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This s tudy has its roots in the production system of a flour mill, manufactur-

ing specialist flours for cakes, biscuits and batters. The aims are to develop new 

methods of scheduling, using the problems posed by the industrial system as 

motivation. 

We analyse the industrial system and propose a model for the overall process. 

This model possesses several features of note - it has multiple processing stages, 

with parallel machines at each stage; jobs may be restricted in which machines 

can process them at each stage [processing set restrictions]-, jobs may omit stages; 

material flows f rom one stage to the next as a continuous stream; and there is 

highly flexible inter-process storage of interim products. A simplified model, ex-

tending the hybrid flow shop model from the literature, is also presented. 

The scheduling of the system is approached in two steps. Firstly, we develop 

algorithms for solving the scheduling problems at each stage - parallel machines 

with processing set restrictions. We present efficient and exact algorithms for 

problems with unit-lengths jobs, across a wide range of the standard regular ob-

jective functions. We also suggest three heuristic algorithms for minimising the 

maximum lateness on identical parallel machines with processing set restrictions 

and general job lengths: Earliest Due Date (EDD); Jackson for Processing Sets 

(JPS]; and Nested Jackson (NJ). 

Secondly, we develop a generalised f ramework for hierarchical decomposi-

tion, aimed at solving hybrid flow shop problems. The framework has four sepa-

rate major components: decomposition into sub-problems, ordering of sub-prob-

lems, sub-problem solution, and backtracking. For each of these we develop sev-

eral alternative methods. The framework is then tested on a wide variety of prob-

lems using computational methods. We conclude that decomposition of the prob-

lem by execution sets, solving the sub-problems in stage order with the EDD so-

lution method, and using multiple-pass backtracking produces the best quality 

solutions. 
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Chapter 1 

Introduction 

1.1 Background 

The industrial system on which the work of this Ph.D. is based is a specialist 

flour mill, called Foster Mills and based in Cambridge, which mills and treats 

flour for use in industrial processes. The flour made at Foster Mills is used for 

three main purposes: biscuits, cakes, and batters, although a small amount of 

bread flour is also made there. To make these non-bread products on an indus-

trial scale, the flour must be treated in various different ways after milling, in a 

specialist treatment plant. The treatments usually involve altering the biochemi-

cal makeup of the flour, for example breaking down starch grains with steam, or 

altering its acidity or moisture content. The wide variety of products required by 

different customers for different processes requires a uniquely flexible manufac-

turing process. However, the flexibility of the process also brings complexity, and 

the specialist treatment plant poses difficult problems for those running it. 

One of the primary problems in the running of the specialist treatment plant 

is the scheduling of production. The production planner at Foster Mills produces 

daily a rolling three-day schedule. However, the schedule is updated throughout 

the day as changed information, both from the sales force and from the produc-

tion side of the plant, is made available. The generation of the three-day schedule 

is an extremely taxing task for one person, and would be greatly helped by an 

algorithm, implemented as a computer program, to produce schedules for the 
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specialist treatment plant, given a list of products which must be produced over 

the next three days. 

1.2 Mathematical scheduling 

Mathematical scheduling is a branch of combinatorial optimisation concerned 

with finding arrangements of tasks on one or more processing units which are 

optimal according to some predefined objective function. 

The theoretical results of the mathematical research are applicable in a wide 

variety of areas including computing and roster management, but it is most com-

monly applied in a manufacturing or production context, and it is from man-

ufacturing that the common terminology of the field has been taken. A typical 

problem will consider n jobs, to be scheduled on m machines. The machines may 

be arranged in many different ways, each implying different constraints on how 

the jobs are to be scheduled. Examples include: 

o each job is to be processed on only one of the machines (parallel machines); 

• each job is to be processed on all machines in a particular order (flow shop); 

• each job is to be processed on all machines in a job-dependent order (job 

shop); 

• or any other combination of parallel or sequential machines. 

There is a notation (the three-field notation) which can be used to describe most 

common mathematical scheduling problems. This notation is described in more 

detail in the section below. 

Research in mathematical scheduling goes back to at least the early 1950s, 

with the development of rules for producing optimal schedules for simple prob-

lems, usually on a single processing unit. For example, the shortest weighted pro-

cessing time (SWPT) rule of Smith[74] was one such early result. Similar results, 

such as the SPSF rule presented in this thesis (see §5.4.2) are a common solution 

method for simple scheduling problems. 
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However, there were some problems - the flow shop with more than 3 ma-

chines being the most celebrated - which did not appear to have simple, easy to 

compute, solution methods. A simple exact solution to minimise the completion 

time of the last job (the makespan] for two machines or a special case of three 

machines had been known since Johnson in 1954[45], but all attempts to find a 

polynomial-time general solution failed. It was not until the arrival of complexity 

theory in the early 1970s that the failure of the scheduling community to develop 

simple algorithms for these problems was understood. The implications of com-

plexity theory meant that there were some problems which appeared to be " difG-

cult" to solve computationally to obtain an exact answer. Some exact techniques, 

such as branch-and-bound, dynamic programming, and integer programming, 

were usable, but often only for small problems. This lead to the development 

of methods intended to find a good answer rather than the best answer. These 

heuristic algorithms or heuristics can take many forms, among them rule-based 

heuristics; local search methods, including tabu search, genetic algorithms and 

simulated annealing; hierarchical decomposition; and polynomial time approxi-

mation schemes. It is the heuristic methods, and their application to the harder 

problems of mathematical scheduling, which have been the mainstay of schedul-

ing research in the last thirty years. 

1.2.1 Object ives 

The great majority of the scheduling literature concentrates on a small set of gen-

erally well-behaved objective functions. These functions are all regular functions, 

being non-decreasing. The most common are: 

« Maximum completion time, or makespan: the completion time of the last 

job to be completed. C^ax = Cy, where Cy is the completion time of 

job y. 

# Total (weighted) completion time: ^ (wyjCy. 

« Maximum lateness: -Ly, where ly = Cy — (fy, and (fy is the due 

date of a job. 
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« Total (weighted) tardiness: E where = max(0,I,y). 

« Total (weighted) number of late jobs: ^ (a;y)Uy, where C/y = 1 if Cy > dy, and 

Uj — 0 otherwise. 

« Total (weighted) flow time: ^ (wy) where = Cy — ry, and ry is the release 

date of the job (i.e. the earliest time that it can be scheduled). 

The objective functions listed above have a relationships between them - the 

ability to solve a problem with one objective function may convey the ability to 

solve the same problem with a different objective function. For example, any un-

weighted summation objective (e.g. 2] l/y) may be reduced to its weighted equiv-

alent (e.g. Zzt'y[/y), simply by setting all of the weights to 1. Similarly, a total 

(weighted) completion time problem may be reduced to a total (weighted) tar-

diness problem by setting the due dates of all of the jobs to zero. 

A maximum lateness (JLmax) problem may be reduced to either a total tardi-

ness problem (2] 7̂ ) or a number of late jobs problem (^ (7y), by adding a constant, 

D, to the due date of every job, and then repeatedly solving the ^ T, (or ^ Uy) 

problem to find the minimum value of D for which 7, (or 2! (/y) is zero. Finally, 

a makespan problem may be reduced to a maximum lateness problem by setting 

the due date for all jobs to zero. 

1.2.2 Three-field notat ion 

One important advance in the field of scheduling is the development of a widely-

accepted classification system for problems. This nofafzon was proposed 

by Graham, Lawler, Lenstra and Rinnooy Kan[31]. Their notation captures the 

general structure and type of a mathematical scheduling problem. The general 

form of a three-field problem description is where a specifies the arrange-

ment of machines, ^ specihes job characteristics, and 'y the objective function. 

The first field, a, is composed of three parts, 0:ia:20!3, with the following possible 

values and meanings: 

« 0=1 indicates the general arrangement of machines 
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- a i empty: a single machine 

- ai — P: identical parallel machines 

- ai = Q-. uniform (or related) parallel machines 

- ai = R: unrelated parallel machines 

- ai = F: flow shop - all jobs have the same fixed sequence of stages to 

be processed on 

- tti = / : job shop - each job has a fixed sequence of stages in which to 

be processed 

- a i = O: open shop - each job has a set of stages to be processed on in 

any order 

» ao indicates the number of machines (for parallel machines) or number of 

stages (for sequential machines) 

- 0:2 empty: an arbitrary or unknown number of machines or stages 

- 0!2 = 1: a single machine or stage 

- 0:2 = m: m machines in parallel (for 0=1 E ( f , Q, 

- (12 = 5: s stages (for 0=1 G { f , / , O}) 

» Q3 indicates the number of machines at each stage for multi-stage systems 

- 0:3 empty: one machine, or one per stage 

- 0:3 = (Pm): m parallel machines at each stage (for a i E { f , / , O}) 

- 013 = ( f m i , f m 2 , . . . parallel machines at stage k (for a i E 

{ f , ; , o } ) 

- 0:3 = (f): arbitrary number of parallel machines at stage k (for oii E 

The second field, indicates characteristics of the jobs in the problem. There 

are a large number of possible entries in l3. These include the following, arranged 

by general classification: 
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« Processing times 

- Pj = I or pij = 1; all jobs (or operations) have unit processing times 

- Pj = p or Pij = p: all jobs have identical non-unit processing times 

- 5y: jobs have set-up times 

- jobs have sequence-dependent set-up times 

# Timing constraints 

- ry: release dates: job y is not available until time ry 

- dj: deadlines; job j must be complete by time dj 

• Precedence constraints 

- chain: precedence constraints form non-branching chains of jobs 

- intree: precedence constraints form in-trees of jobs 

- outtree: precedence constraints form out-trees of jobs 

- prec: arbitrary precedence constraints exist 

» Other characteristics 

- pmtn: operations may be preempted 

- My or each job (or operation) may only be processed on some 

subset of the available parallel machines (at each stage, if on a multi-

stage system) 

- My nested or My^ nested: the subsets of machines used by all jobs ex-

hibit a nesting property 

- missing: some jobs may omit some processing stages in multi-stage 

layouts 

It should be noted that some of these characteristics are mutually exclusive (for 

example, the different forms of precedence), and some are not (release dates and 

due dates may be used in the same problem, for instance). 

The third field specifies the objective function which is to be minimised. Some 

of the more common objective functions used in the literature are, as listed in 

51.2.1: 
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" Cmax: maximum completion time, or makespan 

® E Cj-: total of the completion times of all jobs 

* Elmax: maximum lateness 

« E total (weighted) tardiness 

# E (zfy) [/y: total (weighted) number of late jobs 

« E [Wj]Fj\ total (weighted) flow time 

However, many other objective functions have been used, including discounted-

cost earliness (related to warehousing costs), and work-in-progress on multi-stage 

problems. 

1.2.3 Complex i ty theory 

Another fundamental advance which has benefited the Held of mathematical 

scheduling is the development of complexity theory. Complexity theory comes 

f rom the theory of computation and computability, and deals with the relation-

ship between the time taken to perform a computational process and the size of 

the input to that process. 

Running time 

Consider a general deterministic computational device of infinite capacity (such 

as a Turing machine or Minsky register machine). This machine contains a pro-

gram which implements an algorithm. The machine will accept a sequence of 

symbols as an input, and may eventually stop, yielding a further sequence of 

symbols as output. For each input 7 of length n for which the machine halts, it 

will have taken a particular number of computational steps, 5(7). We say that the 

implementation of the algorithm runs m 0(/(M)) fzme if there exists some value A: 

such that 

5(7) < /{/(»), 
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for all inputs I of length n, and for all values of n. In other words, the function 

/(n) is an upper bound on the behaviour of the running time of the algorithm as 

the size of the problem tends towards infinity. 

For example, consider an algorithm for performing a linear search on an un-

sorted set of data for the largest value. To read a value and compare it to the 

largest currently known value will take no more than some constant («:] num-

ber of operations. This must be repeated for every one of the n values, taking 

no more than ku operations. Thus, this linear search is an 0[n] algorithm. Per-

forming a simple matrix multiplication of two square matrices, using the obvious 

algorithm, is an 0{n^} process, since multiplications are required. (In fact, mul-

tiplication of two n X n matrices can be accomplished in approximately 

operations using an appropriate algorithm [16]). 

In the field of combinatorial optimization, algorithms which have polyno-

mial bounds on their computational time are considered "good", and those with 

larger-than-polynomial (e.g. exponential or larger) bounds are considered "bad". 

This should be compared to the computing-science viewpoint, where any algo-

rithm with a running time of O(M )̂ or worse is generally considered "bad", and 

only O(MlogM) or better algorithms are "good". It should also be noted that a 

polynomial time algorithm may not necessarily be useful - an algorithm with 

running time bounded by logn seconds is probably going to take too long 

to run to be practicable, and an algorithm bounded by seconds may 

well be useful for all real-life problems it is intended to solve. Also, it may be that 

the upper bound is only ever reached in a very few cases: the simplex method 

for solving linear programmes has an exponential upper bound on its running 

time (and problems exhibiting the behaviour can be constructed), but for most 

problems it behaves well, and takes few steps to complete. Similarly, the O(n^) 

worst-case rurming time of the quicksort algorithm has not prevented computer 

scientists and software engineers from using it extensively due to its ease of im-

plementation and excellent average-case performance. 



Chapter 1. INTRODUCTION 9 

P vs NP 

If a problem has an algorithm to solve it which has a polynomial running time, 

then that problem is said to be in the class P. However, there are some problems 

for which there is no known polynomial time solution method. Consider a non-

deterministic machine, which may have multiple destination states from a given 

starting state and input - in other words, it has a feature of random behaviour 

built in to it in some way. It may be possible (although highly unlikely) for such 

a machine to find a solution in polynomial time to one of these problems, by 

"guessing" the right answer as the first solution tested. The class of problems for 

which there is a polynomial time algorithm running on a nondeterministic ma-

chine is known as NP (for nondeterministic polynomial). Note that problems in 

NP impose certain limits on their computation: 

* The size of the solution must be polynomially bounded (else the solution 

could not be verified in polynomial time), and 

• the solution verification procedure must itself be a polynomial time algo-

rithm. 

In fact, it is with the latter of these conditions that the more usual definition of 

NP is made. Clearly, all problems in P are also in NP. The remaining question is: 

Are all problems in NP also in P? 

The main result regarding this question was presented by Cook[14], who showed 

that the SATISFIABILITY problem was at least as hard as any other problem in NP. 

Specifically, he showed that any problem in NP can be reduced to S A T I S F I A B I L -

ITY using a polynomial-time procedure. The SATISFIABILITY problem was dubbed 

an NP-complete problem. A year later, Karp[47] tidied up the definition of NP-

complete, and proved for each of 21 other problems that SATISFIABILITY could 

be reduced to the problem using a polynomial time procedure. This proved that 

there were many other NP-complete problems. Since then, the number of known 

NP-complete problems has grown enormously - Carey and Johnson[25] in 1979 

list 320 problems in various categories; many more have been added since. It is 
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still an unsolved problem whether P = NP. In fact, there is a $ lm prize, posted by 

the Clay Mathematics Institute[l], for a proof of either P = NP or of P ^ NP. 

Not all NP-complete problems are created equal, however. There are two dis-

tinct groups of NP-complete problems. There are some problems whose most 

efficient optimal algorithm is bounded by a polynomial function where 

n is the number of items in the input, and B is an upper bound on their magni-

tude. It would appear initially that this problem is in P, but this is not the case, for 

if the n input numbers are encoded in binary, they will require n logg B symbols 

to represent. Any running time involving a polynomial function of B is greater 

than polynomial in logB. Problems with this behaviour are referred to as either 

NP-complete in the ordinary sense, or binary NP-complete. If the input is encoded in 

"unary" (where a number of magni tude B is represented with a string of " l"s of 

length B], then the problem will run in polynomial time compared to its (now 

extremely inflated) input size. These problems are also sometimes referred to as 

pseudo-polynomially solvable problems, and can often be solved by dynamic pro-

gramming. 

On the other hand, there are problems which retain their NP-completeness 

even when their inputs are written in unary. These unary NP-complete or strongly 

NP-complete problems are in some way harder to solve than problems which are 

NP-complete in the ordinary sense. Examples of the two types of problems are the 

one-machine total tardiness problem, 1|| £ Tj, which can be solved by a pseudo-

polynomial dynamic programming process, as shown by Lawler [50]; and the 

one-machine total weighted tardiness problem, l\\Y,WjTj, which is strongly NP-

complete. 

1.3 Aims and Objectives 

The aim of this Ph.D. is to develop mathematical scheduling algorithms, using 

the problems presented by the specialist treatment plant at Foster Mills on which 

to base the work. In more detail, we will: 

« identify new scheduling problems from the situation posed by the specialist 
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treatment plant, 

» produce a description of the plant which embodies all of the information 

relevant to developing a mathematical scheduling model, 

® develop suitable algorithms for solving those scheduling problems, and 

® implement, test and evaluate the algorithms. 

The detailed description and analysis of the plant is done in chapters 2 and 3. 

Chapter 2 describes the features of the plant relevant to its scheduling problems, 

detailing the processes and machines, and the between-process storage bins, and 

showing how these components are connected together into an extremely com-

plex industrial processing system. Chapter 3 takes the straightforward descrip-

tion of the plant from chapter 2 and reveals the structure implicit in the system. 

Although the specialist treatment plant is highly complex and flexible, there are 

biochemical, process and management reasons why some aspects of that flexibil-

ity are not exploited. Chapter 3 presents a series of increasingly simplified models 

for the machine layout of the plant, and shows how it may be modelled, using the 

concepts of the mathematical scheduling literature. The specialist treatment plant 

at Foster Mill is shown to be, broadly speaking, a hybrid flow shop, but with 

several interesting features most of which are not normally encountered in the 

mathematical scheduling literature: continuous flow processes, per-job machine 

processing restrictions (known as processing sets), a tree-structured hierarchy of 

product classes, and inter-process storage. We develop notation for describing 

each of these features as it is found in our industrial system. 

In chapters 4-7, we develop various algorithms and techniques for solving the 

mathematical problems identified in chapter 3. Chapter 4 introduces disjunctive 

directed graphs, a technique widely used for modelling certain types of schedul-

ing problem, and extends the technique so that it can be applied to our problem. 

Specifically, the disjunctive graph model is often used on problems of scheduling 

jobs each of which must pass through several machines before completion. The 

interaction of sequences of machines for each job, and jobs for each machine can 

be difficult to follow. The disjunctive graph model provides an efficient tool for 
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rapid evaluation of schedules - both for feasibility and timing. We develop forms 

of disjunctive graph which are suitable for modelling the sort of inter-process 

storage we are interested in. We also develop timing constraints on scheduling 

systems with continuous flow processes and inter-process storage. These results 

are used to develop disjunctive graph models for such systems. 

Chapters 5 and 6 develop algorithms for solving the general class of parallel 

machine problems which are found as sub-problems in the plant. In particular, we 

are interested in problems of parallel machine scheduling where each job can only 

be processed on a subset of the machines - the so-called processmg sef resfncfzoM. 

We identify a particularly well-behaved form of processing set restriction where 

the processing sets used across all jobs exhibit the property of being nesW. Chap-

ter 5 concentrates on problems where all jobs have identical (unit) processing 

times. We develop efficient polynomial algorithms for solving scheduling prob-

lems with unit-length jobs and processing set restrictions on parallel machines, 

across a wide variety of regular objective functions. 

Chapter 6 examines similar problems to chapter 5, where the jobs do not nec-

essarily have unit length. We concentrate specifically on heuristic algorithms for 

minimising the maximum lateness objective function, as these algorithms will be 

used in later chapters of the thesis as building blocks in an algorithm for solving 

problems on the hybrid flow shop. We propose three algorithms for minimising 

^max ori identical parallel machines with processing set restrictions. 

Having identified the scheduling problem in chapter 3 as a hybrid flow shop, 

chapter 7 examines the theory of scheduling the hybrid flow shop in more detail. 

We extend the model by allowing processing set restrictions for operations at each 

stage. We develop a broad framework within which the hybrid flow shop prob-

lems of the type introduced in chapter 3 may be solved. The framework is a hier-

archical decomposition method, similar to the shifting bottleneck method used to 

solve job shop scheduling problems. Our algorithm contains four main compo-

nents - a decomposition method to break the problem down into sub-problems; a 

criticality measure to determine the order of solution of the sub-problems; a pro-

cedure to solve the sub-problems; and a backtracking method to determine which 
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already-solved sub-problems to revisit in order to improve the solution quality. 

We describe several different approaches to each of these areas in chapter 7, with 

the exception of the sub-problem solution procedures, for which we will use the 

heuristics proposed in chapter 6. 

Finally, in chapters 8 and 9 we generate test problem instances, perform com-

putational tests, and analyse the results of those tests. This is to determine which 

of the components of the framework developed in chapter 7 is most important 

when generating schedules, and to find which of the components may be used 

in the framework is most effective. We analysed the behaviour of the algorithm 

for the Imax objective function, although the framework itself is suitable for any 

regular objective function. Chapter 8 describes the factors which may be varied in 

generating hybrid flow shop problems of different shapes and behaviours. It also 

describes in detail the techniques which we use to generate the test problem in-

stances. Chapter 9 presents the statistical experiment design techniques which we 

use, and introduces the analysis method for the large data-sets which we generate 

through running the experiments. We then analyse the results of the experiments 

to draw conclusions about the performance of the solution framework. 

Finally) in chapter 10 we summarise the work of this thesis, and point the 

direction for future research, both on ways of improving the work in this thesis, 

and highlighting open problems. 



Chapter 2 

Description of Industrial Process 

In this chapter, we describe the production process at Foster Mills in 1998. The 

description is based on detailed observation and analysis of the plant, and dis-

cussion with the people working in the plant over a period of 9 months in 1998. 

Since the plant is continually being modified, we chose to work with a "snapshot" 

of the plant from the second half of 1998. 

The primary difficulty encountered in doing the analysis was that the main 

sources of information - the people working at the plant - generally knew in 

great detail how the plant operated, in some cases down to individual valves 

on blowlines. However, they were unable to produce simpler abstractions of the 

plant which could give an overview of the connections between machines and 

bins without oversimplifying. 

Foster Mills have adapted and used the results of this chapter. The flour recipe 

diagrams in figure 2.2 are used by the sales, planning and scheduling staff as 

quick-reference sheets. In addition, the various simplified process diagrams de-

veloped in the next chapter from the descriptions in this chapter are used for 

training new staff. 

We cover the processes involved in making specialist flours, and how those 

processes related to each other with reference to the logistics of the plant. We give 

details of the scheduling characteristics of the processes. We also cover the inter-

process storage bins in the plant, and how they are connected to the machines 

from a scheduling perspective. An important observation is the continuous-flow 
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nature of the plant. Finally, we describe how interim products of processing may 

be made into several different products at each stage, leading to an out-tree struc-

ture of products. 

2.1 Overview 

The specialist treatment plant at Foster Mills in Cambridge in 1998 was operated 

on the basis of both make-on-demand and of make-to-stock. A few of the prod-

ucts are in extremely high demand, and can be made to stock to fill up any spare 

production capacity) since an order for them is likely to arrive in a short timescale. 

Most of the product lines made on the plant, however, are quite highly specialised 

products, sometimes produced for a single customer. There is little point in mak-

ing these less frequently used products to stock. They are therefore made to order, 

with a lead time of approximately three days. When an order is placed, the due 

date is negotiated with the customer - due dates earlier than two days time, or 

later than 7 days time, are rare, with 3 days being the norm. Scheduling is per-

formed on a rolling three-day horizon, with the next 24 hours being fixed and 

sent to the production staff. The objectives of the scheduling are to ensure that all 

orders are filled by their due date. The main key productivity indicator relating 

to scheduling which is measured at the mill is the number of late jobs. 

The plant produced somewhere in the region of 150 to 170 products, process-

ing flour from the mill on the same site. The exact number varied, depending on 

the product lines required by the mill's customers. Fewer than 10 distinct flours 

were made on the mill (the base jZours), from about six different grists. Agn'sf is 

the mixture of different grain types fed into the mill. Of the 150-170 products, 

about 70 were essentially distinguishable flours, with the remainder of the prod-

uct types (the generic products) being made of the same 70 flours in different 

packaging and with different specifications of quality. 

In order to make these distinct products, the base flours are passed through a 

number of different processes. There are 11 processes in all; 

Milling is the process of turning a grist into flour. The mill produces many differ-

ent products and by-products, although only the main product - the flour -
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is used in the rest of the plant. 

Classification takes a single stream of flour, and uses air blowers to split it into 

two parts: the fine fraction (FF), and the coarse fraction (CF). These are, respec-

tively; the small particles and large particles from the flour. 

Chlorination places the flour in a chlorine atmosphere for a short time. A small 

amount of the chlorine remains in the flour, and acts to reduce its p H value 

(i.e. it increases the acidity]. Chlorinated flour was used for making cakes, 

typically in industrial processes, but has now been banned by EU regula-

tions. Heat treated flours (see below) are now used in place of chlorinated 

flour. 

Grinding is the reduction of the particle size of the flour using grinding rollers 

similar to those used in the miU. 

Steam treatment holds the flour in live, pressurised steam for several minutes. 

This has two effects: it makes the flour extremely moist, and it breaks down 

the starch granules in the flour particles. Steamed flours are generally used 

for making batters. 

Agglomeration is a process used to make pseudo-semolina (called/Zour cones]. 

The flour is made wet, and then dried using a hot air blower. The individ-

ual flour particles stick together into small grains resembling semolina or 

couscous. 

Drying uses hot air to reduce the water content of the flour, from 12-14% down 

to 2 or 3% in some cases. 

Heat treatment holds the flour at over 100°C for up to an hour. This has much 

the same effect on the flour as chlorination, and heat-treated flours can be 

used as substitutes for chlorinated flours in some processes. 

Mixing is the process of adding other powdered, particulate or ground materials 

to the flour. Normally either salt, for some batter mixes, or self-raising mix-

ture (mostly sodium bicarbonate) are added in the mixing process. The ma-
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chine used for this process is not suitable for blending two separate flours 

together. 

Packing machines put flour into bags of between 10 and 32kg, and pack the bags 

on wooden palettes, usually in 1-tonne lots. Alternatively, the flour may be 

packed in a single 750kg or 1 tonne bag, known as an FIBC {flexible interme-

diate bulk container). 

Bulk output blows the flour directly into 24-tonne bulk tankers for immediate 

road transport. 

The above processes are used in different combinations with different grists 

to produce the wide range of final products. Each of the processes has different 

settings which affect the process and the resultant flour. For example, the angles 

of the fan blades in the classiHer may be altered, changing the mix of CF and FF 

and altering the particle sizes found in each fraction. Similarly, the steam plants 

may be set to different temperatures and pressures to make different products; 

or the dryers may be set to make drier or moister flour. The implications of the 

different machine settings will be explored in more depth in §2.6. 

Not all products need to pass through all of the processes listed above. In fact, 

most products pass through only a very small number of the available processes. 

The plant is capable of processing flour through the machines in many different 

combinations and directions (see §2.4 for details]. However, it is a feature of the 

way that the plant is used that any products which require the same two processes 

undergo them in the same order. That order is the one listed above. The reasons 

for this are generally to do with the physics and chemistry of the processes in-

volved. For example, steam treatment after drying would make no sense, as the 

dried flour would be re-moisturised during the steam process, so dry steamed 

flours are always steamed first and then dried. The only processes that all prod-

ucts must pass through are the milling process at the beginning, and one or other 

of the packing and bulk output processes at the end. 
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2.2 Machines 

There are eighteen machines in the specialist treatment plant performing the 11 

processes listed in the previous section. Duplication of machines occurs at the 

steam treatment, drying and packing stages. Most machines have a fixed pro-

cessing rate, given as the number of tonnes of flour it can process per hour. Some, 

however, have a product-dependent processing rate. Similarly, most machines do 

not have a start-up period, but some do. Finally, some products can only be pro-

cessed on certain machines - the best examples are the micro-clean flours, which 

can only be processed on steam plant 3 and the micro-clean dryer (WP2). A sum-

mary of the machines, processes and processing parameters is given in Table 2.1. 

We find it conceptually easier to group the machines into processing sfages, which 

are also indicated in the table. More details on the processing stages and their 

role in making a mathematical model of the plant are given in chapter 3. Pro-

cesses within a stage may be carried out simultaneously - for example, drying 

and heat treatment of the same flour may be done at the speed of the the heat 

treatment machine, which is the slower process. 

The set-up time for the machines, where it is given, is the time taken for the 

machine to produce usable flour after it starts to process a batch. The steam plants 

in particular require anything up to 30 minutes to settle down for each batch 

of flour. The set-up times are not sequence dependent for any of the machines 

which require them, although the steam plants have a randomly distributed set-

up time typically between 15 and 30 minutes. The set-up time for the bag packer 

is dependent on the bag size of the final product, as a fixed number of bags is 

discarded to flush the system of the previous flour. In all cases of set-up periods 

in the plant, flour is consumed at the normal rate during the set-up process. The 

output flour made during the set-up is discarded for recycling as lower-grade 

flour. Thus the production of each tonne of output flour requires more than one 

tonne of input flour. 

The third steam treatment machine, BokS, the second W-P dryer, WP2, and the 

second bag packing machine, Pack2, together form the micro-clean plant (MCP). 

This is a separate, slightly pressurised, section of the factory with microbial filters 



Chapter 2. DESCRIPTION OF INDUSTRIAL PROCESS 19 

Machine Stage Process Speed (t/h) Startup 

Mill (i) Milling 13.5 -

Classifier (ii) Classification 9.0= -

Chlorinator (ii] Chlorination 4.5 -

Grinder (ii) Grinding 4.5 -

Bokl^ (iii) Steam Treat 2.0 15-30 mins 

Bok2 (iii) Steam Treat 2.0 15-30 mins 

Bok3 (iii) Steam Treat 2.0 15-30 mins 

Agglom (iv) Agglomeration 1.0 -

yyc (iv) Drying 1.5 -

WPl'' (v) Drying 2.0 -

WP2 (v) Drying 1.7 -

Vrieco (v) Heat Treat 1.0 -

Batch Mix (vi) Mixing 4.0 -

Packl (vi) Packing varies 6 bags 

Pack2 (vi) Packing varies 6 bags 

FIBCl (vi) Packing varies -

FIBC2 (vi) Packing varies -

Bulk (vi) Bulk Out 480 -

"Input stream. Output streams are 4.5tonnes/h each. 
''Bokfard, or steam treatment plant. 
•^Thermo-Venturi dryer. 
•^Werner-Pflederer dryer. 

Table 2.1: Summary of machines 

on the air supply. Flour processed in the micro-clean plant is effectively steril-

ized by the steam treatment, and has a minimal micro-organism count when it is 

packed. The only way for flour to enter the MCP is through the Bok3 process. 

The classifier machine has an interesting set of properties from a scheduling 

point of view. It produces two separate streams of product from a single input 

stream - two tonnes of input flour become one tonne each of coarse fraction and 

fine fraction. One problem encountered at the mill is that there is a large demand 

for products made from fine fraction, and a much smaller demand for products 

which require coarse fraction. However, there are some products which can be 
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made with either unclassified flour or with (ground] coarse fraction. These are of-

ten made with coarse fraction to use up the surplus. The flours for which (ground) 

coarse fraction can be used as an alternative base are not shown in the diagram 

in figure 2.2, as it would make the figure considerably more difficult to read. 

2.3 Storage 

As the flour passes from one machine to the next, it does not move directly be-

tween the machines, but instead is blown into a storage bin before being sent 

to the second machine. Flour may remain in the storage bin for some time be-

fore being moved for processing on the second machine. This is the case for most 

processes and bins. However, in some instances, machines are also connected 

together directly, and flour can be passed between them without using a bin. Al-

tematively flour may have to pass through two bins to move from one process to 

another. The details of the connections between bins and processes are given in 

the next section. 

There are nearly 80 bins in the plant. These are of varying sizes, and each bin 

is connected to a different set of machines. There are some bins which feed only 

a single machine (or process), and are thus dedicated to that machine. Equally 

there are some bins which can be fed from a large range of machines, and can act 

as general-purpose storage. The names and sizes (in metric tonnes) of the bins are 

given in table 2.2. The grouping of bin numbers in the table is due to functional 

differences between the bins, and reflects the layout of the bin stock sheets used 

for production control at the mill. 

There are a few products made in the specialist treatment plant which are 

made by blending together two flours. The batch mix machinery is unsuitable 

for this task, and so bins are used to perform the mixing. If the two flours being 

mixed are blown into the same bin at the same time, they are mixed effectively 

and thoroughly. This is the only time that a bin is fed from two sources at the 

same time. 

The usage of bins is limited in certain ways. The primary limitations on bin 

usage are that: 
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# a bin cannot be used to store two different types of flour at the same time 

(except when mixing), 

o a bin cannot store more flour than its capacity and 

® there are some sets of bins from which two bins cannot feed different ma-

chines at the same time. 

The latter condition is the most difficult constraint to model and explain in the 

whole system, but stems from the fact that some bins are linked to the same con-

veyor or feed line, and in order to feed a given machine, any bin from one of 

these groups must use that conveyor. This limitation is discussed in more detail 

in §2.4.2. 

2.4 Connections 

2.4.1 B l o w l i n e s 

In order to move the flour between bins and processes, it is blown through pipes 

using a compressed air system. These blowlines are designed to have a greater 

capacity (i.e. transfer rate] than the processes at either end of the line. This means 

that the factor limiting the speed of any pair of machines (or machine and bin) is 

the machines involved and not the blowline. In addition, the transit time from one 

end of a blowline to the other is negligible. Blowlines may therefore be completely 

ignored f rom the point of view of modelling, as they have no appreciable effect 

on the timing of scheduling of the plant. 

The connections between machines are generally mediated by bins. Blowlines 

and conveyors run from machine to bin and bin to machine, although there are 

some direct connections (gravity feed, or short dedicated blowlines) between ma-

chines. The way in which bins are used is therefore intimately connected to the 

flow of flour through the plant. 

The connections between the processes and bins are extremely complex. One 

of the biggest challenges in this stage of the research project was identifying the 

logistics which governed the running of the plant. The plant was designed to 
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Name Size (t) Name Size (t) Name Size (t) 

1 15 7 15 lOt 10 
2 15 8 15 18t 18 

3 15 9 15 SRF 1 
4 15 10 15 BM 4 
5 15 11 15 
6 15 . 12 15 

13 14 19 18 B1 24 
14 14 20 18 B2 24 
15 14 21 18 B3 24 
16 14 22 18 B4 24 
17 14 23 18 
18 14 24 18 

25 30 28 30 MB 9 
26 30 29 30 
27 30 30 30 

31 28 42 28 W 23 
32 28 43 28 X 23 
33 28 44 28 Y 23 
34 28 45 28 Z 23 
35 28 46 28 
36 28 47 28 
37 28 48 28 
38 28 49 28 
39 28 50 28 
40 28 51 28 
41 28 52 28 

53 20 54 28 MCPl 
55 20 56 28 MCP2 
57 20 58 21 MCP3 
59 18 60 22 MCP4 
61 21 62 21 

Table 2.2: Summary of bins 
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be highly flexible in its operation, and thus has a vast number of possible paths 

through the system. The extent of the complexity involved may be appreciated 

from the original engineering diagram of the plant, which is included in appendix 

A. 

A summary of the connections between bins and processes at the time that we 

performed our analysis in 1998 is given in table 2.3. This systematisation repre-

sents the first step in identifying the actual flow of flour through the machinery, as 

opposed to the possible flow implicit in the design and engineering of the plant. 

Process Bins feeding process Bins fed by process 

Mill (Grain bins) 1, 2, 7, 8, 26-34, 38, 42, 44, 48-

54, 56, 58, 60-62 

Classifier 1, 2, 7, 8, 31, 42 FF: 57, 59, 60, (Chlorinator) 

CF: 28, 36, 47, 56, (Grinder) 

Chlorinator (Classifier, FF) 13-18, 26, 29, 52, 57-60 

Grinder (Classifier, CF) 37, 48, 53, 54 

Bokl 26, 27 3, 4, 9,10, 53, 61 

Bok2 28-30 5, 6, 11, 12, 53, 61 

Bok3 51, 52 39-41, 54, 61, MCP1-MCP4, 

(FIBCl) 

Agglom 37, 48, 53, 54, 56-60 (TV) 

WPl 37, 48, 53, 54, 56-60 19-24, 35, 55, 57, 60, (Vrieco) 

WP2 MCPl, MCP3 MCP2 

TV 37, 48, 53, 54, 56-60, (Agglom) 19-24, 35, 46, 55, 57, 60 

Vrieco (WPl) 19-24, 35, 55, 57, 60 

Batch Mix 61, 62 (Packl) (FIBC2) 

Packl 3-6, 9-24, 35, 38-41, (Mixer] 

Pack2 MCP1-MCP4 

FIBCl 3-6, 9-12, 19-24, 32-35, 38, 54, 

56, 60-62, (Bok3) 

FIBC2 (Mixer) 

Bulk 3-6, 9-24, 32-35, 44, 46, 48-50, 

54-58, 60-62 
Where processes are shown in brackets, there is a direct feed between the processes. 

Table 2.3: Bins connected to each process 
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2.4.2 Conveyors 

To reach the blowUnes from a bin, flour is let out of the bottom of the bin under 

gravity. It falls on to a short length of conveyor belt, which feeds the flour into the 

blowline system. Each conveyor handles the flour for several bins. Some convey-

ors also handle the flour from other conveyors. The practical result of this system 

is that two bins which use the same conveyor cannot feed processes at the same 

time, since their flours would be mixed on the conveyor. 

The conveyors thus divide the bins into nested subsets of bins, where all bins 

inside any given subset are mutually exclusive when feeding flour into blowlines. 

We did not analyse the subsets in detail, as there are few occasions in practice 

when the conveyor constraints are encountered. 

2.5 Continuous flow 

The processes at Foster Mills are all continuous flow processes, where flour from 

the beginning of a batch is available for further processing (or storage) immedi-

ately and does not have to wait for the batch to complete. Thus, if a process runs 

slower than its predecessor, it may start processing the flour at the same time as 

its predecessor. If a process runs faster than its predecessor, then they may both 

finish at the same time (but no earlier). This continuous flow process is impor-

tant for scheduling the industrial process, as the overlap between consecutive 

processes can yield a significant decrease in the total processing time of jobs. 

2.6 Product differentiation 

For many of the processes performed in the specialist treatment plant, one input 

flour may be converted into many different output flours, depending on the set-

tings of the process. Most of the processes in the plant have several operational 

parameters which can be changed. For example, temperature and pressure may 

be changed in the steam plants; fan blade settings on the classifier can be altered 

to affect the ratio of coarse fraction to fine fraction produced; and the bag packer 



Chapter 2. DESCRIPTION OF INDUSTRIAL PROCESS 25 

may be set u p with different sized (or labelled] bags to suit different customers' 

requirements. 

We refer to the combination of ingredients and the set of processes and their 

settings required to make a particular flour as that flour 's recipe. Few of the ma-

chine settings for a recipe affect the timing or the scheduling of the plant. Those 

few settings that do affect the processing rates of machines can easily be modelled 

mathematically by using product-dependent processing times. Since we are pri-

marily concerned with scheduling the plant, we do not concern ourselves with 

the details of product recipes. Machine settings do, however, have implications 

for the way that w e consider products to be organised. The only relevant ingre-

dient for a scheduling point of view is the base flour. We assume that the other 

ingredients (e.g. salt or self raising mixture] are always available. 

As a consequence of having product-dependent machine settings, one base 

flour may be made into several different flours in its subsequent processing. Thus 

the flours have an out-tree structure to their recipes. The differentiation may re-

sult from different settings on the machine, or f rom the use of a different machine 

or process. Thus, product differentiation wiU not necessarily be apparent from the 

logistic data we work with regarding processing times. It is therefore necessary to 

record the hierarchy of flours explicitly. There are some minor exceptions to this 

out-tree structure, where two products are mixed together in between stages to 

give a third product. 

Determining the product hierarchy was as complex a task as determining 

the physical structure of the plant, for many of the same reasons. There was a 

large amount of data available, but this data came f rom many different systems -

variously, computerised, paper-based and kept in the heads of key personnel. It 

quickly became clear that there were many products which were identical. This 

was for a number of reasons: overlap between generic product ranges introduced 

at different times; convergence of requirements from different customers; and 

sales to niche markets. Determining definitively which products were actually 

duplicated was a much more difficult proposition. In particular, products would 

be referred to colloquially by different names depending on where in the plant 
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they were being processed. In some cases, these names bore little or no resem-

blance to any existing product name. In addition, the official product numbering 

scheme was difficult to follow, as it originated in several slightly different sys-

tems, and gave no concept of the relationships between products. The product 

hierarchy given in this chapter is the result of a systematisation of the nomencla-

ture, and groups products into families of identical flours. 

An example of product differentiation is given in figure 2.1. Product names 

have been removed for commercial reasons. In the example, the base flour from 

the mill, ST Base, can be steam treated in two different ways (at two different 

temperatures, say) giving two resultant products. Of these, one is simply bagged 

and sold directly [STl], and the other may be sold directly (as ST2] or further 

dried before being sold [Dried ST2). A full diagram of the product hierarchy is 

given in figure 2.2, again with the actual product names removed. 

ST Base 

Dried ST2 

r ^ 
STl ST2 Dried ST2 

Figure 2.1: Example of part of product hierarchy 
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Figure 2.2: Product hierarchy at Foster Mills, Oct 1998 
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We distinguish between interim flours and final flours. 

Interim flour refers to any flour made in the plant which may be used as the raw 

material for some other machine or process in the plant. 

Final flours are those products which are the final output of the process - they 

are the saleable items. 

Note that some products may be both interim flours and final flours at the same 

time. For example, see ST9 in the product hierarchy in figure 2.2, which may be 

sold as ST9 (i.e. as a final flour), or used to make several distinct batter mbces (i.e. 

as an intermediate flour). The product hierarchy diagram in flgure 2.2 does not 

show all of the interim flours; some are implied where there are several processes 

on an arrow. 

The product types are closely tied in to the set-up periods of the machines. 

When a machine with set-ups (for example, one of the steam plants) processes 

a batch of flour, it must be set up for that batch, and run for a while to verify 

the resulting flour quality. Changing to a different output flour on the same ma-

chine requires another period of set-up. However, batches of the same flour may 

be processed together on the machine without the need for an additional set-up 

time between them. It is important to note that this applies to batches of the same 

interim flour being made together, regardless of whether both batches will be-

come the same final flour. As an example, one steam plant may produce a batch 

of ST2 for packaging, followed by another batch of ST2 which will be dried and 

packaged as Dried ST2, without the need for a set-up period between the two 

batches since they are both the same flour at that stage. The problems of schedul-

ing systems with this type of sequence-dependent set-up time are known in the 

mathematical literature as product family scheduling problems. 

2.7 Current scheduling practice 

The current scheduling process in the plant at Foster Mills is a manual process. 

As customer orders are placed with the sales department, the order requirements 

information is upda ted and passed to the person doing the scheduling. Each day. 
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a three day schedule is created, where the next 24 hours are a fixed schedule, 

and the two days following are provisional plans. The schedule consists of a plan 

showing which products should be made on which machines and when, and 

which storage bins should be used. 

2.8 Features of the plant 

The plant as described above has a number of interesting features from a mathe-

matical scheduling point of view. These characteristics are listed below: 

1. each job is processed on two or more machines, 

2. the machines are in the same fixed order for all jobs, 

3. jobs may miss some stages (mzsgmg operah'oMs), 

4. there are parallel machines at at least one point in the process, 

5. a job may be limited to a subset of the available machines at a given stage 

(specza/fsf macAmes or procesamg sef resfn'cfzoMs), 

6. there are storage bins between processes which interact with the processes 

as additional scheduling constraints, 

7. processing times of jobs are both job- and machine-dependent, 

8. some machines must be used together as a single unit (agglomerator and 

T-V dryer; W.P.I and Vrieco; batch mix and packer 1 or FIBC 2], 

9. a job may be processed in a continuous flow through the plant, 

10. products become more differentiated as they move through the production 

process (giving an out-tree structure), 

11. a few products are made by blending two products together in bins, 

12. some machines have set-up times between jobs which make different prod-

ucts, 
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13. jobs are blown through compressed air pipes between processes, 

14. some subsets of bins may not be used to feed different machines at the same 

time (the conveyor restrictions), and 

15. one machine (classifier] produces two distinct products at the same time. 

The first five of these characteristics are extremely important to the schedul-

ing of the plant. The next four are also important, but can be modelled as part of 

a more general model. The remaining six have a negligible effect on the schedul-

ing of the plant. In the next chapter, we will develop simplified models of the 

plant which implement the first nine features of the above Hst in one way or an-

other. We shall then use the simplified models as a framework on which to build 

a scheduling algorithm. 



Chapter 3 

Mathematical Formulation of 

Industrial Process 

We aim to develop a mathematical model of the production process at Foster 

Mills described in the previous chapter. The model will describe, using the terms 

of the scheduling literature, a mathematical scheduling problem which we will 

then go on to solve. There are two stages towards achieving this aim; simplifying 

the production process at Foster Mills as described in chapter 2, and placing that 

simplified system in a formal mathematical framework. 

In this chapter, we concentrate on simplifying the model, rather than solv-

ing the problem. To this end, our focus will be on the logistics of the plant. We 

develop progressively simpler models of the plant, by a process of modifying 

or incorporating the salient features identified earlier in chapter 2. Our aim is 

to identify which manufacturing features affect the logistics of the plant, from a 

scheduling perspective, and which do not. The aim of the process of progressive 

simplification is to produce a model which will then be placed in a mathemati-

cal framework in chapter 4. We eventually reduce the process at Foster Mills to a 

three-stage model for scheduling. 
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3.1 Scheduling objectives 

The objectives for scheduling at the mill are due-date based. The main schedul-

ing objective is to ensure that all jobs are ready on time - the key productivity 

indicator is actually the proportion of jobs shipped on time. Thus, the objective 

for scheduling is to minimise the number of late jobs, E UJ. A secondary consid-

eration, particularly if all of the jobs can be completed on time, is to have as many 

jobs finished as long before their due date as possible, effectively minimising the 

maximum lateness, Imax-

3.2 Features not affecting scheduling 

In this section, we discuss the modelling of some of the salient features of the 

manufacturing process at Foster Mills identified in chapter 2 and listed in §2.8. 

In particular, we describe several of the features in the list which have little or 

no effect on the scheduling of the system, and which we wiU not be modelling 

explicitly. 

3.2.1 B lowl ines 

The blowlines in the plant at Foster Mills are high-pressure compressed air tubes 

which blow the flour from one place to another (feature 13 in §2.8). The rate of 

transfer of flour in a blowline is very high. In fact, it is much higher than the rate 

of processing of any of the machines in the plant. In addition, the time taken for a 

particle of flour to move along any given blow-line is negligible compared to the 

time taken for any other part of the process. Thus, the blowlines do not limit or 

delay any part of the manufacturing process. Therefore, we may safely ignore the 

effects of the blowlines on the timing of any schedule. The blowlines still affect 

the scheduling of the plant, but only in the sense that they connect machines and 

bins together, and thus restrict the overall flexibility of the plant. 
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3.2.2 Conveyor restrictions 

The restrictions which stem from the feed conveyors from the bins (§2.4; feature 

14 in §2.8) are extremely complex. As a result, they vastly increase the difGculty of 

the mathematical scheduling problem if they are included in the model. However, 

in the practical day-to-day operation of the plant, they do not affect the schedul-

ing to any appreciable degree. We therefore decided to ignore entirely the limiting 

effects of the feed conveyors in both our initial analysis and in our models. 

3.2.3 Start-up t imes and product hierarchy 

We will not consider the machine set-up times (feature 12) in our model. Those 

set-up times which are non-zero in the plant are in practice either small compared 

with the typical production run (the steam plants), or on fast, non-bottleneck ma-

chines (the bulk output processes), or both (the bag packers). By not considering 

set-up times in the model, we also remove the benefit within the model of work-

ing with product families (feature 10). Thus, we treat each job as being distinct. 

In addition, we will not deal with the problems posed by products made from 

blending together two flours (feature 11). There are only a very few such products 

made at the mill, and they are not made in large quantities. The blending process 

for these products is usually performed immediately before being sent to pack-

ing. Sometimes, the two flours are blended in the packing process - two separate 

flours are blown into and mixed in a bulk tanker at the same time. Therefore if 

necessary the scheduling of the blending operation can be performed manually 

after the main scheduling algorithm has been run. 

3.3 Full process diagram 

The blow-line connections in the plant at Foster Mill allow almost any order of 

processes in the plant, including re-entrant processes (see the process diagram 

in appendix A). However, in practice, this great flexibility is not used. The main 

reason for this is that some processes must follow others (for example, there is no 

point in drying a flour and then steaming it). 
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The eleven processes performed in the plant (listed in §2.1) can be broken up 

into six groups, according to the connections between the machinery. These six 

groups are, in order, 

1. milling, 

2. classification, chlorination and grinding, 

3. steam treatment, 

4. agglomeration and thermo-venturi (T-Vj dryer, 

5. Werner-Pflederer (W-P) dryers and heat treatment, 

6. mixing, packing and bulk output. 

Flour is always processed through the system in the order that the processes ap-

pear in the above list (feature 2 from §2.8), although most flours will not pass 

through all of the process groups (feature 3]. From the observation that the over-

all production process is not re-entrant, and follows a fixed order of processes, we 

can draw a much simplified diagram of the plant, shown here in figure 3.1. 

Note that in the diagram, the storage bins are shown as anonymous blocks. 

In practice, to move flour from any given processing stage to any other only a 

subset of all the bins can be used. The bins are shown this way to highlight the 

essentially uni-directional flow of processing in the plant. The use of the bins will 

be discussed in greater detail in chapter 4, where we will model them in terms 

of overlapping sets of bins which may be used to transfer material between two 

given machines. This allows us to include feature 6 from the list in our model. 

In addition, a job may enter the "pool" of bins after processing on one stage, 

and exit the pool for further processing after skipping one or more stages. Thus, 

this model allows for the missing operations of feature 3. 

Note also that there are four stages (2, 3, 5 and 6) with multiple parallel ma-

chines (feature 4). These parallel processing stages pose interesting scheduling 

problems in their own right - the best example of this is stage 3, where the 

newer steam plant 3 has better filters than the older two machines, and is also 

the only way of putting flour into the micro-clean section of the mill. Thus, for 
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Stage 1 

Stage 2 Classifier 

Gnnder Chionnator 
\ Micro-clean plant 

Stage 3 Steam Plant 1 Steam Plant 2 Steam Plant 3 

MCP Bins Stage 4 Agglomerator 

T-V Dryer 

Stage 5 W-P Dryer 1 W-P Dryer 2 

Weco 

MCP Bms 

Stage 6 
Mixer 

Bulk Out FIBC2 Packer 1 FIBCl Packer 2 

Figure 3.1: The six-stage model of the plant at Foster Mill 
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some flours (coarse, non-micro-clean products) the three machines are effectively 

interchangeable; for other flours (very fine flours or micro-clean products), only 

steam plant 3 can be used. Similarly, some products may be processed through 

either of the two W-P dryers at stage 5, some must be made on W-P dryer 1 (for 

heat treatment in the Vrieco), and some on W-P dryer 2. This structure of parallel 

machines with identical processing properties but restrictions on which jobs may 

be processed on them is a problem which has received little attention in the liter-

ature. The class of such problems is studied in chapters 5 and 6. We are therefore 

including feature 5 from §2.8 completely in our model. 

3.4 The five-stage model 

Although the six-stage model described in the previous section is a good descrip-

tion of the production system at Foster Mill, we can make some additional sim-

plifications. These simplifications discard some of the features and structure of 

the specialist treatment plant, but only in places where the loss of precision is 

minimal. 

Firstly, the usage of the batch mixer is very small - little of the total output 

of the plant passes through the batch mix process. Since the batch mix process is 

also one of the faster pieces of equipment in the plant, we can ignore the batch 

mixer for the purposes of any scheduling algorithm, relegating the scheduling of 

the machine to a post-processing stage. 

Secondly) at stages 4 and 5, the pairs of machines in series (agglomerator-

T-V dryer and W-P dryer-vrieco] may each be treated as a single machine, with 

product-dependent processing rates (i.e. at the speed of the slower machine]. This 

means that feature 8 from the Ust in §2.8 can be successfully modelled. This also 

changes feature 7 into something more manageable - job-dependent but machine-

independent processing times. 

Few products, if any, need to pass through both the agglomerator-T-V dryer 

and the W-P dryer-vrieco units. We shall therefore model those two units as par-

allel machines, in the same stage as the W-P dryer in the micro-clean plant, re-

ducing the total number of stages required. We may ensure that a product which 
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requires (say) the agglomerator is processed on the appropriate machine of the 

three parallel units at that stage by using processing set restrictions, and limiting 

the job in question to being passed through only that machine. 

After the above simplifications, we have a Hve-stage process. The simplified 

process diagram is shown in figure 3.2. 

Stage 1 

Stage 2 

Stage 3 

Stage 5 

Stage 6 

Mill 

m 
Bins 

ZE: 
Classifier 

(Coarse fractionT (Fine fraction) 

Grinder Chlorinator 

V i t 
Bins 
1 

Steam Plant 1 Steam Plant 2 
Steam Plant 3 

(MCP) 

1 1 
Bins 

i _ 1 
Agglomerator 
+ T-V Dryer 

W-P Dryer 1 
+ Vrieco 

W-P Dryer 2 
(MCP) 

1 
Bins 

T 

Bulk Out FIBC2 Packer 1 FIBCl 
Packer 2 

(MCP) 

Figure 3.2: The five-stage model of the plant at Foster Mill 

3.5 Core scheduling model 

In practice, the characteristics of the industrial plant and its current usage patterns 

allows a fur ther stage of simplification. The bins between the mill and the rest of 

the plant, and between the classifier/chlorinator and subsequent processes, are 
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sufficiently large and numerous that in practice the first two stages of the plant 

may be scheduled effectively independently of the rest of the system. Moreover, 

that these stages contain the fastest two machines in the plant is also a factor. 

The first two production stages may be scheduled after the rest. This removes 

the problem posed by the awkward classifier machine (feature 15). We have thus 

reduced the problem of scheduling the entire plant to that of scheduling a three-

stage system with several parallel machines at each stage, as shown in Agure 3.3. 

Stage 3 Steam Plant 1 

Stage 5 

Steam Plant 2 
Steam Plant 3 

(MCP) 

Bins 

Stage 6 

J 
Agglomerator 
+ T-V Dryer 

W-P Dryer 1 
+ Vrieco 

W-P Dryer 2 
(MCP) 

i ... 
Bins 

1 1 

Bulk Out FIBC2 Packer 1 FIBC 1 
Packer 2 

(MCP) 

Figure 3.3: The core scheduling model of the Foster Mill plant 

3.5.1 H y b r i d f l o w s h o p 

In the scheduling literature, the hybrid flow shop (sometimes called a. flexible flow 

line] is a multi-stage scheduling model with parallel machines at one or more 

stages. Jobs are processed through the stages strictly in stage order, and a job 

is processed on at most one machine at any given stage. The literature of the 

hybrid flow shop will be discussed in more detail in chapter 7. The 3-stage core 

scheduling model which we have arrived at in this chapter resembles a hybrid 

flow shop, with four additional features: 

» continuous flow processes, 

« processing set restrictions at each stage, 

« product families, and 
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# inter-process storage bins. 

We now introduce terminology and notation for the hybrid flow shop prob-

lem and each of the additional features listed above. 

We shall assume that there are s processing stages in the system which we 

are modelling, with the stages indexed by A; (1 < fc < s). At each stage, there are 

rriĵ  identical machines, numbered 1 , . . . , f , . . . , mj;. When referring to machines at 

different stages, we shall use [k, i] to denote machine i at stage k. Machine [k, i] 

has a product-dependent processing rate and requires a time Sjtp ior set-ups (see 

§3.5.4 for details on the product type notation, F). In our model, the set-up period 

requires the presence of the next operation, and consumes material at the normal 

processing rate of the machine. The material processed during the set-up period 

is discarded. 

There are n jobs ( 1 , , n), each consisting of up to s operations. Each 

job has a due dak, dy, and a product type, Fy. A job may also have a reWse dak, 

ry, before which processing of the job cannot start. An operafzon of a job is the 

processing of that job at a given stage. The operation of job j at stage A: is denoted 

An operation has a /engf/z, a sfze, which is a measure of the amount 

of storage it will require after processing, and a processmg sef, (see §3.5.3], as 

properties. Jobs may not necessarily have operations at all stages. 

A summary of this notation, and of all other notation used throughout this 

thesis, can be found in appendix C. 

3.5.2 C o n t i n u o u s flow 

The continuous-flow nature of the process (feature 9) does not affect the analysis 

and simplification that we perform in this chapter. It does, however, affect how 

we perform the mathematical modelling of the process. We will investigate the 

implications of scheduling continuous-flow processes in chapter 4. 

3.5.3 Process ing sets 

Processing sets are restrictions on which machines may process a particular job. 

For example, at Foster Mills, some jobs must be processed through the micro-
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clean plant, which requires the job to pass through the third steam plant; alter-

natively, a job which is to be packed in bags must pass through one of the bag 

packers and not through the bulk output equipment at the final stage. We model 

these restrictions as a set of machines for each operation of each job in the prob-

lem. We denote the processing set for operation by 

It is also convenient to talk about the unique processing sets which are (or 

may be) encountered at any given stage. At stage k, there are possible values 

that might take. We index these possible values with and denote them by 

^(9^1 (where 1 < ^ < Ot). We refer to the set of unique processing sets, , . . . , 

as the processing sets amzVabfe at stage/:. 

If we place no restrictions on the possible processing sets which may be used 

at stage k, say, then there exist 2'"* — 1 possible sets, these being the members of 

the power set of the set of machines, less the empty set. We describe this case as 

gengraZ processing sets. As an example, with three machines (1, 2 and 3), there are 

seven possible general processing sets: {1,2,3}, {1,2}, {1,3}, {2,3}, {!}, {2} and 

{3}. 

Alternatively, we may restrict the allowable processing sets to be nested. In-

terestingly, all of the stages in our 3-stage core model of Foster Mills exhibit 

nested processing sets. Formally, a set of processing sets available at stage k, 

{M^^),. . . , is nesW if, and only if, for each pair of sets one 

of the following is true: 

3 or 

= 0. 

In other words, either one set is completely contained within the other, or they 

are totally disjoint. This structure, which imposes a partial order on the process-

ing sets, is important, as it gives an ordered, hierarchical structure to the parallel 

machines problem, and makes it considerably more tractable as a result. A final 

important observation on sets of nested processing sets is that at a stage k with 

parallel machines, there can be at most 2mĵ  — 1 sets. We prove this result below. 
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Let Q. be a set of nested sets constructed from some set of machines S = 

{ 1 , . , . , m}. We wish to Hnd the least upper bound on the size of Q.. We denote 

this least upper bound by Nim] where m is the size of the "parent" set S. 

Each set in a collection of nested sets is either a "leaf" set, (i.e. it has no further 

sub-division), or it has nested subsets. There are many ways in which nested sets 

may be constructed. For example, two possible ways of making nested sets for 

seven machines are 

{ { ! } , { 2 , 3 } , { 5 , 6 } , { 7 } , { 1 , 2 , 3 , 4 } , ( 5 , 6 , 7 } } , 

and 

{{1 ,2 ,4} , {3}, {5}, {6,7}, {1 ,2 ,3 ,4} , { 1 , 2 , 3 , 4 , 5 , 6 , 7 } } . 

However, the number of subsets in a nested set is bounded, as we now demon-

strate. 

Theorem 1 Giuen a sgf 3 o/ szze m, kf be Ae fazgesf number o/ nes W subsefs 

that may be constructed from 5. Then 

— 2zM — 1. 

Proof: Firstly, observe that when considering a division scheme to generate the 

maximum number of nested subsets, we need only consider those sub-divisions 

which partition each set into two subsets. If we divide a set into more than two 

partitions, . . . , for example, then by forming U and then 

subdividing into its two components and we may add one set to the 

overall total. 

We proceed by induction. Firstly, JV(1) = 1 is trivial. Secondly, assume that 

= 2m — 1 V m < M. Then 

] = max {N(z) + — z] + 1 } 
l<;<M/2 

= max {2M — 1} — 2M — 1, 
l<KM/2 

thus proving the theorem. O 

As an example, consider the set 3 = { 1 , . . . , 7}, representing seven machines. 

Then N(7] = 13, and we may divide J into up to 13 nested subsets. The following 

is an example of precisely 13 nested subsets; 
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Subdivision scheme 

1 2 3 4 5 6 7 

1 2 3 4 5 6 7 

2 3 4 

2 3 

5 6 7 

5 6 

5 

No. of sets 

1 

2 

2 

4 

4 

13 

Nested sets 

{1,2 ,3 ,4 ,5 ,6 ,7} 

{1}, {2 ,3 ,4 ,5 ,6 ,7} 

{2,3,4}, {5,6,7} 

{2 ,3} , {4} , {5 ,6} , {7} 

{2} , {3} , {5} , {6} 

3.5.4 Product hierarchy 

The out-tree nature of the product hierarchy poses an interesting problem for 

modelling, in that not only does each job have a product type, but so does each 

individual operation. The product type of a job deEnes the types of each of its 

operations. Moreover, the type of any given operation of a job defines the types of 

the preceding operations, but not the succeeding ones. We present here a suitable 

notation/ data structure for modelling such a structure. 

We index products, whether interim or final, with an (s + 1)-element ordered 

list (or vector], F = ( fg , . . . , Element (for 1 ^ < s] corresponds to the out-

put of the process at stage A:. The element Fq distinguishes between different types 

of raw material to be fed to the first process. A zero entry in this list indicates that 

the product was not processed at the corresponding stage. A non-zero element 

in the vector means that the product was processed at that stage, and is used 

to distinguish between the different output products made from the same input 

product at the corresponding stage. The products are numbered so that the prod-

uct (fo, • • •, -ffc, 0 , . . . , 0) is the parent of all product types with the same entries in 

the first k positions. As an example, we might index the products shown in figure 

2.1 according to the scheme in table 3.1. Note that in our 3-stage core scheduling 

model of the plant at Foster Mills, all final products have a non-zero entry in the 

last element of the product index vector, and aU interim products a zero, since all 

final products must be packed in some way. 

We also define several functions and operators, for ease of manipulation of 

these product indexes. Firstly for a product F, we define the last stage at which it 
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Product Index 

ST Base (1, 0, 0, 0) 

STl (1,1, 0, 0) 

ST2 (1, 2, 0, 0) 

Dried ST2 (1, 2,1, 0) 

STl (Packed) (1,1, 0,1) 

ST2 (Packed) (1, 2, 0,1) 

Dried ST2 (Packed) (1, 2,1,1) 

Table 3.1: Example of product indexing scheme 

was processed, 

%(F) — min k such that ^ 0 and ft' = 0 > A:. 
l<t<s 

Secondly, we can define parent-child relations between products to navigate 

the out-tree hierarchy. A product F has an ancestor at stage k if it was at some 

point processed on stage /c. Thus, if %(F) > A: and ^ 0, then the ancestor of F at 

stage k is 

Alternatively, we may view the tree hierarchy as being a partial order on the prod-

uct types. We define a partial order, on product types, where F F' if and only 

if F = for some A: < %(F'). 

We define the parent of a product as being the last ancestor of the product 

before the current stage 

f(F) = [fo,.. . ,f]^,0, whereA:= max k'. 

Note that these definitions mean that, where it is defined, = A: for all 

F and k. However, (F)) is not necessarily %(F] — 1, since a product may miss 

a processing stage. It is also the case that, given a job ; with product type Fy, the 

product type of the output flour of operation is fjk(Fy]. 
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3.5.5 Inter-process storage b ins 

In the earlier parts of this chapter, we have brushed over any detailed discussion 

of modelling the bins at Foster Mills. We now remedy that omission, and discuss 

here a suitable mathematical model for the plant. 

The flexibility of the production plant requires a flexible and rather general 

model. We model the storage at Foster Mills as a shared pool of bins, with restric-

tions on which bins may be used to hold flour between any pair of machines. We 

denote the set of all bins by and use b to index the members of this set. The 

capacity of bin 6 we write as C;,. Between any arbitrary pair of machines, say (A:, z] 

and /) , the set of bins which may be used to hold flour is C 0. 

In some cases, a bin or bins may be specific to a particular flour (by convention 

rather than required by the plant's engineering), in which case we must define 

bin sets which depend on the flour type as well, for which we use the notation 

where F is the flour type. 

In this chapter we have developed a scheduling model of the plant at Foster 

Mills which incorporates all of the features necessary for solving the scheduling 

problems at Foster Mills. The simplified model takes the highly complex and flex-

ible system described in chapter 2, and presents it as a hybrid flow shop. This pre-

sentation supports the current and likely future practises of operation at the plant. 

In the next chapter, we present methods of modelling and evaluating schedules 

using the model of this chapter. 



Chapter 4 

Network formulations of hybrid 

flow shops 

In this chapter, we discuss how to model hybrid flow shop processes such as 

those, corresponding to Foster Mills, identified in the previous chapter. We pay 

particular attention to the makespan and maximum lateness objective functions. 

We develop disjunctive graph models for scheduling the hybrid flow shop with 

and without inter-process storage. In doing so, we also investigate some of the 

implications of the continuous-flow processes seen in the industrial plant, as com-

pared to the discrete-flow processes more commonly encountered in the mathe-

matical scheduling literature. 

4.1 Literature on inter-process storage 

In the mathematical scheduling literature on multi-stage systems such as (hybrid) 

flow shops, it is usually assumed that there is unlimited storage capacity avail-

able between processing steps for any job. However, there is also an extensive 

literature on two-stage flow shops with limited (or no] storage available between 

machines. 

In models with inter-process storage, it is usually assumed that each job in the 

problem occupies the same amount of space, and that each machine has an output 

buffer into which completed jobs are placed. When a buffer is full, the machine 
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cannot complete any further operations, and is said to be blocked. A blocked ma-

chine must wait for one of the jobs in its output buffer to be started on some other 

machine before it can complete its current operation. There are effectively three 

distinct cases in flow shop scheduling: buffers of unlimited size [b > n), no buffers 

(6 = 0), and buffers of finite size (0 < b < n). Surveys of the literature in this area 

include one by Hall and Sriskandarajah[35], and a smaller review by Dudek, Pan-

walkar and Smith[21], which makes interesting comments on the practical utility 

of the existing research into flow shop scheduling. 

The first case above, with unlimited buffer capacity, is the ordinary flow shop. 

This was introduced as 2- and 3-machine problems by Johnson[45], who showed 

that for 2- and 3-machine makespan problems there exists a permutation sched-

ule (i.e. the jobs are processed in the same order on each machine) which is opti-

mal. It is f rom Johnson's original paper that the extensive literature of flow shop 

scheduling is descended. 

The second case, with = 0, is known as the no-wazf flow shop, where jobs 

have to be processed from start to finish with no pauses between machines. The 

Hrst major result for this problem was that of Gilmore and Gomory[28], who 

showed that two machines can effectively be modelled as a single machine, and 

the scheduling problem can be solved in polynomial time as a special case of the 

travelling salesman problem. 

The third, more general case, with 0 < 6 < », was shown to be strongly NP-

complete by Papadimitriou and Kanellakis[63], who also developed a heuristic 

scheduling method for the case when b — 1 with worst-case bound g. 

4.2 Disjunctive graph representations 

With complex scheduling problems such as that which we are investigating, one 

common approach in the literature is to formulate the problem as a disjunctive 

grgp/i. The first use of disjunctive graphs in mathematical scheduling was for the 

job shop problem in Roy and Sussmann's 1964 paper[69]. The concept has been 

used by many people since, most usually for the job shop problem[3, 64, 4], but 

also for other problems, such as the hybrid flow shop[79]. Similar graph tech-
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niques have been used as evaluation tools for more complex problems such as 

hybrid job shops[54] and even for applications which do not fit into the standard 

scheduling problem classification such as an automated chemical laboratory[36], 

In a disjunctive graph formulation, a directed graph represents the relation-

ships between the individual operations in the problem. For a flow shop, some 

arcs in the digraph have fixed direction, namely those representing the schedul-

ing constraints between operations of the same job. Other arcs in the digraph form 

sets of arc pairs, from which one arc of each pair must be chosen. These disjunc-

tive arcs represent the allocation of operations to machines, and the sequencing of 

operations on those machines. The nodes linked by disjunctive arcs, correspond-

ing to the processing at a single stage, form a clique (complete subgraph) of nodes. 

By making a suitable selection of one arc from each pair of disjunctive arcs, se-

quences of operations can be constructed at each stage. It is possible to create 

several sequences of operations at a single stage by removing arcs to make sev-

eral disjoint subgraphs. This allows sequences on independent parallel machines 

to be modelled. 

In such a network, the nodes of the graph represent individual time-points, 

such as the time at which an operation starts, and the arcs represent minimum-

time constraints between events. Each arc on the graph has a length and cor-

responds to a constraint of the form ^ where fg and are the times of 

events a and b, associated with the start and end nodes of the arc respectively, and 

is the minimum delay between the two events. For example, when operation 4 

may not start until the previous operation, 3, has completed on the same machine, 

we have fop 4 start — ôp 3 end ^ 0- Similar constraints may be used to specify each 

relationship between the operations on a machine, and between the successive 

operations of a job. The length of an arc may be thought of as the minimum time 

allowed between two events, which are the nodes at each end of the arc. 

There are normally two special nodes in the graph, a start node A, and a finish 

node Z. The longest path from the start node to any given node in the graph is 

the earliest time at which the corresponding event may happen, counting the start 

event as time zero. Such a longest path may be found for every node in the graph 
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simultaneously; in time, using Dijkstra's algorithm [20, 15] (see appendix 

B], 

4.2.1 Discrete flow, unl imited inter-process storage 

The simplest case for which to draw the disjunctive graph is the discrete-flow 

case where there are no limits on inter-process storage. This is the type of prob-

lem most commonly seen in the mathematical scheduling literature. The basic 

structure of such a digraph is shown in figure 4.1, for an example with three pro-

cessing stages (numbered 1-3] and four jobs (numbered 5-8 to avoid confusion in 

the notation]. Note that job 6 has a missing operation at stage 1, and job 7 at stage 

3. The nodes in this diagram represent the start of the corresponding operation. 

The two types of arcs are constructed as follows: 

Fixed arcs starting at have length Other fixed arcs (e.g. starting at A] 

have length zero. These arcs represent the finish-start constraints between 

operations of the same job. 

Disjunctive arcs starting at Oj^- have length pji^, and represent the finish-start 

constraints between operations of different jobs on individual machines. 

Where operations are performed on different machines at the same stage, 

the disjunctive arcs between them are removed entirely, as described below. 

To generate a schedule, a subset of the disjunctive arcs is removed. With a 

single-machine stage, one arc of each pair is removed so as to give a complete 

acyclic subgraph of the relevant clique. With m machines, arcs are removed to 

give m disjoint complete acyclic subgraphs. In either case, each complete sub-

graph has a unique topological sort order. A fopoZogzcaZ sort of a digraph is an 

ordering of the nodes in which no node in the list is reachable from any node 

later in the list. A topological sort of a graph may be found, if one exists, in 0[pq] 

time, where the graph has p nodes and arcs, using an appropriate representa-

tion of the graph. See the description of Dijkstra's algorithm in appendix B for 

such a topological sort algorithm. 

In each case, the ordering of the nodes for a machine is equivalent to the or-

dering of the operations on that machine. Given an ordering of operations, the 
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Stage 1 Stage 2 Stage 3 

'Ki 

Normal arcs 
Disjunctive arcs Note: jobs numbered 5-8 

Figure 4.1: Example of disjunctive graph for 4 jobs and 3 stages, discrete flow and 

unlimited inter-process storage 

set of arcs to use can be determined, and vice versa. Taking the earlier example, 

if the operations are processed on the machines and in the order shown in table 

4.1, then the corresponding arc selections would be as shown in figure 4.2. The 

allocation and sequencing of operations can be achieved by a suitable algorithm, 

such as one of those discussed in chapters 5 and 6. 

Machine Stage 1 (mi — 1] Stage 2 = 2) Stage 3 (^3 = 3) 

1 O51, O71, Ogi O72 063 

2 Oez, 082, O52 O53 

3 Ogs 

Table 4.1: Example allocation and sequencing of operations (see figure 4.2) 

4.2.2 Discrete flow, l imited inter-process storage 

Now consider a system with limited inter-process storage. When an operation is 

finished, it is placed into one of a limited number of bins until it is started by the 

next machine. For example, a Gantt chart showing a single job moving between 

two processes is shown in figure 4.3. In that figure, whilst the length of each of 
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Stage 1 Stage 2 Stage 3 

50 

Normal arcs 
Disjunctive arcs Note: jobs numbered 5-8 

Figure 4.2: Example with selected subset of disjunctive arcs (see table 4.1) 

the two operations is fixed, the length of time for which the bin is in use may be 

any non-negative value. 

Machine (1, i) 

Bin 

Machine (2, z') 

Figure 4.3: Gantt chart of a discrete-flow system with a bin 

In the system shown above, there are five constraints for every pair of two 

machines, A and B, at different stages with a bin between: 

# the operation on machine A is of an exact length, 

# the operation on machine B is of an exact length, 

« the job starts in the bin when it finishes on machine A, 

® the job finishes in the bin when it starts on machine B, and 

« the bin must be used for a non-negative length of time. 
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To model this type of system, we introduce an additional set of nodes into the 

digraph to represent the bin usage. These nodes, labelled represent the time 

at which job / enters a bin following the processing of operation Oj^. An example 

of a system with two stages and a single stage of bins separating them is shown 

in figure 4.4. Note that there are four types of arc in the diagram. 

The type 1 arcs represent the sequence of operations within a job (the fixed 

arcs] and the sequence of operations on machines and bins (the disjunctive arcs). 

The type 3 arcs represent the movement of a job to the next processing stage. The 

type 4 arcs prevent operations from being placed into a bin before the previous 

operation in the bin has moved on to the next processing stage, and form dis-

junctive pairs similar to the disjunctive type 2 arcs. These types of arc have the 

following properties: 

Type 1 arcs starting at node have length These represent the length con-

straint for an operation; an operation must have a fixed length, and the job 

enters the bin when it has completed processing. 

Type 2 arcs starting at bin node also have length As in Hgure 4.1, these 

arcs are disjunctive arcs representing the finish-start constraints on opera-

tion of different jobs performed on the same machine. 

Type 3 arcs have length zero, and.are fixed (i.e. always present). These arcs repre-

sent the minimum length of stay of the operation in the bin - this is always 

zero, but may be longer. 

Type 4 arcs have length zero, and form disjunctive pairs. For every pair of nodes 

and By,; with subsequent operations and respectively, there is a 

pair of disjunctive type 4 arcs, one from to arid one from to 

These arcs perform the same function for operations in bins as the Type 2 

arcs perform for operations on machines. They represent the constraint that 

a batch cannot finish processing at the previous stage and be placed into a 

bin until the previous batch in that bin has started processing at the next 

stage. 
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Stage 1 Bins Stage 2 

52 

Fixed arcs Type 1 
Disjunctive arcs Type 2 -

Type 3 
Type 4 -

Figure 4.4: Example of disjunctive graph for 4 jobs, 2 stages and one bin stage 

with discrete flow 

Consider also the problem with missing operations which could be affected 

by bin scheduling. For example, consider the problem given in table 4.2, with bin 

storage following each stage of machines. Note that there is a missing operation 

at stage 2 for job 2. The disjunctive digraph for this problem is shown in figure 

4.5. 

Job Stage 1 Stage 2 Stage 3 

5 3 8 1 

6 5 (missing] 6 

7 6 2 4 

Table 4.2: Processing times for an example problem with missing operations and 

inter-process storage 

4.3 Discrete and continuous flow 

Much of the existing mathematical (shop) scheduling literature works on the as-

sumption that an operation cannot be started on any machine before the previous 

operation is finished on the previous machine. This was the assumption used in 

the disjunctive graphs of the previous section. One major feature found in our 

original industrial problem is that jobs through the system, rather than being 
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Stage 2 Bins Stage 3 Stage 1 Bins 

Fixed arcs Type 1- Type 3 
Type 4 

53 

Disjunctive arcs Type 2 

Figure 4.5: Example of disjunctive graph for problem with missing operations 

processed in a single block, as they are in the majority of the scheduling literature. 

As a result, the second operation of a job may be started before the first operation 

has finished. When bins are also added to the system, its behaviour changes in 

several ways. The differences between the two types of system [discrete and con-

tinuous flow] are shown in figures 4.6 and 4.7. 

Obviously, the distinction between the two types of system is only evident 

when there are multiple stages of production. On a single production stage (one 

machine or parallel machines], there is no modelling difference between discrete 

and continuous systems. 

Machine (1, zj 

Bin Bin 

Machine (2, z') (2,zl 

Figure 4.6: Gantt chart of a discrete-flow 

system 

Figure 4.7: Gantt chart of a cont-

inuous-flow system 

Modelling a system as discrete-flow gives rise to a single finish-to-start con-

straint for each job and pair of machines. In modelling a continuous-flow system, 

the single constraint from the "classical" mathematical scheduling problem may 

be replaced by a pair of constraints, governing the start and end of each operation 

with respect to the next operation. 
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In adding continuous flow to the model, we change significantly the structure 

of the problem. Since few algorithms have been developed for this kind of prob-

lem in the mathematical scheduling literature, there is nothing against which we 

may compare any algorithm we develop. 

4.3.1 Batch S ize Constraints 

When considering inter-process storage bins, discrete-How systems generally put 

a simple limit on the number of jobs that may be stored in each bin. However, the 

nature of continuous-flow systems means that in practice they will often process 

jobs of differing sizes, and the storage bins will be limited in the size of job (or 

jobs] they can hold. In our model, a bin holds a single job, but has a limited size. 

Since continuous-flow systems allow the second operation of a job to start 

before the first operation has finished, there exists the possibility of processing a 

job through a bin smaller than the job. In this section, we are interested in the size 

of the largest batch that may be processed through a bin. We will consider here 

only bins with a Axed maximum capacity, holding only a single job at any one 

time. We are also interested in the leeway that we have in scheduling the start 

times of a job on the different machines on which it must be processed. We would 

like to develop a set of limits which may be used in both of these tasks. In this 

section, we derive such limits for the basic case of two machines with a single 

dedicated bin between them. 

Consider a single job, as it moves between stage A: and k' in some system: it 

is processed on a machine (machine (ic, z)), and the resulting material is placed in a 

bin (bin b), followed by processing on another machine at the next stage (machine 

(A:\ T]). The two machines have processing rates and respectively and set-

up times and s,̂ ,. The bin will hold up to C;, units of material. A batch is to be 

processed on this system, first on machine {k,i], then the intermediate product 

is placed in bin b, and finally taken out of the bin and processed on machine 

[k', i']. The processing run on [k, i] starts at a time t after the start of processing on 

machine (A:%z']. 

Setting up machine (A:, z) requires units of material. As a result, to make 
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units at the end of the second operation in our simple two-machine example, 

units must be supplied to machine (A:, z), of which + 

Pk'Sk' units must be put through the bin during the course of processing the batch. 

In other words, 

+ A'Sk'. (4.1) 

We wish to look at the relationships between batch size, the physical con-

straints as depicted by arid and limits on relative start times of the batch 

on the two machines. 

Theorem 2 TTie eaHzesf fhaf an operahon mai/ be scheduled fo sfarf ifs predecessor 

operafzoM /los scarfed produczMg owfpwf zs 

= |4,2) 

Proof: We identify two cases: Machine z') is faster ^ A') machine (A:, z) 

is faster > Pk')-

Case 1: Machine [k', i') is faster 

We cannot start machine z') so early that it finishes before machine (A, z), thus 

the earliest that we can start (A', ẑ ) is at time as shown in figure 4.8. 

— — 

A Pk' 

From equation 4.1, 

and since p̂ / > Pk, equation 4.2 holds as claimed. 

Case 2: Machine [k, f) is faster 

We can start processing on the second machine as soon as the first has started 

generating output, since the Erst machine will finish first (being the faster). Thus, 

^ 0, 

which gives equation 4.2, since Pk/ < Pk in this case. O 
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Machine [k, i] 

Bin b 

Machine {k', i' 

Key: 
Set-up 
Processing 
Bin usage 

SFC 

0 

A?:' _ 

Sk' 

Sk 

N 

Earliest start for Oyt, Delayed start 

Figure 4.8: Gantt charts where machine [k', i') is faster 

Machine {k, i 

Bin b 

Machine (k', 

Key: 
0 Set-up 

Processing 
^ Bin usage Earliest start for O 

Sk 
Pk 

0 

Sk' 

Delayed start 

Cb 

Figure 4.9: Gantt charts where machine (A:, f) is faster 
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Note that in the notation used here, the delay, is indexed by the job j and 

only one of the stages, k', since the job j will have an end-product type associ-

ated with it. From the product type, we can deduce the sequence of stages which 

the job passes through, and so only one stage of the two involved is required to 

specify exactly which delay we are referring to. 

Theorem 3 If the batch to be placed in a bin is smaller than the bin, then the consecutive 

operations do not have to overlap and there is no limit to the possible delay to the second 

operation. 

Proof: If the batch after processing on the first machine is smaller than the bin 

size, i.e. Pji < Cy, then we can put the whole batch on [k, i], into the bin, before 

starting processing on z'l and we can have any length of delay before starting 

the second stage of processing. O 

Theorem 4 TTze bafcAz szze, f/iaf mo]/ processed Aroug/z a 6zM 6 by kuo mac/̂ zngs 

[k.i] and [k', i'] is limited by the bin size in the following manner: 

™ x ( ^ (43) 
IA — A'I 

Proof: As the overlap between the two stages of processing increases, so does 

the size of the batch which can be processed. Thus, for the case when machine 

z') is faster, suppose that both machines stop processing at the same time. The 

bin is fullest when the later machine starts its set-up, and its. level is ^ " PtL 

since its net rate of emptying is — pt), srtd it takes ^ time to empty. When 

machine (k, z] is faster, an inverse argument holds, and the maximum bin level is 

^ (Pk — A')- O 

Corollary 1 If the batch size is larger than the capacity of the bin, then the delay is 

limited according to the following expression: 

max 

Proof: The left-hand inequality of equation 4.4 is simply derived from equation 

4.2. For the right-hand inequality, we consider the two cases of different machine 

speeds again, as in the previous proof: 
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Case 1: Machine (/c', /'] is faster 

From figure 4.8, the point at which the bin is most full is We must start pro-

cessing on before the bin becomes filled. The bin Alls at rate and has 

capacity so 

Pk 

Case 2; Machine [k, z] is faster 

The bin is at its fullest when the batch finishes processing on the first machine 

(see figure 4.9). The content of the bin is then emptied at a rate pj./. The delay 

between the end of processing on (A:, z) and the end of processing on z') is 

and is limited to the time taken to empty the bin from full; 

< — . (4.6) 
Pk' 

Now, the total t ime taken to process the batch is the time on [k, f) plus the end-

delay Eji, which is equal to the start delay on [k',i'] plus the processing time on 

that machine (see figure 4.9): 

^ + + 14.71 
Pk A' 

Substituting 6̂% from equation 4.7 into equation 4.6, we obtain 

V < - + — I " ) 

A' Pk Pk' Pk' \ PkPk' / 

Finally combining equations 4.5 and 4.8, we obtain the right-hand inequality of 

equation 4.4. • 

4.4 Disjunctive representations with continuous flow 

The continuous-flow systems discussed in the previous section have scheduling 

behaviour which is not the same as the discrete-flow systems for which we de-

veloped disjunctive graph representations in §4.2. We now develop graph repre-

sentations similar to those of §4.2 for continuous-flow systems. We consider two 

different types of limit on inter-process storage. The first type of limit is of a lim-

ited number of bins, which is equivalent to the bin storage limits in the discrete 
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flow case. The second type of limit is of limited size bins, which brings in the 

timing limits from §4.3.1. 

4.4.1 Cont inuous flow, l imited number of b ins 

Consider a system with a limited number of bins to which operations must be 

allocated, but where each bin has unlimited capacity. In this case, — oo in the 

equations of §4.3, and there is only a single additional limit to be considered -

that of the earliest start of an operation. 

In the discrete flow system of §4.2.2, there were five constraints on the start 

times of operations. In the continuous case which we are now considering (with 

no limit on the bin size), there are also Ave constraints, but they are slightly dif-

ferent. These are: 

« the operation on machine A is of an exact length, 

# the operation on machine B is of an exact length, 

# the job starts in the bin after the setup on machine A, 

» the job finishes in the bin when it finishes on machine B, and 

# processing cannot finish on machine B before it does on machine A. 

Of these constraints, only the fifth is worthy of further comment. Equation 4.2 

gives the minimum time which can be left between starting an operation on ma-

chine A and starting the same operation on machine B. This is embodied as a 

simple minimum-time constraint between the respective starts of two operations. 

The disjunctive graph representation of this system is shown in figure 4.10. 

As before, there are several types of arc on this diagram. The arcs of types 1 

and 2 are identical in nature to those In §4.2.2, although there are now two kinds 

of type 1 arc: type la, identical to the type 1 arcs of the earlier diagrams, and type 

lb, which have zero length. There are no type 4 arcs (zero length bin sequence 

constraints). Instead, the type 5 arcs are used and selected in a similar manner 

The type 6 arcs represent the time-delay constraint from equation 4.2, and replace 

the type 3 arcs. Thus: 
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Stage 1 Bins Stage 2 

^ 
/ 7 ^ — ^ 

/ /^\ \P61 ^ ^ ^ \ \P62 

(AX ° ; I ( 0 6 ^ - ^ 6 U ( < ' : z 
^ / \ I ip7i >r^ V_^ ^ \ V, 

\ \ I y ^ \ , P62 

^ 

Fixed arcs Type l a *- Type l b »- Type 6 s=-
Disjunctive arcs Type 2 *- Type 5 #-

Figure 4.10: Disjunctive graph representation with continuous flow and bins of 

unlimited size 

Type l a arcs starting at node Oj^ have length pj^, and represent the length con-

straint of the operation. 

Type l b arcs have length zero, and represent the fact that the bin is used as soon 

as the previous operation starts. 

Type 2 arcs starting at bin node have length ^nd are disjunctive arcs 

representing the finish-start constraints on operation of different jobs per-

formed on the same machine. 

Type 5 arcs have length and form disjunctive pairs. For every pair of nodes 

and with subsequent operations Oŷ  and Oŷ / respectively, there is a 

pair of disjunctive type 5 arcs, one from Oŷ  to and one from Oŷ / to 

These arcs, like the type 4 arcs of §4.2.2, represent the sequence of operations 

in a given bin. 

Type 6 arcs are always present. The arc from to has length ^ given in 

equation 4.2. They represent the minimum delay to the start of processing 

the operation on the second stage. 
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4.4.2 Cont inuous flow, l imited number and size of b ins 

Finally, consider a continuous-flow system with bins which are limited in size. In 

that case, the limits of theorem 4 come into play. The minimum time, 5j^i, between 

the start of operation Oyj. and the start of operation Oŷ / is defined in equation 4.2. 

The maximum time, is defined below. 

I oo ()flierTvise 

With this additional constraint present, the appropriate disjunctive network 

looks like the example in Agure 4.11. 

Stage 1 Bins Stage 2 

/ /^\ N P6I ^ ^ \ \P62 

( A X ° ; z 
^ \ \ 1/̂71 ^ \ 

\ \ I /"W / s , < \ ^ ^ 

Fixed arcs Type la Type l b Type 6 £=-
Disjunctive arcs Type 2 »- Type 5 

Figure 4.11: Disjunctive graph representation with continuous flow and bins of 

limited size 

Note that there are now type 6 arcs going in both directions, so we have an 

extended definition; 

Type 6 arcs are always present. The arc from to has length given in 

equation 4.2. The arc from to has length — as given in equation 

4.9. 

4,5 Using the disjunctive graphs for scheduling 

In this chapter, we started with the disjunctive digraph representation often used 

in complex scheduling systems for evaluating feasibility and earliest start sched-
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ules. We have extended the representation to cover both discrete- and continuous-

flow hybrid flow shop systems with inter-process storage. We have also placed 

limits on the timing of continuous-flow systems with storage bins of limited ca-

pacity. 

In the graph representations developed in this chapter it is possible to create 

(positive) cycles by certain selections of job order or allocation. When a positive 

cycle exists in a directed graph, there is no longest path, since a path of arbitrarily 

large length can be found by traversing the positive cycle any number of times. 

When this happens, the suggested schedule which the graph represents is infea-

sible, and is most likely to be due to a job being too large for the bin in which it 

is being placed. Where a schedule is found to be infeasible, the only option is to 

find an alternative schedule, either by changing the processing order of jobs, or 

by re-allocating jobs to different machines or bins. 

The disjunctive graph representations given in §4.2 and §4.4 allow us to model 

all of the features of the core scheduling model we described in §3.5. 

The technique which we will use, and which is set out in detail in chapters 

6 and 7, is to use a heuristic algorithm to produce an allocation of operations to 

machines, and to sequence the operations on the machines. After generating an 

allocation and sequence, a schedule can be obtained by selecting the appropriate 

arcs from the disjunctive arc set, and running Dijkstra's algorithm to determine 

the start time of each operation. 

In the algorithm which we develop in the following chapters, we have ignored 

allocations of operations to bins, since this is outside the scope of this thesis. 



Chapter 5 

Specialist parallel machines: unit 

length jobs 

5,1 Introduction 

There is an extensive literature on scheduling problems on parallel identical ma-

chines. Identical machine problems are, generally, the easiest of the parallel ma-

chine problems, although the vast majority of the problems of practical interest 

are NP-hard, 

In this chapter we consider the situation in which there are restrictions upon 

which of the parallel machines can process particular jobs. More precisely if M 

denotes the set of m identical parallel machines and / a set of n jobs, then each job 

y has processing time py and a set of machines. My C M, which may process that 

job. We refer to the sets M, as processing sek. We wish to allocate jobs to machines 

and, further, order the jobs on each machine so that some objective function is 

minimised. Typically the objective function will depend on the completion times 

of the jobs, Cy, and sometimes also on the due dates, dy, and weights, zuy, of the 

jobs. 

It is the presence of processing sets which makes this model distinct from 

previously studied parallel identical machine problems. We may view this class 

of problem as a standard unrelated parallel machines scheduling problem with 

a particular structure imposed upon the processing times of the jobs. A more 
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detailed description of this relationship is given in section 5.2. Brucker, Jurisch 

and Kramer [8] refer to problems with processing sets as having multi-purpose 

machines. They examine the computational complexities of a wide range of pro-

cessing set problems. 

We may further modify the parallel machines problem with processing sets by 

allowing only nested processing sets. A set of sets { M i , . . . . M„] is nested, as de-

fined in Pinedo [65], if and only if, for all pairs of sets Afy, one of the following 

is true: 

My c M^, 

Mt c My, or 

MyHMj^ = 0. 

The model of parallel machines with processing set restrictions arises from the 

specialist treatment plant at Foster Mills. In particular, the bottleneck production 

process of steam treatment is carried out by three identical machines which work 

in parallel. All three machines feed downstream machinery in the main plant, 

while one of the machines additionally feeds the micro-clean plant. Thus there 

are some products which can only be made on one of the three machines. The 

other stages of production exhibit identical parallel processing, each with differ-

ent configurations of processing sets. 

We examine here the problems that may arise from imposing processing set 

restrictions on jobs to be scheduled on identical parallel machines. We concentrate 

on the following variants of the problem: 

* objective functions: makespan, mean [weighted) completion time, total tar-

diness, total weighted tardiness, total [weighted) number of late jobs and 

maximum lateness; 

* job lengths: identical [py = 1); 

* processing sets: none, nested and unnested. 

The next section is devoted to establishing a few definitions and results about 

processing sets. In the remainder of this chapter, we examine the computational 
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complexity of a number of variants of the parallel machine scheduling problem 

with processing set restrictions. Each of the six objective functions listed above is 

considered. In all cases we consider both nested and general processing sets for 

unit processing time (i.e. pj = 1 for all jobs/). For each case with nested processing 

sets and identical jobs we develop a polynomial time optimisation algorithm. 

We also discuss solution methods and propose heuristics for some of the prob-

lems which are not polynomially solvable. A summary of complexity results is 

given in table 5.1 at the end of the chapter. 

5.2 Preliminary results 

An important observation in the classification of parallel identical machine prob-

lems with processing sets is that their complexity falls between that of two better-

known problems. Firstly, a problem in the class of parallel machine problems with 

processing sets, fm|Myjo, may be considered to be in the class of processing on 

unrelated parallel machines, |o by putting 

f Py i fzEMy 

o o i f Z 0 A f y 

Thus Pm\Mj\o is no harder than Rm\\o. 

Secondly, we may view the problem f m| [o as a special case of f where 

the My are each simply the full set of machines. Thus we have established a clear 

hierarchy of problems, where .Rm 11 o is at least as hard as f m | My | o, which in turn is 

at least as hard as f m 11 o. We use both of these results to establish the complexity of 

the various problems we are considering. A summary of the complexity hierarchy 

is given in Figure 5.1. 

5.3 Makespan 

The aim when scheduling to minimise the makespan [Cmax) is to complete all 

jobs as soon as possible. Makespan problems on parallel machines have been a 

source of much research over the last thirty years. One of the earliest papers to 

look at the problem was that of Graham [30], who developed a simple heuristic 
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Pm\pj = l\o 3- Pm\Mj,pj = l\o 3^ Rm\pj = l\o 

Key: A ^ B Problem B is at least as hard as problem A 

Figure 5.1: Complexity hierarchy of parallel machine scheduling problems 

for solving the problem with unit processing times, the longest processing time first 

or I f 7 rule. Jobs are listed in order of decreasing (more precisely) non-increasing) 

processing times. The schedule is built up by taking one job at a time from the 

list and placing it in the schedule so as to minimise the resultant makespan. This 

construction is termed h'sf scAeduZmg. 

In the first worst-case analysis for any heuristic reported in the literature, 

Graham demonstrated that the LPT list scheduling heuristic would result in a 

makespan of at most § — of the optimal makespan. He also showed that any 

list-processing heuristic would result in a makespan no greater than twice the 

optimal makespan. 

The makespan problem on a fixed number of parallel identical machines is 

NP-hard in the ordinary sense [25]. As a result, most of the attempts at solving 

the problem have concentrated on finding pseudo-polynomial time solutions or 

polynomial-time approximation heuristics. In the latter class, the most notable are 

the M U L T I F I T method of Coffman, Carey & Johnson [ 12 ] , which uses the obvious 

similarity between this problem and the bin-packing problem, and the 3-PHASE 

heuristic of Franga, Gendreau, Laporte and Muller[24]. Another solution method, 

using the notion of a dual approximation algorithm is presented by Hochbaum and 

Schmoys [38]. Amongst other results, they give an explanation of why it is ex-

tremely unlikely (unless P=NP] that there exists a fully polynomial approxima-

tion scheme for this problem with an arbitrary number of machines. However, 

they do develop g- and g- polynomial approximation schemes for Ending solu-

tions, and suggest that a ^-approximation scheme could easily be developed. 

There has been some work on exact solutions to the makespan problem on 



Chapters. SPECIALIST PARALLEL MACHINES: UNIT LENGTH JOBS 67 

parallel machines, most notably Dell'Amico and Martello's proposal of new up-

per bounds for parallel identical machines, and construction of a branch and 

bound algorithm [19]. 

Adding processing set restrictions, we find that the problem remains ordi-

narily NP-hard, even with general processing sets, since there exists a pseudo-

polynomial dynamic programming technique for solving the equivalent unre-

lated machines problem [see Rothkopf [68]). Martello, Soumis and Toth have also 

worked on the problem with parallel unrelated machines [53], and propose both 

a branch and bound algorithm and a heuristic which runs in 0[n^m] time. These 

methods can all be used to solve Pm|My|Cmax-

Observe that in the absence of processing sets, the special case of scheduling 

jobs with identical processing times on parallel machines, is trivial. Jobs are com-

pletely interchangeable, and list scheduling therefore minimises the maximum 

completion time regardless of the list order. 

5.3.1 N e s t e d proces s ing sets 

For nested processing sets and unit length processing times, Pinedo [65] gives 

an 0 [n logn) list scheduling algorithm, the LEAST FLEXIBLE JOB [LFJ) algorithm. 

Theyiezfbzlff!/ of a job in this context is the number of machines on which the job 

may be processed (i.e. the size of its processing set). The nature of the schedul-

ing algorithm is greedy in that it incorporates one job at a time, optimising the 

objective function at each iteration. In the case of identical parallel machines, the 

convention is typically to select a machine with least total processing. The prob-

lem of un-nested processing sets is not studied in the literature. We now establish 

a polynomial time algorithm for the makespan objective when processing times 

are identical (and hence may all be taken to be 1). 

5.3.2 Genera l i s ed p r o c e s s i n g sets 

Minimising makespan on parallel machines is more difficult with processing sets. 

We shall now show how the problem with identical job processing times, f 

py = IjCmax/ can be solved in polynomial time by reducing it to a network flow 
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problem. 

A network flow diagram, as illustrated in Figure 5.2, is constructed between a 

single source node and a single sink node as follows. First establish a set of nodes 

(labelled /,] corresponding to the individual jobs, each of which has a single arc 

from the source node with a maximum capacity of 1. Secondly, insert a set of 

nodes [labelled TJ corresponding to the machines, each of which has an arc to 

the sink, with a maximum capacity of C. The arcs between the job nodes and the 

machine nodes indicate which jobs may be processed on which machines and are 

uncapacitated. In a feasible solution to the maximum network flow problem, a 

flow from a job node to a machine node indicates that the job is processed on that 

machine. Thus, the value of the maximum flow through the network corresponds 

to the number of jobs allocated in the corresponding solution. 

Jobs Machines 

Source Sink 

Figure 5.2: An example of the network flow formulation for py = l|Cn 

Now, a solution to the original problem can be obtained by finding the mini-

mum integral value of C for which there exists a solution to the flow problem with 

flow equal to n. For a given value of C, a maximum integral flow in the network 

corresponds to a feasible allocation of jobs to machines in the original problem 

with makespan no greater than C. The minimum value of C can be found by us-

ing a binary search on a suitable interval. 

Finding a feasible maximum flow in the resulting network problem takes 

log(^ + time using the push-relabel algorithm of Goldberg and 

Tarjan [29]. Thus, given any upper bound B on the value of Cmax, v/e can find a 
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solution to fm|My, py = l|Cmax iTi + Mi)nm log(^ + logB) time, by binary 

search on the interval [0, B]. Since every job has length 1, n is an upper bound on 

the value of Cma%, giving us a complexity of 0((M + mjnm log(^ + logn). 

5.4 Mean completion time 

The classical mean completion time objective ECy) problems on parallel ma-

chines are easier to solve than the makespan objective. Mean completion time 

problems are polynomially solvable for both identical and unrelated machines. 

Conway, Maxwell and Miller [13] give a modification of the SPT (shortest pro-

cessing time first] rule with list scheduling, which gives an optimal solution in 

O(Mlogn) time for identical parallel machines. List scheduling with arbitrarily 

ordered jobs is sufficient for the special case when all jobs have identical process-

ing times, since jobs are then interchangeable with respect to the sum of their 

completion times. 

Horn [40] solves the unrelated parallel machine problem by reduction to an 

assignment problem of size at most nm n nodes. The algorithm runs in 

time. 

5.4.1 General process ing sets 

To solve the mean completion time problem on parallel identical machines with 

general processing set restrictions, we may use the reduction to unrelated paral-

lel machine problem without processing sets, established in §5.2. Horn's graph 

construction is equivalent to the following bipartite graph for identical parallel 

machines where jobs have processing sets. 

Take n source nodes, /y, corresponding to individual jobs,; and a destination 

node, for each combination of machine, i [between 1 and m] and position f 

between 1 and n. For each job an arc is inserted between node /y and each node 

Tlf, for z = 1 , . . . , M, for machines z in processing set My. A cost 

f -K 

is assigned to the arc between nodes and if it exists. This models the fact 
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that, in the ^ Cy objective function, the first job of, say, r jobs on a machine has 

its processing time counted r times, the second job is counted r — 1 times, and 

so on until the last job makes a single contribution to the total. In a min imum 

cost matching, jobs are placed in early positions on machines. This construction 

is illustrated in Figure 5.3. Observe that nodes are labelled as "nth last position", 

rather than "first position" since a min imum cost matching will, evidently, match 

up later positions in the graph without a gap, reserving any unmatched positions 

to be consecutive from nth last position onwards. 

The cost of this matching gives the total cost of job completion times, and each 

job is matched to a place in the schedule on a particular machine. A minimum 

cost matching between the two partitions of the graph is then found using the 

so-called Hungar ian Algorithm [48], which gives an optimal schedule from the 

job positioning on each machine, ignoring gaps and its minimum cost. This con-

struction differs from Horn's only in that his graph contains all possible arcs and 

when My ^ costs = oo are assigned. The use of the Hungarian algorithm 

enables the problem to be solved in time. 

5.4.2 N e s t e d proces s ing sets 

For the nested case, we establish a much simpler optimal algorithm which runs 

in time, the SMALLEST PROCESSING SET FIRST or SPSF list scheduling 

algorithm. The algorithm simply schedules a currently unscheduled job with the 

smallest processing set on a machine (in its processing set) with the earliest free 

time. A formal description of SPSF is given below. Note that the time A,-, used 

below, is the point at which machine z becomes free to process another job. 

Algorithm SMALLEST PROCESSING SET FIRST (SPSF) 

1. List jobs 

Index the jobs such that My C M, = > ; < f (1 < ; , f < n), breaking ties 

arbitrarily 

2. Sc/iedu/ejobs m Zzsf order 

For each job j from 1 to n 
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Jobs Costs.c jit Machines and Processing order 

t'v 
nth last position 

on machine 1 

(n — l)th last position 
on machine 1 

last position 
on machine 1 

A 

> positions 1 to n 
on machine m 

Figure 5.3: An example of the bipartite graph matching formulation for minimis-

ing total completion time on unrelated parallel machines 

Let be a machine such that = min,gMy 

Schedule job ) on machine z* (y) 

End For 

Theorem 5 The SPSF algorithm generates optimal schedules for minimising the sum of 

completion time for fobs with unit processing times on parallel iden tical machines with 

nesW processmg sef resfncfzoMS ZM fzme. 

Proof: Assume that there is an optimal schedule S* which could not have been 

generated by any implementation of the SPSF algorithm. To prove the theorem, 

we shall convert it into one produced by the SPSF algorithm without increasing 

the objective value. Take a schedule, 5, produced by SPSF. The jobs in 5 on each 

machine are in increasing index order, by construction. We may re-order the jobs 

in 5*, within each machine in non-decreasing index order without affecting Cy, 
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since the jobs are all of unit length. 

Let /* and denote the set of jobs scheduled on machine i in S* and S respec-

tively, for 1 <i <m. Let / be the job with the smallest index which is not assigned 

to the same machine in S* as it is in S, but rather to machines i* and i respec-

tively; say. If none such exists then we have the desired contradiction. Otherwise, 

consider the partial schedule S' of S* (and of S] consisting of all jobs with indices 

smaller than Denote the completion times of machine z and z* in 5' by C- and Cj, 

respectively. Completion time C-. cannot be smaller than Cy, or job ; would have 

been allocated to machine i* in preference to machine i by SPSF. Thus C|. > Cy. 

Machine z must have some job, ^ say, with index greater than / in 5*, since 

otherwise job / could be moved to machine z, which would reduce the Cy, giving 

a contradiction. Swapping jobs ; and ^ in 5* causes no change in ^ Cy, as all jobs 

are the same length and D My D {z, z*}, by virtue of the fact the the processing 

sets are nested. Job j is now on the same machine in both 5 ' and 5. 

We can repeat the process with the transformed schedule 5*. With each suc-

cessive iteration, the new lowest-Index misplaced job in 5*, y, increases. Thus, 

eventually no such job exists and 5* has been transformed into the schedule 5 

produced by the SPSF algorithm. 

With regard to the running time of the algorithm, the first part of the algorithm 

may be accomplished by sorting the jobs according to the size of their processing 

sets. This takes time to calculate the size of the sets (counting at most m 

machines for each of n jobs), and 0(M) time to perform the sort using a radix sort: 

there are only m possible sizes for the processing sets, and hence the jobs may be 

sorted into m array-indexed bins (since sorting by size of processing set fulfils the 

ordering condition of step 1). The second part of the algorithm may be executed 

in 0(Mm) operations, since the loop is executed at most n times, and the process of 

Ending the machine with the earliest finish time takes at most 0(m) operations, 

to examine each machine. Scheduling a job on a machine is an 0(1) operation. 

Therefore, the whole process is limited in its computational efficiency by the first 

step, and takes 0(Mm) time to execute. O 
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5.5 Total weighted tardiness 

The total weighted tardiness {J\WjTj] problem for identical parallel machines 

with identical jobs lengths is polynomially solvable. Lawler [49] gives a reduction 

of this problem to a transportation problem, which can be solved in 0 ( — logfi) 

time using Orlin's version of the Scale-and-Shrink algorithm [62]. 

5.5.1 General process ing sets 

Lawler's formulation for unit length jobs does not apply when we impose pro-

cessing set restrictions, as it takes no account of the allocation of jobs to indi-

vidual machines. We must look for an alternative formulation. Consider a bipar-

tite matching formulation similar to that in §5.4.1, constructed as follows. Take 

M nodes, Jy (1 < _/' < on the left-hand side of a bipartite graph, where node /y 

corresponds to job j. On the right hand side of the graph, illustrated in Figure 5.4, 

there are nm nodes, 7]̂  (1 < z < 1 < f < n), where 7̂ ^ corresponds to the time 

slot t on machine i. Each job needs to be placed on precisely one machine in its 

processing set, in one time slot. Thus, arcs are established between a node /y and 

each node 7̂ ^ for f E My and 1 < f < n. A bipartite matching therefore provides a 

feasible schedule for the original problem. 

Costs Machines 
Jobs and Time-slots 

Figure 5.4; An example of a bipartite matching formulation for total (weighted] 

tardiness with identical length jobs with processing sets 
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We now show that an optimal schedule for the parallel machine scheduling 

problem with processing sets is given by a minimum cost matching for the bipar-

tite graph depicted in Figure 5.4 when the arc joining /y and is given weight 

= Wy max (0, f — dy} if Z E My. 

The weight Cjn corresponds to the weighted tardiness cost of the job j finishing 

on machine z at the given time, Thus a minimum cost matching for the bipartite 

graph gives a feasible schedule with minimum possible total weighted tardiness. 

Such a matching may be found by use of the Hungarian Algorithm [48], which 

can be implemented to run in time. 

An alternative construction using a complete graph with a prohibitively high 

cost for allocating jobs to a machine upon which it cannot be done, i.e. 

Cy,-(=:00 Z^My, 

gives an identical result. 

Observe that the above construction can also be used to give optimal solutions 

for unweighted tardiness problems, with processing sets, by simply setting each 

Wj = 1. 

5.6 Weighted mean completion time 

As a corollary to the method presented in the previous section, we observe that 

the weighted mean completion time for unit-length jobs on parallel identical ma-

chines with processing sets can be solved with a similar construction. We use a 

complete bipartite graph with » nodes, Jy, on the left, and nm nodes, T,, on the 

right. The arc between /y and Tlf has weight cy,,, where 

I i f iEM,-
cy,f = < 

o o if Z 0 M y 

This allows us to solve our unit-length job problem with weighted mean comple-

tion time in time. 
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5.7 Number of late jobs 

Minimising the (unweighted) number of late jobs is generally a difficult problem, 

al though easier than the weighted case. With jobs of general length on a single 

machine, the problem is polynomially solvable using Moore's Algorithm [56]. 

On parallel machines, the problem becomes NP-hard, as it may be reduced to 

PARTITION [51]. 

With unit length processing times and no processing sets, minimising the un-

weighted number of late jobs on parallel identical machines can be solved in 0(n) 

time using an algorithm of Monma[55]. However, Monma's algorithm does not 

necessarily produce an optimal schedule when applied to problems with nested 

processing sets. We develop below an efficient optimal algorithm for minimising 

the unweighted number of late jobs with unit-length jobs and nested processing 

sets. 

5.7.1 N e s t e d p r o c e s s i n g sets 

To solve the problem of minimising the unweighted number of late jobs with 

nested processing sets and unit-length processing times [in the standard nomen-

clature, f mjpy = 1, My nestedj % L/y], we now present a list scheduling algorithm, 

called SPS-List. Algorithm SPS-List fits jobs into time-slots in a similar way to 

Monma's algorithm. 

The algorithm given below handles jobs for one processing set at a time in a 

sequence preserving the partial order of processing sets. Within a processing set, 

jobs are scheduled in free time-slots [i.e. when there are fewer than 

jobs in the time-slot] on or before their respective due dates, if possible. When all 

time-slots before the due date of a job are full, the job is discarded to be scheduled 

late. 

Algorithm SPS-LlST 

1. List jobs 

Reindex the jobs so that if My C Mg then j ^ 

2. Scheduk;o6s in fisf orcfe?) on-fime where possible 
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For each job, y, in index order 

Schedule the job to complete at time (fy on some machine in My, if pos-

sible. 

Otherwise, schedule job j in the latest earlier free space on any machine 

in My, if there is one. 

End For 

3. Scheduk fTie remaznmg Zafejobs 

Schedule the remaining, discarded, jobs in any free time-slot, and count 

them to find the number of late jobs. 

Theorem 6 for the probfgm = 1, nesfedl ^ Uy, Afgon'fkm SPS-lfsf zs opfi-

mal. 

Proof: Suppose that 5 is not optimal. Take an optimal schedule, 5*. Then 5* has 

more on-time jobs than S. Let and 5̂ ^̂  denote the sub-schedules of 5* and 5, 

respectively, consisting of on-time jobs in the set {jjMy C for ^ = 1 , . . . , Q. 

We shall derive a contradiction by proving the stronger property: need not 

have any more jobs on-time than does m any given time-slot, for any value of 

not just for Q (the whole problem) itself. The proof proceeds by induction on 

= 1 , . . . , 0 , and at each induction step 5* maybe transformed, but no additional 

jobs are made late. Formally we may be considered to start our induction step at 

= 0 and consider M̂ '̂ ) to be the empty set which trivially satisHes the above 

property. 

Let ^ be a smallest processing set index for which there are more on-time jobs 

in schedule 5*W than in in any given time-slot, and let t be the earliest such 

time-slot. Let denote a job scheduled at time f in and not in 5̂ )̂. Then, 

either M̂ ^̂  has no processing subsets, or else for all processing subsets 

and hence by induction, has no more on-time jobs than in any time-slot. 

Thus, there is such a job, ji, for which My, = M^̂ ). Since slot f is not fully occupied 

in 5̂ )̂, and f is less than dy,, when job y'l is scheduled in Step 2 of algorithm SPS-

List, it cannot be made late and therefore must be scheduled on-time in S, at time 

say, later than f. 
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By induction, has no more on-time jobs at time in proper subsets of 

Thus there is at least one place at time in for a job in a processing set 

AfW or larger. If there is a free space in at time f j , then move job j i to ti in 

schedule 5*W. This may require another job, in a larger processing set, moving 

from time earlier, to time slot f in 5*. If there is no such free space in at 

time ti, then there is at least one job /2, say, scheduled in 5*1?) and not in S at time 

with Moreover, job cannot be late in 5 since there is a time-slot 

at time f, and f < dy,, in which it could have been scheduled by algorithm 

SPS-List. Therefore, must have been scheduled on-time in at a later time 

than f, 2̂ say-

By repeating this process (on job and time-slot 2̂ iri place of job and time-

slot fi), as many times as required, is transformed into a feasible schedule 

with the same number of on-time jobs at time t as S'''', and no additional late jobs. 

By induction on f, the property we claimed holds for all time slots for the 

given value of q. The proof is now complete by induction on q, uptoq — Q. • 

Lemma 1 Algorithm SPS-List may be implemented to run in 0[nm + n logn) time. 

Proof: In part 1 of the algorithm, indexing the jobs in processing set order is an 

O(Mm) process, as described in theorem 5. In part 2, w e maintain two data struc-

tures: an array of the free space in each individual time-slot (the sfafus and 

an ordered, balanced tree of the time-slots which have free space in them (the 

/ree space free). The outer loop of part 2 executes 0(n) times. Inside this loop, the 

status of a given time-slot may be determined in 0(1) time by accessing the ar-

ray directly by index. If the job can be scheduled at time (fy, then it is added to 

the list of jobs in that time-slot in 0(1] time. If the job to be scheduled cannot 

be placed at time dy, then the latest earlier free space can be found in O(logM) 

time by searching the free space tree. [Although a simple binary-tree implemen-

tation of the free-space tree has a best case of O(logM) for both searching and 

deleting, the worst case is 0(n), when the tree becomes completely unbalanced. 

However, by using slightly different implementation details to make a red-black 

tree, both searching and deleting become O(logM) in the worst case[72]). When 

a job is scheduled, the status array is updated, taking 0(1) time. If the updated 
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entry in the status array shows the time-slot has become empty, then the relevant 

entry in the free space tree can be found and removed in O(logM) time. 

In part 3 of the algorithm, late jobs can be placed on any machine in any 

time-slot. At most jobs will remain unplaced, and Ending a free space in 

the schedule takes 0(1) time (the root entry in the tree can always be found in 

0(1) time). Placing a job and updat ing the tree takes O(logn) time again. Thus, 

the second phase of the algorithm dominates the first and third phases, and the 

algorithm as a whole takes -|- n logn) time to run. O 

Note that the use of a tree structure in the above implementation of the al-

gorithm parallels the use of similar structures in certain guaranteed O^nlogn) 

sorting algorithms, such as the heap sort. 

5.8 Weighted number of late jobs 

When minimising the weighted number of late jobs, we consider three different 

situations: no processing sets, general processing sets, and nested processing sets. 

We present here computationally efficient methods of solving each of the above 

problems. We first present an algorithm to solve the problem of minimizing the 

weighted number of late jobs on parallel identical machines with unit-length jobs. 

5.8.1 W e i g h t e d n u m b e r of late jobs w i t h n o process ing sets 

The algorithm considers jobs in descending order of weight, so that the most 

important (highest weight) are allocated to time-slots first. Jobs are placed in the 

latest free time-slot in which they are not late. If a job cannot be fitted before its 

due date, it is reserved to be scheduled at an arbitrary time after all the jobs have 

been considered, since the amount of time by which it is late does not affect the 

objective function. 

Algorithm SMALLEST WEIGHT LIST SCHEDULING (SW-LlST) 

1. List jobs 

Index jobs in order of non-increasing weight 
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2. Schedule jobs early where possible 

For jobs y from 1 to n 

If there are fewer than m jobs already scheduled to complete at time (fy, 

schedule job y to complete at time dy. 

Otherwise, schedule job / in the latest earlier free space on any ma-

chine, if there is one. 

End For 

3. Schedule reMiainmg jobs 

Place the remaining, unscheduled, jobs in any free time-slot on any ma-

chine, and calculate the weighted sum of late jobs. 

Theorem 7 The Smallest Weight List Scheduling Algorithm, SW-List, is optimal for 

so/uzMg = 1| ZzfyUy. 

Proof: Observe that steps 2 and 3 of SW-List are just Monma's algorithm[55], and 

that they are applied to a list specified by step 1. Take a schedule 5 produced by al-

gorithm SW-List. From Monma's result [55], no other schedule will accommodate 

more jobs on time than 5. Therefore a saving can only be made by scheduling a 

currently late job in 5, j say on time in place of an on-time job with lesser weight, 

possibly accompanied by some rescheduling of the other on-time jobs of 5. 

Consider such a rescheduling, in order to show that no such job exists. In it a 

late job ; dislodges an on-time job which we shall denote A: %. Job must have been 

considered before job ; by the algorithm, since otherwise job y would have been 

placed in that time-slot originally. Thus, /ci < ; in Step 1 and > wy. Therefore, 

this move can only be of advantage if job is rescheduled on-time but after time 

dy, hence dy > . But there cannot be free time-slot before later than was 

placed in Step 2. job wiH have to dislodge Therefore, another on-time job, A:2 

say, which was considered by Step 2 before it and therefore has a weight at least 

as large. Since no more jobs can be made on time, eventually the rescheduling 

process will result in a job, say being made late. But from the above argument 

zi'tr ^ ^ ^ ^ zfy and thus no saving can have been achieved by this 

rescheduling, providing the required contradiction. O 
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Lemma 2 The SW-List algorithm may he implemented to run in 0(n logn) time. 

Proof; The algorithm may be implemented identically to the SPS-LlSl algorithm, 

with the exception that the initial ordering in part 1 of the algorithm is ordered 

by different criteria. In this case, the sorting may be performed in 0(n logn] time 

[since there is no overhead for handling processing sets). The remainder of the 

algorithm is identical to parts 2 and 3 of the SPS-LlST algorithm, thus giving an 

0 (n logn) implementation of the algorithm. O 

5.8.2 General p r o c e s s i n g sets 

The SW-List algorithm does not allow for processing sets. However, when pro-

cessing set restrictions are imposed and jobs have unit length, w e can use a mod-

ified version of the bipartite matching solution from §5.5.1. In order to minimise 

the weighted number of late jobs rather than the weighted tardiness, we modify 

the weights of the arcs to be 

0 if z G My and f < dy 

z//y if z E My and f > dy 

OO if Z 0 M; v 

This formulation as a bipartite matching problem allows the minimisation of the 

weighted number of late jobs with unit-length jobs and general processing sets to 

be solved in time. 

5.9 Maximum lateness 

For unit length jobs and identical parallel machines, the algorithms for minimis-

ing the number of late jobs presented in Section 5.7 may be employed to solve 

the equivalent maximum lateness problem, as we shall now demonstrate. The 

construction is standard, and has broader applications. 

Consider any problem f , with m parallel identical machines, »jobs with pro-

cessing times py (1 < y < »], due dates dy and processing set My. The maximum 

lateness Imax of can be minimised by the following procedure. 
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Construct a related instance for a given value of z with m parallel identi-

cal machines and »jobs by setting pj- = py, My — My, and dy = jy + z for which the 

number late jobs is to be minimised. Then, solve ? '(z] to find the minimum num-

ber of late jobs Uy). The minimum value of z for which ^ Uy is zero gives the 

minimum value of Imax for f , and a solution to 'P'[z] is also an optimal solution 

to 

The search for the optimal z in the above procedure can be performed by 

binary search in 0(log(&/ — Z,)) operations, where [/ and 1 are an upper and 

lower bound respectively on the value of -Lmax- hi the case of unit-length pro-

cessing times with processing sets, the problems (both with and without nest-

ing) are polynomially solvable, since suitable bounds are U == n — mindy and 

1 = 1 — maxdy. 

Thus, in particular for minimising Z-max parallel identical machines with 

unit length jobs and general processing sets, we can construct an logD) 

algorithm (where D = U — L = maxdy — mindy + n — 1] using the reduction to 

a bipartite-matching solution for fm|My, py = 1| Z C/y from Section 5.7. Similarly; 

with nested processing sets, we can construct an logn logD) algorithm us-

ing the more efficient SPS-LlST algorithm from the same section. 

5.10 Conclusion 

In conclusion, we have found that the parallel identical machine problem with 

processing sets, PmjMyjo in the standard three-Geld notation of scheduling the-

ory; lies in complexity between the parallel identical machine problem without 

processing sets (Pm||o) and the parallel unrelated machine problem Any 

f m |My|o problem may thus be solved (approximated) by applying a known solu-

tion (approximation) method for the equivalent Rm\\o problem. We give a sum-

mary of the complexity of the different problem variants covered in this chapter 

in Table 5.1. 

The case where the processing sets are nested (fm|Mynested|o) appears to 

be easier to solve than the case where the processing sets are general, as the ad-

ditional structure of the nesting allows the construction of more efficient algo-
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rithms. This is particularly evident in the cases with identical length jobs, where 

there are simple 0(n logn) algorithms for solving the problem for the makespan 

and mean completion time objective functions, compared to the + mjnm 

log(^ + ^logn] algorithm for makespan, and the algorithm for mean 

completion time. 

In general, as with normal parallel machine problems, the only polynomi-

ally solvable problems are those with identical job lengths, although the mean 

completion time objective function has polynomial solutions even for general job 

lengths. We have presented in this chapter a polynomial algorithm for solving 

the parallel identical machine problem with processing sets and identical length 

jobs for the mean completion time, where the processing sets are nested. We have 

also presented polynomial algorithms for solving the equivalent makespan, total 

(weighted) tardiness and total (weighted) number of late jobs objective functions 

for general processing sets and identical length jobs. We give a brief summary of 

the solution methods for each problem variant in Table 5.2. 

Objective Processing sets 

Function None Nested General 

Cmax n nlogn (n + m)Mmlog(^ + ^)logn 

ZCy n Mm (nm)^ * 

M l O g M * (nm)^ * 

ZTy M l O g M (nm)^ * 

[nm]^ 

or ^ l o g n 

[nm]^ * (nm)^ 

n nm + M logM (nm)^ 

n logM (nm)^ (nm)^ 

Ljnax M l O g M nm + MlogMlogD [nm]^ logD 

Table 5.1: Computational complexity of parallel machine problems 

- More efficient algorithms may exist 

D = maxdy — mind j + n — 1 
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Obj. 

Function 

Processing sets Obj. 

Function None Nested General 

' -max Arbitrary LFJ [65] Flow formulation §5.3.2 

z q Arbitrary SPSF §5.4.2 Assignment [40] 

IWyCy Largest 

Weight First 

Bipartite matching §5.7 

ZTy EDD Bipartite matching §5.7 

Transportation [49] 

or matching §5.7 

Bipartite matching §5.7 

Monma [55] SPS-List §5.7.1 Bipartite matching §5.7 

SW-List, §5.8.1 Bipartite matching §5.7 

^max EDD As for ^ (Jy with binary search 

Table 5.2: Algorithms for parallel machine problems 



Chapter 6 

Specialist parallel machines; 

general length jobs 

In chapter 5, we developed algorithms for parallel machine problems with unit-

length jobs and specialist machines. In this chapter, we examine the problem of 

scheduling jobs of general length in similar circumstances. We concentrate on 

minimising the maximum lateness objective function, Imax- We first present Jack-

son's heuristic, an effective scheduling heuristic for the problem of parallel ma-

chines without processing set restrictions taken from the literature. We then de-

velop several different modifications of the heuristic which aim to solve the ex-

tended problem with processing set restrictions. We perform no direct compari-

son of the effectiveness of the various parallel-machine heuristics themselves, but 

we use these algorithms later in chapter 7, and they are tested in the experiments 

of chapters 8 and 9. 

6.1 Heuristics 

Minimising maximum lateness on parallel machines with release dates, but with 

no processing set restrictions is a strongly NP-hard problem, since the single-

machine problems is strongly NP-hard[52]. To solve the problem, three main al-

gorithms have prominence in the literature; Jackson's scheduling heuristic, Car-

lier's branch-and-bound method[10], and the improved branch-and-bound algo-
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rithm of Gharbi and Haouari[27]. Although the two branch-and bound methods 

are exact, and are highly efficient in most cases, we do not consider them here. 

This is primarily for pragmatic reasons: we were developing these algorithms 

for use in the hierarchical decomposition framework in chapter 7, and develop-

ment, implementation and testing of a branch-and-bound solution scheme was 

considered to be too complex and time-consuming given the already complex 

infrastructure required by our hierarchical decomposition framework. 

6.1.1 Earliest due date heurist ic 

We first present a simple earliest due date algorithm. The algorithm simply sched-

ules the unscheduled job with the earliest due date on the next available machine. 

If the job must be delayed in order to meet its release date constraint, then it is. 

We present the algorithm below: 

Algorithm EARLIEST DuE DATE (EDD) 

1. Initialise 

Let / be the set of unscheduled jobs. Initialise J to contain all jobs. 

2. Process f/iejobs 

While J is not empty 

Select the machine, i, which finishes earliest. 

Let A be the set of jobs in / which can be processed on machine z. 

If A is empty, then set the available time of machine z to infinity and 

restart the loop. 

Schedule the job in A with the earliest due date on machine f, delaying 

the job to meet its release date constraint if necessary. 

End While 

The above algorithm maybe implemented to run in time, and has the 

advantage of being extremely simple to implement. However, there is a heuristic 

for the problem without processing sets (Jackson's heuristic) which is much more 

effective than a simple EDD rule. 
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6.1.2 Jackson's s c h e d u l i n g heurist ic 

Jackson's scheduling heuristic[44] is the earlier-developed of the two main meth-

ods for solving Pm|ry|lmax- The heuristic has a peculiar property with respect to 

max imum lateness problems on single or parallel machines, in that it appears to 

be fundamentally "right", in some sense, for solving the problem[34]. Despite be-

ing an approximate heuristic for a strongly NP-hard problem, it performs very 

well in general when solving the problem. It forms the basis of several other 

scheduling methods (including Carlier's method, below, and Hall and Shmoys' 

approximation schemes [34] for the single-machine problem). 

The heuristic is a simple list scheduling rule, which can be summed up in 

one sentence; Schedule the available job with the earliest due date. More formally, we 

present the algorithm below. Note that the amzVabZe fzme of a machine is the com-

pletion time of the (current) last job on the machine. 

Algorithm JACKSON (WITHOUT PROCESSING SETS) 

1. Inifzafise 

Let A be a queue of the available jobs, ordered by due date. Initialise A to 

be empty. 

Let / be the set of unscheduled unavailable jobs. Initialise / to contain all 

jobs. 

2. Process f/zejobs 

While J is not empty 

Select the machine, i, which finishes earliest. 

If A is empty, set the available time of machine i to that of the job in / 

with the earliest release date. 

If there are jobs in / with release dates equal to or earlier than the avail-

able time of machine z, move those jobs to the available queue. A, en-

suring that the queue remains sorted by due date. 

Schedule the first job in A on machine i. 

End While 
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The above heuristic may be implemented to run in 0{n log(n + m]] time. At 

each iteration, the algorithm schedules a job, so the outer loop of the algorithm is 

0(M]. Inside the loop, the earliest available machine is determined. By keeping a 

balanced tree of machines in available-time order, this may be found in 0(1) time. 

Maintaining the tree takes O(logm) time at each iteration, as a machine must be 

removed and re-inserted into the tree in each iteration. Finally, the queue A may 

be maintained and used in O(logM) time. Insertion into and removal from the 

queue may be performed in O(logM) time by using an appropriate balanced-tree 

implementation (see Sedgwick[72]). 

6.1.3 Jackson's heurist ic for proces s ing sets 

Jackson's heuristic does not take account of processing set restrictions - therefore 

it may attempt to schedule a job on a machine which cannot process it. We now 

present a modification of Jackson's method to schedule jobs with processing set 

restrictions which ensures that the additional constraints of processing sets are 

honoured. We consider at each iteration only those jobs which can be scheduled 

on the earliest available machine. If there are no jobs remaining to go on the ma-

chine, the machine is removed from the problem (or its "earliest available time" 

is set to infinity): 

Algorithm JACKSON FOR PROCESSING SETS (JPS) 

1, Initialise 

Let / be the set of unscheduled unavailable jobs. Initialise / to contain all 

jobs. 

2. Process fAeyobs 

While J is not empty 

Select the machine, z, which finishes earliest. 

If there are no available jobs, set the available time of machine z to that 

of the job in J that may be scheduled on i with the earliest release date. 

Let A be the set of unscheduled jobs with release dates earlier than the 

earliest available machine, and which can be scheduled on machine z. 
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If A is empty, set the available time of machine i to infinity, and start 

the loop again. 

Schedule the job in A with the earliest due date on machine z. 

End While 

The algorithm for processing sets described can be implemented to run in 

+ Ml logm) time. The outer loop of the algorithm executes 0(M + m) times, 

since it either schedules a job or sets a machine start time to infinity. By holding a 

balanced tree of the machines in available-time order, the inside of the loop takes 

O(logm) time to find the earliest available machine, and 0(M) time to construct 

the set A and find the job in it. Thus, the overall running time of the algorithm is 

-t- logm)) = -t- mlogm). 

6.1.4 N e s t e d Jackson's Heuris t ic 

The JPS algorithm described above attempts to retain the behaviour of Jackson's 

heuristic, whilst taking account of the limitations in processing sets. However, it 

does not perform well the "load balancing" function which is seen in other algo-

rithms for nested processing sets (see e.g. the SPS-LlST algorithm of §5.7.1). We 

therefore seek an algorithm which uses the load-balancing of a nested structure, 

but also uses the algorithm-specific power of Jackson's heuristic. 

To accomplish the above goal, we employ a nested structure, at each iteration 

fixing the machine allocations (but not the scheduling times) of the jobs which 

have already been placed at an earlier stage. This "nested" version of the algo-

rithm is presented below: 

Algorithm NESTED jACKSON (NJ) 

1. Initialise 

Index the processing sets to preserve the partial order of nested sets. Thus, 

if C then < f. 

2. Process the jobs 

For q = 1 , . . . , 0 

Let y be the set of jobs which have processing sets contained in 



Chapter 6. SPECIALIST PARALLEL MACHINES: GENERAL LENGTH JOBS 

Run JPS on the set of jobs J, and the machines in 

For every job in / , set its processing set to the machine on which it was 

scheduled 

End For 

Since JPS runs in 0{n^ + m logm) time, and it is used 0[m) times, this algo-

rithm will run in 0[n~m + m-logm) time. The processing set ordering at the be-

ginning of the algorithm is dominated by the main loop of the algorithm. 

Unfortunately, both the JPS and the NJ algorithm fall foul of the following 

simple instance. Take a problem with two parallel machines, and two jobs. Job 1 

has processing time = f, due date f + e, release date = e, and processing 

set Ml = {!} . Job 2 has processing time p2 = due date dg = release date r] = 

0 and processing set = {1,2}. Both JPS and NJ will schedule both jobs on 

machine 1, job 2 starting at time 0, and job 1 starting at time f. The maximum 

lateness of that schedule is Imax = f — e. The optimal schedule has = 0, with 

job 1 scheduled to start at time e on machine 1, and job 2 starting at time 0 on 

machine 2. See figures 6.1 and 6.2. 

Job 1 Job 2 Machine 1 

Machine 2 

Figure 6.1: Poor performance of JPS 

and NJ algorithms 

Machine 1 

Machine 2 

Job 2 

Job 1 

Figure 6.2: Optimal schedule 

In this chapter, we have proposed three heuristic algorithms (FDD, JPS and 

NJ) for minimising maximum lateness on parallel identical machines with nested 

processing set restrictions. In the next chapter, we will develop a framework for 

solving the wider hybrid flow shop problem, and we will use the algorithms from 

this chapter as a part of that framework. 



Chapter 7 

Algorithms for the hybrid flow 

shop 

In this chapter, we will present a method for the scheduling of hybrid flow shops. 

The method is specifically adapted to the simplified model of the industrial plant 

which we produced in chapter 3. We develop a framework for a general hierarchi-

cal decomposition method which has four main components: decomposition into 

sub-problems; criticality measure or ordering; sub-problem solution procedure; 

and backtracking. This framework can be used for a wide range of problems be-

yond the hybrid flow shop problem on which we concentrate our efforts. Each 

of the main components of the method may be performed in several ways. We 

propose in this chapter alternative methods for each component of the overall al-

gorithm. In chapters 8 and 9 we test the behaviour of the components to identify 

which ones perform best. 

7.1 Literature 

The hybrid flow shop problem has been approached in a number of ways in 

the past. In this section, we give a review of the literature of hybrid flow shop 

scheduling. 
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7.1.1 Two-stage hybrid f low shops 

There is a large body of literature on the two-stage hybrid flow shop, most of 

which concentrates on minimising the makespan of the schedule. As early as 

1972, Shen and Chen[73], present a simple heuristic (the More Early heuristic, 

or ME), and prove its worst-case performance bound of ^ — 1/ (2max{?Mi,?n2}). 

Later research on the two-stage problem tends to concentrate on systems where 

one or other stage has only a single machine. Examples include Sriskandarajah 

and Sethi's[75] heuristic algorithms and performance bounds for problems with 

a single machine at the first stage, and the branch-and-bound approach of Gupta, 

Hariri and Potts[33], who develop five lower bounds for problems with a single 

machine at the second stage. 

Narasimhan and Panwalkar[58] develop a heuristic (CMD or cumulative min-

imum deviation] for a two-stage hybrid flow shop with a single machine at the 

first stage, and two machines at the second, where the production rate on the 

first stage is fast enough to feed both processes at the second. The CMD heuris-

tic minimises the sum of the idle time and inter-process waiting time for each 

job as it is added to the schedule for the second stage. Later, Narasimhan and 

Mangiameli[57] extended the CMD rule to handle multiple parallel machines at 

both stages. The extended heuristic, the generalised cumulative minimum devi-

ation (GCMD) rule out-performs SPT, LPT (shortest and longest processing time 

first respectively) and minimum deviation (MD) heuristics. The GCMD rule ap-

pears to be one of the better heuristics for minimising makespan on two-machine 

hybrid flow shops. 

On a similar system to that studied by Narasimhan and Panwalkar above, Ri-

ane, Artiba and Elmaghraby[67] attempt to solve the makespan problem with a 

dynamic program, and compare it to a sequence-and-merge approach and a sim-

ple greedy heuristic. Their dynamic program formulation has the disadvantage 

that it cannot solve problems of larger than 15 jobs on current computers. 
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7.1.2 Multi-stage hybrid flow shops 

Moving on to multi-stage hybrid flow shop problems, there have been a num-

ber of different methods applied. The largest class of methods in the literature is 

that of rule-based heuristic algorithms. However, branch and bound algorithms 

and local search methods have also been used with some success to solve these 

problems. Also, recently hierarchical decomposition methods such as the shifting 

bottleneck method have been studied as one more approach to hybrid flow shop 

problems. 

Rule-based heuristics 

Brail and Loo[6] modified five heuristics for the standard flow shop to solve hy-

brid flow shop problems. They used the solution from each flow-shop algorithm 

to generate a list at each stage of the hybrid flow-shop problem from which list 

scheduling was used to generate a no-delay non-preemptive schedule on the par-

allel machines of each stage. They performed a comparison of the different heuris-

tics, for both the makespan and total completion time objectives. They conclude 

that the NEH heuristic of Nawaz, Enscore and Hajm[59] and that of Ho [37] are 

both consistently good, and generally better than the other three (two versions of 

the CDS heuristic, and Hundal and Rajgopal's modified Palmer heuristic[41]]. 

Guinet and Solomon[32] use a similar technique to minimise the maximum 

tardiness in a multi-stage hybrid flow shop. They use, in three different vari-

ations of their algorithm, CDS, NEH and a branch-and-bound method due to 

Town5end[76] to give a sequence for the jobs. They then allocate operations to 

machines using two different methods: either to minimise the job's overall com-

pletion time; or to minimise the completion time of the next operation in the job. 

They conclude, as did Brah and Loo, that the NEH heuristic out-performs the 

others in this application. 

Another big comparison of heuristics was made by Kadipasaoglu, Xiang and 

Khumawala[46]. They compare nine heuristics using ten objective functions, con-

cluding that the GCMD rule of Narasimhan and Mangiameli[57] is superior to 

the other rules for off-line scheduling. The other rules studied include SPT, LPT 
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(shortest and longest processing time Arst, respectively), and a minimum cost-

over-time (COVERT) heuristic. 

Hunsucker and Shah[42] examine several heuristics for hybrid flow shops 

with limited inter-process storage, where the storage is a global shared resource, 

rather than being in specific locations. They compare six simple scheduling heur-

istics - SPT, LPT, FIFO and LIFO (respectively, first- and last-in-first-out), and 

MWR and LWR (respectively, most and least work remaining). They examine the 

behaviour of the heuristics under several different types of problems, and show 

that, for the total tardiness objective function, FIFO is the best heuristic to use. To 

minimise the number of late jobs, LIFO and MWR have the best performance, ex-

cept for problems which are not heavily constrained by the inter-process storage 

(i.e. where there are lots of storage bins), where SPT shows the best solutions. 

Some attention has also been paid to scheduling hybrid flow shops with miss-

ing operations (sometimes called/ZezzWe/Zow /znes). Probably the best-known ai-

gorithm for this problem is the WLA heuristic of Wittrock[78], which uses LPT 

list scheduling to allocate jobs to machines at each stage before sequencing the 

jobs on machines according to his own workload approximation (WLA) heuris-

tic. Also of interest is Sawik's RITM_NS heuristic for hybrid flow shops with miss-

ing operations and no intermediate storage. Unfortunately, there do not appear 

to be comparisons of Sawik's RITMJMS with any other algorithms for the same 

problem, so its relative performance is unknown. 

Kyparisis and Koulamas examine the hybrid flow shop problem, minimising 

weighted completion time. They look at a weighted shortest processing time first 

(WSPT) heuristic, and show a worst-case bound of j for it. 

They also show better bounds of [^mju/minmj;.] for unweighted problems and 

for problems with a single machine at one or more stages. 

Finally) the use of a multi-pass heuristic known as EH was proposed by San-

tos, Hunsucker and Deal[71]. The EH heuristic has been used previously for job 

shop scheduling, but can be modified to solve hybrid flow shop problems as well. 

They test the heuristic with problems up to 20 jobs and 5 stages, and show that it 

performs well - Gnding optimal solutions to two of their 20-job 5-stage problems. 
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Local search methodology 

It is possible to solve hybrid flow shop problems using local search methods. Most 

popular appears to be the tabu search, exemplified by the method of Nowicki 

and Smutnicki[61]. They use an insert neighbourhood, where an operation may 

be moved to any position on any machine at the relevant stage. Their tabu list is 

a list of attributes of solutions (specifically, of adjacent operations in the solution) 

rather than of solutions themselves, and they retain the best solutions to date 

rather than using random kicks to restart the search. 

Nebenman[60] makes a comparison study of several local search methods for 

solving the hybrid flow shop. They examine methods from Nowicki and Smut-

nicki [61], Dauzere-Peres and Paulli [18], Brandimarte [7], and Hurink, Jurisch 

and Thole [43]. The latter three approaches were all designed to solve the flexible 

job shop problem, of which the hybrid flow shop is a special case. They conclude 

that Nowicki and Smutnicki's method performs better than the others for a broad 

selection of problems. 

It is worth also noting the work of MastroHli [54], who studies suitable local 

search neighbourhoods for the flexible job shop. The flexible job shop is effec-

tively a superset of hybrid flow shop problems, as all HPS problems, even those 

with processing sets and/or missing operations, may be formulated as a flexible 

job shop problem. 

Branch and bound 

The heuristics and local search methods described in the previous sections, while 

generally fast to calculate, do not guarantee exact solutions, ^ t h any general hy-

brid flow shop, the only approach currently available (and, provided that P ^ NP, 

ever likely to be available) to give exact solutions is some form of full enumer-

ation. It is this category that branch-and-bound methods falls into. The use of 

branch-and-bound methods does not appear to have been investigated deeply in 

the literature. Brah and Hunsucker[5] give one of the few implementations for 

the hybrid flow shop problem in the literature. They observe that their upper and 

lower bounds on the makespan are not particularly good. As a result, the pro-
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cedure is unable to prune the search tree aggressively, and thus it was unable to 

solve problems to optimality greater than about 6 jobs on 5 production stages (on 

1991 computers]. 

Although not a full branch and bound scheme, Santos, Hunsucker and Deal 

[70] develop a new global lower bound on the makespan for hybrid flow shops. 

Their method takes the maximum of a naive lower bound (the job with the largest 

total processing time], and a more sophisticated lower bound constructed from 

makespan bounds for each stage. 

7.1.3 Sh i f t ing bott leneck procedures 

The shifting bottleneck procedure was originally developed by Adams, Balas and 

Zawack[2], for the solution of the job shop scheduling problem. The concept of 

the shifting bottleneck procedure is to break the original problem down into in-

dividual sub-problems (in the case of the job shop problem, single machines], 

and to solve the sub-problems one at a time. There then follows a second step, of 

re-optimising, where one sub-problem is selected and re-solved whilst keeping 

the other sub-problems static. This re-optimisation procedure is performed many 

times until a suitable solution is found. We will go into more detail on the struc-

ture of shifting bottleneck procedures (or hierarchical decomposition methods in 

general] later in this chapter. Adams, Balas and Zawack's paper uses a branch-

and-bound solution procedure for the single-machine problems developed by 

Carlier[9]. 

In the simplest case of such a solution method, the subproblems used are the 

parallel machine problems of each stage. Simple scheduling rules are used at each 

stage to schedule the operations on that stage. Examples of such methods include 

the GCMD rule of Narasimhan and Mangiameli[57], and the various sequencing 

rules examined by Hunsucker and Shah[42]. These methods have the advantage 

of low computational complexity when running, allowing them to handle large 

problems. However, the solution quality is not necessarily particularly high. 

Dauzere-Peres and Lasserre[17] update the method of Adams ef a/., modify-

ing CarHer's algorithm to handle job precedence constraints. This modification 
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allows the release dates of operations to be updated as they change, and guaran-

tees a monotonic decrease in makespan when re-optimising. 

Holtsclaw and Uszoy[39] also use the shifting bottleneck procedure to solve 

job shop problems, minimising Imax- They use several different variants on the so-

lution method, concluding that for random routings between machines (a feature 

which appears in the job shop but not the hybrid flow shop) a simple criticality 

measure will suffice. They also conclude that inexact heuristic methods for solv-

ing the individual sub-problems work as well as the more costly exact branch-

and-bound methods. Finally they observe that the shifting bottleneck procedure 

appears to work best when there is more structure in the job routings between 

machines. 

Pinedo and Singer[66] concentrate on solving total weighted tardiness on a 

job shop. Their main contribution is in using a partial-depth tree search to find 

the best sequence in which to solve the sub-problems. 

Yang, Kreipl and Pinedo[79] apply a shifting bottleneck methodology to a hy-

brid flow shop problem. Their paper looks at the problem of minimising the total 

weighted tardiness for a multi-stage parallel machine problem. The two major 

contributions of their work are related to the tardiness objective function. The Grst 

is a development on Vepsalainen and Morton's ATC[77] heuristic for minimising 

weighted tardiness on a single machine. The modified version extends the origi-

nal ATC heuristic to work for [identical] parallel machines, and also takes account 

of release dates on the individual jobs. The second advance offered by the paper 

is in the manner in which operations are handled as jobs in the context of the sub-

problems. In particular, methods for calculating "job" weights and due dates are 

provided. The primary difficulty in using the shifting bottleneck method with the 

(weighted] total tardiness objective function is that, unlike the makespan or maxi-

mum lateness objectives, there is no simple and direct method of calculating suit-

able due dates. If modelled precisely, the objective function for the sub-problems 

should be a piecewise linear function with a non-decreasing derivative. Yang, 

Kreipl and Pinedo instead use an approach where the piecewise linear function 

is approximated by a weighted tardiness function. As well as the shifting bottle-
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neck approach, they test a local search method and a combined method utilising 

both the shifting bottleneck and local search methods. The hybrid algorithm was 

shown to out-perform the others. 

Most recently, Cheng, Karuno and Kise [11] develop a shifting bottleneck pro-

cedure to minimise the maximum lateness on a hybrid flow shop. They use an ap-

proximate solution method for the parallel-machine sub-problems generated in 

their decomposition, rather than the more heavyweight exact branch-and-bound 

method favoured by others. They compare their method to that of Wittrock[78], 

and also to the lower bounds of Santos, Hunsucker and Deal[70], and show that 

their heuristic generally produces near-optimal solutions to the problem. 

7.2 Hybrid flow shop with processing sets 

The hybrid flow shop problem for which we will develop solutions in this chapter 

is inspired by the problem described in chapter 3. We will develop algorithms to 

solve an extended version of the hybrid flow shop problem. Specifically we will 

be concerned with a hybrid flow shop (§3.5.1) with processing set restrictions 

at each stage (§3.5.3). We are not developing here solution methods to handle 

the other aspects of the industrial process which were identified in §3.5, to whit 

the continuous flow, product hierarchy or storage bins. Note, however, that the 

algorithm may be modified easily to handle continuous flow processes, as we 

showed in chapter 4. 

To recap on the problem, consider a multi-stage production process with s 

stages in a fixed processing order. There are n jobs to be processed on these stages. 

Each job passes through the stages in order, although any given job may only be 

processed on a [job-dependent] subset of the stages. A job may not start process-

ing on a stage until it has completed processing on the previous stage (i.e. the job 

flow is discrete, not continuous). There is assumed to be unlimited inter-process 

storage. At stage k, there are parallel identical machines. Each job to be pro-

cessed at that stage is processed on one of the machines, taking time Each job, 

y, has a set of machines, (the processing set) at each stage on which it may 

be processed. The processing sets for any given stage are nested, according to the 
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definition in §3.5.3. Each job has a due date, dy. 

We had originally intended to develop a general multi-stage decomposition 

framework and test it out on the weighted tardiness objective function. While the 

company are most interested in the number of late jobs and secondarily maxi-

mum lateness, those objective functions were poorly behaved. We therefore had 

reserved the option of using the better behaved total tardiness objective function 

for detailed computational experiments. A robust general framework could then 

be used for any objective function. However, shortly after we developed our ini-

tial framework, including the use of the hierarchical decomposition technique, 

the paper by Yang, Kreipl and Pinedo (YKP) was published. We felt that the YKP 

paper was too close to our original intended line of research. This indicated that 

our general approach was sound, but that we needed to change the objective 

function to maximum lateness rather than weighted tardiness. Therefore we wish 

to minimise the maximum lateness across all jobs, Imax, 

^max — max C; d,. 

where Cy is the completion time of job 

We go beyond the scope of Yang, Kreipl and Pinedo's work in several key 

areas, however. Firstly, and most obviously, we develop algorithms which take 

account of processing set restrictions on each stage of parallel machines. Secondly, 

we look in more detail at the overall concept of the hierarchical decomposition 

method, examining individually the different components required to produce 

such an algorithm. 

7.3 The algorithm 

The hybrid flow shop problem which we are investigating is complex. We cannot 

expect to be able to solve realistic problems (up to 100 jobs on 20 machines) using 

exact methods, so we must resort to some form of heuristic or approximation 

method. We might attempt to use a simple rule-based heuristic, or a local search 

method, but we instead use a hierarchical decomposition method similar to the 

shifting bottleneck procedure, particularly in the light of Holtsclaw and Uszoy's 
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observation that the shifting bottleneck works best where the problem is highly 

structured. 

The general idea of the method is first to divide the overall problem into mul-

tiple (related) sub-problems, and then to solve those sub-problems separately The 

structure of the algorithm is as follows: 

1. Separate the original problem into sub-problems. 

2. Order the sub-problems according to some criterion. 

3. For each sub-problem in order, incorporate it into the partial solution by: 

(a) Solving the selected unsolved sub-problem. 

(b) Scheduling/sequencing the current (partial) schedule, if improvement 

is possible. 

4. Optionally, improve the schedule using a local search procedure. 

Phases 1 and 2 involve identifying and calculating a suitable cnfz'caZzfz/ maz-

surg for each possible sub-problem, and ordering the sub-problems according 

to which is the most critical. We describe the sets of machines which define the 

sub-problems as ezecwfzoM sefs. The criticality measures and division into sub-

problems which we use are developed in §7.5. An efficient problem sub-division 

method is described in §7.8.1. 

Phase 3 uses a heuristic algorithm to solve each sub-problem in turn (in order 

of their criticality measure), and to add the solved sub-problems into a partial 

solution of the whole problem. As more sub-problems are solved, and more in-

formation becomes available, some of the sub-problems are re-solved so that they 

may fit better with the rest of the partial solution. The method of deciding which 

sub-problems to re-solve, and in what order, is discussed in §7.6. 

After solving each sub-problem (whether for the first time, or whilst perform-

ing a backtracking procedure), the schedule of the sub-problem is effectively dis-

carded, retaining the allocation of operations to machines and the sequence of 

operations on those machines. The current partial schedule can be represented us-

ing a disjunctive graph representation, like those presented in chapter 4. Where 
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allocations and sequences of operations have been made, at most one arc from 

each disjunctive pair is selected to reflect the sequencing; where no allocation or 

sequencing has been made, no arcs are used, and the relevant operations are as-

sumed to be unconstrained. After constructing the graph representation of the 

partial schedule, an actual schedule may be calculated by means of critical path 

analysis. One of the by-products of the critical-path algorithm is information for 

easily calculating release dates and due dates for each operation (see §7.7.1). 

Phase 4 is an optional local search procedure which is applied to the solution 

after aU of the sub-problems have been solved and a whole solution is available. 

This phase aims to improve the schedule quickly where possible. We shall not 

implement such a procedure in our algorithm. 

Note that although we describe the framework assuming a discrete process 

flow, it requires only a simple modification to solve problems which have contin-

uous flow of material through the machines. We need only alter the disjunctive 

graphs so that they represent a continuous flow process using an appropriate 

model from those developed in §4.4. 

7.4 Problem decomposition 

The first component of our hierarchical decomposition method is the decompo-

sition of the problem itself. This step breaks down the original problem into dis-

tinct and disjoint sub-problems which are to be solved one at a time. The most 

obvious and natural method of decomposition for a hybrid flow shop structure 

is a stage by stage decomposition, where each stage is treated as an independent 

sub-problem. This is the method used by Yang, Kreipl and Pinedo. Our problem 

is typified by processing set restrictions at each stage. This feature affects the al-

location of jobs to machines, and also has some implications for the balance of 

workload across machines, as will be seen in §7.5.3. It is therefore sensible for us 

to consider alternative decomposition methods. Our alternative method of de-

composition involves breaking the problem into smaller parallel machine prob-

lems, where each stage is broken up into one or more sub-problems. The precise 

method for doing this decomposition is described later, in §7.5.3, as it relies on 
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some concepts developed in the next section. We term this latter decomposition 

method decomposzh'oM sek. 

7,5 Criticality measures 

For operating any progressive heuristic such as the shifting bottleneck algorithm, 

we need measures of the cnficafih/ of the different components of the system. 

Such criticality measures (often called bottleneck measures) give a measure of 

how important the scheduling of a given component of the overall system is. 

Criticality may be thought of as a measure of difHculty congestion, degree of 

"bottleneck", or importance. 

We distinguish between two different types of criticality measure which we 

wish to consider: static and dynamic. A gfafzc criticality measure depends solely 

upon the problem instance, and will highlight the machines (or possibly jobs or 

operations) which are likely to be most critical to finding a good schedule. A 

dz/Mgmzc criticality measure is dependent upon not only the problem instance, 

but also upon a proposed schedule or partial schedule for that instance. The dy-

namic measure wiU indicate which operations (or possibly machines or jobs) in 

the schedule are contributing most to the objective function value. Dynamic criti-

cality measures would be of most use in local search or incremental-improvement 

algorithms, as they could be used to guide the algorithm to where its effort will 

do the most good. 

When using shifting bottleneck methods to solve makespan (C^ax) problems 

on the hybrid flow shop, the bottleneck measure used is often simply the average 

workload that passes through a stage. For other, more general, problems, this is 

a poor measure, as it does not take account the effect which some features may 

have on it. For example, allowing processing sets at each stage means that a stage 

may have a low mean workload, but have one highly critical machine on it. In 

this section, we develop criticality measures for some variants of the basic hybrid 

flow shop problem. 
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7.5.1 M e a n stage w o r k l o a d and n o process ing sets 

The most obvious criticality measure is the mean stage workload (MSW), Wj., 

where k is the stage under consideration, n is the number of jobs, and is the 

processing time of job ; at stage A:. This is simply a measure of the mean amount of 

processing time per machine required to finish all of the jobs. This measure can, 

of course, only be computed if the processing time for each job is the same on any 

allowable machine. However, the mean stage workload does not take account of 

such things as processing sets. 

7.5.2 Critical process ing sets 

When processing sets are introduced, the workload across all machines in a stage 

may not be the same and the mean stage workload measure therefore can be 

misleading. Consider a hybrid flow shop with two stages, and two machines at 

each stage. At the second stage, there are two processing sets, = {1,2} and 

y (̂2,2) _ There are n jobs, with pyi = 3 and p̂ -2 = 2 for all jobs j, and, at stage 2, 

job 1 having processing set and all other jobs having processing set 

The mean stage workload measure will identify the workloads of the two 

stages as ^ and 1̂ 2 = thus identifying the first stage as the more impor-

tant. However, it is clear that almost all of the jobs at the second stage must go 

through machine 2, making that the most critical part of the process. We need to 

consider measures which identify the criticality of individual processing sets and 

not simply whole stages of machines. 

Total mean processing set workload 

One possible measure to use is the fofaZ mean processing sef (or TMPSW). 

Firstly, for each processing set ^ at stage k, define the mean processing set work-

load. 
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Note that the processing sets overlap; each machine may belong to several pro-

cessing sets. Then, for a machine z at stage k, the total mean processing set work-

load may be taken to be the total of the mean processing sets which the machine 

belongs to: 

^ik — ^ ^qk • 

The TMPSW measure misses out on one important aspect of the operation 

of parallel machines with processing sets namely load balancing. If one machine 

belongs to many processing sets, some of its workload will (if possible) be moved 

to other machines belonging to fewer processing sets. 

Load balancing with general processing sets 

It is possible to calculate the mean effects of load balancing by use of the max-

flow/min-cut theorem [23]. We construct the flow network shown in figure 7.1. 

The arcs on the left of the diagram are capacitated to the processing time of each 

job. The arcs in the middle of the diagram connect each job to the set of machines 

which may process it, and are uncapacitated. The arcs on the right of the diagram 

represent the workload of each machine, and are capacitated to the same value, 

C. The value C represents a limit on the amount of time available for processing. 

We denote by !F(C) the maximum-flow problem for any given value of C. 

To find the minimum amount of time required to process all of the tasks, and 

the bottleneck processing set, take some upper bound on the time required to 

complete all processing (trivially, Using a binary search on the inter-

val [0, [/], find the minimum value of C for which all of the "job" arcs [those on 

the left of the diagram in figure 7.1] in the problem F[C] limit the maximum 

flow through the network. In other words, find the minimum value of C for 

which none of the job arcs have spare capacity. The process may be performed 

in 0[[M'̂  -|- log time, using the push-relabel algorithm of Goldberg and Tar-

jan [29]. 

At this point, a number of the "machine" arcs [those on the right of the dia-

gram] wiU be at full capacity. Those machines are the "bottleneck" machines; the 

minimum value of C which has been found is the workload on those machines. 
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Operations Machines 

^ C 

104 

(uncapacitated) 

Figure 7.1: Example of the max-flow network for fully load-balanced parallel ma-

chines with processing set restrictions 

In the case of nested processing sets, the bottleneck machines will form a single 

processing set, although it may contain some smaller processing sets as well. 

7.5.3 Workload criticality measures for nes ted process ing sets 

Where processing sets are nested, the network formulation given above is overly 

complicated. The nesting of processing sets allows a simple algorithm to be used 

to sort the processing sets of a stage in decreasing order of workload. As with 

most algorithms for nested processing sets, we start work at the smallest process-

ing sets, and work up to the largest sets. 

At stage k, for a processing set we define the workload as the mean time 

to completion of all jobs with that processing set over the machines in the set: 

^qk ~ 

We shall refer to this as the NesW lood-Ba/anced Work/oad measure, or NLBW. 

Now reconsider the example of §7.5.2, for which the mean stage workload 

measure proves to be misleading. Calculating the NLBW workloads for each of 

the two processing sets at the second stage: I12 = 2 for the larger processing set 

and 1,22 = 2n — 2 for the smaller processing set. Thus, with this measure, the 

smaller processing set at stage 2 (i.e. {2}) is given the highest workload value. 
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as it should be. 

To understand what the NLBW (nested load-balanced workload) criticality 

measure is doing, consider a system with two nested processing sets and a large 

number of small operations performed over the machines encompassed by those 

processing sets. There are then two different cases which can arise: either the 

smaller processing set is busier than the larger, or the larger is busier than the 

smaller. These two cases can be illustrated by the simple block diagrams in Agures 

7.2 and 7.3, respectively. In both diagrams, the smaller processing set is marked 

and the larger 

Mean workload Mean workload 

Machines Machines 

\ / 

Y (̂2| 

Figure 7.2: Smaller processing set 

busier 

Figure 7.3: Larger processing set bus-

ier 

When the smaller processing set, has the greater mean workload (fig-

ure 7.2), the machines in should, in a balanced system, process only those 

operations with that processing set. When the larger processing set, has the 

greater mean workload (figure 7.3), then the machines in the smaller processing 

set may process some of the operations from the larger processing set as well. 

The consequence of this is that in the latter case, the two nested processing sets 

should be treated as a single unit, and scheduled together. In the former case, 

however, we can schedule the two processing sets as two disjoint groups of ma-

chines: and \ Observe that the mean workload of the processing 

sets gives the relative order of workload. Moreover, in practice one would expect 

to be scheduled first and then the remaining operations with processing set 
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afterwards. 

The NLBW criticality measure calculates the mean workload for each pro-

cessing set at each stage, and produces a measure which is comparable between 

stages. By examining the relative workload of the processing sets at a given stage, 

the machines of that stage may be placed in a number of disjoint groups (which 

we shall call execution sets), according to their relative workloads. The first execu-

tion set comprises the machines belonging to the processing set with the highest 

workload. The nth execution set is the machines belonging to the processing set 

with the nth highest workload, except those which have already been assigned to 

other execution sets. 

Mathematically, 

1. Order the processing sets , . . . , M , . . . , from the most to the 

least critical set, using the NLBW criticality measure. 

2. Define the (̂ th execution set at stage t, \ 

3. Associate the workload measure of the ^th processing set, with the (̂ th 

execution set. 

Performing this process for each stage of the problem, we are left with a col-

lection of disjoint execution sets, from all stages, each of which has an NLBW 

measure of criticality. This method forms the basis of the execution set decompo-

sition referred to in the previous section. Note also that when this method is used 

to perform decomposition by execution set, the NLBW criticality measure returns 

exactly the same values as the MSW criticality measure, since the execution sets 

are, in that case, by definition well-balanced. 

7.6 Backtracking schemes 

One of the main features of the shifting bottleneck methodology for the job shop is 

By backtracking, we mean that after a sub-problem has been solved, 

it is re-visited later by the algorithm (often many times), and solved again. This re-

solvmg of a sub-problem allows the sub-problem to take account of its relations 
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to O t h e r sub-problems which are solved later in the operation of the algorithm. 

There many different ways of performing the backtracking. In this section, we 

propose several different methods. 

The sequence of solution of the sub-problems referred to in this section is that 

determined by the order of criticality of the components of the problem (see §7.5). 

7.6.1 Classification of backtracking schemes 

We may classify backtracking schemes according to three criteria: the backfrcck-

ZMg pafk defines the order in which the sub-problems are revisited after each new 

sub-problem solution is added to the partial schedule. The cfepf/i of the backtrack-

ing specifies the maximum number of sub-problem solutions which may be per-

formed in any one backtracking run. The depth may be unlimited, in which case 

the whole backtracking path is used, regardless of how many sub-problems there 

are to re-schedule. The Zoopzng mefAod governs the backtracking path and how 

many times it is executed. Examples of different possible looping methods are 

given in §§7.6.4-7.6.5, below. 

7.6.2 Fixed order, single-pass, no backtracking 

Simple rule-based scheduling algorithms such as the GCMD rule (see [57]) use a 

single pass method, where the operations at each stage are scheduled once. Thus, 

a problem with s stages requires s sub-problem solutions. This is 0(5) behaviour. 

We describe this as a szMgfe-pasg heuristic with no backtracking. The backtracking 

path definition is simply to do no backtracking. 

7.6.3 Fixed order, s ingle-pass backtracking 

Single-pass backtracking selects an ordering for the stages (most heavily-loaded 

stage first), and, for each stage in that order, solves the stage as a sub-problem. The 

algorithm then revisits all of the previous stages, scheduling each in the original 

order, starting at the first. 

The backtracking path is to revisit each previously scheduled sub-problem in 

the order in which they were originally solved. The simplest form of this type of 
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backtracking, without further repetition, is said to be smg/g-Zoopmg. If there are 

5 stages, the algorithm will perform at least ^s(s + 1) — 1 subproblem schedul-

ing steps. This is subproblem solutions, compared to the 0(s] solutions 

which the basic single-pass scheduling rules use. An illustration of the order of 

re-scheduling in such a backtracking scheme is shown in Egure 7.4. 

Sub-problems 
(in scheduling order) 

# First scheduling time 
o Re-scheduling 
n Indicates a single loop 

Figure 7.4: Linear backtracking with single-looping (Single-pass) 

7.6.4 Fixed order, mult iple-pass backtracking 

In the single-pass backtracking method given above, one pass of backtracking 

may not suffice to give a good solution. Some of the later sub-problems in the par-

tial schedule may be affected by the re-scheduling of earlier sub-problems. One 

simple and obvious solution to this difficulty is simply to re-schedule the sub-

problems many times, either to a maximum number of loops, or until no more 

beneficial changes are made. We describe this form of backtracking as muZfzpZe-

Zoopzng. An illustration of the re-scheduling order of such an exhaustive multiple-

looping scheme is shown in figure 7.5. 

7.6.5 Other fixed-order schemes 

Other fixed-order schemes may also be considered, in either single- or multiple-

loop forms. For example, we may use a "pyramidal" scheme, which reprises all 

of the previous backtracking at each stage, as illustrated in figure 7.6. This scheme 

ensures that when a sub-problem is solved /or fieason, the previous problems 

are re-solved in a backtracking phase. The disadvantage of the pyramidal scheme 
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Each loop many times 
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Sub-problems , 
(in scheduling order) 

E 

B - # - 6 -

First scheduling of that stage 
Re-scheduling 

Repeat as necessary 

time 

time 

Figure 7.5: Linear backtracking with multiple-looping (Multiple-pass) 

is that the amount of backtracking grows as the cube of the number of stages. 

r A-

Sub-problems 

(in scheduling order) 

# First scheduling 

O Re-scheduling 

Figure 7.6: Pyramidal backtracking with single-looping 

Another alternative is a fixed-depth scheme, where only the last p subprob-

lems are re-solved in the backtracking stage (illustrated in figure 7.7). This scheme 

has the advantage of using some backtracking, but it is still linear time in the 

number of sub-problems. It has a distinct disadvantage when, as proposed, the 

sub-problems are taken in order of likely importance - it does not revisit the most 

important stages after the first p sub-problems have been added to the partial 

solution. 

7.6.6 Advantages and disadvantages of backtracking 

One of the problems of backtracking schemes such as those given above is that 

they may not necessarily concentrate on the right parts of the problem. It is not 

clear that extensive and comprehensive backtracking, originally developed for 
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Sub-problems J 
(in scheduling order) ] 

# First s c h e d u l i n g t i m e 

O Re-scheduling 

Figure 7.7: Fixed-depth backtracking, single-loop. Depth=3 

use in job-shop problems, is necessary for the well-structured hybrid flow-shop 

problems. We can only establish the latter point by experimentation. 

The main objections to the schemes detailed in the above sections, in the con-

text of scheduling our hybrid flow shop problem, are that: 

1. they do not take advantage of the additional structure inherent in a flow-

shop problem, 

2. they do not take account of some of the peculiarities of processing sets - for 

example, that there may be several effectively unrelated processing sets at 

each stage, and 

3. they do not necessarily achieve the best overall improvement at each re-

scheduling. 

The backtracking schemes which we have described in previous sections all 

rely upon a fixed ordering of the sub-problems, and re-schedule the sub-problems 

according to some rule based on that fixed ordering. In other words, they all as-

sume a static criticality measure for the sub-problems, and they persist in us-

ing the same ordering even when more information about the problem becomes 

available in the process of scheduling it. We would like the order of the sub-

problem rescheduling to depend upon the state of the current partial schedule. 

In the next sections we propose two methods of backtracking (one of which 

is original) which are not solely dependent on the initial problem, but are also 

dependent on the state of the partial schedule as it is built up. 
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7.6.7 Steepest descent 

The backtracking process of the shifting bottleneck algorithm may be thought 

of as a form of local search, where the neighbourhood is a choice of which sub-

problem to re-schedule, and a move is a re-scheduling of a complete sub-problem. 

Seen in this light, the multiple-loop backtracking scheme of §7.6.4 above is a/zrsf-

zmproue "local search" method - a move (re-solution) is made whenever one is 

found. The other commonly-used local search descent method is to take the best 

of the available moves rather than the first. In this form of backtracking, each 

sub-problem is re-solved in turn, and the one which shows the best improvement 

in the overall objective function is the one which is actually adopted in the cur-

rent partial solution. This is the method which was used by Adams, Balas and 

Zawack in the original shifting bottleneck algorithm, and subsequently in most 

other work on shifting bottleneck methods. Our first-improve method provides 

a shallower descent path, but requires less computation time than the steepest 

descent method. 

7.6.8 Other dynamic measures 

The main disadvantage of the best-improve method given above is that many (up 

to s) sub-problems must be tested in order to re-schedule one sub-problem. This 

is computationally expensive. When performing backtracking, we would like to 

concentrate on re-scheduling those sub-problems which are most affected by the 

changes to the partial solution. We may do so by utilising a priority rule, calcu-

lated after each new sub-problem is solved and added to the partial schedule. 

There are many different priority rules which we might use: 

1. workload, 

2. maximum workload over the machines in the sub-problem, 

3. adjacency of stage in the flow of work, 

4. number of adjacent operations of jobs which have been affected by interim 

re-scheduling, 

IK I ipoAHY $1 
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5. number of (any] operations of jobs which have been affected by interim re-

scheduHng, 

6. total processing time of the operations which have been affected by the pre-

vious re-scheduling, 

7. total slack, 

8. minimum slack over the machines in the sub-problem, 

The first criterion listed above is in fact simply the fixed-order backtracking 

we presented in §7.6.3, and is effectively based on the mean workload critical-

ity measure of §7.5.1. The second is also a fixed order method, but based on the 

NLBW criticality measure of §7.5.3 instead (which, as we stated in that section is 

equivalent to the simple workload measure when execution set decomposition is 

being used). In the following sections, we present a method of selecting the next 

stage to re-schedule using the third criterion in the above list. 

7.6.9 Flow-adjacency backtracking 

Consider the relationships between schedules of the sub-problems (execution 

sets) in the hybrid flow shop problem: some sub-problems will be related to each 

other by the jobs which are common to both sets; others will be entirely indepen-

dent of each other (for example, all those at a single stage). We wish to create a 

backtracking scheme which uses the relationships between sub-problems as the 

basis for deciding which sub-problem to re-solve next. We also wish this scheme 

to be capable of being selective in its re-scheduling of the currently scheduled 

sub-problems. 

Note that, in general, adding a sub-problem to the partial solution is a much 

more disruptive process than simply re-scheduling a sub-problem which is al-

ready part of the partial solution being built up. The reason for this is that adding 

a sub-problem solution adds a (large) number of additional constraints to the par-

tial solution, whereas re-scheduling an existing solution simply rearranges inter-

operation constraints which are already present. 
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We may construct a graph of the relationships between the sub-problems, 

where the nodes of the graph are the execution sets. The arc joining two execution 

sets may be weighted by some measure of interdependence between the two sets. 

One such measure is the number of jobs which the respective sub-problems have 

in common. Alternatively, the total processing time of operations of the common 

jobs may be used, or the ratio of common jobs to unrelated jobs in one (or both] 

sub-problems. 

Having constructed a graph of the relationships between nodes, a backtrack-

ing scheme may be thought of as a way of traversing the graph. Each time a node 

is visited, the corresponding sub-problem is re-scheduled. Various schemes for 

traversing this graph can be envisaged, one of which is presented below. 

The relationship graph is constructed piece-meal. As each execution set is 

scheduled for the first time, its node and all of the corresponding arcs are added 

to the graph (see figure 7.8). Now, a tree is a much easier structure to traverse 

in a logical manner than an arbitrary graph. Therefore, after each node is added, 

the maximal spanning tree of the graph is found in O(mlogm) time, where 

is in this case the number of arcs - see figure 7.9. The backtracking procedure 

then traverses the tree, starting at the newly-added node, and rescheduling the 

sub-problem for each node it visits. 

Sub-problem 

Relationship between subproblems 

Figure 7.8: Relationship graph for a partial solution to a hybrid flow shop problem 
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Sub-problem 

Relat ionship between subproblems 

Figure 7.9: Maximal spanning tree generated from relationship graph 

Several methods of traversing the tree might be tried, including: 

« a breadth-first search of the nodes of the tree, 

« a depth-first search of the nodes of the tree, 

* following only the » highest-weight arcs from each node. 

Each of the above methods may be limited, for example by a maximum num-

ber of sub-problems to re-schedule, by a maximum depth in the tree to search, 

or by a minimum degree of relationship to follow in the spanning tree. Alterna-

tively, the traversal of the tree may be unlimited, in which case all sub-problems 

in the partial schedule are re-scheduled. The backtracking scheme which we have 

described above has a dynamic, partial-schedule-dependent, backtracking path. 

In addition, it may be implemented with or without a depth limit, and with or 

without multiple looping. 

7.7 Sub-problem construction and solution 

The sub-problems generated in the hierarchical decomposition method described 

in §7.3 are parallel identical machine scheduling problems with processing set 

restrictions, release dates and due dates. The release dates and due dates for 
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each sub-problem are surrogates, representing the schedule of the operations in 

other sub-problems in other stages. We require a solution procedure, either exact 

or approximate, for solving such problems. In this section, we discuss the con-

struction of the sub-problems, and some methods which might be used to solve 

them. We consider primarily the maximum lateness criteria. It is worth noting 

that makespan can be minimised by minimising maximum lateness where all 

due dates are zero. 

7.7.1 Construction of sub-problems 

Each sub-problem which is solved in the hierarchical decomposition is a problem 

with parallel identical machines with processing set restrictions. Each job in the 

sub-problem represents an operation in the overall problem. Now, we wish the 

sub-problem's objective function to reflect its effect on the overall problem. To 

this end, we must select the objective function to use for the sub-problem, and we 

also require additional input data for the sub-problem. 

Firstly, observe that the range of possible scheduling times for each opera-

tion is restricted: an operation cannot start before its predecessor has 

completed (if such a predecessor exists]. Using one of the disjunctive graph rep-

resentations from chapter 4, the earliest start time for is the longest distance 

from the start node to the node corresponding to Therefore, each operation 

can be given a release date which is the earliest time at which it can be 

scheduled. 

Secondly note that we may view the problem of minimising as a problem 

of minimising Cmax where the jobs have "tails ". A job with a fazZ, , is processed as 

normal, taking up tirne on the machine, but is not considered to be complete 

until time has elapsed after processing on the last machine. We may turn an 

Z-max problem into a C^ax problem with job tails by adding a tail (̂ y = max{dy} — 

dy to each job. The disjunctive graph representation simply adds an extra arc of 

length ŷ to the end of each job, and we then aim to minimise the total network 

length. In this view of the problem, although each operation may be scheduled 

to start at any time after its calculated release date, there is a point beyond which 
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any further delay in its start time will cause some or all of the jobs in the overall 

problem to finish later than they otherwise would. The amount by which the 

operation may be moved without changing the objective function is commonly 

known as its sfack or /loaf. Writing the float for as can set a due date for 

the operation, 

= ''yTc + -

Note that this takes account of the due date of the job, since the tail of the job acts 

as a surrogate for the due date. 

7.7.2 Solut ion of sub-problems 

In order to solve the individual sub-problems in this method, we may use any ap-

plicable solution procedure. Three such procedures for the Pm|ry, Myjlmax prob-

lem have been presented in §6.1. These are the Earliest Due Date (EDD), Jackson's 

for Processing Sets (JPS), and Modified Jackson [MJ) heuristics. 

7.8 Implementation 

We discuss below some details regarding the implementation of the algorithms 

and methods described earlier in this chapter. 

7.8.1 Efficient calculation of execution sets 

The nested load-balanced workload (NLBW) criticality measure for processing 

sets, and hence for execution sets, is defined in §7.5.3. However, it may be calcu-

lated more efficiently by storing the total workload for each processing set as it 

is calculated, using the total in calculating totals for larger processing sets which 

contain it. To do this, deAne the fofaZ processmg sef as: 

The nested load-balanced processing set workload, NLBW, then becomes: 

i , t = I 
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Having dehned our decomposition of the problem, we now schedule each 

execution set in turn, performing backtracking where appropriate. Note that since 

we schedule by execution sets, the algorithm will move around between stages, 

possibly visiting each stage several times as the disjoint execution sets of the stage 

are scheduled one by one. 

7.8.2 Ordering nested process ing sets 

One of the common features of the algorithms for problems with nested process-

ing sets is that they require ordering jobs, operations, or processing sets in such a 

way as to preserve the partial order implied by the nestedness of the processing 

set. In most cases, this is to ensure that no processing set has its jobs scheduled 

before the jobs of any of its subsets. 

In a computer implementation of such an algorithm, the obvious method of 

representing a processing set, particularly with small numbers of machines, is to 

use an integer bitmap representation, where the (n — 1) bit of an integer variable 

is set to be 1 if machine n is a member of the set, and 0 if it is not. For example, 

the processing set {1,3,5,6} would be represented by the number 53 (IIOIOI2 in 

binary), where bits 0, 2, 4 and 5, reading from the right, are set to 1. (Note that 

bits are customarily numbered with the least-signiHcant bit labelled as bit 0. Bit n 

then corresponds to a value of 2"). In the algorithm implementations developed 

for this thesis, up to 128 machines are supported in the processing set data type, 

which occupies 16 bytes (4 32-bit integers) of space. 

There is an interesting observation to make on using this representation: Or-

dering processing sets by the numerical value of their bitmap preserves the partial 

order defined by the subset operator on the processing sets. In other words, given 

two processing sets A and B from a set of nested processing sets, with bitmap val-

ues a and b respectively, a < 6 implies either A c B o r A n B = : 0 . This method of 

ordering also has the property that all items with the same processing set are 

grouped together in the re-ordered list. 

There is therefore generally no need to store or calculate the size of a pro-

cessing set, and processing sets can be partially ordered efficiently using a simple 
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standard sorting algorithm (although more efHcient ordering can be obtained by 

performing a radix sort on the sizes of the processing sets). Hence this property 

may be used to implement algorithms for problems with nested processing sets 

which are efficient in both storage space and CPU time. 

In this chapter, we have developed a framework for a hierarchical decom-

position method for the hybrid flow shop problem with processing sets at each 

stage. This framework generalises specific hierarchical decomposition methods, 

and consists of a number of components: 

# a decomposition scheme to break the overall problem into smaller subprob-

lems, 

# a scoring scheme ("criticality measure") to indicate which of the subprob-

lems to work on next, 

# a method of solving the Individual subproblems, 

# a method of backtracking through already solved subproblems to improve 

the solution, and 

« a method of evaluating the (partial) schedules obtained at each stage of the 

process. 

We have proposed several methods for each of these components of the overall 

algorithm, with the exception of the evaluation method, for which we use the 

digraph representations presented in chapter 4. 

Although we have presented at least two possible methods for each of the four 

main components listed above, we do not know which of them are most effective 

in solving the problem. To this end, we will test the algorithm variants on a wide 

variety of problem instances. In the next chapter, we will discuss the set-up of the 

experiments, including the different factors which we can vary, both algorithm 

variants and parameters of the test problems. We also discuss in some detail the 

methods we use for generating test problem instances. 



Chapter 8 

Experimental framework 

In this chapter, we describe the many aspects of our hybrid flow shop problem 

which may be varied, both of the problem itself and of the algorithms which we 

have developed in chapter 7 to solve it. We describe how we use these variable 

aspects to generate (random) hybrid flow shop problems for use in computational 

experiments. The experiments themselves, including the statistical framework in 

which they are performed and an analysis of the results, are detailed in chapter 9. 

8.1 Overview 

Our primary objective in performing these experiments is to identify the best set-

up for our algorithm and to analyse the differences between performance of the 

algorithms to find the best. We also wish to identify any significant differences in 

the performance of an algorithm variant for any particular type of problem. For 

example, one of the algorithms we investigate may perform particularly badly 

for problems with high workload, but well for problems with low workload. The 

four areas which concern us in making this analysis are the following: 

1. Performance measures 

2. Algorithm options 

3. Problem configuration (size, shape and behaviour] 

4. Instance parameters 
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In this chapter, we will look at the above four aspects of the problem one at a 

time, and detail how each will be used in the experiments to follow. The largest 

part of this chapter (§§8.4 and 8.5) concentrates on the latter two aspects, where 

we show how we create test data sets on which to perform experiments. 

8.2 Performance measures 

The measure by which the performance of the algorithm is measured is impor-

tant. In our experiments, we will be using methods (such as the sub-problem 

solution procedure) which are specifically designed for the maximum lateness 

objective function, Imax- However, this does not prevent us from calculating the 

values of other objective functions for the completed schedules, and examining 

the performance of our methods for other objective functions. 

It should be noted that the Imax objective function has a peculiar property. 

The value of Imax can effectively be made arbitrarily large for any given instance, 

by altering the due dates on the jobs, each by the same amount. The objective 

function will change in value, but the same job will be the "latest" job, and the 

jobs will be scheduled in the same way by all algorithms. Thus, it is impossible to 

compare Imax values and algorithm performance differences by taking ratios of 

^max values. Instead, we must examine the additive difference between different 

methods for the same [type of] instance to And performance differences between 

algorithms. The most suitable statistical method for analysing the results, and the 

one which we have chosen to use, does in fact operate on additive differences (see 

§9.3). 

Although the hierarchical decomposition algorithms which we are testing are 

designed to minimise maximum lateness, we will measure performance on two 

criteria: 

« Maximum Lateness (Imax) 

# Execution time 

We are interested in the maximum lateness because it is what our algorithm was 



C h a p t e r 8. EXPERIMENTAL FRAMEWORK 1 2 1 

designed to minimise, and the execution time so that we can observe any trade-

offs between solution quality and time taken to find that solution. 

8.3 Algorithm options 

There are four orthogonal sets of algorithm factors from which to choose: decom-

position, initial ordering (criticality measure), sub-problem solution, and back-

tracking. Each factor has a number of possible levels, summarised below: 

1. Decomposition method 

(a) By stages 

(b) By execution sets 

2. Order of adding sub-problems to partial solution (criticality measure) 

(a) Simple criticality measure (stage workload) 

(b) Stage order 

(c) Reverse stage order 

(d) Nested load-balanced workload measure 

(e) Arbitrary 

3. Sub-problem solution procedure 

(a) Earliest Due Date (EDD) 

(b) Jackson for processing sets (JPS) 

(c) Nested Jackson (NJ) 

(d) Look-ahead heuristic (LAH) 

4. Backtracking 

(a) No backtracking 

(b) Linear single loop 

(c) Linear multiple loop 
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(d) Tree-based (see §7.6.9) 

(e] Original shifting-bottleneck scheme 

Each factor is effectively independent of each of the other factors, and its lev-

els can be selected independently. Thus, there are 200 possible versions of the 

algorithm to test (2 for decomposition; 5 for initial order; 4 sub-problem solution 

procedures; 5 backtracking methods: 2 - 5 4 5 = 200). 

8.4 Problem configuration 

The parameters for behaviour of instances may be selected in a number of dif-

ferent ways. We hope to choose them in a way which reflects both a wide range 

of possible uses, and which encompasses the possible qualitative differences in 

instance types. There are eight orthogonal parameters which may be varied to 

construct test instances with (potentially) different behaviour. To whit, 

# number of jobs, 

# number of stages, 

« expected number of machines at each stage, 

# processing sets available at each stage, 

» balance of workload, 

« likelihood of missing operations, 

» operation length, and 

« distribution of due dates. 

These are discussed below and then summarised in table 8.1. We may di-

vide the parameters into three general groups: the problem shape, bottleneck be-

haviour, and other parameters. 
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8.4.1 Shape 

The shape of an instance of the hybrid flow shop problem is related to three main 

parameters: the number of stages, s, the number of jobs, M, and the number of 

machines at each stage, at stage A:. We hypothesise that the ratio of jobs to ma-

chines is more important than the absolute number of machines, and so instead 

of the number of machines, we use the ratio of the expected [i.e. mean) number 

of machines at each stage to the number of jobs, p. 

8.4.2 Bottleneck behaviour 

We may classify hybrid flow-shop problems by the type and location of bottle-

necks in the system. For these purposes, we describe as a any machine 

or set of machines which has a higher mean workload than those in the rest of the 

problem (see §7.5 for some methods of estimating machine workloads). We can 

distinguish between many types of system in terms of their bottlenecks. A brief 

list is given below: 

1. fully balanced: equal mean workloads for machines at all stages, 

2. vertically unbalanced: 

(a) all machines at one stage have a higher mean workload, 

(b) all machines have a higher mean workload at several stages, 

3. horizontally unbalanced: at each stage, there is a processing set of machines 

with a higher mean workload than the rest of the stage 

(a) with the same jobs in the bottleneck processing set at each stage, 

(b) with different jobs in the bottleneck processing set at each stage, 

4. mixed: a single processing set at one stage with a higher mean workload 

than the rest of the problem. 

It should be noted that some of the types listed above are likely to resemble 

simpler systems: a single-stage, vertically unbalanced system is likely to resemble 
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a single stage of parallel machines in its scheduling difficulty; while a horizon-

tally unbalanced system with the same jobs unbalanced at each stage is likely to 

resemble a smaller hybrid flow shop (comprising the bottleneck machines at each 

stage). 

The generation of a problem instance with any of the properties given above 

can be achieved by manipulating the methods of generating operation lengths, 

processing sets and missing operations for the problem. We generate vertically-

unbalanced problems by changing the mean operation length appropriately (see 

§8.5.3), and horizontally-unbalanced problems by changing the method of assign-

ing processing sets to operations (see §8.5.4). 

Initially we shall only investigate the simpler systems (types 1, 2a and 3a), 

and we may go on to investigate the more complex types of system after our first 

sets of experiments. 

8.4.3 Other parameters 

The other parameters which may be varied to alter the behaviour of the problem 

are the selection of processing sets used in the instance, the incidence of missing 

operations in the problem, and the mean operation length. The selection of pro-

cessing sets at each stage is performed so as to guarantee that they are nested. 

The details of generating the processing sets are given in §8.5.4, below. 

Although in practice the proportion of missing operations may be higher at 

some stages than at others, we have chosen to make the proportion the same at 

all stages of a problem, in the interests of reducing the number of factors to inves-

tigate. We will, however, investigate problems with few and with many missing 

operation. For similar reasons, we will only use one value for the mean operation 

length. The details of generating operation lengths are given in §8.5.3. 

8.4.4 Factors and leve ls 

As discussed above, and summarised in table 8.1, there are many different pa-

rameters which can be varied to generate different types of hybrid flow shop 

problem. Each of these parameters we term a^cfor. Each factor may be set at a 
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number of different levels in any given experimental test set. The choice of factors 

and levels used for a particular test set is discussed for each experimental series 

individually in chapter 9. 

Factor Notation Suggested levels 

Number of jobs n 10, 50, 200, 1000 

Number of stages s 3, 5,10, 20 

Expected jobs per machine ratio P 2, 3, 6,10, 20 

Balance of workload see 8.4.2 3-6 types 

Selection of processing sets. 

Skew of proc. set tree K 0.15, 0.5, 0.85 

Selection of sets from tree a 0.2, 0.5, 0.8 

Incidence of missing operations TT 0.0, 0.2, 0.6 

Expected length of operation 10 

Table 8.1: Parameters for generating instances 

8.5 Generation of instances 

In this section we describe the details of generating instances. For each combi-

nation of the test factors described in table 8.1, the parameters for generating 

an instance taJce different values. The data to be generated for each instance is 

summarised in table 8.2. A detailed description of the method of generating each 

aspect of an instance from the factors used in table 8.1 is given following the table. 

Parameter Description 

n Number of jobs 

s Number of stages 

Number of machines at stage k 

Pjk Operation length of job j at stage k (may be missing) 

Processing set of job y at stage k 

dj Due date of job y 

Table 8.2: Parameters for generating an instance 

Firstly, the number of jobs, M, and number of stages, s, in each instance is 
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specified by the experimental design. Secondly, for each choice of n, s and p, two 

arrangements of machines are selected. These two arrangements of machines are 

used for all instances with the given n, s and p - half of the instances for each com-

bination of factors with each arrangement. Thirdly the processing sets to be used 

at each stage are selected. Fourthly the missing operations are marked. Then, for 

each non-missing operation, an operation length and a processing set are chosen. 

Finally due dates are chosen for each job. 

8.5.1 Machine arrangements 

For each value of n, s and p, two arrangements of machines are selected. For each 

arrangement, the number of machines at each stage is chosen from a discrete 

uniform distribution with mean n /p . Any discrete uniform distribution of the 

form ^ of length 2% wiU suffice. We choose the value % to be [gn/p]. 

Thus, we shall use 

^ R 

8.5.2 M i s s i n g operations 

For each job and each stage, the corresponding operation is marked as missing 

(i.e. not processed at a given stage) with a given probability 7r, as listed in §8.4. 

If a job is given no operations as a result of this procedure, it is assigned one 

operation at a randomly generated stage. 

8.5.3 Operation length 

The lengths of operations are chosen so that the expected mean operation length 

over the whole problem is In practice, this means that the operation length is 

chosen in different ways for different behaviours of instances and for each stage in 

a problem. However, all operation lengths at a stage A: are chosen from a discrete 

uniform distribution of length 2/̂ j;̂  — 1 with mean [to be determined): 

1)- (8.1) 

2M 4M 

J p . ' 3 p 
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Balanced workloads 

The simplest case is to give a balanced workload profile across every stage of a 

problem (see §8.4, item 1). In this case, we wish the mean workload at each stage 

to be the same: 

= f o r l < A : < 5 . (8.2) 

for some workload u; to be determined. We also want the expected mean opera-

tion length over all stages, to be 

^ HjUk/MS = (8.3) 
k=l 

Equations 8.2 and 8.3 together form a set of /c + 1 linear simultaneous equations 

in k + 1 variables (the and w, which is also unknown). Substituting from 

the equations 8.2 into equation 8.3, we get 

S 

w — ( 8 . 4 ) 
t=i 

Putting this back into equations 8.3, we 5nd that at stage Ac, the expected mean 

operation length, is 

The actual processing times of operations, is then taken from the distribution 

in equation 8.1. 

Vertically unbalanced workloads 

For verticaHy-imbalanced instances, some stages may have a bottleneck measure 

times higher than the rest. For a single "bottleneck" stage (e.g. type 2a from 

§8.4), one stage, 6, is chosen at random, = 1 for all A: ^ 6, and = 2, say, to 

give a single stage with a workload twice as high as all other stages. For systems 

with multiple bottleneck stages (type 2b), several stages, 62,.. . , are chosen to 

have high workload (/̂ ^̂  = A? — - — 

We use equation 8.3 as before, and select the operation lengths from the dis-

crete uniform distribution, as before (equation 8.1). The conditions on workload 
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(equations 8.2, above) become 

= Az// Vk, (8.5) 

for some w to be determined. Substituting 8.5 into 8.3, we obtain 

= (8.6) 

and hence (from equations 8.5) 

A — 
Zy=l /3ym/ 

8.5.4 Processing sets 

Assigning processing sets to operations is done in two steps. First, for each stage, 

the available processing sets are generated. Secondly, each operation is given a 

processing set from those available at the relevant stage. 

To generate a collection of processing sets to be made available at a stage, 

a complete set, of 2m^ — 1 processing sets is constructed using a recursive 

process. The parameter K governs the s/cew of the generated set of processing sets, 

A /c of 0 or 1 will produce a highly skewed collection of processing sets (see 

figure 8.1), whereas a K value of 0.5 will produce a generally evenly-balanced 

collection of processing sets (see figure 8.2). Note that since this a random process, 

setting K = 0.5 does not guarantee a perfect balance, but will on average produce 

more well-balanced trees than any other value of K. 

Procedure MAKE_PR0CESSING_5ETS 

begin 

Initialise P = { 1 , . . . , to be the set of all machines at stage A:. 

Initialise the set to {P}. 

Call make_subsets(P) 

end 

Procedure MAKE_5UBSETS(M) 

begin 
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Czt/gM g processing sef M, consfrucf fwo swbsefs, and M2 f;]/ f/ze^ZZowmg 

process; 

Initialise Mi and M2 to be both empty. 

For each machine in M, place it with probability K in set Mi. If not placed in 

Ml, place it in Mz. 

If |Mi| = 0, choose a single machine from M2 and move it to Mi. 

If IM2I = 0, choose a single machine from Mi and move it to M2. 

Add Ml and M? to 51 .̂ 

If |Mi| > 1, recurse make_subsets(Mi). 

If IM2I > 1, recurse make_subsets(M2). 

e n d 

{ 1 , 2 ^ ^ 6 } 

{1} { 2 , 3 ^ 6 } 

{2} { 3 , 4 ^ 

{3} {4 ,5 ,6} 

{4} {5 ,6} 

{5} {6} 

Figure 8.1: Skewed collection of processing sets (/( = 1.0) 

{1 ,2 ,3^ ,5 ,1 

{1 ,2 ,3} {4 ,5 ,6} 

: i , 2 } {3} {4} {5 ,6} 

{!] {2} {5} {6} 

Figure 8.2: Example of a (perfectly-) balanced collection of processing sets 

0.5) 

After generating a complete set of 2mĵ  — 1 processing sets, only some are se-
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lected for allocation to operations. The full set (the original P, above) is always 

selected. The other processing sets are each selected with probability cr. Finally, 

processing sets are allocated to operations at stage A: at random from the available 

ones at that stage. 

8.5.5 D u e dates 

Due dates are selected to give a "reasonable" range for completing jobs. The ear-

liest that a job can be completed is the sum of the processing times of its oper-

ations, Since we do not know the operation processing times at the point 

when we choose the due date distribution, we must work on a statistical basis -

the expected mean operation processing time is and each job has at most k op-

erations, with a proportion, 7r, of those being missing operations. Therefore, the 

expected value of the earliest possible completion time for a job is — 7r), and 

we use this as the minimum value for the due date distribution. 

The latest that we might reasonably expect a job to be completed is after being 

the last job to be scheduled at each stage, and where the stages have no overlap. 

Again, w e must work on a statistical basis. There are A: stages, each of which will 

have an expected jobs per machine, if there are no missing operations. With 

operations taking a mean of // time-units to complete, one would expect each 

stage's processing to take — 7r) time-units, giving an expected value of the 

latest possible completion time for a job to be — 7r). We use this as the maxi-

mum value for the due date distribution. Therefore, we select due dates from the 

discrete uniform distribution 

- 7r]). 

In the next chapter, we describe the analysis method and results obtained from 

computadonal experiments. The experiments cover much of the range of possi-

ble solution methods described in this chapter, and use the problem-generating 

methods of this chapter to test the algorithm variants over a wide range of possi-

ble input problems. 



Chapter 9 

Experimental results 

In this chapter, we describe l±ie computational experiments that we have per-

formed. The aim of these experiments is to answer the questions posed at the 

end of chapter 7. The techniques which we have used to generate the experimen-

tal sets were described in the previous chapter. We first introduce the statistical 

framework - analysis of variance - which we will use to structure the experi-

ments and results. Then we describe each of four sets of experiments in turn, and 

analyse their results both individually and taken as a complete corpus of data. 

Finally, we give a decision tree which can be used to select the optimal algorithm 

for any given type of input problem. 

9.1 Industrial tests 

One important experiment we performed was a test with live data taken from 

Foster Mills. This was to test the applicability of our hierarchical decomposition 

procedure to the original industrial system which originally inspired the prob-

lem. We took a week's worth of production data from the specialist treatment 

plant and converted it to a mathematical expression of the problem. We used the 

three-stage hybrid flow shop model of the plant which we developed in §3.5 as 

the machine model. The complexities of extracting suitable information from the 

available data meant that it was impractical to attempt to run this experiment 

with more than one data set. However, the data set used was typical of the plant 
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usage. 

After running the algorithm, we drew Gantt charts of the resulting schedule 

and showed them to the Mill management, including those currently responsi-

ble for its scheduling. They concluded that the machine-generated schedule was 

comparable in quality to the manually-generated schedules which were drawn 

up daily. 

Since we used the decomposition algorithm developed in chapter 7, our so-

lution only dealt with scheduling on the machines, although it took account of 

the relevant processing sets at each stage. Our solution did not account for the 

additional constraints from the inter-process storage bins. However, the solution 

was sufficiently good that it would have required little effort to modify it (even 

by hand] to fulfil the bin constraints as well. 

The major benefit that would have been seen in using our algorithm (or a ver-

sion of the algorithm which accounted for bin constraints) is that the time taken 

to generate a schedule drops from several hours to a fraction of a second. This 

drop in time-scale would make it vastly easier to modify a schedule as and when 

new orders come into the system - currently a major problem. It also means that 

jobs will not get omitted or lost during the scheduling process, as our automated 

computer process is considerably more reliable than the current manual one in 

that respect. 

9.2 Fractional factorial design 

In the description of algorithm options and problem conGgurations given in §8.1, 

there are eight variable factors governing the type of problem, and four factors 

governing the type of algorithm to use. Each of these factors has at least two 

levels. We may select the conditions and algorithm for a single experiment by 

choosing one level from each factor; this selection may be performed for each 

factor independently. 

If every level of every factor were to be compared against each other, there 

would be 4 4 4 - 3 2 - 3 3 2 6 3 6 = 746,496 possible combinations of the 

different levels. With a need for several instances of experimentation for each 
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combination (at least 10 is recommended[26]), the number of experiments could 

be well into the millions. 

To reduce the number of experiments required for results, we take two ap-

proaches. Our first approach is to perform a set of experiments covering some 

but not all of the possible levels within each factor. This wiU enable us to exam-

ine the behaviour of some of the possible algorithms, and to discard particularly 

badly-performing variants, reducing the total number of combinations needed 

for a second, more complete, run of experiments. 

Our second approach is to perform only some of the full set of experiments, 

omitting experiments in a controlled manner which allows the analysis of vari-

ance still to extract the maximum amount of information from the data set. This 

can be accomplished by the use of a so-called /racfzoMoZ ezpenmeMfaf de-

sign. Such a design uses only a proportion of the combinations in the full grid. To 

generate a l / n fractional factorial design, we use the following method: 

If we denote the factors by a, 6 , . . . , and the levels of, say factor a by oo, . . . , 

then a combination of levels (ay, . . .) is used for experiments only if 

2 + ; + . . . = 0 mod n. 

(Note that the levels of each factor are indexed from zero.] 

This selects l / n of the possible combinations of levels, in an evenly-spread 

manner such that no combination of factors has more experiments with one set of 

factors than another. If n is chosen to be greater than the largest number of levels 

of any factor, then this property does not necessarily hold, so care must be taken 

to ensure a suitable selection of n. 

In the following sections, we set out in detail the factors and levels affecting 

the problem configuration which we shall use, and how these parameters are 

used to generate sample problem instances for experimentation. 

9.3 Statistical analysis 

Given the large number of algorithm options and variation in problem type, some 

care must be taken to ensure that the results we obtain can be analysed and con-
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elusions drawn as to the efGcacy of our algorithms. In particular, there will be 

some effects in our results which are easily predictable - for example, the time 

taken to run the algorithm will increase as the number of jobs increases. We must 

design our experiments and analyse the results so as to be able to account for 

the known and expected effects, and to reveal the effects which we are trying to 

investigate. 

To this end, we will use analysis of variance (or ANOVA) to Inform our ex-

perimental design, and to study our results. AfVO\A [22] is a statistical technique 

which can be used to separate and identify the effects of several [orthogonal) 

choices made when performing experiments. As a simple example, consider an 

experiment with three algorithms. A, B and C, each of which is tested on two 

types of problem, Y and Z. The example above has two factors, with two and 

three levels respectively. Thus, six experiments are performed, with the results 

filling the six squares in the grid shown in table 9.1. 

Alg A AlgB AlgC 

Problem Y :Kcy 
Problem Z :i:cz 

Table 9.1: Example ANOVA grid 

The analysis of variance in this case treats each result as being composed of 

four components: a constant value, k, a contribution dependent on the algorithm 

type, a, (z E (A, C}), a contribution dependent on the problem, by (y E {Y, Z}), 

and a contribution dependent on both algorithm and problem, The ANOVA 

thus breaks down each result %/y as 

Xij — h. ~f~ 'V 

Most computer implementations of ANOVA ensure that the mean of the a;S, the 

mean of the bys and the mean of the 6;ys are all zero. 

With three factors, ANOVA would break down each result as 

— A: + 0; + 4- + {6c 

using not only the first-order effects of the three main factors separately, g,, by and 
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but also the second-order effects of each pair of main factors, {a6}y , and 

{bc}̂ ;k, and the third-order effects, 

Analysis of variance can operate not only with single measurements in each 

"cell" of the experimental design, but also with samples consisting of several re-

suits from similar experiments. In this case, the analysis is performed to identify 

the effects on the sample means. It is not necessary to ensure that each cell has the 

same number of readings in its sample; it is not even necessary to have a sample 

in every cell. However, ANOVA. does make the assumption that the samples in 

all cells come from populations with identical variances. 

When given a sufGciently large number of values in each sample, ANOVA 

can yield confidence intervals for the effect of each level of each factor and for 

each of the higher-order effects. The confidence interval is an estimate of whether 

the effect under consideration is indistinguishable from zero, and can be used to 

identify factors, individual levels of factors or higher-order effects which have no 

apparent effect on the sample mean. There are a number of computer programs 

available which perform analysis of variance. We use SPSS for this task. 

9.4 Preliminary investigations 

Due to the impossibly large size of a complete set of experiments covering all 

levels of all factors (see §9.2], we have only taken a reduced set of factors and 

levels in each of two sets of experiments. Neither set covers all of the possible 

ground, but between them we will obtain enough information to develop and 

properly target the main investigative experiments. 

In order to identify which factors are worth investigating, we first make a 

broad but incomplete investigation of the whole space of possible combinations. 

From this broad investigation, we can identify which factors and combinations of 

factors should be used for more detailed and complete experiments. We present 

the set-up and results for each of the two sets of preliminary experiments below. 
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9.5 Preliminary investigation - Erst set 

We present the results for each set of experiments in three parts: Arstly, the set-up 

of the experiments, showing which levels and factors were used to generate the 

test problems and which algorithm variants were tested. Secondly, we present the 

main effects and second-order effects affecting the objective function, as found by 

the ANOVA analysis. Finally, we give a short discussion about the amount of time 

it takes the algorithm to run and therefore the size of the problems it can solve. 

The first set of experiments uses the reduced set of factors and levels given in 

table 9.2. Some factors are omitted from the design (processing set skew, for ex-

ample), and hence have only a single level. Some factors, such as the sub-problem 

solution procedure, do not cover all of the possible levels of the factor. These ini-

tial experiments wiU indicate if the factors are relevant to the performance of the 

algorithm, and hence whether it is worth investigating in greater depth. Despite 

the reduction in size, this design has 1944 cells in the ANOVA grid. We selected 

a 1 /3 fractional design, with 20 experiments in each cell, for a total of 12960 indi-

vidual experimental runs. 

Factor Levels 

Number of jobs, n 10, 50, 200 

Number of stages, s 3, 5,10 

Jobs/machine ratio, p 10, 6, 3 

Processing set skew, K 0.5 

Processing set selection, cr 0.2 

Balance of workload Type 1, Type 2a (see 8.4.2) 

Missing operations, vr 0.0 

Mean operation length, /Lt 10 

Decomposition method Stage, Execution set 

Criticality measure Stage order, Reverse stage order, NLBW 

Sub-problem solution procedure JPS,NJ 

Backtracking method None, Single-pass, Multi-pass 

Table 9.2: Preliminary experiments, first set: experimental design 

For each experimental run, we recorded the maximum lateness of the result-
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ing solution, and the processor time taken by the solution process. The results 

were processed through the ANOVA component of SPSS, and the main effects 

and second-order interactions were examined. It proved impossible to investi-

gate third order or higher effects in SPSS due to memory restrictions. 

We can show the main and second-order effects graphically using thumbnail 

graphs such as that in figure 9.1. Each graph shows the levels of one main ef-

fect across the horizontal axis. For those graphs showing second-order effects, 

the levels of the second factor are shown with different point shapes. A signifi-

cant second-order effect will show up as non-parallel data series in the graph. On 

some graphs, "whiskers" can be seen extending above and below the data points, 

indicating the extent of the 95% confidence interval for each data point. Where 

there are no visible whiskers, they are smaller than the size of the data point, and 

are hidden by it. The means plotted on the graphs are not exact means of the no-

tional underlying population from which the samples have been taken. Rather, 

they are estimates based on the available data. The 95% confidence intervals give 

a range inside which the actual mean is expected to lie (with 95% probability). 

If two samples in the analysis have differing means, it is useful to know 

whether they are signiHcantly different from each other, or whether they are 

within the bounds of experimental error. This function is also performed by the 

confidence intervals: if one sample mean is outside the confidence interval of the 

other, then the samples are from different populations. This type of comparison 

is performed automatically by the ANOVA procedure, and is given as a signz/i'-

coMce uafue for each comparison. The significance value is the probability that the 

samples being compared come from the same population. In our analysis, where 

we are working at with 95% confidence intervals, a significance value lower than 

5% (0.05) indicates that the samples being compared are significantly different. 

In a first-order comparison, a statistically significant comparison Indicates 

that at least two of the levels being compared have sample means which differ 

by more than their confidence intervals. In a second-order comparison, where the 

interaction of two different factors is tested, a significant comparison indicates 

that at least one combination of levels of the two factors has an effect which can-
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not be explained by an addition of the two relevant first-order effects. Thus, in 

first-order comparisons, we are looking at the primary differences between levels 

of one factor. Whereas in a second-order comparison, we are looking for synergis-

tic (or dysergistic) effects from particular levels of two factors operating together. 

9.5.1 Main effects 

We start by examining the effects on the objective function of each factor sep-

arately. The results are summarised in table 9.3. In the table, we see that every 

factor has significant variation between its levels except for the sub-problem so-

lution procedure. However, we would expect to see many of these significant 

effects in any set of experiments. In particular those factors above the double line 

in the table affect the size and type of the problem. These factors are certain to 

produce variations in the objective function. Briefly, 

jl̂ obs: As the number of jobs increases, so does the maximum lateness. With only 

10 jobs, the mean Imax is -6.9, rising to 31.6 for 50 jobs, and 52.9 for 200 jobs. 

Stages: As the number of stages increases, so does the maximum lateness. Our 

3-stage problems have a mean objective function value of 24.4, rising to 30.1 

for 10-stage problems. This apparently small change (particularly with ref-

erence to the large change as a result of the number of jobs) is probably due 

to the way in which we calculate job due dates when generating problem 

instances, which aims to minimise this particular effect. 

Jobs/machine: As the number of jobs per machine increases, so does the maxi-

mum lateness, since each individual machine is more heavily loaded, and 

operations become more delayed. 

Workload balance: Balanced problems have a lower value (mean of 21.6) 

than problems with bottleneck stages (with a mean of 30.2). This is to be 

expected, since the bottleneck problems have greater job congestion at the 

bottleneck stages. 

Of more interest are the effects of the algorithm options, individually as main 

effects and in combination with each other and with the instance parameters. 
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Each of these effects is shown in the thumbnail graphs on the following pages. 

Decomposition: Execution set decomposition, with an imax of 28.5, is less effec-

tive than stage decomposition, with an Imax of 23.3. See Hgure 9.1. 

Criticality measure: Adding the sub-problem solutions to the partial solution in 

stage order (mean objective function of 11.2) is better than doing it in re-

verse stage order (-Lmax = 25.4), which is considerably better than doing it 

in NLBW order (imax = 41.1) (see hgure 9.2). 

The difference between stage order and reverse stage order is probably due 

to the fact that due dates and release dates in the sub-problems are not dealt 

with in the same way: release dates are hard constraints, whereas due dates 

may be exceeded. As a result, the problem is not reversible, so an asymme-

try would be expected. It makes more sense to solve sub-problems in stage 

order, as then the release dates in each sub-problem are a realistic surro-

gate for the earlier operations. On the other hand, solving sub-problems in 

reverse order does not use representative values for release dates until all 

sub-problems have a solution. 

Sub-problem solution procedure: There is a small, but statistically significant, 

difference between the Jackson for Processing Sets (JPS) and the Nested 

Jackson (NJ) sub-problem solution method (figure 9.3). The NJ algorithm 

appears to have a small benefit over the JPS algorithm, by 26.5 to 25.3. 

Backtracking: No backtracking at all appears to be better than either of the back-

tracking methods we have tried (figure 9.4). No backtracking gives a mean 

Imax of 24.1, whereas single-pass backtracking gives a mean of 26.5, and 

multiple-pass backtracking a mean of 27.0. This may be due to the sub-

problems becoming too tightly-coupled 

9.5.2 Second-order effects 

When we examine second-order effects, we are looking for results which are bet-

ter (or worse) than can be explained by a sum of the Hrst-order effects. In other 
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Factor Significance 

}obs 0.000 

Stages 0.000 

Jobs/machine 0.000 

Workload balance 0.000 

Decomposition 0.000 

Criticality measure 0.000 

Sub-problem solution procedure 0.014 

Backtracking 0.000 

Analysis performed at 5% significance level. Values under 0.05 (in bold) indicate a significant effect 

of the factor. 

Table 9.3: Preliminary experiments, first set: main effects affecting 2,̂  

words, are there particular combinations of levels of particular factors which per-

form signiEcantly better or worse than expected? As in the previous section, we 

analyse the results using the significance tests from the analysis of variance. A 

summary of the results can be found in table 9.4. 

As before, we are not particularly interested in effects involving the factors 

governing instance size or shape. Although they all have highly signiGcant inter-

actions, these are entirely expected results. We are more interested in interactions 

where one or both factors are an algorithm variant. These are shown in table 9.4 

in the right-hand four columns, and the bottom three rows for interactions in-

volving two algorithm variants. 

The most obvious point about these results is that the sub-problem solution 

procedure has no significant interactions with any other factor. This is not an un-

expected result, given that the choice of sub-problem solution procedure does 

not have a strongly significant effect on the solution quality (although it is sig-

nificant). Also expected are the second-order effects of decomposition, criticality 

measure, workload balance and backtracking against jobs, stages and jobs per 

machine. These all simply follow further the trends established by the underly-

ing main effects. 
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More interesting are the interactions between the different algorithm variants 

(in the bottom right-hand comer of table 9.4). There are three signiEcant interac-

tions between the different levels of these factors: 

Criticality measure and decomposition method: The NLBW criticality measure 

is much better (by 13.1 time units) when used with the stage decomposition 

method compared to using it the execution set decomposition (figure 9.5). 

The other two criticality measures we examined are not affected by the de-

composition used to anywhere near as great a degree, although the effect of 

decomposition with the reverse stage criticality measure is also significant 

(but only by 2.8 time units). 

Decomposition method and backtracking: Working with execution set decom-

position rather than stage decomposidon gives a greater variability in per-

formance across other algorithm options, usually for the worse (see Egure 

9.6). Using stage decomposition, the different backtracking methods show a 

total variation of 0.4 time units, whereas execution set decomposition shows 

a much greater variation of 5.5 time units. 

Backtracking and criticality measure; Although this effect is not strictly signif-

icant by the letter of the statistical test, it is only barely outside the cut-off 

value, and is worth mentioning: We find that backtracking has little effect if 

the subproblems are solved in stage order, and has a worsening effect if the 

subproblems are solved in any other order (see figure 9.7). 

9.5.3 Execut ion t ime 

All of our test runs were performed on a uni-processor AMD K6-2/500 - roughly 

equivalent to a Pentium n/500. The actual CPU usage was measured using the 

timing functions built into the standard POSIX C library. These functions are ac-

curate to 0.01 CPU seconds (1 cs) on the architecture we used. 

The running time of the algorithm is generally very small - most of the prob-

lems were solved in under 0.1 s. However, some of the problems took over 5 min-

utes to solve with some algorithm variants. Specifically, the longest running times 
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Jobs 0.000 0.000 0.000 0.000 0.000 0.122 0.000 

Stages 0.000 0.000 0.000 0.000 0.165 0.000 

Jobs/ machine 0.002 0.000 0.000 0.664 0.398 

Workload balance 0.015 0.000 0.271 0.743 

Decomposition 0.000 0.739 0.000 

Criticality measure 0.417 0.052 

Sub-problem solution 0.241 

Analysis performed at signiAcance leveL Values under 0.05 (in bold) indicate a signi6cant in-

teraction between the factors. 

Table 9.4: Preliminary experiments, Hrst set: significance of second-order effects 

affecting Imax 

all came from the largest size problems [200 jobs, 10 stages), using the multiple-

looping backtracking method and decomposition by execution set. The effect of 

decomposition by execution set of increasing the running time of the algorithm is 

quite marked: on average, the execution set decomposition variants took 17.7 s, 

whereas the stage decomposition variants took 0.29 s. This is probably an effect of 

there being many more sub-problems, causing many more expensive backtrack-

ing phases in the algorithm. 
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9.6 Preliminary experiments - second set 

The second set of experiments Includes all of the factors not Investigated in the 

Hrst set, and omits some factors and levels of factors. In particular, we omit the 

very large problems of 200 jobs, since the algorithm variants behaved in the same 

way for the large problems as for the small, and the omission of the large prob-

lems will significantly reduce the amount of time to run the tests. We also omit 

the p = 5 jobs per machine level since the effects across the values of p appeared 

to be continuous from the previous experiments. We omit one of the sub-problem 

procedures, the NJ solution method. The performance of the two sub-problem so-

lution methods used in the last set of experiments was sufficiently close that we 

need only test with a single method in this set of experiments. 

A summary of the factors and levels used in these experiments is given in ta-

ble 9.5. There is a total of 7776 cells in the ANOVA grid from this design. With a 

1 /3 fractional factorial design and 20 instances per cell, this gives 51840 experi-

ments in total. 

Factor Levels 

Number of jobs, n 10, 50 

Number of stages, s 3,10 

Jobs/machine ratio, p 10, 3 

Processing set skew, K 0.15, 0.5, 0.85 

Processing set selection, i7 0.4, 0.8, 1.0 

Balance of workload Type 1, Type 2a (see 8.4.2) 

Missing operations, vr 0.0, 0.4, 0.8 

Mean operation length, // 10 

Decomposition method Stage, Execution set 

Criticality measure Stage order, Reverse stage order, NLBW 

Sub-problem solution procedure JPS 

Backtracking method None, Single-pass, Multi-pass 

Table 9.5: Preliminary experiments: experimental design, second set 



Chapter 9. EXPERIMENTAL RESULTS 146 

9.6.1 Main effects 

The mean objective function values in the analysis of this second run of experi-

ments is much smaller than in the previous set, since the larger problems (with 

200 jobs) have been omitted in the interests of reducing the size of the experi-

mental data set and computation time required to perform the tests. Most of the 

main effects used in the current set of experiments show a statistically significant 

effect on the objective function value. See table 9.6 for a summary of the signifi-

cant effects. Many of these - primarily those governing the instance shape - are, 

as in the Hrst set of experiments, expected. Those results worthy of more detailed 

comment are: 

Density of processing sets: The inclusion of a small number of processing sets 

makes Imax higher than choosing large numbers of processing sets or none 

at all (Ggure 9.8]. Picking 40% of the available processing sets makes the 

mean value 5.4 time units higher than using all of the available pro-

cessing sets in our tests, compared to a standard error of 0.22 at the 5% level. 

This is an artefact of the way that problems are generated: with only a few 

processing sets available at a stage, some of only a few machines in size, the 

"even" assignment of processing sets to operations ensures that some ma-

chines are more heavily overloaded than others. This overloading causes 

operations on those machines to be delayed, increasing the maximum late-

ness. 

Processing set skew: There is a statistically significant difference between prob-

lems with different processing set skews. The data are surprising, show-

ing an unbalanced response - problems with processing sets skewed to the 

"left" (K = 0.15) show a higher mean than well-balanced problems (K = 0.5), 

which in turn have a higher mean objective function value than problems 

skewed to the "right" (/t = 0.85). The "left-skewed" problems have a mean 

of 18.6, falling to 17.4 for the right-skewed problems. We would expect the 

left- and right-skewed problems to have similar mean values. There is no 

obvious reason for this difference in either the data generation or solution 
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methods. 

Balance of workload; As we saw in the first set of experiments, balanced prob-

lems have a lower workload - with a mean Imax of 15.0 compared to prob-

lems with bottleneck stages, where the mean is 21.2. 

Proportion of missing operations; The proportion of missing operations affects 

the objective function, as might be expected. With no missing operations, 

the mean objective function is 14.9. As the number of missing operations 

increases, so does the objective function, rising to 21.6 with 80% missing op-

erations. One might expect fewer operations (i.e. more missing operations) 

to cause a drop in Imax, but this effect appears to be over-compensated for 

by the correction factor of 1 — vr in the calculation of due date when gener-

ating problems, where TT is the proportion of missing operations (see §8.5.5 

for more details). 

Criticality measure: The results for the effect of criticality measure are almost 

identical to those from the first set of experiments, with the NLB W criticality 

measure being significantly worse (Imax = 24.5) compared to either reverse 

stage order (Zmax = 18.3) or stage order (Imax = 115) (Hgure 9.10). 

Backtracking: The effect of the backtracking method is not statistically signifi-

cant at the 5% level. However, it shows the same type of shape as the previ-

ous results, even if they are not significant (figure 9.11). 

9.6.2 Second-order effects 

Looking in more detail at the second-order interactions between pairs of factors 

summarised in table 9.7, we see that most of the results are similar to those of the 

previous set of experiments. Those results of most interest are examined in more 

detail below. 

Processing set skew; The left-right skew of processing sets has no significant 

second-order interactions with any other factor in the experiment, barring 
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Factor SigniAcance 

Jobs 0.000 

Stages 0.000 

Jobs/machine ratio 0.000 

Processing set skew 0.001 

Processing set density 0.000 

Balance of workload 0.000 

Missing operations 0.000 

Decomposition 0.302 

Criticality measure 0.000 

Backtracking 0.420 

Table 9.6: Preliminary experiments, second set: main effects affecting objective 

function 

Analysis performed at 5% significance level. Values under 0.05 (in bold) indicate a significant effect 

of the factor. 

the number of jobs and the number of stages which have such a large effect 

on their own that we would expect to see some kind of interaction. 

Decomposition method and number of stages: Decomposition by execution set 

is worse than by stage for large numbers of stages, but better for fewer 

stages. The difference is small - only a matter of 0.7 units better for 3 stages, 

and 1.3 units worse for 10 stages. See figure 9.12. 

Missing operations and decomposition method: As the proportion of missing 

operations increases, decomposition by execution set improves relative to 

decomposition by stage (figure 9.13). At 80% missing operations, decompo-

sition by execution set is better by 0.8 units on average, compared to being 

1.9 units worse with no missing operations. The effect is probably due to the 

decreasing linkage between problems as the number of missing operations 

increases. Each job directly affects those sub-problems in which it has op-

erations. With more missing operations, each job directly affects fewer sub-

problems, thus in general decreasing the effect that any one sub-problem 

may have on any other. 

Decomposition and criticality measure: With the stage and reverse-stage order-
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ings for the criticality measure, there are very small (although statistically 

significant) deviations from the mean for each of the two decomposition 

methods. Decomposition by execution set is slightly preferable by 0.5-0.6 

units. However, when using the NLBW criticality measure, decomposition 

by stage is clearly better than decomposition by execution set, by 1.0 units 

(figure 9.14). This is the effect seen in the previous set of experiments. 

9.6.3 Execut ion t i m e 

This second set of experiments behaves in general in exactly the same way as 

the Erst set of preliminary experiments. It is worth making the comment that 

although there were four times as many experiments in this set as the previous 

set, in practice it took less than a quarter of the time to run compared to the first 

set of experiments (12 hours compared to 2.5 days elapsed time). This appears 

to be almost exclusively due to the omission of the 200-job instances, which take 

a very long time to solve - particularly with multiple-looping backtracking and 

decomposition by execution set. 
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9.7 Targeted experiments 

We complete the results of the computational experiments with a set of slightly 

more targeted experiments. We omit some of the less interesting factors, such 

as balance of workload, which does not show any useful interactions with the 

algorithm variants, and attempt to concentrate more on those factors which have 

shown significant first- and second-order effects. We also broaden some of the 

factors to include more levels - in particular, we examine Eve different criticality 

measures, rather than the three which we have used previously. The factors used 

in the experiments are summarised in table 9.8. 

The design consists of 6480 cells in the ANOVA grid - much larger than the 

first set of experiments, and slightly smaller than the second. We used a 1 /4 frac-

tional design with 20 instances per cell. The design was slightly unbalanced, pro-

viding 1618 different combinations (as opposed to the 1620 expected), and hence, 

at 20 experiments per ceU, 32360 experiments in total. Although it may theoret-

ically have an impact, we do not believe that the small imbalance in the design 

will materially affect the results. 

Factor Levels 

Number of jobs, n 10,100 

Number of stages, s 3,10, 20 

Jobs/machine ratio, p 10,3 

Processing set skew, K 0.5 

Processing set selection, cr 0.1, 0.3, 0.9 

Balance of workload Type 1 [see 8.4.2] 

Missing operations, vr 0.0, 0.5, 0.9 

Mean operation length, // 10 

Decomposition method Stage, Execution set 

Criticality measure Arbitrary, Stage, Rev. stage, NLBW, Workload 

Sub-problem solution proc. JPS, EDD 

Backtracking method None, Single-pass, Multi-pass 

Table 9.8: Targeted experiments: experimental design 
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9,7.1 M a i n effects 

The significance values of the main effects observed in these experiments are 

summarised in table 9.9. All of the main effects tested in this set of experiments 

are statistically significant. The effects of the instance parameters (the first five 

factors in the table) have been discussed previously. The four factors of the algo-

rithm variant are discussed below: 

Decomposition method: As we saw in the previous sets of experiments, decom-

position by stage is in general better than decomposition by execution set. 

In this experimental run, it is better by 24.3 time units to 26.7 units. See 

figure 9.15. 

Criticality measure: The criticality measure is a factor on which we have used 

more levels than in previous experiments. Specifically, we have run these 

experiments with the addition of an arbitrary criticality measure, and a 

workload-based criticality measure. The results [figure 9.16) show that ar-

bitrary order is at least as good as reverse stage order (26.1 time units on 

average, compared to 26.6 time units for reverse stage order, with a confi-

dence interval of 1.3 units). The workload measure does not perform well, 

being as bad as the worst-performing NLBW measure (workload Imax = 

29.3 time units; NLBW Imax = 30.2 units). 

Sub-problem solution procedure: The EDD method is considerably more effec-

tive than the JPS algorithm, by 13.7 to 37.4 time units (see figure 9.17). This 

is a surprising result, as we would expect the JPS method to be better, since 

it is descended from Jackson's method, which outperforms the equivalent 

(non-nested) earliest-due-date method for solving parallel machine prob-

lems without processing set restrictions. 

Backtracking: In these experiments we again see that no backtracking performs 

better (imax — 24.4) than the other two forms of backtracking we tested. 

However, in these experiments, multiple-pass backtracking works better 

(-Lmax = 25.6) than single-pass (Imax = 26.6). See figure 9.18. 
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Factor Significance 

Jobs 0.000 

Stages 0.000 

Jobs/machine 0.000 

Processing set selection 0.000 

Missing operations 0.000 

Decomposition 0.000 

Crit. measure 0.000 

Sub-problem solution proc. 0.000 

Backtracking 0.012 

Table 9.9: Targeted experiments: main effects 

Analysis performed at 5% significance level. Values under 0.05 (in bold) indicate a significant effect 

of the factor. 

9.7.2 Second-order effects 

Here we see in table 9.10 that most of the second-order effects are also statisti-

cally significant at the 5% level. Only the backtracking has some non-signiEcant 

second-order interactions. Those interactions of particular interest are described 

below: 

Number of stages and decomposition method: With a small number of stages, 

there is no significant difference between the decomposition methods we 

compared. However, as the number of stages increases, stage decomposi-

tion becomes increasingly more effective, with stage decomposition giving 

^max of 12.7, compared to an i^ax of 16.5 with execution set decomposi-

tion (see figure 9.19). 

Number of stages and criticality measure: Increasing the number of stages, we 

see that the performance differences between the various criticality mea-

sures also increase. With three stages, there is no significant difference (or 

only a small difference) between the criticality measures - a total spread of 

2.8 time units on average. Going up to 20 stages, however, increases the to-

tal range to 27.9 time units (see 6gure 9.20). With a small number of stages, 

the best criticality measure to use is (marginally) the reverse stage order; 
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with larger numbers of stages, the best measure is clearly stage order, with 

reverse order and NLBW coming last. 

Jobs per machine and backtracking: With few jobs per machine, there is no sig-

nificant difference between the different backtracking methods. However, 

with larger numbers of jobs per machine, no backtracking appears to be the 

better option (see figure 9.21), giving a mean objective function value of 11.0 

time units, compared to 14.7 for the next best (multiple pass backtracking], 

with a confidence interval of 1.4 units. 

Processing set density and algorithm variants; We see from these results that as 

the density of processing sets increases, the algorithm variants generally 

become closer together in performance terms. See Hgures 9.22 and 9.23 for 

examples. 

Missing operations and algorithm variants: As with the processing set density, 

as the number of missing operations increases, the performance of the dif-

ferent algorithm variants becomes closer. Examples are shown in figures 

9.24 and 9.25. 

Sub-problem solution procedure and decomposition method: The earliest due 

date algorithm (EDD) shows no signiScant difference in performance be-

tween the two decomposition methods (Imax = 13.7). However, with the 

jPS algorithm, stage decomposition is better than execution set decomposi-

tion, by 35.0 to 39.8 time units. See figure 9.26. 

Critical!ty measure and backtracking: Using the most effective stage-order crit-

icality, multiple-pass backtracking has the best effect. However, this effect 

is reversed when using reverse stage order criticality. For the other critical-

ity measures, there is little or no significant effect on the quality of results 

between the different backtracking methods. See figure 9.27. 

9.7.3 Execution t ime 

Again, the results regarding execution time are little different from the previous 

results in the two preliminary sets of experiments. This set of experiments also 
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took much less time to run than the first set of preliminary experiments due to 

the smaller problem sizes (up 100 jobs only). 
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Stages 
1 

0.000 0.000 0.000 0.014 0.000 0.000 0.231 

jobs/machine 0.000 0.000 0.000 0.000 0.000 0.000 

Proc. set sel. 0.000 0.001 0.000 0.000 0.034 

Missing ops. i 0.000 0.000 0.000 0.006 

Decomposition 1 0.000 0.000 0.171 

Crit. measure 0.000 0.000 

S-P.S.P 0.001 

Table 9.10: Targeted experiments: significance of second-order effects 

Analysis performed at 5% significance level. Values under 0.05 (in bold) indicate a significant in-

teraction between the factors. 
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9.8 Conclusions 

In this chapter we have described three sets of tests of the hybrid flow shop so-

lution method, and analysed the results of those tests. The analysis of each in-

dividual set is given separately in the preceding sections of this chapter. In this 

section, we aim to give a description of the overall results from our experiments, 

and to give advice on which algorithm variants should be used under different 

circumstances. 

It should be noted that the scale of the testing performed in this chapter is 

considerably greater than that performed for most work in the mathematical 

scheduling literature: for example, the YKP paper tests three algorithms, on 11 

different problem classes, where we have effectively tested 90 algorithms on over 

500 classes of problem. We have performed just over 97,000 individual experi-

mental runs, generating a database of experiments and results several hundred 

megabytes in size. 

9.8.1 O b s e r v a t i o n s 

The first important observation to make about our method is that it produces ef-

fective solutions which could be used for the real-life scheduling problems at Fos-

ter Mills. Despite the fact that we omit several features of the specialist treatment 

plant - most particularly the inter-process storage bin constraints - our algorithm 

generates schedules which are usable in practice with only minor modifications, 

if any. The quality of our solutions is comparable to that of the manual schedul-

ing process currently employed, and our method is several orders of magnitude 

faster. 

Secondly we look at the theoretical performance of the algorithm obtained 

from our comprehensive computational tests. Examining the main (first-order) 

effects on the objective function, we can divide the results into two parts. Firstly 

there are certain obvious and expected results caused by variation in the instance 

parameters: 

» As the number of jobs increases, so does the objective function value. 
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# As the number of jobs per machine increases, so does the objective function 

value. 

# As balance of the problem changes from well-balanced to possessing bot-

tlenecks, the objective function is affected. 

Secondly, we can make some overall observations about the separate variants 

of each component of our hierarchical decomposition algorithm: 

# The decomposition method has a small effect on the objective function, with 

decomposition by stage being better than decomposition by execution set. 

# The initial order of solution of the sub-problems (the criticality measure) 

is very important to the solution quality. The best quality solutions are pro-

duced when the sub-problems are solved in stage order, and the worst when 

they are solved using the NLBW- or simple workload-based methods. 

We believe that this effect is caused by the temporal asynametry of the prob-

lem: release dates are absolute constraints which may not be broken, and 

due dates may be broken. When solving a problem in stage order, the re-

lease dates can be calculated exactly and make a good surrogate for the 

preceding problems. Solving the problem in any other order means that the 

release dates used while the algorithm is in progress do not necessarily re-

flect the preceding problems. 

« The simple earliest-due-date solution procedure appears to be better than 

either the Jackson for processing sets (JPS) or nested Jackson (NJ) methods. 

NJ has a slight advantage over JPS. 

Solving maximum lateness on parallel identical machines with release dates 

is a strongly NP-hard problem. Jackson's method appears to behave very 

well in solving the problem. However, it is likely that when we generalise 

the problem slightly to impose processing set restrictions (even if they are 

only nested], we force the problem away from the "easy" state where Jack-

son's method, or some similar method, such as our NJ or JPS, can solve it 

easily. 
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# Backtracking appears to make the solutions worse in general - multiple 

backtracking more than single-pass backtracking. This comes from the in-

teraction of the backtracking method with the non-stage-order criticality 

measures. These criticality measures require more flexibility in the interim 

partial solutions so that when sub-problems are incorporated earlier in the 

solution it can be re-shuffled to account for the new information. By per-

forming backtracking to improve the partial solutions, that flexibility is re-

duced, and the overall solution quality suffers. 

From the above observations, the best variants overall to use for each of the 

four algorithm components are: decomposition by stage; stage order solution; 

EDD sub-problem solution; and no backtracking. This is not the end of the matter, 

however. Some of the factors in the experiments interact with each other, and thus 

there are certain situations for which the best-performing algorithm is different. 

These are summarised below, with references to the relevant sections and Egures 

in the results: 

» With few stages (2-3) in the problem, execution set decomposition should 

be used in preference to decomposition by stage. See §9.6, figure 9.12 and 

§9.7, Hgure 9.19. 

« Stage-order criticality measure should be paired with decomposition by ex-

ecution set, and the NLBW criticality measure should be paired with stage-

based decomposition. Neither of these pairings is consistent with the main 

effects in the list above; instead, the former pairing should be used in pref-

erence, as it has the best performance (i.e. the criticality measure has the 

dominant effect on the solution quality]. See §9.4, Hgure 9.5 and 9.6 and 

§9.6, figure 9.14. 

# When using the stage-order criticality measure, multi-pass backtracking is 

the best option. When using other criticality measures (particularly reverse 

stage order), no backtracking is generally better. See §9.7, figure 9.27. 
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9.8.2 A d v i c e o n a l g o r i t h m var i an t s 

From the above results, it is clear that in general the following algorithm variants 

should be used; 

# Decomposition: by execution set. 

« Criticality measure: stage order. 

« Sub-problem solution procedure: earliest due date. 

# Backtracking: multi-pass. 

The algorithm speciGed by these particular variants will solve problems better 

than any other combination of components. However, it is also the most computa-

tionally intensive method which can be used (using execution set decomposition 

and multi-pass backtracking]. In our experience, problems with 200 jobs and 10 

stages can take up to 5 minutes to run. If a faster solution is required, then we 

recommend the following combination of variants: 

# Decomposition: by stage. 

# Criticality measure: stage order. 

# Sub-problem solution procedure: earliest due date. 

# Backtracking: single-pass. 

This will reduce the running time to solve the aforementioned 200 job, 10 stage 

problem to a few seconds. 



Chapter 10 

Conclusion 

We started this thesis by presenting an industrial system - a flour mill and its 

associated specialist treatment plant for making biscuit, batter and cake flours. 

Our first task was to make a detailed analysis of the plant concentrating on those 

aspects of the plant which were relevant to its scheduling. From that detailed 

description, which was presented in chapter 2, we proceeded to develop a model 

by identifying a simple, sequential-stage layout for the machines in the plant, and 

then making progressive simplifications to the model. The final core scheduling 

model which we developed in chapter 3 resembled a three-stage hybrid flow shop 

with a number of interesting non-standard features: 

" continuous flow of material between the machines, 

« restrictions on which machines may process some jobs at certain stages, 

« increasing diversity of products through the system, and 

# a highly complex set of inter-process storage bins. 

In chapter 4 we started to develop methods for modelling the process. Specif-

ically we took the method of disjunctive graph modelling, which is frequently 

used in job shop modelling in the mathematical scheduling literature, and we ex-

tended the technique to show how it can be used to model our hybrid flow shop. 

We also developed a way to incorporate the inter-process storage and continuous 

flow aspects of our problem into the disjunctive graph. This extension allows an 
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algorithm for the discrete-flow hybrid flow shop which uses disjunctive graphs 

to be used for continuous-flow problems as well, simply by changing the con-

struction of the digraph used to evaluate potential solutions. 

We then concentrated on another aspect of our production system - restric-

tions on which machines can process certain jobs. These processzng sef resfnchons 

form an interesting extension to the scheduling literature. The simplest schedul-

ing model which can exhibit processing set restrictions is the parallel identical 

machine model. In chapter 5, we look at the behaviour of a wide range of parallel 

identical machine scheduling problems where the jobs aH have unit length and 

processing sets. We developed efficient exact algorithms for these problems, both 

with general processing sets, and for the case where the processing sets have a 

nested property, for which more efficient algorithms can be constructed. We de-

veloped algorithms for all of the common regular objective functions used in the 

scheduling literature. 

In the following chapter, we proposed several heuristic algorithms for par-

allel identical machine problems with processing set restrictions where the jobs 

lengths are general. We concentrated on algorithms for minimising the maximum 

lateness, presenting a simple earliest-due-date algorithm (EDD), and two meth-

ods based on Jackson's highly effective heuristic for the problem without pro-

cessing set restrictions, namely the Nested Jackson's method (NJ), and Jackson's 

for Processing Sets (JPS). These algorithms, although not optimal, are polynomial 

time heuristics, and can run extremely quickly even for very large problems. 

Returning to the hybrid flow shop model in chapter 7, we examined a gener-

alisation of the hybrid flow shop with processing set restrictions. We first devel-

oped a general framework for a hierarchical decomposition solution method. The 

framework breaks the whole problem into a number of smaller sub-problems, 

and then attempts to solve the sub-problems individually, tying the separate so-

lutions together as they are produced. We used that general framework to con-

struct a solution method for our extended hybrid How shop problem, utilising 

the disjunctive graph representations from chapter 4 and the heuristics for parai-

lel machines from chapter 6. We also developed components for the other three 
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parts of our decomposition framework - problem decomposition schemes, crit-

icality measures to set an order for solving the sub-problems, and backtracking 

schemes to guide the essential step of re-solving the sub-problems. We developed 

several alternatives for each of the main components of the decomposition frame-

work. Other algorithms for these replacable components could be placed within 

the framework, as more efficient methods are developed. Although the hierarchi-

cal decomposition method which we had developed did not handle either con-

tinuous flow or the complex inter-process storage which we had highlighted at 

the beginning of the thesis, both features can be incorporated into the algorithm 

without difficulty) using slightly modified parts in the overall framework. 

Having proposed a framework solution method and a set of different compo-

nents to fit in that framework, we then tested it on a wide variety of problems. 

Chapter 8 listed which algorithm variants we would test, and gave details of how 

we constructed the problem instances to use in the tests. In chapter 9, we per-

formed three separate sets of experiments, coming to a total of just over 97,000 

individual experimental runs. The results of these experiments were processed 

using analysis of variance. We analysed and interpreted the results in some de-

tail, and drew conclusions as to which algorithm variants were most appropriate 

to use across our wide range of problems. We suggest two different algorithm 

variants: one for obtaining the best results (lowest objective function) from the 

algorithm, and one for obtaining fast and effective results for solving particularly 

large problems - we can obtain results in under 10 seconds processor time on a 

500MHz K6/2 for problems with 200 jobs and 10 stages. We also performed a 

small test using a week's worth of live data (approximately 200 jobs) from the 

specialist treatment plant at Foster Mills. After showing the resulting schedule to 

the management and staff at the plant, it was concluded that our algorithm could 

be used in practice, being considerably faster and at least as effective than the 

manual process in place at the time. 

To summarise, we have started with a specialist treatment plant for making 

flour. We identified the scheduling problems in the plant, and generalised them to 

a mathematical scheduling model, which exhibited a number of interesting fea-
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tures. We then developed efficient algorithms for solving one stage of this model 

under a restricted set of assumptions. We also developed a general framework 

for a hierarchical decomposition method, and used it to make a solution method 

with many variants for an extended hybrid flow shop. Finally, we tested the so-

lution methods which we produced on a wide range of problems, and identified 

which of the algorithm variants performed best. 

10.1 Further Research 

There are several areas highlighted by this work which would probably beneHt 

from further research. Probably the greatest benefit to the hierarchical decomposi-

tion algorithm would come from the use of local search to refine the solution. Im-

proved sub-problem solution procedures might also be beneficial - for example, 

developing the branch-and-bound methods of Carlier[10] to cope with process-

ing set restrictions would yield optimal solutions for the sub-problems during the 

operation of the algorithm, and possibly improve the solution quality (although 

at the cost of higher CPU usage and hence time to find a solution). 

There are two major problems left open by this thesis which we did not have 

time to investigate in any depth. Firstly there is the problem of inter-process stor-

age allocation and scheduling with the complex storage model identified in chap-

ters 2 and 3. To develop a method for allocating jobs to bins to achieve the re-

quired routing through machines, and to sequence the jobs on the bins is a com-

binatorial problem at least as large and as difficult as the original hybrid flow 

shop problem we tackled in this thesis. 

Secondly, there is the unresolved problem involving the batching of opera-

tions which are making similar products at a given stage. The out-tree nature of 

the product hierarchy makes this a particularly interesting problem, as jobs which 

may be run together at one stage [and, in our model, stored in the same bin af-

ter manufacture) may not necessarily be amenable to similar treatment at a later 

stage. 



Appendix A 

Original process diagram 

The details on this diagram are deliberately unreadable for reasons of commercial 

confidentiality. We include it here merely to give an impression of the complexity 

of the full process model at Foster Mills. 
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Appendix B 

Dijkstra's Algorithm 

Dijkstra's algorithm[20] is an 0(M + algorithm for finding the longest (or short-

est) path from a given node in an acyclic directed graph (or Jzgrap/z) to every other 

reachable node in the graph. The algorithm relies upon the fact that every acyclic 

digraph has at least one topological sort of the nodes. A fopokgica/ sorf of a di-

graph is an ordering of the nodes such that every arc joins an earlier node in the 

topological sort order to a later one, and never a later node to an earlier. 

For example, consider the digraph shown in Hgure B.l. The graph is acyclic, 

so it possesses at least one topological sort. In this case, the sequence a, d, c, e, b, 

/ , g, will suffice. A topological sort can be found by the following procedure: 

Algorithm TOPOLOGICAL SORT 

1. Initialise 

Count the incoming arcs at each node (for each arc, increment a counter 

at its destination node) 

Place all nodes with no incoming arcs in the set of available nodes 

2. Process nodes 

While there are nodes available. 

Pick an available node (N) 

For each node, I, connected to N 

Reduce the incoming arcs count of node I by one 
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If node I has no remaining incoming arcs, add it to the set of available 

nodes 

End For 

Place node N next in the topological sort order, and remove it from the 

set of available nodes 

End While 

Figure B.l: Example directed graph 

Dijkstra's algorithm works by performing a topological sort of its input graph, 

and then processing each node of the graph in topological sort order, thus en-

suring that it does not have to deal with backward arcs. In most applications of 

Dijkstra's algorithm (such as critical-path analysis], it is usual to have a single 

"start node" with no predecessors - and to know from the construction of the 

graph which node is that start node. The existence of such a node simplifies the 

topological sort process, since then step 1 of the algorithm given above becomes 

"Initialise the list of available jobs to contain the start node". 

As the algorithm processes each node N of the graph, it updates every succes-

sor, 7, of that node to reflect the longest path currently known from the start node 

to node 7. We shall denote the start node by A. The longest path from node A to 

node 7 we shall denote by D/, and the length of the arc from node 7 to node / we 

shall denote by f/y. 

At each node N, the algorithm performs the following process: 

1. For each successor, 7, of node N: 

2. Set the longest known path from the start node to node 7 to be the maximum 
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of the current value and the path through node N: 

D ; - max(D/, 

The above description separates the topological sort process and the longest-

path calculation. In practice, it is possible to combine the two parts into a single 

pass through the nodes. As an example, consider the graph in figure B.2. The 

algorithm proceeds as follows: 

d 

b 4 

Figure B.2: Directed graph with distances 

Stage 0: Initialise 

The longest path to each node in the graph is initialised to —oo, and the refer-

ence counts are initialised to zero. 

Stage 1: Reference counts 

The number of incoming arcs for each node is calculated: 

Node a: Add one to reference counts of nodes c, d and A 

Node b: Add one to reference counts of node / 

Node c: Add one to reference counts of nodes b and g 

Node d: Add one to reference counts of nodes c and e 

Node e: Add one to reference counts of node A 

Node / : Add one to reference counts of node g 

Node g: Add one to reference counts of node 

Node A: Nothing to do 

(See table B.lj. 
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Node a b c d e / g h 

References 0 1 2 1 1 1 2 3 

Distance 0 —oo —oo —oo —oo —oo —00 —oo 

Table B.l: Example; Reference counts calculated 

Stage 2; Topological sort and longest path calculation 

Now start with node a in the list of available nodes. Process each of its succes-

sor nodes: 

Node c: decrease reference count; set distance to max(—oo, 0 -t- 2] 

Node (f: decrease reference count; set distance to max(—oo, 0 + 3) 

Node d has reference count of zero: add to list of available nodes 

Node A: decrease reference count; set distance to max(—oo, 0 + 5) 

(See table B.2) 

Node a b c d e / & h 

References 0 1 1 0 1 1 2 2 

Distance 0 —oo 2 3 —oo —oo —oo 5 

Nodes available: d 

Table B.2: Example: After processing node a 

Next, process node as the only available node: 

Node c: decrease reference count; set distance to max(2,3 + 4) 

Node c has reference count of zero: add to list of available nodes 

Node e: decrease reference count; set distance to max(—oo, 3 + 5) 

Node e has reference count of zero: add to list of available nodes 

(See table B.3) 

We can now process either node c or node e next - the order is irrelevant. 

Continuing this process, we obtain the contents of table B.4 as the final state of 

the algorithm. From this table, we can read, in the distance row, the longest path 

from node a to any other node in the graph. 
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Node a b c d e / & h 

References 0 1 0 0 0 1 2 2 

Distance 0 —oo 7 3 8 —oo —oo 5 

Nodes available: c, e 

Table B.3: Example: After processing node 

Node a b c d e / g h 

References 0 0 0 0 0 0 0 0 

Distance 0 1 7 3 8 3 7 11 

Nodes available: none 

Table B.4: Example: After processing node A 

B.l Efficient implementation 

The algorithm described above may be implemented to run in 0(M + m) time, 

where n is the number of nodes, and m the number of arcs. In this section, we 

give the implementation details to achieve this efficiency. 

The graph is stored as an ac '̂acenci/ arrai/. Each element of the array corre-

sponds to a node of the graph. Each element also contains the head of a linked 

list of the nodes to which it is cormected - corresponding to the (directed) arcs of 

the graph, a reference count, and the value of the longest distance. In C++, 

class Arc 

Node* destination; 

int length ; 

class Node 
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list < A r c > arcs; 

int references ; 

int distance; 

vec tor<Node> graph; 

Thus, for the example graph shown in figure B.2, the graph would be stored 

in a data structure similar to the one in figure B.3. 

Arcs shown as 
successoT) dz'sfoMce 

Figure B.3: Data structure for graph 

The list of available nodes should be kept in some container with 0(1) in-

sertion and removal from a given point. Since it does not matter what order the 

available nodes are processed in, this list could be implemented in any number 

of ways, such as a FIFO queue based on a linked list (inserting at the end, re-

moving from the beginning), or as a LIFO queue based on an array (inserting and 

removing at the end). 

When the algorithm runs, it visits each node once to initialise them (0(n) op-

erations). When setting the reference counts, the algorithm visits each node (O^n) 

operations), and for each outgoing arc increments the reference count of the target 

node. Thus, every arc is also processed once, requiring 0(m) operations. Finally, 

when performing the topological sort, again every node is processed once and 

every arc is processed once. Thus, the overall running time of this algorithm is 
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Ofn + m). If there is a Hxed upper bound (say, /:) on the number of outgoing arcs 

that each node possesses, then we observe that m <kn, and hence the algorithm 

runs in 0(«) time. 

It might be considered easier to implement the adjacency array as a two-

dimensional array rather than as an array of linked lists. However, in this case, 

it should be noted that the array allocated for each node should be precisely the 

size required and no larger (thus requiring the storage of a successor count at 

each node as well), for if a larger array is used - for example, an m-element array 

for each node, the algorithm may become 0(Mm) due to the time taken to allocate 

the larger array. 
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Notation 

Firstly; we give the basic problem parameters: 

M Number of jobs 

y Job index, 1 < j < n 

5 Number of processing stages 

A: Stage index, 1 < /c < g 

m*. Number of machines (at stage 

z Machine index, 1 < z < 

(A:, z) Machine z at stage fc 

Processing rate of machines at stage A: making product F 

s,Lp Set-up time of machines at stage A: making product F 

Operation at stage /c of job j 

(fy Due date of job j 

ry Release date of job j 

Fy Product type of job ; 

Length of operation 0̂ ]̂  

Storage capacity required after processing for operation 

Qk Total number of processing sets available at stage A: 

Note: for nested processing sets, < 2 ,̂̂  — 1 

for unnested processing sets, Qt ^ 2'"*: — 1 

Processing sets available at stage ^ 

Processing set for operation 
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Note: G . . . , 

F Index for product types, F — (fb, , . . . , 

® The set of all bins 

b Bin index, 1 < 6 < |0 | 

The set of bins between machine (t, z) and z') 

Capacity of bin 6 

Derived measures: 

Mean stage workload for stage k: 

Mean processing set workload for processing set 

zfgk Total mean processing set workload (TMPSW] for processing set 

Nested load-balanced workload (NLBW) for processing set 

"due date" of operation 

"release date" of operation 

Available float of operation 

X(F) Last stage at which product type F was processed 

(F) Ancestor of product F at stage A: 

P(F) Immediate ancestor (parent) of product F 

Other notation: 

E(%) The expected value of % 

R(a, b) A (discrete] uniform distribution, generating integer values between 

a and b inclusive 
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Glossary of abbreviations 

ANOVA Analysis of Variance[22]. 

ATC Apparent Tardiness Cost heuristic[77], for 1[| ̂  WyT]-. 

CDS Cambell, Dudek and Smith heuristic, for f s [ f ) | ]C^ax and ^ Cj. 

Cf Coarse Fraction: flour with large particle size from classifier 

C M D Cumulative Minimum Deviation algorithm[58], for 1, -Pm)|[Cniax-

EDD Earliest Due Date algorithm, for several problems. 

EH [71] Heuristic f o r I [ C m a x -

FF Fine Fraction: flour with small particle size from classifier 

FIBC Flexible Intermediate Bulk Container: a bag holding approximately 750 kg-

1 tonne of flour 

FIFO First In First Out heuristic, see e.g. [42]. 

G C M D General Cumulative Minimum Deviation[57], for fm2)||Cmax-

H O Ho heuristic[37], for fs(P) | |Cmax and F2(P]111Cy. 

JPS Jackson's algorithm for Processing Sets, for nested|lmax, see §6.1.3. 

LFJ Least Flexible Job algorithm[65], for nested, py — l|Cmax-
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LIFO Last In First Out heuristic, see e.g. [42]. 

LPT Longest Processing Time first algorithm[30], for Pm||Cmax arid others. 

LWR Least Work Remaining heuristic[42], for F2[P] |bins| •. 

MCP Micro-Clean Plant: a section of the mill kept under positive pressure and 

low microbiological activity. 

ME More Early algorithm[73], for )||Cniax' 

MSW Mean Stage Workload criticality measure, see §7.5.1. 

MWR Most Work Remaining heuristic[42], for )|bins|-. 

NEH Nawaz, Enscore and Ham heuristic[59], for f s ) 11Ĉ ax and ^ Cy. 

NJ Nested Jackson's algorithm, for fmlMy nestedjlrnax, see §6.1.4. 

NLBW Nested Load-Balanced Workload criticality measure, see §7.5.3. 

SPSF Smallest Processing Set First algorithm, for PmjMy nested, py = 1| Z Cy, see 

§5.4.2. 

SPS-List Smallest Processing Set List algorithm, for fm[My nested, py = 1| Z 

see §5.7.1. 

SPT Shortest Processing Time first algorithm[13], for fm | | ^Cy and others. 

ST Steam Treated: type of flour usually used for making batters. 

SW-List Smallest Weight List algorithm, for Pm|My nested, py = l|%]u/y[/y, see 

§5.8.1. 

TMPSW Total Mean Processing Set Workload criticality measure, see §7.5.2. 

TV Thermo-Venturi: one type of flour dryer used in the mill. 

WLA WorkLoad Approximation heuristic[78], forfs^Pjjmissing]-

WP Werner-Pflederer: one type of flour dryer used in the mill, 

YKP Yang, Kreipl and Pinedoalgorithm[79], forfs(P)||ZwyT,'. 
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Opfzmzsafz'oM. lA^ley-Interscience, N e w York, 1998. 

[16] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. /oumaZ q/Sz/mbo/zc CompufafzoM, 9[3]:251-280, 1990. 

[17] S. Dauzere-Peres and J.-B. Lasserre. A modified shifting bottleneck proce-

dure for job-shop scheduling. iMferrzafzoMg/ /oumaf 0/ frodwcfz'oM T êsearcA, 
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