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FOR PRODUCTION CONTROL 

by Stefan Karl BUSSMANN 

This thesis presents and evaluates the DAGS methodology for designing agent-based 

systems for (non-real-time) production control. This methodology is appropriate and 

sufficiently prescriptive for a control engineer with only minimal training in agent 

concepts and with no prior experience in agent development to design an agent-based 

production control system. This was achieved by deriving the concepts of the 

methodology from an analysis of the application domain and by specifying all relevant 

agent-oriented design rules in terms of these concepts. In particular, the methodology 

consists of a method for analysing the decision making necessary to control a 

production system; a method for identifying appropriate production control agents, 

which also includes a rule specifying when to abandon an agent-oriented design 

approach; and a method for selecting interaction protocols to resolve any decision 

dependencies between the agents which allows to re-use existing interaction protocols. 

To evaluate the methodology, several case studies and reviews were performed. In 

particular, two case studies with students applying the methodology to a realistic test 

case and two reviews by engineers, who design control systems, were conducted. The 

feedback was unequivocally that the methodology is appropriate and sufficiently 

prescriptive for designing agent-based production control systems and that it could be 

applied in industrial projects in order to gain more experience with the methodology. 
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Chapter 1 

Introduction 

Software agents ofler a new approach to designing and building complex distributed 

systems that significantly extends previous approaches like object-oriented or 

distributed computing (Jennings 2000, Zambonelli 2003). Instead of modelling 

distributed systems as software programs exchanging data and commands, agent 

technology creates autonomous decision makers which communicate their preferences, 

negotiate sub-goals, and co-ordinate their intentions in order to achieve the individual 

or system goals (O'Hare 1996, Weiss 1999). This decision- and interaction-based 

approach to computing makes it possible to build systems that can dynamically react to 

unforeseen events, incorporate different preferences and attitudes, exploit different 

capabilities of components, and adapt flexibly to changes in the environment. The 

ability of agents to adapt their behaviour during computation reduces the need for the 

designer to foresee all possible scenarios and changes the system will encounter 

(Jennings 2000). Moreover, an agent-oriented design is often a natural fit to the 

distributed nature of decision making in many application domains and thus increases 

the understandability and maintainability of the software system. 

The advantages of agent technology have been widely recognised and have led to a 

wide range of application studies in many different domains. The applications reported 

include industrial applications (process control, air traffic control), commercial 

applications (information management, electronic commerce, business process 

management), medical applications (patient monitoring, health care) and entertainment 

(games, interactive theatre and cinema) (Jennings 1998). One of these application 

domains that has been the target of many agent applications in the past is production 

control (Parunak 1999, Parunak 2000). Production control has been attractive to agent 

researchers for several reasons. First of all, production is an important industrial 

activity, responsible for a large portion of the gross national product in industrial 

nations (Eurostat 2002). Second, production systems are inherently distributed and 

dynamic systems exhibiting many changes and disturbances during operation (Parunak 



1987). Third, and perhaps most importantly, agent technology promises to meet the 

forthcoming challenges in (non-real-time) production control which will go beyond the 

capabilities of current control technology. The following sections therefore evaluate the 

trends in production control and analyse the requirements on agent technology to meet 

these challenges. 

1.1 Motivation 

At the beginning of the 21" century, production faces a fundamental change from a 

vendor's to a customer's market. The growing surplus of industrial capacity provides 

the customer with a greater choice, and increases competition between vendors. Aware 

of his power, the customer becomes more demanding and less loyal to a brand. He 

demands constant product innovation, low-cost customisation, better service, and 

chooses the product which meets his requirements best (McFarlane 2003). The 

consequences for the industry are manifold. Companies must shorten product-life 

cycles, reduce time-to-market, increase product variety, quickly satisfy demand, reduce 

investment costs, and so on. For production, these consequences imply more complex 

products, faster changing products, faster introduction of products, a volatile order 

volume, and reduced investment (McFarlane 2003). The effects on production can be 

summarised as increasing complexity and constant change with decreasing investment. 

The above trends have motivated researchers in academia and industry to create and 

exploit new production paradigms on the basis of autonomy and co-operation because 

both concepts are necessary to create flexible behaviour and thus to adapt to the 

changing production conditions (Tharumarajah 2003). Holonic manufacturing, for 

instance, as one of these new production paradigms, proposes the introduction of 

autonomous and co-operative building blocks, called holons, which organise 

themselves into flexible hierarchies, called holarchies (van Leeuwen 1997). Agent 

technology can be regarded as a key technology for realising the information processing 

of such systems (Bussmann 1998). In this context, agents are autonomous and co-

operative units which due to their decision making and interaction capabilities are able 

to create and continuously adapt flexible process behaviour in the face of constant 

changes and disturbances. The ability of agent technology to address these challenges, 

as well as the industrial feasibility of an agent-based control approach have already 

been demonstrated with a number of industrial prototypes (Parunak 1996, Parunak 

2000). But despite the numerous advantages of agent technology, installations of agent-

based control systems are still rare in practice. 

The reason for the slow industrial take-up are manifold, and in part certainly typical for 

the introduction of any new technology. Some reasons for the slow take-up, however, 

are technology-specific. Arguably the most important technology-specific reason for 



this is that agent technology provides a large set of decision and interaction capabilities 

which are able to create a wide variety of system behaviours (Parunak 1997, Weiss 

1999, Wooldridge 2002). Engineering such a system thus requires that the designer 

applies these capabilities very careAilly in order to achieve the intended system 

behaviour. Without such a careful design, the designer may produce an agent-based 

system that shows a different, non-intended behaviour, or that achieves the intended 

behaviour in an inefficient way. In particular, the design may be more difficult to 

implement or maintain than necessary. A design, however, which is more difficult to 

implement or maintain will surely be more costly. In a domain such as production 

control, where investment must be continuously reduced, this is a "knock-out" criterion 

against using a new technology. The designer of a control system must therefore very 

carefully analyse and decide which agent-oriented mechanisms he requires in order to 

achieve the system requirements. The designers of control systems, however, are 

usually not computer scientists experienced at developing agent-based systems. The 

designer of a control system is typically an engineer with a background in production or 

control engineering, but with only minimal training in agent concepts at best and no 

experience with agent-based development in most cases. These designers thus require a 

methodology explaining how to perform the analysis and design of an agent-oriented 

production control system. In particular, such a methodology must include all the agent-

oriented design criteria necessary to arrive at a well-designed agent-based system. To 

provide such a methodology, the next section looks at existing design methodologies 

and assesses whether these are sufficient to support a control engineer in developing 

agent-based control systems. 

1.2 State-of-the-art 

Many methodologies for designing software systems have been proposed in the past, 

some even for designing control systems (see chapter 3). The methodologies proposed 

include object-oriented, manufacturing control, and agent-oriented methodologies. A 

careful analysis of the wide variety of methodologies, however, reveals that existing 

methodologies are either not appropriate or not sufficiently prescriptive for designing 

agent-based production control systems. Object-oriented methodologies mainly fail to 

support the design of such systems because the modelling concepts of these 

methodologies are not appropriate for modelling the decision making of a control 

system (see section 3.3). In particular, objects are generally passive in nature, do not 

encapsulate behaviour activation, exchange only data or commands, and provide only 

minimal support for structuring organisations, whereas agents pro-actively follow their 

own goals, initiate interactions with other agents that were not foreseen at design time, 

and are able to adapt their organisational relationships (Jennings 2001). Object-oriented 

methodologies therefore miss many important aspects of an agent-based (control) 



system. Manufacturing control methodologies, in turn, provide elaborated models for 

capturing the actual production process and the associated control decisions. The 

decision making, however, is modelled in a centralised or hierarchical form which 

conflicts with the autonomous and co-operative approach required for future production 

systems (see section 3.4). A designer can therefore rely on existing manufacturing 

methodologies to model the actual production process. But for the control system, the 

designer requires a methodology that prescribes how to design the agent-oriented 

aspects of such a system. 

The limitations of object-oriented and manufacturing control methodologies have 

prompted many agent researchers to develop specifically agent-oriented design 

methodologies (see section 3.5). These methodologies are obviously able to adequately 

model agent-based systems. The existing agent-oriented design methodologies, 

nevertheless, are either inappropriate or not sufficiently prescriptive for modelling 

agent-based production control systems (see subsection 3.5.7). This is mainly due to 

the fact that most agent-oriented methodologies have been developed for applications 

other than production control. These methodologies therefore focus on concepts like 

roles, goals, and organisations, and thus miss the most important aspect of control, the 

decision making. Furthermore, existing agent-oriented methodologies are not 

sufficiently prescriptive for identifying production control agents. Most methodologies 

do provide criteria for agent identification. However, these are either too vague or lead 

to an inappropriate set of agents for production control. Finally, only few 

methodologies provide methods for designing or even re-using interaction protocols. 

The few that do consider the design of interactions only cover some aspects of the 

design process. 

In summary, to date there does not exist a design methodology for agent-oriented 

production control systems that is appropriate and sufficiently prescriptive to be applied 

by a control engineer. However, such a design methodology, as argued above, is 

absolutely necessary for promoting the wide-spread use of agent technology in industry. 

Against this background, the aim of this research is therefore to develop such a 

methodology. 

1.3 Contributions of the thesis 

The goal of this thesis is to develop a methodology for the design of agent-based 

production control systems which can be successfully applied by a control engineer 

with only minimal training in agent technology and no prior experience in agent 

development. To this end, this thesis proposes a methodology for Designing Agent-

based Control Systems, called DACS. This methodology starts with a specification of 

the control problem including 



(i) a specification of the (physical) to be controlled, 

(ii) a specification of the cowyzY/ofw, and 

(iii) a speciGcation of the goa/^ anc/ /"ggw/re/MeM/f. 

An agent-based control system satisfying the above specification is then developed with 

the help of three methods which build upon each o±er: 

1. The method for the q/" ;oM analyses the specification of 

the control problem in order to identify the decision tasks necessary to solve the 

control problem and any dependencies between these decision tasks. 

2. The method for the identification of agents clusters the decision tasks 

according to agent-oriented criteria and assigns each cluster to an agent. If 

necessary, the decision tasks are re-organised before clustering in order to 

facilitate the identification of agents. Furthermore, the method includes a rule 

for assessing the applicability of an agent-oriented approach. 

3. The method for the selection of interaction protocols classifies each decision 

dependency between different agents and matches this classification against a 

library of existing interaction protocols, in order to identify a protocol that is 

able to resolve the dependency. This protocol is then customised to the specific 

dependency situation arising between the control agents. 

The output of the methodology is thus a list of agents with their distinct decision 

responsibilities and the interaction protocols required to resolve any decision 

dependencies. Due to the explicit specification of the dependencies and the associated 

interaction protocols able to resolve the dependencies, the resulting design is 

sufficiently modular so that each agent can be implemented independently. 

The DACS methodology thus covers all agent-oriented design steps from analysing the 

production control problem, through identifying the control agents, to re-using existing 

interaction protocols. In particular, the DACS methodology extends the state-of-the-art 

in at least three respects: 

• The methodology provides a method for analysing the production control 

problem that creates an agent-oriented decision model specified only in terms 

of domain concepts. In contrast to current approaches described in the 

literature, the methodology thus bridges the gap between the domain of 

production control and agent-based systems. 

• The methodology provides a set of criteria for identifying agents - based on the 

decision model developed during the analysis - which either leads to an 

appropriate set of control agents or else suggests abandoning an agent-oriented 

approach. In contrast to the approaches in the literature, the methodology thus 



provides a set of design rules that capture agent-oriented design knowledge in 

terms of rules directly related to the domain concepts. 

" The methodology provides a classification scheme for re-using interaction 

protocols that is defined only in terms of the decision situation arising during 

the production process. In contrast to the literature, selecting an interaction 

protocol can thus be performed without any knowledge of the interaction 

protocols, and is therefore scalable to a large set of existing protocols. 

Altogether, the DACS methodology thus significantly reduces the knowledge of and the 

experience in agent technology required during the design process and consequently 

enables a control engineer with only minimal training in agent technology and no prior 

experience in agent development to successfully design an agent-based production 

control system. 

1.4 Structure of the thesis 

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of 

agent-based production control. It defines the terms "production" as well as "production 

control" and discusses the new requirements on future production systems. The chapter 

furthermore reviews agent technology and presents the state-of-the-art in agent-based 

production control. 

Chapter 3, in turn, specifies the requirements on a design methodology for agent-based 

production control systems and reviews the state-of-the-art concerning design 

methodologies. In particular, it reviews object-oriented, manufacturing control, and 

agent-oriented methodologies, and shows in which respects these methodologies fail to 

meet the requirements on an agent-based design of production control systems. 

Furthermore, chapter 3 discusses the state-of-the-art in re-use and reviews the extent to 

which re-use has already been applied to the design of agent-based systems. 

Chapter 4 then presents the main contribution of this work: the DACS design 

methodology for agent-based production control systems. The chapter specifies the 

input and output of the methodology, as well as each step of the methodology, namely 

the q/ motzMg, the oggMfiy, and the q/̂  

mfemch'oM jprofocok. 

An evaluation of the methodology is given in chapter 5. This chapter provides initial 

evidence that the methodology is applicable by a control engineer with no prior 

experience in agent development. To this end, the chapter discusses two industrial case 

studies carried out by the author, a comparison of the methodology with the state-of-

the-art, and two case studies performed by students as well as two reviews of the 



methodology performed by control engineers. Chapter 6 then concludes the thesis and 

points to future work. 

Finally, three appendices provide additional information. Appendix A lists the 

characterisations of several interaction protocols according to the classification scheme 

developed in chapter 4. Appendix B presents the application of the design methodology 

to an industrial test case. And appendix C lists the questionnaires used in the third-party 

reviews and the feedback received during these reviews. 



Chapter 2 

Agent-Based Production Control 

An agent-oriented design methodology for production control is at the intersection of a 

new software technology, namely software agents, and an application domain, in this 

case production control. In order to understand the motivation for this particular design 

methodology, it is necessary to answer a set of questions: 

1. What is production control? Why is it important and what is challenging about 

designing production control systems? 

2. What is agent technology? And why does it help to meet the challenges in 

production control? 

3. How is agent technology applied to production control? And why is it 

necessary to develop a design methodology for agent-based control systems? 

All these questions will be answered in the following sections. First, section 2.1 will 

explain what production control is, why it is important, and what is challenging about 

it. This section will give basic definitions for what production, a production system, 

and production control is. It will furthermore review the state-of-the-art in production 

control and discuss why existing control techniques are not able to meet current 

challenges in the production industry. Section 2.2, in turn, will give an overview of 

software agent technology. It will provide basic definitions of an agent and a multi-

agent system, and will review the agent-oriented techniques necessary to meet the 

challenges of modern production control. Finally, section 2.3 will show how agent 

technology can be applied to production control problems and will give examples of 

control applications using software agents. In particular, this section will discuss why 

there is no universal design for all production control problems and why, consequently, 

a design methodology must be developed. 



2.1 Production control 

is defined as the transformation of (physical) goods (Hoitsch 1993, Groover 

1987, Hitomi 1994). The goods which are consumed by the transformation process are 

called raw materials and the goods produced are referred to as products. The process of 

providing raw material is called (or supply) and the products are 

distributed through shipping. Procurement and shipping thus define the boundaries of 

the production process (see figure 2.1). 

throughput 

input output 
procurement ( production ) shipping 

Figure 2.1: Production as a transformation process. 

Production processes can be classified in many different ways. A common 

classification distinguishes production processes with respect to the types of products 

produced. The Federal Statistical Office of Germany, for instance, divides the 

production industry into the following main product branches: automobiles, chemicals, 

clothing, computing, electrical equipment, glass, machinery, food, furniture, metals, oil 

refinement, paper, publishing, textiles, tobacco, and wood (Federal Statistics Office of 

Germany 2001). The statistics also show how important this industry is. In 1999, the 

production industry has created a gross added-value of 1.342 billion Euros within the 

European Union', and 410 billion Euros in Germany (Eurostat 2002). The automotive 

industry alone accounts for 143 billion Euros in Europe^, and 60 billion Euros in 

Germany. The production industry is thus an important economic factor in Europe 

(creating for example 25 % of the gross national product of Germany (Federal Statistics 

Office of Germany 2001)). 

Another important classification of production processes is the distinction between 

discrete manufacturing and process industry. This distinction refers to the general 

mode of operation. Discrete manufacturing is concerned with the processing of solid 

goods, such as metal, textiles, or wood which are processed individually, whereas the 

process industry takes liquids, such as milk, liquefied sugar, or oil, as input and then 

processes them continuously (Moore 1991). The distinction between discrete 

manufacturing and the process industry is obviously important to production control 

(Chokshi 2002): Solid goods are usually processed with tools and transported on 

conveyors. Liquids, on the other hand, are processed in tanks and transported through 

pipes. This work clearly focuses on discrete manufacturing (which created in 1999 at 

least 48% of the turnover of the production industry in Germany (Federal Statistical 

' 15 European states without Spain and Ireland for which the data were not available yet. 
- dito. 



OfGce of Germany 2001)). In section 6.2, though, this focus will be revisited and the 

contribution of this work will be evaluated with respect to its applicability to other 

types of production processes. 

A third common classification which is relevant to this work is the classification of 

production processes with respect to the product quantity made. The two extreme cases 

here are: job-shop and mass production (Groover 1987, p. 18). Injob-shop production, 

the quantities made of one product are usually small, often of size one. The products are 

typically created according to specific customer requirements and, as a consequence, a 

job-shop factory must be able to produce a wide variety of such products. Typical 

products produced in a job-shop factory are heavy machinery and ships. In mass 

production, the product is produced in large quantities, sometimes with more than one 

million units per year. A factory for mass production is usually dedicated to a specific 

product in order to achieve the required quantity and to benefit from economies of scale 

due to the mass production. If the quantity produced is high, but the product varies 

slightly, mass production is often referred to as large-series production. A typical 

example for a mass product is mineral water, typical examples for products 

manufactured in large-series are automobiles and household appliances. 

To transform raw material into products, any of the above production types must 

implement certain production functions. Obviously, the main task of production is to 

process the raw material and transform it into an intermediate or finished product. But 

processing alone is not sufficient to create physical products. For example, the 

processing requires material which must be supplied somehow to the processing 

operations. For discrete manufacturing, Groover lists four basic functions that are 

necessary in modern production ((Groover 1987, p. 20), see also (Hitomi 1994, pp. 

415)):^ 

« processing 

9 assembly 

• material handling and storage 

® inspection and testing 

Processing and assembly are the operations that add value to the product by either 

changing the properties of the material (through processing) or by combining several 

workpieces into one (through assembly). Material handling and storage is necessary in 

order to (physically) provide the material at the right time and in the right quantity to 

the processing and assembly functions, whereas inspection and testing, also called 

quality assurance, is needed to verify that the processing and assembly operations meet 

the required quality standards. Naturally, there may be more functions necessary for 

^ (Groover 1987) also lists control as a basic production function. Control, however, will be dealt with 
separately in this section. 
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specific production types, but the above functions can be found in any (discrete) 

manufacturing system. 

To perform the above functions, a production process obviously requires more input 

than the mere raw material (Groover 1987, p. 22). First of all, a production process 

requires (physical) equipment to perform its functions. The physical equipment may 

include machines, tools, and fixtures for processing; conveyors, fbrkliAs, and buGers 

for material handling; and measuring tools and machines for quality assurance. 

Secondly, any factory requires labour, either because a production function must be 

performed manually, or because the equipment must be set up and maintained 

manually. And thirdly, any production process consumes energy, sometimes also other 

auxiliary material, such as water or machine oil. All these inputs (including the raw 

material) are referred to as fAg (Hoitsch 1993). They constitute 

everything that is physically necessary to run a production process."' The production 

flmctions and factors are schematically summarised in figure 2.2. 

equipment 

processing and assembly 

raw material M material handling and storage J • products 

inspection and testing 

t 
labour auxiliary 

material 

Figure 2.2: Production functions and inputs. 

Production factors that are non-consumable, like machines or conveyors, are also called 

production resources. Production resources are particularly important because they 

usually require a major investment and must be installed before any production can 

start. Because of their (largely) static nature, the production resources and their 

arrangement on the factory floor also determine the structure of the production process 

(Hitomi 1994). The structure of a production process, commonly referred to as the 

production system, is particularly relevant to control and is therefore explicitly defined 

in the following: 

Again, any planning and control aspects are omitted here because they will be addressed later in this 
section. 
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Definition: A set of production resources and a (spatial) arrangement of these 

resources is called a production system. The arrangement is called the 

production layout (or the plant layout). 

The production system is sometimes also referred to as the factory floor or the shop 

floor. These terms are used in particular to emphasise the difference between planning 

and reality (on the shop floor). 

Two examples of typical production systems in discrete manufacturing will be given in 

the following subsection: one for job-shop and one for large-series production. 

Subsection 2.1.2 will then discuss what is necessary to operate a production system. In 

particular, it will define the term production control. Subsections 2.1.3 and 2.1.4 will 

review the state-of-the-practice in production control, analyse the current limitations, 

and infer the requirements for future production processes. Finally, a summary of this 

section is given in subsection 2.1.5. 

2.1.1 Examples of production systems 

An example of a production system is the maMZf/ac/wrmg (FMS) 

(Hartley 1984). A typical FMS consists of several machines, a loading and unloading 

station, a transportation system, and a system buffer. Figure 2.3 shows a FMS with a 

circular layout, i.e., the stations are arranged in a circle and the workpieces move 

around this circle with the possibility of either entering a machine or continuing on the 

circle. The operation of this manufacturing system is as follows. A worker loads a 

workpiece on a pallet at the loading station and feeds it into the manufacturing system. 

The workpiece is transported to a machine over the circular conveyor system and 

processed (automatically) by the machine. The processing is continued at other 

machines until the workpiece is finished, i.e., has received all operations prescribed by 

its process plan. As a final step, the workpiece is returned to the unloading station and 

taken off the pallet. Occasionally, if different workpieces are competing for the same 

machines, some workpieces have to be temporarily stored in the buffer until their 

machines are free to process them. 

A flexible manufacturing system is used for job-shop production in highly automated 

environments. Machines are usually computerised numeric control (CNC) machines 

which are able to perform almost any operation if programmed accordingly. The 

greatest disadvantage of FMS, however, is the low volume and the high costs per 

product. 
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Figure 2.3: A flexible manufacturing system. 

Because of their flexibility, CNC machines are slower and more expensive than 

dedicated machines. Large-series and mass production is therefore organised as a so-

called line production. The new V-engine assembly plant (NVM) of DaimlerChrysler 

in Stuttgart (Germany) is a typical example of a line production system (Weber 1997, 

Bussmann 2001). The assembly system consists of approximately 60 stations which are 

mostly linearly connected, performing engine block assembly, cylinder head assembly, 

final assembly, and testing. Around half of the stations are automatic, the remaining 

require workers to perform the assembly step. At several stations, mostly for heavy 

parts, material is supplied through automated buffers. Block and cylinder head 

assembly are schematically shown in figure 2.4. 

The assembly starts with the crankcase, which is put on a pallet at the first station. The 

pallet then runs nearly linearly through every station until it reaches the shipping station 

at the end of the assembly system. Since all stations are dedicated to a single operation 

for the given product, the stations operate at a short cycle time (about 60 seconds). 

Because of this short cycle time, the assembly system is able to produce a much higher 

volume at comparably lower costs than the flexible manufacturing system. The 

disadvantage of the assembly system, though, is that it has almost no product or volume 

flexibility. It can only produce a specific product family at a fixed volume. 

Because of the relative advantages and disadvantages of the two production systems, 

there is no dominant type of production - both types (and many more) can be found in 

industry. 
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Figure 2.4: The block and cylinder head assembly of NVM 

with automatic (A), manual (M) and rework (N) stations. 

2.1.2 Production operation 

A production system, as defined above, consists only of the physical resources 

necessary to perform the production functions. To actually run a production process, 

however, it is also necessary to perform several management functions that prepare or 

guide the production process. These management functions are commonly 

distinguished into production planning and production control activities (Groover 1987, 

Hoitsch 1993, Hitomi 1994).^ Production planning includes any activity for planning 

the production program (how many products of what type to produce), the production 

process (in which steps to create the product) and the production factors (how much 

equipment, labour, and auxiliary material is needed). Production control, on the other 

hand, takes orders from the production program and assigns them to resources 

(resource allocation), initiates processing and handling of workpieces (execution), and 

supervises the performance of the production system (monitoring). Production control 

is thus the link between the planning processes of a manufacturing firm and the actual 

execution of the plans at the shop floor. As Groover and Monden emphasise, the main 

responsibility of production control is to achieve the production plans: 

^ Naturally, there are more management activities necessary in a manufacturing firm (such as product 
development or sales). This work, though, focuses on those Unctions that are closely related to the actual 
production process. 
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coM/:ro/ is concerned with managing and controlling the 

physical operations in the factory to implement the manufacturing plans. 

(Groover, p. 26) 

Controls the production of the necessary products in the necessary 

quantities at the necessary time in every process of a factory and also 

among companies. (Monden 1983) 

To achieve the production plans, production control must decompose the production 

program into instructions for the shop floor. The following definition of production 

control emphasises this task: 

Production control is the function of management which plans, directs, and 

controls the materials supply and processing activities of an enterprise. 

Where, planning is the process of deciding what to do in the future, 

directing comprises the operation of issuing orders, and control can be 

described as the constraining of events to follow plans. (Burbridge 1978) 

What makes production control challenging, however, is that it is not enough to simply 

decompose a production program into single shop floor actions and to issue these 

actions as instructions. Physical processes fundamentally carry the risk of failure. Tools 

may break, operations may miss tolerances, transportation devices may jam, and so on. 

These contingencies must be taken into account when running a production process 

(Parunak 1991). Some researchers have even defined (production) control to be only a 

monitoring and correcting activity: 

[The task of production control:] Whenever the actual production progress 

and performances deviate from the production standards (plans and 

schedules) set at the planning stages [...], such deviations are measured and 

modifications are appropriately made. (Hitomi 1994, p. 420) 

Shop floor control is concerned with the problem of monitoring the 

progress of the product as it is being processed, assembled, moved, and 

inspected in the factory. (Groover, p. 27) 

To optimally run a production process, it is thus necessary to choose the production 

instructions such that these fulfil the production plans. But also vice versa, the 

production instructions should be chosen with respect to the reality on the shop floor 

and what can be reasonably expected to be executed. Production control should thus 

take the production plans, monitor the production performance, and issue those 

production instructions that optimally achieve the production plans given the current 

situation on the shop floor (see figure 2.5). Within the context of this work, production 

control is therefore defined as follows (see also (Dean 1991)): 
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Definition: Production control is the process of choosing, initiating, and monitoring 

actions in a production system in order to achieve or optimise a given 

production program. 

monitoring initiating 

production control 

production system 

Figure 2.5: Production control loop. 

Note that the above definition - as all other definitions of production control in the 

literature - deliberately excludes the actual execution of an action (the action is only 

initiated). The reason is that the execution of an action requires an actuator to 

physically perform a movement (or some other physical state change) in the production 

system. There is a large body of technology, commonly referred to as coMfro/ fAeo/y 

(Dorf 1998), that is able to control these state changes (at least for discrete 

manufacturing). With this technology, machines can drill holes, robots can assemble 

parts, and switches can move pallets to their exits. The focus of this work, and thus of 

the above definition, though, is to determine which hole to drill, which parts to 

assemble, and where to move the pallet (i.e., how to decompose the production plans 

into instructions for the shop floor). It can be safely assumed that, with the existing 

control technology, the instructions can be executed. Note that the above definition also 

excludes most of the real-time issues because in discrete manufacturing these can be 

handled by existing control technology at lower levels when executing the instructions. 

To clearly identify the interface between production control — as defined above - and 

the control components actually executing the production actions, the latter components 

will be called (local) controllers in the rest of this work (see also (Veeramani 1994, p. 

553)). That is, it is assumed that every physical component supposed to execute actions 

is associated with a control component providing an appropriate interface to the 

production control system (cf. figure 2.6). 

2.1.3 State-of-the-art and limitations 

The classical approach to production control is best characterised as hierarchical and 

schedule-driven. First of all, control systems are organised in a command hierarchy, in 

which sub-ordinate units are only supposed to execute the commands given by the 
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super-ordinate levels (see also proper hierarchies in (Dilts 1991)). Secondly, the control 

process starts at the top with an abstract scheduling of the production program (Hitomi 

1994, Becker 1994) and consecutively details and distributes this production schedule 

on each level until executable actions reach the controllers (see figure 2.6). In 

particular, each level of the hierarchy creates production schedules for its subordinate 

units with only minimal feedback from the lower levels. An adaptation of the schedule 

is only done within one unit with hardly any consultation of neighbouring or superior 

units. Failures to achieve a production schedule are fixed within the next scheduling 

cycle. 

scheduling 

schedule distribution 

system control system control 

local re-scheduling 

controller controller controller controller 

resource resource resource resource 

Figure 2.6: Classical approach to production control. 

This approach works optimally if actions are executed as planned, but fails completely 

otherwise. In case of a disturbance, a controller is not able to execute its actions or has 

to postpone them. Since production operations are optimised in order to maximise 

productivity and minimise costs, resource capacities are fully utilised and buffer sizes 

are reduced to an absolute minimum. As a consequence, any deviation from the 

schedule quickly affects neighbouring units resulting in a cascading effect of the 

disturbance. Since the hierarchical and schedule-driven control organisation does not 

support system-wide re-scheduling, the impact of a disturbance on production cannot be 

constrained. As every real production system is regularly affected by disturbances 

(Parunak 1991), production operations soon deviate from the production schedule. It is 

even "proverbial among shop foremen that the schedules produced by the front office 

are out of date the moment they hit the [shop] floor" (Parunak 1987, p. 303). This gap 

between the "reality of planning" and the "reality of the shop floor" (Scherer 1998) will 

increase even further as production is faced with accelerating business trends towards 

more product complexity and volatile markets (Chokshi 2002, McFarlane 2003). 

To overcome the limitations of the current approach to production control, the planning 
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process must be pushed down the hierarchy and interleaved with execution (Hatvany 

1985, Scherer 1998b). Each unit must have the &eedom to choose the right actions 

depending on the current situation. To achieve this freedom, the production program 

must be decomposed and distributed as subgoals to the subordinate units. Each unit 

then pursues its assigned goals and, in doing so, co-operates with other units to ensure 

that the fulfilment of the subgoals leads to the fulfilment of the production program. 

The production units thus retain their freedom in order to react to unforeseen events, 

while the production program emerges &om the interaction of the previously created 

subgoals (see figure 2.7). 

plant control 

system control 
co-ordination 

system control system control system control 

controller 

local decision making 

controller 

material flow 

resource resource 

controller ^ ^ controller 

resource resource 

Figure 2.7: Goal-driven production control. 

Such a goal-driven and co-operative approach to production control not only supports 

robustness, but also increases flexibility and reconfigurability of the production process 

(Duffie 1988) - two requirements which are becoming even more important than 

robustness in a global economy with decreasing product life-cycles. A distribution of 

goals implies the distribution of the corresponding decision making, and thus empowers 

the controllers not only to react to disturbances on the shop floor, but also to adapt to 

changes of customer orders. It becomes transparent to the controller where changes 

come from and it can apply the same techniques for coping with disturbances to handle 

changes. Furthermore, the distribution of control functionality to local controllers 

increases their ability to act irrespective of the context a controller is placed in. Changes 

in the configuration of the production system are treated just like all other internal or 

external changes to which a controller constantly adapts its goal achievement. The 

combination of robustness, flexibility, and reconfigurability — enabled by the goal-

driven approach - thus leads to a truly agile performance in an increasingly dynamic 

production environment. 
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2.1.4 New requirements on production control 

A goal-driven approach, however, places new requirements on the design of production 

control systems (Brennan 2003, McFarlane 2003). First of all, the control should be 

distributed to physical components of the production system instead of being divided 

into central control functions (Duffle 1988). A local controller will require all the 

decision capabilities necessary to choose the optimal actions under varying production 

conditions given its local goal. Scheduling, for instance, will no longer exist as a single 

central control function, but will be distributed over the factory floor with every 

controller being able to do its own (local) scheduling. 

Secondly, a local controller must be equipped with reactive and goal-directed decision 

making capabilities (Valckenaers 1999). While the reactiveness ensures that the 

controller is able to adapt to any change or disturbance, the goal-directedness 

guarantees that the controller eventually reaches its goal despite the dynamics of its 

environment. In particular, the controller must be goal-directed in that it is able to 

decompose its goals into the necessary actions and to initiate these actions at its own or 

other resources. 

Thirdly, the local controllers must co-operate in a flexible manner (Hatvany 1985, 

Duffie 1988). If a disturbance cannot be constrained within the responsibility of a single 

controller, this unit has to co-ordinate its actions with neighbouring units to reduce the 

impact of the disturbance or to re-negotiate its goals with superior units if the goals can 

no longer be met. Co-operation thus makes it possible to treat a failure to achieve a goal 

immediately at the appropriate level of the hierarchy, and therefore keeps the deviation 

from the overall goals to a minimum. The co-operation process, however, cannot be 

fixed at design time because changes may require a controller to adapt its interactions 

just as it adapts its actions. 

Finally, a controller should follow the strategy of low and late commitment 

(Valckenaers 1994). An early or over-constraining commitment to an action may turn 

out to be sub-optimal or even counter-productive if the situation changes in the 

meantime. A decision that is made at the latest moment possible with the least 

commitment minimises the probability that events change the situation. A low and late 

commitment thus increases robustness, but also supports flexibility as controllers gain 

the maximum freedom to adapt to the changing production conditions. 

A production control system that fulfils these requirements will operate quite 

differently in comparison to the hierarchical control systems (Dilts 1991). This is 

particularly true for the operation of the local controllers. While in the hierarchical and 

schedule-driven approach a controller only executes the given schedule (determined by 

a central scheduler), the new controller must autonomously choose an appropriate 

action in its current situation, and, at the same time, be able to co-operate with the 
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neighbouring controllers in order to optimise the overall system performance (Duflie 

1988). In short, the nevy controller must be an awfOMo/Mowj' a W ckcM/oM 

2.1.5 Summary 

Current production control systems are hierarchically organised and separate scheduling 

&om execution. Because of this separation, there exists a constant gap between 

schedule and shop floor reality that leads to a significant decrease of the performance. 

To overcome this gap, future control systems require controllers that are capable of 

goal-based decision-making and co-operation with other controllers. To guide these 

controllers, the production program must be decomposed and distributed in terms of 

goals instead of schedules. The production program is then achieved through the 

flexible decision making and interaction of the local controllers. In the next section, it 

will be shown that agent technology is ideally suited for modelling and implementing 

such a goal-driven approach. 

2.2 Software agent technology 

Software agent technology has been a very active field of research for more than two 

decades now (see (Wooldridge 2002) for a brief history of the field). It started in the 

early 1980's as a sub-field of artificial intelligence, namely as distributed artificial 

intelligence, focusing its research on aspects of multi-agent planning and distributed 

problem solving (Bond 1988). Since then, it has constantly attracted more researchers 

who have expanded the field to cover now the whole range from rational over 

emotional to social agenthood (AAMAS 2002). Today, even though the research field 

of agent technology is still very heterogeneous and lacks a unifying umbrella, it has 

established itself as a major stream of computer science and artificial intelligence in 

particular. 

One stream of agent research, often referred to as multi-agent systems, is of particular 

relevance to the domain of production control. Multi-agent systems research 

investigates how to model and implement individual and social behaviour in distributed 

systems. It explores on the one hand notions like autonomy, reactivity, and goal-

directed reasoning in order to model and implement (rational) individual behaviour (see 

for example (O'Hare 1996, Huhns 1998, Miiller 1996)). On the other hand, it examines 

aspects of co-operation, co-ordination, negotiation, coalition formation, role 

assignment, and self-organisation in order to create social behaviour (see for example 

(O'Hare 1996, Weiss 1999)). To date, multi-agent systems research has already 

developed theories for social and individual behaviour, agent architectures. 
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communication and co-operation techniques, as well as new programming languages 

(Wooldridge 1995, Meyer 2002). 

Despite the significant amount of research undertaken in multi-agent systems, however, 

there is still no universally accepted definition of an agent or a multi-agent system. 

Some researchers define an agent in terms of mental states such as beliefs, capabilities, 

choices, and commitments (Shoham 1993); others stress the ability of an agent to act 

autonomously in a dynamic environment (Weiss 1999); while still others include in 

their spectrum of agenthood properties such as adaptability, personality, or mobility 

(see also (Bradshaw 1997, Franklin 1997, Nwana 1997, Huhns 1998, d'Invemo 2001) 

for a selection of agent definitions and viewpoints). In the context of this work, the 

definition of an (intelligent) agent by Wooldridge and Jennings (Wooldridge 1995) is 

adopted because their definition equally stresses the ability of an agent to autonomously 

make decisions in a dynamic environment as well as the ability to flexibly interact with 

other decision makers. Other aspects, like adaptability or mobility, are not relevant to 

all control applications and should therefore not be included in a general definition of 

an agent. 

Definition: An agent is a software process with the following properties 

(Wooldridge 1995): 

• ''autonomy: agents operate without the direct intervention of humans 

or others, and have control over their actions and internal state [...]; 

• social ability: agents interact with other agents (possibly humans) via 

some kind of agent-communication language [...]; 

a reactivity: agents perceive their environment [...], and respond in a 

timely fashion to changes that occur in it; 

• pro-activeness: agents do not simply act in response to their 

environment, they are able to exhibit goal-directed behaviour by 

A multi-agent system is then simply defined as a collection of agents that somehow 

interact. 

Definition: A multi-agent system is a collection of interacting agents. 

The remainder of this section will review techniques to model and implement multi-

agent systems. Since multi-agent systems research has produced (and is still producing) 

a large variety of techniques, it is not possible within the limits of this work to review 

all results. This review will therefore focus on those aspects of multi-agent systems 

which are relevant to production control. In particular, subsection 2.2.1 will review 
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existing agent models for building production control agents, whereas subsection 2.2.2 

will focus on techniques suitable for the interaction between such agents. 

2.2.1 Agent models 

According to the above definition, the first fimdamental property of an agent is its 

ability to act That is, an agent is situated in an environment, in which it 

can sense and act (see figure 2.8), and has complete control over its own actions in that 

environment (Wooldridge 1999, p. 29). 

agent 

environment 

Figure 2.8: Basic model of an agent. 

The property of autonomous action, though, furthermore implies that the agent is able 

to choose its actions on its own - without the direct intervention from outside. The 

question - around which much of agent research is centred - is thus how can and 

should an agent choose its actions. As Wooldridge notes: "The key problem facing an 

agent is that of deciding which of its actions it should perform in order to best satisfy its 

design objectives." (Wooldridge 1999, p. 30). To solve this decision problem, several 

agent models and architectures have been proposed. Here, three main types of agent 

architectures are briefly reviewed: 

® reactive agents 

a deliberative agents 

• hybrid agents 

2.2.1.1 Reactive agents 

In reactive agent architectures, the sensory input is directly linked to the action 

capabilities of an agent. That is, the designer of a reactive agent specifies, for each 

possible sensory input, which action the agent should (immediately) perform upon this 

input. During execution, the agent thus only needs to repeatedly take its sensory input 

and match this against the conditions for each action. A problem, though, arises if more 

than one condition matches the same sensory input, and the actions associated with 

these conditions are in conflict. To overcome this problem, Brooks proposed the 
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subsumption architecture (Brooks 1986). Put simply, each condition, also called 

behaviour in this architecture, is associated with a list of lovyer-prioritised behaviours 

which it inhibits (see figure 2.9). A behaviour thus only executes its action if no other 

behaviour inhibits this behaviour (for more details see (Brooks 1986)). 

sensory 
input 

actions 

behaviour 2 

behaviour 1 

behaviour 4 

behaviour 3 

Figure 2.9: Subsumption architecture. 

Reactive agent architectures clearly implement autonomous agents. The agents choose 

on their own - even if this choice is hardwired - how to react to a specific situation in 

the environment. Obviously, these agent architectures ensure the reactiveness of an 

agent. The main disadvantage of these architectures, however, is that it is difficult to 

implement pro-activeness and goal-directed behaviour in such an architecture 

(Wooldridge, p. 53). Reactive architectures only look at the current situation and have 

no means to initiate behaviour or take into account longer term goals. In the extreme, 

purely reactive agents do not act unless something in the environment changes. 

2.2.1.2 Deliberative agents 

Deliberative agent architectures explicitly represent goals and form plans about how the 

agent wants to behave in the future in order to achieve its goals. Probably the most 

prominent deliberative agent architecture is the belief-desire-intention (BDI) 

architecture of Rao and Georgeff (d'Inverno 1998, Rao 1992). In this architecture, the 

agent takes its beliefs, i.e., the sensory input accumulated over time, and its desires, i.e., 

its goals, and forms intentions about what it is going to do in the future (see figure 

2.10). Intentions are courses of actions to which an agent commits itself, i.e., the agent 

will execute these actions unless certain specified situations arise in which the agent has 

to abandon its intention. The current set of intentions formed then determines which 

actions the agent should perform. 

In contrast to reactive architectures, BDI agents are able to follow their goals pro-

actively and, at the same time, to react to their environment. In case the beliefs (derived 

from the sensory input) no longer support an intention, the intention is either changed 

or abandoned and thus the behaviour of the agent is adapted. The BDI agent 
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architecture is thus able to implement autonomous, reactive, and pro-active agents. A 

disadvantage of BDI agents, however, is that they can only react after the new sensory 

information has run through the different steps necessary to form an intention (i.e., it is 

necessary to form a belief about the change and to adapt the intentions before the 

corresponding actions can be executed). For complex agents, this may take a long time, 

in highly dynamic environments possibly too long. To avoid this problem, hybrid 

architectures were proposed. 

beliefs 
plan 

library 

reasoner reasoner 
output 

desires intentions 

Figure 2.10: BDI architecture. 

2.2.1.3 Hybrid agents 

Hybrid agent architectures incorporate both reactive and deliberative mechanisms into 

one architecture (typically by introducing a layer for each mechanism). The InteRRaP 

architecture (Mtlller 1996), for instance, consists of three layers (each equipped with a 

database); a behavioural layer for reactive situation-action rules, a plan layer for goal-

directed pro-active planning, and a co-operation layer for modelling and handling 

interactions with other agents (see figure 2.11). In this architecture, the sensory input is 

first provided to the behavioural layer. If one of the situation-action rules is applicable 

to the input, the rule 'fires' its actions. If no rule matches the input, the sensory input is 

handed to the next higher layer. Here again, the layer decides whether it can handle the 

input (e.g., through planning) or hands it further to the next layer. When a higher layer 

chooses a certain course of action, this information is handed down the hierarchy to the 

lower levels for execution. That is, whatever any of the layers decide, the behavioural 

layer must execute the corresponding actions. 

Hybrid architectures fulfil all requirements imposed on an agent. A hybrid agent is 

autonomous, reactive, pro-active, and - in many cases because of a co-operation layer -

also capable of social behaviour. The only disadvantage of hybrid architectures is that it 

is difficult for the designer of such an agent to co-ordinate the different layers in order 

to produce a coherent agent behaviour. In particular, there is still no clear semantics or 

24 



methodology for programming such a kind of architecture, as it exists for example for 

BDI architectures (Wooldridge 1999). 

sensory input 

plan layer 

world interface 

co-operation layer 

behaviour layer 

Figure 2.11: InteRRaP architecture. 

2.2.2 Agent interaction 

As defined above, the second fundamental property of an agent is its ability to interact 

with other agents. The environment an agent is situated in is usually not purely passive. 

There are often other agents which also act autonomously and pro-actively. To meet its 

goals, an agent may either have to avoid negative or be able to exploit positive 

interactions with other agents. In particular, certain goals may not be achievable with 

the limited capabilities of a single agent, but only if a whole set of agents works co-

operatively towards these goals. Interaction may thus be indispensable to the goal 

achievement of an agent. 

In general, interaction is any kind of information exchange that somehow influences 

the actions of another agent (Bond 1988), Interactions can thus take many different 

forms. This subsection, though, will only briefly review those main types of interaction 

techniques, namely co-ordination and negotiation, that are most commonly used in 

agent-based production control. Other forms and in particular a more thorough 

treatment of interactions can be found in (O'Hare 1996, Weiss 1999, Wooldridge 

2002). 

2.2.2.1 Co-ordination 

Co-ordination is the process by which agents ensure that their community acts in a 

well-defined manner (Jennings 1996, Bond 1988). While co-ordination itself is nearly 

invisible, the lack of co-ordination becomes immediately apparent. In a well-run 

conference everything happens as expected, while in a badly organised conference the 
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participants immediately recognise if something goes wrong; if) for example, the 

conference rooms are not clearly marked, the presentation is not set up in time, or the 

coffee is not served at the beginning of the breaks. The problem of co-ordination 

becomes particularly difficult in a multi-agent system where there is no central control 

and every agent can autonomously choose its actions. In such a system, co-ordination is 

not an inherent system property, but can only be achieved through an explicit effort of 

the agents. Jennings (Jennings 1996) gives three main reasons why co-ordination may 

be difficult to achieve: 

1. The actions of the agents may interfere. 

Two robots reaching for the same workpiece, for instance, will collide. 

2. There may be global constraints to be met. 

The processing of a workpiece at different machines may have to be scheduled 

such that the workpiece is finished by a certain deadline. 

3. No individual agent has sufficient capabilities or resources to achieve its or the 

system's goals. 

A single machine is usually not sufficient to perform all the operations required 

by a workpiece. In contrast, to process a workpiece, several machines, handling 

systems, and possibly other resources must co-ordinate their actions. 

All of the above cases have in common that there is some kind of dependency between 

the agents. The agents are dependent on each other for performing (or avoiding) certain 

actions in order to arrive at the desired overall system behaviour. Malone and Crowston 

therefore define co-ordination to be simply "managing dependencies between 

activities" (Malone 1994, p. 90). Or, as they say, "if there is no interdependence, there 

is nothing to coordinate" (Malone 1994, p. 90). To achieve system co-ordination, it is 

therefore necessary to first understand the possible dependencies that may exist and 

then to derive interaction techniques that are able to handle these dependencies. 

Several researchers have modelled and classified dependencies between agents. 

Castelfranchi et al. (Castelfranchi 1992) as well as Sichman et al. (Sichman 1994) have 

modelled the goals and plans of agents and have investigated how these can be 

dependent on other agents' goals and plans in order to analyse how co-operation can 

evolve from these dependencies (see also (Jennings 1996, d'Inverno 2001, Sichman 

2002, Yu 2002)). In particular, they have distinguished; 

• unilateral dependence: One agent is dependent on another, but not vice versa. 

• mutual dependence'. Two agents are dependent on each other for the same 

goal or plan. 
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• reciprocal dependence: Two agents are dependent on each other, but for 

different goals or plans. 

Malone, Crowston et al. (Malone 1994, Crowston 1994, Malone 1999) have intensively 

studied co-ordination and the underlying dependencies in organisational processes. To 

study these processes, they have adopted a task/resource model and have identified the 

types of dependencies that can arise in such a process model. Malone et al. (Malone 

1999), for instance, distinguish between fit, flow, and sharing dependencies (see figure 

2.12). 

fit flow sharing 

Figure 2.12; Task/resource dependencies. 

In a fit dependency, multiple activities collectively produce a single resource and have 

to make sure that whatever is created fits together. A flow dependency arises whenever 

one activity produces a resource that is to be used by another activity. This resource 

must then be provided at the right time ('prerequisite' dependency), at the right place 

('accessibility' dependency), and in the right form ('usability' dependency). Finally, 

there may be a sharing dependency between activities, i.e., two (or more) activities use 

the same resource. In this case, Crowston (Crowston 1994) further distinguishes 

whether the resource is shareable or non-shareable by more than one activity, and 

whether it is re-usable or non-reusable-, in the latter case, the resource is totally or 

partly consumed after its usage. 

Von Martial (von Martial 1992) and Decker and Lesser (Decker 1992b) have studied 

dependencies that may arise between multi-agent goals or plans. Von Martial has 

proposed a set of plan relations that capture positive or negative dependencies between 

several agents. Obviously, agents executing their individual plans may run into conflicts 

concerning the usage of resources or the achievement of (incompatible) states in their 

common environment. But agents may also encounter positive plan relations. Their 

planned actions may be identical or may subsume each other so that the agents save 

time and effort if they co-ordinate their plans. Von Martial also identified the favour 

relationship in which a plan of one agent does not make the plan of another agent 

obsolete, but significantly reduces the effort the other agent has to put into its plans. 

Similarly, Decker and Lesser studied possible relationships in augmented goal 

structures - an abstract representation of task and goal activities - and derived a whole 

range of possible relationships in (Decker 1992, Decker 1992b) (for a formal model of 

plan relationships see also (Ossowski 1999)): 
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« basic domain relationships: caztyg ,̂ 

lyAarg-fg.yM/rj', coMce/ĵ , a n d ; 

« goal relationships: exfgMck, 

fw6fw/Mgf, and comj^gre.;; 

* temporal relationships: A ^ f g , ggwa/, meĝ ,̂ ovef/qp^, (/wrmg, 

finishes, and their inverses; and 

« resource constraints: zwg. 

To handle these goal and plan relationships, Decker and Lesser (Decker 1995, Decker 

1992) generalised the partial global planning (PGP) approach of Durfee (1996). In 

PGP, distributed planners co-ordinate their actions by abstracting from their plans and 

exchanging these abstractions. Given the different local plan abstractions, each agent is 

then able to identify common goals to which the local goals of the agents contribute. 

Since these common goals may be only partially known to the agents, they are called 

partial global goals. Once a partial global goal has been identified, the local plans can 

be integrated into partial global plans. In its original design, though, PGP provides only 

two mechanisms to perform this integration; redundant tasks are avoided, and tasks are 

performed earlier if this facilitates the work of other agents. Decker and Lesser 

therefore extended PGP into generalised partial global planning (GPGP). GPGP 

generalises PGP first of all because it uses the domain-independent goal relationships 

described above. But GPGP also provides a set of domain-independent co-ordination 

mechanisms; 

1. Updating non-local viewpoints 

The agents exchange local information in order to detect new co-ordination 

relationships. 

2. Communicating results 

The agents communicate all the results of their activities ('all' policy) or only 

those which are necessary to satisfy any commitments to other agents ('minimal' 

policy). 

3. Handling simple redundancy 

Once redundant actions planned by more than one agent are detected, the agents 

randomly choose one agent to execute the action and communicate the results. 

4. Handling hard co-ordination relationships 

The agents schedule activities such that any hard temporal ordering constraints 

are obeyed. 

As for the previous co-ordination mechanism, the agents try to schedule 
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activities such that ordering constraints, like for exampleyaczZzWgj', are obeyed 

if the corresponding schedule is acceptable to the agent. 

Despite the domain-independent approach, GPGP is not - and was not intended to be -

a complete set of co-ordination mechanisms. In contrast, the co-ordination relationships 

as well as the co-ordination mechanisms can be extended to accommodate new 

applications, as was done in (Decker 2000) by introducing the mutual exclusion 

relationship and a co-ordination mechanism for mutual exclusion based on bidding. 

Other co-ordination techniques that have been developed include, for example, 

distributed problem solving (Durfee 1999), search algorithms (Yokoo 1999), and social 

laws (Shoham 1995, Fitoussi 2000). Distributed problem solving is concerned with 

distributing a system task or sharing distributedly computed results in order to make use 

of the capabilities of several problem solvers. Search algorithms explore a search space 

in a distributed manner. Distributed constraint satisfaction algorithms, for instance, are 

able to solve a constraint net if variables (or constraints) of the net are distributed to 

different agents. Social laws, finally, attempt to avoid the interactions of agents in the 

first place. They define behavioural conventions which make any explicit co-ordination 

obsolete. Robots, for example, which always move on the right side of a (sufficiently 

large) passage, never collide - even without communication. If such conventions exist 

and the agents can be expected to obey them, social laws significantly reduce the co-

ordination requirements. Dynamically identifying suitable social laws and agreeing 

upon them, though, can be a co-ordination problem in itself. 

2.2.2.2 Negotiation 

As for co-ordination, negotiation is a common form of interaction between human 

beings and has therefore been extensively studied in sociology (see for example (Pruitt 

1981)). In sociology, any (human) interaction is regarded as a negotiation in which the 

participants of the interaction, usually called parties, have a conflict of interests, but 

must come to a joint decision. Pruitt (1981), for instance, defines negotiation as 

follows: 

Negotiation is a process by which a joint decision is made by two or more 

parties. The parties first verbalize contradictory demands and then move 

towards agreement by a process of concession or search for new 

alternatives. 

Conflicts are a natural part of our (human) life, since everyone has their own special 

interests. But with autonomous agents, conflicts also become a natural phenomenon in 

software systems. If each software agent has its own interests and goals, conflicts 

between software agents are inevitable. One of the objectives of multi-agent systems 

research is therefore to enable software agents to perform negotiations in order to 
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resolve any conflicts (Wooldridge 2002, p. 129). To achieve this objective, many of the 

negotiation forms existing in human societies have been adopted or extended for 

software agents. The most prominent examples of these negotiation techniques will be 

reviewed in the following. This will include auctions, general equilibrium market 

mechanisms, service negotiation, and conflict resolution techniques. 

Auctions are trade mechanisms for exchanging commodities (Friedman 1991). The 

commodities can be any kind of goods, but usually some good is exchanged for money, 

as for example in a stock exchange. There are one-sided and two-sided auctions, as well 

as continuous auctions. In a one-sided auction, there is one auctioneer that either only 

accepts bids - if he wants to sell a good - or only accepts asks - if he wants to buy a 

good. The result is always a single trade (for the good that was auctioned off). Intwo-

auctions, the auctioneer allows the agents to place bids and asks and then matches 

these in order to create several trades. Finally, an auction is called continuous if it 

allows bids and asks to arrive over time (and matches both over time). For each of the 

above auction categories there already exists a large set of possible auction protocols, 

and probably many more will be developed in the future (see (Sandholm 1999, 

Friedman 1991)). In the following, only three typical examples of common auction 

protocols are briefly characterised, namely the English auction, the continuous double 

auction, and the contract-net protocol. 

The standard example for a one-sided auction is the English auction. In the English 

auction, an auctioneer wants to sell a (specific) good for the highest price possible and 

requests a set of potential buyers to make bids. The (potential) buyers respond with bids 

and increase their bids until no bidder offers a higher price. The auctioneer then sells 

the good to the bidder with the highest bid for the price of the highest bid. 

In the continuous double auction (CDA) participants may pose bids or asks. The bids 

and asks are continuously matched by a neutral auctioneer according to a set of market 

rules. The rules basically state that bids and asks are matched if the price of the bid is 

higher than the price of the ask. The actual auction rules, though, depend on the specific 

CDA installation (see (Friedman 1991) for a discussion). 

The contract-net protocol (CNP) is a simple, but efficient protocol for assigning tasks 

to individual nodes in a network (Smith 1980). It assumes that one node has a task that 

needs to be executed (by another node) and that there are (potentially) several nodes 

that are able to execute this task. The node with the task is called the manager and the 

other nodes are (potential) contractors (see figure 2.13). The manager initiates the 

protocol and proceeds as follows. First, it announces the task to the potential 

contractors. The contractors answer with a bid. The necessary information provided in 

the bid was specified by the manager in the announcement message. The manager 

compares the bids and chooses the best bid according to its preferences. The node 

which has sent the best bid then receives an award message and is said to have a 
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contract with the manager about the execution of the task. The other nodes may or may 

not receive a reject message. 

Even though the CNP was originally designed for task distribution, it is actually aoMg-

(mcr/on. First of all, it is irrelevant to the protocol whether 

the agents exchange a task or some other kind of good. Secondly, the CNP simply stops 

after the auctioneer received the first bid from each bidder ('first-price'), instead of 

repeating the auction until no bidder changes its bid. And thirdly, the bid is 'sealed', 

i.e., not made known to the other bidders. In the English auction, it is a fundamental 

prerequisite that the bids are made 'open-cry', i.e., are broadcast to all agents because 

otherwise the other bidders do not know whether they need to raise their bid in order to 

win the auction. The contract-net protocol can thus be viewed as an auction mechanism, 

even if there may not necessarily be a conflict between the manager and the potential 

contractors. 

manager 

2. bid 

3. award 

contractor C. 

contractor C, 

contractor C„ 

Figure 2.13: The contract-net protocol (and its phases). 

All of the above auctions have in common that they are able to match buyers and 

sellers, but, in doing so, hardly take into account any global constraints or optimisation 

criteria. General equilibrium market (GEM) mechanisms (Sandholm 1999), on the 

contrary, are able to optimise the allocation of goods and resources among agents 

through the identification of a market clearing price. That is, the market price for each 

good is varied until an optimal allocation of goods is found. More precisely, a GEM 

consists of producers and consumers which create or consume goods. The actual 

production or consumption of each agent, however, depends on the market price for 

each good. The higher the price, the less the consumers will consume and the more the 

producers will wish to produce. And, vice versa, the lower the price, the more the 

consumers will consume and the less the producers will wish to produce. The market is 

thus in equilibrium if: 

(i) the amount of goods consumed is equal to the amount of goods produced; 
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(ii) the consumers are able to consume the maximum amount of goods they demand 

given the prices; and 

(iii) the producers maximise their profit (which is price multiplied by the amount 

produced). 

The task of a market clearing algorithm is to find such a clearing price. A common 

algorithm for clearing markets is the distributed price tatonnement algorithm 

(Sandhoim 1999). In this algorithm, each producer and consumer determines, given the 

current prices, how much it will produce or consume in order to maximise its profit or 

utility function. A central price controller then adjusts the prices according to the 

difference between the production and consumption plans. This process is repeated 

until production and consumption plans reach an equilibrium. Only then may 

production and consumption start. The GEM markets are thus a static approach: the 

solution must be completely known before execution can start. 

Another drawback of auctions, and also of the GEM mechanisms, is that they can only 

negotiate prices (or the combination of prices and amount), whereas the actual good to 

be exchanged is fixed. In many settings, though, it is also necessary to alter other 

aspects of the negotiation subject in order to find an agreement. For instance, several 

agents planning a joint holiday will have to consider different ways of making holidays 

(staying at a beach hotel, hiking through the mountains, visiting an exciting city, and so 

on) in order to devise a trip that satisfies the interests of all agents. For these settings, it 

is therefore necessary to employ more sophisticated negotiation techniques. Two 

examples of such negotiation techniques are briefly reviewed. 

Faratin (Faratin 1998) developed a sophisticated interaction model for bilateral 

negotiation of services. In this model, the two negotiation agents basically exchange 

new proposals until either both agents accept the last proposal or one of the agents 

withdraws from the negotiation. This interaction process is complemented by a set of 

negotiation tactics and strategies for generating new proposals. Faratin defined tactics 

for reacting to time or resource constraints, for imitating an opponent's behaviour, for 

trading off different aspects, or for manipulating the set of negotiation issues (Faratin 

2000). These tactics are combined into strategies by assessing the influence of a tactic 

on the generation of the next proposal. With these negotiation techniques, an agent is 

able to exhibit a more flexible negotiation behaviour than to merely change prices. In 

particular, the agent can trade off different aspects of the negotiation subject. 

Hollmann et al. (Hollmann 2000) proposed an interaction technique for resolving 

conflicts between agents that are supposed to find a common proposal (on some 

matter). The task of the agents is thus to search for a proposal which satisfies all the 

agents. An agent is 'satisfied' with a proposal if the evaluation result of the proposal 

passes a given threshold. To find such a proposal, each 'unsatisfied' agent is requested 
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to put forward a new proposal that only minimally changes an already existing proposal 

such that the evaluation function of the agent is satisfied. These new proposals are 

generated until either a proposal is found satisfying all the agents or it can be asserted 

that there is no solution. The advantage of this interaction technique is that it is able to 

negotiate complex matters between several agents. However, the disadvantage is that it 

is not able to reconcile opposing interests. The agents make new proposals, but there is 

no explicit process of concession (of course, the agents could always concede by 

themselves). This negotiation technique can thus only be applied if there is a solution to 

which all agents would agree. 

There are certainly many more negotiation techniques that could be reviewed here. This 

review, though, was only intended to give an impression of the different techniques that 

exist and are potentially relevant to production control. For more complete overviews 

of negotiation techniques see (Sandholm 1999, Jennings 2001b, Wooldridge 2002). 

2.3 Agent-based control systems 

The review of agent technology has shown that software agents are an appropriate 

technology to meet most of the new requirements for modern production control 

systems (see subsection 2.1.4). First of all, multi-agent systems distribute the decision 

capabilities of the control system to the individual agents of a production system, 

usually to the local controllers. Secondly, an agent is by definition a reactive and pro-

active decision maker (see subsection 2.2.1). And thirdly, also by definition, agents are 

able to co-operate in a flexible manner, either to improve their own or the system's 

performance (see subsection 2.2.2.1). Only the requirement of low and late 

commitment does not immediately follow from the definition and concepts of agent 

technology, although agents can be designed to pursue such a strategy. Thus, agent 

technology provides many of the (software) techniques that are necessary to design and 

implement modern production control systems. This potential was recognised as early 

as 1985 when the first control systems based on agent-oriented concepts were proposed 

(Parunak 1985, Shaw 1985). Since then, much work has been invested into developing 

agent-based control systems. This work as well as its context will be reviewed in this 

section. 

This section is organised as follows. It will review the basic concepts of agent-based 

production control (see subsection 2.3.1); look at the relation of these concepts to other 

trends in production research (see subsection 2.3.2); present industrial applications of 

agent-based control systems (see subsection 2.3.3); and finally discuss the design of 

such systems (see subsection 2.3.4). 



2.3.1 Basic concepts 

One of the very first applications of agent-oriented concepts to manufacturing control 

was the prototype factory control system YAMS of Parunak et al. (Parunak 1985, 

Parunak 1986, Parunak 1987). In YAMS, the manufacturing enterprise is modelled as a 

hierarchy of production units, of which the smallest units are called An 

engine plant, for example, may consist of a block, an oil pump, a head and an assembly 

flexible manufacturing system (FMS). Each FMS may, in turn, consist of a set of 

workcells which perform the actual operations like drilling or milling (see figure 2.14). 

The hierarchy, however, records only composition, not control. Task distribution down 

the hierarchy is done through a negotiation process that is based on the contract-net 

protocol (see subsection 2.2.2,2). A node announces a task, units capable of performing 

the task reply with a bid, and the node in turn assigns the task to the unit with the best 

bid. Because of this negotiation process between superior and subordinate units, the 

assignment process is able to take into account any changes or disturbances that may 

occur during the planning process. A superior unit may even repeat the negotiation if 

the unit that was assigned to the task fails to execute it. 

3. assign 
engine plant 

2. bid 2. bid 

. announce 

block FMS oil pump FMS head FMS assembly FMS 

— composition 

-• interaction 

Figure 2.14: An example factory hierarchy in YAMS (Parunak 1985). 

Once a manufacturing task has been assigned to a production unit, this unit must 

request the corresponding material from the material handling system. The material 

handling system in YAMS consists of a mover agent for each workcell and for each 

part of the transportation system. These movers keep track of each pallet in their 

physical vicinity and forward a pallet if it is requested by a neighbouring unit or request 

it themselves from their neighbours if the pallet is not available yet. A pallet, however, 

is only forwarded if the number of pallets, i.e., thew/orA-m-procgfj', at the target mover 

does not exceed a certain physical limit. If the limit is exceeded, the pallet is delayed 

until the work-in-process of the target cell decreases again. Through this mechanism. 
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the control system ensures that the material flow is automatically ac^usted to the current 

capacity and workload of each workcell. In case of disturbances, for instance, the 

material flow is slowed down exactly to the reduced capacity of the disturbed workcell. 

Both control mechanisms, the top-down negotiation and the work-in-process limitation, 

thus enable the manufacturing system to adapt its assignment and execution process to 

any changes and disturbances in the manufacturing system (cf. subsection 2.1.3). 

In parallel to Parunak's work, Shaw and Whinston (Shaw 1985, Shaw 1987) also 

developed a distributed scheduling method based on the contract-net protocol. As in 

YAMS, manufacturing tasks are contracted out to workcells through a bidding process 

in which the workcells bid for the tasks. The work in (Shaw 1987), though, focussed on 

evaluating different decision rules for choosing the winner of the bidding process, in 

particular comparing these to centralised scheduling using the same decision rules. The 

comparison included a centralised scheduler preferring the shortest processing time 

when assigning a manufacturing task, and two bidding schemes, one choosing the bid 

with the shortest processing time and one the bid with the earliest finish time. In a set of 

simulations with randomly created manufacturing tasks, the decentralised bidding 

scheme outperformed the centralised scheduler in each case. This is because the 

bidding algorithm is based on more accurate information. Instead of duplicating the 

shop-floor information in a centralised scheduler, the bidding scheme lets the 

workcells, which have the most up-to-date information, bid themselves for the tasks. 

This leads to more realistic schedules and thus to a better performance. 

Since this early work on agent-based control systems, the contract-net-based approach 

to scheduling has been very popular (see (Tilley 1992, Maturana 1996, Saad 1997, 

Maley 1998, Sousa 1998)) and was further evaluated and extended by several 

researchers. Tilley and Williams (Tilley 1992, Tilley 1996), for instance, studied the 

communication performance of a distributed bidding scheme, while Saad et al. (Saad 

1997) evaluated the performance of four additional decision rules for choosing the 

winner of the bidding process. Approaches similar to the contract-net were also 

proposed in (Bussmann 1996) and (Hahndel 1996). In (Bussmann 1996) a co-ordination 

algorithm for scheduling transportation tasks was presented. As in YAMS, tasks are 

announced to the transport units. In contrast to YAMS, however, these units perform 

only a local analysis of the task and return the result of the analysis to a co-ordinator. 

The co-ordinator then synthesises the results into a global schedule. Hahndel et al. 

(Hahndel 1996) developed a completely decentralised approach to scheduling assembly 

tasks consisting of several steps. As in previous work, each step of a manufacturing 

task is assigned to a workcell through a contract-net-based negotiation. Once the first 

step is assigned, though, the responsibility for assigning the next step goes to the 

workcell that is assigned to the last step. This workcell is then not only supposed to 

execute the assigned step, it is also responsible for finding the next workcell. In case of 

assembly steps, there are several workcells for the same tasks which are looking for the 
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next workcell. To ensure that these workcells choose the same assembly cell, the 

workcells select a synchronisation agent. This synchronisation agent, in essence, 

chooses the assembly cell for the next step. 

The contract-net-based scheduling approach also inspired new approaches, such as the 

market-driven control scheme (see for example (Baker 1996, Markus 1996)). In 

(Markus 1996, Vancza 1998), for instance, tasks are assigned to machine agents 

through a bidding scheme based on prices. That is, a superior unit, called 'management' 

in (Markus 1996), still aimounces the manufacturing tasks, but the machine agents now 

bid for tasks by returning only the costs for executing the tasks. The management then 

tries to maximise the 'profit' of the manufacturing system by choosing the bid offering 

the lowest costs. The advantage of this approach is that the performance of all 

production units, as well as of the production system itself, can be (constantly) 

evaluated on the basis of one single measure, namely profit. Components which 

underperform because their earnings, for instance, are significantly less than their actual 

costs can be removed &om the system. From the work presented to date, however, it is 

not clear whether a production system making greater 'profit' really performs better in 

terms of the company's goals. The 'manufacturing profit' proposed in (Markus 1996) is 

a only virtual concept and does not directly correspond to the company's real profit. 

Furthermore, it is also not clear whether this approach outperforms the classical 

contract-net-based approach. The market-driven approach certainly requires more 

evaluation. 

An exception to the predominant contract-net and market based approaches is the team-

based approach of Fischer (Fischer 1994). In this approach, the central shop floor 

control announces the manufacturing jobs to the workcells by adding these to a global 

task list. The workcells examine the list and ask other resources to join a team for a 

particular job. Once the team is complete, i.e., the team can perform the job 

autonomously, the team leader requests the job. To avoid any resource conflicts 

between parallel team formation attempts, Fischer proposed a protocol that is conflict-

free. 

To summarise, research into agent-based production control systems has focussed much 

on the decentralised assignment of manufacturing tasks to production units. In applying 

negotiation techniques, like the contract-net protocol, this process becomes more 

flexible with respect to changes and disturbances in the production system. The 

following section will show that this research is part of a much larger effort to introduce 

flexibility into production. 

2.3.2 Trends in production research 

The limitations of the pre-dominant approach to production control, discussed in 
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subsection 2.1.3, have also motivated the development of new control concepts in 

production research. The starting point of these developments, though, was not the 

application of a (software) technology to specific control tasks, but the design of new 

control, or even new production paradigms. These new developments consequently take 

a more holistic view on production control, encompassing all control tasks necessary to 

run a production facility. The two developments which are (most) relevant to this work 

are heterarchical control architectures and holonic manufacturing systems. Each 

development will be reviewed in the following and a comparison of both with agent-

based control systems is given at the end of this subsection. Other approaches, which 

are less relevant to this discussion, are for example random (Iwata 1994), fractal 

(Wamecke 1993), or bionic (Okino 1993, Ueda 1993) manufacturing (for a comparison 

of holonic, fractal, and bionic manufacturing see also (Tharumarajah 2003)). 

2.3.2.1 Heterarchical control 

Heterarchical control was motivated by the limitations of centralised and hierarchical 

control architectures (Dilts 1991). Both centralised and hierarchical control 

architectures result in quite complex control systems because they centralise distributed 

information. The information thus becomes quickly out-of-date and the control logic is 

difficult to implement due to the enormous number of cases that arise in a larger 

production system. As a consequence, these systems are difficult to modify or extend 

and exhibit a very low fault-tolerance. Heterarchical control, in contrast, eliminates any 

centralised elements and increases the autonomy of each controller (Duffie 1987). That 

is, all controllers are connected via a communication network and are solely responsible 

for any control tasks within their vicinity (see figure 2.15). 

controller 

machines 

Figure 2.15: Centralised, hierarchical, and heterarchical 

control architectures (Dilts 1991). 

Autonomy, however, is not enough to make heterarchical control systems work. A 

control system in which each controller only pursues its own goals without regard to the 

goals of others will result in a chaotic, sub-optimal production process. To optimise a 

production process, the controllers must co-operate with respect to the overall 

production goals (cf. subsection 2.1.3). Hatvany therefore proposed 'co-operative 

heterarchies' (Hatvany 1985), and Duffie stressed the concept of 'co-operating 

autonomous entities' (Duffie 1988). This co-operation is usually achieved by the same 



interaction techniques as in agent-based control systems. DufRe, for instance, uses a 

protocol similar to the contract-net protocol (Duffie 1988). 

2.3.2.2 Holonic manufacturing systems 

Holonic manufacturing, in turn, takes a much larger perspective than heterarchical 

control by looking at the whole manufacturing process- instead of only the control. 

Originally, holonic manufacturing systems (HMS) were proposed in the early 1990's as 

a new manufacturing paradigm to address the upcoming challenges of the 2F* century 

(Suda 1989, 1990). These challenges are mainly globalisation and industrial over-

capacity which result in a shift from a vendor's to a customer's market and in particular 

in shorter product life-cycle, reduced time-to-market, mass-customisation, volatile 

demand, and constant cost pressure (McFarlane 2003, Brennan 2003). As a 

consequence, production operations are faced with increasing complexity and constant 

change under decreasing investments (cf. subsection 2.1.4). In addressing these 

challenges, holonic manufacturing was inspired by the work of the philosopher Arthur 

Koestler who tried to explain the evolution of biological and social systems (Koestler 

1989). On the one hand, these systems develop stable intermediate forms during 

evolution that are self-reliant. On the other hand, it is difficult in living and 

organisational systems to distinguish between 'wholes' and 'parts': almost everything is 

both part and whole at once. These observations led Koestler to propose the word 

"holon", which is a combination of the Greek word 'holos' meaning whole and the 

Greek suffix 'on' meaning particle or part (as in proton or neutron). 

Following the holonic concept, a holonic manufacturing system thus consists of 

autonomous and self-reliant manufacturing units, called holons, which operate in a 

flexible hierarchy. In such a system, any unit can be a holon as long as the unit is able 

to create and control the execution of its own plans and/or strategies (see the HMS 

definition of autonomy (Christensen 1994, van Leeuwen 1997)). Machines, conveyors, 

and automated guided vehicles as well as human workers are obviously holons, but also 

orders can be holons as long as the orders are able to pro-actively pursue their own 

processing. For this reason, Christensen (Christensen 1994) foresees three major 

interfaces to an artificial holon: a physical processing interface, an inter-holon interface, 

and a human interface (see figure 2.16). The physical processing interface is optional as 

holons, such as an order holon, need not contain any physical components at all. 

Holons co-operate with other holons during the production process in order to 

accomplish the production goals. Co-operation, in the form of co-ordination and 

negotiation, develops wherever and whenever necessary, usually along material and 

information flow. A system of holons which can co-operate to achieve a goal or 

objective is called a holarchy (van Leeuwen 1997). Holarchies are recursive in the 

sense that a holon may itself be an entire holarchy that acts as an autonomous and co-
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operative unit in the first holarchy. Holons within a holarcby may dynamically create 

and change hierarchies. Moreover, holons may engage in multiple hierarchies at the 

same time. In contrast to hierarchical control systems, though, HMS creates only loose 

and flexible communication hierarchies which never force a holon to perform a certain 

task (Valckenaers 1994). 

information 

resources 

materia] / 
information 

intelligent 
control 
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processing 
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material / 
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Figure 2.16: Holon interfaces (Christensen 1994). 

Since its conception in the early 1990's, holonic manufacturing has received a lot of 

attention in academia and industry (see for example (van Leeuwen 1997, Deen 2003, 

Marik 2003)). In particular, holonic manufacturing was one of the six test cases in the 

international Intelligent Manufacturing Systems (IMS) feasibility study that was set up 

in 1992 (Hayashi 1993). The success of the holonic manufacturing test case, both with 

respect to the feasibility of the holonic concept as well as to the international 

collaboration, led to the endorsement of holonic manufacturing as an international IMS 

project in 1994, with a 10 year research program (van Leeuwen 1997). Over 30 

academic and industrial partners from the IMS regions Australia, Canada, Europe, 

Japan, and the United States are now participating in this international pre-competitive 

research collaboration (Holonic Manufacturing Systems Consortium 2002). 

To date, a large amount of research into holonic manufacturing has been conducted 

inside and outside of the HMS project. This research includes the development of 

generic technologies for designing and implementing holonic manufacturing systems as 

well as the application of these concepts to machining units, workpiece fixturing, 

material handling, and resource management, i.e., planning and control of 

manufacturing systems (van Leeuwen 1997). Concerning planning and control, HMS 

research has addressed issues such as: 

• distributed decomposition of orders into manufacturing tasks; 

• distributed scheduling of manufacturing tasks between autonomous and co-

operative ^jnits, i.e., holons; 
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# autonomous execution of manufacturing tasks that interfaces with the 

scheduling process; and 

« machine control architectures consisting of co-operative devices. 

For a complete overview of the research into planning and control aspects of HMS, see 

also (McFarlane 2000). 

2.3.2.3 Summary 

As for agent-based control, autonomy and co-operation are the key concepts in both 

heterarchical control and holonic manufacturing systems. Both paradigms, however, 

use autonomy and co-operation to realise a certain organisation of the production 

process: Heterarchical control proposes a flat hierarchy of local controllers, while 

holonic manufacturing systems envision flexible hierarchies which emerge from the 

production process. Agent-based control, in contrast, is a software technology that can 

be used to implement any kind of autonomous and co-operative control behaviour, be 

this hierarchically or heterarchically organised. In fact, it can be argued that the 

information processing part of a holonic manufacturing system, and certainly that of a 

heterarchical control system, is an agent-based system (Bussmann 1998). Agent-based 

control is consequently an enabling (software) technology for both manufacturing 

paradigms, in particular for holonic manufacturing systems (McFarlane 1995, Marik 

2002). 

2.3.3 Industrial applications 

This section reviews two industrial applications of agent-oriented production control 

systems. 

2.3.3.1 Production 2000+ 

Probably the first full-scale industrial agent-based production system that has brought 

agent-oriented concepts into operation is the cylinder head manufacturing system 

Production 2000+ (P2000+) of DaimlerChrysler (Bussmann 2001b). This 

manufacturing system consists of flexible CNC machines which are configured to 

process a range of products. To achieve robustness, each operation of the 

manufacturing system is provided by at least two machines. In case of a single machine 

failure, there is thus at least one other machine able to process the workpieces. The 

above flexibility and robustness requires a flexible transportation system such that a 

workpiece may be moved from any machine to any other machine. This flexible 

transportation is provided by a system of forward conveyors, backward conveyors, and 
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shifting tables moving the workpieces in and out of the machines (see figure 2.17). 
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Figure 2.17: Production layout P2000-I-. 

To operate such a manufacturing system, the associated control system must decide 

during the production process - among other aspects - how and when the workpieces 

are assigned to the individual machines. To this end, DaimlerChrysler and Schneider 

Electric have designed and implemented an agent-based control system consisting of 

agents for each machine, each transportation switch, and each workpiece (see figure 

2.18). These agents interact in order to achieve a robust and flexible material flow 

through the manufacturing system: The workpiece agent manages the state of the 

workpiece and searches for machines to process the workpiece. The machine agent 

controls the workload of the machine and bids for suitable workpieces. The workpiece 

agent in turn chooses the best machine for the next operation based on processing as 

well as workload criteria. Finally, the transportation agent chooses a route to the next 

machine taking into account the current load of the transportation system (more details 

and some properties of the control behaviour are given in (Bussmann 2000)). 
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Figure 2.18: Control agents of P20004-. 

The manufacturing system consisting of six machines was installed in 1999 as a bypass 

to an existing large-series manufacturing line at the DaimlerChrysler engine plant in 

Stuttgart-Unterttirkheim, Germany (see figure 2.19). After a suite of performance tests 

which demonstrated the industrial feasibility and performance of the agent-based 

approach, this prototype was extended by two machining units and an automatic 

loading machine in order to produce in series the cylinder head for a four cylinder 
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diesel engine (offered in the Mercedes-Benz C- and E-class 220 CDI). The prototype 

has now been in operation since 1999 and, during that time, has proven that it is able to 

hold its high standard even in day-to-day operation. This prototype can thus be viewed 

as a proof for the industrial feasibility of agent technology (for manufacturing 

operations). 

Figure 2.19: DaimlerChrysler Prototype P2000+. 
(Courtesy of Bleichert, Osterburken, Germany) 

2.3.3.2 Holomobiles 

Another example of an agent-based control system was developed by the holomobiles 

workpackage of the HMS project (Bussmann 2001). The workpackage analysed the 

limitations of existing engine assembly systems in the automotive industry and 

designed a new material flow concept that improves the robustness and volume 

flexibility of the assembly process. To achieve the volume flexibility, the new assembly 

concept included a migration path from the existing assembly system to the new design, 

in which resources are added step by step. This migration path required that the control 

is able to incrementally incorporate additional resources into the assembly process, and 

that the control itself is scalable in the same steps as the assembly system - two 

requirements that are easily fulfilled by holonic manufacturing systems. The 

development of the new assembly concept therefore included the design of a holonic 

control system for the new assembly process. The new assembly process, the holonic 

control systems as well as the results of a feasibility study are briefly discussed in the 

following. 

The new assembly process consists of a main assembly line, as it was described in 

subsection 2.1.1, and a pool of additional resources that are located along the main line 
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(see figure 2.20). The main line is a standard assembly line covering the whole engine 

assembly process. During the scaling process, this line is extended with additional 

resources at bottleneck stations whenever the volume of the assembly system should be 

increased. There are two possibilities to perform this extension. The first is to add 

flexible buffers in order to de-couple failure-prone stations. And the second is to add 

multi-functional (MF) stations that are able to perform part o f the assembly process in 

order to increase capacity at specific bottleneck stations. To connect the main line with 

the additional resources, automated guided vehicles (AGVs) take engines off the main 

line at so-called docking stations, transport these engines to the flexible buffers or the 

MF-stations, and bring the engines back to the same docking station (in case they have 

only been buffered) or to succeeding docking stations (in case they have been 

processed). The task of the control system is therefore to decide when to take an engine 

off the main line, whether to buffer or process an engine, how many operations to apply 

to an engine, and when to bring an engine back to the main line. 
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Figure 2.20: Assembly layout of Holomobiles. 

To solve the control task and, at the same time, to meet the requirement for scalability 

of the control system, Holomobiles introduced a control holon for each docking station 

(DS), each engine buffer (EB), each MF-station (MF), and each AGV (see figure 2.21). 

An important aspect in this design was that no holon was introduced for components of 

the main assembly line. Such holons were avoided in order to allow the main assembly 

line to operate without the existence or the operation of the additional resources. This 

has the clear advantage that the main assembly line can be built solely with standard 

(control) technology. The main line must only provide enough space to add docking 

stations in later steps of the scaling process. 

The control holons basically perform the control tasks identified above. The docking 

station holon determines - based on the situation around it - whether it should send an 

engine off the main line. It does so if two conditions hold. The first condition holds 

when both its exit and its entry are blocked. In this case there is obviously a bottleneck 

behind the docking station. The second condition is that the docking station is closest to 
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the bottleneck. To verify this, the docking station agent runs an election protocol with 

the docking stations following it. It wins the election, and may thus divert engines, if 

there is no docking station directly behind it that has also detected a bottleneck. To 

divert an engine, a DS holon must find either an MF-station that will process the 

engine, or a buffer currently capable to store the engine. It does so by requesting 

capacity from the corresponding holons. Once it has received the required capacity, the 

DS holon requests an AGV holon to do the transportation and waits for the engine to be 

picked up. An MF holon decides for each arriving engine where to send it to next. To 

do so, it requests DS holons, other MF holons, or EB holons to accept the engine for 

further processing (or buffering). Depending on the holon that accepts the engine, the 

MF-station performs the assembly operations necessary to put the engine in the correct 

processing state. Similarly, the EB holon decides when and where to send the engine to 

next. These decisions are co-ordinated by the EB holons in order to achieve a buffering 

strategy that optimally uses the system-wide buffering capacity. Finally, the AGV 

holons offer their transportation capacity to any holon that requests it. 
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Figure 2.21: Control holons in Holomobiles. 

To evaluate the new assembly as well as the holonic control approach, the performance 

of the new assembly system was compared to that of an existing industrial assembly 

line. The comparison was based on a set of common scenarios that were simulated with 

data taken from the existing line. The main results are briefly reviewed here (for more 

details see (Bussmann 2001)). First of all, the holonic system showed a more robust 

behaviour than the existing assembly system because the additional resources are used 

to de-couple failure-prone stations. Secondly, and more importantly, the holonic system 

can be scaled up in small steps as additional resources are added to the system. The 

introduction of flexible buffers not only increases robustness, it also increases, as a side 

effect, the throughput and thus scales up the volume of the assembly system. Likewise, 

the introduction of MF-stations increases the capacity of assembly sections and thus 

also increases the volume. The new assembly system designed by Holomobiles thus 
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offers robustness and scalability which are unprecedented in existing assembly systems. 

The above examples of industrial applications provide a glimpse at the variety of agent-

based production control systems that are required in industry. More examples of 

different industrial control systems can be found in (Parunak 1999, Parunak 2000). 

2.3.4 Design of agent-based control systems 

Agent-based control techniques address the need for more flexible production control 

systems and have demonstrated their industrial flexibility in several applications. The 

applications, however, have also shown that there is no universal design for an agent-

based control system. The two applications presented in the previous section, for 

instance, have a completely different architecture and employ (partly) different control 

algorithms. While the P2000+ control system consists of workpiece, machine, and 

switch agents, the Holomobiles control system has no workpiece agents (that represent 

the engines). This is due to the fact that in Holomobiles the main assembly line must be 

operated by the traditional control system in which engines are not explicitly 

represented. However, it is also not necessary to represent engines because in 

Holomobiles the engines all receive the same set of assembly operations. Consequently, 

there is no need for an engine agent to ensure that the processing graph of the engine is 

respected.^ 

The architectures of P2000+ and Holomobiles also differ with respect to the type of 

resource agents used. P2000+ has machine and switch agents, whereas Holomobiles 

requires agents for the MF-stations, the engine buffers, the AGVs, and the docking 

stations. This difference is not only a matter of terminology, but manifests itself in a 

quite different functionality of each agent. In Holomobiles, the MF-station and engine 

buffer agents pro-actively manage the processing (and buffering) of the engines; the 

AGV agents offer a transportation task instead of simply forwarding workpieces; and 

the docking stations supervise the main line by identifying bottlenecks. 

Finally, Holomobiles requires additional interaction protocols. It uses, as the P2000+ 

control system, a contract-net protocol to request resources such as MF-stations or 

AGVs. But Holomobiles agents must also run an election protocol between the docking 

stations in order to identify those docking stations directly in front of a bottleneck and a 

co-ordination protocol between the resource agents and the docking station agents in 

order to determine in which state to transform the engines and when to return them to 

the main line. 

All in all, the agent-based control design of P2000+ and Holomobiles share common 

aspects, but there are also significant differences between both designs that make it 

^ The point here is not whether it is possible to Introduce engine agents, but which design is easier to 
implement and to maintain., 
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impossible to derive a common control design for both applications. In general, this is 

true for most control applications. The overall architectures of most agent-based control 

systems are similar in that they all require resource, transportation, and sometimes 

workpiece agents, but in detail these agents have quite different functionality and 

employ quite different interaction protocols to achieve their goals. These differences are 

mainly due to the different nature of the production processes that need to be 

controlled. A cylinder head manufacturing process is obviously different to an engine 

assembly process. But the differences may also be due to the product being produced or 

the requirements on the production process. For instance, the P2000+ system was 

supposed to be flexible and robust, while the Holomobiles system was intended to be 

robust and scalable from the existing traditional assembly system. Different control 

applications will thus require different agent-based control designs. This will be true 

even if a universal design of an agent-based control system existed or will be developed 

in the future. Such a universal design would have to cover all the different control 

aspects of any possible application and would thus require the realisation and test of a 

large set of functionality. However, the more functionality a control system consists of, 

the more costly it is to develop and maintain it. Given the constantly increasing cost 

pressure in industry, it is therefore imperative to avoid unused functionality. A control 

system will thus always be tailored to the specific needs of a production process. 

2.4 Conclusions 

Agent technology has the potential to meet the future challenges in production control. 

It provides conceptual models and implementation architectures for goal-based 

decision-making as well as for negotiation and co-ordination of goals and actions, 

which - as pointed out in section 2.1.4 - will be indispensable features of future control 

systems. Many aspects of agent-based production control systems have been 

investigated in the literature over the last fifteen years, and the potential of this 

approach has been demonstrated in several prototypical applications. Recently, even the 

industrial feasibility and the economic benefits of this approach have been proven in 

probably the first full-scale industrial manufacturing system for large-series automotive 

production. The technology of agent-based production control is consequently ready for 

exploitation in industry. 

Recent applications of agent technology, however, have also shown that there is no 

universal design of an agent-based production control system that can be re-used for 

every production control problem. On the contrary, the required design of a control 

system may vary significantly depending on the product to be produced, the production 

process necessary to produce the product, and the business requirements on the 

production process (see subsection 2.3.4). Even the two supposedly similar production 
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tasks of engine manufacturing and assembly in the automotive industiy require quite 

different control systems because the production process and the business requirements 

differ in both cases. The lack of a universal design for agent-based production control 

thus implies that for most production control problems a new design effort is necessary 

in order to develop a cost-efficient agent-based design for the control problem at hand. 

This recurrent design effort, however, hampers the exploitation of the agent-based 

production control technology in industry because to date this design effort requires the 

designer of a control system to be an expert in agent technology: designing agent-based 

production control systems is still a research activity (cf. the international Holonic 

Manufacturing Systems project in subsection 2.3.2.2). But no matter how important, 

agent-based control is only one aspect in the design of an industrial production control 

system, which also includes the design and optimisation of machining and robotic 

control programs, of transportation device and buffer programs, of human worker 

integration, of performance and quality monitoring systems, of material supply and 

conditioning processes (Dorf 1994, Groover 1988). A control engineer thus cannot be 

expected to specialise in agent technology (and it is also not economically reasonable to 

install specialists for this design aspect because these specialists would only be required 

in certain phases of the development). Consequently, to facilitate the use of agent 

technology, there must be some kind of design methodology that allows even a non-

expert in agent technology to design an agent-based production control system given 

the specification of a production control problem. With such a design methodology the 

recurrent design effort for agent-based production control systems is no longer an 

obstacle to the industrial exploitation of agent technology. 

The ultimate goal of this thesis is therefore to provide a design methodology for agent-

based production control systems that can be successfully applied by a non-expert in 

agent technology. From the point of view of agent technology, the deliberate focus of 

this design methodology on production control is justified for two reasons. First of all, 

production control is an application domain with special requirements on the agent-

based design because an agent-based production control systems needs to interface with 

a physical system (of a speciAc structure) to achieve its goals. This puts special 

requirements on the agent-based system to be designed (Parunak 1987, Parunak 1991). 

Secondly, production is an important economical factor in industrialised countries (see 

section 2.1). Optimising agent-based systems towards these special requirements is in 

particular justified when considering the added value produced by some of the 

production systems (an automotive car plant, for instance, creates an added value of 

several billion Euros per year). A design methodology for agent-based production 

control systems is thus at once scientifically and economically worthwhile. But before a 

design methodology tailored to production control is developed, it should first be 

verified that existing methodologies fail to address the needs of production control. 

This is done in the next chapter. 
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Chapter 3 

Design Methodologies 

The need for methodologies in software development was already recognised in the late 

1960s (Dijkstra 1968, Wirth 1971, Parnas 1972) and led to the introduction of the field 

of gngrnggrmg (Sommerville 1995). Since then, many methodologies have 

been proposed for the different phases of software development. In particular, there are 

a large number of methodologies for designing software systems, the most prominent 

probably being structured and object-oriented design methodologies. Many of these 

design methodologies claim to be applicable to any (software) design problem and must 

consequently also be applicable to the design of agent-based production control 

systems. This chapter will therefore review the main existing design methodologies that 

are potentially applicable to agent-based production control systems and will assess to 

what extent these methodologies are able to adequately support the design of such 

systems. 

Generally speaking, design methodologies are classified according to their underlying 

programming paradigms. In 1992, Fichman and Kemerer (1992) classified the existing 

methodologies into (i) structured approaches, (ii) data-oriented approaches, and (iii) 

object-oriented approaches. For the purpose of this review, this classification is 

extended by approaches from (iv) manufacturing control, and (v) agent-based systems. 

Manufacturing control methodologies are obviously relevant to this review because 

they were specifically developed for designing manufacturing control systems. Agent-

oriented methodologies, in turn, are a recent development in software engineering that 

tailors the design process to the specific needs of agent-based systems. These 

methodologies are thus also potential candidates for designing agent-based production 

control systems, even though most of these were not developed for this particular type 

of application domain. Finally, the classification will be complemented by (vi) re-use 

approaches. Design methodologies generally focus on designing a software system &om 

scratch. A more efficient and usually more reliable approach, though, is to (at least 

partly) re-use existing designs (Krueger 1992, Coulange 1998). Naturally, re-use may 
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not be the sole approach because re-use requires that some designs have already been 

created. Nevertheless, re-use has the potential to significantly reduce the required 

design effort and should therefore be included in this review. 

The review is thus organised as follows. Each of the above classes of design 

methodologies will be discussed in one of the following sections: structured and data-

oriented methodologies in section 3.2; object-oriented methodologies in section 3.3; 

manufacturing control methodologies in section 3.4; and agent-oriented methodologies 

in section 3.5. Furthermore, in section 3.6, this review will look at recent developments 

in re-use and to what extent these developments can facilitate the design of agent-based 

systems. Finally, section 3.7 will summarise the review and draw some conclusions. 

But before the review may start, it is necessary to first define the term methodology and 

identify criteria which assess whether a methodology adequately supports the design of 

agent-based production systems. This is done in section 3.1. 

3.1 What is a methodology? 

A methodology is a "recipe" that enables a designer to find a solution to a specified set 

of problems. This recipe supports the designer by specifying many aspects of the design 

process, while leaving some of the design issues to the creativity of the designer. This is 

in contrast to a procedure which fully specifies how the solution to a specific problem 

is determined (and which can therefore be implemented on a computer). To capture this 

distinction, a methodology is defined as follows (see (HuBmann 1997, pp. 13; Budgen 

1994, pp. 143)): 

Definition: A methodology^ always consists of the following components: 

a An (optional) definition of the problem space to which the 

methodology is applicable. 

® A set of niodels which represent different aspects of the problem 

domain or the solution at different stages. 

• A set of methods which transform instances of one model into 

another model. 

• A set of procedural guidelines which define an order for the 

systematic application of the methodological steps. 

The application of a methodology starts with a problem statement (which must belong 

to the problem space specified) and ends with a solution to the problem. Methods and 

' Some authors, like HuBmann (1997), use the term method instead of methodology. In this thesis, 
however, the term methodology is preferred because method will be used for a single model 
transformation. 
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guidelines tell the designer how to create an initial model of the design problem and 

how to transform this model - with possibly many intermediate models - into a model 

representing a solution to the design problem (see figure 3.1). The set of models thus 

contains at least one model to represent the problem statement and one model to specify 

the solution. 

design 
solution 

models 

application 

Figure 3.1: Application of a methodology. 

Most of the existing design methodologies provide models, methods, and procedural 

guidelines for the design process, but do not specify the problem space to which the 

methodology is applicable, or alternatively they claim that it is generally applicable 

(i.e., applicable to any software design problem). In practice, however, any 

methodology will be more suitable for some problems than for others (Sommerville 

1995, p. 216). Budgen even doubts "whether there can ever be a 'right' method that 

would be appropriate for all problems ..." (Budgen 1994, p. 365). To assess the 

suitability of a methodology for a particular class of design problems, it is therefore 

necessary to determine whether the application of a methodology is appropriate rather 

than possible. The following subsection will therefore identify a set of criteria which 

assess the suitability of a methodology for the design of agent-based production control 

systems. 

3.1.1 Requirements for a methodology 

A design methodology for agent-based production control systems should obviously 

provide models and methods that (somehow) capture the key agent-oriented aspects of 

the design (see section 2.2) because otherwise they are not able to specify the agent-

based solution (see also (Fisher 1997)). Modelling agent-oriented aspects, though, is 

not a sufficient criterion for the appropriateness of a methodology. Methodologies, by 

definition, are supposed to support human designers in developing a design solution. A 
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methodology is thus appropriate only when the designer is able to apply the models and 

methods of the methodology to his design problem. Therefore, it is also necessary to 

look at the designer and his capabilities to apply the design methodology. 

The design of (agent-based) production control systems will be primarily performed by 

production engineers who are also charged with many other engineering tasks, such as 

robot programming and optimisation, device programming, or quality engineering. 

Consequently, these designers cannot be expected to be experts in agent-based systems 

because agent-oriented control - no matter how important - will not become effective 

without the simultaneous implementation of the other engineering aspects (see also 

section 2.4). Rather, the designer of a production control system can only be expected 

to satisfy the following minimal requirements: 

• The designer has an education in production or control engineering, but none in 

computer science. 

* The designer has only basic training in agent technology. 

o The designer has no or little experience with agent-based development. 

The methodology should thus enable a designer with a minimal qualification in agent 

technology to derive an agent-based solution from the specification of a production 

control problem (i.e., to transform the problem specification into an agent-based 

solution). This transformation, however, must bridge the gap between the problem and 

the solution domain. As Kaindl (1999) points out, objects of the problem domain are 

inherently different to those of the solution domain. In the case of designing agent-

based production control systems, the objects of the problem domain are physical 

components, such as machines and workpieces, whereas the solution domain consists 

of software artefacts that are supposed to show autonomous and co-operative 

behaviour. The difficulty of the design is thus the transition from the problem to the 

solution objects (Kaindl 1999). Since this transition is accomplished by the creation of 

models (see figure 3.1), the models must reflect this transition. In other words, each 

model created must be somehow related to the previously created models such that any 

new concepts are put into relation to previously introduced concepts. This is 

particularly true for agent-Oriented concepts which are not part of the problem domain 

(machines are not per se autonomous and co-operative entities!). Any agent-oriented 

concepts must thus be introduced by relating these either to production or previously 

introduced concepts. This translates, in turn, into the following requirement on the 

design methodology: 

® Model appropriateness. The models of a methodology should be clearly related to 

the relevant concepts of the problem domain. The initial model should be based on 

domain concepts and any new concepts should be related to those already 

introduced. This applies in particular to the introduction of agent-oriented concepts. 
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The appropriateness of the models used in a design process, however, is not sufBcient 

to enable a novice (in agent technology) to apply the methodology, because the designer 

must also know Aow to instantiate the models for his particular design problem. This 

instantiation is performed by the methods of the methodology - they tell the designer 

how to parameterise the models (see figure 3.1). To support the designer in 

parameterising the models, however, the methods must be sufficiently prescriptive -

otherwise it is left to the designer to decide how to actually instantiate the models. The 

prescriptiveness of the methods is particularly important with respect to the agent-

oriented concepts. If the designer is not familiar with introducing or defining agents, he 

will have difficulties to do so even if the methodology tells him that the next model to 

be created should include agents: he will not know which agents to introduce. The 

methods of the methodology therefore need to provide all the (agent-related) rationales 

necessary to derive the agent-oriented design aspects. This translates into the second 

requirement on the methodology: 

• Method prescriptiveness. The methods of the methodology should be prescriptive 

in the sense that they prescribe each step the designer has to go through, and for 

each step clearly identify what the task of the designer is and - at least for any 

agent-oriented design aspect - explain how the task should be performed. 

A methodology fulfilling the above requirements will enable a designer with only 

minimal qualification in agent technology to perform the design of agent-based 

production control systems. The first requirement ensures that the designer understands 

the links between the design problem and the models he is creating on behalf of the 

methodology. He can start the design process by modelling the domain he is familiar 

with, and any new model he is creating clearly identifies new concepts and explains 

them in terms of the concepts already used. This straight transition between analysis 

and design models allows the designer to incorporate more sophisticated agent concepts 

into the control design despite his lack of training in agent technology. The second 

requirement ensures that when the designer moves from one model to another he knows 

how to perform this step. Either the methodology clearly identifies the required results 

if the design step involves domain reasoning (it is assumed that the designer knows 

how to perform domain reasoning)®, or the methodology provides all the design rules 

that are necessary to perform the design step if it involves agent-related reasoning. The 

latter ensures that the design process does not require experience in agent design (even 

though experience is always beneficial). 

Recently, there have been several attempts to provide frameworks for evaluating agent-

based design methodologies (O'Malley 2002, Cernuzzi 2002, Sturm 2003, Dam 2003), 

mostly motivated by the diverse range of existing agent-oriented methodologies. These 

" It can be safely assumed that the designer knows how to perform domain reasoning, if he wants to 
design a production control system. This work therefore focuses on the agent-oriented reasoning. 
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evaluation 6ameworks, however, are not applicable to the evaluation of agent-oriented 

design methodologies for production control. First of all, all of the above frameworks 

presuppose a specific agent or even multi-agent model. In particular, they evaluate to 

what extent concepts such as beliefs, desires, intentions, roles, norms, organisational 

relationships, and so on, are modelled. As shown in subsection 2.3.3, however, an 

agent-based system may be successfully deployed with fewer or different concepts. The 

frameworks are thus restricted to specialised agent-oriented approaches. Secondly, there 

is as yet no consolidation between the evaluation &ameworks. Each Aamework 

proposes a different set of criteria, and, generally speaking, these criteria are not well 

justified. It is therefore difficult to see which &amework should be used and whether 

this framework is really able to identify the "best" methodology. Given this fact, the 

work described in this thesis focuses on the two criteria identified above, i.e., model 

appropriateness and method prescriptiveness, since these criteria must be satisfied in 

order for a methodology to be suitable. 

To summarise, a methodology is suitable for the design of agent-based production 

control systems if it fulfils the following requirements. 

Requirement I: 

It meets the definition of a methodology. 

Requirement II: 

It is able to model the agent-oriented aspects of a production control system. 

Requirement III: 

Its models provide a straight and comprehensible transition from domain 

concepts to the agent-based system {model appropriateness). 

Requirement IV: 

The methodology provides all the necessary methods and criteria to perform 

agent-related design decisions 

To assess the suitability of existing methodologies for the design of agent-based 

production control systems, the following review is performed in two steps. First, it is 

assessed whether a methodology is generally suitable for the design of an agent-based 

system (i.e., is it able to model agent-oriented concepts?). If yes, the methodology is 

additionally assessed with respect to the above requirements of model appropriateness 

and method prescriptiveness in order to determine its suitability for the design of an 

agent-based production control system. To this end, the review will focus on two basic 

aspects that are central to the design of agent-based systems; (i) the modelling and 

identification of agents; and (ii) the identification and design of interactions between 

the agents (see sections 2.2 and 2.3.4). 

Even though chapter 2 has already shown that the requirements on future production 

control will require an agent-oriented approach, the following review nevertheless starts 
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with conventional approaches to software design. This is done for two reasons. First of 

all, conventional approaches, in particular object-oriented approaches, are necessary to 

understand the manufacturing control and some of the agent-oriented design 

methodologies. And second, some aspects of structured and object-oriented approaches 

have been incorporated into the DACS design methodology. 

3.2 Data-oriented and structured design methodologies 

The very first design methodologies developed in the 1970's were based on the 

contemporary programming concepts, namely data and functions. In order to create a 

program design, these methodologies either started from the input and output data 

(data-oriented methodologies) or from the functions necessary to process the data 

(structured methodologies). Both classes of methodologies are shortly reviewed in the 

following subsections. 

3.2.1 Data-oriented methodologies 

Jackson (1975) developed a data-oriented approach to designing functional programs, 

i.e., programs which convert well-defined input data into the corresponding output data 

as specified by the program function (Budgen 1994, p. 178). This design approach, 

called the Jackson Structured Programming (JSP) method, starts with the data 

structures of the program input and output and derives a hierarchical program structure 

by first merging the input and output of the program into a common (hierarchical) data 

structure. This common data structure is then transformed into a hierarchy of 

programming instructions by assigning to each node of the program hierarchy the data 

operations that are necessary to convert the input data of the node into the 

corresponding output data (see figure 3.2). The motivation for this data-oriented 

approach was to create a program whose internal structure reflects the structure of the 

input and output data, because this structure was expected to change less frequently 

than the programming instructions. 
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c - records 
p - records 

C - new record * 
P - new record 

C - pump id 
P - pump id 

C - grade of 
petrol 

C - volume 
P - volume 

P - total cost 

O 
C - leaded 

O 
C - unleaded 

Figure 3.2: Example of a Jackson Structured Diagram 

with the data structures consumed (C) and produced (P) by each node 

(Budgen 1994, p. 187). 

In later work, Jackson and co-workers generalised JSP into an analysis and design 

method, which called the JacAyom Devg/oprngM/ (JSD) approach (Jackson 

1983, Cameron 1986, Sutcliffe 1988). JSD shares with JSP the philosophy of deriving 

the basic system structure from a model of the real world in order to reduce the effects 

of environment changes on the program. The expressiveness of the real world model, 

however, was significantly enhanced in JSD. Instead of modelling only functional tasks 

transforming data structures, JSD starts with a model of 'long-running' interacting 

concurrent processes performing actions in their environment and derives the functional 

tasks of the desired system from this analysis model (Budgen 1994, p. 240). Because of 

this increased emphasis on modelling, the development process in JSD is divided into 

three main phases: "the Model phase, in which the model processes are selected and 

defined, the Network phase in which the rest of the specification is developed, and the 

Implementation phase in which the processes and their data are fitted on to the available 

processors and memory" (Cameron 1986, p. 222). More specifically, the three 

development phases consist of the following steps: 

• Modelling phase: In this phase, the real world "entities and the actions they 

perform or suffer" are identified (Jackson 1983, pp. 39). In order to express the 

time-ordering of actions, processes (i.e., sequential sets of actions), are 

"described by structure diagrams - tree structures whose leaves are the actions" 

(Cameron 1986, p. 228). These structure diagrams allow sequence, iteration, 

and selection of actions to be expressed. 

• Network phase: The network phase elaborates the analysis model into a design 

specification by identifying the external triggers to the system, linking the 

processes that need to be executed upon the triggers, and determining the 
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outputs that are to be generated in the particular situation (Cameron 1986, pp. 

228, Budgen 1994, pp. 252). This phase may also specify the timing of the 

processes by assigning priorities or specifying scheduling rules. 

• Implementation phase; This phase finally focuses on data design, the 

mapping of tasks onto available processors, and the actual scheduling of the 

tasks. 

Martin et al. also developed a data-oriented analysis and design methodology. This 

methodology, though, focused on the modelling of an enterprise and its mapping onto a 

(distributed) database (Martin 1989). The methodology therefore includes many 

additional data representation forms, such as decomposition diagrams, dependency 

diagrams, state-transition diagrams, and entity-relationship diagrams (Martin 1985), as 

well as several business and data analysis methods (Martin 1989), but introduces no 

additional methods for analysing or designing software. The applicability of the 

methodology is thus restricted - as intended by the authors - to information 

engineering. 

3.2.2 Structured methodologies 

In contrast to the bottom-up approach of data-oriented methodologies, structured 

methodologies - in their original form - proposed a top-down functional decomposition 

strategy for designing software (Budgen 1994, pp. 211). A typical representative of this 

kind of methodology is the structured design (SD) approach, initially proposed by 

Yourdon and Constantine (Yourdon 1979) - other examples are SSADM (Ashworth 

1988) and SADT (Ross 1977, Ross 1977b) (SADT is discussed in subsection 3.4.1). 

The basic idea of SD is to partition the computational system into black boxes, which 

are organised in a hierarchy of control (see also (Page-Jones 1988)). The 

modularization of the system is intended to lead to manageable and cost-minimal 

systems. To assess the optimality of a modularization, Yourdon and Constantine 

introduced the notions of coupling and cohesion. According to (Yourdon 1979), 

coupling is "a measure of the of intercoimection", whereas cohesion is the 

"intramodular functional relatedness" (p. 85 and 106). A system is considered to be 

well designed if the cohesion is strong and the coupling is weak. 

To arrive at a good "structured" design, Yourdon and Constantine propose two design 

strategies: (i) transform analysis and (ii) transaction analysis. In the transform analysis, 

the computational problem is first restated as a data flow diagram. The analysis then 

identifies data flow elements which read, process, or write system data. These are -

depending on their position in the data flow diagram - organised into a hierarchical 

structure chart which prescribes in which order subordinate modules are called (see 

figure 3.3). The design is said to be if the actual processing of data 
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is accomplished only by bottom-level modules in the structure chart. In the transaction 

analysis, several transformation processes are organised into a single structure chart by 

using a dispatcher at the highest level of the chart. The dispatcher chooses the 

appropriate module to process the current transaction. 

main 

module A 

t 
module B module C 

module A, module module C, module C; 

Figure 3.3: An example of a structure chart. 

SD was complemented by (SSA) in order to provide a well-

structured input to the design process of SD (see for example (De Marco 1978, Gane 

1979, Yourdon 1989)). As an analysis method, SSA is concerned with modelling the 

problem-oriented aspects of the system to be developed and producing a functional 

specification of what the system is supposed to do (Budgen 1994, p. 212). To create this 

functional specification, SSA starts with modelling the desired system as a single entity 

interfacing with its environment. This "context diagram" is then refined by expanding 

the single entity "system" into a data flow diagram which models the necessary flow of 

information through the system (Budgen 1994, p. 97). For the refinement step, SSA 

basically proposes two alternative strategies ((Budgen 1994, p. 214), see also (Yourdon 

1989)): 

• Top-down functional decomposition: The system function is repeatedly divided 

into sub-functions until a sub-function is considered sufficiently simple to be 

specified. 

• Event partitioning: The different threads of system actions associated with 

external events are identified and represented as information flows in the data 

flow diagram. These information flows are then either grouped to create the 

overall system structure or further refined by the functional decomposition 

strategy. 

The resulting data flow diagram then represents the functional specification of the 

system to be developed and is handed over to the SD phase. In addition to the data flow 

diagram, the SSA may also produce data dictionaries, process specifications (structured 

English, decision tables, or decision trees), and data store descriptions to complete the 

functional specification. 
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An important extension of SSA/SD for control applications was proposed by Gomaa 

(1984) With the /of TZgaZ-r/fMe (DARTS). DARTS introduces 

the concepts of concurrency and system states into the analysis and design process of 

SSA/SD in order to meet the specific requirements of real-time systems. Concurrency is 

introduced by separating the functions of the data flow diagrams into tasks which can 

be executed concurrently. Criteria for separating tasks are the dependence on specific 

I/O devices, time criticality, high computational requirements, or periodic execution, 

while functions should be grouped into one task if they are functionally or temporally 

cohesive. To design the concurrent tasks, DARTS extends SD in that the resulting 

transaction dispatcher not only chooses the right function for some input data, but also 

manages the corresponding system states and passes these to the function. Furthermore, 

DARTS provides four communication interfaces to enable tasks to interact during 

execution: message-based communication with/without a message queue, task 

synchronisation through events, and a shared data repository. 

3.2.3 Evaluation 

Data-oriented and structured methodologies were the first systematic design 

methodologies to be proposed, and therefore represent important milestones for 

software engineering. In particular, these methodologies defined models for capturing a 

design, clearly separated analysis and design activities, and introduced design measures, 

such as coupling and cohesion, in order to assess a design. Despite these achievements, 

however, these methodologies are insufficient to design agent-based production control, 

or even agent-based systems (see requirement II). The basic computational model of all 

these methodologies is a hierarchically organised, functional program transforming a 

distinct set of input data into the desired output data. Some methodologies, like JSD 

and DARTS, do introduce distribution and concurrency into the computational model. 

A node of the distributed system, however, is still a functional program, and the 

communication between the nodes is modelled as pure message passing or shared data 

access. The underlying computational model of the data-oriented and structured 

methodologies is thus clearly inappropriate for modelling and designing the autonomy 

and flexible interactions of agent-based systems - a deficit that is partly remedied by 

object-oriented programming. 

3.3 Object-oriented design methodologies 

In many ways, object-oriented methodologies break with conventional approaches® to 

software development (Fichman 1992). This methodological revolution is caused by the 

' The term conventional approaches or methodologies is used by object-oriented experts to refer to pre-
object-oriented work (as discussed in section 3.2). 
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underlying object-oriented programming paradigm, which is characterised by four basic 

concepts: oZyecf, mAgT-fjaMcg, and /m/ocaAoM (see for example (Korson 

1990, Wirfs-Brock 1990)). Objects are the basic building blocks of an object-oriented 

model or program. An object contains data and is associated with operations on this 

data. In contrast to the programming concepts of data-oriented and structured 

approaches, an object thus encapsulates both state and behaviour. A class defines a set 

of objects with the same data structures and operations. By declaring data structures and 

implementations of operations as private to a class, object-oriented programming 

supports the design principle of information hiding. Inheritance, in turn, makes it 

possible to derive the definition of a class from an existing class, and thus to re-use the 

code of a class. The derived class inherits all data structures and operations, but may 

alter or extend both. Finally, method invocation allows objects to interact. An object 

can request a (public) operation from another object by sending it a message 

corresponding to a call of this method. The receiving object then immediately executes 

this request. As with conventional procedures or functions, the method simply returns 

the result of a function or a notification upon termination. Method invocation can thus 

be best characterised as client-server interaction (Wirfs-Brock 1990). The requesting 

object is the client and the executing object is the server. The server always executes 

the request and terminates the interaction after execution. 

The object-oriented programming paradigm prompted the development of new analysis 

and design methodologies because conventional methodologies were felt to be no 

longer appropriate. This section therefore evaluates the main object-oriented design 

methodologies with respect to the design of agent-based (production control) systems. 

3.3.1 Object-Oriented Design and Object-Oriented Analysis and 
Design 

The methodologies Object-Oriented Design (OOD) proposed by Booch (1991) and 

Object-Oriented Analysis and Design (OOAD) proposed by Coad and Yourdon (1991, 

1991b) are both bottom-up design approaches that create an object-oriented system by 

first identifying the objects (and the classes) of the system and then elaborating other 

aspects of the design, such as inheritance or interaction. The OOD methodology of 

Booch, for instance, consists of four major steps (pp. 190); 

1. Identify classes and objects. Identify the key abstractions in the problem space 

and label them as candidate classes and objects. To identify the key 

abstractions, collect typical "objects", such as (physical) things, people, roles, 

events, and so on, from a description of the problem domain (pp. 141). 

2. Identify the semantics of classes and objects. Establish the meaning of the 

classes and objects by analysing "scripts" that define the life cycle of each 
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object 6om creation to destruction. The result is captured in object and class 

diagrams. 

This step is also supposed to identify the mechanisms between the objects, i.e., 

the messages the objects should exchange to solve the system task. OOD, 

though, does not specify how these interactions should be identified or 

designed. 

3. cZâ ŷ ĝ  aw/ oZygcfi;. Relationships can be either 

inheritance or visibility between objects and classes. 

4. jT/̂ Zg/MgMf cZayj'ĝ  aW o^'gcf;f. 

Similarly to OOD, the OOAD methodology of Coad and Yourdon prescribes five major 

steps to design the object-oriented system bottom-up from the objects and classes (p. 

34): 

1. f f W m g c/ay.ygĵ  oW oZygcf.y. Find the key abstractions of the problem domain 

(with basically the same methods as proposed by OOD). 

2. Identify structures. Identify generalisation and specialisation relationships, in 

particular inheritance and composition. 

3. Identify subjects. Identify entities which are too large for objects (containing 

several different object types). 

4. D^Mg arfr;6w/gĵ  o^gc/A. 

5. Define services to other objects and specify the computation of a service. 

With step 5, OOAD goes beyond OOD in that it explicitly identifies the services an 

object should provide to other objects. In OOAD, services (and thus interactions) are 

identified by looking at the computations an object is able to perform (and is thus able 

to provide as a service) and the need of the other objects to receive this service in order 

to fulfil their own computational tasks. Whenever such a link is identified, the 

corresponding service, i.e., the object method interface, is specified. 

During the design phase of OOAD, the analysis results are mapped onto a problem 

domain, a human interaction, a task management, and a data management component, 

and the results are modified according to implementation considerations, if necessary 

(Coad 1991b). 

3.3.2 Object Modelling Technique 

The Object Modelling Technique (OMT) proposed by Rumbaugh et al. (1991) is an 

elaborated object-oriented analysis and design methodology. It produces three models 

which each capture a different view of the software system (pp. 17). 
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« The moc/g/ describes the structure of objects in a system, in particular 

their identity, their relationships to other objects, their attributes, and their 

operations. 

® The dynamic model describes those aspects of a system concerned with time 

and the sequencing of operations, in particular events that mark changes, 

sequences of events, states that define the context for events, and the 

organisation of events and states. 

" The ywMcf/owz/ describes those aspects of a system concerned with 

transformations of value, in particular functions, mappings, constraints, and 

functional dependencies. 

Each model is associated with a rich set of modelling tools in order to represent 

different aspects of object-oriented systems: (i) the object model consists of object and 

class diagrams with attributes, operations, links between objects/classes, link attributes, 

roles, aggregation, multiple inheritance, modules, meta-data, and constraints (on objects 

and classes); (ii) the dynamic model consists of (nested) state diagrams with events, 

conditions, actions, and concurrency; and (iii) the functional model consists of data 

flow diagrams with processes, data flows, actors, data stores, and control flows. 

To derive the different models, OMT proposes an analysis phase with a sequence of 

steps for each model (pp. 148). For the object modelling, potential objects are identified 

through a linguistic analysis of the problem statement (i.e., by listing the nouns found in 

the written description of the problem). For the dynamic modelling, the interactions 

between objects are identified through the analysis of typical scenarios in which the 

object-oriented system is used. In this analysis, the external events received by the 

system are traced through the objects in order to determine which object needs to pass 

or request information from another object. Finally for the functional modelling, the 

required computations of each object are specified. 

After the analysis phase, details of the implementation are determined (this phase is 

called design in OMT). The design includes, among other things, the organisation of the 

system into subsystems, the identification of concurrency, the allocation of subsystems 

to processors, and the implementation of each object (p. 199). 

3.3.3 Hierarchical Object-Oriented Design 

In contrast to the previously discussed object-oriented methodologies, the Hierarchical 

Object-Oriented Design (HOOD) method proposed by Robinson (1992) takes a 

hierarchical, top-down approach to the design of object-oriented systems. The method 

starts with a specification of the program to be developed, regarded as the root object, 

and successively decomposes an object of level i into a set of child objects at level 
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i + 1 until an object is marked as a re/7MZMaZ The result of this design method is a 

design tree with the root object as the root of the tree and terminal objects as the leaves. 

Each design step leading to the introduction of a new level of the design tree is 

structured into four phases (pp. 14): 

1. Problem definition: The context of the object to be refined is stated, with the 

goal of organising and structuring the data from the requirement analysis phase. 

2. Development of solution strategy: The outline solution of the problem stated 

above is described in terms of objects at a high level of abstraction. 

3. Formalisation of the strategy: The objects and their associated operations are 

defined. This phase has five sub-phases: 

a) Object identification 

b) Operation identification 

c) Grouping of objects and operations 

d) Graphical description 

e) Justification of design decisions 

4. Formalisation of the solution: The solution is formalised through the formal 

definition of provided object interfaces and the formal definition of object and 

operation control structures. 

The identification of objects and operations in phase 3 is based on a linguistic analysis 

of the requirements specification, as in most other object-oriented methodologies. 

Candidate objects are identified by looking at the nouns and noun phrases, and possible 

operations are identified by examining the verbs of the specification. An alternative 

approach is proposed if the specification is given in terms of data flow diagrams. In this 

case, objects are identified in the data flow diagram by grouping either external 

interfaces or internal data stores with the corresponding data flows. 

For the specification of the resulting design, HOOD provides an object description 

skeleton covering interfaces, data flows and control structures; a class skeleton; and a 

diagram representing "include" relationships. 

3.3.4 Responsibility Driven Design 

Wirfs-Brock, Wilkerson, and Wiener (1990) propose a design process on the basis of 

the concepts responsibility and collaboration, called Responsibility Driven Design 

(RDD). An object is said to be responsible for providing its service, i.e., its operations, 

to any object which may request it. A collaboration is said to be present when an object 

requests a service from another object; two collaborating objects are said to have a 
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service contract. On the basis of this terminology, RDD suggests three initial steps in 

the design process (p. 29): 

1. Find the classes of the system (through a linguistic analysis of the requirements 

specification). 

2. Determine what operations each class is responsible for performing, and what 

knowledge it should maintain (by analysing typical scenarios). 

3. Determine the way in which objects collaborate with other objects in order to 

discharge their responsibilities (by identifying operations an object is unable to 

perform on its own and the corresponding objects that can provide the missing 

knowledge or capabilities). 

To support the design process, the methodology provides schemata for recording class 

responsibilities and collaborations, as well as graphs for defining inheritance 

hierarchies, visualising collaborations, and defining subsystems. In later steps of the 

design, Wirfs-Brock et al. also talk of protocols between objects. Protocols, however, 

only define the specific signatures for method invocation. 

3.3.5 Evaluation of object-oriented methodologies 

Because of the encapsulation of both state and behaviour in a single object, the object-

oriented approach provides a more powerful model for capturing the characteristics of 

real-world domains than conventional approaches (Johnson 2000). This model, 

however, still misses many essential aspects of domains which consist of interacting 

agents. Jennings points out that (i) objects are generally passive in nature; (ii) objects 

do not encapsulate behaviour activation; (iii) object-oriented concepts and mechanisms 

are too fine-grained to model complex systems; and (iv) object-oriented approaches 

provide only minimal support for structuring organisations (Jennings 2001, p. 39; see 

also Wooldridge 1997). On the contrary, agents are conceptualised in terms of goals, 

high-level interactions, and organisational relationships: (i) agents pro-actively follow 

their own goals and decide autonomously what to do and with whom to co-operate; (ii) 

they are able to initiate and execute interactions with other agents that were not 

foreseen at design time; and finally (iii) agents are able to take into account and also to 

adapt their Organisational relationships (Jennings 2000, pp. 280). Objects are thus an 

inappropriate concept for modelling interacting agents (Booch 1994, Wooldridge 

1997). These limitations of objects are only partly remedied by concurrent objects 

(Agha 1990) which only add pro-activeness to the objects without addressing the other 

limitations (Wooldridge 1997). 

Because of the general limitations of objects to capture essential features of agents, the 

object-oriented approach falls equally short to model the production control systems 
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envisioned in section 2.3. Production control agents are assigned production goals, such 

as bringing a workpiece into a specified product state, and must autonomously decide 

how to achieve this goal state irrespective of the current situation in the production 

system. To achieve these goals, the production control agents must flexibly interact 

with other agents of the production system either to use their services, such as 

processing and transportation, or to avoid conflicts with other independently pursued 

goals. In doing so, the agents may have to form teams or other kinds of organisational 

structures in order to create an overall coherent system behaviour. 

The general inability of the underlying programming concepts to model agent-oriented 

aspects also makes the associated design methodologies inappropriate for designing 

agent-based (production control) systems. At first glance, identifying "objects" and 

their interactions is the same design task that is necessary for agent-based systems. But 

the tools for identifying objects and their interactions miss many aspects of agents and 

thus lead to a wrong design for agent-based systems. Object-oriented methodologies 

identify objects either through the identification of key abstractions (OOD, OOAD), or 

a linguistic case analysis of the problem description (OMT, HOOD). Interactions, in 

turn, are identified through an analysis of the relationships of objects (OOD), through 

the definition of services (OOAD, RDD), through the analysis of typical scenarios 

(OMT), or through a linguistic case analysis (HOOD). These identification techniques 

are clearly insufficient for agent-based systems. First of all, these techniques may 

identify too many objects which are not agents. Many entities in a production system 

are relevant to the control system, but only a few are able to make decisions about the 

course of the production process. Secondly, these techniques may even fail to identify 

necessary agents. Instead of identifying an agent, the identification step may find 

objects which are part of the agent or overlap with it because of common data 

structures. Finally, even though some methodologies identify services or patterns of co-

operation among objects, the modelling tools do not provide sufficient support for 

modelling complex multi-stage interactions. For interaction modelling, the 

methodologies only provide use-relationships, message connections, or event and state 

diagrams, but no means to model purpose, reasoning, or flexibility of agent interactions 

(see section 2.2). This overall critique equally applies to more recent object-oriented 

design methodologies, such as Fusion (Coleman 1994) or 0 P M (Dori 2002). 

The use of an agent-oriented terminology in some methodologies does not remedy these 

limitations. The anthropomorphic approach of RDD to design, for instance, can only be 

viewed as "an aid to conceptualization" (Wirfs-Brock 1990, p. 7). A close examination 

of the concepts reveals that the terms "responsibility" and "collaboration" are merely 

metaphors for ordinary object-oriented concepts, like public methods and method 

invocation. Similarly, the term "protocol" is equated with method signature. Even 

though the metaphors may be helpful in ordinary object-oriented design, they are 

misleading in the design of an agent-based system, as these terms have a different 
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meaning in agent technology. Deprived of the metaphoric terms, the RDD methodology 

operates on the same level of abstraction as other object-oriented methodologies. The 

basic building block is an object which encapsulates information and operations, and 

objects interact through method invocation. The critique put forward above therefore 

equally applies to this methodology. 

All in all, despite the prescriptiveness of the methodologies from the object-oriented 

point of view arid the agent-like terminology in some of the methodologies, object-

oriented methodologies fail to adequately model agent-oriented concepts and to provide 

the rationales related to an appropriate agent-oriented design. The object-oriented 

methodologies are therefore not only inappropriate because of their underlying model, 

but are also insufficiently prescriptive for designing agent-based systems. 

Despite their limitations with respect to agent-oriented design, object-oriented 

methodologies, however, have made their contribution to the state-of-the-art in 

designing software systems. Object-oriented methodologies start by identifying the 

entities of the domain and transforming these into analysis and design objects. Object-

oriented methodologies thus provide a more natural and appropriate design process than 

earlier methodologies. In conjunction with the encapsulation of state and behaviour, 

object-oriented methodologies have also clearly separated the design of the objects (and 

their functions) from the design of the interactions between the objects. These two 

important improvements should therefore be honoured in an agent-oriented design 

approach. 

3.4 Manufacturing control design methodologies 

The general software design methodologies discussed in the previous sections should in 

principle be also applicable to designing manufacturing control systems as these are 

basically software systems. Manufacturing control, however, exhibits some peculiarities 

that require special attention during the design process (Parunak 1987). In particular, 

the software system to be developed is always supposed to control a physical system, 

namely the manufacturing system (cf. figure 2.5). The control system must therefore 

have interfaces for sensing and acting in this physical system, and these control 

interfaces must be served in (soft) real-time because the processes behind these 

interfaces have their own physical dynamics. Moreover, a control system must take into 

account the fact that physical actions may fail or unexpected events may occur. 

Basically, control software must meet the requirements discussed in subsection 2.1.4. 

To address the above peculiarities of control software, manufacturing research has 

therefore developed methodologies tailored to the development of manufacturing 

control systems. Most of these methodologies, though, are concerned with modelling 

and specifying the control system (see for example (Castillo 2002, Booth 1998)). This 
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section will therefore review only those methodologies that cover at least some aspects 

of the design of control systems. 

3.4.1 SADT/IDEF-based design of manufacturing systems 

The aw/ Dgf/gM (SADT), originally developed for 

software systems (Ross 1977, Ross 1977b), has repeatedly been used to model 

manufacturing systems. SADT is a structured analysis methodology that follows a 

functional decomposition strategy in order to create a hierarchical model of the system 

to be designed (Budgen 1994). The basic building block of this model is a black box 

representing an operation or function of the system. This operational box has four types 

of interfaces that are distinguished graphically; (i) inputs to the operation are shown 

entering on the left side; (ii) control flows are shown at the top; (iii) outputs emerge on 

the right side; and (iv) mechanisms, such as tools, are provided at the bottom (see figure 

3.4). 

controls 

^ 
inputs operation outputs 

t t 
mechanisms 

Figure 3.4; The SADT box representing an operation. 

Different operations are combined by linking their interfaces in a diagram (see figure 

3.5). A link, though, does not necessarily imply a flow of material or information. It 

only states that there is a dependency between the operations, and thus the goal 

operation of the link is constrained by the source of the link. Furthermore, an operation 

can be refined by creating a new diagram representing the "parent box". For the new 

diagram, the set of external interfaces must be identical to those of the parent box. This 

refinement mechanism allows a hierarchy of diagrams to be created with the top 

diagram representing the system to be developed and the main steps of the SADT 

methodology are actually concerned with creating this hierarchy of operations (Budgen 

1994). Strictly speaking, SADT is thus only a specification and not a design 

methodology, as its name suggests. 
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operation A 

operation B 

operation C 

constraint 

Figure 3.5: An SADT functional network. 

SADT was adopted in the 1970s by the Integrated Computer Aided Manufacturing 

Definition (IDEF) initiative as the standard IDEFO for modelling the functions of a 

manufacturing system (Bravoco 1985). Since then, both SADT and IDEFO have been 

used in several methodologies for designing manufacturing (control) systems. One such 

example of a design methodology for control systems employing SADT is the 

methodology for designing logic controllers proposed by Zaytoon (1996) (see also 

subsection 3.5.2 for other SADT/IDEFO-based methodologies). This design 

methodology integrates SADT with Petri Nets and Grafcets^" by transforming an SADT 

design into a Petri net and then into a set of Grafcets programs for the local controllers. 

To achieve this transformation, Zaytoon defines a set of temporal relationships for 

synchronising the control operations which are added to the initial SADT design of the 

control system. Once added, the augmented SADT design can be automatically 

transformed into a Petri net that executes the control operations in the same order as 

specified by the temporal relationships. The advantage of the Petri net representation is 

that certain properties of the system behaviour can be verified automatically. After 

verification, the Petri net is again converted automatically into a set of Grafcet 

skeletons which then must be filled with Grafcet commands specifying the actual 

control steps. 

The strength of the methodology proposed by Zaytoon is certainly the verification step 

and the matching onto a programming language for logic controllers. Just like SADT, 

however, this methodology does not provide any techniques for creating the initial 

control design. For the initial design, Zaytoon relies completely on SADT which, as 

pointed out above, is only a specification methodology. Neither SADT nor the 

methodology of Zaytoon specify how to identify the necessary control operations, how 

to structure these into a functional hierarchy or map these onto a set of local controllers, 

and how to identify and design the interactions of these controllers. Zaytoon does 

' Grafcet is a controller programming language. 
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define a set of temporal relationships for synchronising the control operations. His 

methodology, though, does not provide any criteria for when and where to add these 

relationships to the design model. 

3.4.2 Modelling control with discrete event systems 

Fanti et al. (1996) provide a modelling framework for designing generic control 

software of flexible manufacturing systems, with the focus on the job release and 

material flow decisions. The model is based on the theory of discrete event systems 

(Zeigler 1984) and essentially captures the entities of the manufacturing system 

(resources, operations, and jobs), the associations between these entities (static and 

dynamic relations specifying the configuration of the manufacturing system and its state 

changes), and in particular the decision rules necessary to control the flow of material in 

the manufacturing system. This model, however, is only a basic architecture for generic 

control software which must be instantiated for a given manufacturing system by 

specifying the actual decision rules with which the manufacturing system should be 

controlled. And just like the SADT-based methodologies, the framework of Fanti et al. 

does not provide any techniques for identifying the necessary control rules. 

Furthermore, the envisioned (generic) control system is centralised. It consists only of a 

knowledge base capturing the system's state, one job release manager and one job flow 

manager. The modelling framework is thus not even able to model the distributed 

nature of agent-based control systems. 

3.4.3 Petri net-based methodologies 

A third common formalism to model and design control systems are Petri nets. A Petri 

net is a directed graph whose nodes are either places or transitions (Murata 1989). 

Places are able to hold tokens, while transitions move tokens from the input places to 

the output places of the transition once all input places are occupied by a token. An 

example of a Petri net controlling a simple manufacturing workcell with two machines 

and a loading device that are connected via a roundtable is depicted in figure 3.6. First, 

the roundtable is moved to the next position (places P1/P2). Then, each machine may 

process its workpiece concurrently until the machines have to synchronise again in 

order to advance the roundtable further. 

With respect to control design, Petri nets have the advantage that they are able to 

naturally model concurrency in production systems. All transitions are checked for 

possible movements in parallel and execute their movements as soon as their input 

places are occupied. Furthermore, as a rigorous formalism, Petri nets lend themselves to 

automated analysis and verification. A large body of theory has already been developed 

for verifying network properties such as reachability, absence of deadlocks, liveness, 
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and so on, which is very important in control design (see for example (Narahari 1985, 

Zhou 1992)). For this reason, several researchers have adopted the Petri net formalism 

as a basis for their methodology. The following subsections discuss the m^or work in 

this area. 

3.4.3.1 Synthesising Petri-net-based control programs 

Ferrarini (1992) has developed a methodology for synthesising control programs from 

smaller ones. A control program consists of elementary control tasks which implement 

a (cyclic) sequence of control actions. These elementary control tasks must be 

combined into a larger control program by managing the interactions between the 

elementary control tasks. This can be done through three possible co-operation 

mechanisms; condition, inhibition, and synchronisation." In his methodology, Ferrarini 

has shown that the application of the co-operation mechanisms to the specific types of 

control programs considered preserves certain properties of the control program. These 

properties include the correctness as a control program (e.g., there must always be 

exactly one token in an elementary control task), absence of deadlocks, liveness, and so 

on. The methodology of Ferrarini, however, does not consider how to identify the 

elementary control tasks, how to identify the need for co-operation, and how to map the 

elementary control tasks to the available controllers in a production system. Ferrarini's 

methodology is thus only applicable once the overall design of the control program has 

been created. 

" Condition is the presence, and inhibition the absence of a token. 
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start 
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Figure 3.6: Example Petri net-based control program (Ferrarini 1992). 

3.4.3.2 Knowledge-based design of control programs 

Casein et al. (1992) have developed a knowledge-based methodology for designing 

manufacturing workcells which uses Petri nets to model the control aspects of the 

workcell. The methodology starts by creating a structural and functional model of the 

workcell with relations expressing generalisation (G), structural aggregation (A), 

functional aggregation (F - meaning sequential execution), and iteration. Figure 3.7 

shows an example of a functional knowledge schema for the processing of a 

component. 
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Figure 3.7; Functional knowledge schema (Caselli 1992). 

The control program in the form of a Petri net is synthesised from this schema. That is, 

a functional aggregation is converted into a sequence of places and transitions covering 

all steps included in the aggregation (see figure 3.8); a generalisation is converted into a 

selection construct executing only one path in the Petri net; and so on. The conversion 

of each relation then leads to the Petri net executing the functional knowledge schema. 

f l f2 

MM**** 

Figure 3.8: Conversion of functional aggregation. 

This approach, however, is clearly insufficient for designing a real control program. In 

contrast to Ferrarini, this methodology does identify the elementary control tasks by 

deriving these from the functional description of the product and the production system. 

However, it does not address any interactions between the elementary control tasks 

which may arise from the parallel processing of several workpieces and does not 

perform the mapping of the Petri net onto a control architecture for the production 

system. This methodology therefore covers only the very first step of the control design, 

namely converting the manufacturing plan of a product into a set of control commands. 
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3.4.3.3 Conflict-driven design of control programs 

Feldmann, Schnur, and Colombo (1996) have proposed a Petri net-based methodology 

that creates the control design by analysing the conflicts that arise during the production 

process. The first step of this methodology is therefore to model the production process 

as a Petri net (see also (Feldmann 1998)). This model is then analysed with respect to 

the occurrences of structural and behavioural conflicts. A structural conflict is given if a 

place has two (or more) outgoing transitions of which only one may be chosen. In this 

case, there is a choice as to which transition may fire. A behavioural conflict is given if 

two (or more) transitions "model the work from two resources which compete for 

exclusive permission to use a shared resource" (Feldmann 1996, p. 1069). For example, 

two adjacent robots (each represented by a transition) want to put a workpiece into a 

common buffer. Both types of conflicts must be resolved in order to operate the 

production system. 

To resolve structural and behavioural conflicts, Feldmann et al. (1996) took a 

hierarchical approach (see figure 3.9). First, structural conflicts are resolved by 

assigning a local controller (LC), which makes the necessary decision, to each structural 

conflict. Then, in a second step, each behavioural conflict is resolved by a complex 

controller (CC). The complex controller receives a request from a local controller 

whenever a behavioural conflict with another local controller arises. In such a case, the 

complex controller resorts to a global production schedule that is produced by higher 

level production management functions and allows only one of the controllers in 

conflict to perform its actions. The other controllers must wait or choose a different 

action. 

This design methodology does go beyond the previous manufacturing control 

methodologies in that it identifies the necessary control decisions, assigns most of these 

to local controllers, and handles their interactions. But the methodology still lacks some 

important aspects of agent-based manufacturing control design. First of all, the 

necessary control decisions identified in the Petri net are assigned to the physical 

resources at which they arise. This results in a purely resource-based control 

architecture which does not allow other types of agents, such as workpiece or tool 

agents, to be explored. Also, it is up to the designer to decide at which granularity 

agents will be identified. A structural conflict could be resolved at the level of a device, 

a machine, a station, or a cell agent. The optimal granularity, though, depends on the 

application and may even differ within an application. 
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Figure 3.9: Hierarchical procedure for resolving conflicts. 

Furthermore, the methodology does handle interactions between the local controllers, 

but only in a centralised manner. Any (behavioural) conflict between the local 

controllers is resolved by a complex controller dedicated to the specific conflict type, 

and the complex controller resolves the conflict only by resorting to a global schedule. 

The resulting design is thus actually a hierarchical and schedule-driven control system 

(cf. subsection 2.1.3). Moreover, the resulting control system may not identify all 

possible interactions between the local controllers. Behavioural conflicts, for instance, 

do not cover the synchronisation of the material flow in assembly systems when two 

parts must choose the same assembly station in order to be assembled into one product. 

To arrive at a truly agent-based design for manufacturing control, the above design 

methodology (as well as the other control methodologies) must therefore be 

significantly extended with respect to the design of the agents and their interactions. 

3.5 Agent-oriented design methodologies 

The difficulties in designing agent-based systems using conventional, object-oriented, 

or even manufacturing control methodologies, as discussed in the previous sections, has 

led to the development of agent-oriented design methodologies which explicitly model 

agent-oriented aspects. At first, these methodologies were based on existing 

methodologies, in particular knowledge-oriented and object-oriented approaches. 

However, with the growing maturity of agent-oriented concepts many methodologies 

have been proposed that are based on purely agent-oriented concepts, such as roles, 

autonomous behaviour, or organisations. Because of the explicit use of agent-oriented 
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concepts during the design, these methodologies are presumably appropriate for the 

development of agent-based systems. This section will therefore focus its review on the 

suitability of these methodologies for the design of agent-based confroZ 

systems (cf. subsection 3.1.1). In particular, this section will examine whether the 

design models used are appropriate for the design of agent-based production control 

systems (requirement III), and to what extent the design methods are sufficiently 

prescriptive with respect to the agent-oriented aspects of such a control system 

(requirement IV). 

3.5.1 Extensions of knowledge-oriented methodologies 

The knowledge-oriented methodologies proposed for designing agent-based systems are 

mostly extensions of the knowledge-engineering methodology CommonKADS 

(Schreiber 1994). These methodologies adopt the CommonKADS approach and add 

agent-oriented concepts to it. There are two examples of knowledge-oriented 

methodologies for agent-based systems, CoMoMAS and MAS-CommanKADS, which 

will both be reviewed in the following. 

3.5.1.1 CoMoMAS development methodology 

CoMoMAS is an agent-oriented analysis methodology (Glaser 1997). The aim of 

CoMoMAS is to build a set of conceptual models for the desired multi-agent system. 

The development process is therefore regarded as a modelling activity which consists of 

five analysis steps, each taking a different view of the system. The five analysis steps, 

which can be performed in parallel, are the following (Glaser 1997, pp. 7): 

® Requirement Analysis: The purpose of requirements analysis is to determine 

the design requirements on the multi-agent system. 

® Functional Analysis: The purpose of the functional analysis is to determine 

the set of tasks the multi-agent system has to solve. 

1. Analyse the application domain and problem space. 

2. Determine goals, tasks, and their decompositions. 

3. Determine data and control flow. 

4. Build and validate the initial task model. 

• Competence Analysis: The purpose of the competence analysis is to identify 

the competences which the system should provide in order to solve the goals of 

the task model. 

1. Determine the problem-solving methods. 
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2. Determine the necessary resources. 

3. Determine the strategies. 

4. Determine the behaviours and patterns of behaviour. 

• Social Analysis: The purpose of social analysis is to identify the social 

competencies that are required by the agents. 

1. Identify conflicting actions and goals between agents. 

2. Identify goal and data dependencies. 

3. Determine the agent organisation and associate roles to agents. 

4. Determine and associate intentions to actions; desires to goals; 

commitments to goals; and beliefs to goals. 

• Co-operative Analysis: The purpose of co-operative analysis is to identify the 

co-operation protocols, the co-operation methods, and the conflict resolution 

methods for the agents. 

1. Identify the needs and levels of co-operation between agents. 

2. Identify conflict raising facts in agent interaction. 

3. Determine co-ordination and negotiation strategies. 

Agent models are derived from the five conceptual models constructed in the above 

analysis phase through the integration of reactive, co-operation, and social knowledge 

and competencies. An agent model is constructed as follows (Glaser 1997, p. 9); 

1. Analysis of task model to build sub-trees or subsets of tasks. 

2. Identification of agents based on categorisation of tasks. 

3. Construction of agents with cognitive and/or reactive knowledge. 

4. Integration of co-operation knowledge into agent model(s). 

5. Integration of social knowledge into agent model(s). 

The resulting agent models represent the design result of the CoMoMAS development 

process. 

3.5.1.2 MAS-CommonKADS analysis and design 

Iglesias et al. (1998) also extend the CommonKADS methodology to the analysis and 

design of multi-agent systems. Their methodology adds techniques from various object-

oriented methodologies (e.g., OMT (see subsection 3.3.2)) in order to capture agent-

oriented aspects. The methodology starts, after a conceptualisation phase in which the 
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requirements specification for the multi-agent system is developed, with the 

construction of various models (Iglesias 1998, pp. 315). 

• Agent modelling: Develop initial instances of the agent model for identifying 

and describing agents. 

• Task modelling: Decompose tasks and determine goals and ingredients of 

tasks. 

® Co-ordination modelling: Develop the co-ordination model for describing the 

interactions and co-ordination protocols between the agents. 

® Knowledge modelling: Model the knowledge of the domain. 

• Organisation modelling: Develop an organisational model. 

In the agent modelling step, agents are identified according to the following heuristics 

(Iglesias 1998, p. 316). 

• Identify actors in the use cases of the conceptualisation phase. 

• Syntactically analyse the problem statement and identify active objects. 

• Assign entities to different agents if they are geographically, logically, or 

organisationally distributed or the required knowledge is distributed. 

o Analyse the initial task model in order to identify the necessary functions that 

can be assigned to agents. 

® Analyse the usage of agents by other agents and the different roles played in the 

domain. 

The next phase, the co-ordination modelling, defines the communication channels, 

builds a prototype, and analyses the prototype in order to optimise the interactions. This 

is accomplished in five steps (Iglesias 1998, p. 318). 

1. Describe the prototypical scenarios between agents. 

2. Represent the events or messages between agents in event flow diagrams. 

3. Model the data exchanged in each interaction. 

4. Model each interaction with state transition diagrams. 

5. Analyse each interaction and determine its synchronisation type (e.g., 

synchronous or asynchronous). 

The models derived in the analysis phase are transformed into a design model. The 

design model specifies the infrastructure of the agent system (network, knowledge, and 

co-ordination facilities), the design of the agents (choice of a suitable agent 

architecture), and the choice of an implementation platform. 
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3.5.1.3 Evaluation 

Because of the underlying knowledge-engineering approach, both lApthodologies view 

an agent system as a problem solving system decomposing the system task into 

subtasks according to a task hierarchy. In production control, however, goals are 

decomposed and distributed depending on the current situation, and local goals derived 

during the negotiation, process allow controllers to autonomously choose their actions 

when unplanned situations arise on the shop floor. Instead of modelling a pre-defined 

task hierarchy, it is therefore necessary to model the decision situations that may arise 

during control, as all manufacturing methodologies do (see section 3.4), and to enable 

the agents to incorporate the goals into the control decisions at run-time. This is not 

easy with a top-down approach (cf. subsection 2.1.3). 

Furthermore, the identification of agents is either based on the task hierarchy 

(CoMoMAS) or on heuristics (MAS-CommonKADS). CoMoMAS proposes 

identifying agents based on sub-trees of the task model. As pointed out above, a pre-

defined task hierarchy is inappropriate for modelling the control process and thus also 

for identifying agents. Moreover, CoMoMAS is also not prescriptive with respect to the 

identification of agents because it does not elaborate which sub-trees should be 

assigned to agents. MAS-CommonKADS, on the other hand, provides several 

heuristics for identifying agents, such as linguistic case analysis, use cases, or 

conceptual analysis. Even though the heuristics help to identify the agents, the 

heuristics are not sufficiently prescriptive (see also section 3.3) and there are no 

guidelines on when and how to apply which heuristic. In particular, the methodology 

does not provide a clear (abstract) agent model which is required to provide criteria for 

identifying agents. Agent identification in MAS-CommonKADS therefore relies 

primarily upon the experience of the designer, despite the heuristics proposed. 

Finally, both methodologies provide only general guidelines for interaction design. 

CoMoMAS proposes identifying the need for interaction based on resource sharing or 

goal conflicts, but does not elaborate how the need can be identified and how co-

operation methods and protocols can be derived from the identified need for co-

operation. MAS-CommonKADS uses scenario analysis to identify interaction patterns, 

but does not provide any guidelines to identify relevant scenarios or to ensure that the 

scenarios are complete. Interaction design is thus also based on intuition. 

3.5.2 Extensions of object-oriented and manufacturing methodologies 

This subsection reviews extensions of object-oriented and manufacturing design 

methodologies. Some of these extensions are general-purpose agent-oriented 

methodologies, some are dedicated to the design of agent-based production control 

systems. 
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3.5.2.1 Burmeister - Agent-oriented analysis methodology 

Burmeister (1996) extends the object-oriented methodologies to agent-oriented analysis 

by introducing mental and co-operation concepts. As in object-oriented analysis, she 

proposes three models which can be developed in parallel (Burmeister 1996, p. 10). 

a The agent model contains agents and their internal structure, described in terms 

of mental notions such as goals, plans, and beliefs or similar concepts. 

® The organisational model specifies the relationships among agents and agent 

types. Organisational relationships can be inheritance or role-based as in real 

organisations. 

• The co-operation model describes the interaction (or more specifically the co-

operation) among agents. 

To create these models, Burmeister proposes three methods. For the agent modelling, 

the designer should identify the agents, their motivations, their behaviours, and their 

beliefs. To identify the agents, Burmeister proposes to look at the "live" and "active" 

entities in the domain, i.e., at entities which can change their own states and affect the 

environment through actions. For the organisational modelling, the designer should 

identify the roles in the scenarios and organise these roles into a hierarchy. Finally, for 

co-operation modelling, the designer should identify the necessary interactions, list the 

message types, and specify the necessary co-operation protocols. For the definition of 

co-operation protocols, Burmeister suggests a specific protocol framework (Burmeister 

1995, Haddadi 1995). 

3.5.2.2 Agent-oriented development methodologies for manufacturing 

Kendall et al. (1996) propose a methodology for developing agent-based systems that 

builds upon object-oriented methodologies, such as OMT (see subsection 3.3.2) and 

OOSE (Jacobson 1992), and the IDEF methodology for modelling manufacturing 

systems (see subsection 3.4.1). The methodology first creates an object-oriented, as 

well as an IDEF, model of the system to be designed, and then identifies agents and 

interactions in these two models. Agents are viewed as autonomous decision makers 

and are identified in the object-oriented model whenever actors appear, and in the IDEF 

model whenever IDEF functions create control information as output. Identified agents 

are then modelled as a belief-desire-intention architecture, in particular as a procedural 

reasoning system (Rao 1992). Interactions, in turn, are identified whenever two or more 

IDEF resources are involved in an information exchange. The interaction pattern is then 

taken from the corresponding use case (Jacobson 1992). The agents and interactions 

identified are further refined with the help of object-oriented design techniques. 
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3.5.2.3 The PROSA methodology 

Van Bmssel et al. (1999) propose a methodology for identifying manufacturing agents'^ 

based on the object-oriented approach and the PROSA framework. The PROSA 

A-amework consists of product, resource, and order agents, which may be supported by 

staff agents. These agents can be aggregated or specialised in the object-oriented sense 

in order to create a taxonomy of agents for a specific manufacturing application. The 

first step of the proposed methodology is the identification of the agents and their 

responsibilities in the specific manufacturing application (other steps are detailed agent 

design, implementation, and system operation). The identification process is guided by 

the PROSA framework and starts with an object-oriented model of the manufacturing 

system. The designer then selects the objects in this model which should become 

agents, even though the methodology does not provide any criteria for identifying 

suitable objects. Finally, the agents are classified in the PROSA framework by 

aggregating and specialising agents. Van Brussel et al. propose to apply this approach 

to the resource allocation hierarchy and the process planning and execution hierarchy in 

a manufacturing system. 

3.5.2.4 Manufacturing-oriented agentification methods 

Ritter et al. (2002) propose an agentification method for manufacturing (i.e., a method 

for identifying agents in a manufacturing system). The agentification process is based 

on the aggregation of physically and logically dependent manufacturing objects (taken 

from an inventory list). The method, however, does not provide precise criteria for the 

presence of physical or logical dependencies (apart from an example). Furthermore, the 

method does not include any guidelines specifying to which manufacturing objects to 

apply the aggregation process and in particular for how long to apply it. The 

agentification process is thus highly intuitive. 

Colombo, Neubert, and Sussmann (2002) extend the Petri net-based modelling 

approach of Feldmann et al. (see subsection 3.4.3) to the modelling of agent-based 

production control systems. In their methodology, agents are identified on the basis of a 

Petri net model of the manufacturing process and its relevant control decisions. 

Although this methodology provides a more rigorous model for the agentification step 

than the previous method, it likewise does not provide any criteria for identifying the 

agents in the Petri net model (other than agents are decision makers and are thus 

responsible for the control decisions). 

Van Brussel et al. (1999) actually identify manufacturing holons (see subsection 2.3.2.2). In (Bussmann 
1998), however, it was shown that from an IT point of view, agents and holons can be regarded as similar 
concepts. 
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3.5.2.5 Evaluation 

Kendall et al. view an agent as an autonomous decision maker and thus capture exactly 

the key aspect of agent-based production control systems (cf. Subsection 2.3.1). To 

identify these agents, however, Kendall et al. base their analysis on object-oriented 

methodologies and the IDEFO method, both of which do not explicitly model decision 

making. The IDEFO method in particular only models manufacturing functions and 

their information exchange. The control interface which is used in the methodology of 

Kendall et al. to identify decision processes - and thus agents - is defined by IDEFO as 

"the conditions required for the function to produce correct outputs" (IDEF 1993, p. 

10). This abstract definition may include decisions, but also information or data (cf the 

examples in (IDEF 1993)). The control interface is consequently not a suitable criterion 

for identifying decision points in the manufacturing process. Furthermore, the IDEFO 

method is only suitable for the description of manufacturing processes, it is not a design 

method providing criteria for structuring the design (cf subsection 3.4.1). An IDEFO 

model therefore cannot be created for new control systems, unless the result of the 

design process is anticipated which leads to a cyclic dependency in the design process: 

the agents must be known in order to identify them. 

The use of object-oriented models for the identification of agents is also inadequate (see 

subsection 3.3.5). Burmeister, for instance, uses the "activeness" of an object to identify 

agents. This criterion, though, is not a distinguishing feature of agents in control design. 

A production system consists of many components, nearly all of which can actively 

change their state. A conveyor belt, for example, can turn its rollers in order to transport 

pallets. For the design of control systems, though, the only relevant components are 

those whose decisions have a significant impact on the production process. Production 

agents are therefore more than simply active components. Even though Kendall et al. 

and Colombo et al. do have a decision-oriented model of an agent, they also provide no 

criteria other than activeness to identify agents in object-oriented models. Likewise, 

Van Brussel et al. rely on object-oriented criteria to identify the initial set of agents. The 

definition of an agent type framework by Van Brussel et al. only partly remedies this 

deficit. The PROSA framework defines only abstract agent types such as product, 

resource, or order agents, and provides no criteria on how these can be specialised to 

capture the decision processes of a specific manufacturing system. 

Ritter et al. take a different approach to agent identification by aggregating physical 

components into agents. But, as already mentioned, their method does not include any 

criteria specifying how to perform the aggregation. In particular, because the method 

does not define physical and logical dependencies and does not specify for how long to 

apply the aggregation, the aggregation process may easily end up with only one agent 

since in a manufacturing process nearly everything is somehow dependent on 

everything else. Sussmann et al. (2002) therefore propose to create "proxy" agents for 
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aggregating physically dependent agents. This creates a hierarchy of agents in which the 

dependencies decrease towards the top of the hierarchy. But Sussmann et al. still do not 

provide criteria for when and how to perform the aggregation. Furthermore, taking an 

inventory list as a starting point for the aggregation without the possibility of discarding 

objects will lead to a control system in which every physical object will become an 

agent, irrespective of the relevance of this object to the control process. Therefore, the 

methodology of Ritter et al., as well as the other methodologies, does not provide 

sufficient support for the identification of agents. 

The identification and design of interactions is even less developed in all these 

methodologies. Kendall et al. propose to identify and design interactions on the basis of 

the information exchange in IDEFO diagrams as well as patterns in use cases, but do not 

elaborate either approach. Van Brussel et al., Ritter et al, and Colombo et al. do not 

address this issue in detail because their work focuses on the identification of agents or 

on the formal specification of agent-based systems. Only Burmeister provides a co-

operation model which is based on a representation framework for co-operation 

protocols. But even Burmeister provides only very abstract criteria for identifying the 

need of interaction (e.g., to share resources, to synchronise actions, or to co-ordinate 

behaviour), and does not explain how the required interaction process can be designed. 

3.5.3 Role-based methodologies 

The (general) limitations of methodologies that are based on concepts from other fields, 

such as object-orientation, to model agent-based systems led to the development of 

methodologies that are purely (or mostly) based on agent-oriented concepts. The 

dominant agent-oriented concept used in such methodologies is that of a role. Kendall 

(1998, 2001) defines a role as an abstraction of agent behaviour modelled in terms of 

responsibilities, possible collaborators, required expertise, and co-operation 

mechanisms used. The most important advantage of the concept of a role is that it can 

be freely assigned and reassigned to agents, as long as the agents fulfil the role's 

requirements. Since the concept of a role has been adopted in many methodologies, this 

subsection only reviews methodologies in which roles are central to the design process. 

Other purely agent-oriented design methodologies will be reviewed in later subsections. 

3.5.3.1 MASB Methodology 

Moulin and Brassard (1996) propose a methodology which identifies roles of (human or 

artificial) agents in an application by analysing scenarios in which the agents interact 

with a potential user (see also (Moulin 1994)). In the analysis phase, the user (textually) 

describes a typical scenario emphasising "the roles played by humans and artificial 

agents, the typical information exchange, events that occur in the course of the scenario 
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and ± e actions performed by agents" (Moulin 1996, p. 219). A role is then 

characterised by a behaviour diagram specifying the activities, the knovyledge, and the 

interactions involved in that particular role. The analysis phase is finished by modelling 

the local data, static and dynamic descriptions of the world, and system user 

interactions. 

In the design phase, agents are identified and roles are assigned to agents. It is argued 

that the designer knows how to perform this step because of his analysis of scenarios 

and roles in the previous phase (Moulin 1996, p. 226). Once the agents are identified, 

the designer specifies knowledge structures characterising the agents, i.e., beliefs, 

decisions, actions, and reasoning involved in playing a role. Finally, conversations 

between agents are specified on the basis of plans an agent can execute. 

3.5.3.2 The methodology of Kinny and Georgeff 

Kinny and Georgeff (1997) propose a methodology on the basis of roles and 

responsibilities in a multi-agent system (see also (Kinny 1996)). The analysis of 

responsibilities leads to the identification of services provided by the agents. The model 

proposed is divided into (i) an external viewpoint which models the purpose, the 

responsibilities, the services, and interactions of an agent; and (ii) an internal viewpoint 

which is based on a specific agent architecture, modelling beliefs, goals, and plans. 

The external viewpoint consists of two models which are independent of the 

architecture used for the internal viewpoint (Kinny 1997, p. 3): 

® An agent model describes the hierarchical relationship among different abstract 

and concrete agent classes. 

® An interaction model describes the responsibilities of an agent class, the 

services it provides, the interactions it engages in, and the control relationships 

between the agent classes. 

Agent classes can be derived from other agent classes and can thus inherit properties 

from these classes (even though this requires the modelling of beliefs, goals, and plans, 

and thus the internal viewpoint), and agent classes can be aggregated into new agent 

classes. 

The external models are derived in four m^or analysis steps (Kinny 1997, p. 17): 

1. Identify the roles of the application domain. Elaborate an agent class hierarchy. 

2. For each role, identify its associated responsibilities, and the services provided 

to fulfil those responsibilities. Decompose agent classes to the service level. 

3. For each service, identify the interactions associated with the provision of the 

service, the speech acts required for those interactions, and their information 
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content. Identify events and conditions to be noticed, actions to be performed, 

and other information requirements. Determine the control relationships 

between agents. 

4. Refine the agent hierarchy and the control relationships. 

The roles initially identified guide the identification of the agents. The concrete agents, 

however, are not defined until the roles have been decomposed to the level of services. 

At that level, the agents may be regrouped in order to optimise the system structure. 

After or in parallel to the development of the external viewpoint, each agent is 

modelled in terms of the goals to be achieved, the beliefs it may adopt, and the plans 

that achieve the goals. This model is based on a corresponding agent architecture (Rao 

1992). 

3.5.3.3 The Gaia methodology 

Wooldridge, Jennings, and Kinny (1999b, 2000) also propose a methodology for the 

analysis and design of agent systems based on the key abstractions of roles and 

responsibilities. Like the Kinny and Georgeff methodology, it deals with both the 

societal and the agent level of a design, but in contrast to the previous methodology it 

does not assume any particular agent architecture. 

Wooldridge et al. model an agent-based system in terms of agent roles. Each role is 

characterised by three attributes; responsibilities, permissions, and protocols. The 

responsibilities of a role define what the agent is supposed to do (i.e., its functionality). 

The permissions associated with a role define the resources an agent may spend when 

carrying out a role. And finally, the protocols define how agents interact in order to 

fulfil their roles. 

The role models are created in three analysis steps which can be iterated to improve the 

models (Wooldridge 1999b, p. 72). 

1. Identify the roles in the system. 

2. For each role, identify and document the associated protocols. 

3. Using the protocol model as a basis, elaborate the role models. 

After the analysis phase, the models are transformed into a set of design models: an 

agent model, a services model, and an acquaintances model (see figure 3.10). The agent 

model defines agents by associating roles and creating an agent type tree. The services 

model identifies the services associated with each role and specifies properties of these 

services, such as pre-conditions and the result of a service. Finally, the acquaintance 

model defines which agent can directly communicate with which other agent. 
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Figure 3.10: The Gaia models. 

These design models are developed in three steps (Wooldridge 1999b, p. 74). 

1. Create an agent model. 

a) Aggregate roles into agent types and refine these to form an agent type 

hierarchy. 

b) Document the instances of each agent type using instance annotations. 

2. Develop a services model, by examining protocols as well as safety and 

liveness properties of roles. 

3. Develop an acquaintance model from the interaction and the agent model. 

3.5.3.4 Extensions of the Gaia methodology 

The Gaia methodology has been extended in several directions, although without 

consolidating the different improvements into a revised Gaia methodology. An obvious 

extension is to introduce social roles. Gaia only models individual roles assigned to a 

single agent. Omicini (2001) therefore proposes in his SODA (Societies in Open and 

Distributed Agent spaces) methodology to distinguish between individual and social 

roles. An individual task is assigned to an individual role and thus to a single agent, 

while a social task is assigned to a group of agents. Each agent in the group then plays a 

social role, such that the interactions of these social roles achieve the social task. In 

order to address the same problem, Juan, Pearce, and Sterling (2002) propose in their 

ROADMAP methodology to identify a hierarchy of roles. Roles at the bottom of the 

hierarchy are individual roles, as in Gaia, while all other roles are social roles that 

aggregate several roles into a composite role. As a further extension, ROADMAP also 

allows agents to change their roles at run-time, although it does not discuss how role 

adjustment can be computed or managed in practice. 

Zambonelli, Jennings, and Wooldridge (2001) add three organisational abstractions to 



the Gaia methodology; organisational rules, organisational structures, and 

organisational patterns. Organisational rules are identified in the analysis phase of Gaia 

in order to capture the social rules "that the organisation should respect and/or enforce 

in its global behaviour". Zambonelli et al. express these rules as formulae in temporal 

logic which constrain the behaviour and the assignment of roles in the agent system. 

The first step of the design phase is then to choose an organisational structure which 

defines the organisational topology and the control regime of the agent system and 

which is able to enforce the organisational rules identified in the analysis phase. To 

increase efGciency, the designer may re-use here any of the organisational patterns 

already existing. For all subsequent design steps, the adopted organisational structure 

provides an explicit framework into which, in particular, roles and interactions must fit. 

Finally, Omicini (2001) as well as Zambonelli et al. (2001b) propose to use co-

ordination spaces (called agent spaces or co-ordination models by the authors) for the 

interactions of the agents in Gaia. Co-ordination spaces provide a medium for the agent 

interactions which is managed by a set of mechanisms out of control of the agents and 

which can thus enforce co-ordination or social laws even if the agents are self-

interested (and may therefore not be willing to comply with the social rules). 

Furthermore, a co-ordination space can increase the openness of an agent system if the 

space provides standardised interfaces and captures some of the social reasoning. 

3.5.3.5 The MaSE methodology 

DeLoach, Wood, and Sparkman (2001) propose the elaborated Multiggent Systems 

Engineering (MaSE) methodology that derives the agent roles from the goals of the 

application. The first step of the analysis phase in MaSE is thus to capture the goals of 

the system on the basis of use cases and to represent these in a goal hierarchy. In a 

second step, these goals are transformed into roles by associating a new role to each 

goal. In general, MaSE makes it possible to map more than one goal to a role, but it 

does not provide any criteria for determining when this is appropriate. With every role 

MaSE then associates a task that details how the goal should be achieved. In the design 

phase of MaSE, (i) roles are assigned to agent classes, (ii) interaction protocols are 

defined, (iii) the internal architecture of each agent is specified, and (iv) the deployment 

of the agents is sketched. But here again, MaSE does not specify any criteria for 

performing these steps. For the assignment of roles to agents, MaSE proposes the 

standard software engineering concept of cohesion, but does not elaborate what 

cohesion means in terms of roles. Concerning the design of interactions, MaSE 

provides only a protocol specification model that interacts well with the specification of 

tasks in MaSE, but provides no method to actually design the protocols. 
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3.5.3.6 Evaluation 

In comparison to extensions of knowledge-based or object-oriented methodologies, 

role-based methodologies use purely agent-oriented concepts to model software 

systems. The elaborated role model of the Gaia Methodology, for instance, is able to 

capture the flexibility of agents by specifying responsibilities and permissions of a role. 

Most role-based methodologies, however, require that the designer is able to directly 

identify the roles in an application, as it is for example straightforward in a (human) 

organisation, or to derive the roles &om the goals in an application (see also (Zhang 

2002)). This is not possible in production control. A requirements specification of a 

production control system only consists of a description of the physical components of 

a production system and the overall production goals to be achieved. The specification 

of the physical components, in turn, only describes a sensor and actuator interface to 

each component. To identify roles in a specific production application, it is therefore 

necessary to first derive an understanding of the production goals and in particular the 

required production process and thus of the decision making necessary to control the 

production process such that the production goals are achieved. Roles, however, define 

aspects like responsibilities, permissions, services, and interaction patterns. None of 

these concepts explicitly model decision making and can only be identified at later 

stages of a control design. In contrast, it is the main task of the control design to decide 

what the responsibilities and services of the local controllers will be. In control design, 

roles are therefore not appropriate as an analysis concept (even if they are derived from 

the production goals). Although, roles could be used as a design concept to increase the 

flexibility of the agent system once the basic control design has been created. 

Because of the underlying assumption that roles can be intuitively identified in an 

application, none of the methodologies provide strong criteria for identifying 

(individual or social) roles, nor for assigning roles to agents. In production control, 

though, it is not clear how decisions should be combined to roles and assigned to agent 

types. Even though future challenges in production control require control architectures 

to be component-oriented (cf. subsection 2.1.4), they do not generally prescribe which 

physical components should be regarded as a unit and thus should be controlled by a 

single agent. Assigning decisions to roles or agents is therefore a major design step 

which must be guided by design rules in order to be sufficiently prescriptive. Here, it is 

also not sufficient to look at use cases. Use cases only describe - from an external 

viewpoint - what the (physical) system should do, but not how this can be done. 

Furthermore, none of the methodologies provide criteria for identifying patterns of 

interactions (or organisational structures). Again, it is assumed that the patterns can be 

easily derived from the roles of the agents and the services they provide. Without the 

roles or tasks naturally given in a production control problem, however, it is not 

possible to identify interaction patterns (or useful organisational structures and rules) 

from the problem description. 
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To summarise, role-based methodologies are neither able to bridge the conceptual gap 

between the domain of production control and agent-based concepts, nor sufficiently 

prescriptive to identi:^ agents or interactions between agents. As already mentioned, 

from the point of view of control design, roles are only a concept that is useful at later 

stages of the design process. 

3.5.4 System-oriented methodologies 

Several methodologies have tried to integrate all the various aspects of agent-based 

systems (such as goals, tasks, roles, responsibilities, interaction, and organisation) into 

their analysis and design models. To integrate the different models, a number of 

methodologies have introduced different views of the system for each basic concept 

(see Massive and MESSAGE), while others have created a single model of an agent-

based system somehow relating all these concepts to one another (see Elammari and 

Lalonde, Tropos, and Prometheus). This subsection starts its review with those 

methodologies that have introduced views. 

3.5.4.1 The MASSIVE methodology 

Lind (2001) proposes a design methodology based on multiple views representing 

different features of a multi-agent system. The different views cover (i) the tasks of the 

system; (ii) the environment of the system; (iii) the roles that agents should perform in 

the system; (iv) the interactions between the agents; (v) the structure of the agent 

system (i.e., the society view); (vi) the software architecture of the system and its 

agents; and finally (vii) technical aspects of implementation and deployment (i.e., the 

system view). The following discussion focuses on the views that are relevant to the 

goal of this review, namely the task, the role, and the interaction view. 

The task view identifies the system task and decomposes it into several sub-tasks 

according to the different functions required to achieve the sub-task. This functional 

decomposition is integrated, and leads to a task tree. 

The role view defines a role to be "a logical grouping of atomic activities according to 

the physical constraints of the operational environment of the target system" (Lind 

2001, p. 95). To identify roles, functions are firstly grouped into a coherent cluster with 

high coupling and low cohesion. Then, in a second step, the roles are adapted to reflect 

the physical distribution of the system. How roles can be grouped or adapted to the 

physical structure of the system is not elaborated. The description of MASSIVE only 

refers to the notion of coupling and cohesion as proposed by (Collis 1998) which 

specifies that an "area of responsibility" should be assigned to only one agent and that 

the "access point" for information or services should also be assigned to only one agent. 

Finally, in a third step, roles are assigned to agents. But again, MASSIVE does not 
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prescribe how the agents are identified or roles are assigned to agents. 

Concerning interactions, the interaction view only provides a very general 

characterisation scheme for interactions in order to support the designer in selecting the 

most appropriate interaction type. The scheme consists of (i) the purpose of the 

interaction (either co-operation or competition); (ii) the mode of interoperation 

(interacting either directly through message passing or indirectly through the 

environment); (iii) the structure of the problem domain (i.e., to what extent the problem 

space can be handled independently); and (iv) scalability requirements. The design of 

the interaction and even the actual selection of the interaction type is left to the 

designer. After the (manual) design, the interaction is described in the form of a 

protocol specifying roles in the interaction as finite state machines (including state 

transitions and messages to be sent). 

3.5.4.2 The MESSAGE methodology 

The Eurescom Project MESSAGE ybr 

Agents) proposes an analysis methodology for the development of agent-oriented 

systems (Caire 2002). The analysis model to be created in MESSAGE consists of 

agents performing services; organisations defining power relationships between agents; 

roles; goals; tasks; resources; interactions; and information entities (see figure 3.11). On 

the basis of this analysis model MESSAGE defines different views; an organisation 

view, a goal/task view, an agent/role view, an interaction view, and a domain view. To 

create such an analysis model, MESSAGE starts by building the organisation and the 

goal/task view, and then the agent/role, the domain, and the interaction views. This 

model may then be refined by following one of several possible strategies: 

(i) organisation-centred: focus on system structure, services, and global tasks; 

(ii) agent-centred: identify agents first and then derive the other concepts; 

(iii) interaction-oriented: focus on the interaction scenarios and derive goals, tasks, 

and required resources; and 

(iv) goal/task decomposition: start with a functional decomposition of the system 

goals. 
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Figure 3.11: The MESSAGE model of agent-based systems. 

3.5.4.3 Elammari and Lalonde - An agent-oriented methodology 

Elammari and Lalonde (1999) propose a methodology that moves from high-level to 

implementable models through a discovery and definition phase. The methodology 

generates five models: (i) the high-level model identifies agents and their high-level 

behaviour; (ii) the internal agent model describes the internal structure and behaviour of 

agents; (iii) the relationship model captures dependencies and jurisdictional 

relationships; (iv) the conversational model describes co-ordination between agents; 

and finally (v) the contract model defines a structure for commitments between agents. 

The discovery phase develops the high-level model with the help of use case maps 

(Buhr 1998). A use case map (UCM) provides a high level view of causal sequences in 

the system, called paths, which are comparable to scenarios. On the basis of the UCMs, 

the discovery phase identifies agents by extracting nouns from the problem description 

that play an active role throughout the application. Furthermore, the discovery phase 

identifies roles and responsibilities present in the paths analysed. 

The definition phase creates the remaining four models. The internal agent model 

describes the internal structure of an agent in the form of a table including the goals, 

beliefs, plans, and tasks of the agent. The relationship model, in turn, describes the 

relationships between agents and consists of two sub-models: the dependency diagram 

and the jurisdictional diagram. The dependency diagram relates an agent providing a 

service to an agent requesting this service. These dependencies are classified into four 

categories: (i) a goal dependency indicates that an agent is dependent on another agent 

to achieve a certain goal or state; (ii) a task dependency indicates that an agent requires 

a specific task to be performed by another agent; (iii) a resource dependency indicates 

that an agent is dependent on an agent for providing it with a specific resource; and (iv) 

a negotiated dependency indicates that an inter-agent negotiation is required to fulfil the 

dependency. The jurisdictional diagram of the agent relationship model describes 
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authority status of agents with respect to other agents. 

The conversational model identifies the necessary messages that must be exchanged 

between agents in order deal with dependencies. Each type of dependency as well as 

each jurisdictional relationship has a set of pre-defined messages associated with it that 

define the possible patterns of interactions. A task dependency, for instance, is 

associated with an execute message, while a negotiated dependency is resolved by 

cowMfgr and messages. The contract model, Snally, 

describes obligations and authorisations between different agents. It helps to define 

expectations of agents about their relationships to other agents. A contract specifies the 

participants, the authorisations, the obligations, beliefs, and policies. The policies 

defines constraints on the service to be provided. 

3.5.4.4 The Tropos methodology 

Tropos is an agent-oriented software engineering methodology that covers the software 

development process from requirements engineering to detailed design (Bresciani 

2001). The methodology starts with capturing the system requirements through 

modelling goals, tasks, resources, and actors of the system as well as the dependencies 

between the actors. During the design, this requirements model is elaborated by (i) 

refining the system actors, (ii) identifying the capabilities necessary to fulfil the system 

goals, and (iii) assigning these to agents. In the first design step, the system actors 

diagram can be extended with the help of design patterns, even though it is not 

explained how appropriate patterns can be identified, as for most design steps the 

methodology misses prescriptive methods for performing these steps. 

3.5.4.5 The Prometheus methodology 

The Prometheus methodology was explicitly developed to be taught to industry 

practitioners and undergraduate students who do not have a background in agent 

technology (Padgham 2002). The methodology thus pursues a similar goal as the one 

stated in section 3.1. Prometheus, however, is supposed to be applicable to any 

application domain and therefore uses modelling concepts, namely goals and 

functionalities, that are very similar to those of role-based approaches (see subsection 

3.5.3). The authors themselves state that their concept of functionality is similar, but not 

identical to the concept of roles used in many other methodologies (Padgham 2002). 

The Prometheus methodology starts with an analysis phase in which the basic goals and 

functionalities of the system to be developed are identified (Padgham 2003). To identify 

goals, functionalities, as well as the interactions between the functionalities, the 

methodology proposes to analyse typical use cases (as in object-oriented 

methodologies, see subsection 3.5.4.5). Once identified, the functionalities are then 
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grouped and assigned to agents according to the criteria of coherence and coupling (see 

subsection 3.2.2). In particular, Prometheus provides the following strategies for 

grouping functionalities (see also (Bussmann 2001c)): 

• group if functionalities use the same data or require the same information; 

» if this creates fewer interaction links between the agents; 

® do not group if the functionalities are "unrelated" or should reside on different 

hardware platforms; 

• do not group if data of one functionality should not be available to another 

functionality for security or privacy reasons; and 

® do not group if functionalities will change, or will be modified by different 

people. 

To apply these general strategies, Prometheus only provides a data coupling and an 

acquaintance diagram. The former diagram shows which functionality requires or 

shares data with which other functionality. The latter diagram shows which 

functionality interacts with which other functionality (as specified in the analysis phase 

of Prometheus). The grouping process is thus only supported with respect to the data 

and the interaction coupling. But both aspects are not appropriate for guiding the 

grouping process. Data could easily be shared between two agents if they only read the 

information. But even if they also want to change the data, there might exist an 

effective mechanism to co-ordinate the write attempts. Likewise, it is not clear whether 

an interaction link should be avoided at all costs because this might lead to large agents. 

Again, it may be possible to co-ordinate many interaction links in an efficient manner. 

Data and interaction links alone are therefore an inappropriate means for grouping 

functionalities into agents. 

3.5.4.6 Evaluation 

With respect to control design, system-oriented methodologies (including 

methodologies like PAS SI (Cossentino 2002) or ODAC (Gervais 2003)) suffer from the 

same weaknesses as the methodologies discussed in subsections 3.5.1 and 3.5.3. To 

model an agent-based system, these methodologies use concepts like goals, roles, 

functionalities, or tasks that have been shown in previous sections to be inappropriate 

for designing agent-based production control systems. Likewise, these methodologies 

provide comparatively little support for performing the analysis or design steps. A 

notable exception to this are the criteria for the grouping of functionalities provided in 

Prometheus. These criteria, however, operate on the level of data and interactions 

which is inappropriate for production control and probably even for agent-based 

systems in general, as argued in subsection 3.5.4.5. A second notable exception is the 
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modelling of dependencies in the methodology of Elammari and Lalonde. These 

dependencies are interpreted as a need for interaction and a classification of 

dependencies is directly mapped to interaction patterns. For each dependency type, 

however, the methodology only provides a simple interaction pattern. These interaction 

patterns may be extended by the designer, but the methodology does not elaborate how 

this can be achieved and, once extended, how the designer may then choose between 

alternative interaction patterns. 

3.5.5 Interaction-oriented methodologies 

In most agent-oriented design approaches, aspects like agents, tasks, or roles are 

designed first. Only a few researchers have proposed to start with the design or the 

programming of the interactions of an agent-based systems (see for instance (Huhns 

2001, Singh 1996, Ciancarini 2000)). Not surprisingly, there is to date only one 

elaborated design methodology that follows this approach. This methodology is 

reviewed in this subsection. 

3.5.5.1 Agent interaction analysis 

Miles, Joy, and Luck (2001, 2002) propose a design methodology, called vdggnf 

Interaction Analysis, that derives the necessary interactions from a goal and preference 

analysis of the system requirements. The methodology starts with identifying the 

system goals in the requirements specification and elaborating these goals into a goal 

hierarchy. Each goal is assumed to be solved through an interaction of some agents. In a 

second step, the designer thus chooses an interaction mechanism for each independent 

goal of the goal hierarchy while using only place-holders (i.e., roles) to refer to the 

agents eventually participating in the interaction (see figure 3.12). During system 

execution, a goal is acquired by a "real" agent who then tries to find agents to take on 

the other roles in the interaction. In case the agent fails to find agents to engage in the 

interaction, it may use the goal hierarchy to decompose the goal into sub-goals which it 

then posts to initiate smaller interactions achieving the same overall goal. The actual 

agents to take on the roles at run-time are derived from the roles required in the 

interactions. These roles are grouped according to the preferences derived from the 

system requirements and general considerations, such as limited complexity or 

functionality of the agents, single agents for resolving conflicts between goals, or 

optimisation of the computational load on a single agent. 

To assign an appropriate interaction mechanism to a goal. Miles et al. (2002) propose to 

re-use existing co-ordination mechanisms by searching for a corresponding interaction 

pattern that matches the preferences identified in the requirements specification. Since 

re-use approaches will be separately discussed in section 3.6, the discussion of their re-
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use approach is also postponed to subsection 3.6.2. 

role A 

mleC 

role B 

Figure 3.12: Goals implying interactions between roles 

3.5.5.2 Evaluation 

The Agent Interaction Analysis methodology requires that the system goals can be 

refined into a goal hierarchy specifying exactly what is supposed to be achieved by the 

agent system. This goal hierarchy must be sufficiently operational so that a set of 

interaction mechanisms can be chosen whose combined effects achieve the overall 

system goals. Given the currently available interaction mechanisms (see subsection 

2.2.2), this implies that the goal hierarchy for any complex system must be elaborated 

to a significant degree of detail. For the design of production control, this will require in 

particular that the goal hierarchy must be extended down to the actions of the local 

controllers because they will eventually achieve the system goals through their actions 

(without considering their potential actions it is not possible to understand the 

production process and thus the system goals). However, once the designer has 

succeeded in creating the link between the system goals and the physical actions of the 

local controllers, he has actually solved the control problem. For control design, an 

interaction analysis which starts at the system goals and moves only top-down is thus 

anticipating the solution. Consequently, an analysis of the control problem must move 

both top-down and bottom-up (see also the discussions in subsections 3.5.1 and 3.5.3). 

3.5.6 Behaviour-oriented methodologies 

Some methodologies have focused on developing agents which are primarily defined by 

their behaviour (as opposed to their cognitive capabilities - see subsection 2.2.1). Many 

of these methodologies, though, are very architecture-dependent, such as for instance 

the design approaches in (Bryson 2002) or (Bernon 2002). This subsection therefore 

reviews only the methodology Cassiopeia and the synthetic ecosystems approach which 

are both generally applicable. 
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3.5.6.1 The design methodology Cassiopeia 

Collinot, Drogoul, and Benhamou propose Cassiopeia as a design methodology for 

deriving the individual behaviours of agents &om the global specification of a 

collective task (Collinot 1996, Drogoul 1998). Cassiopeia therefore concentrates on the 

organisation of a multi-agent system in order to link individual and group behaviour. 

Cassiopeia distinguishes three levels of behaviours: (i) elementary, (ii) relational, and 

(iii) organisational. Each level is designed in a distinct step (Collinot 1996, pp. 43). 

1. Identify elementary behaviours. Elementary behaviours are those behaviours 

that are required for the achievement of the collective task. 

2. Specify relational behaviours. Analyse the organisational structure with respect 

to the dependencies between elementary behaviours. Choose those that are 

most relevant and specify relational behaviours which enable agents to identify 

and handle these dependencies. 

3. AgAov/ou/'j'. Organisational behaviours are those that 

enable agents to manage the formation, durability, or dissolution of groups. 

Accordingly, this step identifies three types of organisational behaviours: 

a group formation behaviours 

* joining behaviours 

• group dissolution behaviours 

Cassiopeia thus starts from the elementary behaviours and builds up the agent-based 

system by creating more complex behaviours. 

3.5.6.2 The synthetic ecosystems approach 

Parunak, Sauter, and Clark (1998) take a behaviour-based approach that is based on an 

agent model different to most of the agent models used in agent-oriented design 

methodologies. They do not assume the presence of explicit mechanisms for individual 

rationality in every agent, but rather view a multi-agent system as consisting of many 

very simple, interacting agents which nevertheless exhibit social coherence. Parunak et 

al. call these systems "synthetic ecosystems" (see (Parunak 1997) for a discussion). To 

design synthetic ecosystems, Parunak et al. propose four phases: (i) conceptual analysis, 

(ii) role playing, (iii) computer simulation, and (iv) implementation design. The 

following discussion concentrates on the first two phases which are concerned with the 

analysis and design of the agent-based system. 

The conceptual analysis develops an initial design of what the system as a whole will 

do, which agents will be necessary, and how they will behave. The first step of the 

conceptual analysis therefore identifies the requirements on the system behaviour and 
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clariEes five aspects (Parunak 1998, p. 48): 

« What is the desired overall system behaviour? 

« What can be varied in an effort to achieve this behaviour? 

# What must not be touched? 

* What approach is currently taken to solving the problem? 

# Why is a new solution being contemplated? 

Given the overall system behaviour, the system is decomposed into agents. Agents are 

identified with the help of a linguistic case analysis. Each noun in a description of the 

system behaviour is a potential agent and the verbs describe the relationships between 

the agents. The identification is guided by a set of pre-defined agents (for 

manufacturing applications): unit, resource, manager, part, customer, and supplier 

agents. In addition, Parunak et al. provide a list of principles for validating the potential 

agents identified (pp. 50): 

• Identify things rather than functions, i.e., identify agents that are responsible for 

components of the production system rather than specific functionality, like 

planning or scheduling. 

a Identify small agents, i.e., prefer small and simple agents over large and 

complex ones. 

9 Constrain diversity and generalise with the help of inheritance, e.g., by creating 

a hierarchy of agents inheriting certain behaviours. 

Given the agents of the system, the individual behaviours and classes of messages for 

interaction are defined. In this step, the methodology looks at the individual decision 

making of an agent, but focuses on the resulting interaction dynamics of the decisions. 

Again, Parunak et al. provide several principles for this step (pp. 53): 

• Perform planning and execution concurrently in agents. 

• Use virtual currency, like money, to guide the course of the agent system. A 

virtual currency makes it possible to introduce global parameters, for example 

prices, without introducing central components (see also subsection 2.2.2.2). 

0 Use local communication wherever possible. 

a Make the agents learn from each other through the exchange of information. 

The second phase of the methodology uses (human) role playing to validate and refine 

the initial design. The phase selects scenarios and scripts for the role playing, assigns 

agents to people, records actions of agents, and evaluates the interactions of each 

scenario. Since role playing certainly has limits concerning the number and the 
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complexity of scenarios played, the next phase further validates and refines the design 

with the help of a computer simulation. 

3.5.6.3 Evaluation 

The Cassiopeia design methodology is obviously strong in developing agents that form 

and dissolve groups. The methodology though does not elaborate how to identify the 

elementary behaviours, nor does it explain how to identify the agents in a problem 

domain. Cassiopeia is therefore a design method for the special purpose of developing 

coherent group behaviours in a multi-agent system that is already given. 

The synthetic ecosystems approach, in contrast, covers the whole design process of an 

agent-based system. In particular, it identifies the necessary agents with the help of a 

linguistic case analysis of the problem description. However, as pointed out in 

subsection 3.3.5, a linguistic case analysis may identify agents which have no decisions 

to make, such as conveyor belts or lifts. Even the abstraction level of the agents 

identified is pre-determined by the requirements specification. If the description speaks 

of spindle, machining space, positioning, and tools to describe the processing of work 

pieces, a machine agent cannot be identified, even though such a level of abstraction is 

more appropriate in many cases. Similar to the PROSA framework (see subsection 

3.5.2.3), Parunak et al. therefore try to reduce the risk of identifying inappropriate 

agents by providing a set of pre-defined agent types. However, it is not clear whether 

this pre-defined set is appropriate for any manufacturing application or which subtypes 

should be identified in one category. An agent-based production control system will 

certainly have resource agents, but the pre-defined set of agent types does not prescribe 

how the different resources should be assigned to agents. Finally, Parunak et al. discuss 

principles for validating candidate agents which are useful and relevant, but not 

sufficiently prescriptive to guide a designer in identifying agents. Basically, the same 

critique applies to the design of interactions in the synthetic ecosystems approach. Even 

though the methodology identifies the need for interaction by analysing dependencies of 

any kind between agents, the design of interactions is only guided by a set of principles 

which are neither comprehensive nor sufficiently prescriptive. 

It should be noted though that Parunak et al. only intended to guide the designer in 

identi^ing agents (or designing interactions) by a body of "good practice" based on 

design experiences (Parunak 1998, p. 48). In this respect, the purpose of their 

methodology is already in conflict with the goal of this work (which tries to make a 

methodology sufficiently prescriptive so that also an inexperienced designer is able to 

build an agent system). The approach of Parunak et al. thus takes the risk that - if the 

body of good practice is not complete or does not apply - an inexperienced designer 

will fail to design an (appropriate) agent-based system. 
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3.5.7 Summarising the evaluation of agent-oriented methodologies 

Agent-oriented methodologies are obviously more appropriate for designing agent-

based systems than the previously developed methodologies because they explicitly 

model agent-oriented concepts. Existing agent-oriented methodologies, however, fail to 

adequately model agent-based production control systems because they focus on 

different concepts than those which are relevant for production control design. Existing 

agent-oriented methodologies model concepts like roles, tasks, responsibilities, 

organisations, and so on, but ignore the actual decision making of an agent or an 

application. In production control, however, the decision making is central to the design 

process (see sections 2.1 and 3.4). Without modelling the choices arising at the local 

controllers during the production process, it is simply not possible to achieve and, in 

particular, enact the production goals. An agent-oriented methodology for designing 

production control systems must therefore explicitly model the decision making of the 

agent-based system. This is done only by the methodologies of Kendall et al. and 

Colombo et al. (see subsection 3.5.2). Kendall et al., though, have based their 

methodology on object-oriented methodologies and the IDEFO methodology which 

both provide insufficient support for identifying the decision making. Colombo et al. 

provide a model for decision making, namely Petri nets, but do not provide any criteria 

for mapping the Petri nets onto agents. 

Furthermore, the existing agent-oriented methodologies are not sufficiently prescriptive 

to design agent-based production control systems. Most of the methodologies do 

provide criteria for agent identification, but, in all cases, these criteria lead to an 

inappropriate set of agents for production control. Object-oriented methods for agent 

identification, such as activeness or linguistic case analysis, may identify - as discussed 

in subsection 3.3.5 - objects which are not agents or even inappropriate agents. 

Likewise, knowledge-based, role-based, and system-oriented methodologies are 

difficult to apply to the identification of production agents because neither task 

hierarchies nor roles can be found in the initial description of production systems. Only 

the methodology of Parunak et al. provides some guidelines for the identification of 

agents in production control. These guidelines, though, are still too vague to be 

sufficiently prescriptive for an inexperienced engineer to identify control agents. 

However, if these guidelines are made more precise by redefining them in terms of the 

production models used by manufacturing control methodologies (see section 3.4) and 

re-organising them in a more structured design process, such as the grouping process of 

Prometheus (see subsection 3.5.4.5), then the agent identification step may become 

more appropriate as well as sufficiently prescriptive for designing production control 

agents. Achieving this will be the task of the methodology proposed in chapter 4. 

Concerning interactions, most agent-oriented methodologies have incorporated 

guidelines for interaction design (e.g., CoMoMAS, MAS-CommonKADS, Kinny et al.. 
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Gaia methodology, MASSIVE) or protocol models (e.g., Burmeister, Gaia 

methodology, MaSE, MASSIVE). But only a few have elaborated how the need for 

interaction can be identified and no methodology has explained how interactions can be 

designed. The two notable exceptions are the methodology by Elammari and Lalonde 

and the Agent Interaction Analysis methodology by Miles, Joy, and Luck. Both 

methodologies, however, have taken a re-use-oriented approach to designing interaction 

protocols. To adequately evaluate their approaches, it is therefore necessary to first look 

at the basic concepts in software re-use and then to review to what extent these 

concepts have already been used in agent-oriented design approaches. 

3.6 Re-use 

The design methodologies presented in the previous sections have almost all focussed 

on designing a software system entirely from scratch. Designing new software systems, 

however, is a time-consuming and demanding process which must be conducted by 

specially trained software engineers.'^ Most of the time, though, these software 

engineers are not charged with completely new design problems, but rather face 

recurring design tasks such as determining necessary operations, choosing 

transportation paths, or allocating resources in manufacturing control design. Instead of 

solving these recurring design tasks over and over again, it would be beneficial to solve 

these tasks only once, and to re-use the design solutions every time a similar design 

problem is encountered. The advantages of re-using existing design solutions are 

clearly a higher productivity of the software development process (because copying 

existing solutions is faster than developing them from scratch); a higher reliability of 

the software artefacts (because re-used code has been repeatedly tested by more than 

one designer and application); and a higher maintainability of the software artefacts 

(because re-usable components have been developed without a particular application in 

mind) (Coulange 1998). This section therefore briefly discusses the basic concepts of 

software re-use (see subsection 3.6.1) and reviews those agent-oriented methodologies 

that have used a re-use approach to designing agent-based systems (see subsection 

3.6.2). 

3.6.1 General concepts in software re-use 

Software re-use is the process of "using existing software artefacts during the 

construction of a new software system" (Krueger 1992, p. 133). During this 

construction process basically any kind of tangible result from previous development 

processes can be reused, in particular any kind of analysis, design, or code components 

(Coulange 1998). Consequently, there is a great diversity of different software 

" The existence of the diverse range of design methodologies is already a proof of this. 
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engineering technologies that promote re-use (Krueger 1992, Coulange 1998). 

According to Krueger (1992), though, any kind of re-use involves the following four 

basic steps: 

a Abstraction 

The software artefact to be re-used is given an abstract representation in order 

to hide technical details of the artefact and thus to reduce the cognitive effort 

necessary to re-use the artefact. This step often involves a generalisation of the 

artefact in order to cover a wide range of applications. 

« Selection 

Given a design problem, the set of existing artefacts must be searched for a 

suitable component that solves the given design task. 

® Specialisation 

The selected re-usable component is specialised through parameters, 

transformations, constraints, or some other form of refinement in order to make 

the component fit into the specific context of the application that wants to use 

the component. 

8 Integration 

Finally, the artefact to be used must somehow be integrated into the 

application. A typical example of an integration framework is a module 

interconnection language with which public functions of modules can be called 

in order to define the overall flow of control. 

Even though all of the above steps are essential to re-use, the second step is arguably 

the most crucial step, as without it no re-use is possible. To be truly effective, re-use 

must take place across individual designers. Some designers create re-usable artefacts, 

while many others should use these artefacts in order to speed up their development 

process. This implies, though, that the designers trying to re-use artefacts, do not know 

these at first (because they have not created them) and must therefore search for them 

(e.g., in a library of re-usable components). Since re-use becomes more effective the 

more re-usable artefacts are available, it will be impossible for a designer to look at all 

existing artefacts. Consequently, to find a suitable component, there must be a search 

method that allows the designer to identify a suitable artefact without going through the 

whole library.*'* This need for effective search methods has been identified early on in 

software engineering research and a wide range of retrieval methods for re-usable 

components has been developed to date (Mili 1998). According to the state-of-the-art 

review in Mili et al. (1998), these methods can be divided into six types of approaches: 

'•* This is supported by a survey on success factors for re-use (Morisio 2002) which has shown that setting 
up a library of re-usable assets is not enough to guarantee successful re-use, but that, among other 
aspects, non-re-use processes must also be changed in order to promote the actual re-use of existing 
assets. 
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0 Information retrieval methods 

* Descriptive methods 

* Operational semantics methods 

0 Denotational semantics methods 

» Topological methods 

® Structural methods 

view software assets, such as analysis descriptions, 

design specifications, or source code, as documents containing information. These 

documents can therefore be searched for keywords that are taken from a query for a re-

usable artefact. To do so, these methods draw from a large set of techniques developed 

for general information storage and retrieval (Frakes 1992). Despite this large 

background, however, these methods suffer from two severe disadvantages which are 

due to the underlying information retrieval approach. First of all, information retrieval 

methods are dependent on a consistent use of terminology across all designers and can 

therefore only be used within small organisations which agree on a standard 

vocabulary. Secondly, because of the relatively informal description of assets (and the 

query), information retrieval methods are unable to assess the extent to which an asset 

really solves the design problem. With information retrieval, it can only be determined 

whether the descriptions of the asset and the query use similar terms. 

Descriptive methods are a subclass of information retrieval methods which match a set 

of keywords against a list of keywords characterising each software asset. The list of 

keywords characterising an asset must be assigned to the asset by the designer or a 

librarian responsible for ensuring the consistent use of the keywords. An extension of 

the simple keyword-based approach is the faceted approach. In this approach, a multi-

dimensional search space is created by specifying for each dimension (also called facet) 

a set of pre-defined keywords. Assets are classified according to this pre-defined search 

space, and a designer searching for an asset must specify the set of keywords that best 

characterises his design problem. The search method then retrieves all assets that match 

these keywords. The advantages of descriptive methods are clearly their simplicity and 

ease of implementation. A disadvantage is that the classification scheme is pre-defined 

and thus difficult to change or extend (because this would lead to inconsistencies in the 

long run). Another disadvantage is that the keyword match, as for all information 

retrieval methods, does not guarantee that the assets identified really solve the design 

task. 

Operational semantics methods exploit the fact that (executable) software components 

can be characterised through their behaviour. An asset is retrieved by these methods if it 

creates the required output (specified by the query) on a set of sample input values. 
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These methods are obviously only applicable to assets that are given in executable 

form, as for example source or object code. Furthermore, they require that the designer 

is able to exactly specify the behaviour of the required asset at least for a sample input 

set. Finally, these methods may still retrieve assets that are not suitable because an asset 

may behave correctly on the sample input set, but differently otherwise. 

Some methods use the denotational semantics of a software asset, usually a function, to 

match it against a query. In the simplest case, these methods only use the signature of a 

function for the match. This obviously leads to a very imprecise retrieval result because 

functions with the same signature may compute different results and functions with 

different signatures may still compute the same result if the input is just passed to the 

function in a different format. Methods that use the actual semantics of a function to 

perform the match, in turn, suffer from the inefficiencies of theorem proving which is 

necessary to show that the semantics of a function implies the required behaviour 

specified by the query. To date, denotational semantics methods are therefore not used 

in practice. 

Instead of trying to find assets that match a query perfectly, topological methods search 

for assets whose features come closest to the required solution. Closeness is usually 

defined by a measure that determines the functional or structural distance between an 

asset and the q u e r y . A topological method then searches the library for the asset that 

minimises this distance measure. Topological methods may thus provide the designer 

with a result even if there is no asset in the library matching the query perfectly. The 

main disadvantage of topological methods, in turn, is that the property of being closest 

to a query is a property of the library, not of a single asset. An asset is only closest to a 

query if there is no other asset in the library which is closer. In particular, an asset may 

be closest even though it is completely irrelevant to the query, just because there is no 

asset in the library that is relevant to the query at all. 

Structural methods search for software assets that have the same structure (vs. the same 

function) as the solution specified by the query. These methods are particularly suited 

for software assets that have no clearly defined function, such as architectures or design 

patterns (Gamma 1995), but are rather characterised by a specific structure which can 

be instantiated in different ways to provide a solution. Design patterns, for instance, 

consist of participants or roles whose behaviour is only partially constrained by the 

pattern (Gamma 1995). The complete behaviour of a pattern thus depends on the actual 

participants eventually executing the pattern. To find a suitable design pattern, 

however, most existing structural methods match the query to the name or the natural 

language description of an asset. In the worst case, this implies that the designer must 

already know the assets in order to specify the correct name; in the best case, in which 

the query is matched against the textual description of the pattern, this approach suffers 

" Topological methods can also be combined with other approaches, e.g., by defining a functional 
distance measure on the facet representation of an asset. 
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&om ± e same problems as the information retrieval methods. Similarly, methods that 

parse the structure of the assets in order to compare it to the (structure of the) query, 

require the designer to specify the required structure abeady in the query, although the 

objective of the query is actually to find a suitable structure. 

Mill et al. (1998) conclude their state-of-the-art survey on retrieval methods for 

software re-use libraries with the result that none of the existing methods satisfies all 

reasonable requirements for asset retrieval. With the current state-of-the-art, retrieval 

must therefore be tailored to the assets to be re-used and potentially to the applications 

to use the assets. 

3.6.2 Agent-oriented re-use 

Despite the large number of techniques developed, re-use has received very little 

attention in agent-oriented software engineering research to date, and most research 

conducted has fbcussed on transforming existing design knowledge into patterns. 

Following the approach in (Gamma 1995), for instance, Kendall and Malkoun (1997), 

Kendall et al. (1998) as well as Aridor and Lange (1998) propose a set of typical agent-

oriented design patterns, such as the Broker pattern, the Facilitator pattern, or the 

Meeting pattern for mobile agents. These patterns, though, are all described in plain text 

that is only structured into headings such as intent, motivation, applicability, 

participants, collaborations, and consequences. Since these headings are even the same 

headings which are used for object-oriented patterns (Gamma 1995), Lind (2003) has 

proposed a pattern description scheme that is tailored towards the description of agent-

oriented patterns. This pattern scheme consists of headings such as problem, forces, 

entities, dynamics, dependencies, and consequences. For specific types of patterns, the 

scheme can be extended by more specialised headings. An agent architecture, for 

instance, can also be characterised by control flow, resource limitations, knowledge 

handling, reasoning capabilities, and so on. But apart from the introduction of agent-

oriented headings, the patterns in (Lind 2003) are still described in plain natural 

language, which has been shown in the previous subsection to provide comparatively 

little support for re-use because it requires the designer to know the design patterns in 

advance in order to select them. Specifying patterns is thus only a small step towards 

systematic re-use (covering just the abstraction of re-usable assets). 

Brazier, Jonker, and Treur (2002) have developed a compositional framework for 

multi-agent design that promotes re-use. In their firamework, called DESIRE, agents are 

created by incrementally combining previously designed components into larger ones. 

In the terminology of Krueger (1992), DESIRE is thus an integration framework that 

provides a mechanism for incorporating existing components into an application. 

However, how the components to be integrated can be identified is not elaborated in the 

corresponding DESIRE design method. Brazier et al. provide only examples of generic 
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components. 

Bartolini, Preist, and Jennings (2003) looked at existing interaction techniques and 

developed a general framework for automated negotiation. They observed that 

negotiation processes can take many different forms and that the negotiation process is 

only fully specified if the negotiation protocol and the negotiation rules are fixed. 

Bartolini et al. therefore defined an abstract negotiation process, a generic negotiation 

protocol, and a taxonomy of negotiation rules which specify the admissible behaviour 

of negotiators engaging in the negotiation protocol. With the help of this taxonomy of 

negotiation rules, negotiation processes can now be classified with respect to their 

behaviour and thus become accessible to systematic re-use. The taxonomy alone, 

though, only provides an abstraction of the negotiation process and does not address the 

issue of selecting the right negotiation process in a particular design situation (or 

deciding whether a negotiation process is helpful at all). Furthermore, the taxonomy 

only concerns negotiation techniques and not interaction or even agent-oriented 

techniques in general. 

General methods for selecting interaction techniques during the design phase were 

proposed by Elammari and Lalonde (see subsection 3.5.4.3) and by Miles, Joy, and 

Luck (2002). As described in subsection 3.5.4.3, the methodology of Elammari and 

Lalonde identifies different types of dependencies between agents and proposes a pre-

defined interaction pattern for each type of dependency. Furthermore, the methodology 

allows to add new interaction patterns to a dependency type, but does not explain how 

the designer may choose the right interaction pattern in a particular design situation. 

Re-use is thus possible for only a few interaction patterns. In the Agent Interaction 

Analysis methodology of Miles et al. (2002), a co-ordination mechanism is selected for 

each goal that is identified during the analysis phase (see subsection 3.5.5). To select an 

appropriate co-ordination mechanism, the designer must browse through a list of co-

ordination mechanisms that are defined in a standard pattern language (such as the ones 

described above) and choose the co-ordination mechanism that is most suitable for 

matching the goal's preferences. To ensure that the chosen mechanism really does 

satisfy the preferences, the methodology provides an assurance analysis method, in 

which the designer must acknowledge for four phases of an interaction (information 

acquisition, updating information, information analysis, and enactment) that the 

mechanism satisfies all preferences. This assurance analysis method, however, requires 

that the designer understands the co-ordination mechanism under consideration in detail 

and can therefore only be applied to a small set of mechanisms (see also subsection 

3.6.1). Due to the limitations of the pattern-oriented approach discussed above, the 

designer is likewise not able to browse through a large set of co-ordination patterns. 

The approach proposed by the Agent Interaction Analysis methodology is therefore 

restricted to a small set of co-ordination patterns and is consequently not able to 

promote re-use for a large set of mechanisms across many designers. 
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In general, it can be concluded that agent-oriented software engineering research has 

not yet integrated satisfactorily existing re-use mechanisms into the agent-oriented 

design process. There have been several proposals for representing agent-oriented 

design solutions as patterns or frameworks, but only a few attempts have been made to 

select the right pattern given a design problem. Moreover, the selection mechanisms 

proposed fail to promote a wide spread use of the design patterns because the designer 

must read through each pattern. The selection mechanism proposed must therefore be 

significantly extended in order to reduce the efforts required by the designer willing to 

re-use a pattern. At this point, it could be argued that there is no need for agent-specific 

re-use techniques and that the standard techniques discussed in the previous subsection 

are also sufficient to promote re-use for agent-based systems. But even if this is true, it 

is still necessary to show how existing techniques will be effectively applied to agent-

based systems since the above discussion has shown that this is not obvious. 

3.7 Conclusions 

This chapter has reviewed existing methodologies with respect to their suitability for 

wide spread use in the design of agent-based production control systems. Such wide 

spread use requires that the design methodology can be applied by an engineer with a 

standard qualification (in control engineering) and only minimal training in agent 

technology. In terms of the definition of a methodology, this translates into two main 

requirements (see section 3.1.1): 

® Model appropriateness. The models of a methodology should be clearly 

related to the relevant concepts of the problem domain and should allow a 

straight and comprehensible transition from the domain to the agent-oriented 

concepts. 

s Method prescriptiveness. The methods of the methodology should include 

sufficient criteria to perform each agent-related design step. 

Against this background, the review has shown that no existing methodology 

sufficiently fulfils the above requirements such that it could be applied by an engineer 

without experience in agent design. 

First of all, all methodologies employ a computational model that is either unable to 

model agent-based systems (see structured, data-centred and object-oriented 

methodologies) or does not allow a straight transition from domain to agent-oriented 

concepts (see existing manufacturing and agent-oriented methodologies). Structured 

and data-centred methodologies are obviously unsuitable for modelling autonomous 

and co-operative distributed computing. Object-oriented approaches equally fail to 

model agent-based systems because agents are more than objects (Jennings 2000, 
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Jennings 2001). In particular, objects are unable to model goal-based decision making 

and flexible interaction - two key aspects of agent-based production control. Existing 

manufacturing methodologies, in turn, are able to model the manufacturing control 

process, but do not support agent-oriented concepts, such as distributed autonomous 

and co-operative decision making. 

Agent-oriented methodologies do provide suitable models for agent-based systems. But 

by and large these methodologies still fail to provide a straight transition from the 

domain of production control to agent-oriented concepts. This is partly due to the fact 

that most agent-oriented methodologies have been designed with a diSerent type of 

application in mind. Role-based methodologies, for instance, have been developed for 

domains in which roles are given or can be easily identified - which is not true for 

production control. Other methodologies equally fail because they are based on 

concepts, such as roles, tasks, or services, that are unable to model the relevant aspects 

of production control. 

Secondly, nearly all methodologies provide criteria for agent identification which lead 

to an inappropriate set of production agents. Object-oriented methods for agent 

identification, such as activeness or linguistic case analysis, may identify - as discussed 

in subsection 3.3.5 - objects which are not agents or even — in extreme cases - the 

wrong agents. Likewise, knowledge-based, role-based, and system-oriented 

methodologies are difficult to apply to the identification of production agents because 

neither task hierarchies nor roles can be found in the initial description of production 

systems. Some methodologies do identify manufacturing agents, but do so with 

strategies which are either intuitive or based on models that are unable to capture the 

decision making necessary in production control. 

Concerning interactions, some agent-oriented methodologies have incorporated 

guidelines for interaction design (e.g., Kinny et al., Gaia methodology) or protocol 

models (e.g., Burmeister, Gaia methodology). But only a few have elaborated how the 

need for interaction can be identified, and only one methodology has explained how 

interactions can be designed. The re-use-oriented approach of Elammari and Lalonde as 

well as Miles et al., though, is based on the selection of suitable design patterns which 

with the given current state-of-the-art in re-use is still intuitive and in particular not 

scalable. 

To conclude, there is currently no methodology for the design of an agent-based 

production control system which satisfies the requirements stated in subsection 3.1.1. In 

particular, existing methodologies fail to fulfil the requirements in three respects; 

1. No existing methodology is able to adequately model the agent-oriented 

decision making in control applications, and thus to provide a straight and 

comprehensible transition firom domain to agent-oriented concepts (see 

requirement III in subsection 3.1.1). 
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2. No existing methodology provides sufficient criteria for identifying suitable 

production control agents, and is thus sufBciently prescriptive with respect to 

the identification of production agents (see requirement IV in subsection 3.1.1). 

3. Very few methodologies have looked at designing interactions and in particular 

none have provided a method for re-using interaction protocols on a large scale. 

No methodology is thus sufficiently prescriptive with respect to interaction 

design (see requirement IV in subsection 3.1.1). 

It is therefore necessary to develop a comprehensive design methodology that captures 

goal-based decision-making in its models and provides a new list of criteria for agent 

identification and interaction design. This methodology can be built on several 

achievements and insights of existing methodologies. First of all, the methodology 

should clearly separate analysis and design activities (see subsection 3.2.3). Secondly, it 

should start by identifying the entities of the domain and transforming these into 

analysis and design objects (as is done by object-oriented methodologies (see 

subsection 3.3.5)). This will create a link between domain and solution concepts, and 

thus improve the appropriateness of the methodology. Thirdly, the methodology should 

clearly separate the design of agents from the design of the interactions (a second 

achievement of object-oriented methodologies (see subsection 3.3.5, also (Ciancarini 

2000))). Fourthly, the methodology should make use of several aspects already 

proposed in existing agent-oriented methodologies. With respect to agent identification, 

the methodology should redefine existing criteria for identifying agents, such as those 

of Parunak et al. (see subsection 3.5.6.2), in terms of a decision-oriented model of 

manufacturing control and re-organise them in a more structured design process, such 

as the grouping process of Prometheus (see subsection 3.5.4.5). And with respect to 

interaction design, the methodology should build upon the approach of Elammari and 

Lalonde (see subsection 3.5.4.3) to identify dependencies between agents and associate 

protocols to these dependencies, as well as extend the re-use-oriented approach of 

Miles et al. (see subsection 3.6.2) in order to make it applicable to a wide range of 

interaction protocols. To incorporate the above achievements and insights into a new 

design methodology for agent-based production control systems that is both appropriate 

and sufficiently prescriptive with respect to the identification of the control agents and 

the design of the interactions between these agents is the goal of the next chapter. 
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Chapter 4 

The DACS Design Methodology for 
Production Control 

The review of existing design methodologies in the previous chapter has shown that 

conventional design methodologies, such as for instance object-oriented or 

manufacturing control methodologies, are insufficient for the design of agent-based 

production control systems. This is because the development of agent-based systems 

places different requirements on the software models and methods to be used. The 

review also demonstrated that the agent-oriented design methodologies developed to 

date lack either appropriate models for modelling control decisions or are not 

sufficiently prescriptive to enable a control engineer without prior experience in agent 

technology to design an agent-based production control system. Chapter 2, on the other 

hand, has shown that agent technology provides indispensable features for future 

control systems and that a wide spread industrial exploitation of this technology will 

require a design methodology for agent-based production control systems that can be 

applied by industrial engineers. To fill this gap between the state-of-the-art and 

industrial needs, this chapter presents the ZMCiS" methodology for designing agent-

based production control systems that is both appropriate for control design and 

sufficiently prescriptive for a control engineer with only minimal training and no prior 

experience in agent technology. 

The DACS methodology will follow the commonly used approach to first identify the 

agents of the application and then to design the interactions between them (see section 

3.3). In so doing, the methodology will also clearly distinguish between an analysis and 

a design phase (see section 3.2). Second, the methodology will draw &om the models of 

decision theory and manufacturing control theory to create a model of control decisions 

that can be used to identify the control agents (see section 3.4). And, finally, the 

methodology will build upon the well-proven concepts of coupling and cohesion (see 

subsection 3.2.2) and specific agent-oriented concepts, such as dependencies (see 

subsection 3.5.4.3) and "good design practice" (see subsection 3.5.6.2), in order to 
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create a set of prescriptive design rules for shaping the actual agents or interactions of 

an application. The methodology, in turn, will go significantly beyond the state-of-the-

art in three respects: 

• It will incorporate the above aspects into a new agent identification method 

which is both appropriate for production control because it is based on a 

decision-oriented model of the domain and sufficiently prescriptive because it 

employs elaborated design rules to group decisions into agents. 

• It will provide a method for re-using existing interaction protocols that 

identifies and adapts the most appropriate interaction protocols for each 

interaction situation that arises during the execution of the agents. 

• It will integrate these methods into a guided set of design steps which can be 

easily followed by the designer in order to go from the specification of a 

production process to the design of an agent-based control system that is able to 

operate the production process. 

The DACS methodology is thus complete in the sense that it provides all tools 

necessary to address the agent-oriented aspects in the design of agent-based production 

control systems. To achieve this, the methodology will consist of three major steps: 

1. Analysis of decision making - The control decisions that are necessary to 

operate the production process are identified and analysed. Furthermore, 

dependencies between the decisions that may require interaction during the 

execution are also identified and incorporated into a decision model. 

2. Identification of agents - The system architecture of the agent-based control 

system is designed. In particular, this step identifies the agents of the control 

system, the decisions they are responsible for, and the interaction requirements 

of the agents. That is, when do agents need to interact and what does the 

interaction need to achieve. 

3. Selection of interaction protocols - Each interaction requirement between 

different agents is classified and matched against a library of existing (agent-

oriented) interaction protocols. The most suitable interaction protocol is 

selected and adapted to the specific needs of the particular interaction situation. 

The result of the three steps of the methodology is a design that specifies the agents of 

the control system and for each agent how it interacts with the production process and 

how, if necessary, it interacts with other control agents. That is, the design is 

sufficiently modular to allow the independent design and implementation of each 

control agent. An overview of the DACS methodology is shown in figure 4.1. 
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^^^control problem ^ 

I ,/y«y 

Agent-based 
design 

2. Identification of agents 

1. Analysis of control decisions 

3. Selection of interaction protocols 

Figure 4.1: Major steps of the DACS methodology. 

The remainder of this chapter will present input and output of the methodology as well 

as each step of the methodology in detail. Section 4.1 will outline the input to the 

design methodology, i.e., the q/" a and its associated 

control problem. Section 4.2 will then describe the first step of the methodology: the 

analysis of the control decisions necessary to operate the production process. The 

identification of the agents capable of co-ordinating these control decisions is discussed 

in section 4.3. Finally, section 4.4 presents the selection of appropriate interaction 

protocols for the co-ordination of the agents. A summary of the design steps is given in 

section 4.5. To illustrate the design methodology, each section discusses a running 

example which is a small, but realistic control problem. Chapter 5 will then evaluate the 

methodology with respect to the requirements specified in subsection 3.1.1. A complete 

industrial case study is given in appendix B. 

4.1 Specification of the production control problem 

The input to the design methodology is a requirements specification of the production 

process and its associated control problem. It must consist of three parts (see also 

(Groover 1987, Hitomi 1994)); 

(i) a specification of the (physical) production process to be controlled, including 

the available control interfaces 

(ii) a specification of the coWzYm/w 

(iii) a specification of the production goals and requirements 
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The first specification describes the (mechanical) components of the production system 

and their arrangement on the factory floor (Castillo 2002, Fanti 1996, Caselli 1992). 

The specification furthermore defines for each component its physical behaviour and its 

control interface (if existing). The physical behaviour can be defined with the help of 

various modelling approaches, such as for instance discrete event systems (Zeigler 

1984, Fanti 1996), Petri nets (Murata 1989, Zhou 1992), or IDEFO (Bravoco 1985). The 

control interface specifies which kind of sensory information about the status of the 

production component is provided and what kind of (physical) actions can be initiated 

at the component. Examples of mechanical components in discrete manufacturing are 

(Groover 1987, pp. 20): 

• resources (such as machines or robots for processing; conveyor belts, lifts, 

switches for transporting of material; buffers for storing material); 

• material (such as cylinder heads, car bodies, or assembled engines); and 

« auxiliary material (such as pallets or processing tools). 

Example. Throughout this chapter, the following small production system will be 

used to illustrate the design methodology. The small production system 

consists of a loading station, an unloading station, three flexible machining 

stations (Ml to Ms), several transportation switches (Si to Sn), and several 

conveyor belts. The factory layout of this production system is shown in 

figure 4.2. Equipped with the right machine types and processing tools, 

such a production system would be able, for instance, to produce cylinder 

blocks for car engines. 

machine 

switch Si! 

unloader 

machine 

loader 

switch S 

machine 
M 

sTivitch 

conveyor belt 

Figure 4.2; Example production system. 
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The production process of such a production system is as follows. At the 

loading station, workpieces are put onto a conveyor belt and fed into the 

production system. Each workpiece then circles around the production 

system until a transportation switch moves the workpiece to a machine. The 

machine takes the workpiece off the inbound conveyor belt and processes it. 

After processing, the workpiece is put back onto the outbound conveyor 

belt and the switch feeds the workpiece back into the transportation circle. 

The processing of the workpiece is repeated until the workpiece is finished. 

The workpiece is then moved to the unloading station, where it is manually 

taken off the conveyor belt. 

The operation conditions specify the input and the (required) output of the production 

process as well as the spectrum of possible changes and disturbances that may occur 

during the operation of the production system (Fanti 1996, pp. 193) (see figure 4.3). 

The input to the production process is specified in terms of the (allowed) order mix that 

may be fed into the production system and the availability of the raw material that is 

necessary to execute the orders. The output of the production process is then simply the 

set of products specified by the order stream. 

changes disturbances 

{orders and ^ ^ output {products) 
rmyMafeMo/) V process V r 

Figure 4.3: Operation conditions. 

Disturbances are events during the production process that temporarily reduce the 

performance of a resource or a control unit. Most disturbances are out of human control 

and may occur at any time. Changes, on the other hand, are induced by the production 

management or the environment of the production process and may affect the 

production system or the input to the production system. The specification cannot 

identify all changes and disturbances that may occur, but it should at least identify those 

which are likely to occur and which should be dealt with automatically by the control 

system. 

Example. The input stream for the example production system is an arbitrary mix of 

different products to be produced (in small volumes). Changes to the 

production process are not expected and the only possible disturbances are 

sudden breakdowns of machines. 

The specification of the production goals determines the performance criteria for the 
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production system, i.e., how the production process should be optimised. Examples of 

production goals are high productivity or throughput; minimal lead times; or maximal 

capacity usage (Hitomi 1994, Sarin 1994). frcxsA/cf/oM place further 

constraints on the system functionality that are important for the operation of the 

system. Examples are flexibility with respect to resource or order changes; robustness 

with respect to mechanical or control failures; volume scalability; reconfigurability of 

components; quality assurance; maintainability; the possibility of human intervention; 

and the existence of fallback strategies in case of severe failures (Sarin 1994). 

The goal of the above production system is simply to maximise the 

throughput. Furthermore, the production process should be robust against 

machine failures and easily scalable through the addition of more resources. 

A solution to the production control problem is a control system 

(i) which is able to control the production system such that the system creates the 

specified products under the specified operation conditions, and 

(ii) which optimises system performance with respect to the production goals and 

requirements. 

In the following sections, it is assumed that a production control problem is given, i.e., 

the specific production process to be controlled, the operation conditions under which it 

is supposed to be controlled, and the production goals and requirements are known. 

4.2 Analysis of control decisions 

The very first step of the DACS methodology is to develop an initial understanding of 

the production control problem. Production control is the process of choosing, 

initiating, and monitoring actions in a production system in order to achieve specific 

production goals (see subsection 2.1.2). For an initial understanding of the control 

problem, the designer therefore needs to collect and characterise those situations arising 

during the production process in which control actions are necessary. In doing so, 

however, the designer should not anticipate any design decisions which might exclude 

alternative solutions from the design process. For instance, the designer should not 

assume that scheduling actions will be necessary even though it may be possible to 

control the process without assigning start dates to specific actions.'® To avoid implicit 

assumptions about the control solution, the designer should therefore focus at the 

beginning of the design phase on identifying those decisions any solution to the given 

control problem must make. Since a controller can only interact with the physical 

production system through its control interface, any control system must eventually 

' See subsection 2.3.3 for an example of a control system where scheduling is not required. 
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decide which physical actions to initiate at the components of the production system -

no matter how these actions were actually determined. The methodology therefore starts 

by looking at the physical actions that are necessary to run the production process and 

identifies all those situations in which the controller has alternative actions to choose 

from (see step 1.1 in figure 4.4). These situations represent the decision tasks which the 

controller has to solve in order to achieve the production goals. These decision tasks -

which will be called effectoric decision tasks - are characterised without specifying 

how these decisions will be made or what the (exact) result of each decision task should 

be. 

Specification of production 
-^^^control 

2. Identification of agents 

3. Selection of interaction protocols 

1.2 Identification of decision dependencies 

1.1 Identification of effectoric decisions 

Figure 4.4: Steps for the analysis of control decisions. 

Looking at the individual decision tasks, however, is not enough to fully understand the 

control problem to be solved (see also subsection 3.5.4.3). Physical actions are not 

executed in isolation, but in a (physical) system in which their effects add up and create 

a specific overall process behaviour. In a manufacturing system, for instance, the 

workload and thus the degree of capacity utilisation at each machine is determined by 

the individual assignments of workpieces to machines. To achieve an optimal 

distribution of the workload, a single workpiece may not simply be assigned to any 

appropriate machine, but this decision must be co-ordinated with the machine 
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assignments of other workpieces in the production system. In order to identify these 

kinds of dependencies between decision tasks, it is necessary to analyse the ejects the 

choices of one decision have on the utility of other decisions. The second analysis step 

of the methodology is consequently to identify all relevant dependencies between 

decision tasks by analysing the effects of decision tasks on the physical production 

process, and in particular on other decision tasks (see step 1.2 in figure 4.4). 

The remainder of this section is organised as follows. Subsection 4.2.1 describes the 

identification of the effectoric decision tasks, and subsection 4.2.2 discusses the 

identification of decision dependencies between the effectoric decision tasks. 

Subsection 4.2.3 then summarises the results of the two analysis steps. The decision 

model resulting from these two analysis steps will then serve as a basis for subsequent 

design steps (see figure 4.4). 

4.2.1 Identification of efTectoric decisions 

The objective of the first analysis step is to collect and characterise all effectoric 

decision tasks that are necessary to run the production process. But before this can be 

done, it is necessary to first clarify what (effectoric) decisions are. 

4.2.1.1 Modelling control decisions 

According to classical decision theory, a decision is the choice of the "best" alternative 

out of a set of possible alternatives (Laux 1998, Coyle 1972). These alternatives must 

be different and exclusive in order to allow the application of classical decision theory. 

They must be different in the sense that at least two alternatives must have different 

effects (otherwise there is no decision problem). And they must be exclusive in the 

sense that the alternatives cannot be combined, i.e., only one can be chosen. To make a 

decision, the alternatives must be (totally) ordered according to their utility and the 

alternative with the highest utility is chosen (i.e., the utility function must identify at 

least one maximal element that is better than all other alternatives). 

Classical decision theory can be applied to most production control problems in 

discrete manufacturing because for most production systems each decision task consists 

of a set of different and exclusive alternatives (for instance, move to machine A or B). 

The standard description of decision tasks in classical decision theory, though, must be 

extended because control decisions are embedded into a physical world and must be 

resolved continuously, not only once (see also (Dean 1991)). A control decision should 

therefore be characterised by a trigger, a decision space, a decision rule, and a control 

interface (see figure 4.5). The trigger specifies when the control decision is required, 

i.e., it specifies the situations occurring during the production process that require the 

decision. The decision space is defined by the set of possible actions the component can 
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perform in these situations. The decision rule is a preference function on the decision 

space that identifies the "best" alternative. Even though a total preference function is 

(theoretically) sufficient to resolve a decision task, the preference function is often 

complemented by a set of constraints forbidding certain actions in specific situations. 

And finally, the control interface that can be used to enact the decision is specified. 

decision rule 

sense trigger ' 
and 

monitor process 
initiate action 

control decision 
(decision space) 

process 

Figure 4.5: Abstract model of control decisions. 

Given this model of control decisions, it is now possible to define what an effectoric 

(control) decision is. An effectoric decision task is a decision task whose decision 

space consists of at least one physical action." As argued at the beginning of this 

section, an effectoric decision task is thus the only way for the controller to influence 

the course of the production process since only physical actions actually change the 

state of the production process. Consequently, if a designer is able to find a small set of 

effectoric decision tasks that covers all possible physical actions which are required to 

operate the production process, then this set of effectoric decision tasks is a complete 

representation of the control problem. That is, this small set of effectoric decision tasks 

includes all control decisions a control system can and must make in order to solve the 

production control problem. The methodology thus starts with collecting such a 

complete set of effectoric decision tasks. 

4.2.1.2 Identifying effectoric decisions 

An effectoric decision task was defined as a decision task that includes at least one 

physical action. To identify a set of effectoric decision tasks covering all possible 

decision situations of the production process, it is therefore straightforward to look at 

all production components and to collect all those situations in which at least two 

alternative actions are possible. 

" Assigning a start date to a manufacturing operation is an example of a non-physical action because it 
only changes the state of the controller, not of the manufacturing process itself. Note that assigning a start 
date to an operation does not imply that the operation is really started at that date. For this, a controller 
has to initiate the operation at the specified date. 
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Example. In the example production system, transportation switch S3 has two 

alternatives for any workpiece coming from switch % (see figure 4.2). It 

can either move the workpiece to machine Mi or to the switch S4. Any 

control system controlling this production system must make this control 

decision at some point. Therefore, there must be an effectoric decision task 

covering this control decision and the possible physical actions in this 

situation. 

Switch S4 has no choice, but to move any arriving workpiece onto the 

conveyor belt leading to switch S5. A decision situation thus arises only if 

two workpieces arrive at the switch (nearly) simultaneously. In such a case, 

the switch S4 has the alternatives of moving one of the workpieces first. 

Even though occurring rarely, this decision may be relevant to the overall 

performance of the production system because it has an influence on the 

time it takes each workpiece to reach its destination. The decision task must 

therefore be included in the initial set of effectoric decision tasks. 

In contrast to switch S3 and S4, transportation switch S5 has no choice at all 

because it has only one exit and one entry. Theoretically, the switch could 

delay the transportation for any length of time. But there is no reason to do 

so. So practically, switch S5 has no choice, but to immediately move the 

workpiece to its exit. Consequently, switch S5 does not require an effectoric 

decision task (but can be controlled by a local controller without any 

interaction with other controllers). 

The identification of effectoric decisions can be facilitated through the analysis of 

typical scenarios occurring during the production process. In this approach, the designer 

tries to list as many different production scenarios as possible and identifies all 

effectoric decisions appearing in these scenarios. To list typical scenarios, the designer 

can employ the use-case approach which identifies typical scenarios in which a system 

will be used (Jacobson 1992, Buhr 1998, Sutcliffe 1998). To identify the effectoric 

decisions required in one of these scenarios, the designer must analyse the different 

events and actions that should or could take place in such a scenario. This can be done 

with any of the modelling approaches for manufacturing processes (see section 3.4). An 

example of a typical scenario is the processing of a workpiece. In order to become a 

product, a workpiece must run through many steps: load workpiece into the system, 

transport it to the next machine, load it into the machine, process the workpiece, release 

it from the machine, transport it to the next machine, ..., transport it to the exit, and 

unload it from the system (see figure 4.6). If the designer mentally follows the possible 

processing (and transportation) steps the workpiece has to go through, many effectoric 

decisions become obvious. Another example of a typical scenario, which is orthogonal 

to the scenario of a workpiece, is that of a resource which is continuously processing 
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different workpieces. Even though this scenario partly overlaps with that of the 

workpiece, it may contain additional aspects, such as tool changes the machine has to 

perform between the processing of different workpieces. The generation of (typical) 

scenarios, however, is application dependent since the notion of a typical scenario 

depends on the nature of production process. Nevertheless, workpiece and resource 

scenarios are good candidates for identifying (nearly) all effectoric decision tasks 

because production processes are always designed to be minimal (i.e., they are 

equipped only with those capabilities which are required to create the desired products). 

Example. Looking at the scenario of a workpiece in the example production system, it 

becomes clear that the control will involve two additional decision tasks. 

The first decision task will be responsible for loading the workpiece (at the 

loading station). A second decision task will be necessary, whenever the 

machines have overlapping capabilities, i.e., a workpiece can receive an 

operation at different machines. The second decision task will then be 

responsible for deciding which operations a workpiece will receive at a 

machine. 

To find all effectoric decisions, it is often necessary to analyse many different scenarios 

in order to get a complete picture of all necessary effectoric decisions. To ensure that 

the list of effectoric decisions is complete, a valuable heuristic is to check the 

specification of the control interfaces in the production system for possible actions 

which have not been covered yet. Another approach could be to model the 

manufacturing process as a Petri net and use the associated analysis tools to identify any 

decision conflicts arising during the production process (see subsection 3.4.3). 

However, there is usually no guarantee that the model is complete, and the analysis 

might have to be repeated if missing decision tasks are discovered at later steps. 

un-/load tool 

transport 

load 
work piece 

start 

unload 
work piece 

load 
tool pallet 

load machine release load machine 

release 
tool pallet 

start / end 

release 

process 
work piece 

process 
work piece 

Figure 4.6: Typical scenarios for a workpiece and a machine. 
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Example. The four decision tasks identified in the example production system are the 

only decision tasks necessary to control the production process. Note that 

no decision task is necessary for the unloading of a workpiece because it is 

unloaded as soon as possible. Note also that there are no decision tasks for 

managing tools at a machine because for this simple production system it is 

assumed that the tools are handled manually. 

4.2.1.3 Characterising efkctoric decisions 

Each effectoric decision task identified is characterised according to the pre-defined 

schema shown in table 4.1, which is derived from the model of a control decision 

discussed at the beginning of this subsection (see figure 4.5). The attributes control 

fM/e/yace, ^acg, and /oca/ (/gcM/on rw/g are the core aspects of this 

definition (the attributes id, title, and parameters are only introduced for ease of 

reference and to facilitate the characterisation). 

Attribute Description 

id unique identifier mandatory 

title short description of the decision task optional 

parameters Optional parameters that function as variables in the 

specification of the following attributes. With the help 

of parameters, similar decision tasks can be generalised 

into decision types covering different situations during 

the production process. 

optional 

control The control interface that is necessary to enact the mandatory 

interface physical actions of the decision space. 

trigger Specification of situations in the production process in 

which the effectoric decision becomes necessary. 

mandatory 

decision The set of decision alternatives available in this mandatory 

space decision situation. At least one of the decision space 
alternatives must be a physical action. 

local Any constraints and preferences on the decision space optional 

decision rule that are induced by local aspects of the decision 

situation. 

Table 4.1: Schema for effectoric decision tasks. 

An effectoric decision becomes necessary whenever a specific situation occurs during 

the production process. This situation (or set of situations) is specified by the trigger 
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attribute. To take an appropriate action in this situation, the controller has several 

options which are specified by the decision space. Due to the very general definition of 

an effectoric decision task, it is only required that the decision space has at least one 

physical action. The other alternatives may be computational actions, such as the 

commitment to a certain behaviour in the future, the acquisition of some relevant 

knowledge, or even the null action. In case the null action is included in the decision 

space, the controller may or may not choose to act. The attribute of the local decision 

rule, in turn, specifies which decision alternative should be chosen when considering 

only local aspects of the decision situation. In particular, a local decision rule may use 

only information that is physically available at the components involved in the decision 

situation. The specification of the decision situation in the trigger attribute thus also 

defines what constitutes local and non-local aspects. Finally, the control interface 

attribute must list all those control interfaces that are necessary to enact the decision 

alternatives requiring physical actions. 

The restriction of the decision rule attribute to only local information facilitates the 

understanding of the control problem. If the decision rule was not restricted to local 

information, it could involve information or even decision tasks at other components if 

their results were relevant to the selection of the local decision alternatives. This could 

lead to arbitrarily complex decision rules which would be difficult to analyse in the first 

step. It is easier to start with the local decision rules and then to add any interrelations 

or dependencies between the decision tasks and their rules at later stages. Obviously, 

this implies that the local decision rules may be sub-optimal with respect to the 

production goals if possible dependencies are ignored at this stage. Any sub-optimality, 

though, will be remedied in the subsequent analysis step (see subsection 4.2.2). 

The above definition of a decision task is kept very general in order to cover all 

possible kinds of effectoric decision tasks. Most effectoric decision tasks, though, will 

satisfy a more restricted definition which is given in table 4.2. These decision tasks are 

characterised by a decision situation which arises at a single production component and 

the decision alternatives are all physical actions that are available to the production 

component in this situation. The physical actions, however, may include the "null" 

action, which is assumed to have no effect. The necessary control interface is obviously 

the control interface of the production component. The following examples of 

effectoric decision tasks all satisfy this narrower definition. 
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Attribute Description 

id (as in table 4.1) 

title (as in table 4.1) 

parameters (as in table 4.1) 

control interface the control interface of a production component 

trigger Specification of a situation at the production component in 

which the effectoric decision becomes necessary. 

decision space The set of physical actions provided by the control 

interface. 

local (as in table 4.1) 

decision rule 

Table 4.2: A typical specification of an effectoric decision task. 

Example. In the case of the transportation switch S3, a decision is required every time 

a workpiece reaches the switch (see table 4.3). The switch must then choose 

one of the two possible exits and transfer the workpiece to this exit. The 

control interface for this decision task is therefore the control interface of 

the switch, and the decision space consists of the two possible exits of the 

switch. Since the decision should be made immediately in order not to 

block the entry, the decision space does not contain any timing aspects. The 

local decision rule for choosing the right exit is simply to (randomly) 

choose any free exit because any information necessary to correctly route 

the workpiece is non-local information. The decision task is not able to 

access any information about the capabilities and workload of any machine 

in the production system. This information, however, would be necessary to 

choose an appropriate next machine for the workpiece. 

For switch S4, a decision is required every time two workpieces reach the 

switch nearly simultaneously (see table 4.4). The switch must then choose 

one of the workpieces to move first. This problem is identical to choosing 

an entry. The decision space of this decision task consists therefore of the 

two entries of the switch. Since the decision should be made immediately in 

order not to block the entry, the decision space does not contain any timing 

aspects. The only local criteria available in this situation is to choose the 

workpiece that is closest to its deadline (assuming such information about 

the workpiece is attached to it). 
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Attribute Description 

id 

title 

parameters 

control interface 

trigger 

decision space 

local decision rule 

D2 

Choose an exit at switch S3 

workpiece Wi 

control interface to S3 

Wi arrives at entry 

{exiti, exiti) 

Choose any free exit. 

Table 4.3: Example effectoric decision task at switch S3. 

Note that both effectoric decision tasks characterised above have already 

been generalised in order to be applicable to any decision situation arising 

at the switches. This has been achieved by introducing parameters for the 

workpieces. The decision tasks can be further generalised by replacing the 

reference to switch S3 (or switch S4 respectively) by a parameter; for 

example Sk. The decision tasks are then applicable to any switch in the 

example production system with the same number of entries and exits. 

Attribute Description 

id 

title 

parameters 

control interface 

trigger 

decision space 

local decision rule 

D3 

Choose an entry at switch S4 

workpieces Wi and Wj 

control interface to S4 

Wi at entry: and Wj arrive at entry: 

{entryi, entryz} 

Choose the workpiece closest to a deadline. 

Table 4.4; Example effectoric decision task at switch S4. 

For completeness, the remaining two decision tasks of the example 

production system are characterised as well. First of all, a decision task for 

loading workpieces must be defined (see table 4.5). This decision task must 

decide which workpiece to load next once the exit of the loading station is 

free, i.e., once it is physically possible to load a new workpiece. It can 

choose any workpiece available in the loading stock. 
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Attribute Description 

id 

title 

parameters 

control interface 

tngger 

decision space 

local decision rule 

D, 

Load workpiece from stock 

(none) 

control interface to loading station 

exit is free 

set of available workpieces 

Choose any workpiece available in the stock. 

Table 4.5: Example effectoric decision task for the loading station. 

The last decision task to be defined for the example production system is 

responsible for processing a workpiece at a machine (see table 4.6). This 

decision must be made once a workpiece arrives at the machine. The 

machine may choose any set of operations that is required by the workpiece 

in its current processing state and that the machine is currently able to 

provide. 

Attribute Description 

id 

title 

parameters 

control interface 

tingger 

decision space 

local decision rule 

D4 

Process at machine 

machine Mi, workpiece Wj 

control interface to Mi 

Wj arrives at Mi 

set of operations of Mi 

Choose the maximal set of operations that Wj requires in its 

current processing state and that is currently available at M-

Table 4.6: Example effectoric decision task for the machines. 

Note that at this stage of the analysis, the above schema only prescribes the 

identification of local constraints and preferences for a decision task. Any constraints 

and preferences involving anything other than local aspects are added when the 

decision dependencies are identified (see subsection 4.2.2). 

The set of decision tasks and their temporal order of occurrence can be represented in a 

trigger diagram. In this diagram, decision tasks are indicated by nodes (annotated 

either with their id or with the title of the decision task) and the temporal order of their 

occurrence is specified through arrows. More precisely, an arrow expresses the fact that 

the physical action enacted because of the first decision may or must lead to a situation 
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triggering the second decision. The arrows thus identify all possible causal relationships 

between decision tasks. To improve readability, the trigger diagram may be extended by 

in the production process that explain how the enaction of one decision task can 

lead to a situation triggering the other decision task. The following example illustrates 

the concept of the trigger diagram. 

The very first decision to be made in the example production system is to 

load a specific workpiece (effectoric decision task DJ. Once loaded, the 

workpiece continuously moves along the transportation circle until it is 

moved to a machine that processes it. That is, the workpiece enters the 

transportation circle at switch Si which requires decision task D3. On the 

transportation circle, it either passes a machine (D2 and D3) or is moved into 

a machine (D2) where the next effectoric decision is to choose the set of 

operations to be applied to the workpiece (D4). After processing, the 

workpiece enters the transportation circle agair • the second switch (D3). 

Once the workpiece has received all processing specified by its associated 

order, the workpiece is moved to switch Su and then to the unloader (Di). 

Finally, the workpiece is unloaded which is represented only as an event in 

the production system, since it does not involve any decision - the 

workpiece is unloaded as soon as possible. The resulting trigger diagram is 

shown in the figure 4.7. 

Since the trigger diagram illustrates the temporal order of decisions (as they are 

triggered by the physical process), it can be used as a visual aid in the following 

analysis and design steps. 

choose exit 
unload 

work piece 
at switch 

>4 ( 2 

G> 
load choose entry 

work piece switch 

choose entry 
at switch 

choose exit 
at switch 

process at 
machine 

decision task (with id #) 

event 

physical flow 

Figure 4.7; The trigger diagram for the example production system. 
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4.2.2 Identification of decision dependencies 

The decision model developed in the previous subsection only covers purely local 

aspects of the control problem. For each effectoric decision task, it specifies only the 

local decision rule, i.e., the local constraints and preferences on the decision. But 

control decisions are not executed in isolation. The effects of their actions may interfere 

with each other and create a complex overall system behaviour. Purely local decisions 

in such a system may lead to undesirable situations, such as deadlocks or starvation. Or 

the system may simply show poor performance with respect to the production goals. 

Example. The transportation switch S3 of the example production system has to 

choose one of the exits for each workpiece arriving at its entry. Which exit 

it chooses is irrelevant to the switch. It can move a workpiece equally well 

to any of the exits (as long as both exits are free). With respect to the 

system performance, however, it is by no means irrelevant onto which exit a 

workpiece is moved. First of all, a workpiece should only be moved to 

machine Mi if the machine is able to process the workpiece. And second, 

through its decision the switch determines the workload of machine Mi and 

thus its capacity utilisation. 

To achieve the production goals and avoid undesirable behaviour, it is therefore 

necessary to look also at the combined effects of the effectoric decision tasks. Assume 

there are two or more decision tasks whose effects are somehow linked. These decision 

tasks are called dependent (on each other) if the decision choices proposed by the local 

decision rules lead to either undesirable or poor performance of the production system 

(see subsections 2.2.2.1 and 3.5.4.3). In such a case, the decision tasks should choose a 

different combination of actions than prescribed by their local constraints and 

preferences. The local decision rules may either propose a combination of actions that 

should be avoided or that is simply inferior to other combinations. In the first case, the 

combination of actions can be avoided by imposing a constraint on the product of the 

decision spaces of the different decision tasks. In the second case, the inferiority of a 

combination can be expressed by a preference function on the product of decision 

spaces. Constraints and preferences on the product of different decision spaces will be 

called non-local constraints and preferences. 

Example. In the above example, the switch S3 should not send a workpiece to 

machine Mi if the machine is unable to process the workpiece. This can be 

expressed as a non-local constraint stating that the switch may only choose 

the exit leading to the machine Mi if the set of operations that Mi can apply 

to the workpiece in its current processing state is non-empty, otherwise the 

workpiece should be passed on to switch S4. Furthermore, switch S3 should 

pass the workpiece on if other machines that are also able to process the 
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workpiece currently have a smaller workload. This can be expressed as a 

preference function over the allowable exits. Note, however, that these 

constraints and preferences not only involve decision task Dz, but also D4 

(which determines the operations to be applied to a workpiece at a 

machine). These constraints and preferences are thus non-local. 

The literature provides several different kinds of classifications for dependencies (see 

subsections 2.2.2.1 and 3.5.4.3). Some of these classifications are difficult to apply to 

the decision model developed in the previous analysis step because the classification 

concepts, such as goals, are not part of the decision model, while others, such as the 

plan relationships of Decker (see subsection 2.2.2.1), can provide valuable hints at 

situations in which decision tasks may enable, facilitate, hinder, or even cancel each 

others' effects. At this stage of the analysis, though, it is sufficient to determine whether 

there exists a dependency between decision tasks or not. A more detailed analysis of the 

dependencies is deferred until the selection of appropriate interaction protocols in step 

3 of the methodology (see section 4.4). One special kind of dependency, however, 

deserves explicit attention at this stage because it may introduce a component not 

covered yet by the decision model. This kind of dependency is given if a decision task 

is dependent on the provision of non-local information, i.e., the decision task should 

choose different alternatives depending on this non-local information. For the first part 

of the above example, switch S3 is actually only dependent on the information as to 

whether machine Mi can process the workpiece at all, whereas for balancing the 

workload of the machines switch S3 also needs to know which operations will actually 

be applied to the workpiece and thus how the decision tasks will be resolved. The non-

local information a decision task is dependent on may be provided by another decision 

task, as in the above example, or by another source, be it a component of the production 

system or a data source external to the production system. In case the information is not 

available through another decision task, the corresponding information source must be 

included in the decision model (see for example figure 4.8). 

To summarise, a dependency thus expresses that there are additional constraints and 

preferences that must be taken into account when choosing the best alternative. Since 

these constraints and preferences, however, are non-local, the local controllers must 

interact to resolve the dependencies (or acquire the non-local information). The task of 

the analysis phase is therefore to identify and characterise these dependencies. 

4.2.2.1 Identifying dependencies 

The identification of dependencies is usually obvious and straightforward (as in the 

previous example). Many dependencies can be identified simply by studying the trigger 

diagram which represents (most of) the effects decisions create during the production 

process. Other dependencies can be identified by studying related decision parameters 
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of decision tasks. If two tasks affect the same components, it is likely that their 

decisions will be dependent. In the previous example, the transportation switch (routing 

the workpiece) and the machine (applying operations to the workpiece) both make 

decisions about the same workpiece and are consequently linked somehow. In some 

cases, however, it can be quite difficult to identify the dependency between decision 

tasks. For a job-shop environment, for instance, it has been shown that the scheduling 

problem is NP-hard, i.e., solving the scheduling problem is computationally expensive 

(Garey 1979). The reason for this is that changing a resource allocation at one machine 

may create a ripple effect through the whole schedule and may thus cause a change of 

an allocation at a different resource for a quite different time slot. Moreover, it may not 

be obvious from the start that such an effect is possible. 

In the following, it is assumed that the designer is able (with acceptable effort) to 

identify all relevant dependencies in the production system considered. This 

assumption is made because it is not the goal of this methodology to provide techniques 

to analyse production systems, but to develop a methodology for the design of agent-

based production control systems. Furthermore, it is reasonable to assume that a control 

engineer is able to analyse the behaviour of the production system if he intends to build 

and operate it. Tools for doing so are for instance Petri nets and discrete event systems 

(see section 4.1). If, nevertheless, a relevant dependency is not identified at this stage, 

but detected at subsequent design steps, the designer has to return to this stage and 

include the dependency in the decision model. Depending on the impact of this 

dependency on the overall system design, all subsequent design steps may have to be 

(partially) redone. Likewise, the designer may decide at this stage that a dependency is 

not relevant to the achievement of the production goals and may omit it right from the 

beginning in order to reduce the necessary effort at later stages of the design. Such a 

design decision, though, should be documented. 

4.2.2.2 Characterising decision dependencies 

The decision dependencies identified are characterised with the help of the pre-defined 

schema shown in table 4.7. The core aspects of the schema are the attributes decision 

tasks, constraints, and preferences. The attribute decision tasks list the ids of those 

decision tasks that are affected by the decision dependency or characterise the 

information sources able to provide the non-local information needed. The attribute 

constraints lists any combinations of decision alternatives (of the different decision 

tasks) which should not be chosen. Alternatively, the attribute may list the set of 

decision combinations which are allowed. Finally, the attribute preferences defines a 

preference function on the allowed set of decision combinations. The attributes for 

constraints and preferences are both optional, but at least one must be non-empty 

(otherwise there is no dependency). 
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Attribute Description 

id unique identifier mandatory 

title short description of the dependency optional 

decision tasks decision tasks or information sources involved in the 

dependency 

mandatory 

constraints Any combination of decision alternatives that should 

not be chosen. 

optional 

preferences Preference function on the combination of decision 

alternatives that are not forbidden by the constraints. 

optional 

Table 4.7; Schema for decision dependencies. 

Example. In the example production system, the simplest, but also most important, 

dependency between decision tasks is the requirement that a workpiece 

eventually arrives at a machine that is able to process it, or reaches the 

unloader if the processing is done. The routing of a workpiece is determined 

by the switches S3, Se, S9, and S12. The decision making of these switches is 

captured by a single decision task (namely Dz). Consequently, the 

dependency exists between instances of Dz (see table 4.8). 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DPi 

Route workpieces to the next machine 

D2 and machine capabilities 

Eventually direct a workpiece to a machine that is able to 

process it, or to the unloader if the workpiece is finished. 

Route the workpiece on the shortest path (if possible). 

Table 4.8: Example dependency for routing workpieces. 

The second important dependency in the example production system is to 

co-ordinate routing and processing of a workpiece such that the workpiece 

receives all the operations it requires and the number of stations visited is 

minimised (see table 4.9). Minimising the number of stations visited by 

each workpiece is important because otherwise a workpiece takes too long 

to run through the production system and thus consumes too much 

processing capacity. 
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Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DP2 

Minimise the number of stations visited 

D2 and D4 

Choose a sequence such that the workpiece receives all 

required operations (in the right order). 

Choose a sequence of machines that is minimal. 

Table 4.9: Example dependency for choosing machines. 

The third important dependency is to limit the work-in-process in the 

production system. If the loading station introduces workpieces faster than 

these can be processed by the machines, then the transportation system will 

eventually overflow with workpieces and, as a consequence, run into a 

deadlock or a congestion. To prevent a transportation deadlock, the decision 

task Di must take into account the current work-in-process and delay the 

next loading operation if necessary. However, Di can only estimate how the 

current work-in-process will use the capacity of the machines and the 

transportation system if it can anticipate how the workpieces will be routed 

and processed. It is thus necessary for Di to co-ordinate its decision with the 

routing and processing decisions Dz and D4 (see table 4.10). 

Attribute Description 

id DP] 

title Limit work-in-process 

decision tasks Di, D2 and D4 

constraints Introduce only as many workpieces as the production system 

is able to handle. 

preferences 

Table 4.10: Example dependency for loading workpieces. 

The set of dependencies can also be represented in the trigger diagram by simply adding 

a new arrow type for dependencies. A dependency arrow connects two decision tasks if 

there exists a dependency between these decision tasks. Dependencies between more 

than two decision tasks are represented by an arrow with more than two ends (see figure 

4.8). To indicate the dependency on an information source, the source is explicitly 

shown in the diagram by an information node. 
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Figure 4.8: The dependency diagram for the example production system. 

4.2.3 Result of the analysis steps 

The result of the analysis steps is a decision model representing the production control 

problem. The decision model consists of three parts: 

• a list and characterisation of all effectoric decision tasks necessary to run the 

production process; 

• a list and characterisation of all relevant decision dependencies between the 

effectoric decision tasks; and 

• a trigger diagram including all dependency relations. 

This decision model contains all the decisions any control system must make in order to 

solve the control problem. It also contains any local or non-local constraints and 

preferences the system must take into account when choosing physical actions. In this 

sense, the decision model is complete. Any control system implementing the decision 

model thus solves the production control problem. 

The decision model, however, is not yet executable. First of all, there may be conflicts 

between local and non-local decision rules, and the model does not yet say how to 

resolve these conflicts. Secondly, it is not yet clear how the non-local decision rule (and 

the conflict resolution strategy) can be computed; for this, the decision tasks will have 

to interact somehow. And thirdly, it is still not obvious which (effectoric) decision task 

should be assigned to which local controller and what kind of controller this should be. 

All of the above questions will be answered in the following design steps. First, the 
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next section will explain how decision tasks can be assigned to controller agents. Then, 

section 4.4 will select appropriate interaction protocols that will enable the controllers 

to resolve any dependencies arising at run-time. 

4.3 Identification of agents 

With the initial decision model as a basis, it is now possible to start the design process 

by identifying the agents of the control system. The agents have to be identified first as 

they are the basic building blocks of an agent-based control system; they define the 

overall architecture of the system. Interactions can only be defined by specifying which 

agent (type) is interacting with which other agent (type). At the same time, however, the 

system architecture also restricts the set of possible interactions, since it specifies the 

set of agents existing in the control system. It is therefore crucial to identify a set of 

agents which supports the task of achieving the production goals best. 

An agent is a decision maker which is able to pro-actively achieve its goals while it is 

continuously adapting to its dynamic environment (see section 2.2). With respect to 

production control, this definition requires that a control agent performs some kind of 

decision making (see section 2.1). Conversely, this definition also implies that any 

entity of the control system performing one of the decision tasks identified in the 

previous section is an agent (see also (Kendall 1996, Colombo 2002)). The first step of 

this design phase is therefore to introduce control agents by clustering decision tasks 

and assigning an agent to each cluster of decision tasks (see step 2.1 in figure 4.9). 

However, not every assignment of decision tasks to agents is equally suitable for the 

implementation of the control system. For instance, the designer could assign all 

decision tasks to a single agent. Although such an assignment is allowed by the above 

definition, it may result in an agent which is too complex to be implemented if the 

control problem consists of too many decision tasks. This design step therefore includes 

a set of rules for assigning decision tasks to agents which leads to a more modularised 

design and thus reduces the complexity of the remaining design tasks. 

Furthermore, not every decision network is equally well suited to agent identification, 

irrespective of the assignment rules used to cluster the decision tasks. The analysis 

phase described in the previous section focused on control aspects and deliberately did 

not take into account any criteria for structuring an agent-based system. In case the 

structure of the decision model is contrary to the criteria for identifying agents, the rules 

for assigning decision tasks to agents may fail to increase the modularization of the 

design. It must therefore be possible to reorganise the decision model such that it 

becomes more suitable for agent identification. Such a reorganisation, though, must not 

change the functionality of the control system. That is, from the point of view of the 

controlled process, the reorganised control system should send the same control 
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commands as the original design. This requirement ensures that the reorganised 

decision model still solves the production control problem. Design step 2.2 therefore 

describes allowable modifications of the decision model that improve the decision 

model with respect to agent identification without changing the control functionality. 

These modifications must be applied to the decision model until either a satisfying set 

of agents has been identified, or it becomes clear that it is not possible to identify a 

suitable set of agents (see figure 4.9). In the latter case, the designer has to abandon the 

agent-based approach. Following the design steps for agent identification, the designer 

thus either identifies a suitable set of control agents or realises that an agent-based 

approach is not appropriate for the given control problem. 

Specification of production 
~^__control problem , 

abandon 
>• agent-based 

approach 

3. Selection of interaction protocols 

1. Analysis of control decisions 

2.2 Improving the decision model 

2.1 Clustering of decision tasks 

2. Identification of agents 

List of 
agents 

Figure 4.9: Steps for the identification of agents. 

The presentation of the agent identification step is organised as follows. The first 

subsection describes the rules for assigning decision tasks to agents. Subsection 4.3.2 

presents possible operations on the decision model that can be used to improve the 

decision model with respect to the identification of agents. The last subsection finally 
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summarises the overall process and the results of this design phase. 

4.3.1 Clustering of decision tasks 

In the decision model, a control agent is identified by assigning it to a set of decision 

tasks for which it is solely responsible. Since a decision task should be assigned to at 

most one agent (otherwise the decision task must be split into several decision tasks) 

and every decision task should be assigned to some agent (otherwise a decision 

situation is not served), the identification of the control agents is essentially a 

partitioning of the set of decision tasks. The objective of this design step is therefore to 

find a partition of the decision tasks that represents a good design for the given control 

problem. 

4.3.1.1 Clustering algorithm 

In principle, any partition of the set of decision tasks defines a possible set of agents for 

the control system. The set of all partitions, however, has exponential size in the 

number of decision tasks. For realistic design problems, it is therefore nearly impossible 

to manually consider all possible partitions. On the other hand, some partitions are 

obviously of lower value than others. If, for example, it is possible to assign all decision 

tasks to one agent, but also to distribute the decision tasks to several agents, the latter 

solution should be preferred because it creates a more modular design. Consequently, 

the clustering process should first consider those partitions that promise to provide a 

greater design value. 

It is therefore proposed to construct the partitions by successively clustering decision 

tasks that should be performed by the same agent (see figure 4.10). Which decision 

tasks to cluster is determined by clustering rules (which are defined below). These rules 

state under which conditions two or more decision tasks should be assigned to the same 

agent. The clustering rules are applied according to the following (simple) algorithm: 

1. Start with the set of clusters in which each cluster consists of a single decision 

task. 

2. For each subset of clusters, apply every clustering rule to every combination of 

decision tasks from the different clusters. 

3. Whenever a clustering rule applies, replace the clusters by a new cluster 

consisting of all the decision tasks from these clusters. 

4. Repeat step 2 and 3 until no more clusters can be combined. 

Note that step 2 considers the powerset of all decision tasks which is exponential in 

size. However, step 2 can be performed more efficiently if domain knowledge is 
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available (see subsection 4.3.1.2). It will then be obvious to which decision tasks the 

clustering rules may apply. 

cluster B _ ^ 

/ 0 \ 
/ \ 

I \ cluster C 

cluster A ' 

Figure 4.10: Example clustering. 

4.3.1.2 Clustering rules 

The clustering algorithm described above uses clustering rules to perform the actual 

clustering of decision tasks. This subsection presents three clustering rules for 

identi^ing agents. 

Obviously, the most important design criterion for developing an agent-based control 

system is to find a set of agents that is able to achieve the production goals, and thus to 

solve the production control problem. However, every control system implementing the 

decision model achieves the production goals because the decision model specifies all 

effectoric decisions that are necessary to solve the control problem. All partitions are 

thus equivalent with respect to the goal achievement. Different partitions, however, are 

certainly not equivalent with respect to how they implement the goal achievement. 

Because of the different assignments of decision tasks to agents, different partitions 

require different kinds of interactions. For instance, in one partition a dependency may 

hold between decision tasks within one agent and thus requires no interaction, whereas 

in another it may hold between decision tasks of different agents which consequently 

must interact to resolve the dependency. The objective of the clustering rules should 

therefore be to find a partition that facilitates the implementation of the decision model, 

i.e., the corresponding set of agents supports the implementation of the necessary 

control functionality better than other sets of agents. 

To derive a set of clustering rules that facilitates an agent-based implementation, it is 

necessary to examine whether the separation of two (or more) decision tasks is 

impossible or too diHicult to implement, or whether such an implementation would be 

too inefficient. In these cases, the decision tasks should be assigned to the same agent. 

The following rules thus specif whether the coupling of two or more decision tasks is 

high (see also subsection 3.2.2). 
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Clustering rule #1; interface cohesion 

Decision tasks using the same control interface should be assigned to the same 

agent 

The control interface of a production component provides unrestricted access to the 

functionality of the component. That is, any control command issued through the 

control interface will be executed immediately. If two agents both had unrestricted 

access to the control interface, they would be able to issue contradictory commands 

which - in the worst case - could damage the component (or humans working near the 

component). The control over a physical component should therefore be assigned to 

only one agent. Naturally, if another agent also needs to use the component, it could 

always request the agent controlling the component to perform the required operations. 

Note that the above clustering rule (as well as all of the following rules) should be used 

minimally. Assume for example that the production system consists of only two control 

interfaces and every decision task of the decision model accesses only one of the 

control interfaces, in particular none of the decision tasks use both. Then assigning all 

decision tasks to a single agent would be conform to the above clustering rule. 

However, separating the decision tasks into two partitions, each accessing only one of 

the control interfaces, would also be conform. Clearly, the latter alternative is to be 

preferred over the former because it preserves as much structure of the decision model 

as possible.'^ 

Example. In the example production system, all instances of decision task Di 

responsible for the same switch should be assigned to the same agent. That 

is, at most one agent is responsible for all workpieces arriving at switch S3. 

A more general version of the first clustering rule is given by the next rule. 

Clustering rule #2: state cohesion 

Decision tasks changing or affecting the state of the same production 

component should be assigned to the same agent. 

The second clustering rule extends the first rule because an agent issuing commands 

through a control interface is automatically changing the state of the production 

component executing these commands. The second rule, though, generalises the first 

rule because it additionally applies to decision tasks that change the state of a 

production component without having direct access to the component through a control 

interface. A typical example is the state of a workpiece. The state of a workpiece is 

changed whenever the workpiece is processed. The decision task deciding to process 

the workpiece, though, enacts its decision not through a control interface to the 

" This design strategy is in the same spirit as the design rule identify rather small agents of Parunak et at. 
(1998). Small agents are easier to construct and understand, but still provide a large space of possible 
(combinations of) behaviours (Parunak 1998, p. 51). 
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workpiece, but through a machine interface. 

The motivation for this rule is to avoid redundant computation and interaction. If 

several decision tasks make decisions about the same component, they will have to 

perform similar computations and will require interactions with the other agents in 

order to make their individual decisions and to resolve any existing dependencies. This 

redundant computation and interaction can be avoided by clustering these decision 

tasks. Clustering these decision tasks will also avoid any intensive co-ordination 

between the associated agents which would be necessary because the decision tasks are 

affecting the same component. This clustering rule thus reduces computational and 

communicational requirements of the implementation, and increases the coherence of 

the design (see subsection 3.2.2) because control aspects that are logically related and 

dependent, namely decisions about the state of a single component, are clustered. 

Example. Consider again the example production system. A workpiece moves along 

the transportation cycle until a switch diverts it to a machine. At each 

switch, decision task Dz must decide for this switch whether the workpiece 

is moved to the machine or passed on to the next switch. The decision tasks 

Di share a dependency for the same workpiece in that they must eventually 

route the workpiece to a machine that is able to process the workpiece (or to 

the unloader) (see table 4.8). 

The above rule for state cohesion proposes to cluster these decision tasks 

because they all access and alter the state of the workpiece. Assume these 

decision tasks were not clustered. Then each decision task would have to 

access the state of the workpiece, access the state of each machine of the 

production system in order to determine whether the machine is able to 

process the workpiece, and finally choose the machine which should 

process the workpiece next. Each decision task consequently has to perform 

a lot of redundant computation and interaction. Assigning the decision tasks 

to one agent avoids this redundancy. Clustering these decision tasks also 

avoids any co-ordination these decision tasks would have to do in order to 

ensure that the workpiece is not send to different machines. 

The above example also shows that the clustering rule for state cohesion is not 

imperative. It is possible to co-ordinate the switches such that the workpiece is sent to a 

machine which is able to process the workpiece. However, the example also shows that 

the clustering rule can greatly facilitate the implementation of the control system. 

Generally speaking, the application of a clustering rule is thus not a deterministic 

design step which can be completely automated by a computer. It still leaves room for 

creative design decisions. 

135 



Clustering rule #3: high interactive coupling 

Decision tasks that are always strongly dependent on each other should be 

assigned to the same agent. 

This rule improves the implementability of the control system by reducing the 

interaction between agents. The rule basically proposes to cluster decision tasks 

whenever they are so strongly coupled that the agents are not able to solve their own 

decision tasks without solving simultaneously the other decision tasks. The following 

example illustrates this rule. 

Example. In large-series production, the spot welding of car bodies is usually 

performed by a set of welding robots which are installed along a production 

line. That is, each car body has to pass through several welding stations in 

order to receive the necessary welding spots (see figure 4.11). Since the 

welding robots are quite flexible, one robot could take over the welding 

spots of a robot that has broken down - provided that it has the necessary 

tools to do so. The advantage of this flexibility is that the line does not have 

to stop just because a single robot has broken down; it can continue to weld 

car bodies, though with a reduced cycle time. 

body 

welding 
robot 

welding 
station 

Figure 4.11: Spot welding line. 

Analysing such a production system according to the methodology would 

yield a decision model that consists of a decision task for each robot. This 

decision task would decide for each car body arriving at the station which 

welding spots to apply to it. The decision task, however, would be 

dependent on the other decision tasks (for the same car body) because at the 

end of the line the car body must have received all welding spots it requires. 

That is, a decision task choosing to omit a spot at a particular station must 

ensure that this spot can still be welded by another robot down the line 

which has not yet broken down. Additionally, all welding robots should 

take nearly the same time to perform the welding operations in order to 

balance the production line and to reduce the idle times of the robots. This 

136 



means that robot A should choose a set of welding spots for its car body 

whose total processing time is nearly as long as that chosen by robot B for 

its car body. As a consequence, the decision tasks for different car bodies 

simultaneously welded are also dependent. It turns out that choosing a set of 

welding spots for the car body at the first welding station requires choosing 

an appropriate set of welding spots for the same car body at the other 

stations (in order to ensure the completeness of the welding spots), and to 

co-ordinate these decisions with the choices for the other car bodies already 

in the line (in order to balance the production line). The different decision 

tasks are consequently so dependent on each other that it makes more sense 

to implement a central optimiser, which computes the distribution of 

welding spots over the welding line and then distributes the results to the 

robots, than designing an agent-based solution. 

The clustering rule for high interactive coupling is very restrictive. It only clusters 

decision tasks if these are logically inseparable. In principle, the rule could also be 

applied if a dependency is too strong or would require too much interaction. However, 

the judgement as to whether a dependency is too strong and cannot be resolved with the 

existing interaction techniques depends on the interaction techniques available at design 

time. Such a judgement can thus be made only after trying different interaction 

techniques. If, during the interaction design (see section 4.4), it becomes clear that the 

resolution of the dependency is difficult or infeasible, the designer may still return to 

this stage and cluster the decision tasks. 

The application of the above clustering rules is demonstrated in the following with the 

help of the example production system. 

Example. For the decision model shown in figure 4.8, the clustering rule for interface 

cohesion applies to every set of instances of the decision tasks Di, D2, D3, 

and D4 that are responsible for the same production component. For 

example, there exists an instance of decision task Di for every workpiece 

that is being loaded. However, each instance refers to the same production 

component, namely the loader. Consequently, there will be only one agent 

responsible for the loader. Likewise, there will be only one agent 

responsible for the switches Si, S3, S4, Ss, S?, Sg, Sio, and Siz, as well as for 

the machines Mi, M2, and M3. 

Furthermore, the clustering rule for state cohesion applies to all instances of 

decision tasks which refer to the same workpiece. Since every decision task 

refers to a workpiece (even decision task Di), the rule proposes to cluster 

those instances of decision tasks Di, D2, D3, and D4 which are referring to 

the same workpiece. That is, the rule forms a cluster for each workpiece. 
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The clustering rule for high interactive coupling, in contrast, does not apply 

to the decision model in figure 4.8 because none of the decision tasks are so 

tightly coupled that their decisions must be made as one. 

As a consequence of the clustering process, all instances of the decision 

tasks are somehow clustered, either because they refer to the same control 

interface or to the same workpiece. The resulting partition therefore consists 

of only one agent. 

The above example shows that a decision model may still collapse into a single agent, 

even if the clustering rules are used minimally. The reason for this is that the clustering 

rules only combine decision tasks: they are not able to separate different decision 

aspects of a decision task, or reorganise the decision model according to agent-oriented 

criteria. The following subsection therefore presents operations on the decision model 

that make the decision model more suitable for agent identification. 

4.3.2 Improving the decision model 

During the analysis phase, the decision model is deliberately developed without any 

consideration of criteria for structuring or even implementing an agent-based system. It 

may therefore be necessary to modify the decision model and make it more suitable for 

agent identification, in particular to avoid the collapse of the decision model during the 

clustering process. There are three major motivations for modifying the decision model 

(see also subsection 3.5.6.2): 

® A decision rule is too complex to be computed in one step - it should be 

divided into subtasks which, in turn, may have to be assigned to different 

agents (cf the strategy identify rather small agents in subsection 3.5.6.2). 

o A decision task involves several independent production components - the 

decision should be divided into the different decision aspects concerning each 

production component in order to preserve their autonomy (cf the strategy 

fAzMgf ya/Agf f / z A M i n subsection 3.5.6.2). 

8 Decision tasks are too dependent on each other - the decision process must be 

re-arranged to reduce the dependencies, and thus the communication 

requirements. 

This subsection presents two basic operations on the decision model which improve the 

structure of the decision process, but leave its functionality unchanged. That is, the new 

decision model executes the same control commands as the original decision model and 

consequently achieves the same goal satisfaction as the first. In this regard, the new and 

the original decision model are equivalent. The two operations are distributing decision 

tasks and introducing new decision tasks. 
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4.3.2.1 Distributing decision tasks 

To reduce the complexity of a decision task, or to separate different decision aspects, a 

decision task can be distributed by replacing the original decision with several new 

decision tasks (see figure 4.12). Each new decision task is a partial copy of the original 

decision task. That is, the d i s t r i b u t e operation may restrict either the decision 

space, the decision rule, the control interface, or several of them. The set of newly 

introduced decision tasks, however, must cover every aspect of the replaced decision 

task, and there must be at least one decision task that receives the trigger for this 

decision task and one that initiates the chosen action once the decision has been made, 

i.e., one must inherit the control interface. 

4 > 

Figure 4.12: The d i s t r i b u t e operation. 

Note that distributing a decision task may have quite different effects depending on 

which decision aspects are distributed. The two most basic effects are discussed in the 

following. 

distributing the decision space - The decision space is partitioned into non-

overlapping subsets, and every newly introduced decision task inherits one 

partition of the original decision space. 

In this case, at most one of the new decision tasks should decide to act in 

the end because the original decision task was supposed to select only one 

action out of the whole decision space. As a consequence, the decision 

space of each new decision task should include the null action (if it is not 

already included in the decision space). 

distributing the decision rule, but not the decision space - The set of constraints 

and preferences is partitioned and every newly introduced decision task 

inherits only a partition of the original constraints and preferences, while 

only one decision task inherits the decision space. 

In this case, at least one decision task has constraints or preferences about 

the actions of other decision tasks (for example, because it will be affected 

by their decisions) without enacting the decision itself (i.e., in all cases it 

will enact the "null" action). Formally, these constraints or preferences are 
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actually non-local constraints between the decision tasks and should 

therefore be represented as dependencies. 

To distribute a decision task, the original decision task is replaced by at least two new 

decision tasks which are created according to the following rules: 

• The decision space is partitioned into sub-spaces and every new decision task 

inherits a sub-space. A decision task may inherit an empty sub-space, i.e., its 

decision space consists only of a null action. However, the union of decision 

spaces of the newly introduced decision tasks must equal the original decision 

space. 

® The decision rule is partitioned and every new decision task inherits a partition 

of the decision rule. That is, each decision task inherits only some of the 

constraints and preferences of the original decision task, possibly no constraints 

and preferences. However, the constraints and preferences of the newly 

introduced decision tasks must add up to the original decision rule. 

® At least one new decision task receives the trigger. 

• Each control interface of the original decision task is inherited by exactly one 

of the new decision tasks. 

After distributing the decision task, the dependencies must be updated. First of all, the 

new decision tasks must inherit every dependency of the original decision task, such 

that each dependency is inherited by at least one of the new decision tasks. And second, 

any possible dependencies between the new decision tasks must be identified as 

prescribed in subsection 4.2.2. 

Example. Several decision tasks of the example production system involve different 

production components: decision tasks Dz and D3 route a workpiece at a 

switch, and decision task D4 chooses the processing operations for a 

workpiece at a machine (see figure 4.8). All three decision tasks are 

candidates for distribution. 

Decision task D2 is not distributed because the distribution does not provide 

any improvement of the decision model. Distributing decision task D2 into 

two decision aspects, one for the switch (e.g., Di sw) and one for the 

workpiece (e.g., D2 wp), would create an empty decision task Dẑ wp because 

all attributes of decision task D2 are inherited by D2_sw. In decision task D2, 

the only control interface belongs to the switch, the trigger arises at the 

switch, the decision space consists of actions available only to the switch, 

and finally the local decision rule simply chooses an exit randomly. To 

incorporate the decision aspect of the workpiece that it should be moved to 

a machine that is able to process it - which is already represented as a 
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dependency (DPi) - it is necessary to introduce a new decision task 

covering exactly this decision problem. How this can be done is discussed 

in subsection 4.3.2.2. 

Decision task D3 is split into one decision aspect for the switch (E^ sw) and 

one for each workpiece arriving at the switch (Da_wp). Similarly as for 

decision task Dz, decision aspect D3 sw inherits most attributes &om the 

original decision task D3. However, the decision aspect D3 wp is responsible 

for determining the urgency of the workpiece, i.e., how close the workpiece 

is to the deadline of its associated order. 

Finally, decision task D4 is split into one decision aspect for the machine 

(D4 MA) and one for the workpiece arriving at the machine (D4 wp). Again, 

decision aspect D4 ma inherits the attributes control interface, trigger, and 

decision space from decision task D4 because they refer only to aspects of 

the machine. The local decision rule of D4, however, is split into the aspects 

concerning the machine and those concerning the workpiece. The machine 

can only apply operations to the workpiece which are currently available at 

the machine, while the workpiece wants to receive the maximal set of 

operations that are still missing in its current processing state. 

In the following, only the new decision tasks D4 MA and D4 wp are shown (in 

tables 4.11 and 4.12). 

Attribute Description 

id 

title 

parameters 

control interface 

trigger 

decision space 

local decision rule 

D4-MA 

Process at machine 

machine Mi, workpiece Wj 

control interface to M, 

Wj arrives at Mi 

set of operations of Mi 

Choose any set of operations currently available to Mi 

Table 4.11: Effectoric decision task D4.MA of the example production system. 
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Attribute Description 

id D4.WP 

title Process at machine 

parameters machine Ivl, workpiece Wj 

control interface 

trigger 

decision space 

local decision rule Choose the maximal set of operations that Wj requires 

in its current processing state. 

Table 4.12: Effectoric decision task D4-WP of the example production system. 

Figure 4.13 shows the new trigger diagram after distributing the decision 

tasks. Note that the distribution of the decision tasks % and D4 does not 

create any additional dependencies other than those that the distributed 

decision tasks need to agree on a decision. 

unload 
work piece 

load 
work piece 

choose entry 
L at switch 

3-WP4—»3.SW|3. 

choose exit 
at switch Y 

4-MA 

choose exit 
at switch choose entry 

at switch 

process at 
machine 

decision task / aspect (with id #) 

decision task 
with dependency 

event 

physical flow 

Figure 4.13: Trigger diagram after distributed decision tasks 

in the example production system. 
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4.3.2.2 Introducing new decision tasks 

The distribution of decision tasks usually creates joint decisions, i.e., the distributed 

decision tasks must jointly choose a single alternative from their common decision 

space. Alternatively, the introduction of new decision tasks makes it possible to 

introduce additional decision tasks which prepare other decisions, i.e., the new decision 

tasks reduce the decision complexity of the decision process by providing constraints 

that further restrict the decision space of other decision tasks. This may be necessary 

whenever the decision rule of a decision task is too complex to be computed in one 

step, several decision tasks have an overlapping decision problem, or the decision tasks 

share a strong dependency (see also (Jennings 1996)). A new decision task may then be 

introduced to reduce the complexity of the decision tasks or of the dependency by 

solving part of the decision problem beforehand. 

The introduction of decision tasks increases the overall modularity of the decision 

process because common decision tasks are extracted, or decision tasks are divided into 

several decision steps. The i n t r o d u c e operation thus allows the designer to structure 

the decision process. To distinguish the additional decision tasks &om ef&ctoric 

decision tasks, the newly introduced decision tasks are called abstract decision tasks 

because these decisions do not directly determine the action of a component, but only 

influence effectoric decisions. Abstract decisions can themselves use other abstract 

decisions to simplify their own decisions, and may thus create an arbitrary hierarchy of 

decisions. The depth of this hierarchy depends on the complexity of the decision 

process. 

To introduce an abstract decision task, the designer must create a new decision task 

whose decision outcome is provided as input to at least one existing decision task (see 

figure 4.14). The new decision task may have an arbitrary decision space and decision 

rule. It must, however, receive the same trigger (directly or indirectly) as one of the 

other already existing decision tasks and may have no control interface since it will not 

enact any physical actions. Furthermore, there must be at least one existing decision 

task which is changed such that its decision rule refers to the result of the newly 

introduced decision task. In turn, the decision task referring to the decision outcome of 

the new decision task may simplify its decision rule by relying on the abstract decision 

(even though it does not have to). After the introduction of a new decision task, the 

dependency diagram must be updated since the new decision task may also introduce 

new dependencies or eliminate existing dependencies. 
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Figure 4.14: The i n t r o d u c e operation. 

Example. In the example production system, a new decision task is introduced to 

reduce the complexity of the dependency DPi which exists between 

instances of decision tasks D2. Dependency DPi states that the decision 

tasks D2 should route a workpiece to a machine that is able to process it 

next. To determine a machine that could process the workpiece next, it is 

necessary to access the state of the workpiece and the state of the machines 

in the production system. With access to these states, it would be possible 

to find a machine currently providing the processing operations that are still 

missing in the current state of the workpiece. The information about the 

state of the machines, however, is not local to any of the switches. Instead 

of having the different switches access this information in parallel, it is 

easier to introduce a new decision task that provides this access and simply 

makes the decision which is then forwarded to the switches. 

The new decision task D5 chooses the next machine that should process the 

workpiece. The decision task is triggered either at the beginning, when the 

workpiece is loaded, or every time the processing of the workpiece at a 

machine has just been completed. In case the workpiece is not finished yet, 

it must choose a new machine in order to receive the remaining operations. 

In case it is finished, the workpiece chooses the unloader. In principle, the 

workpiece may choose any machine of the production system. However, the 

workpiece should choose only a machine that provides at least one of the 

operations that the workpiece requires next, and the workpiece should 

prefer the machine with the maximal set of operations that can be applied to 

the workpiece in its current state. As an abstract decision task, l i does not 

have a control interface. 
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Attribute Description 

id 

title 

parameters 

control interface 

trigger 

decision space 

local decision rule 

D: 

Choose next machine 

workpiece Wi 

Wi just left the loader or a machine. 

set of machines Mj 

Choose a machine with the maximal set of operations that 

can be applied to the workpiece in its current state. 

Table 4.13: Abstract decision task D; 

of the example production system. 

The result of the abstract decision task E); is communicated to the decision 

tasks of D2. As a consequence, these may simplify their local decision rule 

in that they simply route the workpiece in the direction of the chosen 

machine. Likewise, in order to recognise the decision situation that triggers 

the decision task, a signal is sent by the decision tasks Di and D4 to Ds 

whenever the workpiece either leaves the loader or the machine at which it 

was processed last. 

unload 
work piece 

o 
choose entry 

at switch choose exit 
at switch Y 

choose 
next machine 

3-WPT—T3-SW ; 

m(5-wp s-ma : 

•i 3-5W4—•i-wp ; 
choose exit 
at switch 

load 
work piece choose entry 

at switch 

process at 
machine 

4-MA) ; 

decision task / aspect (with id #) ^ ^ event 

distributed decision task 
with dependency 

— • physical flow 

— • information flow 

Figure 4.15: Trigger diagram after introducing 

the abstract decision Choose next machine in the example production system. 

Figure 4.15 shows the new trigger diagram. Since the decision task Ds 

involves several production components, namely the workpiece and all 

machines, the decision task has already been distributed into the two 

decision aspects D;.wp and D3.MA. 
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The dependencies are adapted accordingly (see figure 4.16). Dependency 

DPi is made obsolete because of the introduction of decision task Db. 

Dependency DP2 now holds between different instances of decision task D; 

(for the same workpiece) because these decision tasks are now responsible 

for choosing the stations to be visited. For the same reason, dependency 

DP] is extended to also include decision task D5. In contrast to dependency 

DP2, though, DP] still includes the decision task Th because the actual 

routing of a workpiece is also relevant to the work-in-process of a 

production system. 

" O 

3-SW4—*3-WP 

Minimise the 
number of 

stations visited 

5-WP<>—•S-MA ! (4-WP^—^4^) 
•' 

Limit work-in-process 

( J ) decision task / aspect (with id #) 

distributed decision task 
with dependency 

<( )> event 

physical flow 

information flow 

- y — ^ dependency 

Figure 4.16: Dependency diagram after introducing 

the abstract decision Choose next machine in the example production system. 

With the above changes, the decision model of the example production 

system no longer collapses into a single agent during the clustering process. 

The clustering rule for interface cohesion clusters all instances of decision 

tasks D2 and Ds-sw referring to the same switch, and all instances of decision 

tasks D4-MA referring to the same machine. The clustering rule for state 

cohesion, on the other hand, clusters only the instances of the decision tasks 

D3-WP, D4-WP, and Ds-wp which are referring to the same workpiece. The 

resulting set of agents for the example production system is shown in table 

4.14. 
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Agent name Control interface Decision tasks 

machine agent 

switch agent 

loader agent 

workpiece agent 

machine M, 

switch Si 

loader 

workpiece Wi 

choose next machine (D;.MA); 

process at machine (D4.MA) 

choose exit at switch (D2); 

choose entry at switch (Da^w) 

load workpiece (Di) 

choose next machine (Di-wp); 
process at machine (D4.WP); 
choose entry at switch (Ds-wp) 

Table 4.14: Agents identified for the example production system 

(based on figure 4.15). 

4.3.3 Summary of agent identification step 

The agent identification step consists of two design steps — the clustering process and 

the improvement of the decision model - which are repeated until either a suitable set 

of agents has been found, or the agent-based approach is abandoned (see figure 4.9). 

The clustering process tries to assign decision tasks to agents through clustering 

decision tasks according to a set of clustering rules. The clustering process fails 

whenever all decision tasks are assigned to the same agent — the control system then 

consists of only one agent. In such a case, the decision model must be reorganised in 

order to avoid its collapse. For this, the improvement step provides a set of operations 

that reorganise the decision model without changing its control functionality. After the 

reorganisation of the decision model, the clustering process is repeated with the 

improved decision model. In case the decision model collapses again into a single 

agent, the agent identification loop of clustering and improving the decision model may 

be repeated until either a set of agents has been found, or it becomes clear that it is 

impossible to avoid the collapse of the decision model. In the latter case, the control 

system should consist of only one agent (rather than a collection). In such a case, the 

techniques provided by multi-agent systems research, in particular the large set of 

interaction protocols, cannot be used and an agent-based approach should therefore be 

abandoned. In such situations, the designer should look for other techniques that enable 

him to develop a (central) control system responsible for all the decision tasks 

identified. 

If the clustering process is successful, a set of agents has been identified and each agent 

is associated with a set of decision tasks. The agents are solely responsible for the 

execution of their decision tasks, but depend on other agents whenever these decision 

tasks share dependencies with decision tasks which were assigned to different agents. 

To resolve these dependencies, the agents must interact before making their decision. 
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How the agents should interact is determined in the next section. 

4.4 Selection of interaction protocols 

The previous design step has identified the control agents necessary to solve the 

production control problem and has assigned a set of decision tasks to each agent for 

which the agent is solely responsible. Some of the decision tasks, though, cannot be 

executed in isolation - they are dependent on other decision tasks. For those 

dependencies which involve decision tasks assigned to different agents, the 

corresponding agents must interact in order to find decision alternatives which not only 

satisfy the local, but also the non-local constraints and preferences. 

An interaction between a group of agents consists of a set of messages these agents 

exchange during the course of the interaction. Interactions are usually specified (and 

programmed) in the form of interaction protocols. Interaction protocols fix the types of 

messages that may be exchanged and restrict the possible sequences of messages that 

are allowed in a protocol-conformant interaction (Burmeister 1995). To complete the 

overall design of the agent-based control system, the designer of the production control 

system must specify an interaction protocol for each inter-agent dependency such that 

the decisions chosen at the end of the interaction resolve the corresponding dependency. 

A wide variety of different interaction protocols have been proposed in the multi-agent 

systems literature and more are continually being developed. Given this rich set of 

interaction techniques, the designer should first try to reuse the existing protocols 

before designing a new interaction protocol from scratch (which can be a very 

challenging task, sometimes worth a PhD on its own). Reusing existing techniques has 

the clear advantage that it reduces the time and effort to perform the design task as well 

as the risk of failure because the designer can rely on proven techniques (see section 

3.6). Obviously, the designer may still develop a new interaction protocol if all existing 

techniques turn out to be unsuitable. 

dependency 

classification 

resolves 

match 

-• interaction protocol 

customise 
and specify 

protocol Pj 

protocol Pj 

protocol Pg 

library of existing 
interaction techniques 

Figure 4.17: The process for selecting interaction protocols. 
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To reuse existing interaction protocols, there must be a design method that enables the 

designer to select a suitable protocol given the description of a decision dependency. 

Such a design method must provide a set of criteria such that the interaction protocol 

which matches a dependency best - according to these criteria - is also the best 

interaction protocol to resolve the dependency. Given such a set of criteria, the designer 

only needs to classify a dependency according to these criteria and then search through 

a library of existing interaction techniques to find the interaction protocol that matches 

the classification best (see figure 4.17). In case this library is computer-based, the 

search process may even be done automatically. 

The proposed process for selecting interaction protocols is a heuristic classification 

(Clancey 1985) because the selection mechanism is based on an abstract description of 

the interaction situation and the existing protocols (see also the facet approach in 

subsection 3.6.1). Such an abstraction is necessary if there is no direct matching 

between problem and solution (see (Clancey 1985) for a discussion). This direct link 

does not exist because a dependency may be solved by several different interaction 

protocols. 
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3.3 Customise and specify protocols 

Agent-based 

Figure 4.18; Steps for the selection of interaction protocols. 

To select an interaction protocol for a given dependency, the designer must thus 

perform three steps (see figure 4.18). The first step is to classify the dependency 

according to a pre-defined set of criteria. This pre-defined set of criteria will be called 

the classification scheme in the following. The second step of the selection process is 

to match the classification of the dependency against a library of existing interaction 

protocols. A matching procedure specifies how the matching is performed and how, 

based on the results of the matching, the interaction protocol best suited to resolve the 

dependency is identified. To make such a matching possible, the existing interaction 

protocols must be classified according to the same criteria as the dependency. This 

process, which needs to be done only once for each interaction protocol, will be called 

protocol characterisation in the following. Once a suitable interaction protocol has 

been identified, the last step of the selection process is to specify the selected 

interaction protocol in terms of the application and, if necessary, to adapt it to the 

specific requirements of the dependency situation. This final step will be referred to as 

the protocol customisation. 
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The following subsections describe each aspect of the selection process in detail. The 

first subsection develops the classification scheme for dependencies. Subsection 4.4.2 

discusses how existing interaction protocols must be characterised in order to match the 

classification scheme and gives some example characterisations of existing interaction 

protocols. Subsection 4.4.3 then presents the procedure for matching dependencies to 

existing protocols, and explains the extent to which a chosen protocol can be 

customised to fit an actual dependency situation. Finally, the last section summarises 

the selection process. 

4.4.1 Classification scheme 

The classification scheme is intended to classify dependencies such that the interaction 

protocol which matches the classification of a dependency best is also the best 

interaction protocol to resolve the dependency. To achieve this aim, the classification 

scheme must consist of classification criteria that put dependencies into different 

classes if they require different (kinds of) interaction protocols. To identify such a set of 

criteria, it is necessary to look at the requirements a dependency may impose on the 

interaction process, and collect those aspects which differentiate dependencies most 

with respect to the required interaction process. This is the objective of this subsection. 

A dependency consists of a set of decision tasks and a set of non-local constraints and 

preferences these decision tasks must fulfil (see subsection 4.2.2.2). Each decision task 

specifies a set of possible start situations in which the decision problem arises; and the 

decision tasks in combination with the non-local constraints and preferences specify 

what goal state must be achieved in the end. Any interaction protocol intended to 

resolve the dependency must be able to reach the goal state from any possible start 

situation. Start situations and goal state of a dependency thus delineate the functionality 

of the required interaction protocol. Both start situations and goal state are therefore 

analysed below in order to identify classification criteria distinguishing interaction 

protocols (see subsections 4.4.1.1 and 4.4.1.2). In principle, the interaction protocol 

may choose any approach to resolve a dependency as long as it is guaranteed that the 

goal state is reached. However, the context of a dependency may impose restrictions on 

the way the dependency can be resolved. Since these restrictions may rule out some 

interaction protocols, it is worthwhile considering what kind of restrictions might be 

present. This will be done in subsection 4.4.1.3. 

4.4.1.1 Start situations 

The start situations of a single decision task are defined by the set of situations at the 

associated production components that trigger the decision task, and the actual decision 

problem that needs to be solved in these situations (see subsection 4.2). For a 
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dependency, the start situations are the different combinations of the start situations of 

the decision tasks involved in the dependency. The start situations of a dependency 

therefore consist of the following aspects: 

(i) all combinations of situations at the production components that trigger the 

dependency 

(ii) the decision tasks to be performed in these situations, i.e., the decision tasks 

involved in the dependency 

(iii) the non-local constraints and preferences describing the actual dependency 

between the decision tasks 

Not all of these aspects, though, are relevant to the classification of a dependency. In 

particular, the situations that trigger the dependency only describe when the interaction 

becomes necessary. The actual problem to be solved by the interaction is specified by 

the decision tasks and the non-local constraints and preferences. The following analysis 

of the start situation will therefore focus on the decision tasks involved in the 

dependency and the non-local constraints and preferences between these decision tasks. 

Decision tasks involved in the dependency 

The first relevant criterion for the selection of a suitable interaction protocol is certainly 

the number of decision tasks that need to be co-ordinated. Is there, for instance, a small 

and fixed number of decision tasks that need to interact? Or does the set of decision 

tasks change over time? The number of decision tasks to be co-ordinated, however, is 

not identical to the number of decision tasks involved in the dependency because some 

decision tasks may be assigned to the same agent. Any dependencies between decision 

tasks of the same agent can be resolved internally by the agent and do not require any 

interaction. The first relevant criterion for selecting interaction protocols is therefore the 

number of agents involved in the dependency. 

Criterion #1: Number of agents involved 

How many agents are involved in the dependency right from the start? May 

other agents join later? 

The possible answers to the above questions are classified according to the 

requirements they impose on the required interaction process. 

<«> The number of agents involved in the dependency is fixed and 

already known at design time. This case is indicated by the 

actual number of agents involved (for example, two for a 

workpiece and a machine agent negotiating the set of operations 

to be applied to the workpiece). 
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fixed The number of agents involved in the dependency is fixed, but 

not known at design time. That is, the number of agents is only 

known once the interaction starts, but does not change 

afterwards. 

changing The number of agents involved may change during the 

interaction, i.e., agents may join the interaction process after it 

has been started. Agents may join later, for example, because 

they have been introduced to the control system after the 

beginning of the interaction. 

The above classes represent an increasing set of requirements on the interaction 

process. If the number of agents involved in the dependency is fixed and already known 

at design time, it is sufficient to use an interaction protocol that is only able to deal with 

the number of agents indicated. Some interaction protocols, for instance, are only able 

to co-ordinate two agents. If the number of agents involved is fixed, but not known at 

design time, the interaction protocol chosen must be able to deal with a fixed, but 

arbitrary number of agents. Finally, in case the number of agents is not fixed, the 

protocol must additionally be able to integrate new agents into the interaction process 

after it has been initiated. Obviously, such an interaction protocol should also be able to 

handle a fixed set of agents if no agents are introduced during the interaction. 

Another possible criterion for selecting a suitable interaction protocol could be the 

types of decision tasks that are involved in the dependency. Such a criterion would be 

useful if different types of decision tasks required different kinds of interaction 

protocols. The majority of interaction protocols, however, do not make any assumptions 

about the actual decision tasks to be co-ordinated. They are applicable to almost any 

kind of decision task (obviously, not to any kind of non-local constraints and 

preferences, as will be shown below). Consequently, such a criterion would hardly 

distinguish any interaction protocols and is therefore of low value to the selection of 

interaction protocols. 

Non-local constraints and preferences 

The other important aspect of the start situation is how the decision tasks involved in 

the dependency are related to each other. Each agent has its local decision tasks, but is 

not able to execute them alone because of the non-local constraints and preferences that 

restrict the local decision making. As a consequence, the agents need to interact. The 

nature of the restrictions on the local decision making, however, has an influence on the 

kind of interaction required to deal with these restrictions. Agents that have completely 

opposing interests will have to interact more than agents that just want to avoid some 

damaging effects. The second relevant criterion for the selection of a suitable 

interaction protocol is therefore the relation of local and non-local constraints and 
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preferences. 

Criterion #2: Compatibility of constraints and preferences 

How compatible are the local and non-local constraints and preferences 

involved in a dependency? 

The compatibility is classified according to the kinds of restrictions that create the 
dependency: 

only constraints 

There are only constraints. These constraints - by definition -

only rule out certain combinations of decision alternatives. Any 

combination of decision alternatives that is not ruled out is a 

solution resolving the dependency. However, there may exist no 

solution satisfying all constraints. 

compatible preferences 

There exists at least one (local or non-local) preference function 

on the outcome of the interaction (and possibly additional 

constraints). In case of more than one preference function, there 

are solutions that are to the mutual benefit of all agents, i.e., 

there exists a solution such that all preference functions are 

maximally satisfied. 

opposing preferences 

There are at least two agents that have preferences on the 

outcome of the interaction and these preferences are opposing, 

i.e., any combination of decision alternatives that is better for 

one agent is worse for the other. (Constraints may or may not be 

present.) 

The above classes also subsume each other. First of all, an interaction protocol able to 

reconcile opposing interests can also find a solution for compatible preferences. And, 

secondly, both cases for preferences also allow constraints to be present. Obviously, 

this does not imply that an interaction protocol for opposing preferences is equally 

efficient for solving a dependency situation consisting purely of constraints. 

Another important aspect of the constraints and preferences linking the decision tasks is 

to what extent these constraints and preferences are global, i.e., encompass all decision 

tasks of a dependency. By definition, the non-local constraints and preferences involve 

at least two decision tasks. However, if there are more than two agents, the non-local 

constraints and preferences may involve all agents, and thus be global, or only link 

subsets of the agents. This distinction is particularly relevant if there are many agents. 

In such a case, it may be easier to co-ordinate small subsets of these agents than to 
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make sure that all agents satisfy a global constraint or maximise a global preference 

function. Therefore, the start situation is also classified according to the existence of 

global constraints and preferences. 

Criterion #3; Global constraints and preferences 

If there are more than two agents, does there exist a global constraint or 

preference that involves all agents? 

Cases in which there are more than two agents and a global constraint or 

preference exists are indicated by global, all other cases are marked as non-local. 

The above classes are obviously mutually exclusive. 

Table 4.15 summarises the possible classifications of a start situation. If a dependency 

arises in start situations with different classifications, the designer must choose the 

worst classification, i.e., the classification that puts the most requirements on the 

interaction protocol. In case the classifications of the different start situations are not 

comparable, the chosen interaction protocol must either satisfy all classifications or 

different interaction protocols must be chosen for each start situation. 

Classification criteria Possible properties 

#1 Number of agents involved <n> 

changing 

#2 Compatibility of only constraints 

constraints and preferences compatible preferences 

opposing preferences 

#3 Global global 

constraints and preferences non-local 

Table 4.15; Classification of a start situation. 

4.4.1.2 Goal state 

To resolve a dependency, the agents involved in the dependency need to choose an 

action for each decision task such that the local and non-local constraints and 

preferences are satisfied in the best way possible. The goal state of a dependency is thus 

specified by a list of actions - one for each decision task. At least something about this 

goal state must be initially unknown in order to represent a decision problem. Thus, it 

will either be unclear which actions are to be taken by each agent or, if the decision 

spaces include the null action, which agents will be taking an action at all. If nothing is 
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unclear, the agents do not have a decision task. Consequently, an interaction protocol 

has to answer at least one of the following questions in order to reach the goal state: 

1. Which actions should be executed? 

2. Which agent should commit to which action(s)? 

How much is unknown about the goal state is certainly relevant to the selection of an 

interaction protocol. The more is unknown about the goal state, the more the interaction 

protocol must determine during the interaction process. The extent to which the above 

questions are unanswered at the beginning of. the interaction is therefore a good 

candidate for distinguishing interaction situations, and thus to select a suitable 

interaction protocol. The first question - which action should be executed -will 

however be unanswered in most cases, and will therefore hardly distinguish interaction 

situations. On the other hand, the second question - which agent should commit to an 

action - may or may not be clear at the beginning. The second question is thus not 

common to all interaction situations and may consequently be used to distinguish 

dependencies with respect to the requirements they impose on the interaction protocol.'® 

This will be done in subsection role variability. 

Another important aspect of the goal state is how the actual decisions made relate to 

each other. Obviously, there must be some relations between the decisions, because 

otherwise there is no need to interact. Furthermore, it is the main purpose of the 

interaction process to handle decision relations because otherwise the agents might as 

well make their decisions independently. The decision relations to be handled during 

the interaction are induced by the non-local constraints and preferences, and the actual 

decisions made must somehow satisfy these constraints and preferences. To find a set 

of decisions satisfying these relations, the agents consequently interact. However, it is 

not sufficient to identify the appropriate decisions, the agents must also execute the 

decisions agreed, i.e., they must commit themselves to the corresponding actions. Not 

every agent though may have to commit itself in front of everybody else. Maybe some 

agents form a subgroup that is independent in their execution of the rest of the agents 

involved in the dependency. The number and size of the required joint commitments, 

though, is relevant to the selection of a suitable interaction protocol. Bilateral joint 

commitments are easier to achieve than a joint commitment encompassing all agents. 

The required joint commitments are therefore analysed first (in subsection joint 

commitments). 

Joint commitments 

In the context of this work, a set of commitments is called a joint commitment if the 

" The case that the action and the agent performing it is known does not represent a decision problem at 
all. The case that the action is known, but the agent performing it is not known, is covered by the question 
which agent should commit to an action. 
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failure to fulfil one of the commitments jeopardises the success of the other 

commitments (cf (Jennings 1996)). That is, the set of commitments only makes sense 

if all commitments are fulfilled. If one agent de-commits, all other agents should de-

commit, too. 

Example. In the simple production system, several workpieces enter the production 

system and need to be processed. Each workpiece (agent) chooses a 

machine for its processing and engages in a joint commitment with that 

machine. If either the machine or the workpiece de-commits, there is no 

point for the other agents to maintain their commitment any longer. 

However, if a machine for example breaks down and de-commits 6om all 

its engagements, the commitments of the other machines are not affected. 

They can still process the workpieces assigned to them. 

Formally, joint commitments are represented by subsets of the agents involved in a 

dependency. If one agent of such a subset de-commits, all other agents in this subset 

should also de-commit. The joint commitments required by a dependency may thus 

have quite diverse structures: any subset of the agents is theoretically a possible joint 

commitment. However, to make a comparison of joint commitments feasible and 

efficient, the classification of the required joint commitments is reduced to three 

criteria: the number of (independent) joint commitments, the size of the commitments, 

and how the commitments relate to each other. Just as for most of the other 

classification criteria, the above properties are either known at design time, at the 

beginning of the interaction, or must be determined by the interaction protocol. 

Criterion #4: Number of joint commitments 

Is the number of required joint commitments already known at the 

beginning of the interaction, or must it be determined by the interaction 

protocol? 

The possible answers to the above question are indicated as follows: 

<n> In the special case that the number of joint commitments is 

already known at design time, the actual number of joint 

commitments may be used to indicate this case (for example, 

one for a dependency involving only two agents committing to 

perform a joint action). 

fixed The number of required joint commitments is known at the 

beginning of the interaction. 

variable The number of required joint commitments must be determined 

by the interaction protocol. 
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Criterion #5: Size of joint commitments 

How many agents are involved in a joint commitment? Do all joint 

commitments have the same size (i.e., the same number of agents 

involved)? 

The possible answers to the above question are indicated as follows: 

<n> All joint commitments have the same size and this size is 

already known at design time. In this case, the actual size of the 

joint commitments is used to indicate this case (for example, 

two for a workpiece and a machine agent agreeing to process 

the workpiece at the machine). 

fixed All joint commitments have the same size, but the size is only 

known at the beginning of the interaction. 

variable The size of each joint commitment must be determined by the 

interaction protocol. 

Criterion #6: Relation of commitments 

How do the commitments relate to each other and to the whole set of 

agents? Do commitments overlap, i.e., may an agent be involved in more 

than one joint commitment? Do commitments completely cover the set of 

agents, i.e., is every agent engaged in at least one joint commitment? 

There are four possible answers to the above questions (only the first and the last 

two exclude each other); 

overlapping An agent may be involved in more than one joint 

commitment. 

non-overlapping An agent may be involved in at most one joint 

commitment. 

complete coverage Each agent must be involved in at least one joint 

commitment. 

incomplete coverage Not every agent must be involved in a joint 

commitment. 

Criteria #4 and #5 obviously indicate how many joint commitments must be created by 

the interaction process, and thus characterises the different requirements that may be 

imposed on the interaction process. Criteria #6 is also relevant to the selection of a 

suitable interaction protocol because it characterises global properties of the joint 

commitment set. When matching agents, for instance, non-overlapping joint 

commitments are more difficult to achieve than overlapping commitments because 
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agents may be left unmatched if the wrong agents are assigned during the interaction 

process. Likewise, engaging each agent in a joint commitment is more difficult if some 

agents are difficult to match. Criteria #6 thus provides additional information about the 

joint commitment set. 

The classification criteria for the joint commitments are summarised in table 4.16. 

Classification criteria Possible properties 

#4 Number of joint <ri> 

commitments fixed 

variable 

#5 Size of joint commitments <M> 

fixed 

variable 

#6 Relation of joint 

commitments 

Table 4.16; Classification of the required joint commitments. 

Role variability 

The goal state is described by a set of agent-action pairs, specifying which agent is 

executing which action. As discussed above, it may be unclear which of the agents 

available in the interaction situation will actually perform an action, and thus will be a 

member of one of the agent-action pairs. To capture this potential uncertainty, the goal 

state is characterised with the aid of roles (see subsection 3.5.3). A role describes a 

specific behaviour without specifying which agent will actually perform this 

behaviour.^" In this view, the goal state thus consists of a set of roles, each specifying an 

action, and one task of the interaction protocol - apart from identifying these actions -

is to assign these roles to agents. To classify this assignment problem for a given 

dependency, it is necessary to identify which roles are already assigned to agents at the 

beginning of the interaction and which must be assigned during the interaction process. 

Criterion #7; Role assignment 

Is an agent role already assigned to an agent, or must the role assignment be 

determined by the interaction protocol? 

For each role, there are two possible answers: 

fixed The role is already assigned to an agent at the beginning of the 

interaction. 

There is more to the concept of roles, but in this context this simple view of a role is sufficient. 
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variable The role must be assigned to an agent by the interaction 

protocol. 

Since each role is either fixed or variable, the classification of the agent roles can 

be summarised by stating how many roles are variable (all others must then be 

fixed). Three cases are distinguished: 

none 

subset 

<n> 

all 

None of the agent roles are variable. 

A subset of the agent roles is variable. 

In case the number of variable agent roles is already known at 

design time, the number itself can be used to indicate this case. 

All agent roles are variable. 

Table 4.17 summarises the possible classifications of a dependency according to the 

role variability. Alternatively, the classification could also state the number of fixed 

agent roles, or compare both. 

Classification criteria Possible properties 

#7 Role assignment none 

(variable roles) subset 

<M> 

a// 

Table 4.17: Classification according to the agent roles of a dependency. 

4.4.1.3 Process requirements 

An interaction protocol solves a dependency if it is able to reach the goal state from any 

possible start situation. How the goal state is reached is generally left to the interaction 

protocol. The interaction situation, however, may impose restrictions on how this may 

be done. Potentially, the interaction situation may impose quite diverse restrictions on 

the interaction process, such as incompatible communication languages, hard real-time 

constraints, communication bandwidth restrictions, untruthful or even deceiving agents, 

and so on. This subsection, though, focuses on the two most common restrictions for 

technical (production) systems. 

First of all, an agent may be unable or unwilling to provide certain information to other 

agents. In the case of multiple firms negotiating contracts for instance a firm is certainly 

unwilling to lay open all cost information about its processes to other agents. Secondly, 

agents need to search the decision space and choose a set of actions. This process may 

be simplified if at least part of the search process can be done locally by a single agent. 
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The delegation of the search process, however, would require that the agents also 

delegate part of their decision autonomy to other agents?' This may not be acceptable to 

any agent. 

Criterion #8: Availability of information 

How much local information can be made available to other agents? 

Is an agent able and willing to communicate its decision alternatives, the local 

constraints and preferences, or other information about its local situation? In one 

extreme, an agent provides everything it knows to the other agents. In the other 

extreme, the agent makes public only some of the actions contained in the 

decision space.^^ 

The rationale behind this question is that the more information is made available, 

the easier it may be to resolve the dependency. The following two main levels of 

information availability are distinguished. 

alternatives only Propose and discuss only decision alternatives. The 

decision space may or may not be made available. 

Constraints and preferences are not disclosed. 

preferences Lay open (immediately or successively) local constraints 

and preferences. 

The second level of information availability - preferences — makes it easier to find a 

solution to the decision problem. The agents may then estimate the valuation of an 

agent before making a proposal. The second level, however, also discloses (possibly) 

private information which may not be acceptable in every situation, as for example in a 

negotiation setting. 

Criterion #9: Delegation of decision autonomy 

How far can decision autonomy be delegated? 

Does an agent accept a decision if other agents believe it to be the best decision 

for all? Under what circumstances does an agent accept a group decision? Or 

must an agent explicitly accept any decision proposed? In case the agent accepts a 

decision under certain conditions, it would be sufficient to inform the agent that 

these conditions hold for the final solution found. In case the agent did not 

delegate any decision autonomy, there must be at least a final commitment round 

in which each agent is asked to accept the proposed action. In particular, if one 

agent rejects the proposed action (for whatever reason), another solution must be 

The agent searching the decision determines the order in which possible choices will be considered 
during the decision process and consequently has a strong influence on the decision process. 

Note that this is the other extreme because if each agent does not publish any alternatives it has, there is 
nothing to co-ordinate. 
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found. 

There are basically two levels of delegation with respect to decision autonomy. 

The levels describe an increasing loss of autonomy. 

no delegation 

partial delegation 

Retain the right to reject any proposal. 

Accept a proposal if it meets certain conditions 

required by the agent. These conditions may concern 

the properties of the solution or the process for 

determining the solution, i.e., the interaction protocol. 

In general, the conditions may be of quite different 

nature. 

This criterion is related to criterion #8. It is only possible to delegate decision 

autonomy, if the agent also makes some of its local information available. If an agent 

does not announce any of its decision alternatives, it is impossible for another agent to 

choose an alternative for this agent. However, an agent could communicate nearly all of 

its information to the other agents without delegating any decision autonomy. Both 

criteria are therefore not identical. 

Table 4.18 summarises the possible classifications of a dependency according to the 

process requirements. 

Classification criteria Possible properties 

#8 Availability of alternatives only 

information preferences 

#9 Delegation of decision MO (fg/egaf/oM 

competence 

Table 4.18: Classification according to the process requirements. 

4.4.1.4 Summary 

This section has identified nine classification criteria that characterise decision 

dependencies with respect to the interaction process they require. These criteria define 

2304 possible classifications - namely the product of the possible classifications for 

each criterion.^ Due to the diverse criteria used and the large number of possible 

classes, the classification scheme is obviously able to distinguish a wide range of 

different dependency situations. This becomes obvious when classifying existing 

interaction protocols in the next subsection: most interaction protocols fall into 

" Actually, the number of classifications is indefinite because criteria #1, #4, and #5 allow the selection 
of a natural number as a classification. 
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different classes. 

Note, however, that the classification scheme is not complete in that there may exist 

additional criteria which could distinguish dependencies (and interaction protocols) 

further. However, the classification scheme was deliberately restricted to above criteria 

for the following reasons. First of all, the number of criteria (and also the number of 

possible attributes) should be limited. Too many criteria, or significantly more 

attributes, would increase the effort the designer would have to go through when 

classifying a dependency and would thus decrease the acceptance of the methodology. 

Second, the objective of the classification scheme is to reduce, for each dependency, the 

large set of existing interaction protocols to a much smaller set of potentially applicable 

protocols, rather than to reduce the set of protocols to the one and only protocol 

applicable in a dependency situation. It is questionable whether a classification scheme 

with single class instances exists because such a classification scheme would have to 

anticipate any new protocol developments in the future. Consequently, it seems 

reasonable to create a classification scheme that is efficient and extensible to future 

developments. 

In this context, the classification scheme is extensible in two ways. First of all, the list 

of classification criteria can be extended by adding new criteria, such as the possibility 

of deception or the necessity of mobility for the agents. Secondly, a single class can be 

refined by a specialised set of classification criteria if a classification returns too many 

interaction protocols. Assume, for example, a classification returns a large set of 

negotiation protocols, then a sub-classification similar to the taxonomy of Bartolini et 

al. can be used to discriminate the negotiation protocols (see subsection 3.6.2). For any 

sub-classification, however, it should verified whether the classification can be done 

solely on the basis of information about the dependency, or whether the designer has to 

evaluate the interaction mechanisms in order to perform the final selection. In the latter 

case, the classification process can no longer be done by only analysing the dependency 

situation. 

4.4.2 Characterising interaction protocols 

The previous subsection has presented a classification scheme that characterises a 

decision dependency according to the interaction process that is required to resolve the 

dependency. In order to efficiently identify an existing interaction protocol that is able 

to create and control the required interaction process, it is necessary to characterise the 

existing interaction protocols according to the same criteria which were used to classify 

the decision dependency. Once such a characterisation of the interaction protocols is 

given (and it needs to be done only once), the most suitable interaction protocol can be 

identified by matching the classification of the dependency against the characterisations 

of existing interaction protocols. Given a computer-based library of existing interaction 
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protocols, this match might even be done automatically, i.e., the designer just enters the 

classification of a dependency and the computer presents the set of interaction protocols 

that match the classification best. 

A first step towards this library is done in appendix A by characterising a selected set of 

existing interaction protocols. This set of interaction protocols is not supposed to be 

either a complete or representative set of existing interaction protocols. After more than 

twenty years of research into multi-agent systems, even the discussion of a 

representative set of interaction protocols would be beyond the scope of this work. A 

complete, and thus closed library is also not appropriate because new interaction 

protocols are continuously developed. The library should therefore be treated as an 

open repository of knowledge into which new interaction protocols can be easily 

incorporated. The interaction protocols discussed in appendix A have thus only been 

chosen in order to provide a wide range of examples with quite different 

characterisations. 

Table 4.19 summarises the characterisations of some interaction protocols discussed in 

appendix A. The table shows that different interaction protocols are characterised quite 

differently if they address different interaction situations. The classification scheme is 

therefore able to distinguish different interaction protocols and thus reduces the number 

of interaction protocols a designer has to look at. 

Plurality English Continuous DCS-ABS Coalition PGP 
voting auction double auction formation 

#1 fixed fixed changing fixed fixed changing 

#2 opposing opposing opposing constraints compatible compatible 

#3 non-local non-local non-local global non-local global 

#4 1 1 variable variable variable variable 

#5 fixed 2 2 variable variable variable 

#6 - - non-overlapping 

incomplete 

any overlapping 

incomplete 

any 

#7 all variable 1/1 all variable all variable all variable all fixed 

#8 alternatives alternatives alternatives alternatives alternatives preferences 

#9 partial partial no partial partial partial 

Table 4.19: Example characterisations. 

4.4.3 Matching and protocol customisation 

The two preceding subsections have presented the classification scheme for 

dependencies and the characterisation of some example interaction protocols according 

164 



to this classification scheme. This subsection now describes how the designer should 

actually use this classification scheme in order to identify the most suitable interaction 

protocols for his application. This is done in subsection 4.4.3.1. This subsection also 

discusses possible adaptations of the protocols if the protocols identified do not exactly 

match the dependency situations (see subsection 4.4.3.2). 

4.4.3.1 Matching dependencies with interaction protocols 

To identify the most suitable interaction protocols for a given decision dependency, the 

designer should go through the following steps: 

1. Collect all decision tasks involved in a dependency. 

2. Identify all possible start situations in which this dependency may arise. 

3. Perform the classification of the dependency according to the classification 

scheme described in subsection 4.4.1. 

4. Given a library of characterised interaction protocols, search for the interaction 

protocol that best matches the classification of the dependency. An interaction 

protocol matches a classification best if the characterisation of the interaction 

protocol has the most properties in common with the classification.^'* 

5. For each protocol identified, verify whether it is able to reach the goal state 

from all possible start situations. If this is not the case for a protocol, try to 

modify the protocol accordingly (see subsection 4.4.3.2). 

6. From the set of interaction protocols that effectively resolve the dependency, 

choose the protocol that is best from the point of view of the application. 

Specify the (possibly adapted) interaction protocol (see for example 

(Burmeister 1993, Parunak 1996, Odell 2001)). 

If all six steps of the above method are successfully completed, the designer has found 

an interaction protocol that resolves the dependency in all possible start situations. If 

the designer is able to do so for all dependencies, then the system design for the agent-

based control system is completed (cf. subsection 4.1). 

Example. In the simple production system, there is a strong dependency between the 

decision aspects Ds-wp and Ds-ma in that these decision tasks must agree on a 

machine that is supposed to process the workpiece next (see figure 4.16). In 

the following, it is shortly discussed how an appropriate interaction protocol 

is found for this dependency (more examples will be discussed in appendix 

B). 

Note that there may be several interaction protocols that have a maximum number of properties in 
common with a specific classification. 
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2. 

J. 

1. The dependency involves the different decision aspects of the decision 

task mocAzMg. Af&cted by the dependency are thus the 

workpiece agent (Ds-wp) and several machine agents (D;_MA). 

The start situation of the dependency is either that the workpiece has 

been loaded or that it has just left a machine. 

The classification of the dependency is as follows (see table 4.20). The 

number of agents is fixed (the workpiece agent and several machine 

agents which could possibly process the workpiece in its current state). 

The workpiece agent is looking for a single commitment with a (single) 

machine agent such that the machine agent processes the workpiece. 

The role of the workpiece agent is fixed, the role of the machine agent 

engaging in the processing is not. 

The preferences of the workpiece and the machine agents are 

compatible. The former tries to be processed as fast as possible, the 

latter tries to maximise its utilisation. Whenever in conflict, the 

preference of the workpiece has priority It is further assumed that the 

agents would be willing to make their preferences available and to 

delegate decision autonomy, since both agents are supposed to optimise 

the overall production performance (see section 4.1). Finally, there are 

no global constraints and preferences to be taken into account (for this 

dependency). 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments -

#7 Role assignment 1/1 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table 4.20: Classsification of dependency between 

the decision aspects Ds.wp and Ds-wA. 

4. Of the interaction protocols characterised in appendix A, the plurality 

If the two preferences were not prioritised, the preferences of the agents would be (potentially) 
opposing. 
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voting, the English auction, and the contract net protocol match the 

above classification (i.e., could possibly resolve the dependency). The 

contract net protocol, though, matches the classification best because it 

has only one property (criterion #8) which differs from the above 

classification (but which nevertheless subsumes the above). A short 

analysis also shows that the contract net protocol is sufficient to resolve 

the dependency. It is therefore not necessary to consider the other 

interaction protocols. 

5. The contract net protocol reaches the goal state (choosing the next 

machine) from the start situation. Consequently, there is no need to 

modify it. 

In general, however, the above method may fail to identify a suitable interaction 

protocol for a dependency. There may be two reasons for this: 

1. It is not possible to resolve the dependency without resolving simultaneously 

other dependencies the decision tasks are involved in. 

Example. Assume that the workpieces in the example production system have 

deadlines. With deadlines for workpieces, dependencies between 

instances of DS-WP and DS-MA can no longer be resolved independently 

(see figure 4.16). If a single workpiece chooses the next machine 

without co-ordinating itself with the other workpieces, it may block 

a time slot that is required by another workpiece in order to finish 

before the deadline. Instead the workpieces should allocate time 

slots at the machines and schedule these slots such that the average 

deadline violation is minimised. Consequently, the dependencies 

between all instances of Ds-wp and Ds-ma must be resolved through a 

joint scheduling mechanism. 

In such a case, the above method must be repeated with an enlarged scope. That 

is, in step 1 of the method all decision tasks involved in the set of (potentially) 

linked dependencies are collected. 

2. It is possible to resolve the dependency, but there is no suitable interaction 

protocol in the library available to the designer. In this case, a new interaction 

protocol must be designed (or the decision model must be changed). 

4.4.3.2 Customising interaction protocols 

For each interaction protocol that matches the dependency classification, it must be 

verified whether this protocol is able to reach the goal state from all possible start 

situations. An interaction protocol may fail to do so either because it is not applicable to 
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one of the start situations, or because it does not reach the desired goal state. In the 

latter case, the designer must either redesign the protocol or choose a different protocol. 

This case is not considered in the following discussion, as it is the goal of this work to 

provide a mechanism to re-use interaction protocols instead of designing new or re-

designing existing protocols. In the former case, it may be possible - either at design or 

at run time - to transform the actual start situation into a situation to which the protocol 

can be applied. In the following, two basic techniques for adapting a protocol to a start 

situation are discussed. 

In order to execute an interaction protocol, the agents participating in the interaction 

must be equipped with the right capabilities; 

® Each agent supposed to initiate an interaction receives an appropriate trigger. 

0 Each agent has sufficient knowledge to process received messages, and to 

choose and compute the right response messages. 

Each aspect will be discussed in the following. Note that at this stage, the methodology 

does not consider aspects like computational and communicational capabilities of the 

agents since these capabilities depend on the implementation. 

Providing the right triggers 

The description of each decision task specifies which trigger(s) this decision task 

receives from the production process. On the other hand, every agent supposed to 

initiate an interaction requires some kind of trigger telling it when to initiate the 

interaction. The requirements of an interaction protocol and the actual triggers available 

from the production process may differ in two respects. 

First, the wrong agents may be triggered. In such a case, the designer must ensure that 

either an additional trigger is sent to the right agent (and the triggered agent ignores the 

trigger), or the triggered agent sends a message to the agent supposed to initiate the 

interaction. 

Second, several agents receive a trigger and thus initiate the interaction in parallel. In 

case the protocol is not able to handle parallel initiations by itself, the designer must 

introduce additional steps at the beginning of the interaction to ensure that the actual 

interaction protocol is initiated only once (e.g., by performing a voting protocol at the 

beginning of the interaction). 

Providing sufficient knowledge 

To fulfil a role in an interaction, an agent must have sufficient knowledge to decide 

when to react to a message and how to react, i.e., which type of message to send and 

what to put in the content of the message. It can be safely assumed that the agent knows 

its decision space and its local constraints and preferences. However, many other 
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aspects may be unknown to the agent - these may include: 

• Who are the other agents involved in this dependency, i.e., with whom should 

the agent interact? 

• What are the non-local constraints and preferences? The knowledge about the 

non-local constraints and preferences must somehow be distributed among the 

agents. 

• What is the knowledge of the other agents? Is their knowledge consistent with 

the agent's own knowledge? 

® Is there really a dependency in this particular situation? 

To remedy these information deficits the designer basically has three options: 

• equip the agent with morg 

Sensors can help to provide more local data. 

• equip the agent with interaction protocols for requesting more information^'' 

Communication with other agents provides the agent with non-local 

information available at the other agents. 

a equip the agent with more processing capabilities 

The processing capabilities can be used, for example, to analyse history data, or 

to infer implicit knowledge. 

From the point of view of the design methodology presented here, only the second 

approach is of relevance to the design because the other two aspects - more sensors and 

more processing capabilities - only concern the internals of an agent. This is because 

additional interaction protocols require that the agents from which the information will 

be requested are also equipped with the same interaction protocols. Their design must 

consequently be changed too. 

To summarise, the designer is either able - with the help of the above methods - to 

adapt the selected interaction protocol to the specific needs of his application, or fails to 

do so and must therefore choose a different protocol. 

4.4.4 Result of interaction protocol selection 

The result of this design step is the specification of an interaction protocol for each 

dependency or subset of dependencies between different agents such that the interaction 

protocol resolves these dependencies in all situations. The protocol specification then 

only needs to be projected onto the different agents participating in the interaction in 

order to specify for each agent exactly how it should behave during the interaction. 

Many interaction protocols and mechanisms for requesting information have been developed in the 
context of information agents (see for instance (Kandzia 1997, Klusch 2001)). 
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With the list of agents and their decision responsibilities, the protocol specifications 

complete the design of the agent-based control system such that each agent can be 

implemented separately and the implemented agents solve the production control 

problem. 

4.5 Summary 

This chapter has presented the DACS methodology for designing agent-based 

production control systems that is appropriate for control design and sufficiently 

prescriptive for a control engineer with only minimal training and no prior experience 

in agent technology to design an agent-based production control system (cf. subsection 

3.1.1). To ensure the appropriateness, the methodology was successively derived from a 

generic model of control processes in order to achieve a straight and comprehensible 

transition from domain to agent-oriented concepts during the design process. Second, to 

achieve a sufficient degree of prescriptiveness, each design step was accompanied with 

explicit design rules for the agent-oriented aspects of the design step. This included, in 

particular, a rule specifying when to abandon an agent-oriented design approach for a 

given application. 
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Figure 4.19: Results of the DACS methodology. 

The DACS methodology requires as input the specification of a production control 

problem, defining the production process to be controlled, the production conditions 

under which to operate the process, and the production goals to be achieved by the 

control system. The methodology itself consists of three methods (see figure 4.19): 

• a method for analysing the decisions necessary to control the production 

process under the restrictions defined; 

• a method for identifying agents with their control responsibilities and their 

dependencies on other agents; and 

• a method for selecting interaction protocols which are able to resolve the above 

dependencies. 

The result of the methodology is a specification of the control design including the 

agents of the control system, and for each agent how it interacts with the production 

process and how, if necessary, it interacts with other control agents (see figure 4.19). In 

particular, the resulting design is sufficiently modular in order to enable the 

independent implementation of each agent. 

171 



The following chapter will evaluate this methodology with respect to the requirements 

put forward in subsection 3.1.1. In particular, the following chapter will provide initial 

evidence that the methodology fulfils these requirements. A full example application of 

the methodology to an industrial test case will be given in appendix B. 
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Chapter 5 

Evaluation of the DACS Methodology 

Chapter 4 presented the DACS methodology for designing agent-based production 

control systems. For this methodology, it is claimed that it is both appropriate for the 

domain of production control and sufficiently prescriptive for a control engineer with 

only minimal training in agent technology and no prior experience in developing agent-

based systems to successfully design an agent-oriented production control system (cf. 

subsection 3.1.1). To substantiate this claim, it would be necessary to perform a large 

series of industrial case studies with a significant number of control engineers. 

However, this is clearly impossible within the scope of this thesis because for a realistic 

control problem the design process from the problem specification to the agent-based 

control design requires a significant investment in terms of human resources. A single 

case study would thus incur significant costs, a large field test prohibitively high costs. 

Nevertheless, to provide support for the above claims, this chapter will discuss the 

results of several case studies that have been conducted using the methodology. In 

particular, this chapter will make three assertions. First of all, this chapter will 

demonstrate the applicability of the design methodology to production control problems 

by presenting and discussing two industrial case studies. Second, this chapter will show 

that the methodology is more appropriate for production control than other existing 

(agent-oriented) design methodologies by highlighting in what respect the methodology 

overcomes the limitations of the methodologies discussed in chapter 3. And finally, this 

chapter will present four reviews of the design methodology performed by students or 

control engineers with no or only minimal prior experience in agent development. Thus, 

this chapter will provide initial evidence that the DACS methodology is appropriate and 

sufficiently prescriptive for a control engineer with only minimal experience in agent 

development to design agent-oriented production control systems, and that 

consequently DACS achieves the goal of this work set forth in the introduction. 

The chapter is organised as follows. Section 5.1 examines the applicability of the 

DACS design methodology. Section 5.2 compares the methodology with the state-of-

the-art discussed in chapter 3, and section 5.3 discusses the results of the third-party 
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reviews evaluating the suitability of the methodology. Finally, section 5.4 summarises 

the evaluation and concludes the chapter. 

5.1 Applicability to production control problems 

The first and most important assertion to be made is that a designer, following the 

methodology is able to create an agent-based production control system. To show this, 

the author has designed two real-world production control systems according to the 

rules of the methodology: the Kowest control system and the Worth control system. 

Both case studies are briefly discussed in the following. 

The Kowest control system is an agent-based system that was developed for a flexible 

cylinder head manufacturing system which is now in operation at a DaimlerChrysler 

plant in Germany (see subsection 2.3.3). The design of the agent-based control system 

was originally created in 1997 without the help of the DACS methodology. Actually, 

the development of the Kowest system initially triggered the development of a design 

methodology for agent-based production control systems, because at that time the 

development of such systems was still a very ad hoc process. The DACS methodology 

was therefore applied ex-post to the Kowest control problem in order to verify whether 

the methodology is able to support design processes for which it was originally 

developed. That is, the author redesigned the Kowest control system according to the 

rules of the methodology given only the specification of the Kowest control problem 

(and obviously the experience from the initial design project). The process itself and the 

design result were documented and then evaluated by Klaus Schild, a member of the 

former design team for Kowest. The evaluation can be summarised as follows: 

o The agent identification method creates the same kind of agents with the same 

responsibilities (namely workpiece, machine, transportation, and loader 

agents), each responsible for their (production) component. 

• The protocol selection method proposed the same interaction protocols as were 

employed in the original design, although this is not surprising as for example 

the Kowest protocol which was selected from the library was originally 

developed for the Kowest control problem. 

• The methodology, in particular the methods for analysing the control problem 

and identifying the agents, were regarded as intuitively appropriate for 

designing agent-based control systems, and it was felt that the methodology 

would have facilitated the original design process if it had been available at that 

time. 

The methodology was thus able to reproduce the Kowest design and the original 

designers regarded the methodology as appropriate. 
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In the second case study, a control system was developed for an existing car body shop 

at the DaimlerChrysler truck plant at Worth, Germany (see appendix B). For this shop, 

there already existed a conventionally developed non-agent-based control system. The 

goal of the case study was therefore to develop an agent-based control solution, 

compare its performance to that of the conventional control system, and show that the 

agent-based solution is able to run a real car body shop with the same or better 

performance. To this end, the author - without prior knowledge of the existing solution 

- applied the design methodology to the control problem of this shop and implemented 

the agent-based control system in a software prototype. The actual control problem 

specification and each design step are presented in appendix B. 

This case study showed that the methodology was able to successfully support the 

design task. In particular, three observations can be made: 

0 The method for analysing the decision making captures the relevant aspects of 

the control problem, namely the necessary resource allocation and timing 

decisions. 

• The method for identifying the agents produces a set of agents that reflects the 

production components (namely, AGVs, cells, and workers), and the different 

control tasks (such as assigning resources and scheduling tasks) are distributed 

among these agents. 

• The method for selecting the interaction protocols identifies suitable interaction 

protocols, and in case there does not exist a suitable interaction protocol in the 

library, either points to similar protocols, or changes the interaction problem by 

considering combined dependencies (as in the case of the timing dependencies 

in subsection B.4.6). 

The agent-based control solution described in appendix B was implemented as a 

software prototype and applied to a simulation of the shop (provided by the plant). The 

agent-based solution was tested with about four job databases taken from the plant and 

the prototype showed a performance comparable to that of the existing control solution. 

The case study was therefore regarded as successful (for more details see section B.5). 

To summarise, the methodology was applied successfully to two industrial control 

problems. In the first case study, the methodology was able to reproduce the design 

results of a completed agent-based design project. In the second case study, the 

methodology was able to develop a completely new agent-based solution that 

performed as well as the existing and optimised solution. 

175 



5.2 Comparison to the state-of-the-art 

The second assertion to be made about the methodology is that it is not only applicable, 

but also more suitable for the design of agent-based production control systems than 

other existing design methodologies. To demonstrate this, this section qualitatively 

compares DACS to the state-of-the-art. 

The state-of-the-art review in chapter 3 has shown that existing design methodologies 

are either not appropriate or not sufficiently prescriptive for designing agent-based 

production control system. In particular, the review has identified three main limitations 

of the existing methodologies which are briefly repeated below (see section 3.7). 

First of all, no existing methodology is able to adequately model the agent-oriented 

decision making which is necessary in control applications. Most agent-oriented design 

methodologies use modelling concepts, such as roles or goals, which have no direct 

counterpart in the domain of production control (see subsection 3.5.7). Manufacturing 

control methodologies, in turn, do use modelling frameworks, such as Petri nets, which 

are appropriate for modelling the actual production process. These methodologies, 

however, either do not explicitly model the control decisions, or do so in a centralised 

or hierarchical manner, which is inappropriate for an agent-based design (see section 

3.4 and subsection 3.5.2). The state-of-the-art consequently lacks a modelling 

framework that supports a smooth transition from the manufacturing domain to agent-

based decision making. 

Second, no existing methodology provides sufficient criteria for identifying suitable 

production control agents. Most methodologies provide either no criteria, only 

heuristics (see for example PROS A in subsection 3.5.2.3 and the synthetic ecosystems 

approach in subsection 3.5.6.2), or criteria which - due to the underlying concepts -

lead to an inappropriate set of agents (see subsections 3.3.5, 3.5.1.3, and 3.5.3.6). In 

particular, the few methodologies intended for the identification of production agents 

are not sufficiently precise about the rules of their identification method, i.e., when and 

where to apply the identification or aggregation of agents (see subsection 3.5.2.4). The 

state-of-the-art thus also lacks a prescriptive method for identifying production control 

agents. 

Third, very few methodologies have looked at designing interactions and in particular 

none have provided a method for designing the necessary interaction protocols. One 

noteworthy exception is the methodology of Elammari and Lalonde (see subsection 

3.5.4.3) which identifies different types of dependencies between agents in order to 

guide the interaction design (but matches these dependencies only to pre-defined 

interaction protocols, such as an execute message (see subsection 3.5.4.3)). The second 

noteworthy exception is the agent interaction analysis methodology of Miles et al. (see 

subsection 3.5.5.1), which proposes to re-use existing interaction protocols (but does 
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not provide a mechanism for (automatically) matching interaction situations and 

protocols, so that the number of protocols that can be considered during the design 

phase must be small (see subsection 3.6.2)). The state-of-the-art thus still lacks a 

method for designing as well as re-using interaction protocols on a large scale. 

The DACS methodology extends the state-of-the-art in that it provides a set of 

appropriate and sufficiently prescriptive methods for each of the above design aspects. 

Thus it improves the methodological support for designing agent-based control 

systems. The methodology starts with an analysis method that is appropriate for 

modelling control tasks, and thus bridges the gap between the domain of production 

control and agent-based systems. This method first identifies and characterises the local 

decision tasks arising at the production components and then adds any dependencies 

between these decisions. By identifying local decision tasks first, the designer starts 

with control aspects with which he is familiar, namely the control of a single production 

component, and which are described in the control problem specification. Likewise, the 

characterisation step for the local decision tasks requires only local aspects to be 

specified and the exact information to be provided for a local decision task is defined 

by a schema. A control engineer should therefore be able to easily perform the first 

analysis step. 

Non-local decision relations are then added in a second step by identifying the 

dependencies between the local decision tasks. That is, the designer identifies the 

dependencies only once he is familiar with all the local aspects of the control problem. 

Furthermore, identifying the dependencies requires only domain reasoning, of which 

the designer (as a control engineer) should be capable, and for each dependency, the 

designer is only required to provide constraints and preferences characterising each 

dependency without specifying at this stage how it should be resolved. With the help of 

the analysis method, the designer is thus able to create a model of the necessary 

decision making by reasoning only about the domain of production control. The method 

thus provides a smooth transition between the problem and the solution domain. 

The second method of the methodology, the agent identification method, takes the 

decision model created by the first method and identifies the control agents by grouping 

decision tasks according to a set of rules. More precisely, this method defines a set of 

operations the designer may perform on the decision model, and a set of rules 

prescribing or recommending to perform specific operations in certain situations. Thus 

both operations and rules guide the design process in that the operations delineate what 

the designer may do in order to identify the control agents, and in that the rules tell the 

designer what he should do in order to arrive at an appropriate set of control agents. In 

particular, the design rules include a rule that specifies when to abandon the agent-

oriented approach (namely when the decision model collapses into a single agent). In 

contrast to the literature, the method proposed consequently provides a much higher 
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degree of methodological support for identifying control agents because it specifies 

allowable identification steps and captures the relevant agent-oriented design criteria 

for these steps in a set of rules which can also rule out an agent-oriented approach. 

Obviously, the method does not specify a deterministic set of design rules prescribing 

exactly which operations to perform in which order, because otherwise the method 

would become an algorithm always resulting in a specific design. The method thus 

leaves room for creativity, while specifying all agent-oriented criteria which must be 

fulfilled in order to arrive at a truly agent-oriented design. 

Finally, the third method of the methodology selects an interaction protocol for each 

dependency between different agents. It does so by first classifying the dependency 

according to a pre-defined classification scheme and then searching in a library of 

existing interaction protocols for one that best matches the classification of the 

dependency. The first step for the designer is thus to analyse the dependency in 

question with respect to each criterion of the classification scheme. To do this, the 

designer is not required to have any knowledge about the interaction protocols because 

the classification scheme is defined only in terms of the decision model. And, once the 

classification is produced, the matching process itself can be performed automatically if 

all interaction protocols have also been characterised according to the classification 

scheme (and this needs to be done only once). The designer is involved again only after 

a set of suitable interaction protocols has been found, and only for those he has to verify 

that at least one does resolve the considered dependency. In other words, the designer is 

not required to know all the available interaction protocols, but only to look at those 

which promise to resolve the dependency. In contrast to previous work, the re-use 

mechanism is consequently scalable to a large set of interaction protocols and can thus 

draw from the large body of interaction techniques already developed in agent 

technology. Obviously, not covered by the methodology is the design of new interaction 

protocols. This challenging task is left to future work (see section 6.3). 

In summary, the methodology provides a greater degree of methodological support for 

designing agent-based production control systems than existing approaches because the 

models employed are more appropriate for capturing control decisions and the methods 

provide more criteria for performing the agent-related design steps (i.e., they are more 

prescriptive). This, however, does not yet imply that a designer with only basic training 

in agent technology and no prior experience in agent development is also able to 

successfully apply the methodology. This final assertion is made in the following 

section. 

5.3 Third-party reviews 

To provide initial evidence that a designer with no prior experience in agent 
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development can apply the methodology, two third-party case studies and two reviews 

by control engineers were performed. For each case study, a student with no prior 

experience in agent development was asked to independently apply the methodology to 

a realistic production control problem. Additionally, the methodology was presented to 

several control engineers developing control systems, and the engineers were asked to 

evaluate the methodology. 

5.3.1 First third-party case study 

The first case study was performed by Ilka LehweB-Litzmann, a computer science 

student with only basic training in agent concepts and no prior experience in agent 

development. For the purpose of this case study, it was sufficient to ask a computer 

science student because, with respect to computing, a computer scientist and a control 

engineering have broadly comparable backgrounds (this obviously changes once a 

computer science student specialises in a specific topic, which had not yet been the case 

for Ilka at the time of the case study). 

For the case study. Ilka was asked to apply a preliminary version of the DACS 

methodology to the design of a control system for a flexible engine assembly process. 

The process to be controlled was a flexible assembly system for the production of car 

engines in small to medium volumes. The production system consists of a main 

assembly line and several additional component assembly lines which supply parts to 

the main assembly line (see figure 5.1). Each line consists of a series of assembly 

stations, some of these performing the same operation, and the transportation between 

the stations is realised with the help of AGVs. The critical aspect about the assembly 

process is the co-ordination of the parts to be assembled at the intersection of the main 

and the component lines. In particular, it has to be ensured that the parts to be 

assembled into one product arrive at the same time at the same station. 

Ilka applied the methodology to the above control problem and ran through each step of 

the methodology. Each design step and the resulting agent-oriented control system were 

documented by her. The design consists of an agent for each AGV, station, worker, job, 

and in particular each component part. As interaction protocols, the contract net was 

chosen for assigning various resources, and a distributed constraint satisfaction 

algorithm for scheduling and thus co-ordinating main and components lines. After 

finishing the design. Ilka was asked to review her experience with the preliminary 

version of the methodology. In particular, she was asked to fill out a questionnaire with 

the following types of questions (see also section C.l): 

® Is the description of the methodology comprehensive? What is easy / what is 

difficult to understand? What should be described in more detail / with more 

examples? 
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• Does the approach make sense? Is it easy to apply? Which parts are difficult to 

apply? Is the methodology sufficiently prescriptive? 

• What is the general impression of the methodology? 
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Figure 5.1: Example assembly layout. 

Most points raised in the feedback are concerned with the description of the 

methodology because some parts were unclear or did not provide sufficient examples. 

Concerning the concepts of the methodology, Ilka raised only four points (see also 

section C.l): 

• Decision tasks should be characterised during the analysis phase and not during 

the identification of the agents (as it was in the preliminary version). 

• The methodology missed a schema for specifying decision tasks. 

• The characterisation of dependencies (in the preliminary version by intensity 

and importance) was difficult to understand and apply. 

• The operations to modify the decision model (in the preliminary version divide 

and expand) were not sufficiently specified, which led to misunderstandings. 

All in all, Ilka found that the methodology is appropriate for designing agent-based 
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systems and really helps to perform the design. As a general improvement, she 

proposed to use more diagrams, in particular with UML notation. As a consequence of 

the case study, the methodology was significantly revised with respect to the points 

raised in the feedback. The revised version of the methodology was then used as a basis 

for the second case study. 

5.3.2 Second third-party case study 

The second case study was performed by Laura Obretin, also a computer science 

student with only basic training in agent concepts and no prior experience in agent 

development. Like Ilka, Laura had not yet specialised in computing at the time of the 

case study. 

Laura was also asked to apply the DACS methodology to the flexible engine assembly 

control problem in order to verify whether the revised methodology was an 

improvement over the original version. She thus ran through each step of the revised 

methodology and documented the design steps as well as the design result. Her design 

consists of an agent for each AGV, station, component, loader, and transportation 

c r o s s i n g H e r design thus differs from the design of Ilka because she decided to handle 

jobs and the transportation differently and therefore re-organised the decision model 

according to a different strategy. This is possible and desirable because, despite the 

agent-oriented design rules, the identification of the agents remains essentially a 

creative process. As interaction protocols, the contract net protocol, a modification of 

the Kowest protocol, and a distributed constraint satisfaction algorithm were chosen. 

After completing the design, Laura was also asked to fill out a questionnaire in order to 

document her experience with the revised version of the methodology. The 

questionnaire contained essentially the same questions as the one filled out by Ilka. The 

feedback of Laura in the questionnaire was only positive (see also section C.2). She 

found the methodology comprehensive and appropriate. An analysis of her 

documentation, however, revealed that the method for selecting interaction protocols 

offered too many protocols. The selection process was thus not sufficiently precise. 

This method was therefore significantly revised by detailing the classification scheme. 

Laura was then asked again to read the description of the revised methodology in order 

to test whether she found that the revised version was an improvement. She confirmed 

this. The revised version resulted thus in the final version of the methodology which 

was presented in chapter 4. 

A worker agent was not identified because workers were omitted in the specification of the second case 
study. After the first case study, it was realised that workers are not a scarce resource which needs to be 
controlled. 
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5.3.3 Third-party reviews 

In a final evaluation step, several control engineers, experienced with designing control 

systems, were asked to review the design methodology. That is, the methodology in its 

final version was presented in two workshops and the engineers were asked to fill out a 

questionnaire with the following questions: 

• Is the methodology comprehensible? 

0 Does the approach make sense? 

• Is the approach sufficient to develop the agent-oriented aspects of a control 

system? What is missing? What should be improved? 

« Is it possible to apply the methodology in your area? 

The results of the reviews are discussed in the remainder of this subsection. The 

reviewers were Armando Walter Colombo, Ralf Neubert, and Boris Stissmann from 

Schneider Electric, Germany, as well as Dirk Hofmann and Raimund Krieg from the 

DaimlerChrysler plant at Worth, Germany. All reviewers were familiar with basic 

agent-oriented concepts, but had not designed an agent-based control system yet. The 

results of each workshop are discussed in the following subsections. 

5.3.3.1 Review by Schneider Electric 

The feedback from Schneider Electric concerning the methodology itself was very 

positive (see also section C.3). It was confirmed that the methodology is comprehensive 

and well justified. In particular, it provides a good transition from the specification of 

the production process to agent-oriented concepts. Only three aspects concerning the 

methodology itself were raised: 

o The methodology tends to identify reactive agents, but it was felt that this is 

probably sufficient for control systems.^^ 

• It should be specified what kind of competencies or knowledge, for example 

about production processes, is required by the designer to apply the 

methodology. 

• The methodology should use standard notation, as for example UML or SDL, 

as much as possible. 

All in all, it was confirmed that the methodology is well suited for control applications 

and could be applied at Schneider Electric, even though it was also stressed that more 

validation needs to be done before the methodology can be promoted in industrial 

The methodology only starts with a reactive point of view in order to avoid any implicit design 
decisions (see section 4.2). The designer may identify more deliberative agents by grouping local 
decision tasks or introducing abstract decisions. 
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projects. 

During the discussion, the engineers also raised many issues relating to possible 

extensions of the methodology or the integration of the methodology into the different 

development phases for a control system. 

• How is it possible to assess the implementability of a design, for example 

whether it is (soft) real-time capable? What is the time and space complexity of 

a protocol? What is the communication requirement of a protocol? How can a 

worst-case analysis be made? 

9 How does the methodology integrate with existing agent architectures or tools? 

How can components of agents be standardised? 

• How is it possible to more extensively use design (or implementation) 

experience from other projects? How can maintenance aspects be integrated 

into the design? 

• How can an agent-oriented control system interface with other existing 

enterprise software systems, such as enterprise resource planning (ERP) 

systems? 

a How can human workers be integrated into the design (other than simply 

regarding them as just another resource)? 

Obviously, the above aspects remain open issues and need to be addressed in future 

work on the methodology or on agent technology in general. 

5.3.3.2 Review by DaimlerChrysler 

The feedback from engineers of the DaimlerChrysler plant at Worth was also very 

positive (see also section C.4). It was confirmed that the methodology is comprehensive 

and straightforward. In particular, it was regarded as an advantage that each step of the 

methodology provides a set of rules for performing the design step. Only two aspects 

concerning the methodology itself were raised: 

a How can an iterative design process be supported? Iterative design processes 

are very common in practice. 

a How can an interaction protocol be assessed with respect to the real situation 

on the shop floor? Is the interaction protocol implementable with respect to the 

conditions at the shop floor? 

All in all, it was confirmed that the methodology is well suited for control applications 

and that it could be applied to the development of future control system, even though 

two aspects must be addressed to enable the use of agent technology at the plant. 
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« There must be appropriate tools for the development of agent-based control 

systems that interface well with existing tools for control design and 

implementation (i.e., simulation, PLC programming tools, etc.). 

• There must be reliable tools and hardware for implementing the agent-based 

control systems at the shop floor. 

Obviously, the above aspects must be addressed by control vendors promoting agent 

technology. 

5.3.3.3 Summary 

To summarise, the methodology was regarded by all reviewers as a comprehensive and 

appropriate approach to designing agent-based control systems that improves the 

development process in practice. The methodology must now be integrated into the 

different development phases for control systems and further issues, such as the 

analysis of computational and communicational requirements, standardisation of agent 

components, and human integration, must be addressed in agent research. 

5.4 Summary 

For the DACS methodology proposed in chapter 4, it is claimed that it is both 

appropriate for the domain of production control and sufficiently prescriptive for a 

control engineer with no prior experience in agent development to successfully design 

an agent-based production control system. To prove this claim, this chapter has 

provided initial evidence by comparing the methodology to the state-of-the-art and 

providing several industrial case studies. More precisely, this chapter has made three 

assertions: 

1. The methodology is applicable to the design of agent-based production control 

systems. 

This was shown by presenting two case studies (performed by the author) in 

which agent-based control systems were developed for industrial production 

systems. 

2. The methodology is more appropriate and prescriptive than other existing 

methodologies. 

This was shown by highlighting in what respect the methodology overcomes the 

limitations of the state-of-the-art identified in chapter 3. 

3. The methodology can be successfully applied by engineers with no prior 

experience in agent development. 
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This was documented by two case studies in which computer science students 

applied the methodology to an industrial control problem specification, and two 

reviews by engineers responsible for designing control systems. 

These assertions are certainly not sufficient to prove the above claims. In particular, the 

third-party case studies have only been performed by computer science students. It is 

therefore necessary to do more field tests with control engineers in the future. 

Nevertheless, the above assertions do provide initial evidence that the DACS 

methodology is both appropriate and sufficiently prescriptive for the design of agent-

based production control systems. 
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Chapter 6 

Conclusions 

The goal of this thesis was to develop a methodology for the design of agent-based 

production control systems which can be successfully applied by a control engineer 

with only minimal training in agent technology and no prior experience in agent 

development. This chapter concludes the thesis by reviewing how this has been 

achieved, putting this work into context, and pointing to possible future work. 

6.1 Review 

First, chapter 2 set the scene of this thesis by reviewing the state-of-the-art in agent-

based production control. It began by defining the terms "production" and "production 

control", and motivating why production control is of economic importance. It 

furthermore analysed the limitations of existing control approaches and derived future 

requirements on production control. Chapter 2 then briefly reviewed agent technology 

by summarising the state-of-the-art in agent modelling and interaction techniques. 

Finally, chapter 2 turned to the intersection of agent technology and production control, 

namely agent-based production control systems. Here, it was argued that agent-based 

systems are the right technology to meet many of the new requirements on production 

control and that this is consistent with current trends in production research. 

Furthermore, it presented several industrial test cases, and showed that there is not just 

one universal agent-based solution for all control problems, but that the control solution 

must be tailored to the specific needs of an application. The chapter therefore concluded 

that a wide spread use of agent technology in production control requires a recurrent 

design effort and thus a design methodology for agent-based production control 

systems. It furthermore concluded that such a design methodology must be applicable 

by a control engineer with no significant experience in agent development because the 

agent-oriented design - no matter how important to the overall performance of a system 

- is only one aspect of a control implementation. 
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Motivated by the discussion of agent-based production control, chapter 3 then looked at 

the state-of-the-art in design methodologies. It first defined the term methodology and 

analysed the requirements on a design methodology for production control. In 

particular, it derived the requirements of model appropriateness and method 

prescriptiveness from the overall goal of the thesis. Without the fulfilment of both 

requirements, most control engineers will fail to develop an agent-based control system. 

The chapter then continued by reviewing existing design methodologies with respect to 

their suitability for the task at hand. Object-oriented methodologies were found to 

already violate the first requirement (namely that of model appropriateness). Unable to 

model agent-based systems in general, they equally fail to model the decision making 

necessary in agent-based production control systems. As a consequence, for example, 

the use of object-oriented methodologies leads to a set of agents that are inappropriate 

for implementing control systems. Manufacturing control methodologies, in turn, 

provide sufficient means to model production processes as well as the associated 

control decisions, but either ignored any dependencies between the decisions or 

resolved these in a centralised manner. Manufacturing control methodologies are thus 

equally inappropriate to model agent-based production control systems. 

Most of the limitations of object-oriented and manufacturing control methodologies 

were remedied by the introduction of agent-oriented methodologies. These 

methodologies are obviously appropriate for modelling agent-based systems. However, 

despite the wide variety of different approaches, none of these methodologies are either 

appropriate or sufficiently prescriptive for production control. Most agent-oriented 

methodologies are inappropriate because they were developed with other applications 

in mind, and therefore build upon concepts (such as roles or tasks), which have no 

direct counterpart in production control. In addition to those methodologies that do 

model decision making remain vague with respect to how these decisions should be 

identified or assigned to agents. With respect to interaction design, the methodologies 

are even less developed. Only two methodologies consider the re-use of existing 

interaction protocols. Chapter 3 therefore reviewed also the state-of-the-art in re-use 

and found that none of the proposed approaches are sufficiently prescriptive to enable 

the re-use of a large set of interaction protocols. With these methodologies, the designer 

must explicitly consider each existing protocol in detail in order to decide which 

protocol can be used in his application. In sum, chapter 3 concluded that none of the 

existing methodologies are appropriate or sufficiently prescriptive for designing agent-

based production control systems. In particular, the state-of-the-art exhibits limitations 

with respect to modelling control decisions, identifying (control) agents, and re-using / 

designing interaction protocols. 

To overcome the limitations of existing methodologies, chapter 4 presented the main 

contribution of this thesis: the DACS design methodology for agent-based production 

control systems. This methodology starts from the specification of the production 
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control problem, which, among other aspects, includes a specification of the production 

components to be controlled and their physical behaviour. The first method of the 

methodology, the q/ decw/on TMoAfrng, then analyses the decision making 

necessary to operate the production system by looking at the local decision tasks arising 

at each production component and identifying any decision dependencies that may exist 

between the local decision tasks. The second method of the methodology, the 

identification of agents, builds upon the decision model derived by the first method and 

clusters decision tasks in order to assign each cluster to an agent. For the clustering 

process, the method provides three rules that were derived from the concepts of 

coupling and cohesion and adapted to the concepts of agent-oriented design. These 

rules make it possible to cluster, but not to separate decision tasks, and may thus result 

in clustering all decision tasks into a single agent. The method therefore provides a set 

of operations that modify the decision network, either by separating decision tasks or by 

introducing new decision tasks. These operations allow the designer to re-arrange the 

decision model and thus to improve the clustering process. If, however, the re-

arrangement fails to avoid the collapse of the decision model into one agent, then an 

agent-oriented approach is not suitable for the given control problem. The method for 

agent identification thus also provides a rule for verifying the appropriateness of an 

agent-oriented approach for a specific application. Finally, the third method of the 

methodology, the selection of interaction protocols, provides a mechanism for re-using 

existing interaction protocols in order to resolve any decision dependencies between 

different agents. This method provides a scheme for classifying decision dependencies 

that is based solely on criteria characterising the dependency itself. The classification 

can therefore be performed by a designer with minimal knowledge of the existing 

interaction protocols. On the other hand, as has been shown in chapter 4, the 

classification scheme is sufficiently abstract to be applied to generally defined 

interaction protocols and sufficiently precise to separate existing interaction protocols 

into different classes. The designer will thus be prompted with only a small set of 

interaction protocols once he has classified the dependency. The third method of the 

methodology thus enables the efficient re-use of a large set of interaction protocols. In 

sum, the successive application of all three methods of the methodology results in an 

agent-based design solving the given control problem (presuming that there exists at 

least one suitable interaction protocol for each decision dependency). The resulting 

design consists of a list of agents with their decision responsibilities (in terms of a set of 

decision tasks), and a set of interaction protocols for each dependency between different 

agents. The resulting design is thus sufficiently modular to allow the independent 

implementation of each agent. 

Chapter 5 then provided an initial evaluation of the claim that the methodology is 

applicable to the design of real production control systems and, in particular, is 
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applicable by a control engineer with no prior experience in agent development. To this 

end, the chapter made three assertions: 

1. The methodology is applicable to production control problems. 

2. The methodology provides more design support than other existing 

methodologies. 

3. The methodology can be applied by students and/or engineers with little or no 

experience in agent development. 

For the first assertion, the chapter reviewed two test cases performed by the author. For 

the second assertion, the chapter compared the methodology to the state-of-the-art in 

design methodologies and argued qualitatively that DACS is more appropriate and 

prescriptive than existing methodologies. In particular, it showed that the designer may 

create the decision model by only analysing domain-specific concepts (of which he is 

assumed to be capable as a control engineer) and that all agent-oriented design criteria 

necessary to perform the design are captured in a set of design rules. To further support 

this argument, chapter 5 reported on two case studies in which a student with no prior 

experience in agent development applied the DACS methodology to an industrial 

control problem and two reviews performed by engineers developing control systems. 

Apart from critiquing earlier versions of the methodology, the feedback from the case 

studies and the reviews was unequivocally that the methodology is suitable for 

production control and can be applied by a control engineer with no prior experience in 

agent development. It can therefore be concluded from this initial evidence that the 

thesis has achieved its goal, even though, as also pointed out by the control engineers 

during the review, more validation needs to be done in the future. With the evaluation 

and the successive improvements performed, however, the DACS methodology is ready 

to be used in industrial pilot applications. 

6.2 The work in context 

The DACS design methodology presented in this thesis is a novel contribution to the 

state-of-the-art. One the one hand, this methodology builds upon several achievements 

from different research fields. It uses, for instance, a model of decisions from decision 

theory, the basic concept of dependencies from agent theory, the notions of coupling 

and cohesion from general software engineering, and the idea of heuristic classification 

from artificial intelligence. On the other hand, the methodology significantly extends 

the state-of-the-art in design methodologies in at least three important respects: 

• The methodology provides a method for analysing the production control 

problem that bridges the gap between the domain of production control and 

agent-based systems. In particular, the method provides an agent-oriented 
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model of control which consists of domain concepts - namely decision tasks 

and decision dependencies - that the designer should be familiar with and 

which can be derived by only looking at the control problem specification. 

Furthermore, the method introduces the concept of trigger diagrams which 

express the decision tasks and their dependencies graphically. The designer is 

thus able to create the analysis model without any knowledge of agent 

technology. Agent-oriented concepts are only introduced later in the design 

process. 

• The methodology provides a set of operations and criteria for identifying agents 

which either lead to an appropriate set of control agents or suggest abandoning 

an agent-oriented approach. These operations and criteria are defined only in 

terms of the decision model developed during the analysis and can thus be 

applied by a control engineer with no prior experience in agent development. 

• The methodology provides a classification scheme for re-using interaction 

protocols that is based only on criteria characterising the decision situation 

arising during the production process. That is, for selecting an interaction 

protocol, the designer is only required to analyse the production situation in 

which the dependency to be resolved arises. The re-use mechanism for 

selecting interaction protocols is thus scalable to a large set of existing 

protocols. 

The DACS methodology thus extends the state-of-the-art by providing appropriate and 

sufficiently prescriptive methods for designing agent-based production control systems. 

The applicability of the methodology, though, is not restricted to production control 

alone. The methodology is also able to design other kind of control systems. The 

analysis method of the methodology only assumes that there is a set of physical 

components that need to make decisions as the process evolves. This view also applies 

to other control problems, such as the underground transportation of baggage in an 

airport, the movement of containers in a port, or the co-ordination of planes 

approaching an airport. The methodology is thus applicable to any application domain 

in which a physical process can be controlled by discrete decisions. The methodology, 

however, is not applicable to any application domain for which an agent-oriented 

approach is suitable. For instance, modelling an organisation and its business processes 

requires concepts like roles, services, or tasks (see section 3.5). For such an application, 

role-based or task-based methodologies are much more appropriate. The DACS 

methodology will thus never replace all methodologies and become the one and only 

agent-oriented methodology, but rather it will belong to a set of agent-oriented 

methodologies which all together cover a wide range of application domains. 

Nevertheless, some aspects of the methodology are more generally applicable (i.e., 

applicable to domains other than control). The approach to first create a semi-formal 
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domain model through an analysis and then to operate on this model in order to derive 

an agent-based design may also be helpful to other methodologies in order to increase 

their prescriptiveness. For DACS, this approach facilitated the definition of design rules 

and in particular the definition of a rule stating when to abandon an agent-oriented 

approach. Likewise, the heuristic classification of interaction situations could be used in 

other methodologies. The classification scheme presented in section 4.4 mostly 

considers aspects applicable to any interaction situation, such as the number of agents 

involved in an interaction, or the number of joint commitments to be achieved by the 

interaction. The classification scheme, though, may have to be extended for other 

application domains if in these domains other aspects, such as truthfulness, 

interoperability, adaptability, security, and so on, play a more dominant role. 

6.3 Future work 

Despite the achievements of this thesis, many issues are still left to future work. This 

section points to the most important ones. 

First of all, more validation needs to be done in the form of industrial case studies or 

field tests in order to provide more evidence for the applicability of the methodology, 

but also to disseminate the methodology to more practising control designers. To 

further promote the use of the methodology, there is also a need for tools that assist the 

designer in performing the different steps of the methodology. These tools could 

include, for example, editors for specifying the decision tasks and dependencies, 

graphical editors for modifying and clustering the decision tasks, and libraries for 

automatically searching interaction protocols given a classification of an interaction 

protocol. 

Secondly, several open issues were raised by the engineers during the review of the 

methodology that need to be addressed in order to integrate the methodology with 

industrial control development. The most important of these are listed below: 

• How can the methodology be integrated with existing agent architectures, tools, 

or standards? 

® How is it possible to assess the implementability of a design in its early stages, 

in particular with respect to its (soft) real-time capabilities? 

® How can the designed agent-based control systems interface with other existing 

enterprise software systems, such as enterprise resource planning systems or 

quality monitoring systems? 

• How can human workers (and in particular their flexible and intelligent 

capabilities) be integrated into the design? 
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Thirdly, there are several conceptual issues that are worth considering in future 

research. The most important among these is certainly the design of new interaction 

protocols if no existing interaction protocol is applicable. This is obviously a very 

challenging task and it is questionable whether it will be possible to provide a 

methodology for designing new interaction protocols that can be used by a designer 

with no prior experience in agent development. Here, probably, the goal of the research 

needs to somehow be reduced, for example to only aim at designing interaction 

protocols &om standard components or messages. 

Another important research issues is to integrate the methodology with other 

methodologies covering other aspects of manufacturing design, such as the design of 

the physical material flow or PLC controllers. It is reasonable to expect that the overall 

design will be improved if the different design phases are co-ordinated because a 

control system can only create a certain system behaviour if the physical process is able 

to perform the required operations, and, vice versa, a physical process can only show a 

certain behaviour if there is a control system that determines which operations must be 

executed in order to create the desired behaviour (cf figure 2.5). Physical process and 

control system, therefore, must be designed simultaneously. 

Finally, it seems worthwhile to try to integrate the DACS methodology with other 

agent-oriented methodologies covering other application domains. Currently the 

designer must choose one methodology for his application and perform the design 

according to this methodology. In applications which span several different domains, 

however, this may be a disadvantage. For instance, an agent-based system supposed to 

model or simulate a manufacturing company will need to model the production process 

including its control as well as the business processes of the company. For the latter, a 

role-based modelling approach is more appropriate. The designer may therefore need to 

use a combination of different methodologies. A first step towards such a combination 

of methodologies was done in (Juan 2003), but more work on a truly comprehensive set 

of methodologies is required in the future. 
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Appendix A 

Characterisation of Example Interaction 
Protocols 

This appendix characterises a set of example interaction protocols with respect to the 

classification scheme presented in subsection 4.4.1. The characterisation of an 

interaction protocol is not simply a classification according to the classification scheme. 

Instead of assigning it to a specific class of dependencies, an interaction protocol should 

be assigned to all those classes which it can efficiently solve. The task of the 

characterisation is therefore to analyse the interaction protocol with respect to the 

classes of dependencies it could possibly address. To express the fact that an interaction 

protocol addresses several classes of dependencies, the characterisation must either 

specify a class that subsumes all other classes (as for example for criterion #1) or else 

list all exclusive classes of a criterion that the interaction protocol addresses (as for 

example for criterion #3). Note furthermore that when discussing an interaction 

protocol, only the protocol is characterised, not the underlying interaction technique. 

An interaction technique may provide the basis for quite diverse interaction protocols 

that will address different classes of interaction situations. An interaction technique 

may thus address many classes of decision dependencies. Interaction protocols, on the 

other hand, are usually much more focussed on specific interaction situations. The 

following characterisation therefore concentrates only on interaction protocols. Finally, 

note that the following characterisation will not discuss in detail the motivation or 

background of an interaction protocol, nor will the interaction protocols be changed in 

any way to be applicable to other classes of dependencies. Interaction protocols are 

treated as given, and the sole purpose of this appendix is to characterise these protocols 

according to the classification scheme presented in subsection 4.4.1. 

In the following, each section describes an interaction protocol or a set of similar 

interaction protocols and characterises each protocol according to the classification 

scheme. The interaction protocols discussed are categorised into the following broad 

areas: 
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Voting (subsection A.l) 

Negotiation (subsection A.2) 

Auctions (subsection A.3) 

Distributed constraint satisfaction (subsection A.4) 

Coalition formation (subsection A.5) 

Co-ordination of multi-agent plans (subsection A.6) 

Application-specific interaction protocols (subsection A.7) 

Simple interaction protocols (subsection A.8) 

Social laws (subsection A.9) 

A.1 Voting 

The interaction of autonomous agents often includes the reconciliation of conflicting 

interests. The agents of a control system might for instance disagree about the next 

action to be taken, or about the distribution of available resources. To resolve conflicts, 

the agents must somehow find a compromise that is acceptable to all agents. Probably 

the simplest approach to find a compromise is to vote over possible alternatives. Many 

voting procedures have been proposed with quite different properties (Sandholm 1999). 

A simple example of such a voting procedure is the plurality voting protocol, which 

will be characterised below, To contrast this simple protocol with more sophisticated 

voting protocols, the Clarke tax protocol is also discussed and its characterisation is 

compared to that of the plurality voting protocol. 

A.1.1 The plurality voting protocol 

In the plurality voting protocol, the set of possible solutions is announced and each 

agent votes for the solution that is best for it. The solution that receives the most votes 

is then chosen as the compromise that must be accepted by all agents. This protocol is 

obviously simple and efficient, but it also has several drawbacks. For instance, the 

protocol is not stable with respect to irrelevant alternatives. An additional, but 

irrelevant alternative may split the votes for the most preferred alternative and may thus 

lead to the selection of a different alternative whose votes were not affected by the 

irrelevant alternative (see (Sandholm 1999) for a more detailed discussion). Despite the 

drawbacks, however, the plurality protocol may be sufficient in some cases. 

The plurality voting protocol is characterised as follows (see table A.l). An arbitrary 

number of agents may participate in the voting process. Agents may not join once the 
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voting process has started (even though the protocol could be changed to accommodate 

late votes). The number of agents involved is thus fixed. Furthermore, the voting 

mechanism is able to resolve conflicts due to opposing interests (by simply choosing 

the solution preferred by most agents). Of course, due to the simplicity of the selection 

mechanism, the protocol might not really reconcile possible conflicts between the 

agents. The preferences may nevertheless be opposing. The protocol is not able to 

consider global constraints and preferences because the votes are made only on the 

basis of the individual constraints and preferences. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments fix 

#6 Relation of commitments -

#7 Role assignment all variable 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy partial 

Table A.I: Characterisation of the plurality voting protocol. 

The protocol determines a single solution to which all agents must commit themselves 

(see also figure A.l). Since there is only one joint commitment to be achieved, criterion 

#6 - the relation of commitments - does not apply. The protocol puts no restrictions on 

the agent roles in the goal state. However, to make the roles variable, every possible 

role assignments must be defined as a possible solution over which the agents vote. 

The protocol allows the voting over a set of possible solutions. Since the agents only 

declare their most favourite choice, they do not have to reveal their preferences. With 

respect to criterion #8, the protocol is thus classified as "alternatives only". Finally, the 

agents have to accept the solution which receives the most votes. The agents thus 

delegate their decision autonomy to the group. 
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Figure A.l: The decision structure of the plurality voting protocol. 

A. 1.2 The Clarke tax protocol 

An important limitation of the plurality voting protocol is that it considers only the 

most preferred choice of each agent - the agents are not able to express how much they 

prefer a solution over another, or with respect to another agent. Several protocols 

therefore allow agents to quantify their preferences. The difficulty with quantitative 

preferences though is that agents may strategically declare false preferences in order to 

manipulate the voting process. An agent may for example declare a very high 

preference in order to have his preferred solution win. To avoid insincere declarations 

of preferences, the Clarke tax protocol levies a tax on those agents that made the 

solution win. That is, the agents declare the utility they expect from each alternative, 

and the alternative with the largest sum of associated utility values is chosen. In 

addition to the plurality protocol, though, the agents that made the chosen alternative 

win due to their declared utility values have to pay a tax. The tax amount is equal to the 

amount of utility that caused the alternative to win over the other alternatives. It has 

been proven that this tax forces the agents to declare their true utilities. That is, due to 

the tax the agents have no incentive to declare lower utility — because then their most 

preferred choice may not be selected - or to declare higher utility - because then the tax 

amount is higher than their benefit (see (Clarke 1971)). With the Clarke tax protocol, 

agents thus declare their preferences sincerely.^® 

The Clarke tax protocol has basically the same characterisation as the plurality voting 

protocol. The characterisation only differs with respect to criterion #8 in that the agents 

have to reveal their preferences in order to compute the tax (see table A.2). 

An important requirement for the applicability of the Clarke tax protocol is of course that there exists a 
"monetary system" which can be used to levy the tax. 
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Classification criteria Classification 

#8 Availability of information preferences 

Table A.2: Characterisation of the 

A.2 Negotiation 

In many situations, voting over a pre-defined set of alternatives is not sufficient to 

resolve conflicts between autonomous agents. In particular, in the case of opposing 

interests, the agents need to either relax their demands or search for new alternatives 

during the interaction, in order to reach a mutually acceptable compromise. This 

process of continuous concession and search for alternatives, which is more powerful, 

but also more time-consuming than voting, is called Megofmn'oM (see subsection 

2.2.2.2). Several approaches to automated negotiation and even more protocols have 

been proposed in the multi-agent systems literature (see (Jennings 2001b) for an 

overview). In this section, only three examples of negotiation protocols will be 

discussed and contrasted: 

® Service-oriented negotiation 

• The monotonic concession protocol 

• The DECIDE conflict resolution protocol 

A.2.1 Service-oriented negotiation 

Faratin has developed a sophisticated interaction model for bilateral negotiation of 

services (see subsection 2.2.2.2). In this model, the two negotiation agents basically 

exchange new proposals until either both agents accept the last proposal or one of the 

agents withdraws from the negotiation. This interaction process is complemented with a 

set of negotiation tactics and strategies for generating a new proposal. Faratin has 

defined tactics for reacting to time or resource constraints, for imitating the opponent's 

behaviour, for trading off different aspects, or for manipulating the set of negotiation 

issues. These tactics are combined into strategies by weighting the influence of a tactic 

on the generation of the next proposal. 

The characterisation of the corresponding interaction protocol is as follows (see table 

A.3). First of all, the protocol defines a bilateral negotiation process and may thus 

involve only two agents. The agents may have opposing interests. The two negotiating 

agents are trying to find a mutually acceptable compromise, to which they both commit 

themselves. There is thus only one joint commitment and this commitment is of size 
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two. The goal state of the negotiation is that the two agents agree oh a deal. Each agent 

then will have to execute its part of the deal. All roles are thus fixed. The agents only 

need to exchange proposals and therefore interact on the level of alternatives only. And 

finally, each agent must explicitly accept any deal. There is thus no delegation of 

decision autonomy. 

Classification criteria Classification 

#1 Number of agents involved 2 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments -

#7 Role assignment all fix 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy no delegation 

Table A.3: Characterisation of the .ygrvzcg-orfgnfet/ 

A.2.2 The monotonic concession protocol 

Rosenschein and Zlotkin (Rosenschein 1994) have proposed a monotonic concession 

protocol for bilateral negotiations. In this protocol, each agent starts from the deal that 

is best for it and either concedes (monotonically) or stands still in each interaction 

round. To concede monotonically means that an agent proposes a new deal that is better 

for the other agent (regarding its evaluation function). The negotiation thus continues 

until either the agents agree on a compromise deal or both agents no longer concede. In 

the latter case, the negotiation fails and the default deal is enacted (which is assumed to 

be worse for both agents). As an optimal behaviour for the monotonic concession 

protocol, Rosenschein and Zlotkin have identified the Zeuthen strategy. With this 

strategy, only the agent that has most to loose concedes. 

The monotonic concession protocol basically addresses the same interaction situations 

as the service-oriented negotiation, even though the associated Zeuthen strategy is 

much simpler than the negotiation tactics proposed by Faratin. However, there is one 

essential difference. The monotonic concession protocol requires the agents to know 
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each other's preference functions (i.e., the cost function for evaluating the deals) in 

order to determine which agent should concede next (see table A.4). 

Classification criteria Classification 

#8 Availability of information preferences 

Table A.4: Characterisation of theA^MofoMzc 

A.2.3 The DECIDE conflict resolution protocol 

Hollmann et al. proposed an interaction protocol for resolving conflicts between agents 

evaluating proposals (see subsection 2.2.2.2). The agents are supposed to search for a 

proposal which satisfies all agents. An agent is "satisfied" with a proposal if the 

evaluation result of the proposal passes a given threshold. The protocol proposed by 

Hollmann et al. differs significantly from the above negotiation protocols in that it 

allows several agents to participate in the conflict resolution process. On the other hand, 

the protocol is not able to reconcile opposing interests. The agents make new proposals, 

but there is no explicit process of concession (obviously, the agents could always 

concede by themselves). The resulting characterisation of this protocol is summarised 

in table A.5. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences constraints 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#S Size of joint commitments fixed 

#6 Relation of commitments " 

#7 Role assignment all fixed 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy no delegation 

Table A.5: Characterisation of the y-e.yoZw/fOM 
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A.3 Auctions 

Auctions are trade mechanisms for exchanging commodities, for example for trading 

goods for money (see subsection 2.2.2.2). There are and auctions. 

One-sided auctions allow only bids or only asks, whereas two-sided auctions allow 

both. Furthermore, an auction is called continuous if it allows bids and asks to arrive 

over time (and matches both over time). There are many types of auctions (and 

probably many more will be developed in the future). This subsection characterises 

three prominent examples: the owcOoM, the con/racf and the 

continuous double auction. 

A.3.1 The English auction 

The English auction is a one-sided auction in which only bids are allowed (see 

subsection 2.2.2.2). In this auction, the auctioneer wants to sell a (specific) good for the 

highest price possible and asks for bids by announcing the good to be sold. The bidders 

respond with bids and increase their bids until no bidder bids a higher price. The 

auctioneer then sells the good to the bidder with the highest bid for the price of the 

highest bid. 

The characterisation of the English auction is as follows (see table A.6). The English 

auction involves several agents, namely one auctioneer and at least two bidders. The 

number of bidders must be fixed at the beginning of the interaction because the 

auctioneer announces the good to be auctioned off at start and does not repeat this 

information afterwards. The English auction in the form described above is therefore 

not able to cope with a changing set of agents.^" The English auction (as almost all 

auctions) was designed to reconcile opposing interests: the auctioneer wants to achieve 

the highest price, the bidder wants to pay the lowest price possible. However, no global 

constraints or preferences are taken into account by the English auction. 

There is obviously only one joint commitment in the goal state, namely that of seller 

and buyer, and the size of this joint commitment is two (see figure A.2). In the goal 

state, there are two agents enacting a decision: the auctioneer selling the good, and the 

bidder with the highest bid buying the good. The role of the auctioneer is obviously 

fixed, the agent becoming the buyer is to be determined, i.e., this role is variable. 

Naturally, the English auction could be adapted to cope with a changing set of agents, but it is not the 
purpose of this work to modify the existing interaction protocols. 
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Figure A.2: The decision structure of the English auction. 

Since the protocol of the English auction only allows to issue bids containing the price 

the bidder is currently willing to pay for the good, the agents are interacting on the basis 

of alternatives only. In particular, the agents do not exchange their preferences, for 

example how much they are willing to pay. In the original English auction protocol, the 

auctioneer delegates part of its decision autonomy because it must accept any bid that is 

the highest bid. In many cases, however, the auctioneer may specify a reservation price, 

i.e., a lower limit for the bids. But also in this case the auctioneer must accept any bid 

above this reservation price. The bidders obviously retain their full decision autonomy 

because they issue the bids. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments -

#7 Role assignment 1/1 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy partial 

Table A.6; Characterisation of the English auction. 

A.3.2 The contract net protocol 

The contract net protocol (CNP) is a simple, but efficient protocol for assigning tasks 

to individual nodes in a network (see subsection 2.2.2.2). It assumes that one node has a 

task that needs to be executed (by another node) and that there are (potentially) several 

nodes that are able to execute this task. The node with the task is called the manager 
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and the other nodes are (potential) coMfyac/oM. The manager initiates the protocol and 

proceeds as follows. First, it announces the task to the potential contractors. The 

contractors answer with a bid. The necessary information provided in the bid was 

specified by the manager in the announcement message. The manager compares the 

bids and chooses the best bid according to its preferences. The node which has sent the 

best bid then receives an award message and is said to have a contract with the manager 

about the execution of the task. The other nodes may or may not receive a reject 

message. 

Even though the CNP was designed for task distribution, it is actually a one-sided first-

price sealed-bid auction. First of all, it is irrelevant to the protocol whether the agents 

exchange a task or some other kind of good.^' Second, the CNP simply stops after the 

auctioneer received the first bid from each bidder (first-price), instead of repeating the 

auction until no bidder changes its bid. And thirdly, the bid is sealed, i.e., not made 

known to the other bidders. In the English auction, it is a fundamental prerequisite that 

the bids are made open-cry, i.e., are broadcasted to all agents, because otherwise the 

other bidders do not know whether they need to raise their bid in order to win the 

auction. 

The characterisation of the CNP as a one-sided first-price sealed-bid auction is nearly 

identical to the characterisation of the English auction. The only difference is with 

respect to criterion #2. The constraints and preferences of the different agents must be 

at least compatible (see table A.7). If the preference were opposing, it would not be 

possible to find a mutually acceptable compromise with the first bid. 

Classification criteria Classification 

#2 Compatibility of preferences compatible 

Table A.7; Characterisation of the Contract net protocol. 

A.3.3 The continuous double auction 

In the continuous double auction (CDA), participants may pose bids or asks (see 

subsection 2.2.2.2). The bids and asks are continuously matched by a neutral auctioneer 

according to a set of market rules. The rules basically state that bids and asks are 

matched if the price of the bid is higher than the price of the ask.^* 

The characterisation of the CDA is as follows (see table A.8). The CDA is able to 

handle a changing set of agents: Buyers and sellers may join the auction at any time. 

The only minor difference to an auction is that the CNP does not require that actually two goods are 
exchanged, i.e., the auctioneer does not request a price in the CNP, but that the task is done. This 
difference, however, is irrelevant to the protocol itself. 

There are actually many different versions of the CDA in use (Friedman 1991). In this subsection, the 
standard CDA described in (Friedman 1991) is used as a reference. 
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and buyers and sellers that have been matched leave the auction. Just as the English 

auction, the interests of buyers and sellers may be opposing, even though only those 

agents are matched for which a complementary bid or ask exists. The CDA does not 

consider any global constraints or preferences. 

Classification criteria Classification 

#1 Number of agents involved changing 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments variable 

#5 Size of joint commitments 2 

#6 Relation of commitments non-overlapping 

incomplete 

#7 Role assignment all variable 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy no delegation 

Table A.8: Characterisation of the Continuous double auction. 

The number of joint commitments produced by the CDA is obviously variable because 

it continuously matches buyers and sellers. The size of the joint commitments, though, 

is always two; The CDA only matches a single buyer with a single seller. The relation 

of the agent roles and the joint commitments in the CDA is shown in figure A.3. The 

joint commitments are non-overlapping because an ask or bid can only be matched 

once. The CDA, however, does not guarantee that all asks or bids are served 

(incomplete). For example, if only one ask and one bid are remaining, but the bid is 

lower than the ask, the two are not matched. 

Since agents are continuously matched and it is not clear at the beginning which agent 

will be matched with which other agent, all roles are variable. The only exception may 

be a central auctioneer that runs the auction. Just as for the English auction and the 

CNP, the CDA operates with single actions only. In contrast to the English auction, the 

CDA allows only one action per agent. Finally, no agent delegates decision autonomy 

because all agents are matched only according to the specified or a better price. 
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Figure A.3: The decision structure of the continuous double auction. 

A.4 Distributed constraint satisfaction 

A constraint satisfaction problem consists of variables and constraints between the 

variables, and the task is to find values for each variable such that these values satisfy 

the constraints. In distributed constraint satisfaction (DCS) problems, variables and 

constraints are distributed among different agents (Yokoo 2000). Several techniques 

have been proposed to solve DCS problems. Two examples of DCS algorithms are the 

asynchronous backtracking search (ABS) and the asynchronous weak-commitment 

search (AWS) (Yokoo 2000). In ABS, agents have a unique priority and assign their 

variables in the order of their (pre-defined) priority. If an inconsistency occurs, the 

variables with the lower priority are relaxed first. In AWS, the priorities of the agents 

are dynamically changed according to a min-conflict heuristic, i.e., an agent increases 

its priority value such that the conflicts with other agents are minimised. Both ABS and 

AWS are complete in that they eventually search the whole solution space. More 

efficient, but incomplete algorithms are for example the distributed breakout algorithm 

(Yokoo 2000) and the constraint partition and co-ordinated reaction algorithm (Liu 

1994). 

DCS can be regarded as a distributed decision making approach in which each agent 

has decision variables and there are constraints (i.e., dependencies) between these 

variables. The decision space of a decision task is then represented by a variable, and 

the decision alternatives of this decision task are the values the variable may accept. 

Dependencies, though, may only be expressed as constraints that rule out certain 

combinations of alternatives. Preferences cannot be expressed in a DCS problem. In the 

following, only the ABS protocol is characterised. The characterisation of the AWS 

protocol is identical. 

A.4.1 Asynchronous backtracking search 

The ABS protocol is characterised as follows (see table A.9). The ABS protocol 
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performs a complete search through the space defined by all the variables. Variables, 

i.e., agents, may thus not be added (or removed) after the search has started. The ABS 

protocol is not able to handle any preferences. The ABS protocol only searches for a 

solution satisfying all constraints and stops after the first has been f(]und. However, 

global constraints can be defined (global preferences cannot - see criterion #2). 

Since the ABS protocol is able to solve any decision problem if the solution is only 

restricted by constraints, the protocol is consequently able to create any number of joint 

commitments of any size. Likewise, the joint commitments may create any kind of 

commitment structure (overlapping or not; complete or not). A DCS problem may 

assign an arbitrary number of roles since each decision variable may include the null 

action. 

The ABS protocol only requires the agents to announce a new value for a decision 

variable if the constraint net is otherwise unsatisfiable. Agents are therefore only 

required to provide single alternatives. Since the ABS protocol runs a pre-defined 

search algorithm, the agents have no control over the overall search process. They may 

only choose the order in which they announce their decision alternatives. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences constraints 

#3 Global constraints and preferences global 

#4 Number of joint commitments variable 

#5 Size of joint commitments variable 

#6 Relation of commitments any 

#7 Role assignment all variable 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy partial 

Table A.9: Characterisation of the Asynchronous backtracking search. 

A.5 Coalition formation 

Coalitions in multi-agent systems are groups of agents that co-operate in order to 

achieve goals they would not be able to achieve individually. The formation of optimal 

coalitions, however, is very time-consuming because for n agents there are 2" possible 
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coalitions. Shehoiy and Kraus (Shehoiy 1996) have therefore proposed an 

approximation algorithm for coalition formation that is distributed among the agents. 

The algorithm produces an approximation in that it only considers possible coalitions 

with a limited number of participating agents. 

The proposed algorithm consists of three steps. The agents first distribute the 

responsibility for evaluating a coalition. In a second step, the agents calculate the added 

benefit for each coalition. Then, in a third step, the best coalition (providing the greatest 

benefit) is chosen. Since agents may participate in more than one coalition, the agents 

determine to what extent the newly formed coalition consumes their resources and then 

repeat the process of coalition formation with an updated evaluation of the remaining 

coalitions until no more beneficial coalitions can be found. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments variable 

#5 Size of joint commitments variable 

#6 Relation of commitihents overlapping 

incomplete 

#7 Role assignment all variable 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy partial 

Table A. 10; Characterisation of the Shehory and Kraus Coalition formation algorithm. 

The characterisation of the corresponding interaction protocol is as follows (see table 

A. 10). The protocol assumes that the set of agents does not change during the coalition 

formation process. Agents only form a coalition if the coalition is to their mutual 

benefit. Therefore, the preferences of the agents cannot be opposing. Moreover, the 

coalition formation algorithm is not able to handle global constraints and preferences. 

Agents join a coalition solely on the individual basis of their valuation of the coalition. 

There may be any number of joint commitments (i.e., coalitions). The size of the joint 

commitments may even differ from coalition to coalition. Furthermore, agents may 

participate in more than one coalition (i.e., the coalitions may overlap). Since an agent 

only participates in a coalition if it is to its benefit, the set of joint commitments does 
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not need to be complete. The roles of the agents depend on the coalition they join. The 

agents exchange only possible coalitions and their evaluation of them, i.e., interact only 

on the level of alternatives. Finally, the agents need to delegate their decision 

autonomy. This is because the protocol prefers (and forms) the coalitions which achieve 

the best overall benefit, not necessarily the best individual benefit. However, an agent 

only joins a coalition that is beneficial to it. 

Note that the coalition formation approach may be only a partial solution to a decision 

problem. The coalition formation does assign a set of agents to a decision problem, but 

it does not specify which agent is going to play which part in the coalition. The 

coalition formation algorithm of Shehory and Kraus does consider the required 

resources to fulfil a goal and determines the value of a coalition on the basis of the 

resources the agents can contribute to a coalition. This, however, may not be sufficient 

to determine the precise role of each agent in a coalition, in particular if the agents have 

overlapping capabilities. It may therefore be necessary to complement the coalition 

formation algorithm by a second assignment step for each coalition. 

A.6 Co-ordination of multi-agent plans 

All of the interaction protocols discussed in the previous subsections are concerned 

with co-ordinating the next action of each agent. In some cases, however, it is necessary 

to look further into the future and to co-ordinate the plans of the agents about their 

future actions. Several mechanisms for the co-ordination of multi-agent plans have 

been proposed (see subsection 2.2.2.1). In this subsection, three examples are presented 

and discussed: 

o Partial global planning 

» Generalised partial global planning 

• Consensus-based distributed planning 

A.6.1 Partial global planning 

Partial global planning (PGP) was developed to co-ordinate distributed planners for 

sensory interpretation, each executing its own local plan for how to perform the 

interpretation of the distributed data (see subsection 2.2.2.1). To achieve the co-

ordination of the distributed planners, the agents abstract from their plans and exchange 

these abstractions. Given the different local plan abstractions, each agent is then able to 

identify common goals to which the local goals of the agents contribute. Since these 

common goals may be only partially known to the agents, they are called partial global 

goals. Once a partial global goal has been identified, the local plans can be integrated 

207 



into partial global plans. PGP in its original description provides two mechanisms to 

perform this integration: redundant tasks are avoided, and tasks are performed earlier if 

this facilitates the work of other agents. In contrast to many other interaction protocols, 

PGP is therefore an on-going mechanism for global co-ordination. 

PGP is characterised as follows (see table A.l 1). Since the planning process is on-going 

and intertwined with the execution, agents may join the planning process at any time. 

However, only co-operative agents may join the process because there is no mechanism 

in PGP to reconcile opposing interests, whereas the agents are able to construct (partial) 

global plans and thus optimise the overall system behaviour. 

Classification criteria Classification 

#1 Number of agents involved changing 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences global 

#4 Number of joint commitments variable 

#5 Size of joint commitments variable 

#6 Relation of commitments any 

#7 Role assignment all fixed 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table A.l 1; Characterisation of the Partial global planning algorithm. 

The number of joint commitments and their size depends on the global goals (i.e., the 

dependencies) that are identified. PGP is (theoretically) able to achieve any number of 

joint commitments. Furthermore, each agent has its own local plans and thus its own 

role to perform. The plans, however, may be simplified if redundant tasks are 

eliminated. 

Since in PGP the agents also exchange goal representations, they also disclose their 

preferences about future actions. In so doing, the agents are expected to be co-operative 

and interested in the overall good of the agent society. Changes are thus not explicitly 

agreed. It is assumed that an agent agrees to a change if that change improves the 

overall behaviour. 
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A.6.2 Generalised partial global planning 

Decker (see subsection 2.2.2.1) generalised the partial global planning approach in 

order for it to be applicable to a wider range of applications (rather than looking only at 

distributed sensory networks). In comparison to PGP, generalised partial global 

planning (GPGP) mainly provides (i) general co-ordination relationships, (ii) an 

approach for detecting these relationships, and (iii) mechanisms to deal with them. 

Examples of these mechanisms are to communicate results either anytime or only when 

requested; or to schedule a task earlier if this is required by another agent. The 

generalisations made, though, do not change the general characterisation of the PGP 

approach, i.e., GPGP is characterised analogously. 

A.6.3 Consensus-based distributed planning 

Ephrati and Rosenschein (Ephrati 1996) have designed a distributed planning 

mechanism for constructing a joint plan through iterative voting about the next state to 

be achieved. That is, the possible next states are announced and then voted upon by the 

agents until a full multi-agent plan has been constructed. As a voting protocol for each 

step, the mechanism uses the Clarke tax voting protocol (see subsection 6.3) in order to 

ensure that the agents vote sincerely. The characterisation of the planning protocol is 

therefore identical to the characterisation of the Clarke tax voting protocol. This is due 

to the fact that the classification scheme does not classify the goal state with respect to 

the number of actions it consists of. 

A.7 Application-specific interaction protocols 

Besides the general interaction protocols, also many application-specific interaction 

protocols have been developed. Even though customised to the specific needs of an 

application, many of these application-specific interaction protocols may be usable in 

other applications with similar properties. It is therefore worthwhile to also characterise 

these interaction protocols even if they are not generally defined. As an example for an 

application-specific interaction protocol, this subsection characterises the KoWest 

protocol for work-in-process control which has been developed for a manufacturing 

control application (see subsection 2.3.3). 

A.7.1 Kowest work-in-process control protocol 

The Kowest protocol was designed to control the work-in-process of a manufacturing 

system, i.e., the number of workpieces simultaneously being processed in the system 

(see subsection 2.3.3). Its main task is to optimise the distribution of workpieces to 
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machines and to prevent an overflow of material in the manufacturing system. To this 

end, the protocol manages three aspects of the manufacturing process. First of all, the 

protocol assigns workpieces to machines through an auction protocol, similar to the 

contract net protocol described in subsection A.3.2. Secondly, every workpiece is 

assigned to the virtual buffer of at least one machine. That is, each machine manages a 

'virtual buffer' in which each workpiece which has been assigned to the machine and 

has not yet found a new machine is listed. Workpieces must inform their last machine if 

they want to leave the virtual buffer (for example, because they have found a new 

machine). And thirdly, the assignment of workpieces to machines is modified such that 

a workpiece is not able to move from one machine to the next if the virtual buffer of the 

next machine is full. The protocol thus stops the flow of material if the buffer capacity 

is exceeded. 

The characterisation of this application-specific protocol is as follows (see table A. 12). 

New workpiece agents are created and join the interaction process as new workpieces 

enter the manufacturing system. The number of agents involved is thus changing. These 

agents, however, are all designed to optimise the overall system performance. For 

instance, the workpiece agents are programmed to wait until one of the possible next 

machines has an empty buffer space. The work-in-process control limits the overall 

number of workpieces simultaneously in the manufacturing system, i.e., primarily 

optimises a global performance measure. 

The interaction protocol continuously creates joint commitments of size two between a 

workpiece agent and a machine agent. Since a machine agent may simultaneously have 

several joint commitments with different workpieces, the set of commitments is 

overlapping. The roles of the workpieces are fixed because a workpiece must be 

processed. However, the machine that is able to and will process the workpiece is not 

fixed and must be determined by the protocol. 

In some cases, the agents may communicate their complete decision space. A 

workpiece agent searching for a suitable next machine, for example, sends all 

operations to be performed next on the workpiece to each machine agent (for the 

machine agents to return the maximal number of operations they can currently 

perform). Workpiece and machine agents act according to the pre-defined set of rules 

given by the interaction protocol, and thus delegate their decision autonomy. 
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Classification criteria Classification 

#1 Number of agents involved changing 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences global 

#4 Number of joint commitments variable 

#5 Size of joint commitments 2 

#6 Relation of commitments overlapping 

#7 Role assignment some fixed / some variable 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy partial 

Table A.12; Characterisation of the Kowest work-in-process control protocol. 

A.8 Simple interaction protocols 

The interaction protocols characterised in the previous subsections have all been 

designed for interaction situations in which a solution to the decision dependencies is 

not straightforward, but must be determined through the interaction of the agents. In 

some cases, however, an interaction situation can be resolved in a much simpler way. 

If, for instance, only one agent is able to perform a specific action and this agent is 

designed to be helpful because all agents are working towards a common goal, without 

further ado the required action may simply be requested from this agent. This can be 

done by a very simple interaction protocol (see below). The advantage of these simple 

interaction protocols is that they are easier to implement and require less 

communication than more sophisticated protocols. The simple interaction protocols 

should thus be preferred if they fulfil all interaction requirements. Consequently, simple 

interaction protocols should also be characterised, and an example of such a 

characterisation is given in the following. 

A.8.1 Requesting action 

Assume that one agent - supposed to perform an action - realises that it requires an 

auxiliary action from another agent and that it is obvious which agent this will be. 

Furthermore assume that it is also reasonable to believe that this agent will honour the 

request in most cases. The agent requiring the auxiliary action may thus employ the 
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following simple protocol: The agent requiring the action sends a message to the other 

agent specifying the requested action. The requested agent either answers with an 

accept message and performs the requested action, or sends a reject. This simple 

protocol is characterised as follows (see table A. 13). 

One agent requests an action from a second agent. There are consequently only two 

agents involved. And these agents must have compatible preferences, otherwise the 

requested agent will not honour the request. There is only one commitment between the 

two agents, and both agents have a fixed role (one performing an action that requires an 

auxiliary action and the other performing the auxiliary action). Since the first agent is 

only requesting a single action from the second agent, the agents interact on the level of 

alternatives (execute action or not). And finally, the requested agent is able to reject the 

request (for whatever reason). 

Classification criteria Classification 

#1 Number of agents involved 2 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments -

#7 Role assignment all fixed 

#8 Availability of information alternatives only 

#9 Delegation of decision autonomy no delegation 

Table A. 13; Characterisation of the Requesting action protocol. 

A.9 Social laws 

Shoham and Tennenholtz (Shoham 1995) have considered the possibility of defining 

social laws for the interaction of autonomous agents. A social law is a set of 

behavioural rules that every agent must obey when it interacts with other agents. The 

basic idea of social laws is that if all agents follow a certain set of rules, the agent 

system shows a more coherent behaviour without the need for a lot of communication 

(ideally, without any communication). Imagine for instance two robots moving along a 

hallway in opposite direction. If both robots follow the rule to move only on the right 
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side of a hallway (and assuming the hallway is wide enough), the robots do not collide 

and they achieve this without having exchanged a single message. Naturally, the social 

laws necessary to create coherent behaviour are different for each application - there is 

no universal set of social laws. This is mainly due to the fact that coherence has a 

different meaning for each application. 

With respect to the goal of this section, i.e., the selection of an interaction protocol for a 

given decision dependency, the idea of social laws is to avoid the need for interaction in 

the first place. To avoid interaction, the designer must find local decision rules that, 

when applied in any start situation, always fulfil the non-local constraints and 

preferences of the decision dependency (cf. subsection 4.2.2.2). The social laws 

approach can thus be employed as a pre-step to the selection of an interaction protocol. 

The designer first tries to avoid the interaction by adapting the local decision rules of 

the agents, and only if this is not possible or cannot be done efficiently, the designer 

looks for a suitable interaction protocol. Due to the complexity of finding effective 

social laws (see (Shoham 1995)), however, it can only be expected to find such a set of 

local decision rules for rather simple situations. Interaction will be more powerful in 

most cases. 
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Appendix B 

Application of the DACS Methodology to an 
Industrial Test Case 

This appendix presents the application of the DACS design methodology to an 

industrial test case. The purpose of this test case was twofold. First of all, the test case 

was supposed to show that the methodology developed in chapter 4 can be successfully 

applied to an industrial design problem (see also section 5.1). Secondly, the resulting 

agent-based control design was supposed to be compared with an existing control 

system in order to assess whether the agent-based solution performs as well as the 

existing solution. To this end, the agent-based solution was implemented and evaluated 

with the help of a simulation. To document this test case, this appendix describes the 

application of the methodology to the corresponding design problem and discusses the 

results of the evaluation. The test case is an existing car body shop of the 

DaimlerChrysler truck plant at Worth, Germany. This shop, called the backboard 

welding shop (BWS), assembles the backboard of the truck driver's cab through the 

welding of metal sheets. 

This appendix is organised as follows. First, section B.l specifies the control problem 

associated with the test case. The next three sections then describe the application of 

each step of the methodology: Section B.2 develops the decision model, section B.3 

identifies the agents, and section B.4 selects the necessary interaction protocols. Section 

B.5 then discusses the results of the test case. Finally, section B.6 summarises the 

design and evaluation of the test case. 

B.l Specification of the production control problem 

This section specifies the production control problem of the BWS test case (according 

to subsection 4.1). Subsection B.1.1 describes the actual backboard welding shop and 

its production process. Subsection B.l .2 defines the conditions under which the 

production process of the BWS should operate. Subsection B.1.3 sketches the control 
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interfaces of the BWS components. And finally, subsection B.1.4 presents the 

production goals and requirements for the BWS. 

B.1.1 Production system 

The BWS consists of a loading station'' (station 01 with cells 0101 to 0110), a check 

(station 02 with cell 0201), a roAof (station 03 with cells 0301, 

0302, 0304, and 0305), and an unloading station (station 04 with cell 0401). The 

transportation of workpieces between stations is conducted by automated guided 

vehicles (AGVs), each equipped with a pallet for a specific workpiece type. The AGVs 

move on fixed routes through the shop and may park at any of the cells or at specific 

parking places (cells 0070 to 0077 belonging to station 00). The overall organisation of 

the shop with its cells and traffic routes is shown in figure B. 1. 

ZP0006 

0 B 0106 

0105 

Figure B.l; Layout of the backboard welding shop. 

An AGV receives a new job as soon as it has finished its last job, i.e., once the current 

workpiece has been unloaded at the unloading station. The new job assigned to the 

AGV must be a job whose workpiece type is compatible with the pallet type of the 

AGV. To execute the job, the AGV first has to choose a loading cell at which the 

necessary metal sheets are available. At such a cell, the loading is performed manually 

by workers which must be requested from a worker pool (see figure B.2). After the 

loading step, the AGV moves to the check station which verifies that the parts are 

correctly clamped. Then the AGV moves to the routing point ZP0006 from which it 

goes to one of the welding cells. After the welding process the AGV leaves the welding 

cell in order to be unloaded at the unloading station and to receive a new job. 

The term station is used here as a (physical) collection of (production) cells. 
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a r t 

0^ 

Figure B.2: Manual loading of AGVs. 

During the execution of a job, the AGVs may park at various places. Whenever the 

AGV is waiting for a loading cell or the check cell, it may park at any free loading or 

parking cell. After the check station it must move directly to the welding station. If that 

is not possible, the AGV must go through the check station again before it can move to 

the welding station. At the welding station, an AGV can park before and after a welding 

cell without blocking other routes. 

B.1.2 Production operation conditions 

The jobs to be executed by the production system are provided in a job database. The 

job database specifies, for each job; 

• the workpiece type; 

• the allowed loading, check, welding, and unloading cells; and 

• the required processing time at each cell. 

The job database also defines a temporal sequence in which the workpieces should be 

delivered to the unloading station (see also subsection B.I.4). 

The execution of welding jobs may be interrupted because of machine failures or 

delayed loading. Failures may occur at any automatic cell (i.e., at check, welding, or 

unloading cells). The mean time to repair is at most 10 minutes, and the overall 

machine availability at least 90%. The manual loading process at the loading cells may 

be subject to unforeseen delays. For various reasons, workers may take up to 15% 

longer than planned to load the necessary parts for a job. AGVs are not subject to 

failures or malfunctions (more precisely, the system does not need to be robust with 

respect to failures of the transportation system). 
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B.1.3 Control interfaces 

The backboard welding shop provides the following control interfaces to the physical 

components of the production system. 

# Job database 

The control system can access the job database and retrieve jobs. 

# Automatic cells 

The automatic cells (cells 0201, 0301, 0302, 0304, 0305, and 0401) provide 

sensory information about the state of the cell (whether it is processing or idle, 

available or disturbed; whether there is an AGV in the station, entering or 

leaving the cell; and so on). The automatic cells may also be commanded to 

execute cell-specific operations, such as welding operations at the robot cells. 

« Loading and parking cells 

The loading and parking cells only provide sensory information. They report 

whenever AGVs enter or leave the cell. 

" Workers 

Workers report their activities through an on-line reporting system. The system 

signals whenever the workers start or finish loading an AGV. Furthermore, the 

workers can be asked to perform a loading operation at a specific cell. 

. AGVs 

AGVs report their position as well as entering and leaving cells. AGVs can also 

be commanded to move to a new destination. The AGVs automatically compute 

the necessary route and avoid collisions with other AGVs. 

B.1.4 Production goals and requirements 

The production goals are 

® to maximise the throughput of the shop and 

• to minimise the deviation of the actual delivery sequence from the planned 

delivery sequence. 

The deviation of a job from its planned delivery slot is computed as follows. The job 

database defines a temporal order in which the workpieces should be delivered to the 

unloading station. This sequence defines a position for each job. The difference 

between the actual and the planned position is the deviation of a job. This is an 

important measure because jobs that deviate from their scheduled position must be 
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resorted in later production steps in order to reach the final assembly station in the right 

order. 

B.2 Analysis of decision making 

This section describes the analysis of the decision making necessary to control the 

backboard welding shop. According to the analysis step of the methodology (see 

section 4.2), it is necessary to first identify and characterise the effectoric decision 

tasks, and then to identify and characterise any dependencies between the decision 

tasks. 

B.2.1 Identification of effectoric decisions 

The basic production process of the BWS is as follows (cf the strategies for identifying 

effectoric decision tasks in subsection 4.2.1.2): 

1. An empty AGV is assigned to a welding job such that the pallet type of the 

AGV is compatible with the type of the job (i.e., the pallet is able to hold the 

necessary welding components). 

2. The AGV moves to a loading cell at which the necessary components are 

manually put onto the pallet. The AGV may only move to loading cells which 

have the components in their local stock. 

3. The AGV moves to the check cell at which the components are clamped and 

the completeness of the components is checked. 

4. The AGV moves to a welding cell at which the components are welded to form 

the backside of the driver's cab, the end product of the job. The AGV may only 

move to a welding cell which is equipped with the tools to perform the welding 

operations. 

5. The AGV moves to the unloading cell where the part is taken off the AGV via 

a lift and transported to the final welding shop (assembling all sides of the 

driver's cab). 

In-between steps 1, 2 and 3, the AGV may enter a parking space. If the AGV enters a 

parking space after step 3, it must redo step 3 before beginning with step 4. 

The difficulty about controlling the backboard welding shop is to decide when to go 

through the production steps for each job such that the end product of the job is 

delivered on time, but at the same time the throughput is maximised. This is 

particularly difficult because different jobs may compete for resources and resources 

may fail at any time. 
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To control the above production process, the controller has to make the following 

decisions during the production process: 

# Di Assign a job to an AGV 

# D? Choose the next goal cell and departure time for an AGV^ 

# D] Assign a worker to a loading cell 

® D4 Select an AGV to cross a junction first 

Decision Di is necessary to eventually process jobs (see step 1 above). An AGV must 

be assigned to a job before it can be loaded with components at a loading cell. This 

decision implicitly decides when to start processing a job (i.e., when to take it from the 

job data base). 

Decision D2 is the main decision type that enables an AGV to move through the 

production system. It can be used to choose an appropriate cell for the next production 

step or to choose a parking place. It thus decides about the physical path that is taken 

through the production system and when each step is taken. In so doing, it must also 

decide about which of the alternative cells or parking places to use. 

For loading stations, decision D2 is supplemented by decision D3, which assigns a 

worker to a loading cell. Once sufficient workers have arrived at the loading cell, the 

loading step starts automatically. Note that it is also not necessary to choose a start time 

at the check cell, the welding cells, or the unloading cell, as these start processing the 

AGV immediately. 

Finally, decision D4 determines which AGV may go first if two AGVs want to use the 

same exit at a junction. In such a case, deciding which AGV may go first also 

determines in which order the AGVs arrive at the next cell (if they have the same cell 

as the next goal). 

Note that there are also three cycles in the transportation system: two around the 

parking places and one around parking places and check cell. Because of these cycles, 

an AGV has potentially infinitely many ways of reaching a destination. However, going 

into an additional cycle does not yield any benefit (if an AGV needs to be buffered or 

delayed it can be moved to a parking place). Consequently, there is no need to choose 

between "alternative" routes (for the same destination). Rather, an AGV should always 

prefer the shortest path. 

In the following, the above decisions are specified as decision tasks in tables B.l to B.4 

(according to the scheme outlined in subsection 4.2.1.3). 

^ Note that D, is already a generalisation abstracting the actual AGV, the actual cell, and whether the 
AGV should move to the next cell or to a parking place. 

219 



Attribute Description 

id 

title 

params 

control interface 

trigger 

decision space 

local decision rule 

D, 

Assign job to AGV 

AGVVi 

job data base, AGV V, 

Vi is free. 

set of jobs X time 

Choose oldest job matching the AGV type and 

start processing immediately. 

Table B.l: Effectoric decision Di. 

Attribute Description 

id 

title 

params 

control interface 

trigger 

decision space 

local decision rule 

D2 

Choose next goal cell and departure time for AGV 

AGV Vi, cells Cj 

AGV Vi, cells Cj 

Current processing step for job of Vi is finished. 

set of possible cells x time 

Choose cell that is able to process the job and is able to do so 

at the earliest time possible. 

Table B.2; Effectoric decision D?. 

Attribute Description 

id D3 

title Assign worker to a loading cell 

params 

control interface AGV Vi, Worker Wj 

trigger AGV entered a loading cell. 

decision space set of workers x time 

local decision rule Choose a worker that is able to load the AGV 

at the earliest time possible. 

Table B.3: Effectoric decision D3. 
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Attribute Description 

id D4 

title Select AGV at junction 

params AGVs Vi and V? 

control interface AGVs Vi and V2 

tngger Vi and V2 are both heading for the same 

junction and will choose the same exit. 

decision space {Vi.Vz} 

local decision rule Choose an AGV randomly. 

Table B.4: Effectoric decision D4. 

The trigger diagram of the BWS decision process is given in figure B.3 (see subsection 

4.2.1.3). Note that theoretically, Dz and D3 are parallel decisions which must be co-

ordinated. Practically, however, the workers are assigned after the cell has been chosen 

because workers are the scarcer resource. Decision tasks D4, though, is a decision that 

may or may not be necessary while moving to the next cell. When necessary, it is thus 

performed in parallel to D3. Note furthermore that a loading step may require several 

workers. Consequently, decision task D3 may have to be performed several times for a 

single AGV. 

Choose next goal 
RfAGV 

Assign job to 
AGV 

Assign worker to 
loading cell 

Processing / 
unloading 

Select AGV at 
junction 

decision task (with id #) 

event 

physical flow 

Figure B.3: The trigger diagram for the BWS decision process. 
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B.2.2 Identification of decision dependencies 

An analysis of the production process according to the strategies specified in subsection 

4.2.2.1 reveals two types of decision dependencies between the decision tasks of the 

BWS: the first concerns any resource conflicts, and the second the timing (more 

precisely, the final sequence of the jobs at the unloading station). Concerning the first 

type, there are three resources that the jobs are competing for. First, jobs need to be 

assigned to an AGV. Second, AGVs request processing at cells. And third, AGVs 

require workers at the loading cells. The resolution of each resource conflict influences 

the production performance, in particular the throughput. To see this, assume that AGV 

Vi can be loaded at cell C\ or Ci, while AGV Vz can be loaded at cell Ci only. If Vi 

arrives first and chooses C2 for the loading operation, V2 has to wait until the loading of 

Vi is finished, whereas if Vi had chosen Ci, V2 could have been loaded in parallel at C2. 

It is therefore not irrelevant to the production performance how these resource conflicts 

are resolved. Note however that the consequence of not resolving the resource conflicts 

is only that a job receives the necessary resource later than it should. All jobs are still 

processed eventually. 

The dependencies, including the corresponding constraints and preferences, are listed in 

tables B.5, B.6, and B.7 (according to the scheme defined in subsection 4.2.2.2). 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DPi 

Jobs compete for AGVs 

D, 

An AGV may only carry one job at a time. 

Assign jobs such that the throughput is maximised. 

Table B.5: Dependency DPi. 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DPz 

AGVs compete for loading, check, welding, or unloading cells 

(or parking places) 

D2 

A cell may only process one AGV at a time. 

Assign AGVs to cells such that the throughput is maximised. 

Table B.6; Dependency DP?. 
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Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DPs 

AGVs compete for workers to load AGVs 

Dz and D3 

Assign sufficient workers to a loading cell which is occupied by an 

AGV. 

A worker may only process one AGV at a time. 

Assign workers such that the throughput is maximised. 

Table B.7: Dependency DP3. 

Note that most of the non-local constraints and preferences listed above are only 

qualitatively defined - they are not directly executable. For instance, it is not clear yet 

how cells should be assigned to AGVs in order to maximise the throughput! Before 

implementation, these definitions must be transformed into an executable specification. 

This can be done at this stage or during the design. At this point, it is only important 

that all relevant dependencies are listed (cf subsection 4.2.2.1). 

The second type of dependency is concerned with the timing of the processing steps. 

Each job has a deadline for its delivery at the unloading station which is defined by the 

job data base (see subsection B.1.4). The processing steps must be scheduled such that 

the job is delivered on time. Since each decision includes a time (or sequence) aspect, 

this dependency exists between all decisions. 

Attribute Description 

ID DP4 

title Jobs have deadlines for their delivery 

decision tasks Di, D2, D3, and D4 

constraints -

preferences Schedule the different steps of each job such that the jobs are 

delivered on time and in the pre-defined sequence at the unloading 

station. 

Table B.8: Dependency DP4. 

Figure B.4 shows the dependencies between the control decisions of BWS. 
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jobs competing 
for AGVs 

AGVs competing 
for cells 

DP, 

AGVs L 
competing for 

workers 

DP. 
timing relevant for 

final sequence 

decision task (with id #) 

event 

- physical flow 

0——y—^ dependency 

Figure B.4: Dependencies in the BWS decision process. 

B.3 Identification of agents 

To identify the agents of the control system, the decision tasks identified in the previous 

section must be clustered according to the clustering rules defined in subsection 4.3.1. 

However, when applying these clustering rules, the decision model shown in figure B.4 

collapses into a single agent. For the same AGV, decision tasks Di, Di, and D4 are 

assigned to a single agent because all three decision tasks access the control interface of 

the AGV (see clustering rule for interface cohesion). The resulting clusters (for 

different AGVs) and decision task D3, however, are also assigned to the same agent 

because decision tasks D2 and D3 refer to the same cells (see again clustering rule for 

interface cohesion). Already because of the first clustering rule the decision model 

collapses into a single agent. It is therefore necessary to modify the decision model first. 

B.3.1 Improving the decision model 

To prevent the collapse of the decision model, interfaces and component states must be 

separated by splitting the decision tasks into the corresponding aspects (see subsection 

4.3.2.1). The new trigger diagram resulting from the application of the d i s t r i b u t e 

operation is shown in figure B.5. 

224 



Each of the decision tasks Di-Aov, Dz.Aov, DzcE, D3.A0V, Ds-wo, and D4.,vGv are instantiated 

for each AGV, cell, or worker. Only Di.jos exists just once because ±ere is only one job 

data base. Note that it would be possible to further split decision task Dwob into several 

sub-decisions for each job in the job data base. Introducing an agent for each job, 

however, would create many agents without a significant benefit to solving decision 

task Di. All job agents would have to co-ordinate their actions whenever an AGV 

requests a new job (i.e., the job agents would share a very strong interactive coupling). 

And for all other decisions tasks, the job aspect is identical to the AGV decision aspect. 

More precisely, the AGV always acts on behalf of the job. 

For completeness, the definition of all newly introduced decision aspects is given below 

(see tables B.9 to B.15). For decision tasks D2 and D3, control interface, decision rule, 

and decision space are distributed; for decision task Di, control interface and decision 

rule are distributed; and finally for decision task D4, only the control interface is 

distributed (cf. subsection 4.3.2.1). 

l-AGV 

Assign job to 
AGV 

Choose next goal 
\ for AGV 

Assign worker to: 
loading cell : 

3-AGV 

W 4-AGV 

3-WO 

- f f Processing / 
unloading 

Select AGV at 
junction 

decision task / aspect (with id #) ^ ^ event 

• physical flow 
• distributed decision task 
• with dependency 

Figure B.5: The adapted decision model. 
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Attribute Description 

id 

title 

params 

control interface 

tingger 

decision space 

local decision rule 

DI-JOB 

Assign job to AGV 

job data base 

job data base 

Request B-om Di.Aov. 

set of jobs X time 

Choose oldest job matching the AGV. 

Table B.9; Effectoric decision D l-JOB-

Attribute Description 

id 

title 

params 

control interface 

trigger 

decision space 

local decision rule 

DI-AGV 

Assign job to AGV 

AGV Vi 

Vi is free. 

set of jobs X time 

Choose any job matching the AGV type and 

start processing immediately. 

Table B.IO: Effectoric decision Di. AGV. 

Attribute Description 

id 

title 

params 

control interface 

trigger 

decision space 

local decision rule 

D2-AGV 

Choose next goal cell and departure time for AGV 

A G W i 

AGV Vi 

Current processing step for job of V, is finished, 

set of possible cells x time 

Choose cell that is able to process the job and 

is able to do so at the earliest time possible. 

Table B . l l : Effectoric decision Di-. AOV-
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Attribute Description 

id 

title 

params 

control interface 

trigger 

decision space 

local decision rule 

D2.cE 

Accept AGV for processing 

Cell Cj 

Cell Cj 

Request &om D2.A0V. 

time 1 {null} 

Accept only jobs that the cell is able to process and 

accept only time slots that are still free. 

Table B.12; Effectoric decision D; 'ZCE-

Attribute Description 

id Db-agv 

title Assign worker to an AGV at a loading cell 

params AGVVj 

control interface AGVVj 

trigger AGV entered a loading cell. 

decision space set of workers x time 

local decision rule Choose a worker that is able to load the AGV 

at the earliest time possible. 

Table B.13: Effectoric decision D3-. AGV-

Attribute Description 

id 

title 

params 

control interface 

bigger 

decision space 

local decision rule 

D3-w0 

Assign worker to an AGV at a loading cell 

Worker Wj 

Worker Wj 

Request from Ds-ce-

time 1 {null} 

Accept only time slots that are still free. 

Table B.14: Effectoric decision D 3-wo-
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Attribute Description 

id D4-AGV 

dUe Select AGV at junction 

pa rams 

control interface AGVs Vi 

trigger Vi and another AGV Vj are both heading for the same 

junction and will choose the same exit. 

decision space [vvvj} 

local decision rule Choose an AGV randomly. 

Table B.15: Effectoric decision D4-. '4.A0V. 

The distribution of the decision tasks leads to additional decision dependencies which 

are mainly concerned with ensuring that the distribution of each decision task leads to a 

mutually accepted control decision in the end (see subsection 4.3.2.1). The new 

decision dependencies are listed below (see tables B.16 to B.19); the other 

dependencies still apply. 

Attribute Description 

id DP5 

dWe Choose an order for the pallet type of the AGV 

decision tasks Di-job and Di_agv 

constraints Choose a job that matches the pallet type. 

preferences — 

Table B.16: Dependency DP;. 

Attribute Description 

id DPs 

dWe Choose a cell for processing the AGV 

decision tasks D2-AGV and D2.cE 

constraints The AGV chooses a cell and time that is 

accepted by the chosen cell. 

preferences -

Table B.17: Dependency DPs. 
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Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DP? 

Assign worker to an AGV at a loading cell 

D3-AGV and D3-W0 

The AGV chooses worker and loading time, and 

the chosen worker accepts the choice. 

Table B.18: Dependency DP?. 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DPs 

Choose the AGV to go first at a junction 

D4-AGV 

Both AGVs accept the choice. 

Choose the AGV with the earliest finish time. 

Table B.19: Dependency DPg. 

The new decision dependency diagram is shown in figure B.6. 
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Choose AGV 2-CE 

ÂGV Assign worker and 
choose start time 
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DP, 

DP, 
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decision task / aspect (with id #) ^ ^ event 

physical flow 

dependency 
•; distributed decision task 
• with dependency 

Figure B.6: Additional dependencies after splitting decision tasks. 

B.3.2 Clustering of decision tasks 

The distribution of decision tasks as shown in figure B.6 is sufficient to prevent the 

collapse of the decision model into a single agent when applying the clustering rules. 

Table B.20 lists the resulting agent types with their associated control responsibilities 

and control interfaces. 

Agent type Control responsibilities Control interface 

job agent 

AGV agent 

cell agent 

worker agent 

DI-JOB 

DI-AGV, D2-AGV, D3-AGV, D4.AGV 

D2-CE 

D3-W0 

j o b data base 

AGV 

ceU 

(worker) 

Table B.20: Agents and associated decision tasks. 
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Of these agent types, all are instantiated for each production component (i.e., for each 

AGV, each cell, and each worker). Only the job agent is instantiated just once (namely 

for the job data base). 

B.4 Selection of interaction protocols 

The previous section has identified the agents and the decision tasks the agents are 

responsible for. Some of these decision tasks, however, are dependent on decision tasks 

which are in the responsibility of other agents. To resolve these dependencies during 

the control process, the agents must interact. Following the method for selecting 

interaction protocols (see section 4.4), this section looks at each dependency identified 

in section B.2 or section B.3 and chooses an appropriate interaction protocol to deal 

whhk. 

To identify appropriate interaction protocols, each dependency is classified according to 

the classification scheme defined in subsection 4.4.1. This classification is then 

matched against the library of interaction techniques presented in appendix A in order 

to identify a suitable interaction protocol. Finally, it is verified whether the identified 

interaction protocol actually resolves the dependency, and the interaction protocol, if 

necessary, is customised to the particular situation of the dependency (see subsection 

4.4.3). 

The section starts with the dependencies DP; to DPs because these must be resolved in 

order to operate the production system (if dependencies DPi to DP4 are not resolved the 

production performance degrades, but the production system can still operate). 

B.4.1 Dependency DPs 

Attribute Description 

id 
title 

decision tasks 

constraints 

preferences 

DP, 

Choose an order for the pallet type of the AGV 

Di-job and Di-agv 

Choose a job that matches the pallet type. 

Table B.21: Dependency DP5. 

The decision dependency can be classified as follows (see table B.22). The AGV has 

only constraints on the job to be chosen, whereas the job agent has constraints and 

preferences on the chosen job. Furthermore, there is a single commitment between the 
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job agent and the AGV agent, for which both roles are fixed. Finally, the AGV agent is 

willing to provide any useful information and to delegate the decision if its constraints 

are fulfilled. 

Classification criteria Classification 

#1 Number of agents involved 2 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments -

#7 Role assignment all fixed 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table B.22: Classification of dependency DP;. 

The classification matches best to one of the simple protocols, namely the requesting 

action protocol (see subsection A.8.1). This protocol is also easily applied to the given 

dependency; The AGV sends a request for a new job to the job agent, specifying its 

pallet type. The job agent chooses the oldest order matching the pallet type and sends 

this order to the AGV. 

B.4.2 Dependency DPg 

Attribute Description 

id DPs 

title Choose a cell for processing the AGV 

decision tasks Da-AGv and Di-cE 

constraints The AGV chooses a cell and time that is 

accepted by the chosen cell. 

preferences 

Table B.23: Dependency DPg. 

The decision dependency can be classified as follows (see table B.24). The AGV has 

constraints and preferences on the cell to be chosen, whereas the cell agent has only 
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constraints. There is a single commitment between the AGV agent and one of the cell 

agents. For this commitment, one role is fixed and one is to be assigned. Again, the cell 

agents are willing to provide any usefiAl information and to delegate the decision if their 

constraints are fulfilled. 

Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences compatible 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments 2 

#6 Relation of commitments " 

#7 Role assignment 1/1 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table B.24: Classification of dependency DPa. 

The classification matches best to the contract net protocol (see subsection A.3.2). 

According to this protocol, the AGV agent announces the next task to be performed 

(i.e., loading, checking, welding, or unloading) to the cells that could possibly execute 

this task. The cells answer with a bid specifying when they could execute this task 

(offering the earliest start time possible). The AGV then chooses the best bid and 

informs the winning cell that it requests the offered time slot. The corresponding 

customisation of the contract net is omitted here since it is rather straightforward. 
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B.4.3 Dependency DP? 

Attribute Description 

id DP? 

title Assign worker to AGV at loading cell 

decision tasks D3-AGV and D3-W0 

constraints The AGV chooses worker and loading time, and 

the chosen worker accepts the choice. 

preferences 

Table B.25; Dependency DP?. 

Dependency DP? is classified analogously to dependency DPg. Dependency DP? may 

thus also be resolved by a (customised) contract net protocol. 

B.4.4 Dependency DPg 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DP, 

Choose the AGV to go first at a junction 

D4-AGV 

Both AGVs accept the choice. 

(Choose the AGV with the earliest finish time.) 

Table B.26: Dependency DPg. 

The decision dependency can be classified as follows, taking into account that there 

may be more than two agents that meet at a crossing (see table B.27). The goals of the 

AGVs may be conflicting, for example if all have to move first in order to meet their 

deadline. The goals are therefore not compatible and must be classified opposing. There 

is a single commitment between all agents involved, and each agent has a fixed role 

(moving its AGV). Despite the conflicting interests, the agents are willing to accept any 

sequence of movements that optimises the overall production performance. 
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Classification criteria Classification 

#1 Number of agents involved fixed 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences non-local 

#4 Number of joint commitments 1 

#5 Size of joint commitments fixed 

#6 Relation of commitments -

#7 Role assignment 1/1 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table B.27: Classification of dependency DPg. 

This classification matches best the plurality voting protocol (see subsection A. 1.1). 

Because of the adherence to the overall production goals, however, the agents can 

resolve the dependency even more simply than through a voting protocol by exchanging 

the priority of their order and selecting the most urgent order to move first. Since a 

global delivery sequence is defined for the set of orders, it is straightforward to 

determine which order has the highest priority. 

Each AGV thus sends a detect conflict message (including its own priority) as soon as 

it detects a possible conflict with another AGV. An AGV receiving a detect message 

responds also with a detect message (if it has not send one yet). Each AGV then can 

compute the order of movement by comparing the priorities of the AGVs involved. The 

AGV with the highest priority may move first, all others must clear the path for this 

AGV. 

B.4.5 Dependencies DPi, DPz and DP3 

Because of their similarities, dependencies DPi, DP2 and DP3 are considered jointly. 
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Attribute Description 

id DPi 

title Jobs compete for AGVs 

Decision tasks Di-job and Di-agv 

Constraints An AGV may only carry one job at a time. 

Preferences Assign jobs such that the throughput is maximised. 

Table B.28: Dependency DPi. 

Attribute Description 

id DPz 

title AGVs compete for loading, check, welding, or unloading cells 

(or parking places) 

decision tasks D2-AGV and D2.cE 

constraints A cell may only process one AGV at a time. 

preferences Assign AGVs to cells such that the throughput is maximised. 

Table B.29; Dependency DP2. 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DP] 

AGVs compete for workers to load AGVs 

D2-AGV, D2-CE, D3-AGV, and D3-W0 

Assign sufficient workers to a loading cell which is occupied by an 

AGV. A worker may only process one AGV at a time. 

Assign workers such that the throughput is maximised. 

Table B.30: Dependency DP3. 

The decision dependency DPi captures the resource conflicts between orders competing 

for AGVs. The resolution of these resource conflicts is relevant for the final delivery 

sequence. If an order is assigned to an AGV too late, it is impossible to deliver the 

order on time. However, it only makes sense to resolve this dependency if all other 

dependencies (such as DP2 and DP3) are resolved in a similar fashion. Dependency DP2, 

for example, can be simply resolved by assigning different slots to the AGVs. An AGV 

that is processed too late, however, may not be able to finish its order on time. Whether 

it will finish its order too late, though, depends also on the resource assignment at the 

following stations and in particular at the last station. The resource conflicts of DPi, 

DP2 and DP] should therefore be addressed when resolving DP4. Formally, this means 
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that the above dependencies must be resolved with the enlarged scope of DPi, DP:, DPs 

and DP4. 

B.4.6 Dependency DP4 

Attribute Description 

id 

title 

decision tasks 

constraints 

preferences 

DP4 

Jobs have deadlines for their delivery 

DUOB, DI-AGV, D2-AGV, D2-CE, D3-A0V, D3.W0, a n d D4.AGV 

Schedule the different steps of each job such that the jobs are 

delivered on time and in the pre-defined sequence at the unloading 

station. 

Table B.31: Dependency DP4. 

This decision dependency captures the timing dependencies between the different 

decision tasks Di.job to D4.AGV. The decision dependency can be classified as follows 

(see table B.32). The AGVs may have conflicts concerning the use of resources (see 

subsection B.4.5). In particular, it may not be possible that all AGVs meet their 

deadlines (e.g., in case of disturbances). A global preference is to minimise the 

deviation from the planned delivery sequence. 

Continuously, AGVs (whose roles are fixed) must be assigned to resources (whose 

roles are not fixed). Some of these assignments also include the workers - the size of 

the joint commitments is therefore variable. Since the AGVs engage in several joint 

commitments (one for each processing step), the relation of the commitments is 

overlapping, but incomplete since a cell is not required to engage in the processing at 

all. 

Despite the conflicting interests, the agents are willing to provide any useful 

information and to accept any resource assignments that optimises the overall 

production performance. 
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Classification criteria Classification 

#1 Number of agents involved changing 

#2 Compatibility of preferences opposing 

#3 Global constraints and preferences global 

#4 Number of joint commitments variable 

#5 Size of joint commitments variable 

#6 Relation of commitments overlapping 

incomplete 

#7 Role assignment some variable 

#8 Availability of information preferences 

#9 Delegation of decision autonomy partial 

Table B.32: Classification of dependency DP4. 

The classification does not match any of the protocols listed by the methodology 

perfectly. However, it partly matches the continuous double auction, the asynchronous 

backtracking search, the (generalised) partial global planning approach, and the 

KoWest protocol. A thorough comparison of the dependency and the candidate 

interaction protocols shows that the continuous double auction and the KoWest 

protocol are not able to resolve such a kind of dependency. The continuous double 

auction is not able to resolve the dependency because it is not able to handle the global 

preference of minimising the delivery deviation. The Kowest protocol is not able to 

resolve the dependency for the same reason (it is able to optimise the work-in-process, 

but not the delivery sequence). This leaves the asynchronous backtracking search and 

the partial global planning approach. Because of the design and computational 

complexity of the asynchronous backtracking search, it is first tried to modify the 

generalised partial global planning approach. 

B.4.6.1 Adaptation of the generalised partial global planning approach 

To resolve the timing dependency DP4 (and simultaneously the resource dependencies 

DPi, DP2, and DP3), the agents will first of all have to plan ahead. An AGV can only 

detect that the scheduling of a single processing step will violate the delivery sequence 

if it also schedules all other, in particular the last processing step (whose finish time is 

by definition the delivery time). As a consequence, an AGV cannot wait until the last 

processing step starts in order to detect a violation of the delivery deadline because then 

it is too late to reschedule previous processing steps (which have already been 
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executed). The AGVs must therefore plan ahead (or at least estimate the start and finish 

times of the remaining processing steps). 

Secondly, the timing dependencies may cause different AGVs to run into resource 

conflicts (cf dependencies DP], DP2, and DP3 in tables B.28, B.29, and B.30). For 

example, if an AGV has to reschedule a processing step because the last processing step 

does not meet the delivery deadline, it must find earlier slots for its processing steps. In 

a fully utilised production system, however, moving a processing step to an earlier time 

slot will require that the processing step of another AGV which is occupying the earlier 

slot is rescheduled. The AGV freeing the processing slot then has to find a new slot for 

its processing step, potentially violating its own precedence constraints. If so, this AGV 

will also have to reschedule (some of) its processing steps. The result of one change 

may therefore be a cascade of changes affecting other AGVs. Consequently, there must 

be some kind of co-ordination mechanism that determines which AGV should 

reschedule and which should not, respectively which AGV has priority. 

To incorporate the above aspects into an interaction protocol, the protocol for assigning 

resources, which has been chosen in subsection B.4.2, needs to be extended in two 

respects. First, the mechanism is used to successively schedule all processing steps of a 

job once it is assigned to an AGV. Second, co-ordination mechanisms, for example to 

determine which AGV should reschedule in case of a conflict, are added to the 

protocol. The resulting interaction protocol is thus an adaptation of the generalised 

partial global planning approach. For completeness, the actual protocol is sketched in 

the following. 

Every AGV agent schedules its processing steps as soon as it wants to start with the 

first step. To schedule each processing step, the AGV agent uses the contract net 

protocol described in subsection A.3.2 (cf. subsection B.4.2). With this protocol, the 

AGV agent chooses for each processing step an appropriate resource and a time slot 

during which the processing is scheduled at this resource. When scheduling its 

processing steps, each AGV agent is responsible for ensuring that there is enough time 

between two processing steps for the AGV to move to the next cell. 

To resolve any resource conflicts, each AGV agent is assigned a priority which 

corresponds to its due date, i.e., an AGV has a higher priority the earlier its due date is. 

Thus, when scheduling its processing steps, an AGV may use the processing slots of 

agents with lower priority. If a slot already assigned to an agent is occupied by an agent 

with a higher priority, the agent (with the lower priority) must reschedule its processing 

slot. An AGV agent also reschedules its processing steps whenever the actual execution 

of a processing step is delayed. 

An AGV agent always tries to schedule its last processing step (directly) after the 

corresponding processing step of the job which is directly preceding itself in the global 

delivery sequence. If the processing step of this job is scheduled much later than its due 
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date, the AGV agent tries to find an earlier slot minimising the deviation from its 

position in the global delivery sequence. 

B.4.7 Summary 

With the selection of an interaction protocol for each dependency, the design of the 

BWS control system is now complete. That is, section B.3 identified a set of agent 

types for the BWS control system (namely job, AGV, cell, and worker agents), and 

assigned a set of decision tasks to each agent type (see table B.20). Section B.4 selected 

an interaction protocol for each dependency (see table B.33). 

Dependencies Interaction protocols 

DPs 

DP6 

DP, 

DP: 

DPi, DPz, DPi, and DP4 

Requesting action protocol 

Contract net protocol 

Contract net protocol 

Simple protocol 

Adaptation of the GPGP approach 

Table B.33: Dependencies and interaction protocols resolving the dependencies. 

It is now possible to realise each agent independently by implementing its decision 

tasks and the roles it plays in the interaction protocols resolving its dependencies. The 

design may even be implemented incrementally, by first implementing only those 

decision tasks and interaction protocols which are necessary to operate the production 

system, and then to successively add the remaining decision tasks and interaction 

protocols in order to improve the production performance. Decision tasks Di, Dj, and 

D3 and the interaction protocols resolving decision dependencies DP;, DPe, and DP? are 

absolutely essential to operate the production process, because without these resources 

are not assigned to jobs. Any decision tasks or dependencies concerning timing aspects 

can be added later. 

B.5 Results from the test case 

To evaluate the design developed in the previous sections, the agent-based control 

system was prototypically implemented in Java and applied to a simulation of the 

existing backboard welding shop (see figure B.7). 
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Figure B.7: Simulation screen shot of the B WS. 

The prototype was then run with four different job databases provided by the plant, all 

containing 1700 jobs, and the performance of the control system was measured with 

respect to the throughput and deviation of the delivery sequence (see subsection B.1.4). 

With respect to the throughput, the agent-based control system achieved on average 

93% of the throughput of the existing control system. Given the fact that the existing 

control system has been optimised and tailored to the current production process over 

the years, while the agent-based system was only developed within a feasibility study, a 

performance of 93% was considered satisfactory (by the plant). With respect to the 

deviation, the agent-based control system was able to keep most of the deviating jobs 

within a bound of +/- three positions (see figure B.8). Only 5% of the jobs on average 

left the BWS outside of this range. A range of +/- three positions was chosen as a goal 

because the succeeding production steps are able to resort jobs within this range 

immediately. Jobs outside this range have to go into a longer loop to be resorted. 

All in all, it was confirmed by the plant engineers (who have developed the existing 

control system) that the agent-based solution achieves a performance comparative to the 

existing control system, but provides a more modular approach to designing control 

systems. It is therefore envisioned to employ an agent-based approach for the next 

control system to be developed within a few years. Against this background, it was also 

stressed that in order to use the technology it would be necessary to have tools to 

implement an agent-based system within the software systems they currently use to 

develop and implement control systems (i.e., simulation tools, PLC programming 

environments, and so on), and that it is indispensable to have a design methodology 

guiding the engineers in developing agent-based control systems. The DACS design 

methodology was therefore presented to the engineers and their feedback was already 

presented in section 5.3.3. 
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Figure B.8: Deviation in the BWS produced by the agent-based control. 

B.6 Summary of the test case 

This appendix has presented the successful application of the DACS design 

methodology proposed in the chapter 4 to an existing industrial production control 

problem. In particular, the appendix has sketched the specification of the industrial 

production control problem and has run through each step of the methodology in detail 

in order to demonstrate how the methodology supports the designer in performing the 

actual agent-oriented design of the control system. For this industrial application, the 

major benefits of using the methodology were threefold: 

• The production control problem was transformed into a decision model which 

captures the relevant aspects for the agent-based design. 

• The agent identification method prescribed how to modify the decision model in 

order to identify the control agents. The initial decision model collapsed into a 

single control agent. 

• The method for selecting interaction protocols helped to identify suitable 

interaction protocols for resolving the dependencies between the control agents. 

For the timing dependency, there was no interaction protocol in the library which 

matched the classification of this dependency perfectly, but the method was 

nevertheless able to point to several similar interaction protocols, one of which 

was successfully adapted to resolve the dependency. 

To summarise, this example application showed that the DACS design methodology 

can be applied to industrial design problems and that is does support the designer in 

performing the agent-oriented design steps. Furthermore, the comparison of the design 
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solut ion wi th the exis t ing control sys tem showed that t h e agent-based approach 

achieves satisfactory performance, and thus fulfils industrial performance requirements. 
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Appendix C 

Third-Party Reviews 

This appendix lists the questionnaires that were used for the third-party reviews and 

summarises the actual feedback that was given during the reviews. All reviews were 

held in German and were consequently translated into English. 

C.l Review by Ilka LehweB-Litzm ann 

After applying a preliminary version of the DACS methodology to a case study (see 

subsection 5.3.1), the student Ilka LehweB-Litzmann was asked to fill out the following 

questionnaire. The questionnaire refers to a document describing the design 

methodology. 

1. Is the methodology comprehensible? 

2. Which parts are difficult to understand? Which are easy to understand? Which 

parts should be described in more detail? 

3. Which terms are unclear? Is it necessary to provide more background 

information? 

4. Does the document provide sufficient examples? 

5. Is the approach of the methodology straightforward? Does it make sense? Is the 

starting point of each design step clear? Is it clear what the result of each design 

step should be? 

6. Are the methods of the methodology sufficiently clear? Is their application 

straightforward? Are the methods sufficient to perform the design? 

7. What is the general impression of the methodology? 
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Ilka provided detailed answers to each point listed in the questionnaire. Nevertheless, 

the answer are not reproduced here because they refer to an early version of the 

methodology which has been significantly changed afterwards. 

C.2 Review by Laura Obretin 

After applying a preliminary version of the DACS methodology to a case study (see 

subsection 5.3.2), the student Laura Obretin was asked to fill out the following 

questionnaire. The answers were recorded by herself, and refer to a document 

describing the methodology. 

1. Is the methodology comprehensible? 

Yes, the methodology is very comprehensible, in particular because many 

examples are given. 

2. Is the approach of the methodology straightforward? Does it make sense? 

Yes. Each transition fi-om one chapter to another is good. In particular, the 

definitions provided by each part of the description are very helpful. 

3. Which aspects are not comprehensible? 

Because of the many examples, all aspects of the methodology are clear and 

there are no open questions. 

4. Which aspects are missing? 

Nothing is missing. Every step is well described. 

5. What should be improved? 

A few sentences are too long. 

C.3 Review by Schneider Electric 

The following feedback was given by Armando Walter Colombo, Ralf Neubert and 

Boris Siissmann jfrom Schneider Electric after a presentation of the DACS design 

methodology in its final version (see also subsection 5.3.3.1). The answers were 

recorded during a discussion about the methodology. 

1. Is the methodology comprehensible? 

Yes (three times). 
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The underlying agent concept is reactive. How can more intelligent agents be 

designed? 

How is the behaviour of the agents described? 

How is it possible to take into account experiences / constraints from the 

implementation? Or feedback from later development phases? 

How about worst-case analysis (for example, strategies for breakdowns, 

control system failures, and so on)? 

The concepts of the methodology represent a good transition from the 

description of a production process to agent concepts. In particular, the starting 

point of the methodology are the problems that may arise in control design 

(i.e., it is a problem-oriented methodology). 

The consideration or integration of neighbouring or superior software systems, 

such as ERP systems, are missing. 

2. Is the approach of the methodology straightforward? Does it make sense? 

Yes, the approach is comprehensible and well justified. It makes sense and 

represents a good starting point. 

The methodology is based on a special agent concept, which, however, is 

probably sufficient for control systems. 

In comparison to other methodologies or work on agent-based system this 

methodology is more convincing. It is also essential for the technology to 

advance. 

3. Is the design approach sufficient to design all agent-oriented aspects of a 

control system? What is missing? 

More practical experience with the methodology is missing. There is to date no 

more validation of the models or an implementation of tools for the 

methodology (so far only theory, but convincing theory). How can be shown 

that the methodology works in practice? Validation is very important. 

The constraints on the realisation of a design should be taken into account by 

the methodology. Is it possible to realise the design? For example, consider 

real-time or soft real-time constraints. 

It would be helpful if the selection of interaction protocols would also provide 

information about the "complexity" of the protocols. 

The methodology considers only one aspect of the life-cycle of a production 

system (namely the design). How about maintenance? How can maintenance 

be improved? Extensibility is missing. 
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How does the resulting design fit with other systems (integration with other 

software or control systems)? There should also be a possibility to interface 

with other agent architectures / tools. 

How can experience be used? 

What are the competencies and knowledge (for example about production 

systems) a designer should have to apply the methodology? 

How can system optimisation aspects be integrated (for example, load 

balancing)? 

How can standards or standardised components be supported? 

The integration of humans has not been considered yet. 

Standard notations, such as UML or SDL, should be used. Standard graphical 

notations should be used. 

4. Is it possible to apply the methodology in your design projects? 

Yes (three times). The methodology is applicable, well thought out. 

It can be imagined to use the methodology at Schneider. 

C.4 Review by the DaimlerChrysler 

The following feedback was given by Dirk Hofmann and Raimund Krieg from the 

DaimlerChrysler plant at Worth after a presentation of the DACS design methodology 

in its final version (see also subsection 5.3.3.2). The answers were recorded during a 

discussion about the methodology. 

1. Is the methodology comprehensible? 

Yes. The structuring of the design process proposed by the methodology is 

helpful. 

2. Is the approach of the methodology straightforward? Does it make sense? 

The design steps are largely straightforward. The design steps make sense. 

But how about iterative design processes? What are the consequences of 

changes during the design? The structure proposed by the design methodology 

may help to reduce the consequences of these changes. 

J . Is the design approach sufficient to design all agent-oriented aspects of a 

control system? What is missing? 

Positive: The design rules are necessary in order to perform the design steps. 

247 



The specification of the production control problem is realistic. 

The methodology misses a way of assessing whether a chosen interaction 

protocol can be implemented on the shop floor, and a way to adapt the 

protocol if not (fine tuning). 

4. Is it possible to apply the methodology in your design projects? 

Ifes. 

An application would also require tools that are integrated into the existing IT 

systems. 

How will the agent-based design be transformed into a control system (running 

in the factory)? 
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