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by Yarm Ourmieres 

The aim of this project is to study the wave-induced Sow above a rippled bed. Sea 

bed ripples do not have a major impact on the main flow pattern, but they strongly 

inGuence the structure of the boundary layer. Therefore they are of interest in coastal 

engineering as they are part of the sediment transport process and have inSuence on 

surface wave dissipation and Sow friction in coastal areas. 

By both numerical and experimental means, the Sow characteristics were studied. 

A two-dimensional computer model solving this particular Sow was developed and com-

pared to other numerical and experimental data and the available theory. Experiments 

were conducted in a wave tank htted with a rigid rippled bed, and flow visualizations 

were done using fluorescent dye filmed by a digital video camera. DiEerent Eow regimes 

were identifed and were classihed in terms of relevant parameters such as the ripple 

slope, the wave orbital amplitude to ripple wavelength ratio and the Taylor number. 

For a weak flow oscillation to ripple wavelength ratio, two-dimensional structures tend 

to develop in the form of recirculation cells. For a stronger Sow oscillation and a 

medium to steep ripple slope, the Sow separates giving rise to vortices ejected from 

the ripple crests every half-wave period. Three-dimensional instabilities also appear in 

two diEerent forms. The most common form observed is a structure of "rings". The 

other form called brick-pattem is suspected to involve centrifugal instabilities and play 

a major role in the building of three-dimensional ripple shapes. A Gnal summary of 

the flow characteristics was done, using the numerical and experimental results. 
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Chapter 1 

Introduction 

The main subject of this thesis is a study of the Sow induced by waves propagat-

ing over a rippled bed. Sea bed ripples are mainly present on sand beds in shallow 

coastal waters, and it is well known that their formation is due to the back and forth 

motion induced just above the bed by waves. Their evolution is inSuenced by the wave 

characteristics and those of the sediment, such as the size and density of the parti-

cles. Sea bed ripples do not have a major impact on the main Sow pattern, but they 

strongly influence the structure of the benthic boundary layer. Therefore they are part 

of the sediment transport process, and have influence on Sow friction, and surface wave 

dissipation. 

The wave-induced Gow is an oscillatory 8ow whose amplitude at a certain depth 

will be determined by the wave height and wave period. One particular feature of this 

flow is that each particle follows an unclosed path, resulting in a drift of the particles 

in the same direction as the wave propagation. For a water depth much larger than the 

wave wavelength, the particle path wiU be almost circular. For a shallow water caae, 

where the wave wavelength is very long compared with the water depth, the particle 

path will be more elliptic. If the flow near the bottom boundary is considered, it is 

characterized by the generation of a steady current close to the bed in the direction of 

the wave propagation due to the oscillating and progressive nature of the Sow. This 



steady second order drift velocity is usually referred to as the Stokes drift or the mass 

transport velocity. 

Wave-induced Sow hag been widely studied, from the free surface to the sea bed. 

It has been intensively studied in the boundary layer over a Sat bed, where Longuet-

Higgins's theory (1953) describes the Eow behaviour in laminar cases. This theory 

is still widely cited. Oscillatory Sow above a rippled bed has also been studied for 

many years, but there is no estabhshed theory for this cage. Experiments have been 

conducted in wave Sumes with sand beds or even rigid wavy beds, to provide measure-

ments of some relevant features of the Sow: the mean flow, the mass transport velocity, 

the vorticity and the sediment transport. A few two-dimensional computer models have 

been developed, solving the vorticity and velocity Gelds over a rippled domain. The 

complexity of such a flow makes its study stUl topical and worthwhile since agreement 

between models and experiments hag not been systematically reached. Moreover, this 

Sow is potentially three-dimensional, and this feature is often neglected in numerical 

modelling even now. Three-dimensional instabihties as well as two-dimensional insta-

bilities are believed to play an important role in the ripple dynamics. Due to numerical 

and experimental dilEculties, the study of such a complex three-dimensional Sow is far 

from complete. 

Considering these facts, the main purposes of this thesis can be presented ag follows: 

# To provide a review of the present knowledge on the wave-induced How over a rip-

pled bed, mainly from a Suid mechanics approach with some sediment transport 

approach inputs. 

e To compute and use a two-dimensional model solving the How characteristics 

in the vicinity of a rippled boundary. This model will Erst be tested for Hat 

bed cases. Particular attention will be given to the study of the mass transport 

velocity, flow separation and vortex formation. 

e To categorize diSerent How regimes by means of experimental visualizations of 



the Sow in a wave Hume Atted with a rigid rippled boundary at its bottom. The 

experiments will be conducted for various ripple slopes and wave conditions. 

# To study the threshold for which the two-dimensional Sow will Brst become three-

dimensional, and to study three-dimensional instabilities occurring in this flow 

possibly leading to particular three-dimensional ripple structures. 

# To draw possible conclusions on the wave-induced flow features over sea bed 

ripples. 

This thesis is structured in seven chapters. After this brief introduction of the 

subject, chapter 2 provides a review of the present knowledge on wave-induced Gows 

over Gat and rippled beds, on oscillatory Eow instabilities over curved boundaries and on 

ripple characteristics. Chapter 3 details the computed two-dimensional model solving 

the How in this particular area, while chapter 4 provides varied results from the model, 

comparisons with several sources, and discussions. Chapter 6 presents the chosen set-

up for the conducted experiments, while chapter 6 provides the experimental results. 

Chapter 7 draws conclusions on the work done. 



Chapter 2 

Literature review 

2.1 Introduction 

In this chapter, diSerent features of the wave-induced 8ow will be reviewed. A brief 

definition of the boundary layer, the area where this study takes place, will be given. 

Then the characteristics of the oscillatory boundary layer flow are reviewed for the 

case of a flat bed, and a rippled bed. As the study focuses on laminar conditions, httle 

is developed on the oscillatory boundary layer in turbulent Bow, and wiU be mainly 

used for a general understanding of the studied phenomenon. Present knowledge on 

three-dimensional instabilities occurring over curved boundaries is reviewed, leading 

to a review on centrifugal instabihties over rippled beds, using articles on centrifugal 

instabihties over cylinders as a starting point. Finally, seabed ripples chara<;teristic8 

such as their size and shape are reviewed. 

2.2 Oscillatory wave-induced flow 

A cartesian system is deAned where i is the horizontal axis, positive in the wave 

propagation direction, ^ is the vertical axis, and the origin is at still water level, aa 

shown in figure 2.1. The velocity vector has the components (u,'u,w). The Huid 



Figure o/re/ereMce. 

motion is governed by the conservation law of mass and the Bernoulh equation. The 

conservation mass equation can be expressed as 

V = 0, 

and the Bernoulh equation is 

9 0 1 2 P 
a + ? ' + ^ + ® = / ( ' ) 

(2-1) 

(2.2) 

where p is the pressure, g the gravitational acceleration, p the water density, / ( ( ) a 

function of time and $ the velocity potential so that 

It = V (2.3) 

The arbitrary function of time / ( t ) can be incorporated into the velocity potential $ 

without loss of generality, giving 

9 0 1 P 
8t ' ? ' +-+«!< = »• 

The pressure p at the free surface = ?) is equal to the atmospheric pressure Pa 

and chosen to be zero. For %/ = //, equation (2.4) can then be changed to 

1 2 

(2.4) 

(2.5) 

(2.6) 



The vertical velocity at the free surface is given by 

(2.7) 

where the diSerentiation foUows a particle at the free surface. As the bed is considered 

impermeable, the vertical velocity at the bottom is 

= 0. (2.8) 

Then from equations (2.1), (2.6), (2.7) and (2.8) we have the system of equations: 

= 0, (2.9) 

g o 

-^l!/=-d = 0, (2 10) 

— I (2 m 

- ^ + -^^ + g77 = 0. (2.12) 

Equation (2.9) is the Laplace equation. If the assumption is made that waves propagate 

in the positive a; direction, and that the free surface can be described by ?) = a cos(A:T— 

0"̂ ), then by solving equations (2.9) to (2.12), the horizontal velocity « in the Huid is 

where a is the wave amphtude, cr the wave angular frequency, d the water depth and 

A: the wavenumber. A sketch of the horizontal wave-induced velocity from the free 

surface, in the case of infinite water depth is shown in figure 2.2. This flow will change 

in strength and direction, influenced periodically either by a crest or a trough. In 

shallow water areas, the wavelength of the wave becomes larger than the water depth 

so that < 1. As A:(i/ + (f) becomes very small, cosh(A:(2/ + d)) can be approximated 

by 1 and sinh(A:d) can be approximated by Prom formula (2.13), the shallow water 

approximation for the horizontal wave-induced velocity is 

ti = ^co5(A;r —iT^). (2 14) 



With such an approximation, the velocity is considered constant in strength from sea 

surface to bottom^, as shown in Ggure 2.3. 

wave propagation 

Fzgure ,9.' /or water (fep^A. 

wave propagation 

/ 7 7 7 7 7^ / 

Fzgure .̂,9.' wa?;e-m(fuce(^ /Zow m g/iaHow water (feptA oiier o /Zat 6ed. TAe 

cAarac(e?i6(%cg o/ t/ie /Zow m (Ae y^e sttTyoce 6o(tom ^oî Mcfar;/ Zog/ers are rep-

resented. 

2.3 Brief deAnition of the bot tom boundary layer 

In the present study, the bottom boundary layer can be simply deGned aa the layer 

inside which the Bow is signiScantly inBuenced by the sea bed characteristics. In 

laminar Hows, this layer is usually very thin over a smooth solid bed (a few millimeters), 

and a httle larger over a flat sand bed. For the case of a rippled bed, the boundary 

layer may extend to several times the ripple height (Nielsen, 1992). The wave-induced 

the bottom and the 6ee surface boundary layers arc neglected (see section 2.3). 



boundary layer thickness is usually deSned in terms of 

where i/ is the water viscosity and T the oscillatory 8ow period. Even if the qualitative 

meaning of the bottom boundary layer is clear, opinions about the most appropri-

ate quantitative deSnition for its thickness are varied. However, the most common 

definitions use the Stokes length: 

S = — . (2.15) 

Different dehnitions for the boundary layer thickness can be found in Jonsson 

(1966), Kajiura (1968) or Sleath (1987). Such a deGnition remains strongly depen-

dent on the bottom boundary and flow characteristics, therefore no particular prior 

deSnition will be chosen here, as the present study takes place over diSerent types of 

beds. 

Another important parameter relevant to the Sow characteristics in the boundary 

layer needs to be dedned. While the well known Reynolds number is deSned as 

u, 
Ag — — , (2.16) 

1/17 

when boundary layer Hows are studied, the boundary layer Reynolds number is com-

monly used and deGned as 

% = ^ (2.17) 

where -Uo is the horizontal velocity amphtude of the Sow outside the boundary layer. 

2.4 Wave-induced boundary layer f low over a Hat 

bed 

Although a sea bed is rarely perfectly Hat, it is worthwhile to understand the flow 

behaviour over a Hat bed, aa a starting point for the study of natural Hows. 



2.4.1 Govern ing equa t ions 

The How characteristics in the boundary layer can be found by solving the trans-

port equation for vorticity and stream function (2.18) derived from the Navier-Stokes 

equation and the Poisson equation (2.19): 

4- tiTT + = z/V w 
oa; ay 

w = — 

(2.18) 

(2.19) 

where w is the vorticity and is the stream function. The boundary layer approxi-

mations used to solve these equations consider the fact that the very thin layer in the 

vicinity of the boundary has a very large velocity gradient and that the boundary 

layer thickness is much smaller than the length scale^. The typical theoretical horizon-

tal velocity profiles obtained for a wave period are shown in Sgure 2.4. The vertical 

axis is now measured upwards and equals 0 on the sea bed. 

(fuTing a waiie peno(f m /oyer, /or 

(fz^ereM^ ware pAoaeg. 

^For more infonoation on the approximation and solution of the Navier-Stokes equations in the 

bomidary layer, refer to Schhchting (1979). 

9 



2.4.2 Mass t r a n s p o r t in wa te r waves over a flat b e d 

One important characteristic of this How is that the existence of a non-vanishing 

viscosity of the water results in the development of second-order mean velocity, relevant 

to the mass transport in water waves. The generation of a steady current near a sohd 

boundary by an oscillating Suid is a well-known phenomenon. Longuet-Higgins (1953) 

investigated this phenomenon for sea waves propagating over a smooth Sat bottom. 

Mass t r a n s p o r t velocity: Longuet-Higgins ' s t heo ry 

1. Mean Bulerian velocity 

The Eulerian velocity refers to the velocity as it would be measured over time at 

a number of fixed points in space. When the boundary layer at the free surface 

is considered negligible, in waves of very small steepness, a simple sinusoidal 

harmonic can describe the wave-induced velocity. The fundamental mode of the 

horizontal wave-induced velocity is î oCos(A;a; — o"̂ ). For such a flow imposed at 

the top of the boundary layer, the laminar boundary layer solution^ for the mean 

Eulerian velocity prohle is 

^ -t- 2)e"^/'^cos(2//^) — — l)e"''/'^sin(2//^) -I-

(2.20) 

where y is measured upwards from the bed. Figure 2.5 shows a typical mean 

velocity prohle, obtained with formula (2.20). 

2. Maas transport velocity in the boundary layer 

The mass transport velocity can be considered as the Lagrangian^ time-averaged 

velocity. From Longuet-Higgins (1953), the definition for the mass transport 

velocity proEle near the bottom for a progessive wave is: 

7^ (̂2/) = ^ (5 - cos(Wa) + 36-^^/"^). (2.21) 

Ŝoe (Phillips, 1980, p55-56). 
^The Lagrangian velocity describes the paths that water particles would follow over time. 

10 
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As shown in figure 2.6, the mass transport velocity is always positive, and just 
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beyond the boundary layer, it tends to 

5A:?̂ o 
" 4 ^ ' 

(2.22) 
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60% of which is the limiting Eulerian velocity It is important to note 

that these results have been obtained with the assumption that the vorticity 

vanishes at the top of the boundary layer: 

+ as 2 / - . 0 0 . (2.23) 

3. Mass transport velocity in the interior of the Huid 

Longuet-Higgins also developed two solutions for the mass transport velocity in 

the interior of the fluid, that is the Huid between the bottom and the free surface 

boundary layers. These solutions need to be mentioned as they have been used 

and modified by several authors when studying the mass transport inside and 

outside the bottom boundary layer. These solutions wiU also be used later in 

this thesis. 

Longuet-Higgins obtained two solutions: the conduction solution for a small ratio 

and the convection solution when this ratio is large. The conduction solu-

tion corresponds to a vorticity di&ision through the Euid by viscous conduction. 

In the case of the convection solution, for large values of the vorticity is 

convected with the mass transport velocity. The conduction solution is: 

^ = G"aA:F(/i), (2.24) 

where 

F(/^) = »— 2cosh2A:d(/^ — 1) + 3 -t- A;dsinh2A;d (2.25) 
4 sinh L 

( 3 / - 4/, + 1) + + ^ ) ( / - 1)' 

and 

Figure 2.7 shows diEerent proGles of the mass transport velocity in the interior of 

the fluid obtained with the solution (2.24). Note that the Egure 6 (p572) shown in 

Longuet-Higgins (1953) for the mass transport in the interior of the Suid is wrong 
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for A:d = 1.5 and 1/ is measured downwards. The conduction solution applies when 

the wave amplitude is much smaller than the boundary layer thickness, which is 

usually untrue in practice. However, this solution is the one mainly used and 

referred to in literature. It can be noticed that the proEles feature significant 

slopes at the bed. There is a mismatch with the boundary layer solution aa this 

latter presents a vertical proSle at its top. 

The second solution called the convection solution relies on more realistic assump-

tions, Eis it is vahd when the wave amplitude is much larger than the boundary 

layer thickness. Unfortunately, the convection equation remains difEcult to in-

terpret Eind no solution is readily obtained. As mentioned by the author himself, 

this solution representing motions with non-zero total horizontal Bow might also 

remain arbitrary 

Modif ica t ions of t h e t h e o r y 

Prom Longuet-Higgins's work, several studies showed that modifications or devel-

opments of these solutions up to higher orders were needed in order to reach better 
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agreement with experimental data. Considering higher order sinusoidal waves is par-

ticularly necessary when a description of water waves in shallow water is needed, and 

consist in adding several harmonics to the fundamental mode of oscillation. Sleath 

(1972) considered a horizontal component of velocity just outside the boundary layer 

expressed in the form: 

Uq = Uq 4- COS (erf — kx^ -j- y4.——cog2(crf — kx") + ... (2.26) 

where itc is chosen to match the flow in the boundary layer; and v4 are functions of 

the wave height^ /i, the water depth d, the angular frequency cr, and the wavenumber 

A:. By developing the stream function as a power series in small parameter e 

^ = + + + (2.27) 

and solving the two-dimensional transport equation for vorticity (2.18), Sleath found 

a second approximation to the mass transport velocity, bu t no exphcit solution of 

the mean Eulerian velocity profile was provided. However, obtaining the steady drift 

expression in the boundary layer can be done by using the results of Sleath (1972) 

and Dore (1982). The instantaneous velocity profiles can also be calculated from this 

stream function solution. Sleath (1973) has also numerically found three different so-

lutions for the mass transport velocity in the interior of the Suid. The Erst solution is 

close to Longuet-Higgins's conduction solution, while the two others are distinct. The 

experiments conducted by Sleath in a wave tank showed tha t after 2 to 3 hours, mass 

transport velocity proGles corresponding to the second solution could be observed and 

after 4 hours, proxies corresponding to the third solution were observed. ProSles corre-

sponding to the first solution, closely similar to Longuet-Higgins's conduction solution, 

were never observed. Swan and Sleath (1990) developed a fourth order solution for 

the mass transport velocity. Although their solution did not show very good agree-

ment with measurements, it was generally better than the second order solution. They 

concluded that the discrepancies could be ehminated by a higher order approximation. 

^Thc wave height is dcEned as twice the wave ampHtudo a, so = 2a. 
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Liu and Davies (1977) developed a modified solution of the Longuet-Higgins's con-

duction solution by considering a factor of viscous attenuation of the wave. Their 

solution does not have any restriction placed on the ratio They concluded that 

the boundary layers at the free surface and at the bottom create vorticity diSusing 

through the interior of the fluid. The interior How would therefore be a superposition 

of a potential Eow (of order A:a) plus a balance between the viscous forces and the local 

attenuation. 

On the experimental side, mass transport measurements from Russell and Osorio 

(1957) showed that even if the condition a <K <5 was not respected, their experimen-

tal proEles were quite similar to Longuet-Higgins's conduction solution. Beech (1978) 

measured the mass transport velocity by Laser Doppler Anemometry. The experimen-

tal mass transport measured just outside the boundary layer was smaller but still close 

to the transport theoretically predicted by Longuet-Higgins's solution. The velocity 

profiles agreed well with the theory, but the second order eSects gave larger veloci-

ties in the positive half of the cycle. Other experimental and theoretical comparisons 

discussing similar discrepancies can be found in Collins (1963) and Dyke and Barstow 

(1981). 

Discussion 

The Longuet-Higgins conduction solution and the modified solutions seem to have 

some features in common with measurements in wave tanks under laminar conditions. 

It is however clear that further investigations still need to be done to reach better 

agreement between the theory and the experiments when the mass transport velocity 

is concerned. In section 4.2.2, formula (2.20) is compared to some experimental mean 

velocity proxies. Agreement at the top of the bottom boundary layer is never reached. 

This problem is discussed in section 4.2.2. 

It has been shown that a different approach needs to be considered for a turbulent 

boundary layer (see section 2.5.4). These solutions aU apply to the case of a flat and 
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smooth bed. In natural conditions, say in coastal areas, the sea bed can rarely be 

considered as Eat and smooth. Nevertheless, knowing the oscillatory Sow characteris-

tics over a Hat bed such as the typical mean velocity proGle (figure 2.5) and the mass 

transport velocity will be useful to understand the characteristics of a wave-induced 

oscillatory flow over a rippled bed aa they should have some features in common. 

2.4.3 T h e cnoidal t h e o r y 

A diSerent theory from Stokes theory for the description of the wave-induced velocity 

at the top of the boundary layer can be applied, known as the cnoidal theory. This 

theory for periodic waves in shallow water, has unique characteristics: the described 

waves are reduced to a solitary wave at one limit and to a profile expressed in terms 

of cosines at the other limit (Sarpkaya and Isaacson, 1981, p 178-190). In order to 

calculate the velocity components derived from this theory, only a smaU number of 

parameters is required compared to the Stokes theory where wave-induced velocity is 

obtained by adding several harmonics to the fundamental mode. Despite the fact that 

this theory is particularly suitable to describe water waves in shallow water, very few 

articles are available on theoretical or experimental investigations on boundary lay-

ers under cnoidal motion. LeMehaute (1968) and Isaacson (1976) have developed mass 

transport solutions under cnoidal waves. Tanaka, Mutlu-Sumer and Lodahl (1998) give 

an analytical solution of the horizontal velocity and provide a study of the boundary 

layer thickness under the wave crests and troughs. The velocity profiles, the bound-

ary layer thickness and the bottom shear stress obtained with their solution showed 

significant diSerences from those under sinusoidal waves. 

A simple way to express the cnoidal wave-induced flow is: 

„ . (2.28) 
1 — 

16 



g = — cr()/7r 

: complete elliptic integral of the first kind 

.E : complete elliptic integral of the second kind 

cn : Jacobian elliptic function 

= (7 — 

K : modulus of elliptic function 

= 1 — : complementary modulus 

The modulus K is the parameter controlling the wave proSle; when K tends to 0, 

the profile approaches that of a Stokes first order wave profile, but when K tends to 1, 

the proSle tends to a sohtary wave profile. For K close to 1, the crest wiU be sharper 

and steeper, while the trough will flatten. A typical wave profile for K — 0.99 is shown 

in hgure 2.8. The cnoidal wave-induced velocity wiU Guctuate in time in a similar way 

to the free surface elevation curve shown in figure 2.8. 
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Isaacson (1976) derived the mass transport velocity distribution and compared it to 

Longuet-Higgins's solution (Ggure 2.9). As expected, the mean proGle derived from the 

cnoidal solution agrees well with Longuet-Higgins's solution for small values of K. For 
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values of /t close to 1, the mean profiles show a significant decrease. Comparisons with 

experimental data show a satisfactory agreement but not significantly better than the 

varied agreements reached between the Longuet-Higgins's solution and the experiments 

(see section 2.4.2). 

/or ifarzoMs Wueg o/ modulus K.' K = 0.999, /c = 0.995, K = 0.99, 

K = 0.95, K = 0.9, /rom /or aAa /̂ow wa^er 

waiiea. Fzgure /rom igaacgon aTicf za maga itrangpor^ i/eZocẑ ?/. 

2.5 Wave-induced boundary layer How over a rip-

pled bed 

2.5.1 I n t r o d u c t i o n 

An oscillating How over a sand bed can trigger and enhance the formation of bed 

ripples, with crest lines perpendicular to the ambient fluid oscillation. Oscillating flows 

over rippled beds are of practical and scientihc interest in beach processes. Present 

knowledge on mean Gow drift, mass transport velocity and vorticity dynamics over a 
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rippled bed is reviewed. Finally, in order to have a wider vision of the phenomenon, 

wave plus current caaes and some features of turbulent Bows over a rippled bed are 

discussed. When wave-induced Hows over a rippled bed are studied, the relevant pa-

rameters usually considered are the wave orbital amplitude Go, the ripple height Ar, 

and the ripple wavelength Zr. The ripple slope definition is 

(2.29) 

and the orbital amplitude to ripple wavelength ratio definition is 

r = (2.30) 

2.5.2 S t eady s t r e a m i n g rec i rcula t ion cells 

When the Sow osciUation amplitude is small compared to the ripple wavelength 

and for a small ratio, streaming circulation cells appear. Kaneko and Honji 

(1979) studied experimentally and numerically these structures. They found that the 

steady streaming has a double structure consisting of an upper and a lower region of 

recirculation. Honji, Kaneko and Matsunaga (1980) conSrmed it with visualizations of 

these cells. The upper streaming forms a pair of standing vortices above the trough, and 

the lower streaming a pair above the crest. The lower vortices are small compared to the 

upper vortices. According to Honji et al. (1980), because of the low viscosity of water, 

the lower vortex layer is usually so smaU that only the upper layer is seen. Kaneko 

and Honji (1979) also concluded that when the ratio of the amplitude of the wavy wall 

to the Stokes length is increased, the upper pair of recirculation cells moves towards 

the boundary in a gap between the lower pair of cells, at the trough. Matsunaga, 

Kaneko and Honji (1981) reached good agreement between their model and experiments 

conducted above a wavy wall in a flume when they studied the steady streaming and 

they found results similar to the conclusions of Kaneko and Honji (1979). 
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Sleath (1976) analytically found the same type of streaming cells for ao/4 1 

and for very small ripple slopes (of order 0.03). The assumption ao/^r 1 is not 

very realistic as in natural cases, the orbital amplitude and the ripple wavelength are 

usually of the same order (Nielsen, 1992). The fluid particles would appear to move 

along the streamhne cells if they were observed each cycle at a fixed time. Figure 2.10 

shows a result obtained by Sleath (1976). It can be noted tha t for case (a), the pair 

of cells hag the same circulation direction as the lower pair shown in case (b). It then 

seems that for case (a), the only pair present is the lower pair. Hara and Mei (1990a) 

\ \ 

M i l Mt t 
' j i i 

/Zow wAen oo/4 1; / i r /4 = 0.03; ("dy) /3/r = 2/ (̂ 6̂ ) /3Zr = 30; /3 = l/i5. Fz'gure yrom 

also numerically found the presence of a double pair of standing streaming cells above 

a rippled bed. Blondeaux and Vittori (1991) similarly concluded that the steady part 

of their analytical solution consisted of these recirculating cells. 
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2.5.3 M e a n Eu le r i an velocity a n d mass t r a n s p o r t velocity 

As mentioned in section 2.4, the oscillatory How generates a steady drift, but in the 

cage of a rippled bed, calculation of this steady component appeals to be more complex. 

Despite the experimental diSiculties, some studies related to the wave-induced drift 

over ripples have been conducted, but the results are varied and agreement between 

the various experiments is not always reached. Sleath (1984b) found that for a very 

rough bed, the drift was enhanced compared to Longuet-Higgins's solution (for a Hat 

bed). More recently, Marin and Sleath (1993) found that for transitional Sow conditions 

and a rough rippled bed, the drift was reduced compared to laminar flow conditions. 

In their analysis, Davies and Villaret (1997) found that the Eulerian mean velocity 

could be either increased or decreased by time variation in the eddy viscosity. 

Vittori and Blondeaux (1996) numerically found that the steady drift can take place 

in either direction or may have a more complex proGle, with a negative mass transport 

close to the bed and positive far from it. They found that for a very small Reynolds 

number Ag the waviness of the wall was increasing the mass transport towards the 

shore. But when .Rg was increased they stated that it was difScult to identify an 

overall tendency. 

Ridler and Sleath (2000) experimentally found that aU time-mean velocity proSles 

(except those at the crest and the trough) show a mean drift towards the nearest 

crest, in the vicinity of the bed. They pointed out that in most experiments the waves 

generated were nonlinear, therefore the eSect of wave asymmetry would have to be 

considered in the Eulerian drift. 

It appears that analytical and numerical works do not always agree with the exper-

imental results. Further experimental investigations are still needed to provide a full 

description of the steady drift above a rippled bed. Despite being weak compared to 

the oscillation amplitude of the wave-induced How, the steady drift is believed to play 

a significant role in carrying sand near the bed, and influencing the rippled bed shape 

and equilibrium (Sleath, 1976; Sleath, 1984a). 
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2.5.4 Vor tex dynamics 

It is well known that the presence of sand ripples is due to the horizontal back-and-

forth motion of the water near the sea bed (Nielsen, 1981). Moreover, it is accepted that 

the formation of a certain type of sand ripples called vortex ripples^ is often linked with 

the presence of vortex shedding at the ripple crests. Most of the flows above ripples 

observed in nature are not free from Gow separation. Vortices provide an effective 

mechanism for entraining sand particles into suspension (Sleath, 1984a; Nielsen, 1992). 

Figure 2.11 is a schematic diagram from Earnshaw and Created (1998) illustrating a 

sequence of vortex shedding over a rippled bed. 

The detailed dynamics of vortex shedding and its associated sediment transport in 

oscillatory 8ow above a rippled bed is not yet completely understood. However, some 

experimental works provide information on this mechanism, see among others Honji et 

al. (1980), Sleath (1984a), Marin and Belorgey (1993), Earnshaw and Created (1998) 

and Freds0e, Andersen and Mutlu-Sumer (1999). From these authors, no definite 

threshold for the flow separation and vortex shedding can be chosen, however it is 

clear that it happens for both a larger flow oscillation amphtude to ripple wavelength 

ratio and a larger ripple slope than for the cases for which streaming cells are obtained. 

During the accelerating phase, the Gow separates at the ripple crest creating a vortex 

structure that can trap sediment just above the lee side of the ripple. Later, the 

structure tends to increase in size and strength, even through the beginning of the 

deceleration phase. When the How reverses, the vortex structure is convected away 

from the ripple crest by the local velocity, and wiU weaken because of viscous effects. 

The gravity force finally prevails, releasing the sediment to the sea bed. At the same 

time a new vortex is generated and after half a wave cycle, the situation is back to the 

first stage. 

It is believed that a key feature of this flow is its three-dimensional aspect (Hara 

and Mei, 1990b; Blondeaux and Vittori, 1991; Earnshaw and Created, 1998). Three-

^Other ripple types are dcGned in section 2.7. 
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dimensional instabilities as well as two-dimensional instabilities are believed to play an 

important role in the ripple dynamics. Due to numerical and experimental diSculties, 

the study of such a complex three-dimensional 6ow is far from complete. A model able 

to compute the complete three-dimensional oscillatory How over a rippled bed is not 

available, but several attempts have been made to describe its features. 

Hara and Mei (1990a) theoretically studied oscillatory Sows over ripples. They 

showed the existence of vortices drifting with the How, by tracking stationary cells in 

a moving coordinate system. They considered the case of fluid oscillation amplitudes 

of the same order as the ripple wavelength, and small ripple slopes. Blondeaux and 

Vittori (1991) used spectral methods and Gnite-diKerence approximations to describe 

the How Geld close to the rippled bed. They noticed that when a vortex moves towards 

the bed, a recirculating cell appears underneath it. This cell is then ejected to the 

inviscid region, leaving in its place a free shear^ layer that turns into another vortex. 

This secondary structure interacts with the first vortex and causes it to move away 

from the bed. This vortex pair mechanism had never been noticed before. Their model 

was limited to laminar 8ow. Scandura, Vittori and Blondeaux (2000) studied the 

growth of vortices above ripples by means of direct numerical simulations of Navier-

Stokes and continuity equations, only for low Reynolds numbers. They found that for 

a Suid displacement comparable to the ripple wavelength, both flow separation and the 

presence of a free shear layer could destabihze the flow into a three-dimensional one. 

The study was extended to large oscillation fluid amphtudes and steep ripples. 

Malarkey and Davies (2002) have presented two discrete vortex models for oscil-

latory flows over ripples, a non-viscous model with no diSusion of vorticity and a 

cloud-in-ceH model with diffusion. They found that the simple inviscid model was giv-

ing good results in terms of vortex behaviour for cases with wave orbital amphtudes 

of the same order as the ripple wavelength. But when diffusion played an important 

role, i.e when the flow was not mainly advectively dominated, usually for orbital am-

free shear (mixing) layer ig formed when two parallel streams with different velocities interact. 
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plitudes at least twice larger than the ripple wavelength, the cloud-in-ceU model could 

produce more complex vortex structures and gave, as expected, better agreement with 

experimental data. 

According to Kaneko and Honji (1979), the ejected vortices might be similar to the 

lower pair of standing cells mentioned in section 2.5.2, as a pair of vortices is created 

for a complete wave cycle and their rotation is identical to that of the recirculation 

cells. There are however major diEerences between the two cages, ag for the ejected 

vortices, the How separates and the pair do not interact as they do not occur at the 

same time. 

Wave p lus cu r r en t case 

Although the present study focuses on the wave-induced How, it is worth consid-

ering the case where wave-induced Gow coexists with a current, aa it usually happens 

in coastal envirormient (e.g tidal current). The wave-current interaction in the bound-

ary layer has been studied extensively (Bakker and Doom, 1978; Grant and Madsen, 

1986; Davies et al., 1988; Ranasoma and Sleath, 1994), but in comparison little is known 

on the particular cage of combined waves with a current over a rippled bed (Freds0e 

et al., 1999; Grant and Madsen, 1979). Freds0e et al. (1999) carried out experiments 

for waves alone aa well ag for combined waves plus current Sow, both propagating 

perpendicular to the ripple crests. For the cage of a combined Sow, the vortex gen-

erated in the lee side of the ripple could move over the ripple crest in the direction 

opposite to the current, ag it would do in the cage of a waves alone How. They also 

concluded that superimposing waves on a current led to a displacement of the velocity 

proGle to higher elevations. Ranasoma and Sleath (1994) measured Suid velocities for 

an oscillatory current propagating perpendicular to the ripple crests, combined with 

a steady current parallel to the ripple crests. Their meagurements did not show good 

agreement with any existing model, close to the bed. Vortex formation and ejection 

was also noticed, by tracking the velocity fluctuations in the direction across the flow. 
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Although superimposing a steady current from any direction on the wave-induced 

flow has an eSect on the velocity held, it seems that this effect is minimal in the 

boundary layer when only the oscillatory part of the flow is considered (Nielsen, 1992; 

Andersen and Faraci, 2003). 

Tu rbu l en t flow 

For practical reasons, very few experiments have been performed for turbulent flows 

over rippled beds. Several models are able to compute the turbulent wave-induced flow 

above a flat bed, but very few are available for the case of a rippled bed. Models dealing 

with a flat and rough bottom and for nonlinear waves usually obtain good agreement 

with the theory and the available experimental data, see among others Chowdhury, 

Sato and Ueno (1997), Lee and Cheung (1999), Cotton and Stansby (2000). The 

models generally used to described this type of fully developed turbulent flow are A: — E 

models. Freds0e et al. (1999) noticed that the turbulence close to the bed increased 

significantly when the vortex moved over the ripple crest. 

Studying a fully developed turbulent flow over ripples is not the purpose of this 

work. Description of such a flow is very different from a laminar case and needs a 

different approach. Nevertheless, it is worth pointing out that flow instabilities and the 

kind of vortices generated over the ripples described in section 2.5.4 can be considered 

aa the onset of turbulence starting from laminar conditions. 

2.5.5 Discuss ion 

As reviewed in the previous sections, studying the How over a rippled bed is complex 

and still topical. The steady drift due to the oscillating and progressive nature of the 

flow hag no exact analytical solution for the case of a rippled bed, and experimental 

studies show varied results. Steady streaming cells occurring for small ripple slopes and 

weak wave orbital motion to ripple wavelength ratio are a very particular feature of this 

Bow and their influence on the flow and the sediment transport is not well known yet. 
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The Row separation and vortex mechanism occurring for stronger wave orbital motion 

to ripple wavelength ratio and stronger ripple slopes is believed to play a signiEcant 

role in sediment transport (Bagnold, 1946; Nielsen, 1992). Numerical studies usually 

offer a good description of the vortex dynamics when compared to experimental data, 

but they are still limited to two-dimensional Hows. Bursts of turbulence occurring in 

laminar How aa well aa the suspected three-dimensional aspect of this Gow make it even 

more complex to study, hmiting experiments and numerical models. 

The next section focuses on particular three-dimensional instabilities, triggered in 

laminar conditions. 

2.6 Three-dimensional instabilities: centrifugal in-

stabilities 

2.6.1 I n t r o d u c t i o n 

Generally speaking, instabihty occurs because of disturbances in the equilibrium 

between external forces, inertia and the viscous stresses. Instabilities occurring in a 

flow can be of diSerent types, depending on the Gow and boundary characteristics. 

The present section will focus on centrifugal instabilities triggered in laminar How by 

curved boundaries. 

2.6.2 Tay lo r -Gor t i e r instabi l i t ies 

Taylor (1923) showed that 8ow instability could occur between two rotating cylin-

ders at various speeds. For a certain Taylor number^ the 8ow will be destabilized by the 

centrifugal forces, and vortices with a regular pattern wiU appear. The disturbances 

are three-dimensional. Gortler (1941) also studied three-dimensional Sow instabilities 

^The Taylor number is usually dcSned as the ratio of the (destabilizing) centrifugal force to the 

(stabilizing) viscous force. 
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in the boundary layer for the case of a curved concave wall^. The assumption for the 

Gortler problem is that the boundary layer thickness is much smaller than the radius of 

curvature of the wall. For a steady 8ow, for a certain range of boundary layer Reynolds 

number % and for a certain range of wall curvature R, vortex structures will tend to 

appear. The Gortler instability occurs in the form of steady, stream-wise oriented, 

counter rotating vortices. The vortex structure is spanwise periodic, as shown in hgure 

2.12. 

Figure CoT-fZer a concGi/e waZ/. Ag w wo{;e-

More recently, Honji (1981) showed that for the case of an oscillating cylinder in 

initially still water, above a certain threshold, the previously two-dimensional Sow 

was breaking into a three-dimensional flow forming regular streak patterns over the 

cylinder surface, in the form of mushroom vortex chains. This instability is assumed 

to be centrifugal. Hall (1984) carried out a hnear analysis on the stability of this 

^For more information on Gortler vortices, refer to Schlichting (1979) and Saric (1994). 
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phenomenon, and obtained good agreement with Honji's experimental results. In this 

case, the critical parameter is the Kenlegan-Carpenter number defined as 

^ (2.31) 

where Oj is the amphtude of the cylinder motion and the cyhnder diameter. 

2.6.3 Cen t r i fuga l instabi l i t ies over r ipples 

Oscillating Sows around a cylinder and a ripple shape are analogous and one can 

expect Taylor-Gdrtler vortices or centrifugal instabihties over a rippled bed. Then from 

the study of centrifugal instabilities occurring along a cylinder in oscillating water (or 

an oscillating cylinder in still water), the idea of studying centrifugal instabilities over 

a rippled bed in an oscillatory 8ow comes next. As assumed to happen in coastal con-

ditions (Sleath, 1984a; Hara and Mei, 1990b; Hansen et al., 2001a), these instabilities 

may play a significant role in the seabed shape and equilibrium. Even if ripple patterns 

have been studied for many years, diSerent theories still coexist about the types of in-

stabihty involved and as mentioned by Hansen et al. (2001a), centrifugal instabilities 

are strongly believed to be one of them. 

Hara and Mei (1990b) numerically studied two cases, one for ripples of finite slope 

and very weak Suid oscillations, and the other for gentle ripple slopes and moderate 

fluid oscillations. For the latter case, the How did not separate and it was found to be 

centrifugally unstable, with a periodicity of one or two ripple wavelengths. They noted 

that these instabilities could be relevant to the initiation of brick-pattern ripples^'^ (see 

figure 2.13). The mushroom vortices, strongly similar to vortices visualized by Honji 

(1981), would be one cause for the building of the bridges between successive ripple 

crests. 

The instability threshold was expected for a value of order one of the Taylor number 

^see Bagnold (1946) and Sleath (1984a, Ggurc 4.14, pl42). 
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They found that by increasing ao//r to 0.48 (so increasing oo to nearly half the ripple 

wavelength), the instabilities were covering the entire wavelength and the disturbances 

started to interact with each other. For = 0.68, an accumulation pattern indicated 

bridges formation between transverse crests that could lead to brick-pattern ripples. 

Although Scandura et al. (2000) studied cases for strong Huid oscillations over steep 

ripples, they also found that for the case of a small Guid displacement, Taylor-Gdrtler 

vortices tended to appear. 

In Hansen et al. (2001b), a tray of sand waa oscillated in a tank of water. They 

started from already existing ripples and looked at their evolution when changing the 

amplitude and frequency of oscillation. They found three types of instability leading 

to different changes in the shape of the ripples. According to the authors, these in-

stabilities are leading to "bulging", " d o u b l i n g " a n d "pearling" ripple patterns. The 

"pearhng" is obtained when the driving frequency is increased: new small ripples be-

gin to emerge in the trough of the initial ripples. The "pearling" pattern is periodic. 

^^The "bulging" and "doubling" patterns correspond to an increase or a decrease of the ripple 

wavelength. 
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Hansen et al. speculate that the "pearling" instability might be related to centrifugal 

instabilities giving rise to transverse Taylor vortices. 

These studies are based on computer modelling and theoretical analysis but not on 

experiments, except for Hansen et al. (2001b). As seen in section 2.5.4, Sow separation 

leading to the formation of vortices over a rippled bed in laminar 8ow has been and is 

still extensively studied, and in comparison, very little is known about centrifugal in-

stabilities over ripples. No recent experiment has been conducted on this phenomenon. 

Studying the instability threshold and the velocity disturbances, and getting visual-

izations of this particular Eow pattern, would be of great interest for many reasons. 

It would first help to confirm or not the existing analyses on the subject. It would 

also provide a better understanding in sea bed ripples formation and equilibrium, and 

eventually help getting a wider picture of beach processes. 

2.7 Ripple characteristics review 

While the previous sections use the How characteristics to describe the physical 

processes, this section adds new elements to this description by reviewing diSerent sea 

ripple aspects from a sediment transport approach. A short description of the common 

two-dimensional ripple types is provided. The formation and evolution of these two-

dimensional ripples are then reviewed. Finally, a section on three-dimensional ripples 

is also developed. 

2.7.1 Two-d imens iona l r ipple t ypes 

Wave-induced How over a sandy bed usually changes the bed into a pattern of 

regular or irregular ripples. Different classifications for regular two-dimensional ripple 

types can be found in hterature. 
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Roll ing-grain a n d vor tex r ipples 

In Sleath (1984a), ag in Bagnold (1946), two typical bed forms can be diatinguished: 

ripples with a significant slope, so that vortices can be formed at the lee side of the 

crest, called rzppks, and ripples with a slope too gentle for vortex formation, 

called roHmg-gmm npp/eg. From a initially flat, or slightly wavy bed, the rolling-grain 

ripples wiU be the first to form, with a small height to wavelength ratio. According to 

Sleath (1984a), when this ratio exceeds 0.1, the boundary layer can separate behind the 

crest allowing vortex formation, leading to the vortex ripple formation. Rolhng-grain 

ripples can be found at low to moderate sediment transport rates, if no vortex ripple 

is already formed, but they can alao be found at high sediment transport rates, where 

the vortex ripple formation is not possible. 

The mechanism of rolling grain ripple formation has been clearly explained by Sleath 

(1984a, pl26-127). The steady drift added to the oscillatory motion of the fluid plays 

an important role: it is directed from the ripple trough to the ripple crest, so that the 

sediment in motion will be carried away from the trough towards the crest, enhancing 

the ripple growth. As the ripple height increases, the component of the gravity force 

opposed to the steady drift carrying particles wiU become stronger, so that the ripples 

cannot grow indefinitely. Hence, for given wave characteristics, the rippled height is 

limited. As mentioned by Andersen (2001), it has to be noted that rolling-grain ripples 

are rarely observed in the held, mainly because they are dominated by invading vortex 

ripples. 

The vortex ripples are the ripples most commonly found for low to moderate sed-

iment transport flows. The building of these ripples follows a process quite similar 

to the mechanism of roUiug-grain formation. By trapping sediment iu their structure, 

vortices wiU also enhance the ripple formation. However, Sleath (1984a, pl34-135) 

pointed out that it was not clear why ripples would form for only one wavelength (for 

given wave conditions) when the vortex formation itself implies that the bed is unstable 

for all wavelength enabhng vortex formation. The wavelength that would form most 
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probably is the one giving the greatest sediment transport toward the crest. 

Orb i t a l , ano rb i t a l a n d suborb i t a l r ipples 

In Wiberg and Harris (1994), another classiGcation is considered with three diEerent 

ripple types: orbital, anorbital and suborbital ripples. Orbital ripples will have wave-

lengths proportional to the near-bed wave orbital amplitude, and wiU be mainly found 

in laboratory experiments. Anorbital ripples wiU be approximately proportional to the 

grain size, quite independent from the orbital amphtude, and mainly found in the held. 

Suborbital ripples are intermediate forms. Wiberg and Harris (1994) have constructed 

a method for ripple characteristics prediction avoiding distinctions between these three 

types, therefore distinction between Sume and field cases. The discriminators used are 

the ratio of boundary layer thickness to ripple height and the ratio of near bed wave 

orbital amplitude to ripple height. 

Discussion on two-dimensional r ipple types 

From Nielsen (1992), Freds0e and Deigaard (1992) and Sleath (1984a), it can be 

concluded that depending on the wave orbital amphtude and the sediment type, the 

ripple formation goes from a round crested ripple to a sharp crested steep ripple allowing 

vortices to develop. An increase in the flow oscillation amplitude will usually lead to the 

formation of vortex ripples. But coarse sand wiU give more rounded crests. However, 

for a strong value of orbital motion, vortex ripples would be changed into rolling-grain 

ripples again. It has to be noted that plane beds can be found at very high sediment 

transport rates, called aAeef /Zow. 
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2.7.2 Two-d imens iona l r ipple shape m o d e l 

Formulag from Sleath (1984a, pl31-133), derived from measured experimental rip-

ples, provide a good approximation of the ripple prohles: 

2/ = yCOg(A:r^), (2.33) 

and is given by 

z = ^ - ^ s m ( A : r ^ ) , (234) 

where /ir is the ripple height and the ripple wavenumber. These formulas are vahd 

for ripples of a small height to length ratio. If the ripple slope is weak, the crest 

is rounded, and the overall shape is close to a sinusoidal profile (rolling-grain ripple 

type). When the ripple slope increases, the crest sharpens and the trough fa t tens 

(vortex ripple type). Figure 2.14 shows different profiles obtained using these formulas. 

Formula (2.33) deAning a two dimensional ripple prohle is adopted by the majority of 

researchers studying vortex ripples, see for example Sleath (1984a), Marin and Belorgey 

(1993), Blondeaux and Vittori (1991). In the present study, these formulas have been 

used both in the computer model for the definition of the domain bottom boundary 

(section 3.4), and in the experiments for the cutting of the rippled panels used as a sea 

bed (section 5.1). 

Figure o/nppZe obWrned /oT-mi/Zo ^—y) Sr = 0.125; 

gr = 0.25/ gr = 0.32. 

2.7.3 Two-d imens iona l r ipple charac te r i s t i c s p red ic t ions 

The prediction of ripple geometry is necessary to the prediction of sand transport 

under wave action. According to the hterature, the main parameter inBuencing the 
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ripple wavelength is the orbital amplitude close to the bed defined as: 

" 28inhW 

where A, is the wave height (equal to 2a). The characteristics of the sand also play 

an important role. Two relevant parameters using the sand properties are usually 

considered to describe the ripple characteristics: the mobility number ^ (Yahn, 1971) 

and the Shields parameter 8 

where s is the relative density of the particle, that is the ratio of the particle density 

over the water density, dgo is the grain mean diameter, and it* is the friction velocity. 

The wave friction factor /u, is a function of Go and the roughness length zo = A;a/30, 

where A;, is the Nikuradse coefficient, a function of the grain diameter D. Typically, 

/cg = 3_D for fine sands and /cg = D for coarse sands. 

Concerning the ripple wavelength, two experimental formulas can be considered. 

Formula (2.38) is valid for ^ < 20, while formula (2.39) covers a wider range, being 

valid for 2 < 9̂  < 230 (Nielsen, 1992): 

4 = 1.33% ( ^ < 20), (2.38) 

and 

— = 2.2 - 0 .345^°^ (2 < ^ < 230). (2.39) 
Oo 

Other empirical formulas exist but they usually give good agreement with Sume and 

Seld measurements for a more restricted range of orbital amplitude, wave period and 

sediment characteristics, as shown by O'Donoghue and Clubb (2001) and Wiberg and 

Harris (1994). Andersen (2001) and Andersen et al. (2001) have also developed numer-

ical models for ripple predictions and reached reasonable agreement with experimental 

data. 
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The ripple steepness can alao be predicted ag a function of the Shields parameter 

(Nielsen, 1992): 

^ = 0.182 - 0.248^:^ (2.40) 

where 82.5 is the Shields parameter for a grain roughness of 2.5^50- In order to predict 

the ripple height, Nielsen (1981) found the empirical formula: 

— = 0.275 - 0.022\/^. (2.41) 
Go 

2.7.4 Three -d imens iona l r ipples 

F o r m a t i o n 

If the sediment transport rate increases, vortex ripples wiU tend to become three-

dimensional, with a decrease of their steepness. As mentioned by Sleath (1984a); ob-

taining three-dimensional ripples in wave flumes is difficult since the two-dimensional 

ripples will always appear hrst and sometimes for several hours, resulting in a signiE-

cant loss of sediment when the three-dimensional ripples are likely to form. For light 

sediment, the quick reformation of rolhng-grain ripples might also prevent from see-

ing any three-dimensional eEect in-between the two patterns. O'Donoghue and Clubb 

(2001) found that the criteria mentioned in section 2.7.3 fail when they are applied 

to three-dimensional ripples. They also concluded that no criterion was available for 

three-dimensional ripples prediction for a wide range of sand and How conditions. 

B r i c k - p a t t e r n r ipples 

For a low sediment transport rate, a particular three-dimensional ripple pattern can 

develop. Supposedly due to centrifugal instabilities in the form of horseshoe vortices 

(Sleath, 1984a), the two-dimensional vortex ripples will be changed to a similar shape 

but with shifted bridges linking each transverse crest, as shown in Sgure 2.15 (see also 

section 2.6.3). 
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Figure 2.15: Schematic representation of the brick pattern ripples. 

It appears that three-dimensional ripples tend to form from two-dimensional vortex 

ripples when the orbital amplitude increases or the sediment transport rate increases. 

However, an increase in the sediment transport rate might not lead systematically to 

a three-dimensional pattern, but will surely change the ripple pattern. 

As for any three-dimensional ripple type, the mechanisms involved in the brick-

pattern formation need further investigation. 

2,8 S u m m a r y 

Wave-induced flow characteristics have been reviewed for shallow water areas over 

flat and rippled beds. The presence of a steady drift has been pointed out. For flat 

bed cases, it has been shown that theory gives acceptable agreement with experiments 

for instantaneous velocity profiles. However, the measured mass transport velocity is 

usually different from the theoretical prediction. Despite being widely used, it appears 

that Longuet-Higgins's solutions for the boundary layer and tlie interior of the fluid are 

restricted to cases unlikely to happen in natural cases. Furthermore, it seems that there 

is a mismatch between the two solutions. Comparisons between experimental data, a 

numerical model and the theory will be shown in section 4.2.2 to provide discussions 
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on the discrepancies. 

For a rippled bed, no complete valid theory is available yet, especially when the 

How is suspected to be three-dimensional. Nevertheless, numerous experimental and 

numerical studies on oscillating Huids above ripples provide qualitative and quantita-

tive information on the velocity field, the mass transport and the vorticity dynamics. It 

appears that the Sow features depend strongly on three main factors: the ripple height, 

the ripple wavelength and the Huid oscillation amplitude. When the orbital amphtude 

is much less than the ripple wavelength, and generally for a weak ripple slope, a double 

pair of recirculation cells is present above each ripple wavelength. For a strong enough 

Guid oscillation amplitude, the flow is likely to separate and give rise to vortices. Vortex 

generation at the ripple crest haa a signiEcant eSect on the seabed shape. For a weak 

Sow oscillation over steep ripples or for a signiGcant flow oscillation over gentle ripples, 

centrifugal instabilities are likely to happen. These particular three-dimensional insta-

bihties are suspected to contribute to the formation of a three-dimensional ripple type 

called brick-pattern ripple. Very few experimental and numerical studies have been 

done on this particular instabihty. 

The ripple formation itself has been widely studied. DiSerent ripple types can be 

identiGed depending on the How conditions and the sediment type. Various formulas 

mainly derived from experiments are available for the prediction of two-dimensional 

ripple features, but they are usually limited to a certain range of flow and sand condi-

tions. Some numerical models have also been developed for ripple prediction, but they 

are stiU limited to a certain range of conditions and for two-dimensional ripples. 

It appears that studying the wave-induced 8ow over ripples is a wide subject and 

further investigations need to be done in diEerent areas. A complete description of 

such a How under varied conditions is a huge task and cannot be done in the present 

thesis. However a classification of the How features with respect to the wave and 

ripple characteristics would be a step further in understanding the process involved 

in this particular area. Providing such a classihcation including the study of the How 
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dimension is one of the main purposes of the present thesis. 

Using the general background and the problems pointed out in this review, the fol-

lowing chapters provide further investigations on the wave-induced How characteristics 

over a rippled bed. The instantaneous velocity profiles, the mags transport velocity and 

the vortex mechanism are studied by means of a numerical model. Then, the vortex 

formation, shape and behaviour and the dimensional aspect of the How are studied by 

mean of experimental visualizations. 
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Chapter 3 

Computer Model 

3.1 Introduction 

A computer model aimed to calculate the 8ow in the area close to the bed has 

been written. The model is programmed in FORTRAN, and waa run on Irixcompute^ 

workstations. The model solves the vorticity transport equation derived Arom the 

Navier-Stokes equation and the Poisson equation for vorticity and stream function. 

The horizontal and vertical velocities are then calculated from the model output. 

3.2 Governing equations 

3.2.1 Bas ic equa t ions 

The equations used to solve the How in the vicinity of the bed are the vorticity 

transport equation 

and the Poisson equation 

= (3.2) 

^Irixcompute is based on a cight-proccssor Power Challenge computer from SGI. 
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where w* is the vorticity, the stream function and z/ the water viscosity. The 

horizontal and vertical velocities respectively w* and i;* are deSned by 

- - and (3.3) 
9^* 

The vorticity transport equation may then be changed to 

= 1 1- z/f 1 ) f3.4l 
a?/* gj;* az* a?/* ^ ^ ^ 

3.2.2 Dimensionless variables 

In order to work with dimensionless variables, the following scales are chosen: 

# The length scale is the Stokes boundary layer length deGned as 

TT 

where T* is the water wave period. 

The time scale is 
T * 

27r 

# The velocity scale is [/g, that is the amplitude of the horizontal velocity oscillation 

just outside the considered area. 

The dimensionless variables can then be introduced: 

r27r 
t 

T* 

, _ V'* 
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The boundary layer Reynolds number is also used, defined here aa: 

% = (3.5) 
V 

Equation (3.4) and (3.2) can then be expressed in dimensionless forms: 

% % 9?/ 9a; 9a: 9?/ _Rg 

and 

(3.6) 

(3.8) 

Equation (3.6) is rearranged to: 

i9w. 1 

3.3 Algorithm for a flat bed case 

In order to solve the Bow characteristics in the boundary layer for the caae of a 

wave-induced How a model has been programmed in FORTRAN, using a calculation 

algorithm similar to the one proposed by Roache (1972) concerning the main loops. 

3.3.1 Disc re te fo rmula t ion 

The vorticity transport equation (3.8) and the Poisson equation (3.7) can be ex-

pressed in a discrete form using a Gnite-diEerence scheme. Each term from these 

equations can be expressed a8 a hnite-diSerence, using vorticity and stream function 

values at different points of a previously defined grid, of index i from 0 to for the 

horizontal axia and index j from 0 to for the vertical axis (figure 3.1). The discrete 

form of each term is then: 

for (3.9) 
2Az 

for (3,10) 
2A?/ ' 
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2Aa; 

2A2/ 

^^+1J — + [Ji-i J 

for 

for 

i9k; 
i9a:' 
i9w 

w. 2J + 1 

Aa;^ 
2w, WiJ_l 
Ai/^ 

for 

for 

Q1 w 

' 

At 
for 

W " 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The vorticity transport equation (3.8) can then be expressed in its discrete form: 

' * + ^ ' - w L + A t [ A ] (3.16) w, 

where [A] is the discrete form of the right-hand side terms of equation (3.8), ail ex-

pressed above. The discrete form of the Poisson equation is: 

w. 
^i+1 J — 2Wtj' + J- Wij+i — 2WiJ + 

1 Aa;^ A%/̂  

(imjm) 

4 

ro,o; ro.w 

Figwe gn(f. 

(3.17) 

3.3.2 Ini t ia l condi t ions 

# The number of points defining the calculation grid is set^ (typically 80 by 

points). 

^sce SGction 4.2.1 for convergence tests on grid size. 
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# The wave period T* and the velocity amplitude (7^ at the top of the domain 

are de&ned. The boundary layer Reynolds number Rg is then calculated with 

formula (3.5). 

# The domain length is defined equal to the wave wavelength L. 

# The domain height is deGned equal to a multiple of the Stokes length or to a 

chosen value (typically a few centimetres). 

e The mesh sizes Az and Ay are calculated with the domain size and the number 

of points defining the grid. 

# The time-step and the total time of calculation are defined. The time-step A^ is 

a fraction of the dimensionless wave period: A( = 27r/A/̂  where TV is an integer 

number^. 

# At instant t = 0, all vorticity and stream function values are set equal to 0. 

3.3.3 B o u n d a r y condi t ions 

1. On t h e b o t t o m of t h e doma in 

* The stream function is null for y = 0 

'̂ 0 = 0. (3.18) 

# A Woods condition is applied for the vorticity: 

If '̂ 0 is any point on the sea bed and is the point just above it, we have 

= V'o + §^^3 / + 
ay 2 oy"' 

As [/bed — 0, it follows that: 

^ ^ n (V'l - V'O) 
(Ay)2 ' 

^sce section 4.2.1 for the choice of TV. 
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As 0 on the bed, we also have: 

Wo - ^ 2 ' 

Then with condition (3.18), the Woods condition is: 

2. On t h e t o p of t h e doma in 

» The horizontal velocity imposed at the top of the domain is: 

g— = "Us + Ljq cos((jt — kx^ (3.20) 

This imposed velocity represents the wave-induced velocity where only the 

fundamental mode is shown, but in several cages other harmonic terms may 

be added to the deEnition (see section 4.2.2). The velocity is the value 

that has to be chosen to match the steady drift value at the top of the 

domain. The choice of the steady drift value is an important issue (Riley, 

1978). Three diSerent methods can be used for the choice of iig. The top 

mean vorticity can be minimized by a speciEc loop: by simple bisection, a 

value of is chosen for the smaller possible top mean vorticity. Figure 3.2 

is an example showing the hnal value of i/, chosen for the minimum vorticity 

found with this loop. The velocity can also be set equal to the top value 

of the mean Eulerian theoretical velocity obtained with formula (2.20). But 

tig can also be set equal to the top value of a mean experimental velocity. 

All three methods are discussed in section 4.2. 

Ag described by the theory, the vorticity on top of the domain should be 

null. As the top vorticity is minimized (see previous point) and is very weak, 

instead of imposing a zero vorticity value at the top of the domain, a simple 

condition is apphed: 

1 (3.21) 
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Fzgitre Meavi (o;? o/ Âe c!omam /or i/akea o/ iig. 

where the top vorticity is set equal to the value of vorticity at the point just 

underneath (see grid example on figure 3.1). 

3. O n t h e sides of t h e domain : 

Values of point outside the defined grid (left and right sides) will be needed in 

order to calculate the vorticity and stream function values along the edges of 

the domain. For both variables, as the domain is symmetrical (equal to one 

wavelength), any value needed just outside the right side will be taken equal to 

the last corresponding value on the left side at the same elevation. In the same 

way, any value needed just outside the left side of the domain will be put equal 

to the first value of the right side of the domain. On a finite-diSerence point of 

view, any value of the stream function or the vorticity w of index z = 0 or 

i will need, in order to be calculated, values outside the mesh, say % — —1 

and 2 = 2m + 1, so non-existing values. Any variable of index % — 1 will then 

be replaced by the same variable of index 2 = the same way, any variable of 

index % = + 1 will be replaced by the same variable of index 2 = 0. In other 

words, for any 

V - i , . V4, = '^0,: (3.22) 



and 

(3.23) 

3.3.4 M a i n loops 

The main loop of the model is a time loop, calculating the vorticity and stream function 

values at any point of the mesh, each time-step. This main structure includes three 

important loops: 

1. T h e vor t ic i ty loop: 

It calculates the vorticity at any point except at the top and bottom of the domain 

using formula (3.16), the discrete form of equation (3.8). 

2. T h e s t r e a m func t ion loop: 

It calculates the stream function at any point except on the bottom hne^ using 

formula (3.17), the discrete form of equation (3.7). A 

loop is done for each iteration, increasing the calculation accuracy. This method 

can be explained as foDows: if Gve points are defined anywhere in the grid as 

shown in Sgure 3.3, then i/to is calculated using the formula 

2 

3 0 1 

4 

% = Vo + 
2(1 + 

Figure .̂,9.' MesA eiampZe. 

(V'l + V's + /)AV'2 + ^AV'4 + — 2(1 + /)A)V'o) (3.24) 

'̂ Sec boimdaiy condition (3.18) 
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with: 

# : previous value of at point 0 
a Aa; 

# A: convergence parameter set to 1.65 . 

This calculation is repeated until — '^ol ^ , for each time-step, with c as 

the convergence parameter, (e is 10"^). 

3. T h e vor t ic i ty b o u n d a r y loop: 

It calculates the vorticity values at the bottom using the Woods condition (3.19), 

and at the top of the domain using the boundary condition (3.21). 

3.3.5 Convergence cr i te r ia 

# A convergence criterion is applied on the time-step A t (Roache, 1972): 

# The Courant condition for both axes must also be satisfied: 

+ (3.26) 
Aa; A^ -

3.4 Algorithm for a rippled bed case 

The equations and the boundary conditions used in the model have to be modiSed 

for the case of a rippled boundary. 

3.4.1 Modi f ied equa t ions 

A wavy bottom profile is considered, described by the following equations: 

= Y 8 m ( / c ; n , (3.27) 

2/' = :^cos(A:;r), (3.28) 



where /i* is the ripple height, A:* is the ripple wavenumber and is a dummy variable^. 

The bed profile will then have crests sharper than troughs, as observed for real sea 

beds (Sleath, 1984a). The dimensionless ripple wavelength Zr and height are 

and the dimensionless ripple wavenumber is: 

In order to solve the equations (3.6) and (3.7) a new orthogonal coordinate system 

(î , ?;) is used: 

a; = ^ 
h 

sin(A:r^), 

h 
2/ = ?7 + y e '"''cos(A;r^). 

(3.29) 

(3.30) 

This system will map the sea bed profile into the line ?; = 0. The real domain is 

shown in figure 3.4. 

^ /me o/ r| 

AVze q/ 
co/wfanf 
^ X 

Figure m reaZ (fomam. 

By substituting (3.29, 3.30) into (3.6, 3.7), we get the new system of equations: 

(3.31) 

^Examples of ripple proxies obtained with the formulas (3.27) and (3.28) are shown in figure 2.14, 

section 2.7.2. 
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where J is the Jacobian of transformation 

p . 3 , ) 

With (3.29) and (3.30), it follows that: 

J . # 4 . (3-33) 

J = 1 + hik^e-"'-" - h,Ke~'''''coe{k,.()- (3.34) 

The velocity deGnitions are also changed to: 

9^ 9?) 9a; 

Then with the Cauchy-Riemann equations 

9z _ ^ 91 91/ 

9?) 9î  

9?7 9?7 
9 r 9;/ 9?/ 9a; 

and formula (3.33), we can write: 

9,̂  9/7 19% 1 % 

<92/ J J 9?;' 

_ 1 _ 1 

9a; J 9;; J 9^ 

After substitutions, (3.35) and (3.36) become: 

1 / 9 ^ 9?/ 9'^ 9a; 

J19; ; 9^ 

The parameters ^ and ^ are calculated from deGnitions (3.29) and (3.30): 

(3.35) 

= (3-36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.42) 

| | = l - ^ e - ' " > c o s ( M ) , (3.43) 

| | = - ^ e - ' " s m ( t , { ) . (3.44) 
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3.4.2 Disc re te fo rmula t ion 

As done in section 3.3.1, equations (3.31) and (3.32) can be expressed in a discrete 

form using a Snite-diEerence scheme. Each term 6om these equations can be expressed 

as a Enite-diEerence. The discrete form of each term is: 

(3.45, 

r . r (3.46) 

k r (3.47, 

" • • " 2 A . r ' " ' ( ' - ' ' I 

c^i+i J - J + ^ . 

Equation (3.31) can then be expressed in its discrete form: 

+ At[v4] (3.52) 

where [v4] is the discrete form of the right-hand side terms of equation (3.31), all 

expressed above. The discrete form of the Poisson equation (3.32) is: 

^ - + ^ ) • 

3.4.3 In i t ia l condi t ions 

Initial conditions similar to the 8at bed case are used (section 3.3.2), except for the 

domain size. A few other initial conditions need to be defined: 
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# The ripple wavelength and ripple height are defined. 

# The real domain length is then deEned equal to a ripple wavelength, while the 

domain height is a fraction of the ripple wavelength (typically 2/3). 

# The mesh sizes A?; and are calculated with /r, and the number of points 

defining the grid. 

3.4.4 B o u n d a r y condi t ions 

1. On t h e b o t t o m of t h e doma in 

# The stream function is nuU for = 0 

^0 = 0. (3.54) 

# A Woods condition^ similar to the Hat bed cage is applied for the vorticity: 

2. On t h e t o p of t h e domain : 

The horizontal velocity imposed at the top of the domain is: 

— = (7ocos((Tt). (3.56) 

This imposed velocity represents the wave-induced velocity in a shallow wa-

ter cage, where it is considered that the wavelength of the wave is much larger 

than the water depth and the ripple wavelength. On the scale of a ripple 

wavelength, it is considered that the Huid is oscillating uniformly^, through 

the entire domain. Therefore, the term /ca; in cos(crt — Â a;) disappears, and 

so does the steady drift term itg. 

^see boundary condition (3.19) 

^See figure 2.3 
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# The boundary condition (3.21) for the vorticity remains unchanged. 

3. On t h e sides of t h e domain 

The boundary conditions are similar to the ones applied in the flat bed case (see 

section 3.3.3). 

3.4.5 M a i n loops 

The structure of the calculation loops is similar to the Sat bed case model (see 

section 3.3.4). 

3.4.6 Convergence cr i te r ia 

The convergence criteria are similar to the ones applied in the flat bed case (see 

section 3.3.5). 
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Chapter 4 

Model results 

4.1 Introduction 

In this chapter, results obtained with the numerical model are presented. Conver-

gence tests have been done for the cage of a Gat bed, using the available theory for 

comparison. The model output is then compared to experimental data for the case of 

a flat bed. Discrepancies between the experimental data, the model output and the 

theory are discussed and further investigations are done by bringing some modifica-

tions to the model. Then the model is run for rippled bed cages and the results are 

compared to another numerical model and a set of experimental data. Particular 8ow 

features are then studied such as the steady streaming recirculation cells above the 

rippled boundary^ and the mean Eulerian velocity proGles at diSerent locations along 

the ripple. 

4.2 Flat bed case 

Convergence tests on the model have been done for the case of a Sat bed, as the 

existing theoretical solution offers a convenient base for comparison. The model output 

^Sce section 2.5.2. 
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is then compared to a set of experimental data in order to check the model ability to 

predict the Gow features over a Hat bed, before testing it for rippled bed cages in section 

4.3. Mean Eulerian velocities from the model are also compared to the theoretical 

solution. Finally, tests on the vorticity behaviour at the top of the computed domain 

are done to explain the discrepancies obtained when the modelled and the experimental 

mean Eulerian velocities are compared. 

4.2.1 Convergence t e s t s 

Grid size 

By changing the number of points 2m &nd deSning the calculation grid^ along 

the horizontal and vertical axes, the influence of the mesh sizes Aa; and A^ is checked 

against the maximum time-mean velocities and the time-mean velocity proxies (see 

figure 4.1). Convergence is quickly reached and a grid of size 80 by 80 points will then 

be chosen for most cases. 

T ime- s t ep 

In figure 4.2, the mean vorticity over a wave period is plotted with decreasing 

values of the time-step At. Convergence is reached for A( < 2?:/12000. 

4.2.2 Compar i sons w i th expe r imen ta l d a t a 

E x p e r i m e n t a l charac ter i s t ics 

The experimental data have been kindly provided by Moua^e (2001). Two series 

of experiments have been conducted by Mouaze (2001) in two diSerent wave Humes, 

both aiming to measure the velocity held in the bottom boundary layer under waves. 

One series of experiment was set in the Franzius institute wave Sume in Hanover and 

the other series was set in the university of Caen wave flume. The dimensions for the 

^see Sgure 3.1 
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Hanover wave Hume are: 120 m in length, 2.2 m in width with a stiU water depth of 

1.0 m and a Soor roughness of 0.8 mm. In Caen, the wave Sume is 22 m long, 0.8 m 

wide with a stiH water depth of 0.5 m and its Goor can be considered aa smooth. Both 

wavemakers have active absorption control; rejections from the beach were around 

10% in the Hanover Hume and much smaller in the Caen Hume. The experimental 

Aow characteristics are shown in table 4.1. Mouaze (2001) optically determined the 

Nikuradse coeGcient With the diagram from Kamphuis (1975), it waa then possible 
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to determine the bed friction factor and then the How regimes. Prom Mouaze (2001), 

the Sow is always laminar for the Caen cases, and in a transitional state for the Hanover 

cages. 

Case T(5) h (m) L (m) 'Uo (m.a ^) 

CI 1.33 0.08 2.39 0.1045 

C2 1.5 0.13 2.82 0.1953 

C3 1.8 0.16 3.57 0.2822 

C4 2.2 0.16 4.53 0.287 

HI 2.0 0.15 5.21 0.1538 

H2 3.0 0.15 8.69 0.196 

H3 3.5 0.22 10.36 0.2194 

H4 5.0 0.18 15.24 0.2655 

7b&/e .B^penmeTz^a/ /Zow cAomc^erzs^zcayrom Mouaze 
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M o d e l i npu t 

All the parameters needed to run the computer model (wave period, wavelength, 

wave-induced velocity) are taken from the experimental data. In order to get a velocity 

deGnition at the top of the domain close enough to the experimental profile, a Fourier 

analysis is made on the experimental velocity Guctuation (during a wave period) at a 

certain depth (corresponding to the computed domain height, typically 10 mm) and 

the fundamental harmonic and other signiGcant subharmonic coeGcients are found. 

The velocity definition will then be: 

= %a+wocCos(<7(—A:a;)+'Uog8in(o-t—A:a;)+wicCos2(iTt—A:z)+'UiaSin2(of—A:^;)... (4.1) 

where %oc and are the maximum velocity amphtudes of the fundamental mode 

for the cosine and sine terms respectively; -uic and are the maximum velocity 

amplitudes of the first subharmonic for the cosine and sine terms respectively. 

is the mean experimental velocity calculated for one wave cycle at a height of 10 mm, 

and will be used as the steady component value. 

Compar i son resu l t s 

9 Gent le case: C a e n l 

In this case, the wave period is 1.33 a and the wavelength is 2.39 m. Figure 

4.3 shows that the velocity profile on top of the studied domain (y = 10 mm) 

can be modelled by a simple cosine shape 

K — 'Ug + Wo cos((7t — A:z) 

where Wo = 0.1045 m.a^^ and = 0.0031 m.g^^. The modelled velocity prohles 

for different wave phases, from the bottom to an elevation of 10 m m are shown in 

figure 4.4 and compared to the experimental data and the proGles calculated from 

the second order theory (see Sleath (1972) and section 2.4.2). Agreement between 

the experimental data, the theory and the model results is good. However, if 
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the mean Enlerian velocity is calculated for one wave period, agreement is less 

satisfactory, as shown in Ggure 4.5. The mean Eulerian velocity proEles from the 

experimental data and the Longuet-Higgins theory^ are close in the vicinity of the 

bed. It has to be noted that the mean Sow calculated from the model cannot be 

similar to the theoretical mean Eulerian Sow ag the velocity imposed at the top 

of the computed domain uses the steady component taken from the calculation 

of the mean experimental velocity at i/ = 10 mm and not the theoretical value 

for the steady drift in these conditions^. In this case its = 0.0031 while 

the theory predicts a value of 0.0046 

e S teep wave Case: Caen 4 

In this case, the wave period is 2.2 a and the wavelength is 4.53 m. Figure 

4.6 shows the modelled velocity profile on top of the studied domain compared 

^See section 2.4.2. 

^At the top of the domain, the mean theoretical Sow tends to 
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correspondmp wa^e pAaseg oTie a/iowm m (Ae gmoZZ gmpAs pZo^^mg <Ae (op Aonzom^oZ 

neZocẑ !/. 

to the experimental and velocity. The modelled velocity is 

If = itg +%occo8(o-t — /ui) +woa 8in(crt — ka;) -t-'Uic co8 2(crt — /ca;) + ... 

... + cos 8(o'( - A:a;) 4- sin 8(i7( — /ca;) 

where itoc = 0.287 m.s"^ and = 0.0105 m . 5 ' \ Eight frequency components are 

needed in order to Gt closely to the experimental velocity. The velocity proEles 
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for different wave phases, from the bottom to an elevation of 10 mm are shown 

in Ggnre 4.7. Agreement is generally good, but the overshoot velocity very close 
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to the bottom predicted by the model can be diSerent in magnitude from the 

experimental results. For a few wave phases, the velocity profiles calculated with 

the second order theory are signiGcantly different from the experiments and the 
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model. This can be explained by the fact that in this cage the actual Sow has 

components at harmonics higher than the second. If the mean flow for a wave 

period is calculated (see Ggure 4.8), the proGles from the experiments and the 

model agree well at the top of the boundary layer, but as pointed out in the 

phase to phase comparison, the overshoot predicted by the model differs from 

the experimental results. The experimental measurements show that the theory 

overestimates the value of the mean 8ow on top of the domain, although the 

overshoot velocity predicted by the theory is close to the experimental value. 

From the Fourier analysis 72, = 0.0105 while the theory gives a steady 

drift equal to 0.03 so nearly three times larger. 

Theory 
Exp 
^̂ odel 

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

Figure .̂ .1$.' wane c&se - Coe^ - Meozi Comparzson MotfeZ 

# R o u g h b e d a n d s teep wave Case: Hanover 4 

In this case the wave period is 5.0 a and the wavelength is 15.24 m. Figure 

4.9 shows that the velocity proGle on top of the studied domain can be modelled 
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by 

= "Ug + iiQc co8(cr( — A:3;) + 8m(o-( — + itic cos 2(cr( — /ca;) + ... 

... + t/7c cos 8(cr( — /ca;) + 7̂ ?, sin 8(cr^ — A:a;) 

where = 0 . 2 6 5 5 m . a n d = — 0 . 0 1 5 2 m . A g a i n , eight frequency com-

ponents were used and agreement is generally good. The velocity prohles for 

71/2 371/4 71 57C/4 371/2 77i/4 

.̂P." coae - fTa/iO'uer o/ (Ae domam. 

ComparzgOM Mode/ / ^ipeTime^W 

diEerent wave phases, from the bottom to an elevation of 10 mm are shown in 

Hgure 4.10. Agreement between the model and the experiments is generally good 

but some signiEcant discrepancies appear when compared to the second order 

theory for reasons given earlier. The mean Eulerian flow calculated from the 

model, the experiments and the theory are shown in figure 4.11. The experi-

mental mean velocity and the modelled mean velocity are both negative on the 

top of the domain, as opposed to the positive mean How predicted by the theory. 
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The mean experimental velocity at ^ = 10 mm is = —0.0152 m.g^^ while the 

theory predicts = 0.0173 m.a"^. 
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4.2.3 M e a n Eu le r i an d r i f t : model , e x p e r i m e n t a n d t h e o r y 

C o m p a r i s o n t h e o r y - mode l 

In section 4.2.2, when the model is compared to the experimental data, the mean 

experimental velocity value at the top of the domain is used in the velocity definition 

imposed on top of the numerical domain. Similarly if the top mean velocity predicted 

by the theory is used in the model as the constant component of the velocity 

imposed in the computed domain, the model gives a mean velocity proGle identical to 

the theoretical mean prohle. When a loop minimizing the top mean vorticity is used in 

the model^, results from the model are not strictly identical but are very close to the 

theory. Figure 4.12 shows the comparison for the case Hanover 4. The model profile is 

not strictly superposed on the theoretical curve as it would be the case if the theoretical 

steady component of the velocity were imposed as the steady part of the velocity 

^See section 3.3.3. 
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definition in the model. However, the difference is very small when compared to 

rmodeZ r rt/ieo _ r rn 

is of order 10"^ where and (7^^^ are the maximum velocity amplitudes from the 

theory and the model respectively. It means that the difference is neghgible in terms 

of the magnitude of the instantaneous velocity proGles. If only the Eulerian velocity is 

considered, the diSerence is stiH acceptable as 

rmodef 
^ 77WLC 

r/̂ /ieo 
/IT 

0.055 

which means that there is a maximum error of 5.5% between the two mean proGles. 

However, a more important issue is that, as shown in Egure 4.12, agreement between the 

Theory 
Model 

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 

TAeoTT/ / Mo(feZ mmimzzed o/ fAe domom. 

experimental and the theoretical mean velocity is not good; the experimental conditions 

might not respect the theoretical assumptions such as a vanishing vorticity at the top 

of the boundary layer. 
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C o m p a r i s o n expe r imen t s - mode l w i th imposed vo r t i c i t y 

When the instantaneous velocity profiles from the experiments and the second order 

theory^ are compared, acceptable agreement is reached (figures 4.4, 4.7 and 4.10). 

All the instantaneous velocity prohles from the Hanover and Caen caaes have been 

compared to the second order theory in Mouaze et al. (2002), and good agreement 

was reached. However, as previously shown, there is usually a signiScant diSerence 

between the experimental data and the Longuet-Higgins theoretical solution for the 

mean Eulerian velocity value at the top of the domain. As explained in section 3.3.3, 

the theory assumes a zero vorticity at the top of the boundary layer, giving a vertical 

velocity profile. When the mean Eulerian velocity is calculated, several experimental 

cases feature a slope at the top of the measured domain. This might be explained 

by the presence of a significant mean vorticity in this area. In order to study this 

possibility, the top boundary condition (3.21) haa been modiSed. Instead of minimizing 

the vorticity by trying diSerent values of a mean vorticity is imposed at the top of 

the computed domain. This mean vorticity is calculated from the experimental data, 

and is deducted from the predicted slope obtained with the corresponding vorticity. 

It is assumed that imposing such a vorticity could induce a slope in the computed 

mean Eulerian velocity proGle similar to the experimental one. Unfortunately, the 

results obtained with an imposed vorticity are not convincing so far. An example is 

shown in figure 4.13, where the slopes from the modelled and experimental profiles 

are close and the overshoot amplitudes are of same order. However in order to reach 

such a agreement, in this case, the steady component of the velocity Kg has to be very 

diEerent from the experimental one. Further investigations need to be done on this 

subject. When the present numerical model is compared to the experimental data, 

the mean Eulerian velocity can either have a slope close to the experimental one but 

with a steady component usually very diSerent from the top value of the mean 

experimental velocity or it can feature a steady component close to the top value of 

^See section 2.4.2 and Sleath (1972). 



the meaJi experimental velocity but will not present a similar slope. 
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4.2.4 Discuss ion 

1. Concerning the comparisons of the instantaneous velocities, the model showed 

good agreement with the experimental data for the prediction of the wave-induced 

oscillatory flow for weak conditions (small wave height, small wavelength). In 

strong flow conditions, diSerences appear on a phase to phaae comparison despite 

a general behaviour quite similar for a wave period. This problem might be 

explained by the following factors: 

# The roughness of the floor in the Hanover 8ume is 0.8 mm, but as no 

element of roughness has been included in the boundary conditions of the 

model, discrepancies have to be expected. 

# The presence of tiurbulence, especially in the Hanover flume can also induce 

discrepancies. 
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2. Concerning the m e a n E u l e r i a n velocity: 

# Comparisons between the experimental and the modelled mean velocity pro-

61es highlight the problem of the velocity deGnition in the model. The veloc-

ity deGnition appears to be a key boundary condition, and the combination 

of a steady component with a series of sines and cosines can be diScult to 

set properly when compared to experimental data. 

e Discrepancies between the experimental and the theoretical mean Eulerian 

prohles might be explained by a weak but signiGcant vorticity existing out-

side the considered domain in the experimental case when the theory as-

sumes a vorticity vanishing at the top of the boundary layer. In none of 

the studied cases did the top value of the mean experimental velocity agree 

with the theoretical top velocity. This might also be explained by the fact 

that the vorticity influencing the Bow is the vorticity convected from the 

upstream and downstream of the domain, taking over the weak vorticity 

generated in the bottom boundary layer. It appears that the boundary 

layer solution from Longuet-Higgins (section 2.4.2) may not be adapted for 

the present cases. 

# The discrepancies previously discussed could also be explained by the pres-

ence of a counter 8ow in the wave Hume, induced by the Stokes drift. 

This counter Gow localized outside the boundary layer could induce a non-

vanishing vorticity at the top of the measured domain. Progressive wave 

trains travelling along the Gume independently from the incident waves and 

disturbances caused by the wave paddle can also be sources of discrepancies 

but are diGicult to quantity. 
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4.3 Rippled bed case 

4.3.1 I n t r o d u c t i o n 

In this section, the model output is compared to another numerical model (Blon-

deaux and Vittori, 1991), and experimental data (Marin, 1992). For both cases, the 

present model is run using all relevant parameters being as close as possible to the 

values used in the previously mentioned studies. These parameters are the ripple char-

acteristics (height and wavelength), the wave period and the maximum amphtude of 

the wave-induced velocity. Then, in section 4.3.4, a series of runs is done for different 

flow conditions, in order to study the recirculation cells mentioned in section 2.5.2. 

Finally, in section 4.3.5, the mean Eulerian flow calculated by the model is studied at 

diSerent locations along the ripple. 

4.3.2 C o m p a r i s o n w i th B l o n d e a u x a n d V i t t o r i ' s numer ica l mode l 

This comparison uses the work from Blondeaux and Vittori (1991) that was aimed at 

studying the vorticity dynamics over a rippled bed in oscillatory Sows. The comparisons 

presented here are mainly qualitative, as the plotted results used are just taken from 

the figures available in their article. 

F i r s t case 

The first comparison is made for ^ = 50. The amplitude of Suid displacement 

over the ripple wavelength ratio is equal to r = 0.75 and the ripple slope is Sr = 0.15. 

Figure 4.14 shows the vorticity development for different wave phases as computed 

by the present model and can be compared to Ggure 4.15 showing the results from 

Blondeaux and Vittori (1991) for the same case. In the same way, hgure 4.16 shows 

the stream function evolution as computed by the model and can be compared to the 

results from Blondeaux and Vittori (1991) shown in Ggure 4.17. Figure 4.18 shows the 

model results for the vorticity contours after several wave periods and is compared to 
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figure 4.19 from Blondeaux and Vittori (1991). 
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Good agreement is generally reached in these comparisons, with a very close match-

ing of the vortices development with respect to the wave phaae. However, in figure 4.19 

(Blondeaux and Vittori), after 5 wave periods, secondary vortex structures seem to laat 

longer while they have already vanished in hgure 4.18 (present results). 

Second case 

For this case, Ag is equal to 100, while r and remain unchanged. Vorticity 

contours at diEerent wave phases as computed by the present model are shown in 

Ggure 4.20 and can be compared to the results from Blondeaux and Vittori (1991) 

shown in figure 4.21. For such a large Ag, the comparison reaches a good agreement 

for the timing of the vortex generation. Nevertheless, the present results show vortices 

vanishing or getting washed over the disturbed layer quicker than for the results from 

Blondeaux and Vittori (1991). 

Discussion 

For both cases, the comparisons between the results from the model described in 

chapter 3 and those from Blondeaux and Vittori (1991) reach a good agreement. Both 

models show a vortex generation for each half wave cycle, but the vortices' lifetime 

seems to be longer for Blondeaux and Vittori's model. These comparisons stay however 

quahtative. In the next section, as a step further in the validation of the computer 

model, a set of experimental data are compared to the model output. 

73 



? 5 4— 

9.3 

t.5 

-Z5 -t-
0 

(el 

n 18 ^ 30 
.*: 

(A) 

Figure 4-15: Vorticity contours; Blondeaux and Vittori (1991) results (figure 6, p273) -

first case; Au)=0.15; (—) clockwise vorticity; (~) counterclockwise vorticity - Rs = 50 ; 

r = 0.75; s^ = 0.15; (a) t — ir/A; (b) t = TX/2; (C) t = 37r/4; (d) t = vr; (e) t = 57r/4; 

= 37r/2; t = 77r/4; t = 27r. 
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Figure 5'^reom/me fzme (fei;eZopmeM<; MumencG^ mo(feZ - caae; = 50; 

r = 0.75; 5r = 0.15; ( = 7r/4; ( = 7r/2; ( = 37r/4; ^ = 7r; (̂ ê ) t = 57r/4; 

( = 37r/2; ( = 77r/4; ( = 27r. 1=3;'/%*; !/=2/y<^*. 
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Figure ^.17; Streamline time development; Blondeaux and Vittori (1991) results (figure 

8, p276) - first case; Rs = 50 ; r = 0 . 7 5 ; Sr = 0 . 1 5 ; (a) t = TT/A; (h) t = v r /2 ; (c) 

t = 37r/4; (d) t = tt; (e) t = 57r/4; ( f ) t = 37r/2; (g) t = 7V/4; (h) t = 27r. 
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Figure 4-18: Vorticity contours; numerical model - first case; ALO=0.15; (—) clockwise 

vorticity; ( - ) counterclockwise vorticity - Rs = 5 0 ; r = 0 . 7 5 ; Sr = 0 . 1 5 ; (a) t = 27r; (b) 

t = 47r; (c) t = 67r; (d) t = I O t t . X=X'/S*; y=y'/5*. 
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Fzgure contours; TieguZts .Zg, 

- first case; Auj=0.15; (—) clockwise vorticity; ( - ) counterclockwise vorticity - Rg = 5 0 ; 

r = 0.75; Sr = 0.15; (a) t = Itx; (b) t = 47r; (c) t = Gir; (d) t — lOvr. 
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Figure 4.20: Vorticity contours; numerical model - second case; ALO—0.15; (—) clock-

wise vorticity; ( - ) counterclockwise vorticity - Rg = 1 0 0 ; r = 0 . 7 5 ; = 0 . 1 5 ; (a) 

t = 7 r / 2 ; (h) t = TT; (C) t = 3 % / 2 ; (d) t = 2TT. X=X'/8*; y=y'/6*. 
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Figure 4-21: Vorticity contours; Blondeaux and Vittori (1991) results (figure 1, p275) 

- second case; Auj=0.15; (—) clockwise vorticity; ( - ) counterclockwise vorticity - Rs = 

100; r = 0.75; Sr = 0.15; (a) t = n/2; (h) t = vr; (c) t = 3 ^ / 2 ; (d) t = 2%. 
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4.3.3 C o m p a r i s o n wi th M a r i n ' s e x p e r i m e n t a l resul t s 

This comparison uses the experimental data from Marin (1992), kindly provided for 

this purpose. The experiments consisted in using Laser Doppler Velocimetry to study 

the vorticity dynamics in the vicinity of a rippled bed subjected to water waves. The 

rippled bottom was cut out from an aluminium plate. Formulas (2.33) and (2.34) were 

used to model the surface. The rippled section was 1 m, long placed at the bottom of a 

9 m long wave Hume. The velocity Geld has been mapped over a ripple wavelength, for 

diSerent wave phases. The Reynolds number was equal to 58, with a wave period 

of 1.08 5, a wavelength of 1.46 m, while the ripple height waa equal to 3 mm and 

the ripple wavelength to 18 mm, giving a ripple slope = 0.17. The Sow and ripple 

characteristics were close to the 6rst case studied by Blondeaux and Vittori (1991). 

Veloci ty fields 

The 5gures 4.22 to 4.27 are comparisons of the model output with Marin's exper-

imental data, representing the velocity held over the entire domain at a certain wave 

phase. The vortex evolution can be seen, from the beginning of the second half of the 

wave period (figure 4.22) to the end of the wave period (figure 4.27). The represented 

domain height is 10 mm above the ripple crest. 

M e a n velocity profiles 

The mean velocity prohles at the ripple crest, at mid-distance between the crest and 

the trough in the ripple slope and at the ripple trough are calculated from the model 

and compared to Marin's experimental data in figure 4.28. Agreement is acceptable for 

the diSerent locations except for the prohle above the trough where the model predicts 

a positive profile very close to the bed while the experimental mean velocity is negative. 

This type of discrepancy could not be noticed in the comparisons of the instantaneous 

velocity helds as the velocities involved are much larger. In the intermediate location, 

the experimental overshoot amphtude takes place in a layer thicker than the model 

prediction, but the modelled prohle follows a curve similar to the experimental one. 
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Figure Mean /̂e/oczf?/ proyi/ea a^ot/e TippZe cres^; mW-

(fw^oMce 6e(weeM (/le cres^ on(f (Ae ^rougA; o6o(;e Âe (rou^/i. ea^penmeM^g, 

mo(feZ; Marzn'a eiperzmeTiW coMdẑ mng." Sr = 0.17; r = 0.95; T = 1.08 s. 

Discussion 

* It is worth noting that the matching of the data in their exact location is approx-

imate 85 it wag not possible to define a grid for the model strictly similar to the 

measurement grid used for the experiments. 

# The major diEerences take place on the bottom of the domain. The experimental 

velocities close to the bed are usually smaller than the modelled velocities. The 

layer of strong acceleration in the How is usually thicker for the model than for 

the experiments. This layer is also mainly located above the ripple crests for the 

model, but it can be stretched along the entire ripple length for the experiments. 

This difference might be partly explained by the fact t ha t the model does not 

consider any bed roughness, while in the experimental caae, even though being 

weak, a bed roughness exists. 
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# A simple cosine shape for the imposed velocity seems to match correctly the ex-

perimental velocity at the top of the studied domain. The shallow water approx-

imation (section 3.3.3) appears to be accurate enough to model the wave-induced 

velocity in these conditions. 

# When the mean velocities from the model and the experiments are compared, 

good agreement is not always reached, especially above the ripple trough. These 

discrepancies are negligible when the instantaneous velocities are considered. 

4.3.4 S t e a d y s t r e a m i n g c i rcula t ion cells 

As pointed out in section 2.5.2, for a weak How oscillation amplitude compared 

to the ripple wavelength, and usually for a gentle ripple slope, steady streaming cells 

tend to appear. These cells are regions of closed streamlines for the mean Gow .̂ The 

model haa been tested for a medium ripple slope^ = 0 1 and for a very weak orbital 

amplitude to ripple wavelength ratio r = 0.18. Streamlines of the computed mean 8ow 

for a wave period are shown in figure 4.29. The double structure of circulation cells 

is shown. This test uses the same physical parameters (r, 5^, 3 )̂ as the experimental 

test shown in section 6.2.1, figure 6.5. Figure 4.30 shows the streamhnes for conditions 

similar to the previous case except for the orbital amplitude to ripple wavelength ratio, 

increased to r = 0.33. According to Honji et al. (1980), if r is signiGcantly increased, 

only the upper pair of cells should be left. But from figure 4.30, it seems that only the 

lower cells are present. The large upper pair might stiU exist bu t outside the computed 

domain. This case does not agree with Honji et al. (1980) as the lower pair of cells 

does not seem to have changed for a value of r nearly doubled from the cage shown in 

Sgure 4.29 where the double pair is visible. 

^Scc section 2.5.2 

^Corresponding to the medium slope used in the present experimental study. See table 5.1 in 

chapter 5 (experimental arrangements). 
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Fzgwe ce/Zs; ?ippZe gZope = 0 1; r = 0.18; wa2;e 

peno(f r = 1.43 a; <5/Zr = 0.0176. 

20 30 40 

%/8 

.^.^0; a^Trammg czrcWa^zoTi ce/k; 7ipj)k gZope 5^ — 0.1; r = 0.33; wai;e 

penocf T = 1.43 a; ^/Zr = 0.0176. 

Another test is mn for a weak ripple slope^ 5̂  = 0.05, a very weak r = 0.09 and 

a wave period T = 1 s. Streamhnes of the mean computed Sow for a wave period are 

^Corrosponding to the weakest slope used in the present experimental study, see table 5.1. 
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shown in figure 4.31. The upper pair of circulation cells is so large that only the lower 

part of the cells can be seen. The lower pair of cells is present, but their disturbed 

shape might indicate that even for such a weak r, the upper cells begin to make their 

way to the rippled boundary pushing away the lower pair of ceUs. The model has 

also been run for the same ripple slope, the same wave period but for an increased 

r = 0.31. Streamlines of the mean computed Gow for a wave period are shown in Sgure 

4.32. This test uses physical parameters similar to the experimental conditions of the 

8ow visualization shown in section 6.2.1, Ggure 6.6. For this case, r is larger than for 

the previous caae (r = 0.31 instead of r = 0.09) and only one pair of circulation cells 

appears. In these conditions, according to Honji et al. (1980), the lower vortex layer 

is usually so small that only the upper layer can be seen. However, in hgure 4.32, the 

circulation direction indicates that the only pair of circulation cells left is the lower 

pair. This case would then give better agreement to the results from Sleath (1976) 

shown in section 2.5.2, Ggure 2.10 (a). 

30 40 

%/8 

Fzgwre ceZZa; yippZe gZope 

T = 1 5/ = 0.0148. 

0.05/ r = 0.09; 

The presented numerical results agree well with the analysis mentioned in section 

2.5.2, for the description of streamhnes circulation cells over a very weak slope and for 
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Fzgiire czrcwZâ zoM ceZk; rzppk gZope = 0.05; r — 0.31; wo(;e 

perzW T = 2.5 g; î /Zr = 0.0234. 

a weak Sow oscillation, but as soon as the ripple slope becomes more signiGcant, the 

structures seem to behave diSerently. In the present investigation, the cases studied 

are mainly for slopes of significant steepness, closer to real ripple slopes. The eSects 

of these structures on the mean and instantaneous 8ow need further investigation, 

especially for cases of significant ripple slopes. Such studies are beyond the scope of 

the present work. 

4.3.5 M e a n velocity d r i f t 

A series of mean profiles was computed for a ripple slope = 0.175 corresponding 

to the steepest slope used in the present experimental study^^, and for a wave period 

T = 2 s. Figures 4.33 and 4.34 show the mean velocity proGles for r = 0.31 and r = 0.52 

respectively. The general tendency for an increase in r is an increase in the overshoot 

amplitude^^ of the proSles and the layer where the overshoot is located also becomes 

^°Sce table 5.1, in chaptcr 5 (experimentai arrangements). 

^ În the present cases, the overshoot ampHtudo is the maximum amplitude located close to the 

bottom that exceeds the amplitude at the top of the studied domain. 
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thicker. In these two examples, the velocity overshoot is negative above the crest and 

at mid-slope, but can be either positive or negative in the trough. The proSles at 

mid-slope and above the trough are close to Marin's experimental mean prohles (hgure 

4.28), despite not being for the same Sow conditions but for a ripple slope of same 

order. 

I6r 
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UJJJ/Uq 

Fzgure Tipp/e crea^; (̂ 6̂  mW-

(fwtOTice kWeem (/le creaf (rowg/i; o6o?;e (/le 5̂  = 0.175; r = 0.31; 

T = 2 5. 

Two other tests with wave conditions close to these caaes were also run. The wave 

period is still T = 2 s, but the ripple slope is decreased to Sr = 0.05. Figures 4.35 

and 4.36 show the mean velocity proGles for r = 0.4 and r = 0.54 respectively. 

Both proSles at the crest and at mid-slope feature a negative overshoot, similarly to 

the proHles in hgures 4.33 and 4.34. The profile at the trough features a very weak 

negative overshoot. Regardless to the sign of the proGles, a tendency similar to figures 

4.33 and 4.34 shows an increase of the overshoot amphtudes when r is increased. 

It appears that in all the numerical tests presented, the mean velocity proSles 

above the ripple crest and at mid-slope always featured a negative overshoot. The 
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r = 2 5. 

mean velocity proGles above the trough featured both negative and positive overshoots 

for diEerent How and ripple conditions. 

4.4 Discussion on t h e mode l r e s u l t s a n d compar -

isons 

The computer model results have been compared to da t a from three diSerent 

sources: experimental results for a Gat bed case (Mouaze, 2001), numerical results 

for a rippled bed caae (Vittori and Blondeaux, 1991) and eventually experimental re-

sults for a rippled bed cage (Marin, 1992). In all comparisona, agreement was quite 

good. In the case of a Gat bed, some comparisons raised the problem of the choice of an 

accurate wave-induced velocity deGnition to reproduce the experimental flow at the top 

of the studied domain. The validity of the theoretical solutions for the mean boundary 

layer How and the mags transport velocity hag been questioned. Discrepancies between 

the experimental data and the theory might be explained by an inappropriate choice of 
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theoretical solution. The assumptions made to obtain the theoretical boundary layer 

solution appear to be incorrect when compared to the experimental data from Mouaze 

( 2 0 0 1 ) . 

On the other hand, concerning the velocity de&nition, comparisons with the exper-

imental study from Marin (1992) for a rippled bed showed tha t a simple deGnition for 

the wave-induced velocity in shallow water such ag co s ( (7 f ) could reproduce the 

how at the top of the domain^^. It has also been shown that the computer model can 

predict vortex formation in a very similar way to its real occurrence. However, the 

hfetime and behaviour of the vortices can slightly diSer from the experiments or the 

other numerical model. 

When the mean streamhnes over a wave period are considered, the presence of a 

double pair of steady streaming cells has been shown for a weak ripple slope and a 

weak flow oscillation amphtude to ripple wavelength ratio r . When r is increased only 

the upper pair appears. In the case of steep enough ripples, the lower pair of ceUs is 

stiU present for a signihcant r . An increase in wave amphtude does not give a pattern 

similar to the gentle slope cage as the lower pair does not vanish. Further investigations 

need to be done on the mechanism and the eSect of these structures on the flow. 

The computed mean velocities showed that different proSles could be obtained 

depending on the location along the ripple. Mean velocity prohles at mid-slope always 

featured a negative overshoot near the boundary, with a larger amplitude than the 

profiles above the crest and the trough. For the mean proBles above the crest and 

the trough, velocity overshoots have been found in both directions, but most of the 

profiles above the ripple crest featured a negative maximum velocity, i.e in the direction 

opposite to that of the waves. This study needs to be completed by experiments using 

Laser Doppler Velocimetry or Particle Image Velocimetry in order to get the mean 

experimental velocity prohles at different locations along the ripple for diSerent How 

conditions. Such experiments have not been conducted for the present thesis. 

^^see section 3.4.4 for the velocity definition applied to the model. 
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Good agreement is generally reached in the comparisons between the model and 

the other sources. However, aa mentioned in chapter 2, the wave-induced Sow above 

ripples can have three-dimensional aspects. Therefore, the results from the present 

model have to be treated with caution. To consider the three-dimensional aspect of 

this motion and to provide a wider description of such a Gow, experiments in a wave 

Hume have been conducted. The next chapters present the experiments conducted and 

the results obtained, using the information provided by chapter 2 and the numerical 

results shown in this chapter. 
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Chapter 5 

Experimental arrangements 

5.1 Wave Hume a n d r ippled b e d cha rac te r i s t i c s 

All the experiments have been carried out in the hydrauhcs laboratory of the De-

partment of Civil and Environmental Engineering (University of Southampton). The 

experiments were carried out in a glass-sided wave Hume 17 m long and 0.43 m wide 

internally. The wave generator is of the 8ap type and has active absorption (Sgure 

5.1). The other end of the flume is fitted with foam, in order to reduce wave rejection 

(figure 5.2). During the experiments, wave rejection was lower than 2%. The bed of 

the test section, approximately 9 m long, was composed of different plates, made out of 

PVC plastic sheets, some featuring ripples and others just being flat, all of them being 

smooth. The rippled section which was 1.8 m long, constituted of 5ve rippled panels, 

and wag located in the middle of the tank. The water depth over the test section waa 

0.56 m. A sketch of a top and side view of the wave tank is shown in 6gure 5.3. 

The ripples have been cut out from PVC sheets originally 25 mm thick. The 

surface cutting was done using a computer-linked machine with equations describing the 

rippled surface as the input. These relations are derived from measured experimental 

ripples and are recognized to give a good approximation of natural sea ripples (Sleath 
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Figure 5.1: Picture of the wave-generator. 

Figure 5.2: Picture of the triangular-shaped foam used to avoid wave reflection, fitted 

at the end of the wave flume. 
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(1984a, pl31-133) and section 2.7.2). These equations are: 

hr 
X = ^ 

hr 
2/ = 

(5.1) 

(5.2) 

where hr is the ripple height, kr the wave number and ^ a dummy variable. A photo-

graph of the rippled section is shown in figure 5.4. 

Figure 5.4-' Picture of the rippled section. 

Four different sets of rippled panels were manufactured and used in the wave tank. 

In terms of ripple slope, the range covered goes from a gentle to a steep slope (table 

5.1). In cartesian coordinates, the radius of curvature of a surface is; 

(5.3) 

Then, from formulas (5.1) and(5.2) the radius of curvature of the present ripples is: 

(4 — 4/lr/:r COs(A:r̂ ) + Aptr )^/^ 

2/lrAr(^C08(A:r^) — 

The radius of curvature at the crest, for = 0, is then 

1 (^hrkr — 2)^ 

(5.4) 

Rc (5.5) 
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and the radius of curvature at the trough, ioi ^ = tt/k^, is 

1 {hrkr + 2)2 
Rf. = -

2 
(5.6) 

The radius of curvature at the crest for the present ripples is in the range 3 mm 

< Rc < 28.8 mm. Table 5.1 is a summary of the characteristics of the ripples used 

for the experiments. Figure 5.5 shows the four different ripple profiles used in the 

experiments. 

Ripple set Ir (mm) hr (mm) slope Sr = h r / l r Rc {mm) Rt {mm) 

1 40 2 0.05 2&8 54^ 

2 40 4 0.1 9.5 3&0 

3 40 4.8 OJ^ 6.6 3&0 

4 51.4 9 0.175 3 3&8 

Table 5.1; Experimental ripple characteristics. 

Figure 5.5: Ripple profiles used in the experiments obtained with formulas (5.1) and 

(5.2); (...) Sr=0.05; (- -) 5^=0.1; (-) = 0.12; ( ) Sr = 0.175. 

5.2 Technique of visualization 

Flow visualizations were carried out with a system releasing a fluorescent mixture 

through a hole located at a ripple trough, in the middle of the rippled section. A 

bottle was fitted with a 2 mm diameter flexible tube at its bottom. The tube was 

placed underneath the false floor, in the wave tank, and led to a copper pipe of 1 
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mm diameter going through the rippled panel. With the bot t le placed above the wave 

tank water level, the dye was released at a satisfactory constant rate, controlled by a 

valve. The mixture used for the flow visualization was obtained by adding few drops of 

fluorescein to 50 d of water. The temperature difference between the mixture and the 

water in the flume was minimized by the time of travel of t he mixture from the bottle 

to the injection point (around 10 minutes). It seems reasonable to assume than the 

mixture had a density very similar to water. Figure 5.6 is a picture of the dye coming 

out from the hole located in the ripple trough. 

Figure 5.6: Picture of the dye coming through the 1 mm hole. 

The flow patterns were then videoed using a monochrome high speed digital video 

camera (PULNIX TM-6710). Its speed of acquisition is 120 frames per second, for a 

resolution of 648(H)x484(V) pixels. Visualizations were made from the side and from 

above the flume. 

5.3 Wavemaker set-up 

The wavemaker was controlled with a computer generated analogue input signal. 

The wavemaker was programmed to play waves of definite wave periods and wave 



amplitudes. The range of wave period used for the experiments waa 1 to 3.13 g, while 

the wave height (crest to trough) range was 0.8 to 10 cm. 

For large wave amplitudes, a was adopted; when the Sow oscillation was 

too strong, it was not possible to see any flow pattern but a cloud of quickly vanishing 

dye. In order to delay the dye mixing, for strong flow oscillations, the wavemaker was 

programmed to increase the wave amplitude by chosen steps (for a hxed wave period), 

generating an large number of waves at each step, to make sure the flow pattern was 

established. In this way, strong Sow oscillations could be observed, without the dye 

becoming too diluted. The possibility of videoing 120 frames per second in these cases 

was particularly helpful, as patterns could not be clearly seen for a long time. 
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Chapter 6 

Experimental results 

6.1 Introduction 

As explained in chapter 5, Eow visualizations have been conducted in a Hume, over 

a rippled bed, under the inHuence of waves, using a neutrally buoyant dye. The dye 

was released through the bed, so that it could show the How behaviour just above the 

ripples, in a layer very close to the bottom. Experiments have been conducted for four 

diSerent ripple types from a gentle to a steep slope type. For each set of ripples a 

range of wave periods waa used and for each wave period, different wave amplitudes 

were applied. The tests were all videoed from the side and from above the tank, so 

that two-dimensional and three-dimensional patterns could be recorded. 

It is assumed that studying the Sow patterns just above the ripples will help in un-

derstanding the sediment transport and the ripple evolution under various How charac-

teristics. It is also beheved that iden t i^ng diSerent flow regimes occurring above the 

ripples will help in understanding typical ripple shapes and sizes. The images showed 

the presence of circulation cells for weak flow, vortex ejection process above the ripple 

crest for stronger 8ow, two-dimensional instabihties and three-dimensional instabilities 

possibly leading to a significant change in the ripple shape (Sleath, 1984a; Hansen et 

al., 2001a). As the ripples are hxed, no change in ripple shape is possible but by an-
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alyzing significant changes in the flow patterns, speculations can be made about the 

possible bed reactions and the mechanism of the instabilities involved. 

The experiments conducted for this study revealed various types of flow patterns, 

mainly influenced by the ripple slope, the wave orbital amplitude to ripple wavelength 

ratio and possibly the wave period. The wide variety of flow pat terns observed during 

these experiments can be seen in the following figures 6.1, 6.2 and 6.3. For each of 

these figures, the video camera was placed at the side of the tank. Each frame from 

figures 6.1, 6.2 and 6.3 is for a given flow and ripple characteristics. The time at which 

each picture was taken is arbitrary. 

(a) (b) 

Figure 6.1: Side-view of the dye pattern over ripples; npple slope: 0.05; (a) T=3.13 s, 

a-0.02 m; (h) T—2.5s, a=0.01 m; T: wave period, a: wave amplitude. 

It is recalled that only the wave periods, the wave heights and the ripple char-

acteristics are experimentally measured parameters. Parameters such as the orbital 

amplitude and the velocity amplitude have been calculated f rom formulas (2.13) and 

(2.35). 

Important note: in the following sections, time sequences of the flow pattern 

evolution are shown. It is not possible to give the exact wave phase at which each 

sequence starts as the high speed recording was manually triggered and not connected to 

any device enabling the wave phase to be recorded, such as a wave gauge for example. 
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(4 (b) 

(c) (d) 

Figure 6.2: Side-view of the dye pattern over ripples; ripple slope: 0.175; (a) T=2 s, 

a=0.008 m; (b) T=2s, a=0.015 m; (c) T=1.42 s, a=0.022 m; (d) T=1 s, a=0.03 m; 

T: wave period, a: wave amplitude. 

However, sequences of the exact time length of the wave periods considered were isolated 

and studied. Hence, the wave phases shown are only relative wave phases, but in a 

gegwence o/ zmagea o/ one wat/e penW, o/Z o/ 

flow are represented. It is also important to keep in mind that for all the sequences, 

the waves are propagating from the left to the right. This note applies to all the 

sequences showed in this chapter. 
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(a) (b) 

( . 

R 

(c) (d) 

(4 (f) 

<K' 

Figure 6.3: Side-view of the dye pattern over ripples; ripple slope: 0.1; (a) T—3.13 s, a 

=0.015 m; (h) T=2s, a=0.015 m; (c) T=1 s, a~0.03 m. Ripple slope: 0.12; (d) T=2.5 

s, a=0.01 m; (e) T=2.5 s, a=0.015 m; ( f ) T=1.43 s, a=0.015 m; T: wave period, a: 

wave amplitude. 
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6.2 Two-dimensional regimes identification 

The following sections present the main flow patterns obtained during the experi-

ments and discuss the diSerent mechanisms that are revealed. Started from still water, 

each experiment was repeated to check the consistency of the results and avoid possible 

eEects of residual currents. 

Four diEerent regimes are identiGed. Their identification relies on the dye patterns 

observed during the experiments and are restricted to laminar conditions. The cases 

with strong Gow oscillations, when the flow was turbulent and the dye quickly vanished 

or went into a blurred cloud were not studied. Each particular regime is usually 

found when the relevant parameters describing the experimental characteristics are 

in a certain range. These main parameters are: the ripple slope, the wave orbital 

amplitude to ripple wavelength ratio and the wave period. The classihcation of these 

regimes wiU rely on these parameters. It is worth recalling tha t the orbital amphtude 

to ripple wavelength ratio is deSned as 

r = ^ (6.1) 

and the ripple slope de&nition is: 

(6.2) 

The Taylor number is also believed to be a relevant parameter for three-dimensional 

flows but it will also be used in this section for convenient comparison: 

T. = (6.3) 

This definition is equivalent to formula (2.32). The parameter is used as the dimen-

sionless form of the wave period: 

(6.4) 
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6.2.1 S tab le mode : "roll" p a t t e r n 

For a small r in the range 0.095 to 0.8 (mean value r = 0.26), structures looking 

like cells or rolls will appear on each crest. The rolls will move slightly back and forth, 

oscillating with the wave-induced Sow. These structures are very stable and typically 

two-dimensional. They are obtained for a very weak flow oscillation. To obtain this 

pattern, the steeper the ripple slope is, the weaker the orbital amplitude must be. The 

wave period seems to have a minor influence as the roll structures were obtained for 

any of the periods tested for a /? in the range 32 < /3 < 3016. However, for the steepest 

ripple slope, Sr = 0.175, the pattern was only obtained for t h e longest wave periods 

corresponding to = 10.45 and /3 = 13. Figure 6.4 plots the Taylor number range with 

respect to r for which the roll structures are obtained. This regime is mainly observed 

for a ratio Ta/r < 0.9. 

Figure 6.4-' Ta/r range with respect to r for which the roll structures are observed. The 

AonzonfoZ /me w /o r mauoZ Ae/p 

Figures 6.5 and 6.6 show two typical sequences for this regime, during a wave period. 

As can be seen on both figures the structures are repeated on each crest. They were not 

observed upstream of the dye release point, as the dye could only spread downstream 
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following the steady drift^ motion. Their shape is influenced by the ripple slope: for a 

steep ripple slope, or a strong curvature of the boundary, the rolls wiU be very round, 

as shown in 6gure 6.5. But for a weak ripple slope, or a weak boundary curvature, the 

rolls will have a more elliptic and stretched shape, as shown in figure 6.6. 

These cells might be the result of a steady streaming induced when the Sow oscil-

lation amplitude is much smaller than the ripple wavelength. According to Honji et 

al. (1980), in such a case the Gow does not separate and the regime would correspond 

to a rolling-grain^ motion if the bed was movable. Honji et al. (1980) pointed out 

that the steady streaming above ripples for a weak Sow oscillation waa characterized 

by a double structure consisting of an upper and a lower pair of counter-rotating cir-

culation ceUs^. In the present experiments, even in the presence of dye injected far 

above the ripples, no upper pair of vortices hag been visualized and only one cell was 

present, counter-rotating from the wave propagation direction and oscillating around 

each crest. Honji's experiments were done in an oscillating water tunnel, while the 

present experiments were conducted in a wave Hume. Therefore, there is at leaat one 

significant diSerence between the two types of oscillating How: waves propagating in 

a wave Hume will generate a steady drift while no such feature should be present in 

a How generated in an oscillating tunnel. This difference might be very important in 

the case of weak How oscillation, where the velocities close to the bed are small and 

could be significantly inHuenced by the steady drift. Moreover, according to Kaneko 

and Honji (1979), when the ratio of the amplitude of the wavy wall to the thickness of 

the Stokes layer is increased, the upper pair of circulation cells makes its way towards 

the boundary in the gap between the lower pair of cells, at the trough, pushing the 

lower cells apart. In the present experiments, this ratio is always larger than any of 

the ratios considered by Kaneko and Honji (1979), possibly also partly explaining the 

diHerences. The computer model presented in chapter 3 hag been run for How and 

^Sce scction 2.4 

^Scc scction 2.7.1 

^See also Kemeko emd Honji (1979) and other references in section 2.5.2. 
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(a) (b) 

( 4 (d) 

(&) (0 

Figure 6.5: Stable regime - roll patterns; ripple slope = 0 . 1 ; r = 0 . 1 8 ; (3 = 2 3 1 ; (a) 

at = 0; (b) at = 27r/5; (c) at = 47r/5; (d) at = 67r/5; (e) at = 87r/5; ( f ) at = 27r; all 

wd'ue pA&seg an: p/iases. 
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(«) ( b ) 

(c) 

(e) 0 

Figure 6.6: Stable regime - roll patterns; ripple slope Sj- ~ 0 . 0 5 ; r = 0 . 3 1 ; jd = 1206 ; 

(a) at = 0; (h) at — 27r/5; (c) at = 47r/5; (d) at = Ovr/S; (e) at = Svr/S; ( f ) at = 2-K; 

all wave phases are relative phases. 
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ripple characteristics similar to the experimental conditions shown in figure 6.5. The 

computed mean streamlines, plotted in figure 4.29 in section 4.3.4, present a double 

pair of circulation cells as predicted by the theory. Similarly, figure 6.6 uses physical 

parameters identical to the ones used in the model when the mean streamlines are 

plotted in figure 4.32, section 4.3.4. The model gives only one pair of cells, as expected 

when the ripple slope is very small and r is signiGcant (r = 0.31). The two results 

from the model are quite diSerent, one presenting a double pair of cells and the other 

only one pair. On the other hand, the two experimental results are quite similar. Some 

experimental factors may have a greater influence on the How so that the circulation 

structures cannot be identical to the modelled cells. It may be due to the mean drift 

which is present in the experiments but not in the model as a shallow water velocity 

definition is used^. Moreover, the absence of a mean drift may be a major condition 

for the existence of these cells pairs, as neither the experiments in an oscillating tuimel 

nor the analytical solutions feature a steady component in the oscillatory Sow velocity. 

The inside of the cells tends to GU up with time, giving the roll pattern. This GUing 

is probably due mainly to the successive layers rolhng up inside the cell and to the 

diffusion process. This particular cell pattern shows that there is a stable circulation 

over the crest of the ripples even for a very slow motion and not very steep slope as 

it is present for a slope as weak as gr=0 05 (hgure 6.6). This circulation might be 

involved in the ripple construction and its influence on the typical ripple shape might 

be not neghgible. However, due to the very weak velocities involved, the typical mass 

transport for this regime must be weak, as the cells will not move away from the crests. 

^See section 3.4.4. 
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6,2.2 Weak ly u n s t a b l e mode : "roll" plus j e t s p a t t e r n 

If the orbital amplitude is slightly increased but the other parameters are kept con-

stant, the roll patterns will turn into a more disturbed shape, with the appearance of 

"tongues" of dye surrounding the round structures. The range for r in these experi-

ments is 0.075 to 1, with a mean value of 0.35. This regime occurred for all the wave 

periods tested (10.45 < (3 < 3016), and for any of the ripple slopes used®. This regime 

is mainly obtained for a ratio of Taylor number over r in the range 0.9 < Ta / r < 1.6, 

as can be seen in figure 6.7. 

Figure 6.7: Ta/r with respect to r for which the rolls with jet structures are obtained. 

The horizontal line is for visual help and is arbitrary. 

These weak instabilities are in the form of small tongues probably created by a jet 

directed upward. It seems that each layer moving over the ripple crest and starting to 

travel down the lee side of the crest will be subjected to this disturbance when the flow 

reverses. Indeed, the flow reversal seems to make the layer take off from the curved 

boundary, producing a jet of dye directed upward, and eventually giving a curved shape 

to the jet pushing the jet backward (with respect to the wave propagation direction). 

Then each small "tongue" of dye will drift downstream, leaving the ripple crest, for 

®See table 5.1 in chapter 5 for the ripple slopes characteristics. 
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another jet to be created. The shapes stay very sharp as the flow oscillation is weak 

and the dye dilution process is very slow. The calculated flow velocity amplitude is in 

the range 0.02 to 0.08 m/s. For a weak r of order 0.2 on a steep slope Sr = 0.175 the 

instabiHties occur quickly, but r needs to be of order 0.5, for t hem to happen on a weak 

ripple slope = 0.05. Figure 6.8 is an example of the pat tern obtained in this flow 

regime. The first roll on the left is just after the release point, and does not feature 

the small curved structures, but once the dye goes over the first crest, the small curved 

structures are present. It then seems that the jets are generated after moving over the 

ripple crest. Figure 6.8 also shows the very good repeatability of the pattern. 

Figure 6.8: Roll plus jet structures; = 0 . 1 7 5 ; r = 0 .23 ; T a = 0 . 3 3 ; (3 = 10 .45 . 

The formation process of the small jets added to the stih present roll patterns can 

be seen in the sequence showed in figure 6.9. Patterns (a) and (f) are at the same 

relative wave phase and are strongly similar, the structures are then stable in time. 

Once the jet is created, the layer marked by the dye keeps a quasi-steady shape and 

drifts with the flow, the instability is therefore only present a t the lee side of every 

crest. The "tongues" reaching the next circulation cell located over the next crest will 

usually go over it but can eventually be incorporated in the cell. 

Staying in the same regime, if r is increased, the jets of dye tend to thicken, giving 

a more disturbed shape added to the roll structures. This might be explained by the 

fact that as the wave orbital amphtude increases, the boundary layer grows, making 

the instability occur in a thicker layer. It can also be emphasized by a stronger dilution 

of the dye, giving the impression of a thicker shape. As can be seen in flgure 6.10, the 
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(a) (b) 

(o) (d) 

(e) (t) 

^ «'• 

"s. ;> ") 

(g) (h) 

X j -) 

(!) (i) 

Figure 6.9: Weakly unstable mode - roll plus jet pattern; ripple slope Sr = 0 . 1 7 5 ; 

r = 0 . 1 7 ; (3 = 16 .4 ; (a) at = 0 ; (b) at = lix/b; (c) at = Air/b; (d) at = 67 r /5 ; 

(e) at — 87r/5; ( f ) at = 2TT; (g) at = 127r/5; (h) at = 147r/5; (i) at = 167r/5; ( j ) 

at = 187r /5 ; all wave phases are relative phases. 
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curved vertical "tongues" are wider than in the previous Ggure 6.9 and are very tight 

all together. The roll structure is now made out of two or three thick unstable layers 

rolled together. The structures are still very regular from one crest to the next. 

As in the previous regime, the shape of the structures is also inSuenced by the 

curvature of the boundary or the ripple slope. In Hgure 6.11, where the only difference 

between (a) and (b) is the ripple slope, the pattern above the slope — 0.012 (a) is 

rounder and thicker than the pattern above the slope Sr = 0.01 (b) being more Eat. 

For the same flow conditions, the thickness of the disturbed layer seems to grow when 

the slope increases. The acceleration involved in the vertical jet must also be stronger 

for a steeper slope as the jet marked by the dye will go further upward for cage (a) 

than for case (b), where the only difference in the physical parameters involved is the 

ripple slope. 

In this regime, the circulation cells resulting from a steaxly streaming are still 

present, but small jets drifting in the wave propagation direction are now added to 

these structures. Therefore, the sediment transport must be stronger aa there is an 

obvious drift of the jets, but the cells are stQ staying above each ripple. 

Pa r t i cu l a r p a t t e r n : m u s h r o o m shape 

A very particular pattern hag been obtained during the experiments. This pattern 

was obtained only for one Sow condition and one ripple slope. This cage is placed 

in this section aa the mechanism for obtaining such a pattern deSnitely involves a jet 

process. Figure 6.12 shows the two-dimensional mushroom shape of dye obtained for 

a steep slope 5̂  = 0.175, a weak orbital amphtude oscillation to ripple wavelength 

ratio r = 0.11, and ,8 = 32.7 (wave period T = 1 s). Small jets similar to the ones 

described in the previous section can be seen, but the presence of a larger jet makes it 

look very different from the other pattern. This jet directed upward and approximately 

located at the ripple trough gets divided in two, each new section forming a vortex-like 

structure. This pattern deserves to be mentioned not only because of its very pecuhar 
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(a) (b) 

vr 

(c) (d) 

(e) (f) 

Figure 6.10: Weakly unstable mode - roll plus jet pattern; ripple slope Sr = 0 .12 ; 

r = 0.33; /3 = 110.8; (a) at = 0; (b) at = 2 ^ / 5 ; (c) at = 4n/5; (d) at = 67r/5; (e) 

at = S t t / S ; ( f ) at = 27v; all wave phases are relative phases. 
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0 0 (b) 

Figure 6.11: Influence of the boundary curvature on the dye pattern in a weakly unstable 

mode; r = 0 .47 ; wave period T = 2.5 s; (a) ripple slope Sr = 0 . 0 1 2 ; (b) Sr = 0 .01 . 

shape but also because, to the author's knowledge, it has only been previously reported 

by Honji et al. (1980). They carried out experiments in an oscillatory water tunnel 

fitted with a rippled floor made out of metal. Flows were visualized using white dye 

produced electrochemically. Despite not being for the exact same ripple slope and 

flow conditions, the similarity between figure 6.12 and figure 6.13 is striking, especially 

for such a complex pattern. Honji's article does not provide enough data to allow a 

very accurate comparison. It is worth noticing that such a structure was obtained 

by Honji for an oscillation frequency of 1.65 Hz, and that for the present experiment 

it was observed for the shortest wave period tested corresponding to an oscillation 

frequency of 1 Hz. Similarly, Honji stated that such a pattern was obtained for a water 

displacement very small compared to 1̂ , while it can be said the same for the present 

experimental case as r = 0.11 is small. Honji pointed out t h a t in a case like figure 

6.13, the lower vortex layer discussed in the previous regime is so small because of the 

low viscosity of water that only the upper layer is seen. The mushroom shape in figure 

6.13 is standing vertically, while the structures in figure 6.12 are slightly tilted. It may 

be explained by the presence of a steady drift in a wave flume which is not a feature 

of the flow when a water tunnel is used. It can be assumed t h a t such a structure can 

drag particles from the trough to the crest, following the path of the mushroom or tree 

shape as mentioned in Leeder (1999). 
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Figure 6.12: Mushroom shape - present experimental visualization; ripple slope Sr 

0 . 1 7 5 ; r = 0 . 1 1 ; (3 — 32 .7 (wave period T =1 s). 

Figure 6.13: Photograph from Honji (1980, fig. 2 p226); T=0.6 s; piston displacement: 

1.2 cm; scale bar: 1 cm. Visualization done with white dye educed electrochemically. 

Approximate ripple slope Sr = 0 .173 . 
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6.2.3 F i r s t flow sepa ra t ion r eg ime 

For r in the range 0.15 to 1.5 with a mean value increased to 0.66, the rather stable 

regimes previously discussed will change significantly and tu rn into a third regime 

characterized by the flow separation at the ripple crest. As seen in figure 6.14 this 

regime is mainly obtained for T^/r in the range 1.6 < T a j r < 1.8. The mean value 

r = 0.66 is nearly twice as large as the mean value obtained for the previous regime. 

The flow oscillation amplitudes and the velocities involved in this regime are then 

remarkably stronger than for the previous regimes. It seems tha t having the orbital 

amplitude larger than half the ripple wavelength is a significant threshold for the flow 

characteristics. 

Figure 6.14- Ta/r with respect to r for which first separation occurs. The horizontal 

line is for visual help and is arbitrary. 

The flow features in this transitional regime have to b e distinguished from the 

previous modes typically two-dimensional and very stable in terms of spatial and time 

repeatability. It is also distinct from the regime detailed in the next section 6.2.4 where 

the main feature is the regular vortex ejection from each ripple crest occurring during 

each half-wave period. This regime has then to be considered as a transitional state 

between two significant regimes: the regimes previously described in sections 6.2.1 and 
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6.2.2 and the vortex ejection regime. As will be seen in section 6.3, this regime is also 

important as it usually corresponds to the transition between two-dimensional and 

three-dimensional How patterns. Both circulation cells and vortices ejected from the 

ripple crests can be obtained. The complex dye patterns observed make the interpre-

tation of the typical mechanisms involved in this regime particularly diScult. 

The circulation cells tend to be very disturbed, but their overall shape is still almost 

round. The strong velocities creating the jets of dye make the cells look wider and 

moving higher upward from the crest. The How separates at the ripple crest, creating 

a vortex structure. The vortices will drift along the boundary, moving over the crest, 

then down the lee-side before being hfted by the jets observed in the previous mode. 

The circulation cells now feature vortices as well as jets in their structure. The vorticity 

of each vortex structure vanishes very quickly once in the cell, as the vortex pattern 

is not much modified after its inclusion in the cell. Figure 6.15 is an example of the 

patterns obtained for r = 0.5. Figure 6.16 is another example for a weaker ripple slope 

and a stronger Sow oscillation, with r = 0.78. In Hgure 6.16, the vortices can be clearly 

distinguished. As mentioned before, the vortices are not ejected from the ripple crest, 

but wiU eventually move upward away from the boundary at the lee-side of the ripple. 

In the experiments, as the flow oscillation is stronger than for the previous regimes, 

the dye tends to dilute quite quickly giving blur patterns. One possible effect is to 

give larger patterns, as the dye diSuses quicker through the neighbouring layers. In 

Ggure 6.16, pictures (a) and (f) taken at the same relative wave phase do not show a 

similarity as good as for the previous cases. However, the most important mechanism 

in this regime is the Sow separation. The cloud of dye more or less detached from 

the bottom is less important, and its existence mainly shows that once the vortex is 

pushed upward by the jet, and joins the cloud of dye, the velocity at this depth above 

the ripples mostly has a horizontal component. Figure 6.17 shows similar patterns but 

for a very weak ripple slope Sr = 0 05 and a strong r = 0.81. In figure 6.17, due to 

the strong Gow oscillation the vortices are nearly ejected from the ripple crest, but the 
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(a) (b) 

(C) (d) 

^ # # ^ 
(e) (f) 

Figure 6.15: First flow separation regime; ripple slope = 0 . 1 2 ; r = 0 . 5 ; /? — 5 0 . 6 ; 

(a) at = 0; (b) at = 2 ^ y 5 ; (c) at — 4TT/5; (d) at = Qiv/h; (e) at = 87r/5; ( f ) at = 27r; 

all wave phases are relative phases. 

very weak slope makes them have a nearly horizontal trajectory. I t then seems that the 

vortices are still moving along the slightly curved boundary, being eventually pushed 
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upward at the flow reversal by the jet process. The vortices generated during the 

previous wave periods can be distinguished, accumulated in the cloud of dye located 

above the ripples. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.16: First flow separation regime; ripple slope Sr = 0 . 1 ; r = 0 . 7 8 ; /? = 131 .3 ; 

(a) at = 0; (h) at = 2^ /5 ; (c) at = An/B; (d) at = 67r/5; (e) at = Stt/S; ( f ) at = 2TT; 

all wave phases are relative phases. 
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(a) (b) 
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(c) (d) 

^rPTf'ynii Tiiftft 

(e) (f) 

Figure 6.17: First flow separation regime; ripple slope Sr = 0.05; r = 0.81; /3 = 1508; 

(a) at = 0; (b) at = 27r/5; (c) at = 47r/5; (d) at = Qir/b; (e) at = 87r/5; ( f ) at = 2IT; 

pAas&s cTie ?ieWz!;e pAoaes. 
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6.2.4 Vor t ex e jec t ion reg ime 

In the previous section, a regime for which the How first separates has been pre-

sented. The regime studied in the present section is characterized by the flow separation 

and a vortex ejection from the ripple crest during each half-wave period. As seen in 

section 2.5.4, this regime has been widely studied before, b u t mainly by means of 

numerical modelhng. In the present experiments, it has been observed for a range of 

values of r from 0.2 up to 1.2, with a mean value of 0.54. This mean value is lower than 

the calculated mean value for the previously shown regime, but it can be explained 

by the fact that the ripple slope seems to play a major role in this regime along with 

the orbital amplitude. No clear ejection has been witnessed with the weakest slope 

Sr = 0.05, but vortex ejection occurred for all the other slopes. This regime is obtained 

for Ta / r in the range 1.8 < Ta/r < 3.5, as showed in figure 6.18. 

Figure 6.18: Ta/r with respect to r for which vortex ejection is observed. The horizontal 

line is for visual help and is arbitrary. 

The ripple slope plays here a significant role as the steeper the slope is, the more 

likely vortex ejection is to happen. As shown in figure 6.19, t he steeper the ripples, the 

smaller the orbital amplitude to ripple wavelength ratio has to be for the vortex ejection 

to occur. From this figure, speculation can be made on the fact that the smaller the 
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ripple slope is, the less obvious the vortex ejection threshold is. It can be assumed 

that vortex ejection could have been obtained for the smallest slope = 0.05 but the 

flow oscillation amplitude needed would have been too difficult to generate with the 

wave-maker and visualizations would probably not have been possible. 
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Figure 6.19: Vortex ejection for the different ripple slopes Sr-

Figure 6.20 is a sequence showing two vortex ejections, one during the first part of 

the wave cycle and another during the second part of the cycle. The flow separates 

at the ripple crest creating a vortex structure. Then the s tructure tends to increase 

in size and strength, even through the beginning of the deceleration phase. When the 

flow reverses, the vortex structure is convected away from the ripple crest by the local 

velocity. At the same time a new vortex is generated on the other side of the crest, 

to be ejected in the opposite direction. Once a vortex is ejected, it moves upward, 

joining a cloud of dye formed with the vortices ejected during the previous wave cycles. 

Figures 6.21 and 6.22 provide a closer view of the two vortex ejections. In figure 6.21 

(c), in addition to the main vortex rotating anti-clockwise a second smaller vortex 

rotating clockwise is present. This vortex pair mechanism has been pointed out before 

by Blondeaux and Vittori (1991), as a result of their numerical model. This secondary 

vortex forming below the main vortex when ejected over the crest is here clearly shown. 
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Figure 6.20: Vortex ejection regime; ripple slope Sr = 0.175; r = 0.46; (3 = 13; (a) 

at = 0; (b) at = 7r/5; (c) at = 27r/5; (d) at = 37r/5; (e) at = Air/b; ( f ) at — tt; (g) 

at = 6%y5; a t = 7^/5 ; a t = Svr/S; crt = Q-n/b; all wave phases are relative 

pAoaea. 
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It seems that the angle with which the vortex is ejected can be different depending 

on the instantaneous flow direction. In figure 6.21, the flow direction is left to right, in 

the same direction as the wave propagation and the steady drif t . The vortex is ejected 

from the crest but does not go upward and nearly follows a horizontal trajectory instead. 

In figure 6.22, where the flow and the wave propagation are in opposite directions, the 

vortex ejected in the second half of the wave cycle moves upward following the plan 

of the ripple slope. The steady drift may make the vortex travel more horizontally 

when the instantaneous velocity is in the same direction as the steady velocity, and 

by opposition when the vortex is ejected against the steady flow direction, the steady 

drift might force the vortex to move upward. The ripples used are fixed in shape, so 

if the fiow motion was purely oscillatory, the vortex ejection should be similar in the 

two directions. 

(4 

Figure 6.21: Vortex ejection regime; ripple slope Sr = 0.175; r = 0.46; /? — 13; (a) 

at = 0; (b) at — -n/b; (c) at = 27r/5; wave phases are similar to figure 6.20. 

Figure 6.23 shows a sequence featuring vortex ejection for a ripple slope Sr = 0.12 

and r = 0.45. Despite a similar value of r, the vortex size is smaller than for the case 

showed in figure 6.20. This difference can come from both a shorter wave period and 

a weaker ripple slope. This might be explained by the fact t ha t the longer the wave 

period is, the more time the vortex has to bufld up before being ejected. The slope also 

plays a role in the vorticity building, as discussed in the previous sections. Figure 6.24 

brings a closer view to the vortex ejection for the wave phases (a) and (b) of figure 6.23. 
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(b) (c) 

$ 

Figure 6.22: Vortex ejection regime; ripple slope Sr = 0.175,- r = 0.46; /3 = 13; (a) 

at = 4 ^ / 5 ; (b) at = IT; (C) at = 6^ /5 ; wave phases are similar to figure 6.20. 

The secondary vortex structure below the main vortex noticed in sequence 6.21 can 

also be seen. This particular mechanism is again noticed when the instantaneous flow 

is in the same direction as the steady drift. Another visualization of vortex ejection 

is showed in figure 6.25. As shown in frame (g), this case also presents a secondary 

vortex along with the main ejected vortex when the flow is in the same direction as 

the wave propagation. A close-up of part of figure 6.25(g) shown in figure 6.26 reveals 

more clearly the presence of the vortex pair. 

Figure 6.27 shows another vortex ejection sequence for the first part of a wave cycle. 

The slope being weak, Sy = 0.1, the flow oscillation needs to be strong, r = 0.81; as a 

result the patterns obtained for the second part of the wave cycle are not shown, the 

dye being too diluted, no clear shape could be identified. 
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Figure 6.23: Vortex ejection regime; ripple slope Sr = 0.12; r = 0.45; (3 = 110.8; (a) 

at = 0; (b) at = 27r/7; (c) at = 4^ /7 ; (d) at = Qn/7; (e) at = 87r/7; ( f ) at = 107r/7; 

(g) at = 127r/7; (h) at = 27r; all wave phases are relative phases. 
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Figure 6.24: Vortex pair ejection; ripple slope = 0.12; r = 0.45; (3 = 110.8; (a) 

at = 0; (b) at = jl; all wave phases are similar to phases in figure 6.23. 
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(a) (b) 

> 

(c) (d) 

(e) (f) 

/ # 

(9) (h) 

Figure 6.25: Vortex ejection regime; ripple slope Sr = 0 . 1 7 5 ; r = 0 . 4 1 ; [3 = 1 6 . 4 ; (a) 

a t = 0 ; (H) a t = 2 7 r / 7 ; ( c ) a t — ATT/T; ( d ) a t = QTT/7; ( e ) a t = 8 7 r / 7 ; ( f ) a t = I O t t / T ; 

(g) at = 127r/7; (h) at = 27r; all wave phases are relative phases. 
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^ o r t e x . 

Figure 6.26: Vortex pair ejection; ripple slope = 0.175; r = 0.41; (3 = 16.4; zooming 

.̂,2,5 picture (gj. 

fe 

(e) (f) 

Figure 6.27: Vortex ejection regime; ripple slope = 0.1; r = 0.81; /3 = 164; (a) 

at = 0; (b) at = ir/Q; (c) at = vr/S; (d) at = TT/2; (e) at = 27r/3; ( f ) at — 57r/6; all 

wai/e pAoses afie TieZô we pAaaeg. 
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6.2.5 Discuss ion on t h e reg imes 

Regimes s u m m a r y 

Four How regimes have been shown in the previous sections, all based on the visu-

alizations of the How patterns from the side of the wave Hume. However the choice of 

separating one How type to another might remain rather subjective, the present claa-

siHcation attempted to distinguish each diHerent How mechanism observed, possibly 

relevant to ripple formation and evolution. As a result, some of the How aspects may 

be similar from one regime to another. For these four regimes, the main mechanisms 

and eHects are: 

# the regime with "roll" or cell structures is a stable regime where the ripples 

will probably build very slowly, facing no major change in shape. A steady 

streaming process is shown in the form of recirculation cells and no How separation 

is present. The sediment transport can be assumed as being weak. This regime 

may correspond to the conditions for which rolling-grain ripples develop. 

# the regime with "roU" plus jet structures wHl probably involve some signiScant 

sediment transport as the jets wiU drag some particles upward and release them 

later. The main eHect is probably a slow building of the ripples, until they reach 

the maximum steepness for a given How condition and a given grain size, and 

then oscillate around an equihbrium state. The steady streaming cells are still 

present but disturbed by the jet structures. The jet instability always appears 

Hrst at the lee-side of the ripple slope, during the How reversal. 

# the How separation regime is the transitional regime where How separation Hrst 

occurs. It features vortex structures nearly ejected from the crest being eventually 

dragged upward by the jets. It probably involves more sediment transport than 

in the previous regime, as the small vortices may be more effective at trapping 

sediment than the jets. But as the vortices are not really ejected but carried away 
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by the jets, the trapped sediment once dragged upward is probably released in a 

similar way to the previous regime. 

e the regime with vortex ejection is certainly the regime involving the maximum 

sediment transport. It is obtained when the Gow oscillation is not small compared 

to the ripple wavelength. It contributes to the building of the ripples, giving them 

this particular shape with sharp crests and Sat trough, legitimately called vortex 

ripples. For several cases, when the Sow is in the same direction as the wave 

propagation, the ejected vortex has a coupled vortex below its structure, counter 

rotating and smaller than the main vortex. It also turns out that when the Sow 

is in the same direction as the wave propagation, the vortex is ejected along a 

horizontal path, but in the case of an opposite Sow direction, the ejected vortex 

moves more upward, following the ripple slope plan. 

What happens when the Sow oscillation gets even stronger and signiScant turbu-

lence occurs cannot be discussed here, as the experiments in such a case were limited 

by the technique of visualization. It can only be assumed tha t as the Sow velocity in-

creases, the size and strength of the vortices wiU also increase as well as their hfespan, 

so that they wiU probably interact with each other covering the entire ripple length 

leading to the presence of turbulence everywhere and probably at aH times. For further 

analysis on this regime, see references cited in section 2.5.4. 

A Snal remark that apphes to all the regimes can be made: the curvature of the 

boundary seems to inSuence the shape and size of the structures, cells or vortices. 

The steeper the slope and therefore the more curved the boundary^, the rounder the 

structures wiU be. On the other hand, for a weak ripple slope or weak curvature of the 

boundary, the structure wUl be more Sat and usually smaller (Sgure 6.11). 

^See formulas (5.1) and (5.2) in scction 5.1. 
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Taylor n u m b e r 

It is recalled that the Taylor number is used to measure the importance of the 

centrifugal effects with respect to the viscous ones. The range for the ratio T^/r for 

with each regime has been observed can be seen in figure 6.28. The regimes are difficult 

to categorize as all the parameters seem to play an important role. However, the ratio 

Ta j r seems to be a relevant parameter for this classification, as shown in figure 6.29. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

7%//-

Figure 6.28: Two-dimensional regimes range for the Ratio Ta/r. R: roll patterns 

regime; RJ: roll + jet patterns regime; FFS: first flow separation regime; VE: vor-

Visua l i za t ion l imi t s 

When the flow oscillation was large, observation had to be done quickly after reach-

ing the expected flow conditions. Therefore, for these flows it was not possible to be 

certain of the stability of the flow mechanism, or in other words, whether or not it 

was repeating itself for a large number of wave periods. For the most stable conditions 

(first and second regimes), the dye patterns were covering the entire rippled section for 

as long as the waves were generated, as shown in figure 6.30. 
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Figure 6.29: Two-dimensional regimes summary. The area above the upper limit of 

the vortex ejection area could not be studied due to the presence of turbulence limiting 

the experimental visualizations. The dashed lines shows the range in r for which each 

regime was obtained. The horizontal lines are for visual help and are arbitrary. 

7 

Figure 6.30: Cells plus jets regime; Sr ~ 0 . 1 7 5 ; r = 0 . 1 4 ; T A = 0 . 1 7 . 
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6.3 Three -d imens iona l instabi l i t ies 

The How claasi&cation detailed in section 6.2 is derived from two-dimensional vi-

sualizations obtained by Slming from the side of the wave flume. By repeating the 

same experiments and filming from the top of the Hume, above the rippled section, 

it was possible to have a three-dimensional view of the patterns, combining pictures 

taken from the side of the tank and from above. During the experiments, the dye 

patterns presented clear two-dimensional and three-dimensional structures depending 

on the flow and the ripple characteristics. By combining the different regime charac-

teristics detailed in the previous section 6.2 with the three-dimensional aspects of the 

Gow, detailed in the following sections, a more complete description of the How above 

ripples can be obtained. 

6.3.1 Two-d imens iona l flow p a t t e r n s 

Figure 6.31 shows a typical pattern of the two-dimensional flow usually observed. 

It corresponds to the most stable case discussed in section 6.2.1, where only "roll" 

structures are present above each ripple crest. The dye is regularly spread crosswise 

but the dye concentration is greater above the ripple crests due to the cell structures. 

Figure 6.32 corresponds to a weakly unstable case where jets of dye add to the "roll" 

structures showed in section 6.2.2. The streaks correspond to the small jets but viewed 

from above. The jet process is then purely two-dimensional. This kind of pattern 

is always obtained as long as the How stays two-dimensional, the streaks being more 

or less visible depending on the strength of the jets. About 95% of the experimental 

cases where cells or cells plus jets structures were obtained showed two-dimensional 

structures from above. The structures stay two-dimensional for < 1.6, as shown 

in figure 6.33. It corresponds to the upper limit of the regime featuring cells plus jet 

patterns described in section 6.2. It can then be concluded t h a t the regimes featuring 

cells and cells plus jets are two-dimensional. 
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^ crests 

Figure 6.31: Two-dimensional dye patterns viewed from above the rippled section for a 

roll structure case; ripple slope s^. — 0.05; r = 0.27; /3 = 2109. 

ripple c r e s t s 

injection point 

Figure 6.32: Two-dimensional dye patterns viewed from above the rippled section for a 

roll plus jet structure case; ripple slope Sr = 0.12; r = 0.3; (3 = 79.2, 
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Figure 6.33: Ta/r range for two-dimensional flows. The horizontal line is for visual 

help and is arbitrary. 

6.3.2 Two t y p e s of th ree -d imens iona l flow p a t t e r n s 

From a two-dimensional flow pattern the flow can break into three-dimensional 

structures. For a fixed ripple slope, increasing the wave amplitude (therefore the wave 

orbital amplitude) up to a certain point will always lead to three-dimensional instabil-

ities. The wave period can also influence the type of instability obtained. The three-

dimensional patterns can be divided in two types: a "ring" type and a brick-pattern 

type. Viewed from above, the brick-pattern type appears as a structure of regularly 

spaced bridges of dye, perpendicularly aligned to the ripple crest. The bridges starting 

from adjacent ripple crests are shifted by approximately half of the instability wave-

length. The "rings" are equally spaced bridges of dye perpendicular to the ripple crest 

and regularly displaced from a ripple crest to the next. 

R i n g p a t t e r n s 

This pattern was the most common one observed during the experiments when 

three-dimensional instabilities were triggered. Among the three-dimensional pattern 

cases, ring patterns represented 70% of the experimental cases. About 67% of the cases 
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presenting ring patterns were categorized in the regime where the flow first separates 

and in the vortex ejection regime (sections 6.2.3 and 6.2.4). A typical ring pattern is 

shown in figure 6.34. As showed in figure 6.35, these structures were mainly observed 

t » If i « 

i 11 

Figure 6.34: Three-dimensional ring pattern; ripple slope Sr = 0.175; r = 0.15; /3 = 

32.7. 

for 1.6 < Ta / r < 3.5. This range is similar to the one found for the regime where flow 

first separates and for the vortex ejection regime if their range are put together. It then 

turns out from the experiments that the vortex ejection regime is three-dimensional. 

An early stage of the rings formation is shown in figure 6.36, where the picture 

was taken immediately after the flow had reached the given characteristics. The flow 
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Figure 6.35: T^jr with respect to r for which "rings" are observed. The horizontal line 

is for visual help and is arbitrary. 

is then probably not completely established to the given orbital amplitude"^, but the 

purpose of this picture is to show the transition pattern between a two-dimensional 

flow (figure 6.32) and a ring pattern flow (figure 6.34). In this case, once the flow 

was established with its given characteristics, a ring pattern similar to figure 6.34 was 

obtained. The longitudinal streaks of dye are subject to an apparent oscillation in the 

crosswise direction. The amphtude of oscillation will grow, leading to the formation of 

separated "rings". Figure 6.37 is another example of the early stage of ring formation, 

with some ring structures already quite visible. 

For a strong r = 0.8, the rings tend to get disorganized and the dye vanishes 

quickly. It can be supposed that bursts of turbulence cause the dye to dilute very 

quickly, leading to this unstable and blur pattern, as shown in figure 6.38. 

The rings are usually visible for a few wave periods. If t h e flow oscillation is not 

too important, the rings will stay visible for about 5 to 10 wave periods but if the 

osciflation amplitude is large, the dye will be quickly diluted leaving a cloud with no 

apparent typical shape in less than 3 wave periods. It is then difficult to tell if this 

^See section 5.3 for the wave-maker set-up. 
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Figure 6.36: Early stage of the formation of ring pattern; ripple slope s^ = 0.175; 

r = 0.25; = 16.4. 

structure is stable in time. 

The ratio of "ring" instability wavelength A, to ripple wavelength Ir was measured 

using all the ring cases observed. The quantity Xi/{rlr) = A^/oo is plotted against the 

Taylor number in figure 6.39. It appears that a simple relation such as 

Ai ^ 1 
(6.5) 

can describe the experimental data behaviour, at least for the range of wave conditions 
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k Figure 6.37: Early stage of the formation of ring pattern; ripple slope Sr = 0.175; 

r = 0.18; /) = 32.7. 

tested. Relation (6.5) is equivalent to: 

Ai \ /2 
- (6.6) 

d rSr 
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Figure 6.38: Ring pattern vanishing in semi-turbulent regime; ripple slope Sr = 0.12; 

r = 0.78; = 63.4. 

C, 
3 - " 

0 M 1 2 2̂  3 M 7% 

Figure 6.39: Ratio of "ring" instability wavelength Xi to wave orbital amplitude QQ. 

Experimental data: o = 0.175; • = 0.12; 0 5̂  = 0.1; • = 0.05. The fitting 

cuT-ue w / (7^) = 1/7],. 
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Br ick p a t t e r n 

A very particular type of three-dimensional instabilities has been observed. It 

represented 15% of the three-dimensional cases obtained experimentally. This regime 

has been particularly difficult to obtain during the experiments and did not stay stable 

very long. It differs from the ring regime because the bridges of dye are shifted from 

one crest to the next by approximately half the instability wavelength. Figure 6.40 

shows the Taylor number range for which the brick pattern was obtained during the 

experiments. It seems that the brick-pattern is likely to happen for 1.5 < Ta j r < 

1.85. The upper limit slightly overlaps the lower limit of the ring pattern range. The 

lower limit is close to the lower limit found for the regime where flow first separates. 

Compared to the Taylor number ranges found for the regimes detailed in section 6.2, 

it seems that brick pattern is most likely to happen for the regime where flow flrst 

separates. 

3.5 

3 

k. 
02.5 

o 
_Q_ 

&2 &4 &8 1 2̂ 
r 

Figure 6.40: Ta/r range for which brick pattern is observed. The horizontal lines are 

for visual help and are arbitrary. 

Figure 6.41 shows the shifted bridges from crest to crest. Figure 6.42 is another 

example, obtained for exactly the same flow and ripple characteristics but during an-

other test. The dye is not spread very far crosswise, giving only two bridges after the 
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dye release point. As a result, only one bridge is present across the next ripple and two 

bridges across the ripple after. Figure 6.43 shows another brick pattern widely spread 

across the ripples. This pattern has been obtained for all the available ripple slopes 

except for the weakest slope 5r = 0.05. Table 6.1 is a summary of the Sow and ripple 

features for which the brick pattern was observed during the experiments. The mean 

value for r is 0.47 and no brick pattern wag obtained for > 164.1. The range for the 

ratio of the brick-pattern bridge wavelength At to ripple wavelength can be seen in 

table 6.1. Mainly due to the lack of experimental cages, no obvious relation has been 

found between At and the other parameters. 

Ripple slope T ( s ) 0 r Taylor number A5//7' 

0.175 3.13 10.45 0.23 0.33 0.90 

0.175 2 16.4 0.52 2.11 1.325 

0.12 2.5 63.4 0.47 0.8 0.8 

0.1 3.13 104.9 0.6 0.98 1.03 

0.1 2 164.1 0.46 0.71 0.75 

0.1 2 164.1 0.54 0.99 0.66 

/or wAzc/i WcA: partem w&s 
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Figure 6.4I: Brick pattern; ripple slope — 0.175; r = 0.23; (5 = 10.45. 
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Figure 6.42: Brick pattern; ripple slope Sr = 0.175; r = 0.23; /? = 10.45. 
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Figure 6.43: Brick pattern; ripple slope = 0.175; r = 0.52; (3 = 16.4. 
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6.3.3 Compar i sons w i th o t h e r a u t h o r s ' w o r k 

S c a n d u r a et al .(2000) 

Hara and Mei (1990a) and Scandura et al. (2000) studied the oscillatory How and 

the growth of vortices above ripples by means of numerical simulations. Their results 

are compared to the present experimental results in figure 6.44. Stable, unstable and 

marginal two-dimensional Eows are plotted for a Gxed ripple slope = 0.12. Scandura 

et al. denote as unstable each Gow solved by their model tha t presented transverse 

perturbations. According to them the marginal, stable and unstable deSnitions should 

however be treated with caution. The perturbation growth or decay wag measured 

by looking at time evolution of energy at a speciGc wavelength. It turned out that in 

some cases it was difhcult to discriminate stable from unstable Sows. In Ggure 6.44 the 

horizontal axis is the Reynolds number while the vertical axis is 1/Z, with / as the di-

mensionless ripple wavelength Z = Following Hara and Mei (1990b), stable and 

unstable regions are identiGed on the plane (Be, 1//). The present experimental data 

are shown as unstable when there was any sign of three-dimensional structures. These 

data points are located in the same area as the unstable flow obtained by Scandura et 

al. But the observations of stable Hows were generally at Reynolds numbers smaller 

than for the cases obtained by Scandura et al. (2000). The experimental conditions 

cannot oSer such a wide variety of cases as a numerical model does, therefore some 

areag in the graph could not be covered by the experimental data. Scandura et al. also 

noticed that for the case of a strong oscillatory flow over steep ripples, the action of 

a vortex structure created by the boundary layer separation and the vorticity roU-up 

would tend to create a jet directed upward hfting up particles. This jet is located in 

the centre of their computational box. It is diSerent from the jets visualized in Hgure 

6.32 section 6.3.1 as it is not happening across the whole width of the domain, but 

this process might involve a similar mechanism. They also noted that when r is of 

order 1 the How separation has a destabilizing eHect, making the How become more 
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three-dimensional. The present experiments give good agreement with this remark as 

when the Sow separation was observed, the Eow was three-dimensional for most of the 

cases. 

H a r a a n d Mei (1990b) 

In their numerical analysis Hara and Mei (1990b) found tha t for a gentle ripple slope 

5r 4C 1 and for r = 0.64, an accumulation pattern indicating the formation of bridges 

between the transverse crests might lead to the brick-patterned ripples. According to 

Hara and Mei, centrifugal instabihties as well as vortex shedding must be eEective in 

the initiation of the brick pattern. In the present experiment, the weakest slope is 

gf = 0.05, and no brick pattern was observed using these ripples, but vortex shedding 
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was also very diScult to obtain. The absence of any brick pat tern for the whole range of 

How conditions might then be explained by the diSSculty to obtain vortex shedding, and 

therefore three-dimensional Sows, above such a weak ripple slope. However, Hara and 

Mei also concluded that the centrifugal instability threshold was for a Taylor number 

of order one (section 2.6.3). In the present experiments, if the mean value of 7^ for 

which brick-pattern waa observed is calculated, a value of 0.98 is found, which is in 

good agreement with Hara and Mei's results. 

S lea th a n d Ellis (1978). 

In Sleath and Elhs (1978), sand ripples were formed on a t ray of sediment oscillating 

in a tank of still water. Brick patterns were obtained and the Sow and ripple charac-

teristics were recorded. Table 6.2 compares the results from Sleath and EDis and the 

present experimental 8ow and ripple characteristics for which the brick pattern was ob-

tained. The comparison is a qualitative one, since the experiments conducted by Sleath 

and Ehis are very diEerent from the present ones. However, in the present experiments 

when the dye shows an obvious brick pattern structure, it can be assumed that the 

How and ripple conditions would lead to brick pattern ripples if the bed waa movable. 

There is good agreement on the range for which the brick pat tern waa obtained, even 

Sleath and Elhs (1978) Present experiments 

0.15 < < 0.27 0.1 < g;. < 0.175 

0.55 < r < 0.88 0.24 < r < 0.6 

0.015 < < 0.049 0.016 < < 0.026 

vipp/e ond yZow /or wMc/i 6ncA; woa o6Wne(f. 

though it seems that Sleath and Elhs also obtained brick patterns for stronger r and 

stronger ripple slopes. It shows that these particular dye patterns are connected to the 
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building process of brick pattern ripples for a sand bed. The three-dimensional vortices 

can be assumed to be the main cause in the formation of brick pattern ripples. 

6.4 Discussion 

Prom the experimental analysis of the 8ow above ripples by means of dye injection, 

the following results can be stated: 

# For 7^ / r < 0.9 the How is mostly two-dimensional, presenting steady streaming 

recirculation cells on each crest. 

# In two-dimensional Hows a jet process can be present occurring at the lee-side of 

the ripple, for 0.9 < 7^/r < 1.6. This process needs to be studied further. 

e For 7^/ r > 1.6, the How is hkely to separate and feature a vortex ejection at each 

half wave cycle. This Gow is also likely to feature three-dimensional instabihties. 

e The three-dimensional "ring" structure was the most common three-dimensional 

structure observed during the experiments for varied Sows. It features flow sep-

aration, vortex formation and possible ejection. 

# The three-dimensional brick pattern was not frequently observed during these 

experiments and was not very stable in time. It also features How separation, but 

the vortex ejection process is not obvious. 

e The ratio of "ring" instability wavelength to wave orbital amplitude Ai/oo has 

been experimentally found behaving as the recipical of the Taylor number. 

# The ratio of the brick-pattern bridge wavelength to ripple wavelength A(,/Zr is 

in the range 0.6 to 1.3, while the ratio of "ring" instability wavelength to ripple 

wavelength A /̂Zr is in the range 0.24 to 0.64. 

# The brick pattern ripples are caused by three-dimensional vortices featuring a 

structure similar to the brick pattern. 
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* The vortex and the cell shapes are inSuenced by the curvature of the boundary; 

usually the steeper the slope, the larger the structures. But also for longer wave 

periods, the structures will be larger, having more time to grow. 

A diagram giving a complete summary of the Sow characteristics observed for the 

tested experimental conditions is shown in figure 6.45. Table 6.3 is a summary of all 

the relevant information on the 8ow characteristics recorded during the experiments. 

side observations Sow dimension 

up to 0.9 cells 2D flow 

0.9 to 1.6 cells + jets 2D Bow 

1.6 to 1.8 flow separation 3D How (BP likely) 

1.8 to 3.5 flow separation + vortex ejection 3D Eow (rings) 
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Chapter 7 

Conclusion 

A review of previous work on How over ripples revealed that many areag of study are 

still incomplete and further experimental and numerical investigations need to be done. 

This thesis describes work aimed at improving understanding of this How. 

Experiments have been conducted in a wave Hume Htted with a Hxed rippled bed. 

The wave-induced How above the ripples was visualized by means of dye injection for 

a wide range of How and ripple conditions. Remarkable How patterns were observed 

such as recirculation cells, jets and vortices. A new classiHcation of the How structures 

has been obtained, in terms of appropriate parameters relevant to the How and ripple 

conditions, providing valuable information on the How characteristics. These parame-

ters are the ripple slope, the wave orbital amplitude to ripple wavelength ratio and the 

Taylor number. Figure 6.45 (section 6.4) shows the classiGcation obtained, identi^ing 

the type of How pattern observed and the onset of three-dimensional motion. 

The How visualizations above solid ripples showed the extraordinary variety of How 

regimes and structures that could take place close to the bed in various How and ripple 

conditions. It can be supposed that for other How conditions (larger How oscillations, 

larger wave periods) that have not been represented in this study, some other regimes 

could be obtained. The present study mainly considered the cases for which the How 

oscillation at the bed was of the same order as the ripple wavelength, as it is acknowl-
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edged to happen frequently in ghallow coastal areaa. 

The development of a two-dimensional computer model solving the Sow in the 

vicinity of a flat or rippled bed also helped in understanding the key features of the 

8ow process and provided some opportunity to study further some particular aspects 

of this How such ag the mean Eulerian velocity, the mass transport velocity and the 

vortex ejection process. The predictions of the model were in good agreement with 

other numerical and experimental sources when the main characteristics of the 8ow 

dynamics were studied. By comparing the model to the theory available for the case of 

wave-induced Hows above a Sat bed, discrepancies have been found on the consistency 

of the theoretical solutions. 

F u t u r e work 

Using the results provided in this thesis, further investigations could be done on 

diSerent subjects. 

The flow velocity above the ripples in a wave Hume could be recorded by Particle 

Image Velocimetry (PIV) or Laser Doppler Anemometry (LDA), using flow conditions 

and ripple characteristics similar to the present experiments. These velocity data would 

help in understanding the dye patterns observed and could also provide a valuable 

input for the present model. Furthermore, obtaining the experimental velocity helds 

for the regime where circulations cells were observed might make this aspect of the 

8ow clearer, particularly for wave Eume experiments where the Sow features a mean 

drift velocity. Their presence for the case of an oscillatory water tunnel is proven, as 

numerous theoretical analyses agreed. It would then be interesting to understand if 

the cells visualized in the present experiments are really part of the same mechanism; 

if it is the case, it would then be worth studying the process leading to the change in 

their structure. 

The jet process revealed by the experiments needs to be studied further to under-

stand the cause of this instability and its eEect on the suspended sediment transport. 
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This study could also make use of PIV or LDA measurements. 

Applying the same wave conditions to a movable bed with already formed ripples, 

especially when three-dimensional structures have been observed, would be the next 

step to improve knowledge on the ripple evolution from a two-dimensional to a three-

dimensional pattern. Starting the experiments with two-dimensional formed ripples 

and applying How conditions believed to lead to three-dimensional ripples would be 

possible using the results provided in the present thesis. 

The development of a fully three-dimensional model solving the wave-induced Gow 

over ripples remains a priority. The vortex ejection process, revealed by the visualiza-

tions to feature three-dimensional instabilities and believed to be a major factor in the 

sediment transport mechanism, would then be described more accurately. 

Finally, the numerical model has been modified and enhanced, with the aim of 

calculating the trajectory of marked particles to allow direct comparison with the 

How visuahzations (appendix B). But this new model is still in development and few 

validated results could be shown in the present thesis. The methodology can be found 

in appendix B, ag well as a comparison of predicted and observed particle trajectories. 
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Appendix A 

Experiments on ripple enhancement 

Some experiments have been conducted to illustrate one aspect of the ripple building 

process using the information given on sea bed ripple characteristics in section 2.7. The 

ripples used in the wave Hume are fixed. However, by randomly releasing some sediment 

on the wavy bed, it is reasonable to assume that a part of the building process of the 

ripples described in section 2.7.1 could be observed. The ripples with the smallest 

slope available is used so that the Sow conditions for which ripples should be building 

are easy to reach. The sediment used is bakelite of relative density 1.45 and diameter 

dgo = 0.515mm, where dso is the particle diameter for which 50% of the particles will 

have a smaller diameter. If formula (2.41) is used with the corresponding values for 

the mobility number # and for the range of possible wave periods and wave amphtudes 

in the wave flume, it is found that the actual ripple height is smaller than predicted 

for the majority of possible orbital amphtudes obtained in the present experiments^, 

as shown in figure A.l. Therefore, by randomly distributing particles along the bed in 

water at rest and then by running waves of large enough amplitudes, an accumulation 

pattern on the ripple crests should happen ag predicted by theory. Formulas (2.38) 

and (2.39) are used to calculate the orbital amphtudes corresponding to a hxed ripple 

wavelength, for the experimental range of wave periods. It can be assumed that for 

^For the present experiments, the wave orbital amplitude range is 3.8 m m < no < 60 mm. 
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Figure A.l: Ripple height predicted by formula (2.4I) for a fixed ripple wavelength of 

0.04 m. (-) T=3.13 s; (- -) T—2s; (..) T=ls. The ripple height is fixed and equal to 

(7.(7(7;g m. 

orbital amplitudes larger than the limit set by formulas (2.38) and (2.39), for a fixed 

wave period, the sediment should tend to accumulate on the crests, enhancing the 

ripple height. The bakelite movement is observed and plotted in figure A.2, for different 

Reynolds numbers and wave periods. For large enough orbital amplitude values, or in 

other words for Reynolds numbers over the curves derived from formulas (2.38) and 

(2.39), an accumulation of the sediment on the ripple crests is observed, giving good 

agreement with the predictions. It appears that agreement is especially good for the 

longest wave periods tested. Figure A.3 is a perspective view of the ripples, showing a 

random distribution of bakelite on the rippled surface. After several waves of a fixed 

period and an orbital amplitude large enough to induce movement (figure A.2), the 

bakelite is transported and accumulates around the ripple crests, as shown in figure 

A.4. The hues of sediment will then oscillate around the crests, explaining why the 

sediment is slightly shifted on the lee-side of the crests in figure A.4, as the picture has 
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number for the experimental range of wave period and for a fixed ripple wavelength 

of 0.04 m. Observation of the bakelite movements: x no movement; 0 the lightest 

particles are moving; + all the particles are moving. 

been taken just before flow reversal. This test partly demonstrates that for a sufficient 

enough wave orbital amplitude, the present ripples would tend to build up. These 

results are only qualitative and have to be taken with caution, as the experimental set-

up remains different from reality. The bottom being fixed no real erosion in the ripple 

troughs can be shown, but it has been observed that the bakelite particles randomly 

distributed are dragged to the crests. 
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Figure A.3: Picture of the ripples with a random distribution of bakelite. Ripple wave-

length: 0.04 m; ripple height: 0.002 m. 

19»" 

Figure A.4: Picture of the ripples after several waves. The bakelite particles are aligned 

and oscillate around the crests; T = 3.13s; r = 0.8; Re = 3019. 
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Appendix B 

Trajectory model 

An attempt to extend the use of the computer model presented in chapters 3 and 

4 has been made to enable direct comparisons to be done with the experimental visu-

alizations. The velocity model output is used to calculate the trajectories of marked 

particles released steadily from the ripple trough very close to the bed, in a similar way 

to the experimental set-up. 

B . l General algorithm 

The trajectory model uses the velocity hies output by the previous model run hrst 

for given conditions (ripple wavelength, ripple height, wave orbital amplitude and wave 

period). 

# At each time step, a few particles are introduced above the trough. The time-step 

Af is the same as the time step used in the first model. 

# the positions of the particles previously introduced are then updated and their 

former position is deleted. 

# the particle position update uses a fourth order Runge-Kutta integration. 
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B.2 Particle position update 

B.2 .1 R u n g e - K u t t a m e t h o d 

If and are the horizontal and vertical velocities at the previous time-step, 

Eind t;" are the new velocities calculated at the present time-step, and are 

the particle position coordinates at the previous time-step while a;" and are the 

new position coordinates at the present time-step, the Runge-Kutta calculation is as 

follows. 

/cla; and are calculated: 

The hrst temporary coordinates are found: 

^ ; 2/1!; = (B.2) 

A;23; and A:2y are calculated: 

A;2a; — (B.3) 

The second temporary coordinates are found: 

A:3a: and A:3̂  are calculated: 

The third temporary coordinates are found: 

"I" ^ (B 6) 

&43; and A:4̂  are calculated: 

^4:, = (B.7) 
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The 6nal estimation for the new coordinates can then calculated: 

1 
X . ^ 2A:2z + 2A;3z + A:42;) (B.8) 

— Z/T-ij + R "I" ^^^3/ "I" (B 9) 
1 

This kind of calculation faces a major problem: at any time step, the velocities needed 

do not systematically correspond to a grid point. Indeed, aa any new particle position 

(a:",?/") found with (B.2), (B.4) or (B.6) does not correspond to a grid point, its 

corresponding velocities needed for the calculations in (B.3), (B.5) or (B.7) do 

not exist. In order to have the velocities anywhere in the computed domain and not 

to be restricted to the grid points, a method divided in two steps is used. First, at 

a given time, for a given elevation (given j , see grid in figure 3.1), a Fourier analysis 

is done so that the velocity can be found anywhere along the same line of constant 

77, across the entire width of the domain. Second, as the velocity needed is also likely 

to be at a location in between two elevations, a Lagrange interpolation is done on 

the Fourier coeSicients obtained previously, between two neighbouring and defined 

elevations. Then the interpolated Fourier coeGicients can be used to calculated the 

velocities at the exact location needed. 

B.2.2 Four ier t r a n s f o r m a t i o n 

For a given wave phase, the horizontal and vertical velocities are only available at 

the grid points. By doing a Fourier analysis of the velocity files at a given level j , 

and f can be expressed as: 

= Aoj + ^ An J COS (710) + B n j s in(n0) (B.IO) 

M=1 

7l6 
co8(Mg) + 8in(Mg) (B.l l ) 

n = l 

where 0 = cr< — /ca;. Once the coefBcients are calculated, the velocities can be found at 

any 0, that is at any time t and at any location along the same elevation. 
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B.2 .3 Lagrange in t e rpo la t ion 

A Lagrange interpolation is done for each Fourier coefBcient, at intermediate levels, 

using five points. Any or is interpolated, for j < ?/ < j +1 . The formula used 

is: 

/(!/) y-2 g A i + ^ /o 

(P + - 4) ^ - l)p(p + 2) ^ 
g / . + ^ h (B-12) 

With: 

# standing for ^4.^j or j . 

# /(;/) = /OoA^/ + pAi/) is or 

" P = (i/ - ;oA^)/A^. 

# index j = 0 is the j level corresponding to the entire par t of i//A^. Other index 

values are for levels above and underneath it. j = 1 is the Erst level above the level 

j = 0 and j = — 1 is the Grst level underneath it. 

B.2.4 Per iod ic i ty 

The particles are injected for a duration of several wave periods (typically 20 to 

30), in order to get an estabhshed pattern. Indeed, the experiments in the wave tank 

showed that at leaat 10 to 20 wave periods were needed to get a complete dye pattern. 

The velocity 61es from the Grst model, saved for each wave phaae, are used at the same 

relative wave phase for each wave period, assuming a repeatabihty of the oscillatory 

How pattern. According to Marin (1992), Earnshaw and Created (1998) and Malarkey 

and Davies (2002), such an approximation can induce errors in the calculation as the 

periodicity of particles movement can be in some cases longer than a wave period. 

Calculating the velocity files for several wave periods and using them directly in the 

particle trajectory calculation is possible but it needs too much computer time with 

the present model. 
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B.3 Results 

No satisfactory result has been obtained so far. The particles trajectories produce 

the same type of pattern regardless of the wave conditions and do not oEer the vari-

ety of structures visualized in the experiments. A very large number of wave periods 

might be needed in order to get diSerent patterns. It would then need a lot of com-

puter time to get complex patterns closer to the experimental flow visualizations. The 

model needs further optimization in order to reduce the computer time. The particle 

update loop with its interpolation calculations might also not be accurate enough to 

describe such a process. Using the same velocity hies at each wave period could also 

be the main condition limiting the possibility to obtain any pattern observed in the 

experiments. A major problem can also come from the fact that the building process 

of the 8ow structures is a slow process involving weak time-mean velocities. Despite 

a good agreement of the model with the experiments for instantaneous velocities, the 

weak time-mean velocities might not be represented accurately enough by the model. 

Figure B.l shows a case of acceptable agreement between the experimental visual-

ization and the trajectory computer model, for the case of a two-dimensional mushroom 

shape pattern. This kind of result is unfortunately the only type of shape produced by 

the model. This result has then to be treated with caution. This computed pattern can 

also be taken as the negative image of a pair of ceUs. It is recalled that the model does 

not include any steady component in the wave-induced velocity dehnition. Therefore, 

similarly to the results shown in section 4.3.4, the structure computed could be a kind 

of circulation cells pair. It is however not clear why for a large wave orbital to ripple 

wavelength ratio and steep ripple slope, either the same type of pattern is obtained 

instead of a vortex ejection pattern, or the model stops as particles would escape from 

the defined domain. 

Further work needs to be done on this trajectory model. Improvement and opti-

mization of this model are beyond the scope of the present thesis but should be carried 

out in the future. 
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Experiments 

Model 

Figure B.l: Comparison trajectory model result - Experimental visualization; ripple 

slope Sr = 0.175; r = 0.11; /3 = 32.7 (wave period T = 1 s). 
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