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The aim of this project is to study the wave-induced flow above a rippled bed. Sea
bed ripples do not have a major impact on the main flow pattern, but they strongly
influence the structure of the boundary layer. Therefore they are of interest in coastal
engineering as they are part of the sediment transport process and have influence on
surface wave dissipation and flow friction in coastal areas.

By both numerical and experimental means, the flow characteristics were studied.
A two-dimensional computer model solving this particular flow was developed and com-
pared to other numerical and experimental data and the available theory. Experiments
were conducted in a wave tank fitted with a rigid rippled bed, and flow visualizations
were done using fluorescent dye filmed by a digital video camera. Different flow regimes
were identified and were classified in terms of relevant parameters such as the ripple
slope, the wave orbital amplitude to ripple wavelength ratio and the Taylor number.
For a weak flow oscillation to ripple wavelength ratio, two-dimensional structures tend
to develop in the form of recirculation cells. For a stronger flow oscillation and a
medium to steep ripple slope, the flow separates giving rise to vortices ejected from
the ripple crests every half-wave period. Three-dimensional instabilities also appear in
two different forms. The most common form observed is a structure of “rings”. The
other form called brick-pattern is suspected to involve centrifugal instabilities and play
a major role in the building of three-dimensional ripple shapes. A final summary of

the flow characteristics was done, using the numerical and experimental results.
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Chapter 1

Introduction

The main subject of this thesis is a study of the flow induced by waves propagat-
ing over a rippled bed. Sea bed ripples are mainly present on sand beds in shallow
coastal waters, and it is well known that their formation is due to the back and forth
motion induced just above the bed by waves. Their evolution is influenced by the wave
characteristics and those of the sediment, such as the size and density of the parti-
cles. Sea bed ripples do not have a major impact on the main flow pattern, but they
strongly influence the structure of the benthic boundary layer. Therefore they are part
of the sediment transport process, and have influence on flow friction, and surface wave
dissipation.

The wave-induced flow is an oscillatory flow whose amplitude at a certain depth
will be determined by the wave height and wave period. One particular feature of this
flow is that each particle follows an unclosed path, resulting in a drift of the particles
in the same direction as the wave propagation. For a water depth much larger than the
wave wavelength, the particle path will be almost circular. For a shallow water case,
where the wave wavelength is very long compared with the water depth, the particle
path will be more elliptic. If the flow near the hottom boundary is considered, it is
characterized by the generation of a steady current close to the bed in the direction of

the wave propagation due to the oscillating and progressive nature of the flow. This



steady second order drift velocity is usually referred to as the Stokes drift or the mass
transport velocity.

Wave-induced flow has been widely studied, from the free surface to the sea bed.
It has been intensively studied in the boundary layer over a flat bed, where Longuet-
Higgins’s theory (1953) describes the flow behaviour in laminar cases. This theory
is still widely cited. Oscillatory flow above a rippled bed has also been studied for
many years, but there is no established theory for this case. Experiments have been
conducted in wave flumes with sand beds or even rigid wavy beds, to provide measure-
ments of some relevant features of the flow: the mean flow, the mass transport velocity,
the vorticity and the sediment transport. A few two-dimensional computer models have
been developed, solving the vorticity and velocity fields over a rippled domain. The
complexity of such a flow makes its study still topical and worthwhile since agreement
between models and experiments has not been systematically reached. Moreover, this
flow is potentially three-dimensional, and this feature is often neglected in numerical
modelling even now. Three-dimensional instabilities as well as two-dimensional insta-
bilities are believed to play an important role in the ripple dynamics. Due to numerical
and experimental difficulties, the study of such a complex three-dimensional flow is far
from complete.

Considering these facts, the main purposes of this thesis can be presented as follows:

e To provide a review of the present knowledge on the wave-induced flow over a rip-
pled bed, mainly from a fluid mechanics approach with some sediment transport

approach inputs.

e To compute and use a two-dimensional model solving the flow characteristics
in the vicinity of a rippled boundary. This model will first be tested for flat
bed cases. Particular attention will be given to the study of the mass transport

velocity, flow separation and vortex formation.

e To categorize different flow regimes by means of experimental visualizations of



the flow in a wave flume fitted with a rigid rippled boundary at its bottom. The

experiments will be conducted for various ripple slopes and wave conditions.

e To study the threshold for which the two-dimensional flow will first become three-
dimensional, and to study three-dimensional instabilities occurring in this flow

possibly leading to particular three-dimensional ripple structures.

e To draw possible conclusions on the wave-induced flow features over sea bed

ripples.

This thesis is structured in seven chapters. After this brief introduction of the
subject, chapter 2 provides a review of the present knowledge on wave-induced flows
over flat and rippled beds, on oscillatory flow instabilities over curved boundaries and on
ripple characteristics. Chapter 3 details the computed two-dimensional model solving
the flow in this particular area, while chapter 4 provides varied results from the model,
comparisons with several sources, and discussions. Chapter 5 presents the chosen set-
up for the conducted experiments, while chapter 6 provides the experimental results.

Chapter 7 draws conclusions on the work done.



Chapter 2

Literature review

2.1 Introduction

In this chapter, different features of the wave-induced flow will be reviewed. A brief
definition of the boundary layer, the area where this study takes place, will be given.
Then the characteristics of the oscillatory boundary layer flow are reviewed for the
case of a flat bed, and a rippled bed. As the study focuses on laminar conditions, little
is developed on the oscillatory boundary layer in turbulent flow, and will be mainly
used for a general understanding of the studied phenomenon. Present knowledge on
three-dimensional instabilities occurring over curved boundaries is reviewed, leading
to a review on centrifugal instabilities over rippled beds, using articles on centrifugal
instabilities over cylinders as a starting point. Finally, seabed ripples characteristics

such as their size and shape are reviewed.

2.2 Oscillatory wave-induced flow

A cartesian system is defined where z is the horizontal axis, positive in the wave
propagation direction, y is the vertical axis, and the origin is at still water level, as

shown in figure 2.1. The velocity vector @ has the components (u,v,w). The fluid



/

Figure 2.1: Cartesian system of reference.

motion is governed by the conservation law of mass and the Bernoulli equation. The

conservation mass equation can be expressed as

V.-u =0, (2.1)
and the Bernoulli equation is
op 1., p :
— tsut =+ gy = f(i (2.2)
ot 2 0 ®)

where p is the pressure, g the gravitational acceleration, p the water density, f(¢) a

function of time and ¢ the velocity potential so that
T =Vo. (2.3)

The arbitrary function of time f(t) can be incorporated into the velocity potential ®

without loss of generality, giving

0d 1
N + §u2 + g +gy =0. (2.4)

The pressure p at the free surface y = » is equal to the atmospheric pressure p,
Ply=n = Pa, (2.5)

and chosen to be zero. For y = 1, equation (2.4) can then be changed to

o0 1,
— + = 0. 2.6
a1 + 5 +gn=20 (2.6)



The vertical velocity at the free surface is given by

dn

Vly=n = ot (2.7)

where the differentiation follows a particle at the free surface. As the bed is considered

impermeable, the vertical velocity at the bottom is
Vly=—a = 0. (2.8)

Then from equations (2.1), (2.6), (2.7) and (2.8) we have the system of equations:

Vi = 0, (2.9)
0P
W ly=—a =0, (2.10)
dd dn
T ly=n T T 2.1
0P 1

Equation (2.9) is the Laplace equation. If the assumption is made that waves propagate
in the positive z direction, and that the free surface  can be described by n = a cos(kz—

ot), then by solving equations (2.9) to (2.12), the horizontal velocity « in the fluid is

_aocosh(k(y + d)) .
- simh(kd) cos(kx — ot) (2.13)

where a is the wave amplitude, ¢ the wave angular frequency, d the water depth and
k the wavenumber. A sketch of the horizontal wave-induced velocity from the free
surface, in the case of infinite water depth is shown in figure 2.2. This flow will change
in strength and direction, influenced periodically either by a crest or a trough. In
shallow water areas, the wavelength of the wave becomes larger than the water depth
so that kd < 1. As k(y + d) becomes very small, cosh(k(y + d)) can be approximated
by 1 and sinh(kd) can be approximated by kd. From formula (2.13), the shallow water

approximation for the horizontal wave-induced velocity is

ac
= — vl — R 2.14
u kdcos(ka: ot) (2.14)



With such an approximation, the velocity is considered constant in strength from sea

surface to bottom!, as shown in figure 2.3.

wave propagation

s . .
|
;
[RS——
¢ i

p——
'

—
- [—
— —
>
.

'
-

Figure 2.2: Horizontal wave-induced flow for infinite water depth.

wave propagation
—d

s /
Figure 2.3: Horwzontal wave-induced flow in shallow water depth over a flat bed. The

characteristics of the flow in the free surface and bottom boundary layers are not rep-

resented.

2.3 Brief definition of the bottom boundary layer

In the present study, the bottom boundary layer can be simply defined as the layer
inside which the flow is significantly influenced by the sea bed characteristics. In
laminar flows, this layer is usually very thin over a smooth solid bed (a few millimeters),
and a little larger over a flat sand bed. For the case of a rippled bed, the boundary

layer may extend to several times the ripple height (Nielsen, 1992). The wave-induced

If the bottom and the free surface boundary layers are neglected (see section 2.3).



boundary layer thickness §; is usually defined in terms of
515 ~ V vT

where v is the water viscosity and T the oscillatory flow period. Even if the qualitative
meaning of the bottom boundary layer is clear, opinions about the most appropri-
ate quantitative definition for its thickness are varied. However, the most common

definitions use the Stokes length:

5= /2. (2.15)

o

Different definitions for the boundary layer thickness can be found in Jonsson
(1966), Kajiura (1968) or Sleath (1987). Such a definition remains strongly depen-
dent on the bottom houndary and flow characteristics, therefore no particular prior

definition will be chosen here, as the present study takes place over different types of

beds.

Another important parameter relevant to the flow characteristics in the boundary

layer needs to be defined. While the well known Reynolds number is defined as
2
R, =20 (2.16)

when boundary layer flows are studied, the houndary layer Reynolds number is com-

monly used and defined as
5
Ry = 200 (2.17)

v

where wug is the horizontal velocity amplitude of the flow outside the boundary layer.

2.4 Wave-induced boundary layer flow over a flat

bed

Although a sea bed is rarely perfectly flat, it is worthwhile to understand the flow

hehaviour over a flat bed, as a starting point for the study of natural flows.
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2.4.1 Governing equations

The flow characteristics in the boundary layer can be found by solving the trans-
port equation for vorticity and stream function (2.18) derived from the Navier-Stokes

equation and the Poisson equation (2.19):

Ow Ow Ow 9
5 T iEs +v—a§ = vV (2.18)
% 0%

where w is the vorticity and v is the stream function. The boundary layer approxi-
mations used to solve these equations consider the fact that the very thin layer in the
vicinity of the boundary has a very large velocity gradient du/dy and that the boundary
layer thickness is much smaller than the length scale?. The typical theoretical horizon-
tal velocity profiles obtained for a wave period are shown in figure 2.4. The vertical

axis is now measured upwards and y equals 0 on the sea bed.

15

Figure 2.4: Horizontal velocity profiles during a wave period in the boundary layer, for

different wave phases.

2For more information on the approximation and solution of the Navier-Stokes equations in the

boundary layer, refer to Schlichting (1979).



2.4.2 Mass transport in water waves over a flat bed

One important characteristic of this flow is that the existence of a non-vanishing
viscosity of the water results in the development of second-order mean velocity, relevant
to the mass transport in water waves. The generation of a steady current near a solid
boundary by an oscillating fluid is a well-known phenomenon. Longuet-Higgins (1953)

investigated this phenomenon for sea waves propagating over a smooth flat bottom.

Mass transport velocity: Longuet-Higgins’s theory

1. Mean Eulerian velocity

The Eulerian velocity refers to the velocity as it would be measured over time at
a number of fixed points in space. When the boundary layer at the free surface
is considered negligible, in waves of very small steepness, a simple sinusoidal
harmonic can describe the wave-induced velocity. The fundamental mode of the
horizontal wave-induced velocity is ug cos(kz — ot). For such a flow imposed at
the top of the boundary layer, the laminar boundary layer solution® for the mean

Fulerian velocity profile is

k 2
uply) = 4“0 (3 = 2(y/6 + 2)e ™/ cos(y/5) — 2(y/5 — 1)e™¥/ sin(y/5) + e=/?)
o
(2.20)
where y is measured upwards from the bed. Figure 2.5 shows a typical mean

velocity profile, obtained with formula (2.20).

2. Mass transport velocity in the boundary layer
The mass transport velocity can be considered as the Lagrangian® time-averaged
velocity. From Longuet-Higgins (1953), the definition for the mass transport

velocity profile near the bottom for a progessive wave is:

2
kug

ur(y) = 1o (5— 8¢ ¥ cos(y/6) + 3@‘2?”/5). (2.21)

3See (Phillips, 1980, p55-56).
“The Lagrangian velocity describes the paths that water particles would follow over time.
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Figure 2.5: Mean FEulerian horizontal wvelocity obtained with formula (2.20) from

Longuet-Higgins (1953).

As shown in figure 2.6, the mass transport velocity is always positive, and just
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Figure 2.6: Mass transport velocity in the bottom boundary layer for a progressive wave,

obtained with formula (2.21) from Longuet-Higgins (19553).

beyond the boundary layer, it tends to

 bkud (2.22)
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60% of which is the limiting Eulerian velocity ug|y=c. It is important to note
that these results have been obtained with the assumption that the vorticity

vanishes at the top of the boundary layer:

w:_(ﬁu ov

—aTJ+5EE-)—>O as Y — 00. (2.23)

. Mass transport velocity in the interior of the fluid

Longuet-Higgins also developed two solutions for the mass transport velocity in
the interior of the fluid, that is the fluid between the bottom and the free surface
boundary layers. These solutions need to be mentioned as they have been used
and modified by several authors when studying the mass transport inside and

outside the bottom boundary layer. These solutions will also be used later in

this thesis.

Longuet-Higgins obtained two solutions: the conduction solution for a small ratio
a?/6? and the convection solution when this ratio is large. The conduction solu-
tion corresponds to a vorticity diffusion through the fluid by viscous conduction.
In the case of the convection solution, for large values of a%/6%, the vorticity is

convected with the mass transport velocity. The conduction solution is:

/
%%) = a’okF(p), (2.24)
Y
where
1
Flu) =y {2 cosh 2kd(y — 1) + 3 + kdsinh 2kd (2.25)
sin <
5 sinh 2kd 3,0
(3% = 4+ 1)+ 3( = + ) — 1))
and
p=y/d.

Figure 2.7 shows different profiles of the mass transport velocity in the interior of
the fluid obtained with the solution (2.24). Note that the figure 6 (p572) shown in
Longuet-Higgins (1953) for the mass transport in the interior of the fluid is wrong

12
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Figure 2.7: F(y/d) for different values of kd, representing the profile of the mass trans-

port velocity (conduction solution,).

for kd = 1.5 and y is measured downwards. The conduction solution applies when
the wave amplitude is much smaller than the boundary layer thickness, which is
usually untrue in practice. However, this solution is the one mainly used and
referred to in literature. It can be noticed that the profiles feature significant
slopes at the bed. There is a mismatch with the boundary layer solution as this
latter presents a vertical profile at its top.

The second solution called the convection solution relies on more realistic assump-
tions, as it is valid when the wave amplitude is much larger than the boundary
layer thickness. Unfortunately, the convection equation remains difficult to in-
terpret and no solution is readily obtained. As mentioned by the author himself,

this solution representing motions with non-zero total horizontal flow might also

remain arbitrary.

Modifications of the theory

From Longuet-Higgins’s work, several studies showed that modifications or devel-

opments of these solutions up to higher orders were needed in order to reach better
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agreement with experimental data. Considering higher order sinusoidal waves is par-
ticularly necessary when a description of water waves in shallow water is needed, and
consist in adding several harmonics to the fundamental mode of oscillation. Sleath
(1972) considered a horizontal component of velocity just outside the boundary layer

expressed in the form:

2 L

k
UY = U + Uso COS(0t — k) + AuQicosQ(at —kz) + ... (2.26)
g

where u, is chosen to match the flow in the boundary layer; us, and A are functions of
the wave height® h, the water depth d, the angular frequency o, and the wavenumber

k. By developing the stream function as a power series in small parameter ¢
Y = ) + by + Py + iy (2.27)

and solving the two-dimensional transport equation for vorticity (2.18), Sleath found
a second approximation to the mass transport velocity, but no explicit solution of
the mean Eulerian velocity profile was provided. However, obtaining the steady drift
expression in the boundary layer can be done by using the results of Sleath (1972)
and Dore (1982). The instantaneous velocity profiles can also be calculated from this
stream function solution. Sleath (1973) has also numerically found three different so-
lutions for the mass transport velocity in the interior of the fluid. The first solution is
close to Longuet-Higgins’s conduction solution, while the two others are distinct. The
experiments conducted by Sleath in a wave tank showed that after 2 to 3 hours, mass
transport velocity profiles corresponding to the second solution could be observed and
after 4 hours, profiles corresponding to the third solution were observed. Profiles corre-
sponding to the first solution, closely similar to Longuet-Higgins’s conduction solution,
were never observed. Swan and Sleath (1990) developed a fourth order solution for
the mass transport velocity. Although their solution did not show very good agree-
ment with measurements, it was generally better than the second order solution. They

concluded that the discrepancies could be eliminated by a higher order approximation.

5The wave height h is defined as twice the wave amplitude a, so h = 2a.
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Liu and Davies (1977) developed a modified solution of the Longuet-Higgins’s con-
duction solution hy considering a factor of viscous attenuation of the wave. Their
solution does not have any restriction placed on the ratio a/6. They concluded that
the boundary layers at the free surface and at the bottom create vorticity diffusing
through the interior of the fluid. The interior flow would therefore be a superposition
of a potential flow (of order ka) plus a balance between the viscous forces and the local
attenuation.

On the experimental side, mass transport measurements from Russell and Osorio
(1957) showed that even if the condition ¢ < ¢ was not respected, their experimen-
tal profiles were quite similar to Longuet-Higgins’s conduction solution. Beech (1978)
measured the mass transport velocity by Laser Doppler Anemometry. The experimen-
tal mass transport measured just outside the boundary layer was smaller but still close
to the transport theoretically predicted by Longuet-Higgins’s solution. The velocity
profiles agreed well with the theory, but the second order effects gave larger veloci-
ties in the positive half of the cycle. Other experimental and theoretical comparisons

discussing similar discrepancies can be found in Collins (1963) and Dyke and Barstow

(1981).

Discussion

The Longuet-Higgins conduction solution and the modified solutions seem to have
some features in common with measurements in wave tanks under laminar conditions.
It is however clear that further investigations still need to be done to reach better
agreement between the theory and the experiments when the mass transport velocity
is concerned. In section 4.2.2, formula (2.20) is compared to some experimental mean
velocity profiles. Agreement at the top of the bottom boundary layer is never reached.
This problem is discussed in section 4.2.2.

It has been shown that a different approach needs to be considered for a turbulent

boundary layer (see section 2.5.4). These solutions all apply to the case of a flat and
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smooth bed. In natural conditions, say in coastal areas, the sea bed can rarely be
considered as flat and smooth. Nevertheless, knowing the oscillatory flow characteris-
tics over a flat bed such as the typical mean velocity profile (figure 2.5) and the mass
transport velocity will be useful to understand the characteristics of a wave-induced

oscillatory flow over a rippled bed as they should have some features in common.

2.4.3 The cnoidal theory

A different theory from Stokes theory for the description of the wave-induced velocity
at the top of the boundary layer can be applied, known as the cnoidal theory. This
theory for periodic waves in shallow water, has unique characteristics: the described
waves are reduced to a solitary wave at one limit and to a profile expressed in terms
of cosines at the other limit (Sarpkaya and Isaacson, 1981, p 178-190). In order to
calculate the velocity components derived from this theory, only a small number of
parameters is required compared to the Stokes theory where wave-induced velocity is
obtained by adding several harmonics to the fundamental mode. Despite the fact that
this theory is particularly suitable to describe water waves in shallow water, very few
articles are available on theoretical or experimental investigations on boundary lay-
ers under cnoidal motion. LeMéhauté (1968) and Isaacson (1976) have developed mass
transport solutions under cnoidal waves. Tanaka, Mutlu-Sumer and Lodahl (1998) give
an analytical solution of the horizontal velocity and provide a study of the boundary
layer thickness under the wave crests and troughs. The velocity profiles, the bound-
ary layer thickness and the bottom shear stress obtained with their solution showed
significant differences from those under sinusoidal waves.

A simple way to express the cnoidal wave-induced flow is:

2, _
U = Ug + w? (2.28)
1- hl
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qg= K(kx —ot)/7

K : complete elliptic integral of the first kind
£ : complete elliptic integral of the second kind
cn : Jacobian elliptic function

hy = (v — &"?)/K?

v=FE/K

 : modulus of elliptic function

with

k? =1 — x? : complementary modulus

The modulus & is the parameter controlling the wave profile; when & tends to 0,
the profile approaches that of a Stokes first order wave profile, but when & tends to 1,
the profile tends to a solitary wave profile. For « close to 1, the crest will be sharper
and steeper, while the trough will flatten. A typical wave profile for x = 0.99 is shown
in figure 2.8. The cnoidal wave-induced velocity will fluctuate in time in a similar way

to the free surface elevation curve shown in figure 2.8.
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Figure 2.8: Stokes first order wave profile (- -) and cnoidal wave profile (-) for k = 0.99
- MWL: Mean Water Level.

Isaacson (1976) derived the mass transport velocity distribution and compared it to
Longuet-Higgins’s solution (figure 2.9). As expected, the mean profile derived from the

cnoidal solution agrees well with Longuet-Higgins’s solution for small values of . For
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values of « close to 1, the mean profiles show a significant decrease. Comparisons with
experimental data show a satisfactory agreement but not significantly better than the
varied agreements reached between the Longuet-Higgins’s solution and the experiments

(see section 2.4.2).

Figure 2.9: Mass transport velocity distributions through the bottom boundary layer
for various values of the modulus k: (a) k = 0.999, (b) k = 0.995, (¢) x = 0.99,
(d) k =0.95, () k = 0.9, (f) Solution from Longuet-Higgins(1953) for shallow water

waves. Figure from Isaacson (1976); n = y/d and U}, is the mass transport velocity.

2.5 Wave-induced boundary layer flow over a rip-

pled bed

2.5.1 Introduction

An oscillating flow over a sand bed can trigger and enhance the formation of bed
ripples, with crest lines perpendicular to the ambient fluid oscillation. Oscillating flows
over rippled beds are of practical and scientific interest in beach processes. Present

knowledge on mean flow drift, mass transport velocity and vorticity dynamics over a
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rippled bed is reviewed. Finally, in order to have a wider vision of the phenomenon,
wave plus current cases and some features of turbulent flows over a rippled bed are
discussed. When wave-induced flows over a rippled bed are studied, the relevant pa-
rameters usually considered are the wave orbital amplitude ag, the ripple height A,

and the ripple wavelength [,.. The ripple slope definition is

Sp = —, (2.29)

r="9 (2.30)

2.5.2 Steady streaming recirculation cells

When the flow oscillation amplitude is small compared to the ripple wavelength
and for a small h,/d ratio, streaming circulation cells appear. Kaneko and Honji
(1979) studied experimentally and numerically these structures. They found that the
steady streaming has a double structure consisting of an upper and a lower region of
recirculation. Honji, Kaneko and Matsunaga (1980) confirmed it with visualizations of
these cells. The upper streaming forms a pair of standing vortices above the trough, and
the lower streaming a pair above the crest. The lower vortices are small compared to the
upper vortices. According to Honji et al. (1980), because of the low viscosity of water,
the lower vortex layer is usually so small that only the upper layer is seen. Kaneko
and Honji (1979) also concluded that when the ratio of the amplitude of the wavy wall
to the Stokes length is increased, the upper pair of recirculation cells moves towards
the boundary in a gap between the lower pair of cells, at the trough. Matsunaga,
Kaneko and Honji (1981) reached good agreement between their model and experiments
conducted above a wavy wall in a flume when they studied the steady streaming and

they found results similar to the conclusions of Kaneko and Honji (1979).
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Sleath (1976) analytically found the same type of streaming cells for ag/l, < 1
and for very small ripple slopes (of order 0.03). The assumption ag/l, < 1 is not
very realistic as in natural cases, the orbital amplitude and the ripple wavelength are
usually of the same order (Nielsen, 1992). The fluid particles would appear to move
along the streamline cells if they were observed each cycle at a fixed time. Figure 2.10
shows a result obtained by Sleath (1976). It can be noted that for case (a), the pair
of cells has the same circulation direction as the lower pair shown in case (b). It then

seems that for case (a), the only pair present is the lower pair. Hara and Mei (1990a)

Figure 2.10: Streamlines of the mean drift velocity above a rippled bed wn oscillatory
flow when ag/l, < 1; h./l, = 0.03; (a) pl, = 2; (b) Bl, = 30, B = 1/6. Figure from
Sleath (1976, figure 1, p72).

also numerically found the presence of a double pair of standing streaming cells above
a rippled bed. Blondeaux and Vittori (1991) similarly concluded that the steady part

of their analytical solution consisted of these recirculating cells.
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2.5.3 Mean Eulerian velocity and mass transport velocity

As mentioned in section 2.4, the oscillatory flow generates a steady drift, but in the
case of a rippled bed, calculation of this steady component appears to be more complex.
Despite the experimental difficulties, some studies related to the wave-induced drift
over ripples have been conducted, but the results are varied and agreement between
the various experiments is not always reached. Sleath (1984b) found that for a very
rough bed, the drift was enhanced compared to Longuet-Higgins’s solution (for a flat
bed). More recently, Marin and Sleath (1993) found that for transitional flow conditions
and a rough rippled bed, the drift was reduced compared to laminar flow conditions.
In their analysis, Davies and Villaret (1997) found that the Eulerian mean velocity
could be either increased or decreased by time variation in the eddy viscosity.

Vittori and Blondeaux (1996) numerically found that the steady drift can take place
in either direction or may have a more complex profile, with a negative mass transport
close to the bed and positive far from it. They found that for a very small Reynolds
number R, the waviness of the wall was increasing the mass transport towards the
shore. But when R, was increased they stated that it was difficult to identify an
overall tendency.

Ridler and Sleath (2000) experimentally found that all time-mean velocity profiles
(except those at the crest and the trough) show a mean drift towards the nearest
crest, in the vicinity of the bed. They pointed out that in most experiments the waves
generated were nonlinear, therefore the effect of wave asymmetry would have to be
considered in the Eulerian drift.

It appears that analytical and numerical works do not always agree with the exper-
imental results. Further experimental investigations are still needed to provide a full
description of the steady drift above a rippled bed. Despite being weak compared to
the oscillation amplitude of the wave-induced flow, the steady drift is believed to play
a significant role in carrying sand near the bed, and influencing the rippled bed shape

and equilibrium (Sleath, 1976; Sleath, 1984a).
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2.5.4 Vortex dynamics

It is well known that the presence of sand ripples is due to the horizontal back-and-
forth motion of the water near the sea bed (Nielsen, 1981). Moreover, it is accepted that
the formation of a certain type of sand ripples called vortex ripples® is often linked with
the presence of vortex shedding at the ripple crests. Most of the Hows above ripples
observed in nature are not free from flow separation. Vortices provide an effective
mechanism for entraining sand particles into suspension (Sleath, 1984a; Nielsen, 1992).
Figure 2.11 is a schematic diagram from Earnshaw and Greated (1998) illustrating a
sequence of vortex shedding over a rippled bed.

The detailed dynamics of vortex shedding and its associated sediment transport in
oscillatory flow above a rippled bed is not yet completely understood. However, some
experimental works provide information on this mechanism, see among others Honji et
al. (1980), Sleath (1984a), Marin and Belorgey (1993), Earnshaw and Greated (1998)
and Fredsge, Andersen and Mutlu-Sumer (1999). From these authors, no definite
threshold for the flow separation and vortex shedding can be chosen, however it is
clear that it happens for both a larger flow oscillation amplitude to ripple wavelength
ratio and a larger ripple slope than for the cases for which streaming cells are obtained.
During the accelerating phase, the flow separates at the ripple crest creating a vortex
structure that can trap sediment just above the lee side of the ripple. Later, the
structure tends to increase in size and strength, even through the beginning of the
deceleration phase. When the flow reverses, the vortex structure is convected away
from the ripple crest by the local velocity, and will weaken because of viscous effects.
The gravity force finally prevails, releasing the sediment to the sea bed. At the same
time a new vortex is generated and after half a wave cycle, the situation is back to the
first stage.

It is believed that a key feature of this flow is its three-dimensional aspect (Hara

and Mei, 1990b; Blondeaux and Vittori, 1991; Earnshaw and Greated, 1998). Three-

60ther ripple types are defined in section 2.7.
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Figure 2.11: Schematic sequence of vortex shedding. The arrows indicate the flow
strength and direction. Wave phases ¢ and vorter sizes are approzimate. Figure from

Earnshaw and Greated (1998).
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dimensional instabilities as well as two-dimensional instabilities are believed to play an
important role in the ripple dynamics. Due to numerical and experimental difficulties,
the study of such a complex three-dimensional flow is far from complete. A model able
to compute the complete three-dimensional oscillatory flow over a rippled bed is not
available, but several attempts have been made to describe its features.

Hara and Mei (1990a) theoretically studied oscillatory flows over ripples. They
showed the existence of vortices drifting with the flow, by tracking stationary cells in
a moving coordinate system. They considered the case of fluid oscillation amplitudes
of the same order as the ripple wavelength, and small ripple slopes. Blondeaux and
Vittori (1991) used spectral methods and finite-difference approximations to describe
the flow field close to the rippled bed. They noticed that when a vortex moves towards
the bed, a recirculating cell appears underneath it. This cell is then ejected to the
inviscid region, leaving in its place a free shear” layer that turns into another vortex.
This secondary structure interacts with the first vortex and causes it to move away
from the bed. This vortex pair mechanism had never been noticed before. Their model
was limited to laminar flow. Scandura, Vittori and Blondeaux (2000) studied the
growth of vortices above ripples by means of direct numerical simulations of Navier-
Stokes and continuity equations, only for low Reynolds numbers. They found that for
a fluid displacement comparable to the ripple wavelength, both flow separation and the
presence of a free shear layer could destabilize the flow into a three-dimensional one.
The study was extended to large oscillation fluid amplitudes and steep ripples.

Malarkey and Davies (2002) have presented two discrete vortex models for oscil-
latory flows over ripples, a non-viscous model with no diffusion of vorticity and a
cloud-in-cell model with diffusion. They found that the simple inviscid model was giv-
ing good results in terms of vortex behaviour for cases with wave orbital amplitudes
of the same order as the ripple wavelength. But when diffusion played an important

role, i.e when the flow was not mainly advectively dominated, usually for orbital am-

TA free shear (mixing) layer is formed when two parallel streams with different velocities interact.
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plitudes at least twice larger than the ripple wavelength, the cloud-in-cell model could
produce more complex vortex structures and gave, as expected, better agreement with
experimental data.

According to Kaneko and Honji (1979), the ejected vortices might be similar to the
lower pair of standing cells mentioned in section 2.5.2, as a pair of vortices is created
for a complete wave cycle and their rotation is identical to that of the recirculation
cells. There are however major differences between the two cases, as for the ejected

vortices, the flow separates and the pair do not interact as they do not occur at the

same time.

Wave plus current case

Although the present study focuses on the wave-induced flow, it is worth consid-
ering the case where wave-induced flow coexists with a current, as it usually happens
in coastal environment (e.g tidal current). The wave-current interaction in the bound-
ary layer has been studied extensively (Bakker and Doorn, 1978; Grant and Madsen,
1986; Davies et al., 1988; Ranasoma and Sleath, 1994), but in comparison little is known
on the particular case of combined waves with a current over a rippled bed (Fredsge
et al.,, 1999; Grant and Madsen, 1979). Fredsge et al. (1999) carried out experiments
for waves alone as well as for combined waves plus current flow, both propagating
perpendicular to the ripple crests. For the case of a combined flow, the vortex gen-
erated in the lee side of the ripple could move over the ripple crest in the direction
opposite to the current, as it would do in the case of a waves alone flow. They also
concluded that superimposing waves on a current led to a displacement of the velocity
profile to higher elevations. Ranasoma and Sleath (1994) measured fluid velocities for
an oscillatory current propagating perpendicular to the ripple crests, combined with
a steady current parallel to the ripple crests. Their measurements did not show good
agreement with any existing model, close to the bed. Vortex formation and ejection

was also noticed, by tracking the velocity fluctuations in the direction across the flow.
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Although superimposing a steady current from any direction on the wave-induced
flow has an effect on the velocity field, it seems that this effect is minimal in the
boundary layer when only the oscillatory part of the flow is considered (Nielsen, 1992;

Andersen and Faraci, 2003).

Turbulent flow

For practical reasons, very few experiments have been performed for turbulent flows
over rippled beds. Several models are able to compute the turbulent wave-induced flow
above a flat bed, but very few are available for the case of a rippled bed. Models dealing
with a flat and rough bottom and for nonlinear waves usually obtain good agreement
with the theory and the available experimental data, see among others Chowdhury,
Sato and Ueno (1997), Lee and Cheung (1999), Cotton and Stansby (2000). The
models generally used to described this type of fully developed turbulent flow are k —¢
models. Fredsge et al. (1999) noticed that the turbulence close to the bed increased
significantly when the vortex moved over the ripple crest.

Studying a fully developed turbulent flow over ripples is not the purpose of this
work. Description of such a flow is very different from a laminar case and needs a
different approach. Nevertheless, it is worth pointing out that flow instabilities and the
kind of vortices generated over the ripples described in section 2.5.4 can be considered

as the onset of turbulence starting from laminar conditions.

2.5.5 Discussion

As reviewed in the previous sections, studying the flow over a rippled bed is complex
and still topical. The steady drift due to the oscillating and progressive nature of the
flow has no exact analytical solution for the case of a rippled bed, and experimental
studies show varied results. Steady streaming cells occurring for small ripple slopes and
weak wave orbital motion to ripple wavelength ratio are a very particular feature of this

flow and their influence on the flow and the sediment transport is not well known yet.
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The flow separation and vortex mechanism occurring for stronger wave orbital motion
to ripple wavelength ratio and stronger ripple slopes is believed to play a significant
role in sediment transport (Bagnold, 1946; Nielsen, 1992). Numerical studies usually
offer a good description of the vortex dynamics when compared to experimental data,
but they are still limited to two-dimensional flows. Bursts of turbulence occurring in
laminar flow as well as the suspected three-dimensional aspect of this flow make it even
more complex to study, limiting experiments and numerical models.

The next section focuses on particular three-dimensional instabilities, triggered in

laminar conditions.

2.6 Three-dimensional instabilities: centrifugal in-

stabilities

2.6.1 Introduction

Generally speaking, instability occurs because of disturbances in the equilibrium
between external forces, inertia and the viscous stresses. Instabilities occurring in a
flow can be of different types, depending on the flow and boundary characteristics.
The present section will focus on centrifugal instabilities triggered in laminar flow by

curved boundaries.

2.6.2 Taylor-Gortler instabilities

Taylor (1923) showed that flow instability could occur between two rotating cylin-
ders at various speeds. For a certain Taylor number® the flow will be destabilized by the
centrifugal forces, and vortices with a regular pattern will appear. The disturbances

are three-dimensional. Gértler (1941) also studied three-dimensional flow instabilities

8The Taylor number is usually defined as the ratio of the (destabilizing) centrifugal force to the

(stabilizing) viscous force.
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in the boundary layer for the case of a curved concave wall®. The assumption for the
Gortler problem is that the boundary layer thickness is much smaller than the radius of
curvature of the wall. For a steady flow, for a certain range of boundary layer Reynolds
number Hs and for a certain range of wall curvature R, vortex structures will tend to
appear. The Gortler instability occurs in the form of steady, stream-wise oriented,
counter rotating vortices. The vortex structure is spanwise periodic, as shown in figure

2.12.

Figure 2.12: Gortler vortices over a concave wall. X\, is the spanwise instability wave-
length. R is the wall radius of curvature. Figure from Schlichting (1979), p 526, figure
17.32.

More recently, Honji (1981) showed that for the case of an oscillating cylinder in
initially still water, above a certain threshold, the previously two-dimensional flow
was breaking into a three-dimensional flow forming regular streak patterns over the
cylinder surface, in the form of mushroom vortex chains. This instability is assumed

to be centrifugal. Hall (1984) carried out a linear analysis on the stability of this

9For more information on Gértler vortices, refer to Schlichting (1979) and Saric (1994).
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phenomenon, and obtained good agreement with Honji’s experimental results. In this

case, the critical parameter is the Keulegan-Carpenter number defined as

27TCLd

KC = (2.31)

C

where aq4 is the amplitude of the cylinder motion and D, the cylinder diameter.

2.6.3 Centrifugal instabilities over ripples

Oscillating flows around a cylinder and a ripple shape are analogous and one can
expect Taylor-Gortler vortices or centrifugal instabilities over a rippled bed. Then from
the study of centrifugal instabilities occurring along a cylinder in oscillating water (or
an oscillating cylinder in still water), the idea of studying centrifugal instabilities over
a rippled bed in an oscillatory flow comes next. As assumed to happen in coastal con-
ditions (Sleath, 1984a; Hara and Mei, 1990b; Hansen et al., 2001a), these instabilities
may play a significant role in the seabed shape and equilibrium. Even if ripple patterns
have been studied for many years, different theories still coexist about the types of in-
stability involved and as mentioned by Hansen et al. (2001a), centrifugal instabilities
are strongly believed to be one of them.

Hara and Mei (1990b) numerically studied two cases, one for ripples of finite slope
and very weak fluid oscillations, and the other for gentle ripple slopes and moderate
fluid oscillations. For the latter case, the flow did not separate and it was found to be
centrifugally unstable, with a periodicity of one or two ripple wavelengths. They noted
that these instabilities could be relevant to the initiation of brick-pattern ripples'? (see
figure 2.13). The mushroom vortices, strongly similar to vortices visualized by Honji
(1981), would be one cause for the building of the bridges between successive ripple
crests.

The instability threshold was expected for a value of order one of the Taylor number

0sce Bagnold (1946) and Sleath (1984a, figure 4.14, pl42).
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Figure 2.13: Schematic brick pattern ripples (view from above).

defined as:

a’h, [o '
T, = 522 \E (2.32)

They found that by increasing ag/l, to 0.48 (so increasing ag to nearly half the ripple
wavelength), the instabilities were covering the entire wavelength and the disturbances
started to interact with each other. For aq/l, = 0.68, an accumulation pattern indicated
bridges formation between transverse crests that could lead to brick-pattern ripples.

Although Scandura et al. (2000) studied cases for strong fluid oscillations over steep
ripples, they also found that for the case of a small fluid displacement, Taylor-Gortler
vortices tended to appear.

In Hansen et al. (2001b), a tray of sand was oscillated in a tank of water. They
started from already existing ripples and looked at their evolution when changing the
amplitude and frequency of oscillation. They found three types of instability leading
to different changes in the shape of the ripples. According to the authors, these in-
stabilities are leading to “bulging”, “doubling”™ and “pearling” ripple patterns. The
“pearling” is obtained when the driving frequency is increased: new small ripples be-

gin to emerge in the trough of the initial ripples. The “pearling” pattern is periodic.

HThe “bulging” and “doubling” patterns correspond to an increase or a decrease of the ripple

wavelength.
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Hansen et al. speculate that the “pearling” instability might be related to centrifugal
instabilities giving rise to transverse Taylor vortices.

These studies are based on computer modelling and theoretical analysis but not on
experiments, except for Hansen et al. (2001b). As seen in section 2.5.4, low separation
leading to the formation of vortices over a rippled bed in laminar flow has been and is
still extensively studied, and in comparison, very little is known about centrifugal in-
stabilities over ripples. No recent experiment has been conducted on this phenomenon.
Studying the instability threshold and the velocity disturbances, and getting visual-
izations of this particular flow pattern, would be of great interest for many reasons.
It would first help to confirm or not the existing analyses on the subject. It would
also provide a better understanding in sea bed ripples formation and equilibrium, and

eventually help getting a wider picture of heach processes.

2.7 Ripple characteristics review

While the previous sections use the flow characteristics to describe the physical
processes, this section adds new elements to this description by reviewing different sea
ripple aspects from a sediment transport approach. A short description of the common
two-dimensional ripple types is provided. The formation and evolution of these two-
dimensional ripples are then reviewed. Finally, a section on three-dimensional ripples

is also developed.

2.7.1 Two-dimensional ripple types

Wave-induced flow over a sandy bed usually changes the bed into a pattern of
regular or irregular ripples. Different classifications for regular two-dimensional ripple

types can be found in literature.
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Rolling-grain and vortex ripples

In Sleath (1984a), as in Bagnold (1946), two typical bed forms can be distinguished:
ripples with a significant slope, so that vortices can be formed at the lee side of the
crest, called vortex ripples, and ripples with a slope too gentle for vortex formation,
called rolling-grain ripples. From a initially flat, or slightly wavy bed, the rolling-grain
ripples will be the first to form, with a small height to wavelength ratio. According to
Sleath (1984a), when this ratio exceeds 0.1, the boundary layer can separate behind the
crest allowing vortex formation, leading to the vortex ripple formation. Rolling-grain
ripples can be found at low to moderate sediment transport rates, if no vortex ripple
is already formed, but they can also be found at high sediment transport rates, where
the vortex ripple formation is not possible.

The mechanism of rolling grain ripple formation has been clearly explained by Sleath
(1984a, p126-127). The steady drift added to the oscillatory motion of the fluid plays
an important role: it is directed from the ripple trough to the ripple crest, so that the
sediment in motion will be carried away from the trough towards the crest, enhancing
the ripple growth. As the ripple height increases, the component of the gravity force
opposed to the steady drift carrying particles will become stronger, so that the ripples
cannot grow indefinitely. Hence, for given wave characteristics, the rippled height is
limited. As mentioned by Andersen (2001), it has to be noted that rolling-grain ripples
are rarely observed in the field, mainly because they are dominated by invading vortex
ripples.

The vortex ripples are the ripples most commonly found for low to moderate sed-
iment transport flows. The building of these ripples follows a process quite similar
to the mechanism of rolling-grain formation. By trapping sediment in their structure,
vortices will also enhance the ripple formation. However, Sleath (1984a, p134-135)
pointed out that it was not clear why ripples would form for only one wavelength (for
given wave conditions) when the vortex formation itself implies that the bed is unstable

for all wavelength enabling vortex formation. The wavelength that would form most
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probably is the one giving the greatest sediment transport toward the crest.

Orbital, anorbital and suborbital ripples

In Wiberg and Harris (1994), another classification is considered with three different
ripple types: orbital, anorbital and suborbital ripples. Orbital ripples will have wave-
lengths proportional to the near-bed wave orbital amplitude, and will be mainly found
in laboratory experiments. Anorbital ripples will be approximately proportional to the
grain size, quite independent from the orbital amplitude, and mainly found in the field.
Suborbital ripples are intermediate forms. Wiberg and Harris (1994) have constructed
a method for ripple characteristics prediction avoiding distinctions between these three
types, therefore distinction between flume and field cases. The discriminators used are
the ratio of boundary layer thickness to ripple height and the ratio of near bed wave

orbital amplitude to ripple height.

Discussion on two-dimensional ripple types

From Nielsen (1992), Fredsge and Deigaard (1992) and Sleath (1984a), it can be
concluded that depending on the wave orbital amplitude and the sediment type, the
ripple formation goes from a round crested ripple to a sharp crested steep ripple allowing
vortices to develop. An increase in the flow oscillation amplitude will usually lead to the
formation of vortex ripples. But coarse sand will give more rounded crests. However,
for a strong value of orbital motion, vortex ripples would be changed into rolling-grain
ripples again. It has to be noted that plane beds can be found at very high sediment

transport rates, called sheet flow.
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2.7.2 Two-dimensional ripple shape model

Formulas from Sleath (1984a, p131-133), derived from measured experimental rip-

ples, provide a good approximation of the ripple profiles:
hr .
y = Leos(he), (2.33)

and & is given by

r=¢&— %—tsin(lcré‘), (2.34)
where h, is the ripple height and &, the ripple wavenumber. These formulas are valid
for ripples of a small height to length ratio. If the ripple slope is weak, the crest
is rounded, and the overall shape is close to a sinusoidal profile (rolling-grain ripple
type). When the ripple slope increases, the crest sharpens and the trough flattens
(vortex ripple type). Figure 2.14 shows different profiles obtained using these formulas.
Formula (2.33) defining a two dimensional ripple profile is adopted by the majority of
researchers studying vortex ripples, see for example Sleath (1984a), Marin and Belorgey
(1993), Blondeaux and Vittori (1991). In the present study, these formulas have been
used both in the computer model for the definition of the domain bottom boundary
(section 3.4), and in the experiments for the cutting of the rippled panels used as a sea

bed (section 5.1).

Figure 2.14: Ezample of ripple profiles obtained with formula (2.33); (—) s, = 0.125;
(=) sr =0.25; (- -) s, = 0.32.

2.7.3 Two-dimensional ripple characteristics predictions

The prediction of ripple geometry is necessary to the prediction of sand transport

under wave action. According to the literature, the main parameter influencing the
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ripple wavelength is the orbital amplitude close to the bed defined as:

n (2.35
ay = ——— :
*” 2sinhkd )
where h is the wave height (equal to 2a). The characteristics of the sand also play
an important role. Two relevant parameters using the sand properties are usually

considered to describe the ripple characteristics: the mobility number ¥ (Yalin, 1971)

(ago)?
= , 2.36
(s — 1)gdso ( )
and the Shields parameter ©
u? 1
O=——F = _fU 2.37
(s — 1)gdso Qf ( )

where s is the relative density of the particle, that is the ratio of the particle deunsity
over the water density, dsq is the grain mean diameter, and wu, is the friction velocity.
The wave friction factor f,, is a function of ay and the roughness length zy = k;/30,
where k; is the Nikuradse coeflicient, a function of the grain diameter D. Typically,
ky = 3D for fine sands and k; = D for coarse sands.

Concerning the ripple wavelength, two experimental formulas can be considered.
Formula (2.38) is valid for ¥ < 20, while formula (2.39) covers a wider range, being

valid for 2 < ¥ < 230 (Nielsen, 1992):

I, =133a, (¥ < 20), (2.38)

and

I, .
—=22- 0.3450%% (2 < ¥ < 230). (2.39)
0

Other empirical formulas exist but they usually give good agreement with flume and
field measurements for a more restricted range of orbital amplitude, wave period and
sediment characteristics, as shown by O’Donoghue and Clubb (2001) and Wiberg and
Harris (1994). Andersen (2001) and Andersen et al. (2001) have also developed numer-

ical models for ripple predictions and reached reasonable agreement with experimental

data.
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The ripple steepness can also be predicted as a function of the Shields parameter
(Nielsen, 1992):

h.
;— ~ 0.182 — 0.240L (2.40)

T

where Oy 5 is the Shields parameter for a grain roughness of 2.5d50. In order to predict

the ripple height, Nielsen (1981) found the empirical formula:

oy
;Z‘ = 0.275 — 0.022V/7. (2.41)
0

2.7.4 Three-dimensional ripples
Formation

If the sediment transport rate increases, vortex ripples will tend to become three-
dimensional, with a decrease of their steepness. As mentioned by Sleath (1984a), ob-
taining three-dimensional ripples in wave flumes is difficult since the two-dimensional
ripples will always appear first and sometimes for several hours, resulting in a signifi-
cant loss of sediment when the three-dimensional ripples are likely to form. For light
sediment, the quick reformation of rolling-grain ripples might also prevent from see-
ing any three-dimensional effect in-between the two patterns. O’Donoghue and Clubb
(2001) found that the criteria mentioned in section 2.7.3 fail when they are applied
to three-dimensional ripples. They also concluded that no criterion was available for

three-dimensional ripples prediction for a wide range of sand and flow conditions.

Brick-pattern ripples

For a low sediment transport rate, a particular three-dimensional ripple pattern can
develop. Supposedly due to centrifugal instabilities in the form of horseshoe vortices
(Sleath, 1984a), the two-dimensional vortex ripples will be changed to a similar shape
but with shifted bridges linking each transverse crest, as shown in figure 2.15 (see also

section 2.6.3).
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Figure 2.15: Schematic representation of the brick pattern ripples.

It appears that three-dimensional ripples tend to form from two-dimensional vortex
ripples when the orbital amplitude increases or the sediment transport rate increases.
However, an increase in the sediment transport rate might not lead systematically to
a three-dimensional pattern, but will surely change the ripple pattern.
As for any three-dimensional ripple type, the mechanisms involved in the brick- (

pattern formation need further investigation.

2.8 Summary

Wave-induced flow characteristics have been reviewed for shallow water areas over =X
flat and rippled beds. The presence of a steady drift has been pointed out. For flat
bed cases, it has been shown that theory gives acceptable agreement with experiments
for instantaneous velocity profiles. However, the measured mass transport velocity is
usually different from the theoretical prediction. Despite being widely used, it appears
that Longuet-Higgins’s solutions for the boundary layer and the interior of the fluid are
restricted to cases unlikely to happen in natural cases. Furthermore, it seems that there
is a mismatch between the two solutions. Comparisons between experimental data, a

numerical model and the theory will be shown in section 4.2.2 to provide discussions
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on the discrepancies.

For a rippled bed, no complete valid theory is available yet, especially when the
flow is suspected to be three-dimensional. Nevertheless, numerous experimental and
numerical studies on oscillating fluids above ripples provide qualitative and quantita-
tive information on the velocity field, the mass transport and the vorticity dynamics. It
appears that the flow features depend strongly on three main factors: the ripple height,
the ripple wavelength and the fluid oscillation amplitude. When the orbital amplitude
is much less than the ripple wavelength, and generally for a weak ripple slope, a double
pair of recirculation cells is present above each ripple wavelength. For a strong enough
fluid oscillation amplitude, the flow is likely to separate and give rise to vortices. Vortex
generation at the ripple crest has a significant effect on the seabed shape. For a weak
flow oscillation over steep ripples or for a significant flow oscillation over gentle ripples,
centrifugal instabilities are likely to happen. These particular three-dimensional insta-
bilities are suspected to contribute to the formation of a three-dimensional ripple type
called brick-pattern ripple. Very few experimental and numerical studies have been
done on this particular instability.

The ripple formation itself has been widely studied. Different ripple types can be
identified depending on the flow conditions and the sediment type. Various formulas
mainly derived from experiments are available for the prediction of two-dimensional
ripple features, but they are usually limited to a certain range of flow and sand condi-
tions. Some numerical models have also been developed for ripple prediction, but they
are still limited to a certain range of conditions and for two-dimensional ripples.

It appears that studying the wave-induced flow over ripples is a wide subject and
further investigations need to be done in different areas. A complete description of
such a flow under varied conditions is a huge task and cannot be done in the present
thesis. However a classification of the flow features with respect to the wave and
ripple characteristics would be a step further in understanding the process involved

in this particular area. Providing such a classification including the study of the flow
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dimension is one of the main purposes of the present thesis.

Using the general background and the problems pointed out in this review, the fol-
lowing chapters provide further investigations on the wave-induced flow characteristics
over a rippled bed. The instantaneous velocity profiles, the mass transport velocity and
the vortex mechanism are studied by means of a numerical model. Then, the vortex
formation, shape and behaviour and the dimensional aspect of the flow are studied by

mean of experimental visualizations.
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Chapter 3

Computer Model

3.1 Introduction

A computer model aimed to calculate the flow in the area close to the bed has
been written. The model is programmed in FORTRAN, and was run on Irixcompute?
workstations. The model solves the vorticity transport equation derived from the
Navier-Stokes equation and the Poisson equation for vorticity and stream function.

The horizontal and vertical velocities are then calculated from the model output.

3.2 Governing equations

3.2.1 Basic equations

The equations used to solve the flow in the vicinity of the bed are the vorticity

transport equation

ow”* Oow™* ow*

i +u* o v* o AVELS (3.1)
and the Poisson equation
w* B -822,[/’* B 62'{//‘* (3 2)
T 92 Oy*? ’ ’

Hrixcompute is based on a ecight-processor Power Challenge computer from SGI.
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where w* is the vorticity, ¢* the stream function and v the water viscosity. The

horizontal and vertical velocities respectively u* and v* are defined by

.oy o

= d . ) 3.3
U By an v e (3.3)
The vorticity transport equation may then be changed to
ow* oY* Ow*  OY* Ow* Pwr D2
= A b= 22, (3.4)
ot* Oy* dx*  Ox* Oy* Ox*2  Oy*?

3.2.2 Dimensionless variables

In order to work with dimensionless variables, the following scales are chosen:

e The length scale is the Stokes boundary layer length 6* defined as

v
T

6 =

where 1™ is the water wave period.

e The time scale is
T*

% .
e The velocity scale is Uj, that is the amplitude of the horizontal velocity oscillation

just outside the considered area.

The dimensionless variables can then be introduced:

27
b=,
(9 = T2

w*o*
W= _60*—7
0
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The boundary layer Reynolds number R; is also used, defined here as:

Rs = Ugo .

1%

Equation (3.4) and (3.2) can then be expressed in dimensionless forms:

2 Ow oY ow Oy 6_w 1 0w  O%w

R0t oyor Taroy o T o)
and
O %
S0ty

Equation (3.6) is rearranged to:

ot 2'0xdy Oyox’  2°0x2 9y’

3.3 Algorithm for a flat bed case

(3.8)

In order to solve the flow characteristics in the boundary layer for the case of a

wave-induced flow a model has been programmed in FORTRAN, using a calculation

algorithm similar to the one proposed by Roache (1972) concerning the main loops.

3.3.1 Discrete formulation

The vorticity transport equation (3.8) and the Poisson equation (3.7) can be ex-

pressed in a discrete form using a finite-difference scheme. FEach term from these

equations can be expressed as a finite-difference, using vorticity and stream function

values at different points of a previously defined grid, of index 4 from 0 to 1, for the

horizontal axis and index j from 0 to j,, for the vertical axis (figure 3.1). The discrete

form of each term is then:

Viv1,j — Vi1, for oy
2Azx oz’

Yij+1 — i1 for oY 7
2Ay dy
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Wit1,j — Wi—1,5 Ow

AL for 7 (3.11)
Wil — Wit Ow
R e e (3.12)
20y dy’
Wit1y = 2Wij + Wi 0w
: for — (3.13)
Az? Ox?’
Wig+1 — 2(4)1’,7' -+ Wi -1 (92(,4)
: for — (3.14)
Ay? oy?’
wHTAt — Wt Ow
A for 5 (3.15)

The vorticity transport equation (3.8) can then be expressed in its discrete form:

WAL = L AL[A (3.16
4,7

1,7
where [A] is the discrete form of the right-hand side terms of equation (3.8), all ex-

pressed above. The discrete form of the Poisson equation is:

(Wi — 2wt w1y Wil — 2w T wi o
wig = —( v + A ). (3.17)
(0,jm) (im.jm)
-
i
(0,0) (0,im)

Figure 3.1: Compuling grid.

3.3.2 Initial conditions

e The number of points defining the calculation grid is set? (typically 80 by 80

points).

2sce section 4.2.1 for convergence tests on grid size.
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e The wave period T™ and the velocity amplitude Uj at the top of the domain

are defined. The boundary layer Reynolds number Rj is then calculated with

formula (3.5).
e The domain length is defined equal to the wave wavelength L.

e The domain height is defined equal to a multiple of the Stokes length or to a

chosen value (typically a few centimetres).

e The mesh sizes Az and Ay are calculated with the domain size and the number

of points defining the grid.

e The time-step and the total time of calculation are defined. The time-step At is
a fraction of the dimensionless wave period: At = 27 /N where N is an integer

number?.

e At instant ¢ = 0, all vorticity and stream function values are set equal to 0.

3.3.3 Boundary conditions
1. On the bottom of the domain
e The stream function is null for y =0

e A Woods condition is applied for the vorticity:

If 1)y is any point on the sea bed and % is the point just above it, we have

, o 10%¢ )
)y = —A ——(Ay)~.
(2! W0+ay y+28y2( Y)
As Upeq :%15‘2 0, it follows that:
Py 2(1”91 — )
oy T (Ay)?

3gee section 4.2.1 for the choice of V.
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%y
As Frvhe 0 on the bed, we also have:

0*y
W = —'—5:[/—2

Then with condition (3.18), the Woods condition is:

21y
= , 1
T T Ay (3.19)
2. On the top of the domain
o The horizontal velocity imposed at the top of the domain is:
o
a—Z; = us + Uy cos(ot — kx) (3.20)

This imposed velocity represents the wave-induced velocity where only the
fundamental mode is shown, but in several cases other harmonic terms may
be added to the definition (see section 4.2.2). The velocity u, is the value
that has to be chosen to match the steady drift value at the top of the
domain. The choice of the steady drift value is an important issue (Riley,
1978). Three different methods can be used for the choice of u,. The top
mean vorticity can be minimized by a specific loop: by simple bisection, a
value of u, is chosen for the smaller possible top mean vorticity. Figure 3.2
is an example showing the final value of u, chosen for the minimum vorticity
found with this loop. The velocity u, can also be set equal to the top value
of the mean Eulerian theoretical velocity obtained with formula (2.20). But
us can also be set equal to the top value of a mean experimental velocity.
All three methods are discussed in section 4.2.

e As described by the theory, the vorticity on top of the domain should be
null. As the top vorticity is minimized (see previous point) and is very weak,
instead of imposing a zero vorticity value at the top of the domain, a simple

condition is applied:
Wijn = Wi —1 (3.21)
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Figure 3.2: Mean vorticity at the top of the domain for different values of us.

where the top vorticity is set equal to the value of vorticity at the point just

underneath (see grid example on figure 3.1).

3. On the sides of the domain:

Values of point outside the defined grid (left and right sides) will be needed in
order to calculate the vorticity and stream function values along the edges of
the domain. For both variables, as the domain is symmetrical (equal to one
wavelength), any value needed just outside the right side will be taken equal to
the last corresponding value on the left side at the same elevation. In the same
way, any value needed just outside the left side of the domain will be put equal
to the first value of the right side of the domain. On a finite-difference point of
view, any value of the stream function ¢ or the vorticity w of index 7 = 0 or
t = 1,, will need, in order to be calculated, values outside the mesh, say i = —1
and ¢ = i, + 1, so non-existing values. Any variable of index ¢ = —1 will then
be replaced by the same variable of index i = 4,,; the same way, any variable of
index i = i,, + 1 will be replaced by the same variable of index ¢ = 0. In other
words, for any j:

Vo1 = Vi, , Yipr1,; = YPo,4 (3.22)
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and

U.}_l,? = wim,;j 3 wi7ﬂ.+1yj = woﬂ (3‘23)

3.3.4 Main loops

The main loop of the model is a time loop, calculating the vorticity and stream function

values at any point of the mesh, each time-step. This main structure includes three
important loops:
1. The vorticity loop:
It calculates the vorticity at any point except at the top and bottom of the domain

using formula (3.16), the discrete form of equation (3.8).

2. The stream function loop:
It calculates the stream function at any point except on the bottom line* using
formula (3.17), the discrete form of equation (3.7). A Successive Over Relazation
loop is done for each iteration, increasing the calculation accuracy. This method
can be explained as follows: if five points are defined anywhere in the grid as

shown in figure 3.3, then v is calculated using the formula

Figure 5.3: Mesh example.

A . , , ,
1+ )Wl + g + B0y 4 BAabs + JAzPwy — 2(1 4 FA)YE) (3.24)
Pa

4See boundary condition (3.18)

¢0=¢8+2
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with:

e b : previous value of ¢ at point 0

’ﬂA:'ﬁ_Z

e \: convergence parameter set to 1.65 .

This calculation is repeated until |y — ¥f| < et)g , for each time-step, with € as

the convergence parameter. (g is set to 10‘5)4

3. The vorticity boundary loop:
It calculates the vorticity values at the bottom using the Woods condition (3.19),

and at the top of the domain using the boundary condition (3.21).

3.3.5 Convergence criteria
e A convergence criterion is applied on the time-step At (Roache, 1972):
Rs

1 1 (-1
At < e [ ——= A+ ) . 3.25
-2 (A:{:Z * AyQ) (3:25)

e The Courant condition for both axes must also be satisfied:

v— +v— < 1. (3.26)

3.4 Algorithm for a rippled bed case

The equations and the boundary conditions used in the model have to be modified

for the case of a rippled boundary.

3.4.1 Modified equations

A wavy bottom profile is considered, described by the following equations:

]*
ey % sin(k*€), (3.27)
* /1: * ¢k
Yy = 5 cos(kr&*), (3.28)
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where hZ* is the ripple height, & is the ripple wavenumber and £* is a dummy variable®.
The bed profile will then have crests sharper than troughs, as observed for real sea
beds (Sleath, 1984a). The dimensionless ripple wavelength . and height A, are

(4, )

l = Y2 Tr)
(1 ) = 255

and the dimensionless ripple wavenumber k,. is:
ky = k6.
In order to solve the equations (3.6) and (3.7) a new orthogonal coordinate system
(€,m) is used:
he o, .
r=¢§— —12—6_1"'77 sin(k,£), (3.29)
Ny
y=1n+ —;—e*k"” cos(k.£). (3.30)
This system will map the sea bed profile into the line n = 0. The real domain is

shown in figure 3.4.

/ line of constant v .

Figure 8.4: Grid in real domain.

By substituting (3.29, 3.30) into (3.6, 3.7), we get the new system of equations:

Ow  Rs O Ow O Ow 1 /0%w  O%w
w _fs Opow ovowy 10w  Ow 3.31
5 =l T T: an> 2J(8£2 + 6772) (3:31)

5Examples of ripple profiles obtained with the formulas (3.27) and (3.28) are shown in figure 2.14,

section 2.7.2.
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Jo=——>t 27
YT e T o
where J is the Jacobian of transformation
_O(z,y)
(&)’

With (3.29) and (3.30), it follows that:

1
J=1+ thkfe”%‘"” — hyokye R cos (k).

The velocity definitions are also changed to:

w008 0%
0oy Ondy’
_ 0w owdy
o0& Ox  Onox’
Then with the Cauchy-Riemann equations
_oy o o
o¢  On ' on o€
o _ o % _ oy
dr Oy ’ Ay oz

and formula (3.33), we can write:
98 _on_10r 10y
oz dy JOE  Jony
0§ On _ 10z 10y

oy Oz  Jon JOE
After substitutions, (3.35) and (3.36) become:
1 (31/) oy O 63:)

v=\Ggae "oy
U_l@ﬂ_’eéy_%éﬂz)
 J\OnoE OO

The parameters g—g and g—z are calculated from definitions (3.29) and (3.30):

g_z =1- —krézTe“k"”7 cos(k€),
j kyh, . ,
g—g = ——2~——e ke sin(k,€).
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3.4.2 Discrete formulation

As done in section 3.3.1, equations (3.31) and (3.32) can be expressed in a discrete
form using a finite-difference scheme. Each term from these equations can be expressed

as a finite-difference. The discrete form of each term is:

) (3.45)

ﬂz_ﬂé_;?;/’_”*l_ for Zf (3.46)

sty ;gui_l,j for %%7 (3.47)

Wi,j+12 ; :z’,j~1 for % (3.48)

Wit ZAQZ; Tl %’ (3.49)

Wijr1 — 2;;27 +Wij-1 for (227‘*2’, (3.50)

ﬁ’;y&;_t_%; for Z—j (3.51)

Equation (3.31) can then be expressed in its discrete form:

wfj;m — Wl + At[A] (3.52)

where [A] is the discrete form of the right-hand side terms of equation (3.31), all

expressed above. The discrete form of the Poisson equation (3.32) is:

7 —21 i—1,7 4,9 _21 1,7 —
wi,j:’l]<w+l7] wa.7+w 1:.7_’_(’()0‘*’1 wx7+w7] 1>. (353)

AEL? An?

3.4.3 Initial conditions

Initial conditions similar to the flat bed case are used (section 3.3.2), except for the

domain size. A few other initial conditions need to be defined:
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e The ripple wavelength [. and ripple height h, are defined.

e The real domain length is then defined equal to a ripple wavelength, while the

domain height is a fraction of the ripple wavelength (typically 2/3).

o The mesh sizes An and A¢ are calculated with [., h, and the number of points

defining the grid.

3.4.4 Boundary conditions

1. On the bottom of the domain

e The stream function is null for n =0
o = 0. (3.54)

e A Woods condition® similar to the flat bed case is applied for the vorticity:

2%
Wo = — b (3.55)

2. On the top of the domain:

e The horizontal velocity imposed at the top of the domain is:

%4
Frie Uy cos(ot). (3.56)

This imposed velocity represents the wave-induced velocity in a shallow wa-
ter case, where it is considered that the wavelength of the wave is much larger
than the water depth and the ripple wavelength. On the scale of a ripple
wavelength, it is considered that the fluid is oscillating uniformly”, through
the entire domain. Therefore, the term kx in cos(ot — kx) disappears, and

so does the steady drift term .

Ssce boundary condition (3.19)
“See figure 2.3
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e The boundary condition (3.21) for the vorticity remains unchanged.

3. On the sides of the domain

The boundary conditions are similar to the ones applied in the flat bed case (see

section 3.3.3).

3.4.5 Main loops

The structure of the calculation loops is similar to the flat bed case model (see

section 3.3.4).

3.4.6 Convergence criteria

The convergence criteria are similar to the ones applied in the flat bed case (see

section 3.3.5).
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Chapter 4

Model results

4.1 Introduction

In this chapter, results obtained with the numerical model are presented. Conver-
gence tests have been done for the case of a flat bed, using the available theory for
comparison. The model output is then compared to experimental data for the case of
a flat bed. Discrepancies between the experimental data, the model output and the
theory are discussed and further investigations are done by bringing some modifica-
tions to the model. Then the model is run for rippled bed cases and the results are
compared to another numerical model and a set of experimental data. Particular flow
features are then studied such as the steady streaming recirculation cells above the

rippled boundary! and the mean Eulerian velocity profiles at different locations along

the ripple.

4.2 Flat bed case

Convergence tests on the model have been done for the case of a flat bed, as the

existing theoretical solution offers a convenient base for comparison. The model output

ISee section 2.5.2.
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is then compared to a set of experimental data in order to check the model ability to
predict the flow features over a flat bed, before testing it for rippled bed cases in section
4.3. Mean Eulerian velocities from the model are also compared to the theoretical
solution. Finally, tests on the vorticity behaviour at the top of the computed domain
are done to explain the discrepancies obtained when the modelled and the experimental

mean Eulerian velocities are compared.

4.2.1 Convergence tests
Grid size

By changing the number of points 7,, and j,, defining the calculation grid® along
the horizontal and vertical axes, the influence of the mesh sizes Az and Ay is checked
against the maximum time-mean velocities and the time-mean velocity profiles (see
figure 4.1). Convergence is quickly reached and a grid of size 80 by 80 points will then

be chosen for most cases.

Time-step

In figure 4.2, the mean vorticity over a wave period is plotted with decreasing

values of the time-step At. Convergence is reached for At < 27/12000.

4.2.2 Comparisons with experimental data
Experimental characteristics

The experimental data have been kindly provided by Mouazé (2001). Two series
of experiments have been conducted by Mouazé (2001) in two different wave flumes,
both aiming to measure the velocity field in the bottom boundary layer under waves.
One series of experiment was set in the Franzius institute wave flume in Hanover and

the other series was set in the university of Caen wave flume. The dimensions for the

Zgee figure 3.1
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Figure 4.1: Convergence of the time-mean velocity for different values of i and jm.
im = L/ (0AZ); jm = 0.01/(5Ay); § = \/vT/m. T = 1.3 s; L = 2.89 m; up = 0.1049
m.s~L. (a) and (b): mazimum time-mean velocity for different values of im and jp,.
(¢) and (d): time-mean velocity profiles for different values of i, and j, compared to
the theoretical profile obtained with formula (2.20). Tests on i,,: value default for jm

is 80. Tests on j,,: value defoult for i,, is 80.

Hanover wave flume are: 120 m in length, 2.2 m in width with a still water depth of
1.0 m and a floor roughness of (0.8 mm. In Caen, the wave flume is 22 m long, 0.8 m
wide with a still water depth of 0.5 m and its floor can be considered as smooth. Both
wavemakers have active absorption control; reflections from the beach were around
10% in the Hanover flume and much smaller in the Caen flume. The experimental
flow characteristics are shown in table 4.1. Mouazé (2001) optically determined the

Nikuradse coefficient k,. With the diagram from Kamphuis (1975), it was then possible
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Figure 4.2: Convergence of the mean wvorticity for decreasing time-steps. The flow

characteristics are similar to those in figure 4.1.

to determine the bed friction factor f,, and then the flow regimes. From Mouazé (2001),

the flow is always laminar for the Caen cases, and in a transitional state for the Hanover

cases.

Case | T(s) | h (m) | L (m) | up (m.s™1)
Cl | 1.33] 0.08 2.39 0.1045
C2 1.5 0.13 2.82 0.1953
C3 1.8 | 0.16 3.57 0.2822
C4 2.2 0.16 4.53 0.287
H1 2.0 0.15 5.21 0.1538
H2 3.0 0.15 8.69 0.196
H3 3.5 0.22 | 10.36 0.2194
H4 5.0 0.18 | 15.24 0.2655

Table 4.1: Experimental flow characteristics from Mouazé (2001).



Model input

All the parameters needed to run the computer model (wave period, wavelength,
wave-induced velocity) are taken from the experimental data. In order to get a velocity
definition at the top of the domain close enough to the experimental profile, a Fourier
analysis is made on the experimental velocity fluctuation (during a wave period) at a
certain depth (corresponding to the computed domain height, typically 10 mm) and
the fundamental harmonic and other significant subharmonic coefficients are found.

The velocity definition will then be:
U = Ug+Uge cOS(0t —kx)+ugs sin(ot —kx)+ug. cos 2(ot — k) +uy, sin 2(ot—kz)... (4.1)

where ug. and wgs are the maximum velocity amplitudes of the fundamental mode
for the cosine and sine terms respectively; uj. and wuy, are the maximum velocity
amplitudes of the first subharmonic for the cosine and sine terms respectively. s
is the mean experimental velocity calculated for one wave cycle at a height of 10 mm,

and will be used as the steady component value.

Comparison results

e Gentle case: Caenl

In this case, the wave period is 1.33 s and the wavelength is 2.39 m. Figure
4.3 shows that the velocity profile on top of the studied domain (y = 10 mm)

can be modelled by a simple cosine shape
U = Us + ug cos(ot — kx)

where ug = 0.1045 m.s~! and u; = 0.0031 m.s~1. The modelled velocity profiles
for different wave phases, from the bottom to an elevation of 10 mm are shown in
figure 4.4 and compared to the experimental data and the profiles calculated from
the second order theory (see Sleath (1972) and section 2.4.2). Agreement between

the experimental data, the theory and the model results is good. However, if
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Figure 4.3: Gentle case - Caen 1 - Horizontal velocity at the top of the domain. Com-
parison Model (+) / Ezperimental data (-) .

the mean Eulerian velocity is calculated for one wave period, agreement is less
satisfactory, as shown in figure 4.5. The mean Eulerian velocity profiles from the
experimental data and the Longuet-Higgins theory® are close in the vicinity of the
bed. It has to be noted that the mean flow calculated from the model cannot be
similar to the theoretical mean Fulerian flow as the velocity imposed at the top
of the computed domain uses the steady component taken from the calculation
of the mean experimental velocity at y = 10 mm and not the theoretical value
for the steady drift in these conditions*. In this case u, = 0.0031 m.s~! while

the theory predicts a value of 0.0046 m.s™!.

e Steep wave Case: Caen 4

In this case, the wave period is 2.2 s and the wavelength is 4.53 m. Figure

4.6 shows the modelled velocity profile on top of the studied domain compared

3See section 2.4.2.
3utk

4At the top of the domain, the mean theoretical low tends to , see section 2.4.2.
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Figure 4.4: Gentle case - Caen 1 - Comparison Model (-) / Experimental data () /
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corresponding wave phases are shown in the small graphs plotting the top horizontal

velocity.

to the experimental and velocity. The modelled velocity is
1 = s + uge cos(ot — kx) + ugs sin(ot — kx) + uy. cos 2(ot — kx) + ...

..+ urecos 8(ot — kx) + urs sin 8(ot — kx)

where ug. = 0.287 m.s~' and u, = 0.0105 m.s~*. Eight frequency components are

needed in order to fit closely to the experimental velocity. The velocity profiles

60



—— Exp.

9 | — Theory
- - Model

Elevation (mm)

N — : , ; <
~0.001 0 0002 0,004 0.006
Mean velocity (m.s™1)

Figure 4.5: Gentle case - Caen 1 - Mean Eulerian velocity. Comparison Model /

Experimental data / Theory.

=10mm

Velocity (m.s™1) at y

03 . . . : . .
0 /4 /2 3n/4 T Sn/4 3n/2 Tn/4

Wave phase

Figure 4.6: Steep wave case - Caen 4 - Horizontal velocity at the top of the domain.

Comparison Model (+) / Ezperimental data (-) .
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for different wave phases, from the bottom to an elevation of 10 mm are shown

in figure 4.7. Agreement is generally good, but the overshoot velocity very close
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Figure 4.7: Steep wave case - Caen 4 - Comparison Model (-) / Ezperimental data ()
/ Second order theory (- -). Horizontal velocity profiles for different wave phases. The
corresponding wave phases are shown in the small graphs plotting the top horizontal

velocity.

to the bottom predicted by the model can be different in magnitude from the
experimental results. For a few wave phases, the velocity profiles calculated with

the second order theory are significantly different from the experiments and the
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model. This can be explained by the fact that in this case the actual flow has
components at harmonics higher than the second. If the mean flow for a wave
period is calculated (see figure 4.8), the profiles from the experiments and the
model agree well at the top of the boundary layer, but as pointed out in the
phase to phase comparison, the overshoot predicted by the model differs from
the experimental results. The experimental measurements show that the theory
overestimates the value of the mean flow on top of the domain, although the
overshoot velocity predicted by the theory is close to the experimental value.
From the Fourier analysis u, = 0.0105 m.s™!, while the theory gives a steady

drift equal to 0.03 m.s™!, so nearly three times larger.

- Theory

—— Exp.
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10—

|
|
g
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o : ‘ ' .
-0.005 0 0005 001 0015 002 0025 003 0035 0.04
Mean velocity (m.s™)

Figure 4.8: Steep wave case - Caen 4 - Mean Eulerian velocity. Comparison Model /

FEzxperimental data / Theory.

e Rough bed and steep wave Case: Hanover 4

In this case the wave period is 5.0 s and the wavelength is 15.24 m. Figure

4.9 shows that the velocity profile on top of the studied domain can be modelled
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by
U = Us + Uge cos(ot — kx) 4 ugs sin(ot — kz)ug + w1 cos 2(ot — kx) + ...

oo+ Uze cos 8(ot — kx) 4+ urssin 8(ot — kx)

where ug. = 0.2655m.57! and u, = —0.0152m.571. Again, eight frequency com-

ponents were used and agreement is generally good. The velocity profiles for
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Figure 4.9: Rough case - Hanover 4 - Horizontal velocity at the top of the domain.
Comparison Model (+) / Experimental data (-).

different wave phases, from the bottom to an elevation of 10 mm are shown in
figure 4.10. Agreement between the model and the experiments is generally good
but some significant discrepancies appear when compared to the second order
theory for reasons given earlier. The mean Eulerian flow calculated from the
model, the experiments and the theory are shown in figure 4.11. The experi-
mental mean velocity and the modelled mean velocity are both negative on the

top of the domain, as opposed to the positive mean flow predicted by the theory.
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Figure 4.10: Rough case - Hanover 4 - Comparison Model (-) / Experimental data (e)
/ Second order theory (- -). Horizontal velocity profiles for different wave phases. The

corresponding wave phases are shown in the small graphs plotting the top horizontal

velocity.

The mean experimental velocity at y = 10 mm is u, = —0.0152 m.s~! while the

theory predicts us, = 0.0173 m.s~1.
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4.2.3 Mean Eulerian drift: model, experiment and theory

Comparison theory - model

In section 4.2.2, when the model is compared to the experimental data, the mean
experimental velocity value at the top of the domain is used in the velocity definition
imposed on top of the numerical domain. Similarly if the top mean velocity predicted
by the theory is used in the model as u,, the constant component of the velocity
imposed in the computed domain, the model gives a mean velocity profile identical to
the theoretical mean profile. When a loop minimizing the top mean vorticity is used in
the model®, results from the model are not strictly identical but are very close to the
theory. Figure 4.12 shows the comparison for the case Hanover 4. The model profile is
not strictly superposed on the theoretical curve as it would be the case if the theoretical

steady component of the velocity u, were imposed as the steady part of the velocity

5Gee section 3.3.3.
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definition in the model. However, the difference is very small when compared to ug, as
theo model
Unmaz — Unaz~

Ug

is of order 1072 where U and UM%l are the maximum velocity amplitudes from the
theory and the model respectively. It means that the difference is negligible in terms
of the magnitude of the instantaneous velocity profiles. If only the Eulerian velocity is
considered, the difference is still acceptable as

Utheo - Umodel

maIDYtheomaw — 0055

which means that there is a maximum error of 5.5% between the two mean profiles.

However, a more important issue is that, as shown in figure 4.12, agreement between the
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Figure 4.12: Hanover 4 - Mean Eulerian velocity - Comparison Ezperimental data /

Theory / Model with vorticity minimized at the top of the computed domain.

experimental and the theoretical mean velocity is not good; the experimental conditions
might not respect the theoretical assumptions such as a vanishing vorticity at the top

of the boundary layer.
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Comparison experiments - model with imposed vorticity

When the instantaneous velocity profiles from the experiments and the second order
theory® are compared, acceptable agreement is reached (figures 4.4, 4.7 and 4.10).
All the instantaneous velocity profiles from the Hanover and Caen cases have been
compared to the second order theory in Mouazé et al. (2002), and good agreement
was reached. However, as previously shown, there is usually a significant difference
between the experimental data and the Longuet-Higgins theoretical solution for the
mean Eulerian velocity value at the top of the domain. As explained in section 3.3.3,
the theory assumes a zero vorticity at the top of the boundary layer, giving a vertical
velocity profile. When the mean FEulerian velocity is calculated, several experimental
cases feature a slope at the top of the measured domain. This might be explained
by the presence of a significant mean vorticity in this area. In order to study this
possibility, the top boundary condition (3.21) has been modified. Instead of minimizing
the vorticity by trying different values of u,, a mean vorticity is imposed at the top of
the computed domain. This mean vorticity is calculated from the experimental data,
and u, is deducted from the predicted slope obtained with the corresponding vorticity.
It is assumed that imposing such a vorticity could induce a slope in the computed
mean Eulerian velocity profile similar to the experimental one. Unfortunately, the
results obtained with an imposed vorticity are not convincing so far. An example is
shown in figure 4.13, where the slopes from the modelled and experimental profiles
are close and the overshoot amplitudes are of same order. However in order to reach
such a agreement, in this case, the steady component of the velocity u; has to be very
different from the experimental one. Further investigations need to be done on this
subject. When the present numerical model is compared to the experimental data,
the mean Fulerian velocity can either have a slope close to the experimental one but
with a steady component u, usually very different from the top value of the mean

experimental velocity or it can feature a steady component close to the top value of

6See section 2.4.2 and Sleath (1972).
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the mean experimental velocity but will not present a similar slope.
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Figure 4.13: Caen 4 - Mean Eulerian velocity - Comparison Ezperimental data / Model

with imposed vorticity ot the top of the domain.

4.2.4 Discussion

1. Concerning the comparisons of the instantaneous velocities, the model showed
good agreement with the experimental data for the prediction of the wave-induced
oscillatory flow for weak conditions (small wave height, small wavelength). In
strong flow conditions, differences appear on a phase to phase comparison despite

a general behaviour quite similar for a wave period. This problem might be

explained by the following factors:

e The roughness of the floor in the Hanover flume is 0.8 mm, but as no
element of roughness has been included in the houndary conditions of the

model, discrepancies have to be expected.

e The presence of turbulence, especially in the Hanover flume can also induce

discrepancies.
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2. Concerning the mean Eulerian velocity:

e Comparisons between the experimental and the modelled mean velocity pro-
files highlight the problem of the velocity definition in the model. The veloc-
ity definition appears to be a key boundary condition, and the combination
of a steady component with a series of sines and cosines can be difficult to

set properly when compared to experimental data.

e Discrepancies between the experimental and the theoretical mean Eulerian
profiles might be explained by a weak but significant vorticity existing out-
side the considered domain in the experimental case when the theory as-
sumes a vorticity vanishing at the top of the boundary layer. In none of
the studied cases did the top value of the mean experimental velocity agree
with the theoretical top velocity. This might also be explained by the fact
that the vorticity influencing the flow is the vorticity convected from the
upstream and downstream of the domain, taking over the weak vorticity
generated in the bottom boundary layer. It appears that the boundary
layer solution from Longuet-Higgins (section 2.4.2) may not be adapted for

the present cases.

e The discrepancies previously discussed could also be explained by the pres-
ence of a counter flow in the wave flume, induced by the Stokes drift.
This counter flow localized outside the boundary layer could induce a non-
vanishing vorticity at the top of the measured domain. Progressive wave
trains travelling along the flume independently from the incident waves and
disturbances caused by the wave paddle can also be sources of discrepancies

but are difficult to quantify.
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4.3 Rippled bed case

4.3.1 Introduction

In this section, the model output is compared to another numerical model (Blon-
deaux and Vittori, 1991), and experimental data (Marin, 1992). For both cases, the
present model is run using all relevant parameters being as close as possible to the
values used in the previously mentioned studies. These parameters are the ripple char-
acteristics (height and wavelength), the wave period and the maximum amplitude of
the wave-induced velocity. Then, in section 4.3.4, a series of runs is done for different
flow conditions, in order to study the recirculation cells mentioned in section 2.5.2.
Finally, in section 4.3.5, the mean Eulerian flow calculated by the model is studied at

different locations along the ripple.

4.3.2 Comparison with Blondeaux and Vittori’s numerical model

This comparison uses the work from Blondeaux and Vittori (1991) that was aimed at
studying the vorticity dynamics over a rippled bed in oscillatory flows. The comparisons
presented here are mainly qualitative, as the plotted results used are just taken from

the figures available in their article.

First case

The first comparison is made for 5 = 50. The amplitude of fluid displacement
over the ripple wavelength ratio is equal to r = 0.75 and the ripple slope is s, = 0.15.
Figure 4.14 shows the vorticity development for different wave phases as computed
by the present model and can be compared to figure 4.15 showing the results from
Blondeaux and Vittori (1991) for the same case. In the same way, figure 4.16 shows
the stream function evolution as computed by the model and can be compared to the
results from Blondeaux and Vittori (1991) shown in figure 4.17. Figure 4.18 shows the

model results for the vorticity contours after several wave periods and is compared to
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figure 4.19 from Blondeaux and Vittori (1991).

10

Figure 4.14: Vorticity contours; numerical model - first case; Aw=0.15; (— ) clockwise
vorticity; (—) counterclockwise vorticity - Rs = 50; r = 0.75; s, = 0.15; (a) t = 7/4;
(b) t =m/2; (c)t =3n/4; (d)t =7; (e) t =5n/4; (f)t = 3n/2; (g) t = Trw/4; ()
t=2m. x=x’/0%; y=y’/o*.
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Good agreement is generally reached in these comparisons, with a very close match-
ing of the vortices development with respect to the wave phase. However, in figure 4.19
(Blondeaux and Vittori), after 5 wave periods, secondary vortex structures seem to last

longer while they have already vanished in figure 4.18 (present results).

Second case

For this case, Rs is equal to 100, while r and s, remain unchanged. Vorticity
contours at different wave phases as computed by the present model are shown in
figure 4.20 and can be compared to the results from Blondeaux and Vittori (1991)
shown in figure 4.21. For such a large Rs, the comparison reaches a good agreement
for the timing of the vortex generation. Nevertheless, the present results show vortices
vanishing or getting washed over the disturbed layer quicker than for the results from

Blondeaux and Vittori (1991).

Discussion

For both cases, the comparisons between the results from the model described in
chapter 3 and those from Blondeaux and Vittori (1991) reach a good agreement. Both
models show a vortex generation for each half wave cycle, but the vortices’ lifetime
seems to be longer for Blondeaux and Vittori’s model. These comparisons stay however
qualitative. In the next section, as a step further in the validation of the computer

model, a set of experimental data are compared to the model output.

73



h)

i)
135~ 13.5 -

Figure 4.15: Vorticity contours; Blondeauz and Vittori (1991) results (figure 6, p278) -
first case; Aw=0.15; (— ) clockwise vorticity; (-) counterclockwise vorticity - Rs = 50;
r=0.75;s. =0.15; (a)t =n/4; (b)) t =7/2; (c)t =3n/4; (d)t ==; (e) t = b5n/4;
(f) t =3m/2; (g) t ="Tr/4; (h) t = 2m.
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Figure 4.16: Streamline time development; numerical model - first case; Rs = 50;
r=0.75; 5, = 0.15; (a) t = w/4; (b) t = 7/2; (c)t = 3n/4; (d)t =7, () t = 5r/4;
(f)t =3m/2; (g) t =Tr/4; (h) t = 2m. z=x'/0%; y=y /b .
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144} if

Figure 4.17: Streamline time development; Blondeauz and Vittori (1991) results (figure
8, p276) - first case; Rs = 50; r = 0.75; s, = 0.15; (a) t = w/4; (b) t = 7/2; (c)
t=38n/4; (dit=u; (e)t=5r/4; {}) t=3n/2; {g) t = Tn{4; (h)t="2m.

76



~
o
L
=
o

° yym o
7
(
N
b

12 (c) s
/%\ @

Figure 4.18: Vorticity contours; numerical model - first case; Aw=0.15; (— ) clockwise
vorticity; (=) counterclockwise vorticity - Rs = 50; r = 0.75; s, = 0.15; (a) t = 2m; (b)
t=dwy (6} t =867 (d) 1 =15, 5=570% y=y"7/0"
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Figure 4.19: Vorticity contours; Blondeauz and Vittori (1991) results (figure 18, p283)
- first case; Aw=0.15; (— ) clockwise vorticity; (—) counterclockwise vorticity - Rs = 50;

r=0.75; s, = 0.15; (a) t =2m; (b) t = 4w, (c) t = 67, (d) t = 107.
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Figure 4.20: Vorticity contours; numerical model - second case; Aw=0.15; (— ) clock-
wise vorticity; (-) counterclockwise vorticity - Ry = 100; r = 0.75; s, = 0.15; (a)

t=mw/2; (b} t=um; (¢} t=3m/2; (d) t = 2mr. w='/8*; y=y’/5*.

{a) €]

Figure 4.21: Vorticity contours; Blondeauz and Vittori (1991) results (figure 7, p275)
- second case; Aw=0.15; (— ) clockwise vorticity; (=) counterclockwise vorticity - Rs =

100; r =0.75; s, = 0.15; (a) t =7/2; (b) t =7, (c) t =3n/2; (d) t = 2=.
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4.3.3 Comparison with Marin’s experimental results

This comparison uses the experimental data from Marin (1992), kindly provided for
this purpose. The experiments consisted in using Laser Doppler Velocimetry to study
the vorticity dynamics in the vicinity of a rippled bed subjected to water waves. The
rippled bottom was cut out from an aluminium plate. Formulas (2.33) and (2.34) were
used to model the surface. The rippled section was 1 m long placed at the bottom of a
9 m long wave flume. The velocity field has been mapped over a ripple wavelength, for
different wave phases. The Reynolds number Rs was equal to 58, with a wave period
of 1.08 s, a wavelength of 1.46 m, while the ripple height was equal to 3 mm and
the ripple wavelength to 18 mm, giving a ripple slope s, = 0.17. The flow and ripple

characteristics were close to the first case studied by Blondeaux and Vittori (1991).

Velocity fields

The figures 4.22 to 4.27 are comparisons of the model output with Marin’s exper-
imental data, representing the velocity field over the entire domain at a certain wave
phase. The vortex evolution can be seen, from the beginning of the second half of the
wave period (figure 4.22) to the end of the wave period (figure 4.27). The represented

domain height is 10 mm above the ripple crest.

Mean velocity profiles

The mean velocity profiles at the ripple crest, at mid-distance between the crest and
the trough in the ripple slope and at the ripple trough are calculated from the model
and compared to Marin’s experimental data in figure 4.28. Agreement is acceptable for
the different locations except for the profile above the trough where the model predicts
a positive profile very close to the bed while the experimental mean velocity is negative.
This type of discrepancy could not be noticed in the comparisons of the instantaneous
velocity fields as the velocities involved are much larger. In the intermediate location,
the experimental overshoot amplitude takes place in a layer thicker than the model

prediction, but the modelled profile follows a curve similar to the experimental one.
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Figure 4.22: Velocity field over one ripple. Wave phase ot = 3.1416. Mazimum
velocity: 0.16 m.s™*.
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Figure 4.26: Velocity field over one ripple. Wave phase ot = 5.4035. Maximum

velocity: 0.17 m.s™".
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Figure 4.27: Velocity field over one ripple. Wave phase ot = 6.1575. Mazimum

velocity: 0.20 m.s™!.
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Figure 4.28: Mean velocity profiles um/ug; (a) above the ripple crest; (b) at mid-
distance between the crest and the trough; (c) above the trough. (- -) experiments, (-)

model; Marin’s experimental conditions: s, = 0.17; r =0.95; T = 1.08 s.

Discussion

e [t is worth noting that the matching of the data in their exact location is approx-
imate as it was not possible to define a grid for the model strictly similar to the

measurement grid used for the experiments.

e The major differences take place on the bottom of the domain. The experimental
velocities close to the bed are usually smaller than the modelled velocities. The
layer of strong acceleration in the flow is usually thicker for the model than for
the experiments. This layer is also mainly located above the ripple crests for the
model, but it can be stretched along the entire ripple length for the experiments.
This difference might be partly explained by the fact that the model does not
consider any bed roughness, while in the experimental case, even though being

weak, a bed roughness exists.
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e A simple cosine shape for the imposed velocity seems to match correctly the ex-
perimental velocity at the top of the studied domain. The shallow water approx-
imation (section 3.3.3) appears to be accurate enough to model the wave-induced

velocity in these conditions.

o When the mean velocities from the model and the experiments are compared,
good agreement is not always reached, especially above the ripple trough. These

discrepancies are negligible when the instantaneous velocities are considered.

4.3.4 Steady streaming circulation cells

As pointed out in section 2.5.2, for a weak flow oscillation amplitude compared
to the ripple wavelength, and usually for a gentle ripple slope, steady streaming cells
tend to appear. These cells are regions of closed streamlines for the mean flow”. The
model has been tested for a medium ripple slope® s, = 0.1 and for a very weak orbital
amplitude to ripple wavelength ratio r = 0.18. Streamlines of the computed mean flow
for a wave period are shown in figure 4.29. The double structure of circulation cells
is shown. This test uses the same physical parameters (r, s, 7') as the experimental
test shown in section 6.2.1, figure 6.5. Figure 4.30 shows the streamlines for conditions
similar to the previous case except for the orbital amplitude to ripple wavelength ratio,
increased to r = 0.33. According to Honji et al. (1980), if r is signiflcantly increased,
only the upper pair of cells should be left. But from figure 4.30, it seems that only the
lower cells are present. The large upper pair might still exist but outside the computed
domain. This case does not agree with Honji et al. (1980) as the lower pair of cells
does not seem to have changed for a value of r nearly doubled from the case shown in

figure 4.29 where the double pair is visible.

"See section 2.5.2
8Corresponding to the medium slope used in the present cxperimental study. Sce table 5.1 in

chapter 5 (experimental arrangements).
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Figure 4.29: Steady streaming circulation cells; ripple slope s, = 0.1, r = 0.18; wave

period T = 1.43 s; 6/1, = 0.0176.

0 10 20 30 40 50

Figure 4.30: Steady streaming circulation cells; ripple slope s, = 0.1; r = 0.33; wave

period T = 1.43 s; 6 /1, = 0.0176.

Another test is run for a weak ripple slope® s, = 0.05, a very weak r = 0.09 and

a wave period T' = 1 s. Streamlines of the mean computed flow for a wave period are

YCorresponding to the weakest slope used in the present experimental study, see table 5.1.
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shown in figure 4.31. The upper pair of circulation cells is so large that only the lower
part of the cells can be seen. The lower pair of cells is present, but their disturbed
shape might indicate that even for such a weak r, the upper cells begin to make their
way to the rippled boundary pushing away the lower pair of cells. The model has
also been run for the same ripple slope, the same wave period but for an increased
r = 0.31. Streamlines of the mean computed flow for a wave period are shown in figure
4.32. This test uses physical parameters similar to the experimental conditions of the
flow visualization shown in section 6.2.1, figure 6.6. For this case, r is larger than for
the previous case (r = 0.31 instead of = 0.09) and only one pair of circulation cells
appears. In these conditions, according to Honji et al. (1980), the lower vortex layer
is usually so small that only the upper layer can be seen. However, in figure 4.32, the
circulation direction indicates that the only pair of circulation cells left is the lower
pair. This case would then give better agreement to the results from Sleath (1976)

shown in section 2.5.2, figure 2.10 (a).

Figure 4.81: Steady streaming circulation cells; ripple slope s, = 0.05; 7 = 0.09; wave

period T =1 s; /1, = 0.0148.

The presented numerical results agree well with the analysis mentioned in section

2.5.2, for the description of streamlines circulation cells over a very weak slope and for
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Figure 4.32: Steady streamaing circulation cells; ripple slope s, = 0.05; r = 0.31; wave

period T'= 2.5 s; §/1, = 0.0234.

a weak flow oscillation, but as soon as the ripple slope becomes more significant, the
structures seem to behave differently. In the present investigation, the cases studied
are mainly for slopes of significant steepness, closer to real ripple slopes. The effects
of these structures on the mean and instantaneous flow need further investigation,

especially for cases of significant ripple slopes. Such studies are beyond the scope of

the present work.

4.3.5 Mean velocity drift

A series of mean profiles was computed for a ripple slope s, = 0.175 corresponding
to the steepest slope used in the present experimental study'?, and for a wave period
T = 2s. Figures 4.33 and 4.34 show the mean velocity profiles for r = 0.31 and r = 0.52
respectively. The general tendency for an increase in r is an increase in the overshoot

amplitude!! of the profiles and the layer where the overshoot is located also becomes

10Sce table 5.1, in chapter 5 (experimental arrangements).
1n the present cases, the overshoot amplitude is the maximum amplitude located close to the

bottom that exceeds the amplitude at the top of the studied domain.
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thicker. In these two examples, the velocity overshoot is negative above the crest and
at mid-slope, but can be either positive or negative in the trough. The profiles at
mid-slope and above the trough are close to Marin’s experimental mean profiles (figure

4.28), despite not being for the same flow conditions but for a ripple slope of same

order.
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Figure 4.33: Mean velocity profiles w,/uo; (a) above the ripple crest; (b) at mid-
distance between the crest and the trough; (c) above the trough; s, = 0.175; r = 0.31;

T =2 s

Two other tests with wave conditions close to these cases were also run. The wave
period is still T' = 2 s, but the ripple slope is decreased to s, = 0.05. Figures 4.35
and 4.36 show the mean velocity profiles for r = 0.4 and » = 0.54 respectively.
Both profiles at the crest and at mid-slope feature a negative overshoot, similarly to
the profiles in figures 4.33 and 4.34. The profile at the trough features a very weak
negative overshoot. Regardless to the sign of the profiles, a tendency similar to figures
4.33 and 4.34 shows an increase of the overshoot amplitudes when r is increased.

It appears that in all the numerical tests presented, the mean velocity profiles

above the ripple crest and at mid-slope always featured a negative overshoot. The
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Figure 4.34: Mean welocity profiles un/uo; (a) above the ripple crest; (b) at mid-
distance between the crest and the trough; (c) above the trough; s, = 0.175; r = 0.52;
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Figure 4.35: Mean velocity profiles w,/uy; (a) above the ripple crest; (b) at mid-
distance between the crest and the trough; (c) above the trough; s, = 0.05; r = 0.4;
T=2s.

89



16 16
(@) () (c)
14 114 14
12 12 . 12}
H
10 10 s 10
|
|
g\ 8 8 ‘& 8
\ \
6 \ 16 ! 6
s \
4 } 1a | 4t
2 </ 2 <2 /
0 0 = 0
-0.05 0 0.05 0.1 0 0.1 -0.05 0 0.05
U,/ U/t U,/ U

Figure 4.56: Mean wvelocity profiles wm,/uo, (a) above the ripple crest; (b) at mid-
distance between the crest and the trough; (c) above the trough; s, = 0.05; r = 0.54;
T=2s.

mean velocity profiles above the trough featured both negative and positive overshoots

for different flow and ripple conditions.

4.4 Discussion on the model results and compar-
isons

The computer model results have been compared to data from three different
sources: experimental results for a flat bed case (Mouazé, 2001), numerical results
for a rippled bed case (Vittori and Blondeaux, 1991) and eventually experimental re-
sults for a rippled bed case (Marin, 1992). In all comparisons, agreement was quite
good. In the case of a flat bed, some comparisons raised the problem of the choice of an
accurate wave-induced velocity definition to reproduce the experimental flow at the top
of the studied domain. The validity of the theoretical solutions for the mean boundary

layer flow and the mass transport velocity has been questioned. Discrepancies between

the experimental data and the theory might be explained by an inappropriate choice of
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theoretical solution. The assumptions made to obtain the theoretical boundary layer
solution appear to be incorrect when compared to the experimental data from Mouazé
(2001).

On the other hand, concerning the velocity definition, comparisons with the exper-
imental study from Marin (1992) for a rippled bed showed that a simple definition for
the wave-induced velocity in shallow water such as u = uy cos(ot) could reproduce the
flow at the top of the domain'?. It has also been shown that the computer model can
predict vortex formation in a very similar way to its real occurrence. However, the
lifetime and behaviour of the vortices can slightly differ from the experiments or the
other numerical model.

When the mean streamlines over a wave period are considered, the presence of a
double pair of steady streaming cells has been shown for a weak ripple slope and a
weak flow oscillation amplitude to ripple wavelength ratio r. When r is increased only
the upper pair appears. In the case of steep enough ripples, the lower pair of cells is
still present for a significant ». An increase in wave amplitude does not give a pattern
similar to the gentle slope case as the lower pair does not vanish. Further investigations
need to be done on the mechanism and the effect of these structures on the flow.

The computed mean velocities showed that different profiles could be obtained
depending on the location along the ripple. Mean velocity profiles at mid-slope always
featured a negative overshoot near the boundary, with a larger amplitude than the
profiles above the crest and the trough. For the mean profiles above the crest and
the trough, velocity overshoots have been found in both directions, but most of the
profiles above the ripple crest featured a negative maximum velocity, i.e in the direction
opposite to that of the waves. This study needs to be completed by experiments using
Laser Doppler Velocimetry or Particle Image Velocimetry in order to get the mean
experimental velocity profiles at different locations along the ripple for different flow

conditions. Such experiments have not been conducted for the present thesis.

250e section 3.4.4 for the velocity definition applied to the model.
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Good agreement is generally reached in the comparisons between the model and
the other sources. However, as mentioned in chapter 2, the wave-induced flow above
ripples can have three-dimensional aspects. Therefore, the results from the present
model have to be treated with caution. To consider the three-dimensional aspect of
this motion and to provide a wider description of such a flow, experiments in a wave
flume have been conducted. The next chapters present the experiments conducted and
the results obtained, using the information provided by chapter 2 and the numerical

results shown in this chapter.
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Chapter 5

Experimental arrangements

5.1 Wave flume and rippled bed characteristics

All the experiments have been carried out in the hydraulics laboratory of the De-
partment of Civil and Environmental Engineering (University of Southampton). The
experiments were carried out in a glass-sided wave flume 17 m long and 0.43 m wide
internally. The wave generator is of the flap type and has active absorption (figure
5.1). The other end of the flume is fitted with foam, in order to reduce wave reflection
(figure 5.2). During the experiments, wave reflection was lower than 2%. The bed of
the test section, approximately 9 m long, was composed of different plates, made out of
PVC plastic sheets, some featuring ripples and others just being flat, all of them being
smooth. The rippled section which was 1.8 m long, constituted of five rippled panels,
and was located in the middle of the tank. The water depth over the test section was
0.56 m. A sketch of a top and side view of the wave tank is shown in figure 5.3.

The ripples have been cut out from PVC sheets originally 25 mm thick. The
surface cutting was done using a computer-linked machine with equations describing the
rippled surface as the input. These relations are derived from measured experimental

ripples and are recognized to give a good approximation of natural sea ripples (Sleath
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Figure 5.2: Picture of the triangular-shaped foam used to avoid wave reflection, fitted

at the end of the wave flume.
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(1984a, p131-133) and section 2.7.2). These equations are:
hy . ,
r=£— 35272(1@5), (5.1)

= %cos(kré‘) (5.2)

where h, is the ripple height, k, the wave number and ¢ a dummy variable. A photo-

graph of the rippled section is shown in figure 5.4.

Figure 5.4: Picture of the rippled section.

Four different sets of rippled panels were manufactured and used in the wave tank.
In terms of ripple slope, the range covered goes from a gentle to a steep slope (table
5.1). In cartesian coordinates, the radius of curvature of a surface is:

R= (1 & (%)2)3/2@—;%)_1. (5.3)

Then, from formulas (5.1) and(5.2) the radius of curvature of the present ripples is:

(4 — 4h,k, cos(k.£) + h2k2)3/? (5.4)
2h,k2(2 cos(kr&) — hokr) |

Re =

The radius of curvature at the crest, for & = 0, is then

1 (b, — 2)?
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and the radius of curvature at the trough, for £ = 7w/k,, is

1 (hok,+2)?

The radius of curvature at the crest for the present ripples is in the range 3 mm
< R, < 28.8 mm. Table 5.1 is a summary of the characteristics of the ripples used

for the experiments. Figure 5.5 shows the four different ripple profiles used in the

experiments.
Ripple set | I, (mm) | A, (mm) | slope s, = h,/l. | R. (mm) | R; (mm)
1 40 2 0.05 28.8 54.3
2 40 4 0.1 9.5 35.0
3 40 4.8 0.12 6.6 32.0
4 51.4 9 0.175 3 35.8

Table 5.1: Experimental ripple characteristics.

Figure 5.5: Ripple profiles used in the experiments obtained with formulas (5.1) and
(5.2); (...) 8,=0.05; (- -) s,=0.1; (=) s, =0.12; (—) s, = 0.175.

5.2 Technique of visualization

Flow visualizations were carried out with a system releasing a fluorescent mixture
through a hole located at a ripple trough, in the middle of the rippled section. A
bottle was fitted with a 2 mm diameter flexible tube at its bottom. The tube was

placed underneath the false floor, in the wave tank, and led to a copper pipe of 1
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mm diameter going through the rippled panel. With the bottle placed above the wave
tank water level, the dye was released at a satisfactory constant rate, controlled by a
valve. The mixture used for the flow visualization was obtained by adding few drops of
fluorescein to 50 ¢l of water. The temperature difference between the mixture and the
water in the flume was minimized by the time of travel of the mixture from the bottle
to the injection point (around 10 minutes). It seems reasonable to assume than the
mixture had a density very similar to water. Figure 5.6 is a picture of the dye coming

out from the hole located in the ripple trough.

Figure 5.6: Picture of the dye coming through the 1 mm hole.

The flow patterns were then videoed using a monochrome high speed digital video
camera (PULNIX TM-6710). Its speed of acquisition is 120 frames per second, for a

resolution of 648(H)x484(V) pixels. Visualizations were made from the side and from

above the flume.

5.3 Wavemaker set-up

The wavemaker was controlled with a computer generated analogue input signal.

The wavemaker was programmed to play waves of definite wave periods and wave
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amplitudes. The range of wave period used for the experiments was 1 to 3.13 s, while
the wave height (crest to trough) range was 0.8 to 10 em.

For large wave amplitudes, a step method was adopted; when the flow oscillation was
too strong, it was not possible to see any flow pattern but a cloud of quickly vanishing
dye. In order to delay the dye mixing, for strong flow oscillations, the wavemaker was
programmed to increase the wave amplitude by chosen steps (for a fixed wave period),
generating an large number of waves at each step, to make sure the flow pattern was
established. In this way, strong flow oscillations could be observed, without the dye
becoming too diluted. The possibility of videoing 120 frames per second in these cases

was particularly helpful, as patterns could not be clearly seen for a long time.
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Chapter 6

Experimental results

6.1 Introduction

As explained in chapter 5, flow visualizations have been conducted in a flume, over
a rippled bed, under the influence of waves, using a neutrally buoyant dye. The dye
was released through the bed, so that it could show the flow behaviour just above the
ripples, in a layer very close to the bottom. Experiments have been conducted for four
different ripple types from a gentle to a steep slope type. For each set of ripples a
range of wave periods was used and for each wave period, different wave amplitudes
were applied. The tests were all videoed from the side and from above the tank, so
that two-dimensional and three-dimensional patterns could be recorded.

It is assumed that studying the flow patterns just above the ripples will help in un-
derstanding the sediment transport and the ripple evolution under various flow charac-
teristics. It is also believed that identifying different flow regimes occurring above the
ripples will help in understanding typical ripple shapes and sizes. The images showed
the presence of circulation cells for weak flow, vortex ejection process above the ripple
crest for stronger flow, two-dimensional instabilities and three-dimensional instabilities
possibly leading to a significant change in the ripple shape (Sleath, 1984a; Hansen et

al., 2001a). As the ripples are fixed, no change in ripple shape is possible but by an-
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alyzing significant changes in the flow patterns, speculations can be made about the
possible bed reactions and the mechanism of the instabilities involved.

The experiments conducted for this study revealed various types of flow patterns,
mainly influenced by the ripple slope, the wave orbital amplitude to ripple wavelength
ratio and possibly the wave period. The wide variety of flow patterns observed during
these experiments can be seen in the following figures 6.1, 6.2 and 6.3. For each of
these figures, the video camera was placed at the side of the tank. Each frame from
figures 6.1, 6.2 and 6.3 is for a given flow and ripple characteristics. The time at which

each picture was taken is arbitrary.

®) )

Figure 6.1: Side-view of the dye pattern over ripples; ripple slope: 0.05; (a) T=3.13 s,
a=0.02 m; (b) T=2.5s, a=0.01 m; T: wave period, a: wave amplitude.

It is recalled that only the wave periods, the wave heights and the ripple char-
acteristics are experimentally measured parameters. Parameters such as the orbital
amplitude and the velocity amplitude have been calculated from formulas (2.13) and
(2.35).

Important note: in the following sections, time sequences of the flow pattern
evolution are shown. It is not possible to give the exact wave phase at which each
sequence starts as the high speed recording was manually triggered and not connected to

any device enabling the wave phase to be recorded, such as a wave gauge for example.
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Figure 6.2: Side-view of the dye pattern over ripples; ripple slope: 0.175; (a) T=2 s,
a=0.008 m; (b) T=2s, a=0.015 m; (c) T=1.42 s, a=0.022 m; (d) T=1 s, a=0.03 m;

T: wave period, a: wave amplitude.

However, sequences of the exact time length of the wave periods considered were isolated
and studied. Hence, the wave phases shown are only relative wave phases, but in a
sequence of images of one wave period, all the features of the oscillatory wave-induced
flow are represented. It is also tmportant to keep in mind that for all the sequences,
the waves are propagating from the left to the right. This note applies to all the

sequences showed in this chapter.
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Figure 6.3: Side-view of the dye pattern over ripples; ripple slope: 0.1; (a) T=8.18 s, a
=0.015 m; (b) T=2s, a=0.015 m; (c) T=1s, a=0.038 m. Ripple slope: 0.12; (d) T=2.5
s, a=0.01 m; (e) T=2.5s, a=0.015 m; (f) T=1.48 s, a=0.015 m; T: wave period, a:

wave amplitude.
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6.2 Two-dimensional regimes identification

The following sections present the main flow patterns obtained during the experi-
ments and discuss the different mechanisms that are revealed. Started from still water,
each experiment was repeated to check the consistency of the results and avoid possible
effects of residual currents.

Four different regimes are identified. Their identification relies on the dye patterns
observed during the experiments and are restricted to laminar conditions. The cases
with strong flow oscillations, when the flow was turbulent and the dye quickly vanished
or went into a blurred cloud were not studied. FEach particular regime is usually
found when the relevant parameters describing the experimental characteristics are
in a certain range. These main parameters are: the ripple slope, the wave orbital
amplitude to ripple wavelength ratio and the wave period. The classification of these
regimes will rely on these parameters. It is worth recalling that the orbital amplitude

to ripple wavelength ratio is defined as

r=2 (6.1)
I
and the ripple slope definition is:
h
s = ;— (6.2)

The Taylor number is also believed to be a relevant parameter for three-dimensional

flows but it will also be used in this section for convenient comparison:

Gohy v Fe. (6.3)

To="5p

This definition is equivalent to formula (2.32). The parameter [ is used as the dimen-

sionless form of the wave period:

2
B = 4;; (6.4)
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6.2.1 Stable mode: “roll” pattern

For a small r in the range 0.095 to 0.8 (mean value r = 0.26), structures looking
like cells or rolls will appear on each crest. The rolls will move slightly back and forth,
oscillating with the wave-induced flow. These structures are very stable and typically
two-dimensional. They are obtained for a very weak flow oscillation. To obtain this
pattern, the steeper the ripple slope is, the weaker the orbital amplitude must be. The
wave period seems to have a minor influence as the roll structures were obtained for
any of the periods tested for a 3 in the range 32 < < 3016. However, for the steepest
ripple slope, s, = 0.175, the pattern was only obtained for the longest wave periods
corresponding to 8 = 10.45 and § = 13. Figure 6.4 plots the Taylor number range with
respect to r for which the roll structures are obtained. This regime is mainly observed

for a ratio T, /r < 0.9.
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Figure 6.4: T,/r range with respect to r for which the roll structures are observed. The

horizontal line s for visual help and is arbitrary.

Figures 6.5 and 6.6 show two typical sequences for this regime, during a wave period.
As can be seen on both figures the structures are repeated on each crest. They were not

observed upstream of the dye release point, as the dye could only spread downstream
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following the steady drift! motion. Their shape is influenced by the ripple slope: for a
steep ripple slope, or a strong curvature of the houndary, the rolls will be very round,
as shown in figure 6.5. But for a weak ripple slope, or a weak boundary curvature, the
rolls will have a more elliptic and stretched shape, as shown in figure 6.6.

These cells might be the result of a steady streaming induced when the flow oscil-
lation amplitude is much smaller than the ripple wavelength. According to Honji et
al. (1980), in such a case the flow does not separate and the regime would correspond
to a rolling-grain? motion if the bed was movable. Honji et al. (1980) pointed out
that the steady streaming above ripples for a weak flow oscillation was characterized
by a double structure consisting of an upper and a lower pair of counter-rotating cir-
culation cells®. In the present experiments, even in the presence of dye injected far
above the ripples, no upper pair of vortices has been visualized and only one cell was
present, counter-rotating from the wave propagation direction and oscillating around
each crest. Honji’s experiments were done in an oscillating water tunnel, while the
present experiments were conducted in a wave flume. Therefore, there is at least one
significant difference between the two types of oscillating flow: waves propagating in
a wave flume will generate a steady drift while no such feature should be present in
a flow generated in an oscillating tunnel. This difference might be very important in
the case of weak flow oscillation, where the velocities close to the bed are small and
could be significantly influenced by the steady drift. Moreover, according to Kaneko
and Honji (1979), when the ratio of the amplitude of the wavy wall to the thickness of
the Stokes layer is increased, the upper pair of circulation cells makes its way towards
the boundary in the gap between the lower pair of cells, at the trough, pushing the
lower cells apart. In the present experiments, this ratio is always larger than any of
the ratios considered by Kaneko and Honji (1979), possibly also partly explaining the

differences. The computer model presented in chapter 3 has been run for flow and

1See section 2.4
2See section 2.7.1
3See also Kaneko and Honji (1979) and other references in section 2.5.2.
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Figure 6.5: Stable regime - roll patterns; ripple slope s, = 0.1; r = 0.18; § = 231; (a)
ot =0; (b) ot =2n/5; (¢) ot = 4w /5; (d) ot = 61/5; (e) ot = 8xn/5; (f) ot = 2m; all

wave phases are relative phases.
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Figure 6.6: Stable regime - roll patterns; ripple slope s, = 0.05; r = 0.31; B = 1206;
(a) ot = 0; (b) ot = 2n/5; (e) ot = 4x)5; (d} ot = 6n/5; (e) ot =Bn(5; (f) ot = 2%;

all wave phases are relative phases.
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ripple characteristics similar to the experimental conditions shown in figure 6.5. The
computed mean streamlines, plotted in figure 4.29 in section 4.3.4, present a double
pair of circulation cells as predicted by the theory. Similarly, figure 6.6 uses physical
parameters identical to the ones used in the model when the mean streamlines are
plotted in figure 4.32, section 4.3.4. The model gives only one pair of cells, as expected
when the ripple slope is very small and r is significant (r = 0.31). The two results
from the model are quite different, one presenting a double pair of cells and the other
only one pair. On the other hand, the two experimental results are quite similar. Some
experimental factors may have a greater influence on the flow so that the circulation
structures cannot be identical to the modelled cells. It may be due to the mean drift
which is present in the experiments but not in the model as a shallow water velocity
definition is used*. Moreover, the absence of a mean drift may be a major condition
for the existence of these cells pairs, as neither the experiments in an oscillating tunnel
nor the analytical solutions feature a steady component in the oscillatory flow velocity.

The inside of the cells tends to fill up with time, giving the roll pattern. This filling
is probably due mainly to the successive layers rolling up inside the cell and to the
diffusion process. This particular cell pattern shows that there is a stable circulation
over the crest of the ripples even for a very slow motion and not very steep slope as
it is present for a slope as weak as s,=0.05 (figure 6.6). This circulation might be
involved in the ripple construction and its influence on the typical ripple shape might
be not negligible. However, due to the very weak velocities involved, the typical mass

transport for this regime must be weak, as the cells will not move away from the crests.

4See section 3.4.4.
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6.2.2 Weakly unstable mode: “roll” plus jets pattern

If the orbital amplitude is slightly increased but the other parameters are kept con-
stant, the roll patterns will turn into a more disturbed shape, with the appearance of
“tongues” of dye surrounding the round structures. The range for r in these experi-
ments is 0.075 to 1, with a mean value of 0.35. This regime occurred for all the wave
periods tested (10.45 < 3 < 3016), and for any of the ripple slopes used®. This regime
is mainly obtained for a ratio of Taylor number over r in the range 0.9 < T,/r < 1.6,

as can be seen in figure 6.7.
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Figure 6.7: T,/r with respect to r for which the rolls with jet structures are obtained.

The horizontal line is for visual help and is arbitrary.

These weak instabilities are in the form of small tongues probably created by a jet
directed upward. It seems that each layer moving over the ripple crest and starting to
travel down the lee side of the crest will be subjected to this disturbance when the flow
reverses. Indeed, the flow reversal seems to make the layer take off from the curved
boundary, producing a jet of dye directed upward, and eventually giving a curved shape
to the jet pushing the jet backward (with respect to the wave propagation direction).

Then each small “tongue” of dye will drift downstream, leaving the ripple crest, for

5Sce table 5.1 in chapter 5 for the ripple slopes characteristics.
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another jet to be created. The shapes stay very sharp as the flow oscillation is weak
and the dye dilution process is very slow. The calculated flow velocity amplitude is in
the range 0.02 to 0.08 m/s. For a weak r of order 0.2 on a steep slope s, = 0.175 the
instabilities occur quickly, but r needs to be of order 0.5, for them to happen on a weak
ripple slope s, = 0.05. Figure 6.8 is an example of the pattern obtained in this flow
regime. The first roll on the left is just after the release point, and does not feature
the small curved structures, but once the dye goes over the first crest, the small curved
structures are present. It then seems that the jets are generated after moving over thlz

ripple crest. Figure 6.8 also shows the very good repeatability of the pattern.

Figure 6.8: Roll plus jet structures; s, = 0.175; r = 0.23; T, = 0.33; § = 10.45.

The formation process of the small jets added to the still present roll patterns can
be seen in the sequence showed in figure 6.9. Patterns (a) and (f) are at the same
relative wave phase and are strongly similar, the structures are then stable in time.
Once the jet is created, the layer marked by the dye keeps a quasi-steady shape and
drifts with the flow, the instability is therefore only present at the lee side of every
crest. The“tongues” reaching the next circulation cell located over the next crest will
usually go over it but can eventually be incorporated in the cell.

Staying in the same regime, if r is increased, the jets of dye tend to thicken, giving
a more disturbed shape added to the roll structures. This might be explained by the
fact that as the wave orbital amplitude increases, the boundary layer grows, making
the instability occur in a thicker layer. It can also be emphasized by a stronger dilution

of the dye, giving the impression of a thicker shape. As can be seen in figure 6.10, the
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Figure 6.9: Weakly unstable mode - roll plus jet pattern; ripple slope s, = 0.175;
r = 017; B = 164; (a) ot = 0; (b) ot = 27n/5; (c) ot = 4n/[5; (d) ot = 67/5;
(e) ot = 8n/5; (f) ot = 2x; (g) ot = 12w/5; (h) ot = 14w /5; (i) ot = 167/5; (5)

ot = 187/5; all wave phases are relative phases.
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curved vertical “tongues” are wider than in the previous figure 6.9 and are very tight
all together. The roll structure is now made out of two or three thick unstable layers
rolled together. The structures are still very regular from one crest to the next.

As in the previous regime, the shape of the structures is also influenced by the
curvature of the boundary or the ripple slope. In figure 6.11, where the only difference
between (a) and (b) is the ripple slope, the pattern above the slope s, = 0.012 (a) is
rounder and thicker than the pattern above the slope s, = 0.01 (b) being more flat.
For the same flow conditions, the thickness of the disturbed layer seems to grow when
the slope increases. The acceleration involved in the vertical jet must also be stronger
for a steeper slope as the jet marked by the dye will go further upward for case (a)
than for case (b), where the only difference in the physical parameters involved is the
ripple slope.

In this regime, the circulation cells resulting from a steady streaming are still
present, but small jets drifting in the wave propagation direction are now added to
these structures. Therefore, the sediment transport must be stronger as there is an

obvious drift of the jets, but the cells are still staying above each ripple.

Particular pattern: mushroom shape

A very particular pattern has been obtained during the experiments. This pattern
was obtained only for one flow condition and one ripple slope. This case is placed
in this section as the mechanism for obtaining such a pattern definitely involves a jet
process. Figure 6.12 shows the two-dimensional mushroom shape of dye obtained for
a steep slope s, = 0.175, a weak orbital amplitude oscillation to ripple wavelength
ratio r = 0.11, and § = 32.7 (wave period T = 1 s). Small jets similar to the ones
described in the previous section can be seen, but the presence of a larger jet makes it
look very different from the other pattern. This jet directed upward and approximately
located at the ripple trough gets divided in two, each new section forming a vortex-like

structure. This pattern deserves to be mentioned not only because of its very peculiar
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Figure 6.10: Weakly unstable mode - roll plus jet pattern; ripple slope s, = 0.12;
r = 0.33; 8 = 110.8; (a) ot = 0; (b) ot = 2n/5; (c) ot = 4nw/5; (d) ot = 67/5; (e)

ot =8n/5; (f) ot = 2m; all wave phases are relative phases.
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7

Figure 6.11: Influence of the boundary curvature on the dye pattern in a weakly unstable

mode; 7 = 0.47; wave period T = 2.5 s; (a) ripple slope s, = 0.012; (b) s, = 0.01.

shape but also because, to the author’s knowledge, it has only been previously reported
by Honji et al. (1980). They carried out experiments in an oscillatory water tunnel
fitted with a rippled floor made out of metal. Flows were visualized using white dye
produced electrochemically. Despite not being for the exact same ripple slope and
flow conditions, the similarity between figure 6.12 and figure 6.13 is striking, especially
for such a complex pattern. Honji’s article does not provide enough data to allow a
very accurate comparison. It is worth noticing that such a structure was obtained
by Honji for an oscillation frequency of 1.65 Hz, and that for the present experiment
it was observed for the shortest wave period tested corresponding to an oscillation
frequency of 1 Hz. Similarly, Honji stated that such a pattern was obtained for a water
displacement very small compared to [, while it can be said the same for the present
experimental case as » = 0.11 is small. Honji pointed out that in a case like figure
6.13, the lower vortex layer discussed in the previous regime is so small because of the
low viscosity of water that only the upper layer is seen. The mushroom shape in figure
6.13 is standing vertically, while the structures in figure 6.12 are slightly tilted. It may
be explained by the presence of a steady drift in a wave flume which is not a feature
of the flow when a water tunnel is used. It can be assumed that such a structure can
drag particles from the trough to the crest, following the path of the mushroom or tree

shape as mentioned in Leeder (1999).
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Figure 6.12: Mushroom shape - present experimental visualization; ripple slope s, =

0.175; r = 0.11; B = 32.7 (wave period T =1 s).

Figure 6.13: Photograph from Hongi (1980, fig. 2 p226); T=0.6 s; piston displacement:
1.2 e¢m; scale bar: 1 e¢m. Visualization done with white dye educed electrochemically.

Approximate ripple slope s, = 0.173.
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6.2.3 First flow separation regime

For 7 in the range 0.15 to 1.5 with a mean value increased to 0.66, the rather stable
regimes previously discussed will change significantly and turn into a third regime
characterized by the flow separation at the ripple crest. As seen in figure 6.14 this
regime is mainly obtained for 7,/r in the range 1.6 < T,/r < 1.8. The mean value
r = 0.66 is nearly twice as large as the mean value obtained for the previous regime.
The flow oscillation amplitudes and the velocities involved in this regime are then
remarkably stronger than for the previous regimes. It seems that having the orbital

amplitude larger than half the ripple wavelength is a significant threshold for the flow

characteristics.
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Figure 6.14: T,/r with respect to r for which first separation occurs. The horizontal

line is for wisual help and is arbitrary.

The flow features in this transitional regime have to be distinguished from the
previous modes typically two-dimensional and very stable in terms of spatial and time
repeatability. It is also distinct from the regime detailed in the next section 6.2.4 where
the main feature is the regular vortex ejection from each ripple crest occurring during
each half-wave period. This regime has then to be considered as a transitional state

between two significant regimes: the regimes previously described in sections 6.2.1 and
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6.2.2 and the vortex ejection regime. As will be seen in section 6.3, this regime is also
important as it usually corresponds to the transition between two-dimensional and
three-dimensional flow patterns. Both circulation cells and vortices ejected from the
ripple crests can be obtained. The complex dye patterns observed make the interpre-
tation of the typical mechanisms involved in this regime particularly difficult.

The circulation cells tend to be very disturbed, but their overall shape is still almost
round. The strong velocities creating the jets of dye make the cells look wider and
moving higher upward from the crest. The flow separates at the ripple crest, creating
a vortex structure. The vortices will drift along the boundary, moving over the crest,
then down the lee-side before being lifted by the jets observed in the previous mode.
The circulation cells now feature vortices as well as jets in their structure. The vorticity
of each vortex structure vanishes very quickly once in the cell, as the vortex pattern
is not much modified after its inclusion in the cell. Figure 6.15 is an example of the
patterns obtained for » = 0.5. Figure 6.16 is another example for a weaker ripple slope
and a stronger flow oscillation, with r = 0.78. In figure 6.16, the vortices can be clearly
distinguished. As mentioned before, the vortices are not ejected from the ripple crest,
but will eventually move upward away from the boundary at the lee-side of the ripple.
In the experiments, as the flow oscillation is stronger than for the previous regimes,
the dye tends to dilute quite quickly giving blur patterns. One possible effect is to
give larger patterns, as the dye diffuses quicker through the neighbouring layers. In
figure 6.16, pictures (a) and (f) taken at the same relative wave phase do not show a
similarity as good as for the previous cases. However, the most important mechanism
in this regime is the flow separation. The cloud of dye more or less detached from
the bottom is less important, and its existence mainly shows that once the vortex is
pushed upward by the jet, and joins the cloud of dye, the velocity at this depth above
the ripples mostly has a horizontal component. Figure 6.17 shows similar patterns but
for a very weak ripple slope s, = 0.05 and a strong r = 0.81. In figure 6.17, due to

the strong flow oscillation the vortices are nearly ejected from the ripple crest, but the
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Figure 6.15: First flow separation regime; ripple slope s, = 0.12; r = 0.5; f = 50.6;
(a) ot = 0; (b) ot = 210/5; (c) ot = 4w /5; (d) ot = 67/5; (e) ot = 8xn/5; (f) ot = 2m;

all wave phases are relative phases.

very weak slope makes them have a nearly horizontal trajectory. It then seems that the

vortices are still moving along the slightly curved boundary, being eventually pushed
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upward at the flow reversal by the jet process. The vortices generated during the
previous wave periods can be distinguished, accumulated in the cloud of dye located

above the ripples.

(a) (b)

(©) ()

Figure 6.16: First flow separation regime; ripple slope s, = 0.1; r = 0.78; 8 = 131.3;
(a) ot = 0; (b) ot = 21/5; (c) ot = 4n/5; (d) ot = 67/5; (e) ot = 8xw/5; (f) ot = 2m;

all wave phases are relative phases.
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Figure 6.17: First flow separation regime; ripple slope s, = 0.05; r = 0.81; 8 = 1508;
(a) ot =0; (b) ot = 27/5; (c) ot = 4w /5; (d) ot = 67/5; (e) ot = 8x/5; (f) ot = 2m;

all wave phases are relative phases.
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6.2.4 Vortex ejection regime

In the previous section, a regime for which the flow first separates has been pre-
sented. The regime studied in the present section is characterized by the flow separation
and a vortex ejection from the ripple crest during each half-wave period. As seen in
section 2.5.4, this regime has been widely studied before, but mainly by means of
numerical modelling. In the present experiments, it has been observed for a range of
values of r from 0.2 up to 1.2, with a mean value of 0.54. This mean value is lower than
the calculated mean value for the previously shown regime, but it can be explained
by the fact that the ripple slope seems to play a major role in this regime along with
the orbital amplitude. No clear ejection has been witnessed with the weakest slope
s, = 0.05, but vortex ejection occurred for all the other slopes. This regime is obtained

for T,/r in the range 1.8 < T,/r < 3.5, as showed in figure 6.18.
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Figure 6.18: T, /r with respect to  for which vortex ejection is observed. The horizontal

line is for visual help and is arbitrary.

The ripple slope plays here a significant role as the steeper the slope is, the more
likely vortex ejection is to happen. As shown in figure 6.19, the steeper the ripples, the
smaller the orbital amplitude to ripple wavelength ratio has to be for the vortex ejection

to occur. From this figure, speculation can be made on the fact that the smaller the
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ripple slope is, the less obvious the vortex ejection threshold is. It can be assumed
that vortex ejection could have been obtained for the smallest slope s, = 0.05 but the
flow oscillation amplitude needed would have been too difficult to generate with the

wave-maker and visualizations would probably not have been possible.
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Figure 6.19: Vortex ejection for the different ripple slopes s,.

Figure 6.20 is a sequence showing two vortex ejections, one during the first part of
the wave cycle and another during the second part of the cycle. The flow separates
at the ripple crest creating a vortex structure. Then the structure tends to increase
in size and strength, even through the beginning of the deceleration phase. When the
flow reverses, the vortex structure is convected away from the ripple crest by the local
velocity. At the same time a new vortex is generated on the other side of the crest,
to be ejected in the opposite direction. Once a vortex is ejected, it moves upward,
joining a cloud of dye formed with the vortices ejected during the previous wave cycles.
Figures 6.21 and 6.22 provide a closer view of the two vortex ejections. In figure 6.21
(c), in addition to the main vortex rotating anti-clockwise a second smaller vortex
rotating clockwise is present. This vortex pair mechanism has been pointed out before
by Blondeaux and Vittori (1991), as a result of their numerical model. This secondary

vortex forming below the main vortex when ejected over the crest is here clearly shown.
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Figure 6.20: Vortex ejection regime; ripple slope s, = 0.175; r = 0.46; f = 13; (a)
ot =0; (b) ot = 7/5; (c) ot = 2w/5; (d) ot = 37/5; (e) ot = 4w /5; (f) ot = 7; (g)
ot = 6n/5; (h) ot = Tr/5; (i) ot = 8w /5; (j) ot = 97 /5; all wave phases are relative

phases.
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It seems that the angle with which the vortex is ejected can be different depending
on the instantaneous flow direction. In figure 6.21, the flow direction is left to right, in
the same direction as the wave propagation and the steady drift. The vortex is ejected
from the crest but does not go upward and nearly follows a horizontal trajectory instead.
In figure 6.22, where the flow and the wave propagation are in opposite directions, the
vortex ejected in the second half of the wave cycle moves upward following the plan
of the ripple slope. The steady drift may make the vortex travel more horizontally
when the instantaneous velocity is in the same direction as the steady velocity, and
by opposition when the vortex is ejected against the steady flow direction, the steady
drift might force the vortex to move upward. The ripples used are fixed in shape, so

if the flow motion was purely oscillatory, the vortex ejection should be similar in the

two directions.

Figure 6.21: Vortex ejection regime; ripple slope s, = 0.175; v = 0.46; 8 = 13; (a)
ot =0; (b) ot =7/5; (c) ot = 27 /5; wave phases are similar to figure 6.20.

Figure 6.23 shows a sequence featuring vortex ejection for a ripple slope s, = 0.12
and r = 0.45. Despite a similar value of r, the vortex size is smaller than for the case
showed in figure 6.20. This difference can come from both a shorter wave period and
a weaker ripple slope. This might be explained by the fact that the longer the wave
period is, the more time the vortex has to build up before being ejected. The slope also
plays a role in the vorticity building, as discussed in the previous sections. Figure 6.24

brings a closer view to the vortex ejection for the wave phases (a) and (b) of figure 6.23.
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Figure 6.22: Vortex ejection regime; ripple slope s, = 0.175; r = 0.46; 8 = 13; (a)
ot =4m/5; (b) ot = m; (c) ot = 67/5; wave phases are similar to figure 6.20.

The secondary vortex structure below the main vortex noticed in sequence 6.21 can
also be seen. This particular mechanism is again noticed when the instantaneous flow
is in the same direction as the steady drift. Another visualization of vortex ejection
is showed in figure 6.25. As shown in frame (g), this case also presents a secondary
vortex along with the main ejected vortex when the flow is in the same direction as
the wave propagation. A close-up of part of figure 6.25(g) shown in figure 6.26 reveals
more clearly the presence of the vortex pair.

Figure 6.27 shows another vortex ejection sequence for the first part of a wave cycle.
The slope being weak, s, = 0.1, the flow oscillation needs to be strong, » = 0.81; as a
result the patterns obtained for the second part of the wave cycle are not shown, the

dye being too diluted, no clear shape could be identified.
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Figure 6.23: Vortex ejection regime; ripple slope s, = 0.12; r = 0.45; f = 110.8; (a)
ot =0; (b) ot = 2r/7; (c) ot = 4n/7; (d) ot = 67/7; (e) ot = 8n/7; (f) ot = 107/ 7;
(g) ot = 127/7; (h) ot = 27, all wave phases are relative phases.
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Figure 6.24: Vortex pair ejection; ripple slope s, = 0.12; r = 0.45; f = 110.8; (a)
ot =0; (b) ot = 27/7; all wave phases are similar to phases in figure 6.23.
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Figure 6.25: Vortez ejection regime; ripple slope s, = 0.175; r = 0.41; 8 = 16.4; (a)
ot =0; (b) ot =2x/7; (c) ot =4rn/7; (d) ot = 67/7; (e) ot = 8w /7; (f) ot = 107/7;
(9) ot =127 /7; (h) ot = 27; all wave phases are relative phases.
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Figure 6.26: Vortex pair ejection; ripple slope s, = 0.175; r = 0.41; § = 16.4; zooming
of figure 6.25 picture (g).
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Figure 6.27: Vortex ejection regime; ripple slope s, = 0.1; r = 0.81; 8 = 164, (a)
ot =0; (b) ot =7/6; (c) ot = 7/3; (d) ot = w/2; (e) ot = 27/3; (f) ot = 57 /6; all

wave phases are relative phases.
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6.2.5 Discussion on the regimes
Regimes summary

Four flow regimes have been shown in the previous sections, all based on the visu-
alizations of the flow patterns from the side of the wave flume. However the choice of
separating one flow type to another might remain rather subjective, the present clas-
sification attempted to distinguish each different flow mechanism observed, possibly
relevant to ripple formation and evolution. As a result, some of the flow aspects may
be similar from one regime to another. For these four regimes, the main mechanisms

and effects are:

e the regime with “roll” or cell structures is a stable regime where the ripples
will probably build very slowly, facing no major change in shape. A steady
streaming process is shown in the form of recirculation cells and no flow separation
is present. The sediment transport can be assumed as being weak. This regime

may correspond to the conditions for which rolling-grain ripples develop.

e the regime with “roll” plus jet structures will probably involve some significant
sediment transport as the jets will drag some particles upward and release them
later. The main effect is probably a slow building of the ripples, until they reach
the maximum steepness for a given flow condition and a given grain size, and
then oscillate around an equilibrium state. The steady streaming cells are still
present but disturbed by the jet structures. The jet instability always appears

first at the lee-side of the ripple slope, during the flow reversal.

e the flow separation regime is the transitional regime where flow separation first
occurs. It features vortex structures nearly ejected from the crest being eventually
dragged upward by the jets. It probably involves more sediment transport than
in the previous regime, as the small vortices may be more effective at trapping

sediment than the jets. But as the vortices are not really ejected but carried away
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by the jets, the trapped sediment once dragged upward is probably released in a

similar way to the previous regime.

e the regime with vortex ejection is certainly the regime involving the maximum
sediment transport. It is obtained when the flow oscillation is not small compared
to the ripple wavelength. It contributes to the building of the ripples, giving them
this particular shape with sharp crests and flat trough, legitimately called vortex
ripples. For several cases, when the flow is in the same direction as the wave
propagation, the ejected vortex has a coupled vortex below its structure, counter
rotating and smaller than the main vortex. It also turns out that when the flow
is in the same direction as the wave propagation, the vortex is ejected along a
horizontal path, but in the case of an opposite flow direction, the ejected vortex

moves more upward, following the ripple slope plan.

What happens when the How oscillation gets even stronger and significant turbu-
lence occurs cannot be discussed here, as the experiments in such a case were limited
by the technique of visualization. It can only be assumed that as the flow velocity in-
creases, the size and strength of the vortices will also increase as well as their lifespan,
so that they will probably interact with each other covering the entire ripple length
leading to the presence of turbulence everywhere and probably at all times. For further
analysis on this regime, see references cited in section 2.5.4.

A final remark that applies to all the regimes can be made: the curvature of the
boundary seems to influence the shape and size of the structures, cells or vortices.
The steeper the slope and therefore the more curved the boundary®, the rounder the
structures will be. On the other hand, for a weak ripple slope or weak curvature of the

boundary, the structure will be more flat and usually smaller (figure 6.11).

5See formulas (5.1) and (5.2) in scction 5.1.
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Taylor number

It is recalled that the Taylor number is used to measure the importance of the
centrifugal effects with respect to the viscous ones. The range for the ratio T, /r for
with each regime has been observed can be seen in figure 6.28. The regimes are difficult
to categorize as all the parameters seem to play an important role. However, the ratio

T,/r seems to be a relevant parameter for this classification, as shown in figure 6.29.
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Figure 6.28: Two-dimensional regimes range for the Ratio T,/r. R: roll patterns
regime; RJ: roll + jet patterns regime; FFS: first flow separation regime; VE: vor-

tex ejection regime.

Visualization limits

When the flow oscillation was large, observation had to be done quickly after reach-
ing the expected flow conditions. Therefore, for these flows it was not possible to be
certain of the stability of the flow mechanism, or in other words, whether or not it
was repeating itself for a large number of wave periods. For the most stable conditions
(first and second regimes), the dye patterns were covering the entire rippled section for

as long as the waves were generated, as shown in figure 6.30.
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Figure 6.29: Two-dimensional regimes summary. The area above the upper limit of
the vortex ejection area could not be studied due to the presence of turbulence limiting
the experimental visualizations. The dashed lines shows the range in r for which each

regime was obtained. The horizontal lines are for visual help and are arbitrary.

Figure 6.30: Cells plus jets regime; s, = 0.175; r = 0.14; T, = 0.17.
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6.3 Three-dimensional instabilities

The flow classification detailed in section 6.2 is derived from two-dimensional vi-
sualizations obtained by filming from the side of the wave flume. By repeating the
same experiments and filming from the top of the flume, above the rippled section,
it was possible to have a three-dimensional view of the patterns, combining pictures
taken from the side of the tank and from above. During the experiments, the dye
patterns presented clear two-dimensional and three-dimensional structures depending
on the flow and the ripple characteristics. By combining the different regime charac-
teristics detailed in the previous section 6.2 with the three-dimensional aspects of the
flow, detailed in the following sections, a more complete description of the flow above

ripples can be obtained.

6.3.1 Two-dimensional flow patterns

Figure 6.31 shows a typical pattern of the two-dimensional flow usually observed.
It corresponds to the most stable case discussed in section 6.2.1, where only “roll”
structures are present above each ripple crest. The dye is regularly spread crosswise
but the dye concentration is greater above the ripple crests due to the cell structures.
Figure 6.32 corresponds to a weakly unstable case where jets of dye add to the “roll”
structures showed in section 6.2.2. The streaks correspond to the small jets but viewed
from above. The jet process is then purely two-dimensional. This kind of pattern
is always obtained as long as the flow stays two-dimensional, the streaks being more
or less visible depending on the strength of the jets. About 95% of the experimental
cases where cells or cells plus jets structures were obtained showed two-dimensional
structures from above. The structures stay two-dimensional for T, /r < 1.6, as shown
in figure 6.33. It corresponds to the upper limit of the regime featuring cells plus jet
patterns described in section 6.2. It can then be concluded that the regimes featuring

cells and cells plus jets are two-dimensional.
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Figure 6.31: Two-dimensional dye patterns viewed from above the rippled section for a

roll structure case; ripple slope s, = 0.05; r = 0.27; 8 = 2109.

ripple crests

Figure 6.32: Two-dimensional dye patterns viewed from above the rippled section for a

roll plus jet structure case; ripple slope s, = 0.12; r = 0.3; 8 = 79.2.
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Figure 6.33: T,/r range for two-dimensional flows. The horizontal line is for visual

help and is arbitrary.

6.3.2 Two types of three-dimensional flow patterns

From a two-dimensional flow pattern the flow can break into three-dimensional
structures. For a fixed ripple slope, increasing the wave amplitude (therefore the wave
orbital amplitude) up to a certain point will always lead to three-dimensional instabil-
ities. The wave period can also influence the type of instability obtained. The three-
dimensional patterns can be divided in two types: a “ring” type and a brick-pattern
type. Viewed from above, the brick-pattern type appears as a structure of regularly
spaced bridges of dye, perpendicularly aligned to the ripple crest. The bridges starting
from adjacent ripple crests are shifted by approximately half of the instability wave-
length. The “rings” are equally spaced bridges of dye perpendicular to the ripple crest

and regularly displaced from a ripple crest to the next.

Ring patterns

This pattern was the most common one observed during the experiments when
three-dimensional instabilities were triggered. Among the three-dimensional pattern

cases, ring patterns represented 70% of the experimental cases. About 67% of the cases
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presenting ring patterns were categorized in the regime where the flow first separates
and in the vortex ejection regime (sections 6.2.3 and 6.2.4). A typical ring pattern is

shown in figure 6.34. As showed in figure 6.35, these structures were mainly observed

Figure 6.34: Three-dimensional ring pattern; ripple slope s, = 0.175; r = 0.15; 8 =
32.7.

for 1.6 < T,/r < 3.5. This range is similar to the one found for the regime where flow

first separates and for the vortex ejection regime if their range are put together. It then

turns out from the experiments that the vortex ejection regime is three-dimensional.
An early stage of the rings formation is shown in figure 6.36, where the picture

was taken immediately after the flow had reached the given characteristics. The flow
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Figure 6.85: T, /r with respect to r for which “rings” are observed. The horizontal line

18 for visual help and is arbitrary.

is then probably not completely established to the given orbital amplitude’, but the
purpose of this picture is to show the transition pattern between a two-dimensional
flow (figure 6.32) and a ring pattern flow (figure 6.34). In this case, once the flow
was established with its given characteristics, a ring pattern similar to figure 6.34 was
obtained. The longitudinal streaks of dye are subject to an apparent oscillation in the
crosswise direction. The amplitude of oscillation will grow, leading to the formation of
separated “rings”. Figure 6.37 is another example of the early stage of ring formation,
with some ring structures already quite visible.

For a strong r = 0.8, the rings tend to get disorganized and the dye vanishes
quickly. It can be supposed that bursts of turbulence cause the dye to dilute very
quickly, leading to this unstable and blur pattern, as shown in figure 6.38.

The rings are usually visible for a few wave periods. If the flow oscillation is not
too important, the rings will stay visible for about 5 to 10 wave periods but if the
oscillation amplitude is large, the dye will be quickly diluted leaving a cloud with no

apparent typical shape in less than 3 wave periods. It is then difficult to tell if this

"See section 5.3 for the wave-maker set-up.
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Figure 6.86: Early stage of the formation of ring pattern; ripple slope s, = 0.175;
r=0.25; 8= 16.4.

structure is stable in time.

The ratio of “ring” instability wavelength A; to ripple wavelength [. was measured
using all the ring cases observed. The quantity A;/(rl.) = \;/ag is plotted against the

Taylor number in figure 6.39. It appears that a simple relation such as

Ao (6.5)

~

Qg Ta

can describe the experimental data behaviour, at least for the range of wave conditions
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Figure 6.37: Early stage of the formation of ring pattern; ripple slope s, = 0.175;
r=0.187 f = 32.7.

tested. Relation (6.5) is equivalent to:

S

Ai
5~ (6.6)

=

Sr
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Figure 6.38: Ring pattern vanishing in semi-turbulent regime; ripple slope s, = 0.12;

r=0.78; 8 =634.

Figure 6.39: Ratio of “ring” instability wavelength \; to wave orbital amplitude ay.

Ezperimental data: o s, = 0.175; e s, = 0.12; o s, = 0.1; m s, = 0.05. The fitting
curve is f(Ty) = 1/T,,.
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Brick pattern

A very particular type of three-dimensional instabilities has been observed. It
represented 15% of the three-dimensional cases obtained experimentally. This regime
has been particularly difficult to obtain during the experiments and did not stay stable
very long. It differs from the ring regime because the bridges of dye are shifted from
one crest to the next by approximately half the instability wavelength. Figure 6.40
shows the Taylor number range for which the brick pattern was obtained during the
experiments. It seems that the brick-pattern is likely to happen for 1.5 < T,/r <
1.85. The upper limit slightly overlaps the lower limit of the ring pattern range. The
lower limit is close to the lower limit found for the regime where flow first separates.
Compared to the Taylor number ranges found for the regimes detailed in section 6.2,

it seems that brick pattern is most likely to happen for the regime where flow first

separates.
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Figure 6.40: T,/ range for which brick pattern is observed. The horizontal lines are

for visual help and are arbitrary.

Figure 6.41 shows the shifted bridges from crest to crest. Figure 6.42 is another
example, obtained for exactly the same flow and ripple characteristics but during an-

other test. The dye is not spread very far crosswise, giving only two bridges after the
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dye release point. As a result, only one bridge is present across the next ripple and two
bridges across the ripple after. Figure 6.43 shows another brick pattern widely spread
across the ripples. This pattern has been obtained for all the available ripple slopes
except for the weakest slope s, = 0.05. Table 6.1 is a summary of the flow and ripple
features for which the brick pattern was observed during the experiments. The mean
value for r is 0.47 and no brick pattern was obtained for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>