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This thesis addresses statistical issues related to linear panel data models with the joint 
occurrence of unobserved heterogeneity and measurement errors-in-variables. 
Specifically, it is concerned with hypotheses testing and estimation techniques in a static 
and in a dynamic framework respectively. 

Chapter 1 presents a methodological revision of the use of the Hausman test (Hausman, 
1978) for correlated effects with panel data. The consequences of deviations from the 
basic assumptions underlying the construction of the Hausman statistic are investigated. In 
particular, the distribution of the Hausman statistic in cases of misspecifrcation of the 
variance-covariance matrix of the errors is examined. It is shown that the size distortion 
may be serious. An alternative robust formulation of the test with panel data, based on the 
use of an auxiliary regression, is proposed. This test, which we call the Hausman Robust 
or HR-test. gives correct significance levels in common cases of misspecification of the 
variance-covariance matrix of the errors and has a power comparable to the standard 
Hausman test when no evidence of misspecification is present. It can be easily 
implemented using a standard econometric package, e.g. Stata. 

In Chapter 2 this robust version of the Hausman test (suitably tailored) is used to 
compare different pairs of panel data estimators in a particular sequence. The resulting 
two-step testing procedure is intended to distinguish between an endogeneity problem 
caused by correlation between regressors and individual effects, and an endogeneity 
problem due to measurement errors. The statistical performance of the sequential test is 
assessed using simulated data. This methodology is then applied to an empirical job-
search matching model to investigate the effects of measurement errors and unobserved 
heterogeneity that, as is well-known, contaminate two of the variables extensively used in 
labour market research, namely the stock of unemployed and the stock of vacancies. The 
economic implications of the inference results using the proposed methodology are 
compared with those produced by a possible traditional analysis. 

Chapter 3 presents consistent estimators (which differ in terms of efficiency) for an 
autoregressive (stationary) model of panel data that superimposes the errors-in-variables 
problem and the unobserved heterogeneity issue on a dynamic framework. Moreover, the 
measurement errors are not 'classical' (i.e., uncorrelated with everything else in the model 
included their own past values) but are assumed to have a more complicated structure. The 
analysis of an example demonstrates the empirical relevance of this modelling. 
Furthermore, because the cross sectional units in the panel data set considered have a 
spatial connotation (UK counties), spatial features are also incorporated in the econometric 
analysis. The resulting empirical model is a spatio-temporal panel data model with 
unobserved heterogeneity and systematic measurement errors. 
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Preface 

A panel data set contains repeated observations over the same units (individuals, 

hoiiseholds, firms...), collected over a number of periods. Since the pioneering papers by 

Kuh (1959), Hoch (1962) and Baiestra and Nerlove (1966), the pooling of cross sections 

and time series data haa become an increasingly popular way of quantifying economic 

relationships. Each dimension provides information lacking in the other, so a combi-

nation of both allows one to specif and estimate more comphcated and more realistic 

models than a single cross section or a single time series would do. Panel data sets are 

mainly more informative data sets: they allow us to control for unobserved heterogeneity 

among individuals and furthermore they give more vaiiability, less cohinearity among 

the variables, more degrees of freedom and more eSciency than traditional time series 

or cross sectional studies (Baltagi, 1995). As a result, important advantages of panel 

data models compared to time series or cross sectional data models are that they allow 

estimation methods robust to certain classes of omitted variables and that they allow 

the identification of certain parameters of interest in presence of endogenous regressors 

or measiuement errors, without the need to make restrictive assumptions. Furthermore, 

they can be used to study and compare the dynamics of diSerent individuals. 

The first aim of this thesis is to provide appropriate panel data techniques for dealing 

with different sources of imobservable factors. The failure to control for various types of 

imobservable factors may lead to imrehable estimation results. 

"There are at least three types of unobservable in econometric models: (%) fixed 

parameters to be estimated from the data, (#) variables which affect the observable 

variables but which are not themselves directly observed either because the observed 

magnitudes are subject to measurement error or because these variables do not 

correspond directly to anything that is likely to be measured, (%%%) disturbances, 

either as errors of measurement or aa errors in equations. There is no clear dividing 



line between these three categories. "1 

That data collection is subject to a variety of errors needs no reiteration or much 

dociimentation. In general, the data collection and thus the responsibility for the qual-

ity of the collected material, is still largely delegated to institutions outside the control 

of the analyzing team. It is also fair to note that part of t he problem arises from our 

requirements about what we would like to observe and the complexity of the phenomena 

which we are trying to measure. Nevertheless, the role of unobservable factors has been 

relatively neglected in econometric practice.^ The standard errors-in-veiriables models 

have not been applied widely mainly because to be identi6ed they require extraneous 

information. This conclusion of lack of identification in errors-in-variables models, how-

ever, relates to imi-dimensional data, i.e. pure cross sections or pure time series. In 

presence of two-dimensional data, e.g. panel data, it may be possible to handle the 

errors-in-variables identification problem and estimate consistently the coeGicients with-

out extraneous information. 

Many studies using panel data sets face the simultaneous problem of unobserved 

heterogeneity and measmement errors. The literature dealing speciScally with panel 

data models capturing both featiues is not large and not yet well developed (see Matyas 

and Sevestre, 1996, Ch. 10 for a review). This thesis addresses statistical issues related 

to linear panel data models with the joint occurrence of unobserved heterogeneity and 

measurement errors-in-variables. Specifically, it is concerned with hypothesis testing and 

estimation techniques in a static and in a dynamic framework respectively. 

The Thesis is organized in three chapters. Chapter 1 and 2 consider static models. 

Chapter 1 (joint with R. O'Brien) presents a methodological revision of the use of 

the Hausman test for correlated eSects with panel data. The apphcation of the test, a 

common practice in apphed work, does not always give rehable results. The assumptions 

underlying the construction of the Hausman statistic (Hausman, 1978) are too strong in 

^Griliches (1979). 
^For an extensive discussion, see Aigner et al. (1984). 



many empirical caaes. 

The main contributions are the following ones. 

# The consequences of deviations from the basic assumptions underlying the con-

struction of the Hausman statistic are investigated. Within the discussion, it is 

shown that the assumptions in Lemma 2.1. in Hausman (1978) are suBcient but 

not necessary. In particular, it is demonstrated that the attainment of the abso-

lute Fisher lower bound can be replaced by the attainment of a relative minimum 

variance bound. 

# The distribution of the Hausman statistic in cases of misspecihcation of the variance-

covariance matrix of the errors is examined. The size distortion is numerically as-

sessed. It is foimd that the test will reject more often than allowed by its nominal 

size. Furthermore, in common cases of misspecification, it is shown analytically for 

the asymptotic case that the size distortion is sensitive to the ratio between the 

intra-groups and inter-groups variation of the covariates. 

# An alternative robust formulation of the test in a panel data context is constructed. 

It is based on the use of the auxiliary regression proposed by Arellano (1993). The 

power is assessed using a simulation experiment. This test, which we call the 

gives correct significance levels in common caaes of misspecihcation of 

the variance-covariance matrix of the errors and has a power comparable to the 

standard Hausman test when no evidence of misspeciScation is present. It can be 

easily implemented using a standard econometric package. 

The contribution of R. O'Brien is in the derivations contained in Section 1.4 and in 

Appendix 1.1. 

Chapter 2 emphasizes the misleading inference results which one can obtain by testing 

for imobserved heterogeneity without conditioning on the existence or non existence of 

measurement errors and illustrates how pajiel data sets can be used to detect and treat 

properly different kinds of unobservable factors. A concrete case of study is presented. 
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We seek to investigate the importance of miobserved heterogeneity and measurement 

errors that contaminate two of the variables extensively used in labor market research, 

namely the stock of unemployed and the stock of vacancies. 

The main contributions are the following ones. 

# Robust formulations of the Hausman test ( f o r the comparison of diEerent 

pairs of panel data estimators are implemented. Chapter 1 shows how to construct 

a panel data artificial regression in order to get a robust test for correlated eSects, 

i.e. for the presence of (group) individual-speciSc unobservable eSects constant over 

time correlated with the regressors. It is based on the comparison of two particular 

estimators, i.e. the and the Gro'ups, ag the 

transformation removes unobsei-vable factors of this sort. In Chapter 2 similar 

artificial regressions are constructed to compare other pairs of panel data estimators 

for digerent purposes. 

# A sequential testing procedure is presented. It consists on using diEerent .6%-

in a particular sequence. The aim is to distinguish between an endogeneity 

problem caused by correlation between regressors and individual eSects, and an 

endogeneity problem due to measurement errors. This approach is founded on the 

idea that essential specihcation errors can be recognized by comparing estimators 

which behave differently if the assumptions of the model are satisEed or if some of 

them are not. The statistical performance of the sequential test is assessed using 

simulated data. Considerations on the signihcance level and power of the test are 

presented. 

# The methodology is applied to an empirical job search matching model. We com-

pare diEerent panel data estimators of the coeScients of the stocks of unemployed 

and vacancies. The choice of appropriate instruments is discussed. The use of 

this procedure suggests what is the most reliable model speciEcation to analyze 

the data at hand. The economic imphcations of the inference results using the 



proposed methodology are compared with those produced by a possible traditional 

analysis. It is shown to what extent conclusions lacking accuracy in the choice of 

the model speciGcation may be misleading. 

Chapter 3 focuses on the estimation of hnear dynamic models when measurement 

errors and imobserved heterogeneity are jointly taken into consideration. Errors-in-

variables models require the use of instrumental variables techniques in order to obtain 

consistent estimators and dynamic models comphcate the estimation procedure because 

only predetermined instruments may be available. Furthermore, certain transformations 

typically used to pmge the model from unobserved heterogeneity, such as hrst differ-

ences or deviation from time-means, lead to inconsistent estimators when instruments 

are predetermined (see, for instance, Arellano and Bond, 1991). Consistent estimators 

for (stationary) autoregiessive panel data models with white noise errors (assuming exact 

measurement of the variables) are presented, among others, by Arellano and Bond (1991), 

Arellano and Bover (1995), Bhmdell and Bond (1998). Consistent estimators for static 

panel data models with measmrement errors-in-variables are discussed, among others, by 

Biorn (2000). This chapter combines these two strands of the panel data hterature. 

The main contributions are the following. 

* Consistent estimators (which diSer in terms of eSciency) for an autoregressive 

model of panel data that superimposes the errors-in-variables problem and the 

imobserved heterogeneity issue on a dynamic framework are constructed. Moreover, 

the measurement errors are not "classical" (i.e., uncorrelated with everything else 

in the model included their own past values) but have a more complicated structure 

which invahdates the estimation techniques in the existing related literature. The 

empirical relevance of such a modelhng is clear if we think about measmement 

errors not only as observation errors in the narrow sense but also as discrepancies 

between theoretical variable dehnitions and their observable counterparts in a wider 

sense. It seems sensible to assume that the diSerence between a typical variable of 

interest and its empirical counterpart almost never has a simple random structme. 



The proposed estimation techniques are apphed in a concrete case of study. Because 

the cross sectional imits in the panel data set considered have a spatial connotation 

(UK coimties), spatial features are incorporated in t he econometric analysis. The 

resulting empirical model is a spatio-temporal panel da ta model with unobserved 

heterogeneity and systematic measurement errors in variables. It is shown to what 

extent the illustrated estimation methodology for dynamic panel data models can 

be tailored and applied in order to obtain reliable results in the speciEc context 

analyzed. 
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C h a p t e r 1 

Test ing t h e Exogenei ty A s s u m p t i o n 

in Pane l D a t a wi th " N o n Classical" 

D i s tu rbances 

This chapter is concerned with the use of the Durbin-Wu-Hausman test for correlated 

eSects with panel data. The assumptions underlying the construction of the statistic 

are too strong in many empirical cases. The consequences of deviations from the basic 

assumptions are investigated. The size distortion is assessed. In the case of measurement 

errors, the Hausman test is shown to be a test of the diSerence in asymptotic biases of 

and Groi/pa estimators. However, its 'size' is sensitive to the relative 

magnitude of the intra-groups and inter-groups variations of the covariates, and can be 

so large as to preclude the use of the statistic. We show to what extent some assumptions 

can be relajced in a panel data context and we discuss an alternative robust formulation 

of the test. Power considerations are presented. 



1.1 Introduction 

The Haiismaji test is the standard procedure used in empirical panel data analysis in 

order to discriminate between the Axed eEects and random effects model. The general 

set up can be described aa follows.^ 

Suppose that we have two estimators for a certain parameter ^ of dimension .RT x 1. 

One of them , is robust, i.e. consistent imder both the null hypothesis the 

alternative the other, is eScient and consistent under jfg but inconsistent under 

.^1. The diSerence between the two is then used as the basis for testing. It can be shown 

(Hausman, 1978) that, imder appropriate assumptions, under 77o the statistic based 

on has a hmiting chi-squared distribution: 

y o r 

If this statistic lies in the upper tail of the chi-squared distribution we reject jifq. If the 

variance matrix is consistently estimated, the test will have power against any alternative 

imder which is robust and is not. Holly (1982) discusses the power in the context 

of maximum hkehhood. 

In a panel data context the test is typically used as a test for correlated eSects. 

Consider the model 

^ 2 = 1,...,jV, t = l , . . . , T ' (1-1) 

where is a A' x 1 vector of stochastic regressors, 7̂^ ^0, tW (0, cr̂ ) 

imcorrelated with and Cof = 0. 

The null hypothesis assumes lack of correlation between the individual effect and 

^This approach is also used by Dmbin (1954) and Wu (1973). For this reason tests based on the 
comparison of two sets of parameter estimates are also called Durbin-Wii-Hausman tests, or DWH. For 
simplicity of exposition we will refer to the Hausman (1978) set up. 



the explanatory variables 

ffo : = 0. 

The Growpg estimator, is robust regardless of the correlation between 77̂  and 

The ^aZea^m-TVer/ofe estimator, is eGcient under but inconsistent under ^1, 

^ 0. 

The Hausman statistic in this case takes the form 

However, using the results in Hausman (1978), the statistic used in practice is 

where = y a r and VgAr = - It is based on the result that the 

variance of the diSerence between an estimator and aji efhcient estimator is equal to the 

diSerences of the variances: 

y o r ^ ^BAr) = Kug — VBAT- (14) 

In the time series-cross section model considered in Hausman (1978) this equality holds 

because is an efficient estimator in the sense that it at tains the Cramer-Rao Lower 

Boimd for fixed A (deEned below), and Con (^BAr)- This implies 

= y a r + y a r - 2C(w (^^g, 

= + y a r - 2 y a r 

= (^lug) - (^BAr) = - ^Ar-

10 



However, in applied studies, this may not always be the case ajid one should be careful in 

using ^2 automatically. If equality (1.4) does not hold, A2 does not follow an asymptotic 

chi-squared distribution, even imder .TiTo. 

This chapter considers the effects on the Hausman statistic used in apphed panel data 

studies, Ag, of deviations from the conditions in Lemma 2.1 in Hausman (1978), which 

guarantees that equality (1.4) holds. This lemma is stated as foUows. 

L e m m a 1 Consider two estimators ,8̂  which are both consistent and asymptoti-

cally normally distributed with ,§0 attaining the asymptotic Cramer-Rao bound so that 

\ / T TV (0, Vo) and \ / T (0, V )̂ where Vo is the inverse of Fisher's 

information matrix. Consider g = Then the limiting distributions of v T f/)o — 

and \ /Tg have zero covariance, Cou (,§0,9) = 0, ^ matrix. 

The plan of the chapter is as follows. Regarding the attainment of the Cramer-Rao 

Lower Boimd, in Section 1.2 we show that if we want to compare diSerent estimators 

within a specihc set, the assiunption of full efBciency is not necessary. A relative lower 

boimd for the variance can play the role. The variance of t he diSerence between two 

estimators belonging to such a set is still equal to the diEerence of the variances if one of 

the two is the minimmn variance estimator in the specihc set considered. The algebraic 

derivation of this result is provided in the panel data framework. The Lemmas contained 

in Appendix 1.1 prove that this holds both in the exact and in the limiting case. Given 

that the estimator can be obtained as a matr ix weighted average of 

the Between and the WztAm Groi/pg estimators (see, e.g. Maddala, 1971), 

we consider the set of estimators which is deSned by a matrix: weighted average of two 

imbiased (or consistent in the hmiting case) estimators. 

However, even the attainment of a minimum variance bound may be a strong as-

simiption in empirical studies. This circumstance is related to assumptions about the 

error term. A failure of the assumption of spherical disturbances is quite common in 

practice. Section 1.3 presents a robust formulation of the Hausman test for correlated 

11 



effects, which is based on the construction of em auxiliary regression. We explain and 

discuss to what extent the use of artihcial regressions may allow us to construct tests 

based on the diSerence between two estimators in a panel da t a model without making 

strong assumptions about the disturbances. The motivation underlying the implemen-

tation of the robust test is that the size distortion of the standard Hausman test, /2,2, in 

cases of misspecihcation of the variance-covariance matrix of the disturbances may be 

serious. This is investigated in Section 1.4. 

Section 1.5 compares the power of the standard Hausman test and the robust formu-

lation presented in Section 1.3 using a Monte Carlo experiment. Section 1.6 concludes. 

1.2 The Failure of the Assumption of Full Efficiency 

Consider model (1.1). Defining the disturbance term 

~ Vi 

the variance-covariance matrix of the errors is 

2 = fTV ® ^ 
(AfTxjVT) 

where 
/ 

^ . . . V, ^ 

Q = 

2 ^ 9 

-t-

= -t- <7̂  At (1.5) 

y -r U y 

and t is a cohmin vector of T ones. The unobserved heterogeneity imphes correlation 

over time for single units, but there is no correlation across units. 

Hausman and Taylor (1981) propose three diEerent speciScation tests for the null 

hypothesis of uncorrelated effects: one based on the diSerence between the 

and the estimator, another on the diSerence between the 

12 



TVerZofe and the Between and a third on the diSerence between the 

and the Groiipg. They show that the chi-squared statistics for the 

three tests are identical. We now analyze the Hausman statistic constrncted on the 

diSerence between the and the estimator, commonly 

used in empirical work. 

Hereafter, we dehne as fully eScient an estimator that reaches the Cramer-Rao Lower 

Boimd and as minimimi variance the one that has the minimum variance within a speciSc 

class. Let 

A 
<7̂  + 

V 

If we assume normality in model ( l . l ) , it is well-known that the esti-

mator, i.e. the generalized least squares estimator, is fully efficient if the variance-ratio 

parameter A is known, and asymptotically fully e@cient if A is consistently estimated. (A 

distributional assumption is required in order to obteiin the Cramer-Rao Bound.) There-

fore the hypotheses underlying the construction of the Hausman statistic are satished 

and the results of the test are rehable. However, we will demonstrate that even without 

assuming normality of the the results of the standard Hausman test are reliable, the 

key assimiption being (1.5). We will use the panel data framework as an example. In 

what follows we take A as known. The same result holds asymptotically if a consistent 

estimator A is available. It is implied by the Hausman-Taylor result that we can construct 

the same test using diEerent pairs of estimators, as will be clarihed below. 

Consider model (1.1). We write the estimator (Balestra and Nerlove, 

1966) as a ftmction of the variables in levels 

+ A y M X ) ' ^ ( x ' Q -H A%'M) y (1.6) 

where 

13 



% 

M 

M+ 

, 

1 

T 22 — 0 

Vi 2/n 

2̂ , y = 2/2 <2 , y = 2/2 <2 
, 2/̂  = 

. . _ . _ _ 

Q""" is the matrix that transforms the data to deviations from the individual time means, 

M+ is the matrix that transforms the data to averages. Rearranging 

.6 y [AiwT + (1 - A) Q] X y [Afyvr + (1 - A) Q] K (1.7) 

The variance is 

= |[%'[A7ArT + ( l - A ) Q ] x ] 'y[A7Arr + ( l - A ) Q ] } y a r ( y ) 

X i[A7/\rT + (1"" A) Q] % % [A7;v%' + (1 — A) Q] % (1.8) 

Using a simpliSed version of the Sherman-Morrison-Woodbury formula (Golub and Van 

Loan. 1983, p.50) one can show (Appendix 2.1) that, under aasumption (1.5), the variance 

of 2/i can be written as 

yor(i/^ a 

a 

IT ^ 
cr̂  + 

u 

1 A \ 1 ' 
I t — — 66 4- A—66 

= cr 

1 

This can also be obtained by ignoring time eSects, and thus setting w = 0, in Nerlove 

14 



1971). Using the matrices involved in formula (1.6), we can rewrite this expression as 

a 

a 

G~ 

- M + j + AM+ 

Q+ + A/T - AQ 

\1t + (1 — A)Q (1.9) 

Thus 

yGr (y ) = ® yGr(^,) = (r" [Af^^ + (1 - A)Q]-

Substituting (1.9) in (1.8), we obtain 

cr" ^ [A7//y 4" (1 ^ '^) 0] ^ ^ [A/ATT 4" (1 ^ Q] 4" (1 ^ '^)Q] 

X [A7/\r%' + (1 — A) Q] ^ ^ [AZ//]" -|- (1 — A) Q] ^ 
- 1 

(J %' [AfArT + ( l - A ) (1.10) 

Similaiiy, using the Q matrix deSned in formula (1.6), we can write also the 

Groi/pa estimator as a fimction of the initial variables in levels 

B. 
- 1 

X Q X % Qy. (1.11) 

The variance is 

y o r ( ^ ) = Y q x % ' Q ( y G r y ) Q ' % (1.12) 

If we transform the data into deviations, the variance of i/i can be written as 

yor(Q+?/J = Q + y o r ( ^ j Q + ' = cr^Q+ (1-13) 

15 



where ^ and Q+t = 0, a vector of zeros. Thus 

y a r ( Q y ) = ® 

Substituting (1.13) in (1.12), we obtain^ 

<7 
1 (7" % (1.14) 

Hence, fiom (1.10) and (1.14) 

y a r ( ^ ^ J - y a r ( ^ g ^ ) = (7̂  - X ' [A7;vT + (1 - A) Q] % (1.15) 

Next, we show that such expression is exactly equal to the varieince of the diEerence 

between the two estimators. 

yGr(^g^ - ^^ ) = yar(^gy^) - + yor(^ . 

R o m (1.7) and (1.11) 

Ccw(^g^, ̂ ,̂g) — cr" % [A/yvT̂  + (1 — A) Q] % % [A/̂ rr + (1 — A) Q 

X [Af^T + (1 - A)Q]-^ Q X [ y Q X 

= cr %' [A/^T + (1 - A) Q] % = y « r ( ^ g ^ ) . 

This is syimnetric, ajid thus equal to Ccw(/3^g,j8gyY^). Therefore, we obtain 

y a r ( ^ g ^ - ,^«g) = ^ « r ( ^ ^ ^ ) - y a r ( ^ g ^ ) - yo?-(^g;\^) + yar(^^g) 

= - yGr(^g^) 

^Recall that Q is an idempotent matrix. 
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as reqiiired. We have proved that equality (1.4) holds for A knowu or otherwise Sxed. 

As we said, the case of estimated A can be treated by using the Hausman-Taylor 

result that an algebraically identical test statistic can be constructed using the diSerence 

between and the Groi/pa estimator . We obtain 

(^^9 - [l^ar(^^g) + yGr(^bg)] ^ " ^6g) 

as the estimators have zero covaiiance. In this form, we can see that estimating cr̂  and 

A (or (T̂ ) affects only the variance matrix of the test statistic. We thus obtain the same 

test statistic whatever A is, and (1.3) maintains the assumed distribution. It does not 

follow from these arguments that the equahty (1.4) can b e made exact for estimated 

A. If and were independent of A, the result would follow, but this requires 

normahty of the disturbances. Viewing as a feasible (7^6" estimator, Kakwani 

(1967) imphes it is imbiased. However, conditional on A it may or may not be unbiased. 

Further, the variances obtained are for A hxed, not conditional on A. So attempts to 

obtain unconditional variances from conditional variances and variances of conditional 

expectations do not seem fruitful. So it would appear that the exact result (1.4) may 

require normality of the 6,̂  or A Sxed. Equality (1.4) implies that for fixed and known 

A, and known imder normahty /ig would have an exact chi-squaied distribution. 

If A is estimated, and/or the are not normal, /12 is asymptotically chi-squared as 

long as are suSciently well-behaved to ensure that and are asymptotically 

normal, and <7̂  and (or equivalently A) are appropriately estimated. This is less 

restrictive than the assumptions required for the identihcation of the Crajner-Rao bound. 

We obtain the result (1.4) without assuming normahty because we compare two hnear 

imbiased estimators, one of them achieving the minimum variance for a linear estimator. 

Lemma 4 in Appendix 1.1 shows that the variance result depends only on minimum 

variance properties, not on normahty or achievement of a particular (Cramer-Rao) bound. 

However, in order to get a panel data generalized version of Lemma 1 (Lemma 2.1 in 

Hausman, 1978), it is necessary to prove a similar result in the hmiting case. This aim 
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is achieved in Lemma 10 in Appendix 1.1. The minimmn variance property required is 

within a set of the form 

T = {t \ t = A.ti + (I — A)t2} 

where and 2̂ are estimators of the parameter vector For completeness, Lemma 9 

establishes that sets of this form will contain minimiun variance members. 

We can smiunarize as follows. If we want to use the Haiisman statistic to compare 

two diEerent estimators, e.g. one linear and one non hnear, t h e assumption of normality 

may be crucial because it allows us to 6nd an absolute lower bound for the variance of 

the estimators. However, if we want to compare diSerent estimators within a set of the 

form of '7' neither the assumption of normality nor the attainment of the Cramer-Rao 

Lower Bound, even in the limiting case, is crucial. A lower bound for the variance can 

play the required role. The variance of the diSerence between two estimators belonging 

to the same set is still equal to the difference of the variances if one of the two is the 

minimimi variance estimator in the specihc set. Lemma 10 in Appendix 1.1 allows us to 

rely on the results provided by a traditional Hausman test in a more general set-up. 

It is worth noting that we are not removing the aasimiption of asymptotic normality 

of the estimators in Lemma 1, which is needed to obtain the chi-squared distribution of 

the Hausman statistic. Our generalization applies for estimators that are asymptotically 

normally distributed but that do not reach the Cram&-Rao Bound. 

We prove the result for a specific set of estimators but this does not rule out the 

possibility of extending the result to wider contexts. For instance, the GMM estimator 

is asymptotically normally distributed and attains the asymptotic Cramer-Rao Lower 

Boimd only in some cases. Nevertheless, if we compare an arbitrary GMM estimator, 

e.g. using the identity matrix, and the one which uses the optimal weighting matrix 

(Hansen, 1982), Lemma 10 imphes that the diSerence between these two estimators can 

be used as basis for an Hausman test. 
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1.3 The Failure of the Assumption of Spherical Dis-

turbances 

In the previous section, we relaxed the assumption of full e&ciency in Lemma 1. How-

ever, even the assumption that one of the two estimators has the minimum variemce or 

that both are consistent imder the null hypothesis can be still too strong in many em-

pirical cases. In the panel data framework above considered (model (11)), the crucial 

assimiption for (1.4) to hold is (1.5). In other words, the form of the covariance matrix 

has to be assimied. In cases of misspecihcation, i.e. if yGr(2/^) = 0* ^ f], equality (1.4) 

does not hold any longer. 

As Hausman clearly states at the very beginning of his article (Hausman, 1978), the 

speciAcation test he presents assumes that the disturbances have a spherical covariance 

matrix. He considers the standard regression framework 

2/ = -|- 6, 

where 

E(6/%) = 0, (1.16) 

and 

ya r (6 /%) - (7^7. (1.17) 

In most of the aiticles that followed, assumption (117) is never relaxed. The emphasis of 

this part of literature is placed in testing the orthogonality assumption, i.e. ^(s/AT) = 0. 

In the panel data framework ((model (1.1)) a test of the assumption (1.16) tests for 

correlated eSects. Also in this context the assumption (1.17) is usually maintained. 

The reason is straightforward if we consider the comparison between the 

Groi/pa estimator and the estimator as a comparison between an 02,5' 

and a estimator. One basic assumption in the construction of the Hausman statistic 

(Lemma 1) is that one of the two estimators has to reach the asymptotic Cram&-Rao 
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Lower Boimd or, using the generahzation provided in Lemma 10 in Appendix 1.1, that 

at least has to be the minimum variance estimator in a specific class. In the panel data 

framework the that is the generalized least square estimator, is the 

BLUE estimator if the GZ/;,? transformation produces spherical disturbances. This is the 

case if the correlation in the covariance matrix of the initial errors is due only to the 

presence of unobserved individual eEects, i.e. if the initial disturbances are spherical. 

To make it clear, we analyze in detail the construction of the esti-

mator. In practice, the estimator can be calculated running an 

regression on a transformed model. Assuming model (1.1), which implies the distur-

bances variance covaiiance matrix (1.5), the transformation of the and the is the 

following 

where is the individual z time mean. 

y^\ 

n - 2 = f 
T 

= 1 
a 

0"̂  + Tcr^ 

and likewise for the rows of 

Under assumption (1.5), which implies initial spherical disturbances, this is a 

transformation that produces a model with spherical disturbances. Hence running 

on such a model we obtain the BLUE estimator. However, if assumption (1.5) does 

not hold, the (72,6' transformation does not guarantee that the new disturbances are 

spherical. In this case the estimator, namely the is stiU consistent 

but it may not be the minimum variance estimator. The consequence is that we can no 

longer be sure that the equality (1.4) stiU holds. In these circumstance the results of 

the test /2,2 (statistic (1.3)) may not be reliable. However, if the two estimators remain 
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consistent under jifo the comparison can still be conducted, but the methodology needs 

to be adjusted in an appropriate way. 

In what follows, we present a robust version of the Hausman test for panel data. It is 

based on the use of an artificial regression. It allows us to compare diEerent estimators 

without assuming normality or ranking them in terms of efSciency. Specihcally, such 

methodology does not use the hypothesis that the variance of the difference of the two 

estimators is equal to the diSerence of the variances. It estimates directly the variance 

of the diSerence of the two estimators. It simply uses the statistic (1.2) instead of (1.3). 

Moreover, it provides an estimate of this variance that is consistent and robust to het-

eroskedasticity and/or serial correlation of arbitrary form in t he within groups covariance 

matrix of the disturbances. This estimator is obtained using White's formulae (White, 

1984). It will be made clear to what extent the apphcation of White's heteroskedasticity 

consistent estimators of covariance matrices in a panel da ta framework may also allow 

for the presence of autocorrelation within groups. 

Baltagi (1996) and Ahn and Lo (1996) propose diSerent artihcial regressions to test 

for the presence of correlated effects. However, the assumption of initial spherical dis-

tmbances is never relaxed. As shown by Baltagi (1997, 1998), under the assumption of 

spherical disturbances, the three approaches, i.e. the Hausman specification test, Bal-

tagi (1996) and Ahn and Lo (1996), yield exactly the same test statistic. However, as 

first noted by Arellano (1993) in the same panel data framev^ork, an auxihary regression 

can also be used to obtain a generalized test for correlated effects which is robust to 

heteroskedasticity and correlation of arbitrary forms in the within groups disturbances. 

Davidson and MacKinnon (1993) hst at least hve different uses of cirtificial regressions 

including the calculation of estimated covariances matrices. We will use this device to 

estimate directly the variance between the two estimators without using equality (1.4). 

Furthermore, the application of White's formulae (White, 1984) in the panel data case 

will lead to heteroskedasticity and autocorrelation consistent estimators of such variance. 

Therefore, we can use an artiEcial regression to construct a tes t for the comparison of dif-
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ferent pairs of estimators which is robiist to deviationa from the assimiption of spherical 

distui'bances. Prom now on we wiU call this technique the for Hausman-Robust 

test. 

Next we present the auxihary regression that was proposed by Arellano (1993) to test 

for random versus hxed eSects in a static panel data model. 

Consider the panel data model^ 

2/i — /3+ , z = l,...,7V. (1-18) 
(Txl) (TxK) (rxl) 

This system of T equations in levels can be transformed into (T — 1) equations in devi-

ations and one in averages. We obtain respectively 

= X*/) + ^ (T — 1) equations 

% = ^ 1 equation. 

Estimating by 01,5' the / / ( T — 1) equations in deviations from individual time-means 

we obtain the Groi/pa estimator, i.e. Estimating by the AA average 

equations we obtain the estimator, i.e. 

Let 

= pZzm 

and 

Rewrite the system as 

3/i — 
(1.19) 

^For simplicity of exposition, we exclude the caae when any time-invariant covariates are included. 
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Rearranging, we obtain 

CaU 

2/* — " /̂ bg) + 

% + 

/3̂  
' B, \ 

\ ^2 y 

The augmented auxihary model is 

A* x ; 

\ 

lV,+/)+ + /i+, 2 = 1,...,AA. (1.20) 

If we estimate /?"*" in (120) by OZ'6', we obtain directly the variance of the diSerence 

of the two estimators in the upper left part of the variance-covaiiance matrix of 

Under the aasumption of spherical distmbances a Waid test on appropriate coeScients 

in the auxiliary regressions is equivalent to the standard Hausman test (Arellano, 1993). 

Instead, in this chapter, by estimating the variance-covariance matrix of using the 

White's formulae we obtain a formulation of the Hausman test robust to deviations from 

the assumption of spherical disturbances. Appendix 4.1 provides an analytical derivation 

of this result. The following Lemma is proved. 

L e m m a 2 Given model (1.20), 

) 

y a r ( ^ J = y a r , 

(1.21) 

(1.22) 

(1.23) 
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It is shown that, in order to get a consistent estimate of t he variance, the Erst set of 

equations in system (1.19) has to be scaled.^ 

In what follows, we will clari:^ to what extent an application of White's formulae 

for estimators of covariances matrices (White, 1984) in a panel data context provides a 

consistent estimator which is robust to heteroskedasticity and arbitrary correlation in the 

covariance matrix of the random distmbances. It may also control for the presence of Exed 

eSects. This latter possibility may be accommodated if we make further assumptions, 

i.e. cross-sectional heteroskedasticity which takes on a hnite number of diEerent values. 

Consider a simple panel data framework without individual eSects 

+ Sii 

%2 = , 

UiT ~ P^iT 4" tjT) ^ ~ 1, •••) 

where 

E(6^6j = 

^(7^ . . . 0 ^ 

0 . . . e,T I 

(Txl) 

Assiune that in the complete model 

/ g 0 . . . 0 ^ 

n = f (g) s 
(ATT X ATT) 

0 2 

0 

0 E y 

(1.24) 

^The use of an artificial regression does require yar(3/i) to be constant over % = 1 , W , and diagonal, 
so only heteroscedasticity over time is protected against. More general cases require separate estimation 
of and -
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DeEne 
/ ^ / \ 

X^l Vti 

V.T J 
(Txl) (Txl) 

and rewrite the model as 

% — + Q , 
(Txl) (Txl) (Txl) 

1 , A ^ . (1.25) 

This formulation allows ns to consider panel data in the framework dehned in White 

(1984). If we assmne no cross-sectional correlation and ^ oo, all the hypotheses 

imderlying the derivation of Wliite's results are satisfied. Hence, Proposition 7.2 in 

White (1984, p. 165) applies. 

N 

E = AT-: ^ E (1.26) 
2 = 1 

and 

n. 

However, while with imi-dimensional data sets we obtain heteroskedasticity consistent 

estimators because e, is a scalar, in the two dimensional case is a vector and we obtain 

a consistent estimator of the whole matrix E. Hence, by applying the result (1.26) in the 

panel data case we obtain a consistent estimator of the variance covariance matrix of the 

distmbances that also allows for the presence of dynamic eEects within groups. 

Therefore, the estimators of the variance of the estimators of in the panel data 

model (1.25) can be obtained by 

yar(/3) 
N 

. 2 = 1 

AT 
E 
2 = 1 U=1 

(1.27) 

As stated by Arellano (1993), they are heteroskedasticity and autocorrelation consistent. 
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Such estimators are the ones used in the implementation of the This case is 

referred in White (1984) as cofG?ia?ice 

However, White (1984) also implements consistent estimators in another case that 

takes explicitly into consideration a grouping structure of t h e data. Consider again the 

panel data model (1.25). Replace assumption (1.24) by 

/ 

n : 
(ATTxNT) 

V 

0 

0 Eg 

0 . . . 

0 \ 

0 E N J 

In this context, in a shghtly diSerent notation from that used by White (1984, p.l72-

173), suitable for the panel data framework, we can obtain consistent estimators of the 

covariance matrix H using 

= diagf(Ei, Eg, - - - E/^) 

where 

& -

In other words, a consistent estimator (when jV —oo) for the covariance matrix of 

group z is constructed by averaging the group residuals over only the observations in 

group 2. In the balanced panel data case, their number is constant between groups and 

equal to T. This estimator is not only robust to autocorrelation of arbitrary form within 

groups but it also aUows for the possibility that individual error covariance matrices may 

differ according to observable characteristics (such as region, union, race, etc....). 

1.4 The Size of the Test 

In this section we investigate the size distortion which occurs in the use of the standard 

Hausman test (statistic Ag, formulation (1.3)) when the basic assumptions (Lemma 1) 
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are not satisEed. 

Consider the panel data model (1.1) presented in Section 1.1. The Hausman test 

investigates the presence of specihcation errors of the form ^ 0. The robust 

version proposed in Section 1.3 tests such orthogonality assumption between explanatory 

variables and disturbances in presence of other forms of misspeciScation. In particular 

we aie interested in a possible misspecihcation in the variance-covariance matrix of the 

distinbances arising, for instance, from the presence of measurement errors in variables. 

This case may be the rule rather than the exception in applied studies. 

We want to test the hypothesis 

= 0 (1.28) 

against the alternative 

when 

.^1 : Coi;(a:^(,%) f 0, 

n dehned in (1.5). 

Hausman (1978) shows that imder the test statistic 

(1.29) 

h = irv{qr^q~xl (1-30) 

where y(g) is the asymptotic variance of g, and A; is the length of g. The same test 

statistic is obtained if we consider the vector g equal to 

or$3 = 
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As Haiisman and Taylor (1981) pointed out they are all norrsingular transformat.iorrs 

of one another. The estimate of the variance covarianoe mat r ix used in the three cases is 

o r l / f e ) = m , ) -

ort>(f3) = V{X,) + VC6,,). 

If we cire in presence of misspeciiication of the form (1.29), none of the above expres-

sions gives a consistent estimator of the variance-covariance matr ix, even mider jifg. The 

distribution of the test statistic under 77̂  needs to be investigated. The nominal size 

may be quite diEerent from the observed one. 

To investigate the size distortion under normality, we use t h e distributions of quadratic 

forms in normal random variables.^ In particular, we use the following Lemma.^ 

L e m m a 3 .Lemmo j'.;9 m a; ^ 1/), (y ) < A', 

A 6e GM X TAeM z'Aa; zs (is a 

o/ cM-gg'iiores 'y), w/iere 'y (/le fec^or o/ 

o / A K 

This implies that a^'Az is a chi-squared statistic with r degrees of freedom, where 

r — ranA;(A), if and only if A y is idempotent (Muirhead, 1982, Theorem 1.4.5). 

If A = y^^, i.e. in cases of no misspeciScation, A y is idempotent. The theorem is 

satisfied and result (1.30) holds. The test statistic gives correct significance levels. 

If A ^ y^^ but A y is idempotent then ran-A; (A) < A' a n d / o r ran-A; ( y ) < .fC but still 

(1.30) holds. We omit this caae for simplicity of exposition. 

If A y^^ and A y is not idempotent, implying that t he eigenvalues of A y are not 

0 or 1, the asymptotic distribution of the Hausman test under Tifo is a weighted sum of 

''See. among others, Muirhead (1982, Ch. 1), Johmson and Kotz (1970, Ch.29). 
^This Lemma holds also in the asymptotic case (using the Continuous Mapping Theorem, e.g. White, 

1984, Lemma 4.27). 
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central chi-squares 

where ^ and are the eigenvalues of AK This implies that the signihcance levels 

of the standard Hausman test are not correct. 

Consider 6rst the hmiting case where ^ 0, % = 2,..,A". Figure 1-1 

illustrates nimierically that 

Pr 

where is the critical value for a test of size a under t he distribution. In this 

illustration a is set equal to 0.05. 
K 

In general we distinguish two effects: a scale eSect if 12 which is predictable 
t=i 

K 

(e.g. if = 2 V ^ 2%^) and a dispersion eSect if even if I ] di = We 
i=l 

normahze the weights and we conjecture that the dispersion eSect is maximized in the 

limit if we put all the weight on the largest eigenvalue, say t he hrst one. 

Figme 1-1 illustrates this case, i.e. the tail area of a is compared with the maxi-

mum tail area of The graph shows that the size distortion is an increasing function 

of For instance, if A' is equal to 14, an inappropriate use of the Hausman test will 

give a probability of rejecting a true hypothesis of exogeneity which is almost 4 times 

larger than the nominal size. 

In certain simple contexts an expression for the eigenvalues of yll/ can be analytically 

derived. For instance, a common source of misspecihcation in the variance covariance 

matrix occurs when the regressors contain measmement errors. 

Suppose the true model is 

^ ; % = 1,...,7V, ^ = 1,...,T' 

where is a x 1 vector of theoretical variables, 7)̂  (o, (0,cr^) 
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Figure 1-1: Pr > %K.a=0 .05 
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imcorrelated with and Cof = 0. The observed variables are 

= -Zit + m-tt, 

where is a vector of measmement errors imcorrelated with 7;̂  and f;*. The estimated 

model is 

+ ^ = (1.31) 

In the case of exact measurement, i.e. mi* = 0, 

yar(^«t) = E(% + %)^ = o-̂  + cr̂ , 

Go?;(i/i(, 2/it-,) = Co^(a:L/^ + + %-a) 

= o"̂  Vs. 

The variance-covariance matrix is matrix (1.5). It can be written as 

Z = ® n , 
(NTx̂ VT) 

where 

and 

If we assimie that zW (0, E ^ ) , we obtain 

yar(2/it) = E(77̂  + = 0-̂  + 0-^+ /3'EM/), 

= (7̂  Vs ^ 0. 
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So 

and 

th = 
cr: 

0-2 + 

Consider now the exogeneity test based, for instance, on the comparison between and 

. In this case, the measurement errors render and inconsistent. If we assume 

that 

- /)) = - /3) = [22Qz/(T - 1) + 2 M ] ' ' 

O'Brien and Patacchini (2003) show that, in the normal case, 

^ A^(0, [1/(T - 1)} [2zQz/ ( r - 1) + S M ] - ' X 

(7̂  + /) '2A//))2zOz/(r - 1) + + (/3'Zjv^/3)SM}' X 

.SzQ2/(T' — 1) + ^ + ^Af] ^ X 

+ ((;' + + (;0'SM,8)SM}] 

EzMZ + E ^ ] ^), 

where 

N 

2=1 

N 

2=1 

Si 

-iT 
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and Q and M are deEned in (1.6). The Hausman test 

— (^lug — + ^G,^(^ba) (^wg " Ag) 

= - A J + NVSr(0,,)\ViV(3,„, - 0J 

will have the same asymptotic distribution as 

ha = -/niJS,,, - PiJpYim [a'17S-(3.„ 1 + N^riP,,)] ' - g , , ) 

O'Brien and Patacchini (2003) also show that 

;vyar(/3^,) 

p 2 Q z + ( T - l ) E M ] - ' 

( T - 1 ) 
X 

and 

A - ,0'EM pZMZ + EM]" ' X 

PzMX + Eykf] ' . 

Thus in terms of the notation of Lemma 3, for the asymptotic distribution, 

y = [ l / ( T - l ) } p z Q z / ( T - l ) + 2 M ] - ' x 

(7̂  + ^'EM/3)E^Q^/(T - 1) + + (/^'SM/))^^}^ x 

[EzQ^/(T - 1) + SM]- ' + PzMZ + ZM]- ' X 

[Tcr^E^MZ + (o"̂  + + (/) EM/))EM}] 

ZMZ + 
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and 

A 
{<7̂  + ^M/)} >( P z Q z + (T — 1)3^] 

+{T^2 ^2 ^ + g ^ ] - l X pzMZ + SM]"' 

Consider Erst the case when /3 = 0. 

y [ l / ( r - 1)] [EzQz/(T - 1) + 2M]- ' X 

o-"2zQz/(T - 1) + (z'SM] X [2zQz/(T - 1) + 

+ PzMZ + ^ X [Tcr^E^MZ + PzMZ + ^Af] 

[ l / ( T - l ) k ^ [ E ^ Q z / ( r - l ) + Z M 

+ PZMZ + + cr ) [Z^MZ + ^Af] [ZzMZ + 

[1/(T - 1)](7^ [EzQz/(r - 1) + EM]-' 

+ (T(7! + ,7") pzMZ + EM]-' , 

A = 0-" PzQZ + (T - 1)EM]-' + {r,?! + (7^} X [EzMZ + EM]' 

So v4y = f . As a check, when ^M = 0, 

y = - 1)} [EzQ//(T - 1)]-' + + (7 ]̂ [E^Mz] 

A + {To-; + (7''}E^: 2i \-i-l 

which can be compared with the results contained in Appendix 3.1. 

NowletEQ = E z Q z / ( r - l ) , = c=EMA (7**̂  = <T*̂  + T(7;, so 

y = [ l / ( r - 1)] [Ep + EM]-' k*"[EQ + EM] + cc'l [Eq + EM]"' + 

[E ZMZ + EM O"*' [E^MZ + EM] + cc' [E^M^ + ^M] 

— [1/(7^ — 1)] + EM] ' + + 0'**^[E^M'Z + ^M] ' + 6e' 
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where d = [Eg + ^ c, and e = ^c. These a re just the inconsistencies, 

which we ai'e assuming equal. 

A 
l / ( r - - c' p Q + SM]- ' c} X [Eg + Ey M 

+ {,7-2 - (/ [EzMZ + EM]"' C} X [E^MZ + EM] 

The simplest case to examine is when Eg = E^MZ Ag 

EpM = Eg + EM = EzMZ + EM- Noting (f = e, we have 

y = (T+^EgM'^ + 

where 

a +2 [i/(r -1)](7*2 + (7**̂  
[ T / ( T - l)](7*2 + To-, 

and 

A = [(7++"EQ]^]-' 

cr++2 — [ 1 / — l)]{o'*^ — c'^QMc} + o-''^ — c'E^j^c, 

= [ r / ( r - i ) ] K 2 - c ' E Q L c ] + T(r;. 

A y has the same eigenvalues as 

y^l/2y^l/2 a +2 

(T̂  ++2 """ g.++2 

and has — 1 eigenvahies of 

A: = cr"'" /o" +2 /^++2 
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and one of 

= A;+(2/(7++")^'EMEg]^2M/). 

Thus the size distortion depends on scalar quantities, 

k = 
a 

+4-2 1 — A;* cr 

^+2 _ ^++2 

^+2 M 

and the larger root is 

++2 + ^++2^*^^^ - 1 _ -cr 

,3'E„EQi,E,„,3 = [ E ; f ( E g + E , v , ) - ' S i f ] E i f ,3 

= /3 'E ; / , - lE2 ; "EgEi , "V/ ] - iE i f / ? . 

If we now consider 

T = 

from model (1.31), 'y is the vector of parameters in the model 

— 
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where 

V^l < 1 

, Mi = 
< 2 

the rows of M, are A^fD(0,f), Z* 

Z^M+Z, = M+ is defined in (1.6). 

Thus, 

/ 7 * Y^1/2 

k* 1/2 r + 2 

Y P Z'MZ" + ^/ [T/(r - !)]{(;*" + Y-y} + (1.32) 

where Sz'MZ' — 1/2̂ 1 Ŷ  —1/2 
[ ' 

The components of the variance of 2/it are 

l^ar(?/^t) = -yY + cr̂  + cr̂ . 

So an interpretation of our result is that if one talces one component of the variance, 

'y''), downweights it by the between sums of squares of the unobserved 'true' variables (in 

the model with standardised meeisurement errors), to produce Y [Eg-MZ* + -̂ ] ^7, then 

the 'size' distortion depends on A;*, as in (1.32), and the asymptotic distribution of the 

Hausman test is not %^, but a weighted sum of A!" %i, — 1 weights being 1/(1 — A;*), 

with one of [1 + 3A:*/(1 — A;*)]. It alao foHows that a lower bound to the distortion is 

provided by multiplying a by 1/(1 — A;*). 

A nimiber of qualifications are in order. This only occurs if the inconsistency of within 

and between estimators is equal, and, fiu-ther, the within groups sum of squares matrix. 
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Figure 1-2: 'size' fa 

and between groups sum of squares matrix, are equal: 

E _ Eg, _ j i ^ 1 g 
N 

The equality of —/)) and —/)) is required to ensure that the asymptotic 

'size' is not 1. (Thus the Hausman test can be regarded as a (consistent) test of equality 

of these 'inconsistencies'). The equality of and Eg simphfies the result and is an 

aid to interpretability. We also assimie that the rows of the measurement errors, are 

7V/D(0,2M)- Some assumption about fourth moments is required, and this appears the 

simplest. 

We can plot the size distortion for assumed values of T, Y^ , Y 

and o"̂ . If T = 5 or 10,1 < < 10, Yy = l,cr^ = — 0.1, and Y [Sz'MZ- + -̂ ] ^7 = 

0.5, we have Figure 1-2, evahiated by Monte Carlo (1 million replications). 



We can relax the assumption that Eq = by observing that y is of the form 

y = + AjgC + (f d* 

and A is of the form 

where 

A = (/cgB + A;4C) -1 

B 

d* 

^3 

/b4 

= p Q + ^M] \ G = [ Z 2 M / + ^M] ^ 

= { a - ^ - c ' C - ^ c } , < ; u 2 

and g and C are positive definite. We see that A is "too small", and the test will be 

oversized. 

Let 

D = = f A f ' 

where P is orthogonal, A diagonal, with as diagonal elements the eigenvalues of D. 

Then 

A 

39 



and thus 

= + A;4A ]̂" )̂{dMp(A:i + A;2Â ) 

_^p/^-l/2^*^w^-l/2pj_jp,^l/2 

which has the same eigenvalues as 

r /^1 + ^2^2. 

The second matrix haa rank 1, and the eigenvalues of the whole matrix are bounded 

between the smallest of A;ôi = (A:i+A;2Ai)/(A;3+A:4Ai) and the largest of (A;3+ 

^4Ai). Ai are the eigenvalues of D = or of = [Zg + + 

SM]-' . p Q + EM]"' C = [SzMZ + EM]-'c = B c - C c 

= { T / ( r - l )}c 'Bc = { r / ( T -

= { T / ( T - l ) } Y [ 2 z . M z . 

C2 = (7**̂  = (7*^+T(7 
V 

2 , _/rv^ I n - i A:3 = 1/(T - - c 'B-^c}=l / (T - 1) - Y pz-MZ- + /] 7 

A;4 = K * " - c r - ^ c } = (7" + Y7 + 7 ' ( ^ ; - Y P z . M z . + / ] ' S < ; : 2 

<A;i 

Thus 

(7+^ = [ l / (T-l) ] (7*^ + o-**̂  = A;i + A;2 

cr++^ = [1/(3^ — " c'SQ^c} + (7**̂  — c^EQMC=A:3 + 
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_ + A;2A2 _ /ji + A;2 + — 1) 
A;̂  + A;̂  + — 1) 

_ o-+^[l + A;2(Â  - l)/o-+^] _ ^ [1 + ^2(Ai - 1)/(T+^] 
cr++2[l + A:4(Â  - l)/o-++2] [1 + A;4(Â  - l)/(7++^] 

Thus comparing this case with the B = C case, we are introducing more variability into 

the eigenvalues, which as we have seen , may well increase the 'size' of the test. (Thus the 

'size' is sensitive to the relative magnitude of the intra-group and inter-group variations 

of the covariates, and Z^Mz)- Our conclusion is somewhat dispiriting: a signiScant 

Hausmein statistic may arise from measmement error, as it is implicitly comparing the 

inconsistencies: but cannot be used to test if the inconsistencies are equal, as the 'size' 

may considerably exceed its nominal value, even when the inconsistencies are equal. 

1.5 A Power Comparison 

The possible serious size distortion of the standard Hausman test motivates the formu-

lation of the Using the White (1984) estimators for the variance-covariance 

matrix, the test is robust to the presence of common sources of misspecihcation of the 

variance-covariance matrix, i.e. to arbitrary patterns of within groups dependence. In 

other words, using the notation in Lemma 3, A y is idempotent and the nominal size is 

equal to the observed one. We now use a simulation experiment to investigate the relative 

power of the standard Hausman test and the We are interested in a quantitative 

assessment of the possible power loss that may incur in using a robust version of the test, 

in absence of misspecification. 

The postulated data generation process is the following. 

We consider the model 

-t- , % = 1,..., ^ — 1,..., T, 

where the disturbance term consists of two independent components: a unit-speciEc 
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eSect, 7̂^ and a white noise component, : 

+ &f 

The mill hypothesis of the Hansman test is 

Co'u(%,'Utt) = 0 and = 0. 

We assume z exogenous variable and we generate a; correlated with it, so that the null 

hypothesis above is not satisSed. We consider 

~ ~l~ (1.33) 

w is an exogenous variable and ("u, e) are drawn from a bivariate normal distribution with 

a speciEed correlation structure. 

The values for the exogenous variables and the range of values for the pareimeters 

are taken from the empirical case of study analyzed in Chapter 2. Using UK data, the 

following model is estimated. 

logA^t = a + a ! l o g % + / ) l o g % t + e t̂, 2 = 1,...,275; t= : l , . . . , 63 , 

where M is the nimiber of hirings, [/ and y are the stocks of unemployed aud vacancies 

respectively, o is a constant term, e indicates a disturbance term. The estimates of a 

and /3, 0.5 and 0.4, have been used in the simulation experiment for 'y and vr respectively. 

Also, the best prediction for the stock of vacancies is 

logyt = 1.21ogA/^l^t, 2 = 1, ...,275; t = l , . . . , 6 3 

where is the number of monthly noti&ed vacancies (Sow variable). In our experiment, 

the real values for [/ and # y have been used as exogenous variables, i.e. respectively 
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z and w. The endogenous variable, V, i.e. z, has been constructed according to the 

structiue (1.33): 

= 1.2W;t + 

The equation estimated is 

= 0.5a;it + 0.4% + 

where are constructed as draws from a bivariate normal distribution with the 

specified correlation coefficient r/io of (0,0.05,0.10,.. . , 0.95). 

Six sample sizes, typically encountered in apphed panel da ta studies are used. The 

experiment is repeated 5000 times for each sample size an.d level of correlation. Figures 

1-3 to 1-5 contain the results of the simulation experiment. The power is expressed in 

percentages. 

The tables displayed compare jiLpow, the power of the standard Hausman statistic 

(77-^63^): 

with the power of the robust Hausman statistic (^72-(ea() obtained using the 

auxiliary regression detailed in Section 1.3: 

- ^69) , 

with diEerent sample sizes. Figures 1-6 to 1-11 contained in Appendix 5.1 illustrate 

the relative power functions. The significance level has been 6xed at 5%. is the 

estimated level of correlation between a; and it conditioned upon w. For each level of 

r/io, and indicate the percentage of times v:e reject a false hypothesis 

if we use the or the respectively. In Tables 1, 2 and 3 the number of 

cross-sectional imits is held fixed at 25 and the number of t ime periods is varied between 

4, 10 and 20 respectively. In Tables 4, 5 and 6 the number of cross-sectional units is held 

fixed at 275 and the number of time periods is varied respectively between 4, 10 and 
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T & b l e 1 : N=2 5 , T=4 

rho rho^ H_ X)W HR_ _pow 

0 . 0 0 0 00 4 . 90 4 . 80 

0 . 0 5 0 03 5 . 10 4 . 90 

0 .10 0 06 7 . 90 7 . 40 

0 . 1 5 0 09 9 . 20 9 . 30 

0 . 2 0 0 12 14 40 13 80 

0 . 2 5 0 15 19 90 20 90 

0 . 3 0 0 1 7 25 50 26 80 

0 . 3 5 0 20 32 20 32 50 

0 . 4 0 0 23 34 50 38 50 

0 . 4 5 0 26 43 60 45 80 

0 . 5 0 0 29 50 1 0 5 7 40 

0 . 5 5 0 32 70 1 0 70 80 

0 . 6 0 0 3 5 78 20 79 90 

0 . 6 5 0 37 8 7 90 89 70 

0 . 7 0 0 40 94 1 0 92 70 

0 . 7 5 0 43 98 50 98 90 

0 . 8 0 0 46 99 90 100 .00 

0 . 8 5 0 49 100 .00 100 .00 

0 . 9 0 0 52 100 . 00 100 .00 

0 . 9 5 0 55 100 . 00 100 .00 

T a b l e 2 : N - 2 5 , T = 1 0 

rho rho'^ H_pow HR_ pow 

0 . 0 0 0 00 4 . 60 4 . 50 

0 . 0 5 0 04 6 . 50 5 . 40 

0 . 1 0 0 08 8 . 10 6 . 10 

0 .15 0 11 1 2 50 9 . 20 

0 . 2 0 0 1 5 1 6 40 1 3 90 

0 . 2 5 0 17 20 60 20 10 

0 . 3 0 0 21 25 40 2 7 50 

0 . 3 5 0 25 3 1 50 3 2 50 

0 . 4 0 0 28 40 10 43 30 

0 . 4 5 0 32 50 20 5 5 50 

0 . 5 0 0 35 57 20 61 90 

0 . 5 5 0 39 7 0 20 72 70 

0 . 6 0 0 42 82 40 85 40 

0 . 6 5 0 46 88 60 90 00 

0 . 7 0 0 49 99 80 96 7 0 

0 . 7 5 0 53 99 90 99 40 

0 . 8 0 0 56 99 90 99 90 

0 . 8 5 0 60 100 . 00 99 90 

0 . 9 0 0 64 100 . 00 100 .00 

0 . 9 5 0 67 100 . 00 100 .00 

Figure 1-3: Simulation Results 
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T a b l e 3 : N=25 , T= 2 0 

rho rho'^ H_pow HR„pow 

0 . 0 0 0 00 4 . 80 4 . 7 0 

0 . 0 5 0 04 6 . 80 5 . 9 0 

0 . 1 0 Q 07 9 . 00 8 . 1 0 

0 . 1 5 0 10 17 80 1 6 . 5 0 

0 . 2 0 0 14 2 7 80 2 7 . 0 0 

0 .25 0 18 36 10 3 6 . 4 0 

0 . 3 0 0 21 46 20 4 8 . 1 0 

0 . 3 5 0 25 66 20 6 6 . 5 0 

0 . 4 0 0 28 7 9 00 7 9 . 6 0 

0 . 4 5 0 32 87 20 8 7 . 9 0 

0 . 5 0 0 35 95 00 93 . 90 

0 . 5 5 0 39 97 80 9 7 . 7 0 

0 . 6 0 0 42 99 1 0 9 8 . 7 0 

0 . 6 5 0 46 99 90 9 9 . 8 0 

0 . 7 0 0 50 99 90 1 0 0 . 0 0 

0 . 7 5 0 5 3 100 .00 1 0 0 . 0 0 

0 . 8 0 0 57 100 .00 1 0 0 . 0 0 

0 . 8 5 0 60 100 .00 1 0 0 . 0 0 

0 . 9 0 0 64 100 .00 1 0 0 . 0 0 

0 . 9 5 0 67 100 .00 1 0 0 . 0 0 

T a b l e 4 : N=275y T =4 

rho rho'^ H_pOW HR_pow 

0 . 0 0 0 00 4 . 90 5 . 0 0 

0 . 0 5 0 03 6 . 30 6 . 4 0 

0 . 1 0 0 06 9 . 60 8 . 8 0 

0 . 1 5 0 09 18 20 17 .60 

0 . 2 0 0 11 29 10 28 . 90 

0 . 2 5 0 . 15 45 10 4 8 . 1 0 

0 . 3 0 0 . 17 57 20 62 .50 

0 . 3 5 0 20 72 40 7 8 . 2 0 

0 . 4 0 0 . 23 86 00 8 9 . 1 0 

0 . 4 5 0 . 26 93 60 9 6 . 2 0 

0 .50 0 . 29 97 90 9 8 . 0 0 

0 . 5 5 0 . 32 99 80 9 9 . 8 0 

0 . 6 0 0 . 34 99 80 1 0 0 . 0 0 

0 . 6 5 0 . 37 100 .00 1 0 0 . 0 0 

0 . 7 0 0 . 40 100 . 00 1 0 0 . 0 0 

0 . 7 5 0 . 43 100 .00 1 0 0 . 0 0 

0 . 8 0 0 . 46 100 .00 1 0 0 . 0 0 

0 . 8 5 0 . 49 100 . 00 1 0 0 . 0 0 

0 . 9 0 0 . 5 2 100 . 00 1 0 0 . 0 0 

0 . 9 5 0 . 55 100 .00 1 0 0 . 0 0 

Figure 1-4: Simulation Results 
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Table 5: N = 2 7 5 , T = 1 0 

rho rhô  H _pow HR_pow 

0 00 0 00 5 - 00 4 ^ m 

0 05 0 03 9 - 80 6 ^ ^ 

0 10 0 06 26 10 1 5 ^ ^ 

0 1 5 0 09 6 1 00 3 4 ^ ^ 

0 20 0 12 87 80 5 5 ^ ^ 

0 25 0 15 97 80 7 4 ^ ^ 

0 30 0 18 98 90 8 6 . 5 0 

0 3 5 0 20 99 80 9 3 . 4 0 

0 40 0 23 99 90 9 7 ^ ^ 

0 45 0 26 100 . 0 0 9 8 . 9 0 

0 50 0 29 100 . 0 0 9 9 . 9 0 

0 55 0 32 100 . 0 0 1 0 0 . 0 0 

0 60 0 3 5 100 . 0 0 1 0 0 . 0 0 

0 65 0 38 100 . 0 0 1 0 0 . 0 0 

0 70 0 41 100 . 0 0 1 0 0 . 0 0 

0 75 0 44 100 . 0 0 1 0 0 . 0 0 

0 80 0 47 100 . 0 0 1 0 0 . 0 0 

0 85 0 50 100 . 0 0 1 0 0 . 0 0 

0 90 0 5 3 100 . 0 0 1 0 0 . 0 0 

0 95 0 55 100 . 0 0 1 0 0 . 0 0 

Table 6 ; N = 2 7 5 , T - 2 0 

rho rho* H_pOW HR_pow 

0 00 0 00 5 . 10 4 ^ ^ 

0 05 0 03 1 8 . 40 6 ^ ^ 

0 1 0 0 06 5 9 . 70 1 8 . 9 0 

0 1 5 0 09 9 1 . 10 4 0 . 1 0 

0 20 0 1 2 9 9 . 80 6 2 . 4 0 

0 25 0 1 5 9 9 . 90 7 5 . 5 0 

0 30 0 18 9 9 . 90 8 7 . 4 0 

0 3 5 0 20 100 00 9 4 . 1 0 

0 40 0 23 100 00 9 8 . 9 0 

0 45 0 26 1 0 0 00 1 0 0 . 0 0 

0 50 0 29 100 00 1 0 0 . 0 0 

0 55 0 32 100 00 1 0 0 . 0 0 

0 60 0 3 5 1 0 0 00 1 0 0 . 0 0 

0 65 0 38 100 00 1 0 0 . 0 0 

0 70 0 4 1 100 00 1 0 0 . 0 0 

0 75 0 44 100 00 1 0 0 . 0 0 

0 80 0 47 100 00 1 0 0 . 0 0 

0 85 0 50 100 00 1 0 0 . 0 0 

0 90 0 53 100 00 1 0 0 . 0 0 

0 95 0 56 1 0 0 00 1 0 0 . 0 0 

Figure 1-5; Simulation Results 
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20. Tables 1 to 4 show that the performance of the is comparable with the one 

of the even better for values of r/io greater than 0.3. In larger samples (Tables 

5 and 6) the performance of the is superior but the power loss of the is 

not serious. The gives a veiy high rejection frequency for the false hypothesis 

of absence of correlation between a; and 2̂ , starting from levels of correlation around 0.3 

(86.5% and 87.4% respectively in Tables 5 and 6) and it detects the endogeneity problem 

ahuost surely as soon as is higher than 0,4 (97.9% and 98.9% respectively in Tables 

5 and 6). Taking the results as a whole, if one excludes cases of small values of r/io, the 

simulation experiment provides evidence that the performance of the in terms 

of power is satis:^ing in large samples and even better than t he one given by the 

in small samples. 

In addition, it is worthwhile noting that a version of the Hauaman test implemented 

in most econometric software, which is generally used in empirical studies, is the one 

based on the comparison between and i.e. 

( ^ 9 " -

The problem with this approach is that, in Bnite samples, the difference between the 

two estimated variances of the estimators (i.e. — m a y not be positive deSnite. In 

this cases, the use of a code implementing a different Hausman statistic or the formulation 

of the Hausmaji test using an auxihary regression (e.g. the one proposed by Davidson 

and McKinnon (1993, p. 236), which is now already implemented in some statistical 

packages, e.g. a Stata 7 extension, or the (robust) one presented in this chapter) are the 

only possibilities to get a test outcome. 

1.6 Conclusions 

This chapter has presented a methodological revision of the use of the Hausman test for 

correlated effects with panel data. The relevance of the discussion is both theoretical 
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and empirical. Prom a theoretical point of view, it is shown that the assumptions in 

Lemma 2.1. in Hausman (1978) are sn&cient but not necessary. In particular, it is 

demonstrated that the attainment of the absolute Fisher lower bound can be replaced by 

the attainment of a relative minimum variance bound. From an empirical point of view, 

the main imphcation of this chapter is a on the use of the standard Hausman 

test framework for correlated eSects in apphed panel data studies. The assumptions 

underlying the construction of the Hausmein statistic (Hausman, 1978) may be rarely 

satished in empirical work. An analytical investigation of the size of the test shows 

that, at least in some cases, the distortion is substantial. The econometrics of panel 

data oSers a variety of estimators for the same parameters. Our recommendation is to 

use the Hausman test framework for the comparison of appropriate pairs of panel data 

estimators and to construct a version of the test robust to deviations from the classical 

errors assumption, as proposed in this chapter. This test, the gives correct 

signihcance levels in common cases of misspeclGcation of the variance-covariance matrix 

of the errors and has a power comparable to the Hausman test when no evidence of 

misspecihcation is present. The power of the is even higher in small samples. It 

can be easily implemented using a standard econometric package. 
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1.7 Appendix 1.1 

Lemma 4 ^ (2 are eâ zmô org 0/ ^ E fanance 

Zeoâ  m (/te ae^ 

T = {t : t = Ati + (I — A)t2} 

(/ten, 

Co'u(ti,^ — ti) — 0 

wAere I M (/te WeM(2̂ ^ ma^nz, 0 a ma^na;, amd A E 2s 

Proof . 

t — Ail + (I — A)^2 = 1̂ + (I ~ A)(^2 — ti) 

= 1̂ + Bo(, say, B E 

yGr(i) = E { [ t i - ^ + B d ] [ ( i - ^ + B(fy} 

= y(zr((i) + (f)B^ + BCcw((f, ^i) 4- Byor((f)B'. 

Thus we can write 

yar(() - yar(ti) = CB' + BC' + B D B ' . 

The minimimi variance property of imphes this diEerence is positive semi-deSnite, and 

thus for every A E and B E 

Q == A' (CB' + B C + BOB') A > 0. 

However, for the particular case of 

B = - C D 
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Q = y ( - C D - ^ C - C D - ^ C ' + C D - ^ D D - ^ C 3 A 

= y(-cD-^c3A 

which satisSes the required inequality if and only if 

C = 0. 

Rirther, for any B G 

t — t\ = Bd, 

—ti) = C B ' = 0 . 

Remark 5 PKe ea;c/?/(fe c&se wAere D za aa m t/iat case repZacm^ 

wzt/i a paei/cZo-mferge D""" g-ucA t/iot D'^'DD'^ = D+ reî eaZa tAot aZZ t/iat za regifired 

CD'^'C = 0, or t/iat C Aoa rowa ortAopoMoZ to t/ie e^peMDectora o/ D coTreapoMcZmg to 

tAe MOM-zero roota. v4a an, ezamj)Ze^ coMaWer t/ie caae wAere aoTTie eZemeMta o / t i oTid tg 

comcWe. i t %a azmpZeat to e];cZ /̂(fe t/ie comc^deMt eZemeMta, azid oppZ^ tAe orp^^meMt o^oive 

to tAe reo(?/ce(f fectora ao /oTTned. 

Remark 6 TMa Zemmo zmpZzea tAat tAe MF wM ẑoaecZ eatzmotor %a t̂ McoTreZated w%tA %ta 

d^j^erence /rom otAer ifnbzoaed eat^mator, OMcZ tZie M F Zmeor ẑM ẑoaeff eatzmotor %a 

!/MC07TeZote(f azmzZorZ .̂ 

We next show that a set of the form T in Lemma 1 contains a minimum variance 

estimator. First, it is convenient to re-write the basis of t h e set in terms of ti and tg, 

where Co'u(t3,ti) = 0. 

Lemma 7 7/ti GMcZtg are ?/M6%aae(Z eatimotora o/^ E witA coi/or̂ GMce motTii 
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T = {t : t = Ail + (I — A)^^} 

COM aZso 6e m (erma 0/ ancf 

3̂ : B^i 4- (I — B)t2 

Ccw(t3,^i) = 0 

as 

T = \t : t = Cti + (I — C)fg} 

B = _ V 2 i ( V , , - V 2 i ) - \ I - B = V i i ( V , , - V 2 i ) 

V21' - v r , : yar((3) = -DVr i^D ' + DV2i^V22V^2^D% D = 

C = A ( V , , - V 2 i ) + I - C = (I - A ) ( V , , - V i 2 ) V - ' 

yar(^) = C V i i C + (I - C)yar(^3)(I - C)' 

P roof . 

Now 

Co?;(t3,ti) - E{[Bti + ( I - B X 2 - ^ ] ^ i - ^ ] l 

_ B V n + ( I - B ) V 2 i 

= - V 2 i ( V , , - V 2 i ) - ' V n + V i i ( V , , - V 2 i ) - ' V 2 i 

V n ( V , , - V 2 i ) - ' V 2 i l = V ^ X V n - V 2 i ) V 11 

V2/ - vn' 

51 



and 

V 2 i ( V , , - V 2 i ) - ' V n " = V [ l X V n - V 2 i ) V . 21 

It follows that 

V „ ( V i i - V 2 , ) ' ' V 2 i = V 2 i { V „ - V 2 i ) " ' V n (1.34) 

and thiis 

To find yar(t3), as 

= 0 

t ' i — B t i + ( I — 1 3 ) ^ 2 

y a r ( ( 3 ) = B V n B ' + ( I - B ) V 2 i B ' + B V i 2 ( I - B ) ' + ( I - B ) V 2 2 ( I - B ) ' 

B V n B ' = V 2 i ( V i , - V 2 i ) - ' V n ( V n - V 2 i ) - ^ ' V 21 

(I - B)V2,B' = _ V n ( V , , - V 2 i ) - ' V 2 i ( V n - V 2 i ) - ' ' V 21 

Identity (1.34) implies equality between these expressions. 

BVi2(I - B)' = - V 2 i ( V , , - V 2 i ) - ' V i 2 ( V , , - V 2 i ) - ' ' V n 

Transposing (1.34), this becomes the same aa the expression for B V ^ B ' . 

( I - B ) V 2 2 ( I - B ) ' = V u ( V , , - V 2 l ) - ' V 2 2 ( V i , - V 2 l ) - ^ ' V 11 

This suggests writing the matrix in (1.34) as 

D V21' -
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to give 

yar((3) = - D V r i ' D ' + ( V ^ J " ' D ' 

Remark 8 v4pam, we ore Mon-am îtZan^ ,̂ m poT^ ĉuZar 0/ V21. Ofie cô Ẑd 

appZi/ ^Ae a^epa abotie zero a smpZe MOM-zero eZemeM^ 0/ V21, 6^ a/id tz 

^0 t/ie correspoMdm^ eZemeH^a. ^epeo^ed wo2/Z(f (/ten repZoce V21 0 MifZZ 

moMa;. 

We can now show that T always contains a minimum variance unbiased estimator. 

Lemma 9 jy an,d 2̂ ^ as m Z,emma 7 V12 = 0 (/ten, t Aos 

mmzmi/m fOMGMce w T %/ 

A = ( v r / + v , t ] - ' v - ' 

Proof. Let this value of t be the corresponding A b e , and = yor(tM). 

Let 

AM= E V r i \ =4.1 - AM= 

We have 

yar(^M) = EV-^Vi iVr ,^E + EV^^V22V^ iE 

E V r / + E = E. 

Moreover, 

— ^2) — Cm;(AM^i + (I ^ ^ ^2) 

= S[{EV-i(i, -6)+ BV,:,ife - 0)}[t[ - 4}J 

= i 3 [ E ( V - ' V „ - V j j ' V z j ) ! = 0 
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If ^ 6 

Thus 

t = Ati + (I — A)t2 

= (Ajv/ + A — Ajv/)ii 4- (I — Ajv/ — A + Ajv/)i2 

= + (A — AM)(^1 — ^2) 

Var(t) = Var(t]\,f) + (A — A.j[/j)Var(ti — (2) ( A — A-m) 

and thus exceeds yGr(tM) by a positive semi-de&nite diSerence, and thus is 

the minimum variance estimator in T . m 

Finally, we establish the large sample equivalent of Lemma 1. 

L e m m a 10 

D 
(0, 

Vii V12 

V21 V22 

w/iere V n M fanoMce', Aiiar, aM(fVi2 coi/onoMce' 

o/^i GTid ^2, Aco'u(ti,t2)- mmzm'uni t;armMce m (/le cZasg 

T = {( : t = At i 4- (I - A)^2}, A yZa;ed, 

- 6)̂ ) —»- (0, 
V n 0 

0 y a r ( t ) - V i i 
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Proof. Let ^j 
h I 0 tl 

, so, as = 
I 0 

2̂ ^ - I I 2̂ - I I 

I 0 

- I I 

D 

D 

(0, 

(0, 

Vii Vi2 — Vii 

V21 — Vii Vi i — V12 — V21 + V22 

V i i c 

C D 

),8ay 

Ati + (I — A)t2 = + (I — A)(t2 — ^i) 

tl + B ( f , say, B E 

td 
tl I 0 

t I B 

I 0 

I B 

h 

t 

so we can write 

= 
I 0 

I B 

D 
(0, 

Vix V i i + C B 

Vii + B C Vii + B D B ' + B C ' + CB' 

AfGr(t) — ar(ti) = CB' + BC' + B D B \ 

(1.35) 
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The mimmiim variance property of imphes this di^erence is positive semi-de&nite, and 

thus for every A 6 and B E 

Q = y ( C B ' + B C + B D B ' ) A > 0. 

However, for the particular case of 

B = - C D - " 

Q = y ( - C D - " C ' - C D - " C + C D - " D D - " C ' ) A 

= y(-cD-"c3A 

which satisfies the required inequality if and only if 

C = 0. 

Further, for any B E 

t — ti ~ Bd, 

so as 

I 0 h 

0 B d 

h I 0 
- 6"̂ ) = 

t — tl 0 B 

D 
(0, 

V i i 0 

0 B D B ' 
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where, as C = 0, = V12 = V21, D = V22 — V ^ . Moreover, from (1.35) 

yGr(^) = B D B ' + Vi i ^ yar(^ - ^i) = B D B ' = yor(^) - yQr(^i) 

as required, m 

Remark 11 T/ie A mn 6e replaced 6^ a stocAoa^ic mo^na: A^ 

pZ2m(AM) = A 

Remark 12 iTAw Zemmo M y eg^zma^or 

coTTe/â ecf m ZoT̂ e aompZeg (f^j^ereMce /rom o^/^er ea^imo^or. 

1.8 Appendix 2.1 

In this Appendix we give further details about the expression for yar(2/i) used in Section 

1.2. 

As 

Vdvitj-l^ = fij = CT Ix 4" ! 

we can use the formula (see, e.g., Golub and van Loan (1983, p.50)) 

(A + c /y^)-^ = - A-^[/(7 + y ^ A - ^ [ / ) -

which simpliSes for vector t/, n to 

(A + tti;^)"^ = ^ 
1 + 'U-' 

It follows that, if ^ = (7 /̂(7^ 

Vti = <7 \IT + OlL ] = CT IJ' ^ rjnQ 
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= a 7^ — 
cr: - 1 

-Li 

1.9 Appendix 3.1 

In Section 1.2 we focused our attention on the Hausman test constructed using the con-

tract between the and the BaZestm-JVeHofe estimators. In this Appendix 

we show the derivation of the Hausman statistic for the comparison between the 

and the Grot/pa estimators. Using the notation in Section 1.2, the 

Betweefi Grotfpa estimator can be written as 

The variance is 

— 1 _ X ' M ( y o r y ) M ' % ;vr M X 
-1 

Ftnther 

yar(M+?/,) = M+yGr(%)M+' = (7^M+ M+ 

= [/T + ^TM+] M+ = (7^(1 + g r ) M + , 

where 0 = cr^/cr^. Thus 

y a r ( M y ) = ,7^(1 + ® M+ = (7^(1 + gT)M. 

y a r ( % , ) = (7^(1+ g r ) 

= (7^(1 + g T ) 

-1 -1 
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In addition 

-1 X M ( y G r y ) Q x ; ( r Q % 

-1 

% ' M %'Q% 
-1 = 0 

So 

= 0-^(1 + 6)7) AT M % + 0-' 

Thus we have as a test 

(/^lug /^6g) (7^(1 + 6)7) % M % + rr" 
-1 

(/̂ wg /̂ 6g; 

1.10 Appendix 4.1 

L e m m a 13 If 

Proof . 

X* = |A| / 0, 6 = ^ g* = 2/ -

= 6 
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6* = ^ — — 3/ — XAA"^,§ = 3/ — -^/3 = 6 

L e m m a 14 If 

X* = 

£/l = UA UB ^bPB 

6* = ?/* - %*;8* 

2/A , = 0 

t/ien 

Proof . Let 

/) = 
SA 

,E* = 
^B 

% 
0 

0 Xa 

% * = % 
I I 

0 I 
%A say 

= 
I -I 

0 I 

Piuther, it is an exercise in elementary matrix algebra to show that 

/? = 6 = 2 / - = 
£ a 

Eg 
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So applying Lemma 13, 

and 

I 

0 I 

& 
g* 

Retmn now to model (1.20). Results (1.21) and (1.22) in Lemma 2 directly foUow 

from the application of Lermna 13 and 14. Next, we wiU prove the remaining result in 

Lemma 2, i.e. (1.23).^ 

Let 

B 

/9. tug 

V , ...jY ^ ^ 2 ^ 

[ ( ; f x ) % a ' x ) ] - x ^ % ) ' ( w ) = ( % ' M % ) - ^ % ' M y 

Puither, let G"*" be Arellano and Bover's (1990) forward orthogonal deviations matrix, 

(T — 1) X T, such that 

G+i 

G 

0, ^+(3+' = 

/jv ® G"'', G'G = Q, G C = (2) = -^Ar(r-i) 

and identifying and jifY with ^md y]^, and G y with and yg, we see 

77% 
that the artihcial regression of y* = 

c y 
on %* = 

0 
gives 

^Note that it does not matter which way round one does the artiScial regression given that the test 
for the equahty of the two estimators is a quadratic form on the diEerence between the two. 
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/5 . In this case, 

; f y a r ( y ) H ' o 

0 G y a r ( y ) G ' 

If ^ (7^/o-^we have 

G y a r ( y ) G ' = + 

= (7^GG'asC+2 = 0 

Ar(T-l) 

and 

7 f y a r ( y ) 7 r ' = + ^7^^22377' 

= 0-" [f^r ® 77+] (Ẑ VT + /̂yv 0 2/ ) [7;v ® +1 

= (g (7f+J7+') + ^Zjv (g) (j7+M'7f+'). 

As 

7f+ = l / , J 7 + 2 = l , ^ + j 7 + ' = l , 

1 cr 2 

T 

Assembling oui results, 

y o r ( y * 
0 (7^7, # ( r - i ) 
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If now % 
f f X 0 

0 GX 

(%'%) - ^ ^ V a r ( y . 

Next, we calculate this variance by separating the diSerent components. 

^ ( l + rg)fAr 0 
% V o r ( y * ) X = 

cr 

(J' 

0 

+ 1 / 7 ) ^ - % 0 

0 

0 

0 X'G' 

0 

0 

( g / r + 0 

0 X ' Q X 

0 

fT-/, 

0 

0 

a X 

Thus 

0 

(g/T + l /T^)%'M% 0 

0 X ' Q X 

(T^ + i ) ( ; r w % ) - ^ 0 

0 
= (T 

0 

and 

(T 
7 - 7 

0 / 

(Tg + l ) ( % ' M X ) - i 0 

0 

I 0 

-1 I 
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a 

a 

0 

/ 0 

-I I 

(1.36) 

We now need to find the variance-covariance matrix the artiEcial regression will as-

sume. This will be proportional to 

-1 /,-!/ 

I -I 

° ^ J L 

0 

0 

0 (X 'Q%)-1 

f 0 

( X ' Q X ) - ' -7 I 

(X'QX)-" -- (%'Q%) 

/ 0 

-I I 

(1.37) 

By comparing (1.36) with (137) it appears that an artiGcial regression is a valuable device 

to estimate a suitable variance-covariance matrix. This variance is estimated using a 

(White) robust estimator which uses a consistent estimator of %*'yar(y*)%* under 

the assimiption that ya r (y* ) is diagonal. Next, we derive this consistent estimator. 

Following the steps used in the derivation of y a r ( ^ ) above, we separate the dlEerent 

components. 

= a 

X V a r ( y * ) X 

0 

0 X'G' 

X ' j f ' 0 

0 X'G" 

0 

0 

n 0 

0 

0 

0 G X 

0 

0 
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Cr-

(T 

0 

0 

0 

0 

0 

0 GX 

T ( X ' M Z ) - ^ 0 

0 

Thus 

= a X 

a 

(T 

0 (%'QX)-^ ^ 

0 o (Jf'c;;.;:)--! 

0 (jT'G'nGJT) 

0 (%'QX)-^ 

0 

X 

(X'QX)-^ (X 'G '^GX) (X'QX)-

Let 

and 

B = 
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So 

I -I 
a 

a 

a 

0 I 

B - D 

0 D 

B + D - D 

- D D 

B 0 I 0 

0 D - / / 

I 0 

-I I 

The residuals from this regression of Y* 
n y 

cy 
on A"* — 

0 GX 
to give 

coeGcients /3 
/̂ 6g /̂ lug 

above those fiom G y on 

can be obtained by stacking those from Tify on 

'he Erst set will yield sum of squares 

1 

T 
y ' ( M - M X ( % ' M % ) - ^ X ' M ) y . 

Note that (M — - Mp is idempotent, and Mf M X = 0. 

Note that if we write the model as 

y = + E 

we get 

M y = M%/3 + M E , 

Mf M y - Mf E 
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and 

The expectation is given by 

As 

EE6'5'/i = ^( roce [MpyGr(E)] = —trace [Mf ya r (y ) ] 

(;2 
= —trace [Aff {7;\rT + ® -

® = (7y\r (&) — i g ) @) M' = TM, 

^ 7 ^ % = ^ ( 1 + 0T)trGce(Mf) = ^ ( 1 + ^T)(7V - 7^). 

Similarly, if 

= ( G y ) ' [ 7 A r r - G % ( X ' Q X ) - ^ X ' G ' ] G y 

= r [Q - Q%(rQ%)-̂ x'Q)]y, 

^7^5'6'g = cr^trace [Qp{/Arr + 

= (retrace [Qf] = - 1) - 7^]. 

Accordingly, there is no multiple of with expectation cr̂ . However, if in 

the hrst regression and are scaled by 

A: = y T / ( l + 0T) 

the coeScients will be imchanged, their variance will be unchanged, will be 

scaled by 1/A;̂  = (1 + So instead of 
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we will now have 

= (1 + -1 

Further. 
T 0-' 

(1 + gT)(7V -]< ' ) = o-^(Ar - K) 
(1 + T 

and (A;̂ 7{6'6'x + — 27^) is an unbiased estimator of 

Thus given a consistent estimator ^ of and thus A; of A;, we can construct the 

Hausman test by carrying out the artificial regression of = 
c y 

on X* = 

. and constructing a Wald test on the first A!" coeScients. In practice, as 
0 GX 

consistent estimator of 0 one can use the one obtained under the assumption of spherical 

distmbances. 

1.11 Appendix 5.1 

This appendix contains the graphs of the power curve of t he standard Hausman test 

versus the one of the robust formulation presented in Section 1.3 with 

different sample sizes. 
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Chap te r 2 

Unobservable Factors a n d Panel 

D a t a Sets: t h e Case of M a t c h i n g 

Unemployed and Vacancies D a t a 

This chapter presents a sequential procedure aiming to distinguish between an endo-

geneity problem caused by correlation between regressors and individual eSects and an 

endogeneity problem due to measurement errors-in-variables. The relevance of the choice 

of the model specihcation is imderlined. The statistical performance of the sequential test 

is assessed using simulated data. Considerations on the significance level and power of 

the testing procedm-e are presented. This procedure is then used to investigate the eSects 

of unobservable factors hke measurement errors and unobserved heterogeneity that, as is 

well-known, contaminate two of the variables extensively used in labor market research, 

namely the stock of unemployed and the stock of vacancies. Using a matching function 

framework, we compare different pairs of panel data estimators organized in a specihc 

sequence. 
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2.1 Introduction 

A statistical test which has large implications for applied studies is the Durbin-Wu-

Hausman test, or DWH test (Durbin (1954), Wu (1973), Hausman (1978)). (In contrast 

to Chapter 1, where emphasis was put on Hausman's exact aasumptions, in this chapter 

we are discussing this class of test in more generahty, aad will use the DWH abbreviation.) 

In panel data modelling, it is widely used as a test for correlated eEects, i.e. to investigate 

the presence of unobserved heterogeneity across units correlated with the explanatoiy 

variables. It is based on the contrast between an estimator on the model in levels 

and an 01,5' estimator on the model in differences and it is the common practice to choose 

between different model specihcations. However, the DWH test detects the presence 

of any possible endogeneity problem (Davidson and MacKinnon, 1989), not necessarily 

induced by a correlation between the regressors and the individual eSects. Almost always 

in the widespread use of the DWH test for correlated ejects in static panel data modelling, 

the consistency of the and the estimators imder the 

null is not questioned. However, it might not be the case in presence, for instance, of 

measurement errors. 

An analysis of the causes that lead to a failure of the consistency of an estimator 

is quite dehcate because it is often related to unobservable factors often diScult to 

detect and to treat properly. Nevertheless, in modelling economic data, it is essential to 

acquire some further knowledge about diSerent sources of bias and to assess what is the 

most important problem to control for. The appropriate estimators vary in the different 

cases. An inaccura<;y in the choice of the model specihcation may lead to unrehable 

results. In spite of the large related theoretical hterature, the problem continues to 

receive surprisingly httle attention in empirical work. 

The pmpose of this chapter is two-fold. Firstly, it aims to emphasize the misleading 

inference results one can get by testing for correlated eEects without conditioning on 

the existence or non existence of measurement errors. Secondly, the chapter presents a 

two-step testing procedmre for panel data aiming to distinguish between an endogeneity 
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problem caused by correlation between regressors and individual eSects and an endogene-

ity problem due to measurement errors. (We refer to this aa a n endogeneity problem be-

cause measurement errors (usually) induce correlation between right-hand side observed 

variables and the disturbances.) The important feature of the methodology is the search 

for appropriate DWH tests robust to deviations from the claasical errors assumption. 

Chapter 1 presents the implementation of a robust test for correlated eSects, i.e. for 

the comparison of the Grottpa and the Between Groups estimators. In this chapter 

we construct robust tests for the comparison of other pairs of panel data estimators. The 

motivation underlying the construction of a robust version of a DWH test is that the 

hypotheses underlying the construction of the statistic (Lemma 2.1 in Hausman, 1978) 

are often too strong in most of the empirical cases. It is usually a dehcate task to 

rank the diSerent estimators in terms of efEciency. The robust version of the DWH test 

presented in Chapter 1 is based on the use of an auxiliary regression to estimate a suitably 

constructed covariance matrix and on the apphcation of the pemel data counterpart of 

the White (1984) robust standard errors. If applicable, the same devices are used for the 

construction of robust tests for the comparison of the other estimators considered in the 

two-step testing procedm'e. This technique allows us to estimate covariances matrices 

between estimators that cannot be ranked in terms of e&ciency. The attractive feature of 

this methodology for applied works when compared to related techniques in the literature 

(e.g. Lee, 1996) is that it can be implemented in standard statistical packages. 

The chapter is organized as follows. Section 2.2 explains to what extent bi-dimensional 

data sets may help us to deal with diEerent kinds of unobservable factors and the possible 

effects of poor attention to the phase of model evaluation. Section 2.3 illustrates a two-

step testing procedure for linear panel data models. This may be considered as a guide 

towards the choice of the most reliable model specihcation. T h e statistical performance of 

this sequential test is assessed using simidated data. The results are contained in Section 

2.4. Section 2.5 presents an empirical apphcation of the methodology to a longitudinal 

data set of travel-to-work areas (TTWAs) in the UK, observed monthly for the period 
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1996 - 2000. The stock of imemployed and the stock of vacancies, origiaating in diG^erent 

sides of the labor market, are very likely to be aEected by different types of unobservable 

factors. Our aim is to investigate the importance of correlated effects and measurement 

errors by analyzing their eSects on the estimators of the parameters in a empirical search-

matching function model. We suggest the most rehable model specihcation in the case 

of study considered. Section 2.6 concludes. 

2.2 Unobservable Factors and Pane l Data Sets 

It is weH-known that measurement errors aie extremely relevant in data collection. Even 

though the problem has given rise to a certain amount of theoretical interest, most applied 

econometric studies do not address this issue. In the analysis of uni-dimensional data 

sets, i.e. time series or cross sections, classical errors-in-variables models have not been 

applied widely mainly because it is often not possible to End vahd instrumental variables 

among the variables included in those models. External variables are required in order 

to identi^ the structmal parameters of interest. Furthermore, measurement errors with 

different structiues and other imobservable factors, hke unobserved heterogeneity, may 

affect our data. Some assumptions of the classical errors in variables model are often not 

sustainable in many empirical cases. 

When a panel data set is at hand it may be possible t o handle these issues, since 

instnmiental variables can be foimd within the model. Moreover, pooling cross sectional 

and time series observations, the econometrics of panel da ta offers a variety of different 

estimators for the same parameter, and the behavior of such estimators in the presence of 

unobserved factors aSecting the data can be analyzed. Therefore, it is possible to acquire 

some knowledge about the kind of errors of speciScation involved by checking whether 

they can actually account for the sign and order of magnitude of the observed discrep-

ancies between estimators. Pursuing this approach, we present a panel data sequential 

test designed to check for the presence of relevant sources of bias in the data. As the 
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presence of such luiobserved factors may invalidate the estimation results, it is essential 

to use suitable estimators when different sources of bias are discovered. Our procedure 

checks for the presence of correlated elfects and measurement errors and indicates which 

estimators are likely to give the most reliable results for the analysis of a certain data 

set. 

We focus our attention on the problems of unobserved heterogeneity and measure-

ment errors because in the analysis of the empirical search-matching function framework 

presented in Section 2.5 unobserved heterogeneity and measurement errors are the only 

expected important soinces of bias. An apphcation of the methodology to panel data 

sets in diEerent contexts requires that problems arising from the possible presence of 

other relevant sources of bias, such as sample selection, missing data from attrition, non 

strict exogeneity, have to be addressed and solved previously. Yet, after controlling for 

other relevant sources of bias, to distinguish the eEects of unobserved heterogeneity and 

measurement errors remains a subtle issue. 

The motivation imderlying the implementation of the sequential test is that the stan-

daid procedure used in empirical work in order to discriminate between diEerent estima-

tors is often misleading and almost always unsatisfactory. The common practice consists 

in the application of a DWH test where the two estimators involved in the implementa-

tion of the test are the Groiipa and the both estimators 

constructed on different transformations of the data. A possible failure of the consis-

tency of the two estimators under the null, not related to the source of endogeneity being 

tested, is almost never considered in empirical studies. However, if for instance we are in 

presence of measurement errors least square estimators not only lose their eSciency but 

also their consistency. We may end up comparing two inconsistent estimators. More-

over, measurement errors can have diEerent impact using different transformations of the 

data. For instance, if we use Erst diEerences then the bias can be magnihed (Griliches 

and Hausman, 1986). As a consequence, the probability hmits of two estimators calcu-

lated on different transformations of the data may be diEerent. Thus, in the presence 
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of strong meagiirement errors, on the model in levels and on the model in 

hrst differences (or deviations) would turn out to be diSerent regardless of whether un-

observed heterogeneity really matters. We may end up attributing the bias of our results 

to unobservable individual characteristics while it could be t h a t measurement eiTors are 

playing a major role. Consequently the specihcation of t h e model adopted could be 

inappropriate. 

2.3 A Two-Step Testing Procedure 

We present a sequential testing procedure, which is intended to distinguish the effects of 

imobserved heterogeneity and measurement errors on the estimators of the parameters 

in a panel data model in order to choose the most reliable specification. It consists on 

using di&rent DWH tests in a paiticulai" sequence. 

The / y approach used to address the problem of measurement errors is not designed 

to detect non-hnear errors in variables (when the explanatory variable with measure-

ment error enters in nonlinear form, e.g. to the square, in t h e model speciGcation). In 

this case an f F approach is not valid because the meaaurement error is not additively 

separable from the explanatory variables and we cannot End instruments correlated to 

the explanatory variables but uncorrelated to the new error t e rm (Hausman, Newey and 

Powell, 1995). 

The outhne of the procedure is illustrated in Diagram 2.1. 



Diagram 2.1: Sequential Procedmre 

WG vs IVD 

No UH bias, but ME biaa No UH bias, no ME bias 

R e j e c t Not Rejec t 

2.A IVD vs IVL 

No ME bias, No ME biaa, 

no UH bias but UH bias 

R e j e c t Not Re jec t 

2.B WG 

No UH bias, 

but ME bias 

R e j e c t 

VS OLSL 

UH bias, 

and ME bias 

Not Rejec t 

Diagnosis A Diagnosis B Diagnosis C Diagnosis D 

Diagnosis A 

Diagnosis B 

Both unobserved heterogeneity 

and measurement errors 

are important sources of bias 

The most important issue to control for 

is a measurement problem 

of the specified type 

Diagnosis C Unobserved heterogeneity plays a major role 

Diagnosis D No evidence of the speciEed "unobservability" 

UH bias: bias due to correlated eEects 

ME bias: bias due to measurement errors 

The diSerent estimators account for one or another (or both) soiirces of bias. 
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At a Erst stage, the Grottpg estimator (WG), an on the model in devi-

ations 6om the individual time-means which controls only for correlation between the 

regressors and the imobserved heterogeneity (UH bias), is compared with a GeMeraZ-

estimator on the model in deviations from the individual 

time-means (IVD), which controls for both measurement error bias (ME bias) and un-

observed heterogeneity bias. A signihcant diEerence in the two estimators gives evidence 

of measurement problems in the data. In this case, we investigate if unobserved indi-

vidual characteristics matter also, by comparing a VanoWes 

estimator on the model in levels (IVL), which controls only for measurement error bias, 

with a estimator on the model in deviations from the 

individual time-means, which controls for both measurement error bias and unobserved 

heterogeneity bias. If we Snd a significant difference in these two estimators we can infer 

that imobserved heterogeneity is also an important potential source of bias. If this differ-

ence is not significant we can conclude that the most important issue to control for is a 

measurement problem. On the other hand, if the test performed at the Erst step gives us 

insigniEcant results, we can conclude that measurement bias is not a major issue and we 

continue our diagnostic procedure comparing on the model in levels (OLSL) and 

on the model in deviations. The estimator on t h e model in levels does not 

control for any kind of bias while the 0^5" on the model in deviations, i.e. the 

Growpg estimator, riUes out the heterogeneity bias. A significant diSerence in the two 

estimators gives us evidence of imobserved heterogeneity bias in our data set. 

It is worthwhile noting how much the sequence of these tes ts matters. If we compare 

at the Srst step, as is conmion in empirical work, 0^,5' on t he model in levels (or the 

Groi/pa estimator) and on the model in deviations (i.e. the 

estimatory) we cannot distinguish what is the source of the bias because measurement 

errors have different effects in models in levels and in deviations from the mean, as 

previously emphasized. 

A robust version of the Hausman test is not directly implemented in standard econo-
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metric software. In what follows, we formalize the above outlined methodology in a way 

that can be implemented in any standard statistical packages.^ We begin by giving ex-

amples of the way panel data sets can be used to construct vahd instruments in presence 

of a speciSed type of measurement error and by providing insights into the inference 

implications of the chosen design for the testing procedure. 

2.3.1 R o b u s t Tes t ing for M e a s u r e m e n t E r r o r s 

The fust step of the diagnostic procediue (step 1 in Diagram. 2.1) requires us to compare 

the IVD, / y estimator on data in deviations from individual time-means, with the WG, 

estimator in data on deviations from individual time-means, in order to investigate 

the importance of measurement errors. 

Paiticular care is required in the choice of the instruments we use. In order to apply 

the DWH framework, we have to compare two estimators t h a t are both consistent tmder 

the null hypothesis (one more eScient) and one consistent and the other inconsistent 

imder the alternative. If the null hypothesis of non existence of measurement errors is 

satished, the WG is more eScient than an IVD but the instruments have to be chosen in a 

way such that the consistency of the IVD estimator has to hold when the nuH hypothesis 

is violated. Measmement errors may arise under different forms, each of them having 

different effects on the estimators that are used. It is not possible to construct a reliable 

test for the presence of arbitrary measurement errors. Panel data sets can help us with 

this issue because they provide a variety of different types of instrumental variables. 

However, the choice of the instruments has to be related t o a specific structure of the 

measmement errors in order to guarantee their validity. 

Suppose, for instance, we consider the presence of measurement errors with a period 

^The 7 loutmes, that have been written for the empirical apphcation of the methodology 
presented in Section 2.5 are available upon request. 
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specific component. Consider the errors-in-variables pajiel d a t a model 

= + 2 = (2-1) 

where is the imobserved heterogeneity term, we do not observe but and 

^it ^it ~t" ; (2'2) 

4- (2.3) 

independent for all t and % ^ j . (2.4) 

The process of the measurement error, i.e. consists of a n i.i.d. time-speciSc effect 

with zero mean, i.e. and of a white noise component, i.e. Substituting, we obtain 

Git = 

If we define the new composite disturbance component, as 

t'if = + Git, 

the basic assumption for the consistency of the 0^/6" estimators, i.e. ^ ( f i t | a;^) = 0, does 

not hold any longer, is endogenous because of the component of the measurement 

error that acts in the model through <$(. This yields 

Coti('Utt, a;^) — C c w ( — - t - -|- -t- ^̂ )̂ 0. 

Moreover, the problem remains if we transform the model in deviations from the individ-

ual time-means to purge the model from the possible correlation between the regressor 



and the unobserved heterogeneity: 

I ^ 0, 

where 

T T 

t=i (=1 
Hence, the WG will be inconsistent. However, by virtue of assumption (2.4) 

^ I = 0, % ^ 

Therefore, if we use as an instrimient for the within variation of individual 2, the within 

variation of individual j , we obtain an IVD which is consistent in presence of measurement 

error having the speciSed structure. Thus, a DWH type test for the comparison between 

the WG and the above constructed IVD can be apphed ajid provides rehable results 

about the presence of measurement errors with a time-specific component. 

It is worthwhile noting that it is not possible to distinguish the effects of a measure-

ment error with an individual-specific component from the ones arising from unobserved 

heterogeneity In the sequential procedure proposed, this issue is investigated in a second 

step. If at this further stage we corroborate the importance of unobserved heterogeneity 

bias, we can use the results of the hrst step to choose between a two-way and one-

way panel data model. SpecihcaUy, a rejection of the test a t the second stage means 

that fixed eSects may be strong. A rejection of the test a t the Erst stage means that 

measurement errors with a period specihc component are an important issue. The com-

bination of these results leads us to the choice of a two-way panel data speciGcation, i.e. 

instead of the one-way, i.e. 

Another case that can be worth investigating in the Erst step is the presence of 

measurement errors that follow a moving average or autoregressive process. In this 

context, the instrumental variables have to be chosen according to the structure of the 
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dynamic process. For instance, if we consider measnrement errors that follow a moving 

average process of order one, possible valid instruments for a variable at time ( are all the 

lag values of the same variable of at least lag (̂  — 2). In what follows, lagged instruments 

are used. 

From the discussion above, it is clear that in the hrst step of the diagnostic procedme it 

is important to use diSerent ZF estimators, each of them robust to a particular structure 

of measurement error. In fact, if we reject the null at the Erst stage, given a specific 

structure of measurement error, this does not mean that we accept the alternative, that 

is we accept as valid the given structure assumed for the measurement error. To be able 

to assess which is the most probable structure of the measurement error aEecting the 

data at hand, we should implement some vahd tests between an. estimator robust to a 

very flexible measiurement error structure against a particular estimator based on a given 

measurement error structure. Although this is a prehminary step that can be added to 

the illustrated sequential test, it is not considered in the design of the procedure. The aim 

of the methodology is to check the robustness of inference results to diSerent assumed 

structures of measurement error and not to test the specification of the measurement 

error. 

We now turn to the implementation of a robust DWH type test for assessing the 

presence of measurement errors in variables, that is for the comparison between the WG 

and an arbitrary IVD. The formulation of such a test using a standard econometric 

package is not straightforward. Unlike the implementation of a robust DWH type test 

that wiU be considered in Sections 2.3.2 and 2.3.3, here we do not directly compare 

estimators applied on different orthogonal transformations of the data. In other words, 

it is not just necessary to manipulate the data according to the diEerent transformations, 

insert the new variables in a auxihary regression and then run 02^^ using White (1984) 

robust standard errors. The procedure needs to be adjusted. Some prehminaries are 

needed. 

In static models, the most eScient GeMem/izecf estimator is 



obtained by projecting the variables to be instrumented onto the space generated by the 

instruments. This is a case where the instruments are orthogonal to the initial errors and 

especially correlated with the initial regressors. It can be shown that, given the properties 

of the projection matrix, when estimating coeScients it is equivalent to running in 

a regression where the regressors are the projected variables.^ 

Consider model (1.18). First transform the data according to the prot/pa trans-

formation, i.e. deviations from the mean 

= + A/". 

Then choose the instrmnental matrix according to the structure of the measurement 

errors we want to test for, say Z. Project the variables we want to instrument in the 

space generated by Z 

^ 

where 

If we assemble the data in a TVT x 1 vector of dependent variables, Y* and in a x 

matrix of regressors 

Aw = 

For the single individual construct the system 

2/r — 

^For further details and an extensive discussion on these issues see Bowden and Turkington (1984). 
^Recall that this is only a drEerent reformulation of the f y estimators because the projection matrix 

is idempotent, i.e. f g = Pg and = Pz , 
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Estimating by the hrst group of equations (% = 1,..., A^), i.e. the ones in levels, 

we obtain the IVD, i.e. Estimating by the second group (% = l,...,Ar), i.e. 

equations in deviations, we obtain the WG, i.e. ^0^ .̂ However, the use of an artihcial 

regression, as the one used in Appendix 4.1, is not suitable. In that case, because the 

transformation and the transformations are orthogonal, 

the variance covariance matrix in the auxihary model wag block-diagonal. It was then 

estimated using the White (1984) robust estimators. When diSerent transformations 

of the data are used, the structure of the variance covariance matrix in the auxiliary 

regression model can be more complicated. The fact that the equation sets are not 

orthogonal is not taken into consideration and the White's estimators are not robust to 

the presence of inter-groups correlation. The use of a Newey-West robust estimator 

would not help either. The variance covariance matrix exhibits a pattern of cross sectional 

dependence (i.e. particular form of non stationarity persistent when TV goes to infinity) 

that is not supported by these estimators. Therefore, a consistent estimator for the 

variance of the difference of the two estimates needs to be constructed step by step. 

Appendix 1.2, Part I contains further clarihcation of these points and implements aji 

appropriate procedure. 

2.3.2 R o b u s t Tes t ing for C o r r e l a t e d E f f ec t s w i t h o u t Measu re -

m e n t E r r o r s 

If the results of the test at the hrst stage provide evidence t h a t measurement errors can. 

be neglected, the widespread practice to test for correlated e j e c t s using the comparison 

between 0^,6" in levels, i.e. the OLSL, and in deviations, i.e. t h e WG, is correct (step 2.B 

in Diagram 2.1). A standard Hausman test can be apphed. However it is recommended 

to use a robust version of the test in order to control for the possible presence of non 

spherical disturbances, as it is explained in Chapter 1. The details of the construction of 

such a test are also contained in Chapter 1 (Section 1.3). The chosen estimator on 

the model in levels is the Between estimator, hereafter BG. 



2.3.3 R o b u s t Tes t ing for C o r r e l a t e d E f f e c t s w i t h M e a s u r e m e n t 

E r r o r s 

If the results of the test at the hrst stage provide evidence of important measurement 

error bias, testing for correlated effects using the comparison between in levels and 

in deviations is not correct and may lead to imreliable results. IV estimators can be used 

instead. 

An implementation of the DWH test for the presence of correlated eSects in presence 

of measmement errors consists in comparing the IVD constructed in the first step of the 

procedure with the same VonoWea estimator on the model in 

levels (IVL) (step 2.A in Diagram 2.1). If correlated eSects are present, the IVL, which 

controls only for a specific structure of the measurement error is not consistent while the 

IVD remains consistent because the transformation of the data used purges the model 

from the effects of individual-specihc components. Therefore, the DWH framework can 

be applied. Note that, as in the hrst step, it is important to construct a number of 

diSerent tests for correlated eSects. By analyzing the results of a combination of the 

tests of &rst and second stage, it is possible to choose the most reliable (robust) model 

speciScation. 

A DWH test for correlated effects in presence of measurement error can be set out 

Eis follows. As in the comparison between the BG and the W G (Section 2.3.2), we deal 

with two diEerent estimators that are obtained applying t h e same estimation method 

on data transformed in diSerent ways. In Section 2.3.2 we choose the BG as an 

estimator for the model in levels. In this section we choose a n ZF estimator on the model 

in averages (6e(weeM protfps transformation) as I F estimator for the model in levels. This 

choice allows us to deal again with two orthogonal transformations of the data. Thus, 

the use of an artificial regression wiU lead to the desired outcome. We obtain the IVL 

applying the I F methodology to the average equations in levels and the IVD applying 

the j y methodology to the equations in deviations from the mean. 

Model (1.18), a system of T equations in levels, can b e transformed into (T — 1) 



equations in deviations and one in averages. We obtain 

^ = % + 77-. 

Estimating by / F the Erst group of equations, i.e. the ones in deviations from individual 

time means, we obtain the IVD, i.e. Estimating by Z y the average equation we 

obtain the IVL, i.e. 

Let 

Aw 

and 

Rewrite the system as 

Rearranging, we obtain 

2/i = + /̂ i-

"t" A''! -

Call 

(3' 

/ 2/* ^ 

\ /̂ 2 / 

\ / 
/ 

y f^ivl j 

x ; %; 

0 

, -

\ 
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The augmented auxiliary model would be 

y.+ = T^+/3+ + /^+, 2 = (2.5) 

Estimating the model by f F, we obtain directly the variance of the diEerence of the two 

estimators in the upper left part of the covariance matrix of Unfortunately, in stan-

dard econometric packages White's robust variance estimator may not be implemented 

for f y panel data estimation. In this case, a practical possible solution can be to obtain 

the f y estimators as estimators on a further transformed model, as was necessary 

and explained in Section 2.3.1. After repeating the same steps for the construction of 

another artificial regression with these new transformed equations and estimating con-

sistently the variance of the estimators, once again a Wald test wiU allow us to 

investigate the presence of correlated eSects in a reliable way. This approach is pursued 

in Appendix 1.2, Part 11. The following Lemma is proved. 

L e m m a 15 Given model (2.5), 

(2-G) 

l/arCa,) = V ' a r ( 9 „ , - 3 . . , ) . (27) 

2.4 A Monte Carlo Experiment 

In this section we use simulated data in order to assess the statistical performance of 

the proposed procedure. In the bunch of diagnostic tests provided by standard statistical 

packages there is scarce attention to the fact that they are repeated test procedmes using 

the data at hand. This yields consequences both on the properties of the chosen estimator 

and on the subsequent inference (see Judge and Bock, 1978). An exhaustive treatment 

of these issues is far beyond the scope of this chapter. Nevertheless, we present a Monte 
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Carlo experiment aiming to examine how the critical regions of the test depends on the 

fact that it is a two stage procedure. 

The postulated data generation process is the following. W e consider the linear panel 

data regression model 

= + + 2 = 1,..., A/"; 

where the disturbance term consists of three independent components: a unit-specific 

effect, 7̂ ,̂ a time-speciEc effect, and a white noise component, i.e. w,*. This context 

can be considered as a case where there is the joint occurrence of individual effects and 

measurement errors with a time speciEc component. We assume that z is an exogenous 

variable and we generate a; using the same structure for the disturbance term 

(2-8) 

where w is an exogenous variable. The random variables and are con-

structed as draws from a bivariate normal distribution with correlation r/ioi and r/z,02 

respectively. Each of these takes values of (0,0.05,0.10,... 0.95). 

The values for the exogenous variables and the range of values for the parameters are 

taken from the analysis of the empirical case of study presented in Section 2.5. Using 

UK data, the following model is estimated. 

logM^t = a-t-alog%-|-/31ogV;t4-e«t, % = ,276; ^ = 1,...,63, 

where M is the number of matches/hirings, and y are the stocks of unemployed and 

vacancies, a is a constant term, e indicates a disturbance term. DiEerent estimation 

methods have been applied. The diSerent estimates of the coe&cient of the unemployed, 

a , and for the vacancies, /^, have been used in the simulation experiment for and 

TT respectively. They take values of (0.5,0.4; 0.5,1.5; 0.4,0.7; 0.3,1.4). Also, the best 
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prediction for the stock of vacancies is 

= 1.21og7VV^t, % = 1, ...,276; t = 1, ...,63 

where is the number of monthly notified vacancies (Sow variable). In our experi-

ment design, the real values for and have been used aa exogenous variables, i.e. 

respectively z and w. The endogenous variable, y, i.e. z, has been constructed using the 

structure (2.8). 

The sample size available in the empirical caae of study, i.e. = 276, T = 63, is 

considered. The experiment is repeated 5000 times for each combination of r/ioi and 

rAo2' Four hundred data sets have been generated. For each repetition, the test statistics 

used at the hrst step, Ti and at the second step, Tg, has been calculated as explained in 

the development of the procedure in Section 2.3 and the instrumental variables chosen 

are the ones used in the empirical case of study in Section 2.5, i.e. we use aa instrument 

for a variable at time ( the value of the same variable at t ime — 3). We summarize as 

follows. 

Let us indicate 

7 

v / 
and the IVD, the WG, the IVL and the chosen OLSL, that is the 

Growpa estimator. 

At the hrst stage we test the null hypothesis 

.ffn : r/ioo = 0 

against the alternative 

using the statistic 

: r/2,02 7̂  0, 
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where and 9" ($i) is a consistent estimator of the variance (see Appendix 

1 . 2 ) . 

At the second stage we test the mill hypothesis 

ffo : r/iOi = 0 

against the alternative 

^ 0, 

iising the statistic 

Tg = /(Ti > ci)r2A + f(Ti < 

where Ci and C2 are speciEed critical values, 7(a) is the indicator function which takes 

value equal to one if the event (o) is realized, zero otherwise. 

= (92)92, 

where % = and V" ($2) is a consistent estimator of the variance. 

72A = % y ( % ) % 

where % = and y (%) is a consistent estimator of the variance. 

The sequential procedme proposed in this chapter consists on performing Ti followed 

byTg. 

Let us consider the size hrst. In principle, the alpha level for multiple tests could be 

corrected by using the Bonferroni Inequality (Bonferroni, 1936). It is an inequality from 

probabihty theory that gives us an upper bound for the probabihty that one or more 

separate tests will lead to a specihed type I error. It can b e stated as follows. For any 

sets of events 

Pr(v4i, v4.2,..., Aj<̂ ) > 1— ^ Pr , 
i = l 
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c'- 9̂(99 98% 

058 5625 5561 5519 57.M 5606 -I/-12 
1.39 25 %QB %02 2581 25% 
277 625 620 628 633 6i32 -t/-l2 
46] 001 OOO 001 o m QOB -I/-08 

Figure 2-1: Theoretical versus empirical frequencies 

where is an event and its complement. 

Rearranging 
K 

^ P r ( A f ) > l - P r ( A i , A 2 , . . . , A j ^ ) . 
i—\ 

Therefore, if we hx the signihcance level of the joint test as a , the size of each separate 

test, say a ' , has to satisfy the following inequahty 

.RTa' > a. 

Thus, the Bonferroni inequahty implies that we should set 

a 
a 

if we wish the probability that a type I error occurs to be no more than a in the multiple 

test procedure. In om" two stage test, if we choose the alpha level of the overall procedure 

equal to 0.05, the size of each test should be set at 0.025. However, the Bonferroni 

inequality does not require any knowledge about the structure of dependence between 

the test statistics used at the diEerent steps. This is a strength but at the same time a 

weakness of the principle. If the dependence is further investigated, the inference can be 

sharpened. 

In order to study the structme of dependence between 7^ and 72, we consider their em-

pirical distribution function. The asymptotic marginal distribution of both test statistics 
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is a chi-sqiiaied with two degrees of freedom (xg). Figm-e 2-1 reports in the hrst column 

the four quantiles c* that leave a probability of 0.75, 0.50, 0.25, 0.10 in the tail of a Xg 

distribution, in the second column r*, the square of f (%2 > c*), that is the p-'uaZtte that 

would be obtained aaymptotically if the two test statistics were independent, and in the 

remaining fom- columns the estimated frequencies obtained when y? and vr are set to the 

four pairs of values used in the design of the experiment: (0.5, 0.4), (0.5,1.5), (0.3,1.4), 

(0.4,0.7). They are indicated by r ' l , r"2, r ' '4 respectively. Under 77o, the simulation 

experiment suggests that the hypothesis of independence between the two test statistics 

cannot be rejected. The last column shows the Monte Carlo precision as a 95% con&-

dence interval. As a matter of fact, for diS^erent c*, we get t h a t the estimated frequency 

of rejecting both hypotheses is roughly equal to the square of f (%2 > c*). Therefore, the 

significance levels of the two tests can be hxed independently such that their product is 

equal to the desired alpha level of the sequential procedure. 

Let us now turn our attention to power considerations. T h e property of independence 

of the test statistics is not preserved under any alternative hypothesis.'^ We investigate the 

performance of the test in terms of power by Sxing the alpha level of the sequential test 

equal to 0.05, the one of each single test equal to \/0.05 and calculating the probabihty 

that both and Tg fall hi the critical region for each combination of r/ioi and r/i02. 

The resulting triples of points have been plotted in a three-dimensional space. Figure 

2-2 shows the power function when y = 0.5 and vr = 0.4.^ 

For low levels of r/ioi and (hi the range of (0.05, 0.5)) the power of the test 

is not very high (always below 60%) but it increases sharply as soon as either r/ioi or 

r&02 takes values greater than 0.55. It is worthwhile noting tha t , as the relevance of the 

procedure is mainly empirical, we are interested in getting a good performance of the 

test in terms of power for high levels of r/toi or rAo2- In other words, the procedure 

should help us to avoid the use of badly biased estimators, i.e. we need to be able 

^We do not report all the results for all combinations of values of r / io i and r/102 for brevity. They 
are available upon request. 

^Similar pictures can be obtained by plotting the power function for t h e other values of the parameters. 
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Figure 2-2: Power function: three dimensional plot of points 

to reject almost surely the hypothesis of independence when the level of correlation is 

high. Therefore, the performance of the test is satisfactory. However, an analysis of the 

graph reveals that the power fimction is more sensitive to deviations from the hypothesis 

of absence of measurement errors in variables (r/i02 = 0) t h a n from the hypothesis of 

non correlation between regressors and individual eSects (r/ioi = 0). This asymmetric 

behavior in the performance of the multiple test in terms of power should be taken into 

consideration when fixing the signiEcance levels of the single tests. The power function 

illustrated in the graph refers to the case when the size of t h e two separate tests is the 

same. A different case can lead to a more balanced performance. Further research may be 

needed. For instance, the construction of a sequential test tha t assesses the importance of 

correlated eSects at the first step and of measurement errors a t the second step could be 

considered. This possibility has not been explored here because in the empirical context 

the test is apphed (empirical job matching function framework in Section 2.5) there are 

a priori reasons to assume the presence of measurement errors ^ 0) and therefore 

the expected performance of the test is adequate. As noted in Section 2.2, a diSerent 
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application of the test requires the procedure to be tailored t o the new context and the 

statistical performance of the test may vary in each case. 

Finally, it is of interest to report some results on the estimated probabihty that the 

sequential test detects the postulated major source of endogeneity. They are illustrated 

in Figine 2-3. They refers to the ceise when A = 0.5 and = 0.4. 

Table 1 reports the probabihty pig dehned as 

^12 = Pr(Ti > Tz < c*) 

when = 0.9 and r/toi taltes aU the twenty values between 0 and 0.95. r/ioi" is the 

estimated level of correlation between the regressors and and is the estimated 

level of correlation between and <$(. If we reject Ti and we cannot reject T2, we are 

expected to use an instrumental variable estimator using the model in levels. The table 

shows that the probability to get such an outcome from the application of the sequential 

test is a decreasing fimction of the level of rAoi. According to what is desirable, the 

probability of choosing an estimator in levels is a decreasing function of the importance 

of unit-specihc effects. 

Table 2 reports the probability P21 de6ned as 

P21 = Pr(Ti < c \ T2 > c*), 

when r/ioi = 0.9 and rAo2 takes ah the twenty values between 0 and 0.95. The same 

dehnition for r/ioi and r/i02^ hi Table 1 applies. If we cannot reject Ti and we reject T2, 

we are expected to use a least square estimator after having transformed the variables 

in deviations from the mean. Also in this case the table shows a desirable result. The 

probabihty of obtaining such an outcome from the apphcation of the sequential test is a 

decreasing function of the level of r/2,02. This implies that the probability of requiring an 

estimator in deviations is a decreasing function of the importance of factors di&rent from 

individual-specihc effects (that can be magnihed when transforming the variables). Sim-
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Table 1: 
r h o 2 = 0 . 9 ; r h o l 

rhol^ rho2^ p l2 

0 . 0 0 1 0 517 0 45 

0 . 0 2 6 0 508 0 45 

0 . 0 5 1 0 515 0 42 

0 . 0 9 4 0 509 0 38 

0 . 1 1 1 0 5 0 1 0 3 3 

0 . 1 5 2 0 . 5 1 0 . 3 

0 . 1 7 9 0 . 5 1 0 22 

0 . 2 0 2 0 . 5 1 0 13 

0 . 2 2 8 0 505 0 . 1 

0 . 2 6 8 0 515 0 09 

0 . 2 9 3 0 503 0 09 

0 . 3 1 9 0 . 5 2 0 06 

0 . 3 4 7 0 512 0 03 

0 . 3 8 4 0 514 0 03 

0 . 4 1 3 0 513 0 03 

0 ^ ^ 0 . 5 1 0 02 

0 . 4 7 6 Q 509 0 02 

0 . 5 0 1 0 . 5 1 0 01 

0 ^ 3 0 5 1 1 0 0 1 

0 . 5 5 5 0 . 522 0 01 

r h o l = 
Table 2: 

) . 9 ; r h o 2 

rhol ^ p21 

0 . 5 2 5 0 002 0 . 4 4 

0 . 5 2 5 0 035 0 . 4 3 

0 . 5 2 2 0 047 0 . 4 2 

0 . 5 3 4 0 0 9 1 0 . 3 3 

0 . 5 2 3 0 109 0 . 2 3 

o ^ a 0 142 0 . 2 2 

0 . 5 2 7 0 152 0 . 2 1 

0 . 5 2 9 0 203 0 . 1 8 

0 . 5 2 8 0 2 1 9 0 ^ ^ 

0 . 5 2 5 0 262 0 . 1 5 

0 . 5 2 8 0 286 0 . 1 2 

0 . 5 2 8 0 307 0.1 

0 ^ 3 0 . 3 3 0 . 0 9 

0 . 5 2 5 0 364 0 ^ ^ 

0 . 5 2 9 0 4 0 5 0 . 0 2 

0 . 5 2 6 0 . 4 3 0 . 0 1 

0 ^ 3 0 453 0 ^ ^ 

0 . 5 3 4 0 4 7 9 0 . 0 1 

0 . 5 2 5 0 517 0 . 0 1 

0 . 5 2 7 0 539 0 . 0 1 

Figure 2-3: Simulated performance 



i lar t a b l e s c a n b e o b t a i n e d for t h e o t h e r p o i n t s i n t h e p a r a m e t e r s space . T h e qua l i t a t i ve 

p e r f o r m a n c e of t h e t e s t is u n c h a n g e d . T a k i n g t h e r e su l t s a s a whole , t h e app l ica t ion of 

t h e s equen t i a l t e s t i m p l e m e n t e d seems t o give s o m e a p p r o p r i a t e d i rec t ions for t h e choice 

of t h e m o s t re l iab le m o d e l spec i f ica t ion . 

2.5 The Empirical Framework 

T h e m a i n p u r p o s e of ou r ana lys i s is t o i nves t iga t e t h e i m p o r t a n c e a n d typo logy of u n -

obse rvab le f a c t o r s t h a t , as is wel l -known, aSec t two of t h e v a r i a b l e s f r e q u e n t l y used in 

l a b o r m a r k e t r e sea rch , n a m e l y t h e s tock of u n e m p l o y e d a n d t h e s tock of vacancies . W e 

u s e a j o b sea rch m a t c h i n g f r a m e w o r k . T h e m a t c h i n g f u n c t i o n is a m o d e l i n g device t h a t 

s u m m a r i z e s t h e s ea r ch p rocess t h a t even tua l l y b r ings w o r k e r s a n d 6 r m s in to p r o d u c t i v e 

m a t c h e s . T h e s imp les t f o r m of t h e m a t c h i n g f u n c t i o n ( P i s s a r i d e s , 2000) is 

(2.9) 

w h e r e M is t h e n u m b e r of j o b s f o r m e d a t a n y m o m e n t i n t i m e , [ / is t h e n u m b e r of 

u n e m p l o y e d worker s look ing for w o r k a n d y is t h e n u m b e r of v a c a n t p o s t s . In r ecen t 

yea r s t h e c o n c e p t of a m a t c h i n g f u n c t i o n h a s b e e n ex t ens ive ly u s e d t o exp la in t h e work ing 

of t h e l abo r m a r k e t . ^ However t h e m a j o r i t y of t h e s t u d i e s a r e t heo re t i ca l . Moreover , 

whi le t h e t h e o r e t i c a l e m p h a s i s is typ ica l ly o n t h e behav io r o f m i c r o e c o n o m i c u n i t s , m o s t 

of t h e empi r i ca l a p p l i c a t i o n s h a v e u s e d a g g r e g a t e d a t a . In r e c e n t years , a sma l l n u m b e r 

of empi r i ca l s t u d i e s i nves t i ga t i ng t h e empi r i ca l re levance of t h e c o n c e p t a t less a g g r e g a t e 

levels h a v e b e e n p r o d u c e d . T h e c e n t r a l q u e s t i o n a d d r e s s e d is w h e t h e r t h e m a t c h i n g 

f i m c t i o n exh ib i t s c o n s t a n t r e t u r n s t o scale, w h i c h is o n e of t h e b a s i c a s s u m p t i o n s in t h e 

t h e o r e t i c a l l i t e r a t u r e . A l t h o u g h oiu' p r i m a r y a i m is n e i t h e r a n emp i r i ca l t e s t of such a 

s ty l ized r e l a t i on n o r a n i n spec t i on of t h e r e t u r n s t o scale e x h i b i t e d , we will c o m m e n t 

='See, for instance, Petrongolo and Pissaiides (2001) for a review. 
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on these issues while analyzing t h e resul ts ob ta ined for t h e d a t a set unde r investigation. 

O u r m a i n focus is t o emphas ize t h e re levance of t h e s e q u e n t i a l tes t in apphed work b y 

showing t h a t a neglect or imprope r t r e a t m e n t of u n o b s e r v a b l e factors , like test ing for 

corre la ted effects w i t h o u t condi t ioning on t h e exis tence or n o n exis tence of measu remen t 

errors, can lead t o ex t remely u n r e h a b l e inference results . 

2.5.1 D e s c r i p t i o n of t h e D a t a a n d D e f i n i t i o n of t h e Variables 

A longi tud ina l d a t a set of t ravel- to-work areas ( T T W A s ) i n t h e U K observed mon th ly 

for t h e per iod 1996-2001 has been used. All d a t a a i e ava i lab le f r o m t h e Na t iona l On-l ine 

Manpower I n f o r m a t i o n Service (NOMIS) loca ted a t t h e U n i v e r s i t y of D u r h a m . In t h e 

Un i t ed K i n g d o m t h e t ravel- to-work-areas a re considered t h e s t a n d a r d approx imat ions 

to se l f -contained l abor marke t s , i.e. a reas in which peop l e b o t h hve a n d work. T h e y 

are geographic regions w i t h a m i n i m u m of 3500 working p e o p l e whe re a t least 75% of 

those hv ing (working) in t h e area should also work (live) t h e r e . W e consider t h e m o s t 

recent T T W A s ' dehni t ion , based on t h e j o u r n e y to work s t a t i s t i c s f r o m t h e 1991 Census of 

Popu la t ion . A t o t a l of 297 T T W A s a re des igna ted in E n g l a n d , Sco t l and a n d Wales. On ly 

areas w i th n o n miss ing values are inc luded in t h e sample u s e d fo r e s t ima t ion , reducing t h e 

cross sect ion d imens ion f i o m 297 to 277 areas . F u r t h e r m o r e , b e c a u s e London looks like 

a n outl ier c o m p a r e d t o t h e o ther T T W A s , we pe r fo rmed t h e ana lys is w i t h o u t London, 

so t h a t we ended u p w i t h 276 areas. 

T h e N O M I S d a t a b a s e conta ins de ta i led in fo rmat ions f r o m b o t h sides of t h e labor 

marke t . Unemployed a n d vacancies d a t a collected by N o m i s a r e r eg i s t r a t ion d a t a pro-

vided by local emp loymen t agencies ( Job Cent res) . T h e y a r e a d m i n i s t r a t i v e d a t a t h a t 

have t h e a d v a n t a g e of be ing readi ly available on a regular b a s i s , a t h igh frequencies , a n d 

a t a very d i saggrega te spa t ia l level. T e m p o r a l aggregat ion is a n i m p o r t a n t issue in t h e es-

t i m a t i o n of a m a t c h i n g f imct ion because i t involves e s t i m a t i n g Sows f r o m s tock variables. 

High- f requency d a t a can in pr inciple m i t i g a t e th i s bias. A l so a g g r e g a t i o n over space can 

be misleading. T h e e s t ima t ion of a m a t c h i n g func t ion c o m b i n i n g cross sec t ional a j id t ime 
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series observat ions whe re t h e cross sect ion un i t s a re t h e r e g i o n s m a y still lead to unreli-

able resul ts . If t h e regions have a d iSerent size a n d m a t c h i n g does no t t ake place unde r 

cons t an t r e t m n t o scale, es t imates m a y b e aSec ted by a s p u r i o u s scale eSect (regional 

bounda r i e s do n o t coincide wi th labor m a r k e t boundar i e s ) . F u r t h e r m o r e , t h e diSerent 

local l abor m a r k e t s m a y b e in te r re la ted (for ins tance , b e c a u s e of c o m m o n shocks). B y 

working w i t h T T W A s , a qu i te h n e level of spa t ia l d i s a g g r e g a t i o n ( the finest available for 

t h e vacancies d a t a ) t h e f u r t h e r sources of bias should also b e mi t iga ted . W e use as a 

p roxy for t h e t o t a l n u m b e r of unemployed t h e m o n t h l y coun t of c l a iman t s w ho are claim-

ing u n e m p l o y m e n t b e n e h t s on t h e u n e m p l o y m e n t count d a t e (second T h u r s d a y of each 

m o n t h ) a n d as a p roxy for t h e jobs t h a t a re vacan t t h e m o n t h l y s tock count of n o t i c e d 

vacancies t h a t have n o t been Elled a t t h e end of t h e p r e v i o u s m o n t h . T h e n u m b e r of 

vacancies t h a t a re m o n t h l y filled by job seekers is our m e a s u r e of t o t a l ma tches /h i r ings . 

W e do no t a rb i t r a r i ly a d j u s t t h e d a t a following, for i n s t a n c e , t h e correct ion proposed 

by Coles a n d S m i t h (1996). I t is believed t h a t t h e J o b C e n t r e s n u m b e r s represent ap-

p rox imate ly one- th i rd of t h e vacancies a n d one-quar t e r of t h e placings in a T T W A . I t 

is cer ta in ly t r u e t h a t regis tered vacancies a re only one c h a r m e l f r o m which Grms recrui t 

personne l b u t we a re n o t aware of t h e exac t p ropor t ions . Howeve r , if for ins tance t h e 

r a t io be tween measmred n u m b e r of vacancies (or hires) a n d t r u e n u m b e r of vacancies (or 

hires) is no t cons t an t across areas, we would i n t roduce a s y s t e m a t i c m e a s u r e m e n t error 

by correct ing t h e d a t a th i s way. Our app roach is t o work w i t h t h e r a w d a t a a n d t r y t o 

control for t h e m o s t i m p o r t a n t unobservable fac to r s a S e c t i n g o u r d a t a set . 

2.5.2 E m p i r i c a l Analys is a n d R e s u l t s 

W e s t a r t by consider ing a s t a n d a r d Cobb-Douglas spec i f i ca t ion of t h e m a t c h i n g func t ion 

(2.9) in log-linear fo rm: 

logMi t = a- | -0!logU^t-t- / ) logl{t- t-7/^-t-M^t, % = 1 , . . . , ]V , t = = l , . . . , T . (2.10) 
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W e i n d i c a t e b y t h e n u m b e r of h i r ings in a r e a % d u r i n g m o n t h Uit a n d t h e 

s tocks of r eg i s t e red u n e m p l o y e d a n d of vacanc ies in a r e a 2 a t t h e b e g i n n i n g of p e r i o d 

7;̂  is a T T W A . h x e d effect c o n t r o l h n g for r eg iona l c h a r a c t e r i s t i c s , inc lud ing t h e size 

of t h e TTWA.; eind is a w h i t e noise e r ror t e r m . T h e c o n s t a n t t e r m , a , is m e a n t t o 

c a p t u r e t h e eGiciency of t h e m a t c h i n g technology. In t h i s f r a m e w o r k , <3 a n d are t h e 

e las t ic i t ies of h i r ings t o u n e m p l o y m e n t a n d of h i r ings t o v a c a n c i e s respect ively . C h a r t 1 

c o n t a i n s t h e g r a p h s p l o t t i n g d i f fe ren t p a n e l d a t a e s t i m a t e s of a a n d ca lcu la ted recur -

sively b y a d d i n g s ix m o n t h s pe r iods . A s s u m i n g n o r m a l i t y of t h e e s t i m a t o r s , we d raw t h e 

b a n d s c o r r e s p o n d i n g t o a c o n h d e n c e in te rva l of 95%. T h e h y p o t h e s i s of c o n s t a n c y is n o t 

r e j ec t ed . If we neglec t t h e o d d va lues of t h e e s t i m a t o r s i n t h e h r s t t w o years , p e r h a p s 

a f fec ted b y a d m i n i s t r a t i v e changes in t h e w a y d a t a h a d b e e n col lected,^ b o t h elast ic i t ies 

a p p e a r t o b e c o n s t a n t in all t h e m o d e l s a d o p t e d . T h e r e f o r e t h e r e s t r i c t i ve C o b b - D o u g l a s 

s p e c i h c a t i o n does n o t s e e m t o b e r e j ec t ed b y t h e d a t a . ^ 

^This may be related to the government change in 1997. 
more Gexible transcendental logar ithmic model of the matching technology hag also been analyzed. 

The results go beyond the main purpose of this thesis. Therefore they are not reported here, but they 
are available on request. 
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C h a r t 2.1: Rollbig Elagticit ies E s t i m a t o r s 
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Using t h e sequent ia l p rocedure presen ted in Sect ion 2.3, we invest igate t h e impor -

t a n c e of unobserved he te rogene i ty a n d m e a s u r e m e n t errors a f f e c t i n g t h e unemployed a n d 

vacancies d a t a by compar ing diSerent pane l d a t a e s t i m a t o r s of t h e coeSc ien t s of t h e 

s tocks of unemployed a n d vacancies. Table 3 r e p o r t s t h e r e s u l t s for t h e diSerent pane l 

d a t a e s t ima to r s involved in t h e development of t h e s e q u e n t i a l t e s t ing procedure . In our 

analysis we use Z F e s t ima to r s t h a t control for a u t o c o r r e l a t i o n in t h e process of the mea -

siu-ement error . We use aa ins t r imient for a var iable a t t i m e ( t h e value of t he s a m e 

var iable a t t i m e (( — 3). Th i s is reasonable f r o m a logical p o i n t of view because t h e 

i n a t n m i e n t is t h e value of t h e va i iab le a t t h e end of t h e p r e v i o u s q u a r t e r and f r o m a 

technical p rospec t ive because it allows us t o control for t h e presence of measuremen t 

errors t h a t follow a moving average process of order one, u s i n g diSerences, or one a n d 

two, us ing levels. 

T a b l e 3: Model (2.10), E s t i m a t i o n Resu l t s* 

D e p e n d e n t Variable: Log Fil led Vacancies 

OLSL W G I V L I V D 

0.4295 0.3502 0 .5171 0.5425 
Log vacancies 

(98.48) (55.47) (101.27) (59.11) 

0.6943 1.4224 0 .4450 1.5323 
Log i m e m p l 

(4.42) (1.99) (2.64) (1.63) 

- 2 . 7 2 2 8 - 7 . 8 7 1 4 - 1 . 2 0 9 1 - 9 . 4 6 6 5 
Cons t 

( - 2 . 2 8 ) ( - 1 . 4 6 ) ( - 0 . 9 5 ) ( - 1 . 3 4 ) 

*- t-test in parentheses, 

-robust s tandard errors are used, 

- TTWA. 6xed effects included. 

W e begin by app ly ing t h e sequent ia l t e s t separa te ly for t h e two c o e S c i e n t s . For sake 

of clarity, we r ep roduce D i a g r a m 2.1 for reference. 
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D i a g r a m 2.1: Sequent ia l P r o c e d u r e 

W G vs IVD 

No UH bias, but ME bias No UH bias, no M E bias 

R e j e c t 

/ 
Not R e j e c t 

\ 

IVD vs IVL W G vs OLSL 

No ME bias, No ME bias, 

no UH bias but UH bias 

No UH bias, UH bias, 

but ME bias and ME bias 

R e j e c t N o t Rejec t R e j e c t Not Re jec t 

Diagnosis A Diagnosis B Diagnosis C Diagnosis D 

Diagnosis A 

Diagnosis B 

Both unobserved heterogeneity 

and measurement errors 

are important sources of biaa 

The most important issue to control for 

is a measurement problem 

of the speciSed type 

Diagnosis C Unobserved heterogeneity plays a ma jo r role 

Diagnosis D No evidence of the specified "unobservability" 

UH bias: bias due to correlated eSects 

M E bias: bias due to measurement errors 

T h e diSerent e s t ima to r s account for one or a n o t h e r (or b o t h ) sources of b ias . 
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A t t h e h i s t s t a g e of t h e p r o c e d u i e , a r o b u s t D W H t e s t for t h e e q u a h t y of W G a n d I V D 

gives us ev idence of s t r o n g m e a s u r e m e n t e r ro r s for b o t h u n e m p l o y e d a n d vacancies d a t a . 

T h e nul l h y p o t h e s i s of e q u a h t y of t h e two e s t i m a t o r s is s t r o n g l y r e j ec t ed in b o t h cases 

= 23.21, p = 0.00; = 29.03, p = 0.00 for i m e m p l o y e d a n d va<;ancies respect ively) .^ 

I n t h e s econd s t a g e of t h e p r o c e d u r e we inves t iga t e t h e r e l e v a n c e of cor re la ted eSects . 

A r e a spec ihc ef fec ts o n h i r ings m a y arise, for i n s t ance , as a r e s u l t of va r ia t ions in t h e 

m a t c h i n g t e c h n o l o g y across T T W A s . T h e s e technolog ica l d i S e r e n c e s a r e hkely t o b e 

co r r e l a t ed w i t h a r e a size a n d h e n c e w i t h t h e a r e a level of u n e m p l o y e d a n d vacancies . 

A s exp l a ined in Sec t ion 2.3, a t e s t for co r r e l a t ed eSec t s i n p r e s e n c e of m e a s u r e m e n t 

e r ro r s in va r i ab le s cons is t s of c o m p a r i n g I V L a n d I V D . A p p l y i n g a r o b u s t D W H t e s t , 

we c a n n o t r e j ec t t h e h y p o t h e s i s of e q u a h t y of t h e two e s t i m a t o r s for t h e u n e m p l o y e d 

coefficient = 1.18, p = 0.2773), b u t we r e j ec t t h i s h y p o t h e s i s for t h e vacancies 

c o e S c i e n t = 46.04, p = 0.00). Di f fe ren t e s t i m a t i o n m e t h o d s c o n t r o l h n g for a spec ihc 

k i n d of b i a s s h o w d iSe ren t effects on t h e coeGicient of t h e t w o var iables : our r e su l t s 

sugges t t h a t vacanc ies a n d i m e m p l o y e d d a t a a r e c o n t a m i n a t e d b y u n o b s e r v a b l e f a c t o r s 

of d iEeren t t ypes . W e can conc lude t h a t a r e a specif ic u n o b s e r v a b l e f ac to r s , such as 

local policies t o w a r d s t h e d e m a n d or t h e s u p p l y s ide of t h e l a b o r m a r k e t , in f luence t h e 

s tock of vacanc ies b u t p l ay only a m i n o r ro le in t h e d e t e r m i n a t i o n of t h e n u m b e r of 

imemployed . However , m e a s u r e m e n t e r rors r e m a i n a n i m p o r t a n t i s sue t o con t ro l for . I n 

f ac t , if we p e r f o r m t h e sequen t i a l t e s t i n g p r o c e d u r e j o in t l y f o r t h e c o e S c i e n t s of t h e s tock 

of u n e m p l o y e d a n d vacancies , we re jec t t h e nu l l h y p o t h e s i s a t t h e h r s t s t e p (xg = 30.89, 

p = 0.00) b u t we c a n n o t re jec t t h e nuU h y p o t h e s i s a t t h e s e c o n d s t e p (x2 = 4.01, 

p = 0.1347). T h e r e f o r e t h e m o s t r e h a b l e e s t i m a t o r is t h e I V L . 

T h e lack of a r igorous s t a t i s t i ca l ana lys i s m a y lead t o c o m p l e t e l y d iEe ren t resu l t s . 

F i rs t ly , if we fol low t h e c o m m o n p r a c t i c e a n d we u s e a s t a n d a r d D W H t e s t t o choose 

b e t w e e n t h e r a n d o m eSec t s a n d t h e h x e d effects m o d e l ( c o m p a r i s o n b e t w e e n t h e e s t i m a t e s 

^Strictly, the analysis in Chapter 1 suggests that we can only interpret these two tests separately if 
there is measurement error only in one variable, and the two variables are uncorrelated. However, the 
correlation of 0.12 here seems hmited enough to support the interpretation. 
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in coliinins one a n d t h r e e of Table 3), we are forced to use t h e second one ( the diEerence 

of t h e e s t ima te s is sys temat ic : Xg = 64.13, p = 0.00). T h e r e s u l t is t h a t t h e values of t h e 

two elastici t ies are in con t ras t t o t h e under ly ing m a t c h i n g f u n c t i o n economic theory ( the 

hypo thes i s of cons t an t r e t u r n s to scale is r e jec ted = 25 .92 , p = 0.00). Fur the rmore , 

a j i i n t e r p r e t a t i o n of t h e resul ts based on a visual i n s p e c t i o n of t h e t ab l e m a y also b e 

misleading. Tab le 3 shows t h a t while for t h e vacancies c o e S c i e n t s t h e discrepancies 

be tween d iSeren t e s t ima to r s on t h e s a m e t r a n s f o r m a t i o n of t h e d a t a (OLSL versus IVL 

a n d W G versus IVD) a re higher t h a n t h e ones be tween t h e s a m e es t ima to r s on diEerent 

t r a n s f o r m a t i o n s of t h e d a t a (OLSL versus W G a n d IVL v e r s u s IVD) , t h e unemployed 

c o e S c i e n t s show oppos i t e a n d more m a r k e d p a t t e r n s . T h e r e is a huge difference be tween 

OLSL a n d W G a n d be tween IVL a n d IVD. There fo re t h e m o r e i m m e d i a t e i n t e rp re t a t i on 

is t o consider t h e bias d u e to m e a s u r e m e n t errors to b e t h e m o s t i m p o r t a n t p rob lem for 

t h e vacancies coef&cient, a n d t h e bias due t o corre la t ion b e t w e e n t h e regressors a n d t h e 

imobserved he te rogene i ty as t h e mos t i m p o r t a n t one for t h e imemployed coefhcient . As 

expla ined above, th i s i n t e rp re t a t i on is no t c o n h r m e d by t h e D W H tes t s . For ins tance , t h e 

par t i cu la r ly m a r k e d p a t t e r n s of t h e unemployed elastici t ies m a y b e d u e n o t only t o t h e 

effects of area-specif ic f ac to r s t h a t a re neglected in t h e e s t i m a t o r s of t h e mode l in levels, 

b u t also to t h e presence of s t rong m e a s u r e m e n t errors w h o s e ef fec ts a re magnif ied in t h e 

mode l s in devia t ions , as is conGrmed by t h e a p p h c a t i o n of t h e d iagnos t ic p rocedure . 

In order to inves t iga te t h e robus tness of t h e resul ts t o d iEeren t s t r u c t u r e s of t h e 

m e a s u r e m e n t error , we e s t i m a t e t h e mode l w i t h year ly t i m e d u m m i e s . I t is w o r t h no t ing 

t h a t t h e i n t r o d u c t i o n of t i m e d u m m i e s is usua l ly used to c a p t u r e t i m e c o m p o n e n t s of 

G (eGiciency of t h e m a t c h i n g f imct ion) b u t i t allows also f o r t h e eSects of unobservab le 

fac tors cons t an t across areas a n d changing over t ime. A p a n e l d a t a m o d e l which controls 

for t i m e differences in t h e technology of m a t c h i n g a n d one w h i c h a s sumes m e a s u r e m e n t 

errors w i t h a t i m e c o m p o n e n t in a n addi t ive s t r u c t m e have t h e s a m e specif icat ion. E i the r 

way we inves t iga te w h e t h e r diEerences in t h e in te rcep t m a y a c c o u n t for d iSerences in t h e 

previous e s t ima to r s (slope). T h e eEects of year specihc u n o b s e r v a b l e f ac to r s c o m m o n to 
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all a reas can b e relevaji t in t h e f r amework we are consider ing b e c a u s e it is very likely t h a t 

t h e s tocks of unemployed a n d vacancies are inSuenced by n a t i o n - w i d e policies diEerent 

over t ime. W e e s t i m a t e t h e following model : 

logM2t = a 4 - 0 ! l o g [ / ; t + /)logV^t + % + <̂ t + t(^t, 2 = 1, . . . ,7V, (2.11) 

where we use t h e s a m e no t a t i on of Model (2.10). In a d d i t i o n , 6̂  is a t i m e speciEc eSect 

control l ing for t h e inf luence of t e m p o r a l fac tors cons t an t ove r areas . Table 4 repor ts t h e 

cor responding resul t s f r o m t h e different pane l d a t a m e t h o d s of e s t ima t ion presented in 

Table 3. 

T a b l e 4: Mode l (2.11), E s t i m a t i o n R e s u l t s * 

D e p e n d e n t Variable: Log Fil led Vacancies 

OLSL W G IVL I V D 

0.4299 0.3509 0 .5173 0.5434 
Log vacancies 

(98.51 (55.49) (101.30) (59.05) 

0.6635 0.0010 0 .4017 1.4881 
Log i m e m p l 

(4.14) (0.00) (2.35) (0.49) 

- 2 . 7 4 4 2 3.0251 - 0 . 9 3 9 2 - 9 . 7 6 1 2 
Cons t 

( - 1 . 3 6 ) (0.21) ( - 0 . 4 5 ) ( - 0 . 4 1 ) 

*- t-test in parentheses, 

- robust s tandard errors are used, 

- T T W A fixed effects and year dummies included. 

Apply ing t h e d iagnos t ic p rocedu re de ta i led in Sect ion 2 . 3 s e p a r a t e l y for t h e coeffi-

cients of t h e unemployed a n d vacancies, t h e hypo thes i s of e q u a h t y of W G a n d IVD is 

re jec ted a t t h e h r s t s t age for b o t h variables (%^ = 27.64, p = 0.00; = 35.79, p = 0.00 

for imemploymen t a n d vacancies respect ively) . A t t h e s e c o n d s t age , we camio t reject 
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t h e hypo thes i s of e q u a h t y of IVL a n d I V D for t h e u n e m p l o y e d c o e S c i e n t (%i = 1.11, 

p = 0.2921) b u t we do re jec t th is hypothes i s for t h e v a c a n c i e s c o e S c i e n t = 94.09, 

p = 0.00). The re fo re t h e resul ts of t h e robus t D W H tes ts a r e n o t different f r o m the ones 

ob ta ined for Mode l (2.10), b o t h in t h e h r s t a n d in t h e second s tage . Also, w h e n the t e s t s 

for t h e e q u a h t y of t h e different e s t ima to r s are p e r f o r m e d j o i n t l y for t h e two coefBcients, 

we still re jec t t h e nuB hypothes i s a t t h e h r s t s t ep (xg = 38.31, p = 0.00) a n d we do 

n o t re jec t t h e nuH a t t h e second s tep (%2 = 4.44 p = 0 .1086) . Hence t h e resul ts of t h e 

sequent ia l t e s t p r o c e d u r e a re robus t t o e i ther f o r m of m e a s u r e m e n t errors. T h e m o s t 

rel iable e s t ima to r r emains t h e IVL. 

Also in th i s case, t h e conmion app roach t o t es t for c o r r e l a t e d eSects w i thou t con-

di t ioning to t h e exis tence or n o n exis tence of m e a s u r e m e n t er rors is misleading. T h e 

hypo thes i s of e q u a h t y of t h e e s t ima to r s in t h e 6 r s t two c o l u m n s of Tab le 4 is re jec ted 

(%2 = 51.17, p = 0.00) a n d t h e r e c o m m e n d e d e s t ima to r w o u l d b e t h e W G . Conclusions 

based only on a v isual compar i son be tween Tables 3 a n d 4 m a y also b e misleading. A 

compar i son of Tables 3 a n d 4 shows t h a t while t h e coeSic ien t s for t h e vacancies are al-

m o s t imtouched , t h e r e is a s t r ik ing d rop in t h e W G for t h e i m e m p l o y e d c o e S c i e n t t h a t 

canno t be c o m p a r e d to t h e slight decrease of aU t h e o the r e s t i m a t o r s . T h e coefhcient also 

loses i ts significance. I t seems t h a t , hav ing control led for a r ea - spec iEc a n d na t ion-wide 

t i m e specific fac tors , t h e effects of t h e s tock of unemployed o n t h e n u m b e r of hir ings are 

neghgible. I n o the r words one could infer t h a t t h e u n e m p l o y e d d a t a a re a lmos t com-

plete ly expla ined by these fac tors . However, th i s i n t e r p r e t a t i o n needs some care. T h e 

IVD, robus t t o m e a s u r e m e n t errors, does no t show such h u g e d r o p as t h e W G b u t i ts 

va lue is only s l ight ly decreased, as are t h e e s t ima to r s for t h e m o d e l in levels. In presence 

of s t rong m e a s u r e m e n t errors in variables, t h e e s t ima tes in t h e Erst two co lumns of Ta^ 

bles 3 a n d 4, n a m e l y es t imators , a re n o t rehable . T h e y neglec t such unobservable 

fac to r s a n d m a y b e misleading. Once m o r e it is w o r t h n o t i n g t h a t t h e D W H tes t s for 

imobservable he te rogene i ty in presence of m e a s u r e m e n t e r r o r s h a v e n o t b e e n a p p h e d for 

t h e compar i son of 02/6" e s t ima to r s b u t Z F e s t ima to r s have b e e n u s e d ( th i rd a n d fou r th 
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co lumns of Tables 3 a n d 4), as provided by t h e sequent ia l p r o c e d u r e in Section 2.3. 

In t h e sea rch -ma tch ing f ramework analyzed t h e m o s t r e l i ab le es t imator seems to b e 

t h e Z y es t ima to r on t h e models in levels (IVL) t h a t control f o r m e a s u r e m e n t errors. T h i s 

choice is r obus t t o t h e i n t roduc t ion of t i m e dummies . T h i s chosen es t imator presen ts 

also more reasonab le resul ts f r o m a theore t ica l po in t of view. T h e hypothes i s of cons tan t 

r e t u r n s to scale is no t re jec ted (Model (2.10): = 0.05, p = 0.8230, Model (2.11): 

= 0.23, p = 0.6315). 

2.6 Conclusions 

T h e m a i n i m p h c a t i o n &om these Endings is a on t h e empi r i ca l use of e s t ima t ion 

resul ts in p resence of s t rong unobservable fac tors in t h e d a t a set . es t imators a r e 

a lmos t never re l iable b u t t h e availabil i ty of pane l d a t a se t s a n d t h e use of e s t ima to r s 

t h a t control for imobservable he terogenei ty bias , as w i d e s p r e a d prac t ice , does no t always 

lead to t h e m o s t r ehab le results . I t is crucial t o inves t iga te w h a t is t h e mos t i m p o r t a n t 

source of bias t h a t aSec ts t h e d a t a set we a re using. D i f f e r e n t k ind of unobservable 

var iables m a y a f e c t d a t a a t dlEerent levels of d i saggrega t ion . P a n e l d a t a sets can b e 

he lpfu l in hand l ing these issues. P o o h n g cross sect ional a n d t i m e series observat ions, t h e 

econometr ics of pane l d a t a oEers a var ie ty of d iSerent e s t i m a t o r s for t h e s a m e pa rame-

ter , a n d t h e behav io r of such es t imators in t h e presence of u n o b s e r v e d fac tors m a y b e 

analyzed. There fore , it is possible to acqui re some k n o w l e d g e a b o u t t h e k ind of errors 

of specif icat ion involved, by checking w h e t h e r t h e y can a c t u a l l y account for t h e sign a n d 

order of m a g n i t u d e of t h e observed discrepancies be tween e s t i m a t o r s . P u r s u i n g such a n 

approach , we imp lemen t a sequent ia l tes t a iming t o d i s t i n g u i s h t h e effects of unobserved 

he te rogene i ty a n d m e a s u r e m e n t errors on t h e e s t ima to r s of t h e p a r a m e t e r s in a panel 

d a t a model . Size a n d power are inves t igated in a s imula t ion e x p e r i m e n t . 

A n appl ica t ion of t h e me thodo logy t o inves t iga te w ide ly discussed issues in labor 

economics is p resen ted . Using a j ob sea rch-match ing f r a m e w o r k , we s t u d y t h e eEects of 
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imobsei-vable fac to r s on t h e e s t ima ted elast ici ty of hir ings t o t h e s tock of unemployed a n d 

to t h e s tock of vacancies us ing a pane l d a t a set of T T W A s i n t h e U K followed mon th ly 

f r o m 1996 to 2001. A d iSerent dependen t variable, i.e. u n e m p l o y m e n t outEows, has also 

b e e n inves t iga ted b u t n o m o r e sa t i s fac tory resu l t s ob t a ined . O u r Endings reveal t h a t t h e 

d a t a on unemployed a n d vacancies a re aEected by s t rong s y s t e m a t i c measu remen t errors. 

In th i s particular- case, unobservable cross-sect ional d iSe rences , n a t u r a l l y associated w i t h 

different l abor m a r k e t ins t i tu t ions across T T W A s , seem t o b e i m p o r t a n t in t h e deter -

m i n a t i o n of t h e n imiber of vacancies b u t do n o t aSect s t r o n g l y t h e unemployed stock. 

However, it is t h e presence of m e a s i u e m e n t errors w i t h a n u n k n o w n s t r u c t u r e t h a t plays 

a m a j o r role. O u r inference resul ts a re robus t t o t h e p r e s e n c e of cor re la ted measu remen t 

errors ( t ha t follow a moving average process of order one o r two, according t o t h e d a t a 

t r a n s f o r m a t i o n used) w i t h or w i t h o u t a per iod specific c o m p o n e n t . Indeed , we choose 

as i n s t r u m e n t s for a var iable a t t i m e ^ i ts pa s t value a t l a g (^ — 3), a n d subsequent ly 

we correct w i t h t i m e dummies . Models con t ro lhng for u n o b s e r v e d he terogenei ty b ias 

m a y aggrava te t h e m e a s u r e m e n t error bias. The re fo re t h e m o s t r ehab le es t imators are 

i n s t n m i e n t a l var iables on t h e mode l in levels. T h e h y p o t h e s i s of c o n s t a n t r e t u r n s to scale 

canno t b e re jec ted . T h i s invest igat ion does no t n i l e ou t t h e p o s s i b i h t y t h a t a n empirical 

analysis of t h e m a t c h i n g func t i on m a y lead to dissimilar r e s u l t s us ing a d iSerent d a t a 

set . For ins tance , us ing d a t a d isaggrega ted by age or e d u c a t i o n a l level it is likely t h a t 

imobservable he te rogene i ty bias m a y b e t h e m o s t i m p o r t a n t i s sue t o control for. 

T h e analysis of t h e i l lus t ra ted case of s t u d y reveals t h a t conc lu s ions lacking a r igorous 

s ta t i s t ica l analysis of t h e effects of possible unobservable f a c t o r s m i g h t b e misleading. 

T h i s implies t h a t empir ica l resul ts in con t ras t w i t h t h e u n d e r l y i n g economic t heo ry do 

n o t always need a n e w theore t ica l exp lana t ion t o b e a c c o m m o d a t e d . T h e y might b e 

s imply t h e resu l t s of a n invahd inference. In presence of s t r o n g unobse rvab le fac tors , as 

it is t h e case in ana lyz ing t h e working of t h e labor marke t , t h e choice of t h e spec ihca t ion 

of t h e econometr ic m o d e l to b e used is t h e m o s t i m p o r t a n t a n d de l ica te phase . I n our 

opinion it is o f t en unde rva lued in empir ical s tudies . 
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2.7 Appendix 1.2 

T h e vai iables a n d ma t r i ce s used in th is Append ix , no t d i r e c t l y reconsidered in C h a p t e r 

2, have been def ined in C h a p t e r 1, A p p e n d i x 4.1. 

P a r t I 

We need t o c o m p a r e a n I F e s t ima to r a n d a n 02,6' e s t i m a t o r on t h e mode l in de-

via t ions , i.e. a n d respectively. In th i s con tex t , a n ar t i f ic ial regression of t h e 

t y p e used in A p p e n d i x 4.1 does no t he lp in cons t ruc t ing a t e s t r o b u s t for t h e presence of 

non-spher ica l errors . In w h a t foUows, we expla in why it is t h e case a n d we indica te a n 

a l t e rna t ive p rocedure . 

0 

G y 
on = 

c y 
Consider t h e a r t ihc ia l regression of Y* = 

app ly ing L e m m a 13 a n d 14 in A p p e n d i x 4.1, it gives c o e S c i e n t s = 

• By 

. T h e 

d i s tu rbances have a covariance m a t r i x = <7̂  as G C = fAr(T-i) -

In th is case, t h e t r a n s f o r m a t i o n s of t h e d a t a used in t h e t w o se ts of equa t ions are no t 

o r thogona l a n d y a r ( y * ) is no t diagonal . We have 

If now % = 
0 

0 G X 

Nex t , we ca lcu la te th i s var iance by sepa ra t ing t h e d iSerent c o m p o n e n t s . 
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= O" 

= a 

x ' G ' p ; 0 

0 

% ' G ' % ' G ' 

cr^77V(T'-i) 

f z G X 0 

0 G % 

P ^ G X 0 

0 G X 

X ' G ' f ^ G X 

% ' Q X 

0 
T h u s 

( % ' X ) V a r ( y *)%' ( X ' X ) - 1 

2̂ 

0 

( X ' Q Z ) - 1 

= <T 
0 

0 
X 

a 

= a~ 

a n d 

% ' G ' P ^ G X % ' Q % 

I I 

( X ' G ' P ^ G X ) - ' ( % ' Q X ) - " 

( % ' Q X ) - ' ( X ' Q X ) - ' 

0 

( Z ' G ' f ^ G X ) 

0 

- 1 

0 

0 

( X ' Q % ) - 1 

v 4 - X % ' % ) " ^ X V a r ( y * ) X % % ' X ) - ^ A *\ — 1 /I — 1/ 

a 

= a 

I 

0 I 

( X ' Q X ) -

( X ' Q X ) -

a 
0 ( X ' Q X ) - " 

I 0 

-I I 

I 0 

-I I 

(2.12) 

(2.13) 

If we r u n t h e art iBcial regression, t h e p o s t u l a t e d va r i ance -cova r i ance m a t r i x is diSerent . 
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I t will b e p ropor t i ona l t o 

I -/ 

0 I 

-1 

-1/ 

1 

I 0 

-I I 

, - i 

I 0 

-7 I 0 

( X ' Q X ) - ( A " Q % ) -

T h e fac t t h a t t h e equa t ion sets in t h e double l eng th r eg res s ion cons t ruc t ed are not or-

thogona l is no t t aken in to considerat ion. A wrong answer wi l l also come f r o m t h e W h i t e ' s 

e s t ima tors . T h e y a re n o t r obus t t o t h e presence of i n t e r - g r o u p correlat ion. T h e use of 

a Newey-West robus t 0 ^ 5 ' e s t ima to r would no t he lp e i t h e r . T h e var iance covariance 

m a t r i x exhibi t s a p a t t e r n of cross sect ional d e p e n d e n c e (i.e. pa r t i cu l a r f o r m of n o n s ta -

t i ona r i ty pers i s ten t w h e n N goes t o infini ty) t h a t is n o t s u p p o r t e d by these es t imators . 

Therefore , a consis tent e s t ima to r for t h e var iance of t h e d i S e r e n c e of t h e two es t imates 

(upper left p a r t of m a t r i x (2.13)) needs to b e cons t ruc t ed s t e p b y s tep . 

We need to recover t h e ma t r i ce s involved a n d a c o n s i s t e n t e s t i m a t e of (%. Recal l t h a t 

for t h e Aist set we are p e r f o r m i n g a n I F e s t ima t ion by r u n n i n g on a t r a n s f o r m e d 

model . I t is known t h a t t h e residuals do n o t p rov ide a cons is ten t e s t ima to r of t h e 

var iance of t h e ini t ia l d i s tu rbances , because t h e t r a n s f o r m e d m o d e l h a s a n o n spherical 

var iance-covar iance m a t r i x . T h e simi of squares of t h e r e s i d u a l s coming f r o m t h e ini t ial 

mode l w i t h t h e I F e s t ima to r should b e used ins tead . 

However, no t ice t h a t 

Ei,, = 2/ — 
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can b e w i i t t e n as 

— 3/ -

= 6o(a + % 

a n d the re fo re 

— ̂ Zs^oZa + (^oZa ^ Ai , ) (^ofa — Ai,) -

T h e s u m of squares of t h e residuals coming f r o m t h e i n i t i a l mode l w i t h t h e I F esti-

m a t o r is equal t o t h e s u m of squares p lus a f unc t i on of t h e con t ras t be tween t h e two 

es t ima to rs , which is w h a t we wan t t o tes t eventually. T h i s c o n t a m i n a t e s t h e var iance es-

t ima t e . There fore , in order t o get a consis tent e s t ima to r of t h e var iance we can rely only 

on t h e second set of equa t ions in t h e aux iha ry model . W e r u n on t h e second set of 

equa t ions a n d use W h i t e r o b u s t s t a n d a r d errors. ( T h e y p r o d u c e a consis tent e s t ima to r 

of imder t h e a s s u m p t i o n t h a t y a r ( y ) = E , a b lock d iagona l ma t r ix . ) A 

possible ass imipt ion is t h a t E , w i t h TV blocks ea^h T x T , on t h e m a i n diagonal , 

h a s = ^2 -̂1- cr^ a l t hough it becomes a p p a r e n t t h a t t h i s is t o o general . Deno te 

cr^ t h e var iance in t h e h r s t set of equa t ions t h e e s t i m a t e ) a n d cr^ t h e var iance in t h e 

second set of equa t ions (o'g t h e es t imate ) . 

F r o m t h e Erst set , we get 

X V G r ( G y ) % = f z G X 

So 

= (7^ ( X ' G ' P ^ G X ) - ^ ( % ' G ' f ^ n P ^ G Z ) . 

116 



I n o rde r t o ge t t h e m a t r i x of in t e res t , we will d iv ide t h e e s t i m a t e of th i s var iance b y 

t h e o b t a i n e d 

D e n o t e » = . 

Similar ly, r i m o n t h e second se t of e q u a t i o n s a n d u s e W h i t e r o b u s t s t a n d a r d 

er rors . W e ge t 

So 

cr n 

(7^ . 

= (7^ . 

D e n o t e 8 - . 

A r o b u s t a n d cons i s t en t e s t i m a t o r of t h e prec is ion m a t r i x in t h e W a l d t e s t is^° 

^0,)^ ( A 
- 1 

(̂  - e). 

Par t II 

W e need t o c o m p a r e a n i n s t r i m i e n t a l va r i ab le e s t i m a t o r o n t h e m o d e l t r a n s f o r m e d 

acco rd ing t o t h e between t r a n s f o r m a t i o n a n d a n i n s t r u m e n t a l v a r i a b l e e s t i m a t o r 

on t h e m o d e l t r a n s f o r m e d acco rd ing t o t h e witAm t r a n s f o r m a t i o n . 

0 
T h e a i t i h c i a l regress ion of Y* = o n X * = gives c o e S -

c ien ts 
0: 

. R e s u l t s (2.6) a n d (2.7) in L e m m a 15 d i r ec t l y fol low f r o m t h e 

a p p h c a t i o n of L e m m a 13 a n d 14 in A p p e n d i x 4.1. M o r e o v e r , as in t h e c o n s t r u c t i o n of 

^°Note that the precision matrix may not always be positive deGnite in finite samples. 
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t h e art i f icial regression in A p p e n d i x 4.1, we use aga in two o r t h o g o n a l t ransformat iong. 

Also in th i s case 

0 0 

As ^ is TV X A^T, t h e i n s t r u m e n t set fo r va r iab les t r ans fo rmed by f f , 

Z ; / say, is n o t t h e s a m e as for var iables t r a n s f o r m e d us ing G , w h i c h is 1) x N T , Z 

0 
s a y O n e m a y set b u t th i s is no t necessary. If n o w % 

0 

Next , we ca lcu la te th i s var iance by sepa ra t ing t h e d i f f e ren t componen t s , as we did in 

P a r t I of th i s Append ix . 

% V a r ( y * ) ; i C = 
0 

0 

a 

a 

0 

0 
(g + 

0 

(1 + 0 

0 

0 ^ 

0 

0 P y G X 

0 
Thus 

a 

(g + 0 

0 

X 

0 

0 
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(T 

a n d 

0 

(T 

a 

(T 

I -7 

0 I 

(g + 0 

0 

I 0 

-/ 1 

I 0 

-I I 0 ( X ' G ' P ^ G X ) - ^ 

(2.14) 

W e now need t o End t h e variance-covariaiice m a t r i x t h e a r t lEc i a l regression will aasmne. 

T h i s wiU b e p ropor t i ona l t o 

1 /I—1/ 

/ -I 

0 I 0 ( % G ' f ^ G X ) - i 

I 0 

- 7 7 

( % ' 7 7 ' f ; ^ 7 f % ) - ^ - ( X ' G ' P ^ G X ) -

0 ( X ' G ' T ^ G X ) - ^ 

( % ' 7 7 ' f ^ ^ 7 f % ) - ^ + ( X ' G ' T ^ G X ) - ^ 

- ( % ' G ' f ^ G X ) - ^ 

I 0 

-I I 

- ( X ' G ' f ^ G X ) -

( X ' G ' f ^ G X ) - -
(2.15) 

B y compar ing (2.14) w i t h (2.15) it appea r s t h a t a n a r t iAcia l regression is a va luable 

device t o e s t i m a t e a su i t ab le var iance-covariance m a t r i x . W e also need t o consider t h e 

(Whi t e ) robus t Of,;,? e s t ima to r which uses a consis tent e s t i m a t o r of % * ' y o r ( y * ) % * imder 

119 



t h e cLSSumption t h a t y a r ( y ) = E is block diagonal . 

0 

0 

0 

f f S f f ' 0 

0 G E G ' 

0 

0 

0 

0 

0 

0 X ' G ' f ^ G E G ' f ^ G X 

D e n o t e for s implici ty T = n = X ' G ' f ^ G S G T z G X . T h u s 

0 
X 

r 0 
0 n 0 

0 

0 

( % ' - i p ^ % ) - 1 

0 

0 

0 

D e n o t e for s implici ty 

1 , 1 - 1 / 

I -I 

0 I 

u -V 

0 V 

[ / 0 

0 y 

I 0 

-I I 

I 0 

-I I 

(7 + y - y 
-y y 
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In t h e case = 0-7?^ + c r & / , t h e residuals f r o m t h i s regression of Y* 
y 

cy 

on X* = 
0 P z G X 

to give coefhcients 0̂ = CEin b e o b t a i n e d 

by s tack ing those f r o m Y on above those f r o m G y o n Similarly to t h e 

art iEcial regression considered in Sect ion 1.3 t h e h r s t set of e q u a t i o n s needs t o be scaled 

by 

A: = yr/(l + gT) 

as o therwise t h e r e is no mul t ip le of t h e res idual s u m of s q u a r e s of t h e artiBcial regression 

(i.e. w i t h expec t a t i on cr^. However, because i n t h i s case we are pe r fo rming 

a n f y e s t ima t ion by r u n n i n g Of,;,? on a t r a n s f o r m e d m o d e l , t h e 02 .̂S" residueils do n o t 

p rov ide a cons is tent e s t ima to r of t h e vEiriance of t h e in i t i a l d i s tu rbances . B o t h in t h e 

e s t ima t ion of ^ a n d in t h e t es t s ta t i s t ic , t h e s u m of s q u a r e s of t h e residuals has to b e 

ca lcu la ted us ing t h e Z F e s t i m a t e of a n d t h e u n t r a n s f o r m e d r ight h a n d side variables. 

T h e H a u s m a n tes t can b e ca lcu la ted by car ry ing ou t t h e a r t i 6 c i a l regression of y * — 

a n d cons t ruc t ing a W a l d t es t , IV, on t h e n r s t A: 
^ ^ y 

on X * = 
c y 0 

coe&cients , us ing t h e following correct ion: 

[NT-2K] 

[Nr-2A:] 

= 

where quan t i t i e s w i t h subscr ip t zf a re referred to t h e i n i t i a l m o d e l a n d t h e ones w i t h 

subscr ip t oZa are referred t o t h e t r a n s f o r m e d model . 

R e t u r n i n g t o t h e case yor(2/ i ) = t h e d e v i c e of scal ing t h e h r s t set of 

equa t ions in t h e ar t ihc ia l regression requires [ / a n d y t o b e i n s imple scalar ra t io . T h e 

case of s imple he te roscedas t ic i ty over t ime , H H diagonal , gives 2 = 

y G r ( y ) = ® a n d y a r ( ^ ) = ® w h e r e 

B u t y a r ( G y ) = ® a n d t h e presence of t h e d i E e r e n t f t e r m s removes any 
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s imple re la t ionship . T h e o r t h o g o n a h t y of . f f y a n d G Y e n s u r e s t h a t it is s t ra igh t forward 

to combine t h e resul ts f r o m s e p a r a t e es t imat ions of a n d to calculate W! 
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C h a p t e r 3 

Latent Variables in D y n a m i c Panel 

D a t a Models 

Thi s chap te r imp lemen t s op t ima l m i n i m m n d is tance e s t i m a t o r s t o e s t ima te consis tent ly 

antoregress ive mode l s for pane l d a t a w i t h t h e jo int o c c u r r e n c e of unobserved he tero-

genei ty a n d sys t ema t i c m e a s u r e m e n t errors-in-variables. E f E c i e n c y considerat ions a re 

presented . T h e p roposed es t imators are appl ied in a s e l ec t ed case of s t u d y where also 

cross-sect ional dependence needs to b e t a k e n in to cons ide ra t i on . T h e resul t ing empir ical 

mode l e s t i m a t e d is a spa t io - t empora l pane l d a t a mode l w i t h unobse rved he terogenei ty 

a n d sys t ema t i c m e a s u r e m e n t errors. 
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3.1 Introduction 

M a n y mode l s in social sciences suggest t h a t cur ren t b e h a v i o r of t h e agents depends u p o n 

pa s t behav ior (persis tence, hab i t fo rma t ion , pa r t i a l a d j u s t m e n t , etc. . . . ) . P a n e l d a t a have 

t h e imique abi l i ty t o allow us t o mode l a n d compare t h e d y n a m i c s of different individ-

uals. B u t how d o we deal w i t h m e a s u r e m e n t errors a n d t h e unobserved he terogenei ty 

issue in a d y n a m i c f r amework? D y n a m i c models c o m p l i c a t e t h e es t ima t ion p rocedure 

because meeisurement errors require t h e use of i n s t r u m e n t a l va r iab les techniques in order 

t o ob ta in consis tent e s t ima to r s a n d in a d y n a m i c contex t o n l y p r e d e t e r m i n e d i n s t r u m e n t s 

m a y b e available. Fu r the rmore , cer ta in t r ans fo rma t ions t h a t e l imina te t h e imobserved 

heterogenei ty , such as h i s t diSerences or devia t ion f r o m t i m e - m e a n s , lead t o inconsis tent 

e s t ima to r s w h e n i n s t r u m e n t s a re p rede t e rmined . 

Cons i s ten t e s t ima to r s for ( s ta t ionary) autoregress ive p a n e l d a t a models w i t h w h i t e 

noise errors (assimiing exaxnt m e a s u r e m e n t of t h e var iab les u s e d as regressors) a re pre-

sented , a m o n g o thers , by Arel lano a n d B o n d (1991), A r e H a n o a n d Bover (1995), Blundel l 

a n d Bond (1998). Cons i s ten t e s t ima tors for s t a t i c pane l d a t a mode l s w i t h m e a s u r e m e n t 

errors in t h e regressors are discussed, a m o n g others , by B i o r n (2000). B o t h m e a s u r e m e n t 

errors a n d t h e presence of a lagged d e p e n d e n t var iable m a k e 02,5' e s t ima to r s inconsis-

t en t . In b o t h contex ts , t h e e s t ima t ion techniques p roposed t o overcome t h e p rob l em is a 

min imimi d i s t ance e s t ima to r . Th i s chap te r combines these t w o s t r a n d s of t h e pane l d a t a 

h t e r a t u i e a n d p resen t s op t ima l min imimi d i s t ance e s t i m a t o r s t o e s t i m a t e consis tent ly a 

mode l which supe r imposes t h e errors-in-va^iables p rob lem a n d t h e he te rogene i ty p rob l em 

on a d y n a m i c f r amework . Fu r the rmore , t h e m e a s u r e m e n t e r r o r s a r e n o t supposed t o b e 

r a n d o m . A m o r e c o m p h c a t e d process is assimied. 

T h e chap te r is organized as follows. Sect ion 3.2 rev iews t h e app l i ca t ion of t h e GeM-

o / for models of covariance s t r u c t u r e s . Sect ions 3.3 a n d 3.4 

descr ibe t h e use of th i s me thodo logy to e s t i m a t e d y n a m i c p a n e l d a t a mode l s w i t h o u t 

m e a s u r e m e n t er rors a n d s t a t i c pane l d a t a mode l s w i t h m e a s u r e m e n t er rors respectively. 

In Sect ion 3.5 th i s e s t ima t ion m e t h o d is used t o ob ta in c o n s i s t e n t e s t i m a t o r s of t h e au-
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toregressive p a r a m e t e r of a ( s ta t ionary) pane l d a t a d y n a m i c m o d e l w i th la ten t variables. 

T h e d iSerent consis tent e s t ima to r s p resen ted vary in t e r m s of e@ciency. T h e more eSi-

cient is t h e e s t ima to r , t h e more res t r ic t ive are t h e h y p o t h e s e s unde r ly ing t h e cons t ruc t ion 

of t he model . Sect ion 3.6 presents a concre te case of s t u d y w h e r e t h e analyzed econo-

met r i c m o d e l spec ihca t ion a n d re la ted es t ima t ion m e t h o d o l o g y have been applied a n d 

ta i lored. Sect ion 3.7 concludes. 

3.2 Covariance Structures and the G M M Criterion 

T h e ( G M M ) was Erst p r o p o s e d by Hansen (1982) a n d 

ex t ended by W h i t e (1984). The i r resul ts a s sume T —» oo. I t is t h e equivalent of t h e 

(IV), w h i c h we used in Section 2.3, in 

a f r a m e w o r k t h a t m a y allow for dynamics a n d non- l inear i t i es . T h i s sect ion presents t h e 

appl ica t ion of t h e G M M to pane l d a t a as used, a m o n g o t h e r s , b y Arel lano and B o n d 

(1991) a n d C h a m b e r l a i n (1982). Here, t h e resul ts assimie AA oo. In th i s f ramework 

t h e a t t e n t i o n is focused on t h e second m o m e n t s of t h e d a t a . M u l t i p l e s ample m o m e n t s a re 

combined in to a single e s t ima te of t h e popu l a t i on momen t s . C o n s i d e r t h e %-th observat ion 

of t h e s amp le 

Vi = 

y,T y 

a n d as sume (for s imphc i ty of exposi t ion) 

E{:y, = 0). Var (y.) = E = !2. ('#) 

where is a vector of p a r a m e t e r s t o b e e s t ima ted . T h e s t a t i s t i c a l m o d e l can b e expressed 

as a list of o r thogona l i ty condi t ions 

E ('^) = 0 V i 
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We now explain how to estimate using the GMM. In th i s context, this technique is 

often referred to as the estimator. 

In order to recover the standard vector formulation of t h e GMM (Hansen, 1982), the 

matrices 1/1% and (1)) need to be transformed in vector form. In the simple case of 

a symmetric covariance matrix it is suKcient to put all distinct elements of the upper 

triangle or lower triangle matrix one after the other in a vector. For example, consider 

model (1.1) and suppose T = 3. We have 

Vi = 

n(i9) = 

/ \ 

2/ii 

y 2/i3 y 

%% = 

\ 

4 4 
4 + A 

\ 

Denote 

S = 
6x1 

' A ^ 

VK(i9)= 
6x1 

I +a' ^ 

cr:: 

\ \ / 

The set of orthogonality conditions for each ^ can be written as 

E ^ (i9)] = 0. 

The estimation is based on the sample orthogonal conditions 

- ^ [g, - w, (?))] = 0, 

where is the generic element of 6" and (i9) is the corresponding element in TV (i9) 
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Defuiing a = and w E Wi (i^), the sample orthogonal conditions can be 
i % 

written as 

5 — w (i9) = 0. 

We can then estimate by GMM. 

=argmin [a - w (i))] y ^ [g - w (i9)] 
i9 

where 

^ " TV ^ 

is the sample covariance matrix of the orthogonal conditions which yields the most e@-

cient GMM estimator.^ 

If the restrictions are linear in H (i9), it is possible to derive analytically the estimator. 

Otherwise it has to be calculated by nmnerical optimization. 

For instance, if we rewrite 

6x1 

1 0 

1 0 

1 1 

1 0 

VI V 

a, 

a 

using the GMM 

min [5 — 9" ^ [s — 

^Note that we are minimizing a quadratic form, but we could also minimize other measures of distance. 
As a result, we can obtain other estimators. However, they carmot perform better in asymptotic terms, 
as the GNIM estimator reaches the efhcient lower bound, provided the optimal weighting matrix is used 
and the set of orthogonality conditions remains unchanged. 
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we obtain 
-1 

This estimator has the form of a and it can be calculated aU in one step. However 

in most empirical cases we do not have linear restrictions. Moving Average models (MA 

models), for instance, imply linear restrictions in the covaziance matrix and they are 

easy to treat but they may not be appropriate in most real cases. It is suGicient to note 

that in an MA model all the variables on the right-hand-side are miobservables. For this 

reason the analysis of dynamic models for panel data wiU b e restricted in this work to 

Antoregressive Models (AR models). In a AR model, the restrictions are not linear and 

the estimation is slightly more comphcated but such models have a wider applicability. 

The next section describes how to use the GMM technique in order to obtain consistent 

estimators of a hrst order autoregressive panel data model wi th imobserved heterogeneity, 

assimiing exact measurement. 

3.3 Dynamic Panel Data Models w i t h Unobserved 

Heterogeneity and without Measurement Errors 

Arellano and Bond (1991) propose consistent estimators for dynamic panel data models 

using a method of moments formulation. Consider a random sample of individual time 

series of length T, {^i, 2 = 1 A/"} , with second-order moments matrix ^ 

Assume that the joint distribution of and the individual eEect 77̂ , satisSes 

Vit — ~l~ "l~ ) |cK| ^ 1, % — 1, N, (3-1) 

where 

I %t_i) = 0, ( = 1, (3.2) 

^(%) = /̂ , -B(4) = ^ar(77j = (7 .̂ (3.3) 
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It is worthwhile noting that this is a quite general autoregressive specihcation of the 

model. Assumption (3.2) does not rule out correlation between 7;̂  and Sit, nor the pos-

sibility of conditional heteroskedasticity, since .6(6^ | need not coincide with cr .̂ 

It assumes lack of serial correlation in the errors but not independence over time. How-

ever, it is the crucial assimiption because it allows us to consider values of ^ lagged two 

periods or more as valid inatrimients in the equations in Arst differences. Arellano and 

Bond (1991) propose also a test for serial correlation of t he residuals. 

Consider the restrictions we need in order to estimate O, is a T x T matrix and 

therefore has ^ [T x (T -f-1)] distinct elements. Model (3.1)-(3.3) hag (T -H 3) parameters 

( r variances, o"^). The number of overidentifying restrictions is 

^ [ r x ( r + i ) | - ( r + 3) = ^ T' -T~6 

Model (3.1)-(3.3) imphes m linear moment restrictions 

E - o!A%t_i) ] = 0, ; = 2 , . . . , (( — 1), ( = 3 , . . . , T, (3.4) 

where A is the operator that transforms the data in first differences. 

Arellano and Bond (1991) propose to use a GMM approach to estimate a when 

^ 00 and T is small. We can express the conditions (3.4) as 

E (^Z-Asi^ = 0 

/ A . , \ / 

where Ae, 

Aŝ gn y 

— {Ai/if ofAj/j j_i]-, t 2,..., r. 
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The matrix of instrmnents Z, is a block diagonal matrix of the form 

(T-2)xm 

2/n 0 0 

0 2/ii 

0 0 

0 0 

0 

0 

0 0 0 ' ' 2/t2 ' ' ' %/i,r-2 

Following the technique presented in Section 3.2, consider t h e sample moments 

The value of a which minimizes the quadratic form 6 (o;) 6 (a) is the GMM estimator 

ScMM =argmin 6 (a) v4Ar6 (<]:) , 
a 

where is a weighting matrix. The estimators depend on the choice of As 

explained in Hansen (1982), all of them are consistent because they are built on the 

sample moment conditions but not all of them are efhcient. As indicated in Section 3.2, 

an optimal choice of is provided by the inverse of the covariance of the orthogonality 

conditions 

E . (3.5) 

The moments that have more variance receive less weight. In this way the precision of 

the estimators is higher. In practice, in order to obtain a feasible estimator we have to 

foUow a two-step procedure. First, use a sub-optimal weighting matrix that does not 

depend on (e.g. the identity matrix). For the autoregressive model considered above, 

the one step consistent (but not efficient) estimator. Si, can be obtained by setting 

= 
N E 
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where fT" is a (T — 2) square matrix which haa twos in t he main diagonal, minus ones 

in the Erst snbdiagonalg and zeros otherwise. The residuals, s*, from this preliminary 

estimation can then be used to obtain a consistent estimator of the optimal weighting 

matrix (formula (3.5)). Taking the sample comiterpart 

/V — 

we obtain a two step estimator S2 = SgMM, that is e&cient. Note that and G2 are 

asymptotically equivalent if the are independent and homoskedastic both across units 

and over time. However, such a procedure does not use information which is contained 

in the levels of the variables. It loses what sometimes is a very substantial part of the 

total variation in the data. Arellano and Bover (1995) propose an estimation method 

that uses also equations in levels. They are concerned w^ith panel data models that 

specif instrimients in levels for equations in first differences and instruments in Grst 

differences for equations in levels. Arellano and Bover (1995) consider models in which it 

is usually aasumed that all the explanatory variables are potentially correlated with the 

individual e:Eects. Therefore, only estimators based on transformations of the original 

observations that purge the model from the can be consistent. However, if there are 

instruments available that are not correlated with the individual effects, one can. use also 

the information contained in the levels of the variables which, if exploited, could improve 

the e@ciency of the resulting estimators. The instruments of this kind that they choose 

are first diEerences of variables that have a constant correlation with the individual 

eSects. Arellano and Bover (1995) carry out simulations of a Erst order autoregressive 

model with individual effects. Such em experiment illustrates the potential of exploiting 

moment restrictions in level equations using predetermined variables in Erst differences. 

The validity of the added moment conditions need, of course, to be tested.^ Next, we 

wiD review this combined GMM methodology. 

^The Sargan test of the over-identi^ng restrictions (Sargan, 1958; Hansen, 1982) is the statistic 
typically used to assess the validity of the enlarged matrix of instruments. 
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Consider the standard autoregressive model (3.1)-(3.3). Following Arellano and Bond 

[1991), Arellano and Bover (1995) dehne the orthogonality conditions as 

^ ( z + m , ) = 0, 

where 

H = 

' / 
is the transformation matr ix 

and 

' 0 z , / 
is the matrix of instruments. 

D is the matrix that transform the variables in diSerences, 7 is the identity matrix, Z, 

is the block diagonal matrix which contains the instnmients available for the equations 

transformed by ^ and is also a block diagonal matrix which contains the instruments 

available for the equations in levels. They estimate the following system 

.E = 0, orthogonality conditions for the variables in first diSerences 

= 0, orthogonality conditions for the variables in levels. 

(3.6) 

Note that, given the moment conditions for the equations in first differences, some of the 

added restrictions for the equations in levels will be redundant. For instance, consider the 

standard autoregressive model (3.1)-(3.3). We can rely on "basic" moments, 

i.e. conditions (3.4), but if for instance we also assume mean-stationarity (BlundeU and 

Bond, 1998) we have a long hst of other "additional" moments coming from 

However, the only useful ones are 

^ j (z/it—j+l j)] ' 0 .̂7 — 1; 2, 
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All the other moments conditions imphed by mean stationarity are redundant. For 

example, E' (z/it — = 0 can be expressed as a linear combination of the 

digerence of two "basic" moments and an "additional" one where the lag between 

and is just one: 

E [A2/̂ ,t_2 (2/̂ t - = 

= -B [Ai/i t_2 ^ [A2/t,t_2 (2/z,t-i — = 0-

The instruments for the added conditions are only 

(T-2)xm 

A^i2 0 0 . 0 0 

0 A^^3 0 . . : 

0 A2/t_2^_i 

where m = ({T — 2). 

The procedure proposed by Arellano and Bover (1995), also called GMM, 

combines all the non redundant information. The optimal estimator is 

GcMM =argmin 6+ (a) ' (o:) , 

where 

and 

M = i Z [ztHe, 

A N Z {z*'He.E',H'zf) 

The next section describes how to use the GMM in order to obtain consistent esti-

mators in presence of measurement errors and unobserved heterogeneity in static panel 

data models. The section begins by showing that panel da t a may create a context where 
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consistent estimation may be possible even if the variables a re measured with errors.^ 

3.4 Static Panel Data Models with Unobserved Het-

erogeneity and with Measurement Errors 

In a panel data set each individual and each period is replicated. This characteristic is 

often called "the repeated measurement property" and it is the main reason why panel 

data sets can make the errors-in-variables identilication problem more manageable. The 

measmement error problem can be reduced by taking averages which, in turn, may show 

suGcient variation to permit consistent estimation. Following this idea Biorn (2000) 

constructs estimators from period means and discusses their consistency. Next, we will 

review this approach in a simphEed framework. 

Consider a uni-variate panel regression model with unobserved heterogeneity and 

"classical" errors-in-variables 

= + )?% + %, % = A/", ^ = 1,...,T' (3.7) 

where the observed variable is -t- and (0, cr^), rs, (0, cr^), 

Md (0, o"^), 7/̂  rv, 2W ^0, , V2, and and 7;̂  are independent V%, t, j , s, r. 

The observed equation is 

where 

'CC'if = % — Sit/?. 

Taking differences in period means, we obtain 

t t (3.8) 

^Note that we mantain the assumption of random measurement errors. In other words, we still 
consider errors-in-variables aa "claasical". 
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where 
E E I ] 

= — z , t = — — , oy.t 
A/" ' AT ' ' TV 

and Ag is the operator diSerencing over g periods. 

Taking diSerences between period means, we obtain 

(z/.t-2/) = (3:.t-a;)/? + (i;7.t-cu) (3.9) 

where 
E E E E E E 

^ = ^ - 1 — , z - ' * , ^ " * 
7VT ' 7VT ' A^T 

The law of large mmibers, under weak conditions, implies t h a t 

(a7,t) = 0. (3.10) 
TV—>oo 

Hence consistent estimators of /? can be obtained by on model (3.8) or model (3.9), 

respectively 

/ r ^ \ T 
1 ] (A,Z()'(Ag^,t) ^ (A,^,t)'(Ag^ J , s = l , . . . , r - l 

and 
/ r \ ^ 

= Z t - ^) ' (^.t - )̂ E - )̂ (F.t - . 
y t = a + i y t = a + l 

These estimators simply exploit the fact that averages of a large number of repeated 

measurements of an error-ridden variable can give (under weak conditions) a consistent 

measme of the true average at the hmit, provided that this t rue average shows variation 

along the remaining dimension and that the measurement error has no period specific 

component. However, the last assimiption is often not sustainable in many empirical 

situations. In these cases the estimators proposed are not consistent any longer. We 

relax this assumption and discuss the estimation of the resulting model in Section 3.5. 
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Consistent estimators of can also be constructed using a eŝ 2-

, that is a GMM The identlEcation of comes from the second order 

moments of the observable variables, Cot;(zit, Zig), Co'u(2;if, V%, 5 and 

in general depends on whether or not the imposed structure is su&cient to obtain a 

imique solution for /3. For model (3.7) the second order moments are 

Cof(%,z«t) = 0-2 + 0-2 

Ccw(z^t,i/^t) = (T2/) % = ( = 1...T (3.11) 

2/it) = + 0-̂  + 0-̂  

and 

Cm;(z^t,a;ia) = 0 

Co'u(a;^(,i/ia)=0 2 = 1...//; ^ , g = l . . . ! r (3-12) 

Co'u(%t,i/») = o-̂  

We have clearly lack of identiEcation. We have a system with more unknown than equa-

tions. Conditions (3.11) and (3.12) are not sufhcient to i d e n t i ^ o-*,o-g,/),o-T,,o-7;. Biorn 

(2000) considers Ave groups of assumptions: bagic orthogonality assumptions, additional 

assumptions on the measurement errors, additional assumptions on the disturbances, ad-

ditional assumptions on the latent variable. Biorn (2000) analyses various combinations 

of these groups and for each model so deSned, he constructs valid and non redundant or-

thogonality conditions. He deals with different covariance structures and presents several 

IV and GMM estimators. The estimation procedures are of two kinds. 

1. The equations are transformed to differences to remove individual heterogeneity 

and are estimated by IV or GMM. Level values of t h e variables in other periods 

are used as instrumental variables. 

2. The equations are kept in level form and are estimated by IV or GMM. Differenced 

values of the variables in other periods are used as instrumental variables. 

The idea is exactly the same imderlying the CAfM estimation proposed by 
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Aiellano and Bover (1995). The difference is that the GMM technique combines 

approaches 1 and 2 in order to increase the efhciency of t he estimators. Biorn (2000) 

discusses the efBciency ajid robustness of the estimators constructed using approach 1 or 

2 but he does not consider estimators combining the two approach. In the next section, 

estimators obtained mixing the two approaches are also Implemented. 

3.5 Dynamic Panel Data Models w i t h Unobserved 

Heterogeneity and Error-Components Structured 

Measurement Errors 

This section presents consistent estimators for a hrst order autoregressive panel data 

model with unobserved heterogeneity (as model (3.1)-(3.3)) and measurement errors. In 

order to study a wider case of economic situations, the measurement errors are no longer 

assumed to be "classical". Specihcally, we consider a model tha t allows for the presence 

of a time varying component in the process of the measurement errors. This extension 

requires us to adjust the estimation methods proposed in the traditional related literature 

(reviewed in Sections 3.3 and 3.4). Indeed, the estimation of model (3.1)-(3.3) is based 

on the assumption (3.2), i.e. the errors are idiosyncratic shocks that are assumed to 

have cross-sectional zero mean at each point in time. However this assumption can be 

inadequate in a number of cases. One circumstance, rather recurrent in real data and 

not analyzed properly from a theoretical point of view, is t h e presence of time varying 

measurement error common to aU individuals.'^ 

^Many concrete cases may fit into this framework. For example consider a model which requires 
a measure of the permanent income and a sample with no income measures at all but with data on 
the estimated market value of the family residence. This housing value can be used as a proxy of 
the underlying permanent income concept but the discrepancies will not be random. Indeed they may 
be affected by house prices, time varying but common to all families, by family size at purchase time 
varying among famihes and constant over time and by unmeasured random locational factors (Griliches, 
1984). Or we can think about the estimation of money demand of 6rms. We can use sales as proxy for 
cash holdings but clearly sales are affected by the eHciency of the production process of the single 6rm 
invariant over time (at least in the short run) and varying among firms, by the state of the national 
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Consider model (3.1)-(3.3) and suppose that the true variables are measured with 

errors that present a composite structure 

+ | a | < l , % = l , . . . , A r ; T = 2 , . . . , r , (3.13) 

+ m + (3.15) 

where are the observed values of The process of the measurement error consists 

of three independent components. The hrst, is an individual-invariant time-speci&c 

effect with mean 0 and variance uncorrelated over t ime, the second, is a time-

invariant individual-speciEc eSect with mean 0 and variance cr̂  eind the third, is a 

white noise component with mean 0 and variance 

This error component structure is much more realistic if we consider measurement 

errors not only as observation errors in the narrow sense but also as discrepancies between 

theoretical variable dehnitions and their observable counterparts in a wider sense. 

Substituting we obtain 

2/it = + Gif, (3.16) 

where 

Git = + Sit. 

Our aim is to control for the e&cts of the measurement errors on our observations. For 

this purpose one can treat the as imknown period specific parameters. We are only 

economy varying over time but common to all Rrms and also by shocks outside the control of the 
management. 
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interested in a consistent estimators of a and we correct wi th time dummies. If we do 

not and de&ne the new composite distmbance component, as 

% = "k 

assumption (3.2) does not hold any longer 

= ( = 2 , . . . , r . (3.17) 

Therefore, the estimators proposed by Arellano and Bond (1991) cannot be used. Fur-

thermore in this model also the estimators constructed by Biorn (2000) for panel data 

with measurement errors based on period means are not valid. If the measurement er-

rors have a period specific component the probability limit of period means taken when 

the nimiber of individuals goes to infinity (equation (3.10)) would no longer be zero. 

Thus, the estimators would not be consistent. Note also tha t model (3.13)-(3.15) yields 

a constant autocorrelation of measurement errors independent of the lag, 

which violates one of the basic assimiptions of the classical errors-in-vajriables model, i.e. 

the measurement error are uncorrelated with everything else in the model included its 

own past values. However, following the GMM approach consistent estimators can be 

derived using appropriate instruments. The eissumptions of model (3.13)-(3.15) induce 

MA(1) disturbances in the model involving observed variables (formulation (3.16)): 

r/ \ / M l — i f ^ = 1, 

^ ^ 0 if g ^ 2. 

Therefore, once model (3.16) has been transformed in first differences^ in order to get rid 

^We consider Grst differences for simplicity of exposition. However, in order to get an invertible 
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of the individual eSects invariant over time 

valid instruments are only obtained by using dependent variables that are at leaat three-

times lagged. Consequently, the set of all appropriate moment conditions can be written 

as: 
I K [?/.' •, „• ( — (TA?/.- f 1 = (1 

(3.18) ; = 3 , . . . , t - 1 ; ( = 2 , . . . , T ' , 

E [Ae^t] = 0 

where the second set of moments, always valid, might be used when a limited number of 

points in time is available. In fact, the minimum number of t ime observations needed to 

get consistent estimators for a model in presence of measurement errors is greater that 

the one required when exact measurement is assumed. For instance, for a model hke 

(3.13)-(3.15) we need to have at least four time observations. With T = 4, a and A<$4 

are just identihed from the two moment conditions 

= 0 

E [A^j4 - aAi/is - A<$4] = 0 

If T > 4, and thus we have overidenti^ing restrictions, we can use the GMM 

as detailed in Section 3.2. We calculate the sample equivalent of the moment conditions 

by constructing the (T — 3) x 1 vector ^ = 4 , a n d de&ning 

6 (o:, I ] 
2=1 

1 

%,t-3 
(Ae^t) t = 4 , . . . , T , 

covariance matrix, the transformation used in practice is forward deviations from time means (Arellano 
and Bover, 1995). 
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we minimize the quadratic form 

6 (a, (a, . 

As is explained in Section 3.2, an optimal choice of the weighting matrix is provided 

by the inverse of the variance of the orthogonality conditions which cein be consistently 

estimated nsing the sample variance. The resulting GMM estimator is consistent and has 

the smallest asymptotic covariance matrix for a GMM estimator based on the conditions 

6 (a, <$). 

However, this does not preclude the possibility of finding a more eScient GMM esti-

mator based on an emiched set of moment conditions. In t h e remaining of this section, 

we implement a different (more eSScient) GMM estimator for model (3.13)-(3.15), fol-

lowing the approach of Arellano and Bover (1995) and BlundeU and Bond (1998). We 

assume there are available instnmients that are not coiTelated with the individual and 

time effects and we use this information to construct additional orthogonahty conditions 

for the model in levels. Typically, as explained in Section 3.3, using an autoregressive 

model without measurement errors in variables (model (3.1)-(3.3)), hrst diSerenced val-

ues of the variables dated (̂  — 1) are the candidate instruments. However, if measurement 

errors structured as in (3.14)-(3.15) are incorporated into t h e model, the serial correla^-

tion in the error term induces an endogeneity problem which makes one-time lagged Erst 

differences of the variables invalid instriunents. Therefore, a GMM estimator for 

model (3.13)-(3.15) should not use a standard matrix of instruments but it hag to take 

as instruments for the equations in levels hrst diSerenced values of the variables dated 

( t - 2 ) . 
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The matrices of instruments in the system (3.6) take the forms 

( T - 2 ) x m 

2/a 0 0 

0 %2 

. 0 0 

. 0 0 

0 

0 

0 0 0 -

where m 3)x(T 2)̂  

= 

( r - 3 ) x m 

where m = = (T — 3). 

0 0 . 0 0 

0 A^i3 0 . . : 

- 0 A^t,T-2 

3.6 An Empirical Application 

In the remainder of this chapter, we present an economic model that is tested using the 

statistical model analyzed in Section 3.5. The theoretical framework (Patacchini and 

Zenou, 2003) is a job search-matching model which attempts to shed some light on the 

relationships between the residential location of workers and their labor market outcomes. 

There seems to be a growing awareness that some trends of economic variables might be 

due to spatial rather than purely economic factors. This is particularly true in the labor 

market (see, for example, Topa, 2001 and Manning, 2003) a n d especially for job search 

activities since, in a search-matching framework, a spatial dispersion of agents creates 

more frictions and thus more unemployment. In his seminal contribution to search, 

Stigler (1961) puts geographical dispersion as one of the four immediate determinants of 
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price ignorance. The reason is simply that distance affects various costs associated with 

search. 

We investigate, both theoretically and empirically, the relationship between job search 

and space by focusing on the impact of local cost of living and local labor market tightness 

on search intensity. 

From a theoretical point of view, few models have introduced a spatial analysis in 

a search-matching model. Exceptions include Seater (1979), McCormick and Sheppard 

(1992), Simpson (1992), Rouwendal (1998), Ortega (2000), Coulson, Laing and Wang 

(2001), Sato (2001), Wasmer and Zenou (2002), Smith and Zenou (2003). Contrary to 

these models, our focus is on search intensity and its relationship with cost of living and 

labor market tightness in a local labor market. 

From an emphical point of view, few papers have tested spatial search models. Most 

of the related empirical literature (which is in fact quite small) focuses on the aggregation 

of the matching ftmction across space and on the interaction between local matching and 

regional migration or commuting behavior (see in particular t h e survey by Petrongolo and 

Pissarides, 2001, and also Jackman and Savouri, 1992, Burda and ProEt, 1996, Burgess 

and Profit, 2001). In this chapter we analyze a diEerent issue, namely the relationship 

between the county average job-search intensity, on the one hand, and the county cost 

of living and/or the county labor market tightness, on the other. 

To be more precise, we first develop a simple model in which optimal seaich intensity 

is a result of a trade oE between short run losses due to higher cost of search effort (more 

interviews, commuting...) and long-run gains due to higher chance to End a job. We 

show that this optimal search intensity is higher in areas characterized by larger cost of 

living and/or higher labor market tightness. 

We then test this model using county-level data in England for the period 1991-2000. 

The level of spatial disaggregation of the cross sectional units is 6ner than the standard 

regional one. An analysis at the regional level would not be accurate enough to test 

the theoretical model. However, the availabihty and the quality of data collected at a 
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sub-regional level are still very poor and a suitable econometric method is needed to get 

results robust to problems of data quality. Furthermore, a fundamental assumption in 

model (3.1)-(3.3), maintained also in model (3.13)-(3.15), is t h a t the cross-sectional units 

are independent. This implies that residuals from different cross-sectional regressions are 

independent of each other. However, this assumption is no t tenable when the cross-

sectional units have a specihc spatial connotation, e.g. regions or counties, as in om 

case of study. If this condition is not met, standard errors estimators are inconsistent 

and thus not useful for inference. This issue is taken into account in the formulation of 

the statistical model used to test the implications of the theoretical model in the UK 

context. As a result, spatial econometric techniques (see Anselin, 1988 for a review) 

are combined with the estimation methodology presented in Section 3.5. The empirical 

model formulated is a spatio-temporal panel data model with unobserved heterogeneity 

and systematic measurement errors in variables. 

As predicted by the theoretical model, both the county cost of hving and the county 

labor market tightness are found to have a positive and significant effect on the county 

search intensity. We also End positive spatial correlation between counties (i.e. clustering 

of coimties with similar level of search intensity) and strong spatial spillover eEects. 

The remainder of this chapter is organized as follows. Section 3.6.1 sketches the 

simple theoretical model and its main predictions. Section 3.6.2 describes the data while 

the statistical models and the estimation results are contained in Section 3.6.3. Section 

3.7 concludes the chapter. 

3.6.1 A S imple Theo re t i c a l M o d e l 

We develop a simple model that explains how search eSort decisions are made. For this 

purpose, we focus on the unemployed workers that are looking for a job in a given area 

2 (e.g. a county or a region). 

Let us Srst explain the macroeconomic environment in a given area i. Time is contin-

uous and workers live forever. All workers are identical. A vacancy can be filled according 
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to a random Poisson process. Similarly, miemployed workers can 6nd a job according to 

a random Poisson process. In aggregate, these processes imply that there is a number of 

contacts (or matches) per imit of time between the two sides of the market in area 2 that 

are determined by the following standard matching function: 

where u, and D; respectively denote the number of unemployed workers and vacancies 

in area %. Each imemployed worker j = 1, ...,121 living in area z has a search intensity 

equal to 5,̂  = 'S(eij), which depends on how much eSort he /she provides in the search 

process. We assume that > 0 and < 0. Accordingly, represents the 

average intensity of search of the iti unemployed workers in area 2. 

As usual (Pissarides, 2000), M(.) is assumed to be increasing in both its arguments, 

concave and exhibits constant retinns to scale. As a result, t h e probability of obtaining a 

job per imit of time for an tmemployed worker j in area 2 with search intensity 3,̂  = 5(6^ )̂ 

is given by: 

where is a measmre of labor market tightness in search intensity units in area 

2. By using the properties of the matching function, it is easy to see that 

since more vacancies in the area increase the probabihty t o 6nd a job whereas more 

unemployed decrease this probability. 

We do not determine the labor market equihbrium. Rather, we focus on the behavior 

of an unemployed worker who searches for a job in area 2 and analyze how this behavior 

is affected by factors related to his/her residential location, such as living costs and the 

tightness of the local labor market. 
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Let lis first determine the instantaneous utility function. All workers have identical 

preferences representable by a Cobb-Douglas utility For the unemployed worker living 

in area z, it is given by:^ 

U(z„)=z^ (3.19) 

with 0 < CK < 1 and where is a composite good consumption. The budget constraint 

for the imemployed worker j living in 2 is equal to: 

6 = (3.20) 

where 6 denotes the unemployment beneEt, which is not area specihc, is the cost of 

living in area z (i.e. the higher this price, the more expensive is to buy consumption 

goods and housing in area %), and C(etj) is the total cost of searching for jobs. The latter 

encompasses the costs of buying newspapers, commuting contacting friends, phone caUs, 

interviews.... We assume that 

3C{e.,) , „ . „ 

deij ' de^j 

i.e. more search eEort implies more search costs and it is even more costly at the margin 

(convex function). 

If one denotes the a W e for workers by '0% and the gWe by 

'1', then using (3.19) and (3.20), we can derive the following indirect utility for each 

izMempki/ecZ worker j in area z: 

6 — C(etj) 
h 

(3.21) 

We are now equipped to write the expected discounted lifetime utility of an 

unemployed worker j hving in area z (Bellman equation). I n steady-state, is given 

^To simplify we do not include leisme into the model but it should be clear that it does not alter the 
results. It only complicates the analysis. 
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by 

rM/g = + (3.22) 

6 — C(ei^) 

hr 

where r E (0,1) is the discount rate and the expected discounted hfetime utility 

of an employed worker in area i Equation (3.22) has a standard interpretation. When 

a worker is unemployed today, he/she obtains an instantaneous (indirect) utihty equals 

to /i^). Then, he/she can get a job with a probability M (1, ^i) a(ei^) and, if so, 

obtains an increase in utility of — 14 °̂. 

Let us now study the search eEort decision. When making this decision, the imem-

ployed located in an area takes aa given the total unemployment level tti in area %, the 

total number of vacancies iii in area ^ (and thus the labor market tightness), 

the average cost of hving and the expected discounted lifetime utilities and . 

By maximizing (3.22) with respect to we obtain^ 

^ + M ( 1 , 0 . ) ( l - K / - = 0 (3.23) 

where is the unique solution of this maximization problem and = ^(^^0 is the 

corresponding optimal search intensity. 

Let us give the intuition of (3.23). When choosing e^ , there is a fundamental trade-off 

between short-run and long-run benehts for an unemployed j located in area i On the 

one hand, increasing search eEort e, is costly in the short run (more phone calls, more 

interviews, etc.) and it decreases inatantaneous utihty (JC/°(e^ ,/i;)/Jeij < 0), but, on 

the other, it increases the long-run prospects of employment ( M (1, ^) ^'(e^) 

is the marginal return of employment). We have the following result. 

^Appendix 1 in Patacchini and Zenou (2003) shows that there is a unique solution to this maximization 
problem. 
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Propos i t i on 16 

2) [T/ie 0/ m a oreo 2, (Ae Az^Aer Âe aearc/i 

g(e^) 0/ OM !/?iempZo?/e(f worA;er m orea %/ 
— 

(#) T/ie /i%pAer (/te Zo6or marAie^ m area %.e. /̂le /izg'/ier (/le M :̂m6er 0/ 

fGCGMCzea D; or /̂le Zower /̂le tfnempZo^men^ Zei/eZ iM areo 2, /̂le /i%pAer Âe aearc/i 

m^eM32(?/ = g ( e * ) / o r m c A UMempZoi/e(f w o r & e r ZM a r e a . 

Proof. See Patacchini and Zenou (2003). 

As stated above, when deciding the optimal level of search eSort, each unemployed 

worker trades off the short rmi losses of increasing effort (higher cost of search eSort 

C(e^j) and thus lower instantaneous utility [/°(eij,/ii)) with the long-run gains (higher 

chance to get a job and to enjoy an intertemporal utility diEerence between employment 

and imemployment). Proposition 16 analyzes the effect of living costs /li (short-run eSect) 

and the one of the labor market tightness (long-run e&c t ) on search effort e^ . 

When living costs increase, it becomes more costly to s tay unemployed (see (3.20)), 

which reduces instantaneous utility [/°(ei^,/i^). As a result, the unemployed worker in-

creases his/her search e^ort to raise his/her chance to obtain a job and thus be able to 

afford this new cost of living. The key relationship is in fact 

which is shown in Patacchini and Zenou (2003), Appendix 1 and states that the eSect of 

6;̂  on is even more negative when the living cost /i, increases. 

Fmthermore, when the labor market tightness rises, it becomes easier to find a job 

(there are relatively more jobs available compared to the unemployed) and thus the 

returns to search are higher. As a result, workers put more effort in search activities. 
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Let lis now de6ne the optimal average search intensity a* of an area 2 as 

^ 16. 
E 44(A. ,D.) ) (3-24) 

1 ; = 1 

We have: 

P ropos i t i on 17 

(z) TAe AzpAer o/ m a area z, ai;eroge aeorc/i 

a* o/ (Aia area; 

(zz) TAe /i%^Aer /̂le Zabor marA;e( (z^M^egg m OM area i e . Âe Az^/ier /̂le 7ii^m6er o/ 

facGMczea or (/le /ower /̂le 'UTiempZô /M êM^ Ze2;eZ Mi, (Ae /i%^Aer (/le a%;era^e gearc/i 

m(e7ig% {̂/ 5* o/ area. 

Proof. See Patacchini and Zenoii (2003). 

These two results are a straightforward extension of Proposition 16 since, when we 

aggregate the search behavior of the unemployed, both /i; and do not change (i.e. 

and are respectively equal to the average cost of living and labor market tightness in 

area 2) so that if each individual searches more when Ai or increases, then, the average 

search intensity is also positively related to and 

More generally, the basic message of this model is as follows. If we compare two areas 

(coimties, cities, regions), the unemployed workers living either in the more expensive 

area and/or in the area with the higher labor market tightness, search more on average. 

3.6.2 D a t a 

We test the imphcations of the theoretical model using county-level data in England 

for the period 1991-2000. A key variable of the theoretical model is the average search 

intensity We consider as a measure of average search intensity in county hereafter 

the local search rate, the ratio between the number of unemployed that are actively 
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looking for a job over the total mimber of unemployed in county The other key vari-

able in the theoretical model, the average cost of hving in the area /li, is measured by 

a coimty semidetached house price index. We ajre aware t h a t the interactions between 

the labor market and the housing market are far more complicated (see e.g. Hughes 

and McCormick, 2000, Cameron and Muellbauer, 2001). However, because there is no 

complete set of sub-regional price indices for the UK, the main (and possibly the only) 

source of variation in prices within regions is diEerences in house prices. Furthermore, 

we concentrate our analysis only on young people (age 18-25) so that it is plausible to 

assume that, at least for the large majority of them, they a re not home-owners and thus 

we rule out the possibihty they can consider houses as assets. Because these empirical 

variables are not the straightforward observable counterpart of search intensity ajid liv-

ing cost respectively, we treat them as variables meaaiired with systematic errors. The 

discrepancies between the variables of interest and the observable ones are not supposed 

to be random. They might be also due to unobservable time-invariant county-specihc 

effects such as immeasmed locational factors, and/or to county-invariant time-speciSc 

effects related for instance to some temporary eSects of national pohcies. Very hkely, the 

resulting measurement errors would follow a systematic ra ther than a random structure. 

Finally, the last variable of theoretical interest is the local labor market tightness The 

^In the questionnaire of our data base, the British Household Panel Survey (BHPS), people are asked 
their current labor force status and subsequently if they have been looking for any kind of paid job in the 
last foui" weeks. More precisely, regarding their labor force status, individuals can choose between "self-
employed" , "in paid employed", "unemployed", "retired", "family care", "full-time student", "long-term 
sick/disabled", "on maternity leave", "government training scheme", "something else". In our sample, 
we have only included individuals that have responded "unemployed" to this question. Among them, 
there is smprisingly a high number who state that they have not looked for a job during the last four 
weeks. Our search intensity variable is thus the ratio between individuals that declare themselves as 
"unemployed" and "have looked actively for a job during the last four weeks" ond all individuals that 
have responded "unemployed" to the question above. For robustness check, we have also used another 
measure of search intensity: a derived variable from the Labour Force Survey (LFS), based on the 
standard (ILO) definition of economic activity. The analysis with this other measure is discussed at the 
end of Section 3.6.2. We are aware that these are largely imperfect measures of search intensity (they 
will be treated as variables contaminated by systematic measurement errors in the econometric analysis). 
The ideal variable to measure search effort would have been, at the individual level, the number of hours 
spent looking for a job. Unfortunately, this variable is not available in any British survey. This is why 
we resort to our aggregate indicators of search intensity and, as a result, aU our empirical analysis will 
be conducted at an aggregate level (i.e. county level). 
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National On-line Manpower Information Service (NOMIS) provides information of the 

labor market tightness at the county level. Although, this is not an error-free measure of 

the true coimty labor market tightness, we assume the presence of a random rather than 

systematic measurement error. 

A longitudinal data set of Enghsh counties observed yearly for the period 1991-2000 

has been constructed. Three diSerent data sources have been used. The estimated local 

search rates has been constructed using the waves of the BHPS, that are available also 

on line in the ESRC Data Archive. The information about the features of the counties 

housing market comes from the semidetached Halifax House Price Index. ̂  The remaining 

indicators of the local labor markets have been derived using data available from the 

National On-hne Manpower Information Service (NOMIS) located at the University of 

Durham. Appendix 2.3 contains the hst of the 45 English counties considered in the 

sample used for e s t i m a t i o n . A p p e n d i x 1.3 contains precise de&nitions for all variables. 

The related descriptive statistics are collected in the following table. 

Table 1. Descriptive Statistics 

Variable Obs Mean Std. Dev. Min. Max. 

'Sit 450 0.6899 0.2984 0 1 

450 0.6762 0.2011 0 1 

450 0.1707 0.1686 0.0193 1.0878 

450 0.1794 0.1580 0.038 0.8052 

450 63.406 19.356 40.648 188.263 

hit 450 66.39 23.777 34.456 166.651 

dit 450 6.187 8.382 0.6 45.245 

^The index nmnbers are constructed using a Laspeyres type price index methodology. The weighted 
average prices in each current period is compared with the weighted average price in the base pe-
riod. For the Hahfax House Price Index this has been chosen as 1983. For further details see 
http://www.hbosplc.com/view/housepriceindex/indexmethodology02.aap 

^°Out of the 47 counties designated in England, we had to eliminate the Isle of Wight because the 
figures of the Halifax price index are not available for the years 1991-1997 and 2000 and we needed to 
merge North and South Humberside because these two counties are unite into Humberside in the Nomis 
database. Thus we ended up with 45 cross sectional units. 
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Thi s t a b l e shows some in teres t ing fea tures . F i rs t , in o u r sample , t h e average search 

in tens i ty in a coun ty is a round 70%, which m e a n s t h a t t h e r e are on average 30% young 

workers en ter ing t h e labor ma rke t no t act ively looking f o r a j o b (even if t hey declare 

themselves aa unemployed) . Second, t h e labor m a r k e t t i g h t n e s s is on average equa l 

t o 17%. T h i s m e a n s t h a t , on average, t h e r e is a lmost 1 v a c a n c y for every 5 unemployed 

workers in a county. Finally, t h e f ea tu res re la ted t o h o u s e s pr ices (/i^t a n d /i^t) show a 

large var ia t ion be tween different coimties in Eng land . 

3.6.3 S ta t i s t i ca l M o d e l a n d E s t i m a t i o n R e s u l t s 

O u r empir ica l s t r a t e g y is t o tes t t h e resul ts of P ropos i t i on 17, n a m e l y t h e posi t ive rela-

t ionships be tween g, a n d /i, a n d be tween s, a n d As a l r e a d y n o t e d above, t he re a r e 

e?Torg on a n d Ai t h a t need to b e t a k e n in to accoimt in t h e 

econometr ic speci f ica t ion of t h e empir ical model . Moreover , s ince search in tens i ty 5; in 

coimty z m a y b e af fec ted by search intensi t ies in n e i g h b o r i n g count ies (for example 

indiv iduals m a y live in county % b u t search in a n e i g h b o r i n g coun ty if t h e l a t t e r offers 

b e t t e r l abor ou tcomes) , we consider depen,<ien,ce in our analysis. Also, 

s ince t he r e is a m o n g counties, we u n d e r t a k e a pane l d a t a anal-

ysis t o control for ind iv idua l unobservable eSects. Finally, search in tens i ty in coun ty 

% in pe r iod t m a y also b e affected by t h e search i n t e n s i t y in t h e s a m e coimty b u t in 

t h e previous pe r iod (for example because of t h e presence of l ong t e r m unemployed) . As 

a resul t , a OMoZi/gza should b e considered. 

To t a k e in to accoun t these four fea tures , we e s t ima te a s p a t i o - t e m p o r a l m o d e l speci&ed 

aa a typical d y n a m i c pane l d a t a mode l whe re a spat ia l ly l a g g e d d e p e n d e n t var iable has 

been inc luded. T h e a d v a n t a g e in us ing pane l d a t a m o d e l s is n o t only t h e possibi l i ty 

to control for imobserved he te rogene i ty b u t also to allovy fo r m e a s u r e m e n t errors in 

observed variables. T h e advan tage in us ing spa t ia l e c o n o m e t r i c t echn iques is t o control 

for spa t i a l effects ( spa t ia l he te rogenei ty as weU as spa t i a l c o r r e l a t i o n s ) be tween counties . 

Indeed , a f e a t u r e o f t en neglected in empir ical s tudies u s ing d y n a m i c p a n e l d a t a mode l s 
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w h e n t h e un i t s have a spa t ia l connota t ion , is t h e poss ible cross-sect ional dependence 

of t h e residuals . T h e degree of in t e rdependence be tween m a r k e t s in regional s tudies , 

for ins tance , is usua l ly very high a n d s tudies lacking t o c o n t r o l for i t lead to unrel iable 

e s t ima t ion resul ts . W e tes t for a n d And h igh a n d posi t ive s p a t i a l au tocor re la t ion a m o n g 

levels of search in tens i ty be tween counties, mean ing t h a t h i g h (low) values of search 

in tens i ty in a loca t ion t e n d t o b e associa ted w i t h h igh (low) va lues a t nea rby locations. 

Spa t ia l corre la t ion m a y arise for a n u m b e r of reasons. I n s t e a d of t ry ing t o correct ly 

specify these channels of in te rdependence , we inco rpo ra t e in t h e mode l a spat ia l ly lagged 

d e p e n d e n t var iable a n d hxed eEects in order t o expla in t h e s p a t i a l corre la t ion and spa t ia l 

he te rogene i ty respect ively in t h e d a t a . 

T h e inclusion of a spat ia l ly lagged d e p e n d e n t var iable i n a d d i t i o n t o o ther explana-

t o r y variables can b e in t e rp re t ed in two different ways. If t h e m a i n empir ical interest is 

t h e spa t ia l effects, one can consider t h e inclusion of a s p a t i a l l y lagged dependen t vari-

able in add i t i on to o the r exp lana to ry variables aa a way t o assess t h e degree of spa t ia l 

dependence , while con t ro lhng for t h e eSects of these o ther va r iab les . Alternat ively, t h e 

inclusion of a spa t ia l ly lagged dependen t var iable allows us t o cont ro l for spa t ia l depen-

dence and , hav ing done so, t o assess t h e significance of t h e o t h e r (non-spat ia l ) variables. 

T h i s l a t t e r s t r a t egy is t h e one pu r sued in our analysis . Our a i m is t o e s t i m a t e t h e impac t 

of t h e (county) cost of l iving a n d t h e (county) labor m a r k e t t i gh tnes s on t h e (county) 

search in tens i ty once spa t i a l eEects have b e e n Sl te red out . T h e f o r m u l a t i o n of t h e mode l 

is such t h a t spec iSca t ion tes t s on t h e mode l in devia t ions c a n n o t re jec t t h e nuU hypo th -

esis of n o serial or spa t i a l corre la t ion in t h e errors. A p p e n d i x 3.3 p re sen t s t h e tes ts for 

spa t ia l corre la t ion b o t h on t h e observat ions (Table A . l ) a n d o n t h e res iduals (Table A.2). 

I t also conta ins t h r e e quant i les m a p s (Figure 3.1) t h a t i l l u s t r a t e t h e geographica l distri-

b u t i o n of t h e local search ra te , t h e t igh tness of t h e local l a b o r m a r k e t s a n d our proxy for 

costs of hving, i.e. house prices, in Eng land . I t a p p e a r s e v i d e n t t h a t m o s t of t h e areas 

w i t h high (low) levels of local search r a t e a re t h e a reas w i t h h i g h (low) levels of local 

l abor ma rke t a n d cost of hving. 
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Let ug n o w w r i t e t h e e c o n o m e t r i c spec i f i ca t ion of t h e m o d e l t h a t i n c o r p o r a t e s aU t h e 

four f e a t u r e s m e n t i o n e d above . For t h a t , d e S n e as a n d t h e t r u e local search r a t e a n d 

t h e t r u e local cos t of l iv ing respect ively , a n d as a n d t h e i r empi r i ca l c o u n t e r p a r t s . 

W e a s s u m e t h a t t h e p roces s of t h e m e a s u r e m e n t e r ror , h a s t h e a d d i t i v e s t r u c t u r e 

s p e c i h e d in m o d e l (3.13)-(3.15) ( s a m e n o t a t i o n appl ies ) . I n o r d e r t o t a k e in to accoun t 

c ross -sec t iona l d e p e n d e n c e , w e also d e h n e for c o u n t y 2 = 1 , . . . , M t h e va r i ab l e 

= (3.25) 
3 = 1 

w h i c h i n d i c a t e s t h e ave rage va lue of t h e sea rch r a t e over t h e coun t i e s a d j a c e n t t o i.e. 

t h e co imt ies t h a t s h a r e a c o m m o n b o u n d a r y w i t h 2. T h e w e i g h t s a r e se t equa l t o 0 

if 2 = ^ or if % a n d j a r e n o t a d j a c e n t , a n d a r e e q u a l t o a c o n s t a n t o t h e r w i s e (def ined b y 

i m p o s i n g t h e n o r m a l i z a t i o n = 1 for each 2).^^ 

Final ly , in o rde r t o c a p t u r e s o m e d e t e r m i n a n t s of u n e m p l o y e d p e o p l e behav io r w h e n 

t h e y do n o t dec l a r e t h e m s e l v e s ac t ive ly look ing for a j o b , w e i n c l u d e in t h e m o d e l p o p -

u l a t i o n densi ty . T h e r e a s o n i n g is t h a t in dense r a r e a s (c i t i es , m e t r o p o h t a a a reas ) t h e r e 

a r e m o r e j o b o p p o r t u n i t i e s a n d u n e m p l o y e d p e o p l e d o n o t n e e d m u c h e S o r t in search ing 

for a job . F u r t h e r m o r e , in ci t ies t h e r e a r e h igher o p p o r t u n i t i e s t o w o r k in t h e b lack 

e c o n o m y so t h a t poss ib ly u n e m p l o y e d worker s do n o t i nves t m u c h e S o r t i n look ing for a 

r egu la r j o b . If t h e j o b sea rch r e l a t e d q u e s t i o n in t h e B H P S q u e s t i o n n a i r e is pe rce ived as 

r e f e r r ing t o a n i n t e n s e a n d t i m e c o n s u m i n g p roces s in t h e s e a r c h for j obs , u n e m p l o y e d 

p e o p l e l iving in dense r a r eas m a y b e less l ikely t o dec l a r e t h e m s e l v e s ac t ive ly look ing for 

a j ob . As a r e su l t t h e d e n s i t y va r i ab le is m e a n t t o c a p t u r e t h i s a g g l o m e r a t i o n eSec t a n d 

i t s h o u l d b e inverse ly c o r r e l a t e d w i t h our m e a s u r e of sear c h i n t e n s i t y . 

^^The TV X TV matrix is sometimes called the contiguity matrix in the spatial statistics 
literature. It describes the geographical arrangement of the spatial units. 
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W e a r e n o w ab le t o w r i t e t h e empi r i ca l m o d e l ( re fe r red t o as m o d e l 1). I t is given b y : 

(3.26) 

[al < 1, 2 = 1, ...,7V; ^ = 2 , . . . , ^ , 

^it ~ ^it T^sit-, 

w h e r e d e n o t e s t h e local l a b o r m a r k e t t i gh tnes s in c o u n t y % a t t i m e is t h e p o p u -

l a t i o n d e n s i t y i n c o u n t y 2 a t t i m e t , is a coun ty - spec ihc c o n s t a n t c a p t u r i n g also s p a t i a l 

e f fec ts d u e for i n s t a n c e t o d iSe ren t co imty size ( spa t i a l h e t e r o g e n e i t y ) a n d is a w h i t e 

no ise d i s t m b a n c e t e r m , a n d a r e measm-emen t e r r o r s w i t h t i m e e & c t s 

g r o u p ef fec ts a n d r a n d o m c o m p o n e n t s w h i c h a r e m u t u a l l y i n d e p e n d e n t , 

a n d i . i .d, ^ = 1 , . . , T , 2 = 1 , A ^ . O b s e r v e t h a t t h e e m p i r i c a l m o d e l does n o t inc lude a n y 

m e a s m e of t h e ave rage h u m a n c a p i t a l cha rac te r i s t i c s of t h e d i f f e r en t count ies , nor o t h e r 

f e a t u r e s of t h e local s t r u c t u r e of t h e p o p u l a t i o n . T h e r e a s o n is t h a t we a s s u m e t h a t t h e 

i m p a c t of t h e s e cha rac t e r i s t i c s on t h e local sea rch r a t e in e a c h c o u n t y is c a p t u r e d t h r o u g h 

t h e inc lus ion of ( t ime) l agged va lues of t h e local s ea rch r a t e . 

T h e h r s t o rde r s p a c e - t i m e au to reg res s ive m o d e l 1 is e s t i m a t e d u s ing a n i n s t r u m e n t a l 

va r iab les a p p r o a c h w i t h i n a Genera l i zed M e t h o d of M o m e n t s ( G M M ) e s t i m a t i o n p roce -

d u r e . A f t e r con t ro l l ing for s p a t i a l d e p e n d e n c e in t h e d a t a b y choos ing a n a p p r o p r i a t e 

o rde r in t h e s p a t i a l p rocess , t h e h t e r a tmre on d y n a m i c p a n e l d a t a m o d e l s c a n b e used . 

D i s t r i b u t i o n a l a s s u m p t i o n s a r e n o t needed . M e a s m ' e m e n t e r r o r s i n o b s e r v e d va r i ab les a r e 

t a k e n i n t o accoun t by us ing su fhc ien t ly lagged var iab les as i n s t r u m e n t s . Techn ica l de ta i l s 

o n t h e e s t i m a t i o n p r o c e d m e of t h e r e su l t ing d y n a m i c p a n e l d a t a m o d e l , w h i c h p r e s e n t s 

s o m e n o n - s t a n d a r d p r o p e r t i e s d u e t o t h e er ror s t r u c t u r e , a r e d e s c r i b e d in Sec t ion 3.5. 

T h e e s t i m a t i o n r e su l t s of m o d e l 1 aze c o n t a i n e d in t h e S r s t t w o c o l u m n s of T a b l e 2.^^ 

^^All the reported results are two-step GMM estimators, obtained using the DPD98 package for Ox 
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T h e y a r e s h o r t r u n effects . 

T h e h r s t c o l u m n r e p o r t s t h e r e su l t s for t h e Are l l ano a n d B o n d (1991) G M M e s t i m a t o r 

( G M M - D I F ) , w h i c h cons is t s in t a k i n g f i rs t d iSerences over t i m e t o get r id of t h e u n i t 

spec ihc e r ro r t e r m s a n d in us ing a p p r o p r i a t e i n s t r u m e n t s f o r t h e l agged (spat ia l ly a n d 

t e m p o r a l l y ) d e p e n d e n t va r i ab l e a n d for all t h e o t h e r s e n d o g e n o u s var iables . B o t h l iv ing 

cost a n d t h e t i g h t n e s s of t h e local l a b o r m a r k e t s a r e t r e a t e d as p o t e n t i a l l y endogenous 

var iab les . T h e r e f o r e , t h e i n s t r u m e n t a l se t con t a in s o b s e r v a t i o n s o n t h e t i gh tness of t h e 

local l a b o r m a r k e t s d a t e d (^ — 2) a n d eai 'her a n d o b s e r v a t i o n s o n loca l cos t of l iving, local 

s ea rch r a t e a n d sea rch r a t e in n e i g h b o r count ies d a t e d (t — 3) a n d ea rher . N o t e t h a t 

t h e u s e of t h r e e - t i m e s p e r i o d s l agged var iab les i n s t e a d of t h e s t a n d a r d two- t imes p e r i o d s 

l agged ones for t h e var iab les i n d i c a t i n g t h e cost of l iv ing a n d t h e sea rch r a t e is d u e t o 

t h e a d d i t i o n a l e n d o g e n e i t y p r o b l e m caused by t h e p r e s u m e d p r e s e n c e of m e a s u r e m e n t 

er rors . U n d e r t h e spec ihed a s s u m p t i o n s for t h e c o m p o s e d e r r o r s t r u c t u r e , val id i n s t ru -

m e n t s a r e on ly o b t a i n e d by us ing var iab les t h a t a r e a t l e a s t t h r e e - t i m e s p e r i o d s lagged , 

as s h o w n in Sec t ion 3.5. W e d o n o t u s e t h e who le h i s t o r y of t h e va r i ab les as i n s t r u m e n t s . 

W e t r u n c a t e d t h e h i s t o r y a f t e r (t — 5). A l t h o u g h t h e n u m b e r of o v e r i d e n t i ^ n g res t r ic -

t ions is stiU r a t h e r l a rge c o m p a r e d t o t h e s a m p l e size, we d o n o t f i nd a n y ev idence of 

a poss ib le o v e r h t t i n g b ias . T a b l e 2 also r e p o r t s t h e S a r g a n t e s t s of t h e over iden t i fy ing 

r e s t r i c t i ons (Sa rgan , 1958; H a n s e n , 1982) impl i ed b y t h e i n s t r u m e n t s m a t r i x a n d t h e 

t e s t s for a u t o c o r r e l a t i o n . T h e S a i g a n t e s t is a s y m p t o t i c a l l y d i s t r i b u t e d eis ch i - squared 

i m d e r t h e nu l l of i n s t r u m e n t s validi ty, w i t h degrees of f r e e d o m ( d f ) r e p o r t e d in p a r e n -

theses . A R ( 1 ) a n d A R ( 2 ) a r e t e s t s for h r s t - o r d e r a n d s e c o n d - o r d e r ser ia l co r re la t ion in 

t h e h r s t - d i f f e r e n c e d re s idua l s a s y m p t o t i c a l l y d i s t r i b u t e d eis 7V(0 ,1 ) u n d e r t h e nu l l of n o 

ser ia l co r r e l a t i on (Are l l ano a n d B o n d , 1991). T h e c o n s i s t e n c y of t h e G M M e s t i m a t o r s 

r equ i re s t h e a b s e n c e of serial co r r e l a t i on in t h e or ig inal e r r o r t e r m . I n t u r n , t h i s r equ i res 

(Arellano, Bond and Doornik, 1999). One step results are not considered because we deal only with 
45 cross section units and the estimated standard errors are severely downward biaaed in small sample. 
Windmeijer (2000) derived a small-sample correction which is implemented in the two-step estimation 
routine. 
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nega t i ve 6 r s t - o r d e r , b u t no second-o rde r co r re l a t ion in t h e d iEerenced er ror t e rm. N o 

ev idence of mi s spec iEca t ion is r evea led in T a b l e 2. 

Le t US n o w i n t e r p r e t t h e r e su l t s of t h e 6 r s t c o l u m n of T a b l e 2 ( G M M - D I F ) . A s 

p r e d i c t e d by t h e t heo re t i c a l mode l , (Ae 0 / Zabor 

georcA T o b e m o r e precise , a u n i t inc rease in t h e cos t of h v i n g in a c o u n t y 

impl ies a 0.14 inc rease in average sea rch in t ens i ty in t h e c o u n t y . F u r t h e r m o r e , a u n i t 

inc rease in t h e level of l a b o r m a r k e t t i g h t n e s s ^ increases s e a r c h eSor t by 0.20.^^ 

A l t h o u g h a spa t i a l l y lagged d e p e n d e n t va r i ab le (a) h a s b e e n i nc luded in t h e m o d e l 

only t o con t ro l for spa t i a l co r re la t ion , a n d i t is n o t a t a r g e t var iab le , t h e e s t i m a t e d 

c o e S c i e n t , a , is s ign ihcan t , i t p r e sen t s a n i n t e r e s t i ng p o s i t i v e s ign a n d i t is of a l a r g e 

m a g n i t u d e . I n d e e d , co imt ies w h e r e p e o p l e h a v e a n ac t ive s e a r c h b e h a v i o r in t h e l a b o r 

m a r k e t a p p e a r t o b e c lu s t e red t o g e t h e r (because of t h e p o s i t i v e s p a t i a l cor re la t ion t h a t 

we fo imd) a n d a r e also s t rong ly i n t e r r e l a t e d . In o t h e r w o r d s , A(Z2;e MpA 

search (o ^0 a re oZao cAGrac^enze(f 

6;/ aeorcA sp^ZZo-uer ê Q '̂ectg. 

T h e coefEcient of t h e p o p u l a t i o n d e n s i t y (f, h a s t h e e x p e c t e d n e g a t i v e s ign b u t i t is 

n o t s i g n i h c a n t l y d i f fe ren t f r o m zero. 

^^Observe that, because the proxy used for (local) living costs is (local) house prices and not an 
index of all the consumption goods, the effect of the cost of living on search intensity should be smaller. 
However, since housing constitutes an important part of the household expenses, the diSerence should 
not be very big. 

^̂ To be sure that our estimates are not affected by reverse causality between local search rate and local 
houses prices, model 1 has also been estimated instrumenting the cost of living by taking the historical 
prices. The Halifax price index at the begiiming of 1988, the Erst period of the available series, has 
been used as instruments. The reasoning underlying is that today's house prices are correlated with the 
historical prices but probably no determinants of today's local search rate in a county are affected by 
local house prices in 1988. The quahtative estimation results remain qualitatively unchanged. Therefore 
they are not reported here, but are available upon request. 
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T a b l e 2 . E s t i m a t i o n Resu l t s (TV = 45, T = 10) 

D e p e n d e n t variable: Local search ra te , 5, a t t i m e t 

GMM-DIF' ' GMM-SYS^ GMM-DIF" GMM-SYS" 

(model 1) (model 1) (model 2) (model 2) 

-0.2625** -0.2136*** -0.1404** -0.1674*** 

(0.1221) (0.0649) (0.0621) (0.0528) 

0.5932** 0.6287*** 0.4234*** 0.4542*** 

(0.2864) (0.2291) (0.1567) (0.1232) 

9 

0 

0.1999*** 0.2342*** 0.0224 0.0698 
9 

0 

(0.0751) (0.0557) (0.0780) 

0.2841** 

(0.1235) 

(0.0552) 

0.3146*** 

(0.1101) 

h 
0.1356** 0.1510*** 0.0686 0.0026 

h 
(0.0671) (0.0459) (0.1998) (0.0724) 

h 
0.2011** 0.2292*** 

h 
(0.0987) (0.0653) 

d 
-0.0140 -0.0125* -0.1207 -0.0645 

d 
(0.0091) (0.0067) (0.1005) (0.0865) 

AR(1) -3.299 -3.926 -3.594 -4.033 

AR(2) -1.310 0.3586 1.302 0.401 

Sargan 26.52 33.03 15.18 18.14 

(df) (118) (147) (182) (226) 
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Notes: 

1. Year dummies are included in all speciEcations. 

2. Asymptotic standard errors, using the small sample Windmeijer (2000) correction, are 

reported in parentheses. 

3. * Significant at 10% level; ** Significant at 5% level; *** SigniScant at 1% level. 

4. Instruments used in each equation: 

- 3; 4), - - - 3; 4); - - - 3; 4); ' - - 3) - ' ' 

• "S'i.t—3) 'Si(t—4)! • • • '5il) 5; , • • • 3 j 4) ; • • • 2; 3 j • • • ) 

t_2; t_2; 

- 3; 4); - - - 3; 4); ' - - "Sil, 3; ^i(f—4); - - - 3; 4); - - -

— 2j î,£—3? • • • 3 —2; —3; • * • ^ i l ' 

• 4 ) ; • • • J —4) i • • • ? ̂ i,t—3; 7 • ^il j ^i,t—2; —3 • • • • —2; 

Aai_t_2; A/z-t t_2; A7ii_t_2; A^i_(_i. 

00 
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Let lis n o w f o c u s on t h e second c o l u m n of Tab l e 2. A m o r e prec i se G M M e s t i m a t o r 

c an b e o b t a i n e d b y combin ing t h e se t of m o m e n t c o n d i t i o n s r e l a t i ng t o t h e e q u a t i o n s 

in levels w i t h a se t of m o m e n t cond i t i ons r e l a t i ng t o t h e e q u a t i o n s in Erst differences. 

However , t h e va l id i ty of t h e e x t r a i n s t r u m e n t s fo r t h e e q u a t i o n s in levels, m e a n i n g t h a t 

t h e y a re i m c o r r e l a t e d w i t h t h e area-speci f ic eSects , haa t o b e t e s t e d . Full de ta i l s a n d 

re fe rences a r e g iven in Sec t ion 3.5. I n our analys is , we H u d t h a t t h e e x t e n d e d set of 

m o m e n t r e s t r i c t i ons is n o t r e j ec t ed b y t h e S a r g a n t e s t of o v e r - i d e n t i ^ i n g res t r ic t ions . N o 

ev idence of ser ia l co r r e l a t i on in t h e or ig inal e r ro r s is p r o v i d e d . 

I t is ea sy t o see t h a t t h e e s t i m a t e d va lues of t h e c o e S c i e n t s of t h e second c o l u m n of 

T a b l e 2 ( G M M - S Y S ) a r e ve ry s imi lar t o t h e ones of t h e A r s t c o l u m n ( G M M - D I F ) . T h i s 

is cons i s t en t w i t h t h e imder ly ing e c o n o m e t r i c t h e o r y s ince a d r a m a t i c i m p r o v e m e n t i n 

p e r f o r m a n c e of t h e c o m b i n e d G M M ( G M M - S Y S ) c o m p a r e d t o t h e u s u a l h r s t -d iEerences 

G M M ( G M M - D I F ) u s u a l l y occm's w i t h ve ry sho r t s a m p l e p e r i o d s a n d p e r s i s t e n t series o r 

if t h e v a r i a n c e of t h e c o u n t y eSec t s 7;̂  exceeds t h e v a r i a n c e o f t h e r e s idua l s Eit- B e c a u s e 

t h e s e f e a t m e s a r e n o t p r e sen t in om' case ( m o d e r a t e n u m b e r of p o i n t s in t ime , sma l l 

au to reg res s ive p a r a m e t e r a n d y a r ( 7 ; J < y a r ( E i ( ) ) , t h e s i m i l a r i t y i n t h e Egures of t h e 

two c o h m i n s is n o t i m e x p e c t e d . T h e ga in in prec is ion r e s u l t i n g in smal le r s t a n d a r d 

e r rors in t h e s econd co l imin a r e d u e t o t h e u s e of val id a d d i t i o n a l m o m e n t r e s t r i c t ions . 

T h e i m p o r t a n t i m p l i c a t i o n for our ana lys i s is t h a t t h e s t r o n g a n d pos i t i ve a s soc ia t ion 

b e t w e e n ave rage s ea r ch in tens i ty , cos ts of h v i n g a n d l a b o r m a r k e t t i g h t n e s s a p p e a r s t o 

b e c o n h r m e d a n d re l iable . Final ly , t h e coefBcient of t h e p o p u l a t i o n dens i ty , (f, in t h i s 

second c o l u m n (i.e. w h e n t h e coeiEcient a r e m o r e p rec i se ly e s t i m a t e d ) stiU r e t a i n s t h e 

e x p e c t e d n e g a t i v e s ign b u t i t is n o w also s igni f icant . T h i s m a y b e i n t e r p r e t e d a s ev idence 

of t h e i m p o r t a n t ro le of a g g l o m e r a t i o n eSec t s on u n e m p l o y e d b e h a v i o r w h e n sea rch ing 

for a job . 

order to test the sensitivity of the results to the measure of the tightness of the (local) labor 
market we have also estimated an alternative speciGcation of model (3.26) using a meaame of ^ based 
on flows rather than stocks, i.e. ^ is measured by the yearly ratio between monthly notihed vacancies and 
unemployed on-Gows. The estimation results obtained are similar to the ones of the first two columns 
of Table 2 and are thus not reported here. 
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B e c a u s e t h e coefhc ien t of t h e sea rch r a t e in ne ighbo r ing c o u n t i e s is pos i t ive a n d s ignif-

i can t , we inves t iga t e f u r t h e r t h e p r e s e n c e of spa t i a l effects u s i n g t h e fol lowing f o r m u l a t i o n 

( re fe r red t o as m o d e l 2): 

+ W i t + + Sit; (3.27) 

| a | < l , i = 1. T = 2, . . . ,T, 

w h e r e t h e var iab les t h a t were a h e a d y in m o d e l 1 a r e d e f i n e d in exac t ly t h e s a m e w a y 

a n d w h e r e t h e s p a t i a l averages a n d a r e d e h n e d in a s i m i l a r w a y as in (3.25). 

T h e las t t w o c o l u m n s of T a b l e 2 c o n t a i n t h e e s t i m a t i o n r e su l t s for m o d e l 2. E v e n 

t h o u g h n o t in t h e t h e o r e t i c a l m o d e l , t h e s e r e su l t s h a v e b e e n r e p o r t e d in o rde r t o c o n h r m 

t h e s t r o n g s p a t i a l i n t e r d e p e n d e n c e b e t w e e n local l abo r m a r k e t s i n E n g l a n d , as sugges t ed 

by t h e p r e l i m i n a r y t e s t s for s p a t i a l cor re la t ion . T h e d i a g n o s t i c t e s t s (AR(1) , A R ( 2 ) , 

S a r g a n ) sugges t t h a t t h e m o d e l is well spec iSed, t h e i n s t r u m e n t s a p p e a r t o b e valid a n d 

t h e e r ro r s a r e w h i t e noise. All t h e coeff ic ients show t h e e x p e c t e d s ign sugges t ing t h a t t h e 

t h e o r e t i c a l p r e d i c t i o n s a r e conf i rmed , b u t , once t h e va lues o f a va r i ab l e i n ne ighbor ing lo-

c a t i o n s a r e i n t r o d u c e d i n t o t h e m o d e l , t h e c o e G c i e n t s of t h e k e y var iab les , a n d r e t a i n 

t h e i r pos i t i ve s igns b u t lose t he i r s igntEcance. T h i s i n d i c a t e s poss ib le mul t i coDinear i ty 

b e t w e e n loca l a n d n e i g h b o r i n g values , sugges t ing a h i g h d e g r e e of co r r e l a t i on b e t w e e n 

t h e m a n d t h u s s t r o n g s p a t i a l spil lovers. I n t h i s second s p e c i G c a t i o n of t h e m o d e l , t h e 

e s t i m a t e d c o e S c i e n t s of p o p u l a t i o n densi ty , d, a l t h o u g h w i t h t h e e x p e c t e d sign, a r e ageiin 

n o t s ignihcant .^^ 

Final ly , o n e m a y o b j e c t t h a t ou r m e a s u r e of u n e m p l o y e d i n t h e deEn i t i on of f r o m 

t h e B H P S (see A p p e n d i x 1.3) is b a s e d o n se l f - r epor t ing b e h a v i o r (see ou r d i scuss ion in 

f o o t n o t e 7). For r o b u s t n e s s check, we also e s t i m a t e t h e e m p i r i c a l m o d e l 1 u s ing d a t a f r o m 

^^The estimation results of both model 1 and 2 without the inclusion of the density variable appear 
qualitatively unchanged (that is the coefScients of the target variables, A and remain positive and 
significant in both models). However, given the significancy of the density variable in model 1, we report 
the estimation results with the inclusion of this variable. 
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t h e L a b o u r Force Su rvey (LFS)^^ a g g r e g a t e d yea r ly a t c o u n t y level for a c o m p a r a b l e 

t i m e p e r i o d (1992-2000). In t h i s d a t a set , u n e m p l o y m e n t i s n o w d e h n e d accord ing t o 

t h e s t a n d a r d I L O def in i t ion . O u r d e p e n d e n t va r i ab l e is n o t a n y m o r e b u t t h e 

i n a c t i v i t y r a t e in c o u n t y z a t t i m e ^ (for a prec ise d e S n i t i o n of ou r m e a s u r e of ineictivity 

r a t e , see A p p e n d i x 1.3). O n t h e r igh t h a n d s ide of e q u a t i o n (3.26), a n d 

h a v e also b e e n r ep laced b y a n d t h a t a r e s i m i l a r l y d e h n e d . W e b e h e v e t h a t 

t h e i n a c t i v i t y r a t e is a n inverse m e a s u r e of t h e sea rch i n t e n s i t y r a t e s ince w h e n it h a s a 

h igh va lue in a c o u n t y t h i s impl ies t h a t i nd iv idua l s a r e n o t ac t ive ly sea rch ing for a j o b . 

As a r e su l t , we e x p e c t t o o b t a i n reverse s igns for a n d ^ s i n c e coun t i e s w i t h la rger cost of 

h v i n g a n d / o r h ighe r l a b o r m a r k e t t i g h t n e s s shou ld h a v e l o w e r i n a c t i v i t y r a t e . O u r r e su l t s 

( t h a t a r e n o t r e p o r t e d h e r e b u t a r e avai lable u p o n r e q u e s t ) s h o w indeed t h e e s t i m a t e d 

c o e S c i e n t s of t h e ( local) cos t of h v i n g a n d t h e (loccil) l a b o r m a r k e t t i g h t n e s s a re n o w 

n e g a t i v e a n d s igni f icant for b o t h var iables . 

3.7 Conclusions 

T h i s c h a p t e r h a s d i scussed e s t i m a t i o n p r o c e d u r e s for a n a u t o r e g r e s s i v e p a n e l d a t a m o d e l 

in p r e s e n c e of m e a s u r e m e n t e r ro r s in t h e obse rved v a r i a b l e s a n d u n o b s e r v a b l e he t e ro -

gene i ty a m o n g cross -sec t iona l un i t s . T h e ana lys i s of a c o n c r e t e ca se of s t u d y i l lu s t r a t e s 

t h a t th i s m o d e l c a n b e u s e f u l t o inves t iga te r e l a t i onsh ips a m o n g e c o n o m i c var iab les . I n 

t h e emp i r i ca l c o n t e x t cons ide red , m o s t of t h e t a r g e t v a r i a b l e s h a v e n o s t r a i g h t f o r w a r d 

obse rvab l e c o u n t e r p a r t a n d t h e e j e c t s of o t h e r k i n d s of i m o b s e r v a b l e f a c t o r s , r e su l t ing 

in s p a t i a l co r re la t ion , a r e a lso a s s u m e d t o b e i m p o r t a n t . I t i s s h o w n t o w h a t e x t e n t t h e 

m o d e l a n d t h e r e l a t ive e s t i m a t i o n m e t h o d o l o g y c a n b e a d j u s t e d a n d a p p h e d in o rde r t o 

ge t r e h a b l e r e su l t s in t h e c o n t e x t ana lyzed . 

^^All the LPS data, are also available on line in the ESRC data archive. Observe that another advantage 
of using the LPS compEired to the BHPS is that the sub-sample relevant for our analysis has a larger 
number of observations. 

^^All the empirical analysis presented in this chapter has also been performed excluding London. The 
estimation results are qualitatively unchanged and thus not reported here. 
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SpeciEcally, us ing an Engl ish pane l of county level d a t a , t h e empirical model Ends 

evidence t h a t search in tens i ty is higher in areas cha rac t e r i zed by larger cost of living a n d 

higher labor m a r k e t t ightness . These hnd ings are cons i s t en t w i t h t h e predict ions of t h e 

s imple m o d e l sketched in Sect ion 3.6.1. T h e y imply t h a t t h e market - leve l average search 

eSor t increases as labor m a r k e t t igh tness or regional c o m m o d i t y prices increase. However, 

we are aware t h a t t h e econometr ic specif icat ion d e p a r t s f r o m t h e mode l on m a n y aspects . 

In pa r t i cu la r , t h e econometr ic specif icat ion is d y n a m i c w h e r e a s t h e theoret ica l model is 

w r i t t e n a t s t e a d y s t a t e a n d does n o t include any d y n a m i c p r o c e s s for search intensi ty; 

t h e empir ica l m o d e l uses t h e average search in tens i ty of local ne ighbor s as a n exp lana to ry 

var iable whereas t h e theore t ica l mode l implici t ly s t a t e s t h a t t h e local l abor marke t s Eire 

segmented a n d does n o t p ropose any in te rac t ions be tween loca l marke t s ; t h e count ry-

speciAc effects a n d t h e d i s t m b a n c e t e rms do no t have a c lear economic mean ing in t e r m s 

of imobserved he terogenei ty in t h e theore t ica l f r amework ; agg lomera t i on processes a r e 

n o t model led; search in tens i ty is b ina ry in t h e d a t a a t t h e m i c r o level a n d t h e theore t ica l 

mode l m a y b e r ewr i t t en w i t h only two discre te sear ch i n t ens i t i e s (0 a n d 1). T h e next s t e p 

of th i s research is t o ex tend t h e theore t ica l mode l to b e m o r e c o n s i s t e n t w i t h t h e empir ical 

work. In pa r t i cu la r , a po ten t ia l ly in te res t ing empir ical r e s u l t is spa t i a l correlat ion. T h e 

h r s t a im in our f u t u r e work is t o mode l explicitly t h e i n t e r a c t i o n s be tween local l abor 

m a r k e t s (e.g. by deEning search in tens i ty in t e r m s of n u m b e r of local m a r k e t s vis i ted 

a n d / o r by def in ing job ma tches (hirings) in one coun ty i n t e r m s of b o t h local m a r k e t 

t igh tness a n d t h e one in ad j acen t count ies as well as by c o n s i d e r i n g t r a n s p o r t costs) . 
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3.8 Appendix 1.3 

D e s c r i p t i o n of V a r i a b l e s 

5 (̂1 R a t i o be tween unemployed persons aged be tween 18 a n d 25 actively searching for 

a j o b a n d imemployed be tween 18 a n d 25 in coun ty % a t t i m e A n act ive j ob seeker is 

a pe r son who was ne i the r "at work" nor 'Svith a j ob b u t n o t a t work" du r ing the week 

before t h e reference day a n d t h a t has t a k e n act ive s teps t o f i n d a work (applied direct ly 

to employer , repl ied t o adver t s , used j o b cen t re or e m p l o y m e n t agency, asked fr iends or 

contac ts , t a k e n s teps to s t a r t own business) . Source: B H P S , waves 1-10, 1991-2000. 

Average in t h e count ies t h a t sha re a b o u n d a r y w i t h coun ty 2. Source: B H P S , 

waves 1-10, 1991-2000. 

R a t i o be tween t h e s tocks of unfiHed vacancies a n d unemployed in county % a t 

t i m e Source: N O M I S . 

Average in t h e count ies t h a t sha re a b o u n d a r y w i t h coun ty Source: N O M I S . 

Average year ly semide tached Hal i fax pr ice index for c o u n t y t a t t i m e T h e index 

is t h e a i i t h m e t i c average prices of houses on which a n oSer of m o r t g a g e has been g ran ted , 

cons t ruc t ed on a qua r t e r ly base. T h e year ly average has b e e n ca lcu la ted on t h e available 

qua r t e r ly values. Source: G r o u p Economics , H a h f a x pic. 

Average in t h e count ies t h a t sha re a b o u n d a r y w i t h coun ty i Source: G r o u p 

Economics , Ha l i fax pic 

(fit: R a t i o of res idents over squared hec tome te r s in c o u n t y z a t t i m e (. Var iable t a k e n 

f r o m the 1991 Census d a t a b a s e a n d subsequen t ly u p d a t e d u s i n g t h e Midyea r P o p u l a t i o n 

Es t ima te s . Somrce: N O M I S . Years: 1992-2000. 

MOit: R a t i o be tween inact ive persons (be tween 18 a n d 2 5 yea r s old) -no t seeking j o b 

b u t wi lhng t o work- a n d inact ive a n d unemployed p e r s o n s (be tween 18 a n d 25 years 

old) in coun ty % at t i m e Source: L F S - I N E C A variable. I t is a der ived var iable which 

classihes t h e ind iv idua l economic ac t iv i ty according t o t h e I L O s t a n d a r d def ini t ions . 

MGif: Average in t h e count ies t h a t sha re a b o u n d a r y w i t h c o u n t y 2. Source: LFS-

I N E C A variable . 
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3.9 Appendix 2.3 

L i s t of E n g l i s h c o u n t i e s 

Avon 

Bedfordsh i re 

Berkshi re 

Buck inghamsh i re 

Cambr idgesh i re 

C h e s h u e 

Cleveland 

Cornwal l &: Isles of Scilly 

C m n b r i a 

Derbyshi re 

Devon 

Dorse t 

D u r h a m 

Eagt Sussex 

Essex 

Glouces tershi re 

Grea t e r L o n d o n 

Grea t e r Manches t e r 

H a m p s h i r e 

Hereford a n d Worces te r 

Her t fo rdsh i re 

Humberside 

Kent 

Lancash i re 

Leicestershire 

Lincolnshire 
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Merseyside 

Norfolk 

N o r t h Yorkshi re 

N o r t h a m p t o n s h i r e 

N o r t h u m b e r l a n d 

N o t t i n g h a m s h i r e 

Oxfordsh i re 

Shropsh i re 

Somerse t 

Sou th Yorkshi re 

S t aSordsh i r e 

Suffolk 

Sur rey 

T y n e a n d W e a r 

Warwicksh i re 

West Mid l ands 

West Sussex 

Wes t Yorkshir e 

Wi l t sh i re 
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3.10 Appendix 3.3 

M e a s u r e s of g l o b a l s p a t i a l a u t o c o r r e l a t i o n 

W h e n t h e var iable unde r inves t igat ion is m e a s u r e d on a con t inuous scale, t he mear 

s i u e m e n t of global spa t ia l au tocor re la t ion is usual ly b a s e d o n M o r a n ' s 7 a n d Gea ry ' s 

c s ta t i s t i cs (ChfE a n d Ord , 1973, 1981; U p t o n a n d F i n g l e t o n 1985). T h e y measure t h e 

dev ia t ion f r o m spa t ia l r andomness , or t h e lack of any p a t t e r n . Unde r th i s a s sumpt ion , 

any g roup ing of h igh or low values in a par t i cu la r a rea w o u l d b e to ta l ly spurious. T h e 

exis tence of a spa t ia l s t r u c t u r e is de tec ted by t h e presence of s p a t i a l correlat ion, t h a t c a n 

b e d e h n e d as t h e coincidence of value s imilar i ty w i th l o c a t i o n a l s imilar i ty (Ansehn, 2001). 

T h e r e is pos i t ive spa t ia l au tocor re la t ion w h e n h igh or low va lues of a r a n d o m var iable 

t e n d t o c lus ter in space (spat ia l c luster ing) a n d the re is n e g a t i v e spa t ia l au tocor re la t ion 

w h e n geographica l areas t e n d t o b e su r ro imded by n e i g h b o r s w i t h very dissimilar values 

(spat ia l ou thers ) . M o r a n ' s f is dehned as 

7 - (3.28) 

where n. is t h e n u m b e r of observat ions , a re var iables i n dev i a t i ons f r o m t h e m e a n , 

a re e lements of a spa t ia l weights ma t r i x , t h a t i nd ica t e s t h e way a rea % is spat ia l ly 

connec ted t o a rea j , a n d % is a scaling fac tor equal t o t h e s u m of all t h e e lements in t h e 

weight m a t r i x . 

G e a r y ' s c is dehned as 

M M 2 
1 E E (a:% -

7% i ^=1 

1=1 

where t h e a re t h e original var iables a n d t h e o ther n o t a t i o n is as above ( fo rmula 3.28). 

M o r a n ' s 7 is a cross p r o d u c t coeGcient scaled t o b e l ess t h a n one. Pos i t ive values 

167 



for M o r a n ' s I i n d i c a t e pos i t i ve s p a t i a l co r re la t ion , wh i l e n e g a t i v e va lues i nd i ca t e nega t ive 

spa t i a l co r re la t ion . In c o n t r a s t , G e a r y ' s c c o e S c i e n t is b a s e d o n s q u a r e d devia t ions . 

Values of G e a r y ' s c less t h a n one i n d i c a t e pos i t i ve s p a t i a l c o r r e l a t i o n , whi le values la rger 

t h a n one sugges t n e g a t i v e s p a t i a l cor re la t ion . 

T a b l e A . l r e p o r t s M o r a n ' s f s t a t i s t i c a n d G e a r y ' s c s t a t i s t i c of t h e sea rch r a t e fo r 

each yea r of t h e p e r i o d 1991-2000, for t h e coun t i e s in E n g l a n d ( c o l u m n two) . In fe rence 

is b a s e d on a conven t iona l n o r m a l i t y a p p r o a c h . T h e t h i r d c o l u m n in T a b l e A . l r e p o r t s 

t h e s t a n d a r d i z e d z -va lue for f a n d c, c o m p u t e d b y s u b t r a c t i n g t h e e x p e c t e d va lue a n d 

d iv id ing b y t h e s t a n d a r d d e v i a t i o n ass imi ing a n a p p r o x i m a t i o n of t h e ( a s y m p t o t i c ) dis-

t r i b u t i o n s of 7 a n d c by t h e n o r m a l d i s t r i b u t i o n . T h e a s s o c i a t e d s ign ihcance level, p i , is 

r e p o r t e d in c o l u m n four . T a b l e A . l shows c lear ly t h a t ( l oca l ) s ea r ch r a t e s a r e pos i t ive ly 

spa t i a l l y a u t o c o r r e l a t e d in every year . B o t h 7 a n d c s t a t i s t i c s a r e h igh ly s ign iScant ( t h e 

i n d i c a t o r s of s ign ihcance , joi, a r e a lways a l m o s t 0) a n d d i s p l a y c lear ev idence of pos i t ive 

s p a t i a l a u t o c o r r e l a t i o n of t h e va r i ab le u n d e r ana lys i s ( p o s i t i v e va lue for t h e s t a n d a r d i z e d 

M o r a n ' s I, z (7 ) , a n d n e g a t i v e va lues for t h e s t a n d a r d i z e d G e a r y ' s c s t a t i s t i c , z (c ) ) . T a -

ble A .2 r e p o r t s M o r a n ' s 7 s t a t i s t i c a n d G e a r y ' s c s t a t i s t i c c a l c u l a t e d o n t h e res idua ls of 

m o d e l 1. I t h a s t h e s a m e s t r u c t u r e of T a b l e A . l . I t s h o w s t h a t b o t h 7 a n d c s t a t i s t i c s 

a r e n o longer s i g n i h c a n t ( a t 5% s ign iScance level) in a n y y e a r c o n f i r m i n g t h a t t h e spa t i a l 

d e p e n d e n c e h a s b e e n a d e q u a t e l y dea l t w i t h b y i n c o r p o r a t i n g t h e s p a t i a l l ag term.^^ 

^^Note that the asymptotic vahdity of these spatial correlation tests when applied to residuals has not 
been formally established. 
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T a b l e A . l : M e a s u r e s of G l o b a l S p a t i a l C o r r e l a t i o n 

S e a r c h R a t e 

M o r a n ' s I t e s t f o r s p a t i a l a u t o c o r r e l a t i o n 

Year I z(7) Pi 

1991 a i 9 6 3 8.9542 0 .0000 

1992 112396 10.8744 & 0 0 0 0 

1993 (12235 6.6758 0 .0000 

1994 0.2678 7.9698 0 .0000 

1995 0.1309 6.1089 aoooo 
1996 0.1510 6.9777 0 .0000 

1997 0.1949 8.9158 0 .0000 

1998 0.2290 10.4729 0 .0000 

1999 0.1353 6.2787 & 0 0 0 0 

2000 0.1447 6.6827 0 .0000 

G e a r y ' s c t e s t f o r s p a t i a l a u t o c o r r e l a t i o n 

yea r c z(c) Pi 

1991 0.7571 - 7 . 8 1 9 0 & 0 0 0 0 

1992 (17208 —8.9887 onooo 
1993 0.7188 - 6 . 2 9 1 4 0 .0000 

1994 0.6926 - 6 . 8 7 8 9 0 .0000 

1995 (18312 - 5 . 4 3 3 4 0 .0000 

1996 (17958 - 6 . 5 7 0 7 & 0 0 0 0 

1997 (17490 - 8 . 0 8 1 5 0 .0000 

1998 (17263 - 8 . 8 1 0 5 & 0 0 0 0 

1999 (18435 - 5 . 0 3 6 1 0 .0000 

2000 0.8124 - 6 . 0 3 8 9 & 0 0 0 0 
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T a b l e A . 2 : M e a s u r e s of G l o b a l S p a t i a l C o r r e l a t i o n 

R e s i d u a l s f r o m m o d e l 1 

M o r a n ' s I t e s t f o r s p a t i a l a u t o c o r r e l a t i o n 

Year I Pi 

1991 0.0289 1 0 7 5 5 0 . 2 8 2 1 

1992 0IW:32 1.4871 0 . 1 3 7 0 

1993 0.0059 0.4136 0 .6792 

1994 - 0 . 0 1 6 4 - 0 . 2 2 9 0 . 8 1 8 8 

1995 - 0 . 0 0 5 1 0.0961 0 . 9 2 3 4 

1996 - 0 . 0 3 9 7 - 0 . 8 9 8 9 0 . 3 6 8 7 

1997 - 0 . 0 5 8 3 - 1 . 4 3 5 2 0 J ^ 1 2 

1998 &1517 0.9487 0 . 3 4 2 8 

1999 —0.0019 0.1891 0 .8500 

2000 0.0485 0.5480 0 . 5 8 3 7 

G e a r y ' s c t e s t f o r s p a t i a l a u t o c o r r e l a t i o n 

Year c z(c) Pi 

1991 0.9303 - 1 . 5 5 9 6 & 1 1 8 8 

1992 0.9618 - 0 . 8 5 5 5 0 .3922 

1993 0.9264 - 1 . 6 4 7 3 0 .0995 

1994 1.0882 L1951 & 2 3 2 0 

1995 1.0787 L1025 0 .2702 

1996 1.0866 1.1899 0 .2341 

1997 0.9181 - 1 . 6 5 5 7 0 .0974 

1998 0.9507 - 0 . 9 5 1 2 0 .3415 

1999 0.9988 - 0 . 8 2 0 5 0 .4119 

2000 0.9771 - 0 . 8 9 0 4 0 .3732 
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T h e r e m a i n d e r of th i s A p p e n d i x shows in F i g u r e 3-1 t h e geograph ica l d i s t r i bu t ion of 

t h e sea rch r a t e (Srs t pane l ) , t h e t i gh tnes s of t h e local l a b o r m a r k e t s (pane l on t h e l e f t ) 

a n d our p r o x y for cos t s of l iving, i.e. h o u s e prices, ( p a n e l o n t h e r igh t ) in E n g l a n d a t 

t h e N U T S 3 level of s p a t i a l d i s agg rega t i on for t h e yea r 2000 . E x t r e m e l y simileir m a p s c a n 

b e o b t a i n e d for all t h e o t h e r yea r s cons idered in t h e a n a l y s i s . T h e r e f o r e t h e y a re n o t 

r e p o r t e d here.^° 

computations and maps are carried out using Spacestat 1.90 and Azcview 3.2. 
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s e a r c h r a t e (2000) 
g g Rfthquaiile 

Fourth quantile 
Third quantile 
Second quantile 
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[ 2 ] First quantile 
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Figure 3-1: Quantile maps for England 
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