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ABSTRACT 

PHYSICS 

Doctor of Philosophy 

The Low-Energy Phenomenology of a Supersymmetric 
extension of the Standard Model 

Jonathan Keith Parry 

We attempt to explore the relationship between low-energy phenomenology and the 

pattern of Yukawa couplings at high-energies. A working supersymmetric Pati-Salam 

model which fits all phenomenological constraints is constructed. This model is typical 

of a broad class of models and its predictions are representative of all models of this 

type. A analysis is used to determine points in parameter space where experimental 

measurements and bounds are most accurately reproduced. These best fit points are 

then used to make predictions for unmeasured quantities such as neutrino mixing 

angles and lepton Savour violating decays. For example we find that the branching 

ratio for r -4- //'-y is very near its present experimental bound. In the context of 

this model we also study the degree of deviation from Yukawa unification observed 

by our best fit points. The effects of future experimental results upon the best At 

regions of parameter space are also considered and we find that in some cases our 

allowed parameter space may be much reduced. We extend the study of our model's 

predictions by investigating Higgs-mediated contributions to rare flavour changing 

neutral current processes and discuss the possibility of them being among the very 

first indirect signals of supersymmetry. We also study rare lepton Savour violating 

decays mediated by Higgs bosons discovering that in this case the Higgs contribution 

is sub-dominant and doesn't hold such clear hopes for indirect discovery. 
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zn (Ae ĉapz(oZ o/ en(er(aznmen('' go eagy. 

XI 



Chapter 1 

Introduction 

1.1 Pre l iminar ies 

1.1.1 Motivation 

The work presented in this thesis is a detailed study of the low-energy 

phenomenology of a Supersymmetric(SUSY) model with an extended gauge group. 

The general aims of the work are to: 

# find an appropriate model to describe low-energy experimental data 

# discover regions of parameter space where the model predictions best match the 

present experimental bounds and measurements, 

# make predictions for unknown observable parameters such as the neutrino mix-

ing angle 1̂3, 

# probe the high-energy theory via Yukawa Unification, 

# investigate the impact of new measurements on the model's predictions, 



# study rare decays, their correlations and prospects as SUSY signals at the TeVa-

tron and LHC. 

1.1.2 Thesis Structure 

This thesis is organised as follows: in the remaining sections of chapter 1 we review the 

Standard Model(SM) of particle physics and discuss the prospects for the discovery 

of the Higgs boson. In chapter 2 we motivate the extension of this model through 

both theoretical and experimental concerns. Out of all the possible extensions of 

the standard model we focus on supersymmetry and the Minimal Supersymmetric 

Standard Model(MSSM). Details of recent experimental inconsistencies of the SM 

are presented in the form of neutrino mass and oscillation. This is then used to 

motivate the introduction of extra super-heavy neutrino states which can account for 

such observations. 

Chapter 3 is devoted to the construction of a working supersymmetric Pati-Salam 

model. We employ a analysis to determine the regions of parameter space which 

best ht the present low-energy experimental measurements. These fits are then used 

to make predictions for the unmeasured neutrino mixing angle, 1̂3 and the lepton 

Savour violating decay r —> //'y. The extent to which Yukawa unification is violated 

by our best fit points is also explored. 

In Chapter 4 we investigate the promising signal for supersymmetry that is the Savour 

changing neutral current process //jU. We find that the predictions of our 

model are right at the present experimental limit. It is shown that in the class of 

models we are studying it is quite plausible that a signal for this process and therefore 

supersymmetry will be found in the near future. 

Chapter 5 extends the work of chapter 4 to include lepton flavour violating Higgs 

couplings. We study the branching ratios for the Higgs-mediated contributions to 



the rare processes r/z, T —3// and their correlation to the related processes 

r — a n d Bg —////. 

Chapter 6 contains aji overview and conclusion to the whole thesis. At the end of the 

thesis there are a number of appendices and a bibliography. 

The contributions to the original work found in chapters 3, 4 and 5 undertaken by 

the author are as follows. The construction of the Pati-Salam model of chapter 3, in 

particular the choice of non-renormalisable operators and U(l) family charges, was 

undertaken in collaboration with Prof. S. F. King and Dr. T. Blazek. The numerical 

global analysis had been previously developed by Dr. T. Blagek. Together we 

incorporated a complete analysis of the neutrino sector into the numerical procedure. 

It waa then the authors responsibility to determine the model's best ht points as 

presented in chapter 3. The calculation of the branching ratio for 

T — 3 ^ and were undertajcen by the author and integrated within 

the numerical code. Studies of the impact of future experimental measurements and 

correlations of physical observables were also undertaken by the author. 

1.2 T h e S t a n d a r d M o d e l 

In this section we shall assemble the ingredients of the Standard Model(SM) of particle 

physics This model was proposed in the late 1960's and early 1970's and haa 

since been successfully verified by numerous accelerator experiments. The model 

encompasses Quantum Chromo Dynamics(QCD) and the unihed Electroweak theory 

of Glashow, Weinberg and Salam. After dehning the SM we shall continue to briefly 

explore some of its phenomenology and discuss the prospects for the discovery of its 

final pieces. 

^There are many excellent reviews of the Standard Model, see [1]. 



1.2.1 Definit ion of the Standard Model 

To completely define a gauge theory it sufhces to specify just three things, the gauge 

group, the particle representations and the symmetry breaking mechanism. Hence 

for the Standard model we have: 

• Gauge Group of the Standard Model 

The Quark model of Strong interactions developed by Gell-Mcinn and Zweig in 

1964 required the existence of colour: a new charge obeying an unbroken 

symmetry. The observed Electroweak interactions demand the existence of two 

massive vector bosons and a massless photon. These conditions are most simply 

satisfied by the spontaneous braking of a local gauge group 

Hence the combined gauge group of the SM is 

• Particle Representations: Matter content 

The SM contains 3 families of Quarks and Leptons with quantum numbers 

assigned as written in table 1.1. The left handed components transform aa 

6'(/(2) doublets and right handed components as 5'[/(2) singlets. This ensures 

that only the left handed quarks and leptons couple to the gauge bosons 

As the right and left handed fields transform in different 5'[/(2)2, representations 

a Dirac mass of the form, 

, (1-1) 

would break gauge invariance. Gauge invariajice also requires the gauge bosons 



Particles Spin ^(/(2)^ y / 2 

Left handed quarks, = (tf c(),\L 1/2 3 2 1/6 
Right handed up quarks, Ui/i 1/2 3 1 2/3 

Right handed down quarks, 1/2 3 1 - 1 / 3 
Left handed leptons, = (î  e)̂ .̂ 1/2 1 2 - 1 / 2 

Right handed electrons, e,\R 1/2 1 1 - 1 
Higgs bosons, = (ĉ '*', ^°) 0 1 2 1/2 

Gluons, g"(a = 1 . . . 8) 1 8 1 0 
Weak bosons, M/^(a = 1 . . . 3) 1 1 3 0 

Hypercharge boson, B 1 1 1 0 

Table 1.1: Matter content of the SM with associated 
quantum numbers. A family index, z = 1 . . . 3, has been included. 

of unbroken symmetries to be massless. This is clearly a problem as we observe 

both massive fermions and gauge bosons. The solution to this is to introduce 

a scalar doublet which is used to spontaneously break the gauge symmetry and 

simultaneously generate masses for both fermions and gauge bosons. This is 

known as the Higgs mechanism. 

• Spontaneous Symmetry Breaking: The Higgs mechanism 

If we consider a Lagrangian with a wrong sign mass term, 

£ 

where 

(1.2) 

(1.3) 

Here is an complex doublet with hypercharge y / 2 = 1/2 and 

is the covariant derivative, defined later in eq. (1.9). The scalar potential in 

eq. (1.3) has a minimum at, 

(^V) = (1.4) 

rather than at (̂  = 0 which is the caae if the mass term is of the correct sign. 

This minimum is invariant under 6'(7(2) rotations. Making use of this symmetry 



we can write the vacuum expectation value(VEV) of i;6 as, 

< cj) > = I I with t; = Y (1.5) 

By making a specific choice of vacuum the 6'[/(2)i, and (7(1 )y symmetries have 

been spontaneously broken. But as cj) is neutral the symmetry U{l)em is unbro-

ken with generator Q = + F/2. Expanding about the vacuum eq. (1.5) we 

can write, 

1 / 0 \ 
^ = —;= I where < > = 0, (16) 

V 2 ^ y 

the real scalar held is known as the physical Higgs boson. In eq. (1.6) we have 

chosen to work in the unitary gauge where the non-physical degrees of freedom 

are not explicitly present in (̂ . We shall revisit these non-physical degrees of 

freedom later in this chapter. Substituting eq. (1.6) into eq. (1.3) and using the 

expression for u in eq. (1.5) gives a Higgs potential, 

V{h) = -l^{v + hf + \(v + hY (1.7) 

= + (1.8) 

Notice that the physical Higgs held now has a mass term of the correct sign, 

772/1 = \ / 2 / i ^ = V \ / 2 \ . 

1.2.2 Gauge Boson Masses and Higgs couplings 

In order to determine the gauge boson masses and couplings we must take the same 

expansion, eq. (1.6), and apply it to the kinetic term in eq. (1.2). Doing so we find 



that, 

ID liY\ — d,-<^-YB,-,gw;r\<!, 

<JB,+gWl g(Wl-iWl) 

g{Wl+tW^J g'B,-gW'; 

+ 
1 

2' 
^ + 0 X 

(1.9) 

(1.10) 

(1.11) 

Here y / 2 = 1/2 is the hypercharge of and T" are related to the 5'f7(2) Pauli matrices 

as, T" = In eq. (1.11) the gauge Aelds have been combined to form the 

mass eigenstates, 

cos ty? - sin V 
, / 2 

v4̂  — sin + cos — 0. 

(1.12) 

(1.13) 

(1.14) 

Here we have defined the weak mixing angle aa the mixing angle involved in the 

change of basis from the weak eigenstates, 5 to the mass eigenstates, Z, A, with 

cos 9 

v ? fi'' 

, / 2 
sin 6,„ = 

g' 

•Jg' + 9'^ 
(1.15) 

This leads to the W, Z mass relation = m^cos^^M .̂ Hence it is the mixing 

between and that is responsible for the inequality in the W and Z maases. As 

a complex doublet ^ contains four real degrees of freedom, but we saw in eq. (1.6) 

that symmetry breaking leaves us with just one, A. As a consequence of symmetry 

breaking the other 3 degrees of freedom become Goldstone bosons and are "eaten" by 

the Z bosons as they become the longitudinal components of these now massive 

vector bosons. The first and second term of eq. (1.11) provide mass terms for the two 

gauge bosons, and Z, the final term shows that we are also left with one massless 

7 



neutral gauge boson, A^. The presence of one massless gauge boson means that the 

initial symmetry has been spontaneously broken to with the 

massless identified as the photon. Eq. (1.11) also arms us with Higgs couplings to 

the gauge bosons, these couplings are summarised in Table 1.2. 

We can now write the covariant derivative, D^, in terms of the mass eigenstates 

. 9 D, d,-i-^(w;:T* + w;T-) 

A, (T^ + (1.16) 

where ± iT"̂ . The application of eq. (1.16) to fermion kinetic terms, ^(z^)^, 

will give us fermion couplings to the gauge bosons. By inspection of the photon 

coupling in eq. (116) we can identify the electric charge e as. 

and the electric charge quantum number as, Q = -\- Y 

(1.17) 

h 

2/ 2v 

Table 1.2: 3-pt and 4-pt Standard Model Higgs couplings to the 
massive gauge bosons. 

So we have found that through the Higgs mechanism the SU(2)^(giU(l)y symmetry 

is broken to the U(l)em of electromagnetism. In doing so the gauge bosons have also 

acquired masses. But what about fermion masses? 



1.2.3 Fermion masses and the C K M Matrix 

Fermion masses can also be generated by the Higgs mechanism via a Yukawa coupling 

to the Higgs doublet written as, 

£,„k = - Y ; ' Q l , l , d , R - Y f Q l # u,R - Y ' i L l ^ e,n + h.c.. (1.18) 

Here we have defined the charge conjugate Higgs held aa 

= f ) (1.19) 
/ \ / 

Again expanding ^ as in eq. (1.6) produces both mass terms and Higgs couplings, 

^yuk — -my UjB - my + h.c. . , (1.20) 

where g ]^ote that eq. (1.18) contains no Yukawa term for the neu-

trinos, hence they remain massless in the SM. 

In general the quark Yukawa couplings are non-diagonal, here g = it, cf. Let us 

define the unitary matrices Vl and Vr as the matrices which diagonalise the hermitian 

combinations of the Yukawa couplings 

Y,Y; = Vi'(Vf")'Vt'» (1.21) 

and 

y^y, = (1.22) 

Here = (lia'g(2/i,2/L!/D, where, m? = mass eigenstates. The 

matrices therefore diagonalise the Yukawa couplings, such that, 

Y, = V l Y f - ' V l , \ (1.23) 



and define the change of basis between the weak eigenstates and the mass eigenstates, 

gjf, = ^ (1-24) 

with y « q,„ = q'l K/.f (L25) 

Eq. (1.25) shows that the mass terms and Higgs couplings are flavour diagonal in the 

basis . When changing basis the matrices will cancel out in all electroweak 

currents involving the gauge bosons and This is not true for those involving 

the gauge bosons which become, 

(1.26) 

here we have defined the Cabibbo-Kobayashi-Maskawa(CKM) [2] matrix as, 

(1.27) 

is a 3 X 3 unitary matrix and so contains 9 parameters; 3 real mixing angles and 

6 phases. It is very important to keep track of these complex phases and in particular 

to identify which are physical and which are not. 

Inspecting eq. (1.21) and (1.22) more closely it is clear that there is a phase freedom 

in the definition of the matrices Therefore we can make the transformation, 

Kr ^ KBPLR' (1-28) 

where 

and (1.29) 

with the guarantee that eq. (1.21) and (1.22) will still hold true. Ensuring that 

eq. (1.23) is still satisfied gives the constraint, and leaves us the freedom to 

pick the 6 phases, and % — . . . , 3. Applying the transformation in eq. (1.28) to 

10 



the CKM matrix, eq. (1.27), we find that 

(1.30) 

Hence it is possible to use the 6 phaaes ^ of to eliminate 5 out of 6 phases in 

leaving 3 real mixing angles and 1 physical phase. In the standard model the 

single phase, known as the Dirac phase, is the sole source of CP violation. 

1.2.4 Lepton Flavour Violation 

To carry out the same diagonalisation procedure for the leptons we start with the 

Yukawa coupling As before this can be diagonalised as, 

= (1.31) 

where = diag(^^, 1/2,2/3) with being the mass eigenvalues. As there 

is no neutrino Yukawa coupling Yl, we can define the change of basis, 

e " - i-i' = K / t ' V i (1.32) 

e /« _ i/etu J B - . (1-33) 

Again this will diagonalise the Yukawa coupling, 1^, and therefore the tree level 

mass matrix for the charged leptons. Notice that this t ime each component of the 

lepton doublet receives the same rotation and so unlike eq. (1.26) the matrices 

cancel completely from the theory. Therefore the SM is flavour diagonal in the lepton 

sector and so the lepton number of each generation is conserved. The experimental 

evidence for this conserved quantity is very compelling with the non-observation of 

Lepton Flavour Violation(LFV) at the level of Br(/i —> ê y) < 1.2 x 10"^^ and Br(// — 

3e) < 10-^^ [3]. 

11 



1.2.5 Higgs boson searches 

The only Standard Model particle left undiscovered is the Higgs boson itself. This 

section reviews much of the past and future experimental effort being devoted to 

the discovery of the Higgs boson. The case for the existence of a light SM Higgs is 

presented and the prospects for its discovery in the near future are discussed. 

The very fact that the Higgs couples to fermions and gauge bosons with a coupling 

strength proportional to the mass of that particle makes it a particularly elusive 

creature. It couples strongly to the heaviest quarks, which are highly unstable, but 

couples weakly to the readily available light quarks and leptons. 

8001 I I I I I I I I I I I I I 

600 

I 
400 

200 

Hit = 175 GeV 

10̂  10® 10® 10̂ ^ 10̂ ^ 10̂ ® 
A [GeV] 

Figure 1.1: Upper and lower Higgs mass bounds as a function of 
the cutoff, A [4], 

The experimental determination of the Fermi constant, fixes the value of the 

Higgs VEV as, 

(1.34) 
\ /2 

9 
8m^ 

1 

so that t; — 247 GeV. This also restricts the allowed values of the physical Higgs 

mass, rrih = f \ / ^ , to be a few hundred GeV. The self interaction coupling A has a 

12 



Renormalisation Group Equation(RGE) of the form, 

27r̂  
(1.35) 

with being the top Yukawa coupling. Hence for lajge values of A(MM:) the coupling 

diverges aa the energy scale increases. In order to avoid this problem we must dehne a 

cutoff for the theory. If we want this cutoff to be at a particularly high scale, say the 

Planck scale, then we must have a small value of corresponding to ^ 200 

GeV. Conversely for the theory to be valid up to the 1 TeV scale then we can have 

a larger \{Mw) corresponding to ruh ̂  600 GeV. Therefore for a given cutoff scale A 

there is a maximum for which A(A) is finite. 

On the other hand, for small values of and therefore the negative contri-

bution from the top Yukawa coupling will drive A negative, resulting in an unstable 

minimum. Hence we are forced to define a cutoff at the point where A changes sign. 

So for any given cutoff A there is also a minimum value for A(MMr) for which A (A) > 0. 
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Figure 1.2: Branching ratios for the dominant Higgs decay channels 
as a function of the Higgs mass [4]. 
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These conditions provide theoretical upper and lower bounds for X{Mw), and there-

fore nihi as a function of the theory's cutoff(A) see fig. (1.1). We see that the larger 

the cutoff of the theory the more constrained the Higgs mass becomes, with A -4- Mpi 

implying a range rrih = 130 — 180 GeV, the so called desert scenario. 

80.6 "I—I—I—I—I—I—I—I—r 
— LEP1, SLD Data 

> Q) 
(D 

80.5 

80.4-

• LEP2, pp Data 

68% CL 

80.3-

80.2 

[Ge) 
114/300/100C 

130 150 170 190 210 

Preliminary 

m, [GeV] 

Figure 1.3: Direct (dashed line) and indirect(solid lines) measure-
ments of Mw and [5]. 

Direct Higgs searches at LEP were based primarily on the Bjorken process, 

e+e" Z Z -I- /i, (1.36) 

with the Higgs decaying dominantly into bb for rrih < 2Mw and into WW for m/j > 

2Mw-, as shown in fig. (1.2). Unsuccessful Higgs searches at LEP have resulted in the 

limit rrih > 114.1 GeV. 

It is also possible to find clues for the mass of the SM Higgs through indirect observa-

tions. Quantum corrections to the Z and W boson mass relation, = M^cos^Bw, 
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t h e o r y unce r ta in t y 
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Figure 1.4: Plot of from a global fit to precision data against 
the Higgs boson mass. The solid curve shows the results of the fit 
with estimated theoretical errors shown as the shaded band. The 
vertical band represents the 95% C.L. exclusion limit on mh from 
direct searches and the dashed curve represents the sensitivity to a 
change in a{Mz) [5]. 

COŜ  6w [1 + <̂ top + <̂ Higgs] • (1.37) 

The top quark correction, ^top, is quadratically dependent on the top mass, whereas 

the Higgs correction, (̂ Higgs, is only logarithmically dependent on the Higgs mass. 

Therefore eq. (1.37) is particularly sensitive to the top mass. At LEP I, before the 

discovery of the top quark, the top mass could be inferred from eq. (1.37) using 

measurements of Mw and Mz- The discovery of the top quark and the accurate mea-

surement of its mass at the TeVatron means that the Higgs corrections in eq. (1.37) 

can now be probed. The Z boson mass is particularly well known and so it is possible 

to examine the dependence of Mw upon rrit and m/j, see fig. (1.3). Both the direct and 

indirect Icr regions shown in fig. (1.3) agree that a light SM Higgs boson is preferable. 
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The rrih dependence of the LEP Electroweak working group's SM global fit is shown 

in fig. (1.4), they deduce a 95% C.L. bound of m/j ̂  170 GeV. Combined with the 

lower bound from direct searches this hints that the SM Higgs should be just around 

the corner. 
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Figure 1.5: Higgs production cross-sections at the LHC [4] 

The present expectation is that the Higgs boson will be found at either the TeVatron 

or LHC. At these hadronic niachines Higgs production is dominated by gluon-gluon 

fusion through a top loop. The other main production processes and their cross-

sections are summarised in fig. (1.5). In the region A —-yy is the 

cleanest decay channel but it suffers from a small branching ratio, see fig. (1.2). For 

m/i > the channel A — Z Z —> becomes important. The planned 

searches at the LHC could discover a SM Higgs with mass up to 1 TeV. 
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1.3 Conclusion 

In this section we have introduced the basic components of the Standard Model. 

The Higgs boson plays a major role in this model, it allows the gauge bosons and 

fermions in the theory to acquire masses through the breaking of the local gauge 

symmetry. Yet this most important particle is the only piece of the SM which has 

eluded experimental discovery. This situation is set change in the near future as the 

next generation of hadron colliders begin to record data. 
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Chapter 2 

Extensions of the Standard Model 

The Standard Model is a very successful theory which has been found to be in won-

derful agreement with experimental measurements. It is clearly incomplete though as 

it doesn't incorporate gravity. Neglecting this, there are a few theoretical and exper-

imental hints that the introduction of some new physics is desirable. The following 

sections will explore some of the problems of the Standard Model ajid their proposed 

solutions. Firstly we examine supersymmetry as a cure for the "Hierarchy Problem". 

We shall also see that supersymmetric theories are well motivated through the ideas of 

gauge coupling unification and radiative electroweak symmetry breaking. We then go 

on to discuss the minimal supersymmetric extension of the SM known as the MSSM. 

At present the only concrete evidence for physics beyond the standard model comes 

from the recently confirmed phenomenon of neutrino oscillation. Such oscillations re-

quire the neutrino to have mass, but this mass must be no larger than 0.23 eV^, 2000 

times smaller than the electron mass. An explanation for the neutrino's tiny mass is 

then presented in the form of right-handed neutrinos and the "see-saw mechanism". 

^This limit comes from the 2dF Galaxy Redshift Survey [6] and the resent WMAP results [7]. 
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2.1 S u p e r s y m m e t r y ( S U S Y ) 

Supersymmetry(SUSY)^ is an extremely elegant theory which unites fermions and 

bosons. For every Standard Model fermion supersymmetry introduces an associated 

boson, known as a sfermion, with identical gauge quantum numbers. Supersymme-

try extends the 4 bosonic dimensions of space-time with the addition of 4 fermionic 

dimensions. These Grassmann coordinates allow the Coleman-Mandula no-go the-

orem to be evaded and the space-time Poincare group to be extended to include 

supersymmetry. Local SUSY also offers the inclusion of gravity and indeed it is a 

vital ingredient in Superstring theory, although low-energy SUSY is not a necessary 

consequence of such a theory. 

2.1.1 The Motivation for low-energy supersymmetry 

A brief discussion of the main motivational points for the introduction of weaj( scale 

supersymmetry is now given: 

e The Hierarchy Problem 

In the Standard Model the mass of the photon is protected from radiative correc-

tions by the exact (7(1) gauge invariaiice of QED. The broken chiral symmetry 

protects the electron mass by ensuring that any radiative correction is propor-

tional to the mass of the electron. Unfortunately the SM does not possess a 

similar symmetry to protect the physical Higgs mass from radiative corrections. 

Therefore the contribution to the Higgs self energy from a fermion loop, as 

shown in fig. (2.1), will produce a quadratic divergence. 

Consider a fermion-Higgs coupHng, — Then evaluating the diagram 

^The literature contains many fine reviews of supersymmetry some of which are listed in [8, 9]. 
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/ 

/ 

Figure 2.1: A fermion anti-fermion contribution to the Higgs self 
energy in the Standard Model. 

shown in fig. (2.1) at zero external momentum gives, 

< , ( 0 ) = -27V(y)A^ / + 
2my 

m 2\2 
(2.1) 

Here the electroweaJt symmetry breaking identity, ^ = (i; + /^)/\/^; has been 

used and N ( f ) is a multiplicity factor, e.g. for quarks N ( f ) = 3 due to colour. 

The first term of eq. (2.1) is clearly quadratically divergent. Completing the 

integration by introducing a momentum space cutoff A shows this explicitly, see 

eq. (2.2). 

IGvr̂  
-2A^ + 12my In + (2.2) 

The problem here is that if we want the cutoff of the theory to be at the level 

of or Mpf, then the correction in eq. (2.2) will be 30 orders of magnitude 

larger than the physical Higgs mass. In order to preserve < 1 TeV, as we 

saw in section 1.2.5 that it must be, requires fine tuning at the level of 1 part 

in 10̂ ^ at all orders of perturbation theory. This is known as the "hierarchy 

problem" . Essentially the problem is that there is no explanation in the SM 

for the ratio Mpi/Mw-

One possibility is to introduce a pair of complex scalars, with couplings to 
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Figure 2.2: Sfermion contribution to the Higgs self energy with 
/ = A, A-

the Higgs boson as follows, 

(2.3) 

The Lagrangian in eq. (2.3) leads to Higgs self energy contributions as shown 

in hg. (2.2). Again evaluating these contributions at zero external momentum 

we And, 

4kW = -hmf) J i'k 

+ {^ivyN(f) j d'k 

+ \\!A,\-'N{f) f i f k 

1 1 + 
— m ; 

jl jr-

1 1 

II, Ir 
1 

— m; ) ( 
IlJ V jr 

(2.4) 

The first line of eq. (2.4) comes from the evaluation of diagram (o) in fig. (2.2), 

once again we find that it contains a quadratic divergence. The second and 

third lines represent the evaluation of diagram (6) in fig. (2.2). Comparing the 

first line of eq. (2.4) with eq. (2.1) we see that the quadratic divergencies can 
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be arranged to cancel if, 

7 v m = % ) = % ) (2.5) 

\ f = —X̂ j. (2.6) 

The total Higgs mass corrections, eq. (2.1) and (2.4), can be made to cancel 

completely by requiring the additional conditions, 

Af = 0, mj^=mj^ = mf. (2.7) 

This result hints that there is an additional symmetry, 5'upergymme^ry, which 

protects the Higgs mass against radiative corrections. The condition eq. (2.6) 

shows the efSciency of supersymmetry with vertices for both the fermions and 

bosons being defined with the single coupling Ay. 

A particularly nice feature of SUSY is that if the condition of equal masses in 

eq. (2.7) is violated by some small amount, = my — m/, then we And that 

the radiative corrections will be proportional to Therefore, provided that 

is small, the Higgs mass will remain stabilised against radiative corrections. 

The same cannot be said for the dimensionless couplings with, e = Ag — |Ay|̂ , 

leading to a quadratic divergence. 

• Gauge Coupling Unification 

It is a common theoretical belief that the gauge group of the Standard Model 

should be embedded at high energy in the gauge group of a Grand Unified The-

ory(GUT). Examples of the possible GUT group are 5'[/(5), Eg, and 5'0(10). In 

such a theory the three gauge couplings of the SM are unihed into a single gauge 

coupling. The scaling of the SM couplings with energy scale ^ is described by 

renormalisation group equations, eq. (2.8), which allow the extrapolation of the 
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Figure 2.3: Gauge coupling evolution in the SM derived from solv-
ing the 1-loop beta functions, Here = g'^/47r, 
the index a refers to the three groups U(l), SU(2)x, and SU(3)c. In 
the standard model the coefficients ha are, = ( | i , — — 7 ) . 

high energy couplings from the measured weak scale values, see fig. (2.3). 

= A- (2-8) 

In eq. (2.8), gi, with i = 1,2,3, represent the three standard model gauge cou-

plings and the functions /),- come from quantum corrections to these couplings. 

Fig. (2.3) clearly shows that there is no single point at which the three SM 

couplings converge. On the other hand the additional particle content of a su-

persymmetric extension of the Standard Model results in the modification of the 

/^-functions of eq. (2.8). Examining the minimal extension, the Minimal Super-

symmetric Standard Model(MSSM) (see section 2.2), we find that the couphngs 

do in fact approximately unify, see fig. (2.4), at a GUT scale of 10̂ ® GeV. Hence 
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there is a real possibility of embedding the SM within a supersymmetric grand 

unified theory. 
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Figure 2.4: Gauge coupling evolution in the MSSM. As in fig. (2.3) 
this is derived from the solution of the 1-loop beta function with 
the coefficients, = ( y , 1, —3). For simplicity the SUSY (3 
functions have been assumed to be active down to the weak scale. 

• Radiative Electroweak Symmetry Breaking 

An additional advantage of supersymmetric theories is that they can provide a 

theoretical explanation for the negative Higgs mass which initiates electroweak 

symmetry breaking via the Higgs mechanism. Radiative corrections to the 

Higgs mass, are dominated by top and stop loops. Corrections from RGE 

evolution from the GUT scale down to the weak scale drive negative and 

thus kick start the Higgs mechanism. 
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2.1.2 SUSY Algebra 

We have seen in section 2.1.1 that the Higgs 2-pt function 7r/,/i(0) can be made to 

vanish exactly due to the addition of new bosonic fields. We claimed that this hinted 

at an additional symmetry. We would like to explore this new symmetry, in particular 

its Algebra, generators and the space in which it lives. Eq. (2.5) and (2.7) tell us 

that this symmetry must connect equal numbers of bosonic and fermionic degrees 

of freedom of equal mass. Also eq. (2.6) suggests that there should be a connection 

between boson and fermion Lagrangian interaction terms. Hence the generators, Q, 

of this symmetry coimect fermions and bosons, see eq. (2.9) and therefore must be 

spin-^. 

QI Fermion > = [Boson > 
(2.9) 

QI Boson > = I Fermion > . 

The simplest choice of generators are 2-component Weyl spinors Q and Q obeying 

the anti-commutation relations: 

{Qa, = (2.10) 

{ 0 , , = and = [0^, = 0. (2.11) 

Here the indices a, and 6, take the values 1 or 2, cr'' = (l,(7'i) with being the 

Pauli matrices, and is the translation generator. The dot above the Q indices is 

a reminder that Q and Q transform under different representations of the Lorentz 

group. See appendix B for a review of the 2-component Weyl spinor notation. The 

anti-commutators and commutators in eq. (2.10) and (2.11) imply the extension of 

space-time and the Poincare group with supersymmetry to become superspace and 

the super Poincare group. 

It is convenient to work with the superspace coordinates, {x'', ^}, where 6, 6 are 2-
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component anti-commuting Grassmann coordinates, i.e. {^, 0} = {d, 9} = {6^ 0} = O. 

A general superspace translation can therefore be written as 

%(?/, e, e) = (2.12) 

Here, e, (e) parameterises an infinitesimal SUSY translation dne to Q (Q) in the same 

way that ?/ parameterises the infinitesimal space-time translations due to This 

SUSY transformation acts on which are functions in superspace, $(z, ^). 

Consider the effect of left multiplication by a supertranslation generator, Gs(e, e), on 

an arbitrary superspace element n(z, = exp% [— 

%(e, e)n(a;, = exp* [eQ + eQ] expz + ^0] 

= n g + e, g + e) . (2.13) 

In reaching the Anal line we have used HausdorE's formula, e'^e^ = gA+g+ [̂A,B]+...̂  

and the anti-commutation relations in eq. (2.11). Therefore the action of the super-

translation Gg(e, e) results in the coordinate variation, 

(2.14) 
59 = e, 59 = e. 

From the coordinate variations we can deduce that the SUSY generators take the 

form, 

Qa — 06 — "I" (2.15) 

It is now convenient to define a SUSY covariant derivative which anti-commutes with 

the SUSY generators, 

D . = A D, = - ^ + i i e a - ) A . (2.16) 
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Hence the SUSY covariant derivatives obey the anti-commutation relations, 

{D. , = D^} = 0 (2.17) 

= (2.18) 

0/3} —{^6, = {^c , O/3} = = 0. (2.19) 

Notice that both (Q^)^ = and (Da)^ = Therefore SUSY covariant deriva-

tives commute with superspace translations; %(e, e) (Da$) = (Gg(e, e)$), and 

Gg(e, e) (Da$) = Da (%(e, e)$). Therefore a condition such as, = 0 or 

^ 6 $ = 0 is SUSY invariant. 

A general scalar superheld, $(z , ,̂ ^); is a scalar function in superspace. Owing to 

the Grassmann nature of ^ and a Taylor series expansion in these coordinates will 

have a Anite number of terms as shown in eq. (2.20). 

$(a;, ^) — /(a;) -|- <̂̂ (a;) + ^%(z) + ^^m(z) + ^^^(a:) 

+ g(7''gu (̂a;) + (gg) gA(3;) + g^(z) + ĝ g"(Z(a7). (2.20) 

Clearly, î (a;), %(a;), A(a;), ^(z) are all fermionic fields, /(a;), m(a;), n(a;), (/(a;) are 

complex scalars and ^̂ (̂a;) is a complex vector held. We now proceed to describe two 

irreducible superfield representations; Chiral and Vector superfields. 

The Chiral Superfield 

Enforcing the SUSY invariant condition, 

D«$(a;, g, g) = 0, (2.21) 

^Recall that 
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onto this general scalar superAeld deimes a chiral superfield, and likewise the condition 

= 0, (2.22) 

defines an anti-chiral superfield. We notice that 

= 0 

and 

Da!/'' = = 22(^cr'')6, 

(2.23) 

and so it will be convenient to change variables to, + i6a^6 and = 

Eq. (2.23) implies that $ = $(i/, )̂ is independent of ^ and $ = $(^, ^) 

is independent of Therefore the component expansion of the chiral superAeld $ 

and the anti-chiral superfield $ now become particularly simple, 

$(!/, )̂ = 42/) + ^^^^(3/) + ^^^(l/) (2.24) 

$(^, g) = ,̂ *(̂ ) + \ ^ # ( ^ ) + MF*(^), (2.25) 

or written as a Taylor series expansion in terms of x, (9 and 

$(?/, g) = [(^(z) + 2(̂ (T^ )̂g (̂;6(z) - (̂̂ (7^ )̂(̂ cr'" )̂̂ ^^ (̂;6(z)] 

+ [\/2g^(j:) + \/2z(g(7/'g)a^(g^(3;))] + ggF(z) 

0t(^, g) = [ f (3=) - 2(^(T/'g)a^(^*(z) - |(g(7^g)(^(T''g)a^a,(^*(j;)] 

+ [V2g^(3;) - ^%(^(7''^)a^(g^(z))] + ^^F*(a;). 

(2.26) 

Physically these fields describe a complex scalar a Weyl fermion ^ and an auxiliary 

complex scalar field F used to ensure that the number of fermionic and bosonic degrees 

of freedom match on and off-shell. Therefore chiral snperfields can be used to describe 

the 3 generations of fermions and the Higgs boson of the standard model. 
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It is clear from eq. (2.14) that the spinor ^ haa mass dimension — Assuming that 

the scalar field has mass dimension +1, then must have mass dimension and 

F has +2. 

Applying the SUSY generators Q, Q to the chiral superfield $ it can be easily shown 

that the components of $ must transform as, 

= \ /^ E ^ (boson —fermion) 

e F + (fermion —> boson) (2.27) 

= — ( f — > ^ total derivative). 

Notice that the component field F, which is accompanied by the majcimum allowed 

number of ^'s in the superfield expansion, transforms as a total derivative. 

The Vector Superfield 

To describe the spin-1 gauge bosons of the standard model we must introduce vector 

superfields. A vector superfield V is constrained to be self conjugate, 

y(a;, ^) = y^(z, g, ^). (2.28) 

This leads us to the representation, 

y ^1 + C + [M + 

+ j X - [M - zTV] 

(2.29) 

Here, C(a:), M(a;), #(a;) and D(a;) are real scalars, %(a;), A(a;) are Weyl spinors, and 

A''(a;) is a vector field. We would like to describe a gauge boson and so y , and 

therefore each component of y , must transform in the adjoint representation of the 

gauge group. 
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We can write the supersymmetric version of a non-abelian gauge transformation of a 

vector superfield y as, 

where, A(3;, ^), is a chiral superfield and ^ is the gauge coupling. The chiral 

superfield A contains 4 bosonic and fermionic degrees of freedom. This means that it 

is possible to choose a gauge, called the Wess-Zumino gauge, in which the scalars C, 

M, TV ajid the spinor % are eliminated from eq. (2.29). This leaves us with only the 

last line of eq. (2.29) and so contains a vector field an adjoint spinor A and 

a real scalar D, see eq. (2.31). In this gauge we are still left with one bosonic degree 

of freedom which corresponds to the usual gauge freedom. 

^ (2.31) 

If we assume that the field has mass dimension +1 this implies that the fermion 

A has mass dimension + | and the field D has mass dimension +2. 

In the Wess-Zumino gauge every term of the vector superfield contains at least one 

factor of ^ or therefore the only non-vanishing power of is, 

= 0, for n > 2. (2.32) 

It is useful to notice that the auxiliary field D transforms as a total derivative, 

= -ê r'̂ a^A + ea'̂ a^A. (2.33) 

Having introduced the concept of chiral and vector superfields $ and y we would now 

like to construct an action out of them which is invariant under SUSY transformations. 
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2.1.3 Constructing a SUSY invariant Act ion 

In this section we would like to construct a Lagrangian which leads to an action that 

is invariant under SUSY transformations, i.e. 

= (2.34) 

For eq. (2.34) to be satisfied it is enough that the Lagrangian /I transforms as a total 

derivative. It is very useful to notice that the superfield components with the largest 

number of ^ and ^ factors do indeed transform as total derivatives, see eq. (2.27) and 

(2.33). Therefore we can write an action, 

^ , (2.35) 

where the procedure of integration over Grassmann variables is identical to the action 

of differentiation, see appendix A. In eq. (2.35) we have used /If and /If) respectively 

to denote general chiral and vector superfields. The subscript reminds us that the 

Grassmann integration will leave only the auxiliary held components F and D. We 

would now like to find all Lagrangian contributions to Cp and Cd-

Products of (ajiti)chiral superfields are themselves (anti)chiral superfields, hence /If 

can contain a product of chiral superfields. From eq. (2.24) it is straightforward to 

deduce that the product of two chiral superfields will provide fermion mass terms 

and the product of three chiral superfields will have Yukawa type interactions as the 

highest order components. Explicitly we can write the "F-terms" of these products 

as, 

= (2.36) 

— + V'lV'2 (2.37) 
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The hermitian conjugate of a chiral superfield is an anti-chiral superfield 0^ = As 

in eq. (2.26) we can write this anti-chiral superfield ag aJi expansion in a;, This 

means that a contribution to /Ig coming from the product of a chiral superfield with 

its hermitian conjugate will yield, 

+ FF* — + (total derivatives). (2.39) 

Clearly eq. (2.39) contains kinetic energy terms for the scalar component and the 

fermionic component but not for F. Therefore the Aeld F does not contain propa-

gating degrees of freedom and so this auxiliary field can be eliminated by its equation 

of motion. An on-shell chiral superfield $ then has two physical bosonic and fermionic 

degrees of freedom and so F ensures that this number is balajiced both on and off-

shell. This can be made explicit by examining the following 

M^($,) - (2.40) 

A term like is not allowed to enter the superpotential as it is self-conjugate and is 

therefore a vector superfield. Therefore W mustn't contain any anti-chiral superfields 

and only chiral superfields, in other words the superpotential is an analytic function. 

Here are chiral superfields and are constants with mass dimension, 2, 

1, 0 respectively. An implicit sum over repeated superfield indices is also assumed. A 

product of superfields is itself a superfield, hence is a chiral superfield and so its 

term will transform as a total derivative. Therefore ty may constitute a Lagrajigian 

term of a SUSY invariant action. 

With the aid of the superpotential we can summarise the Lagrangian terms of eq. (2.36)-

(2.39) in the compact form. 

/: = / + ^ ( $ , ) + A.c. (2.41) 
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The superpotential W{^i) is a function of superfields, + \/26ijji + 99Fi. It 

will be useful to Taylor expand about the scalar field eq. (2.42). 

The partial derivatives of the superpotentiai, aPK _ 9M: 
d(f)i 9^1" 

and 

(2.42) 

, are 

evaluated at the point about which the expansion is taken, namely the scalar held 

The Taylor expansion in eq. (2.42) now becomes very useful in simplifying the La-

grangian of eq. (2.41). The integration over will pick out only the final line in the 

Taylor expansion. We may also make use of eq. (2.39) to write, 

+ 
1 a w , , ^ ' 

f — - _ , _ , + m.c. 2 
(2.43) 

Again an implicit sum over repeated indices is assumed. As the fields Fi have no 

kinetic term in eq. (2.43) they have a particularly simple equation of motion. 

0 => f . = - (2.44) 

which can be used to eliminate these auxiliary fields from the Lagrangian. This then 

leads us to the SUSY invariant action. 

5 
1 , , 

h.c. I — 
2 " 

(2.45) 

Here, contains the kinetic terms for the scalar ^ and 

fermion Recall that the partial derivatives of the superpotential are evaluated 

at the scalar fields This leads us to the observation that the scalar potential is 
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determined by, 

Vf 
^ 4 

(2.46) 

So far the only "D-terms", i.e. terms with a factor, we have explored are 

This is the simplest choice of Kahler potential, K{^\^ $^), where K is real. We shall 

not consider any more complicated Kahler potentials here. Gauge-matter interactions 

can be accomplished by a SUSY version of the familiar "minimal coupling", 

g 2ay ̂  _ y (1 + 2^ $ 

+ | f I". (2.47) 

In the first line of eq. (2.47) we have expanded the exponential in powers of the vector 

superfield in the Wess-Zumino gauge, which has only two terms, see eq. (2.32). 

To arrive at the final line we have made use of the Taylor expansion of $ and 0^ shown 

in eq. (2.26) and the identities found in appendix B. We have also introduced the 

gauge-covaricint derivative, D,̂  — where g' is the gauge coupling. We write 

the gauge field as T^, and in the same fashion A = A" T^ and D = D" T,,, 

where T^ are the gauge generators. The Lagrangian terms in eq. (2.47) therefore not 

only introduces interactions of matter fields with gauge fields, but also gauge strength 

Yukawa-like interactions between fermions-sfermions-gauginos. These additional in-

teractions include things like IVzno and interactions. 

Finally we would like to include a kinetic energy term for the gauge fields. This can 

be done be introducing the superfield, 

e-^^ D«e^^, (2.48) 
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Da ajid again being the SUSY-covariant derivatives. Here is a chiral snperheld 

ag = 0. Hence the component of the product may contribute to a 

SUSY invariant action. 

32^ 
o 

+ "t" . (2.49) 

Here, + % [A,̂ , A^], are usual field strength tensor for the gauge 

fields, Notice that in addition to the usual kinetic term for the gauge fields, 

we also get a kinetic term for the gauginos A,, and a coupling of the gauginos 

to the gauge fields. Note that eq. (2.49) does not contain a kinetic energy term for 

the field D and so we are again able to eliminate this field from the Lagrangian. The 

equation of motion for this field can easily be determined from eq. (2.47) and (2.49) 

to be, 

= 0 => = (2.50) 

Using this equation of motion we can now substitute eq. (2.50) into the second term 

of eq. (2.49) and the third term of eq. (2.47). These terms now give a contribution to 

the scalar potential, 

VD = \\9<i>lVi4>,\\ (2.51) 

here there is an implicit sum over the indices j and a. So far we have dealt only with 

the supersymmetry conserving lagrangian terms. As it is clear that supersymmetry 

is broken we must also look at possible SUSY breaking contributions. 
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2.1.4 Soft S U S Y Breaking Lagrangian 

In previous sections we found that in supersymmetric theories the masses of fermions 

and their super-partner bosons are identical. Clearly nature doesn't reflect this as 

no superpartner has ever been discovered. Hence supersymmetry must be a broken 

symmetry. Therefore any realistic model must have a Lagrangian which is invariant 

under supersymmetry, but a vacuum which is not. It is very interesting to notice that 

the SUSY algebra eq. (2.11) acting on a momentum eigenstate |p) can be written as, 

{ 0 « , % } | p ) = 2 | I |p). 
Pi + %P2 PO - P3 , ^ 

The energy of the state |p) is given by po and so. 

Polp) = ^ 1^1? 01 j + 1^2, 02 j \P)-

(2.52) 

(2.53) 

We can then interpret this as the Hamiltonian, and take the expectation value of a 

state 1 )̂ which is given by a sum of squares, 

^ + IIQilV')!!̂  + ^ o. (2.54) 

If the vacuum state |0) is supersymmetric then the vacuum has zero energy aa it is 

annihilated by the supercharges. But if the vacuum state is not ajinihilated by at least 

one SUSY generator then we have a positive vacuum energy and so supersymmetry 

is spontaneously broken if the vacuum energy is positive. 

Let us assume that supersymmetry is broken by the VEV of some scalar particle. 

The scalar potential contains two pieces, aa mentioned in eq. (2.46) and (2.50), so we 
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have, 

+ T l * " T ; i * r , (2.65) 

where / labels the gauge group. Again we see that y > 0 and so supersymmetry is 

broken by either (§^) 7̂  0 (''F-term" breaking) or ^ 0 

("D-term" breaking). 

There is a problem in the spontaneous breaking of supersymmetry by F-terms and 

D-terms. There exists a sum rule for the tree-level squared masses of the scalars and 

fermions, 

TrM^ = 2TrM^. (2.56) 

Where Mg are the masses of the scalars and My are the masses of the fermions. If 

supersymmetry is unbroken then eq. (2.56) follows naturally from the mass degeneracy 

of complex scalars and their Weyl fermion superpartners. This relation still holds at 

tree-level even when supersymmetry is broken by F or D-terms. This sum rule is 

incompatible with phenomenology because it suggests that the sfermion partners 

of the standard model fermions should be lighter than the known fermions. The 

favoured solution to this problem is to have SUSY breaking occur indirectly through 

the breaking of SUSY in some "hidden sector". The term hidden means that its 

particles share no(or very small) direct interaction with those of our own "visible 

sector". Supersymmetry breaking is communicated from this "hidden sector" to the 

"visible sector" through some shared interactions, e.g. gravity. In this scenario the 

sum rule of eq. (2.56) no longer holds and so a realistic model can be constructed. 

The exact mechanism of supersymmetry breaking is aa yet unknown. However it is 

very useful to pass over this complication and simply introduce extra terms which 

break supersymmetry explicitly. As we saw in section 2.1.1 these extra terms should 
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only contain couplings of positive mass dimension and must "softly" break supersym-

metry in order to maintain the solution to the hierarchy problem. It has been shown 

[10] that the most general soft SUSY breaking Lagrangian may include, 

e scalar squared maases: — 

# trilinear scalar interactions: — 

# gaugino masses: — 

# bilinear terms: — + /t.c. 

# gauge singlet linear terms: — 

This completes our discussion of the construction of a SUSY invariant Lagrangian. 

We are now ready to construct a realistic example. 

2.2 T h e Min ima l Super s y m m e t r i c S t a n d a r d M o d e l 

We would now like to study a realistic supersymmetric theory, that is a model with 

broken SUSY which also satisfies all phenomenological constraints. The Minimal Su-

persymmetric Standard Model(MSSM)^ represents the simplest realistic SUSY model. 

This model is a straightforward supersymmetrisation of the standard model. The 

gauge group is not extended beyond the 5'[/(3)c (2) gi Z7(l)y of the standard 

model. Also the minimal number of superfields have been introduced. As the fermions 

and gauge bosons of the standard model reside in different representations of the gauge 

group they cannot be contained within the same superfield, e.g. the component field 

A within Vwz of eq. (2.31) cannot be identified with a quark or lepton field. This 

means that we require 5 superfields for each generation, see table 2.1. In addition 

^See reference [9] for other reviews of the MSSM. 
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Particles Spin 0 Spin 1/2 5'(7(3), y / 2 

squarks, quarks 

3 

3 

2 

1 

1/6 

- 2 / 3 
3 1 1/3 

slepton, lepton 
u = ( £ ) 

— % 
i : ) 

1 

1 

2 

1 

- 1 / 2 

1 

Higgs, Higgsino 

f ) 

1 

1 

2 

2 

1/2 

- 1 / 2 

Table 2.1: Quarks, leptons and snperpartner squarks and sleptons 
of the MSSM with associated Gsm gauge quantum numbers. A 
family index, i = 1 . . . 3, has been included. The notation here is 
that / — ̂  is the scalar superpartner of the left-handed fermion 

and is the scalar partner of the right-handed fermion 

/a-

vector superfields are required for the eight 5'(y(3)c gluons, three 6'(7(2)f, IV bosons 

and the single [/(l)y B gauge held. These superhelds are listed in table 2.2 which 

also lists their fermionic superpartners; eight gluinos three Winos and a Bino 

B. 

Particles Spin 1/2 Spin 1 5'[/(2)^ y/2 
gluino, gluon g" 9" 8 1 0 

Winos, W bosons 1 3 0 
Bino, B boson B B 1 1 0 

Table 2.2: Gauge bosons and superpartner gauginos of the MSSM 
with associated GgM gauge quantum numbers. With indices, a = 
1 . . . 8, a = 1 . . . 3. 

Table 2.1 highhghts the doubling of the Higgs sector aa a signiAcaJit extension of the 

SM Higgs sector. We would like to break the gauge group with an 5'[/(2)f, scalar 
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doublet with |y | = 1. If we had a single Higgs doublet, as in the standard model, 

then there would be problems with triangle anomalies. In the standard model the 

trace over the quantum numbers of a complete fermion generation vanishes. 

In the MSSM we must also worry about higgsino contributions to such an anomaly 

and so we are required to have two Higgs doublets, 

I I with y / 2 = + 1 / 2 (2.57) 

ffO 
= I ' ' I with y / 2 = - 1 / 2 . (2.58) 

Two Higgs doublets are also required due to the superpotential being analytic and so 

we cannot use the conjugate of a single Higgs doublet to generate up quarks masses 

as we do in the standard model, see eq. (1.18). 

We would now like to determine the interactions present in the MSSM. As we saw 

in the previous section the interaction terms of the SM fermions and their scalar 

partners are determined by the superpotential. The superpotential of the MSSM is, 

M/'MSSM = (2.59) 

Here the multiplication of doublets, HuQ = CabH'̂ Q̂  = — H^ul, is defined 

by the tensor Ei; = —E21 = +1, with 0,6 = 1,2. The matrices g are Yukawa 

couplings with the generation indices = 1. . .3. Importantly the superpotential 

in eq. (2.59) respects the lepton and baryon number symmetry. Unfortunately these 

symmetries are not necessarily obeyed as they must be in the standard model and 

only emerge here due to the choice of superpotential. 

With this superpotential, eq. (2.59), we can derive interaction terms for the sfermions 

from F and D-term Lagrangian contributions as written in eq. (2.55). The F-term, 
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2 

, generates 3 and 4-pt scalar interactions. For example the Higgs //-term and 

the Yukawa couplings combine to yield 3-pt interactions of the form, 

and The D-term, eq. (2.51), contribution can be written 

as, 

VD = \DtD1 = i {DyDY + -DJB- + , (2.60) 

with Df =,g,{4,'Tt<l,) 

where the index a labels the generators of the group Z, with an implicit sum over 

both. It is straightforward to determine that, 

Dg = ^ (2.62) 

Dg = P3 . (2.63) 

Here and T'̂  represent the generators of 6'[/(2) and 6'C/(3) respectively. It is clear 

from eq. (2.60-2.63) that, in the event of acquiring their VEVs, Dy and Dg 

will contribute mass terms for the sfermions. 

The superpotential also provides interaction terms for fermions via the Lagrangian 

contribution, 

1 

as in eq. (2.45). Here are the fermionic superpartners of These interactions 

importantly include the usual Yukawa couplings of the fermions to the respective 

Higgs fields and therefore generate masses via spontaneous symmetry breaking, e.g. 

- k addition interactions of the form, 

higgsino-fermion-sfermion, are also generated with a coupling strength determined by 
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the Yukawa couplings. 

As we saw in eq. (2.47) there will also be gaugino-fermion-sfermion interactions, 

Az: = (2.65) 

It turns out that the MSSM Lagrangian contains terms which have an even number of 

superpartners. This leads to "R-parity" conservation which means that any sparticle 

decay must contain an odd number of sparticles. Hence the Lightest SUSY Parti-

cle(LSP) must be stable. This provides a standard signature of sparticle production 

at colliders that can be distinguished from SM events. Another consequence of a 

stable LSP, owing to the stringent big-bang relic density constraints, is that the LSP 

must be neutral. Therefore a characteristic signal of LSP events at colliders will be 

missing energy. 

Finally, the MSSM must be a model with softly broken supersymmetry. Therefore 

the general soft SUSY breaking Lagrangian for the MSSM is, 

+ (^AeHdLe*fi + AciHdQd*ji + A^HuQu'^ + BfiHdHu + h.c.^ 

+ -k (2.66) 

Here, the soft scalar masses, are 3 x 3 hermitian matrices, and 

y4e, are general 3 x 3 matrices. The masses Mi,2,3 are soft gaugino masses and 

^ are soft higgs mass terms. 

The soft SUSY breaking Lagrangian of eq. (2.66) adds over 100 unknown parameters 

to the MSSM and many of these can be involved in Eavour mixing and CP violation. 

Fortunately this means that these parameters can be constrained by experimental 

measurements. For example if either one of or is non-diagonal in the lepton 
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^ 7 # - # + B 

Figure 2.5: Diagrams that contribute to r — i n the 
MSSM. Notice that the diagrams shown here have tan (5 
enhancement. 

mass eigenstate basis then there will be Eavour mixing amongst sleptons. This mixing 

can enter into the leptons radiatively through virtual slepton loops, see hg. (2.5) for 

example contributions to r —> //'y. Therefore experimental limits on lepton Savour 

violation, e.g. ji -> 67, provides strong constraints on such non-diagonal elements of 

the slepton mass squared matrix. Similar constraints for the squark soft mass squared 

matrices, are provided by TiT" mixing and 6 —a-y, see hg. (2.6) 

for example diagrams. These constraints also apply to aa after the Higgs fields 

acquire their VEVs they contribute non-diagonal terms to the squark and slepton 

mass squared matrices, see hg. (2.5) and (2.6) for examples. The CP violating phases 

are further constrained by limits on the electric dipole moment of the neutron and 

electron. 

All such flavour changing and CP violating effects arising from the soft parameters 
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Figure 2.6; Chargino contributions to 6 —>• 57 in the 
MSSM. The three diagram shown here are enhanced by 
large tan^ .̂ 

can be evaded if we assume universality, 

- 7 = - rl Q,iiX Q,«X 

f - — rrif -

l,e l,e 

, j,e = -̂ u,j,e ^ 
with g// , . J, all real 

^ (2-67) 

Aji.r/.e = A,, J „ Y. 

The above universality condition means that the only CP-violating phase is that 

of the CKM matrix. This kind of scenario is quite plausible, for instance if the 

mediating interactions between the "hidden" and "visible" sectors are favour blind 

then universality is automatic. One such example comes from gravity mediation in 

which case we have, - j r - ^0 = ^ In addition it is natural in 
" q,u,d,l,e u,a,e 
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Grand Unified Theories to define all three gaugino masses to be equal, M1/2 = = 

M2 = M3, at the GUT scale. 

This completes the definition of the MSSM Lagrangian. Let us now investigate the 

mechanism of symmetry breaking and the resulting Higgs sector of the MSSM. 

2.2.1 The Higgs mechanism in the M S S M 

We would like spontaneous breaking of the gauge symmetry, hence the scalar potential 

is required to have a minimum away from the origin. The Higgs scalar potential has 

three contributions from; the superpotential F-term of eq (2.46), the D-terms of 

eq. (2.60) and the soft Higgs maases in eq. (2.66). The complete potential then takes 

the form, 

% = + A.c.) 

with, + 1)"'̂  

^2 = 

= B/j. 

The first three terms come from a combination of soft SUSY breaking Higgs masses 

F-term Higgs mass //. The last two terms come from the D-term 

contributions of eq. (2.60) It is worth noting that the strength of the quartic 

interaction is determined by the gauge couplings rather thaji being a free parameter 

as in the standard model, we will see later the consequences of this. 

The SU{2) identity, crfjCr̂ i = 2SiiSjk — SijSki, is used to simplify the D-term contributions 
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As with the standard model we are free to use (2) invariance to choose the vacuum, 

< Hu > = I ^ < Hd > = ^ I , (2.69) 

where and Vd are real. We will see later that the two Higgs VEVs can be related 

to the SM Higgs VEV v of eq. (1.5) as, 

+ uj. (2.70) 

Therefore we can write the Z boson mass, as in eq. (1.13), in terms of the Higgs 

VEVs, 

It is useful to write these two VEVs in terms of a single parameter, tan/3, 

t a n / ) = — with t;,, ——;=8in,^, ;=cos/). (2.72) 
'̂ d V 2 v 2 

Using the above definitions the minimization conditions for the Higgs potential in 

eq. (2.68), = 0, can be written as, 

m^ = - m g t a n / ) - § M ^ c o s 2 ^ 

mg = — c o t cos 2/). 

The presence of here is a direct consequence of the fact that the quartic coupling 

is determined by the gauge couplings as mentioned earlier. These conditions can be 

used to derive expressions for and in terms of tan and , 

^ (2-74) 

46 



We shall later use the fact that eq. (2.74) allows us to eliminate B// in favour of tan /). 

We can also determine //(Mcc/T) from ^(M^), leaving the condition eq. (2.75) to be 

determined by the two parameters, in order for the correct minimization 

of the Higgs potential. 

The Higgs doublets, contain eight degrees of freedom, three of which are 

eaten by the ty"", Z gauge bosons as in the standard model. This leaves Ave physical 

degrees of freedom, which are arranged into 2 CP-even neutral Higgs, 1 neutral 

pseudoscalar and a charged Higgs . Compare this with the single physical Higgs 

boson of the standard model. 

The Higgs mass squared matrices and mass eigenstates can easily be determined from 

the matrix of second derivatives evaluated at the minimum of the potential, eq. (2.69). 

For the imaginary degrees of freedom we have, 

y — — m ^ t a n / ) y 

in the basis . 

Notice that, det vW; = 0, so there is a massless neutral Goldstone mode and a massive 

pseudoscalar For the real degrees of freedom, 

\ mg —^M2sin2/) —m^tan/^ + M^cos^/) 

in the baais |%E^/\/2, %^^/V2 j . 

Here we have two massive CP-even Higgs states, and with In 
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terms of the original gauge eigenstate fields we can write the mass eigenstates as, 

(2.78) 
(7° \ 1 / sin(3 —cos/) \ 

j 1 COS/9 sin/3 i I 

= Tr = 0 

/z° \ 1 / cos a —sin a \ / 

j I sin a cos a i l 
(2.79) 

ffo — — f "2^0 + ^ (iTi^o + — 4M^m^Q cos^ 2/3 j . 

Here the CP-even mixing angle a is written as, 

sin 2a: m^o + Mg cos 2o! m^o — 

sin 2/) ' cos 2/) m^o — 

The mass squared matrix for charged Higgs states is written as, 

(2.80) 

^ 2 _ I -)?^3Cot/3-|-Mi^cos^/) m ^ - ^ M ^ s i n ^ ^ . 

sin^ /3 — t a n /) -|- sin^ /) 

in the basis *} -

Again we have, det — 0, and we have a second Goldstone mode G"*" and a massive 

charged Higgs boson Written in terms of the original gauge fields we have, 

G+ \ / r i n ; 3 -CO./? W i /J \ (g,;;) 

y y cos /) sin /? y y * y 

with, m^± = m^o + M ^ , mg+ = 0, 

with (?- = G+* and = ^+*. 

Eq. (2.78), (2.79), (2.82), give us important information about the relative tree-level 
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masses of the Higgs bosons, 

m^± > Mw 

^ (2.83) 

m,iO < m^o 

m/̂ o < coS;^|. 

The final identity of eq. (2.83) implies that the tree-level mass of the lightest Higgs 

should be lighter than the mass of the Z boson. This particularly restricting bound 

is the Anal result of the Higgs quartic coupling in eq. (2.69) being determined by the 

gauge couplings rather than being a free parameter as it is in the standard model 

eq. (1.3). Fortunately top-stop loop corrections give a large logarithmic correction, 

~ In , to this limit. Including all such corrections and assuming all sparticle 

masses are below 1 TeV this limit can be extended to, 

m,,o<150GeV. (2.84) 

One interesting situation to look at is, with m^̂ o, being 

much heavier than, % Mz\ cos /3|, and almost degenerate. In this limit eq. (2.80) 

implies that the mixing angle a ^ — 7r/2 which, see table 2.3, means that has 

the same couplings to quarks, leptons and gauge bosons as the Higgs of the non-

supersymmetric standard model. So would be the only detectable MSSM Higgs 

boson at future colliders, yet it would be very difficult to distinguish from the usual 

SM Higgs. Despite this the discovery of a Higgs mass below 150 GeV would imply 

new physics must appear at a relatively low scale, as indicated in hg. (1.1). The search 

for the Higgs is therefore a key tool in the search for physics beyond the standard 

model and particularly the MSSM. 

A discussion of the mixings involved in the SUSY partners of the Higgs and gauge 

bosons can be found in appendix C. Also in this appendix can be found details of 
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the squark and slepton mass squared matrices. 

2.2.2 Higgs couplings 

In section 1.2.2 we derived the Standard Model Higgs couplings to the gauge bosons. 

We can execute exactly the same procedure for the MSSM through the examination 

of the covariant derivative. The only real difference to the results in eq. (1.11) is that 

we now have two Higgs doublets with F = ±1. So it is straight forward to write the 

MSSM Higgs-gauge boson couplings as, 

L Higgs-gauge 
9_ 
2 

1 + 
Vu 

1 + 
Vd 

4 
1 4- 1 + (2.85) 

As was mentioned earlier eq. (2.85) defines the gauge boson maases in terms of the 

two Higgs VEVs as, 

9 (2.86) 

and comparing these results with the Z boson mass in the SM, eq. (2.13), we can 

relate the MSSM and SM VEVs as in eq. (2.71). 

As in section 1.2.2 we can also extract the couplings of the Higgs to the gauge bosons. 

Table 2.3 contains the vertex factors for the 3-point MSSM Higgs gauge boson inter-

actions. Notice that all the couplings of Higgs bosons to gauge bosons are suppressed 

by, 8in(/3 — a) or cos(/) — a), relative to the SM couplings. As we mentioned earlier, 

in the limit oo, the CP-even mixing angle is approximately a = /) — 7r/2. 

Hence in this limit, 1, > 0. Therefore in the large limit is 

indistinguishable from the SM Higgs and decouples from the gauge bosons. 
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WW zz 

0 0 

Table 2.3: MSSM Higgs couplings to gauge bosons. 

"A complete list of Higgs couplings can be found in [11]. 

2.2.3 M S S M Higgs searches 

The production of MSSM Higgs bosons proceeds via similar mechanisms to those in 

the SM, discussed in section 1.2.5. The main diiferences are that production through 

vector bosons and Higgs-strahlung is only possible for the CP-even Higgs states and 

is suppressed by factors of or c^_a. This can be understood by inspecting the 

couplings for the CP-odd Higgs in table 2.3. The dominant production process will 

again be gluon-gluon fusion via a top-quark loop. A bottom-quark loop will contribute 

equally in the large tan/) region, as = m(,/m(tan/?. 

Fig. (2.7) shows the expected discovery potential for MSSM Higgs bosons at the 

ATLAS experiment at the LHC. Very similar figures are also produced for the CMS 

experiment. The lightest Higgs state produced in association with may be seen 

in the 66 decay channel for ^ 110 GeV and in the mass range, ^ 200 GeV, 

may be found through the channel. For > 100 GeV and moderate to 

large tan/? the heavy states can be seen in the TT channel. The coupling of 

Higgs bosons to charged leptons will grow with large tan/3 in the same way as for 

the bottom-quark, therefore the channel will also open for large tan/3. It is also 

possible to see the charged Higgs in the channel ^ in the region ;$ 140 

GeV. It is therefore possible to find a signal for an extended Higgs sector over a large 

region of the , tan parameter space. 
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Figure 2.7: Expected discovery contours for the MSSM Higgs 
bosons at ATLAS with 300/6"^ integrated luminosity. The lim-
its on m/jO set by direct searches at LEP II are also shown [12]. 

2.3 Mass ive Neu t r i nos 

The previous sections introduced the concept of supersymmetry purely on the grounds 

of theoretical prejudice. Neutrino physics® on the other hand represents the first piece 

of experimental evidence for physics beyond the standard model. In recent years the 

solar neutrino problem and the atmospheric anomaly have been explained by the 

discovery of neutrino oscillations. Such oscillations require neutrinos to have masses, 

but these masses are constrained by galaxy observations to be very small. We shall see 

that these tiny masses can be explained very naturally by the "see-saw mechanism". 

This mechanism requires the introduction of right-handed neutrinos which are also a 

necessary ingredient of many Grand Unified Theories. The large atmospheric neutrino 

mixing can be constructed in such a mechanism with the aid of "single right-handed 

neutrino dominance". 

®A list of excellent reviews of Neutrino Physics can be found in [13]. 
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The present section will present an outline of the experimental work which has led 

to the discovery of neutrino masses. Following this will be a discussion of the above 

mentioned theoretical scenarios which explain these experimental observations. 

2.3.1 Motivation 

In the standard model the neutrino must remain massless due to the accidental lepton 

number symmetry. Also the neutrinos of the standard model are left handed only 

in accordance with electroweak observations. Conversely recent neutrino oscillation 

experiments have shown that the neutrino must indeed have mass, albeit an extremely 

small mass. The challenge for theorists is now to explain the origin of these masses 

and mixings. The mixings observed among neutrinos are far larger than those in the 

quark sector and this only adds to the puzzle. 

The study of neutrino physics has focused on neutrinos from a variety of different 

sources; the sun, the upper atmosphere, nuclear reactors, particle accelerators and 

supernovae. Here we shall concentrate on just atmospheric and solar neutrino exper-

iments. 

Atmospheric neutrinos are produced when cosmic rays collide with the upper atmo-

sphere to produce pions. The subsequent decay of the pion leads to the production of 

both electron and muon type neutrinos with a relative ratio of approximately 1 : 2 . 

Hence it is useful to study the ratio, .R = , where . denotes the number 

of observed neutrinos of flavour /i, e, and its zenith angle variation. The experimental 

results, primarily from the water Cherenkov detectors Kamiokande [14] and Super-

Kamiokande [15], show that the double ratio is R = 0.54 ± 0.05 ± 0.01 [16] rather 

than the non-oscillation prediction of i? = 1. This startling observation can be ex-

plained by either the disappearance of muon neutrinos or the appearance of electron 

neutrinos or both. The study of the zenith angle variation of R has shown that this 
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suppression is in fact due to the disappearance of muon neutrinos. It was also noticed 

that the suppression was greater for muon neutrinos travelling from the other side of 

the earth, through its core and into the detector than for those travelling the short 

distance from the upper atmosphere directly above the detector. The result is that 

this can be very well explained, by a simple two-state mixing <4̂  z/T with a mixing 

matrix, 

cos%3 

Here are the flavour eigenstates associated with the corresponding charged lep-

tons T ajid 1/2,3 are the neutrino mass eigenstates. The oscillation probability is 

written, 

f 1̂-) = sin^ 2̂ 23 sin^ ^1.27 - (2.88) 

Where is in km, E in GeV, is in and the numerical factor of 

1.27 comes from the conversion of units. The best fit analysis gives, 

1.3 X 10-^ < lAmlgl < 3.0 x 10"^ 
' (2.89) 

sin^ 2̂ 23 > 0.92, at 90% C.I.. 

Therefore the experimental results indicate maximal — i/i- mixing. Eq. (2.88) shows 

that the existence of neutrino mass is vital to the oscillation phenomenon and the 

solution to the atmospheric anomaly. 

The story is very similar for the solar neutrinos produced by the nuclear reactions 

within the sun. For many years experimentalists and theorists where puzzled by 

the "solar neutrino problem": there was an apparent mismatch between the num-

ber of electron neutrinos reaching earth from the sun and the number expected 

from studies of the nuclear reactions within the sun. It was recently shown by the 

54 



heavy water detector at the Sudbury Neutrino Observatory (SNO) [17] that the so-

lution must be the oscillation of electron neutrinos into a combination of muon and 

tau neutrinos, Pre-SNO there had been a number of different oscil-

lation scenarios; VAC (vacuum oscillations), LOW(large mixing angle, small Am^), 

SMA(8mall mixing angle), the matter enhanced LMA(large mixing angle) and oscil-

lations into singlet (sterile) neutrinos. Combining the data from SNO and the reactor 

experiment KamLAND [18] tells us that the only remaining solution is the MSW^ 

LMA solution with, tan^ 612 — 0.4 and has a relatively small mass squared splitting 

1 X 10"^ ey^. 

This leads us to a 3 generation mixing described by, 

( . A 

y,, 

\ ""V 

^el t/e3 

y UtI UT2 Ur3 y 

Z/2 

\ ^3 / 

(2.90) 

Here % is a 3 x 3 unitary matrix known as the Maki-Nakagawa-SaJ{ata(MNS) [19] 

matrix. Unlike the CKM matrix, discussed in section 1.2.3, the lepton equivalent 

contains 3 mixing angles and 3 phases. This is due to the Majorana nature of the 

neutrino. A significant difference is that the mixing in the neutrino sector is unusually 

large compared to the quark sector. 

The final mixing angle ^13 remains unmeasured, but the reactor experiment CHOOZ 

[20] is able to provide the bound, sin^ 2diz < 0.1 — 0.3, due to the non-observation of 

Pe disappearance^. Also unknown are the signs of the mass squared differences, Am32, 

Amg^ and it will be very important for these unknown quantities to be determined 

at future neutrino experiments in order to determine the neutrino mass matrix, 

^MSW stands for Mikheyev, Smirnov and Wolfenstein who are credited with proposing the solu-
tion in which neutrino oscillations are enhanced by matter effects within the sun. 

®For this reason the neutrino mixing angle ^13 is often referred to as the CHOOZ angle. 
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2.3.2 See-Saw mechanism 

Having found that neutrinos indeed have mass we are then confronted with the co-

nundrum of how such a tiny mass comes about. One very popular explanation is 

given by the introduction of right-handed neutrino states, These extra neutrinos 

are gauge singlets and so can have arbitrarily large masses. We shall see that through 

the see-saw mechanism it is these large maases which suppress the mass scale of the 

neutrino states found in the electroweak interactions. 

The familiar Dirac mass term involving a fermion and its conjugate taJ{es the form, 

f c = - - m . (2.91) 

The mass term of eq. (2.91) obeys the conservation of fermion number and the con-

servation of charge. This is the only possible mass term for fermions which carry a 

(7(1 )em charge. 

As neutrinos carry no such charge it is possible for them to have other types of mass 

terms containing 2 neutrinos or 2 anti-neutrinos. These additional terms violate 

lepton number but are otherwise allowed. Such Majorana mass terms are discussed 

in more detail in appendix. B.2 

Therefore there are three possible mass terms for the neutrino. They can be written 

as, 

^ 2 4- h.c.] — — [ul mx + h.c.]. (2.92) 

In the first term of eq. (2.92) we have rewritten the Dirac mass in terms of charge 

conjugate fields, as defined in appendix B. This is done so that we can 
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construct the mass matrix, 

= - i (%, %) I I I I " I +1' - ' - (2-93) 

Here mf, is the Dirac mass, mg is the Majorana maas for the gauge singlet helds 

and rriT is the Majorana mass for the left neutrino fields, u^. If we have 3 generations 

of both right and left handed neutrinos then the mass matrix in eq. (2.93) will be 

6 x 6 . Diagonalising this maas matrix with unitary matrices, % and % such that, 

(2.94) 

where M is the mass matrix of eq. (2.93), defines the change of basis from the original 

neutrino helds, 

^ ^ I' 

into the mass eigenstates, 

% = (2.96) 

If we consider the case of a single generation with = 0 and mg mg, then 

the mass matrix will have eigenvalues equal to mg and — T h e neutrino 

Dirac mass is expected to be of the same order of magnitude as the associated 

charged lepton mass. There is no such expectation for the Majorana maas, mg, and 

so if we allow it to have a GUT scale mass then the lighter mass eigenstate will 

be greatly suppressed. This is the see-saw mechanism in which the tiny neutrino 

masses are generated through the introduction of heavy right-handed 

neutrinos with Majorana masses mg. 
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In this simple case the mass matrix is diagonalised by the orthogonal matrix, 

U={ ' I . (2.97) 
0 

Eq. (2.96) then leads ns to the maas eigenstates, 

y/i = 771̂  + ^ (f/i + '̂2) -

% = + )72R = (z/R + Z/R) + ^(^1/ + ^2)-
(2.98) 

Then it is clear that, z/f, = mass can be associated with 

the neutrino of the electroweak interactions. On the other hand, z/R = 7̂ 271 — ^^71^ 

with mass ~ ms is a heavy right-handed neutrino state. 

This one generation case can be generalised by taking mg and mg to be MXn matrices. 

Provided the eigenvalues of mg are much larger than those of mf, then again we will 

have a spectrum of very light and very heavy neutrino states. In this general case the 

see-saw formula for the light neutrino mass matrix is, 

(2.99) 

with the Lagrangian term, The see-saw mechanism can be incorporated 

within the MSSM by the simple addition of two extra terms into the superpotential 

of eq. (2.59). The two terms to be added will be a Yukawa coupling and a large 

Majorana mass term for the right-handed neutrinos. These two terms will reproduce 

TMf) and mg above. The new superpotentiai can be written as, 

with z)' -H A W (2.100) 

Here is the Major ana mass for the right-handed neutrino states z/"̂ . Integrating 
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out the heavy fields we find that, 

= 0 =4̂  •(ff.L) Y,M^i,Yj ( g . i ) (2.101) 

Therefore after the up type Higgs acquires its VEV a Majorana mass, similar to 

eq. (2.99) will be generated for the doublet neutrinos, 

(2.102) 

with the Lagrangian term, Diagonalisation of with the unitary matrix 

is achieved as. 

miL = V r m f ? V r ' ' , or m l , ^ V r m l Z ' V f , (2.103) 

which defines the change of basis, z/}, — where are the neutrino mass 

eigenstates. If we assume that the charged lepton Yukawa coupling is diagonalised 

via. 

y' = v£Yiv^\ (2.104) 

so that, and define the rotation into the mass eigenstates, 

the quark sector the charged current interaction leads to the definition of 

a CKM like matrix. 

y MTVa _ T/et (2.105) 

defined so that, 

(2.106) 

It is clear from eq. (2.103) and (2.104) that unlike the quark sector we only have the 
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freedom to choose three phases in i G- there is no phaae freedom in the definition 

of Therefore the physical degrees of freedom within are the three mixing 

angles and three phases. 

2.3.3 Single Right-Handed Neutrino Dominance 

The see-saw mechanism is an extremely attractive method to explain neutrino masses 

many orders of magnitude lighter than the masses of their associated charged lepton. 

It is also necessary for theorists to account for the observed large mixings in the 

neutrino sector. One very natural scheme in which the maximal atmospheric mixing 

is reproduced is Single Right-Handed Neutrino Dominance(SRHND) [22]. 

If we assume that the right-handed Majorana mass matrix, MpB, is approximately 

diagonal, then we can parameterise the Yukawa and Majorana matrices as. 

/ 0 0 ^ 

0 X 0 

V 0 0 y 

Y,, = 

/ 

^ a' a d ^ 

V n 

(2.107) 

SRHND assumes that the contribution to the light neutrino mass matrix is domi-

nated by one of X\ X, Y, with the others contributing sub-dominantly. Here we 

shall assume that Y and that it is y which is dominant. Using the 

parameterization in eq. (2.107), the see-saw mechanism of eq. (2.102) yields. 

/ ̂  
X' X Y 

a'b' , ab I de 

X' I X y 

X' "T + y 

a c 
X 

^ \ 7 + Y + y 

Y + ^ 

— 4 - — - I -X' ^ ^ y 

Y 

P 

(2.108) 

/ 

If the heaviest right-handed neutrino dominates in the lower 23 block of mzyz,, with 
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the second heaviest contributing sub-dominantly, then 

H J M >> M >> ^ „ith " = (2.109) 
^ A X a;' = 6% (/. 

As, y the Yukawa couplings e, / must be large such that the heaviest 

right-handed neutrino dominates. Without the subdominant contributions the 23 

determinant is zero, hence there would be a massless eigenstate. The effect of the 

subdominant contributions will be to give this eigenstate a very small mass and 

a relatively large mass splitting to the second eigenstate. In such a scenario with, 

6 y ^ 1, there is also large 23 mixing in the neutrino mass matrix. The combination 

of a large mass splitting and large mixing in the 23 sector reproduces the atmospheric 

oscillation parameters very well. In this kind of SRHND model the pattern of neutrino 

masses and mixings are created in a very natural way without the need for fine tuning. 

The situation we will be studying in the remaining chapters of this thesis has, <K 

e % / 1 and can be written approximately as. 

/ 0 0 0 \ 

0 0 1 

0 0 1 

(2.110) 

We can approximate the MNS mixings under such conditions to be, 

tan^igRziy— r, tang23%i4, ^i3 % (2.111) 
(C23O - 523C) / X ms 

where ms is the heaviest eigenstate of rriLL- Therefore the subdominant Yukawa 

couplings a, b, c can be chosen to arrange for the a large 12 and small 13 mixing. 
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2.4 Conclusion 

We have seen that the elegant theory of supersymmetry represents an attractive so-

lution to the quadratic divergences of the hierarchy problem. In addition it has been 

found that such theories lead to gauge coupling unification and the possibility of 

Grand Unification. Therefore the minimal supersymmetric extension of the standard 

model, the MSSM, is an attractive model to study. Owing to anomaly cancellation 

this model must contain two Higgs doublets and so it is possible for the Higgs sector 

to be quite different from that of the standard model. Unfortunately there is also the 

possibility that the Higgs sector of the MSSM may behave in a similar way to the 

standard model Higgs. So the discovery of supersymmetry through the detection of 

an extended Higgs sector is a possibility but not a certainty at the next generation 

of collider experiments. Neutrino Physics is one of the major success stories of recent 

years. Neutrino oscillations have been proved to be the answer to both the atmo-

spheric and solar neutrino problems. A very appealing mechanism for the generation 

of the tiny neutrino masses is the see-saw mechanism in which the addition of very 

massive right-handed neutrino states produces the suppression of the left-handed neu-

trino masses. Such a mechanism can easily be incorporated within the MSSM and 

indeed many Grand Unified Theories require the existence of right-handed neutrino 

states. 
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Chapter 3 

A Global Analysis of a 

supersymmetric Pati-Salam model 

In this chapter we present a complete phenomenological analysis of a realistic string-

inspired model based on the supersymmetric Pati-Salam 5'[/(4) x 5'[/(2)^ x 

gauge group supplemented by a (/(I) family symmetry, and present predictions for 

all observables including muon — 2, T — a n d the CHOOZ angle. Our analysis 

demonstrates the compatibility of such a model with all laboratory data including 

charged fermion masses and mixing angles, LMA MSW and atmospheric neutrino 

masses and mixing angles, and 6 —> a'y, allowing for small deviations from third family 

Yukawa unification. We show that in such models the squark and slepton masses may 

be rather light compared to similar models with exact Yukawa unification. 

The work presented in this chapter has been published in [23]. 
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3.1 Pre l iminar ies 

Understanding the origin of fermion maases and mixing angles is one of the most 

interesting theoretical aapects of particle physics. In the post-SnperKamiokande era 

this puzzle has become more intriguing than ever before. We saw in section 2.3 

that experimental results from SuperKamiokande [15], SNO [17] and KamLAND [18] 

imply the existence of massive neutrinos with large solar and atmospheric mixing 

angles. Such large mixings imply a low-energy structure of lepton masses markedly 

different from those of the quark sector. In this chapter we assume that the small-

ness of neutrino masses can be explained by the see-saw mechanism involving very 

heavy right-handed neutrino states, and that the see-saw mechanism is implemented 

using single right-handed neutrino dominance which can explain in a natural way the 

coexistence of large neutrino mixing angles with a mass hierarchy. It then becomes a 

Savour problem to fit together the neutrino mass puzzle with the pieces provided by 

the long-known pattern of quark and charged lepton masses. 

The Savour problem cannot be fully addressed without unification. However, uni-

fication has its own challenges. These include the unification of gauge couplings 

and third family Yukawa couplings and the introduction of supersymmetry. In the 

previous chapter we saw that supersymmetry facilitates gauge coupling unification, 

stabilises the hierarchy between the high energy scale and the weak scale, and al-

lows a radiative mechanism of electroweak symmetry breaking. Within the natural 

framework of supersymmetric unification, the larger high energy gauge group in turn 

increases the predictive power of the theory in the Savour sector, for example by 

leading to group theoretical mass relations between quark and lepton masses of the 

same family. Relations between quarks and leptons of different families require an 

additional family symmetry, however. In this way it becomes possible to address both 

the Savour problem and the uniScation problem, within a single framework. 
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Having defined the framework, it is by no means guaranteed that models exist which 

satisfy all the phenomenological constraints provided by cnrrent data, and comply 

with all the theoretical requirements such as successful electroweak symmetry break-

ing, and approximate gauge and Yukawa unification, while reproducing the known 

observables. It is therefore important to know that at least some models exist which 

satisfy all the constraints, as an existence proof that such a procedure can be imple-

mented consistently. 

In this chapter we shall study a particular example of a complete supersymmetric 

unified model of Savour, based on the Pati-Salam 5'[/(4) x 5'(7(2)2, x gauge 

group [33] extended by an additional (7(1) family symmetry. Accepting minimality 

as a model building principle this group has the following nice features: it establishes 

the third family Yukawa unification, places the right-handed neutrinos into non-trivial 

multiplets and does not introduce unwanted exotic states in the multiplets containing 

the Standard Model fermions and two Higgs doublets required by its SUSY extension. 

The Pati-Salam group can emerge from a simple gauge group like 6'0(10) or ^(6). 

However, from a string theory perspective, it is not necessary in order to achieve 

unification that there should be a unified held theory based on a simple group. A 

partially unified gauge group can equally well emerge directly from string theory, 

and in the case of the Pati-Salam gauge group this possibility has been explored 

extensively both in the case of weakly coupled fermionic string theories [24] and in 

the case of type I strings with D-branes [25]. 

Although models based on the Pati-Salam gauge group have been extensively exam-

ined, the work presented in this chapter currently represents the only complete and 

up to date phenomenological study of this model in the literature. For instance [26] 

investigated constraints from Lepton Flavour Violation(LFV) in a Pati-Salajn model 

with small neutrino mixing angles. Subsequently a Pati-Salam model was proposed 

[27], using single right-handed neutrino dominance [22] to achieve naturally large neu-

65 



trino mixing angles, but the question of LFV waa not re-addressed and it was later 

shown [28] that the branching ratio is too large. Moreover, only the negative 

H parameter was considered in [27, 29] which is currently disfavoured by the muon 

p — 2. In other works such aa [30] and [31] the neutrino sector is absent all together. 

The complete lepton sector is studied in great detail in a global analysis in [28], but 

the quark mass matrices used [27] were obtained for the opposite sign of and the 

analysis gives imperfect fits for the branching ratio 5r(6 —a"/) or 6 quark mass m;, 

which both get potentially significant contributions from SUSY loops proportional to 

fi. To summarise, a completely phenomenologically acceptable supersymmetric Pati-

Salam model does not currently exist in the literature. This illustrates the broader 

point that while many models exist in the literature, it is less common for the analysis 

of any such model to be complete. 

In this chapter, then, we shall construct a "4221" model, following the approcich of 

[27], and demonstrate its phenomenological viability. The model has approximate 

third family Yukawa unification perturbed by higher order terms and assumes non-

universal soft Higgs masses. To demonstrate the viability of such a model, we perform 

a top down global analysis of the parameter space carried out on 24 observables. In 

the leptonic sector the observables include the muon g — 2 and solar and atmospheric 

neutrino data. A complete list of observables and their <7 values, which are used to 

calculate the function can be found in table 3.3. In the analysis we ensure that the 

upper limits on the branching ratio for the lepton flavour violating processes r -> ^7, 

e"} and T —e"} are not exceeded aa well as the limit on the 13 neutrino mixing 

angle. In addition to this an experimental lower bound on each sparticle mass was 

imposed. 

Having constructed the model and demonstrated its phenomenological viability, we 

then discuss the following three aspects of the model in more detail: 

# The first such aspect, as first pointed out in [28], is lepton Savour violation 

66 



arising from the large 23 neutrino mixing through a neutrino Yukawa texture 

of the form 

/ 0 0 0 ^ 

0 0 1 . (3.1) 

^ 0 0 i j 

Owing to large tan/) additional features emerge when studying correlations 

among observables like Br(6 -4- 57), Br(r —> fi'j) and muon g — 2. Most notably, 

two distinct minima are found with similar values for the best fits. These 

conclusions are new since study [28] did not investigate a complete model and 

all other previous works did not involve global analysis. 

# The preference for positive //, given by the sign of the muon gf — 2 discrepancy, 

implies positive gluino corrections to m;, thus leading to difSculties in obtaining 

^ — 6 — T Yukawa unification. Hence a second focus of the present work is to 

study the required deviation from third family Yukawa unification in the best 

fits. ^ 

• Thirdly we focus on the effects of future experimental advances, in the form of 

direct Higgs searches, a lepton Savour violating measurement and a 

refinement of the muon ^ — 2 discrepancy, upon our global fits, indicating how 

further experimental progress in these areas will constrain the parameter space 

of the model. 

The remainder of this chapter is arranged as follows. Section 3.2 briefly reviews 

our construction of a string-inspired Pati-Salam model. Section 3.3 contains a brief 

description of the numerical technique used in the analysis. A discussion of our main 

results can be found in section 3.4, with concluding remarks in section 3.5. 

^This was also recently studied from a somewhat different point of view in [30]. 
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3.2 A s u p e r s y m m e t r i c P a t i - S a l a m Mode l 

The model considered in this chapter is based on the Pati-Salam gauge group [33], 

supplemented by a local (/(l) family symmetry, 

SU(4) X SU(2)^ X SU(2);^ x (7(1). (3.2) 

The left-handed quarks and leptons are accommodated in the following representa-

tions, 

F r = (4 ,2 .1 )= I \ I . (3.3) 
u 

e" 

u 

e+ 
fira = (4,1,2) = , (3.4) 

where a = 1 . . . 4 is an SU(4) index, o, a; — 1,2 are 817(2)^,^ indices, and z — 1 . . . 3 is 

a family index. The hrst/second gauge index should be read as corresponding to the 

row/column of the matrix. Furthermore the up/down indices are related to the gauge 

transformation properties of the multiplet, e.g. the raised a and a signifies that F 

transforms in the 2 representation of SU(2)^ and the 4 of SU(4), whereas the lower 

index z and a signifies that F transforms in the 2 of SU(2)j% and 4 of SU(4) . 

The Higgs fields are contained in the following representation, 

( 1 , 2 , 2 ) - I " ^ | . (3.5) 
~hu hd 

This can also be made more familiar by writing it as a 2 of SU(2)f, rather than a 2, 

/̂ '':" = E"X = ( 1 , 2 , 2 ) = | ^ | . (3.6) 
—hn 



Where 612 = — = +1. The signs in eq. (3.6) have been chosen so that contraction 

of the fields gives a contribution to the Yukawa couplings. This means 

that we can identify the left and right components as the low energy Higgs doublets 

of the MSSM. 

There are also two heavy Higgs representations [24] 

= (4,1,2) (3.7) 
\ 4 4 y 

and 

& „ = ( 4 . i , 2 ) = i :« " 1 (3.8) 4 

4 4 4 4 

These Higgs fields are assumed to develop VEVs, 

< H > = < Vfj > ~ Mquti < H > = < VH > ~ MGUT, (3.9) 

leading to the symmetry breaking at ^ 

SU(4) ® SU(2)^ 0 SU(2)^ —> SU(3)c 0 SU(2)^ ® U(l)y, (3.10) 

in the usual notation. So that we can write, 

= ({; + = (,) + (3.11) 

The group 5'f/(3)c emerges from the breaking of 6'(/(4) with the remaining (7(1) 

^The Pati-Salam model presented in this section has its origins as a string inspired model where 
the 422 group emerges as the GUT gauge group directly from a string theory construction. Alter-
natively such a model could emerge from SO(IO) unification, in such a case the Pati-Salam breaking 
scale may be lower than MGUT-
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subgroups of 5'[/(4) and combining to form the hypercharge (7(l)y with, 

\ = + (3.12) 

Under the symmetry breaking in eq. (3.10), the Higgs field A in eq. (3.6) splits into 

the two MSSM Higgs doublets hu, whose neutral components subsequently develop 

weak scale VEVs, 

< > = Uu, < > = Uj, (3.13) 

with tan/3 = 

Owing to the unification of quarks and leptons into a single representation F and the 

two MSSM Higgs doublets into we have GUT scale Yukawa Unification, 

(3.i4) 

where is the Yukawa coupling of the superpotential term, which after the 

symmetry breaking of eq. (3.10) produces the quark and lepton superpotential terms 

of eq. (2.59). 

With a large value of tan this works rather well for the third family maases 

[34]. Unfortunately it does not work quite so well for the masses and mixings of the 

lighter generations. The approach we adopt in order to overcome this problem is to 

allow only the third family to acquire masses from the renormalisable operators in 

the superpotential. The remaining masses and mixings are generated through a set 

of non-renormalisable operators with coefhcients that are suppressed by some large 

scale. In this way we benefit from the efhciency of Yukawa unification but are also 

able to explain the mixings and mass hierarchy among the lighter generations. 

Therefore in order to construct the quark and lepton maas matrices we make use of 
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non-renormalisable operators [35] of the form: 

•I ( S ) " ( H ) " ' 

The 9 fields are Pati-Salam singlets which carry U{1) family charge and develop VEVs 

which break the (7(1) family symmetry. They are required to construct U(l)-invariant 

operators. After the ^ and ^ fields acquire VEVs, they generate a hierarchy in z) 

effective Yukawa couplings and Majorana masses. These operators are assumed 

to originate from additional interactions at the scale M > The value of the 

powers % and % are determined by the assignment of (/(I) charges, with Xg = — 1 

then + %/,) and % = +%;;). To ensure anomaly 

cancellation we must have that the sum of the F charges is equal to the sum of the 

F charges, see [27]. 

The contribution to the third family Yukawa coupling is assumed to be only from 

the renormalisable operator with n = p = 0 leading to Yukawa unification. The 

contribution of an operator, with a given power n, to the matrices and 

is determined by the relevant Clebsch-Gordan factors coming from the gauge 

contractions within that operator^. A list of Clebsch factors for all M = 1 operators 

can be found appendix D. These Clebsch factors give zeros for some matrices and 

not for others^, hence a choice of operators can be made such that a large 23 entry 

can be given to and not We shall write, 

5 = ^ - ^ 4 ^ ^ = 0.22, £ = ^ = 0.22, (3.17) 

then we can identify with mass splitting within generations and e with splitting 

^Appendix D explains the method of calculating the Clebsch Gordan coefficients for all n = 1 
operators. 

^For example gives, = Xd = Xg = 0, but = 2. 
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m 

Xp^ Xpr, Xf, X l̂ 2 % 'Fi X,. X;, X ^ f i -

ll 
6 

1 9 

6 0 

Table 3.1: List of U(l) family charges that determine the family structure of the 
Yukawa and Neutrino Majorana matrices. To ensure amomaly cancellation we must 
have E = Z 

between generations. 

The pattern of Yukawa couplings and Majorana mass matrix is then completely de-

termined by the choice of U(l) charges and non-renormalisable operators, 

(3.18) 

Here the matrices and contain powers of e determined by the choice of U(l) 

charges. They can therefore be written as and For example, 

if we choose the charges as = (4,1,1), = (3,2,1) and = —2, then the 

form of Â  would be. 

A' 

/ g4 3̂ \ 

6̂  6̂  6° 

e" el 

(3.19) 

and would be of the form, 

/ 6̂ 5̂ 4̂ \ 

\ 

E e 

6̂  y 

(3.20) 

In addition the matrices and Â  contain powers of ^ determined by the choice 

of non-renormalisable operators. 
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Our choice of (7(1) charges are as in [27], and are summarised in table 3.1. This fixes 

the powers of c in each entry of the Yukawa matrix, but does not specify the complete 

operator. The Yukawa couplings are specified by the choice of operators, 

{,(^2x0 

3̂3 
(3.21) 

The operators were initially deAned in [27], although the selection of operators here 

is diEerent from that work. The notation is such that O, O' and O" are n = 1, n = 2 

and (extremely small) M = 3 operators respectively where n refers to the powers of 

(^E^), thus ^ 

O - ( ^ ^ ) - O' (j:fjf)^ - O'' - ( j f j f )^ - (3.22) 

The order unity coefBcients multiply the operators O" in the 

position. The Majorana operators are assumed to arise from an m = 0 operator 

in the 33 position and m = 1 operators elsewhere. The Neutrino Majorana matrix 

therefore takes the form. 

MB 
12̂  

\ AisOe-' 

ll2^ 

l̂ 22( AooOe^ 

AisOe^ \ 

^23^G^ 

A 33 / 
(3.23) 

Throughtout our analysis the right handed neutrino scale, is Axed at 3 x 10 . 

The operator choice in eq. (3.21) leads to the quark and lepton mass matrices in table 

3.2. For example the Clebsch coefficients from the leading operator in the 22 

®The n = 3 operators can, to a very good approximation, be neglected. Their inclusion here 
serves only to fill the 11 entries of the Yukawa matrices, thereby ensuring (for example) that 
the up quark is given a very small mass. 
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position give the ratio 0 : 1 : 3 in the yL,d,e matrices. This ratio along with sub-leading 

corrections provides the correct mc : ratio. 

In the neutrino sector the matrices in table 3.2 satisfy the condition of sequential 

dominance [22] in which a neutrino mass hierarchy naturally results with the dominant 

third right-handed neutrino being mainly responsible for the atmospheric neutrino 

mass, and the sub-dominant second right-handed neutrino being mainly responsible 

for the solar neutrino maas. Notice that YL in eq. (3.2) takes the approximate form 

of eq. (2.110). As discussed in eq. (2.111) the atmospheric mixing angle is then 

determined approximately as a ratio of and the solar mixing angle is 

determined by a ratio of to a linear combination of and while the 

CHOOZ angle is determined by a more complicated formula [36]. Note that the 

dominant right-handed neutrino in this model is the heaviest one, corresponding to 

heavy sequential dominance (HSD) and LFV has been considered in general in this 

claas of models [37]. 

In the previous analysis [28] the matrix elements, were suppressed artihcially 

to keep Br^ji —> 67) within its experimental limit without substantially changing 

the predictions of fermion masses and mixings. In this new analysis we have built 

this suppression into the model with our new choice of operators, whose Clebsch 

coefBcients give zeros in the desired matrix elements as can be seen in table 3.2. This 

can be understood analytically from [37]. 

Notice that the sub-leading operators in the 33 position are not shown explicitly 

in eq. (3.21), but are expected to lead to significant deviations from exact Yukawa 

unification. This effect is parametrised by the ratios 

_ yL(^G[/r)33 _ }j(MG!yr)33 _ ^(MG(/T)33 
y^(MG[;T)33' ^(MGUT)33' ^(MG[;r)33 

(3.24) 
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Table 3.2: The quark and lepton Yukawa matrices and neutrino Majorana 
mass matrix as used in the analysis. In our numerical analysis we set MR = 
3 • lO '̂̂  GeV. The Yukawa matrices follow from eq. (3.21) and the Clebsch 
factors arising from each operator are shown numerically above. Clebsch zeroes 
play an important part in suppressing the leading operator contribution in a 
particular element of the matrix, or in simply giving a zero if all the operators 
are suppressed. The Clebsch coefficients in the Majorana sector are set equal 
to unity, with Ai j being independent order unity coefficients. 
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3.3 Numer i ca l P r o c e d u r e 

In our numerical analysis we have adopted a complete top-down approach [38]. A t 

the GUT scale the MSSM gauge couplings are related to the GUT scale couplings 

cKgi, = cKi = acc/T and 0:3 = o;G(yT(l + E3), where 63 sums up the effects of GUT 

scale threshold corrections. The part icular choice of the Yukawa couplings, table 3.2, 

follows from the higher dimensional operators in eq. (3.21) as the latter are matched 

to the MSSM lagrangian. The parameters 

Mci/r, E3, 6, a's and A's, n , r ,̂ 
(3.25) 

Ml/2, ^0, //, and 

are then defined by the boundary conditions at the GUT scale. They parametrise 

the imprint of a complete Pati-Salam theory together with the SUSY sector (second 

line) on the MSSM and stand for the inputs of the model. 

= — (̂ '4 " 

OR 

= - 3̂ (4 

= m | , + (36r|-26r^JD 

= + (3^^ + 2̂ ŷ ;̂ ) 

= m ^ - 2 6 r L ^ ' 

(3.26) 

In the SUSY sector, the soft SUSY breaking parameters are for simplicity introduced 

at the same scale. The gaugino masses are assumed universal (equal to M1/2) and so 

are the trilinear couplings: = Ao Y,, for ^ = if, (f, e, z/. The soft scalar masses of 

the MSSM superfields include the D terms f rom the breaking of the Pati-Salam gauge 
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group [29]̂  and are shown in eq. (3.26). Notice that as [29] 

it is possible for this quajitity to be both positive or negative. 

We now describe minor simplifications to the input in eq. (3.25) which were assumed 

in the actual numerical analysis. We have kept equality between the two order param-

eters ^ and e as in eq. (3.17) and the soft SUSY breaking scalar masses and 

have been held equal to each other as well, therefore rrip plays the role of the universal 

scalar maas mQ. Furthermore we exploited the fact that determining /i(MG[/T) and 

at the GUT scale is equivalent to determining the low energy values //(Mg) and 

tan/3, respectively, as discussed in eq. (2.74) and (2.75). Thus instead of eq. (3.25) 

our numerical analysis uses 

Mcc/T, E3, o's and A's, r ,̂ 
(3.27) 

v4o, ^(Mg), tan^, and 

as input parameters. The top down approach implies that we can freely vary or 

hold fixed any one of them and then investigate the fit properties. This is one of 

the advantages of doing the analysis top down. For example, in more traditional 

bo t t om up approaches it is d i f f icul t to control the size of the dimensionless G U T 

scale parameters. One usually sets up a sample of randomly scattered points and 

then searches through it to identify a sub-sample with physically interesting GUT 

scale properties. In our case we can set up the interesting GUT relations explicitly 

right at the start — aa we have done for instance in section 3.4.3 where the fits with 

r;, and approaching unity are studied. 

We note that taking advantage of the top-down approach we kept = 0.22, = 1, 

v4o = 0 and tan = 50 fixed throughout the analysis. We also kept the ^ parameter 

at scale Axed to two different values as is explained below. 

^Appendix E gives a brief outline of the origin of the D-term mass contributions in eq. (3.26). 
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Two-loop RGEs for the dimensioiiless couplings and one-loop RGEs for the dimen-

sionful couplings were used to run all couplings down to the scale where the 

heaviest r ight-handed neutr ino is decoupled f rom the RGEs. Similar steps were taken 

for the lighter M2B and scales, and finally with all three right-handed neutrinos 

decoupled the solutions for the MSSM couplings and spectra were computed at the 

Z scale. This includes full one loop SUSY threshold corrections to the fermion mass 

matrices and all Higgs masses whi le the sparticle masses are obtained at tree level. 

m/t and D in eq. (3.26) were varied to optimise radiative electroweak symmetry break-

ing (REWSB), which was checked at one loop with the leading and corrections 

included following the effective potential method in [39]. It was shown in [39] that the 

leading logar i thm correctioned Higgs spectrum, evaluated at the top mass scale, is i n 

very good agreement with that of the virtually scale independent Next-to-leading-log 

result. We note that as tan/9 determines the Higgs bihnear parameter B//, there is a 

redundancy in our procedure since two input parameters, rrih and D , determine one 

condition for the Higgs VEV of 246 GeV. This approach enabled us to control the // 

parameter and we explored regions with / i low (/ i = 120 GeV) and high ( / i = 300 

GeV) 

An experimental lower bound on each sparticle mass was imposed. In particular, the 

most constraining are: the LEP limits on the charged SUSY masses , mf > 105 

GeV), the CDF limit on the mass of the C f odd Higgs state (m îo > 105-110 GeV, 

valid for tan/3 % 50) [32], and the requirement that the lightest SUSY particle should 

be neutral. Finally, the function is evaluated based on 

the agreement between the theoretical predictions and 24 experimental observables 

collected in table 3.3. I n addi t ion to the constraints l isted above and i n [28], we make 

a fu l l analysis of the quark sector mass and mixings, in par t i cu la r we have included 

^For tan/? as large as 50, p 300 GeV leads to too large SUSY threshold corrections to the 
masses of the third generation fermions r and 6 unless the sparticles in the loop have masses well 
above the 1 TeV region. [40, 41, 38] 
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the importcmt constraint set by Br(6 — 

3.4 Resu l t s a n d Discussion 

The numerical results f rom the global analysis are presented in the form of contour 

plots in the {nip, M1/2) plane and are produced for two different values of the ^ 

parameter // = 120 GeV and // = 300 GeV. Before we address the details we would 

like to discuss two different viewpoints of our analysis, namely the flavour sector on 

the one hand and the uniAcation sector of the other hand. In our discussion we would 

l ike to distinguish between the two viewpoints. The ma in dist inct ion is that in the 

MSSM analysis the Savour parameters Oij (with the exception of 033) and can be 

considered Axed at unity or at a value of order unity. Up to 033, which enters the 

large Yukawa couplings their exact values do not affect the fit of the SUSY spectra 

or SUSY-related observables like the muon ^ — 2 or branching ratio 6 —s'y. They 

neither perturb gauge coupling unification nor change the running of the large Yukawa 

couplings. This means that the discussion of our results is naturally split into a part 

dealing with the Savour structure of the Pati-Salam model where the variation of the 

coefhcients of the higher dimensional operators matters, ajid a part where the MSSM 

analysis is presented and the conclusions do not depend on the variation of the o and 

A parameters (up to G33). 

Concerning the Savour sector, our results can be used to show how well the model, i.e. 

the set of higher dimensional operators specified by eq. (3.21), describes the observed 

fermion masses and mixings. Taking this viewpoint all parameters listed in eq. (3.27) 

represent the input of the analysis. The results in each of the four panels in fig. (3.1) 

show that the model gives a very good agreement with the data. The minimum of 

the total is less than unity, obtained for — 120 GeV in the upper left panel. This 

means that it is possible to fit every observable to better than a 1 o" accuracy. 
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Observable Mean CTi 

1/137.036 7.30.10-^ 
G, 1.16639 - 10-G GeV-^ 1.12-10-^ 

0.1181 0.0020 

174.3 GeV 5.1 
4.20 GeV 0.20 

— Mc 3.4 GeV 0.2 
ma(2GeV) 0.110 GeV 0.035 

2.03 .10-^ 2.0. lO-'' 

0.05 0.015 
1.777 GeV 1.8 10-^ 
0.106 GeV 1.1 - lO-'̂  

5.11 .10-"^ GeV 5.1 -10-^ 
|%ia| 0.2196 0.0023 
1^1 0.0402 0.003 

|%.6|/|K6| 0.09 0.02 

91.1882 GeV 0.091 
Mw 80.419 GeV 0.08 

-0.0002 0.0011 
3.47 - lO-"* 0.45. lO-'' 

^̂ NEW 34.7.6.10-^° 11.10-^° 

2.5 - 10-^eV^ 0.8 -10-^ 
sin^ 26ATM 0.99 0.06 

7.0 - 10-^eV^ 3 -10-^ 
sin^ 0.8 0.09 

Table 3.3: Table of observables and a values used to calculate 
the function. The observable is the 

present discrepaacy between the experimental measurement and 
SM prediction for the anomalous magnetic moment of the muon. 

n where n^^(O) and 11^^(0) stand for con-
t r ibut ions of physics beyond the standard model to the vector self-

energies at zero momentum. Upper and lower case masses denote 

pole and running masses respectively. 
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Figure 3.1: contour plots in the plane of , M1/2). The four 
plots, are obtained f rom the two minima, m i n i m u m A and m in imum 
B w i th IX = 120 and 300 GeV as labelled. A l l points in the top left 
corner w i th approximately M1/2 > 700 GeV and m p < 700 GeV 
are unphysical due to the lightest stau becoming the LSP. 

Concerning the unif ication sector, the conclusions are much stronger as there are 

effectively much fewer input parameters after the a's and A's decouple from the 

analysis. Indeed, the set of the effective input parameters in this sector is reduced to 

MGc/T, acar, cg, 033, n , r;,, 

M I / 2 , rrip-, and 

(3.28) 

W i t h this input the low energy Higgs and SUSY spectra are determined. The conven-

t ional present-day observables include apM, as{Mz), Mt, Mr, Mz, Mw, 
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Fr(6 —> g'-y) and The uniAcation sector observables are insensitive to the 

small Yukawa coupling, except for Br(6 —> which is sensitive to f — c mixing and 

%;a. The and input parameters are all of order one and their exact values are 

always adjusted to fit the first two generation masses and mixings well while these 

variations do not affect the f i t of the observables listed above. 

We study many details of the MSSM analysis, in part icular the dependence of the f i t 

on iTLp and M1/2, best f i t results for muon g — 2, and B r ^ r —> predictions. The 

numerical results also contain studies of a deviation from Yukawa unification and a 

future measurement of i ? r ( r —)• /.cy). The effect of a change to the present muon g — 2 

discrepancy was studied and also the effect of future direct Higgs searches, the results 

of which can be found in the following sections. 

From our global analysis we found that there are two minima as shown in Ag. (3.1). 

In this model there are two conditions, see eqs. (2.74), (2.75) and three free variables, 

m^, and Bjj,, for electroweak symmetry breaking to be achieved. The two min ima 

hence are independent solutions to these conditions. M i n i m u m A has negative and 

smaller B//. Minimum B on the other hand has positive and larger 

The relative size of Bjj, results in a different Higgs spectrum, part icular ly the CP odd 

pseudoscalar Higgs, which wi l l be lighter for m i n i m u m A and heavier for m in imum 

B. The difference between the sign of which contributes to the soft scalar masses 

as shown in eq. (3.26), means that m in imum B wi l l have l ighter r ight squarks and left 

sleptons, along w i th heavier left squarks and right sleptons, than m in imum A. This 

difference in sign of has some interesting phenomenological consequences for the 

two minima which will now be discussed. 

The upper and lower plots shown in fig. (3.1), display the contours for these two 

minima. Each of the figures display results for both / i = 120 and 300 GeV in the 

relative left and right positions. The contours in fig. (3.1) are bounded f rom the lower 

m p region due to the lightest stau becoming the LSP and f rom the lower M1/2 region 
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Inputs 
/ i = 120 GeV jj = 300 GeV 

Min A MinB Min A Min B 

M\ji 450 650 450 650 
500 650 500 650 

/ i 120 120 300 300 
- 6 . 4 .10"̂  17 -10"̂  - 1 0 - lO'̂  13 . lO'̂  

6 -10^ 16 -10^ 4.5 -10^ 14.10^ 

Tt 1.01 1.07 1.03 1.02 

n 0.75 0.72 0.66 0.64 

033 0.55 0.55 0.55 0.56 

an -0.93 -0 .92 -0 .92 -0 .93 

0-12 0.20 0.33 0.31 0.30 

021 1.67 1.67 1.67 1.75 

O22 1.13 1.12 1.13 1.13 

023 0.98 0.89 1.05 0.85 

031 -0.20 -0.21 -0.20 -0.28 

032 2.18 2.08 2.32 2.53 

^12 0.77 0.77 0.71 0.71 

'̂ 13 0.60 0.53 0.46 0.46 

®22 0.66 0.66 0.64 0.62 

(*23 0.41 0.40 0.36 0.36 

G32 1.16 1.80 1.56 1.72 

Oil 0.32 0.278 0.20 0.23 

All 0.63 0.94 0.63 0.94 

A12 0.74 0.48 0.69 0.52 

AI3 1.75 2.10 1.73 2.04 

A22 0.97 0.52 0.93 0.55 

^23 2.49 1.79 2.23 1.91 

^33 1.97 1.88 1.97 1.88 

Table 3.4: Table of inputs for the best Et points for each of the 
global minima with /i = 120 and 300 GeV. 
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Outputs 
/i = 120 GeV ^ = 300 GeV 

M i n A M i n B Min A M i n B 

102 818 102 822 
106 114 106 114 
112 891 113 888 
136 861 135 861 

M l 186 270 186 271 

M2 371 537 371 537 

Ms 1175 1671 1175 1671 

- ^ 1 
Mvv, 

M;v, 

114 117 272 290 

- ^ 1 
Mvv, 

M;v, 

390 549 408 554 

- ^ 1 
Mvv, 

M;v, 

98 107 179 249 
- ^ 1 
Mvv, 

M;v, 

130 127 277 305 
- ^ 1 
Mvv, 

M;v, 

198 278 307 311 

- ^ 1 
Mvv, 

M;v, 390 549 408 554 
1166 1679 1159 1673 

979 1345 960 1356 
1131 
798 

1623 
1147 

1124 
805 

1617 
1160 

1182 1510 1204 1529 

Mn, 923 1192 1044 1251 
673 611 715 656 

Mi, 
Mi, 

Mg; 
M^, 

665 595 707 644 Mi, 
Mi, 

Mg; 
M^, 

580 
496 

334 
766 

638 
473 

425 
752 

Mi, 
Mi, 

Mg; 
M^, 

495 
201 

765 
370 

473 
188 

751 
325 

T —/i""/ 2.10-^ 3 -10-^ 8 -10-^ 5 -10-^ 

T 6"/ 1 .10-^" 3 -10-^^ 6.10-^^ 5 - lO-̂ '̂  

e-} 3 -10-̂ "^ 1 -10-^^ 1.10-^"^ 3 - lO-̂ '̂  

sin 1̂3 0.053 0.078 0.037 0.10 

sin(/3 — a) 0.22 1.0 0.15 1.0 

cos(/) — a) -0.98 0.0 -0 .99 0.0 

Table 3.5: Table of outputs for the best fit points for each of the 
global m in ima w i th /U = 120 and 300 GeV. The input parameters 

are as defined in table 3.4. 



due to an increasing penalty coming from Br(6 —̂  a"/). 

The upper minima of Ag. (3.1), minimum A, has a preferred region in the lower 

(mi?, M1/2) plane, with M1/2 = 400 — 500 GeV and mp = 500 — 700 GeV. The lower 

minima of fig. (3.1), Minima B, haa its preferred region nearer M1/2 = 550 — 650 GeV 

and = 600 — 800 GeV. A list of inputs and outputs for the best fit point in each 

minimum can be found in tables 3.4 and 3.5. The Higgs masses and CP even Higgs 

mixings found for minimum A in table 3.5 are discussed in detail in section 3.4.4. 

3.4.1 Muon g — 2 

Fig. (3.2), shows contour plots for the SUSY contributions to the anomalous mag-

netic moment of the muon. Both minimum A and minimum B (upper and lower 

plots respectively) give good fits to the present discrepancy between experiment and 

Standard Model prediction. As expected, a larger contribution to the muon g — 2 is 

obtained in the lower left corner of the (mf,Mi/2) plane where the SUSY spectrum 

is lightest and decreases as we move towards a heavier spectrum in the top right 

corner. It is also clear that for any one point in the (m^, M1/2) plane, minimum B 

gives a larger contribution than the corresponding point in minimum A. This relative 

enhancement can be ascribed to the dominant chargino-sneutrino diagram via the 

presence of a lighter muon sneutrino for the case of minimum B, as can be seen in 

% (3.3). 

The present muon 5̂  — 2 discrepancy lies at 34 x 10"^° but over the past 12 months it 

has varied from a 1.5(7 to 3(7 effect. Also the size of the present discrepancy depends 

on the experimental data used in the calculation of the Standard model prediction. 

The value we have used throughout our analysis [43] makes use of e+e" data. On 

the other hand it is possible to do the same calculation making use of r decay data 

[44], which gives a lower discrepancy of 9.4 x 10"^°. As a result we th ink i t worth 
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Figure 3.2; Muon g — 2 contour plot in the plane of (m^?, M1/2). 
The four plots, are obtained from the two min ima, m i n i m u m A and 
m in imum B w i th / i = 120 and 300 GeV as labelled. A l l points to 
the left of the solid red line are unphysical due to the lightest stau 
becoming the LSP. The present discrepancy stands at 34(11) x 10~^° 
w i th the above plots showing 1 and 2 acontours. 

while looking into how our best f it regions would change i f a lower discrepancy was 

assumed. For simplici ty we took just 3 points in the {n iF, M1/2) plane of m in imum 

A w i th / i = 120 GeV and gradually changed the g — 2 discrepancy f rom 34 x 10~^° 

down to 0. The results are presented in fig. (3.4) as a p lot of against the muon 

g — 2 discrepancy, 

W i t h the discrepancy held at 34 x 10~^° the best f it point is near M1/2 = 450 GeV and 

mp = 550 GeV. Following the curve corresponding to this point in parameter space, 

we can see, in fig. (3.4), that as the muon g — 2 discrepancy is lowered the gradually 
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Figure 3.3; Contours of the second generation sneutrino mass, 
are plotted in the plane of {mp^ ^^^1/2)- The contours are in the units 
of GeV. The four plots, are obtained f rom the two minima, min i -
m u m A and m in imum B w i th = 120 and 300 GeV as labelled. A l l 
points in the top left corner w i th approximately M1/2 > 700 GeV 
and mp < 700 GeV are unphysical due to the l ightest stau becom-
ing the LSP. 

increased. On the other hand the two curves w i th larger Mx/2, rnp have decreasing 

Therefore the best fit point has moved in the positive M1/2, m p direction. Looking at 

these two other curves in fig. (3.4) we can see that i f ~ 16 x 10~^° then the best 

fit point would move nearer Afi/2 = 550 GeV and mp = 650 GeV. One part icular 

point of interest is = 9.4 x 10~^°, the value for the discrepancy as given by the 

Standard Model predict ion f rom r decay data. I f we make an approximation, based 

on the curves in fig. (3.4), we can say that the best fit po in t , for ^ = 9.4 x 10 1 - 1 0 

would be in the region M1/2 — 550 — 700 GeV, mp — 650 — 700 GeV. 
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Figure 3.4: This plot displays the effect on due to a future change 
in the value of the muon g — 2 discrepancy. The value of the muon 
anomalous magnetic moment is varied f rom the present value of 
34 X 10~^° down to zero. The resulting change in is observed for 
three points in the {mp^ M i j ^ ) plane. 

3.4.2 r 

Fig. (3.5) displays contours for the quant i ty B r ( r -4- ^ 7 ) for both min ima w i t h 

f i = 120 and 300 GeV as labelled. The general pattern of the contours show larger 

branching ratios for l ighter SUSY spectrum and smaller branching ratios for heavier 

spectrum. This pattern is not str ict ly obeyed in the bo t tom left panel which shows 

results for m in imum B w i th / i = 120 GeV. The reason for this is that our numerical 

procedure adds a large penalty contr ibut ion for a r ^ ^ 7 branching ratio larger 

than the BaBar l im i t of 2.0 x 10~®[45]. Looking at the bo t tom left panel i n fig. (3.5) 

we would expect the branching rat io to exceed the present l im i t as we go to a lighter 

spectrum. The result of adding this penalty is to numerical ly force an alternative 

solution to be found which gives lower branching rat io and disrupts the pattern. Re-

calculation of this region of parameter space wi thout the addi t ional penalty does 

indeed yield values of B r ( r -4- ^7 ) as large as 6.0 X 10"®, these points would therefore 

follow the expected contour pattern but are clearly experimental ly excluded. 
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Figure 3.5: Contours of Br[T -4- /U7) are p lot ted in the plane of 
{rriF-i Mi/2)- The four plots, are obtained f rom the two minima, min-
imum A and min imum B w i th JJL = 120 and 300 GeV as labelled. A l l 
points in the top left corner w i th approximately M1/2 > 700 GeV 
and m p < 700 GeV are unphysical due to the l ightest stau becom-
ing the LSP. 

Looking at fig. (3.5), the branching rat io for m in imum A w i t h // — 120 and 300 GeV 

is at least an order of magnitude below the present experimental bound. On the other 

hand, the branching rat io for m in imum B, w i th / i = 120 GeV fig. (3.5), is right at 

the present 90% confidence level bound of 2.0 x 10"®. For ĴL = 300 GeV min imum B 

gives a branching rat io in the range, 0.1 — 0.2 x 10~®, jus t below the present bound. 

W i t h BaBar expected to search as far as B r ( r -4- ~ 10~^ over the next 5 years 

this certainly provides a means of distinguishing the two min ima. 
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3.4.3 Deviat ions from Yukawa Unification 

The plots shown in fig. (3.6) show contour lines for = Yb/Yy and those in fig. (3.7), 

show contour lines for Vt = 5 ^ / K in the best fits over the (m^ , M1/2) plane. These 
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Figure 3.6: Contours of = I f t / K are p lo t ted in the plane of 
(mi?, M1/2). The four plots, are obtained f rom the two min ima, min-
i m u m A and m in imum B w i th // = 120 and 300 GeV as labelled. A l l 
points in the top left corner w i th approximately M1/2 > 700 GeV 
and mp < 700 GeV are unphysical due to the l ightest stau becom-
ing the LSP. 

parameters allow the deviation of the top, bot tom and tau Yukawa couplings away 

f rom unification(r6 = rt = 1). Bo th parameters show significant dependence upon mp 

and weak dependence upon M1/2, w i th increasing rt,b values as we move towards larger 

mp. The plots show that the level of deviation f rom Yukawa unif icat ion required for a 

good fit to be obtained is of the order of 20-35% in and 0-10% in r<. I t is possible 
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to account for this level of deviat ion through the presence of sub-leading operators, 

of the type mentioned in eq. (3.22), i n the 33 element of the Yukawa matrices. Hence 

the 33 element in eq. (3.21) should read. 

%3 — 033 + C + 0 ' + .. (3.29) 

where the operators O and O ' are responsible for generating rt,b 7̂  1- The 23 block of 

the neutr ino Yukawa m a t r i x has already shown us tha t a cont r ibut ion to the Yukawa 

matrices f rom a sub-leading operator can actual ly be comparable to those f rom a 

Mi/2 [GeV] "1/2 

1000 

900 

800 

700 

600 

500 

400 
1000 

900 

800 

700 

600 

500 

400 

M=120GeV f 

MinA \ 

0.95 ,, 

/ ii.07 

1.05'-. 
143 1 ;Q2 ' - -

H H 
H=120GeV 

Min B' 

1.0 

/ 1.07 

: 1.05 - , 

1.02 

M=300GeV / 

Min A ! 

0.9 

I 0-9̂  .0:1.02 

: 1.07 

i':o5 \ 

H K F; I 1-
M=300GeV. 

Min B / r ; \ 

0.95, 
1.02 

1:0 

T.-a7 -

400 500 600 700 800 9001000500 600 700 800 9001000 

mp [GeV] 

Figure 3.7: Contours of r j = Yt /Yr are p lo t ted i n the plane of 

{mp , M I /2 ) - The four plots, are obtained f rom the two m in ima , min-

i m u m A and m i n i m u m B w i t h f i = 120 and 300 GeV as labelled. A l l 
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leading operator. This occurs in the 23 element of the neut r ino Yukawa mat r ix , where 

there is a cont r ibut ion f rom the operator and the neut r ino mat r i x is the only one 

that receives a non-zero Clebsch-Gordan coefficient as can be seen in table 3.2. Th i s 

leads to the relative sizes of the elements ~ 0.44 and ~ 1. A similar sub-

leading cont r ibut ion to the 33 element of the up and down quark Yukawa matr ices 

could easily account for a deviat ion f rom th i r d fami ly Yukawa unif icat ion at the level 

discovered in our study. 

M=120GeV 

nnp=600GeV 

My2=600GeV 
Min A 

0.95 1 1.05 1.1 1.15 1.2 

1.1 
1.05 

1 
0.95 
0.9 

0.85 

0.75 
0.7 

, - J ' ' 
-,•••1-5 
- 10 -

- '5 -

3 2 
1 i --4_ r 

H=120GeV 

mp=110OGeV 

M-|y2=500GeV 
Min A 

0.9 0.95 1 1.05 1.1 1.15 1.2 

1.1 
1.05 

1 

0.95 
0.9 

0.85 
0.8 

0.75 
0.7 

' ' ' , J ' i 1 

-

- / ' 20 / 

i, 
5 

1 . 1 r 

H=120GeV 

mp=1500GeV 

My2=300GeV 
Min A 

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 

Figure 3.8: contours i n the —r;, plane. The plots are generated 

w i t h yU = 120 GeV and for m i n i m u m A. The three plots are each 

generated w i t h fixed M1/2, as labelled. T h e plots display the 

penalty which is required for exact Yukawa uni f icat ion to be 

achieved. 

Here we do not study the region in the parameter space m f > 2 TeV, Ao ~ —2mp 

where the exact uni f icat ion migh t work [46]. Instead, we carr ied out a study of the 
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addit ional penalty incurred due to demanding exact Yukawa unification in the 

region m p < 2TeV and Ao = 0. Fig. (3.8) shows the result as contour plots i n 

the rt — Tb plane corresponding to the best fits. The three panels were obtained f rom 

three points in the , M1/2) plane and show that a very heavy penalty 5x^ > 10 is 

paid when requiring exact Yukawa unif ication in this SUSY region. 
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Figure 3.9: Contours of the CP odd Pseudoscalar Higgs mass, m^io, 
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3.4.4 Future Higgs searches 

Fig. (3.9) shows mass contours of the CP odd pseudoscalar Higgs, m^o. These plots 

show that for the Pseudoscalar Higgs mass m in imum A prefers values approximately 

200 — 300 GeV lower than m in imum B. In fig. (3.9) we see that for both j i = 120 and 

300 GeV, m in imum A gives a very l ight pseudoscalar Higgs mass, mjsfi ~ 108 GeV, 

in the low M1/2, m p region. 

(M, t W c ) 550. 650 GeV 
(M,*,MF)"700. 700 QaV 
(M,^MF).500. 750 GeV 

^ 

0̂ no ia 
Higgs mass Limit (GeV] 

Figure 3.10: This plot displays the effect on due to an increase 
in the lower bound on the Higgs mass f rom direct searches. As in 
fig. (3.4) the variation in is observed through indiv idual points 
in the (m^ , M^/g) plane. 

This is in fact the same region in which m in imum A provides its lowest In fact 

table 3.5 shows that for the best fit point in m in imum A we have a pseudoscalar mass 

of 102 GeV and a l ight CP even mass of 106 GeV. W i t h the TeVatron now taking 

data there is a high probabi l i ty that the present lower bound on Higgs masses wi l l be 

pushed higher. Hence we have undertaken a study of the effect this would have on 

our best fits. The plot in fig. (3.10) shows the increase i n for four points in the 

{mp, M1/2) plane of m in imum A, due to an increase in the lower bound on the Higgs 

masses rriyfi. I t clearly shows that all four of the points can accommodate an 

increase in the lower bound up to approximately 120 GeV, above this the increases 

94 



sharply due the inabi l i ty to accommodate such a large lower bound. 
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Figure 3.11: Contours of sin(/9 — a), which defines the strength 
of the Z boson coupling to the Higgs relative to that of H°. 
For values of sin(/? — a) near one the Z — h° coupling is large and 
for small values the Z — coupling is large. The contours are 
plot ted using data f rom m in imum A w i th j i = 120 GeV. The the 
best f i t point at M1/2 = 450 GeV, m j = 500 GeV is marked w i th 
an asterisk. 

The coupling of the l ight CP even Higgs, /i°, to the Z boson is proportional to 

sin(/5 — a) , as seen in table 2.3 in section 2.2.2, and that of the heavy CP even Higgs, 

is proport ional to cos(/3 — a) , where a is the mix ing angle for the CP even Higgs 

states. I n fig. (3.11), which shows contours of sin(/S — a) for points in m in imum 

A, we see that in the low M1/2 region sin(/9 — a) is small and hence the Z couples 

dominant ly to the heavier Higgs state i?°, rather that the l ighter Therefore, in 

this region i t is the heavier state, which is the standard model l ike Higgs and so 

the LEP l im i t w i l l apply to the larger mjjo and not m/jO. Table 3.5 shows that we have 

exactly this situation for the best f it points of m in imum A where s in(^ — a) ~ 0.2, 

therefore the standard model l ike Higgs is the heavier state for these points w i th 

a mass of 113 GeV. Assuming a 3 GeV error in our numerical calculation means we 
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are compatible w i th the present LEP hmi t of 114.4 GeV. 

3.4.5 CHOOZ angle, 1̂3 

We are interested in using our best fit points to make further predictions for unknown 

observables as we have already done for B r ( r -4- //"/) in section 3.4.2. One further 

observable we would like to study is the neutr ino mix ing angle 013. As mentioned 
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in chapter 2 this mixing angle is still unknown although a bound has been set by 

the reactor experiment CHOOZ. The model we are studying is typical of a larger 

class of models and fits all present experimental constraints and so its predictions are 

characteristic of this broader group of models. 

Fig. (3.12) shows scatter plots of 8in^20i3 against for both minimum A and 

min imum B w i th /i = 120 and 300 GeV. Each point denotes a value obtained f rom 

an indiv idual point in the ( m f , M1/2) plane, w i th points grouped according to the 

value of These plots show that the Model can easily yield values of 1̂3 that are 

wi th in the present CHOOZ l im i t , ^13 < 0.22. Each of the plots in fig. (3.12) shows 

that the best fit points, denoted by a symbol, give a range of values of sin^ 2̂ 13 

from, 10"® to 0.1. Although our results do not give any firm predict ion for the value 

of 1̂3, it can be seen that the model favours the region, 10"^ < sin 1̂3 < 0.1, just 

below the present CHOOZ l imi t . 

3.5 S u m m a r y and Conclusion 

We have performed a complete global phenomenological analysis of a realistic string-

inspired model based on the supersymmetricPati-Salam 'S'(/(4) x 5'(7(2)f, x 5'[/(2);% 

gauge group supplemented by a U{1) fami ly symmetry. Global contour plots in the 

(mf̂ , M1/2) plane have been presented in fig. (3.1), showing two minima. These 

two distinct minima differ numerically by the relative sign of the D-term. This gives 

interesting phenomenological differences between the two min ima, notably one has 

Br('7- —//'Y) near the present limit and a heavy pseudoscalar Higgs mŷ o, while the 

other has i ? r ( r n j ) well below the present bound but a l ight pseudoscalar Higgs 

. Both minima give a good fit to the present muon ^ — 2 discrepancy over a large 

region of parameter space and give sin^ 2̂ 13 over the range 10"^ — 0.1. Our best fit 

predictions for the superpartner masses for each of the two minima for two different 
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^ values are summarised in table 3.5. 

We emphasise again that our analysis really should be considered as consisting of 

two distinct parts, associated with flavour physics on the one hand and unif ication 

and electroweak symmetry breaking on the other hand. For the flavour part, we have 

proposed a complete model in table 3.2 which gives an accurate description of a l l 

fermion masses and mix ing angles, including the L M A M S W neutrino solution. We 

have shown that improved limits on could begin to rule out one of our 

two minima. The conclusions on Br(T —/i'-y) are applicable to a wide class of models 

which achieve approximate maximal atmospheric neutrino mixing via the see-saw 

mechanism in the MSSM with a large 23 entry in the neutrino Yukawa matrix. On 

the other hand i? r ( / i -4- 67) is predicted to be about two orders of magnitude below 

the current limit, which is a consequence of the speciflc flavour structure of the model 

in table 3.2. 

Regarding uniflcation, the model predicts approximate third family Yukawa uniflca-

tion and hence large tan /? ^ 50. Electroweak symmetry breaking was achieved with 

the help of D-terms and non-universal soft Higgs mass, which allows small / i values. 

The property of exact Yukawa uniflcation was relaxed throughout the analysis and it 

was found that a deviation of 20-35% for the bottom Yukawa coupling and 0-10% for 

the top Yukawa coupling are required for a good flt to be obtained. We showed that 

relaxing Yukawa unif ication has the effect of allowing small values of the soft scalar 

mass , and lighter squark and slepton masses as a consequence. 

Further studies of the effects of future direct Higgs searches and a change to the 

present muon p — 2 discrepancy are shown in flg. (3.4) and (3.10). We found that our 

best flt points, for the minima with lighter Higgs masses, can accommodate a lower 

bound on Higgs masses up to about 120 GeV. For these points the coupling of the 

lighter CP even Higgs state to the Z boson is suppressed, leaving the heavier of the 

two CP even states acting aa the standard model like Higgs. 
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In conclusion, we have constructed and analysed a complete supersymmetric Pati-

Salam model which agrees w i th all laboratory observables and constraints. Using 

a global analysis we identi fy the most preferred regions of the SUSY parameter 

space, and find a rather light superpartner spectrum corresponding to , M1/2) ^ 

(600,600) (in GeV) well within reach at the LHC. 
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Chap te r 4 

T h e Implicat ions of Bg —/i^/i 

In this chapter we examine the potentially very promising signal in 

supersymmetry with large tan in a approach starting from the best fits 

of the S'0(10)-like model studied in the previous chapter. In fact our predictions 

are to a large extent model independent, being similar to those based on minimal 

snpergravity, but we include contributions which go beyond those investigated in 

previous works. In part icular, in the effective flavour changing coupling we include 

terms not explicitly proportional to which have been neglected in previous studies 

based on minimal supergravity. We show that the absolute best hts provide a signal 

for .Bg the borderline of the present limits and hence the ongoing search 

at the TeVatron will start having an impact on the global analysis of this class of 

SUSY models. We discuss the implications of a measurement of Bs -4- for 

restricting the parameter speice of gauginos and sfermion masses, and of signals in 

other channels We also discuss correlations of with the 

CP-odd Higgs mass, sin(/9 — a) and b -> sj in S'0(10)-l ike models. 

The work presented in this chapter may be found in ref. [47]. 
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4.1 Pre l iminar ies 

Ideas of uniAcation and the origin of Savour have been under investigation for a long 

time and many different models have been proposed in the last twenty years. Yet in 

the diversity of different approaches a class of unification models can be recognised 

which is remarkably simple at the unification scale. We call this class S0(10)-like 

unif ication models. In these models the effective theory at the unification scale as-

sumes that the Standard Model (SM) gauge couplings uni fy to a per cent level, t h i r d 

family Yukawa couplings are all of order unity and the remaining Savour structure 

originates in a small set of higher-dimensional superpotential operators keeping the 

supersymmetry (SUSY) breaking sector of a model Savour blind. We note that actual 

models which fall into this category often assume lower symmetry than SO(IO), e.g. 

models based on the Pati-Salam gauge group or the MSSM gauge group generated 

by a string theory in higher dimensions are often found in this class of models. 

It has been recently pointed out that if the Minimal Supersymmetric Standard Model 

(MSSM) is the eSective theory describing nature above the scale 100 GeV and tan = 

is large, a pure leptonic decay has a very strong 

case to emerge among the Srst indirect signals of supersymmetry (SUSY) [48]. This 

is because the decay signal should be very clear at the TeVatron or LHC and also 

because the SM branching fraction is suppressed down to 10"^ while the rate can be 

enhanced when considering SUSY extensions. In particular, this occurs due to large 

couplings of the down-type quarks and charged leptons to the MSSM higgs states 

if tan is large. Thus it is important to analyse this decay in a full SUSY theory 

and not just in terms of the minimal Savour violation that assumes that is the 

only source of the 32 transition, as has been done in the past. In the full context 

of complete unif ication models i t means that the 32 Savour structure is restricted by 

the fermion mass ratios mg/m;, and mc/mf, small value of %(,, large 

b sJ branching rat io and possibly other low energy observables and constraints. 
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Although these constraints do not determine the 32 sector uniquely they do provide 

for a realistic prediction of observables like the decay rates. 

In the following sections of this chapter we present the results of such a complete ^o -̂

(fown investigation based on the best At predictions obtained in the global analysis 

of a complete S0(10)-like model presented in chapter 3 and published in [23]. The 

best f its obtained in this work give a very good agreement wi th the observables 

related to the 32 Savour sector and satisfy all laboratory experimental constraints on 

superpartner maases. Here they serve as our starting point since they provide us with 

all the MSSM couplings at the low-energy scale. Within this framework we study the 

implications of a possible measurement In particular, we discuss the 

related processes Bg -4- ^ Bd —)• , Bd —> r + r " , and show the correlations 

with Bs —)• We discuss the implications of a measurement of Bs —> / i f o r 

restricting the parameter space of gauginos and sfermion masses, and also discuss 

correlations of Bg — w i t h 6 —g'-y and the CP-odd Higgs mass. 

We emphasise that our work is general and applies to any mSUGRA model with 

universal sfermion masses at the unification scale and the Higgs spectrum similar to 

the one considered here. In such a framework it is well known that, for a given choice 

of low energy fermion masses and CKM mixing angles, the Savour predictions are 

independent of the precise nature of the Yukawa matrices selected at high energy 

since different choices of Yukawa matrices can be rotated into each other. Apart 

from being general, the present study contains a number of new features not present 

in previous works. One novel feature is to present results that are based on a top-

down global analysis. ^ In a top-down approach of this kind the complete Yukawa 

and sfermion mass matrices are known at the low energy scale and no extra iteration 

(sometimes called resummation of large tan^ terms) is needed to extract the couplings 

which enter the one-loop SUSY integrals. Another new aspect is a more complete 

^This approach was also considered by Dermisek et a/.in 
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analysis of the process Bs -4- The previous analyses of S0(10)- l ike models 

(see, e.g. Dedes et al in [48]) only considered min imal flavour v iolat ion w i t h the rate 

Bs —> expl ic i t ly proport ional to the low-energy value while our results also 

include the contributions from diagrams like in hg. (4.4) that are not proportional 

to ^^(M^). Such contributions, which arise from squark mixing effects, have so far 

been ignored in mSUGRA based analyses, yet can give signiAcaat contributions to 

the rate, aa discussed later. 

Af ter this in t roduct ion the chapter continues in section 4.2 w i t h a brief theoret ical 

section on the evaluation of decay rate in the approach. In 

section 4.3 we discuss our top down approach after which section 4.4 presents our nu-

merical results, and discusses the implications of a signal for - Section 4.5 

concludes the chapter. 

4.2 

We emphasise that in a top-down approach the tree-level M S S M couplings are deter-

mined from high energy boundary conditions, and do not have to be determined by 

an i terat ive procedure as in bo t tom-up approaches. I n par t icu lar , in terms of effec-

tive vertices / and which are matrices in Savour space, after heavy sparticles are 

integrated out the lagrangian can be written down as 

At tree level down-type quarks only couple to down-type Higgs and / = 

g' = 0. Yukawa couplings can be read out as a straightforward prediction of a 

unified model. and the mass matrix caji then be simultaneously 

diagonalised w i t h eigenvectors A t one-loop level / and g have to be computed 
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and the mass terms relevant for this discussion become ^ 

-d 
(0) 

R 
(O)diag t + XO) (4.2) 

using the same basis. Clearly, if u,. sizeable corrections to the mass eigenvalues 

[40] and mixing matrices [41] are generated. Furthermore the 3-point functions in 

eq. (4.1) and mass matrix in eq. (4.2) cannot be simultaneously diagonalised [50]. If 

we write eq. (4.1) as 

-d 
(0) 
R 

(0)d,aa t ^ 
Vd 

- 4 
(0) 

9' H[ 0 * 

Vd 
(4.3) 

then the Arst bracket of eq. (4.3) is in a form which is similar to that of the mass 

matrix and therefore is diagonal when are rotated into corrected mass eigenstates 

6̂ 2 R = This is not true for the laat bracket which becomes a source of 

Savour changing, 

£ fCNC 
Vd 

K ̂ (i)t ^l] + h.c. (4.4) 

It is now explicit that its origin comes from the interaction present at 

tree level. Moreover, the Savour chcmging couplings get enhanced by an explicit factor 

tan/3 on top of any tan/) scaling present in gf. In the leading order in tan/) the gr 

matrix can in fact be related in a simple way to the Unite non-logarithmic mass matrix 

corrections, computed for the hrst time in [41]. Due to = 

t;u + (^°aa+/i°Ca+2A°c^-t-z(?°6/))/-\/^and = i;j + (^Ca — — 

we can write 

h: 0 * 

Vd 
(4.5) 

^Terms due to wavefunction renormalisation do not contribute to flavour changing. 
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where = sin a, = cos a, ê c. We can thus identify effective vertices 

and 6^52,^° involving 6 to g transitions mediated by neutral physical higgs 

states. We note that with large tan/) the coupling to the pseudoscalar is always 

large while the CP-even states, and have couplings which depend on the CP-

even higgs mixing angle a. The Goldstone mode is cancelled in the equation above 

and thus the effective vertex with the Z boson is absent at this level. 

Figure 4.1: Higgs penguin contribution to the Savour 
changing neutral current process, The 
coupling gis is an effective vertex generated from loops 
where the heavy SUSY partners have been integrated 
out. The mediating stands for neutral Higgs mass 
eigenstates, 

In the MSSM with large tan/) the dominant contribution to comes from 

the penguin diagram where the dilepton pair is produced from a virtual Higgs state 

[48]. After the SUSY partners are integrated out we are left with the elective vertices 

determined above. Thus in combination with the standard tree-level term = 

— t h e dominant tan/) enhanced contribution to the branching ratio 
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turns out to be 

= 1.75 X 10-^ 

/ 

2 2 2 Ml 70 2 tan/? 
0.04 ^O.OSllJ 

. Vu _ 
50 

X 

\ 
j8 

\ \ Mioo J \ Ml00 J / 

+ 

Ml, 

(4.6) 

where matrix is in the baais, and is defined by 

(4.7) 

mt is the 6 quark mass at scale M / in the elective 5'(7(3)c x (7(l)em theory, the 

constants are Mioo = 100 GeV and Mî o = 170 GeV. The numerical factor in eq. (4.6) 

arises from: 
,_3 0.04^0.0311^50" 

1.75 X 10' 
1287r ^lOQ ^170 

(4.8) 

Note that ^r(B° — ) in eq. (4.6) is not proportional to This formula there-

fore diEers from that used in previous mSUGRA analyses, as mentioned previously. 

Modification for other ^ decays is trivial. We note that each of these 

branching fractions actually scales down as tan®/? [49] for lower values of tan/?: ad-

ditional powers of tan enter due to the explicit presence of lepton Yukawa coupling 

and mass matrix corrections (or, equivalently, Yukawa coupling in 

9)-

4.3 Top-down approach 

Our results are based on the model analysed in [23]. The model was defined below the 

5'0(10) breaking scale, where the gauge group was broken to its maximal Pati-Salam 
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subgroup, and the Savour structure of the model was determined by operators which 

respected the Pati-Salam symmetry. Universal gaugino masses M1/2 and sfermion 

masses were assumed, and we allowed for D-terms and non-universal scalar Higgs 

masses. Throughout this work the trilinear parameter was kept Axed at = 

0. We note that the Yukawa unification is not exact, with ?/(, for example dropping 

down to 0.72/f for the best Ats, although we keep the low energy value tan/) = 50 fixed 

in our analysis. As we have already emphasised, since the soft sfermion masses are 

assumed to be universal, the physical effects arising from Eavour violation in the quark 

sector are independent of the choice of high energy quark Yukawa matrices. However 

in the lepton sector this is not the case due to heavy right-handed neutrino mass 

thresholds.^ The essential features of the model in the lepton sector include a large 

off-diagonal neutrino Yukawa coupling ^ 1, to generate the large atmospheric 

mixing angle. Since the soft SUSY breaking sfermion mass matrices at Mccrr are 

proportional to the unit matrix the main difference between this model and standard 

mSUGRA is that here we consider a non-universal Higgs mass and D-terms which 

allow for a larger flexibility for the Higgs spectra. 

4.4 Resu l t s 

We first summarise the experimental limits for the processes of interest: 

Br(B, < 2.0 X 10-^ [CDF] (4.9) 

Br(Bj -4- jiji) < 6.1 X 10"^ [Babar], (4.10) 

with no bounds yet established for the r final state processes. Looking to the future, 

the TeVatron will bring us further results for decays with the prospect of a CDF 

bound in the region of Bt(Bs -> ////) < 10"^. By comparison the standard model 

^See for example [37]. 
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predicts Br(Bg -4 ^/u)SM ~ 3.5 x 10 ^ [51]. 
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Figure 4.2; Contour plots for the branching ratios of the FCNC 
processes, Bs - i and Bs -4 r + r ~ . Each branching ratio is 
plotted with two different values of the parameter. The -k marks 
the best fit point. 

To obtain predictions for such processes, we have performed a top-down global analysis 

of the 5'0(10)-like model outlined in the previous chapter. This analysis yields two 

distinct best fits, which we call Minimum A and Minimum B. The higgs spectrum 

in Minimum B is heavy, mostly near the TeV scale and will not be considered in 

the discussion below. The Higgs spectrum of Minimum A was found to be more 

interesting for our present study with masses at the 100 GeV scale. Hence it is the 

results from the unaltered fits of Minimum A which are presented in this chapter. 

The numerical results for the processes Bs and Bg -4- r + r " are displayed 

108 



in fig. (4.2). Similar results for Bd —>• r+r~ are given in fig. (4.3). These 

results are presented as contour plots in the mp — M1/2 plane with a fixed value of 

/i = 120 GeV(left panels) and n = 300 GeV(right panels). When comparing these 

contours with eq. (4.6) we find that a significant suppression is obtained from the ratio 
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Figure 4.3: Contour plots for the branching ratios of the FCNC 
processes, Bj, -4- and % —>• r+r". Each branching ratio is 
plotted with two different values of the ji parameter. The * marks 
the best fit point. 

{S'md)32/'mbVts- This comes purely from fitting the b quark mass, Vcb and b -4 57. At 

this point it is of interest to enquire how large are the non-minimal flavour violating 

effects represented by the diagrams in fig. (4.4). For the best fit point we have checked 

that the second diagram in fig. (4.4) is 25% as large as a similar diagram without 

the mass insertion on the squark line, but with Vts inserted at the vertex instead. 

This gives an indication that the non-minimal fiavour violating effects we include are 

109 



significant. 
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Figure 4.4: Examples of Feynman diagrams contributing to the 
eifective 6^^° coupling that are not proportional to Black 
dots indicate Savour-changing vertices while crosses stand for mass 
insertions for interaction eigenstates. 

The upper two panels of fig. (4.2) display contours of Br(i?s —> ̂ /i) with ft = 120 

and 300 GeV, and show values quite close to the current limits, and well above the 

standard model predictions. The Higgs mediated contribution in the SUSY model 

clearly dominates over the standard model contribution and for // = 300 GeV, with 

low Mi/2, it can even exceed the present CDF limit. An improved limit of 10"^ would 

be very restricting and could probe Higgs masses into the range, rriŷ o = 150—300 GeV. 

As for the process, ////, fig. (4.3) shows that the present bound is satisfied by 

both /i values over the entire displayed plane. 

Inspection of figs. (4.2) and (4.3), reveals that the branching ratios for 

are sensitive to the universal gaugino mass M^/g, but not to the uni-

versal sfermion mass . Inspecting the panels of fig. (4.5) we see that it has 
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a very similar M1/2, mp dependence. This can be understood as a consequence of a 

lighter mediating Higgs which leads to larger branching ratios. 
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Figure 4.5; The upper two panels contain contours of the CP odd 
Pseudoscalar Higgs mass, plotted in the mp — M1/2 plane. The 
lower panels contain contours of, sin(/3 — a), which determines the 
strength of the Z-boson coupling to, /i°, the lighter CP even Higgs. 
Again the plots are displayed at different values of /i. The -k marks 
the best fit point. 

The branching ratio for Bs,d —̂  tt is enhanced by a factor of {yr/yfj.y ~ 100 compared 

to the muon final state processes, as can be seen in the lower panels of fig. (4.2) 

and (4.3). This makes the tau final state processes very attractive for experimental 

discovery. The difficulty comes with the required detector resolution to measure tau 

decays. If this problem could be solved at future experiments then these tau final 

state processes could become the primary signal for indirect SUSY searches. 
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Fig. (4.5) contains corresponding contonrs of in the upper panels and the quantity 

sin(/) — a), which controls the coupling of the lightest CP-even Higgs scalar coupling 

to the Z, in the lower panels. The numerical predictions for the best fit point at 

MI/2 = 450, rap = 500 GeV (indicated by an asterisk in the figures) are given in 

table 4.1. 

/i = 120 GeV FI = 300 GeV 

Ml/2 [GeV] 450 450 
[GeV] 500 500 

BS -4- ^/i 1.5 X 10-^ 5.9 X 10-^ 
BS -4- TT 2.6 X 10-4 1 X 10"^ 

1.5 X 10-'̂  5.8 X 10-^ 
BD — > TT 2.7 X 10-^ 1 X lO-'' 

[GeV] 102 102 
sin(/3 — a) 0.22 0.15 

Table 4.1: Table of branching ratios for r+r", CP-
odd pseudoscalar mass m^o, and sin(/3 — a) which governs the light-
est CP-even scalar coupling to the Z, for the best fit point. 

We now turn to the implications of a possible measurement (or an improved experi-

mental limit) of the branching fraction of for 5'0(10)-like models. Fig. (4.6) 

and (4.7) show the effect on various quantities of varying the branching ratio for 

Bs —> fifi for three fixed points in the mp — M1/2 plane. 

The upper panels of fig. (4.6) show the variation of as Br(Ba —//^) is varied. 

As Br(B3 —> ////) decreases the increases initially slowly and later rapidly. The 

initial slow increase is understood from fig. (3.10) in the previous chapter, where it 

was observed that the value of for the best fit points are insensitive to changes of 

a few GeV in the Higgs spectrum, which implies an insensitivity to small changes in 

the branching ratio for Bg Hence the points which presently exceed the CDF 

bound can be forced to satisfy it with only a small(~ 0.5) increase in %̂ . But if the 

bound was to be lowered to 10"^ then this would no longer be possible with ~ 3. 
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Figure 4.6: This figure shows the variation of and the Pseu-
doscalar Higgs mass, m^o, as the branching ratio of Bs (U/U varies 
from 10~® down to 10~®. Each of the three curves are drawn with 
fixed values of M1/2, fnp. The vertical dashed line represents the 
present CDF bound on Bs -4 

Hence the low M1/2 region of the fj, = 300 GeV plane will be ruled out and the best 

fit region would move toward larger M1/2. 

The lower panels of fig. (4.6) display the variation of m^o as Br(Bg -4 iiji) is varied. 

As expected m^o increases smoothly as Br(Bg —)• ^jj.) decreases. Note the strong 

correlation of the CP-odd Higgs mass with Br(Bg —)• yuyu), which for a fixed value of 

fj, is quite insensitive to and Mi/2-

It is well known in SUSY models with large tan (3 that b provides a strong 
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Figure 4.7: This figure shows the variation of sin(/3 — a) and the 
branching ratio for b —> 57, against Bs —)• yu/i. The vertical dashed 
line represents the present CDF bound on Bg The hori-
zontal lines show the central measured value(solid) of Br(6 -4- 57) 
along with the lcr(dashed) and 2<7(light dashed) regions. 

constraint on parameter space [52]. In fig. (4.6) the main contribution to the increase 

in seen is due to 6 57 not being fit well. The lower panels of fig. (4.7) show 

the variation of Br(6 —̂  57) against Br(Ba -4 fx/J.) and show a clear correlation. This 

correlation can be understood as the SUSY contribution to each of these processes in-

volves the 23 mixings in the squark mass matrix. For example the dominant chargino 

contributions to each process, shown in fig. (4.4) and fig. (2.6), are closely related. 

These panels also show why 6 —> 57 is the main contribution to the change in as 

the fit to 6 57 changes from within 1 cr to almost 2(t. 
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The upper panels of hg. (4.7) show the variation of sin(/3 — a) as Br(Ba —////) is 

varied. In the low M1/2 region, where Br(Bg -4- jin) is near the current limit, sin(/?—a) 

is small and hence the Z-boson couples predominantly to the heavier CP-even Higgs 

rather than the lighter Higgs However sin(/? — a) very quickly approaches 

unity as the Br(i?s -4- ^u/i) decreases, corresponding to the standard model limit where 

the 6° couples like the standard model Higgs boson. 

4.5 Conclusions 

We have examined the potentially very promising signal iii supersym-

metry with large tan ~ 50 in a top-down approach starting from the best fits of 

an 6'C)(10)-like model presented in chapter 3. However our predictions are to a large 

extent model independent, being similar to those based on minimal supergravity, but 

we include all additional contributions which go beyond the minimal flavour violation 

investigated in previous works. In particular, in the effective Savour changing cou-

pling we include terms not explicitly proportional to 14, which have been neglected in 

previous studies based on minimal supergravity, and which we have shown are signif-

icant. The results in this chapter therefore go beyond those based on minimal Eavour 

violation in mSUGRA investigated previously. Our results show that the absolute 

best fits provide for the signal at the borderline of the present limits and 

hence the ongoing search at the TeVatron will start having an impact on the global 

analysis of this class of SUSY models. 

We have discussed the implications of a measurement (or an improved limit) of .8, —> 

for restricting the parameter space of gauginos and sfermion masses, and of 

signals in other channels We have also discussed correlations of .8, — 

with 6 —> g'y and the CP-odd Higgs maas. An improved limit for Br(Bg —/iju) 

of around 10"'' would be very restricting and could probe Higgs masses into the 
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range, — 150 — 300 GeV, with the Higgs coupling strength sin(/) — a) varying 

very quickly around this region. The possible non-observation of Bg -4- at the 

levels suggested by our study would by no means rule out 6'0(10)-like models. In 

the context of the analysis in chapter 3 this would simply highlight Minimum B, 

with its heavier Higgs spectrum and Br(Ba —////) ^ 10"^°, as the favoured solution. 

On the other hand we have seen that an actual observation of Bs —>• at the 

10"^ level is quite plausibly expected in SUSY 5'0(10)-like models, with interesting 

phenomenological and theoretical consequences. 
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5.1 Pre l iminar ies 

Observations of neutrino oscillations at SnperKamiokande [15], SNO [17] and Kam-

LAND [18] imply the existence of massive neutrinos with large solar and atmospheric 

mixing angles. The small neutrino masses are most naturally explained via the see-saw 

mechanism with heavy singlet neutrinos. Models incorporating the see-saw mecha-

nism will contain Yukawa couphngs for both the neutrinos, and charged leptons, 

and a Majorana mass for the singlet neutrinos, It is possible to work in a 

basis where both and are diagonal in Savour space. In such a basis is always 

left as a possible source of Savour violation. In SUSY models this Savour violation 

can be communicated to the slepton sector through renormalisation group running. 

The initial communication is from running between the GUT scale and the scale of 

A/;;. Although the scale Afm is far above the weak scale its effects leave a lasting im-

pression on the mass squared matrices of the sleptons. Subsequently Savour violation 

can enter into the charged lepton sector through loop diagrams involving the sleptons 

and indeed such effects have been used to predict large branching ratios for r —> 

and ^ within the MSSM [26, 28, 37, 53]. 

We have seen in the previous chapter that such Savour changing can appear in the 

couplings of the neutral Higgs bosons and is enhanced by large tan In the quark 

sector interactions of the form, are generated at one-loop [40, 41] and 

at large tan/3 can become comparable to the tree-level interaction, We 

saw in the previous chapter that these two contributions cannot be simultaneously 

diagonalised and lead to potentially large Higgs-mediated Savour changing processes 

such as [48, 47]. 

Similar Higgs-mediated Savour violation can also occur in the lepton sector of SUSY 

see-saw models through interactions of the form . This leads to the possibility 

of large branching ratios for the Higgs-mediated LFV processes such as 
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T —3// and davoiir violating Higgs decays [54, 55, 56, 57]. 

In this chapter we extend the work of chapters 3 and 4 to study the lepton Savour 

violating decays > r// and T —3/^ from the best At points of the S0(10)-like 

model studied in chapter 3. These processes are correlated and highly constrained 

by those of and r ^ //'y. Such correlations will therefore be studied in 

detail. The remaining sections of this chapter are as follows, section 5.2 contains a 

discussion of the theoretical origin of the lepton flavour violating Higgs couplings in 

the (op-down approach, section 5.3 presents our results for the processes mentioned 

above and finally section 5.4 concludes the chapter. 

5.2 Lep ton Flavour viola t ing Higgs couplings 

As we saw in section 2.3.2 a SUSY see-saw model will have lagrangian terms of the 

form, 

We can diagonalise the charged lepton Yukawa and neutrino Majorana mass matrices 

such that, 

( 5 . 2 ) 

In this basis we must also rotate the the neutrino Yukawa matrix using the unitary 

matrices ^ and 1̂ 2- Hence we have, 

(5.3) 

119 



Cleafly need not be diagonal and represents a source of Savour violation in the 

lepton sector. This Savour violation is communicated to the sleptons via renormalisa-

tion group Sow from the GUT scale to the scale at which the right-handed neutrinos 

are decoupled. The relevant renormalisation group equation for the slepton soft mass 

squared matrix can be written as, 

IGTT^ 

diag 

' h l Z r J + r X ' ' ' l + 2(KmlJ^J + m],,Y,Yj + A,At)] (5.4) 

The Srst term here represents the lepton Savour conserving terms. As Y], is non-

diagonal the combinations will induce oS-diagonal contributions to There-

fore even for universal soft terms, as discussed in eq. (2.67), large Savour changing 

may be induced in the slepton sector. Eq. (5.4) can be solved approximately for the 

Savour mixing part with, 

(Am|).^. « + 2Ai) (Kyt}„ . (5.5) 

Here, mo is the universal scalar maas at the GUT scale, the trilinear coupling is 

Ay = and z ^ The class of models we are studying, see eq. (3.2), has a 

neutrino Yukawa matrix of the approximate form, 

/ n n n \ 

(5.6) 

0 0 0 

0 0 1 

yO 0 l y 

In such a model eq. (5.5) leads to sizable oS-diagonal components of the slepton mass 

squared matrix. Through loops involving sleptons this Savour violation can be fed 

into the charged leptons. Hence, as in section 4.2, we can write eSective vertices / 
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and g' after heavy sparticles are integrated out of the lagrangian so that, 

= - 4 ° ' + / t J / J + ef + h.c.. (5.7) 

There are also mass term contributions of the same form but with the Higgs helds 

replaced by their VEVs. 

Following the logic of section 4.2 we see that at tree-level / = g' = 0 and the Yukawa 

couplings and mass matrix for the charged leptons can be simultaneously diagonalised. 

At one-loop level / and ^ are to be computed and it follows that the one-loop 3-pt 

couplings and mass matrices are no longer simultaneously diagonalisable. The cause 

of this is the term, not present at tree-level. Fig. (5.1) shows the 

dominant contributions to the effective vertex g'. The Savour changing part of the 

His 
I 

7^ / h|_ TL / \ / l\ ^ / \ 
/ \ / \ 

— ^ X ' — ^ — X — ^ — X — ^ — 

/ \ / \ 

/ \ / \ 

TA / ^ //I, TB / ^ //i, 
X ' ' . X . . X ' — 

Figure 5.1: Diagrams that contribute to the coupling 
The crosses on the internal slepton lines rep-

resents mass insertions of off-diagonal components of 
Am^. 
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lagrangian therefore takes the form, 

r —(1) 
(«"• - I ' i " " (̂1) 

V 
e):j + /i.e., (5.8) 

with. 

^ — %v4°] . (5.9) 

Here the matrices rotate the Aelds from tree-level mass eigenstates to 

the one-loop mass eigenstates, ^^e down quarks of the 

previous chapter we can relate the matrix g, at leading order in tan^ ,̂ to the finite 

non-logarithmic corrections to the charged lepton mass matrix, gi.j = 

We can make use of the LFV lagrangian term of eq. (5.8) to study the Higgs mediated 

contributions to the process r —> 3^. The dominant Higgs contributions will come 

from the penguin diagram shown in fig. (5.2a). There is of course a contribution from 

the photon penguin which can be related to the branching ratio of r —//"y as [57], 

0.003. (.5.10) 
Br(T /IT) 

This relation is model independent and so it is possible for us to apply a bound of 

Br(T —3//)^ < 3.3 X10"^ on the photon penguin contribution from the present bound 

of Br('7- —^'x) < 1.1 X 10"^ [3]. The present experimental bound of Br(T —̂  3//) < 

1.9 X 10^^ [3] is at present far from this level, but in the future any measurements 

that significantly deviate from this relation, eq. (5.10), would be a clear signal that 

additional contributions, such ag Higgs mediation, are present. 

In the MSSM with large tan/9 the dominant contribution to the branching ratio of 
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r -4 3// turns out to be, 

Br(r -4̂  Zji) = 
40967r^ 

(^me)23 
2cf 

+ _ f ^ 
Mi. 

.(5.11) 

Here T/au is the lifetime of the tau lepton and is the Yukawa coupling of the 

muon. It has also been noted [58] that the related process T — w o u l d in fact 

yield a larger branching ratio. The enhancement of this process comes from a factor 

of 3 for colour and a factor of for the Yukawa coupling. In addition to 

this the cross diagreim in the muon case lowers the rate by a factor 3/2, hence the 

overaD enhancement is by 10. The present experimental bound is given as 

Br(T —̂  < 9.6 X 10"^ [3] and so it is clearly more constraining than T 3//. 

T f.1 

ft-

(a) (b) 

Figure 5.2: Higgs Penguin contributions to the processes 
(o) r —3/i and (6)^s T//. The effective vertices 
and Pi-;. &re generated from loop involving SUSY part-
ners which are then integrated out. The mediating 
stands for neutral Higgs mass eigenstates, v4°. 

The lepton Savour violating Higgs coupling discussed above can also be combined 

with the quark Savour charging coupling studied in the previous chapter. In this way 

we can also study the LFV and FCNC process r/^. In the MSSM with large 

tan ,9 the dominant Higgs contribution will again come from the penguin diagram 

mediated by the Higgs as shown in fig. (5.2b). The branching ratio may be written 

123 



av(B. ^ r ,, 

X 

rq2 2 . -,2 
a-P . a~f3 I ^ 

M^o M ô ^ M]o 
(1 — — Xr)^Jl — 2(Zt- + + (Zy — . (5.12) 

Here = (yM,/AfgJ^. We have concentrated here on the Anal state because the 
, . r 1 1 ^ 

contribution for goes like, , and approximately vanishes 

at large tan/). It is worth noting that at present there are no experimental bounds 

set on the process B, — a n d only a weak bound set on the related process 

Br(^j —//r) < 8.3 x 10" .̂ 

We shall now make use of the best fit points obtained from the global analysis of 

an S0(10)-like model presented in chapter 3. In particular we choose to study the 

best At points of minimum A. We make this choice because the Higgs spectrum, see 

Ag. (3.9), of minimum B is greater than 500 GeV whilst that of minimum A is rather 

lighter. As the branching ratio scales like 1/M^ minimum A will yield much more 

promising results. 

5.3 Resu l t s and Discussion 

Our numerical results for the branching ratio //// and r —3// are presented in 

Ag. (5.3)-(5.7) in the form of contour and scatter plots. The contour plot, Ag. (5.3) is 

plotted in the mj?, M1/2 plane (here is equivalent to the standard universal scalar 

mass mo) and with two values of /̂  = 120 GeV(left panels) and // = 300 GeV(right 

panels). The scatter plots of Ag. (5.4)-(5.7) are presented to display the correlation 

of various decay processes. These too are presented for the two different values of 

The points are grouped in terms of their values, the best At point is also clearly 

marked. 
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Figure 5.3: Contours of the Higgs-mediated contribution to the 
processes br^r -4- 3/u) and br{bs tfi) in the mp — M1/2 plane 
with fj, = 120 GeV(left panels) and 300 GeV (right panels). The -k 
marks the best fit point. 

Fig. (5.3) contains contour plots of branching ratios for both Bg -4- T/i(lower panels) 

and t —>• 3/i(upper panels). The t ^ 3fi contours are some 5 orders of magnitude 

below the present experimental bound. We find that Br(r —> 3^) < 2 x 10~^\ This 

is clearly disappointing as other authors [55] reported a much larger prediction of 

Br(T —>• 3/j.) ~ 10"^. The bs -4- t/j, panels of fig. (5.3) fair no better with Br(5s -4 

tfi) < 2 X 10"*°. Our results for both processes are in much better agreement with 

those of [56] who also predict small branching ratios for both processes. Ref. [56] 

calculates the branching ratio for r -4 3/i following the same procedure as in ref. [55] 

and so the discrepancy between these two results is not yet understood. 

Scatter plots for the branching ratios of bg -4 rfi and r 3fi against the Pseu-
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Figure 5.4; Scatter plots of Higgs-mediated contribution to the pro-
cesses Br{T -4- 3/i) (lower panels) and Br{Bs —> r/i) (upper panels) 
against the Pseudoscalar Higgs mass m^o for // = 120 GeV(left 
panels) and 300 GeV(right panels). The points are colour coded 
depending on their values with the best fit point also highlighted. 

doscalar Higgs mass are shown in fig. (5.4). Again each process is shown for the 

two values of fi. These plots show very nicely the strong dependence upon the Higgs 

spectrum. It is clear that lighter mediating Higgs bosons lead to a larger branching 

ratio in each case. 

It is interesting to study the correlations of these LFV processes with one another and 

other related processes such as r fi-y and Bg —)• Fig. (5.5) contains a scatter 

plot of r -4 3// against Bg -4- T/J. again with ji = 120 GeV and /U = 300 GeV. These 
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Figure 5.5: Scatter plot of Higgs-mediated contribution to the pro-
cesses br{t —> 3/j,) against br{bs —̂  tfj,) for // = 120 GeV(left 
panels) and 300 GeV(right panels). The points are colour coded 
depending on their values with the best fit point also highhghted. 

two LFV Higgs-mediated contributions are clearly strongly correlated. It is useful to 

note that our global analysis prefers the largest attained branching ratios. 

There is expected to be a strong correlation between the processes Bs -4- r/i, r 3fx 

and bs —> r —> jjl'y. With this in mind fig. (5.6) presents scatter plots of bg -> t/i 

and T —3jU, against Bs -4 fifi. These Higgs-mediated contributions are all strongly 

correlated and this is shown very well in this figure with large Br(_Bs —> coinciding 

with large branching ratios for Bs -> rfx and r -4- 3fx. The scatter plots in fig. (5.7) 

are plotted against Bx{t -4 ji^). The best fit points of our model predict Br(r -4 

f i j ) ~ 10~® — 10"'^, see fig. (3.5), which through eq. (5.10) can be related to a photon 

penguin contribution Br(r -4 3/«)-y ~ 10"^^ — 10~^° and it is clear therefore that this 

will dominate over the Higgs-mediated contribution in our model. The correlation 

shown in fig. (5.7) appears to be weaker than that shown in fig. (5.6) for Bg -4 /i/i. 

This implies that there is a stronger dependence on the Higgs mass than on the LFV 

coupling. 
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5.4 Conclus ion 

The observation of neutrino oscillations and therefore flavour violation in the lepton 

sector has motivated the ongoing study of rare flavour violating processes involving 

charged lepton. In the past much attention has been given to the well known processes 

r —>• (U7 and jj, -4- 67. More recently it has been suggested that in addition Higgs-

mediated contributions to r —> 3/i and B^ -4- t/j, could also be of interest in SUSY 

models. Higgs-mediation has been shown to give potentially large contributions to 
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flavour changing neutral currents such as Bs,d -4- fJ-fi. In this chapter the work of 

chapter 3 has been extended to study the lepton flavour violating decays Bg -4 Tfi 

and r -4- 3/i. We have found that our predictions for these branching ratios are 

disappointingly small with Br(r -4- 3fi) ~ 10"̂ ® — 10"^^ and Br(i?5 -4 t/j.) ~ 10"^^ — 

10~^°. The correlation of such processes to Bg -4 jifi was shown to be very strong, 

but the dependence on r ^ /^7 showed a much weaker correlation. 

The predictions made in the previous chapter for the Higgs-mediated contribution 
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to Bs -> /iyU should therefore be highlighted. We found that the branching ratio for 

this process is well within reach at future colliders. In contrast the conclusions of 

the present chapter are far less promising, ^ r//) is clearly suffering from heavy 

suppression from the additional loop and small LFV. 

In conclusion we have made use of the best fit points found in the global analysis of the 

S0(10)-like model presented in chapter 3 to make predictions for the rare processes 

r —//'Y and > r/;). We found that unlike > ;U/Y of the previous chapter the 

branching ratios are highly suppressed. Therefore greater emphaais should be put on 

the results of chapter 4. 
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C h a p t e r 6 

Overview and Conclusions 

The aim of the work in this thesis has been to study a complete model of fermion 

masses and mixing and the low-energy phenomenological predictions that can be 

deduced. To this end we began in chapter 3 by performing a complete global phe-

nomenological analysis of a realistic string-inspired model based on the supersym-

metric Pati-Salam 5"(7(4) x x 6"(7(2);% gauge group supplemented by a f / ( l ) 

family symmetry. The results of our global analysis determined that there were two 

minima with interesting phenomenological differences. Notably minimum B haa 

near the present limit and a heavy pseudoscalar Higgs while mini-

mum A has Br(T —//"y) well below the present bound but a light pseudoscalar Higgs 

sin^ 2̂ 13 predictions of both minima are in the range 10"^ — 0.1. It is important 

to notice that improved limits on //'y) could begin to rule out minimum B. 

The property of exact Yukawa unification was relaxed throughout the analysis and it 

was found that a deviation of 20-35% for the bottom Yukawa coupling and 0-10% for 

the top Yukawa coupling are required for a good fit to be obtained. 

Questions of the effects of future direct Higgs searches and a change to the present 

muon gi—2 discrepancy were addressed. We found that our best fit points for minimum 
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A, with light Higgs masses, can accommodate a lower bound on Higgs masses up to 

about 120 GeV. Also we found that in the very light Higgs mass region the coupling 

of the lighter CP even Higgs state to the Z boson is suppressed, leaving the heavier 

of the two CP even states acting as the standard model like Higgs. 

Realising that the light Higgs spectrum of minimum A may lead to interesting phe-

nomenological consequences, in chapter 4 we examined the potentially very promising 

signal Bs ii~. We studied this process using the best fits from minimum A found 

in the global analysis of the Pati-Salam model of chapter 3. The results of chapter 4 

go beyond minimal favour violation to include contributions not depending on 

which have previously been neglected. Our results show that the absolute best Ats 

predict a signal at the borderline of the present limits and hence the 

ongoing search at the TeVatron will start having an impact on the global analysis of 

this class of SUSY models. We also studied the prospects of signals in other channels 

such as Correlations of with 6 and the CP-odd Higgs 

mziss were found to be particularly strong. An improved limit for Br(Ba — o f 

around 10"^ would be very restricting to the parameter space of our minimum A so-

lution. An experimental limit in this region could probe Higgs masses into the range, 

= 150 — 300 GeV. The most exciting conclusion from the work presented in 

chapter 4 is that a signal of at the 10"^ level is quite plausibly expected 

in SUSY 6'0(10)-like models. 

Chapter 5 extends the work of chapters 3 and 4 to study the lepton Aavour violating 

decays r —̂  3// and Bg —> r/z. It was recently suggestioned that Higgs-mediated 

contributions to these processes could also be of interest in SUSY models. However 

our disappointing results don't add weight to this claim with branching ratios at 

the level 10"̂ ^ — 10'^°. In fact we have found that it is the photon penguin which 

dominates and not the Higgs-mediation for the process r —> 3//. The correlation 

of these rare decays to the related processes r — ^ were studied and 
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showed a stronger dependence on the Higgs spectmm than on the lepton Savour 

violating coupling. The disappointing results in this chapter should further highlight 

the exciting prospects for indirect SUSY discovery found in chapter 4. 

The origin of fermion mass and mixing is a great puzzle and has been for a number 

of years. In recent times low-energy experimental discovery has given vital clues 

to the solution of this problem, yet it could be argued that these clues have also 

made the situation even more interesting. It is extremely important that complete 

models are constructed that reproduce all present experimental observations so that 

they enable accurate predictions to be made and for the theory parameter space to 

be thoroughly explored. In this way theorists are able to begin to And the answers 

to such fundamental questions. The work in this thesis contributes in part to this 

grander goal. 
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Appendix A 

Grassmann Numbers 

Let ^ be a 2-compoiieiit Graggmann Number, that is a numbers which anti-commutes, 

a = 1,2 and / )= :1 ,2 

= 0, {^6, = 0, = 0 (A.l) 

It is now important for the operations of differentiation and integration with respect 

to Grassmann numbers to be defined. 

Grassmann derivative 

Let us deAne the derivative with respect to a Grassmann number as, 

f)n • 

^ = Vz,j = l , . . . ,A^. (A.2) 

It is important to remember that derivatives with respect to Grassmann numbers 

must also anti-commute, 

h ' ' L } = 
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To simplify notation we write the derivatives as, 

^ 9° = s i (A.4) 

From eq. (A.2) we can write the action of the derivative in terms of our new notation 

as, 

= a; 

(A.5) 

Here the tensor is as dehned in eq. (B.2) of appendix B Using the identities in 

eq. (A.5) it is a straightforward exercise to derive the conventions for raising and 

lowering the indices of the Grassmann derivatives, 

(A.6) 

The anti-commutation of Grassmann variables, as in eq. (A.3), implies that, 

{^a, = 0 = 0. (A.7) 

The Grassmann Integral 

Let us define the Grassmann integral as a functional, 

/ /(a)c^o. (A.8) 

Here / is a function of a single Grassmann number o. Unlike the standard integral 

we cannot associate this with the area under the curve / ( a ) and nor can any meaning 
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be attached to the upper and lower limited of the integral. In addition we demand 

that the integral be translational invariant, 

/ ( a + 6) (/a = y / (a ) cfo, (A.9) 

and that it be linear, 

(a!/(o) + /3^(G))(Za= a ^(o)(Zo. (A.10) 

We can Taylor expand the function / in a series with only two terms 

/ (a ) = /(O) + a . / ' since = 0. (A.11) 

Here if we define / (a ) as a normal number then so must /(O), but a and are 

Graasmann numbers. Then we can rewrite eq. (A.8) as, 

/ [ / ] = /(O) y . / 

= (/(O) + /&) / 1. / a . (A.12) 

Where in the last line of eq. (A.12) we have used the translational invariance of the 

integral to shift o — a + 6. It is clear from eq. (A.12) that we must define. 

l.da=Q and / ada = l. (A. 13) 

Hence the action of Grassmann integration and differentiation have the same effect. 

g^/ (« ) = y / ( o ) (A.14) 

These results can be extended from this 1-dimensional algebra to an n-dimensional 
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Grassmann algebra, 

{^,, = 0 , = 0 

f d$i = 0 , f dOi 6J = Sij. 

It will be useful to define the multidimensional integrals, 

y = 1, y = 1 

y = 1. 

The volume elements are therefore defined as, 

(A.15) 

(A.16) 

(A.17) 
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Appendix B 

Weyl and Dirac Spinors 

B . l 2 componen t Weyl spinor n o t a t i o n 

Throughout this thesis we assume the space-time metric, 7;̂ ^ = diag(l, —1, —1, —1). 

If we deAne a 2 x 2 matrix M with determinant 1, i.e. M 6 5'7}(2, C). Then 

the matrices M and M* provide inequivalent representations of 5'Z,(2, C). These 

matrices can be used to represent the action of the Lorentz group on two-component 

Weyl spinors as follows, 

Here, a, /) = 1, 2, and, 6, = 1, 2. The dotted indices and undotted indices are used 

to remind us that ^ and ^ 1 transform in different representations of 5"2,(2, C), 

(0, and (^,0) respectively. 

^This definition is sometimes written aa ^ in other sources. 
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It is useful to deAne the tensors and 6°̂ ^ 

gC,; _ ga/3 _ ^ I ^ ^ ^ ^ ^ ^ ^ j ^ 2) 

which are used to raise and lower indices as follows: 

. (B.3) 

The tensor is invariant under Lorentz transformations, — MjMg&yf. The 

Pauli matrices are defined as, 

,70 = a" = I ^ ° I (7I = = I ° ^ 
0 1 y 1 0 

' - 4 . 3 = _ , 3 j l 0 
z 0 / W - 1 

(7^ — —a^ = 1 \ = —a^ 

(B.4) 

These matrices form a basis for 2 x 2 complex matrices. The spinor index structure 

for the Pauli matrices is, = (1, cr̂ ). Raising the indices using the c tensors yields 

^ -0-,)"". (B.5) 

When dealing with expressions involving more than one spinor it is important to 

remember that spinors anti-commute. So for 2-component spinors we have, î%2 = 

—%2V'i î%2 = —%2̂ i etc. The products and are defined as, 

= . . . = (B.6) 

are Lorentz invariant products. Note that by convention undotted indices are always 

contracted from upper left to lower right, while dotted indices are always contracted 
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from lower left to upper right. Notice however that this rule does not apply when 

rising or lowering spinor indices with the e-tensor. With this rule we also have 

= = (B.7) 

One can then prove a certain amount of useful identities which we summarise here: 

= XV' , = %^ , (^x)^ = ^X 

After some work, it is also possible to prove the identities, 

( # ( # ) = - K # ( # ) 

(B.8) 

(B.9) 

In the Weyl representation it is convenient to deAne the 4 x 4 gamma matrices as, 

7̂ 1 = I J y \ 0 1 ^ (B.IO) 

Therefore we can construct a four-component Dirac spinor from a two-component 

undotted and a two-component dotted spinor, — I I Dirac spinor ^ 
\ X" / 

therefore transforms aa the reducible representation (^,0) ® (0,^) of the Lorentz 

group. A Majorana spinor can also be defined as a Dirac spinor with, % = ^, hence, 

r ' 
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B.2 Di rac a n d M a j o r a n a masses 

As we have just seen, it is often useful to dehne a 4-component Dirac spinor in terms 

of 2-component Weyl spinors, 

V (B . l l ) 

It follows that ^ and % are chirai projections of i/), 

V-f = = (&, 0)^ 

V-g = = (0, 

^ = (O, 

= (x'', 0) , 

here we have deAned the projection operators, 

PL=\{1-i'), PR=\{1+I'). (B.13) 

Then we see that the standard Dirac mass will connects % and 

/̂ Dirac = = - m g V-f) 

= — - (B.14) 

Alternatively we can construct a Majorana mass term for the spinor, 

^ j . (B.15) 

As the upper and lower components of carry the same degrees of freedom, 
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eEectively the Majorana spinor has only one independent helicity state, let us dehne, 

= ^6) (B.16) 

Then we can construct from the charge conjugate matrix, C, in the Weyl repre-

sentation we have, 

c ^ - z Y / = I ° I , with, ^ (B.17) 

such that. 

'pa = = (0, r ) ' ' 

i-H = (i'L)'= {i'L?C = (B.18) 

Notice that the Majorana spinor is self conjugate, or more precisely, 

and Now we can construct a Majorana maas term which 

connects ^ with itself, 

- ^ M a j o r a n a — ^ 

= — (B.19) 

= — - (B.20) 

The Majorana mass term of eq. (B.19) can be written in terms of the charge conjugate 
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Aelds deAned in eq. (B.18) as, 

or (B.21) 

Therefore we have two possible Majorana masses written in terms of and 

These mass terms would violate charge conservation for fermions carrying a (7(1 )em 

charge and also they violate fermion number by two units. 

143 



Appendix C 

Sparticle mixings in the M S S M 

This appendix gives details of all the tree-level contributions to the squark and slepton 

mass squared matrices. The mixings among the charged and neutral gauginos into 

the mass eigenstate Neutralinos and Charginos is then presented. 

C . l Squa rk and s lepton mixing 

Before supersymmetry is broken the fermions and their scalar partners have equal 

mass. This degeneracy is split by the soft SUSY breaking mass terms of eq. (2.66). 

There are also contributions from F-terms which give Yukawa strength interactions 

with the Higgs, for example, 

- z : D . . . + ( c . i ) 

Similar expressions for the sleptons and down type squarks can easily be derived. 

Notice that there are diagonal left-left and right-right mass terms aad left-right mix-

ings. The trilinear terms also give left-right mixings, whereas the D-terms of 
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eq. (2.60) provide diagonal mass terms. Putting these together the squark and lepton 

mass matrices can be summarised as, 

, intheba^is (C.2) 

with a sfermion Lagrangian mass term, C — ' - Herem^^,BB,i,7^ 

are 3x3 matrices in flavour space so that My is a 6 x 6 matrix. The matrices m2z,,BR,z,A 

are summarised as, 

= my + niy + Mg cos 2/) — Q-̂  sin^ (C.3) 

+ ^ / + cos 2;9Q-̂  sin^ (C.4) 

tan/) [for / = d, e] (C.5) 

m /^*n^/cot;3 [for/ = M]. (C.6) 

The matrices m ^ . and m ^ ^. are the soft scalar masses for the scalar 

partners of the left and right-handed fermions. 

For the scalar partners of the neutrinos we will have a 3 x 3 mass matrix. As we only 

have left-handed fields the only mass term will be, with, 

cos 2/). (C.7) 

The sfermion mass squared matrices are diagonalised by a 6 x 6 unitary matrix, 1/y, 

so that, 

= (C.8) 

and, where are the sfermion mass eigenstates. 
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C.2 N e u t r a l i n o and Charg ino mix ing 

In the MSSM the neutral fermions, and mix to form four neutrahno 

mass eigenstates, The tree-level mixing comes from the soft Lagrangian terms of 

eq. (2.66), the superpotential F-term and the D-term contributions from eq. (2.65). 

The neutralino mass terms in the Lagrangian are then, /I = — ̂ (^°)^ with, 

Ml 

0 

0 

Mz 

0 

Mzsps^ 

0 

0 frO 
/ 

in the baais 

(C.9) 

Here, = sin/) and Q,, = cos^^,. The lightest neutralino is usually assumed to be 

the LSP as it is also a good cold dark matter candidate. The neutralino mass matrix 

is diagonalised by a unitary matrix, V ô, with %, j = 1 . . . 2, so that. 

(C.IO) 

In an analogous way the charged fermions, and also mix to form 

charginos, x"*". The chargino mass term is, where we can 

write. 

Mo 0 XT' . 

X 0 y y \/2cfjMw 

in the basis = 

\/2spMw 

fi 

,h:), {W-,H;)}. 

(C.ll) 

Clearly the mass matrix M^± have a pair of degenerate eigenvalues. The diagonal 

chargino mass matrix can be found by diagonalising the mass matrix using two 2 x 2 
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unitary matrices, V^+, with — 1 . . . 2 . 

Then we have, 

1 i 0 
£ / | -A 'K- , "= I (0.12) 

0 
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Appendix D 

Non-renormalisable fermion mass 

operators 

In this appendix we review the process of calculating the Clebsch-Gordan coefEcients 

for all of the n = 1 non-renormalisable operators written in eq. (3.15) and (3.16). 

D . l n = 1 non- renormal i sab le o p e r a t o r s 

Including all gauge indices the complete set of M = 1 operators can be written as, 

(D.l) 

where for simplicity we have ignored the gauge singlet field ^ and the factors of 

suppression. The complete set of operators comes from each of the possible 

contractions of the gauge indices in eq. (D.l). 

It is useful to dehne some 5'[/(4) invariant tensors C, and 5'[/(2) invariant tensors E 
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as follows: 

(^1); = 

_ 
-

(c'lo):^ = % ' + 

= % -

= 'S; 

( ^ 3 ) r = (D.2) 

The SU(4) indices on Ci,6,10,15 are contracted with those on two Aelds to combine them 

into 1, 6, 10, 15, representations of SU(4) respectively. Similarly the 817(2)^ indices 

on ^1,3 are contracted with those on two fields to combine into 1, 3 representations 

of SU(2);f respectively. From these we can then construct six independent 5'(/(4) 

structures: 

A. (C.)f(C'.); = 

B. = i l K - \ € K 

C. 

D. = 2{SiS-+ SIS"^) 

E. = 

F. (D.3) 

and six 5'[/(2) structures: 

( R i t m i = KS, 

b- ( % ) - = S'J', -

r f f 
U . C C y t i / C C y t f / 
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d. ( % ) ; ( % ) ; = 

W l W l = i'yK 

f. ( % ) ; = S - J l . - \ i l S ' , (D.4) 

All possible M = 1 operators are then constructed by taking one invariant structure 

from the list {A-F} above, combining it with one from the list {a-f}, and using it to 

contract the indices of the operator in eq. (D.l). In this way we can generate a total of 

36 operators each labelled by the invariant structure from which it was constructed, 

e.g. comes from contracting indices with the structures listed in A. and a. above. 

After the heavy Higgs helds ^ and ^ acquire their VEV's these operators will con-

tribute Yukawa couplings for each of the standard model fermions with the associated 

Clebsch-Gordan coefhcient. A complete list of the Clebsch-Gordan coe&cients can 

be found in table D.l, where the operators have been grouped such that CLASS I 

operators have non-zero coefhcient for just one fermion, CLASS II-V have non-zero 

coefScient for two fermions and CLASS VI are non-zero for all fermions. The labels 

Zj, 3;,,, correspond to the coefBcients of the Yukawa coupling contributions 

written as, 

o( (zu u.iZj -I- -t- -t- e,ej / i j ) . (D.5) 

In the case that M > 1, there will be more indices to contract, which allows more 

representations, and hence more Clebsch coefhcients. For example for M = 2 we 

already have 400 possible operators. To simplify things we restrict ourselves to the 

case where the additional factors of form gauge singlets. This means that the 

higher powers of simply contribute extra powers of J = and leaves the 

Clebsch-Gordan coelBcients unchanged from those of the /% = 1 operators. This is 

clearly just a small subset of the possible n > 1 operators. Therefore we can simply 
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write this subset as 

Q//n^ = oHTra? 
(D.6) 

/̂//n% ^ Qn;r̂ 3 

Where, 11 6{A-F} and 7r E{a-f}. 
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VI 1 1 1 1 
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3 
V 5 

Table D.l: Clebsch-Gordaa coeiEcients for the complete set of n = 
1 operators. Here the coefficients have been normalised so that the 
sum of the squares equals 4. 



Appendix E 

D-terms from the breaking of 

SU (4) a n d S U ( 2 ) ^ 

In this appendix we outline the origin of the D-term splitting of the soft scalar maases 

in eq. (3.26). These D-terms contributions arise from the breaking of the Pati-Salam 

group down to the standard model gauge group. 

Firstly we shall summarise the index conventions used on the Pati-Salam fields. 

f r = (4,2,1), = (4,1,2) 

A / = (1,2,2) (E.l) 

7 7 - = (4,1,2), ^ _ = (4,1,2), 

where a = 1 . . . 4 is an SU(4) index, o, a; = 1,2 are SU(2)^,;; indices, and % = 1 . . . 3 is 

a family index. The first/second gauge index should be read as corresponding to the 

row/column of the matrix. Furthermore the up/down indices are related to the gauge 

transformation properties of the multiplet, e.g. the raised o and a signifies that F 

transforms in the 2 representation of SU(2)f, and the 4 of SU(4), whereas the lower 

index a; and a signifies that F transforms in the 2 of SU(2)^ and 4 of SU(4) . 
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Following in the same manner as eq. (2.60-2.63) we may write the SU(2);% and SU(4) 

D-term contributions as, 

2 3 2 15 
yo c ^ ^ % % + Y E (E.2) 

a=:l 771 = 1 

Here the subscripts 2/( and 4, denote the D-terms corresponding to the groups SU(2)^ 

and SU(4) respectively. For the contributions to the scalar mass terms it will only be 

necessary to look at the diagonal generators of 817(2)^ and of SU(4), where, 

= 2diag(l, - 1 ) , = y^diag . (E.3) 

Then it is straight forward to rewrite eq. (E.2) in terms of the Aelds in eq. (E.2), 

(E.4) 

( - r 5 * ) / (r:=)% F"/). 

The factors of, — a n d — c o m e from the fact that the complex conjugate 

representations 2 and 4 are generated by the matrices, — a n d —T"'*. The 811(2)^ 

and SU(4) groups are broken via the heavy Higgs developing VEV's, 

{H) = = Hi,, (H) = Hi4 = Hi,.. (E.5) 

Following the above symmetry breaking the D-terms of eq. (E.4) may be expanded 

1 as 

% = ^ + M l ' + - i^'r - , (^.6) 

^Here we have written u'^, etc. instead of u as in eq. (3.4) or ur as in eq. (2. 
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+ (E.7) 

These results may be summarised as, 

^ ^ ^—2—^ (^'^) 

here we have defined, Dn = ^ denotes any of the Aelds 

6"=, z/̂ , Q, 2, Au, /ij. The factor relates to the charge carried by ^ with respect 

to the SU(2);! group and (B — Z/)/2 to the semi-diEerence between the baryon and 

lepton numbers of These can easily be read from eq. (E.6) and (E.7). 

Finally we can now rewrite eq. (E.2) in terms of eq. (E.6) and (E.7) as, 

VD C + 

C D„ 6 4 + W'' (E-9) 

This leads us to the following contributions to the soft scalar masses. 

Q 

+ (3^4 - 25̂ 2̂ ) 

= ^& + (3^4 + 2gr̂ )̂ 

where The last two lines of eq. (E.IO) implies that our model has non-
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universal Higgs masses, split by the D-term contributions outlined above. 
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