compared with the RDFs from the first FEP simulation. The RETI RDFs 

show the same features as those from FEP. The RETI RDFs are clearly of a much 

higher quality than the FEP RDFs, despite having an identical number of sampling 

points and method of composition. The quality of the RETI RDFs is so high that 

there is clear evidence of the second, and even third solvation shell. What is also 

clear is that the RETI RDF is smooth with respect to X. There is little to no noise in 

the location of the peaks, and all of the main features of the RDF are consistently 

well defined across the entire 1-coordinate. This smooth progression across the 

^-coordinate arises because the statistics for each 1-value are composed from tra-

jectories that have visited every A,-value, and thus are themselves smoothly moving 

from water to methane and back again. 
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Figure 4.15: The radial distribution ftinction with respect to X for the first RETI 
simulation, and for comparison for the first FEP simulation. Note how much 
smoother the RETI results are than the FEP. The scale runs from blue (0.0), 
through white (1.0) up to red (greater than 2.0). 

4.4.8 Summary 

Two new free energy methods. Replica Exchange Thermodynamic Integration 

(RETI) and Replica Exchange Free Energy Perturbation (REFEP) were derived 

from the equations of Hamiltonian Replica Exchange. The methods are trivial 

extensions of FDTI and FEP, and merely add a periodic A,-swap move between 

neighbouring 1-windows. This small and easily implemented extension signifi-

cantly improves the quality and reliability of the results, resulting in a reduction 

of hysteresis, improved consistency of results and reduction of standard error. The 

consistency of the results is enhanced as the l-swap move allows all trajectories 

to visit all ?i-values, and thus random sampling error is reduced, and properties of 

the system, like the RDF, progress smoothly and consistently with respect to X. 
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RETI and REFEP can be thought of as a replica exchange version of Ad-

UmWHAM over X. In the previous section, the Parallel Tempering algorithm was 

discussed as an example of a generalised ensemble over temperature space. This 

ensemble covered multiple temperatures through the use of multiple independent 

replicas that could periodically exchange coordinates. Unlike BMW, there was 

no need to perform an iteration, as the individual replicas were already correctly 

Boltzmann weighted. An alternative method of forming a generalised ensemble 

over temperature is Simulated TemperingThis method treats temperature as 

a dynamic coordinate, and tries to sample temperature evenly.̂ ® This can only 

be achieved through a tedious iteration that aims to obtain the weighting factor 

necessary for the MC moves.Parallel tempering and simulated tempering thus 

represent two different ways of obtaining the same generalised ensemble. This 

equivalence between Parallel Tempering and Simulated Tempering can be com-

pared to the equivalence between RETI and AdUmWHAM over X. Just as Sim-

ulated Tempering aims to sample temperature evenly, so AdUmWHAM over X 

is a method that aims to sample the whole of X-space evenly. This aim is also 

achieved through the use of a tedious iteration, which refines the weighting factor 

(umbrella potential) necessary to encourage even sampling along X. Conversely, 

RETI uses multiple replicas over X, which are allowed to periodically exchange 

coordinates. Full sampHng over X is achieved without the need for a tedious iter-

ation, as the individual replicas are already correctly Boltzmann weighted. Just as 

Parallel Tempering and Simulated Tempering represent two different approaches 

to obtain the same ensemble, so RETI and AdUmWHAM over X represent two 

different approaches to achieving full sampling over X. The advantage of RETI 

lies not only in the lack of a tedious iteration, but also in the fact that the value of 

X is constrained within each replica. In the case of AdUmWHAM, the umbrella 

potential drives the sampling of the X coordinate. This can push the system out of 

equilibrium, and forces the configurational sampling to keep up with the changing 

X-value. In contrast, the value of X for each replica in RETI is constrained to a 

fixed value. This means that the system is not pushed out of equilibrium. In ad-

dition, the exchange of coordinates between replicas is controlled by an MC test. 
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Figure 4.16: A comparison of the predicted relative hydration free energy of water 
and methane as calculated by all methods. The four simulations from FEP, FDTI 
and modified AdUmWHAM are shown, as are the four BMW simulations from 
set 5, as are the six PTTI simulations, and four RETI and REFEP simulations. The 
experimental result of +8.31 kcal mol~^ is also shown as a horizontal line. 

This ensures that thermal equilibrium is maintained for the change in X. This effec-

tively means that configurations will only swap when they are compatible. In this 

way, the change in X is driven by the underlying configurational sampling, rather 

than the changing k-value driving the configurational sampling. 

<1.5; ()f 

A comparison of the predicted relative hydration free energy from all of the meth-

ods, and experiment, is shown in figure 4.16. This figure clearly demonstrates that 

the newly developed method of Replica Exchange Thermodynamic Integration 

is the method of choice for the water-methane system. This method avoided the 

problems of hysteresis that reduced the quality of the FEP and REFEP results, as it 

evaluated only the local gradient of the free energy with respect to X. The method 

allowed full exploration of X by each trajectory, but it avoided driving the sam-

pling as was the case of AdUmWHAM and BMW, as the X-swap move will only 
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occur if the trajectories themselves are ready to swap. The configurational sam-

pling within each replica drove the motion along X, rather than the forced motion 

along X driving any configurational change. The method also significantly reduced 

random sampling error through the use of multiple trajectories at each X-value, as 

was the case for PTTI. RETI achieved this without creating any additional over-

head over standard FDTI, unlike PTTI which stretches the capacity of even the 

largest Beowulf cluster. It is useful to note that the predicted free energies of the 

last two PTTI simulations, which had smaller temperature differences and thus 

greater temperature exploration, are almost identical to the four free energies from 

RETI. 

4.6 Conclusion 

The calculation of the relative hydration free energy of water and methane pro-

vided the highly challenging test case on which four new free energy methods 

were developed. The first, Bivariate Multicanonical WHAM, combined adaptive 

umbrella sampling with the multicanonical ensemble. Disappointingly, the water-

methane system was too challenging for the method, and it failed to converge. The 

second method developed, Parallel Tempering Thermodynamic Integration, im-

proved standard FDTI by combining it with parallel tempering. The results were a 

slight improvement over standard FDTI, though this improvement could not justify 

the sixteen-fold increase in resources necessary. The final two methods. Replica 

Exchange Free Energy Perturbation and Replica Exchange Thermodynamic In-

tegration combined Hamiltonian replica exchange with FEP or FDTI. The results 

were a significant improvement over FEP or FDTI. RETI produced especially good 

results, being reliable to within 0.26 kcal mol" \ and with a standard error of just 

0.5 kcal mol"^. RETI achieved this as it combined all that was good about the pre-

vious methods, including, paradoxically, the advantages of fixed X methods, such 

as FEP and FDTI, with dynamic X methods, such as AdUmWHAM and BMW. 

This was achieved through the use of a generalised ensemble over X, using the 

techniques of replica exchange investigated in PTTI. RETI truly takes the lessons 

learned throughout this investigation, and combines their advantages into a highly 
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effective and reliable technique. 



Chapter 5 

The Application of Free Energy 

Methods to a Small Host-Guest 

System 

5.1 Introduction 

Over the last two chapters, three established free energy methods, Free Energy Per-

turbation (FEP), Finite Difference Thermodynamic Integration (FDTI) and Adap-

tive Umbrella WHAM (AdUmWHAM), and four newly developed methods, Bi-

variate Multicanonical WHAM (BMW), Parallel Tempering Thermodynamic Inte-

gration (PTTI), Replica Exchange Free Energy Perturbation (REFEP) and Replica 

Exchange Thermodynamic Integration (RETI), have been applied to the calcula-

tion of the relative hydration free energy of water and methane. This application 

has revealed that the new method of RETI was the method of choice for that sys-

tem, as it overcame the problems of hysteresis in FEP and REFEP, Hamiltonian 

lag in AdUmWHAM and BMW, and had the benefits of using multiple trajectories 

at each X-value, without the computational expense of PTTI. The water-methane 

system was chosen as a test case as it encapsulated a lot of the common features 

of protein-ligand binding, namely charge and solvent rearrangement, into a sin-

gle simulation. The aim of this chapter is to continue the testing of these free 

energy methods on another small system. The system chosen for this part of the 

study was the binding of halide ions to a calix[4]pyrrole derivative. This system 
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Figure 5.1: Structure of the calix[4]pyrrole derivative. 

was chosen as the host is believed to exhibit different configurations depending on 

which halide is binding. 

5.2 Calix[4]pyrrole Complexes 

Since the discovery that they are effective anion-binding agents in solution, cal-

ix[4]pyrrole derivatives have received much study, leading to their use in anion-

b i n d i n g , s e n s i n g / a n d new anion-separation techniques.Recently, Cami-

olo and Gale^^^ synthesised a tetraacetyl-calix[4]pyrrole derivative (figure 5.1), 

which had the then unique property of selectively binding fluoride ions in dimethyl-

sulfoxide (DMSO). The crystal structure^^ of the fluoride-bound complex was ob-

tained in acetonitrile (figure 5.2), which showed that the complex formed a cup-

like configuration, with the fluoride bound deep in bottom of the well. In this 

configuration, the hydrogens from the four pyrrole groups can hydrogen-bond to 

the fluoride ion, thus giving stability to the complex. A crystal structure^^ was also 

obtained for the free calix[4]pyrrole derivative (figure 5.2). This structure showed 

a single acetonitrile solvent molecule bound in the well, with the caUx[4]pyrrole 

adopting a slightly different configuration. In this configuration, the acetonitrile 

sits higher up in the cup, and the four pyrrole groups are tilted up more than 

in the fluoride complex. FEP and AdUmWHAM simulations by Woods et al.^^ 

on the fluoride, chloride and bromide complexes with this derivative, produced 
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(a) Bound to fluoride (b) Bound to acetonitrile 

Figure 5.2: Crystal structures of the calix[4]pyrrole derivative bound to a fluoride 
ion, and to an acetonitrile solvent molecule. Thermal ellipsoids are drawn at the 
30% probability level. The tetrabutylammonium counterion is disordered, so for 
clarity, is only shown in one configuration in a ball and stick representation. 

structures which were in agreement with these two crystal structures. The fluoride 

was found to bind lower in the complex, with the pyrrole groups tilted towards 

it. This led to a shorter hydrogen bond (1.9 A), and a more obtuse hydrogen-

fluoride-hydrogen angle (115 °). The chloride and bromide were seen to sit higher 

in the complex, with longer hydrogen bonds (2.5 A and 2.6 A), and a more acute 

hydrogen-halide-hydrogen angle (85 ° and 79 °). The final simulation structures of 

the derivative were surrounded by an implicit DMSO solvent, and the electrostatic 

potential around the molecule was investigated using the Poisson equation.^^'^^ A 

planar slice through the centre of the molecule revealed the presence of a "positive 

pocket" (figure 5.3),®^ into which only the fluoride was small enough to bind. This 

pocket only appears when the four pyrrole groups are in the fluoride configuration. 

The selectivity of the calix[4]pyrrole derivative for fluoride ions was seen as a re-

sult of the fluoride inducing slight configurational change in the calix[4]pyrrole, 

which opened up a positive pocket into which only the fluoride was small enough 

to bind. 



CHAPTER 5. APPLICATION TO A HOST-GUEST SYSTEM 121 

(a) Fluoride (b) Chloride 

Figure 5.3; Slices through the electrostatic potential for the calix[4]pyrrole deriva-
tive in the configuration adopted when binding fluoride, and when binding chlo-
ride. This was calculated via the Poisson equation, with a surrounding DMSG 
implicit solvent. The location of the fluoride and chloride in the complex is shown 
as a yellow and orange sphere respectively. The scale ranges linearly from deep 
red ( > 1 0 kcal mol"' e~'), through green (0 kcal mol~^ e~'), to deep blue (< 
-10 kcal mol""' e~'). 

5.2.1 Literature Simulations 

As the calix[4]pyrrole derivative selectively bound fluoride ions, there are no ex-

perimental relative binding firee energies between fluoride and the other halides. 

Other workers have investigated related systems. Density functional theory, 

TI^^ and simulations have been performed on other calix[4]pyrrole deriva-

tives. These studies have concluded that while the host adopts the 1,3-altemate 

configuration fi-ee in solution, the cone configuration is preferred when the recep-

tor binds to an anion. One of these studies predicted a relative binding free 

energy between the fluoride and chloride of 22 kcal mol^ \ while another^^ pre-

dicted a relative binding free energy of 17 kcal mol~'. A third s tudypred ic ted 

a relative binding energy of approximately 15 kcal mol~^ The relative binding 

fi-ee energy between the fluoride and other halides has been shown to be affected 

by any contamination by water of the solvent, with increasing water concentration 

acting to remove the hosts specificity for fluoride.^^'®^''^"^ This is due to water's 

high affinity for fluoride allowing it to compete with the calix[4]pyrrole derivative. 
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5.3 Simulation System 

The calix[4]pyrroIe pyrrole derivative shown in figure 5.1 was used as the test-case 

for the seven free energy methods. The relative binding free energy of fluoride, 

chloride and bromide were calculated for the complex solvated by DMSO, with a 

small amount of water contamination. The system was set up in an almost identical 

manner to that used by Woods et al.^^ The initial z-matrix for the calix[4]pyrrole 

was constructed from the crystal structure of the complex with fluoride.This was 

also used to provide starting coordinates for the system. The z-matrix was built us-

ing the "fragment" approach of van Hoorn and Jorgensen.^^^ They constructed 

each pyrrole group independently from the dummy atoms, allowing greater flexi-

bility of the macrocycle ring. The OPLS parameters for the macrocycle were also 

taken from this s t u d y , w i t h generic OPLS parameters taken for the pendant 

arms. The z-matrix and parameters for this system are given in the supplementary 

material of Woods et al.^^ To set up the bound leg of the simulations, the fluoride-

bound crystal structure was placed in an orthorhombic box of 1714 DMSO^^ 

molecules and 30 TIP4P®^ water molecules. The water molecules were positioned 

randomly, and the box had initial dimensions of 58.8 A x 59.8 A x 66.1 A. A 

fluoride ion was placed in the host using initial coordinates taken from the crys-

tal structure. This system was then equilibrated for 2 M MC steps, according to 

the parameters in table 5.1. The free ion leg of the simulation was set up using a 

fluoride ion, placed in the centre of a box of 640 DMSO molecules and 30 TIP4P 

molecules, of initial dimension 44,6 A x 43.7 A x 45.5 A. This system was also 

equilibrated for 2 M steps according to the parameters in table 5.1. These simu-

lations were run using molecule-molecule cutoffs. This meant that if any pair of 

atoms between two molecules were within the cutoff distance, then the interaction 

between all pairs of atoms between the molecules were evaluated. All simulations 

were performed using the same modified version of MCPRO used to perform the 

water-methane simulations of the previous chapters. 

It was decided that the relative binding free energies of three halides would be 

investigated in this system. The halides chosen were fluoride, chloride and bro-
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Parameter Bound Leg Free Leg 

Ensemble NPT NPT 

Simulation Temperature :%°c 

Simulation Pressure 1 atm 1 atm 

Boundary Type Orthorhombic periodic 
boundaries 

Orthorhombic periodic 
boundaries 

calixpyrrole / haiide / 
solvent move ratio 

5 0 / l / 4 & # 0 / 1 / 1 7 8 8 

Non-bonded cutoff 15 A 15 A 

Maximum calixpyrrole 
translation / rotation 

& 0 A / & 0 ° 0.0 A/ 0.0 ° 

Maximum haiide 
translation / rotation 

0.1 A / 5 . 0 ° 0.1 A / 5 . 0 ° 

Maximum solvent 
translation / rotation 

0.1 A / 5 . 0 ° 0.1 A / 5 . 0 ° 

Frequency of volume 
moves 

1 every 10875 MC moves 1 every 4125 MC moves 

Maximum volume change 2610 A 3 1005 A 3 

Preferential sampling 
centre 

Haiide 

Preferential sampling 
parameter (WKC) 

200 200 

Number of MC moves per 
simulation block 

250K 250 K 

Number of simulation 
blocks 

8 8 

Table 5.1: Parameters used to control the simulations on the calix[4]pyrrole sys-
tem. 

mide, and a closed set of perturbations were run. This closed set, fluoride to chlo-

ride, fluoride to bromide and chloride to bromide, enabled the closure on the free 

energies to be calculated. If the relative binding free energies were determined 

accurately, then the relative binding free energy between fluoride and bromide 

should equal the sum of the relative binding free energies of fluoride and chloride, 

and chloride to bromide. Any deviation from this equality could then be used as 

a sign of error. The relative binding free energies were calculated from the bound 

and free legs via the cycle in figure 2.2. 
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5.4 Application of Established Methods 

The first stage of this investigation was the application of the three established 

free energy methods. These methods, FEP, FDTI and AdUmWHAM, were ap-

plied to calculate the relative free energies for the bound and free legs of each of 

the three perturbations. The application of these methods to the calix[4]pyrrole 

system closely mirrored their application to the water-methane system. Thus for 

FEP and FDTI, the X-coordinate was split into 21 evenly spaced windows, every 

0.05 along X. 10 M steps of simulation were run within each window, over 20 

blocks of 500 K steps. FDTI used AX = 0.001, and the results were integrated via 

the trapezium rule. The application of AdUmWHAM used 500 WHAM iterations 

over two trajectories running asynchronously in parallel. Each iteration consisted 

of 40 K steps of equilibration and 160 K steps of data collection, and the value of X 

was preserved for each trajectory between iterations. In contrast to the simulations 

on the water-methane system, initial investigations showed little difference in re-

sults between simulations which preserved X between iterations, and simulations 

that randomised X. The maximum range of a X-move was 0.05, and a X-move was 

attempted every 100 normal MC steps. This frequency was chosen as previous in-

vestigations on this system®^ demonstrated that it did not cause any problems due 

to Hamiltonian lag. 

Each bound and free simulation started from the corresponding final equili-

brated coordinates from section 5.3. To investigate how well the free energy meth-

ods sampled the locations of the contaminating water molecules, their positions 

were randomised at the start of each trajectory. The simulations used the same pa-

rameters as those used for the equilibration. To allow the reliability of each method 

to be investigated, each leg of each simulation was repeated four times. Each of 

these four applications used the same initial starting coordinates, though the po-

sitions of the water molecules were randomised for each apphcation. A different 

random number seed was used for each application. 
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Figure 5.4: Binding free energies and closures for four independent applications of 
FEP, FDTI and AdUmWHAM. (a) Fluoride to Chloride, (b) Fluoride to Bromide, 
(c) Chloride to Bromide, (d) Closure. Both the forwards (solid) and backwards 
(dashed) FEP and FDTI results are shown. 

5.4.1 Results 

The predicted relative binding free energy for each pair of halides are shown, for 

four independent applications each of FEP, FDTI and AdUmWHAM. The closure 

for the cycle is also calculated, as are the combined standard errors (a description 

of the error analysis is available in appendix E). The results are shown in table 

5.2, and for clarity are also plotted in figure 5.4. Analysis of the convergence of 

the FEP and FDTI results (not shown) resulted in the first 3 M steps per trajectory 

being discarded as equilibration, with the remaining 7 M steps per trajectory used 

for data collection. 

5.4.2 Analysis 

These results all show agreement with the experimental observation that the cal-

ix[4]pyrrole derivative selectively binds fluoride ions. Initial analysis of the results 

suggests that FEP and FDTI have a low spread, and low error, while AdUmWHAM 

has performed poorly. AdUmWHAM shows large spread and at least one calcu-

lation per mutation fails to produce a result in agreement with the either FEP or 



CHAPTER 5. APPLICATION TO A HOST-GUEST SYSTEM 126 

Simulation 
Relative Binding Free Energy / kcal mol ' 

Simulation 
FEP FDTI AdUmWHAM 

Fluoride 

1 17.9(0.9) 
17.3(0.9) 

18.5(0.8) 
18.5 (0.8) 

1&9 

to 
Chloride 

2 16.9(0.8) 
17.2(0.8) 

17.2(0.8) 
17.2(0.8) 

19.4 

3 16.7(0.9) 
17.5(0.8) 

17.6 (0.7) 
17.6 (0.7) 

120 

4 19.2(0.8) 
18.7(0.8) 

17.6 (0.9) 
17.6 (0.9) 

1&2 

Fluoride 

1 18.7 (0.9) 
18.3 (0.9) 

2 0 J ( & 9 ) 
2&8(&9) 

2 ^ 0 

to 
Bromide 

2 183 (LO) 
18.6(0.9) 

19.5 (0.9) 
1 9 j ( 0 . 9 ) 

2&5 

3 2&2(0.9) 
2&2(&9) 

1&4(&9) 
1&4(09) 

2 0 3 

4 19.9(0.9) 
19J(0 .9) 

2&3(L0) 
2 0 3 (LO) 

12.1 

Chloride 

1 1.51(0.07) 
1.48 (0.07) 

1.54 (0.08) 
1.54 (0.08) 

137 

to 
Bromide 

2 1.52 (0.07) 
1.51 (0.07) 

1.55 (0.07) 
1.55 (0.08) 

L53 

3 1.51 (0.08) 
1.47 (0.08) 

1.50 (0.07) 
1.51 (0.07) 

0 J 7 

4 1.52 (0.08) 
1.50(0.08) 

1.49 (0.07) 
1.49(0.07) 

132 

1 -0.7(1.3) 
-0.5(1.3) 

0.7(1.2) 
0 J ( L 2 ) 

2.7 

Closure 2 -0/2(1.3) 
-0.1(1.3) 

0.8 (1.2) 
0.8 (1.2) 

-0.5 

3 1.9(1.3) 
1.2(1.3) 

0.2(1.1) 
0.2(1.1) 

7.5 

4 -0.8(1.2) 
-0.5 (1.2) 

1.2(1.3) 
1.2(1.3) 

-7.5 

Table 5.2: Binding free energies and closure for four independent applications of 
FEP, FDTI and AdUmWHAM. Both the forwards and backwards free energies 
from FEP and FDTI are shown. 

FDTI, in spite of the AdUmWHAM simulations appearing to have converged. The 

predicted free energies for each leg stabilised quickly, by approximately iteration 

30, as seen in the convergence plots for the bound leg of the fluoride to chloride 

perturbation (figure 5.5). This in reinforced by the near even X-sampling attained 

during the simulations (not shown). 

Visualisation of the structures from the AdUmWHAM simulations revealed 
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Figure 5.5; Convergence of the bound (solid line) and free (broken line) legs for 
the four AdUmWHAM simulations on the fluoride to chloride perturbation. 

that in some trajectories, a contaminating water molecule had managed to dif-

fuse through solution and hydrogen bond with the halide ion. This can clearly be 

seen by plotting the distance between the halide ion and the closest water oxy-

gen atom, as a function of AdUmWHAM iteration. These plots are shown for the 

free leg simulations for the fluoride to chloride perturbation (figure 5.6). Previous 

studies have shown that hydrogen-bonding between the halide and contaminating 

water can significantly reduce the binding affinity of the calix[4]pyrrole deriva-

tive for fluoride,as the water is able to compete for the ion. This has the 

effect of reducing the relative binding free energy between fluoride and the other 

halides. Examination of the predicted free energies from AdUmWHAM show that 

the "poor" results are actually the result of the sampling of trajectories that in-

cluded this hydrogen-bonding. The AdUmWHAM simulations showed no hydro-

gen bonding with water in the bound legs, but for the free legs, run 3 for fluoride 

to chloride, run 4 for fluoride to bromide, and run 3 for the chloride to bromide 

simulations all show that both trajectories exhibited hydrogen bonding for the ma-

jority of the simulation. This exactly corresponds to the very low estimates of the 

relative binding free energy returned by these simulations. This demonstrates the 

significant effect of water hydrogen bonding on the relative binding free energy. 
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Figure 5.6: The distance between the halide ion and the oxygen of the nearest 
water molecule for the four AdUmWHAM simulations on the free leg, fluoride 
to chloride perturbation. The two trajectories within each simulation are clearly 
visible. 

AdUmWHAM fails to properly account for this effect, as its trajectories either do, 

or do not, exhibit hydrogen bonding. There is no weighting of the hydrogen bond 

versus non-hydrogen bond states, as there is no free exchange between configura-

tions within a single trajectory. All AdUmWHAM can do, is to ensure that once 

hydrogen-bonding is obtained, the X-moves and umbrella allow all values of X to 

see this configuration. This is not the case for the PEP or FDTI simulations, which 

show a mix of hydrogen bond and non-hydrogen bond trajectories across the X-

coordinate. This is seen in the plot of the distance between the halide and nearest 

water oxygen as a function of X, for the four free leg, fluoride to chloride simula-

tions (figure 5.7). The 21 different trajectories across the ^.-coordinate are either 

hydrogen bonding, or not hydrogen bonding. This is represented in figure 5.7 by 

a random zig-zag of the nearest water distance. This pattern is also represented in 

the bound legs, which can also exhibit hydrogen bonding between the halide and 

a contaminating water in the host (figure 5.7). The FDTI and FEP results are thus 

inconsistent across X, and predict relative binding free energies that are an average 

over hydrogen bonding and non-hydrogen bonding trajectories. This average is in-
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Figure 5.7: The distance between the halide ion and the oxygen of the nearest 
water molecule for (a) four FDTI simulations on the free leg, fluoride to chloride 
perturbation, and (b) four FEP simulations on the bound leg, fluoride to bromide 
perturbation, for each trajectory across X, and taken every 500 K steps. 
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correct, as weighting of these states is not performed, and each A,-value sees either 

one state or the other. The FEP and FDTI results are thus smaller than the pure 

non-hydrogen bonding results of AdUmWHAM (about 19 kcal moP^ for fluoride 

to chloride), and larger than for pure hydrogen bonding (about 12 kcal mol~^ for 

fluoride to chloride). The spread in FEP and FDTI results can in part be attributed 

to the relative ratios of the hydrogen bonding versus non-hydrogen bonding trajec-

tories along A.. 

This same effect is also seen in more subtle configurational sampling, for ex-

ample interatomic distances within the solutes. These distances are important, as 

they are linked to the configurational change in the host that depends on the bound 

anion. The distances between selected atoms (using the same naming scheme as 

in figure 5.2) are shown in figure 5.8. The same trends are seen in all plots, so only 

those from the first FEP and first AdUmWHAM simulation are shown. These plots 

show the same patterns as those in figure 5.7. While key configurational changes, 

like the increasing hydrogen bond length between the host and halide, are sampled 

smoothly across X, more subtle configurations are sampled almost randomly. This 

is a consequence of FEP only running a single trajectory at each A.-value. Each 

trajectory samples only a particular local minima, from which it is unable to es-

cape. This is in contrast to the AdUmWHAM trajectories, whose motion along A. 

induces more configurational exploration, and wider sampling of many local min-

ima. All of the distances are seen to change smoothly with A. for the AdUmWHAM 

simulations, while some distances from the FEP and FDTI simulations exhibit a 

random zig-zag. 

5.4.3 Summary 

FEP, FDTI and AdUmWHAM have been applied to calculate the relative bind-

ing free energies of three halides to a calix[4]pyrrole derivative. The results show 

agreement with the experimentally observed binding order, and the simulation 

structures reproduce the expected configurational change. However, all three sets 

of free energies contain significant errors. These are a result of the sampling of the 

positions of the contaminating water molecules. These waters may or may not be 
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Figure 5.8; Distances between atoms during the first FEP and first AdUmWHAM 
simulations, on the bound leg, fluoride to chloride perturbation. The atom names 
are taken from figure 5.2. Distances calculated every 500 K steps for the last 7 M 
steps within each X-window for FEP, and at the end of every iteration from itera-
tion 50 onwards for AdUmWHAM. 
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positioned to hydrogen bond with the halide ion. None of the three methods cor-

rectly samples or weights these different states. AdUmWHAM either has, or does 

not have, hydrogen bonding, and the use of X-moves ensures that all points along 

X consistently see the same state. This leads to a wide variation in the predicted 

relative binding free energies, as AdUmWHAM is unable to average the different 

possibilities correctly. FEP and FDTI use a single trajectory at each A,-value. This 

trajectory is randomly hydrogen bonding or not hydrogen bonding, and thus there 

is no consistency across the ^.-coordinate. FDTI and FEP average this effect in an 

incorrect manner, as the relative weights of the two states are not accounted for, 

and a particular trajectory across X cannot freely swap between them. This effect 

is also seen in the subtle configurational sampling of the host, where distances be-

tween certain atoms are not seen to change smoothly with X. FDTI and FEP get 

stuck in local minima, and while they sample them well, and return highly con-

verged free energies, their results are not consistent across the whole %-coordinate, 

and thus the sum of those results contains an unquantifiable random sampling er-

ror. Through the use of a dynamic 1-coordinate, AdUmWHAM imparts more con-

figurational motion to its trajectories. These are able to sample more local minima, 

and distances between atoms are seen to change smoothly with respect to X. 

5.5 Bivariate Multicanonical WHAM 

The previous section applied FEP, FDTI and AdUmWHAM to calculate the rel-

ative binding free energies of three halides to a calix[4]pyrrole derivative. These 

methods experienced difficulties with the sampling of the positions of the contam-

inating water molecules, which in the case of AdUmWHAM led to a wide spread 

of results. BMW is derived from AdUmWHAM, so is expected to suffer from the 

same problems. Unlike AdUmWHAM, at the limit of convergence, BMW sam-

ples from a multicanonical ensemble. This ensemble samples energy evenly, and 

removes all energy barriers within a defined range. There is the possibility that the 

use of the multicanonical ensemble could improve the diffusion of the contaminat-

ing water molecules, and in so doing, help to solve the sampling problems. To see 

if this were the case, four BMW simulations for each bound and free perturbation 
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were set up in an equivalent manner to AdUmWHAM. These were then run to cal-

culate the relative binding free energies of the three halides for the calix[4]pyrrole 

host. 

5,5.1 Simulation System 

To match the AdUmWHAM simulations, a BMW iteration was performed every 

200 K MC steps, with each iteration consisting of 40 K steps of equilibration, 

and 160 K steps of production. A A,-move was made every 100 normal MC steps, 

with a maximum change of 0.05, and the value of X was preserved between it-

erations. Two trajectories were run per simulation, in an asynchronous parallel 

manner. The energy-X histogram consisted of 100 evenly sized bins along X. The 

previous simulations had shown that the energy range required for these simula-

tions was a lot wider than that used for the water-methane simulations. This energy 

range, 300 kcal mol~\ required 300 bins of 1 kcal mol~^ spacing to be adequately 

represented. The use of such a large number of bins caused many problems as 

large amounts of memory were required for their storage, and by iteration 100, 

the solution of the WHAM equations took more CPU time than the actual running 

of the iteration. Because of this, only 170 BMW iterations could be performed 

for each simulation. The bound leg used an energy range of -20 300 kcal mol~^ 

to -20 000 kcal m o l ' \ while the free leg used a range of -8100 kcal mol"^ to 

-7800 kcal mol^^ To maintain consistency, the same ranges were used for each 

mutation. In all other respects, the parameters used for the BMW simulations were 

identical to those used for AdUmWHAM. 

5.5.2 Results 

The results for each leg, and the combined relative binding free energy, are shown 

in table 5.3. These were generated at 25 °C from the last umbrella of each itera-

tion, using an identical procedure as that used for the water-methane simulations. 

Run 2 of the bound leg, fluoride to bromide perturbation only had 121 iterations, 

due to its memory requirements causing it to crash prematurely. The result from 

this simulation is slightly lower than the others, so it will not be included in any 
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Leg 
Relative Free Energy / kcal mol ' 

Leg 
1 2 3 4 

Fluoride 
to 

Chloride 

Bound 

Free 

3 3 4 

1 3 4 

33J 

2 2 6 

34.1 

163 

3&8 

1&9 

Fluoride 
to 

Chloride 
Binding 2&0 11^ 1%8 11.9 

Fluoride 
to 

Bromide 

Bound 

Free 

3 5 ^ 

1&6 

3Z9 

1&7 

4L7 

1&6 

4 2 6 

2 2 5 

Fluoride 
to 

Bromide 
Binding 1 7 4 1&2 2^1 20J 

Chloride 
to 

Bromide 

Bound 

Free 

2 4 5 

1.25 

2.40 

1.13 

2jO 

139 

2 4 7 
Chloride 

to 
Bromide 

Binding IJW I j ^ 1.11 1^8 

Closure / kcal mol ' -4.2 3.8 6.2 7.0 

Table 5.3; Relative free energies for the bound and free legs, and relative binding 
free energies for four applications of BMW to the calixpyrrole system. 

discussions of spread or quality. 

5.5.3 Analysis 

These results show much better agreement with AdUmWHAM than was obtained 

for the water-methane simulations. The quality of the results is poorer than that 

from AdUmWHAM, and investigation of the X-energy sampling (not shown) shows 

that this is due to the method having not fully converged. This is confirmed by the 

plots of the convergence of the relative binding free energies (figure 5.9) which 

still shows slight drift in the results. BMW is again seen to be too ambitious, and 

not viable compared to AdUmWHAM. 

5.5.4 Configurational Sampling 

To see if the use of the multicanonical ensemble has solved the problem of water 

sampling, the distance between the halide and nearest water oxygen was plotted as 

a function of BMW iteration (figure 5.10). These plots showed the same patterns as 

seen for the AdUmWHAM simulations, with trajectories either exhibiting, or not 

exhibiting, hydrogen bonding between the halide and contaminating water. While 

there was some evidence of diffusion of water, there was not the free, back-and-
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Figure 5.9: Convergence of the fluoride to chloride (solid line), fluoride to bromide 
(broken line), chloride to bromide (thick solid line) relative binding free energies, 
and closure (thick broken line), from four BMW simulations of the calixpyrrole 
system. 

forth exchange between hydrogen bonding and non-hydrogen bonding distribu-

tions, which would be necessary to properly weight the effects of these two states. 

Like AdUmWHAM, the spread of the BMW results is seen to almost exactly tally 

with the presence, or otherwise, of hydrogen bonding with contaminated water. 

5.5.5 Summary 

The application of BMW to the calculation of the relative binding free energies of 

halide ions to a calix[4]pyrrole derivative was more successful than that for the rel-

ative hydration free energy of water and methane. The results showed good agree-

ment with AdUmWHAM, though still exhibited the same effects of hydrogen-

bonding with contaminating water. As in the case of water-methane, the simula-

tions did not converge, and full multicanonical sampling was not obtained. These 

results confirm that, in its current form, BMW is too ambitious to be applied to 

calculate relative free energies. This is because the two dimensional A-energy sur-

face is too large an area to explore within the sampling constraints imposed by the 

increasing expense of the WHAM equations. 
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Figure 5.10; The distance between the halide ion and the oxygen of the nearest 
water molecule for the four BMW simulations on the free leg, fluoride to chloride 
perturbation. 

5.6 Parallel Tempering 

PTTI was now applied to calculate the relative binding free energies of the halides 

to the calix[4]pyrrole derivative. The method is a combination of parallel tem-

pering and FDTI, and uses multiple temperature trajectories at each X-value to 

enhance sampling, and reduce random error. The application of PTTI to this sys-

tem closely mirrored the application of FDTI, with 21 evenly spaced windows 

along X, and AA = 0.001. Sixteen temperatures were ran at each X-value, evenly 

spaced at 5 °C intervals from 10 °C to 85 °C. The same temperatures were used for 

the bound and free legs of all perturbations to allow the temperature dependence 

of the relative binding free energies to be determined. Parallel tempering moves 

were performed every 50 K steps, in an identical manner to the application to the 

water-methane system. Since a complete set of all mutations requires six free en-

ergy simulations (a bound and free leg for each of the three mutations), the costs 

of PTTI were very substantial. To reduce this cost, only 5 M MC steps were per-

formed for each trajectory. Since even this only reduces the total number of steps 

to a little over 10 B, the full set of PTTI simulations were only performed once. 
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Leg 
Relative Free Energy at 25 °C/ kcal mol ' 

Leg 
Forwards Backwards 

Fluoride 
to 

Chloride 

Bound (1) 

Bound (2) 

Free 

34.4 (0.9) 

34.6 (1.0) 

16.1 (CL7) 

34.4 (0.9) 

34.7 (1.0) 

16.1 (0.8) 

Fluoride 
to 

Chloride 

Binding (1) 

Binding (2) 

18.3 (1.2) 

18.5(1.3) 

18.3(1.2) 

18.5(1.3) 

Fluoride 
to 

Bromide 

Bound 

Free 

38.9(1.1) 

17.4 (0.7) 

39.0(1.1) 

17.4 (0.7) 

Fluoride 
to 

Bromide 
Binding 21.6(1 .3) 21.6(1.3) 

Chloride 
to 

Bromide 

Bound 

Free 

3.05 (0.09) 

1.50 (0.06) 

3.05 (0.09) 

1.50 (0.06) 

Chloride 
to 

Bromide 
Binding L55(&11) 1.55(0.11) 

Closure (1) 

Closure (2) 

1.7 (1.7) 

1.5(1.8) 

1.7 (1.7) 

1.5(1.8) 

Table 5.4: Relative free energies for the bound and free legs, and relative binding 
free energies as predicted by PTTI. 

To allow the consistency of the method to be investigated, the bound fluoride to 

chloride leg was performed twice. 

5.6.1 Results 

The results are shown in table 5.4. These are calculated at 25 °C, over the last 

3 M steps per trajectory. The standard errors were also calculated, as described in 

appendix E. 

5.6.2 Analysis 

These results show reasonable agreement with those from FEP and FDTI. The 

standard error on the results is slightly larger. This is initially surprising, given 

that multiple trajectories were run at each value. The spread of results is very 

good, at only 0.2 kcal mol~^. This is better than standard FDTI, though more du-

plicate simulations would need to be run to confirm that this is not just a statistical 

fluke. Plots of the temperature travel for each simulation (figure 5.11) show that 
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Figure 5.11: The temperature travel for PTTI simulations on the bound and free 
legs of the fluoride to chloride, and fluoride to bromide perturbations. 

the temperature exploration for the bound legs was poorer than that for the free 

legs. This is due to the increased number of degrees of freedom in the bound legs. 

Plots of the temperature dependence of the relative binding free energies (figure 

5.12) show that the standard error is too large to allow any meaningful trends with 

respect to temperature to be determined. 

5.6.3 Configurational Sampling 

The use of PTTI to calculate the relative binding free energies has surprisingly re-

sulted in a larger standard deviation than the applications of FEP or FDTI. This is 

despite the PTTI simulations using sixteen times the number of Monte Carlo steps. 

The reason for this observation is made clear in the plots of the distance between 

the halide and nearest water oxygen as a function of X (figure 5.13). This shows 

that hydrogen bonded and non-hydrogen bonded trajectories are sampled at each 

X-value. Each 1-value has a wide spread of halide-oxygen distances, which results 

in a wider spread of free energies in the average, and a slightly larger standard 

error. FEP and FDTI appear to give better converged results as they only sam-

ple particular local minima. PTTI samples more water distributions as it allows 
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Figure 5.12: The relative free energy with respect to temperature for pairs of 
halides binding to a calix[4]pyrrole derivative. The relative binding free energy 
(solid line) is shown, as well as the relative free energies of the bound (dotted line) 
and free (dashed line) legs. 
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Figure 5.13: The distance between the halide ion and the oxygen of the nearest wa-
ter, with respect to X, for the PTTI, free leg simulations on the fluoride to chloride, 
and chloride to bromide perturbations at 25 °C. The distance is calculated every 
50 K steps. 
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Figure 5.14; Distance between atoms for the first PTTI simulation on the bound 
leg, fluoride to chloride perturbation. Atom pairs are identical to figure 5.8, and 
distances are calculated every 500 K steps, for the last 4 M steps per trajectory, at 
25 °C. 

configurational swapping between temperatures. The set of configurations at each 

temperature will have a spread of different water configurations, and the tempera-

ture swapping allows each X-value to see most of them. However, the temperature 

swapping does not seem able to change the initial distribution of water configu-

rations. This means that some X-values have no sampling from hydrogen bonding 

trajectories. These are clearly seen as gaps at 2.5 A in figure 5.13. The sampling 

across A, was still not consistent, and there was no weighting of the different water 

configurations. 

The use of multiple trajectories at each X-value is seen to improve the config-

urational sampling of the host. The plots of interatomic distances versus X now 

show smooth progression with respect to X (figure 5.14). 

5.6.4 Summary 

PTTI has been applied to calculate the relative binding free energies of three 

halides to a calix[4]pyrrole derivative. The application of PTTI was computation-

ally demanding, requiring over 10 B MC steps to obtain only one complete set 
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of relative free energies. The standard errors on the results were larger than either 

FEP or FDTI. This was a result of the wider configurational sampling brought 

about through the use of multiple trajectories at each A,-value. While FEP or FDTI 

tightly converged a particular local minimum, the multiple temperatures of PTTI 

allowed the exploration of many local minima, leading to a higher quality result. 

The configurational sampling of the host was seen to be smooth with respect to X, 

though the same was not true of the contaminating water distribution. PTTI could 

not significantly change the contaminating water distribution. This led to holes in 

the water distance plots, and an inconsistent distribution across X. While PTTI has 

improved the results compared to FEP or FDTI, it still has not solved the problem 

of water distribution, and does not properly weight the relative states. 

5.7 Hamiltonian Replica Exchange 

The last chapter introduced the combinations of Hamiltonian Replica Exchange 

with FEP and FDTI. This resulted in two new free energy methods, REFER and 

RETI, that improved the predicted relative hydration free energy of water and 

methane through the simple addition of a periodic X-swap move. In this move, 

the coordinates of neighbouring A-values were periodically tested and swapped. 

This allowed multiple trajectories to visit each X-value, and also allowed proper-

ties to be determined consistently across the entire A,-coordinate. The results from 

RETI and REFEP were seen to be very similar, although the use of the X - s w a p 

move did not significantly improve the hysteresis on the REFEP results. The ap-

p l i c a t i o n of REFEP to the calix[4]pyrrole system showed a similar result, namely 

identical structural sampling to RETI, but similar hysteresis to FEP. Because of 

this, only the application of RETI to the calix[4]pyrrole system will be discussed 

in this section. 

5.7.1 Simulation Conditions 

The application of RETI to the calix[4]pyrrole system was as similar to the appli-

cation of FDTI as possible. 21 trajectories were evenly spaced every 0.05 along X, 

and 10 M steps of simulation were run per trajectory. The value of AX was 0.001, 



CHAPTER 5. APPLICATION TO A HOST-GUEST SYSTEM ^ 

and a A-swap move was attempted between neighbouring 1-values, every 50 K 

steps. The choice of pairs to swap was made in an identical manner to the water-

methane simulations. On even iterations, even pairs swapped with the X neighbour 

with the larger A,-value, while on odd iterations, odd pairs swapped with the neigh-

bour with the higher X-value. To enable each X value to equilibrate before the 

simulation, an additional 900 K steps of Monte Carlo were run before the start 

of each simulation. In all other respects, the application of RETI was identical to 

the application of FDTI. To allow investigation of the reliability of the calculation, 

four copies of each leg of each perturbation were run, using randomised water 

positions, and a different random number seed. 

5.7.2 Results 

The relative binding free energies and relative free energies for each leg of the 

calculation were calculated, and are shown in table 5.5. These results were calcu-

lated over the last 7 M steps per trajectory, and the standard errors calculated as 

described in appendix E. 

5.7.3 Analysis 

These results show broad agreement with FEP and FDTI. However, the spread 

of results is slightly larger, as are the standard errors. In addition, the results are 

slightly lower than the FEP or FDTI values. The reasons for this are seen in the 

plots of shortest halide to nearest water oxygen distance, as a function of A, (figure 

5.15). These graphs show the features that were expected from the application of 

RETI, namely multiple water distances for each X-value, and a consistent set of 

distances across the entire X-coordinate. In addition, RETI has been able to weight 

the different water configurations across X. The number of hydrogen bonding con-

figurations sampled at low X is consistently much higher than that sampled at high 

X. This corresponds to the higher affinity of fluoride for water than chloride. The 

plots in figure 5.15 do not show this increasing density clearly, so a histogram of 

the density of distances with respect to X was made. The c o r r e s p o n d i n g density 

plot for figure 5.15 is shown in figure 5.16. This plot shows that not only has RETI 
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Leg 
Relative Free Energy / kcal mol ' 

Leg 
1 2 3 4 

Fluoride 
to 

Chloride 

Bound 

Free 

34.3 (0.6) 
34.3 (0.6) 

18.5 (0.5) 
18.5 (0.5) 

34.7 (0.7) 
3 4 J ( & 7 ) 

16.9 (0.4) 
16.9 (0.4) 

33.9 (0.6) 
33.9 (0.6) 

17.5 (0.5) 
17.5 (0.5) 

34.4 (0.6) 
34.4 (0.6) 

17.6 (0.4) 
17.6 (0.4) 

Fluoride 
to 

Chloride 

Binding 15.8(0.8) 
15.8 (0.8) 

17.8 (0.8) 
17.8(0.8) 

16.3 (0.8) 
16.3(0.8) 

16.8(0.7) 
16.8(0.7) 

Fluoride 
to 

Bromide 

Bound 

Free 

3 7 J ( & 7 ) 
3 7 . 8 ( 0 7 ) 

2&0(&5) 
2&0(&5) 

36.9 (OJ) 
3%0(&7) 

17.3(0.5) 
1 7 3 (&5) 

3 7 J ( a 7 ) 
37JX:0J) 

17.5(0.5) 
17.5(0.5) 

3&2(&7) 
3&2(&7) 

16JI(0.5) 
1&5(&5) 

Fluoride 
to 

Bromide 

Binding 1 7 J ( 0 . 9 ) 
17.8 (0.9) 

1 9 7 ( 0 ^ 4 
197 (&8) 

1 9 . 6 ( 0 8 ) 
197 (&8) 

21.7(0.9) 
2 1 7 ( 0 . 9 ) 

Chloride 
to 

Bromide 

Bound 

Free 

2.96 (0.04) 
2.96 (0.04) 

1.50 ((L03) 
1.50 (0.03) 

3.03 (0.04) 
3.03 (0.04) 

1.49(0.03) 
1.49 (0.03) 

3.1)1(0.05) 
3.01 (0.05) 

1.56 (0.03) 
1.57 (0.03) 

3.09 (0.05) 
3.09 (0.05) 

1.51 (0.03) 
1.51 (0.03) 

Chloride 
to 

Bromide 

Binding 1.46(0.06) 
1.46 (0.06) 

1.54 (0.05) 
1.54 (0.05) 

1.44 (0.06) 
1.44(0.06) 

1.58 (0.06) 
1.58 (0.06) 

Closure / kcal mol ' 0.5 (1.2) 
0.5 (1.2) 

0 4 ( 1 . 2 ) 
0.4(1.2) 

1.9(1.1) 
1.9(1.1) 

3.3(1.1) 
3.3(1.1) 

Table 5.5: Relative free energies for the bound and free legs, and relative bind-
ing free energies for four applications of RETI to the calixpyrrole system. The 
results are calculated over the last 7 M steps of simulation. Both the forwards and 
backwards values are shown, with the standard deviation in parenthesis. 

shared the full set of water distributions across A,, but it has also properly weighted 

those configurations. This weighting is graphically demonstrated by density plots 

for the bound and free fluoride to bromide, and chloride to bromide perturbations 

(figure 5.17). Fluoride has a much greater affinity for water than bromide, so the 

bound and free density plots show that the hydrogen bonding water distributions 

are weighted towards the fluoride. Chloride and bromide have similar affinities for 

water, so the bound and free plots show that the hydrogen bonding distributions 

are shared evenly across the entire X-coordinate. The effect of this is to reduce the 

relative binding free energy of fluoride to the other halides, as the fluoride has a 

greater probability of being hydrogen bonded to water. The RETI simulations have 

performed much better than any of the other methods at including this significant 

effect. However, RETI has not helped each individual trajectory to sample the wa-

ter distributions. All it has done is to distribute the original water configurations 
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Figure 5.15: The distance between the h a l i d e ion and the oxygen atom of the near-
est water, as a function of X, for four appUcations of RETT to the free leg, fluoride 
to chloride perturbation. The distances were calculated every 50 K steps. 

across A, correctly. RETI has thus handled the water configurations it started with 

in the best possible manner. There is still a random error in the results associated 

with the initial water distribution, which is likely to be the source of the spread of 

results. To make an improvement, new methods must be developed that can effec-

tively sample multiple water distributions. If these methods were combined with 

RETI, then we believe that the correct relative binding free energies, including 

the effects of contaminating water distribution, could be achieved. Such methods 

could perhaps use a fourth dimension to soften the water-system interactions, 

and allow better diffusion of water through the DMSO solvent. Such methods are 

the subject of future work on this system. 

While RETI could not change the initial distribution of water configurations, 

the use of a dynamic X-coordinate has given increased configurational flexibility 

to the calix[4]pyrrole host. Plots of the interatomic distances (figure 5.18) show 

a wide range of configurational sampling, coupled with smooth and consistent 

changes in distance across the X-coordinate. 
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(a) Simulation 1 (b) Simulation 2 

I a hi 
0.0 0.2 0.4 0.6 

X 
0.8 1.0 

(c) Simulation 3 (d) Simulation 4 

Figure 5.16; Equivalent plots to figure 5.15, except that the density of points is 
histogrammed in bins for each A.-value, for every 1.0 A along halide-oxygen dis-
tance. The colour scale goes from no sampling (white), through some sampling 
(blue) and medium sampling (cyan - green), to high sampling (red). 
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0.0 0.2 0.4 0.6 0.0 0.2 

(a) Bound leg, fluoride to bromide (b) Bound leg, chloride to bromide 

0.0 0.2 0.4 0.6 

(c) Free leg, fluoride to bromide (d) Free leg, chloride to bromide 

Figure 5.17: Density of halide - nearest water oxygen distances across X, for RETI 
simulations on the bound and free legs of the fluoride to bromide, and chloride to 
bromide perturbations. The colour scale and histogram parameters are identical to 
figure 5.16. 
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Figure 5.18: Distance between atoms for the first RETI simulation on the bound 
leg, fluoride to chloride perturbation. Atom pairs are identical to figure 5.8, and 
distances are calculated every 500 K steps, for the last 7 M steps per trajectory. 

5.7.4 Summary 

The newly developed technique of RETI was applied to calculate the relative bind-

ing free energies of three halides to a calix[4]pyrrole derivative. The results were 

excellent, with the X - s w a p move not only sharing configurational information con-

sistently across the entire X-coordinate, but also properly weighting the different 

configurations. RETI was much better able to include the effects of the increased 

affinity of fluoride for the contaminating waters, compared to the other methods. 

While RETI was unable to change the initial water distributions, as it does not aid 

water diffusion, it did ensure that the initial set was distributed correctly to each X-

value. If this method were combined with a technique to aid water diffusion, then 

we believe that it could reliably obtain the correct relative binding free energies 

that included the effects of contaminating water. 

RETI did an excellent job of sampling calix[4]pyrrole configurations. As in 

the case of AdUmWHAM, the use of a dynamic X-coordinate imparted increased 

configurational flexibility to the host. The increased configurational sampling was 

then correctly weighted over the entire X-coordinate via the X-swap moves. 
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5.8 Conclusion 

Seven free energy techniques were applied to calculate the relative binding free 

energies of three halide ions to a fluoride-selective calix[4]pyrrole derivative. The 

results showed that the sampling of contaminating water molecules was critical 

to predict the correct values. FEP and FDTI failed to sample the water distribu-

tions correctly, and used an inconsistent set of water distributions across the in-

coordinate. Each trajectory across X sampled only a specific configuration. This 

led to well-converged free energies, which did not include the correct weighting 

of water, or indeed host conformer, distributions. Since FEP and FDTI used an in-

consistent set of distributions across X, they returned well-converged, yet incorrect, 

results. 

Through the use of a dynamic X-coordinate, AdUmWHAM and BMW exhib-

ited better configurational sampling than FEP or FDTI. They too suffered from 

problems sampling the contaminating water distribution, which in their case led to 

a wide spread of results. This was due to the methods not weighting the relative 

distributions properly, and instead returning hydrogen bonding, or non-hydrogen 

bonding free energies. 

PTTI used multiple trajectories at multiple temperatures to partially overcome 

the sampling problem. While the method improved configurational sampling, it 

failed to enhance water diffusion, and was also not able to obtain a consistent water 

distribution across X. This was achieved by the techniques of REFEP and RETI. 

The use of X-swap move allowed not only multiple trajectories to sample each X-

value, but also the consistent, and weighted set of water distributions to be obtained 

across A,. REFEP did not improve the problems of hysteresis inherent in FEP. 

RETI, on the other hand, had little to no hysteresis, consistent sampling across 

X, and weighted water distributions. These results clearly demonstrate that from 

the seven methods tested, RETI was by far the best choice for the calix[4]pyrr-

ole system. However, improvements could still be made by developing methods 

that encourage greater diffusion of the contaminating water. Such methods are a 

subject of current and future work. 



Chapter 6 

The Application of Free Energy 

Methods to a Protein-Ligand System 

6.1 Introduction 

The previous chapters have developed and tested several new free energy meth-

ods, and compared them to established techniques. These tests were applied to 

two systems; the relative hydration free energy of water and methane, and the rel-

ative binding free energies of halides to a calix[4]pyrrole derivative. These tests 

revealed that, of the established free energy methods, Finite Difference Thermo-

dynamic Integration (FDTI) consistently performed better when ran under similar 

conditions as would be necessary for robust rational drug design. These tests fur-

ther demonstrated that, out of all tested methods, the newly developed technique of 

Replica Exchange Thermodynamic Integration (RETI) outperformed even FDTI, 

and proved itself to be the method of choice for both of the test systems. 

The overall aim of this research is to develop free energy methods that may be 

routinely applied to protein-ligand systems. The new technique of RETI will thus 

be compared to the established technique of FDTI, on a challenging protein-ligand 

system. The protein chosen for this study was p38 MAP kinase. 
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Figure 6.1: The SBl inhibitor to p38 MAP kinase. 

().]! I):*** Icinaise 

The mitogen-activated protein (MAP) kinases are important potential drug tar-

gets for the treatment of inflammation, cancer, leukaemia and other diseases. 

This is because they play an important part in the regulation of diverse cellular 

e v e n t s , s u c h as cell transformation, proliferation, differentiation and apop-

tosis. p38 MAP kinase is known to regulate the release of tumour necrosis fac-

tor (TNF)a and interleukin (IL)-1(3.'^^ These pro-inflammatory cytokines have 

been implicated as causal agents in the bone and joint destruction characteristic 

of rheumatoid arthritis. p38 is thus an important therapeutic target for the treat-

ment of rheumatoid arthritis, a condition which effects over 2 M people in the 

United States a l o n e . T h e r e has been a lot of interest in p38,^^^'^^' and many 

potential ligands have been developed. A good review of current p38 ligands 

shows that all of the major pharmaceutical companies are actively pursuing this 

target. While rheumatoid arthritis was the initial focus of this research, the in-

volvement of p38 in a broader spectrum of disease has become clear. Initial 

findings suggest that p38 inhibitors could be used to treat a range of conditions, 

from stroke and Alzheimer's through to osteoarthritis and dermatitis. 

SmithKline Beecham have developed an effective and selective group of in-

hibitors to p38. Of these "SB" inhibitors, SBl (full name SB203580) (figure 6.1) 

showed both high affinity and high specificity for the ATP binding site of p38.^^' 

A range of related ligands have been developed, and their binding affinities to p38 

m e a s u r e d . T h i s chapter will investigate the binding of SBl and related ligands 
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(a) SB 1 binds in the central cleft. 
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with Tyr35. 
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(c) H-bonding to Lys53 induces salt (d) Fluorobenzene ring fits into a hy-

bridge with Glu71. drophobic pocket. 

Figure 6.2: Different views of the crystal structure of p38 with SBl (pdb code 
1A9U, resolution 2.5 A, collected at pH 7.4). Four different views show the spe-
cific interactions important for binding. 

to p38, and compare the results to these measured binding affinities. 

6.2.1 SBl-based Ligands 

SBl shows strong affinity and specificity for the ATP binding site of p38.'^^ The 

X-ray crystal structure of the complex between p38 and SBl is shown in figure 

6.2. This structure shows SBl bound in the ATP binding cleft in the centre of the 

protein. Like ATP, the pyridine nitrogen atom (N18) forms a hydrogen bond with 

the backbone NH group of Met 109. The formation of a hydrogen bond between 

N4 on SBl and Ne of Lys53 suggests that the solvent exposed nitrogen, Nl, of the 
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Ligand A. SBl (S) Ligand B, SB1(R) 

(0.042 /zM) (0.042 ;zM) 
Ligand C, (0.34 jiM) 

Ligand D, (0.37 /iM) Ligand E, (0.37 jjM) 

Figure 6.3: The structures of potential ligands to p38. The I C 5 0 of each ligand 
(collected at pH 7.4) is shown in parenthesis.^^® 

imidazole ring is protonated.^^^ The formation of this hydrogen bond induces a 

salt bridge between Lys53 and GluVl which is not present in the uncompleted 

form of p38.'^^ A stacking interaction is formed between SBl and Tyr35, and the 

fluorobenzene ring is buried in a hydrophobic pocket of Thr and Leu groups. 127 

This chapter will investigate the binding of five potential ligands to p38 (figure 

6.3). Since the crystal structure was formed from a racemic mixture of 

it is unknown whether the binding is enantioselective. While the crystal structure 

does assign stereochemistry to the S-enantiomer, the accompanying paper does 

not discuss how this was achieved, nor whether the binding was enantiomerically 

selective. To investigate this, both the S- and R-enantiomers will be modelled (lig-

ands A and B in figure 6.3). This study will also examine two analogues of SBl. 

Ligand C, in figure 6.3, is a reduced form of SBl, where the sulfoxide group has 

been converted into a sulfide. This ligand has a low binding affinity for p38, and 

has an almost order of magnitude difference in I C 5 0 compared to SBl. Ligand D 

is a methylated version of SBl. This has also resulted in an almost order of magni-

tude difference in I C 5 0 , compared to SBl. The methyl group has been added to the 

pyridine ring, which is configurationally restrained by the fluorobenzene ring. This 



(:HULPT]aR(x ^JPPLJCL%TIGW4TM]ul]MR{frEJN^LI(̂ lR%)5rrSTTaVI 153 

means that there are two distinct conformers of this molecule; ligand D, which has 

the methyl group pointing inwards, and ligand E which has the group pointing out. 

Four perturbations are needed to explore the relative free energies of these five 

hgands. The first two, A —> C and B —> C remove the oxygen atom of the sulfoxide 

group to form the sulfide. The remaining two perturbations, D —» A and E —» A, 

remove the methyl group from the pyridine ring. 

6.3 Parameterisation 

The p38-SBl ligand system was modelled via the OPLS united-atom forcefield. 

The crystal structure of the SB 1-complex (pdb code 1A9U)^^^ was used as a basis 

for all perturbations. The structure was checked via Whatlf^^^ and polar hydro-

gens added based on optimisation of the hydrogen bond network. The t i t r a t a b l e 

residues were also set to the state recommended from this analysis. The residue 

list, and titration states used are shown in appendix F. 1. The PEPZ program, from 

MCPRO,'^ was used to build a z-matrix of the protein based on the crystal struc-

ture. The z-matrix kept most of the protein rigid, with only the side-chains within 

15 A of the centre of SBl able to move. The flexible residues are also listed in 

appendix F. 1. 

The z-matrices of the five ligands were constructed by treating each aromatic 

ring as a rigid residue. The only flexible degrees of freedom were the dihedrals and 

angles which connected these rings to each other, and all the non-bond degrees of 

freedom within the sulfoxide / sulfide functional group. The z-matrices used for 

the A — C and D —» A perturbations are given in appendix F.2.4. The A —» C 

and B —) C perturbations involved the disappearance of an oxygen atom. This was 

pulled in as X increased, such that by X = 1.0, its bond length to the sulfur atom 

was 0.3 A. As in the case of the water-methane simulations, this was to avoid 

convergence problems as the atom disappeared. A similar technique was used for 

the disappearance of the methyl group for perturbations D —> A and E —> A. In 

these cases, the hydrogens were pulled in while being turned into dummy atoms, 

and the methyl carbon was turned into an aromatic hydrogen. 

The parameters for the protein were available from the OPLS united-atom 
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forcefield.^^'^ The hgand's Lennard Jones, angle and dihedral parameters were 

taken from the OPLS all-atom forcefield.®' OPLS lacked appropriate dihedral 

parameters between the imidazole and phenyl rings, so these had to be individually 

derived. The partial charges on all of the ligands also had to be derived. 

6.3.1 Deriving Partial Charges 

The charge parameterisation scheme for the OPLS forcefield can be very expen-

sive, and requires fitting to known physical properties of the molecule in question.^ 

Initial investigations^^® into combining OPLS charges with Quantum Mechanical 

charges suggested that Hartree-Fock 6-3IG*,"^ electrostatic potential surface de-

rived partial charges were appropriate. This removes the need for known physical 

properties of the system, but this calculation is very expensive, and can encounter 

problems associated with buried atoms. Recently, the use of semi-empirical 

Quantum Mechanics methods has been p r o p o s e d . T h e AMI semi-empirical 

Hamiltonian^^^ can efficiently produce atomic partial charges via a Mulliken pop-

ulation analysis.These charges will contain errors, so Storer et al. developed em-

pirical correcting functions to produce what they call "AMI-CMIA" charges. 

The correcting functions were optimised by fitting the AMI Mulliken charges to 

the experimental dipole moments of a diverse set of 186 molecules. The result-

ing charges were compared to high level QM partial charges, and seen to show 

g o o d agreement.'^® 

AMI-CMIA charges were subsequently used by Jorgensen^^'^^'^^^ to obtain 

OPLS partial charges for new atoms. To make these gas-phase charges compatible 

with the OPLS condensed phase parameters, Jorgensen scaled them by an a factor. 

There does not seem to be an optimum value of a, but a similar study to this^^ used 

CL = LOS. 

The work presented in this chapter used Amsol 6.6^^ to obtain the AMl-

CMIA charges for each of the five ligands. Full geometry optimisation was used, 

and the charges over symmetrical groups were averaged. The resulting charges 

were scaled by an a factor of LOS, then rounded to 3 decimal places (to be con-
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Figure 6.4; Fragments used to obtain the torsional parameters for the five SBl-
based ligands. 

sistent with OPLS). To correct any rounding error, the sum of charges on each 

ligand was set to 0.000 by adding or subtracting 0.001 to the first few atoms. The 

resulting partial charges are given in appendix F.2.2. 

6.3.2 Deriving Torsional Parameters 

The torsional parameters were derived by constructing representative fragments 

of each ligand (figure 6.4). Each fragment represented only one of the missing 

torsions, and was built to ensure that it had as few internal torsions as possible. 

Gaussian94 was used on each fragment to obtain the quantum mechanical energy 

as a function of dihedral angle. The dihedral angle of interest was varied in 10 ° 

increments, from 0 ° to 180°, and a full, RHF/6-31G* geometry optimisation was 

performed for each value. A z-matrix was built for each fragment, based on the 

z-matrices for the full ligands. The Lennard Jones, angle and available dihedral pa-

rameters were a p p l i e d to each fragment from the full ligands, and the AMI-CMIA 

charges were calculated and scaled as in section 6.3.1. The fragments were miss-

ing the parameters for the dihedrals of interest, so these were set to zero. Monte 

Carlo minimisation was applied for each dihedral angle value between 0 and 180°, 

and the difference between the quantum mechanics and molecular mechanics en-
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Figure 6.5; The dihedral profiles calculated for fragment 3 in figure 6.4. The thin 
solid line shows the quantum mechanical profile for this torsion, while the thin 
dashed line shows the molecular mechanics profile. The difference between the 
two (thick solid line) is the dihedral angle energy, to which the Fourier terms of 
equation 2.6 are fit (thick dashed line). 

ergies were calculated (figure 6.5). This difference represented the dihedral energy 

profile of interest. This profile was extrapolated to 360 and the Fourier terms of 

equation 2.6, from chapter 2, were fitted to it via a single value decomposition 

algorithm'^ (figure 6.5). The quality of each fit was inspected visually, and the 

dihedral parameters were manually tweaked if necessary. The resulting dihedral 

parameters are given in appendix F.2.3. 

6.4 Simulation Conditions 

The simulations of the five SB 1-like ligands to p38 were set up in a similar way 

to that of another simulation study on p38 l igands ,and to a similar set of sim-

ulations on COX-1 and COX-2 inhibitors.The active site was surrounded by a 

spherical cap of 1024 TIP4P^^ waters. This was centred on ligand A, and had a 

radius of 25 A. The water cap was restrained to the 25 A barrier through use of a 

single-sided harmonic restraint, with a 1.5 kcal mol^^ force constant. The spheri-

cal water cap was modified to include all of the crystallographic waters that were 
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Parameter Value 

Ensemble Canonical (NVT) 

Simulation Temperature 25 °C 

Boundary Type Solvent cap, centred on ligand, radius of 
25 A, force constant 1.5 kcal mol"'. 

Protein / ligand / solvent move ratio 4 0 / 1 / 4 0 

Non-bonded cutoff 15 A 

Maximum ligand translation / rotation 0 J A / Z 0 ° 

Maximum solvent translation / rotation 0 J ^ A / 1 5 ° 

Preferential sampling centre Ligand, imidazole group 

Preferential sampling parameter (WKC) 200 

Equilibration Scheme 10 M steps of water-only moves, followed 
by 1 M of protein-only moves, followed 

by 5 M steps of general equilibration 

Table 6.1; Parameters used to control the equilibration of the p38 system. 

within the 25 A radius. Non-bonded cutoffs were set to 15 A, and residue-molecule 

cutoffs were used. This meant that if any pair of atoms between a protein residue 

and ligand or solvent molecule were within the cutoff radius, then all pair-pair 

interactions between the residue and molecule were included. The non-bonded in-

teractions were feathered over the last 0.5 A via a harmonic switching function. 

Preferential sampling^ was used to enhance solvent sampling around the lig-

and. Initial coordinates for the ligand were taken by mapping to the crystal struc-

ture of ligand A bound to p38. This system was equilibrated for 16 M MC steps 

according to the parameters in table 6.1. This was to ensure that the waters in the 

solvent sphere were fully relaxed. The final structure from equilibration was then 

used as the initial structure for all of the bound leg perturbations. The free leg was 

set up in a similar way, using a 25 A solvent cap of 2177 TIP4P waters, centred 

on SBl. To relax the water structure, 10 M steps of general equilibration were run 

using the parameters from table 6.1, and a solvent / ligand move ratio of 295 to 1. 

The final structure from this equilibration was then used as the starting point for 

all of the free leg simulations. 
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6.5 Free Energy Simulations 

The five ligands in table 6.3 were investigated via four perturbations; A —̂  C, 

B —> C, D A and E —» A. FDTI and RETI simulations were run on each bound 

and free leg, and the resulting free energies combined via the cycle in figure 2.2. 

The applications of FDTI and RETI were as similar as possible, and both used 21 

evenly spaced windows across X. For the bound leg, 15 M steps of simulation were 

run at each window, over 300 blocks of 50 K steps. The free legs used 10 M steps 

at each window, over 200 blocks of 50 K steps. A A-swap move was attempted 

between neighbouring pairs every 50 K steps during all of the RETI simulations. 

All simulations used a value of AX of 0.001. To investigate reliability, all simu-

lations were repeated twice using different random number seeds. To ensure that 

the RETI trajectories were equilibrated for each X-value, an extra 500 K steps of 

simulation were run before the start of each trajectory. The remaining simulation 

parameters were identical to those used during equilibration. 

6.5.1 Developing a New Monte Carlo Program 

As they stand, using MCPRO, these simulations would have taken about 15 to 20 

days each to run. Part of the aim of this research is to make free energy calculations 

sufficiently fast, such that they may be routinely used in commercial drug discov-

ery. Since the use of MCPRO did not satisfy this aim, a completely new Monte 

Carlo program was written to perform these free energy simulations. This code 

was written to have the main features of MCPRO, and was tested to ensure that it 

could reproduce MCPRO's free energies. Unlike MCPRO, the internal data struc-

ture of the code was specifically optimised to run large protein-ligand simulations. 

This optimisation led to an efficient non-bonded energy routine, which allowed 

the code to run between 9 to 12 times faster on the p38-SBl system. This allowed 

each of the bound leg simulations to be run within 1.5 days, over 21 PHI-1 GHz 

processors. Since the calculation is processor limited, we believe that a similar 

number of current P4-3GHz processors could accomplish the same simulation in 

approximately half a day. This is a significant difference to the amount of time 

these calculations took at the start of this project, when our available computa-
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FDTI / kcal mol ' RETI / kcal mo l - ' 

Perturbation Leg 1 2 1 2 

Bound 2 4 j ( 0 j ) 25.1(0.5) 23.7 (0.6) 24.5 (0.6) 

A - ^ C Free 2 5 3 ( 0 . 6 ) 2&4(0.6) 27.1 (0.6) 2 5 J ( 0 . 6 ) 

Binding -0.8(0.8) -1.3 ((X7) -3.4 (0.9) -1.1(0.9) 

Bound 2%4(&5) 26.9 (&5) 28.5 (0.6) 2 7 4 ( 0 . 6 ) 

B - + C Free 2 5 J ( & 6 ) 2&4(0.6) 27T(0 .6 ) 2 5 J ( 0 . 6 ) 

Binding 2.0 (0.8) 0.5 (0.8) L 4 ^ ^ ) Z 2 ^ ^ ) 

Bound -5.8 (0.4) -9.3 (0.4) -7.1(0.4) -7 .5(0.4) 

D A Free 4.7 (0.3) 5.0 (0.3) 5.6 (0.3) 4.7 (0.3) 

Binding -10.5 (0.4) -14.3 (0.5) -12.6 (0.5) -12.2 (0.5) 

Bound 8.4 (0.2) 8.1 (0.2) 8.2 (0.2) 8.5 (0.2) 

E - + A Free 5 j ^ & 3 ) 4 5 ^ ) 3 ) 5 j ( a ^ 5.7 (0.3) 

Binding 3.0 (0.3) 3 j ( & 3 ) 2.7 (0.3) 2.8 (0.3) 

Table 6.2: Binding free energies for two applications of FDTI and RETI to the 
binding of ligands to p38. Only the forwards free energies are shown. The free leg 
for C —̂  B is taken from the equivalent perturbation of A —»• B. The free energies 
are calculated over the last 5 M steps of simulation in each leg, and the standard 
errors are calculated over blocks of 500 K steps. 

tional resources were limited to 8 PII-300MHz processors. Using this equipment, 

and MCPRO, we estimate that each bound leg would have taken approximately 

150 days. In reality, the large Beowulf cluster at Southampton allowed several 

bound leg simulations to be run simultaneously. At its peak, 8 bound legs were 

being simulated, with over 168 processors simultaneously in use. One and a half 

days of simulation today achieved as much as about three and a third years of sim-

ulation at the start of this project. It is our belief that the combination of our new 

code with modem Beowulf clusters means that free energy calculations are now 

sufficiently fast to be used in commercial drug discovery. 

6.5.2 Results 

The results from the two applications of FDTI and RETI to each perturbation are 

shown in table 6.2. The relative binding free energies, and standard errors are 

calculated as in appendix E, and for clarity, are also shown in figure 6.6. Owing to 

the negligible hysteresis on the results, only the forwards free energies are shown. 
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FDTI RETI 

Figure 6.6: Binding free energies for two applications of FDTI and RETI to the 
binding of ligands to p38. (1) A —» C, (2) B —̂  C, (3) D ^ A, (4) E —> A. 

6.5.3 Analysis 

FDTI and RETI return very similar results, with similar levels of spread, and sim-

ilar standard errors. The standard errors on FDTI are slightly smaller than those 

on RETI due to FDTI sampling only single local minima at each X-value. This is 

seen in plots of the protein-ligand distances across X (figure 6.7) and plots of the 

average interaction energies across A, (figure 6.8). As in all previous simulations, 

RETI is seen to sample more widely, and more consistently across X, and again 

demonstrates its superiority over FDTI. The benefit of wider and more consistent 

sampling is seen most clearly for the calculation of the relative free energies of 

ligands D and A. FDTI predicts two, very different free energies for the bound 

leg; -5.8 kcal mol~^ and -9.3 kcal mol~^ In comparison, RETI returns two very 

similar free energies, that are approximately the average of the two FDTI results; 

-7.1 kcal mol~^ and -7.5 kcal m o P ^ Figure 6.8 shows the average electrostatic 

protein-ligand energy for the bound leg of this perturbation, for both the FDTI and 

RETI simulations. FDTI is seen to show no clear trend with respect to X, and does 

not really return what would be expected, given that the structural sampling (figure 

6.7) shows that a hydrogen bond between NIB and HN:Metl09 is being formed 
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HN:Metl09-N18 N£:Lys53 - N4 

&2 &4 &6 0^ 
CC:Argl73 - C13 

o j &4 a e 
C;:Tyd5.C9 

(a) FDTI 

HN:Metl09 - N18 Ne:Lys53 - N4 

0.6 

C&Tyd5-C9 

&2 &4 0^ 
C;:Argl73 - C13 

(b) RETI 

Figure 6.7: Distance between selected p38 atoms and selected ligand atoms, for the 
first FDTI and first RETI simulation on the bound leg, D —> A perturbation. The 
distances were calculated every 50 K steps, for the last 5 M steps of simulation. 
The ligand atom names are taken from figure 6.1 



CHAPTER 6. APPLICATION TO A PROTEIN-LIGAND SYSTEM 162 

F D T I ( l ) FDTK 

&4 0^ 
R E T I ( l ) 

&2 0 4 
RETI 

- 2 0 -

0 0.2 0.4 0.6 0 

Figure 6.8: The average protein-Iigand coulombic energy with respect to X for 
both applications of FDTI and RETI to the bound leg, D -h- A perturbation. The 
averages are calculated every 50 K steps. 

as X is increased. RETI returns two, near-identical trends that clearly show the de-

crease in coulombic energy with respect to X, as expected due to hydrogen bond 

formation. 

6.5.4 Comparison with Experiment 

Table 6.3 compares the experimental difference in I C 5 0 between pairs of Ugands, 

with the relative binding free energies calculated via the FDTI and RETI simula-

tions. The A -4- C and B —» C perturbations return very different relative binding 

free energies, suggesting that the binding of SBl is enantiomerically selective. 

These results suggest that the SBl(R) ligand binds more strongly to p38 than the 

reduced form of SBl (ligand C), which in turn binds more strongly than SBl(S). 

The combination of the two perturbations suggests that the relative binding free 

energy of SBl(R) and SBl(S) is about 1.3 to 5.6 kcal moP^ While this result is 

initially exciting, there is no experimental evidence to support enantiomeric bind-

ing, as the chirality of the binding ligand has not been investigated. Examination 

of the simulation structures shows little difference in protein or ligand configura-

tion. (figure 6.9) The only significant difference between the two enantiomers is 
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Perturbation FDTI 
/kca lmol"' 

RETI 
/ kcal mol^' 

AIC50 / / i M Agree with 
experiment? 

A - ^ C -0.8 (0.8) 
-1.3 (0.7) 

-3.4 (0.9) 
-1.1 (0.9) 

0.298 No 

B -» C 2.0 (0.8) 
0.5 (0.8) 

1.4 (0.9) 
2.2 (0.9) 

0.298 Yes 

D —y A -10.5 (0.4) 
-14.3 (0.5) 

-12.6 (0.5) 
-12.2 (0.5) 

-0.328 Yes, 
but too big 

E —» A 3.0 (0.3) 
3.5 (0.3) 

2.7 (0.3) 
2.8 (0.3) 

-0.328 No 

Table 6.3: Comparison of the experimental difference in ICgp between pairs of 
ligands to p38 with relative binding free energies calculated via two applications 
of FDTI and RETI. 

Argl73 
Argl73 

(a) SBl(S) (b) SBl(R) 

Figure 6.9: The structures of the SBl(S) and SBl(R) ligands, in the active site of 
p38. The structures are taken from the end of corresponding RETI simulations. 
Note the water-bridged hydrogen bond between SBl(R) and Argl73, which pulls 
Argl73 up towards the ligand. 

that the SBl(S) ligand has the sulfoxide oxygen atom sticking out into the sol-

vent of the active site cleft, while SBl(R) has the oxygen forming a water-bridged 

hydrogen bond with Arg73 (figure 6.9). This may help SBl(R) gain better elec-

trostatic interactions between itself and the protein, compared to SBl(S), whose 

oxygen seems only to be interacting with the bulk solvent. The steric barrier to 

rotation of the sulfoxide group prevented the sampling of configurations where 

SBl(S) has rotated its oxygen around to interact with the protein. Since this did 

not occur, the simulations cannot say whether this particular configuration could 

bind as well as SBl(R), and thus say whether or not the binding is enantiomeri-

cally selective. To investigate whether this were the case, the A —> C and B —» C 

bound leg, RETI, perturbations were repeated, with the sulfoxide group rotated 
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Perturbation Original / kcal mol ' Rotated / kcal mol ' 

A - + C 

B - ^ C 

2 3 J ( 0 . 6 ) 

2&5(&6) 

2 & 0 ( a 6 ) 

26 .1(0 .6) 

Table 6.4: The relative free energy of two bound leg perturbations, as calculated 
via RETI. The free energies for the ligands in the original configuration, and for 
a configuration where the sulfoxide group has been rotated by 180 ° are shown. 
The results were calculated over the last 5 M steps of MC per A-window, and the 
standard errors, shown in parenthesis, were calculated over blocks of 500 K steps. 

by 180 °. In these simulations, SBl(S) pointed its oxygen group towards the pro-

tein, while SBl(R) pointed it out into bulk solvent. The results are shown in table 

6.4, together with the results from the original RETI simulations for comparison. 

These results show that it is the orientation of the sulfoxide oxygen atom which 

imparts increased binding affinity to the SBl ligand. This is because SBl(S), with 

the rotated sulfoxide group, has an approximately equal relative binding free en-

ergy to the sulfide (29.0 kcal mol"^) as SBl(R) in the original crystal configuration 

(28.5 kcal mol"^). These results suggest that the binding of SBl is not enantiomer-

ically selective, but that both enantiomers adopt slightly different binding modes. 

This is not in agreement with the crystal structure, which only shows the SBl(S) 

ligand bound with the oxygen pointing out into bulk solvent. The paper accompa-

nying the crystal structure gives no information as to how this chirality of the SB 1 

ligand was determined, and describes how the crystal structure was formed via the 

soaking in of a racemic mixture of SB 1. Without more information, these results 

suggest that the original assignment of the chirality of the crystal structure may be 

need to be reevaluated. 

The second set of perturbations, involving SBl and a methylated form, gave 

disappointing results compared to experiment. The D — A perturbation returned 

a relative binding free energy which agreed with the experimental order, but very 

much overestimated the amount. We know that this is the case, as the experimental 

relative binding free energies can be related to the I C 5 0 via the Cheng-Prusoff 

equation. While this requires knowledge of the Michaehs constant of the ligand 

for the protein, which is not available, it does lead to the general "rule of thumb" 

that an order of magnitude change in I C 5 0 is equivalent to a relative binding free 

energy of 1 to 2 kcal mol~^. Using this rule, the relative binding free energies of 
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these ligands should all fall into the range of ±2 kcal mol~^ An explanation for 

this overestimate is found in the structures produced from the simulations. These 

show that the methyl group, in the configuration of ligand D, has a steric clash 

with the backbone of the protein. To relieve this clash, the important hydrogen 

bond between N18 and Metl09 is broken. This is clearly seen in the distance 

plots in figure 6.7. In comparison, the methyl group in the ligand E configuration 

does not clash with the backbone of the protein. The important hydrogen bond 

is preserved, and the binding mode is not affected. This leads to the conclusion 

that the D configuration is not the correct binding mode for this ligand, and thus 

the relative binding free energy to SB 1 should be large and positive. Unfortunately, 

the simulations predict the the ligand in the E configuration is more strongly bound 

than SBl. This is not supported by the experimental evidence. The reasons for this 

poor prediction could come from many sources. For example, the simulations used 

a fixed protein backbone. It is known that the phosphate binding ribbon at the top 

of the active site is very flexible. Its motion allows the Tyr35 residue to move up 

and down to interact better with the ligand. Neglect of the motion of this loop could 

have affected the results. Methods to sample the backbone motion of a protein 

during an MC simulation, are a subject for future work. Such methods could be 

based on configurational bias Monte Carlo/^^ or methods that allow the concerted 

rotation of multiple torsional angles within a single move, e.g. ConRot.^^^ 

It is likely that the lack of configurational sampling of the ligand dihedrals af-

fected the results. Ligands D and E represent two different binding modes of the 

same ligand, differing only in dihedral angle. Ideally, both binding modes should 

be sampled within a single simulation, allowing both configurations to contribute 

to the same relative binding free energy. Methods to enhance configurational sam-

phng of ligands are a subject of future work. 

In summary, the p38-SBl system presented many challenges to the free energy 

simulations. The chirality of the binding ligand was only inferred from the crystal 

structure, the protein had a flexible backbone, and the exact detail of the binding 

geometry was unknown. 
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Parameter Perturbation Value 

Initial A - + C 5&5A X 50.1 A X 43.6 A 
size of 
solvent D - ^ A 5%2A X 49.5 A X 45.4 A 

box 
E - t A 5 7 3 A x5L5Ax44aA 

Number A - * C 3881 

of 
TIP4P D —+ A 4059 

waters 
A 4093 

Table 6.5: Initial box sizes and composition for the three free leg perturbations 
under NPT, periodic boundaries conditions. 

Perturbation Cap / kcal mol ' NPT / kcal mol ' 

A - + C 27.1 (CL6) 3 1 2 ( L I ) 

D - ^ A 5.6 (0.3) 5.2 (0.4) 

E —> A 5 j ( a % 5.8 (0.3) 

Table 6.6: Comparison between the relative free energies for three free leg per-
turbations, using a spherical solvent cap, and using an orthorhombic box of water 
under NPT conditions. Standard errors are shown in parenthesis, and the results 
are averaged over the last 5 M steps of simulation. Only the forwards free energies 
are shown. 

6.5.5 NPT simulations 

The results from applications of FDTI and RETI to the five ligands to p38 show 

poor agreement with experiment. Other workers have suggested that the use of 

a spherical solvent cap may influence the free energy results.^^' To investi-

gate whether this is the case, the free leg perturbations will be performed in an 

orthorhombic box of water, using standard periodic boundaries. Each free leg per-

turbation was set up in a orthorhombic box according to table 6.5, and the simu-

lations were equilibrated for 10 M steps under NPT conditions. RETI was applied 

in an identical manner to section 6.5, using 21 windows across X, and running for 

10 M steps within each window. X-swap moves were attempted every 50 K steps, 

and the results were generated over the last 5 M steps within each window. As the 

newly developed simulation code was then not capable of sampling from the NPT 

ensemble, these simulations were performed using MCPRO 1 . 5 . T h e resulting 

free energies for these free leg simulations are shown in table 6.6, together with 

the results from the first application of RETI from section 6.5. These results show 
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very little difference between the cap and NPT simulation results for the methyl-

based perturbations. This suggests that the use of a solvent cap is not the reason 

why the results for the E —̂  A perturbation returns a result which disagrees with 

experiment. There is a difference between the free leg A —> C perturbations, with 

the NPT simulation predicting a significantly larger value. When combined with 

the corresponding bound leg perturbations from section 6.5, this has the effect of 

changing the binding order, and reporting that the sulfide binds more strongly than 

SBl. This is a disappointing result, which shows that future work must investigate 

the effect of solvent boundary conditions on both the bound and free legs of these 

calculations. 

Part of the problem associated with the sulfoxide sulfide perturbations is that 

the relative binding free energy is formed as the difference of two large numbers. 

This is because the relative free energies of the bound and free legs show a large 

change in the PMF of the order of 30 kcal mol~^. Examination of the energy 

components across X (not shown) reveals that this large free energy change is a 

result of large changes in ligand intramolecular, and ligand-solvent and ligand-

protein intermolecular electrostatic energy. These large changes can be traced to 

the change in partial charge associated with the sulfur atom, as it perturbs from the 

sulfoxide to the sulfide. This charge changes by 0.85 |e|, as it goes from 0.819 |e| 

to -0.031 |e|. This large transformation of charge causes the wide variations in 

electrostatic energy which swamp the bound and free leg free energies. It is likely 

that the magnitude of the sulfur charges are unrealistic, as the diffuse d-orbitals 

of the sulfur atom result in an incorrect weighting of electron density from the 

initial Mulliken analysis. This suggests that future work should investigate the 

effect of different charge parameterisation schemes on the free energy results, e.g. 

investigating AM1-CM2 charges/'*^ or AMl-BCC.^"^^ 

6.6 Comparison to a Similar Study on p38 

While the results presented in this chapter successfully demonstrate the superi-

ority of RETI over FDTI, and reveal that free energy simulations are now suffi-

ciently fast for routine use, the results show poor agreement with experiment. This 
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is likely to be a problem with the setup of the system, and should not be inter-

preted to mean that free energy calculations do not work. Recently, a successful 

application of thermodynamic integration to a range of ligands bound to p38 has 

been r e p o r t e d . T h i s study tested TI against less rigorous free energy methods 

and scoring functions, and concluded that TI was substantially more predictive 

than the other methods. The study investigated 16 ligands to p38. These ligands 

formed a congeneric series, and their experimental IC50S showed a wide range 

from 36 nM to 1.9 fjM. The ligands were all based on the same scaffold (figure 

6.10). The relative binding free energy for each of these ligands was calculated 

from a common reference state. This reference state had Ri=F, R2=H and R3=F. 

Since it was possible to map the three R groups onto the phenyl ring in two dif-

ferent ways (representing a 180° rotation about the sulfur-phenyl bond, figure 

6.11), free energy simulations for both mappings were performed. The parame-

ters for the protein were taken from the Charmm22 forcefield,^ while the majority 

of the ligand parameters were taken from AMBER.^ The ligand partial charges 

were derived from an electrostatic surface potential (ESP) fit of 3-21g*/6-31g* 

MK charges,calculated using Gaussian 98. The initial structure for each pertur-

bation was obtained through a flexible dock of each of the ligands into a crystal 

structure of p38. A spherical cap of TIP3P water, of radius 16 A, was centred on 

the ligand, and restrained to the 16 A barrier by a single-sided harmonic restraint 

using with a 0.5 kcal mol~^ force constant. Most of the protein was kept rigid, 

with only the protein atoms within 12 A of the ligand allowed to move during the 

MD simulations. Positional restraints with a force constant of 0.5 kcal mol"^ were 

applied to the moving protein atoms to keep the protein structure near the initial 

configuration. These structures were then minimised for 1000 steps, then e q u i l i -

b r a t e d for 500 picoseconds (ps) of MD. Each TI perturbation was performed four 

times. Each mapping of the ligand (figure 6.11) was run in both the forwards and 

backwards direction. The final relative binding free energies reported in the paper 

were the average of these four simulations. Each perturbation was performed over 

21 evenly spaced windows over the 1-coordinate, with 10 ps of equilibration and 

10 ps of data collection at each X-value. The simulations at each X-value were per-
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Ligand Ri R2 R3 pICso 

1 H H H 6.602 

2 H H F 

3 H H CH] 5.854 

4 H CI CI 6.097 

5 H CH3 H 5^154 

6 H CH] CH3 5.721 

7 H F H 6.347 

8 CH] H H 6.699 

9 H CI F 6.301 

10 H CI H 6.553 

11 CH] H CI 6.745 

12 Br H H 6.602 

13 CH) H CH3 6.577 

14 OH H H 6.444 

15 NH: H F 6.658 

16 CI H F 7.444 

Figure 6.10: The ligands investigated during a literature application of TI on p38. 35 

formed in series, and started from the final structure of the previous A-value. An 

extra 100 ps of equilibration was performed at the end of the forwards mutation, 

to allow the structure to further relax before starting the backwards mutation. The 

individual free energy gradients were numerically integrated using the trapezium 

rule. The MD simulations were run with a 2 fs timestep, using SHAKE to constrain 

bonds^46 Yhe simulations were performed at 300 K using a Berendsen thermostat, 

and an 8 A non-bonded cutoff. The free legs of the binding calculation were per-
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(a) Mapping 1 (b) Mapping 2 

Figure 6.11: The two primary configurations of the ligand studied. 35 

formed using an NPT periodic box of TIP3P water, of approximately 28 A on a 

side. This box was minimised for 1000 steps, then equilibrated for 500 nanosec-

onds of MD. The perturbations were applied over the same 21 windows across X, 

in an equivalent manner to the bound leg, using 20 ps of equilibration and 20 ps of 

data collection at each X-value. A further 500 ps of equilibration was performed 

between the forwards and backwards perturbations. 

The results of these TI simulations gave very good agreement with the exper-

imental IC50S. In many ways these simulations are very similar to the simulations 

presented in this chapter. The main differences are in the sampling method used 

(MD versus MC), and the method used to obtain the charges (ESP fit of ab initio 

charges versus corrected Mulliken charges from the AMI semi-empirical Hamil-

tonian). This gives weight to the belief that the lack of protein backbone sampling, 

and the poor charge derivation, may be part of the reason for the disagreement be-

tween the results presented in this chapter, and the experimental IC50S. However, 

the above simulations applied a positional restraint to the protein atoms, which 

kept them close to their original positions.When the same simulations were per-

formed without this r e s t r a i n t , i t was seen that the agreement between the sim-

ulation results and the experimental IC50S was markedly reduced. The authors of 

this study conclude that this was a result of the much greater flexibility of the sys-

tem, and thus a lack of full configurational sampling.^^ This result highlights the 

need for configurational sampling methods which can better sample the frustrated 

energy surfaces of proteins. This result also shows how sensitive the results of free 

energy simulations can be with regards to the setup of the system, and that perhaps 
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the p38-ligand system was too challenging a test-case for the development of the 

free energy methods presented in this chapter. 

6.7 Conclusion 

FDTI and RETI were applied to calculate the relative binding free energies of lig-

ands to p38 MAP kinase. RETI was again seen to be a superior method to FDTI, as 

it allowed wide and consistent sampling across the entire l-coordinate. Given the 

simplicity of applying RETI, and its clear superiority across three diverse test sys-

tems, we would recommend that it is used whenever FEP or FDTI would normally 

be applied. We have succeeded in our aim of making the free energy calculation 

reliable, as RETI returns consistent results for each application. We have also suc-

ceeded in our aim of making the free energy calculations quick, as each bound leg 

took only 1.5 days to perform, and many could be run simultaneously. Using the 

most modem hardware (Pentium 4, 3 GHz) and our newly developed software, we 

believe that the simulations would take about half a day. This is in comparison to 

over 150 days on hardware and software available at the start of this project. 

The comparison to experimental results was disappointing. While the simu-

lations hinted at the possible enantiomer specific binding of SBl, in general, the 

simulations failed to agree with experiment. These simulations show how far we 

have come, but also how much work still needs to be done. The development of 

RETI allows for the consistent and correct weighting of configurations across the 

^ . - c o o r d i n a t e . However, methods must still be developed that can actually sam-

ple significantly different configurations within a single trajectory. These meth-

ods should allow the sampling of multiple related binding modes, or multiple re-

lated conformers of a ligand. Such methods may help to improve the results of the 

methylated versions of SB 1. 

The quality of the results presented in this chapter may have been impaired 

by the neglect of backbone motion of the protein. This motion is known to be 

important in the flexible, phosphate binding loop of p38, and methods need to be 

developed which can include it within the context of a Monte Carlo simulation, e.g. 

configurational bias Monte C a r l o o r ConRot.̂ "^^ The charge parameterisation 
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scheme should also be investigated, as problems assigning the charge for sulfur 

atoms could have affected the results. In addition, the use of a spherical solvent cap 

was seen to affect the results of the free leg of the sulfoxide sulfide perturbation. 

Future work will need to investigate the effect of solvent boundaries on both the 

bound and free legs. 



Chapter 7 

Concluding Remarks 

This research set out with the aim of making free energy calculations on protein-

ligand complexes sufficiently reliable, and fast, such that they could be readily 

used within pharmaceutical drug design. To satisfy this aim, in chapter 3, estab-

lished free energy methods were tested on a simple, yet challenging test case. This 

test case required the accurate calculation of the relative hydration free energy of 

water and methane. This free energy was seen to depend strongly on the exact sol-

vent configurations sampled during each simulation. Two of the three established 

free energy methods, FEP and FDTI, sampled in an identical manner. They both 

used a single trajectory at each 1-value, and derived independent free energies for 

each of these X-points. The difference between the two methods was that while 

FEP calculated the difference in free energy between neighboring ^-windows, 

FDTI only calculated the free energy gradient with respect to A, for each point. 

Unlike FDTI, the results from the FEP simulations were affected by the window 

width. This led to a significant hysteresis in the predicted free energies, which was 

not present in the FDTI results. While this hysteresis could be improved through 

better positioning of the ^-windows, this would require some a priori knowledge 

of the potential of mean force (PMF) along X, something which would not be 

readily available without significant exploratory work. 

The sampling in both the FEP and FDTI simulations showed artefacts from 

the use of a single trajectory at each A,-value. As each trajectory was independent. 
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different sub-sets of configurations were sampled across the X-coordinate. This led 

to inconsistencies across X, which were highlighted in the radial distribution func-

tions between the perturbing solute and surrounding solvent. These RDFs did not 

change smoothly with A,, but instead showed significant variation. This was also 

apparent in the predicted free energies at each X-value, which varied depending on 

the exact subset of configurations sampled. This led to a random sampling error in 

the free energies predicted by FEP and FDTI of about 1 kcal mol"^. 

The third established free energy method, AdUmWHAM, was also tested on 

the water-methane system. Unlike FEP or FDTI, the X-value in this method was 

dynamic. This effectively allowed multiple trajectories to sample each %-value. 

While this smoothed the RDFs, it also led to the possibility that the motion along 

X was being driven through poor solvent configurations. This was again revealed 

by artefacts in the RDF, and was the result of the solvent configurational change 

happening too slowly compared to the rate of change of X. 

To solve these problems, in chapter 4, the water-methane system was investi-

gated via four new free energy methods. These methods used ideas from gener-

alised ensembles in an attempt to enhance configurational sampling. The first new 

method, BMW, combined the multicanonical ensemble with AdUmWHAM, in an 

attempt to speed up the solvent configurational change. Unfortunately, the method 

was overly ambitious, and failed to perform as expected. The next new method, 

PTTI, combined the technique of parallel tempering with FDTI. This used mul-

tiple temperature trajectories at each X-value in an attempt to enhance configura-

tional sampling and to average out the random sampling error. While the method 

was successful at averaging out the random sampling error, the use of independent 

simulations across X meant that the sampling was still inconsistent along X. In ad-

dition, PTTI proved to be too expensive to recommend its use unless there was 

a real need to use multiple temperatures to overcome large energy barriers. The 

last two methods combined FEP or FDTI with the technique of replica exchange. 

These methods, REFEP and RETI, represented the trivial addition of a X-swap 

move to standard FEP or FDTI simulations. This move allowed each of the tra-

jectories to visit multiple X-values. This led to consistent sampling across X, as 

seen in smooth RDFs, and a very low random sampling error. While the sampling 



ClBLAJPTTICIt 7. (ZCjfWZIjUEMhfC; BJEJM/LRKjS 

was significantly improved by the X-swap move, it failed to improve the hysteresis 

problems of FEP. Because of this, RETI was seen to be superior to REFEP, and 

indeed to all of the other free energy methods tested. 

To examine if the superiority of RETI was system-dependent, in chapter 5, 

all seven methods were applied to calculate the relative binding free energies of 

halides to a calix[4]pyrrole derivative. The results from these applications showed 

similar patterns to the results from the water-methane simulations. The simulations 

on the calix[4]pyrrole system used a DMSO solvent which was contaminated by 

small amounts of water. The position of the water was randomised for each trajec-

tory, in an attempt to investigate how well each method sampled the effect of the 

water positions. Of particular significance, was whether the water configuration 

allowed for any hydrogen bonding with the perturbing halide ion. FEP and FDTI 

performed poorly in this regard, as the use of a single trajectory at each X-value 

led to the use of different water geometries across X. This was inconsistent, with 

some X-values exhibiting hydrogen-bonding, and others not. This led to predicted 

free energies which were the average of the hydrogen-bonding and non-hydrogen-

bonding free energies. In contrast, AdUmWHAM and BMW used a dynamic X-

coordinate. This allowed for consistent sampling across X, and ensured that if the 

trajectory contained hydrogen-bonding, then the entire ^.-coordinate could experi-

ence hydrogen-bonding. However, both methods failed to allow a single trajectory 

to flip back and forth between the two states, so the free energies produced were 

either the result of hydrogen bonding trajectories or not. There was little averaging 

of the results of the two cases, and thus the predicted free energies were larger, or 

smaller, than those predicted by FEP or FDTI. 

PTTI allowed both hydrogen-bonding and non-hydrogen bonding trajectories 

to be sampled at each A-value. This was an improvement over FEP or FDTI. Un-

fortunately, even the use of high temperatures failed to allow the trajectories to 

flip between the two states. This meant that there was still inconsistency across 

X, as some X-values had randomly either lots of hydrogen-bonding, or very lit-

tle hydrogen-bonding. This inconsistency again led to the predicted free energies 

returning the incorrect average of these two states. 

Through the use of the X-swap move, REFEP and RETI allowed hydrogen-
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bonding and non-hydrogen-bonding trajectories to move across the entire X-coord-

inate. As in the water-methane simulations, this led to improved, consistent sam-

pling across In addition, the X-swap move allowed the two solvent states to be 

properly weighted across X. Thus there was a higher probability of sampling a 

hydrogen-bonding trajectory for fluoride than there was for chloride or bromide. 

This meant that REFER and RETI had gone some way to forming a proper average 

of the two solvent states. Unfortunately, the X-swap move only correctly weighted 

the initial states of the solvent; it did not help the solvent to flip between the two 

states. This led to free energies which were dependent on the initial number of 

hydrogen-bonding or non-hydrogen-bonding trajectories. While RETI again pro-

duced free energies which were the superior of all of the methods, there is still 

room for improvement. Such improvement would come from the development of 

solvent sampling moves which allow the contaminating waters to properly diffuse 

through the solvent. Such moves are the subject of future work, and could involve 

the use of a softening parameter to scale down the interactions between the wa-

ter and the rest of the system. This could perhaps be implemented through use of 

replica exchange moves over both X and the softening parameter. 

Finally, in chapter 6, the superiority of RETI over FDTI was confirmed. Both 

methods were applied to calculate the relative binding free energies of SB 1-like 

ligands to p38 MAP kinase. RETI again demonstrated superior sampling com-

pared to FDTI, and returned consistent energetic and structural trends across A.. As 

on all of the test systems, RETI has demonstrated consistent and reliable sampling. 

The method shows low sampling error, and thus we believe that the method satis-

fies the first aim of this research. As part of the work of chapter 6, a new Monte 

Carlo program was written to perform the free energy simulations. Through use of 

an optimised data structure, the code allowed these simulations to be performed ten 

to twelve times more rapidly than via the established Monte Carlo code used for 

the rest of this research. Combining this improvement with the increasing power 

of Linux Beowulf clusters, meant that these simulations only took 1.5 days each to 

run. Using more modern hardware, we predict that they could take less than half 

a day to run. We believe that this is sufficiently fast for commercial drug design, 

thus satisfying the second aim of this research. 
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While we believe that the combination of RETI, our new MC code, and Linux 

Beowulf clusters satisfies the aims of this research, there are still problems with 

free energy calculations. These were highlighted by the application to the p38 

system, and are related to the setup, and range of sampling within each simulation. 

These problems led to the disagreement between the predicted free energies and 

the experimental IC50S. Their solution is the subject of current, and future work, 

and fall into two distinct groups; 

1. Simulation Setup 

(a) There was a problem with the partial charges on the ligand sulfur 

atoms. This is being investigated through the comparison of partial 

charges predicted by different parameterisation methods. 

(b) The use of only a ball of solvent, rather than a periodic box, may have 

affected the results. Future work should investigate this more fully, and 

investigate the practicality of using a periodic box for the bound leg of 

the simulation. 

(c) The use of 15 A, residue-based cutoffs may have affected the results. 

This may need to be investigated, and longer cutoffs used. 

(d) The binding modes of the ligands were unclear. Higher resolution crys-

tal structures are required to provide data as to the chirality of the 

binding ligands, and the conformations of important ligand torsional 

angles. 

2. Sampling 

(a) There was a lack of sampling of related ligand binding modes, specif-

ically binding modes which differed only via rotation of a dihedral 

angle of the ligand. Methods need to be developed which allow mul-

tiple related binding modes to be sampled within a single simulation 

trajectory. 

(b) There was a lack of protein backbone sampling. This may have been 

important for the flexible loop of p38. Methods are being developed 

which allow protein backbone moves within an MC trajectory. 
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(c) There was a lack of sampling of grossly different binding modes. While 

this is highly ambitious, it should be the ultimate aim of any future 

developments of this work. 

In conclusion, the broad aims of this research have been satisfied. The inclusion 

of a X-swap move into a normal FDTI simulation allows for consistent and reliable 

sampling. This has been demonstrated over three diverse test systems, leading us 

to recommend that RETI should generally be used in preference to FEP or FDTI. 

The development of a new simulation code, and the growth of power of Beowulf 

clusters, means that free energy simulations are now sufficiently fast for general 

use. We are therefore now at a stage where we can really push the protein-ligand 

sampling. The speed of the simulations, and the power of RETI, mean that we can 

now develop methods that implement smart protein or ligand moves. Computers 

are now so fast that we can use huge, fully solvated protein-ligand systems in 

NPT periodic solvent boxes. We can also think about incorporating the effect of 

multiple binding modes into the predicted free energies, or even begin to consider 

the possibility of calculating absolute binding free energies. 



Appendix A 

The Boltzmann Equation 

Let us imagine a collection of N independent molecules, which can exist in discrete 

energy states 80, 81... The lowest energy shall be 80. At any particular instant, there 

may be no molecules in energy state 80, Mi molecules at energy Gi etc. This set of 

populations, no, Mi...is the instantaneous configuration of the system. 

This configuration will fluctuate with time as the populations change. How-

ever, certain configurations will be more probable than others. For example, lets 

imagine that there are two energy levels, and four molecules (figure A.l). Since the 

molecules are indistinguishable, there will be a higher probability of the molecules 

being evenly distributed between both energy levels than all molecules existing in 

a single energy level. This is because there is only one way to put all molecules in 

the first energy level, compared to six ways that they may be evenly distributed. 

For four molecules in two energy states, the most probable configuration appears 

six times. As the number of molecules or energy levels increases, the number of 

times the most probable configuration appears also increases. For 10 molecules 

in 2 energy levels, it will appear 252 times, and for 100 molecules in 2 energy 

levels, it will appear 184756 times! There will exist one overwhelmingly probable 

distribution for large numbers of molecules spread over large numbers of energy 

levels. Since the molecules are most likely to be in this distribution, we can assume 

that the average properties of the molecules are based solely on this dominating 

configuration. The aim of the Boltzmann equation is to calculate the probabilities 

within this dominating configuration. To do this, it needs to be able to calculate 
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Figure A.l: The sixteen different ways of distributing four molecules between 
two energy levels. The two energy levels are represented by grey or white boxes. 
Since the molecules are indistinguishable, there are six ways of obtaining an even 
distribution of molecules, compared to only one way of obtaining all molecules in 
the same energy level. 

how many ways a particular configuration can be made, subject to the constraint 

that the configuration is physically reasonable. 

In general, the configuration no,ni... can be achieved in W different ways. W 

is called the weight of the configuration, and is given by the expression, 

W = , • (A.1) 
riQmilnii... 

It is more convenient to work with the natural logarithm of W. This enables us to 

rearrange the equation into the form, 

N\ 
ln(W) = ln, , , , 

' nQ\ni\n2\.-. 
04.2) 

= InA !̂ — ^Inn/ ! . 

i 

Stirling's approximation states that, for large x, 

Inz! jrlnx —X (A.3) 
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This allows us to approximate the weight, W, as, 

\n{W) = {NlnN — N)— ^{riilnni —Hi) 

C&4) 
= In # — ^ M; In . 

f 

The current system can have any number of particles occupying any of the 

energy levels. This would not be the case for an isolated, or closed system. Such 

a system will be subject to two constraints; first that the total energy, E, of the 

system is a constant, 

^MiE, = E, (A.5) 
i 

and second, that the number of particles, N, in the system is also constant, 

i 

To find the dominating configuration, we must maximise ln(W) while applying 

these two constraints. This is achieved through examining the rate of change of 

In(VK) with respect to changing each of the individual n,, 

l n ( W ) = ^ 

At the maximum, d\n{W) = 0. To solve this equation, and take the constraints into 

account, we must use the technique of Lagrange Multipliers. The constraints are 

multiplied by two constants, a and —P, and added to equation A.7, 

dlnW — ^ ^ ̂  g" ̂  ^ dui + a ^ - (3 ̂  e,-Jn/ 

(A.8) 

-Be, 6̂ 

For <iln W = 0, each of the individual parts of this sum must be equal to zero. Thus, 

/ a i n W \ 

I a/%, y + a - P 8 , = 0 . (A.9) 
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We can solve this equation by differentiating equation A.4 with respect to n,, 

ainttf _ 8(AflnuV) \ 

dui drii y \ drii 

We shall consider the two parts of this differentiation separately. For the first part, 

we recognise that / / i s a function of n,, 

= . . . + Hi— 1 4- M; -f- !-(-•••• (A. 11) 

We can thus use the chain rule to differentiate the first term, 

9 ( 7 / I n / / ) / 9 ( A ^ l n / / ) \ / 9 ( . . . + M;_i + n ; + n y + i + . . 

drii \ dN J \ drii 

=={̂ 1 X InuVH-// X X 1 (^^12) 

= lnA^+ 1. 

The second part is slightly more complicated, 

If i ^ j, then nj is independent of n, and, 

==(), (/1.14) 
Ofli 

while if i = j, then 

= = (A.15) 
OTli Oft j 

Using these two statements, together with the equality (which comes from the 

chain rule), 

^ = (A.16) 
arii rij dn. 
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allows us to express equation A. 13 as, 

S ( + I = S l 

Inn/ + 1, for i — j, else all 0. 

Combining equations A. 17, A. 12, A. 10 and A.9, gives. 

drii ; I drii 

(ln7V+ l) — (lnn/+ l) + a —Pe/ 

l n ( ^ ) + a - P E ; 

l n ( ^ ) = a - p E , 

— = exp" exp 
N 

To obtain the value of a, we note that. 

N — ^RIJ — Nexp"^exp 
j J 

expO-- * 
Z , e x p -Pe; 

. , ^ ik,,. y j 

(A. 18) 

(A.19) 

The value of P may be shown^^ to be equal to l/hgT, where kg is Boltzmann's 

constant. The combination of all of this is the Boltzmann equation. 

This equation holds for a set of independent, indistinguishable molecules. A 

similar derivation can be performed using an ensemble of systems. In this deriva-

tion, the indistinguishable molecules are replaced by multiple, indistinguishable. 



replicas of the system (the ensemble). This collection of systems can adopt many 

different energy states, and constraints are applied based on the ensemble condi-

tions. 



Appendix B 

Monte Carlo Sampling 

Metropolis Monte Carlo generates random configurations, such that by the end of 

the simulation, the configurations have all been generated by their correct Boltz-

mann weight. It achieves this as it builds a Markov chain of configurations. A 

Markov chain is a sequence of trials, set up such that the outcome of each trial 

belongs to a finite set of outcomes, and that the outcome of each trial only depends 

on the outcome of the trial that immediately preceded it.̂ ^ 

represents the initial guessed probability distribution, % represents the tran-

sition matrix. This matrix operates on to produce a new estimate of the prob-

ability distribution, p(^), 

p(2) _ p(i)^_ (B.l) 

As long as the conditions of the Markov chain are adhered to, then tc has the 

property of making the probability distribution converge onto a limiting value, p, 

pP) = = p̂ ^̂ TtTt = 

C&2) 
p = limp(^&^ 

It is clear from this equation that the limiting probability distribution must satisfy 

the eigenvalue equation, 

pn = p 

(BJ) 
^ PmJ^mn ~ Pn • 
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It is a property of the transition matrix that its rows sum to one, 

""^Tlmn — 11 (B.4) 
/% 

and that the limiting distribution, p, is independent of the initial starting distribu-

tion. 

The aim of Metropolis Monte Carlo is to generate a transition matrix such 

that the limiting distribution is equal to the Boltzmann distribution, thus p(z) = 

PBoltzmann{i), for each point, i, in phase space. It is possible to generate the ele-

ments of the transition matrix, 7i^„, and in so doing, generate the correct ensem-

ble. To achieve this, we must solve the eigenvalue equation. Metropolis Monte 

Carlo achieves this by imposing the unnecessarily strict condition of microscopic 

reversibility, 

Pm'^mn ~ Pn'^nm- (B.5) 

This means that the trajectory must be reversible, namely that it should be equally 

likely to move from state m to state n as it is to move from state n to state m. We 

can show that this condition satisfies the eigenvalue equation via, 

y , Pm^mn — "^Pn'^nm — Pn '^nm — Pn- (B.6) 
m m m 

The Metropolis solution solves this equation through the use of a symmetrical 

stochastic m a t r i x , a . This matrix shows that random moves should be attempted 

between states m and n, and that the probability of attempting the move from m to 

n should be equal to the probability of attempting to move from state n to m, i.e. 

â nn = O-nm- The Metropolis solution recasts TCmn in terms of a, for three different 

c a s e s , 

'^mn ~ ^mn for all 171 ^ R and Pn ̂  Pm; 

TXm (XmmtPb/pVn) fof all SUld <:()*:, (g.7) 

— 1 '^mn-
n^m 
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These can be shown to agree with equation B.5, 

Pm'^mn ~ Pn'^nntj 

using Pn :> Pm, 

Pm^mn ~ Pn^nm (Pm/Pn) ; 

Pm^mn ~ ^nmPmi 

since CLmn ~ ^nm 

Pm — Pm-

These equations show that the Monte Carlo simulation should be performed by 

attempting random moves from state m to state n with an equal probability to 

attempting moves from state n to state m. If p„ > Pm, then the move should be 

automatically accepted. If p„ < p^, then the move should be accepted according 

to a probability of Pn/Pm- To do this, this ratio is compared to a random number 

between 0 and 1. If the ratio is greater than the random number, then the move is 

accepted. If the ratio is less than or equal to the random number, then the move is 

rejected, and configuration m is recounted in the average. This ratio will have dif-

ferent forms depending on the desired ensemble for the simulation. For example, 

in the NVT, canonical ensemble, 

^^^{—En/kBT)/QmT 
PnjPm — 

e x p {—EM/KBT)/ QNVT 

exp(-En/A:gr) 

exp(-Em/A:ar) (B.9) 

= exp(-(En 

= exp(—AE/^gT), 

while in the NPT ensemble, 

Pn/Pm — 
e x p ( - ^ = ^ ^ +A^ln%n)/GNP7' 

(B.IO) 

= exp( 
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The Metropolis solution is only one of many solutions to the Monte Carlo 

equations. In preferential s a m p l i n g , a n asymmetric underlying stochastic ma-

trix is used. This allows some moves to be attempted with a higher probability 

than others, and that the probability of moving in one direction does not have to 

be equal to the probability of moving back again. For this to satisfy the condition 

of microscopic reversibility, the values of 7î „ are given by, 

f o r all Tfl ̂  Yl a n d CCnmPn — ^mnPm: 

'̂ mn — ^mn ( | for all TH Tl and ^nmPn ^ ^mnQm: 
, ̂ mnPm, 

(B 11) 

'^mm — 1 2 T^mn-
n^m 

The agreement with microscopic reversibility is shown by, 

'^mnPm — ^nmPn 

KmnPrn = awn Pn (B.12) 
\ ^nmPn J 

^mnPm ~ ^mnPm-

Preferential sampling may be used to increase the probability of sampling solvent 

molecules that are closest to the central solute. This can increase the sampling of 

the primary solvation shell, which is likely to have the biggest impact on any rela-

tive free energies of the s o l u t e . A solvent molecule is picked with a probability, 

W, which decreases with distance, r, from the central solute, 

W{ri) = where v isa chosen integer parameter. (B.13) 

In MCPRO,^^ V is equal to 1, and the function used is,®^ 

vr(r,) = — — . (T3.14-) 
^i + yVkc 

A constant, w ĉ is added to the distance to help prevent the volume from continu-

ally expanding during the simulation.®^ 
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For each configuration, the weight of each solvent molecule is calculated, and 

all of the weights are normalised, 

= sS)' 

A solvent molecule is chosen with a probability of W(r,). This is achieved by 

randomly choosing a solvent molecule, and comparing its weight against a random 

number between 0 and 1. If the weight is greater than the random number, then that 

solvent molecule is selected, otherwise a new solvent molecule is chosen and the 

test repeated. A Monte Carlo move is performed on the chosen solvent molecule. 

The weight of the solvent before the MC move, Wgid, and weight after the move, 

Wnew, are used in the modified acceptance test, 

^ ^ e x p ( — 1 ) . (B.16) 

This test is applied in the canonical ensemble, and is derived in a similar manner 

to equation B.9, 

f CtnmPn \ _ Pn 
^mn I I — CCnm 

\CLmnPm J Pm 

== X (T3.17) 
^old Pm 

= ^ ^ e x p ( - A E / / : g r ) . 



Appendix C 

Free Energy Methods 

C.l Calculating Free Energy Gradients for TI 

Thermodynamic Integration works by calculating the integral of the gradient in 

the free energy with respect to X, This gradient can be related to the 

ensemble average of the gradient of the forcefield with respect to X, 

where the forcefield is evaluated using the coordinates of the system, F, and the 

average is collected over the ensemble of structures generated with the forcefield 
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perturbed to the value of X. This equivalence can be shown via,^^ 

since G{X) — —kBl In Q{X) 

A G = - i . 2 - ^ 

s i n c e G ( i ) = / e x p ( - E ( r , X ) / t g r ) ( ^ r 

the. C - M ) = ^ 4 F dr 

AT! , 

differentiating the exponential, 

Substituting back into the expression for AG gives, 

where px(r) is the ensemble probability for configuration F for that value of X, 

- » = r ( ^ ) -
((: .!) 

C.2 Derivation of the Multicanonical Move Test 

The multicanonical ensemble is one in which all energies are sampled equally. 

This means that the desired probability distribution is not based on the Boltzmann 
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equation, but is rather, 

= (C.2) 

where n{Em) is the density of states for the energy of configuration m. The density 

of states is the number of configurations that have a particular energy. Recalling 

the results of appendix B, a Monte Carlo simulation can be set up to sample from 

this distribution. If the move is from state m to state n, then the Monte Carlo test is 

based on the ratio of p„ and pm, 

P n Pn 

Pm Pm 
(C.3) 

A Monte Carlo simulation can thus be performed. A random move is made, and 

the density of states of the two states determined. If this ratio is greater than or 

equal to a random number between 0 and 1, then the move is accepted, else the 

move is rejected. 

The use of this Monte Carlo test is equivalent to an adaptive umbrella sampling 

simulation, where the umbrella potential acts over potential energy. This can be 

shown via, 

Pn M(g)=f(E')exp(E// :gr) , 
Pm ^{En 

exp( - (E ; , -Em)A8r) , (C.4) 

= " ^ 1 j -

The Monte Carlo simulation is thus performed using an umbrella of, 

[ / (E )=)kgr in f (E) , (C.5) 

where P{E) is the Boltzmann probability for energy E. 
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C.3 Derivation of the Replica Exchange Tests 

Let us imagine three different systems, A, B and C. Each system will be in a par-

ticular configuration, e.g. system A may adopt configuration i, system B may be in 

configuration j, and system C make be in configuration k. The probability, pA{i), 

that system A is in configuration i, in the NVT ensemble, is given by the Boltzmann 

equation, 

fViOO = , ((:.6) 

where HA is the Hamiltonian for the system A, is 1 / ^ s ^ , where TA is the 

temperature of system A, and QA is the canonical partition function for the Hamil-

tonian. Similar equations exist to describe the probability of configuration j in 

system B, psU)' ^nd the probability of configuration k in system C, pc{k). 

Now let us consider this collection of three systems as a whole. We have thus 

formed a "super-collection" or "super-ensemble" over these three systems. The 

probability that system A is in configuration /, and system B is in configuration j, 

and system C is in configuration k is given by the product of their three individual 

probabilities. The probability of this set, P{X), is thus given by, 

(0 e x p - k % W 

QAQBQC 

In this equation, Z is a vector representing the super-configuration set (i,j,k). It 

is possible that the super-ensemble can exist in configuration set Y, representing 

( j , i, k), where systems A and B have swapped configurations. Recalling the results 

of appendix B, a Monte Carlo test could be performed on the move from X to 7, 
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based on the relative probabilities of X and Y, 

p y _ f ( F ) 

P% 

exp"'̂ '- '̂-^^^ 

QAQBQC 
X 

exp"'P'4%(') exp^Pa%U) exp"k%(t) 

exp" (J) exp' PbWB(/) exp" 

e x p - -PA-̂ A(') exp- exp" -Pc^c(^) 

exp" U) exp" -PB^B(') 

e x p - exp" -PsWs(j) 

( C . 8 ) 

= exp[-PA%U) - Pg-%(0 + ^AHA{}) + (3B//S(J)] 

= exp[Pg(/fa(;) - % ( ; ) ) - ( / ( , ( ; ) - ^ ^ ( 0 ) ] 

= exp(A) 

w h e r e A = - % ( , ' ) ) - - % ( / ) ) -

Note how the partition functions for each system cancel out, as do the probabil-

ities of system C. Indeed, this derivation demonstrates that only the probabilities of 

the systems exchanging configurations need to be included. This equation is thus 

valid for super-collections of any number of systems. Also, in this case, A was cal-

culated for systems in the NVT canonical ensemble. It is possible to use a similar 

derivation to obtain A for many other ensembles. For example, the derivation of 

A for the NPT ensemble, where the volume, V, of the r e p l i c a s must be taken into 
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account, is. 

exp (0+PA yd+N In V/1 

=P/^(zW(;) ;?cW a n d f ( y ) =p/i(;)j9a(z)pcW 

P{Y) exp^^'^ (V)+/̂  K/) 

f ( X ) exp-Pi(^/i(')+^^')exp-P^(^^(;)+^^K/) 

= exp[Pg(%(;) - % ( ; ) + f a ( ^ - %)) - - / ^ ( O +;^(y/ ' - %))] 

= exp (A) 

where A = Pg(HgU) - % ( i ) + fa(V; - V;)) - ( ^ ^ 0 ) - ^ ^ ( 0 + (X/ - %)) -

(C.9) 

These values of A are correct for highly general replica exchange simulations, 

where the Hamiltonians, temperatures and pressure could vary between replicas. 

In practise, some of these parameters are kept the same, e.g. parallel tempering 

keeps the pressure and Hamiltonian the same between replicas. Substituting H = 

Ha — Hb and P = Pa = Pb into these values of A gives the NVT and NPT parallel 

tempering tests, 

NVT. A = p g (/f (;) - ^ ( 0 ) - PA ( ; / ( ; ) - ; / ( ' ) ) 

NPT, A = Pa ( ^ ( ; ) - ^ ( i ) + f (F; - %)) - U) - ^ ( 0 + f (y,' - %)) 

(C.IO) 

Hamiltonian replica exchange, which forms the basis of RETI and REFEP, 

only changes the Hamiltonians between replicas. Thus substituting P = Pa = Pa 

and P = P^= Pb into the value of A yields, 

A = P ( % U ) - % ( : ) + f (^. - %)) - P (%(v) + f (K/- - %)) 

= P ( % ( ; ) - % ( ; ) - U) + 'f/A (0) + Pf (X/- - % - + %) (C. 11) 

= P ( % ( ; ) - % ( 0 - f f A U ) + ^ A ( 0 ) . 
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The volumes are seen to drop out of this test, so both the NVT and NPT tests are 

equivalent. It is useful to note that this Hamiltonian replica exchange test is just the 

product of two normal Metropolis Monte Carlo tests; one checking if the change 

in configuration of j to i is valid for forcefield B, and one checking if the change in 

configuration of i to j is valid for forcefield A. Hamiltonian replica exchange uses 

the product of these two tests as both moves happen simultaneously. 



Appendix D 

Beowulf Clusters 

Computers are continually getting faster. At the start of this project, the fastest 

Intel processors had a clockspeed of 500 MHz. Today, similarly priced proces-

sors have a clockspeed of over 3000 MHz. In 1965, Moorespecu la ted that the 

number of components that could be economically fitted into a single integrated 

circuit would grow exponentially. Interpretation of this statement by later workers 

led to Moore's Law, which predicts that the processor-power of economically vi-

able computers would double every two years. Despite nearly forty years passing 

since the original prediction, figure D.l shows that Moore's law has not only been 

maintained, but it has even accelerated. The effect of Moore's law is that computer 

power has become a commodity item. The commodity nature of home PCs can be 

harnessed via a Beowulf cluster. Lots of standard PCs can be connected together 

via cheap networking (ethemet or myrinet). The combined power of all of these 

computers can be harnessed simultaneously, either via the simultaneous running 

of multiple independent parts of a coarsely parallel job (e.g. multiple windows of a 

free energy simulation), or through using message passing software to make many 

individual nodes behave like a single, very fast node. The reasons for the success 

of Beowulf clusters is that they are now cheap and easy to set up. The processors 

and networking are commodity items, and are easy to purchase and install. In addi-

tion, the growth of the Linux and the Gnu Free Software movement has provided a 

powerful, enterprise-class operating system, which can be deployed over hundreds 

of computers without the threat o f l i c e n s e fees. This has meant that cash-strapped 
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Figure D.l: The processor clock speed for all commodity Intel CPUs 
from 1974 to 2000. Data taken from 'General Processor Information', 
http://bwrc.eecs.berkeley.edu/CIC/summary/, Tom Burd, 2001. Data was added 
for the Intel 4004 (1971), and for the latest Intel Pentium 4 processors 
(http://www.intel.com). The data are shown on a linear and a logarithmic scale. 

academics are able to purchase and build their own Beowulf clusters, and use ex-

isting free software tools to maximise their potential, and ease their support. This 

initial grass-roots growth of Beowulf clusters has since grown into corporate-, and 

university-wide adoption of the technology. Such huge purchases are now dealt 

with via dedicated cluster support companies, who can build Beowulf clusters that 

contain hundreds, or even thousands of individual nodes. 

http://bwrc.eecs.berkeley.edu/CIC/summary/
http://www.intel.com


Appendix E 

Error Analysis 

To calculate the error on the free energy calculations, the averages for each block 

of 500 K steps were calculated. The average of these averages was the predicted 

free energy, and the error on this result was based on the estimate of the standard 

deviation over these averages, a. The standard error. Ax, was calculated via, 

Ax = — ( E . l ) 

where N was the number of observations. 

The errors were propagated across X by calculating the maximum, and mini-

mum possible free energies across X. This was achieved by adding the errors onto 

the free energy for each X-value, and then summing or integrating the results. 

The errors on the calculated binding free energies were formed as a combina-

tion of the errors on the bound and free legs. If /SjChound was the error on the bound 

leg, and Ax/^e was the error on the free leg, then the error on the binding free 

energy, ^binding was calculated via. 

^binding — ^bound ^ f r e e ' (E .2) 



Appendix F 

Setup of the p38 Simulations 

F.l Residue List 

The residues and titration states used for the simulations on p38 MAP kinase are 

listed below. The residues with flexible side-chains are shown in bold. 

GLU( 4)-ARG( 5)-PR0( 6)-THR( 7)-PHE( 8)-TYR( 9)-ARG( 10)-

GLN( 1 1 ) - G L U { 1 2 ) - L E U ( 1 3 ) - A S N ( 1 4 ) - L Y S { 15)-THR( 1 6 ) - I L E ( 1 7 ) -

TRP( 18)-GLU( 19)-VAL( 20)-PRO( 21)-GLU( 22)-ARG( 23)-TYR( 24)-

GLN( 2 5 ) - A S N { 2 6 ) - L E U ( 27)-SER( 28)-PRO( 29)-VAL{ 30)-GLY( 31)-

SER( 32)-GIiY( 33)-ALA( 34)-TYR( 35)-GLY( 36)-SER( 37)-VAL( 38)-

CYS( 39)-ALA( 40)-ALA( 41 ) - P H E ( 4 2 ) - A S P ( 4 3 ) - T H R ( 4 4 ) - L Y S ( 4 5 ) -

THR( 4 6 ) - G L Y ( 4 7 ) - L E U ( 48)-ARG( 49)-VAL( 50)-ALA( 51)-VAL( 52)-

LYS( 53)-LYS( 54)-LEU( 55)-SER( 56)-ARG( 57)-PRO( 58 ) - P H E ( 5 9 ) -

GLN( 60)-SER( 61)-ILE( 62)-ILE( 63)-HIS( 64)-ALA( 65)-LYS( 66)-

ARG( 67)-THR{ 68 ) -TYR( 69)-ARG( 70)-GLU( 71)-LEU( 72 ) -ARG( 7 3 ) -

LEU( 74)-LEU{ 75 ) - L Y S ( 7 6 ) - H I S ( 77)-MET( 7 8 ) - L Y S ( 7 9 ) - H I S { 8 0 ) -

GLU( 81)-ASN( 82)-VAL( 83)-ILE( 84)-GLY( 85)-LEU( 86)-LEU( 87)-

ASP( 88)-VAL( 89 ) - P H E ( 9 0 ) - T H R ( 9 1 ) - P R 0 ( 92)-ALA( 9 3 ) - A R G ( 9 4 ) -

SER( 95)-LEU( 96)-GLU( 97)-GLU( 98)-PHE( 99)-ASN(100)-ASP(101)-

VAL(102)-TYR{103)-LEU{104)-VAL{105)-THR(106)-HIS(107)-LEU(108)-

MET(109)-GLY ( l l O )-ALA ( l l l )-ASP(112) - L E U ( 1 1 3 ) - A S N ( 1 1 4)-ASN{115)-

ILE(116)-VAL(117)-LYS(118)-CYS(119)-GLN(120)-LYS(121)-LEU(122)-

THR(123)-ASP(124)-ASP(125)-HIS(126)-VAL(127)-GLN(128)-PHE(129)-

LEU(130)-ILE(131)-TYR(132)-GLN(133)-ILE(134)-LEU(135)-ARG(136)-
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GLY(137)-LEU(138)-LYS(139)-TYR(140)-ILE(141)-HIS(142)-SER(143)-

ALA(144)-ASP(145)-ILE{146)-ILE(147)-HIS(148)-ARG(149)-ASP(150)-

LEU(151)-LYS(152)-PRO(153)-SER(154)-ASN(155)-LEU(156)-ALA(157)-

VAL(158)-ASN(159)-GLU(160)-ASP(161)-CYS(162)-GLU(163)-LEU(164) -

LYS(165)-ILE(166)-LEU(167)-ASP(168)-PHE(169)-GLY{170)-LEU(171)-

ALA{172)-ARG(173)-HIS(174)-THR(17 5)-ASP(17 6)-ASP(177)-GLU(178)-

MET(179)-THR(180)-GLY(181)-TYR(182)-VAL(183)-ALA(184)-THR(185)-

ARG(186)-TRP(187)-TYR(188)-ARG(189)-ALA(190)-PRO(191)-GLU(192)-

ILE(193y-MET(194)-LEU(195)-ASN(196)-TRP(197)-MET(198)-HIS(199)-

TYR(200)-ASN(201)-GLN(202)-THR(203)-VAL(204)-ASP(205)-ILE(206)-

TRP(207)-SER(208)-VAL(209)-GLY(210)-CYS(211)-ILE(212)-MET(213)-

ALA(214)-GLU(215)-LEU(216)-LEU(217)-THR(218)-GLY(219)-ARG(220)-

THR(221)-LEU(222)-PHE(223)-PR0(224)-GLY(225)-THR(226)-ASP(227)-

HID(228)-ILE(229)-ASP(230)-GLN(231)-LEU(232)-LYS(233)-LEU(234)-

ILE(235)-LEU(236)-ARG(237)-LEU(238)-VAL(239)-GLY(240)-THR(241)-

PR0(242)-GLY(243)-ALA(244)-GLU(245)-LEU(246)-LEU(247)-LYS(248)-

LYS(249)-ILE(250)-SER(251)-SER(252)-GLU(253)-SER(254)-ALA(255)-

ARG(256)-ASN(257)-TYR(258)-ILE(259)-GLN(260)-SER(261)-LEU(262)-

THR(263)-GLN(264)-MET(265)-PR0(266)-LYS(267)-MET(268)-ASN(269)-

PHE(270)-ALA(271)-ASN(272)-VAL(273)-PHE(274)-ILE(275)-GLY(276)-

ALA(277)-ASN(278)-PRO(279)-LEU(280)-ALA(281)-VAL(282)-ASP(283y-

LEU(284)-LEU(285)-GLU(286)-LYS(287)-MET(288)-LEU(289)-VAL(290)-

LEU(291)-ASP(292)-SER(293)-ASP(294)-LYS(295)-ARG(296)-ILE(297)-

THR(298)-ALA(299)-ALA(300)-GLN(301)-ALA(302)-LEU(303)-ALA(304)-

HIS(305)-ALA(306)-TYR(307)-PHE(308)-ALA(309)-GLN(310)-TYR(311)-

HIS(312)-ASP(313)-PR0(314)-ASP(315)-ASP(316)-GLU(317)-PR0(318)-

VAL(319)-ALA(320)-ASP(321)-PRO(322)-TYR(323)-ASP(324)-GLN(325)-

SER(326)-PHE(327)-GLU(328)-SER(329)-ARG(330)-ASP(331)-LEU(332)-

LEU(333)-ILE(334)-ASP(335)-GLU(336)-TRP(337)-LYS(338)-SER(339)-

LEU(340)-THR(341)-TYR(342)-ASP(343)-GLU(344)-VAL(345)-ILE(346)-

SER(347)-PHE(348)-VAL(349)-PRO(350)-PRO(351)-PRO(352)-LEU(353)-

ASP(354) 
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Figure F.l: Names of atoms within the SB 1-based residues used in these studies. 

F.2 Description of the Ligands 

F.2.1 Naming Conventions 

The ligands were all divided into four residues. These residues were based on 

the four aromatic rings; the central imidazole ring (CRG), the sulfoxide/sulfide 

functionalised ring (SRG), the pyrrole group (NRG) and the fluorobenzene group 

(FRG). Each atom within each group was given a unique name, shown in figure 

F.l. 

F.2.2 Partial Charges 

The partial charges for each ligand are shown in table F.l. Ligands A and B were 

symmetrical, so had the same partial charges, as did ligands D and E. 

F.2.3 Dihedral Parameters 

The dihedral parameters derived for each of the seven fragments shown in figure 

6.4, page 155, are shown in table F.2. This shows the amplitudes of the four cosine 
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Atom A & B C D + E Atom A & B C D & E 

CC2 0.165 0.188 0.163 CB2 0.004 0.004 0.014 

NC3 -0.283 -0.294 -0.282 N B l -0.309 -0.313 -0.317 

CC4 0.021 0.022 0.018 CB6 0.004 .0.004 0.074 

CC5 0.021 0UD12 0.022 CB5 -0.186 -0.187 -0.179 

NCI -0.522 -0.536 -0.521 HB2 0.178 0.177 0.176 

HNl 0.423 0.423 0.423 HB3 0.164 0.164 0.153 

CA6 0.028 -0.036 0.029 HB5 0.164 0.164 0.172 

CAl -0.134 -0.090 -0.134 HB6 0.178 0.177 N/A 

CA2 -0.060 -0.143 -0.060 CMl N/A N/A -0.192 

CA3 -0.349 -0.092 -0.350 HMl N/A N/A 0.105 

CA4 -0.060 -0.143 -0.060 HM2 N/A N/A 0.105 

CAS -0.134 -0.090 -0.134 HM3 N/A N/A 0.105 

HAl 0.157 0.155 0.157 CD6 -0.026 -0.023 -0.024 

HA2 0.163 0.153 0.163 CDl -0.091 -0.092 -0.091 

HA4 0.163 0.153 0.163 CD2 -0.186 -0.187 -0.187 

HA5 0.157 0.155 0.157 CD3 0.075 0.074 0.075 

SI 0.819 -0.031 0.819 CD4 -0.186 -0.187 -0.187 

CI -0.471 -0.262 -0.470 CDS -0.091 -0.092 -0.091 

0 2 -0.615 N/A -0.615 HDl 0.161 0.162 0.161 

HI 0.138 0.122 0.138 HD2 0.162 0.162 0.162 

H2 0.138 0.122 0.138 HD4 0.162 0.162 0.162 

H3 0.138 0.122 0.138 HD5 0.161 0.162 CL161 

CB4 0.028 0.031 0.031 FD3 -0.083 -0.085 -0.084 

CB3 -0.186 -0.187 -0.206 

Table Rl: Partial charges used for ligands A to E. The atom names are taken from 
figure Rl. 

functions used in equation 2.6 on page 8. The phases of these cosines were all 

zero. 
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Fragment vo Vl V2 V3 

1 -0.3324 0U%29 5.9564 0.0180 

2 -0.1425 &MM2 5.8251 0.0076 

3 -0.3010 0IG63 5.9003 0.0106 

4 amwo 2.4000 &20M 

5 0.2735 -0.0066 2.7049 -0.0824 

6 &MMO -0.2000 2.4000 

7 0.5372 -0.3253 7.7442 -0.1281 

Table F.2: Dihedral parameters derived for fragments 1 to 7 in figure 6.4. 

F.2.4 Z-matrices 

The z-matrix used for the perturbation of ligand D into ligand A. A similar z-matrix 
was used for the perturbation of ligand E to ligand A. 

SB2 methyl 

1 D U l -1 -1 0 0 . 0 0 0 0 0 0 0 0 .000000 0 0 .000000 UNK -1 
2 DU2 -1 -1 1 1 .000000 0 0 .000000 0 0 .000000 UNK -1 
3 DU3 -1 -1 2 1 . 0 0 0 0 0 0 1 90 .000000 0 0 .000000 UNK -1 
4 CC2 8 0 0 500 2 0 .324835 1 117 . 8 6 6 6 8 1 3 8 9 .790541 CRG 1 
5 NC3 801 S O I 4 1 . 3 6 4 0 0 0 2 8 2 .279937 1 304 . 8 8 8 8 8 6 CRG 1 
6 CC4 8 0 2 5 0 2 5 1 . 3 9 4 6 9 6 4 1 0 6 .537915 2 50 .513635 CRG 1 
7 CCS 8 0 3 503 6 1 .424709 4 73 . 3 8 5 0 1 1 S 1 7 9 . 8 3 2 1 3 0 CRG 1 
8 NCI 804 504 7 1 . 3 9 7 5 3 1 4 36 . 2 4 6 1 6 5 6 180 . 4 8 1 0 5 5 CRG 1 
9 HNl 8 0 5 505 8 0 .986714 7 125 .415970 6 181 . 1 6 7 5 1 4 CRG 1 

10 CA6 8 0 6 506 4 1 .462647 8 1 2 3 .795579 7 1 8 0 . 1 6 4 1 0 5 SRG 2 
11 CAl 8 0 7 507 10 1 . 4 0 1 9 4 7 4 1 2 1 .524151 8 0 . 4 8 7 5 4 7 SRG 2 
12 CA2 8 0 8 508 11 1 . 3 9 3 2 7 9 10 120 .145168 4 1 8 0 , 3 2 9 4 3 3 SRG 2 
13 CA3 8 0 9 5 0 9 12 1 .397458 10 90 .871347 11 179 . 8 3 2 7 2 0 SRG 2 
14 CA4 810 510 13 1 .397511 11 8 9 .217953 12 1 7 9 ,925054 SRG 2 
15 CAS 8 1 1 5 1 1 14 1 . 3 9 1 8 8 6 10 30 . 1 3 2 6 5 9 13 1 8 0 . 1 5 6 0 6 4 SRG 2 
16 HAl 8 1 2 S 1 2 11 1 . 0 9 8 8 9 7 10 1 2 1 ,537112 12 179 .694978 SRG 2 
17 HA2 813 5 1 3 12 1 . 1 0 5 2 1 3 11 1 2 0 .080419 13 1 8 0 ,317551 SRG 2 
18 HA4 8 1 4 5 1 4 14 1 . 1 0 2 0 6 6 13 1 1 9 . 7 6 6 6 0 3 15 179 . 9 5 2 5 0 1 SRG 2 
19 HAS 815 515 15 1 . 1 0 1 9 2 6 14 119 .666105 10 1 7 9 .901405 SRG 2 
20 SI 8 1 6 516 13 1 . 7 1 3 9 8 6 12 121 .137360 11 175 . 8 2 0 8 1 6 SRG 2 
21 CI 817 517 2 0 1 .739784 13 100 .941834 1 2 115 ,663042 SRG 2 
2 2 0 2 818 518 20 1, , 4 8 9 5 4 7 21 105 .493544 13 1 1 0 . . 464462 SRG 2 
23 H I 8 1 9 5 1 9 2 1 1, , 1 1 2 7 3 6 2 0 111 ,131027 13 53 , .606941 SRG 2 
2 4 H2 8 2 0 520 21 1, ,113494 23 107 ,845825 20 125 , . 8 3 1 9 4 2 SRG 2 
25 H3 821 521 21 1. , 1 1 6 0 3 3 23 108, ,321649 20 2 4 1 , ,350611 SRG 2 
26 CB4 8 2 2 522 7 1. 450108 6 131, , 528147 5 181, ,976367 NRG 3 
27 CB3 8 2 3 523 2 6 1. . 4 0 3 3 5 2 7 121. , 0 6 3 2 2 3 6 214, ,912948 NRG 3 
2 8 C B 2 8 2 4 524 27 1. 4 0 5 2 3 9 2 6 118 , .255113 7 1 8 1 . ,019712 NRG 3 
2 9 NBl 825 525 2 8 1. 343811 2 6 93 , 319559 27 180, ,148989 NRG 3 
30 CB6 8 2 6 526 29 1. 3 S 6 7 2 9 27 8 8 . 901998 2 8 179 . 762972 NRG 3 
31 CBS 8 2 7 527 30 1. 4 1 3 0 2 2 25 30. 177406 29 1 8 0 . 064401 NRG 3 
32 HB2 8 2 8 5 2 8 2 8 1. 105035 27 120. 436558 2 9 180. 0 0 8 6 5 1 NRG 3 
33 HB3 8 2 9 529 27 1. 096514 2 6 121, 626505 2 8 181. 124751 NRG 3 
34 HBS 8 3 0 530 31 1. 100047 25 120. 491557 30 179 . 644196 NRG 3 
35 CMl 831 531 30 1. 494358 31 1 1 7 . 874998 2 9 180. 181157 NRG 3 
35 HMl 8 3 2 100 35 1. 117826 30 112 . 301055 31 179 . 997870 NRG 3 

37 HM2 833 100 35 1. 117652 30 1 0 9 . 2 8 6 1 6 2 36 120 . 598299 NRG 3 

38 HM3 8 3 4 100 35 1. 118065 30 1 0 9 . 2 9 6 6 2 7 36 239 . 419292 NRG 3 
39 CD6 835 532 6 1. 4 5 3 7 8 3 5 122 . 423346 4 178 . 785970 FRG 4 

40 CDl 8 3 6 533 39 1. 402924 5 120. 1 6 1 1 8 6 5 38 . 467467 FRG 4 
41 CD2 8 3 7 534 4 0 1. 390335 3 9 1 2 0 . 606188 6 1 8 0 . 836376 FRG 4 

4 2 CD3 8 3 8 535 41 1. 4 0 7 4 3 2 39 8 9 . 759307 40 180. 2 8 6 1 6 3 FRG 4 
43 CD4 839 536 4 2 1. 4 0 6 8 S 9 40 90. 1 6 7 4 4 7 41 180 . 023038 FRG 4 
44 CDS 8 4 0 537 43 1. 3 9 0 0 1 6 4 2 119 . 4 9 3 2 6 3 39 0 . 055165 FRG 4 
45 HDl 841 538 40 1. 102009 39 119 . 876093 41 1 7 9 . 686544 FRG 4 

4 6 HD2 8 4 2 539 41 1. 099698 4 0 120. 6 9 8 3 4 1 4 2 179 . 793746 FRG 4 
47 HD4 8 4 3 5 4 0 43 1. 0 9 9 2 1 0 4 2 119 . 7 3 3 2 9 3 4 4 179 . 7 5 1 4 4 6 FRG 4 
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49 
TERZ 

50 

35 
36 
37 
38 

23 
21 
20 
11 
10 
27 
26 
40 
39 
49 

HD5 
FD3 

CAP 

1 
1 
1 
1 

844 
8 4 5 

- 1 

1. 

0. 

0. 
0. 

541 
5 4 2 

44 
4 2 

1.101851 
1.353693 

43 
41 

119.689980 
119.922013 

39 
43 

1 8 0 . 0 2 3 7 7 9 FRG 

1 7 9 . 9 6 4 2 8 3 FRG 

-1 2 0.324835 1 117.866581 3 89.790641 CAP 
Geometry Variations follow (2I4,F12.6) 

105601 
200000 
200000 
200000 

******Variable Bonds follow 

* * *»**Additional Bonds follow 

******Harmonic Constraints follow 

******Variable Bond Angles follow 

( 1 4 ) 

( 2 1 4 ) 

{2I4,4F10.4) 

( 1 4 ) 

*************Additional Bond Angles follow 

2 4 21 20 
25 21 2 0 

23 2 1 2 4 

23 21 25 
2 4 21 25 
14 13 20 
15 10 4 
10 4 5 
31 2 6 7 
2 6 7 8 
6 39 44 
7 6 39 

43 42 49 
***** * * * * * * **Variable Dihedrals follow 

23 6 0 6 606 5.000000 
21 602 6 0 2 5.000000 
11 601 601 5.000000 
27 614 6 0 4 5.000000 
36 612 100 5.000000 
40 6 0 3 6 0 3 5.000000 

***********Additional Dihedrals follow 

13 20 21 2 4 606 606 
13 2 0 21 25 6 0 6 606 
21 20 13 14 602 6 0 2 

23 21 20 2 2 6 0 9 609 
24 2 1 2 0 2 2 6 0 9 6 0 9 

25 21 2 0 22 609 6 0 9 

36 35 30 2 9 613 100 
31 30 35 37 6 1 2 100 
37 35 30 2 9 613 100 
31 30 35 38 6 1 2 100 
38 35 30 29 6 1 3 100 

( 3 I 4 . F 1 2 . 6 ) 

( 6 1 4 ) 

Domain Definitions follow (414) 

Excluded Atoms List follows (1014) 

Final blank line 

The z-matrix used for the perturbation of ligand A into ligand C. A similar z-matrix 
was used for the perturbation of B to C. 

S B 2 i n h i b i t o r 

1 DUl -1 -1 0 0 .000000 0 0 .000000 0 0 .000000 UNK -1 

2 DU2 -1 -1 1 1 .000000 0 0 .000000 0 0 .000000 ONK -1 

3 DU3 -1 -1 2 1 .000000 1 9 0 .000000 0 0 . 0 0 0 0 0 0 UNK -1 

4 CC2 500 700 2 0, .327667 1 3 6 , .175083 3 1 0 8 , .952802 CRG 1 

5 NC3 501 7 0 1 4 1, .364000 2 112 , .193133 1 3 0 2 , .540728 CRG 1 

6 CC4 5 0 2 702 5 1. . 3 9 4 9 8 1 4 106 , .577290 2 138 .391550 CRG 1 

7 CCS 503 703 6 1. .424713 4 73 , .369384 5 179 .790145 CRG 1 

8 NCI 504 704 7 1. ,398330 4 36, ,247241 6 1 8 0 , . 6 1 8 3 4 1 CRG 1 

9 HNl 505 705 8 0. . 9 8 6 4 6 7 7 125. ,492422 6 181, . 3 0 5 5 9 8 CRG 1 

10 CA6 5 0 6 706 4 1. ,463457 8 123 . . 8 1 8 7 8 7 7 180 , ,376831 SRG 2 
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11 CAl 507 707 10 1 .401939 4 121 . 5 0 1 8 5 4 8 0 . 2 4 2 1 3 6 SRG 2 

12 CA2 5 0 8 7 0 8 11 1 . 3 9 2 6 8 4 10 1 2 0 . 1 1 3 6 3 8 4 180 . 0 4 3 2 4 7 SRG 2 

13 CA3 509 709 12 1 .397431 10 90 . 8 8 0 7 1 5 11 1 8 0 . 1 2 3 9 8 1 SRG 2 

14 CA4 5 1 0 710 13 1 .397511 11 8 9 .241684 12 179 .752731 SRG 2 

15 CAS 511 7 1 1 1 4 1 .391877 10 30 .156403 13 1 8 0 . 1 2 1 7 3 9 SRG 2 

16 HAl 5 1 2 712 11 1 . 099770 10 1 2 1 . 5 1 2 7 4 0 12 179 . 9 6 3 5 9 0 SRG 2 

17 HA2 513 7 1 3 12 1 .105143 11 120 . 1 0 1 0 2 4 13 1 8 0 . 1 8 0 5 0 3 SRG 2 

18 HA4 5 1 4 714 14 1 .101592 13 1 1 9 .836444 15 180 . 0 1 1 8 0 4 SRG 2 

19 HAS 515 715 15 1 .100833 14 119 ,714173 10 1 7 9 .914402 SRG 2 

20 SI 5 1 6 7 1 6 13 1 . 7 1 3 9 8 6 12 121 .121536 11 1 7 5 .388576 SRG 2 

21 CI 517 717 2 0 1 .739228 13 101 . 0 0 1 7 6 2 1 2 1 1 5 . 8 2 3 9 8 7 SRG 2 

2 2 0 2 5 1 8 1 0 0 2 0 1 . 4 9 1 1 0 5 21 1 0 5 , . 4 2 6 1 5 8 13 110 . 3 9 9 3 9 6 SRG 2 

23 HI 5 1 9 7 1 9 21 1 . 1 1 3 6 3 8 20 111 . 0 8 1 5 0 8 13 52 . 9 7 9 0 1 2 SRG 2 

24 H2 5 2 0 7 2 0 21 1 ,113307 23 1 0 7 , . 9 7 2 3 6 0 2 0 125 . 7 6 1 2 3 6 SRG 2 

25 H3 521 721 21 1, . 1 1 5 9 9 1 23 108 , ,357752 20 2 4 1 , . 3 0 6 3 8 7 SRG 2 

2 6 CB4 5 2 2 722 7 1 .448992 6 131. ,594616 5 1 8 1 , . 9 0 2 6 3 3 NRG 3 

27 CB3 5 2 3 723 26 1, ,404542 7 121, ,141111 6 214 . 7 3 9 8 4 2 NRG 3 

2 8 CB2 5 2 4 724 27 1, ,406165 2 6 118, ,537277 7 1 8 1 , , 0 2 2 1 0 9 NRG 3 

29 NBl 5 2 5 7 2 5 2 8 1, . 3 4 6 0 9 4 2 6 93 , ,009871 27 180 .139409 NRG 3 

30 CB6 5 2 6 7 2 6 2 9 1, ,347016 27 8 8 , ,313340 2 8 179 , . 7 4 7 8 6 7 NRG 3 

31 CBS 527 727 30 1. ,405453 2 6 30. , 7 1 2 5 6 7 2 9 180, ,129953 NRG 3 

32 HB2 5 2 8 7 2 8 2 8 1, ,105778 27 120 , ,479450 29 1 8 0 , , 0 2 1 1 6 0 NRG 3 

33 HB3 5 2 9 729 27 1. ,097361 2 6 121, ,470845 2 8 181, ,102897 NRG 3 

34 HB5 5 3 0 730 31 1, . 0 9 8 7 8 9 26 1 2 0 , ,669087 30 179 , . 6 0 0 2 2 4 NRG 3 

35 HB6 5 3 1 731 30 1, ,105601 31 1 2 0 , ,496874 2 9 180, . 1 8 8 0 8 9 NRG 3 

36 CD6 5 3 2 732 6 1. ,453492 5 1 2 2 . , 4 2 5 2 3 7 4 178 , , 8 3 2 4 1 2 FRG 4 

37 CDl 5 3 3 7 3 3 36 1. ,402924 6 1 2 0 . , 1 4 2 6 3 5 5 3 8 . ,046760 FRG 4 

3 8 CD2 5 3 4 734 37 1. , 3 8 9 7 9 3 36 120. ,626477 6 180 , , 8 6 1 0 1 2 FRG 4 

39 CD3 535 735 3 8 1. 406995 36 89 . 772033 37 1 8 0 . , 2 9 6 2 3 9 FRG 4 

40 CD4 5 3 6 7 3 6 3 9 1. ,407872 37 90, ,169801 3 8 180 , ,079103 FRG 4 

41 CDS 537 737 40 1. , 3 8 9 4 4 7 3 9 119, , 4 8 7 9 7 6 3 6 0, ,055860 FRG 4 

4 2 HDl 538 7 3 8 37 1. ,102198 36 119. 908437 38 1 7 9 . , 7 6 6 5 2 9 FRG 4 

43 HD2 539 739 3 8 1. , 0 9 9 6 8 4 37 120. ,729067 3 9 179 , ,840926 FRG 4 

4 4 HD4 5 4 0 7 4 0 4 0 1. , 0 9 9 6 2 4 3 9 119. , 7 3 9 2 6 0 41 1 7 9 . ,747120 FRG 4 

45 HD5 541 7 4 1 41 1. ,101145 4 0 1 1 9 . , 6 9 8 1 3 7 3 6 179 , , 9 4 9 2 9 6 FRG 4 

46 FD3 5 4 2 742 39 1. 354393 3 8 119 . , 9 7 7 2 1 2 40 179 , ,880543 FRG 4 

TERZ 
47 CAP -1 -1 2 0. ,327667 1 36. , 1 7 5 0 8 3 3 108 , ,952802 CAP 5 

22 
24 
25 
20 
2 4 

25 

23 
21 
20 
11 
10 
27 
26 
37 
36 
46 

0 

108 
108 
179 
1 2 5 

243 

Geometry Variations 
.200000 
.592580 
.915149 
. 7 3 6 1 8 7 

.327637 

.778068 
*******Variable Bonds follow 
********Additional Bonds follow 
********Harmonic Constraints follow 
********Variable Bond Angles follow 

follow (2I4,F12.6) 

(14) 
(214) 
(2I4,4F10.4) 
(14) 

* * * * 

2 4 21 2 0 

25 21 20 
23 21 24 
2 3 21 25 
24 21 25 
14 13 20 
15 10 4 
10 4 5 
31 2 6 7 
26 7 8 
6 3 6 41 
7 6 36 
40 3 9 4 6 

:********Additional Bond Angles follow (314) 

•***Variable Dihedrals follow (3I4,F12.6) 

23 606 610 5 . 000000 
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21 602 611 5.000000 
11 601 601 5.000000 
27 604 604 5.000000 
37 603 603 5.000000 

* * * • 

13 20 21 24 606 610 
13 20 21 25 606 610 
21 20 13 14 602 611 
23 21 20 22 609 100 
24 21 20 22 609 100 
25 21 20 22 609 100 

(614) 

Domain Definitions follow (414) 

Excluded Atoms List follows (1014) 

Final blank line 
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