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by Tony Jay 

This report presents the coupling of circuit equations with two dimensional finite 

element electromagnetic analysis. Time transient and time harmonic analysis are 

both considered. 

Conventional finite element analysis uses prescribed currents within domains to 

represent electrical conductors. Real devices are normally supplied by power 

supplies and external circuits can be used to represent their voltage sources and 

impedances. A two dimensional (2d) cross section may be adequate for magnetic 

analysis, but the electrical connection between components is lost. External circuits 

can be used to supply this lost information. 

Coupling has been implemented in this report by combining both the circuit and 

finite element equations into one system. The 'directly' coupled system is then 

processed so that it can be analysed using conventional linear algebra methods 

Two different techniques are presented for entering a circuit into the finite element 

model. The first requires the user to identify network loops within the circuit. The 

second uses an extended form of a SPICE circuit definition file. An automatic loop 

generation algorithm is presented to convert a SPICE format file into network loops. 

Results are presented for both the time harmonic and time transient cases. 

Analytical results are discussed which demonstrate the accuracy of the coupling 

technique and a model of a motor is presented which shows that complex models can 

be successfully simulated and also demonstrates the commercial importance of this 

work. 
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1. Introduction 

1.1 Background 

In industry and academia it is of great interest to model the behaviour of electromagnetic 

fields in real devices. Most electromagnetic devices use the field produced by currents in con-

ductors or permanent magnets to produce the action of a force at a distance, or use the induced 

fields caused by motion to measure displacement. Devices may range from coils costing a few 

pence to generators, motors and Magnetic Resonance Imagers (MRIs) costing millions of 

pounds 

The theory required to describe the electromagnetic fields in real devices is contained in 

Maxwell's Equations published at the end of the 19* Century [1]. Electromagnetic analysis is 

the problem of solving Maxwell's equations subject to given boundary conditions. The analyti-

cal solutions of Maxwell's equations are limited in that they can be only found for simple 

geometries such as semi-infinite planes, cylinders, spheres or to a small section of a device 

[2,3,4]. Analytical solutions are also available for static, time harmonic and time transient 

fields, but tend to be restricted to homogenous magnetic materials with constant permeability. 

In order to calculate the transient solution of Maxwell's equations for models in three 

dimensions which contain materials with non-linear permeability, numerical solutions are 

required. Electrical machines are an important application which demand this complexity [5,6]. 

Numerical solutions require the spatial discretisation of a model, and large models can only be 

analysed with the use of efficient computer programs. 

There are various techniques for creating a discrete model of a real device. The finite ele-

ment method [7,8] is the most popular for electromagnetic analysis although the boundary ele-

ment method [9] and hybrid methods [10] are also successful. For all techniques it is important 

to use computer processing speed and memory efficiently as well as using efficient algorithms. 

Greater accuracy can be achieved in numerical methods by decreasing the size of elements, i.e. 

increasing the spatial discretisation of a model. Discretisation produces a system of equations 

that describe the fields. The penalty for increased accuracy is therefore an increased number of 

equations. To solve more equations requires more floating point calculations and computer 

memory which results in longer solution times. The compromise of computer resources versus 

accuracy is one of the dichotomies of computation techniques. It is common to reduce the 



degrees of freedom of a model by exploiting any periodic symmetry. This allows the size of the 

model to be reduced. It is not just the symmetry of the model itself which is important but the 

symmetry of the magnetic fields within the model. 

This thesis will exploit the finite element method due to its flexibility and efficiency. Finite 

element analysis (FEA) has been used successfully for calculating the electromagnetic fields in 

real devices for over thirty years, and as early as 1970 the method was applied to a rotational 

electrical machine [8]. Thirty years of advancement and the increase in computing power have 

allowed more effects to be included in the computer models such as the non-linearity of mag-

netic permeability and motion. 

In two dimensions external circuits are needed to correctly describe the connectivity of the 

conductors outside of the finite element problem [11], whereas in 3d it may be possible to 

model them as part of a finite element mesh. External circuits are also needed when the drive of 

a conductor or a circuit must be expressed as a voltage rather than a current density. 

The goal of an electrical machine designer is to predict the performance of a machine and 

its behaviour over a range of operating conditions. This can be achieved using computer aided 

engineering software. A discrete model of the device can be created, the non-linear behaviour 

of the magnetic materials can be modelled and the device can be coupled to external circuits 

and motion. For most applications this is currently impractical using 3d discrete models as 

solution times are unacceptably long for commercial use. If a model can be approximated to be 

infinite in the one direction (XY symmetry), or exhibits axi-symmetry around the axis, then the 

model can be reduced to two dimensions and the number of equations is therefore reduced 

compared to a 3d model of the same discretisation. A reduction in the number of equations is 

translated to reduction of solution time or can allow for an increased discretisation within a 

model. Coupling to external circuits in this thesis is restricted to two classes of 2d applications, 

but also involves coupling to other effects such as motion and non-linearity. 

There are at least three approaches to modelling external circuits and each has its own mer-

its. 

1.2 Approaches to circuit coupling. 
The three main approaches to coupling finite elements with external circuits, are 



1. Circuit and parameter extraction 

2. Indirect coupling 

3. Direct coupling 

Each technique has its own advantages and disadvantages in terms of memory requirement, 

accuracy, calculation time and ease of use. 

1.2.1 Circuit and parameter extraction 

It is very convenient for designers of the supply circuit for an electrical device, such as an 

induction motor, to be able to use their normal circuit simulation tools to analyse the system 

performance. If equivalent 'circuit' parameters are extracted from a FEA solution they can be 

incorporated directly into a circuit simulator. Two closely related approaches are 

® Equivalent circuits 

® Tables of parameters 

The first technique uses an "equivalent circuit", which is a theoretical electrical circuit con-

taining resistances and impedances representing the real device to be analysed [12]. Figure 1.1 

shows two different simple equivalent circuits for an air-cored two-winding transformer [13] 

consisting of a primary and secondary windings. 
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Figure 1.1 Equivalent circuit of an air core transformer 

Here vl and v2 are the potential differences across the primary and secondary windings, il 

and i2 the currents in the windings, LI and L2 the inductances of the windings, N1 and N2 the 

number of turns of the windings, R1 and R2 the DC resistances of the windings and M the 

mutual inductance. 

An equivalent circuit is proposed for a device by a designer and then a finite element pack-

age can be used to extract the equivalent circuit component values. Circuit analysis can then be 

performed on the equivalent circuit using the designer's favourite off the shelf circuit simula-

tor. 

It is even possible to build an expert system for a particular type of model which performs 

the FEA with the user knowing very little about finite elements, and then extract the parameters 

automatically [15]. This technique relies on the expert system being flexible enough to produce 

accurate models for all of the designer's needs. 

The equivalent circuit is an approximation, and the approximation typically becomes less 

valid when the device exhibits strong non-linear characteristics. Models containing non-linear 

materials, motion or effects with a wide range of time constants cannot be represented accu-

rately by a single equivalent circuit model. However, there has been work [14], where very 

elaborate equivalent circuits have been used for the transient analysis of electrical machines 



where motion is present. The motion of the device is simulated by the reconnection of resistors 

which represent the air gap between the stationary and moving parts. This technique can even 

calculate electromagnetic torque. The equivalent circuit method is also an efficient way to cou-

ple high frequency problems to circuits where scattering parameters are calculated at different 

frequencies [16]. 

The second circuit parameter technique involves solving the finite element model of the 

device using many different excitation conditions. A variety of drive currents are applied to the 

model and a look up table is created of force and flux linkage versus current and position in a 

device [17]. The look up table can be integrated into the circuit simulator as a component 

which returns flux and force for a given position and current [18]. The circuit simulator can 

also be used to model the mechanical systems by using their electric analogs. For example, a 

rotating mass is represented by a capacitor and viscous damping is modelled by a resistor. 

There are many commercial circuit simulators which can include the calculated circuit 

parameters such as Saber [19] or those based on the 1970's Berkely University package SPICE 

[20]. These and other packages contain extensive libraries characterising real components such 

as diodes and thyristers from many different manufacturers. The equivalent circuit approach is 

favoured by circuit designers as it gives a compact characterisation of a device that can give 

insight into system performance. The simulator package will be easy to use as it will also have 

schematic capture of the external circuit along with extensive visualisation tools for the results. 

The parameter table technique has limitations as the complexity of the driving circuits are 

increased many more FEA simulations are required to produce the tables. When many FEA 

solutions are required it may be easier to more closely couple the circuit and finite element sys-

tems. 

1.2.2 Indirect coupling 

An attractive proposition in circuit modelling is to use an engineer's favourite circuit simu-

lator to solve the circuit equations in parallel with a finite element program solving the electro-

magnetic equations. Either of the two programs could be considered as the controlling 

program. For example, a circuit modelling program could request from a FEA program the cur-

rent in a particular element when providing a certain voltage. Communication between the two 

programs could be by shared memory or sockets either on the same or different computers over 



a network. The close coupling could involve the circuit simulation requesting the flux and 

forces at each time step in a transient solution, having supplied the currents. This approach 

exploits both the accuracy and flexibility of both programs. To be able to establish effective 

communication between two programs, the requirements of both types of simulation must be 

considered. 

A second type of indirect coupling integrates the finite element equations and the circuit 

equations in the same program. The two different sets of equations are formed when analysing 

a model, one matrix describing the FEA problem and one describing the circuits [22]. The two 

matrices are not combined together; this has advantages because the matrices have different 

properties and structures. The FEA matrix is very large, sparse and symmetric, requiring spe-

cial solvers performing iterative solutions [23]. The circuit matrix is often a small dense matrix 

which can be solved by an exact method such as Gauss-Jordon elimination [23]. The excitation 

terms for the circuit equations are calculated from the coupling coefficients between the circuit 

and FEA equations. These right hand side terms can be calculated by changing the drive on 

each conductor in turn. This procedure requires an efficient matrix solver which can solve the 

same matrix equations with multiple right hand sides [22]. 

1.2.3 Direct coupling 

If the circuit equations and the symmetric finite element equation matrices are merged into 

one large system of equations, the final system of equations can be solved simultaneously. This 

approach requires the extension of a finite element code and has the limitation that the circuit 

simulation will not have the flexibility of a fully functioning circuit simulation package, but all 

the features of the FEA program will be available [21]. 

The combined system of equations is not symmetric and contains two blocks of coefficients 

from different types of equations. The terms therefore may be poorly conditioned and an itera-

tive matrix solver will require more iterations than in the case of a well-conditioned symmetric 

matrix. The symmetry of the matrix can be retained, by the correct use of scaling, in order to 

minimise the size of the matrix that must be calculated and stored. The scaling process adds 

extra complications within a program, especially when matrices are recalculated at each time 

step in a time marching scheme. 



A second method of direct coupling in frequency domain analysis replaces the inductors 

and capacitances by equivalent circuits of resistances using Dommel's analysis [24]. The elec-

trical components are represented by one dimensional finite elements vi'ithin the finite element 

matrix. This method produces a single matrix which can be solved in a conventional way. The 

proponents of this method do not claim that it has any advantage over including inductances 

and capacitances explicitly and the resulting final matrix equations are identical. 

Direct coupling can achieve very efficient and simulations, that can include effects such as 

linear or rotational motion. The complexity of the circuit which can be modelled is only limited 

by the implementation of the circuit equations within the FEA code. Some components are eas-

ily included such as resistors and inductors, whereas other components such as diodes and 

capacitors require recalculation of their properties at each step in a transient solution. As the 

expectations and demands of machine designers increase it is possible to increase the function-

ality of the circuit modelling code within the FEA program. The direct method will never pro-

vide as good a circuit simulator as a stand alone tool, but a stand alone tool can only use an 

equivalent circuit representation of a machine which is by definition an approximation. 

If direct coupling is implemented, a very large range of voltage driven finite element prob-

lems can by solved, where the characteristics of a device are not known a priori. 

13 The development of direct circuit coupling. 

1.3.1 Nodal analysis of circuits 

The first attempt to model the external circuit was in 1976 [25], but it was only later under-

stood that to include circuits in a typical vector potential formulation a scalar potential term 

must be included. Every conductor which is in a circuit must have a scalar potential associated 

with it and each conductor is represented as an element between two circuit nodes. The sim-

plest external circuit which can be considered is a short circuit in a 2d model, where a group of 

conductors can be joined together by short circuit connections, as described in [26] for the fre-

quency domain case and [27] for the time transient case. Consider the simple physical system 

described in figure 1.2 of two conducting bars in a time varying magnetic field. 



Figure 1.2 Two disconnected conductors 

A 2d representation of this system can be used if the bars are very long as in figure 1.3 

Figure 1.3 A 2d representation of two disconnected conductors 

However, the 2d model can not resolve the difference between the geometry in figure 1.2 and 

that shown in figure 1.4 where short circuit current flows at the end of the bars. 

Figure 1.4 Two sliort-circuited conductors 

A simple external circuit is needed to describe the difference between the two similar systems. 

The first use of complex circuit equations with external impedances and inductors involved 

filamentary conductors, for example [29] and [30]. Filamentary conductors are coils wound 

with many turns of insulated wire such as those used to model motor stator windings or to 

approximate a superconducting coil. The current density distribution is determined by the 

arrangements of the filaments in the windings and is therefore known. The wire is assumed to 



have a small cross sectional area such that eddy currents and therefore their distribution in the 

wires can be neglected. 

In models which are invariant in the z direction (XY symmetry) and in axi-symmetric mod-

els, the current density is defined by the turns density and the current in each turn of the wind-

ing. An external voltage is applied to the circuit which results in a current or, if a driving 

potential is not present, a filamentary circuit can be used to model a secondary coil in a trans-

former or a pick up coil. Coils consisting of massive conductors can also be formed into cir-

cuits by the addition of resistors and inductors [31]. Investigations of both filamentary and 

eddy current circuits concentrated initially on independent circuit loops where the current in 

each circuit is isolated from the others. Circuits may be defined using nodal equations or 'mesh 

loop' equations where 'mesh' refers to the connections of a circuit and is not to be confused 

with the finite element mesh. The currents in the mesh loops are the unknowns in the circuit 

equations. 

Real external circuits contain arbitrary arrangements of components, where the mesh loops 

are connected in parallel and in series [32]. It is necessary to identify a set of mesh loops to 

fully define the circuits, although there will normally be more than one way of choosing the set 

of mesh loops. An example of an eddy current problem where arbitrary connections are needed 

is the modelling of rotor bar end winding resistances in a squirrel cage induction motor [33]. 

Resistor m o d e Ding the 
e n d c o n n e c t i o n s 

A'lVfe ssive " C o n d u c t o r 
in the m t o r 

J 

Figure 1.5 Circuit connection of a squirrel cage rotor 



Examples of arbitrary connections of filamentary conductors are found in the protection cir-

cuits in superconducting coils. If the coils become resistive (quench) the energy is dumped into 

a set of protection resistors or diodes [34]. There are cases where arbitrary eddy current and fil-

amentary circuits are combined in one model; one application is in asynchronous machines 

with filamentary circuits in the stator and eddy current circuits in the rotor [35]. 

1.3.2 Modified nodal analysis 

The orthodox approach to modelling circuits and fields is to develop equations describing 

the current in the voltage driven external circuits with the finite element terms. There is a sec-

ond approach that uses a Modified Nodal Analysis (MNA) [39]; this does not require the iden-

tification and formation of mesh loops. The circuit equations in MNA represent either current 

sources, voltage sources or components with unknown potential drops across them. The circuit 

equations can be automatically extracted from a nodally defined circuit with the aid of some 

graph theory [40] that can be used as a robust way of identifying an optimal set of branches 

from a circuit. Using a nodally defined circuit rather than a mesh loop approach allows easier 

coupling to the nodal based information typically generated by schematic circuit capture pro-

grams. The disadvantage of MNA is that very simple circuits must be entered in a nodal form 

even if they only involve one or two components. The approach which has been used in this 

work is to develop conversion routines which can use nodally defined circuits and produce 

equivalent mesh loops. This allows the user of the software to define a circuit by identifying 

the mesh loops or by entering the nodal connections. 

The use of MNA has been extended further to represent the circuit conductors explicitly as 

a controlled voltage source. A controlled voltage source is represented by a circuit element 

composed of two sub elements. One element has two voltage Degrees Of Freedom (DOF) on 

its terminals and one has a current DOF [41]. The equations produced by these elements are not 

symmetric, which is not desirable as solution times and computer memory requirements will be 

greater than with symmetric equations. The use of controlled voltage sources is however gen-

eral enough to be used in coupling to 3d finite element models, although the formulation is 

however significantly more complicated than for the 2d cases considered in this work. 

10 



13.3 Non linear circuit components 

Most simple external circuits contain resistors, inductors and capacitors, that can be coupled 

to finite element equations because their impedances are known. In inverter drive circuits, 

active components such as diodes and thyristers need to be represented [42]. Their impedance 

is a non-linear function of the current through them or the potential across them. In a full circuit 

analysis package, the non-linear behaviour of the current and voltage in these devices is usually 

supplied from libraries. In combined FEA / circuit package the components are typically repre-

sented as binary switches, with either a very low or very high value resistance to model the 

closed and open circuit behaviour [43]. When a device is switched from high to low resistance 

in a time transient scheme, the instant of switching must be correctly captured, otherwise the 

resulting discontinuity in currents may lead to unwanted oscillations in the solution. If the time 

step is adapted so that a time stepping point is used at the moment of switching [44], the oscil-

lations in the solution can be greatly reduced. An alternative approach has been used in simple 

circuits to model the non-linear behaviour of components such as resistors and capacitors by 

representing them as OD and ID finite elements [45]. The arbitrary variation of the component 

value has been simulated as a function of time or position allowing the modelling of devices 

such as switched reluctance motors. 

1.3.4 Direct coupling to other effects 

Electromechanical devices are an important application of finite simulation tools. In general 

it is necessary to model the movement of components in the system as well as their connections 

to external circuits. Rotational motion is required for motors, generators and bearings and lin-

ear motion is required for contactors, switches and linear motors. When the finite element 

model is solved in a directly coupled time transient scheme, it is straightforward to update the 

position of the moving part of the model at each time step. The motion within the finite element 

mesh can be achieved by remeshing at each step, special overlapping finite elements [46,47] or 

by Lagrange multipliers on the moving / stationary interfaces [48]. If rigid body dynamics are 

also included in the coupling, the position of a moving part can be calculated from the forces 

derived from the finite element solution [49], either through the virtual work principle [51] or 

by the use of Maxwell Stress Method (MSM) [50]. 

11 



In the analysis of an electromechanical device, it may be required to study the thermal prop-

erties of the system. All of the coupling techniques previously studied do not preclude coupling 

to a thermal solution. A thermal solution can take as input the energy losses in a device, calcu-

lated from the joule heating or hysteresis losses. A frequency domain or time transient thermal 

solution can solve for the temperature distribution in a device. The temperature in the device 

can then be used to update the material properties used in the finite element solution. This is an 

example of indirect or weak coupling which may be appropriate, although changes of state 

which pass through the Curie temperature may require careful hand-shaking between simula-

tions. 

1.4 Implementation details 
The circuit coupling in this work has been developed to complement the existing functions 

of the Vector Fields Opera-2d package. The circuit coupling options have been implemented in 

five of the programs which calculate quasi-static electromagnetic fields in the following limits 

1. Frequency domain (AC) 

2. Time transients (TR) 

3. Rotating machines (RM) 

4. Linear motion (LM) 

5. Demagnetisation rigs (DM) 

Coupling to external circuits in these programs was developed in a way that does not apprecia-

bly add to the solution times and memory requirements. All pre-existing options within the 

solvers such as non-linearity and symmetry conditions, either periodic or implied by the 

boundary conditions, are compatible with the external circuits. The Opera-2d Pre and Post-

Processor (PP) has been extended in order to define and edit the external circuits. 

1.5 Thesis outline 
Chapter 2 begins with a review of Maxwell's equations and introduces the terminology 

used. Maxwell's equations are developed using the magnetic vector potential to describe the 

field in a conducting region due to a known current density. The boundary conditions are also 

presented. The equations are further developed to describe the fields in conductors with eddy 

currents, in conductors in circuits composed of filamentary conductors and in circuits formed 

12 



from massive conductors where eddy currents are significant. The chapter concludes by intro-

ducing the circuit network equations needed to describe an external circuit. 

Chapter 3 introduces the finite element method as a technique for solving partial differential 

equations. The governing equations for the conductor introduced in chapter 2 are spatially dis-

cretised using the Galerkin method. Matrix notation is used to concisely express the frequency 

domain (AC) and time transient (TR) solution of the discretised equations. The resulting equa-

tions are manipulated to be symmetric and the numerical techniques which are needed to solve 

the matrices are discussed. 

Chapter 4 explains two techniques which can be used to define the external circuits used in 

this work. The first technique uses an extension to the Opera-2d PP to define the mesh loops 

and the connections between the mesh loops. The second technique uses files based on the for-

mat used by SPICE where all the nodes and components in a circuit are entered in a list which 

Opera-2d PP then decodes into mesh loops. 

Chapter 5 presents a range of results, starting with analytical comparisons for both time har-

monic and time transient finite element solvers. When the coupling technique has been proved 

to be accurate for circuits containing both filamentary and eddy current conductors, a model 

has been presented for an induction motor. The model of the induction motor uses both filam-

entary and eddy current circuits in one formulation. 

Chapter 6 summarises the work and discusses both limitations in the work and aspects of 

the work which can be further developed. 

13 



2. Formulation of the basic equations 

2.1 Introduction 

Maxwell's equations will be introduced in this chapter and will be used to formulate equa-

tions describing the field in both massive and filamentary conductors, which are either current 

driven or form part of external voltage driven circuits. Electric circuit equations will be devel-

oped which relate the currents and voltages within the 'mesh loops' of a circuit which contains 

massive and filamentary conductors. 

Figure 2.1 shows a representative configuration containing a conducting material with 

magnetic permeability |1, electric permittivity 8 and electric conductivity a , bounded by a 

surface , contained within a volume of free space Q bounded by a surface F which may be 

extended to infinity if required [52]. 

The conducting material may have a prescribed current J, or be connected with other conduc-

tors into a circuit. 

Figure 2.1 Simple model configuration of arbitrary shape 

2.2 Maxwell's equations 

James Clerk Maxwell's 1892 publication 'A Treatise on Electricity and Magnetism' [1] pro-

vides a system of equations which describe electromagnetic fields and forces. 

V*D = p (2.1) 
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V.B = 0 (2.2) 

VxE = (2.3) 
ot 

i)Ti 
VxH = J + ^ (2.4) 

dt 

where D is the electric flux density and E is the field strength, B is the magnetic flux density 

and H is the magnetic field strength, p is the free charge density, J is the current conduction 

density. 

These four laws are the unification of previously understood phenomena, i.e. Gauss's law, 

(equation 2.1) and Faraday's Law (equation 2.3). Maxwell's major contribution was to general-

ise Ampere's Law (equation 2.4) to include a displacement current 

J g — — (2 .5 ) 
a? 

If the wavelength of any time-varying fields is large compared with the physical dimensions 

of the problem, this displacement current is negligible compared with the free current density 

and there is no radiation [2]. All the cases presented in this thesis fall into this category so that 

the classical field approximation of Ampere's Law (equation 2.4) can be used i.e. 

VxH = J (2.6) 

Although this approximation is adequate for this thesis, this can create some anomalies 

which can only be explained using the full form of the equations [1]. 

The interface or boundary conditions between regions of different material properties, 

derivable from equations 2.1-2.4, are 

(Bg - B1) • n = 0 ( 2 . 7 ) 

( D g - D ; ) # n = co^ ( 2 . 8 ) 

( H 2 - H i ) x n = K ( 2 . 9 ) 

( E j - E ] ) X n = 0 ( 2 . 1 0 ) 
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where CÔ  is the surface charge density, and K is the surface current density. Three further final 

equations are required, the material constitutive equations; these define the relationship 

between current density and electric field, flux density and field strength. 

Jc = OE (2.11) 

Equation 2.11 is Ohms Law, where the conductivity a is in general treated as being frequency 

independent up to Hz [7]. The two equations relating the fields strength to the flux densi-

ties are 

B = piH (2.12) 

D = EE (2.13) 

where the permeability |I and the permittivity 8 are tensors. It is through these constitutive 

relations that the non-linear properties of materials can be introduced. The permittivity is not 

relevant in this study of magnetism because the displacement current has been neglected. How-

ever, it is essential to model non-linear permeability in magnetic devices. 

2.3 Magnetic vector potential 
Since the magnetic field vector B is solenoidal in nature, as can be seen in equation 2.2, it 

can be expressed in terms of a 'magnetic vector potential' A [39]; 

B = VxA (2.14) 

In order to uniquely define the vector potential A, the divergence of the vector must also be 

specified[4]. From equation 2.6 and 2.12 

Vx-VxA = J (2.15) 

Faradays law (equation 2.3) can also be rewritten in terms of the vector potential 

t == () (2.16) 

and equation 2.16 can then be integrated to give 

16 



IS == (2.17) 

where V i s a scalar potential, and V y is the equivalent of a constant of integration. Neither A 

or V are completely defined because a grtadient of an arbitrary scalar function can be added to 

A and the time derivative of the same function can be subtracted from V without affecting B 

and E. To uniquely define A, a separate condition is specified (called a gauge condition) [2]. 

The two common gauges are: 

V#A = 0 (2.18) 

called the Coulomb gauge, and 

V.A == (2.19) 

called the Lorentz gauge. 

2.4 The 2d limit of the magnetic flux density vector 
The magnetic flux density vector can be written in cartesian coordinate systems as 

B(x,}', z) (2.20) 

and in the cylindrical polar coordinate system as 

ISO-, Z, (K) (2.21) 

There are two special cases when these fields can be described by a 2d approximation, i.e. 

B (%,};) (2.22) 

when the field is independent of z and 

B(r, z) (2.23) 

when the field is independent of 9. 

These lead to a simplification such that only one component of the vector A is required to 

define the fields i.e. 

!;(*, y) := ^^<(0, 0, /Iz) CZ.SW) 

17 



B(r,z) = A*) (2 25) 

All the work in this thesis and subsequent formulations of A will assume the 2d limit. The Cou-

lomb gauge will be used for A (and is a natural choice) as in this 2d limit the scalar potential V 

in equation 2.17 can be equated to the voltage drop that would be measured across an external 

circuit [53]. 

2.5 Conducting regions 
It may be convenient to model coils as volumes with prescribed current density and neglect 

the effect of eddy currents in them. In this case, equation 2.15 becomes 

Vx-VxA = JL (2.26) 
IX 0 

where JQ is the prescribed current density. 

In materials where eddy currents are induced and source currents are excited by applied volt-

ages, the fields are again described by equation 2.15 

Vx-VxA = J = oE = = J + (2.27) 
^ \d f / * * 

Jg is the eddy current density and is the source current density. Although the total current 

density J is physically meaningful (and measurable), separating J into the two components Jg 

and Jg is not just a matter of notation. In a conducting region where the return path may be con-

sidered to be outside of the problem domain (implied by the boundary conditions), the govern-

ing equation can be written from equation 2.27 as 

== J , (2.28) 
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In a conducting region where the eddy currents have a return path within the conducting region 

(a short-circuited conductor as in figure 2.2) a second equation must be specified for each 

region. 

Ctxnpooert: J rnME=0 0) 

Figure 2.2 Current density in a short circuited conductor with zero total current 

An extra equation is also required for each connected set of conducting regions, which may 

include conductors outside of the model implied by symmetry as in figure 2.3. 

Component J (T1ME=0 0) 
1072534 1M38860 23940280 

Figure 2.3 Current density in a conductor with its return path outside of the FE model 

The total current is fixed by integrating equation 2.27 over just the cross section of the conduc-

tor 
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(2.29) 

where Qk is the domain of the conductor k. These extra equations, one per condition, can then 

be solved together with equation 2.28 [27]. 

2.6 Conductors in external circuits 
An external circuit is formed when coils in the finite element model are joined with each 

other and with other circuit elements such as resistors, inductors and capacitors. Two classes of 

cols must be considered, those with massive conductors in which eddy currents can flow and 

those composed of many thin strands or filaments such that the redistribution of current by the 

eddy currents can be neglected, Figure 2.4. 

I 

EEBBaOEIOOGElOa QBSBSBIBSBSBBB BBBBBBBQBEIBaEli BBlBBSIBiiaBBSHBI QBBBHBBElOlElilSBI aaaaBBBEiEQEimaBBB QBBBBBBBBBBBBISIBBI 
• •BBBBBIIigBDBaaBBBBBBBB BBBEaBUnBOIlBBHISHaiaHBIIIllEI •BSBBBBaBaBaaBBBBBBBBB 
gigiggggiggiiiisggagsi 
BBBBBBBBBBBBBBBBBBBBBB 

Figure 2.4 A bulk conductor and a filamentary conductor 

The treatment of each conductor is very different, and the governing equations for conduc-

tors in each type of circuit will be presented in the next two sections. 

2.6.1 Circuits with massive conductors 

The current in a massive conductor has been described previously in equation 2.27 as 

J = a E = - a ( ^ + V F j = J^ + J^ (2.30) 

where V F represents the voltage drop along the length of the conductor. If and V2 are the 

voltages on the conductor, at the far and near ends respectively, then 
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.J == ._cr\7y == == (2.31) 
I I 

where I is the length of the circuit. The convention has been adopted here that a positive volt-

age drop is in the same direction of positive current. This gives the governing equation of mas-

sive conductor in terms of the external circuit parameters I and AVas 

t = 0 CZJZ) 
|l dt I 

There is also one additional equation per massive conductor introduced by considering the total 

current over the cross section of the conductor (equation 2.29) 

where I is the total current in the massive conductor and is an unknown. If it is noted that R ,̂ 

the dc resistance of conductor k, can be written as 

= - J — (2.34) 

1 
and then equation 2.33 can be written as 

An = (2 35) 
Equations 2.32 and 2.35 no longer contain terms of the current density J, and have been rewrit-

ten in terms of the circuit parameters of voltage and current. Using current rather than current 

desity allows the equations to be linked the circuit equations which will be developed later in 

this chapter. 

2.6.2 Filamentary conductors in external circuits 

Filamentary conductors are composed of many strands of wire wound in series separated by 

insulation, i.e. figure 2.5. 
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Figure 2.5 Detail of a filamentary conductor 

The eddy currents in a conductor decrease exponentially in magnitude as the distance from the 

surface increases. The decay constant 5 is called the eddy current skin depth or penetration 

depth and is defined for an infinite conducting sheet as [4] 

5 = (2.36) 

where CO is the angular frequency of the a.c.current, fXj. is the relative magnetic permeability of 

the conductor and a is the conductivity. The equation for the skin depth of an infinite cylindri-

cal conductor is more complicated but is of similar form [56]. The radius of a strand, r, is cho-

sen to be smaller than the skin depth, so that all available material is used to transport current. 

If r/5 is small then the a.c. and d.c. resistances of a strand are related by the approximation [4] 

As r/5 is small, it can be seen that the dc resistance is a good approximation to the ac resistance. 

There will also be proximity effects as the strands induce currents in their neighbours, but these 

are small when r is less than 5. In a typical low frequency application of a 50 Hz small motor, a 

strand will have a radius of about a millimetre, the conductivity will be about 5*10"^ ohm/ 

metre hence 

r , Z _ JL a = r / (238) 
5 25 

r 
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which satisfies the approximations which have been made about the strands. In such applica-

tions it is unnecessary to model the eddy current effects in the strands and all the strands in a 

conducting region are represented as a conductor with uniform current density i.e. 

Detail Equivalent FE representation 

Figure 2.6 Detail of a filamentary conductor 

There are applications such as Magnetic Resonance Imagers (MRIs) where this approximation 

is not adequate for high accuracy calculations - where fields must be calculated to be uniform 

to the level of 1 part in a million. In order to model the ragged edges of the conductor, the 

boundary of the FE representation of a conductor has a lower current density applied than the 

rest of the conductor. 

Assuming that each filament carries a current of I amps, the current density in a filament is 

J = (2.39) 

where is the area of the j'th filamentary conductor. The second order partial differential 

equation for A obtained from combining equations 2.15 and 2.39 is 

Vx-VxA = (2.40) 

In order to incorporate the filamentary conductor into an external circuit it is necessary to 

express the voltage drop along the length of the conductor using equation 2.35 to include all the 

filaments in a conductor 

A y , = (2.41) 
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where Oj is the domain of a filament j in conductor k. The resistance of each filament is 

R: = — ^ = m . (2.42) 

where , the resistance per unit length of conductor k, is a quantity often associated with fila-

mentary circuits. The area of the filament is related to the area of the conductor by 

3* = (243) 

where is the area of conductor k and A, is the fill factor [22], i.e. the fraction of the conductor 

carrying current. 

Substitution of equations 2.42 and 2.43 into equation 3.32 gives the quantities AF, 9iy and 

which can now be expressed in a form which is directly connected with external circuit analy-

sis thus 

= + (2.44, 

It is important to note that all quantities are in terms of the domain Q^, except for Slj which is 

a property of the constituent filaments. 

2.7 Circuit network equations 
Circuits are connected networks of devices, each having two or more leads carrying cur-

rents. Leads are connected to circuit nodes, each node has an electric potential, or voltage V. 

Devices can be connected to each other in an arbitrary manner; to completely describe a circuit 

connectivity a list of the devices and the circuit nodes to which they are attached is needed. 

VI V2 

Figure 2.7 A simple circuit element 
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The aim is to be able to represent any circuit connectivity in a general way. To do this a 

matrix equation is constructed for the circuit with the currents in the devices and the voltages at 

the circuit nodes as the unknowns. 

V4 

Figure 2.8 A circuit with complex connectivity 

A complex circuit, such as figure 2.8, can be analysed by using Kirchoff's' junction rule 

[22] which states that 'The algebraic sum of the currents entering or leaving a junction is zero' 

i.e. 

= 0 (2.45) 

The sign of the current leaving the junction is opposite to that for a current entering the junc-

tion, so the current in figure 2.9 

Figure 2,9 Currents at a junction 
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can be written as 

/ j + /2 + /3 + /^ — 0 (2.46) 

It is more convenient however to use Kirchoff's loop rule which states that 'The algebraic sum 

of the changes in the potential around a closed loop is zero' i.e. 

= 0 

which is shown for loop II in figure 

(2.47) 

V4 

Figure 2.10 A loop composed of circuit components 

This is a more convenient approach as a circuit is broken into 'loops' where each element is 

characterised by the potential difference across it. The potential drops (Ay)across common 

components are 
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Circuit Component Potential drop A V 

Resistor Z1 

Inductor dl 

Capacitor 

Voltage source 

Massive circuit conductor 

Filamentary circuit conductor 

TABLE 2.1 The potential drop across circuit elements 

where L is the inductance, Z an impedance and V^, is the voltage across the plates of a capacitor. 

In a time transient solution is given by 

V, = i ( ? o + | | W ' ) (2 48) 

where C is the capacitance and % is the initial charge on the capacitor. The voltage drop, V ,̂ on 

a capacitor is not known a priori, however it can be determined by numerical integration in a 

time stepping algorithm. In the time harmonic case it will be shown in chapter 3 that capacitors 

can be treated in the same way as inductors. 

The circuit equation (2.47) for a general circuit 'mesh loop' containing many types of com-

ponents including capacitors can now be written as 

+ = I E 

where £ is a general voltage source. There will typically be -more than one 'mesh loop' cou-

pled to a finite element model and so there is a matrix of equations, with one equation (2.49) 

for each loop. i.e. 

(2.49) 
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[ M ] [ A V t ] + [ Z J [ I ] „ + [ L J ^ = [ E J (2,50) 

AV^, Eju and Ijjj represent the vectors of voltage drops, voltage sources and currents in a cir-

cuit, and represent matrices of impedances and inductances and M is a matrix describ-

ing the direction of the current in a conductor. Matrices are required to describe the circuit 

components as one component may be in more than one mesh loop as shown in figure 2.11. 

R1 

01 

Figure 2.11 A circuit with more than one mesh loop 

The components are the conductors represented in a finite element model. It can be seen in 

figure 2.11 that R2 is in both mesh loop 1 and 2, whereas R1 and R3 are only in one circuit, this 

is represented in the matrix Z by 

Term 

Zii 

Zi IJ 

Meaning 

Impedance in mesh loop i 

Impedance in mesh loop i and j 

TABLE 2.2 Definition of the impedance matrix 

The sign of Zy is given by as the sign of the current in the circuit loopj; in figure 2.11 the sign 

of Zi2 will be positive and the sign of Z21 will be negative. The matrix L of inductances is 

treated in a similar way. 
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It can also be seen in figure 2.11 that conductor O2 is also in mesh loops 1 and 2. Matrix M 

describes the connectivity, thus 

Term 

Mij=-1 

Mjj=0 

Meaning 

Conductor i is the right way in mesh j 

Conductor i is the wrong way in mesh j 

Conductor i does not belong to mesh j 

TABLE 2.3 Definition of the connectivity matrix 

The meaning of the 'right way' for a conductor in a 2d XY model simply defines a sign con-

vention: 

• The direction of a mesh loop for a conductor is into the model and it is named a Go 

conductor 

and the 'wrong way' is 

® The direction of a mesh loop for a conductor is out of the model and it is named a 

Return conductor 

Once the currents in the circuits have been calculated, the current density in a conductor is 

found from the current, the area and the M term. It is clear that the direction of a mesh loop is 

arbitrary and can be reversed without affecting the calculated current density in the conductor. 

In a normal circuit there will be as many Return as Go conductors, although if only part of a 

circuit is modelled and symmetry is exploited this may not be true in the insolated part that has 

been modelled. In a 2d XY model, when one conductor in a mesh loop has been assigned a 

direction, all of the other conductors are easily identified because a Go conductor is normally 

connected to a Return conductor. 

2.8 Symmetry 
In finite element analysis it is normal to try to reduce the number of elements which are 

required to model a system while retaining the same accuracy. One technique which has 

already been introduced is to exploit the symmetry of the fields and only model part of the sys-

tem. The symmetry is implied by the choice of boundary conditions [12], by setting a normal 

29 



or tangential flux on the boundary which implies a positive or negative reflection. A more 

explicit way is to set a periodic condition on the boundary which defines a relationship between 

the potentials of two nodes Aj=f(Aj). Typically positive (ApAj) or negative (Ap-Aj) periodic-

ity is required. Periodic boundary conditions must be used if the flux on the boundary cannot 

be described as normal or tangential. 

If a problem includes external circuits then the symmetry of the problem must also affect 

the circuit, see figure 2.12 

C1 

Figure 2.12 A full model and circuit 

and the half model in figure 2.13. 

R1 

I 
— f 

# 

C2 

Figure 2.13 Half model and circuit 

If the circuit in figure 2.13 is used for the half model it is clear that for the same voltage source 

the current will be greater than in figure 2.12 as the impedance circuit is lower. One option is to 

reduce the driving voltage and the external impedances by a factor of two to regain the same 

current. A simpler approach is to imply the missing component by increasing the effective 

length of the circuit I. This can be done by either the user or within a program by introducing a 

symmetry factor so the length of a circuit which is used in the global matrix is 
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Z, == (2.51) 

where I is the length defined as by the user. The length is a property of a circuit and not of a 

model as it may be required to define circuits of different lengths within a model. 

2.9 Summary 
Equations have been developed which link electromagnetic fields and external circuit equa-

tions. The circuits are modelled as mesh loops and it has been shown how components can be 

present in more than one loop. It has been shown that introducing circuits does not remove the 

ability to exploit the symmetry of the magnetic fields to reduce the number of degrees of free-

dom of a problem. 
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3. Finite element method 

3.1 Introduction 
In this chapter the finite element method will be introduced and will be applied to the field 

equations developed in chapter 2. The 2d XY vector potential formulation will be fully devel-

oped, and the results of axi-symmetry and its associated potentials will be discussed. The equa-

tions which are developed will then be coupled to the circuit equations from chapter 2 to give a 

complete system of equations for both frequency and time domain solutions. 

3.2 Nodal and edge finite elements 
The finite element method is one approach that can be used to solve partial differential 

equations. The basic method provides a discrete framework that can be used to interpolate con-

tinuous functions characterised by the value of the function at a set of points (or nodes) in 

space. In the finite element method the points are connected by a contiguous mesh of elements. 

Within each element the variation of the function is typically described by a low order polyno-

mial. 

The traditional finite element approach based on nodal elements is not well adapted to the 

description of vector functions and in recent years methods of representing vector functions 

using edge elements have been developed. In these elements the vector fields are interpolated 

by local vector functions (again low order polynomials) associated with the edges joining the 

discretisation points. 

It is a moot point whether the 2d discretisation of is a nodal or edge method, but in prac-

tice for the 2d limit, the two approaches give exactly the same approximation. 
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3.3 Finite element discretisation 
In two dimensions, the geometry is divided into elements, typically triangles as in figure 

3.1. 

Figure 3.1 A model meshed with triangular elements 

An approximate solution to the defining partial differential equation is calculated at the nodes 

on the discrete finite element representation of the model. Initial values on some of the nodes 

are known from either boundary conditions or from source current density. 

For a single triangular element, using characteristic values at the nodes, the potential within 

the element is described as 

A(x) = J^Nf(x)ai (3JJ 

where A is the potential in the element, a, is the potential at node i (a trial parameter), and N[ is 

the local shape function [7]. The shape function, Â j, can be interpreted as the contribution of 

node i to the potential at a point in the element. In general shape functions can be defined so 

that 

= 1 

Ar̂ .(Xy) = 0 

(3.2) 

(3.3) 

The shape functions for the nodes used in this work are either linear (first order) or quadratic 

(second order). It can be shown that the error in the discrete solution depends on the element 

size (h) and the order of the shape function polynomials. With first order elements 
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Error = O(h^) (3.4) 

whereas with second order elements[7] 

Error = O(h^) (3.5) 

The disadvantage of using second order shape functions is that they increase the number of 

equations which need to be solved and so increase the solution time and memory requirements. 

3.4 Forming the matrix contributions for the XY case 
In order to solve the partial differential equation (PDE) the finite element approximation to 

the potential (equation 3.1) is substituted into the field equations. The vector form of Poisson's 

equation describes the magnetostatic fields, or the time varying fields when there are no eddy 

currents. 

3.4.1 Matrix contributions for a conductor 
The z directed vector potential in a 2d problem of a conductor with no eddy currents was 

described in equation 2.26 as 

Vx-VxA^ = JL (3.6) 

where Jg is the applied current density, which is uniform over the domain. Substituting in equa-

tion 3.1 yields 

Vx^Vx^Ar,.a^,.-Jo = 0 (3.7) 

The residual can be defined as 

« = ( v x i v x ^ A - . a ^ - J o ) = 0 (3.8) 

where in general, the residual |/?|, only vanishes when a, is an exact solution. This equation can 

only be solved exactly if it has Cj continuity [7]. A alternative method [54] is to force the resid-

ual to be zero on average over the domain of the problem rather than over each element in the 

problem. This is expressed as 
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= 0 (3.9) 

where (0̂ - is a specially chosen function called a weighting function. The integral in equation 

3.9 is over all space, however the shape functions jV; are only applicable over an element hence 

^ <3.10) 

n = 1, elems 

and the integral is now over the domain of each element. 

If the number of weighting functions (0)̂ - )is chosen to be equal to the number of trial 

parameters (a;), a set of linear equations is obtained by substituting equation 3.8 into equation 

3.10 thus 

« = 1. elems « = 1. elems 
This is simply a set of linear equations of the form 

(3^2) 

If the trial functions in equation 3.11 are chosen to be the same as the shape functions N\ then 

the method is called the Galerkin Method [55] i.e. 

y I", W:Vx-Vx7V,.6&2a,, = V T, (3.13) 
Z—( Jelem jX i zi Jelem ' " 

n ~ I. elems n = I. elems 

The shape functions N[ must be valid within each element as required by equation 3.10, but 

there has not been any requirement imposed on their validity when crossing the boundaries 

between elements. The shape functions which have been chosen are finite and continuous 

between elements but the derivatives are discontinuous and finite. The second derivatives are 

however discontinuous and infinite [39]. This level of continuity is referred to as Cq [7] and 

imposes the restriction that the integrand in equation 3.13 cannot contain derivatives higher 

than the first derivative. 
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It can be seen that equation 3.13 does contain second derivatives, these can be removed by 

integrating by parts and applying a vector form of Greens function [56], 

V X = j^G . V X - j ^ ( F x G ) (3.14) 

In order to correctly interpret the surface term that has been introduced, we return to consider-

ing the integral over the whole domain before the local shape functions were introduced, rather 

than considering the problem on an element by element basis. Applying Green's function to the 

vector potential term in equation 3.9 gives 

| ' m , . V x - V x A , 6 K l = L - V x A . V x m ^ ^ - L m . x r - V x A l (3.15) 
jQ. J n z JOp, z J Jr i Vp, V 

which can be rearranged as 

r (0: V X -VxA_<&2 = T v x m , - V x A . f & l - L m : H x n f f T (3.16) 
j£i J p, z JQ J H ^ jF J 

In equation 3.16 the continuity requirement on A has decreased, whereas the continuity 

requirement on 00̂  has increased, and this equation is usually referred to as the weaker form of 

the original expression [7]. 

A surface term has been created which is related to the continuity of the tangential H field 

in equation 2.9. Continuity in the tangential H field therefore implies that this term will be can-

celled when summing the two contributions from either side of an element. At the problem 

boundary this term is zero if the field is normal to the boundary (the default Neuman condi-

tion). For potential boundary conditions this term can be made to vanish be setting the weight-

ing function (Mj to be zero at the boundary. Using this new form of this equation, equation 3.17 

is written as 

y V x 7 V , . - V x A r . ( f 5 a . = V f , (3.17) 
Z-d ielem / p, i zi Jelem J " 

n = I. elems n = 1. elems 
The terms in this equation are easily evaluated: in linear elements the shape function for node n 
is [39] 
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a, + 6;% + c,.); 

where is the area of the element. As the field in an XY model is only z directed, the curl is 

easily evaluated. 

dN- dN: iCj-jb-
i— - i — = —!— 
dx dx 2A^ 

' - j -y - ' == ' (3.19) 

In further examples, the equations will be kept in terms of the shape functions Nj as the equa-

tions are more compact. Equation 3.17 can be written in a matrix form as 

[S][A]| = [J] (3 20) 

where for the matrix of S nodes 

- T7)<j\r4%Q (3.21) 

A = NjSij (3.22) 

Jy(/V) == (3.23) 

3.4.2 Matrix contributions for conductors with eddy currents 

The two equations which describe the field in conductors with eddy currents are equations 

2.28 and 2.29, repeated here for clarity 

V x i v x A + = J, (3.24) 

The same Galerkin method as introduced in 3.4.1 can be used to discretise equation 3.24, 

where the only new quantity which has been introduced is the time dependence of the field. J , 

is constant, therefore equation 3.25 is solved with unit weight (i.e. N=l) to give 

37 



(3.26) 
.K2& a A2A: a 

Using unit weight and dividing through by a retains the symmetry which was present in the 

equations before they were coupled i.e. 

[ S ] 0 A + - [ G ] - [P]^ 
0 q F - [P ] [H]_ 

3 A 

— 

I 

.J. A 

(3.27) 

where S, A and J have the same meaning as before and F is the time integral of J. Other new 

terms are 

p / £ ) = l^Njda 

lljj(ExE) - 1^3jdQ 

(3.28) 

(3.29) 

(3.30) 

where P is a vector and H is a diagonal matrix. The terms P and H are only included if an eddy 

current conductor has its return path within the domain of the model. There are E eddy current 

conductors of this type. The eddy current conductors may consist of more than one isolated 

domain and there is just one equation per eddy conductor not one equation per conducting 

domain. 

This formulation does not yield the current density as solution vector, only the time integral 

of the current density. In order to get the current density, F must be numerically differentiated 

to get J and added to the applied current density J^. 

3.4.3 Matrix equations for massive conductors in circuits 

The three governing equations for massive conductors and circuits which were introduced 

in chapter 2 are 

Vx-VxA + = 0 
H dt I 

(3.31) 
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[M][AVJ + [ZJ[IJ, + [ L , ] ^ = [ E J 

(3.32) 

• L — ^ j J 

The Galerkin procedure applied to equation 3.31 and 3.32 produces the two element based 

equations: 

(3.33) 

y I", - VxNy. V X - y I", I", = 0 (3.34) 
Z-rf Jelern |j, ^ i zi Jelem J I dt ^ Mem J / 

d&,: 
(3.35) 

which are summations over all the elements in the massive conductors. A final set of equations 

is produced which is nearly symmetric by dividing equation 3.32 and equation 3.33 by the 

length of conductor, hence. 

[S] 
[C] 

[R 
/ I 

0 
[D]^ [Z] 
I I 

[ - G ] 0 0 0 

A 

VV 4-

0 0 

0 
d 
dt 

A 

VV ~ 0 

_ I _ 

0 0 
[L] 

I _ 

d 
dt 

_ I _ 
[E] 

I _ 

(3.36) 

Where C is defined as 

C,^.(^x^) (3.37) 

K is the number of massive circuit conductors and D is a vector length K which describes 

which conductor is in which circuit and whether these conductors are the 'go' or 'return' sec-

tions (previously referred to in a general way as M). This matrix equation is not yet symmetri-

cal, but will be made symmetric later when a solution scheme is considered. 
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3.4.4 Matrix equations for Glamentary conductors in circuits 
The three equations which were developed for this system in chapter 2 were 

Vx-VxA = ^ 
|Ll S; 

(3.38) 
] 

[M'][AVJ + [ Z J [ I ] ^ + [ L J - ^ = [ E J 

(3.39) 

(3.40) 

The potential drop can be eliminated by substituting equation 3.39 into equation 3.40. 

The Galerkin procedure is used on the resulting two equations to give summations over the ele-

ments in the filamentary conductors thus 

(3.41) 

[ " ' i f Z L + , I J ) + [ L ^ ] ^ = [E„] (3.42) 

where D is the vector which describes which circuit each filamentary conductor is in and 

whether it is the right or wrong way. If the circuit equation 3.42 is multiplied by -1 then the 

final system of equations is almost symmetric, thus: 

[G] 

0 

- [ D ' l l C ] 

I 

+ 
0 

- [ L ] 
I 

d 
dt 

0 

[E] 
I 

(3.43) 

where 

-= (3.44) 
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Z' = Z + #/9lt (3.45) 

One of the degrees of freedom was eliminated to obtain the final matrix. This has the advan-

tage that there is no longer a term for the resistance of an individual conductor - the resistance 

of all the conductors are lumped together in the in Z term. This flexibility allows an easier 

interface to the software as the total measured resistance of a circuit can be entered rather than 

having to define the resistance for each conductor. The interface developed in the software still 

allows the user to define the resistance of each winding, but sums them together into the Z' 

term. 

3.4.5 Full matrix 

All the contributions from all the conductors in eddy current circuits, filamentary circuits 

and ones which are short circuited can be combined into one large system of equations thus 

[S] 0 

0 0 0 0 

[R-l] - [ D ] ^ 
0 0 

I 

0 0 

I 

I 

A 

F 
VV 

I 

+ 

-[G] 

[P] 

- [ C ] r 

I 

[ P f O 0 

[H] 0 0 

0 0 0 

0 0 

h 

A J. 
F o 

VV 0 
_ I _ [E] 

/ 

( ^ 4 0 

I I 

Even though this final system is not symmetric, it can be made to be symmetric when the equa-

tions are solved. Before considering solution strategies the other 2d case, axi-symmetry, will be 

introduced. 

3.5 The axi-symmetric case 
The equivalent rotationally symmetric system to the XY system that has been described, 

will have only R and Z components of field, which can be represented by a vector potential 

with only an azimuthal component. Using a one component vector potential 

(3.47) 
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The equations that were developed in section 3.4 for the XY case can be developed for the vec-

tor potential by using the cylindrical polar version of the curl operator. One difference in 

the formulation is that the length of the circuit I is not an independent variable but is simply 

2nr. 

When examining the matrix terms and considering the equation 3.47 it is noticed that rather 

than solving for it is more natural to solve for the magnetic flux 0 [39], where 

4) == r/1* (3.48) 

One problem which is encountered when using both these potential types is that there is a sin-

gularity at r=0, as some of the matrix terms contain r as a denominator. However the integrals 

are finite and the vector potential must be zero on axis. The integrals can be evaluated by 

numerical quadrature providing points on axis are avoided. When recovering the fields on the z 

axis it can be seen from equation 3.47 does not define at r=0 and other techniques are used 

to recover the field. 

For some geometries the solution varies as ln(r) close to r=0. In these cases convergence of the 

A and rA formulations is poor. The problem can be avoided by solving in a transformed space 

[66] i.e. 

0 = rA^ and = s (3.49) 

Now that the matrix equations have been defined, the next two sections show how they are 

implemented in frequency domain and time transient solutions. 

3.6 Frequency domain solutions 
A frequency domain solution is one where the field is varying in a time harmonic way. This 

can be represented in two dimensions as 

A = Â  exp(ywr) (3.50) 

where A^ is a complex representation of A and CO is the angular frequency of the field. In a 

linear problem, all other field quantities will have similar relationships. The time derivative of 

the field can be seen to be 
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^ = ymA^exp(/Wf) = ^(oA (3 51) 

This relationship can be substituted into equation 3.46 to give a single solvable matrix. Two 

rows in the matrix have been divided by 0) to obtain symmetry yielding 

[S] 

;m[P] 

I 

I 

0 

0 

- [ C ] 
I 

0 

[R" ' ] 

_ I 2 j 
yco/ 

-[C'][D'] 

0 
A 

F 

VV 
I 

Jv 

J . 

a 

0 
[E] 
yw/ 

(3.52) 

Examining this final matrix, it is now clear what conditions must hold to provide a solution. 

The massive conductors in the circuits must have a non zero resistance whereas the circuits 

involving filamentary conductors must have some impedance in their circuits. If either of these 

conditions are not met the matrix will have a zero on the diagonal and be singular. Another 

consideration is that the frequency must not be zero or the resistance terms will be infinite and 

the diagonal term for the short-circuited conductors will be zero. If a zero frequency solution is 

required, the currents in the circuit equations can be calculated independently. The calculated 

currents can then be entered as specified current densities. 

Equation 3.52 has complex coefficients and will have a complex solution. A complex con-

jugate gradient method with an incomplete Cholesky preconditioning [63] (CICCG) has 

proved reliable after scaling the contributions. It is necessary to scale, or normalise, the contri-

butions as they are very different in magnitude because they represent different physical quan-

tities. Scaling is performed by multiplying out the rows and columns so that the magnitude of 

the diagonals is 1. Symmetry can be retained by operating on the columns as well as the rows. 

Other preconditioners, such as the Quasi-Minimal-Residual (QMR) system, have been reported 

to be very effective in reducing the time taken to solve the matrix equations [64]. Very recent 

work on algabraic multigrid methods [65], which have been adapted to cope with dense blocks 

in sparse matrices, are reported to be good preconditioners for a wide variety of problems. 
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The effect of capacitors in the circuit equations has been neglected until now in the formula-

tion of the final frequency domain matrix. Let us consider the impedance of a capacitor and the 

impedance of an inductor in an AC circuit, 

2% and 2%. = (3 53) 
^ ^ j toC 

where and ZQ are the impedances of an inductor and capacitor respectively. It is clear by 

inspecting 3.52 equation that it is only the impedance of the device which is needed. An extra 

term can be added to the impedance terms in the matrix to include the impedance of a capacitor 

such that the total impedance term after symmetry-retaining operations is 

Z' = (3.54) 

The simple time harmonic substitution used in equation 3.50 assumes that the material char-

acteristics are constant and do not therefore vary with time, flux density or current. Non-linear 

magnetic properties, where is dependant on the field, are likely to have some effect in a real 

application. The effect can be seen in a real application when a perfect sinusoidal voltage is 

applied. The currents generated will contain higher order harmonics of the fundamental fre-

quency as well as the fundamental. 

A first order approximation for non-linear permeability is to use average permeability, but 

this is still restricted to only looking at the fundamental frequency. Higher order harmonics can 

be calculated at the expense of solving larger systems of equations [67]. 

3.7 Transient solutions 

3.7.1 Models requiring transient solutions 

The time harmonic solution is not always adequate to model eddy current problems. There 

are many classes of problems which require a full transient solution where a solution is evalu-

ated as a function of time. Problems which need transient solutions usually involve one or more 

of the following: 

• Drives which are not time harmonic 
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® Capacitive discharge. 

• Motion 

® Non-linear materials 

• Permanent magnets 

Non time harmonic drives can be used to model the energising of a circuit (switch on) as well 

as a fault condition (switch off). Capacitive discharge can be modelled [58] by placing a charge 

on a capacitor when conventional drives are not present. When a problem includes motion, the 

matrix contributions for the elements in the air gap between the moving and stationary parts 

must be recalculated for each position [60]. A time transient solution is therefore required for 

each position. In order to fully model the non-linear magnetic behaviour of permeable regions 

including permanent magnets, the transient solver is used to recalculate the permeability from 

the field as a function of time. 

3.7.2 A time marching scheme 

The coupled electromagnetic and external circuit system described in equation 3.46 can be 

written compactly as 

RX + = B (3.55) 

where R and S are matrices, X is the vector of unknowns and B is the vector of 'right hand 

sides'. This equation is solved by dividing the time into finite domains and performing a calcu-

lation to progress the solution through time starting with some initial condition. The right hand 

sides are recalculated at each time step. The time domain can be discretised using a weighted 

residual approach [7] giving a time discretised form of equation 3.55 as 

R 8 - ^ 
5r 

*M+1 

where x„ is the matrix for step n, is the right hand side term for step n and 0 is a factor 

between 0 and 1. This approach is immediately extendable to adaptive time integration. The 

solution at time t+8t can be compared with different sizes of time steps and since the accuracy 

should vary as 0(5t^) the expected accuracy can be calculated. 
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The choice of the factor 6 changes equations 3.56 to be similar to other well known 

schemes, shown in table 3.1. 

e Scheme 

0 Euler (explicit) 

1/2 Crank-Nicholson 

2/3 Central Difference 

1 Backward difference (fully implicit) 

TABLE 3.1 Different theta schemes. 

When time marching just the electromagnetic equations it is found that the Crank-Nicholson 

scheme is stable, but when coupling to the circuit equations, 6 must be at least 0.5 as the 

Crank-Nicholson scheme generates undamped or even divergent oscillations [60]. It has been 

found that 0 =2/3 is reliable. When coupling to mechanical equations it is convenient to use 

0=1 because this easily incorporates changes to the mesh and equation system during the time 

marching. 

Equation 3.56 can only be solved if an external impedance is present in filamentary circuits, 

and conductors in eddy current circuits have non zero resistances. The external impedance 

terms, which form the diagonal elements in the matrix, are negative so a complex linear algebra 

solver is used. 

A time marching process must begin from specified initial conditions. The initial condition 

may have to be determined by first solving a static field, given calculated currents from the 

driving circuits. 

3.7.3 Capacitors in the transient solution. 

In the solution of a frequency domain problem it was shown that a capacitor could be 

treated in the same manner as inductors, i.e. as another impedance term in the circuit equations. 

However, in the transient solution the full transient behaviour of the capacitor must be mod-

elled. From equation 2.48 the voltage drop across the plates of a capacitor can be written as 

= (3.57) 
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where is the voltage across the capacitor at time step n, tl is the time at the start of step n 

and t2 the time at the end of step n. The voltage across the capacitor is used as a right hand side 

term. The matrix is solved for step n, between time tl and t2, and the resulting current is used 

to calculate a new value of the voltage across the capacitor. The voltage drop Vq across the 

capacitor must be known when the time marching scheme starts at t=0. If Vq is non zero it may 

be used to drive the whole problem. 

3.8 Discussion 
In this chapter, three different sets of extra equations were formulated in addition to the field 

in a conducting region: 

1. Eddy current conductors with the return path inside the model, 

2. Massive conductors in a circuit 

3. Filamentary conductors in a circuit. 

If the equations for (I) and (2) are compared there can be seen a great deal of similarity. If we 

compare a single region of (1) with a circuit of type (2) which has no applied voltage and only 

contains one massive conductor, the extra equations are 

and 

Its is now clear that the extra equation for (1) could have been written as 

r , - r , = r , c (3.6O) 
iQ.k dt Jot J£ik ^ 

where is the source term - J /G. The matrix of equations could have then be written 

as 
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S - [ C ] 

[C] H 

A + + 
oVV 

[G] 

- [ C ] ' 

0 a A ' 4 ' 

0 dt aVV - a v y 
(3.61) 

This matrix equation is not symmetric, but can be made to be symmetric by applying row and 

column scaling as used for the circuit equations. These are more natural equations than the 

ones first proposed in [27] as the unknowns are A and crVF, which give directly -J, unlike 

equation 3.27 where J is recovered from the time derivative of F. If we go one stage further and 

add an imaginary circuit equation for this isolated conductor we get 

[S] - [ C ] 

0 

0 A [G] 0 0 A 0 

v y + 0 0 
(7 

97 
v y 0 (3.62) 

I 0 0 0 I 

[R - [ D ] 

0 - [D]^ - Z 

where R is a diagonal matrix of the resistances of all conductors, Z is the sum of the resistances 

of all the conducting regions which make up the conductor and D is a diagonal matrix of I's. 

This matrix can be now directly compared to equation 3.36 and it is seen to be identical for a 

unit problem length. There is no great advantage in using this formulation in 3.62, but it shows 

that the two types of conductors can be treated in the same way. The advantage of using equa-

tion 3.61 over 3.27 is that there is no need to introduce the time integral of J. 

3.9 Conclusion 
The equations which describe coupled finite element and external circuit analysis have been 

fully formulated for the frequency domain and time transient systems. A time stepping proce-

dure has been outlined which uses adaptive time stepping able to control the time stepping 

errors. It has been noted that special attention is required at the start of the time stepping proc-

ess to prevent large transients. Restrictions of the external circuits, i.e. an external impedance 

being required, have been investigated by examining the final system of equations. 

These methods were implemented in the Opera-2d software. The next chapter describes the 

implementation. 
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4. (Jiie e:Kibeiri:iil (swncuit 

4.1 Overview 
Coupling between finite elements and circuits was implemented in the Opera-2d software. 

The combined Pre and Post-processor was extended to allow the definition, editing and listing 

of external circuit mesh loops. 

Two different ways have been developed to enter the definition of a circuit. The most natu-

ral definition for the software is for the user to enter a mesh loop as a list of resistors, inductors, 

capacitors and finite element conductors. For more complex circuits, where components appear 

in more than one mesh loop, it may be non trivial to identify the independent mesh loops. The 

alternative technique to enter the definition of the circuits is to simply identify each component 

and to which circuit nodes it is connected. This definition can then be converted to the mesh 

loop format by an automated procedure. 

4.2 Defining the mesh loops. 
In order to identify a finite element conductor which is to be used within an external circuit 

it is given a label, the 'conductor number'. One or more regions may be assigned the same con-

ductor number. Assigning the same conductor number to many regions implies that they are 

joined at the ends of the model. The conductor numbers are also used to define the regions 

which are eddy current conductors and have the return path of the current within the conductor. 

The main menu for the external circuits is shown in figure 4.1 
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E x t e r n a l C i r c u i t s 

t D e f i n e c i r c u i t '[> 

E d i t c i r c u i t |> 

L i s t c i r c u i t s M 

j D e l e t e c i r c u i t s 1> 

C h e c k c i r c u i t d a t a 

R e a d a c i r c u i t f i l e > 

S t o r e a c i r c u i t f i l e l> 

I m p o r t a c i r c u i t O 

R e t u r n 5K 

Figure 4.1 Main circuit menu 

The definition of each mesh loop is divided into two sections.The first one describes the 

global circuit parameters such as the external resistance, inductance and capacitance and the 

second section defines the characteristic of each conductor. Figure 4.2 shows the entry dialogue 

for the global parameters. 

Circuit D a t a 

E d d y C u r r e n t 
C i r c u i t type 

I F i l a m e n t a r y 

S y m m e t r y 1 

L e n g t h (XY only) 1 0 0 

P e a k v o l t a g e 10 

P h a s e a n g l e 0 

R e s i s t a n c e 10 

I n d u c t a n c e 0 

C a p a c i t a n c e M 

I n i t i a l v o l t a g e 0 

Figure 4.2 Global circuit parameters 
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It can be seen that the user must select whether the circuit is based on eddy current (mas-

sive) conductors or on filamentary conductors. This is required so that the circuit equations can 

be set up correctly and the circuit data checked. One example is that the eddy current circuits 

require an external impedance. If there is more than one resistor, capacitor or inductor in the 

circuit, these must be summed by the user and only the total value entered. The resistance and 

inductance fields are also used to describe the internal impedances of the voltage source if nec-

essary. 

In order to correcly define each mesh loop, the current is considerd to flow in one pre-

scribed direction. If the current in the conductor provides a positive potential drop along the 

conductor, the 'sense' of the conductor is 'go' if the potential drop is negative the sense is 

'return'. If the current direction is reversed, the sign of the calculated current is also reversed. 

The application of the 'sense' of conductors in a mesh loop is equivalent to applying positive 

and negative current density in a current driven model. 

When the global parameters have been specified, the individual conductor must be added to 

the circuit. In an eddy current circuit, only the conductor sense must be specified (whether it is 

a go or return conductor), i.e. figure 4.3. 

E n t e r t h e d e t a i l s f o r 

C i r c u i t 1 , i t e m 1 

C o n d u c t o r n u j t i b e r 1 

i Go 
C u r r e n t d i r e c t i o n 

r e t u r n 

Figure 4.3 Eddy current conductor parameters 

For a filamentary conductor the number of turns and the resistance per unit length of the 

wire must also be described. If the resistance of the wires is combined into the global resist-

ance, the resistance per unit length can be set to be 0. The definition of a filamentary conductor 

is shown in figure 4.4. 
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E n t e r t h e d e t a i l s f o r 

C i r c u i t 1 , i t e m 1 

C o n d u c t o r n u m b e r 2 

C u r r e n t d i r e c t i o n ' 

N u m b e r o f t u r n s 50 

R e s i s t a n c e / u n i t l e n g t h O . O ; 

Figure 4.4 Filamentary conductor parameters 

Once more than one circuit has been defined, the edit menu can be selected to add the com-

ponents which appear in more than one circuit, the 'shared' components (figure 4.5). 

G l o b a l p a r a m e t e r s > 

L i s t C i r c u i t 2K 

S p e c i a l o p t i o n s > 

E d i t C o n d u c t o r > 

D e l e t e C o n d u c t o r > 

I n s e r t C o n d u c t o r > 

A d d C o n d u c t o r ( a t e n d ) > 

A d d s h a r e d r e s i t o r > 

E d i t r e s i s t o r > 

D e l e t e r e s i s t o r t> 

A d d s h a r e d i n d u c t o r > 

A d d s h a r e d c a p a c i t o r > 

E d i t c a p a c i t o r > 

D e l e t e c a p a c i t o r > 

Figure 4.5 The edit menu 

The edit menu also allows any other parameter in the circuit to be modified and conductors to 

be added, inserted or removed from the circuit. 
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The main circuit menu also allows circuits to be saved or loaded to a file so that different 

finite element models can use the same circuits. 

4 3 SPICE like circuits 
The mesh loop entry technique provides an easy to use interface allowing the user to input 

circuits into the software, but it requires the user to analyse the circuits and identify independ-

ent mesh loops. A more natural way to describe a circuit is to define the connections between 

the nodes of the circuit. There are many circuit analysis tools which can take a nodal data file 

as input and analyse the behaviour of the circuit. Many of these tools are based on Berkely labs 

SPICE, although the commercial packages far exceed the capabilities of the original 'freeware' 

program. The format of the input data files for SPICE are a very simple and convenient way to 

describe our circuits and they form the basis of the second circuit entry technique. 

4.3.1 Format of the SPICE like file 

The SPICE like file contains many lines of descriptions. Each line describes a component 

and its connection to its neighbouring nodes. A general line is written thus 

XNijPe 

where X is the component type, N the number of the component, i and j are the two nodes that 

are joined by the component. P is the value of the component and e is the exponent of the 

value. An example is 

R134 10k 

This describes a 10k ohm resistor between node 3 and 4 which has the label Rl. The types of 

components currently decoded are shown in table 4.1 

Component Label 

Resistor R 

Inductor L 

Voltage Source V 

Capacitor c 
OPERA Conductor o 

TABLE 4.1 SPICE like circuit components 
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where the OPERA conductor value is the conductor number. An OPERA conductor number is 

a label applied by a user to identify a conductor in a model. There are some properties of the 

circuit which cannot be described using normal SPICE notation. These are embedded in com-

ment lines, which start with a * and affect the circuit properties from that line onward;, exam-

ples are shown in table 4.2. 

Comment line Meaning 

LEN Circuit length 

SYMMETRY Circuit symmetry 

TYPE Circuit type (filamentary or eddy) 

SENSE Conductor sense 

PHASEANGLE Phase angle of an AC drive 

TURNSPERCOIL Turns of a filamentary conductor 

RESISTPERLEN Resistance per unit length of a filamentary conductor 

INTTIALVOLTAGE Initial voltage of a capacitor in transient analysis 

TABLE 4.2 Additional circuit parameters using comments 

Most of the comment factors need to be described only once per file, even if the file describes 

many circuits. The sense parameter can be defined for each independent circuit, so that the cur-

rent direction upon analysis appears in the expected direction. The sense of other conductors in 

a circuit is calculated automatically because adjacent OPERA conductors in a mesh loop must 

have opposite senses. 
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An example of a circuit and its SPICE like representation is presented in figures 4.6 and 

table 4.3. 

Figure 4.6 An example circuit 

* TYPE EDDY 

*LEN 1 

SENSE GO 

VI 12 10 

0 2 2 4 

01 5 1 

03 23 

R1 3 4 2k 

R2 4 5 2k 

TABLE 4.3 An example SPICE type file 

4.3.2 Creating mesh loops from SPICE like files 

In order to convert the nodal SPICE like file into mesh loops two processes are needed: 

1. A text interpreter to break the lines down into meaningful components 

2. An analyser to convert a nodal description to a loop description. 

The text interpreter is a straightforward program which splits up each line into tokens which 

are then loaded into compound arrays. In order to obtain loops from a nodal analysis, simple 

graph theory is used to break the nodal connections into a 'spanning tree'. A tree is a collection 
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of branches (lines joining the vertices of a graph) which do not connect to each other and form 

closed loops. A spanning tree is a tree which contains all the vertices of the original graph. 

In order to describe the spanning tree of a circuit, consider the graph of the circuit in figure 

4.6, where each component has been replaced by a line, and connecting wires have been 

removed. 

Figure 4.7 Graph of circuit 

There are many spanning trees for the graph in figure 4.7, two examples are shown in figure 

4.; 

Figure 4.8 Two spanning trees from the same graph 

The co-trees, which are the gaps between the nodes, define each independent loop. To 

obtain the loop, a co-tree is closed and then a loop can use the branches which define a closed 
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loop. The loops from the first of the spanning trees in figure 4.8 can be drawn as shown in fig-

ure 4.9 

Figure 4.9 The two loops formed from the spanning tree 

The direction of the arrows in the loops are not important. Choosing the opposite direction for 

the mesh loop will produce an equal and opposite current in the circuit. The sense of each loop 

is defined by the connection between the first and second nodes identified in the loop. 

There are many ways to find the spanning tree of a graph, the simple technique employed 

here is 

1. Pick a starting node A, 

2. Find an adjacent node B, and mark it as visited, mark the edge A-B as visited. 

3. Move to another adjacent node C, unless it has been visited before 

4. If a node C has been visited before, find an unvisited node D and start at 1. 

5. Continue process until all nodes have been defined. 

The loops are identified by, 

1. Scan the edge list an unvisited edge E-F (a co-tree) 

2. find the shortest path between node E and F (which is not the co-tree), this is a loop. 

3. Mark the edge E-F visited 

4. Go back to step 1, until there are no longer any unvisited edges. 
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Once all the loops have been identified, the impedance components (resistors, inductor and 

capacitors) are placed back in the loops. The impedance which is not shared with other loops is 

summed to be the external impedance. The loops are then compared to find the total impedance 

and these are entered into a matrix of impedances. Conductors are identified which are shared 

with another loop. The final step is to place the conductors in the loops. Unless flagged other-

wise it is assumed that adjacent conductors have the opposite sense. 

4.3.3 Problems identifying the spanning tree and loops 

It is possible that a SPICE file supplied by a user may not correctly define a set of mesh 

loops. The spanning tree generated from the graph analysis of a SPICE file is checked to see if 

mesh loops can be formed. These checks include identifying 

1. Incomplete loops, where components are not part of a closed loop 

2. Nodes connected to themselves without components 

3. Impedance components are in a parallel circuits 

The first two conditions may indicate an error in the input from a user and a warning is issued. 

The last condition occurs very often in circuits and causes a problem in the loop generation 

algorithm as the circuit is stored in a compressed node-node matrix. This matrix can only con-

tain one entry for each pair of nodes A and B. To overcome this limitation a 'virtual imped-

ance' or a zero resistance piece of wire is inserted in one of the loops. The original components 

now have connectivity A-B and A-C-B. 

Figure 4.10 Insertion of a zero impedance wire into a loop 
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When the final loops are checked for shared impedances, both loops are still identified as con-

taining the same components. 

4.4 Discussion 
In this chapter two techniques have been presented which allow a user to enter the data 

associated with external voltage driven circuits. The first technique involves the user identify-

ing the mesh loops in a circuit and using the graphical user interface (GUI) to enter the compo-

nents. The second technique involves the user listing the connectivity of a circuit in a SPICE 

type file, describing the nodes in a circuit and the components in them. The analysis of the 

SPICE type file produces mesh loops automatically. The first technique requires very little data 

handling by the program, whereas the SPICE type file analysis requires a lot of calculations. 

These are however so fast that the user is not aware that a process is happening. 

The mesh loop entry technique is best suited to small simple circuits, whereas the SPICE 

type file allows complicated arrangements to be entered with less chance of data entry error. 

There is a limitation with the SPICE type file entry technique: currently if a circuit is cre-

ated which does not contain a conductor, the circuit is invalid. If a circuit without any conduc-

tors is created, the graph analysis can be restarted with a different starting node. Restarting the 

analysis may produce a different spanning tree where the loops which are produced contain 

conductors. A circuit without any conductors is valid in circuit analysis, it is just a limitation of 

the implementation in Opera-2d which requires that each loop contains a conductor. The rou-

tines which build the finite element matrix contributions have been written expecting all cir-

cuits to contain a conductor and if there are no conductors present the circuit does not get 

entered into the matrix. 
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5. Results 

5.1 Introduction 
In this chapter, a range of results will be presented which demonstrate both the accuracy and 

the flexibility of the algorithm which has been used to couple external circuits to finite element 

analysis. 

The first case considered is a simple circuit using filamentary conductors which will be 

compared to analytical results. Secondly, a circuit involving massive conductors will be com-

pared to known solutions of disconnected connectors. An analytical example will then be pre-

sented which contains more than one circuit, where the mutual inductance between the two 

circuits will be taken into account. The chapter will conclude with a motor manufacturer's 

model of an induction motor. The model contains circuits which contain both massive and fila-

mentary conductors. 

5.2 Circuits with filamentary conductors 

5.2.1 Time harmonic analysis of a finite element model for a single circuit 

A simple model is proposed in order to compare computed results with analytical results. A 

straightforward finite element model is one which does not contain 

® Eddy currents 

• Inhomogenous magnetic materials 

® Symmetry 

The model in figure 5.1 is such a model and represents the cross section through a long filam-

entary coil. The coil is surrounded by free space. 
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Figure 5.1 Two infinitely long filamentary conductor 

The model information on the right hand side of the picture shows the total number of elements 

and nodes in the model and that the model is to be solved with second order shape functions 

(quadratic elements). The detail of the finite element mesh in and around the conductors can be 

seen in figure 5.2 
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Figure 5.2 Detail of tlie finite element mesh 

The external circuit is composed of the two conductors in series, connected by a voltage source 

and an external resistance. A schematic of the circuit can be seen in figure 5.3. 

Figure 5.3 A simple external circuit with 2 
filamentary conductors 

The external resistance can be used to represent the internal resistance of the voltage supply, 

the resistances in the end windings or the resistance in connecting wires. 
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The circuit is entered into the program using the SPICE type definition, table 5.1 

TYPE FILA 

*LEN1 

VI 1 4 240 

R1 2 3 lE-6 

TURNS 200 

RESIST 0.017 

O i l 2 

0 2 3 4 

.END 

TABLE 5.1 An example SPICE type file 

For clarity, the components are described in table 5.2 

Component Label Property Value 

Opera Filamentary conductor 0 1 Conductor label 1 

0 2 Conductor label 2 

Turns 200 

Length 1 metre 

Resistance per unit metre 0.017 Ohms 

Resistor R1 Impedance lE-6 Ohms 

Voltage source VI Voltage 240 Volts 

TABLE 5.2 Properties of the circuit components 

When the circuit is imported into the Opera Preprocessor, a single 'loop' is formed and 

reported by the pre-processor in figure 5.4 
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: Information: 

C i r c u i t 1 : s y i r m e t r y = l , l e n g t h 1 . 0 ( M E T R E ) , T y p e = F i l a m e n t a r y 

P o w e r s u p p l y = 2 4 0 . 0 V o l t s , P h a s e a n g l e = 0 . 0 D e g r e e s 

E e s i s t a n c e = l . O E - 0 6 O h m s , I n d U G t a n c e = 0 . 0 H e n r i e s 

C a p a c i t a n c e = 0 . 0 

C o n d u c t o r s : 

i t e m , c o n d u c t o r , s e n s e , 

1 1 

2 2 

F a r a d s . 

Go 

R e t u r n 

t u r n s , r e s i s t a n c e / METRE 

2 0 0 0 . 0 1 7 

2 0 0 0 . 0 1 7 

Close 

Figure 5.4 The loop formed from the SPICE like data file 

The problem is solved with the time harmonic solver (AC solver) at 50 Hz and the potential 

distribution in figure 5.5 is obtained. Although the absolute values of the two dimensional vec-

tor potential A are hard to interpret, a contour plot of A represents flux lines. 
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s\on e\re s_s i m pi ete o c o 
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Vector potential 
Magnetic fields 
AC solution 
Frequency = 50.0 Hz 
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4129 nodes 
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Figure 5.5 The potential contour plot from the time harmonic solver 

64 



In figure 5.6 it can be seen the current density is uniform across the domain of the conduc-

tors. 

Component: J (TIME=0.0) 
4230719.0 4230719.0 PERA-2d 

and PD&t;ProcBssor 

Figure 5.6 Current density in the conductor 

The filamentary conductor in this example is assumed to have a constant turns density, the cur-

rent density is therefore constant over the cross section. The current density in each element of 

the conductor is 

J = 
circuit current*tums 

element area 

Hence if the post-processor is used to calculate the integral of the current density over the 

domain of a conductor it will yield the amp-turns of the circuit not the current. 

(5.1) 

5.2.2 The analytical model 

The expected value of the time harmonic solution can be calculated by solving circuit equa-

tions for the circuit in figure 5.3. The inductance of the conductors in a system with constant 

permeability and no eddy currents is a static quantity related to its geometry. This can be calcu-
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lated by solving a static magnetic field model with a known current density. The inductance 

can then be found from the energy in the model from: 

Energy = ^ J l /^ (5.2) 

where the integral is over the whole of the model. I is the current in the conductor and L is the 

unknown inductance. The current in this equation refers to the current in the circuit - not the 

current density in the conducting region. If the conductor is representing a multi-turn coil then, 

from equation 5.1, the current is 

/ turns (5.3) / = j" JJiF 

conductor ^ 

The energy can be obtain from the built in integral calculations in the post processor i.e. 

Energy per unit length= j" A @ JdS (5.4) 

model 

where A is the vector potential (the solution variable) and J is the current density in an element. 

As J is only non zero in the conductor in this model, the energy integral can be carried out in 

just a conductor hence 

Ja • iclQ. 
Inductance per unit length = (5.5) 

Jj<iO/( turns) 

where Q is the domain of one of the conductors. 

The post processor can be used to calculate the integral over one conductor, figure 5.7 
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T j Information: E T x l 

I n t e g r a t i o n o v e r r e g i o n 1 

T o t a l c u r r e n t ( i n t e g r a l J d s ) 

I n t e g r a l o f p o t e n t i a l ( i n t e g r a l k d s ) 

S t o r e d e n e r g y / u n i t l e n g t h ( i n t e g r a l A . J / 2 d s ) 

S t o r e d e n e r g y / u n i t l e n g t h ( i n t e g r a l B . H / 2 d s ) 

NL S t o r e d e n e r g y / u n i t l e n g t h ( i n t e g r a l H . d B d s j 

F o r c e / u n i t l e n g t h ( i n t e g r a l J x B d s ) 

I n t e g r a l o f POT 

: 1 . 0 0 0 0 0 0 0 1 3 

: 1 . 9 2 7 2 S K - 1 0 

; 2 . 4 0 9 0 7 K - 0 7 

I 2 . 4 6 7 9 6 K - 0 8 

• 2 . 4 6 7 9 6 K - 0 8 

( 1 . 9 7 8 6 7 E - 0 6 , - 6 . S 7 7 8 E - 1 6 ) 

1 . 9 2 7 2 5 2 - 1 0 

Ci Close 

Figure 5.7 The results of the built in integrals over the domain of one of the conductors 

The inductance of the circuit can be calculated from the built in integrals using the expression 

$ p a r a # i n d u c t a n c e 4 * e n e r g y / ( ( c u r r e n t / 2 0 0 ) * * 2 ) 

The same model can also be solved with quadratic shape functions elements, the two results are 

shown in table 5.3. 

Finite elements Inductance 

Quadratic 0.03854508 

Linear 0.03792655 

TABLE 5.3 Comparison of the inductance using quadratic and linear elements 

The difference between the two values is about one percent, the quadratic element results will 

be more accurate because they are able to better represent the field when it is changing rapidly. 

The finite element result for the inductance will converge towards the correct value when 

smaller elements are used. However, the accuracy of the calculated inductance is not important 

in this test. The circuit model is coupled to the finite element model, and it is the inductance of 

the finite element model that will be used to determine the analytic solution. 

The values of inductance can now be used in the circuit analysis. Kirchoff's laws are applied to 

the circuit in figure 5.3 giving 

(5.6) 
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where the voltage varies sinusoidally with time and has the angular frequency co. The solution 

to this equation is [68] 

;(f) == 
y, 

m 
R + ycoL 

The maximum amplitude of the current is given by 

(5.7) 

-

F. 

I + (0)2,)^ 

(5.8) 

and the phase lag between the current and the driving voltage is 

0 = atan[^— 
R 

(5.9) 

The time harmonic finite element solution reports the circuit current as the real component (in 

phase) and the imaginary component (90 degrees out of phase) which are 

+ (mL)^ 
and 

+ (mZ,)2 
(5.10) 

using the Opera-2d preprocessor this can be expressed as 

$para #react (freq*PI*2*#Inductance) 

$para #RealVal (240*#Res)/(#Res**2+#react**2) 

$para #IxnigVal - ( (24 0 *#Omega) / {#Res* *2+#react* *2 ) ) 

Where #res is the total circuit resistance, f req is the solution frequency and #RealVal 

and #ImigVal are the real and imaginary components respectively. 

Table 5.4 shows calculated current from the circuit equations and the computed current from 

the time harmonic solver. 

Circuit current Real Imaginary 

Circuit equations 8.46143892 -15.0679470 

Time harmonic solver 8.46143545 -15.0679474 

TABLE 5.4 Comparison of calculated and computed current, quadratic elements 
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Real Current Imaginary 

Circuit equations &67131655 -15.1939030 

Time harmonic solver &.67131655 -15.1939032 

TABLE 5.5 Comparison of calculated and computed current, linear elements 

There is very good agreement in the solutions as expected. The solution with linear elements 

shows an error of about le-9 and quadratic elements le-7. The tolerance on the equation solu-

tions of the linear algebra solver in time harmonic solver is le-7, so a better agreement than this 

is not expected. 

5.2.3 The Time Transient solution 

The model can be similarly analysed in the time transient solver. If the driving function in 

the transient circuit is set to a 50Hz Cosine, the solution should be the same as the in the time 

harmonic case once the initial transients have subsided. A simulation was run with linear ele-

ments and an adaptive time step with a tolerance of 0.001. 

The current in the circuit is shown as a function of time in figure 5.8 

30.0 

20.0 

10 0 

- 1 0 . 0 

\f"OPERAr2d 
Pre and PoŝProcewor 

Figure 5.8 Current in the circuit in amps as a function of time 
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The adaptive time stepping uses an average time step of 0.0025 seconds which equates to 80 

time points for each AC cycle. 

There is an initial transient which has a time constant of about 0.03 seconds. The initial current 

is much higher than the magnitude of the time harmonic solution because a DC current is cal-

culated at time zero. The initial DC current is reported by the program as 35.294112456748 

Amps, which can be calculated from the circuit equations, thus 

' = I = 2 x ( 2 0 0 x % ) + . , _ « = 3 5 . 2 9 4 1 1 2 (5.11) 

It can be seen that these values agree exactly. In initial testing the result only agreed to le-8, on 

investigation it was discovered that the element coefficient routines were only calculating the 

area of elements to an accuracy of le-8. The area of an element is used in the circuit calculation 

as the total resistance of the wires is calculated from 

* r CU2) 
^ coil area J 

elements element 

The area of the elements are calculated using guassian quadrature, and it was found that the 

gaussian weights for quadratic elements were only defined to eight significant figures. This 

level of accuracy is not required for real models and was only noticed because there was an 

analytical example available for comparison. The results reported by the program are normally 

only displayed to 8 or 9 significant figures. Results which have been presented with higher pre-

cision are just for illustration and were obtain by making temporaiy modification to the pro-

grams. 

After many cycles, the current settles down to a regular harmonic solution which should be the 

same as the analytical solution. A comparison is shown in table 5.6, where one cycle at 50Hz is 

0.02 seconds. 
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Time transient solution with 
tolerance 0.001 (linear solution) Current, time t Current time t+0.005 

0.02 9.45886652 -15.3902712 

0.2 &.73691705 -15.1026068 

2 &74165455 -15.1042648 

Circuit equations 8.67131655 -15.0679470 

TABLE 5.6 The circuit current as a function of solution time 

It can be seen that the inaccuracy in the circuit equation after 2 seconds is about 1 percent, yet 

the requested tolerance was 0.1%. The 'tolerance' is calculated in the solver as the relative dif-

ference between two field solutions - this does not necessarily mean that the same accuracy in 

the circuit solution is achieved. Secondly, the errors in a time stepping scheme generally 

become larger as time stepping progresses because errors compound when the initial values for 

the next step contain the errors of the last step. A greater accuracy in the circuit solution can be 

obtained by using small time steps, which is achieved by using a smaller tolerance, or selecting 

a short fixed the time step. 

Time transient solution 
(linear solutions) time =0.2s time =2s 

Circuit equations 8.67131655 8.67131655 

100 steps per cycle &74797711 8J4797687 

1000 steps per cycle 8.67936617 8.67936592 

10000 steps per cycle 8.67212537 8.67212512 

100000 steps per cycle 8.67139751 

1000000 steps per cycle &,67132723 

TABLE 5.7 The effect of the time step upon circuit current 

It can be seen in table 5.7 that when sufficient time steps are used the analytical result is 

achieved. If a log-log scale is used to plot the error between the calculated and analytic values 

and the time steps per cycle a correlation can be seen, Figure 5.9 
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Figure 5.9 The relationship between error and the number of time steps 

As the number of time steps increases the result tends towards the analytical value; this demon-

strates that the formulation and implementation are both correct. Using the very small time 

steps is not practical for real models and adaptive steps are generally used with the correspond-

ing reduction in circuit solution accuracy. 

5.3 Eddy current circuits 
A simple circuit is proposed to check the validity of the eddy current circuits. The circuit 

contains two massive conductors and an external resistor. This model is compared to a current 

driven eddy current model. The errors in finite element approximation will be the same for 

both the current and voltage driven case, so by comparing the voltage and current driven solu-

tions any errors in the circuit calculations can be investigated. The finite element model is sim-

ilar to the previous example but the conductors are solid pieces of copper. The conducting 

regions are assigned a conductivity of 5e7 S/m from which the program calculates the resist-

ance. The circuit represents 'bus bars' carrying large currents and is shown in figure 5.10 
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Figure 5.10 A simple external circuit with two 
massive conductors 

and described in the SPICE format thus 

* TYPE EDDY 

* LEN 100 

VI 14 12 

R1 2 3 lE-8 

0 1 1 2 

02 3 4 

.END 

TABLE 5.8 SPICE type file for a simple circuit 

When the circuit is solved at 50 Hz the following distribution of current is obtained in the con-

ductors 
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Figure 5.11 Current density in tlie circuit conductors 

The eddy currents can be clearly seen in the conductors. The current has a maximum value at 

the edges of the conductor and decays in intensity in the centre of the conductor as expected. 
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The value of the skin depth from equation 2.36 should be about 1 cm. If the current density is 

plotted in the conductor as a function of position the following result is obtained. 
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Figure 5.12 Graph of the amplitude of the current density as a function of position 

The decrease in current with distance implies a skin depth of a few cm. This is greater than the 

predicted skin depth for an infinite plane as the fields penetrate from all sides of the conductor, 

eddy currents are also induced from the field in the other conductor. It is important that the skin 

effect is captured by the finite elements, which is achieved by ensuring that there are at least a 

few finite elements per skin depth. 

The current in the circuit is 

Real current (amps) Imaginary current (amps) 

126.047 Amps -359.684 Amps 

TABLE 5.9 Current in the circuit 

This is the same as a peak current of 381.131 with phase angle of 70.68 degrees 

When there is no applied voltage, at phase 90 degrees, a contour plot of the current density 

shows the out of phase component of the current. 
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Figure 5.13 Out of phase current density in a conductor 

It can be seen that the maximum value of the current density is no longer at the surface of the 

conductor. Rather than comparing this model to an analytical solution, the model is compared 

to a current driven version of the model. 

The simplest current driven model is a half model, figure 5.14, where the supplied current mag-

nitude and phase are taken from the results of the circuit analysis. 
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Figure 5.14 The half model with boundary conditions 

The current density is fixed in the conductor by applying an extra equation per conductor as 

described in section 2.5. The field patterns and current densities of the two solutions are iden-

tial. figure 5.15 shows the potential distribution in and around the conductor in the two models 

JCwnpontnt. POTCfW&OIO rcotnpontt*: POTCTWEBCJ)) 
1)81997605 4.3tOfr 

Figure 5.15 Potential in the conductor for current (left) and circuit (right) driven models 
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If the voltage driven model is solved in the time transient program with a sinusoidal 

drive and an a adaptive tolerance of 0.001, the potential distribution after 100 cycles 

can be seen in figure 5.16 

I3M3E.05 
^ 0 P E R A - 2 d 

Comporent POTfnMt=0 0) 
SIS97E-Q5 

ŷOPERA-2d 

Figure 5.16 Potentials in a voltage driven (top) and current driven models 

Although the potential and current densities are very similar, the values differ by a few percent. 

After the initial transient has decayed, the total circuit current can be compared to the time har-

monic solver. 

Model Current (amps) 

Time harmonic 126.047 

Time transient (100 cycles) 128.520 

TABLE 5.10 Current in the circuit 
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The accuracy in the value of the circuit current is similar to the transient solution of a filamen-

tary circuit. A time stepping tolerance of 0.001 in the field solution yields an absolute accuracy 

in the circuit current of 1 percent. 

Figure 5.17 shows the comparison of the current in a circuit as a function of time, when the ini-

tial sinusoidal voltage is phase of 0° and a phase of 90°. 
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Figure 5.17 Transient analysis of the voltage driven circuit. 

It can be seen that when the drive voltage starts at a maximum, the current is very large (-

1199.9988 amps) compared to the AC solution, and is consistent with the expected DC current 

i.e. 

/ = ? = y 12 

^ ^ext + ̂ cond 1 e - 8 + 2 X 0.005 0.01000001 
= 1199.9988 (5.13) 

If the initial voltage is a minimum at t=0 it can be seen the time stepping algorithm requires 

small steps to cope with a rapidly changing solution driven by large changes in supply volt-

ages. Turning on the voltage when it is at its minimum is required in devices to minimise large 

transient currents. 
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5.4 Multiple Circuit example 
An example is presented which contains two filamentary circuits. One circuit has an applied 

voltage and the other does not, figure 5.18. 

Circuit 1 Circuit 2 

n 

Figure 5.18 Two inductively coupled circuits 

The connection between the two circuits is by the magnetic field of one circuit linking the sec-

ond. The finite element model's geometry is shown in figure 5.19. 
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Figure 5.19 Orientation of tlie 4 circuit conductors 

Each circuit has the same properties as the earlier filamentary example in table 5.2. The switch 

is initially open in circuit one and current does not flow in either circuit. At time=0 the switch 

80 



is closed, this is achieved in the software by applying a step function scaling to the drive in cir-

cuit one. The step function scaling is f(t)=0 when t<0 and f(t)=l when t>=0. 

The analytical analysis of this system requires both the self inductances of the circuits and the 

mutual inductance between them. The model is symmetrical so the self inductance of circuit 1, 

LI is the same as L2. The self inductance is found using equation 5.5 by applying current in 

one circuit and calculating the energy of the whole model; this is found to be 0.03778807 Hen-

ries. 

The mutual inductance is found by applying the current in one circuit and calculating the flux 

linked by the other. The flux linked from one circuit, a, to another, b, is 

0 ^ = (5 14) 

where M is the mutual inductance, Aŷ  is the vector potential in conductor 1 of circuit b, n is 

the turns density in the coil and O is the domain of a conductor. 

The mutual inductance evaluates to 0.005408678 Henries, an order of magnitude less than the 

self inductance. 

The analytical solution of this model is described an Appendix A which gives the current in the 

circuits as 

i, = | ( l - , - ° ' ( ^ o o s h ( | 3 0 - K « ^ | i V - < x « + sinh(p,))) (5.15) 

= (« > ^ V " s i n h ( | i < ) (5.16) 
p a 

where a = — and p = — P- t / ) 
JL - Af Z, 

Figure 5.20 shows a comparison of the calculated and analytical results for the current in cir-

cuit one 
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Figure 5.20 Comparison of calculated and measured current in circuit 2 

It can be seen that there is excellent agreement when the time step is 0.000001 seconds. 

When a 0.0001 time step is used the error in the solution is about 5 percent, this error is due to 

the time-stepping technique. The time-stepping is only able to model a linear or quadratic 

change in the solution variable exactly, however using a shorter time step reduces this error 

(the time stepping error is 0(8t^)). Adaptive time stepping could not be used to analyse this 

model as the adaptive scheme did not have a criterion to evaluate a 'minimum time step'. A 

minimum time step is required so that when large errors are found in the time stepping process, 

typically in a step change in a drive function or at the start of the time stepping process, the 

time step does not reduce to an unrealistically small value. An unrealistic value is hard to 

define, but when the steps get small, the effect of adding the conducting matrix (the S matrix) 

to the stiffness matrix (R matrix) is just a perturbation and the time stepping system stalls. 

Unfortunately this model does not have any conducting regions and the minimum time step 

defaults to the maximum time step. The maximum time step is not defined in this model, it is 

normally set to make sure that discontinuities in the driving functions are captured. Therefore 

in this model, time steps are evaluated only at the time output points. A real model will typi-
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cally have at least one region of conducting material and a value for the minimum time step 

would be correctly evaluated. 

5.5 An induction motor 
A three phase induction motor has been modelled by a manufacturer [70]. It has circuits con-

sisting of filamentary conductors in the stator and circuits consisting of massive conductors in 

the rotor, figure 5.21 

V="OPERA-2d 
Pre and Post-Processor 

Figure 5.21 Finite element model of an induction motor 

The circuits in the rotor represent the connectivity of the rotor bars and the end windings in a 

squirrel cage, as was previously explained in figure 1.5. The filamentary circuits are used to 

represent the three voltage driven phases in the stator. There are two sets of circuits, one half is 

in the upper half of the slot and the second in the lower half. 

The fully time transient analysis of a rotating machine is a computationally intensive process 

which can take many hours or days to run [49]. If the rotor is considered to be in a stationary 

frame of reference, it can be considered to be in the rotating magnetic field of the stator. This 

can be approximated by applying a rotating field at this 'slip' frequency. The system can then 
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be analysed by time harmonic analysis at the slip frequency after other variables, such as 

length, are adjusted to comply with the technique [69]. 

The magnetic field in the permeable material and the current density in the conductors can 

be seen in figure 5.22. 

Component; J (TIME=0.0) 
-9.59868 0131736 9.862152, 

Component: BMOD (TIME=0,0) 
5.S0491E-04 0.917157 1,833753, V="OPERA-2d 

Pre and Post-Processor 

Figure 5.22 Magnetic field and current density in an induction motor 

The torque can be calculated from this model using the Maxwell stress method [69]. This solu-

tion represents only one position of the rotor but the solution is obviously dependant upon the 

relative position of the rotor and the stator. A number of different solutions are calculated at 

different rotor positions so that an average value of torque can be calculated. When results 

from this model are compared to measured values an agreement to within ten percent has been 

achieved. This is a long way from the le-7 agreement of the analytical example. There are 

many sources of errors including 

• The model is a 2d slice of a skewed rotor. Many 2d slices or a full 3d model are needed 

to better represent the real device. 

• A 3d model is required to correctly model the end inductances of the circuits. 
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• The use of time harmonic analysis to approximate a time transient problem means that 

only one frequency has been considered. There are many harmonics of the solution 

frequency which need to be considered - which is most accurately achieved with full 

time harmonic analysis of a rotating model. 

• The material modelling in the finite element model may not accurately represent the 

real materials. A hysteresis model has not been included in the non linear behaviour so 

iron losses have not been accounted for. The material properties will also be tempera-

ture dependant and do not currently reflect the temperature distribution in the model. 

a A single frequency time harmonic analysis cannot represent the effect of non-linear 

magnetic materials. A time transient solution is needed to represent the permeability 

change as a function of time. 

The errors listed are not unique in circuit driven problems, they are just as applicable to current 

driven problems. 

5.6 Summary 
The results which have been presented in this chapter demonstrate the accuracy or the direct 

coupling technique for circuits composed of both filamentary and massive conductors. When 

real devices are analysed, the technique has been shown to be useful in modelling both the 

external connections of conductors as well as the primary voltage driven circuits. 
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6. Conclusions 

6.1 Summary 

The project aimed at extending existing finite element analysis programs to include external 

circuit connections and components. This has been achieved by the use of direct coupling 

between the circuit and finite element equations. Two different techniques have been presented 

to describe the circuit data in the finite element program, a network loop approach and a node-

node technique using the SPICE net list format. 

Coupling of an external circuit to the finite element model allows a better representation of 

an electrical system than can be achieved with current density applied to the elements. One use 

of an external circuit is to model the power supply of a device. The power supply's voltage, 

internal impedance and the impedances of any connecting wires can be coupled to the finite 

element model. The external circuit can also be used to describe the connectivity of domains in 

a 2d model along with circuit components which join the domains. An example has been 

shown where the connectivity of the rotor bars in a squirrel cage rotor, along with the resist-

ances which joins the bars, has been described as interconnected circuit network loops. 

The direct coupling approach has been shown to be straightforward in implementation and 

flexible in use. The use of adaptive time stepping in transient analysis has been shown to be a 

useful technique to control the errors in the solution potentials. The errors in the solution are 

related to the length of the time step in a time marching scheme, reducing the time step reduces 

the error in both the field and circuit equations. When the same circuit equations are used in 

time harmonic analysis, the currents in the circuits have been shown to agree with analytical 

results. 

Two different techniques have been presented to enter the circuit data into the pre-processor. 

The first technique directly interfaces with the internal storage structure of the circuits as net-

work loops. Once the loops have been entered, any connectivity between the different loops are 

specified. Loop entry allows for rapid entry of simple circuits. More complicated circuit net-

works can benefit by being defined by nodal connectivity, which is easily identified from cir-

cuit diagrams. The nodal definition file has been based on the SPICE data format as this is a 
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common format used by circuit designers. The pie-processor converts the SPICE data format 

into the native loop format. 

The external circuit implementation is compatible with mesh motion and is suited to the 

analysis of rotating or linear machines where finite elements are coupled to both circuits and 

motion. Rotating machines such as generators or motors can be analysed to calculate the field 

distributions and torque. 

6.2 Further work 

6.2.1 The Hnite element solvers 
This implementation of circuit coupling is available within the two dimensional time har-

monic and time transient solvers available from Vector Fields. There are two areas where the 

work can proceed further; the inclusion of more non-linear components, where the impedance 

of a device is not constant, and allowing circuit loops which do not include any conducting 

regions to be included. 

The only non-linear components currently modelled are inductors and capacitors. The time 

transient solvers could be extended to include non-linear circuit components such as diodes, 

thyristers and switches. At each step in a time marching scheme the impedance of a non-linear 

device must be recalculated and the circuit equations updated with the new value. 

Switches can be modelled as resistors with zero or 'very high' resistances or by recalculat-

ing the circuit equations when a switch opens or closes; opening a switch removes an equation. 

Neither of these two models are currently possible in the software as the circuit matrix contri-

butions are calculated once, before the time marching scheme starts. At present, switches are 

modelled by stopping the solver when switching occurs, the circuit equations are then rebuilt 

and the program restarted. Another approximation which is used is to set the drive to be a func-

tion of time, or as a function of a position in a machine. The function has the value one when 

the switch is closed and zero when it is open. 

Diodes, thyristers and similar devices can also be considered as switches. A first order rep-

resentation of a diode is as a switch, with the switch being controlled by the direction of current 

through the diode. A better approximation is to use a look up table of the current / voltage char-

acteristic of a diode to give its impedance. A real model of a diode should however also include 
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other properties such as its capacitance and recovery time. For any approach to be applied to 

the current software, restructuring is required to allow quick rebuilding of the circuit matrix 

coefficients at each time step. If switching happens at a non predetermined time, then a robust 

technique will need to be developed to capture the time of switching to reduce the oscillations 

in the solutions which are associated with discontinuities in the current [43]. 

The restriction that a circuit must have a conductor in it, is due to the algorithm which has 

been used to assemble the coupled matrix. The coupling coefficients are calculated by iterating 

through all the conductors in all the circuits. If a circuit does not contain any conductors, then 

the global parameters of the circuit (such as resistance, voltage and inductance) do not get 

entered into the global matrix. If a circuit is composed from inter-connecting loops then one 

valid (although unlikely) set of network loops may have a loop without a conductor in it. These 

conductor-less loops can be produced when importing SPICE import files. When the program 

was originally designed it was not clear that loops without any conductors in them would be 

useful and there was no provision to allow conductor-less loops. There is an alternative way of 

assembling the coupled matrix which would allow for loops without conductors which could 

be used. 

6.2.2 Circuit definition 

Two techniques have been presented to enter circuit data, either as network loops or using 

SPICE like files. It would be easier for users of the software if an interactive drawing package 

was used to view and edit the circuit data as well as the current option of viewing the circuits as 

a list of components. 

Schematic capture is one name given to the technique where circuit components and wires 

are drawn in a graphics program and then automatically converted into circuits. Schematic cap-

ture could be implemented by converting a graphical circuit to a SPICE like file. This conver-

sion is straightforward as both sets of data are stored as node-node connections. Creating a 

graphics package is not trivial and beyond the scope of this work, especially if the circuit dia-

gram is to be overlaid on top of the picture of the finite element model. 



6.2.3 Three dimensions 

The three dimensional edge potential finite element software which Vector Fields has devel-

oped also uses applied current densities in conductors. The conductors are not however 

included as conducting regions within a finite element mesh, they are converted to potentials 

on the interfaces between the domains which contain conductors and the domains which do 

not. Work is ongoing to include external circuits by using the circuit representation of a con-

ductor as a continuous set of filaments through a conductor. The filaments are then included as 

part of the finite element mesh. Although the work completed in this thesis has not been 

extended to three dimensions, work carried out here has helped to solve problems in the three 

dimensional implementation i.e. how to retain a symmetric matrix. This work has also clarified 

that it is best to consider non-linear components during the initial design phase rather than as a 

later enhancement - allowing the circuit equations to be easily rebuilt at each time step. 
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Appendix A: Currents in circuits with mutual inductance 
The analytical solution of two circuits composed of filamentary conductors is reproduced 

from Smythe [51]. The two circuits are coupled by their mutual inductance M, as shown in 

figure A. 1 

Circuit 1 Circuit 2 

03 

M 

04 

R2 

Figure A.l Two inductively coupled circuits. 

Applying Kirchoff's law for the two circuits gives 

di, dir) 
(A.l) 

di', di. 
(A.2) 

Solving equation A.l for di2/dt, substituting in equation A.2, solving for R2i2 and then mul-

tiplying by M gives 

2 
- {L^L2-M )— + ^2^1 " ^ 2 ^ (A.3) 

This is differentiated with respect to t, substituted into equation A.l and multiplied by R2 to 

give 

di. 
( L j L 2 - M ) — - + {R^Lr^ + R2L^)— +/?ji?2^i - ^ 2 ^ 

dt 
(A.4) 



The right hand side can made to be zero by adding the steady state solution zj=V7/?i. The gen-

eral solution of equation A.4 is 

Y Y 
/ j = ^ = e " '(Acosh(Pr) + fisinh(P?)) + ^ (A.5) 

where the constants a and P are 

(X == 3-_L and f) = 1 2 2 1' (y\j6) 

2 ( Z , i I , 2 - M ) 2 ( L i A 2 - M ^ ) 

and A and B are found from the initial conditions. When t = 0, f'l-O so that A=-V/Ri. 

The transient solutions of A. 1 and A.2 are similar, except the steady state solution for ig is i2=0. 

The solution for 12 is therefore 

12 = e " ' (Ccosh(Pr) + Dsinh(Pf)) (A.7) 

The initial conditions when t = 0 is /i=0, so that C=0. Putting the values found from A and C 

into A.5 and A.7 and substituting into A.2, and then dividing out by e gives, 

Psinh(Pr) + <2cosh(P?) = 0 (A.8) 

where 

and 

6 = - + PV) + (A.IO) 

Since A.2 is satisfied for all values of t, P and Q can be equated to zero separately. Doing this, 

and solving for A.9 and A.IO for B and D, and substituting for A, B, C, and D in A.5 and A.7 

gives 
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Transient Electromagnetic Analysis Coupled to Electric Circuits and Motion 

C.S .B idd l ecombe , J . S i m k i n 

Vector Fields Ltd., 24 Bankside, Kidl ington, Oxford, 0 X 5 IJE, U K . 

A .P.Jay , J .K .Syku l sk i , S .Lepau l 

Department o f Electrical Engineering, University o f Southampton, S017 I B J, U K . 

Abstract -Th is paper presents implementat ion details o f 

coupl ing c i rcu i t equations and mot ion w i t h two dimensional 

f in i te element models fo r t ransient magnetic analysis. F in i te 

elements w i t h incomplete shape funct ions are used i n a novel 

way to handle the inter face between the mov ing and stat ionary 

par ts o f the mesh. The f ina l system of equations can then be 

solved using adapt ive t ime stepping. 

T w o examples are presented, a generator, wh ich is coupled to 

mot ion and a moto r , w h i c h is coupled to external c i rcui ts. 

Index fer /ns-Electromagnet ic fields, electromagnetic analysis, 

finite element methods, eddy cur rents 

I INTRODUCTION 

Elec t romechan ica l mach ines can be coup led to m o t i o n and 

ex terna l c i rcu i ts . 

I n this paper w i l l present schemes w h i c h 

a E f f i c i e n t l y m o d e l the s l ip r eg ion between the s ta t ionary 

and m o v i n g parts 

9 Use an e f f i c i en t t i m e s tepp ing a l g o r i t h m to a l l o w 

arb i t ra ry exc i t i ng func t ions and reasonable so lu t ion t imes 

• Preserve the sparseness and symmet ry o f the finite 

e lement ma t r i x . 

• C o u p l e to c o m p l e x and a rb i t ra ry c i rcu i ts 

n . COUMJNG TO MOTION 

F o r a 2 D mater ia l p r o b l e m i n c l u d i n g induced currents, a 

f u l l y t ime transient so lu t i on is requ i red . T h e magnet ic vec to r 

po ten t ia l f o r m u l a t i o n A sat isf ies the equa t ion 

Vx,/VxA = -(T—+ J (1) 

where v is the re luctance 1/p,, Jg is the source cur ren t dens i ty , 

and A is the magnet ic vec tor po ten t ia l . 

F o r a m o v i n g mate r ia l p r o b l e m w i t h a constant ve loc i t y u , a 

m o t i o n t e r m must be i nc luded 

- • - - (2) uxB 

H o w e v e r th is is o n l y v a l i d i f the cross sect ion o f the m o v i n g 

med ia is i nvar ian t n o r m a l to the d i r e c t i o n o f m o t i o n . 
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There are t w o approaches to the so lu t ion o f th is new 

system. 

• T h e ext ra source t e r m is i nc l uded and an asymmet r i c 

ma t r i x is so l ved ( re fe r red to i n th is paper as a ' ve loc i t y ' 

so lver ) . 

• T h e m o v i n g and s ta t ionary meshes i n the p r o b l e m are 

so lved i n their o w n rest f rames and are coup led th rough 

the elements o n the i r in ter faces. 

T h e nove l finite e lements presented i n this paper can be 

c lass i f ied i n the second approach , ca l led the pseudo-stat ic 

f o rmu la t i on . 

I n this f o r m u l a t i o n , the ex t ra source terms are no t needed 

since the independent meshes are eva luated i n their o w n loca l 

co -o rd ina te system and the c o u p l i n g be tween the meshes 

occurs th rough an a i r in te r face, where there are no sources. 

T h e pseudo-stat ic f o r m u l a t i o n can be ach ieved i n us ing 

number o f d i f f e ren t schemes, each h a v i n g advantages and 

disadvantages. 

A. Lockstep mesh: 

T h e elements o n the s l ip sur face have a constant subtended 

angle therefore the mesh s ize is de te rm ined by the smal lest 

feature. T h e t ime step is fixed b y the t i m e taken to ro ta te f r o m 

one mesh a l i gnmen t t o the nex t [ 1 ,2 ] 

B. Lagrange multipliers: 

T h i s scheme i n v o l v e s the use o f a general s l ip sur face 

be tween t w o d isconnec ted meshes [ 3 ] . C o n t i n u i t y o f the field 

components is ensured us ing L a g r a n g e mu l t i p l i e rs . 

T h e ma t r i x a r i s i ng f r o m th is f o r m u l a t i o n is s ingular and not 

w e l l cond i t i oned . 

C. Mesh Regeneration: 

T h e s implest m e t h o d is t o re -mesh a s l i p r eg ion at each 

t ime step [4 ] . Po ten t i a l mesh q u a l i t y p rob lems occu r , as 

e lements w i t h la rge aspect ra t ios can be p roduced . A s 

connect ions are b r o k e n and remade, there can be sudden 

t rans i t ions in the sizes o f the m a t r i x coe f f i c ien ts . H o w e v e r 

this me thod does a l l o w f o r a rb i t r a r y shaped s l ip reg ions. 

D. Boundary elements methods: 

A dense sub-mat r i x is p r o d u c e d f r o m a l l the nodes on the s l ip 

surface, this needs t o be re -eva lua ted at each t ime step. I n 



sma l l gap p rob lems the in tegra ls are d i f f i c u l t to evaluate, as 

the in tegrands can become s ingular . 

E. Novel use of finite 
functions: 

elements with incomplete shape 

T h e mesh i n the s l i p r e g i o n is f o r m e d from a var iab le 

number o f quadr i la te ra l e lements whose m a t r i x con t r ibu t ions 

are reca lcu la ted at each t i m e step. T h e f l e x i b i l i t y o f the s l ip 

r eg ion ' s mesh mus t be emphasised. T h e mesh size can be 

d i f f e ren t o n the ro to r and o n the stator inter faces and need no t 

be u n i f o r m . T h e t i m e in teg ra t i on step length can be 

comp le te l y independent o f the in ter face mesh sizes. 

III. THE USE OF INCOMPLETE SHAPE FUNCTIONS 

W e have chosen to deve lop the use o f i ncomp le te shape 

func t ions because o f the benef i ts o f adapt ive t ime s tepp ing 

and a w e l l cond i t i oned m a t r i x . 

W e w i l l demonst ra te h o w the i ncomp le te shape func t ions 

can be used to mesh the a 's l ip reg ion ' f o u n d i n a m o t o r m o d e l 

be tween a ro to r and a stator , ( F i g 1.). 

stator 

Rotor 

Fig.l The detail of the mesh: The region between the Rotor and the 
Stator is meshed using incomplete shape functions. 

A. Details about using Incomplete Shape Functions 

• T h e nodes o n the stator and r o t o r are p laced i n an 

o rde red l is t acco rd ing to the i r ang le a round the ro ta t i on 

axis. 

• A n in teg ra t ion sector is de f i ned b y t w o adjacent nodes i n 

the o rde red l i s t 

• T h e r e is one in teg ra t ion sector per node 

• T h e in tegra t ion o f the i ncomp le te shape func t ions is 

ca r r i ed ou t f o r a l l the sectors 

B. Details of the integration sectors 

F i g u r e 2 shows a t yp i ca l i n teg ra t i on sector i n the s l ip r eg ion 

be tween the ro to r and the stator. 

T h e in teg ra t ion o f th is sector f o l l o w s the pa th ; node 1, 

p r o j e c t i o n o f 3 o n the ro to r , 3, p r o j e c t i o n o f 1 o n the stator 

and back t o 1. 

I f the first s ide i n the i n teg ra t i on pa th is cons idered, ( f r o m 

node 1 to the p r o j e c t i o n o f node 3) i t can be c lea r l y seen that 

o n l y par t o f the d o m a i n o f the shape f u n c t i o n f r o m node 1 

cont r ibu tes t o the i n teg ra t i on path. 

Spec ia l cases w h i c h ar ise when , f o r examp le , the p o s i t i o n 

o f node 1 is co inc iden t w i t h the p r o j e c t i o n o f 4 , o r the 

p r o j e c t i o n o f node 3 and 4 l i e be tween node 1 and 2 are a l l 

catered f o r b y one genera l a l go r i t hm. 

Domain of Shape 
Functions 1 &2 

Domain of Shape 
Functions 3 & 4 

Integration Path 

•O O-
1 ^ 2 

Fig. 2. Node 1 and 2 are on the surface of the rotor, 3 and 4 are on the 
stationary part. The integration sector is defined by 'adjacent' nodes 1 and 3. 

rv . RESULTS FOR ROTATING MOTION 

T h e n e w m e t h o d was va l ida ted b y c o m p a r i n g the resul ts f r o m 

i ncomp le te shape func t i ons w i t h the so lu t i on o f (1 ) and (2 ) , 

b y the 've loc i ty ' so lver . F i g u r e 3 shows the so lu t i on o f a 

ro ta t i ng d isk . T h e so lu t ions are no t iden t i ca l because the 

i ncomp le te shape f u n c t i o n so lu t i on has been ex t rac ted be fo re 

a l l the t ransient e f fects have decayed away, whereas the 

ve l oc i t y so lver p roduces a stat ic so lu t ion . 

Fig. 3 Eddy currents in a rotating disc calculated by incomplete shape 
functions (left) and by the velocity solver (right) 

A m o v i n g generator m o d e l has also been solved, whe re the 

v e l o c i t y so lver c o u l d no t have been used, and t h e equ i -

potent ia ls can be seen i n figure 4. 

Fig. 4. The field in a generator example, after a rotation of 483 degrees 

VOPERA-gll 

V. COUPLING TO cmcurrs 



The coup l ing o f electr ic c i rcu i t analysis w i t h f in i te-element 

magnetic mode l l i ng may be achieved i n three ways: 

• by deve lop ing an integrated code where the two systems 

o f equations are solved simultaneously, w i t h either the F E and 

c i rcu i t models f o r m i n g a single system o f equations (direct 

coupl ing) , or the F E part handled as a separate system wh ich 

communicates w i t h the c i rcu i t model by means o f coup l ing 

coeff ic ients ( ind i rect coup l ing) , 

• by runn ing a c i rcu i t s imula t ion package in paral le l w i th 

f ie ld sof tware (under mul t i task ing envi ronment) w i t h the two 

programs cont inuously exchanging in fo rmat ion 

9 by first using the F E mode l l i ng to establish an equivalent 

c i rcu i t o f a device and then feeding that c i rcu i t ( in a f o r m o f a 

table, characterist ic or equat ion) into a c i rcu i t analysis 

program. 

The last o f the above methods of fers obv ious advantages as 

comput ing t imes are l i ke l y to be short and thus the approach 

is par t icu lar ly suitable fo r design purposes. However , i t 

assumes that an equivalent c i rcu i t o f the device exists and is 

suf f ic ient ly accurate - wh ich of ten is not the case, especial ly i f 

the element fo rms a major part o f the system. Simultaneous 

execut ion o f field and c i rcu i t packages has some attractions as 

coupled systems can be solved using exist ing commerc ia l 

packages, w i t h necessary modi f ica t ions to a l l ow fo r exchange 

o f in format ion. H i g h l y complex problems, fo r both the field 

and c i rcu i t part, cou ld be solved, but comput ing t imes are 

l i ke ly to be long. The fu l l y integrated approach is usual ly the 

preferred opt ion, a l though as i t is normal ly achieved as an 

extension to an ex is t ing F E code i t is o f ten rather l im i ted i n 

terms o f the comp lex i t y o f the c i rcu i t wh ich i t can handle. 

Us ing indi rect coup l ing of fers an advantage o f preserving the 

good propert ies o f the F E coef f ic ient mat r ix , whereas direct 

coup l ing leads to very e f f ic ient and re l iable codes. There 

ready exists qui te extensive l i terature on the topic , e.g. [5 ] and 

[6 ] , and a l l three approaches cont inue to be areas o f act ive 

research wor ld -w ide . Th is paper describes some 

implementat ion aspects o f a system, wh ich uses direct 

coupl ing. T w o cases are considered - both impor tant f r o m the 

pract ical po in t o f v i ew - o f stranded coi ls ( f i lamentary 

prob lem) and massive conductors (eddy current prob lem). 

VI. R3RMULAT10N OF THE BASIC EQUATIONS 

The magnetic vector potent ia l fo rmu la t ion A and current 

density J on ly have z-components, wh i ch satisfy the equat ion 

VxV7xA=y # ) 

where v is the reluctance 1/p,. The current density in a 

conduct ing reg ion is 

J 
Av 

-a—— a- (4) 
dt I 

where A V is the potent ia l d i f ference a long the length o f the 

conductor , a is electr ical conduct iv i ty , t is t ime and 1 is the 

length o f the conductor . The total current flowing in the 

conductor is 

L a 
Comb in ing (3) and (4) gives. 

+ Ay dS 

n n A ^ Ay 
V x v V x A + c r — + CT 

(3̂  Z 

= 0 

(5) 

(6) 

which is used in massive conductors, where the sk in ef fect is 

calculated. I n F i lamentary conductors the current densi ty is 

u n i f o r m over the conductor and is a func t ion o f the number o f 

filaments N , the cross sect ion o f the conductor and the current 

flowing in a filament. 

- f 
The vol tage A V at the terminals o f the f i lamentary conductor 

is 

AV = — [ — + (8) 

where R is the resistance o f a single filament. C o m b i n i n g (3) 

and (7) gives the field in the filamentary conductor de f ined by 

V x / 7 x A s (9) 

Circuit Network Equations: A mat r ix is used to represent a 

general c i rcu i t w h i c h has Vo l tage sources (E), impedances 

(Z) and inductances (L ) , where 

[E] = [Z][I] + [L]^ (10) 
dt 

There is one ne twork equat ion per ne twork ' l o o p ' and a 

component may be a member o f more than one loop. 

Combining the equations'. The final system o f equations is 

fo rmed f r o m the field equations (6) and (9) , the total current 

integral equat ion (5) and the c i rcu i t ne twork equat ion (10). 

A f te r app ly ing a standard Ga le rk in procedure, a finite e lement 

b lock M a t r i x equat ion is p roduced 

(11) 

where 

The integrat ion o f G , Q and J is carr ied out over the who le 

model , whereas f o r W and H i t is over the conductor ' k ' . Z 

and L are d iagona l matr ices o f resistance and inductance 

respect ively. D is sparse mat r i x , where an entry o f + 1 and - 1 

represents the d i rec t i on o f current flow i n a conductor. 

The mat r i x equat ion (11) can be convenient ly wr i t ten as 

G H 0 ' ' A " Q 0 0 ' ' A " J 

0 W D AV + 0 0 
d 

AV = 0 W 
A 

0 Z i 0 0 - L 
A 

i — E 



RX + S 
dt 

B (12) 

R(1 
" ' - f 

a„ + ""4 a,.+i + (13) 

5 t is the t ime be tween step n and n+1 . 

I f the c i r cu i t equat ions are m u l t i p l i e d b y 05t , the atn+i 

m a t r i x coe f f i c ien ts r e m a i n symmet r i ca l , a l l o w i n g f o r e f f i c ien t 

storage and so lu t ion. T h e M a t r i x is no t pos i t i ve de f in i te so i t 

is so lved b y scaled i ncomp le te Gauss con jugate gradients 

( C N J L U G ) . 

T h e leng th o f the t ime step 5t is con t ro l l ed to keep the er ror 

b e l o w a user supp l ied to lerance. T h i s is ach ieved b y 

c o m p a r i n g the results af ter one t ime step 5t , w i t h the va lue 

af ter t w o steps 5t /2 . I f the so lu t i on is no t su f f i c i en t l y 

accurate ly the t i m e step is ha l ved and the so lu t i on is re-

evaluated. W h e n an adequate so lu t i on is ach ieved the nex t 

t ime step is evaluated. Subsequent steps are eva luated us ing 

step lengths w h i c h are l onger or shor ter than the p rev ious 

t ime steps i n order to m a i n t a i n the er ror less than the user 

supp l ied to lerance w h i l e a l l o w i n g the t ime s tepp ing to 

p roceed as q u i c k l y as poss ib le . 

VIII.RESULTS FOR CIRCURR COUPLING 

T h e coup led equat ions have been app l i ed to the s imu la t i on 

o f a three phase i n d u c t i o n m o t o r . M a s s i v e conductors w i t h 

eddy currents (F igure 5 ) represented the r o t o r c i rcu i ts . T h e 

stator c i r cu i t was represented b y vo l tage d r i v e n three phase 

w i n d i n g s , w h i c h were m o d e l l e d b y f i l amen ta ry conductors . 

Fig. 4. The Circuit Diagram for the rotor. The solid blocks represent the 
eddy current conductors and the lines represent the resistors, which are 
used to model the resistances of connections 

T h e fields p lo ts , i nduced currents i n the ro to r bars and the 

de ta i l o f the finite e lement mesh can been seen i n figureS. 

w h i c h can then be so l ved b y an appropr ia te numer i ca l 

method . 

v n . NUMERICAL SOLUTION 

T o a l l o w f o r a rb i t ra ry exc i t a t i on and var iab le t ime steps, 

the m a t r i x equa t ion is so l ved w i t h a ' theta me thod ' t ime 

m a r c h i n g scheme, w h i c h has been s h o w n to be stable f o r 

0 = 2 / 3 [7 ] . 

l \ r O P E R A - a 

Fig. 5. The equipotentials, top and left, the induced current, bottom, and 
the mesh detail in the induction motor test problem. 

IX. CONCLUSIONS 

Rota t i ona l and m o t i o n and a rb i t ra ry ex terna l c i r cu i t s can be 

coup led to t w o d i m e n s i o n a l finite e lement analysis. T h e 

so lu t i on t i m e is m i n i m i s e d b y us ing i ncomp le te shape 

f u n c t i o n w h i c h a l l o w f o r m o t i o n w i t h o u t recons t ruc t ing the 

finite e lement mat r ices and adap t i ve t i m e s tepping w h i c h o n l y 

uses shor t t i m e steps w h e n the so lu t i on is chang ing rap id l y . 

T h e i nc l us i on o f k i n e m a t i c terms and the ex tens ion o f the 

use o f i ncomp le te shape func t i ons i n 3 d systems [8 ] w i l l be 

needed to p r o v i d e a c o m p l e t e so lu t i on o f the e lec t r i ca l m o t o r 

p rob lem. 
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Abstract-^hs paper presents details of coupling circuit 
equations and motion w i th two dimensional transient magnetic 
analysis. Finite elements w i t h overlapping shape functions are 
used to model the interface between moving and stationary parts 
of the mesh. The mechanical equation of movement is solved 
independently to estimate velocity of the rotat ing component. 

Index terms- Coupled fields, transient analysis, motional 
effects, external circuits 

I. INTRODUCTION 

A magnetic vector potential formulat ion A is used 

VxyVxA = -(%— +J, (1) 

where V is the reluctance and Jg is the source current density. 

For a mov ing material problem wi th a constant veloci ty u , a 

mot ion term must be included 

— = ̂  + (u.V)A = ̂ - u x B 
dt 3t 3t 

(2) 

However , in the so-called pseudo-static formulat ion, where 

the mov ing and stationary meshes are solved in their own rest 

frames and are coupled through the elements on the interface, 

the extra source terms are not needed. The veloci ty o f the 

mov ing part w i l l either be known (e.g. for a generator 

problem) or needs to be estimated by solv ing the mechanical 

equation o f movement (3), for example for an electric motor. 

d^^ 
dr 

T 
(3) 

^ is the moment o f inertia and T is the torque. A t each t ime 

step the torque T is estimated f rom the f ie ld solut ion and, 

together w i th the latest values o f d and ca, the angular 

veloci ty, provides in i t ia l condit ions for solv ing (3) to evaluate 

a new posi t ion o f the rotor at the t ime r-i-A?, where Af is a 

variable t ime step in the transient finite-element scheme. 

The effect o f external circuits is included by solv ing 

dt I 
in massive conductors ( in order to include skin effect), or 

NI 
VxyVxA= — 

S 
(5) 
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in filamentary conductors, where A F is the potent ial 

di f ference along the length o f the conductor, o is electr ical 

conduct iv i ty , I is the length o f the conductor, N is the number 

o f filaments and S a conductor cross-section. Af ter apply ing a 

standard Galerk in procedure, a finite element b lock matr ix 

equation is produced [3] , (a more general nodal analysis can 

be developed [4]) . 

G H 0 
0 W D 
0 Z 

where 

A 

AV 
Q 

0 

0 0 A J 

0 0 
c? 
a 

AV = 0 

0 - L 

c? 
a 

i - E 

(6) 

Qij = ^oNiNjdS, J/ = j j o N i d S 

Our approach to the solut ion o f this coupled system relies 

on the use o f over lapping shape funct ions to model the sl ip 

region between the stationary and mov ing parts in the finite 

element formulat ion. Th is procedure is described in the 

second section. I n the th i rd section, we jus t i f y the use o f 

M a x w e l l Stress M e t h o d ( M S M ) for the calculat ion o f the 

torque. I n the four th section, we describe some methods to 

solve the mechanical equation (3). F ina l ly , we present some 

numerical results. 

II. USE OF OVERLAPPING SHAPE FUNCTIONS 

The use o f elements w i t h over lapping shape funct ions was 

proposed in [ I ] . The space between two surfaces is filled wi th 

two sets o f elements that extend f r o m one surface to the other, 

and have no degrees o f f reedom except on the surface they 

extend f rom. Such elements satisfy al l the requirements 

necessary for a finite element approximation. 
I n the appl icat ion considered in this paper, that o f a rotat ing 

device, a sl ip reg ion or super-element is formed between the 

rotor and the stator, consist ing o f two sets o f over lapping 

elements. The first set extends f r o m the rotor sl ip surface to 

the stator sl ip surface; the second set f r o m the stator sl ip 

surface to the ro tor sl ip surface. Us ing this approach, the 

meshes on the rotor and stator sl ip surfaces become 

completely independent and the t ime integration steps are 

unrestricted. 

W e have chosen to develop the use o f over lapping shape 

functions because o f the benefits o f adaptive t ime stepping 

and a wel l -condi t ioned matr ix . I n addi t ion, the technique does 
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not requ i re the ro to r and stator s l ip surfaces to be concent r i c , 

thus ro to r v i b r a t i o n can also be i nc l uded i n the m o t i o n 

analysis. 

A. Details of the Overlapping Shape Function Technique 

Cons ider the 's l ip ' r eg i on between a ro to r and a stator as 

s h o w n i n F i g . 1. 

Stator 

Rotor 

Fig. 1. The detail of tlie mesh: The region between the Rotor and the 
Stator is meshed using overlapping shape functions. 

T h e m a i n features o f the f o r m u l a t i o n m a y be summar ised as 

f o l l o w s : 

• The re is no re -mesh ing o f the p r o b l e m i n a t ime -s tepp ing 

procedure . 

• The re is a constant number o f nodes i n the finite-element 

mesh. 

® T h e nodes o n the stator and ro to r are p laced i n an 

o rdered l is t acco rd ing to the i r ang le a round the ro ta t ion 

axis. 
® A n in tegra t ion sector is de f i ned b y t w o adjacent nodes i n 

the o rdered l is t 

» The re is one in teg ra t ion sector per node 

• T h e in tegra t ion o f the o v e r l a p p i n g shape func t ions is 

car r ied ou t f o r a l l the sectors 

• F u l l detai ls o f the shape f u n c t i o n expressions are g i ven i n 

[1] 

B. Details of the integration sectors 

T h e mesh i n the s l ip r e g i o n is f o r m e d f r o m a var iab le 

number o f quadr i la te ra l e lements whose ma t r i x con t r ibu t ions 

are reca lcu la ted at each t ime step. 

DommhofShmpe 
FunoUonml &2 

DommhofShmp* 
Rmc9om3&4 
Integration Path 

1 ^ 2 

Fig. 2. The special quadrilateral elements using overlapping shape functions. 

F i g u r e 2 shows a t yp i ca l i n tegra t ion sector i n the s l i p reg ion 

be tween the ro to r and the stator. T h e in tegra t ion o f t h i s sector 

f o l l o w s the path: node 1, p r o j e c t i o n o f node 3 o n the ro to r , 

node 3, p r o j e c t i o n o f node 1 o n the stator and back t o node 1. 

Cons ider the first side i n the in tegra t ion path o f F ig . 2 , 

( f r o m node 1 to the p ro j ec t i on o f node 3) . I t can b e c lear ly 

seen that o n l y par t o f the d o m a i n o f the shape f u n c t i o n from 

node 1 cont r ibu tes t o the in tegra t ion path. 

Spec ia l cases w h i c h ar ise when , f o r example , the pos i t i on 

o f node 1 is co i nc i den t w i t h the p ro jec t i on o f 4 , or the 

p ro j ec t i on o f node 3 and 4 l i e be tween node 1 and 2 are a l l 

catered f o r b y one genera l a l go r i t hm. 

I I I . T O R Q U E CALCULATION BY M S M 

There are several methods o f de te rm in ing the fo rces o n 

magnet ic mater ia ls , i n c l u d i n g b o d y forces me thod , v i r tua l 

w o r k p r i n c i p l e and M a w e l l ' s stress m e t h o d ( M S M ) . W e have 

chosen to use the M S M w i t h the finite e lement o v e r l a p p i n g 

shape func t ions i n the s l ip r eg ion due to the s i m p l i c i t y and 

re l i ab i l i t y o f this m e t h o d and because the pos i t i on o f the 

in tegra t ion sur face m a y be easi ly selected to be in the m i d d l e 

o f the o v e r l a p p i n g e lements g i v i n g very accurate resul ts [3 ] . 

I n the M S M the t o rque is ca lcu la ted o n the basis o f the 

magnet ic field d i s t r i b u t i o n o n the c losed surface in the ai r gap 

a round the ro to r 

- ^ -(r X B)(B.n) - (r x n) dS (7) 
Mo 2/lg 

T o c o m p u t e the in tegra l , w e have t r i ed t w o d i f f e ren t 

approaches. T h e n u m e r i c a l ca l cu la t i on can be p e r f o r m e d i n 

Car tes ian coord ina tes or i n po la r coord inates. I n a Car tes ian 

coord inates sys tem imp lemen ta t i on , near ly degenerate 

o v e r l a p p i n g e lements are a source o f er rors . Such p rob lems 

m a y be c o m p l e t e l y avo ided b y us ing a po la r coord ina tes 

system. I n other w o r d s , i n po la r coord ina tes , an a l g o r i t h m 

a l l ows to cons ider co inc iden t po in ts w i t h o u t ext ra 

assumpt ions about the ca l cu la t i on o f the torque. 
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Fig. 3. Permanent magnet disc in the centre of the picture in a sinusoidal 
rotating field created by 16 coils with a IHz frequency 

A deta i led i nves t i ga t i on o f the t o r q u e ca l cu la t i on was 

p e r f o r m e d f o r a pe rmanen t magnet d isc m o v i n g at a constant 



acce lera t ion i n a s inuso ida l r o ta t i ng f i e l d created b y 16 co i ls 

w i t h a f requency o f 1 H z . (F ig . 3). 

To«qw (Nm) 

Fig. 4. Torque vs time calculated in cartesian coordinates for a rotor moving 
with a constant acceleration in a sinusoidal rotating field, with a frequency 
of IHz. 

I V . NUMERICAL APPROACH TO THE MECHANICAL EQUATION 

Fi rs t , the second order o rd i na ry d i f f e ren t i a l equa t ion (6) 

has been t rans fo rmed to a f i r s t o rder d i f f e ren t i a l system (8) 

AO 
dt ' 

dco 

CO 

L 
(8) 

T h e f i r s t o rder o rd i na ry d i f f e ren t i a l system (8) can be 

so lved b y us ing m a n y d i f f e ren t numer i ca l schemes. Th ree 

schemes are pa r t i cu la r l y popu la r : E u l e r schemes, exp l i c i t o r 

i m p l i c i t , m i d p o i n t scheme and R u n g e - K u t t a schemes, e x p l i c i t 

o r i m p l i c i t . W e avo ided i m p l i c i t schemes, as the f i r s t o rder 

o rd i na ry d i f f e ren t i a l sys tem (8) is non l inear and t i m e 

dependant . I m p l i c i t schemes w o u l d g i ve a set o f non l inear 

equat ions that w o u l d need to be so l ved i te ra t i ve ly at each 

t ime step. I n order to a v o i d such comp l i ca t i ons w e have 

i n i t i a l l y used an e x p l i c i t R u n g e - K u t t a scheme o f order 4 

T o so lve the system (8 ) w e need to ca lcu la te an 

ex t rapo la t i on o f the to rque b y us ing a cub ic Lag range 

p o l y n o m i a l a p p r o x i m a t i o n ob ta ined f r o m prev ious ca lcu la ted 

values o f the torque. 

A n o t h e r fu tu re i m p r o v e m e n t is to cons ider the f o l l o w i n g set 

o f mechan ica l equat ions i n order to s imu la te the phys ica l 

sys tem m o r e rea l is t i ca l l y . 

= 0) 
dd 

dt 
(9) 

where T is the to rque ca lcu la ted w i t h M a x w e l l Stress Tensor , 

Tc the l oad to rque w h i c h m a y be a f u n c t i o n o f speed, ^ the 

iner t ia , ty the angular speed, 6 the angular ro to r d isp lacement 

and B the v iscous d a m p i n g fac to r . 

V . NUMERICAL EXAMPLES 

T w o va l ida t ions have been pe r fo rmed . F i r s t l y , the 

ove r l app ing shape func t i ons we re tested w i t h a constant 

ve loc i t y . Second ly , t he mechan ica l equat ions w e r e tested 

us ing a s imp le case. 

A. Validation of the overlapping shape functions 

T h e m e t h o d was va l i da ted i n [3 ] f o r a constant v e l o c i t y b y 

c o m p a r i n g eddy currents i n a ro ta t i ng disc ca lcu la ted b y 

o v e r l a p p i n g shape func t ions and b y a coo rd ina te 

t rans fo rmat ion ve l oc i t y so lver (F ig . 5 ) . T h e v e l o c i t y so lver 

produces a steady state so lu t ion , whereas the n e w so lu t i on 

shows a l l the t ransient e f fects . Thus the range o f app l i ca t ions 

is no t l i m i t e d (as i t w o u l d be i n the ve l oc i t y solver) b y the fac t 

that the cross sect ion o f the m o v i n g med ia must be i nva r i an t 

n o r m a l to the d i r e c t i o n o f the m o t i o n . T o i l lus t ra te th is 

advantage, a generator coup led to m o t i o n w i t h a c o m p l e x 

geomet ry was s imu la ted and is s h o w n i n F i g . 6. 

\ \ 
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Fig. 5. Eddy currents in a rotating disc calculated by overlapping shape 
functions (dashed) and by a coordinate transformation solver (solid) 

Fig. 6. The field in a generator example, after a rotation of 483 degrees 

B. Validation of the mechanical equation 

T h e a lgo r i t hms w e r e a p p l i e d and tested f o r a permanent 

magnet d isc su r rounded b y 16 co i l s c rea t ing a ro ta t i ng f i e l d 

w i t h a I H z f requency as desc r ibed i n F i g . 3 . T h e to rque over 

the t ime and the d i f f e r e n c e be tween the angles o f the 

permanent magnet d i s c and the r o t a t i n g field over t i m e are 

s h o w n i n F i g . 7 and F i g . 8 respec t i ve ly . 



Fig. 7. The torque of the permanent magnet disc after one revolution for the 
electromechanical system described in Fig. 3. 
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Fig. 9. The velocity of the permanent magnet disc after one revolution for 
the electromechanical system described in Fig. 3 using Euler's scheme. 

I t is w e l l k n o w n that E u l e r ' s scheme is stable and consistent 

o n l y f o r very smal l and constant t ime steps. I n our analysis, 

however , w e do not use a constant t ime step. T h e ve loc i t y 

amp l i tudes become there fore smal ler and smal le r as the t ime 

marches f o rwa rd . I f we reduce the to lerance, this 

p h e n o m e n o n does not occur u n t i l a f ter f e w cyc les, as 

demonst ra ted in F ig . 9. T o a v o i d th is numer i ca l d i f f i c u l t y , w e 

propose a use of a Runge-Kutta scheme (Fig. 10.). At the 
momen t , the to rque is eva luated f r o m the e lec tomagnet ic 

equat ions and used as a source te rm in the mechan ica l 

equa t ion (8 ) .There fo re , the c o u p l i n g between the mechan ica l 

equat ions and the e lec t romagnet ic equat ions is a weak 

c o u p l i n g [5 ] . A fu r ther i m p r o v e m e n t w i l l be t o use a 

p red ic to r -cor rec to r t o evaluate the angle o f the m o v i n g part i n 

o rder to coup le s t rong ly the mechan ica l equat ions and the 

t ransient e lec t romagnet ic equat ions. 

»F0lnrly|n#ii«| 

GRAPHS 

Fig. 8. The difference between the angles of the permanent magnet disc and 
the rotating field created by the 16 coils of Fig. 3 as a function of time. 

T h i s d y n a m i c system is a g o o d test to compare the accuracy 

o f the d i f f e ren t numer i ca l schemes. T h e so lu t i on in the phase 

space (d i f fe rence be tween the angles o f the permanent magnet 

disc and the ro ta t i ng field vs ve l oc i t y ) shou ld be a c losed 

loop . T h i s is equ iva len t to the w e l l - k n o w n mechan ica l 

p e n d u l u m osc i l l a t i ng w i t h a smal l angle. T o ach ieve th is a 

scheme w i t h a good accuracy is requ i red . 

Fig. 10. The velocity of the permanent magnet disc after one revolution for 
the electromechanical system described in Fig. 3 using Runge-Kutta method. 

V I . CONCLUSIONS 

W e have demonst ra ted a par t i cu la r w a y in w h i c h ro ta t i ona l 

m o t i o n and a rb i t ra ry ex te rna l c i rcu i ts c o u l d be c o u p l e d to t w o 

d imens iona l finite e lement analysis. T h e so lu t i on t ime is 

m i n i m i z e d b y us ing o v e r l a p p i n g shape func t ions w h i c h a l l o w 

f o r m o t i o n w i t h o u t recons t ruc t ing the finite e lement mat r ices , 

and b y e m p l o y i n g adap t i ve t ime s tepp ing w h i c h o n l y uses 

shor t t ime steps w h e n the so lu t i on is chang ing r a p i d l y . T h e 

Eu le r scheme is n u m e r i c a l l y is ve ry s imp le to i m p l e m e n t bu t 

haas to be used w i t h caut ion . F o r instance, f o r s t i f f p r o b l e m , 

w h i c h are not w e l l cond i t i oned , Eu le r schemes w i l l genera l l y 

fa i l . There fo re , to p r o v i d e a robust analysis o f m a n y types o f 

p rob lems , m o r e soph is t ica ted methods , such as R u n g e - K u t t a 

schemes are needed. M o r e o v e r , i t m i g h t be bene f i c i a l to 

coup le the mechan ica l equat ions and the transient magnet i c 

equat ions m o r e s t rong ly b y the use o f a p red ic to r -co r rec to r to 

eva luate the angle o f the m o v i n g par t . F i n a l l y , the ex tens ion 

o f the use o f o v e r l a p p i n g shape func t i ons to 3 D systems [6 ] 

w i l l be needed to p r o v i d e a comp le te so lu t i on o f the e lec t r i ca l 

m o t o r p r o b l e m . 

REFERENCES 

[1] I. A. Tsukerman "Overlapping finite elements for problems with 
movement," IEEE Trans. Magn., Vol. 28, No.5 pp. 2247-2249, 1992 

[2] M, Trlep, A. Hamler, B. Hribemik, "Various Approaches to Torque 
Calculations by FEM and HEM", in Proceedings of 7th International 
IGTE Symposium, 1996, pp. 416-419. 

[3] C. S. Biddlecombe, J. Simkin, A. P. Jay, J. K. Sykulski, S. Lepaul, 
"Transient Electromagnetic Analysis Coupled to Electric Circuits and 
Modon," /EEg Trfuw. Magn, Vol 35. No.5 pp. 3182-3185. 1998. 

[4] M. C. Costa et al "Simulation of Induction Machine by 2D Finite 
Element Method coupled with Electric Circuits using the Modified 
Nodal Analysis", presented at IEEE CEFC 1998. 

[5] S. Lepaul, C. S. Biddlecombe, J. Simkin, A. P. Jay, J. K. Sykulski, 
"Transient Electromagnetic Analysis Coupled to Electric Circuits and 
Mechanical Systems," in Proceedings of the 4"' International Workshop 
on Electric and Magnetic Fields, Marseille, May 1998, pp. 237-242. 

[6] C. R. I. Emson et al "Modelling Eddy Currents in Rotating 
Systems", IEEE Trans. Magn, Vol 35, No.5 pp 2593-2596, 1998. 


