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This thesis addresses statistical issues related to linear panel data models with the joint
occurrence of unobserved heterogeneity and measurement errors-in-variables.
Specifically, it is concerned with hypotheses testing and estimation techniques in a static
and in a dynamic framework respectively.

Chapter 1 presents a methodological revision of the use of the Hausman test (Hausman,
1978) for correlated effects with panel data. The consequences of deviations from the
basic assumptions underlying the construction of the Hausman statistic are investigated. In
particular, the distribution of the Hausman statistic in cases of misspecification of the
variance-covariance matrix of the errors is examined. It is shown that the size distortion
may be serious. An alternative robust formulation of the test with panel data, based on the
use of an auxiliary regression, is proposed. This test, which we call the Hausman Robust
or HR-test, gives correct significance levels in common cases of misspecification of the
variance-covariance matrix of the errors and has a power comparable to the standard
Hausman test when no evidence of misspecification is present. It can be easily
implemented using a standard econometric package, e.g. Stata.

In Chapter 2 this robust version of the Hausman test (suitably tailored) is used to
compare different pairs of panel data estimators in a particular sequence. The resulting
two-step testing procedure is intended to distinguish between an endogeneity problem
caused by correlation between regressors and individual effects, and an endogeneity
problem due to measurement errors. The statistical performance of the sequential test is
assessed using simulated data. This methodology is then applied to an empirical job-
search matching model to investigate the effects of measurement errors and unobserved
heterogeneity that, as is well-known, contaminate two of the variables extensively used in
labour market research, namely the stock of unemployed and the stock of vacancies. The
economic implications of the inference results using the proposed methodology are
compared with those produced by a possible traditional analysis.

Chapter 3 presents consistent estimators (which differ in terms of efficiency) for an
autoregressive (stationary) model of panel data that superimposes the errors-in-variables
problem and the unobserved heterogeneity issue on a dynamic framework. Moreover, the
measurement errors are not ‘classical’ (i.e., uncorrelated with everything else in the model
included their own past values) but are assumed to have a more complicated structure. The
analysis of an example demonstrates the empirical relevance of this modelling.
Furthermore, because the cross sectional units in the panel data set considered have a
spatial connotation (UK counties), spatial features are also incorporated in the econometric
analysis. The resulting empirical model is a spatio-temporal panel data model with
unobserved heterogeneity and systematic measurement errors.
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Preface

A panel data set contains repeated observations over the same units (individuals,
households, firms...), collected over a number of periods. Since the pioneering papers by
Kuh (1959), Hoch (1962) and Balestra and Nerlove (1966), the pooling of cross sections
and time series data has become an increasingly popular way of quantifying economic
relationships. Each dimension provides information lacking in the other, so a combi-
nation of both allows one to specify and estimate more complicated and more realistic
models than a single cross section or a single time series would do. Panel data sets are
mainly more informative data sets: they allow us to control for unobserved heterogeneity
among individuals and furthermore they give more variability, less collinearity among
the variables, more degrees of freedom and more efficiency than traditional time series
or cross sectional studies (Baltagi, 1995). As a result, important advantages of panel
data models compared to time series or cross sectional data models are that they allow
estimation methods robust to certain classes of omitted variables and that they allow
the identification of certain parameters of interest in presence of endogenous regressors
or measurement errors, without the need to make restrictive assumptions. Furthermore,
they can be used to study and compare the dynamics of different individuals.

The first aim of this thesis is to provide appropriate panel data techniques for dealing
with different sources of unobservable factors. The failure to control for various types of

unobservable factors may lead to unreliable estimation results.

“There are at least three types of unobservable in econometric models: (7) fixed
parameters to be estimated from the data, (47) variables which affect the observable
variables but which are not themselves directly observed either because the observed
magnitudes are subject to measurement error or because these variables do not
correspond directly to anything that is likely to be measured, (%) disturbances,

either as errors of measurement or as errors in equations. There is no clear dividing



line between these three categories. !

That data collection is subject to a variety of errors needs no reiteration or much
documentation. In general, the data collection and thus the responsibility for the qual-
ity of the collected material, is still largely delegated to institutions outside the control
of the analyzing team. It is also fair to note that part of the problem arises from our
requirements about what we would like to observe and the complexity of the phenomena
which we are trying to measure. Nevertheless, the role of unobservable factors has been
relatively neglected in econometric practice.? The standard errors-in-variables models
have not been applied widely mainly because to be identified they require extraneous
information. This conclusion of lack of identification in errors-in-variables models, how-
ever, relates to uni-dimensional data, i.e. pure cross sections or pure time series. In
presence of two-dimensional data, e.g. panel data, it may be possible to handle the
errors-in-variables identification problem and estimate consistently the coefficients with-
out extraneous information.

Many studies using panel data sets face the simultaneous problem of unobserved
heterogeneity and measurement errors. The literature dealing specifically with panel
data models capturing both features is not large and not yet well developed (see Matyas
and Sevestre, 1996, Ch. 10 for a review). This thesis addresses statistical issues related
to linear panel data models with the joint occurrence of unobserved heterogeneity and
measurement errors-in-variables. Specifically, it is concerned with hypothesis testing and
estimation techniques in a static and in a dynamic framework respectively.

The Thesis is organized in three chapters. Chapter 1 and 2 consider static models.

Chapter 1 (joint with R. O’Brien) presents a methodological revision of the use of
the Hausman test for correlated effects with panel data. The application of the test, a
common practice in applied work, does not always give reliable results. The assumptions

underlying the construction of the Hausman statistic (Hausman, 1978) are too strong in

1 Griliches (1979).
For an extensive discussion, see Aigner et al. (1984).



many empirical cases.

The main contributions are the following ones.

e The consequences of deviations from the basic assumptions underlying the con-
struction of the Hausman statistic are investigated. Within the discussion, it is
shown that the assumptions in Lemma 2.1. in Hausman (1978) are sufficient but
not necessary. In particular, it is demonstrated that the attainment of the abso-

lute Fisher lower bound can be replaced by the attainment of a relative minimum

variance bound.

e The distribution of the Hausman statistic in cases of misspecification of the variance-
covariance matrix of the errors is examined. The size distortion is numerically as-
sessed. It is found that the test will reject more often than allowed by its nominal
size. Furthermore, in common cases of misspecification, it is shown analytically for
the asymptotic case that the size distortion is sensitive to the ratio between the

intra-groups and inter-groups variation of the covariates.

e An alternative robust formulation of the test in a panel data context is constructed.
It is based on the use of the auxiliary regression proposed by Arellano (1993). The
power is assessed using a simulation experiment. This test, which we call the
HR-test, gives correct significance levels in common cases of misspecification of
the variance-covariance matrix of the errors and has a power comparable to the
standard Hausman test when no evidence of misspecification is present. It can be

easily implemented using a standard econometric package.

The contribution of R. O’Brien is in the derivations contained in Section 1.4 and in
Appendix 1.1.

Chapter 2 emphasizes the misleading inference results which one can obtain by testing
for unobserved heterogeneity without conditioning on the existence or non existence of
measurement errors and illustrates how panel data sets can be used to detect and treat

properly different kinds of unobservable factors. A concrete case of study is presented.
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We seek to investigate the importance of unobserved heterogeneity and measurement
errors that contaminate two of the variables extensively used in labor market research,
namely the stock of unemployed and the stock of vacancies.

The main contributions are the following ones.

e Robust formulations of the Hausman test (HR-tests) for the comparison of different
pairs of panel data estimators are implemented. Chapter 1 shows how to construct
a panel data artificial regression in order to get a robust test for correlated effects,
i.e. for the presence of (group) individual-specific unobservable effects constant over
time correlated with the regressors. It is based on the comparison of two particular
estimators, i.e. the Within Groups and the Between Groups, as the Within Groups
transformation removes unobservable factors of this sort. In Chapter 2 similar
artificial regressions are constructed to compare other pairs of panel data estimators

for different purposes.

e A sequential testing procedure is presented. It consists on using different HR-
tests in a particular sequence. The aim is to distinguish between an endogeneity
problem caused by correlation between regressors and individual effects, and an
endogeneity problem due to measurement errors. This approach is founded on the
idea that essential specification errors can be recognized by comparing estimators
which behave differently if the assumptions of the model are satisfied or if some of
them are not. The statistical performance of the sequential test is assessed using
simulated data. Considerations on the significance level and power of the test are

presented.

e The methodology is applied to an empirical job search matching model. We com-
pare different panel data estimators of the coefficients of the stocks of unemployed
and vacancies. The choice of appropriate instruments is discussed. The use of
this procedure suggests what is the most reliable model specification to analyze

the data at hand. The economic implications of the inference results using the



proposed methodology are compared with those produced by a possible traditional
analysis. It is shown to what extent conclusions lacking accuracy in the choice of

the model specification may be misleading.

Chapter 3 focuses on the estimation of linear dynamic models when measurement
errors and unobserved heterogeneity are jointly taken into consideration. Errors-in-
variables models require the use of instrumental variables techniques in order to obtain
consistent estimators and dynamic models complicate the estimation procedure because
only predetermined instruments may be available. Furthermore, certain transformations
typically used to purge the model from unobserved heterogeneity, such as first differ-
ences or deviation from time-means, lead to inconsistent estimators when instruments
are predetermined (see, for instance, Arellano and Bond, 1991). Consistent estimators
for (stationary) autoregressive panel data models with white noise errors (assuming exact
measurement of the variables) are presented, among others, by Arellano and Bond (1991),
Arellano and Bover (1995), Blundell and Bond (1998). Consistent estimators for static
panel data models with measurement errors-in-variables are discussed, among others, by
Biorn (2000). This chapter combines these two strands of the panel data literature.

The main contributions are the following.

e Consistent estimators (which differ in terms of efficiency) for an autoregressive
model of panel data that superimposes the errors-in-variables problem and the
unobserved heterogeneity issue on a dynamic framework are constructed. Moreover,
the measurement errors are not “classical” (i.e., uncorrelated with everything else
in the model included their own past values) but have a more complicated structure
which invalidates the estimation techniques in the existing related literature. The
empirical relevance of such a modelling is clear if we think about measurement
errors not only as observation errors in the narrow sense but also as discrepancies
between theoretical variable definitions and their observable counterparts in a wider
sense. It seems sensible to assume that the difference between a typical variable of

interest and its empirical counterpart almost never has a simple random structure.



e The proposed estimation techniques are applied in a concrete case of study. Because
the cross sectional units in the panel data set considered have a spatial connotation
(UK counties), spatial features are incorporated in the econometric analysis. The
resulting empirical model is a spatio-temporal panel data model with unobserved
heterogeneity and systematic measurement errors in variables. It is shown to what
extent the illustrated estimation methodology for dynamic panel data models can

be tailored and applied in order to obtain reliable results in the specific context

analyzed.
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Chapter 1

Testing the Exogeneity Assumption

in Panel Data with “Non Classical”

Disturbances

This chapter is concerned with the use of the Durbin-Wu-Hausman test for correlated
effects with panel data. The assumptions underlying the construction of the statistic
are too strong in many empirical cases. The consequences of deviations from the basic
assumptions are investigated. The size distortion is assessed. In the case of measurement
errors, the Hausman test is shown to be a test of the difference in asymptotic biases of
Between and Within Groups estimators. However, its ‘size’ is sensitive to the relative
magnitude of the intra-groups and inter-groups variations of the covariates, and can be
so large as to preclude the use of the statistic. We show to what extent some assumptions
can be relaxed in a panel data context and we discuss an alternative robust formulation

of the test. Power considerations are presented.



1.1 Introduction

The Hausman test is the standard procedure used in empirical panel data analysis in
order to discriminate between the fixed effects and random effects model. The general
set up can be described as follows.?

Suppose that we have two estimators for a certain parameter ¢ of dimension K X 1.
One of them 1A9T, is robust, i.e. consistent under both the null hypothesis Hy and the
alternative H,, the other, f?e, is efficient and consistent under H, but inconsistent under
Hy. The difference between the two is then used as the basis for testing. It can be shown
(Hausman, 1978) that, under appropriate assumptions, under Hy the statistic h based

on @r - ﬁe) has a limiting chi-squared distribution:
h=(3,—0.) [Var (3, -9.)] " (3, - 9.) & x%.

If this statistic lies in the upper tail of the chi-squared distribution we reject Hy. If the
variance matrix is consistently estimated, the test will have power against any alternative

under which 9, is robust and 9, is not. Holly (1982) discusses the power in the context

of maximum likelihood.

In a panel data context the test is typically used as a test for correlated effects.

Consider the model
yit:m;tﬁ+ni+vit, 1=1,.., N, t=1,..T (1.1)

where z;; is a K x 1 vector of stochastic regressors, n;, ~ #id (0,0‘%), vy ~ 1id (0,0?)
uncorrelated with z;; and Cov (n;,vy) = 0.

The null hypothesis assumes lack of correlation between the individual effect 1, and

'"This approach is also used by Durbin (1954) and Wu (1973). For this reason tests based on the
comparison of two sets of parameter estimates are also called Durbin-Wu-Hausman tests, or DWH. For
simplicity of exposition we will refer to the Hausman (1978) set up.



the explanatory variables x;,
Hy: Cov(zy,n,) = 0.

The Within Groups estimator, ng, is robust regardless of the correlation between n; and

x;. The Balestra-Nerlove estimator, B By, 18 efficient under Hy but inconsistent under H;,
Hy : Cov(ay,n;) # 0.
The Hausman statistic in this case takes the form
hy = (ng - BBN)I [V{;"‘ (ng - ;BBN”_l (ng - BBN) ~ Xi- (1.2)

However, using the results in Hausman (1978), the statistic used in practice is

I

h,g = (,ng - BBN) (ng - VBN)_I (ng e BBN) N (13)

where Vi, = Var (ng> and Vpy = Var (BBN>. It is based on the result that the

variance of the difference between an estimator and an efficient estimator is equal to the

differences of the variances:
VCL?“ (Bwq - BBN) - ng - VBN (14)

In the time series-cross section model considered in Hausman (1978) this equality holds
because (3 gy is an efficient estimator in the sense that it attains the Cramér-Rao Lower

Bound for fixed A (defined below), and Couv ( wg B N) = Var <B B N). This implies

Var ( ﬁBN) = Var (ng> +Var (53]\7) - 2C0u <ﬁw’ﬁBN)
= Var @wg) + Var ( Bzw) 2V (ﬂBN)
= Var (ng) <,§’BN> = Vg — Van.



However, in applied studies, this may not always be the case and one should be careful in
using h, automatically. If equality (1.4) does not hold, hs does not follow an asymptotic
chi-squared distribution, even under Hy.

This chapter considers the effects on the Hausman statistic used in applied panel data
studies, hg, of deviations from the conditions in Lemma 2.1 in Hausman (1978), which

guarantees that equality (1.4) holds. This lemma is stated as follows.

Lemma 1 Consider two estimators ,@O, /§1 which are both consistent and asymptoti-
cally normally distributed with 50 attaining the asymptotic Cramér-Rao bound so that
VT (Bo - ﬁ) A N(0,Vp) and VT @1 — B) & N (0,V}) where Vj is the inverse of Fisher’s
information matrix. Consider § = ,31 _,Bo- Then the limiting distributions of v/T (50 — ﬁ)

and /TG have zero covariance, Cov B q) = 0, a null matrix.
q 0> q

The plan of the chapter is as follows. Regarding the attainment of the Cramér-Rao
Lower Bound, in Section 1.2 we show that if we want to compare different estimators
within a specific set, the assumption of full efficiency is not necessary. A relative lower
bound for the variance can play the role. The variance of the difference between two
estimators belonging to such a set is still equal to the difference of the variances if one of
the two is the minimum variance estimator in the specific set considered. The algebraic
derivation of this result is provided in the panel data framework. The Lemmas contained
in Appendix 1.1 prove that this holds both in the exact and in the limiting case. Given
that the Balestra-Nerlove estimator can be obtained as a matrix weighted average of
the Between Groups, Bbg, and the Within Groups estimators (see, e.g. Maddala, 1971),
we consider the set of estimators which is defined by a matrix weighted average of two
unbiased (or consistent in the limiting case) estimators.

However, even the attainment of a minimum variance bound may be a strong as-
sumption in empirical studies. This circumstance is related to assumptions about the
error term. A failure of the assumption of spherical disturbances is quite common in

practice. Section 1.3 presents a robust formulation of the Hausman test for correlated
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effects, which is based on the construction of an auxiliary regression. We explain and
discuss to what extent the use of artificial regressions may allow us to construct tests
based on the difference between two estimators in a panel data model without making
strong assumptions about the disturbances. The motivation underlying the implemen-
tation of the robust test is that the size distortion of the standard Hausman test, ho, in
cases of misspecification of the variance-covariance matrix of the disturbances may be
serious. This is investigated in Section 1.4.

Section 1.5 compares the power of the standard Hausman test and the robust formu-

lation presented in Section 1.3 using a Monte Carlo experiment. Section 1.6 concludes.

1.2 The Failure of the Assumption of Full Efficiency

Consider model (1.1). Defining the disturbance term
Eit = 1); T Vit,

the variance-covariance matrix of the errors is

¥o=IyeQ
(NTxNT)
where
0727 + o? 03]
Q=1 : IR =0’y + 037 N (1.5)
0727 os + o?

and ¢ is a column vector of 7" ones. The unobserved heterogeneity implies correlation
over time for single units, but there is no correlation across units.

Hausman and Taylor (1981) propose three different specification tests for the null
hypothesis of uncorrelated effects: one based on the difference between the Within Groups

and the Balestra-Nerlove estimator, another on the difference between the Balestra-

12



Nerlove and the Between Groups and a third on the difference between the Within
Groups and the Between Groups. They show that the chi-squared statistics for the
three tests are identical. We now analyze the Hausman statistic constructed on the
difference between the Within Groups and the Balestra-Nerlove estimator, commonly
used in empirical work.

Hereafter, we define as fully efficient an estimator that reaches the Cramér-Rao Lower

Bound and as minimum variance the one that has the minimum variance within a specific

class. Let

0.2

A= EQ_;T—U%.
If we assume normality in model (1.1), it is well-known that the Balestra-Nerlove esti-
mator, i.e. the generalized least squares estimator, is fully efficient if the variance-ratio
parameter X is known, and asymptotically fully efficient if A is consistently estimated. (A
distributional assumption is required in order to obtain the Cramér-Rao Bound.) There-
fore the hypotheses underlying the construction of the Hausman statistic are satisfied
and the results of the test are reliable. However, we will demonstrate that even without
assuming normality of the ¢;; the results of the standard Hausman test are reliable, the
key assumption being (1.5). We will use the panel data framework as an example. In
what follows we take A as known. The same result holds asymptotically if a consistent
estimator X is available. It is implied by the Hausman-Taylor result that we can construct
the same test using different pairs of estimators, as will be clarified below.

Consider model (1.1). We write the Balestra-Nerlove estimator (Balestra and Nerlove,

1966) as a function of the variables in levels
Bay = (X' QX 20X MX) " (X'Q+AX'M)Y (1.6)
where
Q = Iy2QT,

13



QF = Ip— =i,

T
M = Iyo M,
MT = %n":IT.-Qﬂ
~X1~ Fyl_ _53/11_ ~y11
v X, v - y.2 X - 33'22 = y.ig
_XN_ YN | niL‘;TJ i |

()" is the matrix that transforms the data to deviations from the individual time means,

M™ is the matrix that transforms the data to averages. Rearranging

-~ 1; -1 1;

Boy = [X Myr + (1= 2)QIX| X Myr+ (1= 1) QY. (1.7)
The variance is

Var(Bgy) — { X' M+ (1= N QI X] 7 X My + (1= ) Q}} Var(Y)

X {[AINT +(1=NQIX [X Myr+ (1 =) Q) XJ'I} . (1.8)

Using a simplified version of the Sherman-Morrison-Woodbury formula (Golub and Van
Loan, 1983, p.50) one can show (Appendix 2.1) that, under assumption (1.5), the variance

of y; can be written as

1 171
o’ [IT — —f(l — A

o2 ,
—
o+ T(I%

. 1 1 77!
= (TZKIT—T-LL)—{—)\?LL} )

-1

Var(y,) = o° {IT -
This can also be obtained by ignoring time effects, and thus setting w = 0, in Nerlove

14



(1971). Using the matrices involved in formula (1.6), we can rewrite this expression as

Var(y,) = o [([T - M+) + )\j\/[“L} -
= Q"+ A - AQ]
= (-0t (1.9)

Thus
Var(Y) = Iy @ Var(y) = o Myr + (1 — M)Q) ™"

Substituting (1.9) in (1.8), we obtain

Var(Bpy)
= o | X' Myr+(1- X Q] X|
x M+ (1= 2) Q1 X [X M+ (1-2) Q] X]
= X N+ (1-NQX] (1.10)

-1

X' [Myr+ (1 =X Q] Myr+ (1 -2Q]™

Similarly, using the @) matrix defined in formula (1.6), we can write also the Within

Groups estimator as a function of the initial variables in levels
B, = [X'QX] X'Qv, (1.11)
The variance is
Var(B,,) = [X QX] ' X Qary)Q'X [x Qx| (1.12)
If we transform the data into deviations, the variance of y; can be written as

Var(QTy) = QJFVaT(yi)QJ“/ = o2Q* []T -+ QLLI} QF =2Q QT = QT (1.13)

15



where 0 = 0;2? /o? and Q" = 0, a vector of zeros. Thus
Var(QY) = o’ Iy @ QT = 0*Q.
Substituting (1.13) in (1.12), we obtain?

~ ; —1 ’ , ’ -1
Var(B,,) = o*[X QX] X' 000X [X QX]
Qx| . (1.14)

Hence, from (1.10) and (1.14)
Var(B,,) — Var(Byy) = o {{X/QXF — [X M+ (1= 0 Q) X}“l} . (115)

Next, we show that such expression is exactly equal to the variance of the difference

between the two estimators.
VC”'(BBN - Bu,g) = VCLT(BBN) - OO’”(BBN»BW) - CO?/’(BUJW BBN) + VW(ng)-

From (1.7) and (1.11)

-1

Cov(Boy, Bug) = o | X Pyr+ (1= N QI X]| X [Myr + (1= 1) Q]
x Myr + (1= 2Q ™ QX [x'Qx]

= o [ X' Myr + (1= N QIX| = Var(Bpy).
This is symmetric, and thus equal to Cov(ng, B gn)- Therefore, we obtain

VC”(//B\BN - ng) = VW(BBN) - VW(BBN) - VQT(BBN) + Va’r(/?wg)
- V&?"(ng) - Var(BBN)

’Recall that @ is an idempotent matrix.

16



as required. We have proved that equality (1.4) holds for A known or otherwise fixed.
As we said, the case of estimated A can be treated by using the Hausman-Taylor
result that an algebraically identical test statistic can be constructed using the difference

between ng and the Between Groups estimator Bbg. We obtain

Bag = Big) [Var(Bug) + Var(Byy)] ™ (Bug — Byy)

as the estimators have zero covariance. In this form, we can see that estimating o2 and
A (or 0"727) affects only the variance matrix of the test statistic. We thus obtain the same
test statistic whatever A is, and (1.3) maintains the assumed distribution. It does not
follow from these arguments that the equality (1.4) can be made exact for estimated
N IE B gy and ng were independent of X, the result would follow, but this requires
normality of the disturbances. Viewing B gy as a feasible GLS estimator, Kakwani
(1967) implies it is unbiased. However, conditional on A it may or may not be unbiased.
Further, the variances obtained are for ) fixed, not conditional on A. So attempts to
obtain unconditional variances from conditional variances and variances of conditional
expectations do not seem fruitful. So it would appear that the exact result (1.4) may
require normality of the ¢;; or A fixed. Equality (1.4) implies that for fixed and known
A, and known o2, under normality hs would have an exact chi-squared distribution.
If X\ is estimated, and/or the &4 are not normal, hy is asymptotically chi-squared as
long as z;; are sufficiently well-behaved to ensure that ,5’ gy and ng are asymptotically
normal, and o® and o7 (or equivalently \) are appropriately estimated. This is less
restrictive than the assumptions required for the identification of the Cramér-Rao bound.
We obtain the result (1.4) without assuming normality because we compare two linear
unbiased estimators, one of them achieving the minimum variance for a linear estimator.
Lemma 4 in Appendix 1.1 shows that the variance result depends only on minimum
variance properties, not on normality or achievement of a particular (Cramér-Rao) bound.
However, in order to get a panel data generalized version of Lemma 1 (Lemma 2.1 in

Hausman, 1978), it is necessary to prove a similar result in the limiting case. This aim
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is achieved in Lemma 10 in Appendix 1.1. The minimum variance property required is

within a set of the form

T={t:t=At + 1= ALy}

where ¢; and ¢, are estimators of the parameter vector . For completeness, Lemma 9
establishes that sets of this form will contain minimum variance members.

We can summarize as follows. If we want to use the Hausman statistic to compare
two different estimators, e.g. one linear and one non linear, the assumption of normality
may be crucial because it allows us to find an absolute lower bound for the variance of
the estimators. However, if we want to compare different estimators within a set of the
form of 7 neither the assumption of normality nor the attainment of the Cramér-Rao
Lower Bound, even in the limiting case, is crucial. A lower bound for the variance can
play the required role. The variance of the difference between two estimators belonging
to the same set is still equal to the difference of the variances if one of the two is the
minimum variance estimator in the specific set. Lemma 10 in Appendix 1.1 allows us to
rely on the results provided by a traditional Hausman test in a more general set-up.

It is worth noting that we are not removing the assumption of asymptotic normality
of the estimators in Lemma 1, which is needed to obtain the chi-squared distribution of
the Hausman statistic. Our generalization applies for estimators that are asymptotically
normally distributed but that do not reach the Cramér-Rao Bound.

We prove the result for a specific set of estimators but this does not rule out the
possibility of extending the result to wider contexts. For instance, the GMM estimator
is asymptotically normally distributed and attains the asymptotic Cramér-Rao Lower
Bound only in some cases. Nevertheless, if we compare an arbitrary GMM estimator,
e.g. using the identity matrix, and the one which uses the optimal weighting matrix
(Hansen, 1982), Lemma 10 implies that the difference between these two estimators can

be used as basis for an Hausman test.
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1.3 The Failure of the Assumption of Spherical Dis-
turbances

In the previous section, we relaxed the assumption of full efficiency in Lemma 1. How-
ever, even the assumption that one of the two estimators has the minimum variance or
that both are consistent under the null hypothesis can be still too strong in many em-
pirical cases. In the panel data framework above considered (model (1.1)), the crucial
assumption for (1.4) to hold is (1.5). In other words, the form of the covariance matrix
has to be assumed. In cases of misspecification, i.e. if Var(y;) = Q* # €, equality (1.4)
does not hold any longer.

As Hausman clearly states at the very beginning of his article (Hausman, 1978), the
specification test he presents assumes that the disturbances have a spherical covariance

matrix. He considers the standard regression framework

y=X0+e,
where
E(s/X) =0, (1.16)
and
Var(s/X) = 1. (1.17)

In most of the articles that followed, assumption (1.17) is never relaxed. The emphasis of
this part of literature is placed in testing the orthogonality assumption, i.e. E(e/X) = 0.
In the panel data framework ((model (1.1)) a test of the assumption (1.16) tests for
correlated effects. Also in this context the assumption (1.17) is usually maintained.
The reason is straightforward if we consider the comparison between the Within
Groups estimator and the Balestra-Nerlove estimator as a comparison between an OLS
and a GLS estimator. One basic assumption in the construction of the Hausman statistic

(Lemma 1) is that one of the two estimators has to reach the asymptotic Cramér-Rao
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Lower Bound or, using the generalization provided in Lemma 10 in Appendix 1.1, that
at least has to be the minimum variance estimator in a specific class. In the panel data
framework the'Balestm—Nerlowe, that is the generalized least square estimator, is the
BLUE estimator if the GLS transformation produces spherical disturbances. This is the
case if the correlation in the covariance matrix of the initial errors is due only to the
presence of unobserved individual effects, i.e. if the initial disturbances are spherical.
To make it clear, we analyze in detail the construction of the Balestra-Nerlove esti-
mator. In practice, the Balestra-Nerlove estimator can be calculated running an OLS
regression on a transformed model. Assuming model (1.1), which implies the distur-

bances variance covariance matrix (1.5), the transformation of the y; and the z; is the

following
yia — 07,
12— 07,
Q_%yz _ Yiz Yi.
| Yir — 07 |
where 7, is the individual 7 time mean,
0
Q—%:[—'?m) 0=1-— 7 T
(0‘2 +T o‘%) :

and likewise for the rows of z;.

Under assumption (1.5), which implies initial spherical disturbances, this is a GLS
transformation that produces a model with spherical disturbances. Hence running OLS
on such a model we obtain the BLUE estimator. However, if assumption (1.5) does
not hold, the GLS transformation does not guarantee that the new disturbances are
spherical. In this case the GLS estimator, namely the Balestra-Nerlove, is still consistent
but it may not be the minimum variance estimator. The consequence is that we can no
longer be sure that the equality (1.4) still holds. In these circumstance the results of

the test hy (statistic (1.3)) may not be reliable. However, if the two estimators remain

20



consistent under Hy the comparison can still be conducted, but the methodology needs
to be adjusted in an appropriate way.

In what follows, we present a robust version of the Hausman test for panel data. It is
based on the use of an artificial regression. It allows us to compare different estimators
without assuming normality or ranking them in terms of efficiency. Specifically, such
methodology does not use the hypothesis that the variance of the difference of the two
estimators is equal to the difference of the variances. It estimates directly the variance
of the difference of the two estimators. It simply uses the statistic (1.2) instead of (1.3).
Moreover, it provides an estimate of this variance that is consistent and robust to het-
eroskedasticity and/or serial correlation of arbitrary form in the within groups covariance
matrix of the disturbances. This estimator is obtained using White’s formulae (White,
1984). It will be made clear to what extent the application of White’s heteroskedasticity
consistent estimators of covariance matrices in a panel data framework may also allow
for the presence of autocorrelation within groups.

Baltagi (1996) and Ahn and Lo (1996) propose different artificial regressions to test
for the presence of correlated effects. However, the assumption of initial spherical dis-
turbances is never relaxed. As shown by Baltagi (1997, 1998), under the assumption of
spherical disturbances, the three approaches, i.e. the Hausman specification test, Bal-
tagi (1996) and Ahn and Lo (1996), yield exactly the same test statistic. However, as
first noted by Arellano (1993) in the same panel data framework, an auxiliary regression
can also be used to obtain a generalized test for correlated effects which is robust to
heteroskedasticity and correlation of arbitrary forms in the within groups disturbances.
Davidson and MacKinnon (1993) list at least five different uses of artificial regressions
including the calculation of estimated covariances matrices. We will use this device to
estimate directly the variance between the two estimators without using equality (1.4).
Furthermore, the application of White’s formulae (White, 1984) in the panel data case
will lead to heteroskedasticity and autocorrelation consistent estimators of such variance.

Therefore, we can use an artificial regression to construct a test for the comparison of dif-
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ferent pairs of estimators which is robust to deviations from the assumption of spherical

disturbances. From now on we will call this technique the HR-test, for Hausman-Robust

test.

Next we present the auxiliary regression that was proposed by Arellano (1993) to test
for random versus fixed effects in a static panel data model.
Consider the panel data model®

v = X; B+ o, 1=1,..., V. (1.18)
(Tx1) (TxK) (Tx1)

This system of T' equations in levels can be transformed into (7' — 1) equations in devi-

ations and one in averages. We obtain respectively

( yr = X0+ p — (I'— 1) equations
{ 7= X;8+1; — 1 equation.
Estimating by OLS the N(T — 1) equations in deviations from individual time-means
we obtain the Within Groups estimator, i.e. ng. Estimating by OLS the N average
equations we obtain the Between Groups estimator, i.e. Bbg.
Let
By = plim (ﬁwg>

and

Bog = plim. (By, )

Rewrite the system as

yz* = X;:[))wg -+ /‘L: - Xi*lgbg + X;ﬁbg

(1.19)

3For simplicity of exposition, we exclude the case when any time-invariant covariates are included.
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Rearranging, we obtain

Y = X7 (Bug = Bog) + X7 Bog + 147
T = XiBpy + i

Call
e () e [X X
i 0 X
,8+: ,Bl _ /ng_lﬁbg u+: IU’:
/92 ﬁbg —/'L_’L
The augmented auxiliary model is
Y =W 8"+ uf, i=1,..,N. (1.20)

If we estimate 37 in (1.20) by OLS, we obtain directly the variance of the difference
of the two estimators in the upper left part of the variance-covariance matrix of 37.
Under the assumption of spherical disturbances a Wald test on appropriate coefficients
in the auxiliary regressions is equivalent to the standard Hausman test (Arellano, 1993).
Instead, in this chapter, by estimating the variance-covariance matrix of 47 using the
White’s formulae we obtain a formulation of the Hausman test robust to deviations from
the assumption of spherical disturbances. Appendix 4.1 provides an analytical derivation

of this result. The following Lemma is proved.

Lemma 2 Given model (1.20),

//(;)1 :ng—Bbg7 (121)
V&T(Bl) =Var (//B\wg - Bbg) ) (122)
An appropriate estimator Var(3,) consistently estimates Var(5,). (1.23)
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It is shown that, in order to get a consistent estimate of the variance, the first set of
equations in system (1.19) has to be scaled.”

In what follows, we will clarify to what extent an application of White’s formulae
for estimators of covariances matrices (White, 1984) in a panel data context provides a
consistent estimator which is robust to heteroskedasticity and arbitrary correlation in the
covariance matrix of the random disturbances. It may also control for the presence of fixed
effects. This latter possibility may be accommodated if we make further assumptions,
i.e. cross-sectional heteroskedasticity which takes on a finite number of different values.

Consider a simple panel data framework without individual effects

Yir = Bxin + €
Yio = PTio + €z,

yiT:ﬁxiT_t_aiT; L= 17“'7N7

where
g~ 0 521
E(Eiﬁ;) =1 : B = Iy = 3, € =
(T'x1)

Assume that in the complete model

> 0 0
0o =

Q =IeS= . (1.24)
(NTXNT) S
0 ... 0 X

4The use of an artificial regression does require Var(y;) to be constant over ¢ = 1,.., N, and diagonal,
so only heteroscedasticity over time is protected against. More general cases require separate estimation

o~

of Var(8,,,) and Var(ﬁbg) .

Hwg
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Define

i1 Ya
Xi = 5 yz =
TiT Yir
(T'x1) (T'x1)
and rewrite the model as

(Tx1) (Tx1) (T'x1)

This formulation allows us to consider panel data in the framework defined in White
(1984). 1If we assume no cross-sectional correlation and N — oo, all the hypotheses

underlying the derivation of White’s results are satisfied. Hence, Proposition 7.2 in

White (1984, p. 165) applies.

N
S=N1Y¢g5 53 (1.26)

i=1

and

o~

N=Ia2-5qQ.

However, while with uni-dimensional data sets we obtain heteroskedasticity consistent
estimators because ¢; is a scalar, in the two dimensional case ¢; is a vector and we obtain
a consistent estimator of the whole matrix . Hence, by applying the result (1.26) in the
panel data case we obtain a consistent estimator of the variance covariance matrix of the
disturbances that also allows for the presence of dynamic effects within groups.

Therefore, the estimators of the variance of the OLS estimators of J in the panel data
model (1.25) can be obtained by

N -1

Vﬁﬁﬂﬁ::{E:(XQXOJ_Iﬁé)QQ)Q[é§<)ﬂ)g)} _ (1.27)

i=1 i=1

As stated by Arellano (1993), they are heteroskedasticity and autocorrelation consistent.
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Such estimators are the ones used in the implementation of the HR-test. This case is
referred in White (1984) as contemporaneous covariance estimation.

However, White (1984) also implements consistent estimators in another case that
takes explicitly into consideration a grouping structure of the data. Consider again the

panel data model (1.25). Replace assumption (1.24) by

> 0 ... 0
0 2
Q = . .
(NTXNT) S P
0 ... 0 Xy

In this context, in a slightly different notation from that used by White (1984, p.172-
173), suitable for the panel data framework, we can obtain consistent estimators of the

covariance matrix {2 using

Q == di&g(il, 227 Cen SN)

where
S = T8 .

In other words, a consistent estimator (when N — oo) for the covariance matrix of
group ¢ is constructed by averaging the group residuals over only the observations in
group . In the balanced panel data case, their number is constant between groups and
equal to 7. This estimator is not only robust to autocorrelation of arbitrary form within
groups but it also allows for the possibility that individual error covariance matrices may

differ according to observable characteristics (such as region, union, race, etc....).

1.4 The Size of the Test

In this section we investigate the size distortion which occurs in the use of the standard

Hausman test (statistic hy, formulation (1.3)) when the basic assumptions (Lemma 1)
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are not satisfied.

Consider the panel data model (1.1) presented in Section 1.1. The Hausman test
investigates the presence of specification errors of the form Cov(x;,n,;) # 0. The robust
version proposed in Section 1.3 tests such orthogonality assumption between explanatory
variables and disturbances in presence of other forms of misspecification. In particular
we are interested in a possible misspecification in the variance-covariance matrix of the
disturbances arising, for instance, from the presence of measurement errors in variables.
This case may be the rule rather than the exception in applied studies.

We want to test the hypothesis
Ho : 007)(331757771') =0 (128)

against the alternative

Hy: COU(%‘tﬂ?i) # 0,

when

Var(e|zy) # €, (1.29)

Q defined in (1.5).
Hausman (1978) shows that under H, the test statistic

h=qV(@)d~x} (1.30)

where V() is the asymptotic variance of ¢, and k is the length of q. The same test

statistic is obtained if we consider the vector ¢ equal to

Zjl - (:ng_BBN)%
or Q\Q = <Bbg_BBN>7

or 63 = (ng —.Bbg>‘
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As Hausman and Taylor (1981) pointed out they are all nonsingular transformations

of one another. The estimate of the variance covariance matrix used in the three cases is

o~

1) = V(ng) - V(BBN)v
) = v/abg> - V(BBN);
3) = V(,ng) + V(B@)-

)

v

A=)

or XA/(

Q)

o~

or V{(

=)

If we are in presence of misspecification of the form (1.29), none of the above expres-
sions gives a consistent estimator of the variance-covariance matrix, even under H,. The
distribution of the test statistic under H, needs to be investigated. The nominal size
may be quite different from the observed one.

To investigate the size distortion under normality, we use the distributions of quadratic

forms in normal random variables.’ In particular, we use the following Lemma.”

Lemma 3 (in Lemma 3.2 in Vuong, 1989). Let x ~ N (0, V'), with rank (V) < K, and
let A be an K x K symmetric matriz. Then the random variable x' Az 1s distributed as a
weighted sum of chi-squares with parameters (K, ~y), where 7y is the vector of eigenvalues

of AV.

This implies that 2’ Az is a chi-squared statistic with r degrees of freedom, where
r = rank(A), if and only if AV is idempotent (Muirhead, 1982, Theorem 1.4.5).

If A= V™! ie. in cases of no misspecification, AV is idempotent. The theorem is
satisfied and result (1.30) holds. The test statistic gives correct significance levels.

If A# V! but AV is idempotent then rank (A) < K and/or rank (V) < K but still
(1.30) holds. We omit this case for simplicity of exposition.

If A# V=1 and AV is not idempotent, implying that the eigenvalues of AV are not

0 or 1, the asymptotic distribution of the Hausman test under H, is a weighted sum of

‘?See, among others, Muirhead (1982, Ch. 1), Johnson and Kotz (1970, Ch.29).
5This Lemma holds also in the asymptotic case (using the Continuous Mapping Theorem, e.g. White,
1984, Lemma 4.27).
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central chi-squares
K
2
h NZ dili
i=1

where z2 ~ x? and d; are the eigenvalues of AV. This implies that the significance levels
of the standard Hausman test are not correct.

Consider first the limiting case where dy — K, d; — 0, ¢ = 2,.., K. Pigure 1-1
illustrates numerically that

Pr [Kxf > x%al

where x% , is the critical value for a test of size o under the x% distribution. In this

illustration « is set equal to 0.05.

K
In general we distinguish two effects: a scale effect if >~ d; # K, which is predictable
i=1

(e.g. if d; =2V i, h ~ 2x%) and a dispersion effect if d; 5 d;, even if é d; = K. We
normalize the weights and we conjecture that the dispersion effect is m;;dmized in the
limit if we put all the weight on the largest eigenvalue, say the first one.

Figure 1-1 illustrates this case, i.e. the tail area of a x% is compared with the maxi-
mum tail area of K'x?. The graph shows that the size distortion is an increasing function
of K. For instance, if K is equal to 14, an inappropriate use of the Hausman test will
give a probability of rejecting a true hypothesis of exogeneity which is almost 4 times
larger than the nominal size.

In certain simple contexts an expression for the eigenvalues of AV can be analytically
derived. For instance, a common source of misspecification in the variance covariance
matrix occurs when the regressors contain measurement errors.

Suppose the true model is
yit:Z;tﬁ+77i+?)it, 1=1,..., N, t=1,....T

where z; is a K x 1 vector of theoretical variables, n, ~ iid <O, a%), vy ~ 4id (0, 0%)
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Figure 1-1: Pr {Kx% > X%(;azo,og)}
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uncorrelated with z;; and Cov (n;, v;;) = 0. The observed variables are

Tt = Zig -+ My,

where m;, is a vector of measurement errors uncorrelated with 7, and v;. The estimated

model is

yit:x;tﬁ+ni+vit—~m;tﬁ, i1=1,..., N, t=1,...,7T.

In the case of exact measurement, i.e. m; = 0,

Var(y:) = E(n;+ Uz‘t)Q = 0',,27 + 0’2,
Cov(yis, yir—s) = Cov(wy +1m; + vit, Ty o3 + 0y + Vit—s)
2

= o, Vs.

The variance-covariance matrix is matrix (1.5). It can be written as

o =Iy®Q,
(NTXNT)
where
Q= 0'2[T —+ 0'72] LL, = O’Q[IT -+ 791LL/],
and
2
o
_’n
?91 = ;5

If we assume that m;, ~ iid (0,X,/), we obtain

Var(ya) = E(n;+ vie — ma)® = (7727 + 0%+ B upb,

Cov(Yir, Yir—s) = CO”(@,J,/B + N, Uy — ', fﬂ;t_s,@ “+ 1+ Vig—s — /Blmit—s)

= o2 Vs # 0.

n
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S0
Q= (0’2 -+ ﬁ/EM[))) I+ + ()'?27 LL/ = <O’2 -+ ﬁ/21\45> (IT -+ QQQLL/),

and
2
9y

Py = —F.
? o + /g/zM &}
Consider now the exogeneity test based, for instance, on the comparison between Bbg and

By In this case, the measurement errors render 3, and 3,,, inconsistent. If we assume

that
plim(/@bg — ) = plim(ﬁwg —8) = [Z202/(T — 1)+ Zu] ' S0iB = [Szmrz + Su) " ZuB,
O’Brien and Patacchini (2003) show that, in the normal case,

VN(Bug = Bag) = N(O,[1/(T = 1)} [S202/(T = 1) + Sar] ™ %

[(02 + A3 C0B) S 202/ (T — 1) + oSy + {SuB6'Sw + (ﬁIZMﬁ)ZM}J X

(S202/(T = 1)+ Sy + Sz + Su] ™ %

[TU%ZZMZ + (0 + BSuB) 20z + U?}TZM + Sy + {ZnmB8 S + (BB Eu}]

[Szaz + Sul ™),

where
N N
ZZQZ = phm(l/N) Z ZZ/QZ% ZZZ\/IZ = plzm(l/N) z ZZIIWZZ,
i=1 1=1
Zi
7 = Zia
/
AT ]
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and ) and M are defined in (1.6). The Hausman test

b= (Bug— By [Var(Bug) + Var(By,)] ™ (Buy — Bay)
= W(ng - Bbg)/ {‘Nﬁr(gwg) + Nﬁr(g}bq)} o \/N(ng - Bbg)

will have the same asymptotic distribution as

o~

~ ~ . — o~ — o~ —1 ~
ha = VN(Byy — By, plim [NVar(B,,) + NVar(By,)| VN(By, — Byy).
O’Brien and Patacchini (2003) also show that
NVar ( 5’ wg)

] 1
£~> {0.2 +/3/Z]v1/8 . /6/21\4 [(—T—:—l—)-zzQZ -+ ZM:| E[\/[/B} X

[ZZQZ -+ (T — 1)2M]_1
and

‘Nr‘//va\r(,ébg)
5 {T”% + 02+ Bl — Bm [Samz + Sar) T ZuB) %

-1
Yzmz + XM
Thus in terms of the notation of Lemma 3, for the asymptotic distribution,

Vo= [1/(T=1)}[Ezqz/(T — 1) + Zu] " x
{(02 + 08 uB) 202/ (T = 1) + 0°Ear + {Eu B0 S + (/BIEM/B)EM}} X
S202/(T = 1) + Zu] ™ + [Szumz + Sa] 7 x
[TU?;ZZAJZ + (0 + BT uB) S znz + U%TZM + 0?8y + {SuB8' Sy + (B ZuB) )]

Xzmz + Zzwrl)~
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and

-1

/ -1 B
Ae {02 +08SuB— Y {ﬁl_—l—)zzcgz + EM} Sub} x [Ez0z 4+ (T — 1)2y] '
+{T03, + 0%+ 38uB — FEn [Bzmz + ZMrl SubB} x [Egmz + EMJﬁl

Consider first the case when 7 = 0.
Vo= (T =1)][Sz0z/(T = 1)+ Tl " x
028202/ (T = 1) + 0S| X [S202/(T = 1) + Tas] ™!
+[Szmz + S % {TU:?]EZMZ + 0 Sz + JZTZM + oSy Ezmz + Sn]
= [1/(T - 1)]0‘2 [EZQZ/(T — 1) + ZN[}-l
+[Ezmz + warl (Tff?Q, + UQ)@ZMZ + Xy [Ezmz + ZM]WI
= [1/(T=1)]0*[Sz0z/(T = 1)+ Zu]
HTo2+0%) [Szmz +Su)
A B -1
A = {0‘2 [EZQZ ~+ (T - 1)2}\4’} ! -+ {T'O'f7 + 0'2} X [ZZMZ -+ E;’V[} 1} .

So AV = 1. As a check, when %, = 0,
V =a’[1/(T = 1)} [Szqz/(T = D) + [Top + o) [Lmz]

. A -1
A= {022252 +{To; + UZ}ZZMZ}
which can be compared with the results contained in Appendix 3.1.

Now let ZQ = ZZQz/(T — 1), 0*2 = 0'2 +/6”EM,6, C:ZA/[/87 0'**2 = O'*2 -FTO'%, S0

Vo= [1/(T=1)][Sq+ S [0"[Sq + Sl + o] [So + Tu] ™ +
(Eznz + EM}WI {U**Q{ZZMZ + Y] + CC/} Eznmz + EM]—I
= /T = 1)] [0"[Sq + Bu ! + dd'] + [0S zmz + Sl + e
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-1 — . . . .
where d = [Zg + Y] ¢, and e = [Szu7 + S 'e. These are just the inconsistencies,
which we are assuming equal.

-1
1/(T — D){o*2 = ¢ [So + Sul " e} x [Sg + D]~

+H{o™? = ¢ [Szmz + S ¢} X [Szmz + Sy

The simplest case to examine is when ¥g = Yzuz <> plim ,@wg = plim Bbg for all f; let

ZQ}M = ZQ -+ ZN[ = EZJ’\/[Z -+ 21\/[. NOtiIlg d= e, we have

V =0"Ygn ! + 2dd’

where
o™ = [1/)(T —1)]e** + o***
= [T/(T-1)]o** + To}
A = [0.++2Eé}w]—l
and

o™ = /(T - 1o — c/Eé}wc} + o2 — C'Eé}wc,

= [T/T - 1)][o™ - ¢Sgh,d + T,

AV has the same eigenvalues as

+2

Al/QvAl/Q _ v

9
< 1/2 3 3 1/2
- U++2] - ot+2 Dou ' TddXqgum

and has K — 1 eigenvalues of

— 0+2/0++2
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and one of

k+(2/07 ) dSond = k+(2/07) S5

= k+(2/0++2)6121\/[Zé}\421w,/3-

Thus the size distortion depends on scalar quantities,

E* =

and the larger root is

ot? 1
otz 1 —
o2 g2 _ BIZNIZé}MEMﬁ
o2 [T = 1){o" + BZn B} + T
ot?

1
* 42 ES
U++2+—O_++2kg _——1_k*[1+2k}.

BEuSonutul = BEPE (So + ) 218

If we now consider

S 0 YT ) VRS VP WYY § b i)

v =Zy’8,

from model (1.31), v is the vector of parameters in the model

yi = [Zi+ M3 ?SY6+ nd + v

= Ziy+ My 4 ni 4 v
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where

Vi1 myq
Vi Mo
vV, = ) 7M2‘ = ] s
L Ui ] L m;‘T 1
the rows of M, are NID(0,I), My = MS;? 78 = 2571 = 7, = ;%) =
ZIM*Z, = SR M 25 M* s defined in (1.6).
Thus,
ko= 7/[21;11/QEZMZE;41/2+]]"1’7’/U+2
= 7 [Szmz + 17/ [T/T = ){o™ + ¥4} + Tor] (1.32)

] —~1/2 —-1/2
where ZZ*MZ* = E]V[ ZZMZZM

The components of the variance of y;; are
Var(yy) =~'v + 0;2] + o2

So an interpretation of our result is that if one takes one component of the variance,
~'~, downweights it by the between sums of squares of the unobserved ‘true’ variables (in
the model with standardised measurement errors), to produce ' [Zz«pnrz+ + 1 ]”1 v, then
the ‘size’ distortion depends on k*, as in (1.32), and the asymptotic distribution of the
Hausman test is not y2%, but a weighted sum of K x2, K — 1 weights being 1/(1 — k*),
with one of [1 + 3k*/(1 — k*)]. It also follows that a lower bound to the distortion is
provided by multiplying a x% by 1/(1 — k*).

A number of qualifications are in order. This only occurs if the inconsistency of within

and between estimators is equal, and, further, the within groups sum of squares matrix,
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0,35 -
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0,25 -

Figure 1-2: ‘size’ vs K

and between groups sum of squares matrix, are equal:

N ‘ 1
Z¢!W+Zi, = ZQ7 =
=1

1 N
lim — " Z.Q"Z.
E&NZ} v

27,7\/] , = lim
Mz N T —1N

oo NZ,

The equality of plim (f)’bg — ) and plz’m(ng — ) is required to ensure that the asymptotic
‘size’ is not 1. (Thus the Hausman test can be regarded as a (consistent) test of equality
of these ‘inconsistencies’). The equality of X7y, and ¥¢ simplifies the result and is an
aid to interpretability. We also assume that the rows of M;, the measurement errors, are
NID(0,%5). Some assumption about fourth moments is required, and this appears the
simplest.

We can plot the size distortion for assumed values of T', K, v'v, ' [Zz+nz+ + 1 ]*1 v, 03,
and o2, f T'=50r 10,1 < K < 10,7y = 1,0727 = 0% =0.1, and ¥ [Zzs sz +I]_1’y =

0.5, we have Figure 1-2, evaluated by Monte Carlo (1 million replications).
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We can relax the assumption that g = Xz, by observing that V is of the form

V= ]ﬁB + kgc -+ d*d*/

and A is of the form
A - (k’gB + k4C’)_1

where

B = [Sg+3u]™, C=[Szuz+2nm]!
o= (T =10, k=0

& = {1+1/(T -1} d={T/(T - 1)}"4,
ks = 1/(T—1){o™ —B7lc}, <k

ky = {0 —dC7le}, < ky

and B and C are positive definite. We see that A is “too small”, and the test will be

oversized.

vV = Bl/Q{kll_f_kQBvl/QCB—l/Q+B—1/2d*d*/B—1/2]B1/2

ATV = BY?[ksl + kyBTVPCBTYV?BY?

Let
D =B Y20B Y2 = pPAP

where P is orthogonal, A diagonal, with as diagonal elements \; the eigenvalues of D.

Then

= BY?PlkyI + koA + P'B™Y*d*a" B~/*P|P' B'/?
A = [BYPlksI + aAJPBY?| " = BV2P(kyT + kaA]7 P'BTY2
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and thus

AV = B7Y2Plksl 4 kyA| 7V [k ] + koA + P'B™Y2d@*q* B~Y/? P]P' BY/*
= B7Y2P[diag([ks + ki) {diag(ky + ky))
+P/Bwl/Qd*d*/Bwl/QP}]P/Bl/Q

which has the same eigenvalues as

X ]{31 + k‘))\7
d - =
{ wg(kﬁkm)

+dl@g<[k3 - k4)\i]-1{PIB_1/2d*d*/B_1/2P}

The second matrix has rank 1, and the eigenvalues of the whole matrix are bounded
between the smallest of kg ; = (k;+ko);)/(ks-+kgA;) and the largest of ko ;+d* B~1d*/(ks+
k4X;). N are the eigenvalues of D = B™Y2CB™2 or of B71C = [Sg + Su[Szmz +
Syl d=[Sg + 2w e = [Szmz + Za] e = Be=Ce

d*/Bgld* == {T/(T - 1)}C/BC = {T/(T — 1)}/3/21\/[[22]\/]2 + 217\/]]_12]\/“3

= {T/(T' -~ 1)} [Zz-paz- + I]_l Y

ki = [1/(T -] 02 =0 +3SyB =0+~
kQ — O_**Q — 0_*2 +T037
ks = 1/(T —1){c* - B e}=1/(T - 1) [(72 + 'y = [Ezepze + [}wlﬂ <k

ke = {0 =dC7 e} =0 44y + TU% — ' [Sgemze + 17y < ko

O_+2 — [1/(T _ 1)]0_*2 + O_**Q — /{71 + kQ

ot = /(T = D{o™® — ¢Tolye} + 0™ = I Tghe=hy + ks
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[ Ky +kodi k4 ko k(N — 1)
0 ks 4+ kadi ks + kg + ks(Ni — 1)
o 21+ ky(N — 1) /o] [1+ ka(N;, — 1) /07

o214 kg(N — 1) /o2 T [L+ ka(N; — 1) /ot

Thus comparing this case with the B = C case, we are introducing more variability into
the eigenvalues, which as we have seen , may well increase the ‘size’ of the test. (Thus the
‘size’ is sensitive to the relative magnitude of the intra-group and inter-group variations
of the covariates, ¥z¢z and X z7). Our conclusion is somewhat dispiriting: a significant
Hausman statistic may arise from measurement error, as it is implicitly comparing the
inconsistencies: but cannot be used to test if the inconsistencies are equal, as the ‘size’

may considerably exceed its nominal value, even when the inconsistencies are equal.

1.5 A Power Comparison

The possible serious size distortion of the standard Hausman test motivates the formu-
lation of the HR-test. Using the White (1984) estimators for the variance-covariance
matrix, the test is robust to the presence of common sources of misspecification of the
variance-covariance matrix, i.e. to arbitrary patterns of within groups dependence. In
other words, using the notation in Lemma 3, AV is idempotent and the nominal size is
equal to the observed one. We now use a simulation experiment to investigate the relative
power of the standard Hausman test and the HR-test. We are interested in a quantitative
assessment of the possible power loss that may incur in using a robust version of the test,
in absence of misspecification.
The postulated data generation process is the following.

We consider the model
Yt = YTy + Tz +1; +E&4, =1, ,N; t=1,..,7T,
where the disturbance term consists of two independent components: a unit-specific
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effect, n, and a white noise component, £, :
Ui =1; + &y
The null hypothesis of the Hausman test is
Cov(zy, u) = 0 and Cov(zy, ui) = 0.

We assume z exogenous variable and we generate z correlated with u, so that the null

hypothesis above is not satisfied. We consider
Tit = OWit + ity (1.33)

w is an exogenous variable and (u, ) are drawn from a bivariate normal distribution with

a specified correlation structure.

The values for the exogenous variables and the range of values for the parameters
are taken from the empirical case of study analyzed in Chapter 2. Using UK data, the

following model is estimated.
log M;; = a 4+ alog Uy + Blog Vi + ey, 1=1,...,275; t =1,...,63,

where M is the number of hirings, U and V are the stocks of unemployed and vacancies
respectively, a is a constant term, e indicates a disturbance term. The estimates of «
and 3, 0.5 and 0.4, have been used in the simulation experiment for v and 7 respectively.

Also, the best prediction for the stock of vacancies is
log Vi = 1.2log NV, 1=1,..,275;, t=1,...,63

where NV is the number of monthly notified vacancies (flow variable). In our experiment,

the real values for U and NV have been used as exogenous variables, i.e. respectively
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2z and w. The endogenous variable, V, i.e. =z, has been constructed according to the

structure (1.33):

Tt — l.zwiz‘ + Eit-

The equation estimated is

Yix = O5ﬂlzt + O.4Z¢t + Uit

where (u,e) are constructed as draws from a bivariate normal distribution with the
specified correlation coefficient rho of (0,0.05,0.10,...,0.95).

Six sample sizes, typically encountered in applied panel data studies are used. The
experiment is repeated 5000 times for each sample size and level of correlation. Figures
1-3 to 1-5 contain the results of the simulation experiment. The power is expressed in

percentages.

The tables displayed compare H_pow, the power of the standard Hausman statistic
(H-test):
~ o~ ! —~ —~ —1 s/~ o~
hs = (/3711)9 - ﬁbg) <ng + %g) </6wg - /6b9>

with HR_pow, the power of the robust Hausman statistic (HR-test) obtained using the

auxiliary regression detailed in Section 1.3:

e

hr = (ng — Bbg)/ {VCM“ (ng “ Bbg)}“l (ng - /§b9> )

with different sample sizes. Figures 1-6 to 1-11 contained in Appendix 5.1 illustrate
the relative power functions. The significance level has been fixed at 5%. rho” is the
estimated level of correlation between xz and w conditioned upon w. For each level of
rho, H_pow and HR_pow indicate the percentage of times we reject a false hypothesis
if we use the H-test or the HR-test respectively. In Tables 1, 2 and 3 the number of
cross-sectional units is held fixed at 25 and the number of time periods is varied between
4, 10 and 20 respectively. In Tables 4, 5 and 6 the number of cross-sectional units is held

fixed at 275 and the number of time periods is varied respectively between 4, 10 and
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Table 1: N=25, T=4

rho rho” H_pow HR_pow
0.00 0.00 4.90 4.80

0.05 0.03 5.10 4.90

0.10 .06 7.90 7.40

0.15 0.09 9.20 9.30

0.20 0.12 14.40 13.80
0.25 0.15 19.90 20.90
0.30 0.17 25.50 26.80
0.35 0.20 32.20 32.50
0.40 0.23 34.50 38.50
0.45 0.26 43.60 45.80
0.50 0.29 50.10 57.40
0.55 0.32 70.10 70.80
0.60 0.35 78.20 79.90
0.65 0.37 87.90 89.70
.70 0.40 94.10 92.70

0.75 0.43 98.50 98.90

0.80 0.46 99.%90 100.00
0.85 0.43 100.60 100.060
0.90 0.52 100.00 100.00
0.95 0.55 100.00 100.00

Table 2: N=25, T=10

rho rho” H_pow HR_pow
0.00 0.00 4.60 4.50

0.05 0.04 6.50 5.40

0.10 0.08 8.10 6.10

0.15 0.11 12.50 9.20

0.20 0.15 16.40 13.90
0.25 0.17 20.60 20.10
0.30 ¢.21 25.40 27.50
0.35 0.25 31.50 32.50
0.40 0.28 40.10 43.30
0.45 0.32 50.20 55.50
0.50 0.35 57.20 61.90
0.55 0.39 70.20 72.70
0.60 0.42 82.40 85.40
0.65 0.46 88.60 90.00
0.70 0.49 99.80 96.70
0.75 0.53 9.90 99.40
0.80 0.56 99.90 99.90

0.85 0.60 100.00 99.90

0.90 0.64 100.00 100.00
.95 0.67 100.00 100.00

Figure 1-3: Simulation Results
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Table 3: N=25, T=20

rho rho” H_pow HR_pow
0.00 0.00 4.80 4.70

0.05 0.04 6.80 5.90

0.10 0.07 9.00 §.10

0.15 0.10 17.80 16.50
0.20 0.14 27.80 27.00
0.25 0.18 36.10 36.40
0.30 0.21 46.20 48.10
0.35 0.25 66.20 66.50
0.40 0.28 79.00 79.60
0.45 0.32 87.20 87.90
0.50 0.35 95.00 93.90
0.55 0.39 97.80 97.70
0.60 0.42 99.10 98.70
0.65 0.46 99.90 99.80
0.70 0.50 99.50 1006.00
0.75 0.53 100.00 100.00
0.80 0.57 100.00 100.00
0.85 0.60 100.00 100.00
0.90 0.64 100.00 100.00
0.95 0.67 100.00 100.00

Table 4: N=275, T=4

rho rho? H_pow HR_pow
0.00 0.00 4.90 5.00

0.05 6.03 6.30 6.40

0.10 0.06 9.60 8.80

0.15 0.0% 18.20 17.60
0.20 0.11 29.10 28.90
6.25 0.15 45.10 48.10
.30 0.17 57.20 62.50
0.35 0.20 72.40 78.20
0.40 0.23 86.00 89.10
0.45 0.26 93.60 96.20
0.50 0.29 97.90 98.00
0.55 0.32 99.80 99.8¢0
0.60 0.34 99.80 100.00
0.65 0.37 100.00 100.00
0.70 0.40 100.00 100.00
0.75 C.43 100.00 100.00
0.80 0.46 100.00 100.00
0.85 0.49 100.00 100.00
0.90 0.52 100.00 100.00
0.95 Q.55 100.00 100.00

Figure 1-4: Simulation Results
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Table 5: N=275, T=10

rho rho” H_pow HR_pow
.00 0.00 5.00 4.90

0.05 0.03 9.80 6.40

0.10 0.06 26.10 15.10
0.15 0.09 61.00 34.00
0.20 0.12 87.80 55.10
0.25 0.15 97.80 74.10
0.30 0.18 98.90 86.50
0.35 0.20 99.80 93.40
0.40 0.23 99.90 97.9%0
0.45 0.26 100.00 98.90
.50 0.29 100.00 99.50

0.55 0.32 100.00 100.00
0.60 0.35 100.00 100.00
0.65 0.38 100.00 100.00
0.70 0.41 100.00 100.00
0.75 0.44 100.00 100.00
0.80 0.47 100.00 100.00
0.85 0.50 100.00 100.00
0.90 0.53 100.00 100.00
0.95 0.55 100.00 100.00

Table 6: N=275, T=20

rho rho” H_pow HR_pow
0.00 0.00 5.10 4.70

0.05 0.03 18.40 6.40

0.10 0.06 58.70 18.90
0.15 0.09 91.10 40.10
0.20 0.12 95.80 62 .40
0.25 0.15 99,90 75.50
0.30 0.18 99.90 87.40

6.35 0.20 100.00 94.10

0.40 0.23 100.00 98.90

0.45 0.26 100.00 100.00
0.50 0.29 100.00 100.00
0.55 0.32 100.00 100.00
0.60 0.35 100.00 100.00
0.65 0.38 100.00 100.00
0.70 0.41 100.00 100.00
0.75 0.44 100.00 100.00
0.80 0.47 100.00 100.00
0.85 0.50 100.00 100.00
0.90 0.53 100.00 100.00
0.95 0.56 100.00 100.00

Figure 1-5: Simulation Results
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20. Tables 1 to 4 show that the performance of the HR-test is comparable with the one
of the H-test, even better for values of rho greater than 0.3. In larger samples (Tables
5 and 6) the performance of the H-test is superior but the power loss of the HR-test is
not serious. The HR-test gives a very high rejection frequency for the false hypothesis
of absence of correlation between x and u, starting from levels of correlation around 0.3
(86.5% and 87.4% respectively in Tables 5 and 6) and it detects the endogeneity problem
almost surely as soon as rho is higher than 0,4 (97.9% and 98.9% respectively in Tables
5 and 6). Taking the results as a whole, if one excludes cases of small values of rho, the
simulation experiment provides evidence that the performance of the HR-test in terms
of power is satisfying in large samples and even better than the one given by the H-test
in small samples.

In addition, it is worthwhile noting that a version of the Hausman test implemented
in most econometric software, which is generally used in empirical studies, is the one

based on the comparison between 0, and Sgy, 1.e.

ho = </§wg - BBN) (ng - VBN>_ (ng - BBN) .

The problem with this approach is that, in finite samples, the difference between the
two estimated variances of the estimators (i.e. ng — VB ~) may not be positive definite. In
this cases, the use of a code implementing a different Hausman statistic or the formulation
of the Hausman test using an auxiliary regression (e.g. the one proposed by Davidson
and McKinnon (1993, p. 236), which is now already implemented in some statistical
packages, e.g. a Stata 7 extension, or the (robust) one presented in this chapter) are the

only possibilities to get a test outcome.

1.6 Conclusions

This chapter has presented a methodological revision of the use of the Hausman test for

correlated effects with panel data. The relevance of the discussion is both theoretical
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and empirical. From a theoretical point of view, it is shown that the assumptions in
Lemma 2.1. in Hausman (1978) are sufficient but not necessary. In particular, it is
demonstrated that the attainment of the absolute Fisher lower bound can be replaced by
the attainment of a relative minimum variance bound. From an empirical point of view,
the main implication of this chapter is a caveat on the use of the standard Hausman
test framework for correlated effects in applied panel data studies. The assumptions
underlying the construction of the Hausman statistic (Hausman, 1978) may be rarely
satisfied in empirical work. An analytical investigation of the size of the test shows
that, at least in some cases, the distortion is substantial. The econometrics of panel
data offers a variety of estimators for the same parameters. Our recommendation is to
use the Hausman test framework for the comparison of appropriate pairs of panel data
estimators and to construct a version of the test robust to deviations from the classical
errors assumption, as proposed in this chapter. This test, the HR-test, gives correct
significance levels in common cases of misspecification of the variance-covariance matrix
of the errors and has a power comparable to the Hausman test when no evidence of
misspecification is present. The power of the HR-test is even higher in small samples. It

can be easily implemented using a standard econometric package.
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1.7 Appendix 1.1

Lemma 4 If t; and ty are unbiased estimators of 8 € RP, with t; minimum variance

(MV) at least in the set

then
Cov(ty,t —t;) =0

where T is the identity matriz, O a null matriz, and A € RP*P is fized.

Proof.

t = A+ I -A)ta=t1+I—A)(t2 — 1)

= t;+ Bd, say, B¢ RP*?
Var(t) = E{[t, —0+Bd][t; — 0+ Bd]'}
= Var(t;) + Cov(ty,d)B’ + BCouv(d, t;) + BVar(d)B'.

Thus we can write

Var(t) — Var(t;) = CB' + BC' + BDB'.

The minimum variance property of ¢; implies this difference is positive semi-definite, and

thus for every A € RP, and B € RP*P,
Q=) (CB' +BC +BDB) ) > 0.
However, for the particular case of

B=-CD!
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Q = XN(-CD'C'-CD'C’'+CD 'DD'C)\
= N(-CD™'C)A

which satisfies the required inequality if and only if
C=0.
Further, for any B € RP*?

t—tl = Bd,

Cou(t,t —t;) = CB'=0.

Remark 5 We exclude the case where D is singular, as in that case replacing D™
with a pseudo-inverse DT such that DYDDT = D% reveals that all that is required is
CD"C' = 0, or that C has rows orthogonal to the eigenvectors of D corresponding to
the non-zero roots. As an example, consider the case where some elements of 1, and t,
comncide. It is simplest to exclude the coincident elements, and apply the argument above

to the reduced vectors so formed.

Remark 6 This lemma implies that the MV unbiased estimator is uncorrelated with its
difference from any other unbiased estimator, and the MV linear unbiased estimator is

uncorrelated similarly.

We next show that a set of the form 7 in Lemma 1 contains a minimum variance
estimator. First, it is convenient to re-write the basis of the set in terms of ¢; and i3,

where C'ou(ts, t1) = 0.

Vi Vi
Lemma 7 Ift; andty are unbiased estimators of 8 € RP with covariance matrix )
Vi Vg

o0



the set
T={t:t=At; +(I—-A)ts}

can also be defined in terms of t; and

t3 - Bfl -+ (I - B)tz

where
COU(tg,h) =0
as
T ={t:t=Ct + (I—-C)ts}
with
B=—-Vy(V,—Vy) L I-B=V,(V,, ~Vy)"’
Var(t;) = ~DV'D' + DV5Vy, VD, D = [V - V]
C=A(V,~Vy)+V, )V, I-C=(1-A)(V,,~ V)V
Var(t) = CV,C' + (I - C)Var(t)(I — C)
Proof.
Cov(ts, t1) = E{[Bt;+ (I—B)ty —0][t; — 6]’}
—— BV11 + (I - B)V21
= —V21(V11—V21)_1V11 + V11(V11—V21)—1V21
Now

— ~1 = _
{VU(VH“V%) 1V21] = V211(V11'“V21>V111
= Vi -V

o1



and

- -1 — —
Var(Vy=Va) 'V = VIV = Vo)V
= V511 - Vﬁl-

It follows that
Vi (V) =Va) 'WVy =V (V ~ V) 'V,

and thus
Cov(ts, t1) =0

To find Var(ts), as
tg = Bt, + (I — B)tg

Var(ty) = BV B'+(1-B)V, B +BV;(I—-B)+(I—B)V,,(I—

BVB' = Vy (V= Vor) Vi (Vi =Var) 7'V,
I-B)V,B = -V (V= V) Vg (V11— V) VY
Identity (1.34) implies equality between these expressions.

/7

BVy,(I—B) = =V (V= V) 'Viu(V,,— V) 'V,

Transposing (1.34), this becomes the same as the expression for BV 1B’

/

(I-B)Vy,(I-B) = Vi (V, ~Vy) ' Vau(V, —Va) 'V,

This suggests writing the matrix in (1.34) as

-1

D= {Vil - Vl_ﬂ
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to give
Var(t) = ~DVD' + DV 'V, (V) ' D/

Remark 8 Again, we are assuming non-singularity, in particular of Vai. One could
apply the steps above to zero a single non-zero element of Vi, by shrinking t, and to

to the corresponding elements. Repeated application would then replace Va1 with a null

matriz.

We can now show that 7 always contains a minimum variance unbiased estimator.

Lemma 9 Ift, and ty and 7 are as in Lemma 7 but with Vi, = 0 then t has the

minimum variance in T if

A= [V1_11+V521}_1V1_11

Proof. Let this value of t be ¢, the corresponding A be A,;, and Vy, = Var(tu).

Let
Ay=EV,=1-Ay=EV,,

We have

Var(ty) = EV]'V VIE+EV,VyVIE
= BV +V3|E=E

Moreover,

CO’U(th, t] — tg) = CO?)(A]V[tl + (I — Alw)tg, t1 — tg)
= E{EV (t: —0) + EVy,y (f2 — 0)H{# — 12}]
= E[E(V Vi~ V5 Vy)=0.
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IteeT7,

= (AN[ + A — A]V[)tl -+ (I - A.]\/I — A + A]V[)fg

= ty+ (A —Ay)(t —t2)

Thus
Va/r(t) = VCLT‘(t;V[) -+ (A — AA/I)VCL?"(?fl — tg)(A — A]V[>/

and thus Var(t) exceeds Var(ty) by a positive semi-definite difference, and thus 5 is
the minimum variance estimator in 7. ®

Finally, we establish the large sample equivalent of Lemma 1.
Lemma 10 Consider t, = [}, t/],0, = [0, 0']

Vll V12

\/;7_’@* - 9*) __D_> (07
VQl V22

J

where V11 18 the ‘asymptotic variance’, Avar, of t1 and Vi3 is the ‘asymptotic covariance

of ty and ty, Acov(ty,ts). If t1 is asymptotically minimum variance at least in the class
T={t:t=At;+(I—-A)ty},A €RP*?, fized,

then if t/, = [, [t — t1]'], 0, = [0, 0]

Vi(ta = 0a) = (0, )
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t I O t I 0O
Proof. Let t; = = , S0, as B4 = f..
to — 1y -1 1 to -1 1

I
Vilta—02) = Vlt, —6.)
11
v Vi —V
__Q_> (07 11 12 11 )
I Vo — Vi Vi — Vo — Vo + Vo
v, C
Lo, | T ), say
-C'' D
= t, + Bd, say, B € RP*P
1 I 0
- tg
t I B
I 0
0, = 0,
I B
t 1
Jall ey = Vilta— 02) (1.35)
t I B
o Vi Vi +CB
s 0

i

VvV, +BC V; + BDB'+BC + CB’

so we can write

Avar(t) — Avar(t,) = CB'+ BC' + BDB'.
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The minimum variance property of ¢; implies this difference is positive semi-definite, and

thus for every A € RP, and B € RP*P,
@ =)\ (CB'+BC’' +BDB')A > 0.
However, for the particular case of

B=-CD!

@ = X(-CD"!C'-CD"'C’+CD DD 'C)\
= N(-CD"'C)A

which satisfies the required inequality if and only if

C=0
Further, for any B € RP*P
t—+ = Bd,
SO as
tl I 0 tl
t—1h 0 B d
131
Vn —04) = \/ﬁ(td_“@d)
t—1 0 B
A\ 0
2, "
0 BDB
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where, as C=0,V,; = V5 = Vo, D = Vg, — V3. Moreover, from (1.35)
Var(t) = BDB'+ Vi, = Var(t — ;) = BDB' = Var(t) — Var(t)

as required. ®

Remark 11 The assumption that A is fized can be replaced by a stochastic matriz A,

with plim(A,) = A

Remark 12 This lemma implies that an asymptotically MV consistent estimator is un-

correlated in large samples with its difference from any other consistent estimator.

1.8 Appendix 2.1

In this Appendix we give further details about the expression for Var(y;) used in Section
1.2.
As
Var(y,) =Q; = oIy + 0727 LL/,

we can use the formula (see, e.g., Golub and van Loan (1983, p.50))
(A+UVH) T = AT = AT U+ VTATIU) VAT

which simplifies for vector u, v to

1

. — YT
14+ 0T A1y

(A+uw™)t=A"1

It follows that, if 6 = o7 /0?

, A
QO = olIr+0u]=o? [IT-—~ Lle
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1.9 Appendix 3.1

In Section 1.2 we focused our attention on the Hausman test constructed using the con-
trast between the Within Groups and the Balestra-Nerlove estimators. In this Appendix
we show the derivation of the Hausman statistic for the comparison between the Within
Groups and the Between Groups estimators. Using the notation in Section 1.2, the

Between Groups estimator can be written as
By = (X'MX)X'MY.
The variance is
Var(Byy) = [X MX] " X' MVarY)M X [X MX]" |
Further

Var(Mty) = M*Var(y)M* = o*M* [Ir + 0u'| M+
= M Iy +0TM*| M* = o*(1+ 6T) M,

where § = o7 /0. Thus

Var(MY) =c*(1 +0T)Iy @ M = o*(1 + 0T)M.

Var(B,,) = o*(1+6T)[x'Mx] X' MX [X'Mx]"
= *(1+6T) [ X' MX] .
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In addition

Cov(BoBuy) = [XMX]" X M(Vary)Q X [X'Qx]
= P [X'MX]" XM (Lyr +0TM] QX [X'QX] =0

So

.{/ar(/@bg - ng) = VaT(«’a}bg) + VaT(ng)
= P +07) [x'Mx] T+ o? [xXQx]

Thus we have as a test

Bug — Bis) [02(1 +07) [X'MX] " 4 0? [X QX] ”IJ " (Buy— i),

1.10 Appendix 4.1

Lemma 13 [If

then
(X*’X*)~1 — A—l(XIX)—lA/~1
~ _ A'IB
=z
Proof.

(XX = (AX'XA) = A(X' X)) AL

29



/j _ */X ) lX*’y _ A—1<X/X)—1A/~1A/X/y — A“IB.

—~

=y - X' =y-XAATB=y - XP=¢

=
Lemma 14 If
By = (X4 XA) " Xoya, By = (XpX5) ' Xpys,
EA=1Ya— A/3A7 EB=1YB — XBﬂB
Xa X
X*: A A X*/X ) 1X*/y
0
=y — X'B
then
o~k BA - BB o EA
s =N 35 frd
Bp €B
Proof. Let
X4 0
X = = X"=X X A say
0 Xsg 0 I
41— )
0 I
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So applying Lemma 13,

¥ Af I —I ’fA _ /6’/;;/33
0 I ||Bs | B
and .
e - Ea
g =¢=
Ep
2

Return now to model (1.20). Results (1.21) and (1.22) in Lemma 2 directly follow

from the application of Lemma 13 and 14. Next, we will prove the remaining result in

Lemma 2, i.e. (1.23).7

Let
HY = i H=Iye HY HH= M
T s N s T
By, = (HX)(HX)HX)(HY)=(X'MX)"'X'MY

Bug = [(QX)(QX)]THQX)(QY) = (X'QX) ' X'QY

Further, let Gt be Arellano and Bover’s (1990) forward orthogonal deviations matrix,

(T'— 1) x T, such that

G+i = O, G+G+/ = [(Tﬁl), G+/G+ = Q+ == IT - —71?’”'/
G = Iy®G",G'G=Q,GG" =1y @ Ip_1y = Inmr-y)
By = [(GXY(GX)](GXV(GY) = (XQX) X'QY

~wyg

and identifying HX and HY with X, and Y, GX and GY with Xp and Yg, we see

o HY HX HX _
that the artificial regression of Y* = on X* = gives coefficients
GY 0 GX

"Note that it does not matter which way round one does the artificial regression given that the test
for the equality of the two estimators is a quadratic form on the difference between the two.
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v | By = Ba
6 = [ Big g J . In this case,

HVar(Y)H' 0

Var(Y") =
0 GVar(Y)G

If 0 = o7 /o*we have

GVar(Y)G' = o*Gyr+0Iy @ ii" )G
= 0’GG as GTi =0

= oIy
and

HVar(YYH' = o*H(Iyr+0Iy @i’ )H'
= oIy @ H Iyt + 01y @ i )[In @ H]
= [In@ (HTHY)+0Iy @ (H il H).

1 1
H+:_'/ +':1 -+ +/:_-
TZ,H 7 L HTH T
, o 1 o?

Assembling our results,

a? ]_+’Z@ [ 0
Vv 7“(}7*) T( ) N
0 O'QIN(T_l)
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HX 0
0 GX

If now X =

Var(g*

Next, we calculate this variance by separating the different components.

3

) =

(XXX Var(Y*) X (XY X))

ATYX' X)XV ar(Y)X (X' X)TA™Y.

_ _ Txm o || 2arrer 0 HX 0
XVar(Y*)X = r L+ IOy
0 X'G 0 O'QIN(T.,U 0 GX
. X'H 0 (0+1/TYHX 0
0 XG | 0 GX
. (0)T + 1T)X'MX 0 |
0 X'QX
— T(X'MX)™ 0
(X'X)™ =
0 (X'QX)!
Thus
(X' X)) X' Var(Y)X (X' X) !
| rxemx)t o
= T X
] 0 (X'QXx)~
(0/T +1/THX'MX 0 T(X'MX)™! 0
0 X'QX 0 (X'QX)™!
_ . (70 + 1) (X' MX)™! 0
0 (X'QX)~!
and
ANX' X)X Var(YHX'(X'X)ta™Y
T A A RN (X' MX)™! 0 I 0
0 I 0 (XQX) || =1 I
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oy —xox)t || 1o

- _ 0 (XQX)! {] IJ

o | (T6+ 1)(X'MX) " + (XQX)™" —(X'QX)~ 136
_ —(X'QX) (X'Qx)

We now need to find the variance-covariance matrix the artificial regression will as-

sume. This will be proportional to

(X¥X*)™ = (AX'XA) =AY X'X)T A7V
1 1| [ rexemx)yt o I 0
N |

0|

a

0 I

T(X'MX)t —(X'QX)™!
0 (X'QX)™"

T(X'MX)™ + (X'QX)™"" —(X'QX)~

(1.37)
—(X'Qx)™ (X'QX)™!

By comparing (1.36) with (1.37) it appears that an artificial regression is a valuable device
to estimate a suitable variance-covariance matrix. This variance is estimated using a
(White) robust OLS estimator which uses a consistent estimator of X*'Var(Y™) X" under
the assumption that Var(Y™*) is diagonal. Next, we derive this consistent estimator.

Following the steps used in the derivation of Var(ﬁ*) above, we separate the different

components.

X'Var(YH)X
CxE o 20 0 || HX 0
o oxe || o || 0o ox
Llxmoo Jlao]Ex 0
"7 0 xe o Q} 0 ax
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xma o X 0
= o~
0o x¢al||l 0 Gx
| xmorx o
e (02 .
0 X'GOGX
e | TxMxy 0
(X'X)! =
0 (X'Qx)~

Thus

(X' X)) X'Var(Y)X'(X'X)!
T(X’f\/fX)Al 0
0 (X'QX)?

= 0'2

T(X'MX)™! 0
0 (X'QX)™ |

XHQHX 0
0 X'G'QAGX

T(X'MX)"" (XHQHX) 0
0 (X'QX) (X'G'GX) |

2
= O

T(X'MX)™: 0
0 (X'Qx)™

THX'MX) "\ (XH'QHX) (X'MX)™! 0
0 (X'QX) N (X'GOGX) (X'QX) ™

2

= 0

Let
B=T*X'MX)" " (X'HQHX) (X' MX)™"

and

D= (X'QX)  (X'GAGX)(X'QX)".

65



So

The residuals from this regression of Y =

. o
coefficients § =

RSSy

Note that (M — MX(X'MX)"'X'M) = Mp is idempotent, and MpMX = 0.

AHX' X)X Var(Y)X(X'X) 1Ay

dr-1]lB ol 1 0
= o
0o 1|0 D||-11
B -] 1 0
= o
0 D ||-I1
,| B+D -D
= O .
D D
Hy
on X* =
GY

H U}g

above those from GY on GX. The first set will yield sum of squares

= (HY)[Iy — (HX)T(X'MX)" N (X'H)|HY

1
= V(M — MX(X'MX)'X'M)Y.

Note that if we write the model as

we get

Y=X3+FE

MY = MX3+ ME,

IWPA/[Y = MPE
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can be obtained by stacking those from HY on HX



and

1
R354 — TE/MPE

The expectation is given by

1 1
FRSS, = ?tmce (MpVar(E)] = —ftrace (MpVar(Y)]

2
= %;—tra,ce [A/[P{]NT + 9[]\/ & ZZ/H .

1
M(Iy2#') = (Iy® i;z'z")(IN @)= Iy @i’ =TM,

2 2
ERSS, = 5}—(1 + 0T )trace(Mp) = %(1 LOT)(N — K).
Similarly, if

RSSy = (GY)[Iyr — GX(X'QX) ' X'G'|GY
= Y'[Q - QX(X'QX)'X'Q)]Y,

ERSSy = c*trace[Qp{Iny + 0In @ ii'}]
= co*trace [Qp] = *[N(T — 1) — K].

Accordingly, there is no multiple of RSS4 + RSSp with expectation o?. However, if in

the first regression Y4 and X 4 are scaled by
k=T/(1+0T)

the coefficients will be unchanged, their variance will be unchanged, (X);X4)™" will be

scaled by 1/k* = (1+ 0T)/T. So instead of

(HX)YHX) ' =T(X'MX)™!
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we will now have

(XX )= +0T)(X'MX)™.

Further,

T o?
KE S — T — — o2(N —
RS54 0507 T(1+9 )N —K)=0c*(N-K)

and (k*RSS, + RSSg)/(NT — 2K) is an unbiased estimator of o

Thus given a consistent estimator 6 of 8, and thus k of k, we can construct the
. o . RHY

Hausman test by carrying out the artificial regression of Y™* = on X* =
GY

0 GX
consistent estimator of 6 one can use the one obtained under the assumption of spherical

. and constructing a Wald test on the first K coefficients. In practice, as

disturbances.

1.11 Appendix 5.1

This appendix contains the graphs of the power curve of the standard Hausman test
(H-test) versus the one of the robust formulation presented in Section 1.3 (HR-test) with

different sample sizes.
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power %
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H-test - — — - HR-test

Figure 1-6: Power function comparison when N=25, T=4
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power %
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Figure 1-7: Power function comparison when N=25, T=10
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power %
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H-test = — — - HA-test

Figure 1-8: Power function comparison when N=25, T=20
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power %

H-test — = — - HR-test

Figure 1-9: Power function comparison when N=275, T=4
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power %

H-test — — — - HR-test

Figure 1-10: Power function comparison when N=275, T=10
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power %
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H-test — — — - HA-test

Figure 1-11: Power function comparison when N=275, T=20
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Chapter 2

Unobservable Factors and Panel
Data Sets: the Case of Matching

Unemployed and Vacancies Data

This chapter presents a sequential procedure aiming to distinguish between an endo-
geneity problem caused by correlation between regressors and individual effects and an
endogeneity problem due to measurement errors-in-variables. The relevance of the choice
of the model specification is underlined. The statistical performance of the sequential test
is assessed using simulated data. Considerations on the significance level and power of
the testing procedure are presented. This procedure is then used to investigate the effects
of unobservable factors like measurement errors and unobserved heterogeneity that, as is
well-known, contaminate two of the variables extensively used in labor market research,
namely the stock of unemployed and the stock of vacancies. Using a matching function
framework, we compare different pairs of panel data estimators organized in a specific

sequerce.
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2.1 Introduction

A statistical test which has large implications for applied studies is the Durbin-Wu-
Hausman test, or DWH test (Durbin (1954), Wu (1973), Hausman (1978)). (In contrast
to Chapter 1, where emphasis was put on Hausman’s exact assumptions, in this chapter
we are discussing this class of test in more generality, and will use the DWH abbreviation.)
In panel data modelling, it is widely used as a test for correlated effects, i.e. to investigate
the presence of unobserved heterogeneity across units correlated with the explanatory
variables. It is based on the contrast between an OLS estimator on the model in levels
and an OLS estimator on the model in differences and it is the common practice to choose
between different model specifications. However, the DWH test detects the presence
of any possible endogeneity problem (Davidson and MacKinnon, 1989), not necessarily
induced by a correlation between the regressors and the individual effects. Almost always
in the widespread use of the DWH test for correlated effects in static panel data modelling,
the consistency of the Within Groups and the Balestra-Nerlove estimators under the
null is not questioned. However, it might not be the case in presence, for instance, of
measurement errors.

An analysis of the causes that lead to a failure of the consistency of an estimator
is quite delicate because it is often related to unobservable factors often difficult to
detect and to treat properly. Nevertheless, in modelling economic data, it is essential to
acquire some further knowledge about different sources of bias and to assess what is the
most important problem to control for. The appropriate estimators vary in the different
cases. An inaccuracy in the choice of the model specification may lead to unreliable
results. In spite of the large related theoretical literature, the problem continues to
receive surprisingly little attention in empirical work.

The purpose of this chapter is two-fold. Firstly, it aims to emphasize the misleading
inference results one can get by testing for correlated effects without conditioning on
the existence or non existence of measurement errors. Secondly, the chapter presents a

two-step testing procedure for panel data aiming to distinguish between an endogeneity
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problem caused by correlation between regressors and individual effects and an endogene-
ity problem due to measurement errors. (We refer to this as an endogeneity problem be-
cause measurement errors (usually) induce correlation between right-hand side observed
variables and the disturbances.) The important feature of the methodology is the search
for appropriate DWH tests robust to deviations from the classical errors assumption.

Chapter 1 presents the implementation of a robust test for correlated effects, i.e. for
the comparison of the Within Groups and the Between Groups estimators. In this chapter
we construct robust tests for the comparison of other pairs of panel data estimators. The
motivation underlying the construction of a robust version of a DWH test is that the
hypotheses underlying the construction of the statistic (Lemma 2.1 in Hausman, 1978)
are often too strong in most of the empirical cases. It is usually a delicate task to
rank the different estimators in terms of efficiency. The robust version of the DWH test
presented in Chapter 1 is based on the use of an auxiliary regression to estimate a suitably
constructed covariance matrix and on the application of the panel data counterpart of
the White (1984) robust standard errors. If applicable, the same devices are used for the
construction of robust tests for the comparison of the other estimators considered in the
two-step testing procedure. This technique allows us to estimate covariances matrices
between estimators that cannot be ranked in terms of efficiency. The attractive feature of
this methodology for applied works when compared to related techniques in the literature
(e.g. Lee, 1996) is that it can be implemented in standard statistical packages.

The chapter is organized as follows. Section 2.2 explains to what extent bi-dimensional
data sets may help us to deal with different kinds of unobservable factors and the possible
effects of poor attention to the phase of model evaluation. Section 2.3 illustrates a two-
step testing procedure for linear panel data models. This may be considered as a guide
towards the choice of the most reliable model specification. The statistical performance of
this sequential test is assessed using simulated data. The results are contained in Section
2.4. Section 2.5 presents an empirical application of the methodology to a longitudinal

data set of travel-to-work areas (TTWASs) in the UK, observed monthly for the period
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1996 - 2000. The stock of unemployed and the stock of vacancies, originating in different
sides of the labor market, are very likely to be affected by different types of unobservable
factors. Our aim is to investigate the importance of correlated effects and measurement
errors by analyzing their effects on the estimators of the parameters in a empirical search-
matching function model. We suggest the most reliable model specification in the case

of study considered. Section 2.6 concludes.

2.2 TUnobservable Factors and Panel Data Sets

It is well-known that measurement errors are extremely relevant in data collection. Even
though the problem has given rise to a certain amount of theoretical interest, most applied
econometric studies do not address this issue. In the analysis of uni-dimensional data
sets, i.e. time series or cross sections, classical errors-in-variables models have not been
applied widely mainly because it is often not possible to find valid instrumental variables
among the variables included in those models. External variables are required in order
to identify the structural parameters of interest. Furthermore, measurement errors with
different structures and other unobservable factors, like unobserved heterogeneity, may
affect our data. Some assumptions of the classical errors in variables model are often not
sustainable in many empirical cases.

When a panel data set is at hand it may be possible to handle these issues, since
instrumental variables can be found within the model. Moreover, pooling cross sectional
and time series observations, the econometrics of panel data offers a variety of different
estimators for the same parameter, and the behavior of such estimators in the presence of
unobserved factors affecting the data can be analyzed. Therefore, it is possible to acquire
some knowledge about the kind of errors of specification involved by checking whether
they can actually account for the sign and order of magnitude of the observed discrep-
ancies between estimators. Pursuing this approach, we present a panel data sequential

test designed to check for the presence of relevant sources of bias in the data. As the
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presence of such unobserved factors may invalidate the estimation results, it is essential
to use suitable estimators when different sources of bias are discovered. Our procedure
checks for the presence of correlated effects and measurement errors and indicates which
estimators are likely to give the most reliable results for the analysis of a certain data
set.

We focus our attention on the problems of unobserved heterogeneity and measure-
ment errors because in the analysis of the empirical search-matching function framework
presented in Section 2.5 unobserved heterogeneity and measurement errors are the only
expected important sources of bias. An application of the methodology to panel data
sets in different contexts requires that problems arising from the possible presence of
other relevant sources of bias, such as sample selection, missing data from attrition, non
strict exogeneity, have to be addressed and solved previously. Yet, after controlling for
other relevant sources of bias, to distinguish the effects of unobserved heterogeneity and
measurement errors remains a subtle issue.

The motivation underlying the implementation of the sequential test is that the stan-
dard procedure used in empirical work in order to discriminate between different estima-
tors is often misleading and almost always unsatisfactory. The common practice consists
in the application of a DWH test where the two estimators involved in the implementa-
tion of the test are the Within Groups and the Balestra-Nerlove; both OLS estimators
constructed on different transformations of the data. A possible failure of the consis-
tency of the two estimators under the null, not related to the source of endogeneity being
tested, is almost never considered in empirical studies. However, if for instance we are in
presence of measurement errors least square estimators not only lose their efficiency but
also their consistency. We may end up comparing two inconsistent estimators. More-
over, measurement errors can have different impact using different transformations of the
data. For instance, if we use first differences then the bias can be magnified (Griliches
and Hausman, 1986). As a consequence, the probability limits of two estimators calcu-

lated on different transformations of the data may be different. Thus, in the presence
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of strong measurement errors, OLS on the model in levels and OLS on the model in
first differences (or deviations) would turn out to be different regardless of whether un-
observed heterogeneity really matters. We may end up attributing the bias of our results
to unobservable individual characteristics while it could be that measurement errors are

playing a major role. Consequently the specification of the model adopted could be

inappropriate.

2.3 A Two-Step Testing Procedure

We present a sequential testing procedure, which is intended to distinguish the effects of
unobserved heterogeneity and measurement errors on the estimators of the parameters
in a panel data model in order to choose the most reliable specification. It consists on
using different DWH tests in a particular sequence.

The IV approach used to address the problem of measurement errors is not designed
to detect non-linear errors in variables (when the explanatory variable with measure-
ment error enters in nonlinear form, e.g. to the square, in the model specification). In
this case an IV approach is not valid because the measurement error is not additively
separable from the explanatory variables and we cannot find instruments correlated to
the explanatory variables but uncorrelated to the new error term (Hausman, Newey and
Powell, 1995).

The outline of the procedure is illustrated in Diagram 2.1.
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Diagram 2.1: Sequential Procedure

Vs

1 WG

VD

No UH bias, but MFE bias

No UH bias, no ME bias

Not Reject

Re ject
e N\
2.A 1VD vs IVL 2B WG Vs OLSL
No ME bias, No ME bias, No UH bias, UH bias,
no UH bias but UH bias but ME bias and ME bias
Re ject Not Reject Re ject Not Reject

7

Diagnosis A

Diagnosis A

N

Diagnosis B Diagnosis C

Both unobserved heterogeneity

- and measurement errors
are important sources of bias
The most important issue to control for
Diagnosis B .
— is a measurement problem
of the specified type
Diagnosis C R Unobserved heterogeneity plays a major role
Diagnosis D R No evidence of the specified “unobservability”

UH bias: bias due to correlated effects

ME bias: bias due to measurement errors

N

Diagnosis D

The different estimators account for one or another (or both) sources of bias.
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At a first stage, the Within Groups estimator (WG), an OLS on the model in devi-
ations from the individual time-means which controls only for correlation between the
regressors and the unobserved heterogeneity (UH bias), is compared with a General-
ized Instrumental Variables estimator on the model in deviations from the individual
time-means (IVD), which controls for both measurement error bias (ME bias) and un-
observed heterogeneity bias. A significant difference in the two estimators gives evidence
of measurement problems in the data. In this case, we investigate if unobserved indi-
vidual characteristics matter also, by comparing a Generalized Instrumental Variables
estimator on the model in levels (IVL), which controls only for measurement error bias,
with a Generalized Instrumental Variables estimator on the model in deviations from the
individual time-means, which controls for both measurement error bias and unobserved
heterogeneity bias. If we find a significant difference in these two estimators we can infer
that unobserved heterogeneity is also an important potential source of bias. If this differ-
ence is not significant we can conclude that the most important issue to control for is a
measurement problem. On the other hand, if the test performed at the first step gives us
insignificant results, we can conclude that measurement bias is not a major issue and we
continue our diagnostic procedure comparing OLS on the model in levels (OLSL) and
OLS on the model in deviations. The OLS estimator on the model in levels does not
control for any kind of bias while the OLS on the model in deviations, i.e. the Within
Groups estimator, rules out the heterogeneity bias. A significant difference in the two
estimators gives us evidence of unobserved heterogeneity bias in our data set.

It is worthwhile noting how much the sequence of these tests matters. If we compare
at the first step, as is common in empirical work, OLS on the model in levels (or the
Between Groups estimator) and OLS on the model in deviations (i.e. the Within Groups
estimator) we cannot distinguish what is the source of the bias because measurement
errors have different effects in models in levels and in deviations from the mean, as
previously emphasized.

A robust version of the Hausman test is not directly implemented in standard econo-
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metric software. In what follows, we formalize the above outlined methodology in a way
that can be implemented in any standard statistical packages.! We begin by giving ex-
amples of the way panel data sets can be used to construct valid instruments in presence
of a specified type of measurement error and by providing insights into the inference

implications of the chosen design for the testing procedure.

2.3.1 Robust Testing for Measurement Errors

The first step of the diagnostic procedure (step 1 in Diagram 2.1) requires us to compare
the IVD, IV estimator on data in deviations from individual time-means, with the WG,
OLS estimator in data on deviations from individual time-means, in order to investigate
the importance of measurement errors.

Particular care is required in the choice of the instruments we use. In order to apply
the DWH framework, we have to compare two estimators that are both consistent under
the null hypothesis (one more efficient) and one consistent and the other inconsistent
under the alternative. If the null hypothesis of non existence of measurement errors is
satisfied, the WG is more efficient than an IVD but the instruments have to be chosen in a
way such that the consistency of the IVD estimator has to hold when the null hypothesis
is violated. Measurement errors may arise under different forms, each of them having
different effects on the estimators that are used. It is not possible to construct a reliable
test for the presence of arbitrary measurement errors. Panel data sets can help us with
this issue because they provide a variety of different types of instrumental variables.
However, the choice of the instruments has to be related to a specific structure of the
measurement errors in order to guarantee their validity.

Suppose, for instance, we consider the presence of measurement errors with a period

!The Stata 7 routines, that have been written for the empirical application of the methodology
presented in Section 2.5 are available upon request.
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specific component. Consider the errors-in-variables panel data model
Yir = Pxy+1,+eq, t=1,.,N, t=1..T, (2.1)

where 7, is the unobserved heterogeneity term, we do not observe z;; but zJ, and

T = Tig + Mg, (2.2)
mie = 0 + &y, (2.3)
x},, €;; independent for all ¢ and 7 # j. (2.4)

The process of the measurement error, i.e. my, consists of an ii.d. time-specific effect

with zero mean, i.e. #;, and of a white noise component, i.e. &,,. Substituting, we obtain

Yie = PBxi 406+ + e,
615 == —,6(9t7

e = —[; + e
If we define v, the new composite disturbance component, as
Vig = Oy + €,

the basic assumption for the consistency of the OLS estimators, i.e. E(v; | z},) = 0, does
not hold any longer. z7, is endogenous because of the component of the measurement

error 0, that acts in the model through 6,. This yields
Cov(vy,zly) = Cov(—F0 — BEy + e, o + 01 + E,) # 0.

Moreover, the problem remains if we transform the model in deviations from the individ-

ual time-means to purge the model from the possible correlation between the regressor
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and the unobserved heterogeneity:
Cov(vy — 05 | g — T ) # 0,

where

T T
T=y U, Tp =y T
t=1 t=1

Hence, the WG will be inconsistent. However, by virtue of assumption (2.4)

vy — ;) =0, 15 7.

By —

Therefore, if we use as an instrument for the within variation of individual 4, the within
variation of individual j, we obtain an IVD which is consistent in presence of measurement
error having the specified structure. Thus, a DWH type test for the comparison between
the WG and the above constructed IVD can be applied and provides reliable results
about the presence of measurement errors with a time-specific component.

It is worthwhile noting that it is not possible to distinguish the effects of a measure-
ment error with an individual-specific component from the ones arising from unobserved
heterogeneity. In the sequential procedure proposed, this issue is investigated in a second
step. If at this further stage we corroborate the importance of unobserved heterogeneity
bias, we can use the results of the first step to choose between a two-way and one-
way panel data model. Specifically, a rejection of the test at the second stage means
that fixed effects may be strong. A rejection of the test at the first stage means that
measurement errors with a period specific component are an important issue. The com-
bination of these results leads us to the choice of a two-way panel data specification, i.e.
Vit = By +n; + 6 + ey, instead of the one-way, i.e. yy = Bz +1; + €.

Another case that can be worth investigating in the first step is the presence of
measurement errors that follow a moving average or autoregressive process. In this

context, the instrumental variables have to be chosen according to the structure of the
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dynamic process. For instance, if we consider measurement errors that follow a moving
average process of order one, possible valid instruments for a variable at time ¢ are all the
lag values of the same variable of at least lag (¢t —2). In what follows, lagged instruments
are used.

From the discussion above, it is clear that in the first step of the diagnostic procedure it
is important to use different 7V estimators, each of them robust to a particular structure
of measurement error. In fact, if we reject the null at the first stage, given a specific
structure of measurement error, this does not mean that we accept the alternative, that
is we accept as valid the given structure assumed for the measurement error. To be able
to assess which is the most probable structure of the measurement error affecting the
data at hand, we should implement some valid tests between an estimator robust to a
very flexible measurement error structure against a particular estimator based on a given
measurement error structure. Although this is a preliminary step that can be added to
the illustrated sequential test, it is not considered in the design of the procedure. The aim
of the methodology is to check the robustness of inference results to different assumed
structures of measurement error and not to test the specification of the measurement
error.

We now twrn to the implementation of a robust DWH type test for assessing the
presence of measurement errors in variables, that is for the comparison between the WG
and an arbitrary IVD. The formulation of such a test using a standard econometric
package is not straightforward. Unlike the implementation of a robust DWH type test
that will be considered in Sections 2.3.2 and 2.3.3, here we do not directly compare OLS
estimators applied on different orthogonal transformations of the data. In other words,
it is not just necessary to manipulate the data according to the different transformations,
insert the new variables in a auxiliary regression and then run OLS using White (1984)
robust standard errors. The procedure needs to be adjusted. Some preliminaries are

needed.

In static models, the most efficient Generalized Instrumental Variables estimator is
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obtained by projecting the variables to be instrumented onto the space generated by the
instruments. This is a case where the instruments are orthogonal to the initial errors and
especially correlated with the initial regressors. It can be shown that, given the properties
of the projection matrix, when estimating coefficients it is equivalent to running OLS in
a regression where the regressors are the projected variables.?

Consider model (1.18). First transform the data according to the within groups trans-

formation, i.e. deviations from the mean
yr = X0+ ul, 1=1,..., V.

Then choose the instrumental matrix according to the structure of the measurement
errors we want to test for, say Z. Project the variables we want to instrument in the

space generated by Z

X7 = Py X}

where

Py=2(72)7.

If we assemble the data in a NT x 1 vector of dependent variables, Y* and in a NT'x NK

matrix of regressors X *3

For the single individual 7, construct the system

i o
vi = X126+ .

“For further details and an extensive discussion on these issues see Bowden and Turkington (1984).
3Recall that this is only a different reformulation of the IV estimators because the projection matrix
is idempotent, i.e. P, = Py and P,Py = Pz,

’

Biva = (X* Py X*)"LX* Pyy* = (X* P P, X*) "' X P, PyY* = (X* X*)"1X* V™.
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Estimating by OLS the first group of equations (i = 1,..., V), i.e. the ones in levels,
we obtain the IVD, ie. §,,,. Estimating by OLS the second group (i = 1,...,N), i..
equations in deviations, we obtain the WG, i.e. ng. However, the use of an artificial
regression, as the one used in Appendix 4.1, is not suitable. In that case, because the
between groups transformation and the within groups transformations are orthogonal,
the variance covariance matrix in the auxiliary model was block-diagonal. It was then
estimated using the White (1984) robust estimators. When different transformations
of the data are used, the structure of the variance covariance matrix in the auxiliary
regression model can be more complicated. The fact that the equation sets are not
orthogonal is not taken into consideration and the White’s estimators are not robust to
the presence of inter-groups correlation. The use of a Newey-West robust OLS estimator
would not help either. The variance covariance matrix exhibits a pattern of cross sectional
dependence (i.e. particular form of non stationarity persistent when N goes to infinity)
that is not supported by these estimators. Therefore, a consistent estimator for the
variance of the difference of the two estimates needs to be constructed step by step.
Appendix 1.2, Part I contains further clarification of these points and implements an

appropriate procedure.

2.3.2 Robust Testing for Correlated Effects without Measure-
ment Errors

If the results of the test at the first stage provide evidence that measurement errors can
be neglected, the widespread practice to test for correlated effects using the comparison
between OLS in levels, i.e. the OLSL, and in deviations, i.e. the WG, is correct (step 2.B
in Diagram 2.1). A standard Hausman test can be applied. However it is recommended
to use a robust version of the test in order to control for the possible presence of non
spherical disturbances, as it is explained in Chapter 1. The details of the construction of
such a test are also contained in Chapter 1 (Section 1.3). The chosen OLS estimator on

the model in levels is the Between Groups estimator, hereafter BG.
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2.3.3 Robust Testing for Correlated Effects with Measurement
Errors

If the results of the test at the first stage provide evidence of important measurement
error bias, testing for correlated effects using the comparison between OLS in levels and
in deviations is not correct and may lead to unreliable results. IV estimators can be used
instead.

An implementation of the DWH test for the presence of correlated effects in presence
of measurement errors consists in comparing the IVD constructed in the first step of the
procedure with the same Generalized Instrumental Variables estimator on the model in
levels (IVL) (step 2.A in Diagram 2.1). If correlated effects are present, the IVL, which
controls only for a specific structure of the measurement error is not consistent while the
IVD remains consistent because the transformation of the data used purges the model
from the effects of individual-specific components. Therefore, the DWH framework can
be applied. Note that, as in the first step, it is important to construct a number of
different tests for correlated effects. By analyzing the results of a combination of the
tests of first and second stage, it is possible to choose the most reliable (robust) model
specification.

A DWH test for correlated effects in presence of measurement error can be set out
as follows. As in the comparison between the BG and the WG (Section 2.3.2), we deal
with two different estimators that are obtained applying the same estimation method
on data transformed in different ways. In Section 2.3.2 we choose the BG as an OLS
estimator for the model in levels. In this section we choose an IV estimator on the model
in averages (between groups transformation) as IV estimator for the model in levels. This
choice allows us to deal again with two orthogonal transformations of the data. Thus,
the use of an artificial regression will lead to the desired outcome. We obtain the IVL
applying the IV methodology to the average equations in levels and the TVD applying
the IV methodology to the equations in deviations from the mean.

Model (1.18), a system of T equations in levels, can be transformed into (7' — 1)
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equations in deviations and one in averages. We obtain

yr = X0+ pi
T = X8+ 1.

Estimating by IV the first group of equations, i.e. the ones in deviations from individual
time means, we obtain the IVD, i.e. de. Estimating by [V the average equation we
obtain the IVL, i.e. Bm-
Let
Biw = plim (Bm)

and

Bua = plim. (Bia) -
Rewrite the system as

yi = X Bua + 145 — X Bt + X7 B

Y; = Xzﬁwl, + 1y

Rearranging, we obtain

y; = Xi (Bivag — Bat) + X Bt + 145
U = XiBy + -

Call
o [¥) e (X X
7, 0 X,
/3+ _ /31 _ ﬁivd - 61’1}1 7 /lj _ IU’;k
/32 /Bivl l_'l’z
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The augmented auxiliary model would be
Y =WiAT +pt,  i=1,., . (2.5)

Estimating the model by IV, we obtain directly the variance of the difference of the two
estimators in the upper left part of the covariance matrix of 1. Unfortunately, in stan-
dard econometric packages White’s robust variance estimator may not be implemented
for IV panel data estimation. In this case, a practical possible solution can be to obtain
the IV estimators as OLS estimators on a further transformed model, as was necessary
and explained in Section 2.3.1. After repeating the same steps for the construction of
another artificial regression with these new transformed equations and estimating con-
sistently the variance of the OLS estimators, once again a Wald test will allow us to
investigate the presence of correlated effects in a reliable way. This approach is pursued

in Appendix 1.2, Part II. The following Lemma is proved.

Lemma 15 Given model (2.5),
,Bl = givd - Bivl: (26>

V“T(Bl) = Var (de - Bm) ) (2.7)

An appropriate estimator Var(3,) consistently estimates Var(J3,).

2.4 A Monte Carlo Experiment

In this section we use simulated data in order to assess the statistical performance of
the proposed procedure. In the bunch of diagnostic tests provided by standard statistical
packages there is scarce attention to the fact that they are repeated test procedures using
the data at hand. This yields consequences both on the properties of the chosen estimator
and on the subsequent inference (see Judge and Bock, 1978). An exhaustive treatment

of these issues is far beyond the scope of this chapter. Nevertheless, we present a Monte
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Carlo experiment aiming to examine how the critical regions of the test depends on the
fact that it is a two stage procedure.

The postulated data generation process is the following. We consider the linear panel

data regression model
Yir = PTgy + Tz + n; -+ 6t +uit7 1= 17 >N7 t = 1) “';Tv

where the disturbance term consists of three independent components: a unit-specific
effect, n,, a time-specific effect, ¢;, and a white noise component, i.e. wu;. This context
can be considered as a case where there is the joint occurrence of individual effects and
measurement errors with a time specific component. We assume that z is an exogenous

variable and we generate x using the same structure for the disturbance term
Tip = Wy + U + Uy + i, (2.8)

where w is an exogenous variable. The random variables (n;,v;) and (6;,7;) are con-
structed as draws from a bivariate normal distribution with correlation rho, and rhos
respectively. Each of these takes values of (0,0.05,0.10,...0.95).

The values for the exogenous variables and the range of values for the parameters are
taken from the analysis of the empirical case of study presented in Section 2.5. Using

UK data, the following model is estimated.
log M;; = a + alog Uy + Blog Vs + ey, 1=1,...,276; t =1,...,63,

where A is the number of matches/hirings, U and V are the stocks of unemployed and
vacancies, a is a constant term, e indicates a disturbance term. Different estimation
methods have been applied. The different estimates of the coefficient of the unemployed,
«, and for the vacancies, 3, have been used in the simulation experiment for ¢ and

7 respectively. They take values of (0.5,0.4; 0.5,1.5; 0.4,0.7; 0.3,1.4). Also, the best
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prediction for the stock of vacancies is
log Vi = 1.21log NV, 1=1,..,276; t =1,...,63

where NV is the number of monthly notified vacancies (flow variable). In our experi-
ment design, the real values for U and NV have been used as exogenous variables, i.e.
respectively z and w. The endogenous variable, V| i.e. x, has been constructed using the
structure (2.8).

The sample size available in the empirical case of study, i.e. N = 276, T = 63, is
considered. The experiment is repeated 5000 times for each combination of rho; and
rhos. Four hundred data sets have been generated. For each repetition, the test statistics
used at the first step, 77 and at the second step, T5, has been calculated as explained in
the development of the procedure in Section 2.3 and the instrumental variables chosen
are the ones used in the empirical case of study in Section 2.5, i.e. we use as instrument
for a variable at time ¢ the value of the same variable at time (¢ — 3). We summarize as
follows.

Let us indicate

Y= )
™

and 7,,, the IVD, 7, the WG, 7,,, the IVL and 7,, the chosen OLSL, that is the Belween

Groups estimator.

At the first stage we test the null hypothesis
Hy:rhoy =0

against the alternative

using the statistic



where 1 = 7,0 — Yy and V (@) is a consistent estimator of the variance (see Appendix

1.2).
At the second stage we test the null hypothesis

Hy:rhoy =0

against the alternative

H; :rhoy #0,

using the statistic

T = I(Tl > Cl)TQR -+ ](Tl < Cl)TQA,

where ¢; and ¢y are specified critical values, I(a) is the indicator function which takes

value equal to one if the event (a) is realized, zero otherwise.
Top = BV (§2) Go.

where o = J,,y — Yy and V (G2) is a consistent estimator of the variance.
Toa = @5V (G3) Gs

where g3 = 7,,, — ¥, and 1% (g5) is a consistent estimator of the variance.

The sequential procedure proposed in this chapter consists on performing 7} followed
by 1.

Let us consider the size first. In principle, the alpha level for multiple tests could be
corrected by using the Bonferroni Inequality (Bonferroni, 1936). It is an inequality from
probability theory that gives us an upper bound for the probability that one or more
separate tests will lead to a specified type I error. It can be stated as follows. For any

sets of events A,

K
PT<A1;A27-'~7AK) 2 1- ZPI (A?) !
i=1

94



et r'{(% o CC R/ C M e () %) &
predsian (%) |
038 5625 5561 5P 5704 5608 12|
139 25 %403 %@ 2581 2534 W14
277 625 60 | 6 63 632 412
461 001 00 | oo 004 003 +-08 |

Figure 2-1: Theoretical versus empirical frequencies

where A, is an event and AY its complement.

Rearranging

K
> Pr (A7) > 1—Pr(A, 4, ..., Ag).
=1

Therefore, if we fix the significance level of the joint test as «, the size of each separate

test, say o, has to satisfy the following inequality
Ko > a.

Thus, the Bonferroni inequality implies that we should set

if we wish the probability that a type I error occurs to be no more than a in the multiple
test procedure. In our two stage test, if we choose the alpha level of the overall procedure
equal to 0.05, the size of each test should be set at 0.025. However, the Bonferroni
inequality does not require any knowledge about the structure of dependence between
the test statistics used at the different steps. This is a strength but at the same time a
weakness of the principle. If the dependence is further investigated, the inference can be
sharpened.

In order to study the structure of dependence between 77 and T3, we consider their em-

pirical distribution function. The asymptotic marginal distribution of both test statistics
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is a chi-squared with two degrees of freedom (x3). Figure 2-1 reports in the first column
the four quantiles ¢* that leave a probability of 0.75, 0.50, 0.25, 0.10 in the tail of a x3
distribution, in the second column r*, the square of P(x3 > c¢*), that is the p-value that
would be obtained asymptotically if the two test statistics were independent, and in the
remaining four columns the estimated {requencies obtained when ¢ and 7 are set to the
four pairs of values used in the design of the experiment: (0.5,0.4), (0.5,1.5), (0.3,1.4),
(0.4,0.7). They are indicated by "1, 72, "3, r"4 respectively. Under Hy, the simulation
experiment suggests that the hypothesis of independence between the two test statistics
cannot be rejected. The last column shows the Monte Carlo precision as a 95% confi-
dence interval. As a matter of fact, for different ¢*, we get that the estimated frequency
of rejecting both hypotheses is roughly equal to the square of P(x3 > c¢*). Therefore, the
significance levels of the two tests can be fixed independently such that their product is
equal to the desired alpha level of the sequential procedure.

Let us now turn our attention to power considerations. The property of independence
of the test statistics is not preserved under any alternative hypothesis.* We investigate the
performance of the test in terms of power by fixing the alpha level of the sequential test
equal to 0.05, the one of each single test equal to v/0.05 and calculating the probability
that both 77 and 75 fall in the critical region for each combination of rho; and rhos.
The resulting triples of points have been plotted in a three-dimensional space. Figure
2-2 shows the power function when ¢ = 0.5 and 7 = 0.4.°

For low levels of rho; and rhos (in the range of (0.05,0.5)) the power of the test
is not, very high (always below 60%) but it increases sharply as soon as either rho;, or
rho, takes values greater than 0.55. It is worthwhile noting that, as the relevance of the
procedure is mainly empirical, we are interested in getting a good performance of the
test in terms of power for high levels of rho; or rhoy. In other words, the procedure

should help us to avoid the use of badly biased estimators, i.e. we need to be able

“We do not report all the results for all combinations of values of rho; and rhos for brevity. They
are available upon request.
°Similar pictures can be obtained by plotting the power function for the other values of the parameters.
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Figure 2-2: Power function: three dimensional plot of points

to reject almost surely the hypothesis of independence when the level of correlation is
high. Therefore, the performance of the test is satisfactory. However, an analysis of the
graph reveals that the power function is more sensitive to deviations from the hypothesis
of absence of measurement errors in variables (rho; = 0) than from the hypothesis of
non correlation between regressors and individual effects (rho; = 0). This asymmetric
behavior in the performance of the multiple test in terms of power should be taken into
consideration when fixing the significance levels of the single tests. The power function
illustrated in the graph refers to the case when the size of the two separate tests is the
same. A different case can lead to a more balanced performance. Further research may be
needed. For instance, the construction of a sequential test that assesses the importance of
correlated effects at the first step and of measurement errors at the second step could be
considered. This possibility has not been explored here because in the empirical context
the test is applied (empirical job matching function framework in Section 2.5) there are
a priori reasons to assume the presence of measurement errors (rhos % 0) and therefore

the expected performance of the test is adequate. As noted in Section 2.2, a different
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application of the test requires the procedure to be tailored to the new context and the
statistical performance of the test may vary in each case.

Finally, it is of interest to report some results on the estimated probability that the
sequential test detects the postulated major source of endogeneity. They are illustrated
in Figure 2-3. They refers to the case when a = 0.5 and g = 0.4.

Table 1 reports the probability pio defined as
pr2 = Pr(Th > ¢, Ty < ¢)

when rhos = 0.9 and rho; takes all the twenty values between 0 and 0.95. rho;” is the
estimated level of correlation between the regressors z;; and 7, and rhos” is the estimated
level of correlation between z; and 6;. If we reject T; and we cannot reject 75, we are
expected to use an instrumental variable estimator using the model in levels. The table
shows that the probability to get such an outcome from the application of the sequential
test is a decreasing function of the level of rho;. According to what is desirable, the
probability of choosing an estimator in levels is a decreasing function of the importance
of unit-specific effects.

Table 2 reports the probability ps; defined as
po1 = Pr(1h < ¢, Ty > ¢¥),

when rho; = 0.9 and rho, takes all the twenty values between 0 and 0.95. The same
definition for rho; ~ and rho,” in Table 1 applies. If we cannot reject 77 and we reject Th,
we are expected to use a least square estimator after having transformed the variables
in deviations from the mean. Also in this case the table shows a desirable result. The
probability of obtaining such an outcome from the application of the sequential test is a
decreasing function of the level of rho,. This implies that the probability of requiring an
estimator in deviations is a decreasing function of the importance of factors different from

individual-specific effects (that can be magnified when transforming the variables). Sim-
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Table 1:
rho2=0.9; rhol varies

rhol” rho2” pl2
0.001 0.517 0.45
0.026 0.508 0.45
0.051 0.515 0.42
0.094 0.509 0.38
0.112 0.501 0.33
0.152 0.51 0.3
0.179 .51 0.22
0.202 0.51 0.13
0.228 0.505 0.1
0.268 0.515 0.09
0.293 0.503 0.09
0.319 0.52 0.06
0.347 0.512 0.03
0.384 0.514 0.03
0.413 0.513 0.03
0.44 0.51 0.02
0.476 0.509 0.02
0.501 0.51 0.01
0.53 0.511 0.01
0.555 0.522 0.01
Table 2:
rhol=0.9; rho2 varies
rhol” rho2” p21
0.525 0.002 0.44
0.525 0.035 0.43
0.522 0.047 0.42
0.534 0.091 0.33
0.523 0.109 0.23
06.53 0.142 0.22
0.527 0.152 0.21
0.529 0.203 0.18
0.528 0.219 0.15
0.525 0.262 0.15
0.528 0.286 0.12
0.528 0.307 0.1
0.53 0.33 0.09
0.525 0.364 0.05
0.529 0.405 0.02
0.526 0.43 0.01
0.53 0.453 0.01
0.534 0.479 0.01
0.525 0.517 0.01
0.527 0.539 0.01

Figure 2-3: Simulated performance
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ilar tables can be obtained for the other points in the parameters space. The qualitative
performance of the test is unchanged. Taking the results as a whole, the application of
the sequential test implemented seems to give some appropriate directions for the choice

of the most reliable model specification.

2.5 The Empirical Framework

The main purpose of our analysis is to investigate the importance and typology of un-
observable factors that, as is well-known, affect two of the variables frequently used in
labor market research, namely the stock of unemployed and the stock of vacancies. We
use a job search matching framework. The matching function is a modeling device that
sumnmarizes the search process that eventually brings workers and firms into productive

matches. The simplest form of the matching function (Pissarides, 2000) is
M =m(U,V), (2.9)

where M is the number of jobs formed at any moment in time, U is the number of
unemployed workers looking for work and V' is the number of vacant posts. In recent
years the concept of a matching function has been extensively used to explain the working
of the labor market.® However the majority of the studies are theoretical. Moreover,
while the theoretical emphasis is typically on the behavior of microeconomic units, most
of the empirical applications have used aggregate data. In recent years, a small number
of empirical studies investigating the empirical relevance of the concept at less aggregate
levels have been produced. The central question addressed is whether the matching
function exhibits constant returns to scale, which is one of the basic assumptions in the
theoretical literature. Although our primary aim is neither an empirical test of such a

stylized relation nor an inspection of the returns to scale exhibited, we will comment

8See, for instance, Petrongolo and Pissarides (2001) for a review.
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on these issues while analyzing the results obtained for the data set under investigation.
Our main focus is to emphasize the relevance of the sequential test in applied work by
showing that a neglect or improper treatment of unobservable factors, like testing for
correlated effects without conditioning on the existence or non existence of measurement

errors, can lead to extremely unreliable inference results.

2.5.1 Description of the Data and Definition of the Variables

A longitudinal data set of travel-to-work areas (TTWAs) in the UK observed monthly
for the period 1996-2001 has been used. All data are available from the National On-line
Manpower Information Service (NOMIS) located at the University of Durham. In the
United Kingdom the travel-to-work-areas are considered the standard approximations
to self-contained labor markets, i.e. areas in which people both live and work. They
are geographic regions with a minimum of 3500 working people where at least 75% of
those living (working) in the area should also work (live) there. We consider the most
recent TTWAS’ definition, based on the journey to work statistics from the 1991 Census of
Population. A total of 297 TTWAs are designated in England, Scotland and Wales. Only
areas with non missing values are included in the sample used for estimation, reducing the
cross section dimension from 297 to 277 areas. Furthermore, because London looks like
an outlier compared to the other TTWAs, we performed the analysis without London,
so that we ended up with 276 areas.

The NOMIS database contains detailed informations from both sides of the labor
market. Unemployed and vacancies data collected by Nomis are registration data pro-
vided by local employment agencies (Job Centres). They are administrative data that
have the advantage of being readily available on a regular basis, at high frequencies, and
at a very disaggregate spatial level. Temporal aggregation is an important issue in the es-
timation of a matching function because it involves estimating flows from stock variables.
High-frequency data can in principle mitigate this bias. Also aggregation over space can

be misleading. The estimation of a matching function combining cross sectional and time
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series observations where the cross section units are the regions may still lead to unreli-
able results. If the regions have a different size and matching does not take place under
constant return to scale, estimates may be affected by a spurious scale effect (regional
boundaries do not coincide with labor market boundaries). Furthermore, the different
local labor markets may be interrelated (for instance, because of common shocks). By
working with TTWAs, a quite fine level of spatial disaggregation (the finest available for
the vacancies data) the further sources of bias should also be mitigated. We use as a
proxy for the total number of unemployed the monthly count of claimants who are claim-
ing unemployment benefits on the unemployment count date (second Thursday of each
month) and as a proxy for the jobs that are vacant the monthly stock count of notified
vacancies that have not been filled at the end of the previous month. The number of
vacancies that are monthly filled by job seekers is our measure of total matches/hirings.
We do not arbitrarily adjust the data following, for instance, the correction proposed
by Coles and Smith (1996). It is believed that the Job Centres numbers represent ap-
proximately one-third of the vacancies and one-quarter of the placings in a TTWA. It
is certainly true that registered vacancies are only one channel from which firms recruit
personnel but we are not aware of the exact proportions. However, if for instance the
ratio between measured number of vacancies (or hires) and true number of vacancies (or
hires) is not constant across areas, we would introduce a systematic measurement error
by correcting the data this way. Our approach is to work with the raw data and try to

control for the most important unobservable factors affecting our data set.

2.5.2 Empirical Analysis and Results

We start by considering a standard Cobb-Douglas specification of the matching function

(2.9) in log-linear form:

log My = a + alog Uy + Blog Vig + 1, + s, i=1,...,.N, t=1,..T. (2.10)
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We indicate by M;; the number of hirings in area ¢ during month ¢; U; and Vi the
stocks of registered unemployed and of vacancies in area i at the beginning of period
t; n, is a TTWA fixed effect controlling for regional characteristics, including the size
of the TTWA; and wuy is a white noise error term. The constant term, a, is meant to
capture the efficiency of the matching technology. In this framework, « and g are the
elasticities of hirings to unemployment and of hirings to vacancies respectively. Chart 1
contains the graphs plotting different panel data estimates of a and [ calculated recur-
sively by adding six months periods. Assuming normality of the estimators, we draw the
bands corresponding to a confidence interval of 95%. The hypothesis of constancy is not
rejected. If we neglect the odd values of the estimators in the first two years, perhaps
affected by administrative changes in the way data had been collected,” both elasticities
appear to be constant in all the models adopted. Therefore the restrictive Cobb-Douglas

specification does not seem to be rejected by the data.®

"This may be related to the government change in 1997.

8 A more flexible transcendental logarithmic model of the matching technology has also been analyzed.
The results go beyond the main purpose of this thesis. Therefore they are not reported here, but they
are available on request.
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Chart 2.1: Rolling Elasticities Estimators
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Using the sequential procedure presented in Section 2.3, we investigate the impor-
tance of unobserved heterogeneity and measurement errors affecting the unemployed and
vacancies data by comparing different panel data estimators of the coefficients of the
stocks of unemployed and vacancies. Table 3 reports the results for the different panel
data estimators involved in the development of the sequential testing procedure. In our
analysis we use IV estimators that control for autocorrelation in the process of the mea-
surement error. We use as instrument for a variable at time ¢ the value of the same
variable at time (¢ — 3). This is reasonable from a logical point of view because the
instrument is the value of the variable at the end of the previous quarter and from a
technical prospective because it allows us to control for the presence of measurement

errors that follow a moving average process of order one, using differences, or one and

two, using levels.

Table 3: Model (2.10), Estimation Results™

Dependent Variable: Log Filled Vacancies

OLSL WG IVL IVD
_ 0.4295 0.3502 0.5171 0.5425
Log vacancies
(98.48) (55.47) (101.27) (59.11)
0.6943 1.4224 0.4450 1.5323
Log unempl
(4.42) (1.99) (2.64) (1.63)
—2.7228 —7.8714 —1.2091 —9.4665

Const
(—2.28)  (=1.46)  (—0.95)  (—1.34)

*- t-test in parentheses,

-robust standard errors are used,

- TTWA fixed effects included.

We begin by applying the sequential test separately for the two coefficients. For sake

of clarity, we reproduce Diagram 2.1 for reference.
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Diagram 2.1: Sequential Procedure

WG Vs VD
No UH bias, but ME bias No UH bias, no ME bias
Re ject Not Reject
e N\

VD vs IVL WG vs OLSL

No ME bias, No ME bias, No UH bias, UH bias,
no UH bias but UH bias but ME bias and ME bias
Re ject Not Reject Re ject Not Reject

e N\ e \

Diagnosis A Diagnosis B Diagnosis C Diagnosis D

Both unobserved heterogeneity

Diagnosis A
— and measurement errors

are important sources of bias

The most important issue to control for

Diagnosis B i
— is a measurement problem

of the specified type

Diagnosis C Unobserved heterogeneity plays a major role

Diagnosis D No evidence of the specified “unobservability”

UH bias: bias due to correlated effects

ME bias: bias due to measurement errors

The different estimators account for one or another (or both) sources of bias.
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At the first stage of the procedure, a robust DWH test for the equality of WG and IVD
gives us evidence of strong measurement errors for both unemployed and vacancies data.
The null hypothesis of equality of the two estimators is strongly rejected in both cases
(x} =23.21, p=0.00; x? = 29.03, p = 0.00 for unemployed and vacancies respectively).”

In the second stage of the procedure we investigate the relevance of correlated effects.
Area specific effects on hirings may arise, for instance, as a result of variations in the
matching technology across TTWAs. These technological differences are likely to be
correlated with area size and hence with the area level of unemployed and vacancies.
As explained in Section 2.3, a test for correlated effects in presence of measurement
errors in variables consists of comparing IVL and IVD. Applying a robust DWH test,
we cannot reject the hypothesis of equality of the two estimators for the unemployed
coefficient (x? = 1.18, p = 0.2773), but we reject this hypothesis for the vacancies
coefficient (x? = 46.04, p = 0.00). Different estimation methods controlling for a specific
kind of bias show different effects on the coefficient of the two variables: our results
suggest that vacancies and unemployed data are contaminated by unobservable factors
of different types. We can conclude that area specific unobservable factors, such as
local policies towards the demand or the supply side of the labor market, influence the
stock of vacancies but play only a minor role in the determination of the number of
unemployed. However, measurement errors remain an important issue to control for. In
fact, if we perform the sequential testing procedure jointly for the coefficients of the stock
of unemployed and vacancies, we reject the null hypothesis at the first step (x3 = 30.89,
p = 0.00) but we cannot reject the null hypothesis at the second step (x2 = 4.01,
p = 0.1347). Therefore the most reliable estimator is the IVL.

The lack of a rigorous statistical analysis may lead to completely different results.
Firstly, if we follow the common practice and we use a standard DWH test to choose

between the random effects and the fixed effects model (comparison between the estimates

9Strictly, the analysis in Chapter 1 suggests that we can only interpret these two tests separately if
there is measurement error only in one variable, and the two variables are uncorrelated. However, the
correlation of 0.12 here seems limited enough to support the interpretation.
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in columns one and three of Table 3), we are forced to use the second one (the difference
of the estimates is systematic: x5 = 64.13, p = 0.00). The result is that the values of the
two elasticities are in contrast to the underlying matching function economic theory (the
hypothesis of constant returns to scale is rejected x# = 25.92, p = 0.00). Furthermore,
an interpretation of the results based on a visual inspection of the table may also be
misleading. Table 3 shows that while for the vacancies coefficients the discrepancies
between different estimators on the same transformation of the data (OLSL versus IVL
and WG versus IVD) are higher than the ones between the same estimators on different
transformations of the data (OLSL versus WG and IVL versus IVD), the unemployed
coefficients show opposite and more marked patterns. There is a huge difference between
OLSL and WG and between IVL and IVD. Therefore the more immediate interpretation
is to consider the bias due to measurement errors to be the most important problem for
the vacancies coefficient, and the bias due to correlation between the regressors and the
unobserved heterogeneity as the most important one for the unemployed coefficient. As
explained above, this interpretation is not confirmed by the DWH tests. For instance, the
particularly marked patterns of the unemployed elasticities may be due not only to the
effects of area-specific factors that are neglected in the estimators of the model in levels,
but also to the presence of strong measurement errors whose effects are magnified in the
models in deviations, as is confirmed by the application of the diagnostic procedure.

In order to investigate the robustness of the results to different structures of the
measurement error, we estimate the model with yearly time dummies. It is worth noting
that the introduction of time dummies is usually used to capture time components of
a (efficiency of the matching function) but it allows also for the effects of unobservable
factors constant across areas and changing over time. A panel data model which controls
for time differences in the technology of matching and one which assumes measurement
errors with a time component in an additive structure have the same specification. Either
way we investigate whether differences in the intercept may account for differences in the

previous estimators (slope). The effects of year specific unobservable factors common to
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all areas can be relevant in the framework we are considering because it is very likely that
the stocks of unemployed and vacancies are influenced by nation-wide policies different

over time. We estimate the following model:
log My = a + alog Uy + Blog Vie + 1; + 64 + ws, i=1,.,N, t=1,..T (2.11)

where we use the same notation of Model (2.10). In addition, §, is a time specific effect
controlling for the influence of temporal factors constant over areas. Table 4 reports the

corresponding results from the different panel data methods of estimation presented in

Table 3.

Table 4: Model (2.11), Estimation Results*

Dependent Variable: Log Filled Vacancies

OLSL WG IVL IVD
. 0.4299 0.3509 0.5173 0.5434
Log vacancies
(98.51 (55.49) (101.30) (59.05)
0.6635 0.0010 0.4017 1.4881
Log unempl
(4.14) (0.00) (2.35) (0.49)
—2.7442 3.0251 —0.9392 —9.7612

Const
(-1.36)  (0.21)  (=045)  (—0.41)

*- t-test in parentheses,

- robust standard errors are used,

- TTWA fixed effects and year dummies included.

Applying the diagnostic procedure detailed in Section 2.3 separately for the coeffi-
cients of the unemployed and vacancies, the hypothesis of equality of WG and IVD is
rejected at the first stage for both variables (y3 = 27.64, p = 0.00; x7 = 35.79, p = 0.00

for unemployment and vacancies respectively). At the second stage, we cannot reject
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the hypothesis of equality of IVL and IVD for the unemployed coefficient (i = 1.11,
p = 0.2921) but we do reject this hypothesis for the vacancies coefficient (x? = 94.09,
p = 0.00). Therefore the results of the robust DWH tests are not different from the ones
obtained for Model (2.10), both in the first and in the second stage. Also, when the tests
for the equality of the different estimators are performed jointly for the two coeflicients,
we still reject the null hypothesis at the first step (x5 = 38.31, p = 0.00) and we do
not reject the null at the second step (x5 = 4.44 p = 0.1086). Hence the results of the
sequential test procedure are robust to either form of measurement errors. The most
reliable estimator remains the IVL.

Also in this case, the common approach to test for correlated effects without con-
ditioning to the existence or non existence of measurement errors is misleading. The
hypothesis of equality of the estimators in the first two columns of Table 4 is rejected
(x3 = 51.17, p = 0.00) and the recommended estimator would be the WG. Conclusions
based only on a visual comparison between Tables 3 and 4 may also be misleading. A
comparison of Tables 3 and 4 shows that while the coefficients for the vacancies are al-
most untouched, there is a striking drop in the WG for the unemployed coefficient that
cannot be compared to the slight decrease of all the other estimators. The coefficient also
loses its significance. It seems that, having controlled for area-specific and nation-wide
time specific factors, the effects of the stock of unemployed on the number of hirings are
negligible. In other words one could infer that the unemployed data are almost com-
pletely explained by these factors. However, this interpretation needs some care. The
IVD, robust to measurement errors, does not show such huge drop as the WG but its
value is only slightly decreased, as are the estimators for the model in levels. In presence
of strong measurement errors in variables, the estimates in the first two columns of Ta-
bles 3 and 4, namely OLS estimators, are not reliable. They neglect such unobservable
factors and may be misleading. Once more it is worth noting that the DWH tests for
unobservable heterogeneity in presence of measurement errors have not been applied for

the comparison of OLS estimators but IV estimators have been used (third and fourth
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columns of Tables 3 and 4), as provided by the sequential procedure in Section 2.3.

In the search-matching framework analyzed the most reliable estimator seems to be
the IV estimator on the models in levels (IVL) that control for measurement errors. This
choice is robust to the introduction of time dummies. This chosen estimator presents
also more reasonable results from a theoretical point of view. The hypothesis of constant
returns to scale is not rejected (Model (2.10): x? = 0.05, p = 0.8230, Model (2.11):
X3 = 0.23, p= 0.6315).

2.6 Conclusions

The main implication from these findings is a caveat on the empirical use of estimation
results in presence of strong unobservable factors in the data set. OLS estimators are
almost never reliable but the availability of panel data sets and the use of estimators
that control for unobservable heterogeneity bias, as widespread practice, does not always
lead to the most reliable results. It is crucial to investigate what is the most important
source of bias that affects the data set we are using. Different kind of unobservable
variables may affect data at different levels of disaggregation. Panel data sets can be
helpful in handling these issues. Pooling cross sectional and time series observations, the
econometrics of panel data offers a variety of different estimators for the same parame-
ter, and the behavior of such estimators in the presence of unobserved factors may be
analyzed. Therefore, it is possible to acquire some knowledge about the kind of errors
of specification involved, by checking whether they can actually account for the sign and
order of magnitude of the observed discrepancies between estimators. Pursuing such an
approach, we implement a sequential test aiming to distinguish the effects of unobserved
heterogeneity and measurement errors on the estimators of the parameters in a panel
data model. Size and power are investigated in a simulation experiment.

An application of the methodology to investigate widely discussed issues in labor

economics is presented. Using a job search-matching framework, we study the effects of
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unobservable factors on the estimated elasticity of hirings to the stock of unemployed and
to the stock of vacancies using a panel data set of TTWAs in the UK followed monthly
from 1996 to 2001. A different dependent variable, i.e. unemployment outflows, has also
been investigated but no more satisfactory results obtained. Our findings reveal that the
data on unemployed and vacancies are affected by strong systematic measurement errors.
In this particular case, unobservable cross-sectional differences, naturally associated with
different labor market institutions across TTWAs, seem to be important in the deter-
mination of the number of vacancies but do not affect strongly the unemployed stock.
However, it is the presence of measurement errors with an unknown structure that plays
a major role. Our inference results are robust to the presence of correlated measurement
errors (that follow a moving average process of order one or two, according to the data
transformation used) with or without a period specific component. Indeed, we choose
as instruments for a variable at time ¢ its past value at lag (¢ — 3), and subsequently
we correct with time dummies. Models controlling for unobserved heterogeneity bias
may aggravate the measurement error bias. Therefore the most reliable estimators are
instrumental variables on the model in levels. The hypothesis of constant returns to scale
cannot be rejected. This investigation does not rule out the possibility that an empirical
analysis of the matching function may lead to dissimilar results using a different data
set. For instance, using data disaggregated by age or educational level it is likely that
unobservable heterogeneity bias may be the most important issue to control for.

The analysis of the illustrated case of study reveals that conclusions lacking a rigorous
statistical analysis of the effects of possible unobservable factors might be misleading.
This implies that empirical results in contrast with the underlying economic theory do
not always need a new theoretical explanation to be accommodated. They might be
simply the results of an invalid inference. In presence of strong unobservable factors, as
it is the case in analyzing the working of the labor market, the choice of the specification
of the econometric model to be used is the most important and delicate phase. In our

opinion it is often undervalued in empirical studies.
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2.7 Appendix 1.2

The variables and matrices used in this Appendix, not directly reconsidered in Chapter
2, have been defined in Chapter 1, Appendix 4.1.
Part 1

We need to compare an IV estimator and an OLS estimator on the model in de-
viations, ie. f,, and ng respectively. In this context, an artificial regression of the
type used in Appendix 4.1 does not help in constructing a test robust for the presence of

non-spherical errors. In what follows, we explain why it is the case and we indicate an

alternative procedure.

, , ] GY P,GX P;GX
Consider the artificial regression of Y* = on X* =
GY 0 GX
. . . . . % Bivd - ng
applying Lemma 13 and 14 in Appendix 4.1, it gives coefficients 3 = R . The
Py Py

disturbances have a covariance matrix E (e*¢*) = o ,as GG = In(r-y).
Pz In(r-

In this case, the transformations of the data used in the two sets of equations are not

orthogonal and Var(Y™) is not diagonal. We have

GVar(Y)G GVar(Y)G' o*Iner—1y 0 Ina-1)
Var(Y™) = -
GVar(Y)G GVar(Y)G *Iner—1y oIy
— P;GX 0
If now X = ,
0 GX

Var(G) = (X*X*) 7 X"Var(Y*) X (X X*)™!
= A HX' X)X Var(YHX(X'X) A7,

Next, we calculate this variance by separating the different components.

113



— X'G'P, 0 2Inr— 2Iner— P,GX 0
X’Var(Y*)X: Z O IN(r-1)y O IN(T-1) z
0 X/G/ O‘QIN(T_D (TQIN(T__l) 0 GX
| X'G'P, X'G'Py | | P,GX 0
= g~
xXe X 0 GX
, | X'G'P,GX X'G'P,GX
=g .
X'G'P,GX  X'QX
TR (X'G'PyGX)™ 0
0 (X'QX)™"
Thus
(X' X)X Var(Y*) X' (X'X)™!
| xXarex)T 0
=0 X
] 0 (X'QX)""
X'G'P,GX X'GP,GX || (X'G'P,GX)™ 0
| X'G'PGX X'QX 0 (X'Qx)™"
L I I ] (X'G'P,GX)! 0
(X'QX) ' X'G'P,GX] I 0 (X'Qx)™"

(X'G'P,GX)" (X'QX)™!
(X'QX)"  (XQXx)™!

ANX' X)X Var(Y )X (X' X) TA™Y

L -] [ xerex)t (xx)
- 0 T (X'QX) (X’QX)l}
_ L xerenT - xex) o

i (X'QX)™! (X'Qx)™
L crepex) - (xgx) 0
-0 i 0 (X'QXx)"!

(2.12)

(2.13)

If we run the artificial regression, the postulated variance-covariance matrix is different.
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It will be proportional to

(X*/X*)_l _ (A//)Z/X’A)—l — A—1<Y/Y)“1A~l/

-] werex) 0 I 0
o1 0 (X'Qx)™! {—1 I
[ xepex)t —xex)t ] [ 1o
| 0 (X'QX)! 1 ]J
| xerpex) T+ (ox)t = (rgx)
| ~(XQX)™! (XQx)™

The fact that the equation sets in the double length regression constructed are not or-
thogonal is not taken into consideration. A wrong answer will also come from the White’s
estimators. They are not robust to the presence of inter-group correlation. The use of
a Newey-West robust OLS estimator would not help either. The variance covariance
matrix exhibits a pattern of cross sectional dependence (i.e. particular form of non sta-
tionarity persistent when N goes to infinity) that is not supported by these estimators.
Therefore, a consistent estimator for the variance of the difference of the two estimates
(upper left part of matrix (2.13)) needs to be constructed step by step.

We need to recover the matrices involved and a consistent estimate of o. Recall that
for the first set we are performing an IV estimation by running OLS on a transformed
model. It is known that the OLS residuals do not provide a consistent estimator of the
variance of the initial disturbances, because the transformed model has a non spherical
variance-covariance matrix. The sum of squares of the residuals coming from the initial
model with the IV estimator should be used instead.

However, notice that,

é\’w =Yy - X,Biv
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can be written as

w = Y X//g\ols +XBOZS - XBzv

= Eos+ X (Bols - 5@)

m)

and therefore
~ = ~ = D 2\ v ) )
E€iv = Ey15€0ls + </30ls - /Gw) XX </30ls - /811)) .

The sum of squares of the residuals coming from the initial model with the IV esti-
mator is equal to the OLS sum of squares plus a function of the contrast between the two
estimators, which is what we want to test eventually. This contaminates the variance es-
timate. Therefore, in order to get a consistent estimator of the variance we can rely only
on the second set of equations in the auxiliary model. We run OLS on the second set of
equations and use White robust standard errors. (They produce a consistent estimator
of X'Var(Y)X under the assumption that Var(Y) = £, a block diagonal matrix.) A
possible assumption is that 3, with N blocks Var(y;), each 7" x T, on the main diagonal,
has Var(y;) = 0 + O‘Z’iLL/> although it becomes apparent that this is too general. Denote
o? the variance in the first set of equations (57 the estimate) and o3 the variance in the
second set of equations (52 the estimate).

From the first set, we get

X'Var(GY)X = X'G'Py|o’Q) P,GX
= P (X'GPAOP,GX).

So

(X'X) ' X' Var(Y)X(X'X)™?

= 2 (X'GP,GX) " (X'GPOP,GX) (X'G'PL,GX) ™
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In order to get the matrix of interest, we will divide the estimate of this variance by

the obtained 7.
Denote ¥ = (X'G'P,GX) " (X'G'PyUP,GX) (X'G'PLGX)™".
Similarly, run OLS on the second set of equations and use White robust standard

errors. We get

X'Var(GY)X = X'G[0*Q]GX
= o (X'G'OGX).

So

(X' X)X Var(Y)X'(X'X)™?
= Z2(X'QX) T (X'GOUGX) (X'QX) .

Denote © = (X'QX) (X'G'QGX) (X'QX)™".

A robust and consistent estimator of the precision matrix in the Wald test is*
e o~ —~ _1
~2

Part 11

We need to compare an instrumental variable estimator on the model transformed
according to the between groups transformation and an instrumental variable estimator

on the model transformed according to the within groups transformation.

s , HY P;HX P;HX |
The artificial regression of Y* = on X* = gives coeffi-
GY 0 P;GX
. =* Bivl - de . .
cients § = R . Results (2.6) and (2.7) in Lemma 15 directly follow from the
ﬂivd

application of Lemma 13 and 14 in Appendix 4.1. Moreover, as in the construction of

0Note that the precision matrix may not always be positive definite in finite samples.
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the artificial regression in Appendix 4.1, we use again two orthogonal transformations.
Also in this case
HVar(Y)H' 0

Var(Y™) = =
0 GVar(Y)G'

LA+ Ty 0 }

0 o?Inr-1)

AsH=Iy@H" =1 N®%z” is N x NT, the instrument set for variables transformed by H,
7y say, is not the same as for variables transformed using &, which is N(T'—1) x NT', Z
Py, HX 0

say. One may set Zy = HZ, but this is not necessary. If now X =
0 P;GX

’

Var(3) = (XX ' X*"Var(Y*)X (X X*)
= ANX'X) X Var(YH)X(X'X) LA™Y,

Next, we calculate this variance by separating the different components, as we did in

Part T of this Appendix.

X'Var(Y")X = N H' Py, 0 (1 +TO) Iy 0 P, HX 0
0 X'G'Py 0 O-QIN(T—l) 0 P,GX
_ _ X'Hr, 0 (0+1/T)Py, HX 0
- 0 X'G'Py, 0 P,GX
L[ esynxme,ax o
- I 0 X'G'PL,GX |
TR - (X'H'Py HX)™! 0
0 (X'G'PyGX)™!
Thus
()A(/')N(z‘l)?'VaT(Y*)XV(/)Z’)N()—l
_ | X H P HX)™ 0 )
i 0 (X'G'P,GX)~!
F (0+1/T)X'H P, HX 0 (X'H'P,, HX)™! 0
i 0 XG'P,GX 0 (X'G'PyGX)™
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02{(%

and

1/T)(X'H'Py HX)™! 0
0 (X'G'P,GX)!

AYX' X)X Var(YHX' (X' X) " 4™

~

_ o LT O YD (X H P HX) 0 I o
01 0 (X'G'P,GX)Y | | =1 I
_ Ug_(9+1/T)(Jf’H’PéHHf)f)“1 —(XG'P,GX)1 I 0
0 (X'G'Py,GX)~1 I I
| OHUDXHPLHX)T 4 (XCREX)T ~(XCPEX)™ )
~(X'G'PGX)™ (X'G'P4GX)™

We now need to find the variance-covariance matrix the artificial regression will assume.

This will be proportional to

(X*/X*)—l

= (AX'XA) =AY X'X) A

-] [, EX) 0 I 0
oo 0 (XG'PLGX)™ {-1 1}
[, EX) T —(eerex) T [ 1o

B 0 (xX'aP,ax)t || -1 1

(X'H'Py HX)™ + (X'G'PYGX)™ —(X'G'PGX)"

— (X'G'PyGX) (X'G'P,GX)™ 2
Z Z

By comparing (2.14) with (2.15) it appears that an artificial regression is a valuable

device to estimate a suitable variance-covariance matrix. We also need to consider the

(White) robust

OLS estimator which uses a consistent estimator of X*'Var(Y*)X* under

119



the assumption that Var(Y) = ¥ is block diagonal.

Var(y )T xX'H'P, 0 HsH 0 Py, HX 0
ar =
0 XG'P, 0 GuG 0 PGX
|y, HSE 0 Pz HX 0
0 X'G' PGS 0 P,GX
[ xmpy, HSH P, HX 0
0 X'G'PLGEG PG X

Denote for simplicity I' = X'H' Py HYXH'Pz, HX, Il = X'G' P,GXG"PzGX. Thus

(X' X)X Var(Y9)X(X'X)™
(X'H'P, HX)"! 0
0 (X'G'PLGX)

‘T o
0 I

(X'H'Py, HX)™! 0
0 (X'G'PyGX)

(X'H'Py, HX)™ 0
0 (X'G'P,GX) ™

(X'H'Py, HX)™'D 0
0 (X'G'P,GX) 11

(X'H'Py HX)'I'(X'H'P, HX)™! 0
0 (X'G'P,GX) ' I(X'G'P,GX)™"

Denote for simplicity

U= (X'H'P, HX)"'I(X'H'P;, HX)™', V = (X'G'P,GX) ' II(X'G'P4GX)"".

ANX' X)X Var(YHX (X' X))t A™Y

ool oo
o1 lov|| 11

o v 1 o] [usv —v
o v |11 | v oV




In the case Var(y;) = o*Ip 4+ o2/, the residuals from this regression of Y* =

GY

-~

P,HX P;HX % vl T 'A‘v
on X* = | 7 z to give coefficients 3 = & o Frut

0 PGX B
by stacking those from Y on PyHX above those from GY on P,GX. Similarly to the

can be obtained

artificial regression considered in Section 1.3 the first set of equations needs to be scaled

by
k=+/T/(1+6T)

as otherwise there is no multiple of the residual sum of squares of the artificial regression
(i.e. RSS4+RSSE) with expectation o?. However, because in this case we are performing
an IV estimation by running OLS on a transformed model, the OLS residuals do not
provide a consistent estimator of the variance of the initial disturbances. Both in the
estimation of # and in the test statistic, the sum of squares of the residuals has to be
calculated using the IV estimate of 8 and the untransformed right hand side variables.

The Hausman test can be calculated by carrying out the artificial regression of Y™ =

kHY kHX kHX
on X* = and constructing a Wald test, W, on the first K
GY 0 GX

coefficients, using the following correction:

(RSS4+RSSp)iv
NT 37 R S R w
I/Viv . ols [VT ZK] == I/I/vals ( S 4 + SSB) ’
W (RSSA+RSSE ot (RSS4 + RSSB)ois

[NT—2K]

where quantities with subscript iv are referred to the initial model and the ones with
subscript ols are referred to the transformed model.

Returning to the case Var(y;) = Qi + o2 1/, the device of scaling the first set of
equations in the artificial regression requires U and V to be in simple scalar ratio. The
case of simple heteroscedasticity over time, Var(y;) = Q2 + O‘%LL/ . €1 diagonal, gives ¥ =
Var(Y) = Iy @ (2 + o2u/) and Var(HY ) = Iy @ (2/T + To?), where 72 = /T,
But Var(GY') = Iy @ (GTQG™"), and the presence of the different PP terms removes any
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simple relationship. The orthogonality of HY and GY ensures that it is straightforward

to combine the results from separate estimations of Bm and Bmd to calculate .
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Chapter 3

Latent Variables in Dynamic Panel

Data Models

This chapter implements optimal minimum distance estimators to estimate consistently
autoregressive models for panel data with the joint occurrence of unobserved hetero-
geneity and systematic measurement errors-in-variables. Efficiency considerations are
presented. The proposed estimators are applied in a selected case of study where also
cross-sectional dependence needs to be taken into consideration. The resulting empirical

model estimated is a spatio-temporal panel data model with unobserved heterogeneity

and systematic measurement errors.
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3.1 Introduction

Many models in social sciences suggest that current behavior of the agents depends upon
past behavior (persistence, habit formation, partial adjustment, etc....). Panel data have
the unique ability to allow us to model and compare the dynamics of different individ-
uals. But how do we deal with measurement errors and the unobserved heterogeneity
issue in a dynamic framework? Dynamic models complicate the estimation procedure
because measurement, errors require the use of instrumental variables techniques in order
to obtain consistent estimators and in a dynamic context only predetermined instruments
may be available. Furthermore, certain transformations that eliminate the unobserved
heterogeneity, such as first differences or deviation from time-means, lead to inconsistent
estimators when instruments are predetermined.

Consistent estimators for (stationary) autoregressive panel data models with white
noise errors (assuming exact measurement of the variables used as regressors) are pre-
sented, among others, by Arellano and Bond (1991), Arellano and Bover (1995), Blundell
and Bond (1998). Consistent estimators for static panel data models with measurement
errors in the regressors are discussed, among others, by Biorn (2000). Both measurement
errors and the presence of a lagged dependent variable make OLS estimators inconsis-
tent. In both contexts, the estimation techniques proposed to overcome the problem is a
minimum distance estimator. This chapter combines these two strands of the panel data
literature and presents optimal minimum distance estimators to estimate consistently a
model which superimposes the errors-in-variables problem and the heterogeneity problem
on a dynamic framework. Furthermore, the measurement errors are not supposed to be
random. A more complicated process is assumed.

The chapter is organized as follows. Section 3.2 reviews the application of the Gen-
eralized Method of Moments for models of covariance structures. Sections 3.3 and 3.4
describe the use of this methodology to estimate dynamic panel data models without
measurement errors and static panel data models with measurement errors respectively.

In Section 3.5 this estimation method is used to obtain consistent estimators of the au-
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toregressive parameter of a (stationary) panel data dynamic model with latent variables.
The different consistent estimators presented vary in terms of efficiency. The more effi-
cient is the estimator, the more restrictive are the hypotheses underlying the construction
of the model. Section 3.6 presents a concrete case of study where the analyzed econo-

metric model specification and related estimation methodology have been applied and

tailored. Section 3.7 concludes.

3.2 Covariance Structures and the GMM Criterion

The Generalized Method of Moments (GMM) was first proposed by Hansen (1982) and
extended by White (1984). Their results assume 7' — oo. It is the equivalent of the
Generalized Instrumental Variables Methodology (IV), which we used in Section 2.3, in
a framework that may allow for dynamics and non-linearities. This section presents the
application of the GMM to panel data as used, among others, by Arellano and Bond
(1991) and Chamberlain (1982). Here, the results assume /N — oco. In this framework
the attention is focused on the second moments of the data. Multiple sample moments are

combined into a single estimate of the population moments. Consider the i-th observation

of the sample
Yi
Yi =
Yir

and assume (for simplicity of exposition)
Ely: = 0),Var () = B (ya;) = % (9),

where 9 is a vector of parameters to be estimated. The statistical model can be expressed

as a list of orthogonality conditions

E Kywi) -, (79)} =0 Vi.

125



We now explain how to estimate ¢} using the GMM. In this context, this technique is
often referred to as the optimal minimum distance estimator.

In order to recover the standard vector formulation of the GMM (Hansen, 1982), the
matrices y,y, and §; (19) need to be transformed in vector form. In the simple case of
a symmetric covariance matrix it is sufficient to put all distinct elements of the upper
triangle or lower triangle matrix one after the other in a vector. For example, consider

model (1.1) and suppose 7' = 3. We have

Yl Yh o YhVi2 Yais
Yi = Yia | Yiy; = | ¢ 2/1’22 Yiolis |
:%3 P PN 9123
2 2 2 2
o + o o, 0y
— : 2 2 9
Q) : o, o o,
2 2
o + o
Denote
vy 03, + o2
2
Vi1 Vi
= ' 3 w (19): 7
6x1 E 6x1
91‘23 0727 + o’

The set of orthogonality conditions for each i can be written as
E[S—-W ()] =0.
The estimation is based on the sample orthogonal conditions
1
N Z [Si — W (’19)] = O,

where s; is the generic element of S and w; (¥9) is the corresponding element in W (9).
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Defining 3 = + > s; and w (J) = + > w; (9) , the sample orthogonal conditions can be

written as
5—w (V) =0.

We can then estimate v by GMM.

Oepy =argmin [5 — w (9)] V7' 5 — w ()]
[V

where
Egn 1 t —
V :7\/:21: {Sisi—SSJ
is the sample covariance matrix of the orthogonal conditions which yields the most effi-

cient GMM estimator.!

If the restrictions are linear in €2 (1), it is possible to derive analytically the estimator.
Otherwise it has to be calculated by numerical optimization.

For instance, if we rewrite

1 1
1 0
1 0 o2
W('ﬁ): K = H’l?,
6x1 1 1 o2
1 0
1 1

using the GMM criterion

min [5 — HY) V' [s — H)

J

!Note that we are minimizing a quadratic form, but we could also minimize other measures of distance.
As a result, we can obtain other estimators. However, they cannot perform better in asymptotic terms,
as the GMM estimator reaches the efficient lower bound, provided the optimal weighting matrix is used
and the set of orthogonality conditions remains unchanged.
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we obtain
I=(HVH) HV s,

This estimator has the form of a GLS and it can be calculated all in one step. However
in most empirical cases we do not have linear restrictions. Moving Average models (MA
models), for instance, imply linear restrictions in the covariance matrix and they are
easy to treat but they may not be appropriate in most real cases. It is sufficient to note
that in an MA model all the variables on the right-hand-side are unobservables. For this
reason the analysis of dynamic models for panel data will be restricted in this work to
Autoregressive Models (AR models). In a AR model, the restrictions are not linear and
the estimation is slightly more complicated but such models have a wider applicability.
The next section describes how to use the GMM technique in order to obtain consistent

estimators of a first order autoregressive panel data model with unobserved heterogeneity,

assuming exact measurement.

3.3 Dynamic Panel Data Models with Unobserved

Heterogeneity and without Measurement Errors

Arellano and Bond (1991) propose consistent estimators for dynamic panel data models

using a method of moments formulation. Consider a random sample of individual time

Vit = Qir1 + 1, + e, ol <1,  i=1,.,N, t=1,..T, (3.1)

where
Bz | yir—1) =0, t=1,...T, (3.2)
B(n,) = p, E(e) = ot, Var(n,) = a7, (3.3)
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It is worthwhile noting that this is a quite general autoregressive specification of the
model. Assumption (3.2) does not rule out correlation between 7, and ;, nor the pos-
sibility of conditional heteroskedasticity, since E(e% | y;;—2) need not coincide with o?.
It assumes lack of serial correlation in the errors but not independence over time. How-
ever, it is the crucial assumption because it allows us to consider values of y lagged two
periods or more as valid instruments in the equations in first differences. Arellano and
Bond (1991) propose also a test for serial correlation of the residuals.

Consider the restrictions we need in order to estimate €2;. €, is a 7" x T matrix and
therefore has § [T x (T 4 1)] distinct elements. Model (3.1)-(3.3) has (T" + 3) parameters

(T variances, a, pt, 0,). The number of overidentifying restrictions is

1 1
S[Tx (T+1)] = (T+3) =5 [T~ T -6|.
2 2
Model (3.1)-(3.3) implies m = %2(1’—1) linear moment restrictions
E [yitmj (Ayzt — &Ayi,t—l)] = O7 j = 2, RPN <t — 1), t = 3, ...,T, (34)

where A is the operator that transforms the data in first differences.
Arellano and Bond (1991) propose to use a GMM approach to estimate o when

N — oo and T is small. We can express the conditions (3.4) as

E(ZAe) = 0
Acggp Ayio — @Ayil
where Ae; = | = : ={Ayis — DAy}, t=2,..7T.
Aeip Ayir — aAy; 4
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The matrix of instruments Z; is a block diagonal matrix of the form

r Yi1 0 0 0 0 0
0 Yiv  Yi2 0 O O
Zi ==
(T—2)xm
i 0 0 0 - ya Yo - Yir—2 |

Following the technique presented in Section 3.2, consider the sample moments

b(a) = —]1\7 > | ZAs]

7

The value of a which minimizes the quadratic form b () Ay b (c) is the GMM estimator
a{G]\,[M =arg min b (a)/ ANb (Oé) N

where Ay is a weighting matrix. The estimators depend on the choice of Ay. As
explained in Hansen (1982), all of them are consistent because they are built on the
sample moment conditions but not all of them are efficient. As indicated in Section 3.2,
an optimal choice of Ay is provided by the inverse of the covariance of the orthogonality

conditions

E(ZAsile,Z;). (3.5)

The moments that have more variance receive less weight. In this way the precision of
the estimators is higher. In practice, in order to obtain a feasible estimator we have to
follow a two-step procedure. First, use a sub-optimal weighting matrix that does not
depend on ¥ (e.g. the identity matrix). For the autoregressive model considered above,

the one step consistent (but not efficient) estimator, @;, can be obtained by setting

1

Ay = [N 3 (Z;HZi)}_l

7
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where H is a (T — 2) square matrix which has twos in the main diagonal, minus ones
in the first subdiagonals and zeros otherwise. The residuals, ;, from this preliminary
estimation can then be used to obtain a consistent estimator of the optimal weighting

matrix (formula (3.5)). Taking the sample counterpart

-1
Ay = Bf > (Z;AaAg;Zi)} ,
i
we obtain a two step estimator &p = agams, that is efficient. Note that @; and &y are
asymptotically equivalent if the ¢;; are independent and homoskedastic both across units
and over time. However, such a procedure does not use information which is contained
in the levels of the variables. It loses what sometimes is a very substantial part of the
total variation in the data. Arellano and Bover (1995) propose an estimation method
that uses also equations in levels. They are concerned with panel data models that
specify instruments in levels for equations in first differences and instruments in first
differences for equations in levels. Arellano and Bover (1995) consider models in which it
is usually assumed that all the explanatory variables are potentially correlated with the
individual effects. Therefore, only estimators based on transformations of the original
observations that purge the model from the 7n,s can be consistent. However, if there are
instruments available that are not correlated with the individual effects, one can use also
the information contained in the levels of the variables which, if exploited, could improve
the efficiency of the resulting estimators. The instruments of this kind that they choose
are first differences of variables that have a constant correlation with the individual
effects. Arellano and Bover (1995) carry out simulations of a first order autoregressive
model with individual effects. Such an experiment illustrates the potential of exploiting
moment restrictions in level equations using predetermined variables in first differences.

The validity of the added moment conditions need, of course, to be tested.? Next, we

will review this combined GMM methodology.

2The Sargan test of the over-identifying restrictions (Sargan, 1958; Hansen, 1982) is the statistic
typically used to assess the validity of the enlarged matrix of instruments.
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Consider the standard autoregressive model (3.1)-(3.3). Following Arellano and Bond
(1991), Arellano and Bover (1995) define the orthogonality conditions as

E (Z?“Hez) =0,

’L

where

H= is the transformation matrix

and
Z, 0

0 2z,

Zr = is the matrix of instruments.

D is the matrix that transform the variables in differences, [ is the identity matrix, Z;
is the block diagonal matrix which contains the instruments available for the equations
transformed by H and Zj; is also a block diagonal matrix which contains the instruments

available for the equations in levels. They estimate the following system

Dai) =0, orthogonality conditions for the variables in first differences

E <Z ;6,) = 0, orthogonality conditions for the variables in levels.
(3.6)

Note that, given the moment conditions for the equations in first differences, some of the
added restrictions for the equations in levels will be redundant. For instance, consider the
standard autoregressive model (3.1)-(3.3). We can rely on LZ:ZZ;_(Z":_H “basic” moments,
i.e. conditions (3.4), but if for instance we also assume mean-stationarity (Blundell and

Bond, 1998) we have a long list of other “additional” moments coming from
Elyi [ n]=m, V¢
However, the only useful ones are

B Ay (Yit—je1 — a¥ir—j)] =0 Vi=1,2,.....
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All the other moments conditions implied by mean stationarity are redundant. For
example, F [Ay; ;o (yi — ayi—1)] = 0 can be expressed as a linear combination of the

difference of two “basic” moments and an “additional” one where the lag between Ay,
g

and &4 is just one:

FE [Ayi,tVQ (yi,t - &yi,t-l)] =
= EAyiio Ay — aAyie1)] + E[AYi -2 (Vi1 — a¥ir—2)] = 0.

The instruments for the added conditions are only

[ Ays 0 0 .0 0 |
0 Ay;z 0
7z, = Yi3
(T'—-2)xm
—O . . 0 Ayi,T—IJ

where m = %3"—22 = (T -2).
The procedure proposed by Arellano and Bover (1995), also called System GMM,

combines all the non redundant information. The optimal estimator is
&auy =argmin b () ALbY (),
(a4

where
bt (a) = 71/— Z [ZQLHQ} :

T
and

Ay = {Z (Zf'HEiE;H’Zjﬂ B .

)

The next section describes how to use the GMM in order to obtain consistent esti-
mators in presence of measurement errors and unobserved heterogeneity in static panel

data models. The section begins by showing that panel data may create a context where
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consistent estimation may be possible even if the variables are measured with errors.?

3.4 Static Panel Data Models with Unobserved Het-
erogeneity and with Measurement Errors

In a panel data set each individual and each period is replicated. This characteristic is
often called “the repeated measurement property” and it is the main reason why panel
data sets can make the errors-in-variables identification problem more manageable. The
measurement error problem can be reduced by taking averages which, in turn, may show
sufficient variation to permit consistent estimation. Following this idea Biorn (2000)
constructs estimators from period means and discusses their consistency. Next, we will
review this approach in a simplified framework.

Consider a uni-variate panel regression model with unobserved heterogeneity and

“classical” errors-in-variables
Yir = 250 4+ 1, + v, 1=1,...,N, t=1,...T (3.7)

where the observed variable is x;; = x¥, + &5 and a7, ~ iid (0, 02), i ~ 19d (0,02), vy ~
iid (0,02), n, ~ iid (O, O’%) , Vi,t, and g4, v;, and 7, are independent Vi,%,j, s, 7.
The observed equation is

Yit = Tit3 + 1, + Wi

where

Wi = Vi — 51‘155-

Taking differences in period means, we obtain

AT, = AT+ Ao, (3.8)

$Note that we mantain the assumption of random measurement errors. In other words, we still
consider errors-in-variables as “classical”.
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where

Z_yz‘t Z?Eit Z@'z‘t
Y= N Ty = N wjt:—w—

and A; is the operator differencing over s periods.

Taking differences between period means, we obtain

F.-9 =@ —2)+(T:—) (3.9)
where
=3y HIEN S @i
V=N TTTNT T NT

The law of large numbers, under weak conditions, implies that

plim () = 0. (3.10)

N-—00

Hence consistent estimators of 3 can be obtained by OLS on model (3.8) or model (3.9),

respectively
-~ T ! “1 T !
Ba, =1 D (AT,) (ATy) > (AT (AT, s=1,.,T-1
[4 t=

and

Byp = ( S (@ -7 (@ - z)) S (@o—7) G -7

t=s+1 =s+1
These estimators simply exploit the fact that averages of a large number of repeated
measurements of an error-ridden variable can give (under weak conditions) a consistent
measure of the true average at the limit, provided that this true average shows variation
along the remaining dimension and that the measurement error has no period specific
component. However, the last assumption is often not sustainable in many empirical
7,

situations. In these cases the estimators proposed are not consistent any longer. We

relax this assumption and discuss the estimation of the resulting model in Section 3.5.
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Consistent estimators of § can also be constructed using a minimum distance esti-
mator , that is a GMM estimator. The identification of 3 comes from the second order
moments of the observable variables, Cov(wy, z:s), Cov(zi, yis), Cov(yi, yis), Vi, t, s and
in general depends on whether or not the imposed structure is sufficient to obtain a

unique solution for 5. For model (3.7) the second order moments are

Cov(zi, zy) = 02 + 02
Cov(zy,yy) = 020 1=1.N; t=1.T (3.11)
Cov(Yit, yir) = Go? + o, + o

and
Cov(xy, zi) =0

Cov(zy,ys) =0 1=1.N; t,s=1..T t+#s (3.12)

Cov(Yit, Yis) = oy
We have clearly lack of identification. We have a system with more unknown than equa-
tions. Conditions (3.11) and (3.12) are not sufficient to identify o2, 02, 3,0y, 0,. Biorn
(2000) considers five groups of assumptions: basic orthogonality assumptions, additional
assumptions on the measurement errors, additional assumptions on the disturbances, ad-
ditional assumptions on the latent variable. Biorn (2000) analyses various combinations
of these groups and for each model so defined, he constructs valid and non redundant or-
thogonality conditions. He deals with different covariance structures and presents several

IV and GMM estimators. The estimation procedures are of two kinds.

1. The equations are transformed to differences to remove individual heterogeneity
and are estimated by IV or GMM. Level values of the variables in other periods

are used as instrumental variables.

2. The equations are kept in level form and are estimated by IV or GMM. Differenced

values of the variables in other periods are used as instrumental variables.

The idea is exactly the same underlying the System GMM estimation proposed by
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Arellano and Bover (1995). The difference is that the System GMM technique combines
approaches 1 and 2 in order to increase the efficiency of the estimators. Biorn (2000)
discusses the efficiency and robustness of the estimators constructed using approach 1 or
2 but he does not consider estimators combining the two approach. In the next section,

estimators obtained mixing the two approaches are also implemented.

3.5 Dynamic Panel Data Models with Unobserved
Heterogeneity and Error-Components Structured
Measurement Errors

This section presents consistent estimators for a first order autoregressive panel data
model with unobserved heterogeneity (as model (3.1)-(3.3)) and measurement errors. In
order to study a wider case of economic situations, the measurement errors are no longer
assumed to be “classical”. Specifically, we consider a model that allows for the presence
of a time varying component in the process of the measurement errors. This extension
requires us to adjust the estimation methods proposed in the traditional related literature
(reviewed in Sections 3.3 and 3.4). Indeed, the estimation of model (3.1)-(3.3) is based
on the assumption (3.2), i.e. the errors are idiosyncratic shocks that are assumed to
have cross-sectional zero mean at each point in time. However this assumption can be
inadequate in a number of cases. One circumstance, rather recurrent in real data and
not analyzed properly from a theoretical point of view, is the presence of time varying

measurement error common to all individuals.*

“Many concrete cases may fit into this framework. For example consider a model which requires
a measure of the permanent income and a sample with no income measures at all but with data on
the estimated market value of the family residence. This housing value can be used as a proxy of
the underlying permanent income concept but the discrepancies will not be random. Indeed they may
be affected by house prices, time varying but common to all families, by family size at purchase time
varying among families and constant over time and by unmeasured random locational factors (Griliches,
1984). Or we can think about the estimation of money demand of firms. We can use sales as proxy for
cash holdings but clearly sales are affected by the efficiency of the production process of the single firm
invariant over time (at least in the short run) and varying among firms, by the state of the national
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Consider model (3.1)-(3.3) and suppose that the true variables are measured with

errors that present a composite structure

Yi = Qyi, o +nten ol <1 i=1,...,.N; T=2,..T, (3.13)
Y = Yo+, (3.14)

My = ¢t + -+ fit (3’15>

where y;, are the observed values of y,. The process of the measurement error consists
of three independent components. The first, ¢,, is an individual-invariant time-specific
effect with mean 0 and variance ai uncorrelated over time, the second, p,, is a time-
invariant individual-specific effect with mean 0 and variance ai and the third, £, is a
white noise component with mean 0 and variance ag.

This error component structure is much more realistic if we consider measurement
errors not only as observation errors in the narrow sense but also as discrepancies between

theoretical variable definitions and their observable counterparts in a wider sense.

Substituting we obtain
Yit = Q¥Yip—1 + 6 + d; + ey, (3.16)
where

by = O‘/th—l - ¢t7
di = ap; — p; + 7

e = ;1 — &yt i

Our aim is to control for the effects of the measurement errors on our observations. For

this purpose one can treat the §; as unknown period specific parameters. We are only

economy varying over time but common to all firms and also by shocks outside the control of the
management.
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interested in a consistent estimators of & and we correct with time dummies. If we do

not and define v, the new composite disturbance component, as
Ve = Oy + €,
assumption (3.2) does not hold any longer
E(vy | Yig—1) = b, t=2,..,T. (3.17)

Therefore, the estimators proposed by Arellano and Bond (1991) cannot be used. Fur-
thermore in this model also the estimators constructed by Biorn (2000) for panel data
with measurement errors based on period means are not valid. If the measurement er-
rors have a period specific component the probability limit of period means taken when
the number of individuals goes to infinity (equation (3.10)) would no longer be zero.
Thus, the estimators would not be consistent. Note also that model (3.13)-(3.15) yields
a constant autocorrelation of measurement errors independent of the lag,

2

Cov(mis, myy—j) = o3,

which violates one of the basic assumptions of the classical errors-in-variables model, i.e.
the measurement error are uncorrelated with everything else in the model included its
own past values. However, following the GMM approach consistent estimators can be
derived using appropriate instruments. The assumptions of model (3.13)-(3.15) induce

MA(1) disturbances in the model involving observed variables (formulation (3.16)):

—~Oé()’§ if s=1,

E(eqei—s) = E K@fi,t—l — &+ 5it> (C\{gi,t—s—l — s + 5i7t—s>} - 0 f o9
if s> 2.

Therefore, once model (3.16) has been transformed in first differences® in order to get rid

“We consider first differences for simplicity of exposition. However, in order to get an invertible
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of the individual effects invariant over time
Ayip = 0y, 11 + Dby + Aey,

valid instruments are only obtained by using dependent variables that are at least three-

times lagged. Consequently, the set of all appropriate moment conditions can be written

as:
Elyirj (Ayy — oy 1) =0

E [A@id =0

j=3,..,t—1 t=2..T, (3.18)

where the second set of moments, always valid, might be used when a limited number of
points in time is available. In fact, the minimum number of time observations needed to
get consistent estimators for a model in presence of measurement errors is greater that
the one required when exact measurement is assumed. For instance, for a model like
(3.13)-(3.15) we need to have at least four time observations. With 7' = 4, o and Ady

are just identified from the two moment conditions

E [yﬂ (Aym — &Ayig e A64>] =0
E [Ayﬂl — &AyiS - A64] = O

If T > 4, and thus we have overidentifying restrictions, we can use the GMM criterion,
as detailed in Section 3.2. We calculate the sample equivalent of the moment conditions

by constructing the (7' — 3) x 1 vector (y,;-3), t = 4,..,7 and defining

1 X 1
b(a, 6) = N Z (Aey) t=4,..,T,
i=l | Yie-3

covariance matrix, the transformation used in practice is forward deviations from time means (Arellano
and Bover, 1995).
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we minimize the quadratic form
b(a,8) Anb (e, 6).

As is explained in Section 3.2, an optimal choice of the weighting matrix Ay is provided
by the inverse of the variance of the orthogonality conditions which can be consistently
estimated using the sample variance. The resulting GMM estimator is consistent and has
the smallest asymptotic covariance matrix for a GMM estimator based on the conditions
b(e,0).

However, this does not preclude the possibility of finding a more efficient GMM esti-
mator based on an enriched set of moment conditions. In the remaining of this section,
we implement a different (more efficient) GMM estimator for model (3.13)-(3.15), fol-
lowing the approach of Arellano and Bover (1995) and Blundell and Bond (1998). We
assume there are available instruments that are not correlated with the individual and
time effects and we use this information to construct additional orthogonality conditions
for the model in levels. Typically, as explained in Section 3.3, using an autoregressive
model without measurement errors in variables (model (3.1)-(3.3)), first differenced val-
ues of the variables dated (¢ —1) are the candidate instruments. However, if measurement
errors structured as in (3.14)-(3.15) are incorporated into the model, the serial correla-
tion in the error term induces an endogeneity problem which makes one-time lagged first
differences of the variables invalid instruments. Therefore, a System GMM estimator for
model (3.13)-(3.15) should not use a standard matrix of instruments but it has to take

as instruments for the equations in levels first differenced values of the variables dated

(t —2).
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The matrices of instruments in the system (3.6) take the forms

yy 0 0 -0 0 -+ 0
O w1 Y2 -~ 0 0 - 0
Zi ==
(T—2)xm
] 0 0 0 - wi Wiz ' Yir—3 |

) T-3)%(T—2)
where m = ! 3 , and

i Ayip 0 0 0 0 _
0 Ayiz 0
7, = Yis
(T'-3)yxm
] 0 0 Ayi,T—‘)

where m = 2-@2;32 = (T - 3).

3.6 An Empirical Application

In the remainder of this chapter, we present an economic model that is tested using the
statistical model analyzed in Section 3.5. The theoretical framework (Patacchini and
Zenou, 2003) is a job search-matching model which attempts to shed some light on the
relationships between the residential location of workers and their labor market outcomes.
There seems to be a growing awareness that some trends of economic variables might be
due to spatial rather than purely economic factors. This is particularly true in the labor
market (see, for example, Topa, 2001 and Manning, 2003) and especially for job search
activities since, in a search-matching framework, a spatial dispersion of agents creates
more frictions and thus more unemployment. In his seminal contribution to search,

Stigler (1961) puts geographical dispersion as one of the four immediate determinants of
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price ignorance. The reason is simply that distance affects various costs associated with
search.

We investigate, both theoretically and empirically, the relationship between job search
and space by focusing on the impact of local cost of living and local labor market tightness
on search intensity.

From a theoretical point of view, few models have introduced a spatial analysis in
a search-matching model. Exceptions include Seater (1979), McCormick and Sheppard
(1992), Simpson (1992), Rouwendal (1998), Ortega (2000), Coulson, Laing and Wang
(2001), Sato (2001), Wasmer and Zenou (2002), Smith and Zenou (2003). Contrary to
these models, our focus is on search intensity and its relationship with cost of living and
labor market tightness in a local labor market.

From an empirical point of view, few papers have tested spatial search models. Most
of the related empirical literature (which is in fact quite small) focuses on the aggregation
of the matching function across space and on the interaction between local matching and
regional migration or commuting behavior (see in particular the survey by Petrongolo and
Pissarides, 2001, and also Jackman and Savouri, 1992, Burda and Profit, 1996, Burgess
and Profit, 2001). In this chapter we analyze a different issue, namely the relationship
between the county average job-search intensity, on the one hand, and the county cost
of living and /or the county labor market tightness, on the other.

To be more precise, we first develop a simple model in which optimal search intensity
is a result of a trade off between short run losses due to higher cost of search effort (more
interviews, commuting...) and long-run gains due to higher chance to find a job. We
show that this optimal search intensity is higher in areas characterized by larger cost of
living and/or higher labor market tightness.

We then test this model using county-level data in England for the period 1991-2000.
The level of spatial disaggregation of the cross sectional units is finer than the standard
regional one. An analysis at the regional level would not be accurate enough to test

the theoretical model. However, the availability and the quality of data collected at a
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sub-regional level are still very poor and a suitable econometric method is needed to get
results robust to problems of data quality. Furthermore, a fundamental assumption in
model (3.1)-(3.3), maintained also in model (3.13)-(3.15), is that the cross-sectional units
are independent. This implies that residuals from different cross-sectional regressions are
independent of each other. However, this assumption is not tenable when the cross-
sectional units have a specific spatial connotation, e.g. regions or counties, as in our
case of study. If this condition is not met, standard errors estimators are inconsistent
and thus not useful for inference. This issue is taken into account in the formulation of
the statistical model used to test the implications of the theoretical model in the UK
context. As a result, spatial econometric techniques (see Anselin, 1988 for a review)
are combined with the estimation methodology presented in Section 3.5. The empirical
model formulated is a spatio-temporal panel data model with unobserved heterogeneity
and systematic measurement errors in variables.

As predicted by the theoretical model, both the county cost of living and the county
labor market tightness are found to have a positive and significant effect on the county
search intensity. We also find positive spatial correlation between counties (i.e. clustering
of counties with similar level of search intensity) and strong spatial spillover effects.

The remainder of this chapter is organized as follows. Section 3.6.1 sketches the
simple theoretical model and its main predictions. Section 3.6.2 describes the data while
the statistical models and the estimation results are contained in Section 3.6.3. Section

3.7 concludes the chapter.

3.6.1 A Simple Theoretical Model

We develop a simple model that explains how search effort decisions are made. For this
purpose, we focus on the unemployed workers that are looking for a job in a given area
¢ (e.g. a county or a region).

Let us first explain the macroeconomic environment in a given area i. Time is contin-

uous and workers live forever. All workers are identical. A vacancy can be filled according
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to a random Poisson process. Similarly, unemployed workers can find a job according to
a random Poisson process. In aggregate, these processes imply that there is a number of
contacts (or matches) per unit of time between the two sides of the market in area i that

are determined by the following standard matching function:
Mi = ]\/[(siui, Ui)

where u; and v; respectively denote the number of unemployed workers and vacancies
in area 7. Fach unemployed worker j = 1,...,u; living in area 7 has a search intensity
equal to s;; = s(e;;), which depends on how much effort e;; he/she provides in the search
process. We assume that s'(e;;) > 0 and s”(e;;) < 0. Accordingly, s; represents the
average intensity of search of the u; unemployed workers in area i.

As usual (Pissarides, 2000), M(.) is assumed to be increasing in both its arguments,
concave and exhibits constant returns to scale. As a result, the probability of obtaining a

job per unit of time for an unemployed worker j in area ¢ with search intensity s;; = s(e;;)

is given by:
s(ei;) M (siug, v;)

S;Uj

= M (1,0;) s(ei;)

where 0; = v;/s;u; is a measure of labor market tightness in search intensity units in area
. By using the properties of the matching function, it is easy to see that

oM (1,6,)

a0, >0

since more vacancies in the area increase the probability to find a job whereas more
unemployed decrease this probability.

We do not determine the labor market equilibrium. Rather, we focus on the behavior
of an unemployed worker who searches for a job in area i and analyze how this behavior

is affected by factors related to his/her residential location, such as living costs and the

tightness of the local labor market.
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Let us first determine the instantaneous utility function. All workers have identical
preferences representable by a Cobb-Douglas utility. For the unemployed worker j living
in area 4, it is given by:®

U(Zw’) = Z-q (319)

)

with 0 < o <1 and where z;; is a composite good consumption. The budget constraint

for the unemployed worker j living in ¢ is equal to:
b= C(@Z‘j> -+ h,izij (320)

where b denotes the unemployment benefit, which is not area specific, h;, is the cost of
living in area ¢ (i.e. the higher this price, the more expensive is to buy consumption
goods and housing in area 7), and C'(e;;) is the total cost of searching for jobs. The latter
encompasses the costs of buying newspapers, commuting contacting friends, phone calls,

interviews.... We assume that

80(61‘]') 620(62']')
8615 >0 ' 862 >0

ij
i.e. more search effort implies more search costs and it is even more costly at the margin

(convex function).

?

If one denotes the unemployed state for workers by ‘0’, and the employed state by
‘1", then using (3.19) and (3.20), we can derive the following indirect utility for each

unemployed worker j in area 7:

- [P Cea] oo

We are now equipped to write I/Vg»7 the expected discounted lifetime utility of an

unemployed worker j living in area i (Bellman equation). In steady-state, VVZ% is given

6To simplify we do not include leisure into the model but it should be clear that it does not alter the
results. It only complicates the analysis.
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WS = Uei, ha) + M(1,6) s(e) (W2 — W) (3.22)

)

_ {%@)r + M (1,6) s(ey) (W= WD)

where r € (0,1) is the discount rate and W}, the expected discounted lifetime utility
of an employed worker in area i. Equation (3.22) has a standard interpretation. When
a worker is unemployed today, he/she obtains an instantaneous (indirect) utility equals
to U%e,j, h;). Then, he/she can get a job with a probability M (1,6;) s(e;;) and, if so,
obtains an increase in utility of W — WJ.

Let us now study the search effort decision. When making this decision, the unem-
ployed located in an area takes as given the total unemployment level u; in area 7, the
total number of vacancies v; in area i (and thus 6; = v;/s;u; the labor market tightness),
the average cost of living A; and the expected discounted lifetime utilities Wi‘; and W1

By maximizing (3.22) with respect to e;;, we obtain’

oWy _ AU (e hi)
8@17» 882']'

+ M (1,0,) 8 (e;) (W = W5) =0 (3.23)

— *)

where e;; is the unique solution of this maximization problem and sj; = s(ej;) is the

corresponding optimal search intensity.

Let us give the intuition of (3.23). When choosing eJ;, there is a fundamental trade-off
between short-run and long-run benefits for an unemployed j located in area i. On the
one hand, increasing search effort e; is costly in the short run (more phone calls, more
interviews, etc.) and it decreases instantaneous utility (0U°(ef;, h:)/0e;; < 0), but, on

the other, it increases the long-run prospects of employment (M (1,6) s'(ef;) (VV} - VVE)

is the marginal return of employment). We have the following result.

"Appendix 1 in Patacchini and Zenou (2003) shows that there is a unique solution to this maximization

problem.
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Proposition 16

(1) The higher the cost of living h; in a given area i, the higher the search intensity

si; = s(ej;) of an unemployed worker j living in area %,

(7i) The higher the labor market tightness 8; in area i, i.e. the higher the number of

vacancies v; or the lower the unemployment level u; in area 1, the higher the search

intensity si; = s(ej;) for each unemployed worker j in this area.

Proof. See Patacchini and Zenou (2003).

As stated above, when deciding the optimal level of search effort, each unemployed
worker trades off the short run losses of increasing effort (higher cost of search effort
C(e;;) and thus lower instantaneous utility U°(e;;, h;)) with the long-run gains (higher
chance to get a job and to enjoy an intertemporal utility difference between employment
and unemployment). Proposition 16 analyzes the effect of living costs h; (short-run effect)
and the one of the labor market tightness 0; (long-run effect) on search effort ej;.

When living costs increase, it becomes more costly to stay unemployed (see (3.20)),
which reduces instantaneous utility U%(e;;, h;). As a result, the unemployed worker in-
creases his/her search effort to raise his/her chance to obtain a job and thus be able to
afford this new cost of living. The key relationship is in fact

82(]0(62‘]‘, hz>

8eij@hi >0

which is shown in Patacchini and Zenou (2003), Appendix 1 and states that the effect of
e;; on UY is even more negative when the living cost A, increases.

Furthermore, when the labor market tightness rises, it becomes easier to find a job
(there are relatively more jobs available compared to the unemployed) and thus the

returns to search are higher. As a result, workers put more effort in search activities.
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Let us now define the optimal average search intensity s’ of an area 7 as

* 1 iy *
S; = ZL— Z S(eij(hi,ei)) <324>
iog=]

We have:
Proposition 17

(¢) The higher the cost of living h; in a given area i, the higher the average search

intensity s; of this area;

(13) The higher the labor market tightness 6; in an area i, i.e. the higher the number of
vacancies v; or the lower the unemployment level u;, the higher the average search

intensity s! of this area.

Proof. See Patacchini and Zenou (2003).

These two results are a straightforward extension of Proposition 16 since, when we
aggregate the search behavior of the unemployed, both h; and #; do not change (i.e. h;
and 0, are respectively equal to the average cost of living and labor market tightness in
area 1) so that if each individual searches more when h; or ; increases, then, the average
search intensity is also positively related to h; and ;.

More generally, the basic message of this model is as follows. If we compare two areas
(counties, cities, regions), the unemployed workers living either in the more expensive

area and/or in the area with the higher labor market tightness, search more on average.

3.6.2 Data

We test the implications of the theoretical model using county-level data in England
for the period 1991-2000. A key variable of the theoretical model is the average search
intensity s;,. We consider as a measure of average search intensity in county i, hereafter

the local search rate, the ratio between the number of unemployed that are actively
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looking for a job over the total number of unemployed in county 7. The other key vari-
able in the theoretical model, the average cost of living in the area h;, is measured by
a county semidetached house price index. We are aware that the interactions between
the labor market and the housing market are far more complicated (see e.g. Hughes
and McCormick, 2000, Cameron and Muellbauer, 2001). However, because there is no
complete set of sub-regional price indices for the UK, the main (and possibly the only)
source of variation in prices within regions is differences in house prices. Furthermore,
we concentrate our analysis only on young people (age 18-25) so that it is plausible to
assume that, at least for the large majority of them, they are not home-owners and thus
we rule out the possibility they can consider houses as assets. Because these empirical
variables are not the straightforward observable counterpart of search intensity and liv-
ing cost respectively, we treat them as variables measured with systematic errors. The
discrepancies between the variables of interest and the observable ones are not supposed
to be random. They might be also due to unobservable time-invariant county-specific
effects such as unmeasured locational factors, and/or to county-invariant time-specific
effects related for instance to some temporary effects of national policies. Very likely, the
resulting measurement errors would follow a systematic rather than a random structure.

Finally, the last variable of theoretical interest is the local labor market tightness 6;. The

8In the questionnaire of our data base, the British Household Panel Survey (BHPS), people are asked
their current labor force status and subsequently if they have been looking for any kind of paid job in the
last four weeks. More precisely, regarding their labor force status, individuals can choose between “self-
employed”, “in paid employed”, “unemployed”, “retired”, “family care”, “full-time student”, “long-term
sick/disabled”, “on maternity leave”, “government training scheme”, “something else”. In our sample,
we have only included individuals that have responded “unemployed” to this question. Among them,
there is surprisingly a high number who state that they have not looked for a job during the last four
weeks, Our search intensity variable is thus the ratio between individuals that declare themselves as
“unemployed” and “have looked actively for a job during the last four weeks” and all individuals that
have responded “unemployed” to the question above. For robustness check, we have also used another
measure of search intensity: a derived variable from the Labour Force Survey (LFS), based on the
standard (ILO) definition of economic activity. The analysis with this other measure is discussed at the
end of Section 3.6.2. We are aware that these are largely imperfect measures of search intensity (they
will be treated as variables contaminated by systematic measurement errors in the econometric analysis).
The ideal variable to measure search effort would have been, at the individual level, the number of hours
spent looking for a job. Unfortunately, this variable is not available in any British survey. This is why
we resort to our aggregate indicators of search intensity and, as a result, all our empirical analysis will
be conducted at an aggregate level (i.e. county level).
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National On-line Manpower Information Service (NOMIS) provides information of the
labor market tightness at the county level. Although, this is not an error-free measure of
the true county labor market tightness, we assume the presence of a random rather than
systematic measurement error.

A longitudinal data set of English counties observed yearly for the period 1991-2000
has been constructed. Three different data sources have been used. The estimated local
search rates has been constructed using the waves of the BHPS, that are available also
on line in the ESRC Data Archive. The information about the features of the counties
housing market comes from the semidetached Halifax House Price Index.® The remaining
indicators of the local labor markets have been derived using data available from the
National On-line Manpower Information Service (NOMIS) located at the University of
Durham. Appendix 2.3 contains the list of the 45 English counties considered in the
sample used for estimation.!’. Appendix 1.3 contains precise definitions for all variables.

The related descriptive statistics are collected in the following table.

Table 1. Descriptive Statistics
Variable Obs Mean Std. Dev. Min. Max.

Sit 450  0.6899 0.2984 0 1

St 450 0.6762  0.2011 0 1

it 450  0.1707  0.1686 0.0193  1.0878
05 450  0.1794  0.1580 0.038 0.8052
Dt 450  63.406 19.356 40.648 188.263
hi 450  66.39 23.777 34.456  166.651
dy 450  6.187 8.382 0.6 45.245

9The index numbers are constructed using a Laspeyres type price index methodology. The weighted
average prices in each current period is compared with the weighted average price in the base pe-
riod. For the Halifax House Price Index this has been chosen as 1983. For further details see
http://www.hibosple.com/view/housepriceindex/indexmethodology02.asp

100ut of the 47 counties designated in England, we had to eliminate the Isle of Wight because the
figures of the Halifax price index are not available for the years 1991-1997 and 2000 and we needed to
merge North and South Humberside because these two counties are unite into Humberside in the Nomis
database. Thus we ended up with 45 cross sectional units.

151


http://www.hbosplc.com/view/housepriceindex/indexmethodology02.aap

This table shows some interesting features. First, in our sample, the average search
intensity in a county s is around 70%, which means that there are on average 30% young
workers entering the labor market not actively looking for a job (even if they declare
themselves as unemployed). Second, the labor market tightness #;; is on average equal
to 17%. This means that, on average, there is almost 1 vacancy for every 5 unemployed
workers in a county. Finally, the features related to houses prices (hy and hy) show a

large variation between different counties in England.

3.6.3 Statistical Model and Estimation Results

Our empirical strategy is to test the results of Proposition 17, namely the positive rela-
tionships between s; and h; and between s; and #;. As already noted above, there are
systematic measurement errors on s; and h; that need to be taken into account in the
econometric specification of the empirical model. Moreover, since search intensity s; in
county ¢ may be affected by search intensities 3; in neighboring counties (for example
individuals may live in county 4 but search in a neighboring county if the latter offers
better labor outcomes), we consider cross-sectional dependence in our analysis. Also,
since there is unobserved heterogeneity among counties, we undertake a panel data anal-
ysis to control for individual unobservable effects. Finally, s;;, search intensity in county
i in period t may also be affected by s;;-; the search intensity in the same county but in
the previous period (for example because of the presence of long term unemployed). As
a result, a dynamic analysis should be considered.

To take into account these four features, we estimate a spatio-temporal model specified
as a typical dynamic panel data model where a spatially lagged dependent variable has
been included. The advantage in using panel data models is not only the possibility
to control for unobserved heterogeneity but also to allow for measurement errors in
observed variables. The advantage in using spatial econometric techniques is to control
for spatial effects (spatial heterogeneity as well as spatial correlations) between counties.

Indeed, a feature often neglected in empirical studies using dynamic panel data models
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when the units have a spatial connotation, is the possible cross-sectional dependence
of the residuals. The degree of interdependence between markets in regional studies,
for instance, is usually very high and studies lacking to control for it lead to unreliable
estimation results. We test for and find high and positive spatial autocorrelation among
levels of search intensity between counties, meaning that high (low) values of search
intensity in a location tend to be associated with high (low) values at nearby locations.
Spatial correlation may arise for a number of reasons. Instead of trying to correctly
specify these channels of interdependence, we incorporate in the model a spatially lagged
dependent variable and fixed effects in order to explain the spatial correlation and spatial
heterogeneity respectively in the data.

The inclusion of a spatially lagged dependent variable in addition to other explana-
tory variables can be interpreted in two different ways. If the main empirical interest is
the spatial effects, one can consider the inclusion of a spatially lagged dependent vari-
able in addition to other explanatory variables as a way to assess the degree of spatial
dependence, while controlling for the effects of these other variables. Alternatively, the
inclusion of a spatially lagged dependent variable allows us to control for spatial depen-
dence and, having done so, to assess the significance of the other (non-spatial) variables.
This latter strategy is the one pursued in our analysis. Our aim is to estimate the impact
of the (county) cost of living and the (county) labor market tightness on the (county)
search intensity once spatial effects have been filtered out. The formulation of the model
is such that specification tests on the model in deviations cannot reject the null hypoth-
esis of no serial or spatial correlation in the errors. Appendix 3.3 presents the tests for
spatial correlation both on the observations (Table A.1) and on the residuals (Table A.2).
It also contains three quantiles maps (Figure 3.1) that illustrate the geographical distri-
bution of the local search rate, the tightness of the local labor markets and our proxy for
costs of living, i.e. house prices, in England. It appears evident that most of the areas
with high (low) levels of local search rate are the areas with high (low) levels of local

labor market and cost of living.
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Let us now write the econometric specification of the mode] that incorporates all the
four features mentioned above. For that, define as s}, and A}, the true local search rate and
the true local cost of living respectively, and as s; and h; their empirical counterparts.
We assume that the process of the measurement error, m, has the additive structure

specified in model (3.13)-(3.15) (same notation applies). In order to take into account

cross-sectional dependence, we also define for county ¢ = 1, ..., n the variable
T
=% . *
Sit = wasm (3.25)
=1

which indicates the average value of the search rate over the counties adjacent to 4, i.e.
the counties that share a common boundary with 7. The weights w;,; are set equal to 0
if i = j orif ¢ and j are not adjacent, and are equal to a constant otherwise (defined by
imposing the normalization 2?21 w;; = 1 for each i).u

Finally, in order to capture some determinants of unemployed people behavior when
they do not declare themselves actively looking for a job, we include in the model pop-
ulation density. The reasoning is that in denser areas (cities, metropolitan areas) there
are more job opportunities and unemployed people do not need much effort in searching
for a job. Furthermore, in cities there are higher opportunities to work in the black
economy so that possibly unemployed workers do not invest much effort in looking for a
regular job. If the job search related question in the BHPS questionnaire is perceived as
referring to an intense and time consuming process in the search for jobs, unemployed
people living in denser areas may be less likely to declare themselves actively looking for
a job. As a result the density variable is meant to capture this agglomeration effect and

it should be inversely correlated with our measure of search intensity.

HThe N x N matrix W = {w;;} is sometimes called the contiguity matrix in the spatial statistics
literature. It describes the geographical arrangement of the spatial units.
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We are now able to write the empirical model (referred to as model 1). It is given by:

sy = asi,y + 05 + 0y + 6hi + pdiy + 0, + €, (3.26)
la] < 1, i1=1,..,N; t=2,...,T,

S = Sit + Mg,

hi = i+ M,

Myit = Qpp + Mg + gzitam = 8, h

where 0;; denotes the local labor market tightness in county 7 at time ¢, d;; is the popu-
lation density in county ¢ at time ¢, 77, is a county-specific constant, capturing also spatial
effects due for instance to different county size (spatial heterogeneity) and ¢;; is a white
noise disturbance term. my; and mp; are measurement errors with time effects ¢, ¢p;,
group effects p;, up,;, and random components £, €,,; which are mutually independent,
and iid, ¢t =1,..,7,i=1,..,N. Observe that the empirical model does not include any
measure of the average human capital characteristics of the different counties, nor other
features of the local structure of the population. The reason is that we assume that the
impact of these characteristics on the local search rate in each county is captured through
the inclusion of (time) lagged values of the local search rate.

The first order space-time autoregressive model 1 is estimated using an instrumental
variables approach within a Generalized Method of Moments (GMM) estimation proce-
dure. After controlling for spatial dependence in the data by choosing an appropriate
order in the spatial process, the literature on dynamic panel data models can be used.
Distributional assumptions are not needed. Measurement errors in observed variables are
taken into account by using sufficiently lagged variables as instruments. Technical details
on the estimation procedure of the resulting dynamic panel data model, which presents
some non-standard properties due to the error structure, are described in Section 3.5.

The estimation results of model 1 are contained in the first two columns of Table 2.12

12A1l the reported results are two-step GMM estimators, obtained using the DPD98 package for Ox
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They are short run effects.

The first column reports the results for the Arellano and Bond (1991) GMM estimator
(GMM-DIF), which consists in taking first differences over time to get rid of the unit
specific error terms and in using appropriate instruments for the lagged (spatially and
temporally) dependent variable and for all the others endogenous variables. Both living
cost and the tightness of the local labor markets are treated as potentially endogenous
variables. Therefore, the instrumental set contains observations on the tightness of the
local labor markets dated (¢ —2) and earlier and observations on local cost of living, local
search rate and search rate in neighbor counties dated (t — 3) and earlier. Note that
the use of three-times periods lagged variables instead of the standard two-times periods
lagged ones for the variables indicating the cost of living and the search rate is due to
the additional endogeneity problem caused by the presumed presence of measurement
errors. Under the specified assumptions for the composed error structure, valid instru-
ments are only obtained by using variables that are at least three-times periods lagged,
as shown in Section 3.5. We do not use the whole history of the variables as instruments.
We truncated the history after (¢ — 5). Although the number of overidentifying restric-
tions is still rather large compared to the sample size, we do not find any evidence of
a possible overfitting bias. Table 2 also reports the Sargan tests of the overidentifying
restrictions (Sargan, 1958; Hansen, 1982) implied by the instruments matrix and the
tests for autocorrelation. The Sargan test is asymptotically distributed as chi-squared
under the null of instruments validity, with degrees of freedom (df) reported in paren-
theses. AR(1) and AR(2) are tests for first-order and second-order serial correlation in
the first-differenced residuals asymptotically distributed as /V(0,1) under the null of no
serial correlation (Arellano and Bond, 1991). The consistency of the GMM estimators

requires the absence of serial correlation in the original error term. In turn, this requires

(Arellano, Bond and Doornik, 1999). One step results are not considered because we deal only with
45 cross section units and the estimated standard errors are severely downward biased in small sample.
Windmeijer (2000) derived a small-sample correction which is implemented in the two-step estimation
routine.
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negative first-order, but no second-order correlation in the differenced error term. No
evidence of misspecification is revealed in Table 2.

Let us now interpret the results of the first column of Table 2’ (GMM-DIF). As
predicted by the theoretical model, both the (local) cost of living h and the (local) labor
market tightness 6 are found to have a positive and significant effect on unemployed
search intensity. To be more precise, a unit increase in the cost of living in a county
implies a 0.14 increase in average search intensity in the county.!®> Furthermore, a unit
increase in the level of labor market tightness # increases search effort by 0.20.'*

Although a spatially lagged dependent variable (3) has been included in the model
only to control for spatial correlation, and it is not a target variable, the estimated
coefficient, «, is significant, it presents an interesting positive sign and it is of a large
magnitude. Indeed, counties where people have an active search behavior in the labor
market appear to be clustered together (because of the positive spatial correlation that
we found) and are also strongly interrelated. In other words, counties that have high
(low) search intensity tend to be geographical adjacent to counties are also characterized
by high (low) search intensity, with important spatial spillover effects.

The coefficient of the population density d, has the expected negative sign but it is

not significantly different from zero.

130Observe that, because the proxy used for (local) living costs is (local) house prices and not an
index of all the consumption goods, the effect of the cost of living on search intensity should be smaller.
However, since housing constitutes an important part of the household expenses, the difference should
not be very big.

14To be sure that our estimates are not affected by reverse causality between local search rate and local
houses prices, model 1 has also been estimated instrumenting the cost of living by taking the historical
prices. The Halifax price index at the beginning of 1988, the first period of the available series, has
been used as instruments. The reasoning underlying is that today’s house prices are correlated with the
historical prices but probably no determinants of today’s local search rate in a county are affected by
local house prices in 1988. The qualitative estimation results remain qualitatively unchanged. Therefore
they are not reported here, but are available upon request.
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Table 2. Estimation Results (N =45, T = 10)

e

pendent variable: Local search rate, s, at time ¢

GMM-DIF® | GMM-SYS®® | GMM-DIF® | GMM-SYS®®
(model 1) (model 1) (model 2) (model 2)
St—1 -0.2625* -0.2136™* -0.1404™* -0.1674**
(0.1221) (0.0649) (0.0621) (0.0528)
B 0.5932*" 0.6287* 0.4234*** 0.4542**
’ (0.2864) (0.2291) (0.1567) (0.1232)
P 0.1999*** 0.2342%** 0.0224 0.0698
(0.0751) (0.0557) (0.0780) (0.0552)
7 ) ] 0.2841** 0.3146**
(0.1235) (0.1101)
B 0.1356™" 0.1510™ 0.0686 0.0026
(0.0671) (0.0459) (0.1998) (0.0724)
i ) ] 0.2011** 0.2292***
(0.0087) (0.0653)
J -0.0140 -0.0125" -0.1207 -0.0645
(0.0091) (0.0067) (0.1005) (0.0865)
AR(1) -3.299 -3.926 -3.594 -4.033
AR(2) 11.310 0.3586 1.302 0.401
Sargan 26.52 33.03 15.18 18.14
(df) (118) (147) (182) (226)
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Notes:

1. Year dummies are included in all specifications.

2. Asymptotic standard errors, using the small sample Windmeijer (2000) correction, are
reported in parentheses.

3. * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level.

4. Instruments used in each equation:
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Let us now focus on the second column of Table 2. A more precise GMM estimator
can be obtained by combining the set of moment conditions relating to the equations
in levels with a set of moment conditions relating to the equations in first differences.
However, the validity of the extra instruments for the equations in levels, meaning that
they are uncorrelated with the area-specific effects, has to be tested. Full details and
references are given in Section 3.5. In our analysis, we find that the extended set of
moment restrictions is not rejected by the Sargan test of over-identifying restrictions. No
evidence of serial correlation in the original errors is provided.

It is easy to see that the estimated values of the coefficients of the second column of
Table 2 (GMM-SYS) are very similar to the ones of the first column (GMM-DIF). This
is consistent with the underlying econometric theory since a dramatic improvement in
performance of the combined GMM (GMM-SYS) compared to the usual first-differences
GMM (GMM-DIF) usually occurs with very short sample periods and persistent series or
if the variance of the county effects n, exceeds the variance of the residuals ;. Because
these features are not present in our case (moderate number of points in time, small
autoregressive parameter and Var(n,) < Var (g;)), the similarity in the figures of the
two columns is not unexpected. The gain in precision resulting in smaller standard
errors in the second column are due to the use of valid additional moment restrictions.
The important implication for our analysis is that the strong and positive association
between average search intensity, costs of living and labor market tightness appears to
be confirmed and reliable.!® Finally, the coefficient of the population density, d, in this
second column (i.e. when the coeflicient are more precisely estimated) still retains the
expected negative sign but it is now also significant. This may be interpreted as evidence
of the important role of agglomeration effects on unemployed behavior when searching

for a job.

5In order to test the sensitivity of the results to the measure of the tightness of the (local) labor
market 6, we have also estimated an alternative specification of model (3.26) using a measure of § based
on flows rather than stocks, i.e. § is measured by the yearly ratio between monthly notified vacancies and
unemployed on-flows. The estimation results obtained are similar to the ones of the first two columns
of Table 2 and are thus not reported here.
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Because the coefficient of the search rate in neighboring counties is positive and signif-

icant, we investigate further the presence of spatial effects using the following formulation

(referred to as model 2):
sy = s, 1+ B8, + 0+ Y105 + 6B} + 51@} + dy + n; + e, (3.27)

ol <1, i=1,..,N;T=2..,T,

where the variables that were already in model 1 are defined in exactly the same way
and where the spatial averages 0;; and h’, are defined in a similar way as in (3.25).

The last two columns of Table 2 contain the estimation results for model 2. Even
though not in the theoretical model, these results have been reported in order to confirm
the strong spatial interdependence between local labor markets in England, as suggested
by the preliminary tests for spatial correlation. The diagnostic tests (AR(1), AR(2),
Sargan) suggest that the model is well specified, the instruments appear to be valid and
the errors are white noise. All the coefficients show the expected sign suggesting that the
theoretical predictions are confirmed, but, once the values of a variable in neighboring lo-
cations are introduced into the model, the coefficients of the key variables, h and 0, retain
their positive signs but lose their significance. This indicates possible multicollinearity
between local and neighboring values, suggesting a high degree of correlation between
them and thus strong spatial spillovers. In this second specification of the model, the
estimated coeflicients of population density, d, although with the expected sign, are again
not significant.!®

Finally, one may object that our measure of unemployed in the definition of s; from
the BHPS (see Appendix 1.3) is based on self-reporting behavior (see our discussion in

footnote 7). For robustness check, we also estimate the empirical model 1 using data from

5The estimation results of both model 1 and 2 without the inclusion of the density variable appear
qualitatively unchanged (that is the coefficients of the target variables, & and 6, remain positive and
significant in both models). However, given the significancy of the density variable in model 1, we report
the estimation results with the inclusion of this variable.
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the Labour Force Survey (LFS)!" aggregated yearly at county level for a comparable
time period (1992-2000). In this data set, unemployment is now defined according to
the standard ILO definition. Owr dependent variable is not anymore s}, but naj, the
inactivity rate in county ¢ at time ¢ (for a precise definition of our measure of inactivity
rate, na;, see Appendix 1.3). On the right hand side of equation (3.26), s;;-1 and 5},
have also been replaced by na, ;1 and 7@, that are similarly defined. We believe that
the inactivity rate is an inverse measure of the search intensity rate since when it has a
high value in a county this implies that individuals are not actively searching for a job.
As a result, we expect to obtain reverse signs for h and 6 since counties with larger cost of
living and /or higher labor market tightness should have lower inactivity rate. Our results
(that are not reported here but are available upon request) show indeed the estimated
coefficients of the (local) cost of living and the (local) labor market tightness are now

negative and significant for both variables.!®

3.7 Conclusions

This chapter has discussed estimation procedures for an autoregressive panel data model
in presence of measurement errors in the observed variables and unobservable hetero-
geneity among cross-sectional units. The analysis of a concrete case of study illustrates
that this model can be useful to investigate relationships among economic variables. In
the empirical context considered, most of the target variables have no straightforward
observable counterpart and the effects of other kinds of unobservable factors, resulting
in spatial correlation, are also assumed to be important. It is shown to what extent the
model and the relative estimation methodology can be adjusted and applied in order to

get reliable results in the context analyzed.

17All the LFS data are also available on line in the ESRC data archive. Observe that another advantage
of using the LFS compared to the BHPS is that the sub-sample relevant for our analysis has a larger

number of observations.
18 A1l the empirical analysis presented in this chapter has also been performed excluding London. The

estimation results are qualitatively unchanged and thus not reported here.
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Specifically, using an English panel of county level data, the empirical model finds
evidence that search intensity is higher in areas characterized by larger cost of living and
higher labor market tightness. These findings are consistent with the predictions of the
simple model sketched in Section 3.6.1. They imply that the market-level average search
effort increases as labor market tightness or regional commodity prices increase. However,
we are aware that the econometric specification departs from the model on many aspects.
In particular, the econometric specification is dynamic whereas the theoretical model is
written at steady state and does not include any dynamic process for search intensity;
the empirical model uses the average search intensity of local neighbors as an explanatory
variable whereas the theoretical model implicitly states that the local labor markets are
segmented and does not propose any interactions between local markets; the country-
specific effects and the disturbance terms do not have a clear economic meaning in terms
of unobserved heterogeneity in the theoretical framework; agglomeration processes are
not modelled; search intensity is binary in the data at the micro level and the theoretical
model may be rewritten with only two discrete search intensities (0 and 1). The next step
of this research is to extend the theoretical model to be more consistent with the empirical
work. In particular, a potentially interesting empirical result is spatial correlation. The
first aim in our future work is to model explicitly the interactions between local labor
markets (e.g. by defining search intensity in terms of number of local markets visited
and/or by defining job matches (hirings) in one county in terms of both local market

tightness and the one in adjacent counties as well as by considering transport costs).
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3.8 Appendix 1.3

Description of Variables

s;: Ratio between unemployed persons aged between 18 and 25 actively searching for
a job and unemployed between 18 and 25 in county 7 at time t. An active job seeker is
a person who was neither “at work” nor “with a job but not at work” during the week
before the reference day and that has taken active steps to find a work (applied directly
to employer, replied to adverts, used job centre or employment agency, asked friends or
contacts, taken steps to start own business). Source: BHPS, waves 1-10, 1991-2000.

S Average sy in the counties that share a boundary with county 7. Source: BHPS,
waves 1-10, 1991-2000.

0:: Ratio between the stocks of unfilled vacancies and unemployed in county i at
time t. Source: NOMIS.

0. Average 0,; in the counties that share a boundary with county ¢. Source: NOMIS.

hi: Average yearly semidetached Halifax price index for county ¢ at time ¢. The index
is the arithmetic average prices of houses on which an offer of mortgage has been granted,
constructed on a quarterly base. The yearly average has been calculated on the available
quarterly values. Source: Group Economics, Halifax plec.

hi: Average h; in the counties that share a boundary with county ¢. Source: Group
Economics, Halifax plc

d;;: Ratio of residents over squared hectometers in county 7 at time ¢. Variable taken
from the 1991 Census database and subsequently updated using the Midyear Population
Estimates. Source: NOMIS. Years: 1992-2000.

na;: Ratio between inactive persons (between 18 and 25 years old) -not seeking job
but willing to work- and inactive and unemployed persons (between 18 and 25 years
old) in county 7 at time ¢. Source: LFS-INECA variable. It is a derived variable which
classifies the individual economic activity according to the ILO standard definitions.

nia,: Average nay in the counties that share a boundary with county 7. Source: LFS-

INECA variable.
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3.9 Appendix 2.3

List of English counties
Avon
Bedfordshire
Berkshire
Buckinghamshire
Cambridgeshire
Cheshire
Cleveland
Cornwall & Isles of Scilly
Cumbria
Derbyshire
Devon
Dorset
Durham
East Sussex
Essex
Gloucestershire
Greater London
Greater Manchester
Hampshire
Hereford and Worcester
Hertfordshire
Humberside
Kent
Lancashire
Leicestershire

Lincolnshire
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Merseyside
Norfolk

North Yorkshire
Northamptonshire
Northumberland
Nottinghamshire
Oxfordshire
Shropshire
Somerset

South Yorkshire
Staffordshire
Suffolk

Surrey

Tyne and Wear
Warwickshire
West Midlands
West Sussex
West Yorkshire
Wiltshire
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3.10 Appendix 3.3

Measures of global spatial autocorrelation

When the variable under investigation is measured on a continuous scale, the mea-
surement of global spatial autocorrelation is usually based on Moran’s [ and Geary’s
¢ statistics (Cliff and Ord, 1973, 1981; Upton and Fingleton 1985). They measure the
deviation from spatial randomness, or the lack of any pattern. Under this assumption,
any grouping of high or low values in a particular area would be totally spurious. The
existence of a spatial structure is detected by the presence of spatial correlation, that can
be defined as the coincidence of value similarity with locational similarity (Anselin, 2001).
There is positive spatial autocorrelation when high or low values of a random variable
tend to cluster in space (spatial clustering) and there is negative spatial autocorrelation
when geographical areas tend to be surrounded by neighbors with very dissimilar values

(spatial outliers). Moran’s [ is defined as

- Zl }:1 wijzizj
=== 3.28
o5 (3.28)

2

%
1

where n is the number of observations, z; are variables in deviations from the mean,
w;; are elements of a spatial weights matrix, that indicates the way area ¢ is spatially
connected to area j, and Sy is a scaling factor equal to the sum of all the elements in the
weight matrix.

Geary’s ¢ is defined as

where the x;s are the original variables and the other notation is as above (formula 3.28).

Moran’s I is a cross product coefficient scaled to be less than one. Positive values
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for Moran’s I indicate positive spatial correlation, while negative values indicate negative
spatial correlation. In contrast, Geary’s ¢ coeflicient is based on squared deviations.
Values of Geary’s ¢ less than one indicate positive spatial correlation, while values larger
than one suggest negative spatial correlation.

Table A.1 reports Moran’ s I statistic and Geary’s ¢ statistic of the search rate for
each year of the period 1991-2000, for the counties in England (column two). Inference
is based on a conventional normality approach. The third column in Table A.1 reports
the standardized z-value for I and ¢, computed by subtracting the expected value and
dividing by the standard deviation assuming an approximation of the (asymptotic) dis-
tributions of I and ¢ by the normal distribution. The associated significance level, pi, is
reported in column four. Table A.1 shows clearly that (local) search rates are positively
spatially autocorrelated in every year. Both I and c statistics are highly significant (the
indicators of significance, p;, are always almost 0) and display clear evidence of positive
spatial autocorrelation of the variable under analysis (positive value for the standardized
Moran’s I, z(I), and negative values for the standardized Geary’s ¢ statistic, z(c)). Ta-
ble A.2 reports Moran’s I statistic and Geary’s ¢ statistic calculated on the residuals of
model 1. It has the same structure of Table A.1. It shows that both I and c statistics
are no longer significant (at 5% significance level) in any year confirming that the spatial

dependence has been adequately dealt with by incorporating the spatial lag term.*?

19Note that the asymptotic validity of these spatial correlation tests when applied to residuals has not
been formally established.
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Table A.1: Measures of Global Spatial Correlation
Search Rate

Moran’s [ test for spatial autocorrelation

Year I z(1) o

1991 0.1963 8.9542  0.0000
1992 0.2396 10.8744 0.0000
1993 0.2235 6.6758  0.0000
1994 0.2678 7.9698  0.0000
1995 0.1309 6.1089  0.0000
1996 0.1510 6.9777  0.0000
1997  0.1949 §&.9158  0.0000
1998  0.2290 10.4729 0.0000
1999 0.1353 6.2787  0.0000
2000 0.1447 6.6827  0.0000

Geary’s ¢ test for spatial autocorrelation

Year ¢ z(c) 2

1991 0.7571 —7.8190 0.0000
1992 0.7208 —8.9887 0.0000
1993 0.7188 —6.2914 0.0000
1994  0.6926 —6.8789 0.0000
1995 0.8312 -5.4334 0.0000
1996 0.7958 —6.5707 0.0000
1997 0.7490 —8.0815 0.0000
1998  0.7263 —8.8105 0.0000
1999 0.8435 —5.0361 0.0000
2000 0.8124 -—-6.0389 0.0000
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Table A.2: Measures of Global Spatial Correlation

Residuals from model 1

Moran’s I test for spatial autocorrelation

Year 1 2(I) 22

1991  0.0289 1.0755 0.2821
1992  0.0432 1.4871 0.1370
1993  0.0059 0.4136 0.6792
1994 —-0.0164 -0.229 0.8188
1995 —0.0051 0.0961 0.9234
1996 —0.0397 —0.8989 0.3687
1997 —0.0583 -1.4352 0.1512
1998 0.1517 0.9487 0.3428
1999 —-0.0019 0.1891 0.8500
2000 0.0485 0.5480 0.5837

Geary’s ¢ test for spatial autocorrelation

Year ¢ z(c) P

1991 09303 —1.5596 0.1188
1992 0.9618 —0.8555 0.3922
1993 0.9264 —1.6473 0.0995
1994 1.0882 1.1951 0.2320
1995 1.0787 1.1025 0.2702
1996 1.0866 1.1899 0.2341
1997 0.9181 —1.6557 0.0974
1998 0.9507 —-0.9512 0.3415
1999 0.9988 —0.8205 0.4119
2000 09771 —-0.8904 0.3732
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The remainder of this Appendix shows in Figure 3-1 the geographical distribution of
the search rate (first panel), the tightness of the local labor markets (panel on the left)
and our proxy for costs of living, i.e. house prices, (panel on the right) in England at
the NUTS3 level of spatial disaggregation for the year 2000. Extremely similar maps can

be obtained for all the other years considered in the analysis. Therefore they are not

reported here.?’

20A1l computations and maps are carried out using Spacestat 1.90 and Arcview 3.2.
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Figure 3-1: Quantile maps for England
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