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We attempt to explore the relationship between low-energy phenomenology and the
pattern of Yukawa couplings at high-energies. A working supersymmetric Pati-Salam
model which fits all phenomenological constraints is constructed. This model is typical
of a broad class of models and its predictions are representative of all models of this
type. A x? analysis is used to determine points in parameter space where experimental
measurements and bounds are most accurately reproduced. These best fit points are
then used to make predictions for unmeasured quantities such as neutrino mixing
angles and lepton flavour violating decays. For example we find that the branching
ratio for 7 — pu~v is very near its present experimental bound. In the context of
this model we also study the degree of deviation from Yukawa unification observed
by our best fit points. The effects of future experimental results upon the best fit
regions of parameter space are also considered and we find that in some cases our
allowed parameter space may be much reduced. We extend the study of our model’s
predictions by investigating Higgs-mediated contributions to rare flavour changing
neutral current processes and discuss the possibility of them being among the very
first indirect signals of supersymmetry. We also study rare lepton flavour violating
decays mediated by Higgs bosons discovering that in this case the Higgs contribution

is sub-dominant and doesn’t hold such clear hopes for indirect discovery.
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Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Motivation

The work presented in this thesis is a detailed top-down study of the low-energy
phenomenology of a Supersymmetric(SUSY ) model with an extended gauge group.

The general aims of the work are to:

e find an appropriate model to describe low-energy experimental data

e discover regions of parameter space where the model predictions best match the

present experimental bounds and measurements,

o make predictions for unknown observable parameters such as the neutrino mix-

ing angle 6,3,
e probe the high-energy theory via Yukawa Unification,
e investigate the impact of new measurements on the model’s predictions,

1



e study rare decays, their correlations and prospects as SUSY signals at the TeVa-
tron and LHC.

1.1.2 Thesis Structure

This thesis is organised as follows: in the remaining sections of chapter 1 we review the
Standard Model(SM) of particle physics and discuss the prospects for the discovery
of the Higgs boson. In chapter 2 we motivate the extension of this model through
both theoretical and experimental concerns. Out of all the possible extensions of
the standard model we focus on supersymmetry and the Minimal Supersymmetric
Standard Model(MSSM). Details of recent experimental inconsistencies of the SM
are presented in the form of neutrino mass and oscillation. This is then used to

motivate the introduction of extra super-heavy neutrino states which can account for

such observations.

Chapter 3 is devoted to the construction of a working supersymmetric Pati-Salam
model. We employ a x? analysis to determine the regions of parameter space which
best fit the present low-energy experimental measurements. These fits are then used
to make predictions for the unmeasured neutrino mixing angle, 613 and the lepton
flavour violating decay 7 — u~v. The extent to which Yukawa unification is violated

by our best fit points is also explored.

In Chapter 4 we investigate the promising signal for supersymmetry that is the flavour
changing neutral current process B, — pp. We find that the predictions of our
model are right at the present experimental limit. It is shown that in the class of
models we are studying it is quite plausible that a signal for this process and therefore

supersymmetry will be found in the near future.

Chapter 5 extends the work of chapter 4 to include lepton flavour violating Higgs
couplings. We study the branching ratios for the Higgs-mediated contributions to



the rare processes B, — Tu, 7 — 3u and their correlation to the related processes

T — uy and By — pp.

Chapter 6 contains an overview and conclusion to the whole thesis. At the end of the

thesis there are a number of appendices and a bibliography.

The contributions to the original work found in chapters 3, 4 and 5 undertaken by
the author are as follows. The construction of the Pati-Salam model of chapter 3, in
particular the choice of non-renormalisable operators and U(1) family charges, was
undertaken in collaboration with Prof. S. F. King and Dr. T. Blazek. The numerical
x* global analysis had been previously developed by Dr. T. Blazek. Together we
incorporated a complete analysis of the neutrino sector into the numerical procedure.
It was then the authors responsibility to determine the model’s best fit points as
presented in chapter 3. The calculation of the branching ratio for B, — ptpu~,
7 — 3p and B; — 7tu” were undertaken by the author and integrated within
the numerical code. Studies of the impact of future experimental measurements and

correlations of physical observables were also undertaken by the author.

1.2 The Standard Model

In this section we shall assemble the ingredients of the Standard Model(SM) of particle
physics !. This model was proposed in the late 1960’s and early 1970’s and has
since been successfully verified by numerous accelerator experiments. The model
encompasses Quantum Chromo Dynamics(QCD) and the unified Electroweak theory
of Glashow, Weinberg and Salam. After defining the SM we shall continue to briefly

explore some of its phenomenology and discuss the prospects for the discovery of its

final pieces.

!There are many excellent reviews of the Standard Model, see [1].



1.2.1 Definition of the Standard Model

To completely define a gauge theory it suffices to specify just three things, the gauge

group, the particle representations and the symmetry breaking mechanism. Hence

for the Standard model we have:

e Gauge Group of the Standard Model
The Quark model of Strong interactions developed by Gell-Mann and Zweig in
1964 required the existence of colour: a new charge obeying an unbroken SU(3)
symmetry. The observed Electroweak interactions demand the existence of two
massive vector bosons and a massless photon. These conditions are most simply

satisfied by the spontaneous braking of a local gauge group
SU(Q)L & U(I)Y - U(l)em
Hence the combined gauge group of the SM is

Gsy = SU(?))C & SU(Q)L & U(l)y

¢ Particle Representations: Matter content
The SM contains 3 families of Quarks and Leptons with quantum numbers
assigned as written in table 1.1. The left handed components transform as
SU(2) doublets and right handed components as SU(2) singlets. This ensures
that only the left handed quarks and leptons couple to the gauge bosons W=,

As the right and left handed fields transform in different SU(2)y, representations

a Dirac mass of the form,
mp (YrRYL + YrvrR) , (1.1)

would break gauge invariance. Gauge invariance also requires the gauge bosons

4



! Particles [ Spin | SU(3). [ SU(2). | Y/2 |

Left handed quarks, @iz, = (ud);r | 1/2 3 2 1/6
Right handed up quarks, u;g 1/2 3 1 2/3
Right handed down quarks, d;p 1/2 3 1 -1/3
Left handed leptons, Lir = (ve)ip || 1/2 1 2 —1/2
Right handed electrons, e;p 1/2 1 1 -1
Higgs bosons, ¢ = (¢*, ¢°) 0 1 2 1/2
Gluons, ¢*(a=1...8) 1 8 1 0
Weak bosons, W(a=1...3) 1 1 3 0
Hypercharge boson, B 1 1 1 0

Table 1.1: Matter content of the SM with associated Ggp gauge
quantum numbers. A family index, z = 1...3, has been included.

of unbroken symmetries to be massless. This is clearly a problem as we observe
both massive fermions and gauge bosons. The solution to this is to introduce
a scalar doublet which is used to spontaneously break the gauge symmetry and
simultaneously generate masses for both fermions and gauge bosons. This is

known as the Higgs mechanism.

Spontaneous Symmetry Breaking: The Higgs mechanism

If we consider a Lagrangian with a wrong sign mass term,

L = [Dugl" = V(e) (1.2)
where V(g) = —p2dTé + MoTd)2 (1.3)

Here ¢ is an SU(2); complex doublet with hypercharge Y/2 = 1/2 and D,
is the covariant derivative, defined later in eq. (1.9). The scalar potential in

eq. (1.3) has a minimum at, ,

(¢'¢) = o5 (1.4)

rather than at ¢ = 0 which is the case if the mass term is of the correct sign.

This minimum is invariant under SU(2) rotations. Making use of this symmetry



we can write the vacuum expectation value(VEV) of ¢ as,

1 0 w?
<@ >=— with v =4/, 1.5
6>= | : (15)
By making a specific choice of vacuum the SU(2)r and U(1)y symmetries have
been spontaneously broken. But as ¢ is neutral the symmetry U(1)em is unbro-

ken with generator @ = T® + Y/2. Expanding about the vacuum eq. (1.5) we

can write,

1 0
b= — where < h >=0, (1.6)

V2 \ v+ k()

the real scalar field & is known as the physical Higgs boson. In eq. (1.6) we have
chosen to work in the unitary gauge where the non-physical degrees of freedom
are not explicitly present in ¢. We shall revisit these non-physical degrees of
freedom later in this chapter. Substituting eq. (1.6) into eq. (1.3) and using the

expression for v in eq. (1.5) gives a Higgs potential,

2

VD) = <A k) ) (1.7)

= ...+u’h? (1.8)

Notice that the physical Higgs field now has a mass term of the correct sign,

mp = /2u% = vV2A.

1.2.2 Gauge Boson Masses and Higgs couplings

In order to determine the gauge boson masses and couplings we must take the same

expansion, eq. (1.6), and apply it to the kinetic term in eq. (1.2). Doing so we find



that,

/ 2
D,¢|° = Kaﬂ — i%y B, —ig W;T@) é (1.9)
2
41 9'Bu+gW; g(W; —iW}) 0 (1.10)
81\ g(WL+iW?) ¢B,— gW? v+ h

1 2
= ...+ [m%v WIw=# 4 §mZZZ#Z“ +0 x A,LA“} : (1 + Q) . (1.11)
v

Here Y/2 = 1/2 is the hypercharge of ¢ and T are related to the SU(2) Pauli matrices
as, T* = 2. In eq. (1.11) the gauge fields W4, B, have been combined to form the

mass eigenstates,

. 1
WE = (Wi FiW?2) /V2, mw= 59V (1.12)
1
Z, = cos b, W) —sinb, B,, mz= -2—v\/92+g’2 (1.13)
w = sinf, W2 + cos by, B,, ma=0. (1.14)

Here we have defined the weak mixing angle 8, as the mixing angle involved in the

change of basis from the weak eigenstates, W?, B to the mass eigenstates, Z, A, with

/

_ g . _ g
cos 0, = _—__g2 rh sinf, = ————m (1.15)
This leads to the W, Z mass relation m$, = m?%cos?fy,. Hence it is the mixing

between Wf and B, that is responsible for the inequality in the W and Z masses. As
a complex doublet ¢ contains four real degrees of freedom, but we saw in eq. (1.6)
that symmetry breaking leaves us with just one, A. As a consequence of symmetry
breaking the other 3 degrees of freedom become Goldstone bosons and are “eaten” by
the W*, Z bosons as they become the longitudinal components of these now massive
vector bosons. The first and second term of eq. (1.11) provide mass terms for the two

gauge bosons, W¥ and Z, the final term shows that we are also left with one massless



neutral gauge boson, A,. The presence of one massless gauge boson means that the
initial SU(2)r @ U(1)y symmetry has been spontaneously broken to U(1)em, with the
massless A, identified as the photon. Eq. (1.11) also arms us with Higgs couplings to

the gauge bosons, these couplings are summarised in Table 1.2.

We can now write the covariant derivative, D, in terms of the mass eigenstates

. 9 e : 1 Y
D, = 8u—z7§ (Wt + W, T™) —i e Zu(ngB—g’Q?Z—)
!
Y
i3 A (TP D, (1.16)

2

Va2 +g”

where 7% = T14{T? The application of eq. (1.16) to fermion kinetic terms, ¥ (:]3)%,
will give us fermion couplings to the gauge bosons. By inspection of the photon

coupling in eq. (1.16) we can identify the electric charge e as,

/

e=——9 (1.17)

and the electric charge quantum number as, Q = T° + %

L I ww | zz |
A 2My, iMy
w | | u

Table 1.2: 3-pt and 4-pt Standard Model Higgs couplings to the
massive gauge bosons.

So we have found that through the Higgs mechanism the SU(2),®U(1)y symmetry
is broken to the U(1).,, of electromagnetism. In doing so the gauge bosons have also

acquired masses. But what about fermion masses?



1.2.3 Fermion masses and the CKM Matrix

Fermion masses can also be generated by the Higgs mechanism via a Yukawa coupling

to the Higgs doublet ¢ written as,
Ly ==Y Ql ¢din — Y2Q ¢°ujn — Y7L, ¢pejr+hec. (1.18)
Here we have defined the charge conjugate Higgs field ¢° as

+ 0
¢ = ¢ , O = 1090 = ¢ . (1.19)

¢0 __¢+ *
Again expanding ¢ as in eq. (1.6) produces both mass terms and Higgs couplings,
ij gt ij , 1 ig 1 h
Lyuk = [—md di; dip — m¥ul, ujp—mYel ein+ h.c.} A1+-=, (1.20)
v

where m;j,d,e = Y;fjde—y\/; Note that eq. (1.18) contains no Yukawa term for the neu-

trinos, hence they remain massless in the SM.

In general the quark Yukawa couplings Y, are non-diagonal, here ¢ = u, d. Let us
define the unitary matrices V7 and Vg as the matrices which diagonalise the hermitian

combinations of the Yukawa couplings

YY) = Vi (v e vyt (1.21)
and
Yy, = Vi (ytes)2 et (1.22)
Here qui“g = diag(y{,vs,yd), where, m! = yf%, are the mass eigenstates. The

matrices V/ p therefore diagonalise the Yukawa couplings, such that,

Y, = Vf Yyt (1.23)



and define the change of basis between the weak cigenstates and the mass eigenstates,

dr = Vi qir, dr=VE" gin (1.24)

with ¢, V9 ¢;p = qh Yliss . (1.25)

q

Eq. (1.25) shows that the mass terms and Higgs couplings are flavour diagonal in the
basis g7, p. When changing basis the matrices V' "é will cancel out in all electroweak
currents involving the gauge bosons A, and Z,. This is not true for those involving

the W gauge bosons which become,

1 1 i
Tt = —uf yrdy, = EUI}L’Y“ Vera dins (1.26)

V2

here we have defined the Cabibbo-Kobayashi-Maskawa(CKM) [2] matrix as,
Vorwu = VETVE (1.27)

Voram 1s a 3 X 3 unitary matrix and so contains 9 parameters; 3 real mixing angles and
6 phases. It is very important to keep track of these complex phases and in particular

to identify which are physical and which are not.

Inspecting eq. (1.21) and (1.22) more closely it is clear that there is a phase freedom

in the definition of the matrices VL‘J’ r- Therefore we can make the transformation,

V[(iR - V[‘,],R P[(i}b (128)
where
PP =é% g, and PY = e 6, (1.29)

with the guarantee that eq. (1.21) and (1.22) will still hold true. Ensuring that
eq. (1.23) is still satisfied gives the constraint, ¢zq = 0;, and leaves us the freedom to

pick the 6 phases, § and 64, 7 = ..., 3. Applying the transformation in eq. (1.28) to

10



the CKM matrix, eq. (1.27), we find that
Voxm — P2 Voku Pf. (1.30)

Hence it is possible to use the 6 phases 6}, ; of P;? to eliminate 5 out of 6 phases in
Ve leaving 3 real mixing angles and 1 physical phase. In the standard model the

single phase, known as the Dirac phase, is the sole source of CP violation.

1.2.4 Lepton Flavour Violation

To carry out the same diagonalisation procedure for the leptons we start with the

Yukawa coupling Y.. As before this can be diagonalised as,
Y, = Vg v Vgt (1.31)

where Y42 = diag(y¢, y5,yS) with m§ = yf% being the mass eigenvalues. As there

is no neutrino Yukawa coupling Y, we can define the change of basis,

e'Li = Vfﬁjei, 1/’5 = Vf“jy}; (1.32)

e =Vl . (1.33)

Again this will diagonalise the Yukawa coupling, Y., and therefore the tree level
mass matrix for the charged leptons. Notice that this time each component of the
lepton doublet receives the same rotation and so unlike eq. (1.26) the matrices Vi g
cancel completely from the theory. Therefore the SM is flavour diagonal in the lepton
sector and so the lepton number of each generation is conserved. The experimental
evidence for this conserved quantity is very compelling with the non-observation of
Lepton Flavour Violation(LFV) at the level of Br(y — ey) < 1.2 x 107" and Br(p —
3e) < 10712 [3].
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1.2.5 Higgs boson searches

The only Standard Model particle left undiscovered is the Higgs boson itself. This
section reviews much of the past and future experimental effort being devoted to
the discovery of the Higgs boson. The case for the existence of a light SM Higgs is

presented and the prospects for its discovery in the near future are discussed.

The very fact that the Higgs couples to fermions and gauge bosons with a coupling
strength proportional to the mass of that particle makes it a particularly elusive
creature. It couples strongly to the heaviest quarks, which are highly unstable, but

couples weakly to the readily available light quarks and leptons.

800"!"]”["["!—

600 my = 175 GeV

|II|1!I]II|!!I

200

Coo o b b by 1
103 108 109 10!® 1015 1018
A [GeV]

Figure 1.1: Upper and lower Higgs mass bounds as a function of
the cutoff, A [4].

The experimental determination of the Fermi constant, G, fixes the value of the

Higgs VEV as,
Gr g 1
_ﬁ = S, =5 (1.34)

so that v = 247 GeV. This also restricts the allowed values of the physical Higgs

mass, my, = vv/2A, to be a few hundred GeV. The self interaction coupling A has a

12



Renormalisation Group Equation(RGE) of the form,

CM_—CC;—?M-W—):%(VHW-W), (1.35)
with Y; being the top Yukawa coupling. Hence for large values of A(Mw ) the coupling
diverges as the energy scale increases. In order to avoid this problem we must define a,
cutoff for the theory. If we want this cutoff to be at a particularly high scale, say the
Planck scale, then we must have a small value of A(My ), corresponding to my, < 200
GeV. Conversely for the theory to be valid up to the 1 TeV scale then we can have
a larger A(Myw ) corresponding to my S 600 GeV. Therefore for a given cutoff scale A

there is a maximum A(Myy ) for which A(A) is finite.

On the other hand, for small values of A(My ), and therefore my, the negative contri-
bution from the top Yukawa coupling will drive A negative, resulting in an unstable
minimum. Hence we are forced to define a cutoff at the point where A changes sign.

So for any given cutoff A there is also a minimum value for A(Myw ) for which A(A) > 0.

50 100 200 500 1000
M, [GeV]

Figure 1.2: Branching ratios for the dominant Higgs decay channels
as a function of the Higgs mass [4].
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These conditions provide theoretical upper and lower bounds for A(Mw ), and there-
fore my, as a function of the theory’s cutoff(A) see fig. (1.1). We see that the larger
the cutoff of the theory the more constrained the Higgs mass becomes, with A — M,

implying a range m; = 130 — 180 GeV, the so called desert scenario.

80-6 T T T I T T T T T T T T T T T
1 —LEP1, SLD Data
----- LEP2, pp Data
80.51 68%CL
S
Q
S 80.4-
=
E
80.3 1
m,, [Ge o
80.2 114 :?O 100l Plrellmlnary
130 150 170 190 210

m, [GeV]

Figure 1.3: Direct(dashed line) and indirect(solid lines) measure-
ments of My and m; [5].

Direct Higgs searches at LEP were based primarily on the Bjorken process,
ete™ =7 — Z +h, (1.36)

with the Higgs decaying dominantly into bb for m; < 2Myw and into WW for my, >
2Myw , as shown in fig. (1.2). Unsuccessful Higgs searches at LEP have resulted in the

limit my, > 114.1 GeV.

It is also possible to find clues for the mass of the SM Higgs through indirect observa-

tions. Quantum corrections to the Z and W boson mass relation, M, = MZ cos® O,

14



67 : r
i Iltheory uncertainty
3 5
: Aofy =
i —0.02761+0.00036
i --0.02747£0.00012
4 4 e Without NuTeV -
2
<
2 = -
0 Excluded - 47 Preliminary |
20 100 400

m,, [GeV]

Figure 1.4: Plot of Ax? from a global fit to precision data against
the Higgs boson mass. The solid curve shows the results of the fit
with estimated theoretical errors shown as the shaded band. The
vertical band represents the 95% C.L. exclusion limit on mj, from
direct searches and the dashed curve represents the sensitivity to a

change in (M%) [5].

give

M}, = M3 cos® 0w [1 + Siop + OHiggs) - (1.37)

The top quark correction, d;op, is quadratically dependent on the top mass, whereas
the Higgs correction, Opiggs, is only logarithmically dependent on the Higgs mass.
Therefore eq. (1.37) is particularly sensitive to the top mass. At LEP I, before the
discovery of the top quark, the top mass could be inferred from eq. (1.37) using
measurements of My and Myz. The discovery of the top quark and the accurate mea-
surement of its mass at the TeVatron means that the Higgs corrections in eq. (1.37)
can now be probed. The Z boson mass is particularly well known and so it is possible
to examine the dependence of My upon m; and my, see fig. (1.3). Both the direct and

indirect 1o regions shown in fig. (1.3) agree that a light SM Higgs boson is preferable.
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The m;, dependence of the LEP Electroweak working group’s SM global fit is shown
in fig. (1.4), they deduce a 95% C.L. bound of m; <170 GeV. Combined with the
lower bound from direct searches this hints that the SM Higgs should be just around

the corner.

T T Ty
o(pp—H+X) [pb}
Vs=14TeV
M, = 175 GeV

Sarge., £2,0GHIE

22,qG—>HbE

M, [GeV]

Figure 1.5: Higgs production cross-sections at the LHC [4].

The present expectation is that the Higgs boson will be found at either the TeVatron
or LHC. At these hadronic machines Higgs production is dominated by gluon-gluon
fusion through a top loop. The other main production processes and their cross-
sections are summarised in fig. (1.5). In the region m; < 2Mw, h — 77 is the
cleanest decay channel but it suffers from a small branching ratio, see fig. (1.2). For
mp > 2Mw the channel h — ZZ — [tI7{T]~ becomes important. The planned

searches at the LHC could discover a SM Higgs with mass up to 1 TeV.
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1.3 Conclusion

In this section we have introduced the basic components of the Standard Model.
The Higgs boson plays a major role in this model, it allows the gauge bosons and
fermions in the theory to acquire masses through the breaking of the local gauge
symmetry. Yet this most important particle is the only piece of the SM which has
eluded experimental discovery. This situation is set change in the near future as the

next generation of hadron colliders begin to record data.
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Chapter 2

Extensions of the Standard Model

The Standard Model is a very successful theory which has been found to be in won-
derful agreement with experimental measurements. It is clearly incomplete though as
it doesn’t incorporate gravity. Neglecting this, there are a few theoretical and exper-
imental hints that the introduction of some new physics is desirable. The following
sections will explore some of the problems of the Standard Model and their proposed
solutions. Firstly we examine supersymmetry as a cure for the “Hierarchy Problem”.
We shall also see that supersymmetric theories are well motivated through the ideas of
gauge coupling unification and radiative electroweak symmetry breaking. We then go
on to discuss the minimal supersymmetric extension of the SM known as the MSSM.
At present the only concrete evidence for physics beyond the standard model comes
from the recently confirmed phenomenon of neutrino oscillation. Such oscillations re-
quire the neutrino to have mass, but this mass must be no larger than 0.23 eV?!, 2000
times smaller than the electron mass. An explanation for the neutrino’s tiny mass is

then presented in the form of right-handed neutrinos and the “see-saw mechanism?”.

IThis limit comes from the 2dF Galaxy Redshift Survey [6] and the resent WMAP results [7].
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2.1 Supersymmetry(SUSY)

Supersymmetry(SUSY)? is an extremely elegant theory which unites fermions and
bosons. For every Standard Model fermion supersymmetry introduces an associated
boson, known as a sfermion, with identical gauge quantum numbers. Supersymme-
try extends the 4 bosonic dimensions of space-time with the addition of 4 fermionic
dimensions. These Grassmann coordinates allow the Coleman-Mandula no-go the-
orem to be evaded and the space-time Poincaré group to be extended to include
supersymmetry. Local SUSY also offers the inclusion of gravity and indeed it is a
vital ingredient in Superstring theory, although low-energy SUSY is not a necessary

consequence of such a theory.

2.1.1 The Motivation for low-energy supersymmetry

A brief discussion of the main motivational points for the introduction of weak scale

supersymmetry is now given:

¢ The Hierarchy Problem

In the Standard Model the mass of the photon is protected from radiative correc-
tions by the exact U(1) gauge invariance of QED. The broken chiral symmetry
protects the electron mass by ensuring that any radiative correction is propor-
tional to the mass of the electron. Unfortunately the SM does not possess a
similar symmetry to protect the physical Higgs mass from radiative corrections.
Therefore the contribution to the Higgs self energy from a fermion loop, as

shown in fig. (2.1), will produce a quadratic divergence.

Consider a fermion-Higgs coupling, —A;¢ff. Then evaluating the diagram

2The literature contains many fine reviews of supersymmetry some of which are listed in [8, 9].
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Figure 2.1: A fermion anti-fermion contribution to the Higgs self
energy in the Standard Model.

shown in fig. (2.1) at zero external momentum gives,

f 2 [ 1 2m
73, (0) = —2N(f)/\f/d k - + (2 —m2)? . (2.1)
Here the electroweak symmetry breaking identity, ¢ = (v + h)/ v/2, has been
used and N(f) is a multiplicity factor, e.g. for quarks N(f) = 3 due to colour.
The first term of eq. (2.1) is clearly quadratically divergent. Completing the

integration by introducing a momentum space cutoff A shows this explicitly, see

eq. (2.2).

N(f)\2

dmy, T(é;r)—z—f [—2/\2 + l?m? In (%—) + .. J : (2.2)
f

The problem here is that if we want the cutoff of the theory to be at the level
of Mgy or My, then the correction in eq. (2.2) will be 30 orders of magnitude
larger than the physical Higgs mass. In order to preserve mj < 1TeV, as we
saw in section 1.2.5 that it must be, requires fine tuning at the level of 1 part
in 10'% at all orders of perturbation theory. This is known as the “hierarchy
problem” . Essentially the problem is that there is no explanation in the SM

for the ratio M,;/Myy.

One possibility is to introduce a pair of complex scalars, fL,R with couplings to
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(a) (6)

Figure 2.2: Sfermion contribution to the Higgs self energy with
f=1/Lr

the Higgs boson as follows,
Lor =A@ (17l +1Jnl) + (A As 6fefr+hec). (2.3)

The Lagrangian in eq. (2.3) leads to Higgs self energy contributions as shown

in fig. (2.2). Again evaluating these contributions at zero external momentum

we find,

. ~ ~ 1 1
”;{h(o) = —)‘J‘N(f)/dll]C [kz — m2 T k2 — m2 }
fL fr

~ 2 ~ 1 1
+ (Av) N(f) [ @ -+ .
SRR [y
z 1
+ [MAPN(F) | @'k . (2.4)
AN | (k= m2 ) (b2 =2 )

fr

The first line of eq. (2.4) comes from the evaluation of diagram (a) in fig. (2.2),
once again we find that it contains a quadratic divergence. The second and
third lines represent the evaluation of diagram (b) in fig. (2.2). Comparing the
first line of eq. (2.4) with eq. (2.1) we see that the quadratic divergencies can
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be arranged to cancel if,

N(f)=N(fr) = N(fz) (2.5)
Ap=—)% (2.6)

The total Higgs mass corrections, eq. (2.1) and (2.4), can be made to cancel
completely by requiring the additional conditions,

Ap=0, mj =mjz =m;y. (2.7)

R

This result hints that there is an additional symmetry, Supersymmetry, which
protects the Higgs mass against radiative corrections. The condition eq. (2.6)
shows the efficiency of supersymmetry with vertices for both the fermions and

bosons being defined with the single coupling Ay.

A particularly nice feature of SUSY is that if the condition of equal masses in
eq. (2.7) is violated by some small amount, § = m; — my, then we find that
the radiative corrections will be proportional to §. Therefore, provided that
4 is small, the Higgs mass will remain stabilised against radiative corrections.
The same cannot be said for the dimensionless couplings with, ¢ = As — |Af|?,

leading to a quadratic divergence.

Gauge Coupling Unification

It is a common theoretical belief that the gauge group of the Standard Model
should be embedded at high energy in the gauge group of a Grand Unified The-
ory(GUT). Examples of the possible GUT group are SU(5), Fg, and SO(10). In
such a theory the three gauge couplings of the SM are unified into a single gauge
coupling. The scaling of the SM couplings with energy scale u is described by

renormalisation group equations, eq. (2.8), which allow the extrapolation of the
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Figure 2.3: Gauge coupling evolution in the SM derived from solv-

ing the 1-loop beta functions, ,uddi“ = —(41’;)2 a?. Here a, = g2 /4m,
the index a refers to the three groups U(1), SU(2)z and SU(3).. In
the standard model the coefficients b, are, b5M = (‘11—(1), ——169, — )

high energy couplings from the measured weak scale values, see fig. (2.3).

dgi

’“‘au = 4. (2.8)

In eq. (2.8), ¢, with i = 1,2, 3, represent the three standard model gauge cou-
plings and the functions §; come from quantum corrections to these couplings.
Fig. (2.3) clearly shows that there is no single point at which the three SM
couplings converge. On the other hand the additional particle content of a su-
persymmetric extension of the Standard Model results in the modification of the
B-functions of eq. (2.8). Examining the minimal extension, the Minimal Super-
symmetric Standard Model(MSSM) (see section 2.2), we find that the couplings
do in fact approximately unify, see fig. (2.4), at a GUT scale of 10'® GeV. Hence
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there is a real possibility of embedding the SM within a supersymmetric grand

unified theory.

60 T T T T T T T
50 | .
40 &
u(1)
=
,I—v 30 - 4
3 e :
SU(2)L _______ St
e 8UB)
0 1 1 L 1 1 1 1
102 104 108 108 0% 102 10 10" 10'®
u[GeV]

Figure 2.4: Gauge coupling evolution in the MSSM. As in fig. (2.3)
this is derived from the solution of the 1-loop beta function with
the coefficients, BMSM = (35—3, 1, —3). For simplicity the SUSY £
functions have been assumed to be active down to the weak scale.

¢ Radiative Electroweak Symmetry Breaking

An additional advantage of supersymmetric theories is that they can provide a
theoretical explanation for the negative Higgs mass which initiates electroweak
symmetry breaking via the Higgs mechanism. Radiative corrections to the
Higgs mass, m},_, are dominated by top and stop loops. Corrections from RGE
evolution from the GUT scale down to the weak scale drive m}; negative and

thus kick start the Higgs mechanism.
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2.1.2 SUSY Algebra

We have seen in section 2.1.1 that the Higgs 2-pt function m,(0) can be made to
vanish exactly due to the addition of new bosonic fields. We claimed that this hinted

at an additional symmetry. We would like to explore this new symmetry, in particular
its Algebra, generators and the space in which it lives. Eq. (2.5) and (2.7) tell us
that this symmetry must connect equal numbers of bosonic and fermionic degrees
of freedom of equal mass. Also eq. (2.6) suggests that there should be a connection
between boson and fermion Lagrangian interaction terms. Hence the generators, @,
of this symmetry connect fermions and bosons, see eq. (2.9) and therefore must be
spin——;-.

@|Fermion >= |Boson > (2.9)

@|Boson >= |Fermion > .

The simplest choice of generators are 2-component Weyl spinors @ and ) obeying

the anti-commutation relations:

{Qa, Qs}={Qa, Qp} =0 (2.10)
{Qa, Qs}=20%,P.  and  [Qu, Pu] = [Qs, P.] = 0. (2.11)

Here the indices o, 8 and &, 3 take the values 1 or 2, o# = (1,0;) with o; being the
Pauli matrices, and P, is the translation generator. The dot above the Q indices is
a reminder that @ and @ transform under different representations of the Lorentz
group. See appendix B for a review of the 2-component Weyl spinor notation. The
anti-commutators and commutators in eq. (2.10) and (2.11) imply the extension of

space-time and the Poincaré group with supersymmetry to become superspace and

the super Poincaré group.

It is convenient to work with the superspace coordinates, {z*, 8, 8}, where 8, § are 2-
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component anti-commuting Grassmann coordinates, i.e. {0, §}={6, 8} =1{0, 8} =0.

A general superspace translation can therefore be written as

Gs(y, ¢, €) = o'~V Pute@taQ) (2.12)
Here, ¢, (€) parameterises an infinitesimal SUSY translation due to @ (Q) in the same
way that y parameterises the infinitesimal space-time translations due to P,. This
SUSY transformation acts on superfields which are functions in superspace, ®(z, 6, 0).
Consider the effect of left multiplication by a supertranslation generator, Gs(¢, €), on

an arbitrary superspace element Q(z, 0, ) = exp3 [—m“P“ +6Q + @Q]

Gs(e, )z, 0, 0) = exp1 [6@ + eQ] expt [—a* P, + 0Q + 5@]
= Q (a* —ico"0 +i00"€, 0 + ¢, O+ €) . (2.13)

In reaching the final line we have used Hausdorff’s formula, ete? = eAtBH3[A Bl

and the anti-commutation relations in eq. (2.11). Therefore the action of the super-

translation Gs(e, €) results in the coordinate variation,

o =1 (90”€ — 60“9_)
30 = ¢, 50 = e

(2.14)

From the coordinate variations we can deduce that the SUSY generators take the
form,
+ (00*)40,. (2.15)

} ~ .0
Qo = —ig— — (0"0)0, Qs = Z’afo—g

It is now convenient to define a SUSY covariant derivative which anti-commutes with

the SUSY generators,

0 o _ 0 o
- o e 0. 2.16
D, 7a +1(0"0)a0, D 7 +(05"):0, ( )
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Hence the SUSY covariant derivatives obey the anti-commutation relations,

(Da, Dg}={Ds, Dy} = 0 (2.17)
{Da, Dy}=25"3P, (2.18)
{Da, QB}:{DC'H Qs} = {Da, Qﬁ} :{de Dﬁ}:O (219)

Notice that both (Q,)' = Q4 and (Dy)t = Dy.> Therefore SUSY covariant deriva-
tives commute with superspace translations; Gs(e, €) (Da®) = D, (Gs(e, €)®), and
Gs(e, €) (Da®) = D4 (Gs(e, €)®). Therefore a condition such as, D,® = 0 or
Ds® =0 is SUSY invariant.

A general scalar superfield, ®(z, 8, 8), is a scalar function in superspace. Owing to
the Grassmann nature of § and 0, a Taylor series expansion in these coordinates will

have a finite number of terms as shown in eq. (2.20).

®(z, 0, 0)=f(z) + 0¢(zx) + O%x(z) + 00m(z) + 00n(z)
+00*0v,(z) + (00) OA(2) + (00) O () + 620%d(x). (2.20)

Clearly, #(z), x(z), A(z), ¥(z) are all fermionic fields, f(z), m(z), n(z), d(z) are
complex scalars and v,(z) is a complex vector field. We now proceed to describe two

irreducible superfield representations; Chiral and Vector superfields.

The Chiral Superfield

Enforcing the SUSY invariant condition,

Ded(z, 0, 0) =0, (2.21)

3Recall that (9,)T = —0,.
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onto this general scalar superfield defines a chiral superfield, and likewise the condition

Do®(z, 0, 0) =0, (2.22)

o ¥ & (2.23)

and
Doy* = 2i(0"5)a, Dyt = 2t(60")4,
and so it will be convenient to change variables to, y* = z* + i0c*f and §* =

2" —i0c"0. Eq. (2.23) implies that ® = ®(y, 0) is independent of § and ® = (g, 0)
is independent of §. Therefore the component expansion of the chiral superfield ¢

and the anti-chiral superfield ® now become particularly simple,

Oy, 0) = ¢(y) + V20 (y) + 00 F (y) (2.24)
o(y, 0) = ¢*(7) + V20(y) + 00" (), (2.25)

or written as a Taylor series expansion in terms of z, § and 0,

= [é(2) +1(0040)0,¢(x )— ~(9<7“9)( ¥9)0, 8,,(/5( )]
+ [V20y(z) + V/2i(05+0) z))] + 00F (x

[¢*(w) —1 90"‘9) Oud™(z )— -(00“5)(90”9)0 8,,¢*( )]
+ [V209(z) — v/2i(05"8)8,(09(z))] + 00F*(«

(2.26)

Physically these fields describe a complex scalar ¢, a Weyl fermion v and an auxiliary
complex scalar field F used to ensure that the number of fermionic and bosonic degrees
of freedom match on and off-shell. Therefore chiral superfields can be used to describe

the 3 generations of fermions and the Higgs boson of the standard model.
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It is clear from eq. (2.14) that the spinor § has mass dimension —1. Assuming that
the scalar field ¢ has mass dimension +1, then ¥ must have mass dimension —}—-g— and

F has +2.

Applying the SUSY generators @, @) to the chiral superfield ® it can be easily shown

that the components of ® must transform as,

S5 =2 e (boson — fermion)
Ssth = V2 e F +i/2 0" 0,9 (fermion — boson) (2.27)
6sF = —i/2 0,9 ote (F — total derivative).

Notice that the component field F', which is accompanied by the maximum allowed

number of 8’s in the superfield expansion, transforms as a total derivative.

The Vector Superfield

To describe the spin-1 gauge bosons of the standard model we must introduce vector

superfields. A vector superfield V is constrained to be self conjugate,
V(z, 0,0)=Vi(z, 6, 0). (2.28)
This leads us to the representation,
V= <1 + %9059@6“) C+ (i9 + %900“@@) X + %«99 [M +iN]

7

00 [M — iN]

B |

+ (—i(ﬂ %(550“9@) X —
— 00,0 A" + 106G — 006X + %aaéau (2.29)
Here, C(z), M(z), N(z) and D(z) are real scalars, x(z), A(z) are Weyl spinors, and

A¥(z) is a vector field. We would like A* to describe a gauge boson and so V, and

therefore each component of V', must transform in the adjoint representation of the

gauge group.
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We can write the supersymmetric version of a non-abelian gauge transformation of a

vector superfield V as,

—igAl ;
e? — TN eV ih (2.30)

where, A(z, 0, 0), is a chiral superfield and ¢ is the gauge coupling. The chiral
superfield A contains 4 bosonic and fermionic degrees of freedom. This means that it
is possible to choose a gauge, called the Wess-Zumino gauge, in which the scalars C,
M, N and the spinor x are eliminated from eq. (2.29). This leaves us with only the
last line of eq. (2.29) and so Vjyz contains a vector field A#, an adjoint spinor A and
a real scalar D, see eq. (2.31). In this gauge we are still left with one bosonic degree

of freedom which corresponds to the usual gauge freedom.
Viey = —00,0A% + i600% — i600) + %0950‘1}. (2.31)

If we assume that the field A* has mass dimension +1 this implies that the fermion

X has mass dimension —}—g’- and the field D has mass dimension +2.

In the Wess-Zumino gauge every term of the vector superfield contains at least one

factor of § or 0, therefore the only non-vanishing power of Viyy is,

1 -
Vivz = 500004, A%, Vipy =0, forn 22 (2.32)

It is useful to notice that the auxiliary field D transforms as a total derivative,
§sD = —ea"O, )\ + ec*O . (2.33)
Having introduced the concept of chiral and vector superfields ® and V we would now

like to construct an action out of them which is invariant under SUSY transformations.
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2.1.3 Constructing a SUSY invariant Action

In this section we would like to construct a Lagrangian which leads to an action that

is invariant under SUSY transformations, i.e.
55/d4:c L(z)=0. (2.34)

For eq. (2.34) to be satisfied it is enough that the Lagrangian £ transforms as a total
derivative. It is very useful to notice that the superfield components with the largest
number of § and @ factors do indeed transform as total derivatives, see eq. (2.27) and

(2.33). Therefore we can write an action,

S = /d4:c (/ P0Lr + /d20d2§£D> : (2.35)

where the procedure of integration over Grassmann variables is identical to the action
of differentiation, see appendix A. In eq. (2.35) we have used Lp and Lp respectively
to denote general chiral and vector superfields. The subscript reminds us that the
Grassmann integration will leave only the auxiliary field components F' and D. We

would now like to find all Lagrangian contributions to Lz and Lp.

Products of (anti)chiral superfields are themselves (anti)chiral superfields, hence Lr
can contain a product of chiral superfields. From eq. (2.24) it is straightforward to
deduce that the product of two chiral superfields will provide fermion mass terms
and the product of three chiral superfields will have Yukawa type interactions as the

highest order components. Explicitly we can write the “F-terms” of these products

as,

D)o =Fy (2.36)
Q1200 =1 F2 + P2 Bt — P19y (2.37)
D10y P3g0 = P12 F3 + d23F1 4 P31 Fo — ¢1waths — dathsthy — dsthrtdy. (2.38)
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The hermitian conjugate of a chiral superfield is an anti-chiral superfield &' = ®. As
in eq. (2.26) we can write this anti-chiral superfield as an expansion in z, 0, 6. This
means that a contribution to £p coming from the product of a chiral superfield with

its hermitian conjugate will yield,
/d29 P00 = 0,00"¢" + F'F* —irp 0" d,1p + (total derivatives). (2.39)

Clearly eq. (2.39) contains kinetic energy terms for the scalar component ¢ and the
fermionic component 1, but not for /. Therefore the field F' does not contain propa-
gating degrees of freedom and so this auxiliary field can be eliminated by its equation
of motion. An on-shell chiral superfield ® then has two physical bosonic and fermionic
degrees of freedom and so F' ensures that this number is balanced both on and off-
shell. This can be made explicit by examining the following superpotential,

1 1
W(®;) = k®; + 7mii 2i; + ggijk@i@jq)k- (2.40)

A term like ®T® is not allowed to enter the superpotential as it is self-conjugate and is
therefore a vector superfield. Therefore W mustn’t contain any anti-chiral superfields
and only chiral superfields, in other words the superpotential is an analytic function.
Here ®; are chiral superfields and k;, m;;, ¢ijx, are constants with mass dimension, 2,
1, 0 respectively. An implicit sum over repeated superfield indices is also assumed. A
product of superfields is itself a superfield, hence W is a chiral superfield and so its §¢

term will transform as a total derivative. Therefore W may constitute a Lagrangian

term of a SUSY invariant action.

With the aid of the superpotential we can summarise the Lagrangian terms of eq. (2.36)-

(2.39) in the compact form,

L= /d26d2§ o, 0! + U 420 W(®;) + h.c.|. (2.41)

32



The superpotential W(®;) is a function of superfields, ®; = ¢; + v/260¢; + 00F;. 1t
will be useful to Taylor expand W about the scalar field ¢;, eq. (2.42).

6W
W(®;) =W (i)
ow 1 821/1/
00 F;— ; . 2.42
+00 (5. 53606 %) 242)
The partial derivatives of the superpotential, %’Z = %‘j ) and 8451;‘;] = 82??;}, " are

evaluated at the point about which the expansion is taken, namely the scalar field ¢.

The Taylor expansion in eq. (2.42) now becomes very useful in simplifying the La-
grangian of eq. (2.41). The integration over d*6 will pick out only the final line in the

Taylor expansion. We may also make use of eq. (2.39) to write,

L= (FF; +10,9" — ithic"0,3;)

ow . 1 W

Again an implicit sum over repeated indices is assumed. As the fields F; have no

kinetic term in eq. (2.43) they have a particularly simple equation of motion,

oL OWN\"™
—0 = o 2.44

which can be used to eliminate these auxiliary fields from the Lagrangian. This then

leads us to the SUSY invariant action,

. L oW
S:/dx[ﬁkm——<28¢a¢]¢¢]+h >—ia¢i

Here, Liin = |0,0]* — it;0"0,1;, contains the kinetic terms for the scalar ¢ and

2} . (2.45)

fermion . Recall that the partial derivatives of the superpotential are evaluated

at the scalar fields ¢;. This leads us to the observation that the scalar potential is
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determined by,

2

=2

50, (2.46)

So far the only “D-terms”, i.e. terms with a (6)00 factor, we have explored are ®®1.
This is the simplest choice of Kahler potential, K(@L ®;), where K is real. We shall
not consider any more complicated Kahler potentials here. Gauge-matter interactions

can be accomplished by a SUSY version of the familiar “minimal coupling”,

/ d*0d*0 oTe®” ¢ = / d*0d*0 ' (1 + 29 Viwz +24° Vid,) @
= |Du¢|”* — ipo*Dyp + g™ D
+igV2 ("M — o) + |FP. (2.47)

In the first line of eq. (2.47) we have expanded the exponential in powers of the vector
superfield Viyz in the Wess-Zumino gauge, which has only two terms, see eq. (2.32).
To arrive at the final line we have made use of the Taylor expansion of ® and ®' shown
in eq. (2.26) and the identities found in appendix B. We have also introduced the
gauge-covariant derivative, D, = 8, +1gA,, where g is the gauge coupling. We write
the gauge field as A, = A§ T,, and in the same fashion A = A*T, and D = D*T,,
where T, are the gauge generators. The Lagrangian terms in eq. (2.47) therefore not
only introduces interactions of matter fields with gauge fields, but also gauge strength
Yukawa-like interactions between fermions-sfermions-gauginos. These additional in-

teractions include things like top-stop- Wino and higgsino-higgs- Bino interactions.

Finally we would like to include a kinetic energy term for the gauge fields. This can

be done be introducing the superfield,

Wa = (D?D;) e Dyet”, (2.48)
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D, and Dﬁ- again being the SUSY-covariant derivatives. Here W, is a chiral superfield
as D3 W, = 0. Hence the 80 component of the product WeW,, may contribute to a

SUSY invariant action.

1 1 1
WW,| =-—-=F, F*+-D,D*
3292 90 4 My oa + 2
: ) 1 B
+ (_%/\ao_uau)\a + 5gfabc/\aUMA(‘I‘/\C + h.c.) . (2.49)

Here, F,, = 0,A, — 0,A, +1[A,, A,], are usual field strength tensor for the gauge
fields, A,. Notice that in addition to the usual kinetic term for the gauge fields,
F2, ER, we also get a kinetic term for the gauginos A, and a coupling of the gauginos
to the gauge fields. Note that eq. (2.49) does not contain a kinetic energy term for
the field D and so we are again able to eliminate this field from the Lagrangian. The

equation of motion for this field can easily be determined from eq. (2.47) and (2.49)

to be,

oL
oD,

—0 = D.=—g(#Tig;). (2.50)

Using this equation of motion we can now substitute eq. (2.50) into the second term

of eq. (2.49) and the third term of eq. (2.47). These terms now give a contribution to
the scalar potential,
1 wrpig o |2
Vb = 9 ’9’ o T, ¢j‘ (2-51)

Y

here there is an implicit sum over the indices 7, 7 and a. So far we have dealt only with
the supersymmetry conserving lagrangian terms. As it is clear that supersymmetry

is broken we must also look at possible SUSY breaking contributions.
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2.1.4 Soft SUSY Breaking Lagrangian

In previous sections we found that in supersymmetric theories the masses of fermions
and their super-partner bosons are identical. Clearly nature doesn’t reflect this as
no superpartner has ever been discovered. Hence supersymmetry must be a broken
symmetry. Therefore any realistic model must have a Lagrangian which is invariant
under supersymmetry, but a vacuum which is not. It is very interesting to notice that

the SUSY algebra eq. (2.11) acting on a momentum eigenstate |p) can be written as,

Po+ps p1—ip2
[p)- (2.52)

of

{Qm Q_,@} lp> =2 ]
p1+1p2 po—P3

The energy of the state |p) is given by po and so,

poln) = 1 [{@1, @1} + {@u, @1}] In). (2:53)

We can then interpret this as the Hamiltonian, and take the expectation value of a

state [¢) which is given by a sum of squares,

wlak) = 7 (I + QIR + Qa0 + 1IQHIE) > 0. (2:5)

If the vacuum state |0) is supersymmetric then the vacuum has zero energy as it is
annihilated by the supercharges. But if the vacuum state is not annihilated by at least
one SUSY generator then we have a positive vacuum energy and so supersymmetry

is spontaneously broken if the vacuum energy is positive.

Let us assume that supersymmetry is broken by the VEV of some scalar particle.

The scalar potential contains two pieces, as mentioned in eq. (2.46) and (2.50), so we
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have,

2 2

ow 91
1)

9

ij 412
$ T (2.55)

2

VF+VD:’

where [ labels the gauge group. Again we see that V > 0 and so supersymmetry is
broken by either (F;) ~ <%%> # 0 (“F-term” breaking) or (D ,) ~ (gbngfaqb]) #0
(“D-term” breaking).

There is a problem in the spontaneous breaking of supersymmetry by F-terms and

D-terms. There exists a sum rule for the tree-level squared masses of the scalars and

fermions,
TrMZ =2Tr M. (2.56)

Where Mg are the masses of the scalars and M, are the masses of the fermions. If
supersymmetry is unbroken then eq. (2.56) follows naturally from the mass degeneracy
of complex scalars and their Weyl fermion superpartners. This relation still holds at
tree-level even when supersymmetry is broken by F or D-terms. This sum rule is
incompatible with phenomenology because it suggests that the sfermion partners
of the standard model fermions should be lighter than the known fermions. The
favoured solution to this problem is to have SUSY breaking occur indirectly through
the breaking of SUSY in some “hidden sector”. The term hidden means that its
particles share no(or very small) direct interaction with those of our own “visible
sector”. Supersymmetry breaking is communicated from this “hidden sector” to the
“visible sector” through some shared interactions, e.g. gravity. In this scenario the

sum rule of eq. (2.56) no longer holds and so a realistic model can be constructed.

The exact mechanism of supersymmetry breaking is as yet unknown. However it is
very useful to pass over this complication and simply introduce extra terms which

break supersymmetry explicitly. As we saw in section 2.1.1 these extra terms should
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only contain couplings of positive mass dimension and must “softly” break supersym-
metry in order to maintain the solution to the hierarchy problem. It has been shown
[10] that the most general soft SUSY breaking Lagrangian may include,

e scalar squared masses: ——milqﬁilz

o trilinear scalar interactions: —A;jr¢:ip;dk
e gaugino masses: —%ml;\y\g
e bilinear terms: —B;;¢;0; + h.c.

e gauge singlet linear terms: —C¢;

This completes our discussion of the construction of a SUSY invariant Lagrangian.

We are now ready to construct a realistic example.

2.2 The Minimal Supersymmetric Standard Model

We would now like to study a realistic supersymmetric theory, that is a model with
broken SUSY which also satisfies all phenomenological constraints. The Minimal Su-
persymmetric Standard Model(MSSM)* represents the simplest realistic SUSY model.
This model is a straightforward supersymmetrisation of the standard model. The
gauge group is not extended beyond the SU(3). ® SU(2)r ® U(1)y of the standard
model. Also the minimal number of superfields have been introduced. As the fermions
and gauge bosons of the standard model reside in different representations of the gauge
group they cannot be contained within the same superfield, e.g. the component field
A within Viyz of eq. (2.31) cannot be identified with a quark or lepton field. This

means that we require 5 superfields for each generation, see table 2.1. In addition

4See reference [9] for other reviews of the MSSM.
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B Particles | Spin 0 Spin 1/2 [ SU(3). | SU@2)L | Y/2 |
Qi || Qi = ( ?L ) Qir = ( ZZL ) 3 2 1/6
1L 1L
squarks, quarks Us u; = U u§ = —io*ulp 3 1 -2/3
Ds d¢ = dip d¢ = —io?dsy, 3 1 1/3
Li || Lip = ( L ) Lip, = ( Vi ) 1 2 | -1/2
slepton, lepton | €L €L
Ef € = €n ef = —iolely 1 1 1
. ¥ - T
a, Hu_(g%) Hu:<Hﬁ%) 1 2 | 172
Higgs, Higgsino H“é ]5[16
Hy || Hy={ ;¢ ) i, = ( 4 ) 1 2 | -1/2

Table 2.1: Quarks, leptons and superpartner squarks and sleptons
of the MSSM with associated Ggp gauge quantum numbers. A
family index, : = 1...3, has been included. The notation here is
that f = fr is the scalar superpartner of the left-handed fermion
fr and f° = f]*% is the scalar partner of the right-handed fermion

Ir.

vector superfields are required for the eight SU(3). gluons, three SU(2);, W bosons

and the single U(1)y B gauge field. These superfields are listed in table 2.2 which

also lists their fermionic superpartners; eight gluinos g, three Winos W and a Bino

B.

l Particles [ Spin 1/2 [ Spin 1 | SU(3). | SU(2)L | Y/2 |
gluino, gluon ' g° 8 1 0
Winos, W bosons we we 1 3 0
Bino, B boson B B 1 1 0

Table 2.2: Gauge bosons and superpartner gauginos of the MSSM
with associated Ggps gauge quantum numbers. With indices, o =

1...8,a=1...3.

Table 2.1 highlights the doubling of the Higgs sector as a significant extension of the

SM Higgs sector. We would like to break the gauge group with an SU(2)y scalar
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doublet with |Y| = 1. If we had a single Higgs doublet, as in the standard model,
then there would be problems with triangle anomalies. In the standard model the
trace over the U(l)y quantum numbers of a complete fermion generation vanishes.
In the MSSM we must also worry about higgsino contributions to such an anomaly
and so we are required to have two Higgs doublets,

Ht
Hy=| * | with Y/2=+1/2 (2.57)

HO
Hj .
H,; = with Y/2=—1/2. (2.58)
\

Two Higgs doublets are also required due to the superpotential being analytic and so
we cannot use the conjugate of a single Higgs doublet to generate up quarks masses

as we do in the standard model, see eq. (1.18).

We would now like to determine the interactions present in the MSSM. As we saw
in the previous section the interaction terms of the SM fermions and their scalar

partners are determined by the superpotential. The superpotential of the MSSM is,
Whassm = —I‘A[HQYUUC -+ fA{dQYdDC -+ fldh/;EC + /Lﬁuﬁd. (2.59)

Here the multiplication of doublets, H,Q = ¢ H*Q® = HFdp — Hlup, is defined
by the tensor €13 = —eg; = +1, with a,b = 1,2. The matrices Yui,jdye are Yukawa
couplings with the generation indices 7,7 = 1...3. Importantly the superpotential
in eq. (2.59) respects the lepton and baryon number symmetry. Unfortunately these
symmetries are not necessarily obeyed as they must be in the standard model and

only emerge here due to the choice of superpotential.

With this superpotential, eq. (2.59), we can derive interaction terms for the sfermions

from F and D-term Lagrangian contributions as written in eq. (2.55). The F-term,
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2

{g—?’f , generates 3 and 4-pt scalar interactions. For example the Higgs p-term and
tig

the Yukawa couplings combine to yield 3-pt interactions of the form, p*€ny.ér H2*,

syt HY* and p*diyady H*. The D-term, eq. (2.51), contribution can be written

as,

1 1
Vo = 5DiD} = 5 [Dy Dy + D5 D5 + D3 D3], (2.60)

with — Df =, (¢ Ti¢)

where the index a labels the generators of the group [, with an implicit sum over

both. It is straightforward to determine that,

1.+ JRNN 2 1.~ 1 1
Dy = ¢'{ —=|LI>+ Z|QI* + |ér|* — Z|ir|* + < |dr|* + | H.|* — - |Hyl* ) (2.61
v = o (—5IE+ IQF + e = Hanl + gldnf? + 511 - LA 260)
D} =g (E*t“i+@*tzQ+HthHu +H§tfHd> (2.62)
D5 = g5 (QT°Q — apT*"ip — dnT"dy) . (2.63)

Here t* and T represent the generators of SU(2) and SU(3) respectively. It is clear
from eq. (2.60-2.63) that, in the event of H,, Hy acquiring their VEVs, Dy and D3

will contribute mass terms for the sfermions.

The superpotential also provides interaction terms for fermions via the Lagrangian

contribution,

1 oW
L=—————i; + h.c., 2.64
as in eq. (2.45). Here t; are the fermionic superpartners of ¢;. These interactions
importantly include the usual Yukawa couplings of the fermions to the respective
Higgs fields and therefore generate masses via spontaneous symmetry breaking, e.g.
mj] =V, Y v mzj = v3Y] Y and mfj = vyY* 4 In addition interactions of the form,

higgsino-fermion-sfermion, are also generated with a coupling strength determined by
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the Yukawa couplings.

As we saw in eq. (2.47) there will also be gaugino-fermion-sfermion interactions,
~ Y -
AL = g'\/§¢*3-2-¢ + gV2 WY + g57/2¢* 5 T (2.65)

It turns out that the MSSM Lagrangian contains terms which have an even number of
superpartners. This leads to “R-parity” conservation which means that any sparticle
decay must contain an odd number of sparticles. Hence the Lightest SUSY Parti-
cle(LSP) must be stable. This provides a standard signature of sparticle production
at colliders that can be distinguished from SM events. Another consequence of a
stable LSP, owing to the stringent big-bang relic density constraints, is that the LSP

must be neutral. Therefore a characteristic signal of LSP events at colliders will be

missing energy.

Finally, the MSSM must be a model with softly broken supersymmetry. Therefore
the general soft SUSY breaking Lagrangian for the MSSM is,

—Loote = m|QI* + m2|LI* + mi|ul® + mZdr[* + mZ|én]”
+ (Aede;éR + AH,Od5 + A H, QT + BuH H, + h.c.)

1

N R
+ by | Haf* + iy | Hu[* + SMUBB + S MyWW + 5 Magg.  (2.66)

Here, the soft scalar masses, m m%, m2, m2%, m2, are 3 X 3 hermitian matrices, and

2
Q? 4’
Ae, Ag, Ay are general 3 x 3 matrices. The masses M, 5 5 are soft gaugino masses and

m%{u,d are soft higgs mass terms.

The soft SUSY breaking Lagrangian of eq. (2.66) adds over 100 unknown parameters
to the MSSM and many of these can be involved in flavour mixing and CP violation.
Fortunately this means that these parameters can be constrained by experimental
measurements. For example if either one of m2 or m? is non-diagonal in the lepton

L
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Figure 2.5: Diagrams that contribute to 7 — p~ in the
MSSM. Notice that the diagrams shown here have tan 3
enhancement.

mass eigenstate basis then there will be flavour mixing amongst sleptons. This mixing
can enter into the leptons radiatively through virtual slepton loops, see fig. (2.5) for
example contributions to 7 — pvy. Therefore experimental limits on lepton flavour
violation, e.g. y — ey, provides strong constraints on such non-diagonal elements of
the slepton mass squared matrix. Similar constraints for the squark soft mass squared

m2, m2, are provided by K° «+ K° mixing and b — s, see fig. (2.6)

: 2
matrices, Mgy Mg My

for example diagrams. These constraints also apply to A, 4. as after the Higgs fields
acquire their VEVs they contribute non-diagonal terms to the squark and slepton
mass squared matrices, see fig. (2.5) and (2.6) for examples. The CP violating phases

are further constrained by limits on the electric dipole moment of the neutron and

electron.
All such flavour changing and CP violating effects arising from the soft parameters
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Figure 2.6: Chargino contributions to & — sv in the
MSSM. The three diagram shown here are enhanced by

large tan f3.

can be evaded if we assume universality,

1 (2.67)

I
3

0
Au,d,e = Au,d,eYuydye

with u, Bp, mﬁfu’Hd, mé’a@, méé, Ag’d’e all real.
The above universality condition means that the only CP-violating phase is that
of the CKM matrix. This kind of scenario is quite plausible, for instance if the
mediating interactions between the “hidden” and “visible” sectors are flavour blind

then universality is automatic. One such example comes from gravity mediation in

2

which case we have, m3 = m% .. _and Ag = A%, _. In addition it is natural in
Q,u,d,L,e U, a,e
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Grand Unified Theories to define all three gaugino masses to be equal , My, = M, =
My = M3, at the GUT scale.

This completes the definition of the MSSM Lagrangian. Let us now investigate the
mechanism of symmetry breaking and the resulting Higgs sector of the MSSM.

2.2.1 The Higgs mechanism in the MSSM

We would like spontaneous breaking of the gauge symmetry, hence the scalar potential
is required to have a minimum away from the origin. The Higgs scalar potential has
three contributions from; the superpotential F-term of eq (2.46), the D-terms of
eq. (2.60) and the soft Higgs masses in eq. (2.66). The complete potential then takes

the form,

Vi = mi|Hal* + m2|H,|* + (m2HsH, + h.c.)
+ ﬁf—gﬁ (15 = |Hal?) + %2 | H. | (2.68)

with, mi = myy, + |pl®

my = miy, + |pf®

m: = Bp.

The first three terms come from a combination of soft SUSY breaking Higgs masses
m?{uﬂd and the F-term Higgs mass p. The last two terms come from the D-term
contributions of eq. (2.60) °. It is worth noting that the strength of the quartic
interaction is determined by the gauge couplings rather than being a free parameter

as in the standard model, we will see later the consequences of this.

5The SU(2) identity, 030k = 2640k — 6;50k1, is used to simplify the D-term contributions
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As with the standard model we are free to use SU(2) invariance to choose the vacuum,

0 Vg
< H, >= < Hy >= , (2.69)
Vy 0

where v, and v, are real. We will see later that the two Higgs VEVs can be related
to the SM Higgs VEV v of eq. (1.5) as,

1
51)2 =02 4 vl. (2.70)

Therefore we can write the Z boson mass, as in eq. (1.13), in terms of the Higgs
VEVs,

1 7
Mg = L0t ) (0 + 7). (2.71)

It is useful to write these two VEVs in terms of a single parameter, tan 3,

Uy . v, v
tanf= — with v, = —=sinff, vy= ——cospf. 2.712
ﬁ vy \/§ ﬁ d \/i IB ( )

Using the above definitions the minimization conditions for the Higgs potential in
eq. (2.68), g—% = -S—I%% = 0, can be written as,

mi = —mitan 8 — T M2 cos23 (2.73)

m3 = —mjcot 3 + T MZ cos 23.

The presence of My here is a direct consequence of the fact that the quartic coupling
is determined by the gauge couplings as mentioned earlier. These conditions can be

used to derive expressions for By and p in terms of tan 8, m} and m%ld,

[(m3;, — mj;,) tan 28 + m% sin 23] (2.74)
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. 1
(qud sin® 8 — m}, cos® 3) — 5 2. (2.75)

s 1
cos 203

We shall later use the fact that eq. (2.74) allows us to eliminate By in favour of tan 3.
We can also determine u(Mgur) from p(Myz), leaving the condition eq. (2.75) to be
determined by the two parameters, my,, mpy, in order for the correct minimization

of the Higgs potential.

The Higgs doublets, Hy, H,, contain eight degrees of freedom, three of which are
eaten by the W, Z gauge bosons as in the standard model. This leaves five physical
degrees of freedom, which are arranged into 2 CP-even neutral Higgs, h°, H?, 1 neutral
pseudoscalar AY and a charged Higgs H*. Compare this with the single physical Higgs

boson of the standard model.

The Higgs mass squared matrices and mass eigenstates can easily be determined from
the matrix of second derivatives evaluated at the minimum of the potential, eq. (2.69).

For the imaginary degrees of freedom we have,

M2 = —mj3 cot 3 —m3 (2.76)

2 2
—mj —mjtan

in the basis {%HS/\/ﬁ, %Hfj/ﬁ} .

Notice that, det M? = 0, so there is a massless neutral Goldstone mode and a massive

pseudoscalar A°. For the real degrees of freedom,

) —mZcot B+ MZsin? 3 m3 — 2 M7 sin 203
M2 = ‘ (2.77)
m3 — T M7%sin 20 —m2tan 8 + MZ cos® 8

in the basis {?RHS/\/?, §RH§/\/§} .

Here we have two massive CP-even Higgs states, h® and H°, with my < mpo. In
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terms of the original gauge eigenstate fields we can write the mass eigenstates as,

G° 1 sinffi —cos SH?

- — (2.78)
Al V2 \ cos g sinpg SHY
2m3
mio = TI‘ (M%) = —gljl—z%, méo -
hY 1 cosa —sinao RH?
= — (2.79)
H° V2 \ sina  cosa RHY
1
Mo o = 5 (mio + My F \/(mio + M2)? — 4MZm?, cos? 2,8) .
Here the CP-even mixing angle « is written as,
sin2a  m% + M5 cos2a  m%, — MZ (2.50)
sin28 Mo — mi,’  cos2f B M3 — m,zzo' '
The mass squared matrix for charged Higgs states is written as,
—mZ cot B + M}, cos? m2 — L M2, sin®
M2 — 3 /6 w ﬂ 3 2 W /6 (281)
m3 — LME, sin® B —m2tan 8 + MZ sin? 3

in the basis {H, H;*}.

Again we have, det M3 = 0, and we have a second Goldstone mode G* and a massive

charged Higgs boson H*. Written in terms of the original gauge fields we have,

Gt sinf —cos HT
_ / & u (2.82)
H* cosff sinf H~
with, mye = mbo + My, mis = 0,

with G~ = Gt* and H- = Ht*.

Eq. (2.78), (2.79), (2.82), give us important information about the relative tree-level
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masses of the Higgs bosons,

myg+ > My
myo > My (2 83)

mpe < M40

mpo < Myz|cos .

The final identity of eq. (2.83) implies that the tree-level mass of the lightest Higgs m o
should be lighter than the mass of the Z boson. This particularly restricting bound
is the final result of the Higgs quartic coupling in eq. (2.69) being determined by the
gauge couplings rather than being a free parameter as it is in the standard model
eq. (1.3). Fortunately top-stop loop corrections give a large logarithmic correction,
~ In (%), to this limit. Including all such corrections and assuming all sparticle

masses are below 1 TeV this limit can be extended to,
mpo S 150 GeV. (2.84)

One interesting situation to look at is, m4o > My, with mo, mgo, my+, being
much heavier than, myo & Mz| cos (|, and almost degenerate. In this limit eq. (2.80)
implies that the mixing angle @ ~ 3 — /2 which, see table 2.3, means that h° has
the same couplings to quarks, leptons and gauge bosons as the Higgs of the non-
supersymmetric standard model. So h° would be the only detectable MSSM Higgs
boson at future colliders, yet it would be very difficult to distinguish from the usual
SM Higgs. Despite this the discovery of a Higgs mass below 150 GeV would imply
new physics must appear at a relatively low scale, as indicated in fig. (1.1). The search
for the Higgs is therefore a key tool in the search for physics beyond the standard
model and particularly the MSSM.

A discussion of the mixings involved in the SUSY partners of the Higgs and gauge

bosons can be found in appendix C. Also in this appendix can be found details of
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the squark and slepton mass squared matrices.

2.2.2 Higgs couplings

In section 1.2.2 we derived the Standard Model Higgs couplings to the gauge bosons.
We can execute exactly the same procedure for the MSSM through the examination
of the covariant derivative. The only real difference to the results in eq. (1.11) is that

we now have two Higgs doublets with ¥ = +1. So it is straight forward to write the

MSSM Higgs-gauge boson couplings as,

2 H—O 2 HO 2
L Higgs—gauge = g [Ui 14+ =% + ’03 14 24 } W:W—u
2 Uy Vg
24 2 HO? HO|?
+(g ZQ ){Ui 14__53 + 0|l 4+ ¢ }Z“Z“. (2.85)
u Ud

As was mentioned earlier eq. (2.85) defines the gauge boson masses in terms of the

two Higgs VEVs as,

2
My =5 (vI+v0) (6" +97%), My =T (vl+0d), (2.86)

BN | b

and comparing these results with the Z boson mass in the SM, eq. (2.13), we can

relate the MSSM and SM VEVs as in eq. (2.71).

As in section 1.2.2 we can also extract the couplings of the Higgs to the gauge bosons.
Table 2.3 contains the vertex factors for the 3-point MSSM Higgs gauge boson inter-
actions. Notice that all the couplings of Higgs bosons to gauge bosons are suppressed
by, sin(8 — a) or cos(8 — @), relative to the SM couplings. As we mentioned earlier,
in the limit m% — oo, the CP-even mixing angle is approximately a = § — m/2.
Hence in this limit, sg_o — 1, ¢g—o — 0. Therefore in the large m 4o limit KO is

indistinguishable from the SM Higgs and H° decouples from the gauge bosons.
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Table 2.3: MSSM Higgs couplings to gauge bosons.

?A complete list of Higgs couplings can be found in [11].

2.2.3 MSSM Higgs searches

The production of MSSM Higgs bosons proceeds via similar mechanisms to those in
the SM, discussed in section 1.2.5. The main differences are that production through
vector bosons and Higgs-strahlung is only possible for the CP-even Higgs states and
is suppressed by factors of sg_, or ¢g—o. This can be understood by inspecting the
couplings for the CP-odd Higgs in table 2.3. The dominant production process will
again be gluon-gluon fusion via a top-quark loop. A bottom-quark loop will contribute

equally in the large tan (3 region, as ys/y: = my/m, tan 3.

Fig. (2.7) shows the expected discovery potential for MSSM Higgs bosons at the
ATLAS experiment at the LHC. Very similar figures are also produced for the CMS
experiment. The lightest Higgs state h° produced in association with ¢Z may be seen
in the bb decay channel for m 4 2110 GeV and in the mass range, m40 2 200 GeV,
h® may be found through the ~+y channel. For m4o 2 100 GeV and moderate to
large tan 8 the heavy states HY, A° can be seen in the 77 channel. The coupling of
Higgs bosons to charged leptons will grow with large tan 3 in the same way as for
the bottom-quark, therefore the uu channel will also open for large tan . It is also
possible to see the charged Higgs in the channel ¢ — bH™ in the region m40 S 140
GeV. It is therefore possible to find a signal for an extended Higgs sector over a large

region of the m 40, tan § parameter space.
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Figure 2.7: Expected discovery contours for the MSSM Higgs
bosons at ATLAS with 300 f6~! integrated luminosity. The lim-
its on mypo set by direct searches at LEP II are also shown [12].

2.3 Massive Neutrinos

The previous sections introduced the concept of supersymmetry purely on the grounds
of theoretical prejudice. Neutrino physics® on the other hand represents the first piece
of experimental evidence for physics beyond the standard model. In recent years the
solar neutrino problem and the atmospheric anomaly have been explained by the
discovery of neutrino oscillations. Such oscillations require neutrinos to have masses,
but these masses are constrained by galaxy observations to be very small. We shall see
that these tiny masses can be explained very naturally by the “see-saw mechanism”.
This mechanism requires the introduction of right-handed neutrinos which are also a
necessary ingredient of many Grand Unified Theories. The large atmospheric neutrino

mixing can be constructed in such a mechanism with the aid of “single right-handed

neutrino dominance”.

6A list of excellent reviews of Neutrino Physics can be found in [13].
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The present section will present an outline of the experimental work which has led
to the discovery of neutrino masses. Following this will be a discussion of the above

mentioned theoretical scenarios which explain these experimental observations.

2.3.1 Motivation

In the standard model the neutrino must remain massless due to the accidental lepton
number symmetry. Also the neutrinos of the standard model are left handed only
in accordance with electroweak observations. Conversely recent neutrino oscillation
experiments have shown that the neutrino must indeed have mass, albeit an extremely
small mass. The challenge for theorists is now to explain the origin of these masses
and mixings. The mixings observed among neutrinos are far larger than those in the

quark sector and this only adds to the puzzle.

The study of neutrino physics has focused on neutrinos from a variety of different
sources; the sun, the upper atmosphere, nuclear reactors, particle accelerators and

supernovae. Here we shall concentrate on just atmospheric and solar neutrino exper-

iments.

Atmospheric neutrinos are produced when cosmic rays collide with the upper atmo-
sphere to produce pions. The subsequent decay of the pion leads to the production of
both electron and muon type neutrinos with a relative ratio of approximately 1 : 2.
Hence it is useful to study the ratio, R = U%%’ where N, . denotes the number
of observed neutrinos of flavour u, e, and its zenith angle variation. The experimental
results, primarily from the water Cherenkov detectors Kamiokande [14] and Super-
Kamiokande [15], show that the double ratio is B = 0.54 & 0.05 £ 0.01 [16] rather
than the non-oscillation prediction of R = 1. This startling observation can be ex-

plained by either the disappearance of muon neutrinos or the appearance of electron

neutrinos or both. The study of the zenith angle variation of R has shown that this
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suppression is in fact due to the disappearance of muon neutrinos. It was also noticed
that the suppression was greater for muon neutrinos travelling from the other side of
the earth, through its core and into the detector than for those travelling the short
distance from the upper atmosphere directly above the detector. The result is that
this can be very well explained by a simple two-state mixing v, ¢ v, with a mixing
matrix,

vy cosfy3  sinfys vy

= : (2.87)

Uy —sinfy3  cosfys V3

Here v, . are the flavour eigenstates associated with the corresponding charged lep-

tons u, 7 and vy 3 are the neutrino mass eigenstates. The oscillation probability is

written,
.2 .2 2 L
P(v, = vy) = sin® 20,3 sin <1.27 AmBQE) : (2.88)

Where L is in km, E in GeV, Am?j =m? — mf is in eV? and the numerical factor of

1.27 comes from the conversion of units. The best fit analysis gives,

1.3 x 1072 eV? < |[Am2,]| < 3.0 x 1073 eV
sin® 20,3 > 0.92, at 90% C.L..

(2.89)

Therefore the experimental results indicate maximal v, — v, mixing. Eq. (2.88) shows

that the existence of neutrino mass is vital to the oscillation phenomenon and the

solution to the atmospheric anomaly.

The story is very similar for the solar neutrinos produced by the nuclear reactions
within the sun. For many years experimentalists and theorists where puzzled by
the “solar neutrino problem”: there was an apparent mismatch between the num-
ber of electron neutrinos reaching earth from the sun and the number expected

from studies of the nuclear reactions within the sun. It was recently shown by the
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heavy water detector at the Sudbury Neutrino Observatory(SNO) [17] that the so-
lution must be the oscillation of electron neutrinos into a combination of muon and
tau neutrinos, v. — v, ,. Pre-SNO there had been a number of different oscil-
lation scenarios; VAC(vacuum oscillations), LOW(large mixing angle, small Am?),
SMA (small mixing angle), the matter enhanced LMA (large mixing angle) and oscil-
lations into singlet(sterile) neutrinos. Combining the data from SNO and the reactor
experiment KamLAND [18] tells us that the only remaining solution is the MSW”
LMA solution with, tan?#;, ~ 0.4 and has a relatively small mass squared splitting

[Am2,| ~ 1 x 1075 eV2.

This leads us to a 3 generation mixing described by,

Ve Uel Ue? U63 vy
vy = Uul Uuz U;L3 1 . (2-90)
Ur Ui Uy Uss %

Here Uj; is a 3 x 3 unitary matrix known as the Maki-Nakagawa-Sakata(MNS) [19]
matrix. Unlike the CKM matrix, discussed in section 1.2.3, the lepton equivalent
contains 3 mixing angles and 3 phases. This is due to the Majorana nature of the
neutrino. A significant difference is that the mixing in the neutrino sector is unusually

large compared to the quark sector.

The final mixing angle ;3 remains unmeasured, but the reactor experiment CHOOZ
[20] is able to provide the bound, sin®26;5 < 0.1 — 0.3, due to the non-observation of
v, disappearance®. Also unknown are the signs of the mass squared differences, Am2,,
Amj, and it will be very important for these unknown quantities to be determined

at future neutrino experiments in order to determine the neutrino mass matrix,

"MSW stands for Mikheyev, Smirnov and Wolfenstein who are credited with proposing the solu-
tion in which neutrino oscillations are enhanced by matter effects within the sun.
8For this reason the neutrino mixing angle ;3 is often referred to as the CHOOZ angle.
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2.3.2 See-Saw mechanism

Having found that neutrinos indeed have mass we are then confronted with the co-
nundrum of how such a tiny mass comes about. One very popular explanation is
given by the introduction of right-handed neutrino states, vg. These extra neutrinos
are gauge singlets and so can have arbitrarily large masses. We shall see that through
the see-saw mechanism it is these large masses which suppress the mass scale of the

neutrino states found in the electroweak interactions.

The familiar Dirac mass term involving a fermion and its conjugate takes the form,
Lp=-myp = —m (Y + YrYL) - (2.91)

The mass term of eq. (2.91) obeys the conservation of fermion number and the con-

servation of charge. This is the only possible mass term for fermions which carry a

U(1)em charge.

As neutrinos carry no such charge it is possible for them to have other types of mass
terms containing 2 neutrinos or 2 anti-neutrinos. These additional terms violate
lepton number but are otherwise allowed. Such Majorana mass terms are discussed

in more detail in appendix. B.2

Therefore there are three possible mass terms for the neutrino. They can be written

as,

1
£rl/na.ss = 5 [DLmDVR + D}C%mlT)‘Vi -+ hC]
1 1
- 5 [ch% mg VR + hc] — 5 [ﬁL mr I/z -+ hc] . (292)

In the first term of eq. (2.92) we have rewritten the Dirac mass in terms of charge

conjugate fields, ¥¢ = CA@T as defined in appendix B. This is done so that we can
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construct the mass matrix,

mr mp I/E

Lhss = =5 (71, 75) +he. (2.93)

m}; mg VR

Here mp is the Dirac mass, mg is the Majorana mass for the gauge singlet fields v
and m7 is the Majorana mass for the left neutrino fields, vy,. If we have 3 generations
of both right and left handed neutrinos then the mass matrix in eq. (2.93) will be

6 x 6. Diagonalising this mass matrix with unitary matrices, Uy, and Up such that,
Ul M Up = Mg, (2.94)

where M is the mass matrix of eq. (2.93), defines the change of basis from the original

neutrino fields,

bo={ " Von={ "), (2.95)

14

evly]
X
=

into the mass eigenstates,
e = Uy, nr = Uktr. (2.96)

If we consider the case of a single generation with my = 0 and ms > mp, then
the mass matrix will have eigenvalues equal to ms and —m?%/ms. The neutrino
Dirac mass mp is expected to be of the same order of magnitude as the associated
charged lepton mass. There is no such expectation for the Majorana mass, mg, and
so if we allow it to have a GUT scale mass then the lighter mass eigenstate will
be greatly suppressed. This is the see-saw mechanism in which the tiny neutrino
masses m, ~ m%/mg are generated through the introduction of heavy right-handed

neutrinos with Majorana masses mg.
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In this simple case the mass matrix is diagonalised by the orthogonal matrix,

1
U= mojms (2.97)
—-mp/ms 0

Eq. (2.96) then leads us to the mass eigenstates,

= -+ = (v +v§ — 22 (pf
m=ms+mr= (Vi +v§) ms(VR+VR) (2.98)

N2 = Nar + MR = (VR + VR) + %ISZ(VL + vg)-

Then it is clear that, v = nip + Z—?UZL, with mass ~ m% /mg can be associated with
the neutrino of the electroweak interactions. On the other hand, vg = n9r — %’;—mR,

with mass ~ mg is a heavy right-handed neutrino state.

This one generation case can be generalised by taking mp and mg to be nxn matrices.
Provided the eigenvalues of mg are much larger than those of mp then again we will
have a spectrum of very light and very heavy neutrino states. In this general case the

see-saw formula for the light neutrino mass matrix is,
mrp = mpmg'mp, (2.99)

with the Lagrangian term, mpropvé. The see-saw mechanism can be incorporated
within the MSSM by the simple addition of two extra terms into the superpotential
of eq. (2.59). The two terms to be added will be a Yukawa coupling Y,, and a large
Majorana mass term for the right-handed neutrinos. These two terms will reproduce

mp and mg above. The new superpotential can be written as,

Warssar+ve = Warssyr + Woe

with  W,e = —H,LY, 7°+ =0° Mpg °. (2.100)

DO | b=

Here Mgpg is the Majorana mass for the right-handed neutrino states v¢. Integrating
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out the heavy fields we find that,

OW,e 1, . N
G =0 = Wie=—5(H.0) Y, MprY,E (H,L)T. (2.101)

Therefore after the up type Higgs acquires its VEV a Majorana mass, similar to

eq. {2.99) will be generated for the doublet neutrinos,
i = oY, MY, (2.102)

with the Lagrangian term, v¥m};v;,. Diagonalisation of myy, with the unitary matrix

VY is achieved as,

_ ysv - diag y T ) * _ ysvx xdiag vt
mrr = VL mLL VL 5 or mLL - VL mLL VL y (2.103)

which defines the change of basis, v; = V| Yyr, where v} are the neutrino mass

eigenstates. If we assume that the charged lepton Yukawa coupling is diagonalised

via,
Ye - Vf }/;;leiag VET’ (2104)

so that, ¢} = VLeT er, and e = VIST er, define the rotation into the mass eigenstates,
er r- Asin the quark sector the charged current interaction leads to the definition of

a CKM like matrix,
VMNS — yetyy, (2.105)
defined so that,
JET = —\—/1—562}57“ VﬁNSVJ'-L. (2.106)
It is clear from eq. (2.103) and (2.104) that unlike the quark sector we only have the
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freedom to choose three phases in V/, i.e. there is no phase freedom in the definition
of V. Therefore the physical degrees of freedom within Visys are the three mixing

angles and three phases.

2.3.3 Single Right-Handed Neutrino Dominance

The see-saw mechanism is an extremely attractive method to explain neutrino masses
many orders of magnitude lighter than the masses of their associated charged lepton.
It is also necessary for theorists to account for the observed large mixings in the
neutrino sector. One very natural scheme in which the maximal atmospheric mixing

is reproduced is Single Right-Handed Neutrino Dominance(SRHND) [22].

If we assume that the right-handed Majorana mass matrix, Mgg, is approximately

diagonal, then we can parameterise the Yukawa and Majorana matrices as,

X0 0 a a d
Mer=| 0 X 0|, “v=|# b ¢ |. (2.107)
0 0 Y d ¢ f

SRHND assumes that the contribution to the light neutrino mass matrix is domi-
nated by one of X', X, Y, with the others contributing sub-dominantly. Here we
shall assume that ¥ > X > X’ and that it is Y which is dominant. Using the

parameterization in eq. (2.107), the see-saw mechanism of eq. (2.102) yields,

2 2 d2 Ipt b d 1.0 d
Fr5ty T tE¥TE¥ ¥V
_ b2 2 2 1Al b
mrr = : b4+ be gyl d (2.108)

2 2 2
vt

If the heaviest right-handed neutrino dominates in the lower 23 block of myz, with
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the second heaviest contributing sub-dominantly, then

2L 12 lefl o lyl =yl z=b,c
2.1
v > 5% > X with ol o ( 09)

As, Y > X, X', the Yukawa couplings e, f must be large such that the heaviest
right-handed neutrino dominates. Without the subdominant contributions the 23
determinant is zero, hence there would be a massless eigenstate. The effect of the
subdominant contributions will be to give this eigenstate a very small mass and
a relatively large mass splitting to the second eigenstate. In such a scenario with,
e~ f ~ 1, thereis also large 23 mixing in the neutrino mass matrix. The combination
of a large mass splitting and large mixing in the 23 sector reproduces the atmospheric
oscillation parameters very well. In this kind of SRHND model the pattern of neutrino

masses and mixings are created in a very natural way without the need for fine tuning.

The situation we will be studying in the remaining chapters of this thesis has, d <«

e f ~ 1 and can be written approximately as,

000
Yo~]1 001 |- (2.110)
001

We can approximate the MNS mixings under such conditions to be,

a

(ngb — 5230) ’

Xm3 ’

tan 912 ~ tan 923 -, 913 ~

e

where mg is the heaviest eigenstate of myrz. Therefore the subdominant Yukawa

couplings «a, b, ¢ can be chosen to arrange for the a large 12 and small 13 mixing.
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2.4 Conclusion

We have seen that the elegant theory of supersymmetry represents an attractive so-
lution to the quadratic divergences of the hierarchy problem. In addition it has been
found that such theories lead to gauge coupling unification and the possibility of
Grand Unification. Therefore the minimal supersymmetric extension of the standard
model, the MSSM, is an attractive model to study. Owing to anomaly cancellation
this model must contain two Higgs doublets and so it is possible for the Higgs sector
to be quite different from that of the standard model. Unfortunately there is also the
possibility that the Higgs sector of the MSSM may behave in a similar way to the
standard model Higgs. So the discovery of supersymmetry through the detection of
an extended Higgs sector is a possibility but not a certainty at the next generation
of collider experiments. Neutrino Physics is one of the major success stories of recent
years. Neutrino oscillations have been proved to be the answer to both the atmo-
spheric and solar neutrino problems. A very appealing mechanism for the generation
of the tiny neutrino masses is the see-saw mechanism in which the addition of very
massive right-handed neutrino states produces the suppression of the left-handed neu-
trino masses. Such a mechanism can easily be incorporated within the MSSM and

indeed many Grand Unified Theories require the existence of right-handed neutrino

states.
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Chapter 3

A Global Analysis of a

supersymmetric Pati-Salam model

In this chapter we present a complete phenomenological analysis of a realistic string-
inspired model based on the supersymmetric Pati-Salam SU(4) x SU(2), x SU(2)r
gauge group supplemented by a U(1) family symmetry, and present predictions for
all observables including muon ¢ — 2, 7 — pv, and the CHOOZ angle. Our analysis
demonstrates the compatibility of such a model with all laboratory data including
charged fermion masses and mixing angles, LMA MSW and atmospheric neutrino
masses and mixing angles, and b — sy, allowing for small deviations from third family
Yukawa unification. We show that in such models the squark and slepton masses may

be rather light compared to similar models with exact Yukawa unification.

The work presented in this chapter has been published in [23].
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3.1 Preliminaries

Understanding the origin of fermion masses and mixing angles is one of the most
interesting theoretical aspects of particle physics. In the post-SuperKamiokande era
this puzzle has become more intriguing than ever before. We saw in section 2.3
that experimental results from SuperKamiokande [15], SNO [17] and KamLAND [18]
imply the existence of massive neutrinos with large solar and atmospheric mixing
angles. Such large mixings imply a low-energy structure of lepton masses markedly
different from those of the quark sector. In this chapter we assume that the small-
ness of neutrino masses can be explained by the see-saw mechanism involving very
heavy right-handed neutrino states, and that the see-saw mechanism is implemented
using single right-handed neutrino dominance which can explain in a natural way the
coexistence of large neutrino mixing angles with a mass hierarchy. It then becomes a
flavour problem to fit together the neutrino mass puzzle with the pieces provided by

the long-known pattern of quark and charged lepton masses.

The flavour problem cannot be fully addressed without unification. However, uni-
fication has its own challenges. These include the unification of gauge couplings
and third family Yukawa couplings and the introduction of supersymmetry. In the
previous chapter we saw that supersymmetry facilitates gauge coupling unification,
stabilises the hierarchy between the high energy scale and the weak scale, and al-
lows a radiative mechanism of electroweak symmetry breaking. Within the natural
framework of supersymmetric unification, the larger high energy gauge group in turn
increases the predictive power of the theory in the flavour sector, for example by
leading to group theoretical mass relations between quark and lepton masses of the
same family. Relations between quarks and leptons of different families require an
additional family symmetry, however. In this way it becomes possible to address both

the flavour problem and the unification problem, within a single framework.
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Having defined the framework, it is by no means guaranteed that models exist which
satisfy all the phenomenological constraints provided by current data, and comply
with all the theoretical requirements such as successful electroweak symmetry break-
ing, and approximate gauge and Yukawa unification, while reproducing the known
observables. It is therefore important to know that at least some models exist which

satisfy all the constraints, as an existence proof that such a procedure can be imple-

mented consistently.

In this chapter we shall study a particular example of a complete supersymmetric
unified model of flavour, based on the Pati-Salam SU(4) x SU(2); x SU(2)r gauge
group [33] extended by an additional U(1) family symmetry. Accepting minimality
as a model building principle this group has the following nice features: it establishes
the third family Yukawa unification, places the right-handed neutrinos into non-trivial
multiplets and does not introduce unwanted exotic states in the multiplets containing
the Standard Model fermions and two Higgs doublets required by its SUSY extension.
The Pati-Salam group can emerge from a simple gauge group like SO(10) or E(6).
However, from a string theory perspective, it is not necessary in order to achieve
unification that there should be a unified field theory based on a simple group. A
partially unified gauge group can equally well emerge directly from string theory,
and in the case of the Pati-Salam gauge group this possibility has been explored
extensively both in the case of weakly coupled fermionic string theories [24] and in

the case of type I strings with D-branes [25].

Although models based on the Pati-Salam gauge group have been extensively exam-
ined, the work presented in this chapter currently represents the only complete and
up to date phenomenological study of this model in the literature. For instance [26]
investigated constraints from Lepton Flavour Violation(LFV) in a Pati-Salam model
with small neutrino mixing angles. Subsequently a Pati-Salam model was proposed

[27], using single right-handed neutrino dominance [22] to achieve naturally large neu-
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trino mixing angles, but the question of LFV was not re-addressed and it was later
shown [28] that the g — ey branching ratio is too large. Moreover, only the negative
p parameter was considered in [27, 29] which is currently disfavoured by the muon
g — 2. In other works such as [30] and [31] the neutrino sector is absent all together.
The complete lepton sector is studied in great detail in a global analysis in [28], but
the quark mass matrices used [27] were obtained for the opposite sign of y, and the
analysis gives imperfect fits for the branching ratio Br(b — sv) or b quark mass m,
which both get potentially significant contributions from SUSY loops proportional to
u. To summarise, a completely phenomenologically acceptable supersymmetric Pati-
Salam model does not currently exist in the literature. This illustrates the broader
point that while many models exist in the literature, it is less common for the analysis

of any such model to be complete.

In this chapter, then, we shall construct a “4221” model, following the approach of
[27], and demonstrate its phenomenological viability. The model has approximate
third family Yukawa unification perturbed by higher order terms and assumes non-
universal soft Higgs masses. To demonstrate the viability of such a model, we perform
a top down global analysis of the parameter space carried out on 24 observables. In
the leptonic sector the observables include the muon ¢ — 2 and solar and atmospheric
neutrino data. A complete list of observables and their o values, which are used to
calculate the x? function can be found in table 3.3. In the analysis we ensure that the
upper limits on the branching ratio for the lepton flavour violating processes 7 — py,
i — ey and 7 — ey are not exceeded as well as the limit on the 13 neutrino mixing

angle. In addition to this an experimental lower bound on each sparticle mass was

imposed.

Having constructed the model and demonstrated its phenomenological viability, we

then discuss the following three aspects of the model in more detail:

e The first such aspect, as first pointed out in [28], is lepton flavour violation
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arising from the large 23 neutrino mixing through a neutrino Yukawa texture

of the form
0 00
Yie~1 001 |. (3.1)
0 0 1

Owing to large tan additional features emerge when studying correlations
among observables like Br(b — sv), Br(t — pv) and muon g—2. Most notably,
two distinct minima are found with similar x? values for the best fits. These
conclusions are new since study [28] did not investigate a complete model and

all other previous works did not involve global analysis.

o The preference for positive p, given by the sign of the muon g — 2 discrepancy,
implies positive gluino corrections to m; thus leading to difficulties in obtaining
t — b — 7 Yukawa unification. Hence a second focus of the present work is to

study the required deviation from third family Yukawa unification in the best

fits. 1

o Thirdly we focus on the effects of future experimental advances, in the form of
direct Higgs searches, a lepton flavour violating 7 — pu+y measurement and a
refinement of the muon ¢g — 2 discrepancy, upon our global fits, indicating how
further experimental progress in these areas will constrain the parameter space

of the model.

The remainder of this chapter is arranged as follows. Section 3.2 briefly reviews
our construction of a string-inspired Pati-Salam model. Section 3.3 contains a brief
description of the numerical technique used in the analysis. A discussion of our main

results can be found in section 3.4, with concluding remarks in section 3.5.

1This was also recently studied from a somewhat different point of view in [30].
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3.2 A supersymmetric Pati-Salam Model

The model considered in this chapter is based on the Pati-Salam gauge group [33],

supplemented by a local U(1) family symmetry,
SU(4) x SU(2), x SU(2)z x U(1). (3.2)

The left-handed quarks and leptons are accommodated in the following representa-

tions,

/ uft wP W v
e =(4,2,1) = : (3.3)
dB 4B 4% e~ /

Pom@iy=| @ © 87 3.4
m:a"(; b )“‘ JR dB 9 ()

where o =1...4 is an SU(4) index, a,z = 1,2 are SU(2)1 g indices,and ¢ = 1...3 is
a family index. The first/second gauge index should be read as corresponding to the
row /column of the matrix. Furthermore the up/down indices are related to the gauge
transformation properties of the multiplet, e.g. the raised ¢ and « signifies that F
transforms in the 2 representation of SU(2);, and the 4 of SU(4), whereas the lower
index z and « signifies that F' transforms in the 2 of SU(2)x and 4 of SU(4) .

The Higgs fields are contained in the following representation,

_ he'  —hg”
he = (1,2,2) = " (35)
—hu+ hdD

This can also be made more familiar by writing it as a 2 of SU(2), rather than a 2,

Rt —hg°
he® = bhe = (1,2,2) = o hd_ : (3.6)
U —1lid
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Where €12 = —€!? = +1. The signs in eq. (3.6) have been chosen so that contraction

of the fields F*®F,,h,” gives a contribution to the Yukawa couplings. This means

that we can identify the left and right components as the low energy Higgs doublets

of the MSSM.

There are also two heavy Higgs representations [24]

H = (4,1,2) =

and

B .G
Ug ug
B G
di df
-B -G
7 3G
ds dﬁ

These Higgs fields are assumed to develop VEVs,

< H>=<vyg >~ Magur, < H>=< g >~ Mgy,

leading to the symmetry breaking at Mgyt 2

SU4) ®SU(2), ® SU(2)p — SU(3), @ SU(2), ® U(1)y,

in the usual notation. So that we can write,

H = (v+ H)86S, Hye

Vg

€

w

H

ot

SN’

(v + H)é,0,,

(3.7)

(3.9)

(3.10)

(3.11)

The group SU(3)c emerges from the breaking of SU(4) with the remaining U(1)

?The Pati-Salam model presented in this section has its origins as a string inspired model where
the 422 group emerges as the GUT gauge group directly from a string theory construction. Alter-
natively such a model could emerge from SO(10) unification, in such a case the Pati-Salam breaking

scale may be lower than Mgur.
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subgroups of SU(4) and SU(2)r combining to form the hypercharge U(1)y with,

Y B—-L
— =T —— 3.1
5 sr+ 5 (3.12)

Under the symmetry breaking in eq. (3.10), the Higgs field A in eq. (3.6) splits into
the two MSSM Higgs doublets h,, hy whose neutral components subsequently develop

weak scale VEVs,
< hd >=w,, <h)>=u, (3.13)

with tan 8 = v, /v,.

Owing to the unification of quarks and leptons into a single representation /" and the

two MSSM Higgs doublets into 2 we have GUT scale Yukawa Unification,
Vi =Y =Y =Y =Y, (3.14)

where Yz is the Yukawa coupling of the superpotential term, F;F;h, which after the
symmetry breaking of eq. (3.10) produces the quark and lepton superpotential terms
of eq. (2.59).

With a large value of tan 5 ~ m;/m; this works rather well for the third family masses
[34]. Unfortunately it does not work quite so well for the masses and mixings of the
lighter generations. The approach we adopt in order to overcome this problem is to
allow only the third family to acquire masses from the renormalisable operators in
the superpotential. The remaining masses and mixings are generated through a set
of non-renormalisable operators with coefficients that are suppressed by some large
scale. In this way we benefit from the efficiency of Yukawa unification but are also

able to explain the mixings and mass hierarchy among the lighter generations.

Therefore in order to construct the quark and lepton mass matrices we make use of
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non-renormalisable operators [35] of the form:

) (FF)h (‘;{E)n (%) " (3.15)
i) (7T (%) (%g)m (‘fi} v (3.16)

The 6 fields are Pati-Salam singlets which carry U(1) family charge and develop VEVs

which break the U(1) family symmetry. They are required to construct U(1)-invariant
operators. After the /' and 0 fields acquire VEVs, they generate a hierarchy in 2)
effective Yukawa couplings and i¢) Majorana masses. These operators are assumed
to originate from additional interactions at the scale M > Mgyr. The value of the
powers p;; and ¢;; are determined by the assignment of U(1) charges, with Xy = —1
then p;; = (Xpi + Xz + Xp) and ¢;; = (X3 + X5 + X3). To ensure anomaly
cancellation we must have that the sum of the F' charges is equal to the sum of the

F' charges, see [27].

The contribution to the third family Yukawa coupling is assumed to be only from
the renormalisable operator with n = p = 0 leading to Yukawa unification. The
contribution of an operator, with a given power n, to the matrices Y;=y 4., and
Mppr is determined by the relevant Clebsch-Gordan factors coming from the gauge
contractions within that operator®. A list of Clebsch factors for all n = 1 operators
can be found appendix D. These Clebsch factors give zeros for some matrices and
not for others?, hence a choice of operators can be made such that a large 23 entry

can be given to Y, and not Y, 4.. We shall write,

 <H><H> <6 >

§ o =022, = =0.22, (3.17)

then we can identify § with mass splitting within generations and e with splitting

3Appendix D explains the method of calculating the Clebsch Gordan coefficients for all n = 1

operators.
4For example OF¢ gives, z, = 4 =z, =0, but =, = 2.
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Xr, Xp Xp Xp Xp Xp Xo Xg Xg
G0 B T N =

Table 3.1: List of U(1) family charges that determine the family structure of the
Yukawa and Neutrino Majorana matrices. To ensure amomaly cancellation we must

have >° Xrp = > Xp.

between generations.

The pattern of Yukawa couplings and Majorana mass matrix is then completely de-

termined by the choice of U(1) charges and non-renormalisable operators,

§
}/}ij ~ )‘z'j /\fj

(3.18)
Mrri; ~ MR, Mrg;;.

Here the matrices M§,z and A° contain powers of € determined by the choice of U(1)
charges. They can therefore be written as Mpg{; = ¢"7 and Aj; = €. For example,
if we choose the charges as Xp = (4,1,1), Xz = (3,2,1) and X}, = —2, then the

form of A® would be,

St 3 \
A= 62 el 50 (319)
e e 9
and Mgrgr would be of the form,
€ & ¢
Mgrr* =] & ¢ ¢ (3.20)
432

In addition the matrices M%yz and A% contain powers of § determined by the choice

of non-renormalisable operators.
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Our choice of U(1) charges are as in [27], and are summarised in table 3.1. This fixes
the powers of ¢ in each entry of the Yukawa matrix, but does not specify the complete

operator. The Yukawa couplings are specified by the choice of operators,

(aHOFc + allll(l)llAe)65 (alzoEe + a'lZO’Cb)zf,B (a'lSOICf)E
Yi(Maur) = (a2:079)e* (a220%° + a5, 0" ) (ags0%¢ + aps0'F)
(a310FC)64 (a32oAc + agz O,Fe)éz ds3
(3.21)

The operators were initially defined in [27], although the selection of operators here
is different from that work. The notation is such that O, O’ and O" aren =1, n =2
and (extremely small) n = 3 operators respectively where n refers to the powers of
(HH), thus °

O~(HH)~6, O ~(HH?~§ O"~(HH)?~ . (3.22)
The order unity coefficients a;;, a;;, aj; multiply the operators O,O’,0" in the ij
position. The Majorana operators are assumed to arise from an m = 0 operator
in the 33 position and m = 1 operators elsewhere. The Neutrino Majorana matrix

therefore takes the form,

AnOﬁS A120€6 A13(9€4

Mrr(MguT) _ A, Oc® Ay Oct A 06€® | | (3.23)
Mg
A30¢* AgsOe? Ass

Throughtout our analysis the right handed neutrino scale, Mg, is fixed at 3 x 10**.

The operator choice in eq. (3.21) leads to the quark and lepton mass matrices in table

3.2. For example the Clebsch coefficients from the leading OF¢ operator in the 22

5The n = 3 operators can, to a very good approximation, be neglected. Their inclusion here
serves only to fill the 11 entries of the Y, , Yukawa matrices, thereby ensuring (for example) that
the up quark is given a very small mass.
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position give the ratio 0 : 1 : 3 in the Y, 4. matrices. This ratio along with sub-leading

corrections provides the correct m, : m; : m, ratio.

In the neutrino sector the matrices in table 3.2 satisfy the condition of sequential
dominance [22] in which a neutrino mass hierarchy naturally results with the dominant
third right-handed neutrino being mainly responsible for the atmospheric neutrino
mass, and the sub-dominant second right-handed neutrino being mainly responsible
for the solar neutrino mass. Notice that Y, in eq. (3.2) takes the approximate form
of eq. (2.110). As discussed in eq. (2.111) the atmospheric mixing angle is then
determined approximately as a ratio of Y?* : Y and the solar mixing angle is
determined by a ratio of Y'* to a linear combination of Y*? and Y, while the
CHOOZ angle is determined by a more complicated formula [36]. Note that the
dominant right-handed neutrino in this model is the heaviest one, corresponding to
heavy sequential dominance (HSD) and LFV has been considered in general in this

class of models [37].

In the previous analysis [28] the matrix elements, Y,'*, Y'? were suppressed artificially

to keep Br(u — ey) within its experimental limit without substantially changing
the predictions of fermion masses and mixings. In this new analysis we have built
this suppression into the model with our new choice of operators, whose Clebsch
coeflicients give zeros in the desired matrix elements as can be seen in table 3.2. This

can be understood analytically from [37].

Notice that the sub-leading operators in the 33 position are not shown explicitly

in eq. (3.21), but are expected to lead to significant deviations from exact Yukawa

unification. This effect is parametrised by the ratios

.= Yo.(Maur)ss ry = Yi(Maur)ss - Y, (Mgur)ss (3.24)
= o =S v WE oo .
Ye(Meur)ss Ye(Mcur)as Y.(Mgur)ss
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Yo(Mcur)

Ya(Mcur)

Y.(Mcur)

Y, (Mcur)

Mrr(Mgur)
Mg

V2 a8

CLHCSEB

Orf oo

a21564

Sl

(L31565

011565

= oSy o) oo

a21564

S

6

55
5&316

V2 all 636

0

A11668
A12566

A135€4

2
V2 aj,0%¢® —=aj;6%

V5

8 I

—— ab.,6%€? 0
5\/5 22

8

= ab, %€ T:033
53

—V2 al,6% a)50%€

2 16
\/%&22562 + S by %€ — a2

\/§ aszd €2

0

2 12
—31/ = agde? + ——
\/;a” <+ 5vV5

\/E 6632562

2 a90€® 0
6, 22

55 ah0°e® 2 az3d
g ag,0%e? r,033
A;,8€8 Ajzdet
Aggde? Agzde?
Aqsde? Ass

N
= S

&3

Tpd33 )/

0

2
ahyd%e —3 \/; @}

as3

Table 3.2: The quark and lepton Yukawa matrices and neutrino Majorana
mass matrix as used in the analysis. In our numerical analysis we set Mp =
3 -10'* GeV. The Yukawa matrices follow from eq. (3.21) and the Clebsch
factors arising from each operator are shown numerically above. Clebsch zeroes
play an important part in suppressing the leading operator contribution in a
particular element of the matrix, or in simply giving a zero if all the operators
are suppressed. The Clebsch coefficients in the Majorana sector are set equal
to unity, with A;; being independent order unity coefficients.
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3.3 Numerical Procedure

In our numerical analysis we have adopted a complete top-down approach [38]. At
the GUT scale the MSSM gauge couplings are related to the GUT scale couplings
as agr, = oq = agur and as = agur(l + €3), where €3 sums up the effects of GUT
scale threshold corrections. The particular choice of the Yukawa couplings, table 3.2,
follows from the higher dimensional operators in eq. (3.21) as the latter are matched
to the MSSM lagrangian. The parameters

M M
Meur, acur, €3, 0, €, a’s and A’s, r¢, T4, Ty,
(3.25)

M1/2? A07 Hs B/JH m%’) m%ﬁ mizz and D?

are then defined by the boundary conditions at the GUT scale. They parametrise
the imprint of a complete Pati-Salam theory together with the SUSY sector (second
line) on the MSSM and stand for the inputs of the model.

my = mi+g; D?

mi = mL— (g —2¢ip) D

mi = m&—(gi+2035) D’

mi = m% — 3g3 D?

m?, = mi+ (3¢ - 2935) D* 520
mi, = mk+ (3gf +2955) D?

ml%fu = mj — 295, D

m%{d = m,% + QQSR D?.

In the SUSY sector, the soft SUSY breaking parameters are for simplicity introduced
at the same scale. The gaugino masses are assumed universal (equal to M;,) and so
are the trilinear couplings: A; = AqY,, for i = u, d, e, v. The soft scalar masses of

the MSSM superfields include the D terms from the breaking of the Pati-Salam gauge
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group [29]° and are shown in eq. (3.26). Notice that as D?* = L (|H,|* —|H,[*) [29]

it is possible for this quantity to be both positive or negative.

We now describe minor simplifications to the input in eq. (3.25) which were assumed
in the actual numerical analysis. We have kept equality between the two order param-
eters § and ¢ as in eq. (3.17) and the soft SUSY breaking scalar masses mp and ms
have been held equal to each other as well, therefore m2 plays the role of the universal
scalar mass mg. Furthermore we exploited the fact that determining u(Meur) and
By at the GUT scale is equivalent to determining the low energy values p(Mz) and
tan 3, respectively, as discussed in eq. (2.74) and (2.75). Thus instead of eq. (3.25)

our numerical analysis uses

? ?
Mesur, agur, €3, 0, a’s and A’s, ry, 13, T,
(3.27)

M1/27 Ao, ;U’(MZ)7 tanﬂa m%‘) mizz and D?

as input parameters. The top down approach implies that we can freely vary or
hold fixed any one of them and then investigate the fit properties. This is one of
the advantages of doing the analysis top down. For example, in more traditional
bottom up approaches it is difficult to control the size of the dimensionless GUT
scale parameters. One usually sets up a sample of randomly scattered points and
then searches through it to identify a sub-sample with physically interesting GUT
scale properties. In our case we can set up the interesting GUT relations explicitly
right at the start — as we have done for instance in section 3.4.3 where the fits with

ry and 7; approaching unity are studied.

We note that taking advantage of the top-down approach we kept 6 = 0.22, r, =1,
Ap = 0 and tan § = 50 fixed throughout the analysis. We also kept the p parameter

at scale My fixed to two different values as is explained below.

6 Appendix E gives a brief outline of the origin of the D-term mass contributions in eq. (3.26).
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Two-loop RGEs for the dimensionless couplings and one-loop RGEs for the dimen-
sionful couplings were used to run all couplings down to the scale M3z where the
heaviest right-handed neutrino is decoupled from the RGEs. Similar steps were taken
for the lighter Myr and Mg scales, and finally with all three right-handed neutrinos
decoupled the solutions for the MSSM couplings and spectra were computed at the
Z scale. This includes full one loop SUSY threshold corrections to the fermion mass

matrices and all Higgs masses while the sparticle masses are obtained at tree level.

my, and D in eq. (3.26) were varied to optimise radiative electroweak symmetry break-
ing (REWSB), which was checked at one loop with the leading m! and mj corrections
included following the effective potential method in [39]. It was shown in [39] that the
leading logarithm correctioned Higgs spectrum, evaluated at the top mass scale, is in
very good agreement with that of the virtually scale independent Next-to-leading-log
result. We note that as tan 3 determines the Higgs bilinear parameter By, there is a
redundancy in our procedure since two input parameters, my and D, determine one
condition for the Higgs VEV of 246 GeV. This approach enabled us to control the p
parameter and we explored regions with u low (g = 120 GeV) and high (¢ = 300
GeV) ™.

An experimental lower bound on each sparticle mass was imposed. In particular, the
most constraining are: the LEP limits on the charged SUSY masses (mg+, msz > 105
GeV), the CDF limit on the mass of the C P odd Higgs state (m 4 > 105-110 GeV,
valid for tan 8 &2 50) [32], and the requirement that the lightest SUSY particle should
be neutral. Finally, the x? function > (X" — X7")?/02) is evaluated based on
the agreement between the theoretical predictions and 24 experimental observables
collected in table 3.3. In addition to the constraints listed above and in [28], we make

a full analysis of the quark sector mass and mixings, in particular we have included

"For tan 3 as large as 50, u >> 300 GeV leads to too large SUSY threshold corrections to the
masses of the third generation fermions 7 and b unless the sparticles in the loop have masses well
above the 1 TeV region. [40, 41, 38§]

78



the important constraint set by Br(b — sv).

3.4 Results and Discussion

The numerical results from the global analysis are presented in the form of contour
plots in the (mp, My/;) plane and are produced for two different values of the
parameter p = 120 GeV and u = 300 GeV. Before we address the details we would
like to discuss two different viewpoints of our analysis, namely the flavour sector on
the one hand and the unification sector of the other hand. In our discussion we would
like to distinguish between the two viewpoints. The main distinction is that in the
MSSM analysis the flavour parameters a;; (with the exception of az3) and A;; can be
considered fixed at unity or at a value of order unity. Up to asz, which enters the
large Yukawa couplings their exact values do not affect the fit of the SUSY spectra
or SUSY-related observables like the muon g — 2 or branching ratio b — sv. They
neither perturb gauge coupling unification nor change the running of the large Yukawa
couplings. This means that the discussion of our results is naturally split into a part
dealing with the flavour structure of the Pati-Salam model where the variation of the
coeflicients of the higher dimensional operators matters, and a part where the MSSM

analysis is presented and the conclusions do not depend on the variation of the a and

A parameters (up to ass).

Concerning the flavour sector, our results can be used to show how well the model, i.e.
the set of higher dimensional operators specified by eq. (3.21), describes the observed
fermion masses and mixings. Taking this viewpoint all parameters listed in eq. (3.27)
represent the input of the analysis. The results in each of the four panels in fig. (3.1)
show that the model gives a very good agreement with the data. The minimum of
the total x? is less than unity, obtained for . = 120 GeV in the upper left panel. This

means that it is possible to fit every observable to better than a 1o accuracy.
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Observable Mean o;
aBM 1/137.036 7.30 - 10~
G, 1.16639 - 107 GeV™2 1.12-1077
a,(My) 0.1181 0.0020
M, 174.3 GeV 5.1
mb(mb) 4.20 GeV 0.20
My, — M. 3.4 GeV 0.2
ms(2GeV) 0.110 GeV 0.035
(m2 —m?)/m? 2.03-107° 2.0-107*
ma/ms 0.05 0.015
M. 1.777 GeV 1.8-1073
M, 0.106 GeV 1.1-10~
M, 5.11-107* GeV 5.1-1077
|Vas| 0.2196 0.0023
Vs 0.0402 0.003
[Vas|/|Ves| 0.09 0.02
My 91.1882 GeV 0.091
My 80.419 GeV 0.08
PNEW —0.0002 0.0011
Br(b — s7) 3.47 .10~ 0.45- 1074
Sah =W 34.7.6 - 10710 11-1071°
AmZ oy 2.5-1073eV? 0.8-1073
sin2 QQATM 0.99 0.06
AmZop 7.0-107%eV? 3-107°
Sil’l2 2(950[/ 0.8 0.09

Table 3.3:  Table of observables and o values used to calculate
the x? function. The observable 5a,IjEW = a;® — aﬁM, is the
present discrepancy between the experimental measurement and
SM prediction for the anomalous magnetic moment of the muon.
Prew = H’%}V*’Z(O) = H’%(O) where 1122 (0) and IIV¥(0) stand for con-
tributions of physics beyond the standard model to the vector self-
energies at zero momentum. Upper and lower case masses denote
pole and running masses respectively.
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Figure 3.1: x* contour plots in the plane of (mg, Mi2). The four
plots, are obtained from the two minima, minimum A and minimum
B with p = 120 and 300 GeV as labelled. All points in the top left
corner with approximately M;/; > 700 GeV and mp < 700 GeV
are unphysical due to the lightest stau becoming the LSP.

Concerning the unification sector, the conclusions are much stronger as there are
effectively much fewer input parameters after the a’s and A’s decouple from the

analysis. Indeed, the set of the effective input parameters in this sector is reduced to

Meur, agur, €3, ass, T, Tb,

M3, m%, m} and D2
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With this input the low energy Higgs and SUSY spectra are determined. The conven-
tional present-day observables include agy, G, as(Mz), My, my(my), M, Mz, Mw,



pNEw, Br(b— sv) and §a,. The unification sector observables are insensitive to the
small Yukawa coupling, except for Br(b — sv) which is sensitive to ¢ — & mixing and
Vis. The a;; and A;; input parameters are all of order one and their exact values are
always adjusted to fit the first two generation masses and mixings well while these

variations do not affect the fit of the observables listed above.

We study many details of the MSSM analysis, in particular the dependence of the fit
on m% and Mj,, best fit results for muon g — 2, and Br(r — uy) predictions. The
numerical results also contain studies of a deviation from Yukawa unification and a
future measurement of Br(7 — wv). The effect of a change to the present muon g — 2
discrepancy was studied and also the effect of future direct Higgs searches, the results

of which can be found in the following sections.

From our global analysis we found that there are two x? minima as shown in fig. (3.1).
In this model there are two conditions, see eqs. (2.74), (2.75) and three free variables,
m?i, D? and By, for electroweak symmetry breaking to be achieved. The two minima
hence are independent solutions to these conditions. Minimum A has D? negative and
smaller my, By. Minimum B on the other hand has D? positive and larger my, Bpu.
The relative size of By results in a different Higgs spectrum, particularly the CP odd
pseudoscalar Higgs, A°, which will be lighter for minimum A and heavier for minimum
B. The difference between the sign of D?, which contributes to the soft scalar masses
as shown in eq. (3.26), means that minimum B will have lighter right squarks and left
sleptons, along with heavier left squarks and right sleptons, than minimum A. This
difference in sign of D? has some interesting phenomenological consequences for the

two minima which will now be discussed.

The upper and lower plots shown in fig. (3.1), display the x? contours for these two
minima. Each of the figures display results for both x = 120 and 300 GeV in the
relative left and right positions. The contours in fig. (3.1) are bounded from the lower

mp region due to the lightest stau becoming the LSP and from the lower Mj; region

82



Inputs

p =120 GeV u =300 GeV

Min A | Min B Min A | Min B
M, 450 650 450 650
mg 500 650 500 650
[ 120 120 300 300
D? —6.4-10% | 17-10* | =10-10* | 13- 10
m? 6-10° | 16-10° | 4.5-10° | 14-10°
T 1.01 1.07 1.03 1.02
p 0.75 0.72 0.66 0.64
ass 0.55 0.55 0.55 0.56
a1 —0.93 1 -0.92 -0.92 | -—-0.93
a12 0.20 0.33 0.31 0.30
91 1.67 1.67 1.67 1.75
aa2 1.13 1.12 1.13 1.13
g3 0.98 0.89 1.05 0.85
asy —-0.20 | —-0.21 —-0.20 | -0.28
a3z 2.18 2.08 2.32 2.53
aly 0.77 0.77 0.71 0.71
als 0.60 0.53 0.46 0.46
ahy 0.66 0.66 0.64 0.62
aby 0.41 0.40 0.36 0.36
as, 1.16 1.80 1.56 1.72
af; 0.32 0.278 0.20 0.23
A 0.63 0.94 0.63 0.94
Aqo 0.74 0.48 0.69 0.52
Ais 1.75 2.10 1.73 2.04
Ago 0.97 0.52 0.93 0.55
Az 2.49 1.79 2.23 1.91
Ass 1.97 1.88 1.97 1.88

Table 3.4: Table of inputs for the best fit points for each of the
global x? minima with 4 = 120 and 300 GeV.

83



Outputs

p =120 GeV =300 GeV

Min A| MinB| MinA Min B
m a0 102 818 102 822
Mp0 106 114 106 114
Mo 112 891 113 888
M+ 136 861 135 861
M, 186 270 186 271
M, 371 537 371 537
Ms 1175 | 1671 1175 1671
M.+ 114 117 272 290
M, 390 549 408 554
My, 98 107 179 249
My, 130 127 277 305
My, 198 278 307 311
My, 390 549 408 554
Mg, | 1166 1679 1159 1673
M, 979 | 1345 960 | 1356
Mg, , 1131 1623 1124 1617
Mg, 798 1147 805 1160
Mp, | 1182 1510 1204 1529
Mp, 923 1192 1044 1251
M;, 673 611 715 656
M, 665 595 707 644
M;, 580 334 638 425
Mg, 496 766 473 752
Mg, 495 765 4T3 751
M 201 370 188 325
T — py 2-107 | 3-10°°] 8-10° [ 5-1077
T — ey 1-107 | 3-107%% | 6-1075 | 5107
©—r ey 3-107]1-107|1-107 |3-107"
sin 015 0.053 | 0.078 | 0.037 0.10
sin(ff — ) 0.22 1.0 0.15 1.0
cos(fB — ) —0.98 0.0 —0.99 0.0

Table 3.5: Table of outputs for the best fit points for each of the
global x? minima with ¢ = 120 and 300 GeV. The input parameters
are as defined in table 3.4.
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due to an increasing x? penalty coming from Br(b — sv).

The upper minima of fig. (3.1), minimum A, has a preferred region in the lower
(mp, My/2) plane, with My, = 400 — 500 GeV and mp = 500 — 700 GeV. The lower
minima of fig. (3.1), Minima B, has its preferred region nearer M/, = 550 — 650 GeV
and mp = 600 — 800 GeV. A list of inputs and outputs for the best fit point in each
minimum can be found in tables 3.4 and 3.5. The Higgs masses and CP even Higgs

mixings found for minimum A in table 3.5 are discussed in detail in section 3.4.4.

3.4.1 Muon g—2

Fig. (3.2), shows contour plots for the SUSY contributions to the anomalous mag-
netic moment of the muon. Both minimum A and minimum B (upper and lower
plots respectively) give good fits to the present discrepancy between experiment and
Standard Model prediction. As expected, a larger contribution to the muon g — 2 is
obtained in the lower left corner of the (mp, M;,,) plane where the SUSY spectrum
is lightest and decreases as we move towards a heavier spectrum in the top right
corner. It is also clear that for any one point in the (mg, M;/3) plane, minimum B
gives a larger contribution than the corresponding point in minimum A. This relative
enhancement can be ascribed to the dominant chargino-sneutrino diagram via the

presence of a lighter muon sneutrino for the case of minimum B, as can be seen in

fig. (3.3).

The present muon g — 2 discrepancy lies at 34 x 107!° but over the past 12 months it
has varied from a 1.50 to 30 effect. Also the size of the present discrepancy depends
on the experimental data used in the calculation of the Standard model prediction.
The value we have used throughout our analysis [43] makes use of eTe™ data. On
the other hand it is possible to do the same calculation making use of 7 decay data

[44], which gives a lower discrepancy of 9.4 x 1071%. As a result we think it worth
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Figure 3.2: Muon g — 2 contour plot in the plane of (mg, M/3).
The four plots, are obtained from the two minima, minimum A and
minimum B with g = 120 and 300 GeV as labelled. All points to
the left of the solid red line are unphysical due to the lightest stau
becoming the LSP. The present discrepancy stands at 34(11)x1071°
with the above plots showing 1 and 2 ocontours.

while looking into how our best fit regions would change if a lower discrepancy was
assumed. For simplicity we took just 3 points in the (mg, My/;) plane of minimum
A with u = 120 GeV and gradually changed the ¢ — 2 discrepancy from 34 x 1071°

down to 0. The results are presented in fig. (3.4) as a plot of x? against the muon

g — 2 discrepancy, a

With the discrepancy held at 34 x 107 the best fit point is near M;/; = 450 GeV and
mp = 550 GeV. Following the curve corresponding to this point in parameter space,

we can see, in fig. (3.4), that as the muon g—2 discrepancy is lowered the x? gradually
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Figure 3.3: Contours of the second generation sneutrino mass, mg,,
are plotted in the plane of (mp, M;/3). The contours are in the units
of GeV. The four plots, are obtained from the two minima, mini-
mum A and minimum B with z = 120 and 300 GeV as labelled. All
points in the top left corner with approximately M;/; > 700 GeV
and mp < 700 GeV are unphysical due to the lightest stau becom-
ing the LSP.

increased. On the other hand the two curves with larger M, /3, mr have decreasing X2
Therefore the best fit point has moved in the positive M; /2, mp direction. Looking at
these two other curves in fig. (3.4) we can see that if a}}* ~ 16 x 1071° then the best
fit point would move nearer M;;; = 550 GeV and mp = 650 GeV. One particular
point of interest is al®” = 9.4 x 107'°, the value for the discrepancy as given by the
Standard Model prediction from 7 decay data. If we make an approximation, based
on the curves in fig. (3.4), we can say that the best fit point, for aﬁ]“"“’ =9.4 x 1071,
would be in the region M/, = 550 — 700 GeV, mp = 650 — 700 GeV.
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Figure 3.4: This plot displays the effect on x? due to a future change
in the value of the muon g — 2 discrepancy. The value of the muon
anomalous magnetic moment is varied from the present value of
34 x 1071° down to zero. The resulting change in x? is observed for
three points in the (mg, My ;) plane.

3.4.2 1= py

Fig. (8.5) displays contours for the quantity Br(7 — uv) for both minima with
= 120 and 300 GeV as labelled. The general pattern of the contours show larger
branching ratios for lighter SUSY spectrum and smaller branching ratios for heavier
spectrum. This pattern is not strictly obeyed in the bottom left panel which shows
results for minimum B with u = 120 GeV. The reason for this is that our numerical
procedure adds a large penalty x? contribution for a 7 — vy branching ratio larger
than the BaBar limit of 2.0 x 107¢[45]. Looking at the bottom left panel in fig. (3.5)
we would expect the branching ratio to exceed the present limit as we go to a lighter
spectrum. The result of adding this penalty x? is to numerically force an alternative
solution to be found which gives lower branching ratio and disrupts the pattern. Re-
calculation of this region of parameter space without the additional x? penalty does
indeed yield values of Br(r — uy) as large as 6.0 x 107, these points would therefore

follow the expected contour pattern but are clearly experimentally excluded.
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Figure 3.5: Contours of Br(t — uvy) are plotted in the plane of
(mp, My/z). The four plots, are obtained from the two minima, min-
imum A and minimum B with 4 = 120 and 300 GeV as labelled. All
points in the top left corner with approximately M/, > 700 GeV
and mg < 700 GeV are unphysical due to the lightest stau becom-

ing the LSP.

Looking at fig. (3.5), the branching ratio for minimum A with x = 120 and 300 GeV
is at least an order of magnitude below the present experimental bouﬁd. On the other
hand, the branching ratio for minimum B, with ¢ = 120 GeV fig. (3.5), is right at
the present 90% confidence level bound of 2.0 x 1076, For u = 300 GeV minimum B
gives a branching ratio in the range, 0.1 — 0.2 x 107°, just below the present bound.
With BaBar expected to search as far as Br(r — uvy) ~ 107® over the next 5 years

this certainly provides a means of distinguishing the two minima.
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3.4.3 Deviations from Yukawa Unification

The plots shown in fig. (3.6) show contour lines for 7, = Y3/Y; and those in fig. (3.7),
show contour lines for r; = Y;/Y, in the best fits over the (mg, M;/;) plane. These
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Figure 3.6: Contours of r, = Y;/Y, are plotted in the plane of
(mr, My/2). The four plots, are obtained from the two minima, min-
imum A and minimum B with x4 = 120 and 300 GeV as labelled. All
points in the top left corner with approximately M/, > 700 GeV
and mp < 700 GeV are unphysical due to the lightest stau becom-
ing the LSP.

parameters allow the deviation of the top, bottom and tau Yukawa couplings away
from unification(ry = r, = 1). Both parameters show significant dependence upon mp
and weak dependence upon M /,, with increasing ¢ ; values as we move towards larger
mp. The plots show that the level of deviation from Yukawa unification required for a

good x? fit to be obtained is of the order of 20-35% in r and 0-10% in r;. It is possible
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to account for this level of deviation through the presence of sub-leading operators,

of the type mentioned in eq. (3.22), in the 33 element of the Yukawa matrices. Hence

the 33 element in eq. (3.21) should read,
Yaz=ass + 0+ 0O + ... (3.29)

where the operators O and O’ are responsible for generating r; » # 1. The 23 block of
the neutrino Yukawa matrix has already shown us that a contribution to the Yukawa

matrices from a sub-leading operator can actually be comparable to those from a
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Figure 3.7: Contours of r; = Y;/Y, are plotted in the plane of
(mp, My/;). The four plots, are obtained from the two minima, min-
imum A and minimum B with 4 = 120 and 300 GeV as labelled. All
points in the top left corner with approximately M;;; > 700 GeV
and mp < 700 GeV are unphysical due to the lightest stau becom-

ing the LSP.
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leading operator. This occurs in the 23 element of the neutrino Yukawa matrix, where
there is a contribution from the operator OF¢ and the neutrino matrix is the only one
that receives a non-zero Clebsch-Gordan coefficient as can be seen in table 3.2. This
leads to the relative sizes of the elements ¥*3> ~ 0.44 and Y*® ~ 1. A similar sub-
leading contribution to the 33 element of the up and down quark Yukawa matrices
could easily account for a deviation from third family Yukawa unification at the level

discovered in our study.

1F R - — ]
0.95 ... 4Q----emoomeeeeeaeni TS
0.9 | _ u=120GeV
085 F -2 | me=600GeV
08 f--3 e 4 Myp=600GeV
0.75 2 1“~’:.fi'l?§..--<-'://r/ 4 MinA
o7 ba— 1o el
095 1 105 11 115 1.2
W g
1.05 F~
g [ ]
085 [ 10 ] u=120Gev
h 09 F e 4 mg=1100GeV
uos o] My p=500GeV
08 [ ! -
: 3 2 = )
0.76 : 4 Min A
0.7 i e 1 Lz i
09 095 1 105 1.1 115 1.2
1.1 T T LT g | L
1.05 Nl
1F .
095 28 | p=120Gev
09 A - 4 mg=1500GeV
85|/ 20 : ‘ o
008 || 16 10 5 3" i M1,2=300Gev
075 e 1 Min A

0.7 0oty i 1 te. i 1
0.70.75080.85090.95 1 1.051.1
Tt

Figure 3.8: x? contours in the r;—r;, plane. The plots are generated
with 4 = 120 GeV and for minimum A. The three plots are each
generated with fixed M;/,, mp as labelled. The plots display the
x? penalty which is required for exact Yukawa unification to be

achieved.

Here we do not study the region in the parameter space mp > 2TeV, Ag =~ —2mp

where the exact unification might work [46]. Instead, we carried out a study of the
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additional x? penalty incurred due to demanding exact Yukawa unification in the
region mp < 2TeV and Ay = 0. Fig. (3.8) shows the result as x? contour plots in
the r; — 7, plane corresponding to the best fits. The three panels were obtained from
three points in the (mp, M;/,) plane and show that a very heavy penalty dx* > 10 is

paid when requiring exact Yukawa unification in this SUSY region.
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Figure 3.9: Contours of the CP odd Pseudoscalar Higgs mass, m 4o,
are plotted in the plane of (mg, M/;). The contours are in the units
of GeV. The four plots, are obtained from the two minima, mini-
mum A and minimum B with g = 120 and 300 GeV as labelled. All
points in the top left corner with approximately M;/, > 700 GeV
and mp < 700 GeV are unphysical due to the lightest stau becom-
ing the LSP.
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3.4.4 Future Higgs searches

Fig. (3.9) shows mass contours of the CP odd pseudoscalar Higgs, m 0. These plots
show that for the Pseudoscalar Higgs mass minimum A prefers values approximately
200 — 300 GeV lower than minimum B. In fig. (3.9) we see that for both x =120 and
300 GeV, minimum A gives a very light pseudoscalar Higgs mass, m 40 ~ 108 GeV,

in the low M3, mF region.

.
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(M, 2.Mg)=550. 650 GeV
(My/2:Mp)=700, 700 GeV ----.....
(My,2.Mr)=500, 750 GeV
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Figure 3.10: This plot displays the effect on x? due to an increase
in the lower bound on the Higgs mass from direct searches. As in
fig. (3.4) the variation in x? is observed through individual points
in the (mp, My/,) plane.

This is in fact the same region in which minimum A provides its lowest x?. In fact
table 3.5 shows that for the best fit point in minimum A we have a pseudoscalar mass
of 102 GeV and a light CP even mass of 106 GeV. With the TeVatron now taking
data there is a high probability that the present lower bound on Higgs masses will be
pushed higher. Hence we have undertaken a study of the effect this would have on
our best fits. The plot in fig. (3.10) shows the increase in x?, for four points in the
(mp, My/3) plane of minimum A, due to an increase in the lower bound on the Higgs
masses Mo, myo. It clearly shows that all four of the points can accommodate an

increase in the lower bound up to approximately 120 GeV, above this the x? increases
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sharply due the inability to accommodate such a large lower bound.
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Figure 3.11: Contours of sin(8 — «), which defines the strength
of the Z boson coupling to the Higgs h° relative to that of H°.
For values of sin(3 — «) near one the Z — h° coupling is large and
for small values the Z — H® coupling is large. The contours are
plotted using data from minimum A with 4 = 120 GeV. The the
best fit point at M;/; = 450 GeV, m; = 500 GeV is marked with

an asterisk.

The coupling of the light CP even Higgs, h°, to the Z boson is proportional to
sin( — ), as seen in table 2.3 in section 2.2.2, and that of the heavy CP even Higgs,
HP| is proportional to cos(3 — a), where « is the mixing angle for the CP even Higgs
states. In fig. (3.11), which shows contours of sin(# — «) for points in minimum
A, we see that in the low M/, region sin(f8 — «) is small and hence the Z couples
dominantly to the heavier Higgs state H°, rather that the lighter A°. Therefore, in
this region it is the heavier state, H°, which is the standard model like Higgs and so
the LEP limit will apply to the larger mpgo and not mje. Table 3.5 shows that we have
exactly this situation for the best fit points of minimum A where sin(8 — o) ~ 0.2,
therefore the standard model like Higgs is the heavier state H° for these points with

a mass of 113 GeV. Assuming a 3 GeV error in our numerical calculation means we
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are compatible with the present LEP limit of 114.4 GeV.

3.4.5 CHOOZ angle, 913

We are interested in using our best fit points to make further predictions for unknown
observables as we have already done for Br(7 — pv) in section 3.4.2. One further

observable we would like to study is the neutrino mixing angle #;3. As mentioned
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Figure 3.12: The four panels contain scatter plots of the values
of Am?,, . against sin®20;3 coming from the best fit points in the
(mp, My/;) plane. Each plot shows results obtained from either
minimum A or minimum B, with g = 120 or 300 GeV as labelled.
The points are grouped according to their x? values as indicated.
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in chapter 2 this mixing angle is still unknown although a bound has been set by
the reactor experiment CHOOZ. The model we are studying is typical of a larger
class of models and fits all present experimental constraints and so its predictions are

characteristic of this broader group of models.

Fig. (3.12) shows scatter plots of sin®20,3 against Am?,  for both minimum A and
minimum B with g = 120 and 300 GeV. Each point denotes a value obtained {rom
an individual point in the (mp, My/;) plane, with points grouped according to the
value of y%. These plots show that the Model can easily yield values of ;3 that are
within the present CHOOZ limit, 6;5 < 0.22. Each of the plots in fig. (3.12) shows
that the best fit points, denoted by a “+” symbol, give a range of values of sin® 26,3
from, 107% to 0.1. Although our results do not give any firm prediction for the value
of 6y3, it can be seen that the model favours the region, 10™* < sinf;3 < 0.1, just

below the present CHOOZ limit.

3.5 Summary and Conclusion

We have performed a complete global phenomenological analysis of a realistic string-
inspired model based on the supersymmetric Pati-Salam SU(4) x SU(2)r x SU(2)r
gauge group supplemented by a U(1) family symmetry. Global contour plots in the
(mp, My/3) plane have been presented in fig. (3.1), showing two x* minima. These
two distinct minima differ numerically by the relative sign of the D-term. This gives
interesting phenomenological differences between the two minima, notably one has
Br(t — pvy) near the present limit and a heavy pseudoscalar Higgs m 40, while the
other has Br(r — uv) well below the present bound but a light pseudoscalar Higgs
m 40. Both minima give a good fit to the present muon g — 2 discrepancy over a large
region of parameter space and give sin® 20,5 over the range 10™° — 0.1. Our best fit

predictions for the superpartner masses for each of the two minima for two different

97



i values are summarised in table 3.5.

We emphasise again that our analysis really should be considered as consisting of
two distinct parts, associated with flavour physics on the one hand and unification
and electroweak symmetry breaking on the other hand. For the flavour part, we have
proposed a complete model in table 3.2 which gives an accurate description of all
fermion masses and mixing angles, including the LMA MSW neutrino solution. We
have shown that improved limits on Br(t — py) could begin to rule out one of our
two minima. The conclusions on Br(T — u~) are applicable to a wide class of models
which achieve approximate maximal atmospheric neutrino mixing via the see-saw
mechanism in the MSSM with a large 23 entry in the neutrino Yukawa matrix. On
the other hand Br(u — ev) is predicted to be about two orders of magnitude below

the current limit, which is a consequence of the specific flavour structure of the model

in table 3.2.

Regarding unification, the model predicts approximate third family Yukawa unifica-
tion and hence large tan § ~ 50. Electroweak symmetry breaking was achieved with
the help of D-terms and non-universal soft Higgs mass, which allows small p values.
The property of exact Yukawa unification was relaxed throughout the analysis and it
was found that a deviation of 20-35% for the bottom Yukawa coupling and 0-10% for
the top Yukawa coupling are required for a good fit to be obtained. We showed that
relaxing Yukawa unification has the effect of allowing small values of the soft scalar

mass mp, and lighter squark and slepton masses as a consequence.

Further studies of the effects of future direct Higgs searches and a change to the
present muon g — 2 discrepancy are shown in fig. (3.4) and (3.10). We found that our
best fit points, for the minima with lighter Higgs masses, can accommodate a lower
bound on Higgs masses up to about 120 GeV. For these points the coupling of the
lighter CP even Higgs state to the Z boson is suppressed, leaving the heavier of the

two CP even states acting as the standard model like Higgs.
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In conclusion, we have constructed and analysed a complete supersymmetric Pati-
Salam model which agrees with all laboratory observables and constraints. Using
a global analysis we identify the most preferred regions of the SUSY parameter
space, and find a rather light superpartner spectrum corresponding to (mg, M;3) ~

(600, 600) (in GeV) well within reach at the LHC.

99



Chapter 4

The Implications of Bs — u u™

In this chapter we examine the potentially very promising signal B, — p*p~ in
supersymmetry with large tan 8 in a top-down approach starting from the best fits
of the SO(10)-like model studied in the previous chapter. In fact our predictions
are to a large extent model independent, being similar to those based on minimal
supergravity, but we include contributions which go beyond those investigated in
previous works. In particular, in the effective flavour changing coupling we include
terms not explicitly proportional to V;; which have been neglected in previous studies
based on minimal supergravity. We show that the absolute best fits provide a signal
for B; — uTp~ at the borderline of the present limits and hence the ongoing search
at the TeVatron will start having an impact on the global analysis of this class of
SUSY models. We discuss the implications of a measurement of B, — ptu~ for
restricting the parameter space of gauginos and sfermion masses, and of signals in
other channels By, — ¢t¢~. We also discuss correlations of B, — ptp~ with the

CP-odd Higgs mass, sin(f — a) and b — s in SO(10)-like models.

The work presented in this chapter may be found in ref. [47].
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4.1 Preliminaries

Ideas of unification and the origin of flavour have been under investigation for a long
time and many different models have been proposed in the last twenty years. Yet in
the diversity of different approaches a class of unification models can be recognised
which is remarkably simple at the unification scale. We call this class SO(10)-like
unification models. In these models the effective theory at the unification scale as-
sumes that the Standard Model (SM) gauge couplings unify to a per cent level, third
family Yukawa couplings are all of order unity and the remaining flavour structure
originates in a small set of higher-dimensional superpotential operators keeping the
supersymmetry (SUSY) breaking sector of a model flavour blind. We note that actual
models which fall into this category often assume lower symmetry than SO(10), e.g.
models based on the Pati-Salam gauge group or the MSSM gauge group generated

by a string theory in higher dimensions are often found in this class of models.

It has been recently pointed out that if the Minimal Supersymmetric Standard Model
(MSSM) is the effective theory describing nature above the scale 100 GeV and tan f =
(HD) | (HY) = v,/vy is large, a pure leptonic B, — utu~ decay has a very strong
case to emerge among the first indirect signals of supersymmetry (SUSY) [48]. This
is because the decay signal should be very clear at the TeVatron or LHC and also
because the SM branching fraction is suppressed down to 10~ while the rate can be
enhanced when considering SUSY extensions. In particular, this occurs due to large
couplings of the down-type quarks and charged leptons to the MSSM higgs states
if tan 3 is large. Thus it is important to analyse this decay in a full SUSY theory
and not just in terms of the minimal flavour violation that assumes that V,, is the
only source of the 32 transition, as has been done in the past. In the full context
of complete unification models it means that the 32 flavour structure is restricted by
the fermion mass ratios m,/m., m;/m, and m./m;, small value of Vi, large Uy,

b — s7v branching ratio and possibly other low energy observables and constraints.
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Although these constraints do not determine the 32 sector uniquely they do provide

for a realistic prediction of observables like the By — £t¢~ decay rates.

In the following sections of this chapter we present the results of such a complete top-
down investigation based on the best fit predictions obtained in the global analysis
of a complete SO(10)-like model presented in chapter 3 and published in [23]. The
best fits obtained in this work give a very good agreement with the observables
related to the 32 flavour sector and satisfy all laboratory experimental constraints on
superpartner masses. Here they serve as our starting point since they provide us with
all the MSSM couplings at the low-energy scale. Within this framework we study the
implications of a possible measurement By — pTu~. In particular, we discuss the
related processes B, — 7v77, By — putu~, By — 7777, and show the correlations
with B, — putu~. We discuss the implications of a measurement of B, — utpu~ for
restricting the parameter space of gauginos and sfermion masses, and also discuss

correlations of By, — ptu™ with b — sy and the CP-odd Higgs mass.

We emphasise that our work is general and applies to any mSUGRA model with
universal sfermion masses at the unification scale and the Higgs spectrum similar to
the one considered here. In such a framework it is well known that, for a given choice
of low energy fermion masses and CKM mixing angles, the flavour predictions are
independent of the precise nature of the Yukawa matrices selected at high energy
since different choices of Yukawa matrices can be rotated into each other. Apart
from being general, the present study contains a number of new features not present
in previous works. One novel feature is to present results that are based on a top-
down global analysis. ! In a top-down approach of this kind the complete Yukawa
and sfermion mass matrices are known at the low energy scale and no extra iteration
(sometimes called resummation of large tanf terms) is needed to extract the couplings

which enter the one-loop SUSY integrals. Another new aspect is a more complete

1This approach was also considered by Dermisek et al.in [48].
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analysis of the process B, — utu~. The previous analyses of SO(10)-like models
(see, e.g. Dedes et al in [48]) only considered minimal flavour violation with the rate
B; — putu~ explicitly proportional to the low-energy value V2 while our results also
include the contributions from diagrams like in fig. (4.4) that are not proportional
to Vis(Mz). Such contributions, which arise from squark mixing effects, have so far
been ignored in mSUGRA based analyses, yet can give significant contributions to

the rate, as discussed later.

After this introduction the chapter continues in section 4.2 with a brief theoretical
section on the evaluation of B, — £*¢~ decay rate in the top-down approach. In
section 4.3 we discuss our top down approach after which section 4.4 presents our nu-
merical results, and discusses the implications of a signal for B; — u*u™. Section 4.5

concludes the chapter.

4.2 B, — utu

We emphasise that in a top-down approach the tree-level MSSM couplings are deter-
mined from high energy boundary conditions, and do not have to be determined by
an iterative procedure as in bottom-up approaches. In particular, in terms of effec-
tive vertices f and g, which are matrices in flavour space, after heavy sparticles are

integrated out the lagrangian can be written down as
Lo =—dY [xg(o)d"aﬂﬁg +fTH ¢ gTH;j*] d9 + hec. (4.1)

At tree level down-type quarks dr g only couple to down-type Higgs HY and f =
g = 0. Yukawa couplings Y;l(o) can be read out as a straightforward prediction of a
unified model. Yd(o) and the mass matrix m((f) = Yd(o)vd can then be simultaneously

diagonalised with eigenvectors dl(,g’)L. At one-loop level f and g have to be computed
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and the mass terms relevant for this discussion become 2

Lonass = —dg [mP7 4 flo, + glo,] df, (4:2)

using the same basis. Clearly, if v, > vy sizeable corrections to the mass eigenvalues
[40] and mixing matrices [41] are generated. Furthermore the 3-point functions in
eq. (4.1) and mass matrix in eq. (4.2) cannot be simultaneously diagonalised [50]. If

we write eq. (4.1) as
A [yt g oy - ot (a2 - mp) |40 6
d d

then the first bracket of eq. (4.3) is in a form which is similar to that of the mass
matrix and therefore is diagonal when dg)R are rotated into corrected mass eigenstates

d(Ll,)R = %L’R(l)dg)R. This is not true for the last bracket which becomes a source of

flavour changing,

Lrene = —do) [VdR(l)gT (Hg* —~ %H}}) vf“”} d) + hec.. (4.4)
]
It is now explicit that its origin comes from the interaction E%Hg*d%, not present at
tree level. Moreover, the flavour changing couplings get enhanced by an explicit factor
tan  on top of any tan § scaling present in g. In the leading order in tan 3 the g
matrix can in fact be related in a simple way to the finite non-logarithmic mass matrix
corrections, gi; = (§m’™);;/vy, computed for the first time in [41]. Due to H? =
Oy (HOsq4+h0co+i A% +iGsp) /v/2 and HY = vy+(HCco —h%sy+1A%5—1GO%3) /2

we can write

11

HY = S2H] = s = [Hosamp + Wy — 1A (45)

2Terms due to wavefunction renormalisation do not contribute to flavour changing.
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where s, = sina, ¢, = cosa, etc. We can thus identify effective vertices bgsy H°,
brsph® and brs; A° involving b to s transitions mediated by neutral physical higgs
states. We note that with large tan 8 the coupling to the pseudoscalar A® is always
large while the CP-even states, A° and H°, have couplings which depend on the CP-
even higgs mixing angle o. The Goldstone mode is cancelled in the equation above

and thus the effective vertex with the Z boson is absent at this level.

bc\\/ s
9b

s
|

X0 4

|

/‘@\
B M

Figure 4.1: Higgs penguin contribution to the flavour
changing neutral current process, By — utu~. The
coupling gss is an effective vertex generated from loops
where the heavy SUSY partners have been integrated
out. The mediating X° stands for neutral Higgs mass
eigenstates, h®, H?, A°.

In the MSSM with large tan 8 the dominant contribution to B, — £t/ comes from
the penguin diagram where the dilepton pair is produced from a virtual Higgs state
[48]. After the SUSY partners are integrated out we are left with the effective vertices
determined above. Thus in combination with the standard tree-level term Lyn =

—ngEZLHC? + h.c. the dominant tan 8 enhanced contribution to the branching ratio
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turns out to be

2
(S?’IZ‘r Vi 2 y 2 M70 2 ta,n,@ 2
Br(BY > ptp™) = 175 x 107 |21d2) e | [t ' 1=
r(By = pp7) 8 msVie | 10.04] l0.0311) | o 50
2

CoSa—p3 S$aCo—p n 5% (46
(Mﬂ_o_)'“’ (ML)? (A_@L)“ ’ ©)

Moo Moo Moo

where matrix dm} is in the {d(Ll)R} basis, and is defined by
sl = VIO (foa + glo) vy O, (4.7)

my is the b quark mass at scale My in the effective SU(3), x U(1)em theory, the
constants are Mgy = 100 GeV and My70 = 170 GeV. The numerical factor in eq. (4.6)

arises from:

refe My 0.04?0.03112 502

4.8
1287 M}y, Mfm (48)

1.75 x 1072 =

Note that Br(B? — p*u™) in eq. (4.6) is not proportional to V;2. This formula there-

fore differs from that used in previous mSUGRA analyses, as mentioned previously.

Modification for other By — £*{~ decays is trivial. We note that each of these
branching fractions actually scales down as tan® 3 [49] for lower values of tan 3: ad-

ditional powers of tan § enter due to the explicit presence of lepton Yukawa coupling

y? and mass matrix corrections dm’"™"*/my (or, equivalently, Yukawa coupling yy, in

g)

4.3 Top-down approach

Our results are based on the model analysed in [23]. The model was defined below the

SO(10) breaking scale, where the gauge group was broken to its maximal Pati-Salam
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subgroup, and the flavour structure of the model was determined by operators which
respected the Pati-Salam symmetry. Universal gaugino masses M/, and sfermion
masses mg were assumed, and we allowed for D-terms and non-universal scalar Higgs
masses. Throughout this work the trilinear parameter was kept fixed at Ao(Maur) =
0. We note that the Yukawa unification is not exact, with vy, for example dropping
down to 0.7y, for the best fits, although we keep the low energy value tan # = 50 fixed
in our analysis. As we have already emphasised, since the soft sfermion masses are
assumed to be universal, the physical effects arising from flavour violation in the quark
sector are independent of the choice of high energy quark Yukawa matrices. However
in the lepton sector this is not the case due to heavy right-handed neutrino mass
thresholds.> The essential features of the model in the lepton sector include a large
off-diagonal neutrino Yukawa coupling Y35 ~ 1, to generate the large atmospheric
mixing angle. Since the soft SUSY breaking sfermion mass matrices at Mgy are
proportional to the unit matrix the main difference between this model and standard
mSUGRA 1is that here we consider a non-universal Higgs mass and D-terms which

allow for a larger flexibility for the Higgs spectra.

4.4 Results

We first summarise the experimental limits for the processes of interest:

Br(B, = pu) < 2.0 x 107° [CDF] (4.9)
Br(By — pu) < 6.1 x 1077 [Babar], (4.10)

with no bounds yet established for the 7 final state processes. Looking to the future,
the TeVatron will bring us further results for B, decays with the prospect of a CDF
bound in the region of Br(B, — upu) < 10~7. By comparison the standard model

3See for example [37].
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predicts Br(B; — uu)sm ~ 3.5 x 1072 [51].
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Figure 4.2: Contour plots for the branching ratios of the FCNC
processes, By — utu~ and By — 7t7~. Each branching ratio is
plotted with two different values of the yu parameter. The x marks
the best fit point.

To obtain predictions for such processes, we have performed a top-down global analysis
of the SO(10)-like model outlined in the previous chapter. This analysis yields two
distinct best fits, which we call Minimum A and Minimum B. The higgs spectrum
in Minimum B is heavy, mostly near the TeV scale and will not be considered in
the discussion below. The Higgs spectrum of Minimum A was found to be more
interesting for our present study with masses at the 100 GeV scale. Hence it is the

results from the unaltered fits of Minimum A which are presented in this chapter.

The numerical results for the processes B, — utu~ and Bs — 717~ are displayed
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in fig. (4.2). Similar results for By — ptp~,7t7~ are given in fig. (4.3). These
results are presented as contour plots in the mp — My/2 plane with a fixed value of
p = 120 GeV(left panels) and g = 300 GeV(right panels). When comparing these

contours with eq. (4.6) we find that a significant suppression is obtained from the ratio
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Figure 4.3: Contour plots for the branching ratios of the FCNC
processes, By — putu~ and By — 7777. Each branching ratio is
plotted with two different values of the u parameter. The x marks
the best fit point.

(6ma)s2/myVis. This comes purely from fitting the b quark mass, V,; and b — svy. At
this point it is of interest to enquire how large are the non-minimal flavour violating
effects represented by the diagrams in fig. (4.4). For the best fit point we have checked
that the second diagram in fig. (4.4) is 25% as large as a similar diagram without
the mass insertion on the squark line, but with Vj, inserted at the vertex instead.

This gives an indication that the non-minimal flavour violating effects we include are
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significant.
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Figure 4.4: Examples of Feynman diagrams contributing to the
effective bs H? coupling that are not proportional to Vis(Myz). Black
dots indicate flavour-changing vertices while crosses stand for mass
insertions for interaction eigenstates.

The upper two panels of fig. (4.2) display contours of Br(B; — pu) with p = 120
and 300 GeV, and show values quite close to the current limits, and well above the
standard model predictions. The Higgs mediated contribution in the SUSY model
clearly dominates over the standard model contribution and for y = 300 GeV, with
low My ,, it can even exceed the present CDF limit. An improved limit of 10~7 would
be very restricting and could probe Higgs masses into the range, m 40 = 150—300 GeV.
As for the process, By — pup, fig. (4.3) shows that the present bound is satisfied by

both p values over the entire displayed plane.

Inspection of figs. (4.2) and (4.3), reveals that the branching ratios for B,q —
ptp™, 777 are sensitive to the universal gaugino mass Mi 2, but not to the uni-

versal sfermion mass mp. Inspecting the m 4o panels of fig. (4.5) we see that it has
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a very similar M, /,, mr dependence. This can be understood as a consequence of a

lighter mediating Higgs which leads to larger branching ratios.
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Figure 4.5: The upper two panels contain contours of the CP odd
Pseudoscalar Higgs mass, plotted in the mpr — M;/; plane. The
lower panels contain contours of, sin(8 — «), which determines the
strength of the Z-boson coupling to, h°, the lighter CP even Higgs.
Again the plots are displayed at different values of . The x marks

the best fit point.

The branching ratio for By 4 — 77 is enhanced by a factor of (y,/y,)* ~ 100 compared
to the muon final state processes, as can be seen in the lower panels of fig. (4.2)
and (4.3). This makes the tau final state processes very attractive for experimental
discovery. The difficulty comes with the required detector resolution to measure tau
decays. If this problem could be solved at future experiments then these tau final

state processes could become the primary signal for indirect SUSY searches.




Fig. (4.5) contains corresponding contours of m 40 in the upper panels and the quantity
sin(# — &), which controls the coupling of the lightest CP-even Higgs scalar coupling
to the Z, in the lower panels. The numerical predictions for the best fit point at

M/, = 450, mp = 500 GeV (indicated by an asterisk in the figures) are given in
table 4.1.

[ | v =120 GeV | =300 GeV |

My s [GeV] 450 450
mp [GeV] 500 500
By — pp 1.5 x 1076 5.9 x 107°
B, — 171 2.6 x 1074 1 x 1073
Bi—pp || 1.5x1077 | 58x10°7
By — 17 2.7 x 107° 1x107*
mgo [GeV] 102 102
sin(f — a) 0.22 0.15

Table 4.1: Table of branching ratios for B;y — u*p~,7tr~, CP-
odd pseudoscalar mass m 40, and sin(8 — «) which governs the light-
est CP-even scalar coupling to the Z, for the best fit point.

We now turn to the implications of a possible measurement (or an improved experi-
mental limit) of the branching fraction of B; — pu for SO(10)-like models. Fig. (4.6)
and (4.7) show the effect on various quantities of varying the branching ratio for

By — pp for three fixed points in the mp — M; /5 plane.

The upper panels of fig. (4.6) show the variation of x* as Br(B, — uu) is varied.
As Br(B, — pp) decreases the x? increases initially slowly and later rapidly. The
initial slow increase is understood from fig. (3.10) in the previous chapter, where it
was observed that the value of x? for the best fit points are insensitive to changes of
a few GeV in the Higgs spectrum, which implies an insensitivity to small changes in
the branching ratio for B; — pu. Hence the points which presently exceed the CDF
bound can be forced to satisfy it with only a small(~ 0.5) increase in x*. But if the

bound was to be lowered to 10~7 then this would no longer be possible with Ayx?* ~ 3.
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Figure 4.6: This figure shows the variation of x? and the Pseu-
doscalar Higgs mass, m 40, as the branching ratio of B, — uu varies
from 10~® down to 107, Each of the three curves are drawn with
fixed values of Mj/,, mp. The vertical dashed line represents the
present CDF bound on B, — putpu~.

Hence the low M, region of the 4 = 300 GeV plane will be ruled out and the best

fit region would move toward larger M ;.

The lower panels of fig. (4.6) display the variation of m 0 as Br(B, — pp) is varied.
As expected m 4o increases smoothly as Br(B, — pu) decreases. Note the strong

correlation of the CP-odd Higgs mass with Br(Bs; — pu), which for a fixed value of

p is quite insensitive to mg and Mj/,.

It is well known in SUSY models with large tan 8 that b — sy provides a strong
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Figure 4.7: This figure shows the variation of sin(f# — «) and the
branching ratio for b — sy, against By — pp. The vertical dashed
line represents the present CDF bound on B; — utu~. The hori-
zontal lines show the central measured value(solid) of Br(b — sv)
along with the 1o(dashed) and 20 (light dashed) regions.

constraint on parameter space [52]. In fig. (4.6) the main contribution to the increase
in x? seen is due to b — sy not being fit well. The lower panels of fig. (4.7) show
the variation of Br(b — sv) against Br(B; — pu) and show a clear correlation. This
correlation can be understood as the SUSY contribution to each of these processes in-
volves the 23 mixings in the squark mass matrix. For example the dominant chargino
contributions to each process, shown in fig. (4.4) and fig. (2.6), are closely related.
These panels also show why b — s7v is the main contribution to the change in x? as

the fit to b — sy changes from within 1o to almost 20.
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The upper panels of fig. (4.7) show the variation of sin(8 — a) as Br(B, — uu) is
varied. In the low M/, region, where Br(B,; — pu) is near the current limit, sin(8—«)
is small and hence the Z-boson couples predominantly to the heavier CP-even Higgs
H®) rather than the lighter Higgs h°. However sin(8 — a) very quickly approaches
unity as the Br(Bs; — pu) decreases, corresponding to the standard model limit where

the h° couples like the standard model Higgs boson.

4.5 Conclusions

We have examined the potentially very promising signal B, — p*u~ in supersym-
metry with large tan § ~ 50 in a top-down approach starting from the best fits of
an SO(10)-like model presented in chapter 3. However our predictions are to a large
extent model independent, being similar to those based on minimal supergravity, but
we include all additional contributions which go beyond the minimal flavour violation
investigated in previous works. In particular, in the effective flavour changing cou-
pling we include terms not explicitly proportional to V;; which have been neglected in
previous studies based on minimal supergravity, and which we have shown are signif-
icant. The results in this chapter therefore go beyond those based on minimal flavour
violation in mSUGRA investigated previously. Our results show that the absolute
best fits provide for the By — u*u~ signal at the borderline of the present limits and
hence the ongoing search at the TeVatron will start having an impact on the global

analysis of this class of SUSY models.

We have discussed the implications of a measurement (or an improved limit) of B, —
pwtp~ for restricting the parameter space of gauginos and sfermion masses, and of
signals in other channels By s — £7¢~. We have also discussed correlations of B, —
ptp~ with b — sy and the CP-odd Higgs mass. An improved limit for Br(B; — pup)

of around 1077 would be very restricting and could probe Higgs masses into the
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range, m40 = 150 — 300 GeV, with the Higgs coupling strength sin(f — a) varying
very quickly around this region. The possible non-observation of B, — uu~ at the
levels suggested by our study would by no means rule out SO(10)-like models. In
the context of the analysis in chapter 3 this would simply highlight Minimum B,
with its heavier Higgs spectrum and Br(B, — uu) ~ 107!%, as the favoured solution.
On the other hand we have seen that an actual observation of B, — utu~ at the
1077 level is quite plausibly expected in SUSY SO(10)-like models, with interesting

phenomenological and theoretical consequences.

116




5.1 Preliminaries

Observations of neutrino oscillations at SuperKamiokande [15], SNO [17] and Kam-
LAND [18] imply the existence of massive neutrinos with large solar and atmospheric
mixing angles. The small neutrino masses are most naturally explained via the see-saw
mechanism with heavy singlet neutrinos. Models incorporating the see-saw mecha-
nism will contain Yukawa couplings for both the neutrinos, Y, and charged leptons,
Y, and a Majorana mass for the singlet neutrinos, Mg. It is possible to work in a
basis where both Y, and Mg are diagonal in flavour space. In such a basis Y, is always
left as a possible source of flavour violation. In SUSY models this flavour violation
can be communicated to the slepton sector through renormalisation group running.
The initial communication is from running between the GUT scale and the scale of
Mpg. Although the scale Mg is far above the weak scale its effects leave a lasting im-
pression on the mass squared matrices of the sleptons. Subsequently flavour violation
can enter into the charged lepton sector through loop diagrams involving the sleptons
and indeed such effects have been used to predict large branching ratios for 7 — pvy

and p — ey within the MSSM [26, 28, 37, 53].

We have seen in the previous chapter that such flavour changing can appear in the
couplings of the neutral Higgs bosons and is enhanced by large tan #. In the quark
sector interactions of the form, drdy HU*, are generated at one-loop [40, 41] and
at large tan 3 can become comparable to the tree-level interaction, dpdpHS. We
saw in the previous chapter that these two contributions cannot be simultaneously

diagonalised and lead to potentially large Higgs-mediated flavour changing processes

such as By — pp [48, 47].

Similar Higgs-mediated flavour violation can also occur in the lepton sector of SUSY
see-saw models through interactions of the form érer, H2*. This leads to the possibility

of large branching ratios for the Higgs-mediated LFV processes such as By, — Ty,
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7 — 3u and flavour violating Higgs decays [54, 55, 56, 57].

In this chapter we extend the work of chapters 3 and 4 to study the lepton flavour
violating decays By — 7u and 7 — 3u from the best fit points of the SO(10)-like
model studied in chapter 3. These processes are correlated and highly constrained
by those of By — up and 7 — pvy. Such correlations will therefore be studied in
detail. The remaining sections of this chapter are as follows, section 5.2 contains a
discussion of the theoretical origin of the lepton flavour violating Higgs couplings in
the top-down approach, section 5.3 presents our results for the processes mentioned

above and finally section 5.4 concludes the chapter.

5.2 Lepton Flavour violating Higgs couplings

As we saw in section 2.3.2 a SUSY see-saw model will have lagrangian terms of the

form,
LD eépY.LpHy — opY, L H, — viMgup. (5.1)

We can diagonalise the charged lepton Yukawa and neutrino Majorana mass matrices

such that,
Mg =VE MR VE", Y. = VgySesyet, (5.2)

In this basis we must also rotate the the neutrino Yukawa matrix using the unitary

matrices V4 and V7. Hence we have,

Y, = VY, Ve (5.3)
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Clearly Y, need not be diagonal and represents a source of flavour violation in the
lepton sector. This flavour violation is communicated to the sleptons via renormalisa-
tion group flow from the GUT scale to the scale at which the right-handed neutrinos
are decoupled. The relevant renormalisation group equation for the slepton soft mass

squared matrix can be written as,

d 2 __ d 2
KM = <”du mi)”) diag

[m2Y, I+ Y, Vim: +2(Y,ml Y, +my V.Y, + A Al)]

vpov

+ 5o (5:4)

1672

The first term here represents the lepton flavour conserving terms. As Y, is non-
diagonal the combinations YVTY,, will induce off-diagonal contributions to mi There-
fore even for universal soft terms, as discussed in eq. (2.67), large flavour changing
may be induced in the slepton sector. Eq. (5.4) can be solved approximately for the

flavour mixing part with,

(Am2) o BCUTMR) (o o pzy vyt (5.5)

g 1672

Here, my is the universal scalar mass at the GUT scale, the trilinear coupling is
A, = AgY, and ¢« # j. The class of models we are studying, see eq. (3.2), has a

neutrino Yukawa matrix of the approximate form,

0 0 0
Yo~ 0o 0 1 |. (5.6)
0 0 1

In such a model eq. (5.5) leads to sizable off-diagonal components of the slepton mass
squared matrix. Through loops involving sleptons this flavour violation can be fed

into the charged leptons. Hence, as in section 4.2, we can write effective vertices f
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and ¢ after heavy sparticles are integrated out of the lagrangian so that,
Lopy=—eW) [y Odiastg0 1 pty9 4 gtH0*] e 4 hec.. (5.7)

There are also mass term contributions of the same form but with the Higgs fields

replaced by their VEVs.

Following the logic of section 4.2 we see that at tree-level f = g = 0 and the Yukawa
couplings and mass matrix for the charged leptons can be simultaneously diagonalised.
At one-loop level f and g are to be computed and it follows that the one-loop 3-pt
couplings and mass matrices are no longer simultaneously diagonalisable. The cause
of this is the term, ég)gTHg*e(Lo), not present at tree-level. Fig. (5.1) shows the

dominant contributions to the effective vertex g. The flavour changing part of the
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Figure 5.1: Diagrams that contribute to the coupling
trpr ;. The crosses on the internal slepton lines rep-
resents mass insertions of off-diagonal components of
Am%.
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lagrangian therefore takes the form,

]
with,
i - g = L Lgog g  A°
u d — a—f3 + ca—ﬁ — 1 :| . (59)

va V2 s
Here the matrices V7 %) rotate the fields from tree-level mass eigenstates 620,)3 to
the one-loop mass eigenstates, eLR = Vf%) LO)R As for the down quarks of the
previous chapter we can relate the matrix g, at leading order in tan 3, to the finite

ﬁmte)”, /Uu .

non-logarithmic corrections to the charged lepton mass matrix, g;; = (dm

We can make use of the LF'V lagrangian term of eq. (5.8) to study the Higgs mediated
contributions to the process 7 — 3u. The dominant Higgs contributions will come
from the penguin diagram shown in fig. (5.2a). There is of course a contribution from

the photon penguin which can be related to the branching ratio of 7 — py as [57],

Br(r — 3u)y

~ 0.003. 5.10
Br(t — pv) ( )

This relation is model independent and so it is possible for us to apply a bound of
Br(7 — 3u), < 3.3x107? on the photon penguin contribution from the present bound
of Br(t — wy) < 1.1 x 107° [3]. The present experimental bound of Br(r — 3u) <
1.9 x 107° [3] is at present far from this level, but in the future any measurements
that significantly deviate from this relation, eq. (5.10), would be a clear signal that

additional contributions, such as Higgs mediation, are present.

In the MSSM with large tan 8 the dominant contribution to the branching ratio of
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7 — 3 turns out to be,

T s ((0m)as Ay \2 | [ CoSap  SaCa—p\’ sg \’
_ _ (5.
Br(7 = 3p) 40967r3m7< e 2c5 mz, ) T (5.11)

Here 7444 is the lifetime of the tau lepton and A, is the Yukawa coupling of the

muon. [t has also been noted [58] that the related process 7 — un would in fact
yield a larger branching ratio. The enhancement of this process comes from a factor
of 3 for colour and a factor of (ms/m,)? for the Yukawa coupling. In addition to
this the cross diagram in the muon case lowers the rate by a factor 3/2, hence the
overall enhancement is by %n”% ~ 10. The present experimental bound is given as

Br(t — un) < 9.6 x 107° [3] and so it is clearly more constraining than 7 — 3.
: \\/ : ’ \\// S
| Yrp | Gbs
X0 4 X0 4
/l@\ //‘Q\
e # 7¢ a
(a) ()

Figure 5.2: Higgs Penguin contributions to the processes
(a)7 — 3p and (b)Bs; — 7u. The effective vertices gps
and g¢,, are generated from loop involving SUSY part-
ners which are then integrated out. The mediating X°
stands for neutral Higgs mass eigenstates, h°, H°, A°.

The lepton flavour violating Higgs coupling discussed above can also be combined
with the quark flavour charging coupling studied in the previous chapter. In this way
we can also study the LFV and FCNC process B, — 7. In the MSSM with large
tan # the dominant Higgs contribution will again come from the penguin diagram

mediated by the Higgs as shown in fig. (5.2b). The branching ratio may be written
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as

B B, (0mp)ss (dme)is 1 ., M3
Br(Bs = 7tu") = — —
i ) 256 w2 v2 céfBS m}

2

Sap | Gamp 1] \/1 2 2. (5.1
X Méo -+ M,fo +M310:| (1 -2, —z,) —2(zr +2,) + (2, — )2 (5.12)

Here a; = (m;/Mp,)*. We have concentrated here on the final state 7+u~ because the

2 2 2
contribution for 7~ u* goes like, B‘/}g{f + 3&15: - MIQO} , and approximately vanishes
A
at large tan 3. It is worth noting that at present there are no experimental bounds

set on the process B; — 7u and only a weak bound set on the related process

Br(Bs — pur) < 8.3 x 1074

We shall now make use of the best fit points obtained from the global y? analysis of
an SO(10)-like model presented in chapter 3. In particular we choose to study the
best fit points of minimum A. We make this choice because the Higgs spectrum, see
fig. (3.9), of minimum B is greater than 500 GeV whilst that of minimum A is rather
lighter. As the branching ratio scales like 1/M3 minimum A will yield much more

promising results.

5.3 Results and Discussion

Our numerical results for the branching ratio B; — pp and 7 — 3p are presented in
fig. (5.3)-(5.7) in the form of contour and scatter plots. The contour plot, fig. (5.3) is
plotted in the mp, M/, plane (here mp is equivalent to the standard universal scalar
mass mg) and with two values of © = 120 GeV(left panels) and p = 300 GeV(right
panels). The scatter plots of fig. (5.4)-(5.7) are presented to display the correlation
of various decay processes. These too are presented for the two different values of p.
The points are grouped in terms of their x? values, the best fit point is also clearly

marked.
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Figure 5.3: Contours of the Higgs-mediated contribution to the
processes Br(r — 3u) and Br(B; — ) in the mp — My, plane
with g = 120 GeV(left panels) and 300 GeV(right panels). The x

marks the best fit point.

Fig. (5.3) contains contour plots of branching ratios for both B; — 7u(lower panels)
and 7 — 3u(upper panels). The 7 — 3u contours are some 5 orders of magnitude
below the present experimental bound. We find that Br(7 — 3u) < 2 x 107'*. This
is clearly disappointing as other authors [55] reported a much larger prediction of
Br(7 — 3u) ~ 1077, The B; — 7y panels of fig. (5.3) fair no better with Br(B, —
T) < 2 x 107!, Our results for both processes are in much better agreement with
those of [56] who also predict small branching ratios for both processes. Ref. [56]
calculates the branching ratio for 7 — 3y following the same procedure as in ref. [55]

and so the discrepancy between these two results is not yet understood.

Scatter plots for the branching ratios of B — 7u and 7 — 3u against the Pseu-
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Figure 5.4: Scatter plots of Higgs-mediated contribution to the pro-
cesses Br(T — 3u)(lower panels) and Br(Bs; — 7u)(upper panels)
against the Pseudoscalar Higgs mass myo for p = 120 GeV(left
panels) and 300 GeV(right panels). The points are colour coded
depending on their x? values with the best fit point also highlighted.

doscalar Higgs mass are shown in fig. (5.4). Again each process is shown for the
two values of u. These plots show very nicely the strong dependence upon the Higgs

spectrum. It is clear that lighter mediating Higgs bosons lead to a larger branching

ratio in each case.

It is interesting to study the correlations of these LFV processes with one another and

other related processes such as 7 — py and Bs — pp. Fig. (5.5) contains a scatter

plot of 7 — 3u against B; — 7u again with g = 120 GeV and g = 300 GeV. These
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Figure 5.5: Scatter plot of Higgs-mediated contribution to the pro-
cesses Br(t — 3u) against Br(Bs, — 7u) for u = 120 GeV(left
panels) and 300 GeV(right panels). The points are colour coded
depending on their x? values with the best fit point also highlighted.

two LF'V Higgs-mediated contributions are clearly strongly correlated. It is useful to

note that our global analysis prefers the largest attained branching ratios.

There is expected to be a strong correlation between the processes B, — 7y, 7 — 3u
and By — pp, 7 — py. With this in mind fig. (5.6) presents scatter plots of B, — 7
and 7 — 3p against By — pp. These Higgs-mediated contributions are all strongly
correlated and this is shown very well in this figure with large Br(Bs — pu) coinciding
with large branching ratios for B; — 7u and 7 — 3u. The scatter plots in fig. (5.7)
are plotted against Br(7 — u7v). The best fit points of our model predict Br(r —
py) ~ 1078 — 1077, see fig. (3.5), which through eq. (5.10) can be related to a photon
penguin contribution Br(r — 3u), ~ 107" —1071° and it is clear therefore that this
will dominate over the Higgs-mediated contribution in our model. The correlation
shown in fig. (5.7) appears to be weaker than that shown in fig. (5.6) for Bs — up.
This implies that there is a stronger dependence on the Higgs mass than on the LFV

coupling.
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Figure 5.6: Scatter plots of Higgs-mediated contribution to the
processes Br(r — 3u)(lower panels) and Br(B; — 7u)(upper
panels) against Br(B; — 7u) for p = 120 GeV(left panels) and
300 GeV(right panels). The points are colour coded depending on
their x? values with the best fit point also highlighted.

5.4 Conclusion

The observation of neutrino oscillations and therefore flavour violation in the lepton
sector has motivated the ongoing study of rare flavour violating processes involving
charged lepton. In the past much attention has been given to the well known processes
T — w7y and p — ey. More recently it has been suggested that in addition Higgs-
mediated contributions to 7 — 3u and B; — 7u could also be of interest in SUSY

models. Higgs-mediation has been shown to give potentially large contributions to

128



1e-7

T llllé'nf T T TTTITIT0

LERLIREY” L) LR R

+ ¥ A
1e-8 | 1. 5</2<3 - -+ 3. 5<% <5 x .
>3 % % 255 x
1e-9 | Best fit o 1 Best fit o
(o X
= 1e-10 | T ""5@
i H% 3
o te-11 | & . 1+ & .
5 f * X
le-12 a;\x.g:; T j*» ***&é 4
X
1e-13 - 5;?“ T S -
i
1e-14 | ﬁng? + .
1e-15 + + .
u=120GeV u=300GeV
1e-16 [—+—HHH—+—+HHH— :.L:L.g, -
X<jb XS ¢
1e-8 | 1 5<22<3 x - 35</2<5 x .
x> 2 x>5 X
1e-9 F Best fit [ 1 Best fit [a] |
& 1e-10
L
= te-11 + §s’*+*”" .
W% &
1e-12 | o T &+ .
1e-13 [ %Z\’;Z;p v b e e
*).P?w‘ v % e x5
1e-14 | X * - X -
e - k!
;&é\-@ ;Bﬁstw
1e-15 T+ B
u=120GeV p=300GeV
1e_16 LA L ity b Ll L1 L L i L 111
108 107 10°® 107 10
Br(t—py)

Figure 5.7: Scatter plots of Higgs-mediated contribution to the
processes Br(r — 3u)(lower panels) and Br(Bs; — 7u)(upper
panels) against Br(t — py) for p
300 GeV(right panels). The points are colour coded depending on
their x? values with the best fit point also highlighted.

flavour changing neutral currents such as Bs 4 — pp. In this chapter the work of
chapter 3 has been extended to study the lepton flavour violating decays Bs — Tu
and 7 — 3u. We have found that our predictions for these branching ratios are
disappointingly small with Br(7 — 3u) ~ 107*® — 107! and Br(B, — 7u) ~ 107 —

1071, The correlation of such processes to B, — pu was shown to be very strong,

= 120 GeV(left panels) and

but the dependence on 7 — uy showed a much weaker correlation.

The predictions made in the previous chapter for the Higgs-mediated contribution
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to Bs — pp should therefore be highlighted. We found that the branching ratio for
this process is well within reach at future colliders. In contrast the conclusions of
the present chapter are far less promising, (Bs — 7u) is clearly suffering from heavy

suppression from the additional loop and small LFV.

In conclusion we have made use of the best fit points found in the global analysis of the
SO(10)-like model presented in chapter 3 to make predictions for the rare processes
T — vy and (Bs; — 7u). We found that unlike B, — pu of the previous chapter the
branching ratios are highly suppressed. Therefore greater emphasis should be put on

the results of chapter 4.
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Chapter 6

Overview and Conclusions

The aim of the work in this thesis has been to study a complete model of fermion
masses and mixing and the low-energy phenomenological predictions that can be
deduced. To this end we began in chapter 3 by performing a complete global phe-
nomenological analysis of a realistic string-inspired model based on the supersym-
metric Pati-Salam SU(4) x SU(2), x SU(2)r gauge group supplemented by a U(1)
family symmetry. The results of our global analysis determined that there were two
x? minima with interesting phenomenological differences. Notably minimum B has
Br(t — pv) near the present limit and a heavy pseudoscalar Higgs m 40, while mini-
mum A has Br(r — pv) well below the present bound but a light pseudoscalar Higgs
m 40. sin® 20,5 predictions of both minima are in the range 1075 —0.1. It is important

to notice that improved limits on Br(r — p7y) could begin to rule out minimum B.

The property of exact Yukawa unification was relaxed throughout the analysis and it

was found that a deviation of 20-35% for the bottom Yukawa coupling and 0-10% for

the top Yukawa coupling are required for a good fit to be obtained.

Questions of the effects of future direct Higgs searches and a change to the present

muon g—2 discrepancy were addressed. We found that our best fit points for minimum
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A, with light Higgs masses, can accommodate a lower bound on Higgs masses up to
about 120 GeV. Also we found that in the very light Higgs mass region the coupling
of the lighter CP even Higgs state to the Z boson is suppressed, leaving the heavier

of the two CP even states acting as the standard model like Higgs.

Realising that the light Higgs spectrum of minimum A may lead to interesting phe-
nomenological consequences, in chapter 4 we examined the potentially very promising
signal By — utu~. We studied this process using the best fits from minimum A found
in the global analysis of the Pati-Salam model of chapter 3. The results of chapter 4
go beyond minimal flavour violation to include contributions not depending on Vi,
which have previously been neglected. Our results show that the absolute best fits
predict a By — p*p~ signal at the borderline of the present limits and hence the
ongoing search at the TeVatron will start having an impact on the global analysis of
this class of SUSY models. We also studied the prospects of signals in other channels
such as By, — £t{~. Correlations of B, — p*u™ with b — sy and the CP-odd Higgs
mass were found to be particularly strong. An improved limit for Br(Bs — uu) of
around 10~7 would be very restricting to the parameter space of our minimum A so-
lution. An experimental limit in this region could probe Higgs masses into the range,
mao = 150 — 300 GeV. The most exciting conclusion from the work presented in
chapter 4 is that a signal of B, — utpu~ at the 1077 level is quite plausibly expected
in SUSY SO(10)-like models.

Chapter 5 extends the work of chapters 3 and 4 to study the lepton flavour violating
decays 7 — 3u and B; — tp. It was recently suggestioned that Higgs-mediated
contributions to these processes could also be of interest in SUSY models. However
our disappointing results don’t add weight to this claim with branching ratios at
the level 107" — 1071°. In fact we have found that it is the photon penguin which
dominates and not the Higgs-mediation for the process 7 — 3u. The correlation

of these rare decays to the related processes T — wy, B, — pp were studied and
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showed a stronger dependence on the Higgs spectrum than on the lepton flavour
violating coupling. The disappointing results in this chapter should further highlight

the exciting prospects for indirect SUSY discovery found in chapter 4.

The origin of fermion mass and mixing is a great puzzle and has been for a number
of years. In recent times low-energy experimental discovery has given vital clues
to the solution of this problem, yet it could be argued that these clues have also
made the situation even more interesting. It is extremely important that complete
models are constructed that reproduce all present experimental observations so that
they enable accurate predictions to be made and for the theory parameter space to
be thoroughly explored. In this way theorists are able to begin to find the answers

to such fundamental questions. The work in this thesis contributes in part to this

grander goal.
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Appendix A

Grassmann Numbers

Let 8 be a 2-component Grassmann Number, that is a numbers which anti-commutes,

Oy, a=1,2 and 05, B=1,2

3

{0047 0t =0, {go'zy gﬁ} =0, {0a, gﬁ} =0 (Al)

It is now important for the operations of differentiation and integration with respect

to Grassmann numbers to be defined.

Grassmann derivative

Let us define the derivative with respect to a Grassmann number a; as,

8ai
8aj

=6, Vij=1,...,N. (A.2)

It is important to remember that derivatives with respect to Grassmann numbers

must also anti-commute,
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To simplify notation we write the derivatives as,

9. = -2 o2 = 2

o d6a ETR

5 a e a (A1)
8@ — W 0 — EZ:

From eq. (A.2) we can write the action of the derivative in terms of our new notation

as,

Da0P = &P 0%0 = 4

5. 08 — 58 840, _ Sé
50F = & 970, = 5ﬁ- (A.5)

0,05 = —€ap 55,(% = —€45

Here the tensor ¢” is as defined in eq. (B.2) of appendix B Using the identities in

eq. (A.5) it is a straightforward exercise to derive the conventions for raising and

lowering the indices of the Grassmann derivatives,

B B (A.6)
eaﬁaﬁ = -0 € ﬁﬁﬁ = —0,
The anti-commutation of Grassmann variables, as in eq. (A.3), implies that,
{02y O} =0 {8a, 03} = 0. (A7)

The Grassmann Integral

Let us define the Grassmann integral as a functional,

1= [ f(@da (A.8)

Here f is a function of a single Grassmann number a. Unlike the standard integral

we cannot associate this with the area under the curve f(«) and nor can any meaning
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be attached to the upper and lower limited of the integral. In addition we demand

that the integral be translational invariant,
/f(a+b) da = / f(a)da, (A.9)
and that it be linear,
[ taf@)+ o) do = a [ fla)da+5 [ gta)da (A.10)
We can Taylor expand the function f in a series with only two terms
fla) = f(0)+a.f'  since a®* = 0. (A.11)

Here if we define f(a) as a normal number then so must f(0), but ¢ and f’ are

Grassmann numbers. Then we can rewrite eq. (A.8) as,

I[f] :f(())/l‘da—k (/ada) S

_ (f(0)+f’b)/ | da+ (/ada) 7 (A12)

Where in the last line of eq. (A.12) we have used the translational invariance of the

integral to shift @ — a + b. It is clear from eq. (A.12) that we must define,

/1.da:0 and /adazl. (A.13)

Hence the action of Grassmann integration and differentiation have the same effect.

9 ,
o (a):/f(a)da:f. (A.14)

These results can be extended from this 1-dimensional algebra to an n-dimensional
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Grassmann algebra,

{6,,0,3=0 ., {db;, do;,} =0

(A.15)
[ do; =0 ) [ do; 6; =&
It will be useful to define the multidimensional integrals,
d*0 02 =1, d?0 0% =1
J ~ f_ (A.16)
[ d?0d*0 6% 0% = 1.
The volume elements are therefore defined as,
d*0 = —%d@"‘d@ﬁea@
' (A7)

&0 = —1df;dfe.

4

137



Appendix B

Weyl and Dirac Spinors

B.1 2 component Weyl spinor notation

Throughout this thesis we assume the space-time metric, n,, = diag(1, —1, —1, —1).
If we define a 2 x 2 matrix M with determinant 1, i.e. M € SL(2, C). Then
the matrices M and M* provide inequivalent representations of SL(2, C). These

matrices can be used to represent the action of the Lorentz group on two-component

Weyl spinors as follows,

¥, = My i = (07100 (B.1)
W= (gt | = (),

Here, o, 0 =1, 2, and, &, ,3 =1, 2. The dotted indices and undotted indices are used
to remind us that ¢ and ¥ = 1! ! transform in different representations of SL(2, C),

(0,2) and (1,0) respectively.

!This definition is sometimes written as t/) = 91 in other sources.
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It is useful to define the tensors €% and %%

6a,5 — édﬁ — 0% = , €af = €45 = —io? = , (B2)

-1 0 1 0

which are used to raise and lower indices as follows:

Vo= P o= eapth®, DY =00 g = 590 (B.3)

The tensor €# is invariant under Lorentz transformations, e,5 = MgMgemg. The

Pauli matrices are defined as,

[ —

0

o =5Y% = ol = -5l =

1

0
0 1
(B.4)
0? = 5% = 0 — 0% = —53 = 10
1 0 0

These matrices form a basis for 2 x 2 complex matrices. The spinor index structure

for the Pauli matrices is, OSB = (1, 0;). Raising the indices using the € tensors yields
(5-h)doz — édﬁeaﬁ(o.#)ﬂﬁ — (17 —O'i)da. (B5)

When dealing with expressions involving more than one spinor it is important to
remember that spinors anti-commute. So for 2-component spinors we have, ¥1x2 =

—x2t1 and Xy = —YatPq ete. The products ¢y and ¢y are defined as,

VX = Y Na = € Mhpxa = —€Phaxp = —Pax™ = X o = XV

(x¥)' = 9% = dax® = ... = xa¥® = ¥, (B.6)

are Lorentz invariant products. Note that by convention undotted indices are always

contracted from upper left to lower right, while dotted indices are always contracted
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from lower left to upper right. Notice however that this rule does not apply when

rising or lowering spinor indices with the e-tensor. With this rule we also have
Yoty = 9(0"),5xX°  $atx = a(0")Pxp. (B.7)
One can then prove a certain amount of useful identities which we summarise here:

Xotp = —aty , xotovY = holaty
ot = oty ctEP )t = DEvaty
(xo"P)T =varx ,  (xotoy)t =Yavory (B.8)

vx=x¥ , ¥x = x¢ , (¥x)'=¢y

After some work, it is also possible to prove the identities,

(00)(0) = —5(00)(¢), (06)(0%) = —5(00)(¢0)
(60+8)(856) = 1 vgeai)(ae) (89)
00" = —Lehg, 0965 = Levohg
009,@ = %Eageg, édéﬁ' = w%édﬁ'gé.

In the Weyl representation it is convenient to define the 4 x 4 gamma matrices as,

0 o -1 0
Vo = 1 P =iy = : (B.10)
5, 0 0 1

Therefore we can construct a four-component Dirac spinor from a two-component

undotted and a two-component dotted spinor, ¥ = d)a The Dirac spinor ¥p

X
therefore transforms as the reducible representation (-;—,O) ® (0, %) of the Lorentz
group. A Majorana spinor can also be defined as a Dirac spinor with, y = %, hence,
e

e
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B.2 Dirac and Majorana masses

As we have just seen, it is often useful to define a 4-component Dirac spinor in terms

of 2-component Weyl spinors,

PP = : (B.11)

It follows that € and x are chiral projections of v,

ijl]) = PL@bD = (é-aa O)T

D _ poD = (0. v&\ 7T
VR = Fro” = (0, %) (B.12)
p =P Pr = (0, &)
%Z]g = &DPL = (on7 0)7
here we have defined the projection operators,
P=3(1—5) P—_—_l(1+5) (B.13)
L 9 VR R 9 v :
Then we see that the standard Dirac mass will connects x and &,
£Dirac - _mDJ)Dd)D = —mp (’J)[l?%b]l%) + ’&}gd)g)
= —mp (é‘:ai’d + Xaéa) . (B.14)
Alternatively we can construct a Majorana mass term for the spinor,
M = S : (B.15)

gdr

As the upper and lower components of M carry the same degrees of freedom, €,
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effectively the Majorana spinor has only one independent helicity state, let us define,

¢£/[ = PL¢M = (§a> O)T
oif =M Pr = (0, &) (B.16)

Then we can construct ¢ from the charge conjugate matrix, C, in the Weyl repre-
sentation we have,

) wp 0 C=-C"=-Ct=-C"!
C=—iy*y° = cal ], with, (B.17)

such that,

M — (pM)e = C()T = (0, )"
M= (M) = (pM)TC = (€7, 0)" (B.18)

Notice that the Majorana spinor is self conjugate, ¥™ = (M), or more precisely,

(pM)e = M and (pM)e = »M. Now we can construct a Majorana mass term which

connects £ with itself,

1 _
M M
»CMajorana = _‘2—771]\477& @b

= — s [0l + ] (B.19)

= s [GE €8] (B.20)

The Majorana mass term of eq. (B.19) can be written in terms of the charge conjugate
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fields defined in eq. (B.18) as,

—gmar (PR )R + hc.]
or (B.21)

—Imag [PM (W) + hee].

Therefore we have two possible Majorana masses written in terms of ¥ and ¢¥.
These mass terms would violate charge conservation for fermions carrying a U(1)em

charge and also they violate fermion number by two units.
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Appendix C

Sparticle mixings in the MSSM

This appendix gives details of all the tree-level contributions to the squark and slepton
mass squared matrices. The mixings among the charged and neutral gauginos into

the mass eigenstate Neutralinos and Charginos is then presented.

C.1 Squark and slepton mixing

Before supersymmetry is broken the fermions and their scalar partners have equal
mass. This degeneracy is split by the soft SUSY breaking mass terms of eq. (2.66).
There are also contributions from F-terms which give Yukawa strength interactions

with the Higgs, for example,

2

oW o o
= o+ YT — pHYP + |HOY S US)? + |HOOY 2. (C.1)

I

_DI

Similar expressions for the sleptons and down type squarks can easily be derived.
Notice that there are diagonal left-left and right-right mass terms and left-right mix-

ings. The trilinear terms A, 4. also give left-right mixings, whereas the D-terms of
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eq. (2.60) provide diagonal mass terms. Putting these together the squark and lepton

mass matrices can be summarised as,

2 2
m m S
M? = ff LRV i the basis {f, fc} , (C.2)
MR Meg
with a sfermion Lagrangian mass term, £ C —(f*, fc*) (]V[J?-) . Heremrr re LR

JFc
are 3 x 3 matrices in flavour space so that M}% is a 6 x6 matrix. The matricesmrz rr LR

are summarised as,

mi; = mfg +m% + M7 cos 23 T — Q7 sin?0,, C.3)

Map = mfzc + mfr + M2 cos 23Q sin* 4, C.4)

mip = vgAs — u*my tan 3 [for f =d, €] C.5)

(
(
(
mip = v A —pwmycot o [for f=ul. (C.6)

The matrices m%2 = m2 . and m2 = m?
J

° 2 __ are the soft scalar masses for the scalar
Q,L fe ,d,é,

partners of the left and right-handed fermions.

For the scalar partners of the neutrinos we will have a 3 x 3 mass matrix. As we only

have left-handed fields the only mass term will be, m?; o, with,
2 2 Lo
mig = mj + 51\/12 cos 2[3. (C.7)

The sfermion mass squared matrices are diagonalised by a 6 x 6 unitary matrix, V7,
so that,
diagh2 _ 1/t as2 1/
(M;e) —Vfo vz, (C.8)

and, f! = ijj f;, where f! are the sfermion mass eigenstates.
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C.2 Neutralino and Chargino mixing

In the MSSM the neutral fermions, B, W2, HS and ﬁg, mix to form four neutralino
mass eigenstates, ¥?. The tree-level mixing comes from the soft Lagrangian terms of

eq. (2.66), the superpotential F-term and the D-term contributions from eq. (2.65).

The neutralino mass terms in the Lagrangian are then, £ = —%(1/)0)T Mo 4°. with,
]Wl 0 —Mzcﬁsu, Mzsﬁsw
0 M. Mgcege, —Mzsgey,
Mg = ’ 7 750 (C.9)
—Mzc@.sw Mzsﬁsw 0 — K
\ Mygecge, —Mzspey —p 0

in the basis 1° = {B, W, Ng,ﬁfg}.

Here, sg =sinf and ¢, = cosf, . The lightest neutralino is usually assumed to be
the LSP as it is also a good cold dark matter candidate. The neutralino mass matrix

is diagonalised by a unitary matrix, Vo, with x? = Vioz‘ﬂ/’?v 1,7 =1...2, so that,

M = Vi My Vg (C.10)

In an analogous way the charged fermions, W#*, H7 and [ also mix to form

charginos, Y*. The chargino mass term is, £ = —%(wi)T Mg+ %, where we can
write,
0 XT M 25 M
My = . X = 2 V2spMw (C.11)
- X 0 V2es My m

in the basis ¢* = {yT, ¥~} = {(W““,flj), (W‘,ffc?)}-

Clearly the mass matrix Mz have a pair of degenerate eigenvalues. The diagonal

chargino mass matrix can be found by diagonalising the mass matrix using two 2 x 2
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unitary matrices, Uz-, Vi, with ¥} = K/;(Jrz.jw;-L and Y7 = Uz-.. 07, 4,5 = 1...2.

b jrmmay

Then we have,

U~ XV3 = : (C.12)
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Appendix D

Non-renormalisable fermion mass

operators

In this appendix we review the process of calculating the Clebsch-Gordan coeflicients

for all of the n = 1 non-renormalisable operators written in eq. (3.15) and (3.16).

D.1 n =1 non-renormalisable operators

Including all gauge indices the complete set of n = 1 operators can be written as,

Oozpyu/ — Faa_F_ﬁthF’yszw (Dl)

Byzz

where for simplicity we have ignored the gauge singlet field § and the factors of
7\—}7 suppression. The complete set of operators comes from each of the possible

contractions of the gauge indices in eq. (D.1).

It is useful to define some SU(4) invariant tensors C, and SU(2) invariant tensors £
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as follows:

(C)y =
(Co)ap =
(010)/?5 -
(Cis)oy =
(1), =

(Ra),, =

9%

PYWX

6a/3wx

8568 + 8267
1
8703 — 7026,

%

xr Sw 1 T Cw
558 — 58165

(D.2)

The SU(4) indices on C g,10,15 are contracted with those on two fields to combine them

into 1, 6, 10, 15, representations of SU(4) respectively. Similarly the SU(2)g indices

on f; 3 are contracted with those on two fields to combine into 1, 3 representations

of SU(2)r respectively. From these we can then construct six independent SU(4)

structures:

= 8067

1
= 8,8 - 15553

= 8(8267 —

8167)

= 2(6967 + 6767

= 6067

1
= 860 - ;1‘5355

S
= 0257~

. Tz
= €Feyy
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(D.3)



d. ewse™ (Rs),r (Ra);, = 6507 — §6wy6“

e. (B1), (Ri),, = 4,0,
Z xTr T Lz 1 T Cz
S A (D.4)

All possible n = 1 operators are then constructed by taking one invariant structure
from the list {A-F} above, combining it with one from the list {a-f}, and using it to
contract the indices of the operator in eq. (D.1). In this way we can generate a total of
36 operators each labelled by the invariant structure from which it was constructed,

e.g. 04 comes from contracting indices with the structures listed in A. and a. above.

After the heavy Higgs fields H and H acquire their VEV’s these operators will con-
tribute Yukawa couplings for each of the standard model fermions with the associated
Clebsch-Gordan coefficient. A complete list of the Clebsch-Gordan coefficients can
be found in table D.1, where the operators have been grouped such that CLASS I
operators have non-zero coefficient for just one fermion, CLASS II-V have non-zero
coefficient for two fermions and CLASS VI are non-zero for all fermions. The labels

Ty, Td, Le, T,, correspond to the coefficients of the Yukawa coupling contributions

written as,

_A'Cij X (CIZU U U; hﬁ + x4 dZJ] hg + z, vy; hg + xe €€ hg) . (D5)

In the case that n > 1, there will be more indices to contract, which allows more
representations, and hence more Clebsch coefficients. For example for n = 2 we
already have 400 possible operators. To simplify things we restrict ourselves to the
case where the additional factors of HH form gauge singlets. This means that the
higher powers of HH simply contribute extra powers of § = vo/M? and leaves the
Clebsch-Gordan coefficients unchanged from those of the n = 1 operators. This is

clearly just a small subset of the possible n > 1 operators. Therefore we can simply
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write this subset as,

O/Hw — OHW(S
0//1‘[77 — OHW(SQ
O///Hvr — 0H7r53

Where, II €{A-F} and 7 €{a-}.
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[CIASS[O [ au | x4 | a [ @ |
i o | 2 0 0 0
I 0% | 0 2 0 0
I OFc | 0 0 2 0
1 OF | 0 0 0 2
11 OA; 0 V2 V2 0

c 2 4
II O 0 7 7 0
I ||of o g 2 0
mofom | o | /2 =32 o
111 04 | V2] 0 0 V2
De
11 @, % 0 0 %
o~ | 0 0 g
moofore | 2] 0 | 0 | -3y
ET 4 2
woloelol o | G| 5
@l 2
I\Y O | 0 0 —/2 V2
v OFd | 0 0 2 4
\ O | V2| =2 {)g «03
Vv 0% | V21 V2 0 0
Cd 4 2
\% 0' = = 0 0
\% oY | = | & 0 0
VI @Dd 4 2 4 8
VI ODf Z i51. g Z
5 5 5 5
Ff | _8_ 16 12 _6_
VI o 55 55 5v/5 55
Fd 16 8 6 12
VI 1O szl 55 | 58 | 55
VI OAd | 22 | V2 V2 2v2
5 5 5 5
viofov | | B | et |
VI foBd | 22| 2 | 32| _of
5 5
VI OBf | 2| 22 _8/2 | _3/2
5 5 5 5
Bb 1 1 3 3
VI VO 2l -7 B_| "%
v o | 2222 2yt
VI 04 |1 —1 -1 1
VI OF | /2 | _4/2 | 32 3v2
5 5 5 5
v or o) e | of | 20
VI O4e | 1 1 1 1
VI || OP* | (/2 2 2,/2 | 24/
Ba 1 1 3 3
VI (O | = | # |~ | —F

Table D.1: Clebsch-Gordan coefficients for the complete set of n =
1 operators. Here the coefficients have been normalised so that the
sum of the squares equals 4. 152



Appendix E

D-terms from the breaking of

SU(4) and SU(2)p

In this appendix we outline the origin of the D-term splitting of the soft scalar masses
in eq. (3.26). These D-terms contributions arise from the breaking of the Pati-Salam

group down to the standard model gauge group.

Firstly we shall summarise the index conventions used on the Pati-Salam fields.

B = (4,2,1), Figo = (4,1,2)

hal‘ — (1’272) (El)
Hacx = (4,1,2), Hza = (21717Q)7

where o =1...4 is an SU(4) index, a,z = 1,2 are SU(2) g indices,and 1 =1...3 is
a family index. The first/second gauge index should be read as corresponding to the
row /column of the matrix. Furthermore the up/down indices are related to the gauge
transformation properties of the multiplet, e.g. the raised « and « signifies that I
transforms in the 2 representation of SU(2); and the 4 of SU(4), whereas the lower

index z and « signifies that F' transforms in the 2 of SU(2)g and 4 of SU(4) .
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Following in the same manner as eq. (2.60-2.63) we may write the SU(2)g and SU(4)

D-term contributions as,
9 15

VD c 2B gZR Z DaRD - + 24 94 Z DmDm (EQ)

m=1

Here the subscripts 2R and 4, denote the D-terms corresponding to the groups SU(2) g
and SU(4) respectively. For the contributions to the scalar mass terms it will only be

necessary to look at the diagonal generators 75 of SU(2)g and T'° of SU(4), where,

3 1111
3 - L iag(1, 1 15:\/‘d Ea E.3
diag(L, 1), T e (3553 (£3)

Then it is straight forward to rewrite eq. (E.2) in terms of the fields in eq. (E.2),

Dy, =  Hiz (—73*);’5[ + HJ, (T}%)I Hv~

_}_Ffara o + ha h Y

) ( ) ) Yy ( ) (E4)
DiS — H‘I’xa( TlS*) ﬁH + HT (Tl ) p Hwﬁ

+FT1’& (_Tle) x,@ 4+ F;a (Tls)aﬁ J

24

The factors of, —73* and —T"'*, come from the fact that the complex conjugate
representations 2 and 4 are generated by the matrices, —7%* and —7%*. The SU(2)r
and SU(4) groups are broken via the heavy Higgs developing VEV’s,

(HY=H"=H,, (H)=1MH,=H,. (E.5)

‘ollowing the above symmetry breaking the D-terms of eq. (E.4) may be expanded

1

as,

1 - T ~c ~C ~C
Dl = o (SHLP 4 [P 4 &P + [P = 0 |5 = [hal? + 0l . (E6)

'Here we have written u®, etc. instead of @ as in eq. (3.4) or ug as in eq. (2.66).
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3/ 1. 1 1. 1
D15:\/j CLVH P 4 = 2 0 L1 o s
1 1oy 1o 1.,
—= 2 - - ) E.
Slat = 1 = 5108 + 5127) (£7)

ﬁcl2 .

These results may be summarised as,

Din=Dus S -DE =[5 33 (F5F) r e

here we have defined, Dy = 1 (|H,|* — |H,|*) and ¢ denotes any of the fields 4°, de,
, 5%, 0, L, hy, ha. The factor I, relates to the charge carried by ¢ with respect

to the SU(2)r group and (B — L)/2 to the semi-difference between the baryon and

lepton numbers of ¢. These can easily be read from eq. (E.6) and (E.7).

Finally we can now rewrite eq. (E.2) in terms of eq. (E.6) and (E.7) as

Vo C 92R D3RD o+ 924 D15D15

¢

This leads us to the following contributions to the soft scalar masses,

my = mp+g;D?

my, = mp—(9i — 2958) D?

iy = i g+ 2) D

mh = mh - 3D -
ng = %—+(3g4 29%3)])2

My, = mp+ (39 + 295R) D

my = mj —2gip D?

my, = mj+ 2955 D,

where D?* = {Dy. The last two lines of eq. (E.10) implies that our model has non-
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universal Higgs masses, split by the D-term contributions outlined above.
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