UNIVERSITY OF SOUTHAMPTON

AN AGENT-ORIENTED DESIGN
METHODOLOGY
FOR PRODUCTION CONTROL

by
Stefan Karl BUSSMANN

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

September, 2003

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

AN AGENT-ORIENTED DESIGN METHODOLOGY
FOR PRODUCTION CONTROL

by Stefan Karl BUSSMANN

This thesis presents and evaluates the DACS methodology for designing agent-based
systems for (non-real-time) production control. This methodology is appropriate and
sufficiently prescriptive for a control engineer with only minimal training in agent
concepts and with no prior experience in agent development to design an agent-based
production control system. This was achieved by deriving the concepts of the
methodology from an analysis of the application domain and by specifying all relevant
agent-oriented design rules in terms of these concepts. In particular, the methodology
consists of a method for analysing the decision making necessary to control a
production system; a method for identifying appropriéte production control agents,
which also includes a rule specifying when to abandon an agent-oriented design
approach; and a method for selecting interaction protocols to resolve any decision
dependencies between the agents which allows to re-use existing interaction protocols.
To evaluate the methodology, several case studies and reviews were performed. In
particular, two case studies with students applying the methodology to a realistic test
case and two reviews by engineers, who design control systems, were conducted. The
feedback was unequivocally that the methodology is appropriate and sufficiently
prescriptive for designing agent-based production control systems and that it could be
applied in industrial projects in order to gain more experience with the methodology.

Contents

LISt OF FIZUIES .. teetiiiiieie e siteeiie s eeaesaeaeneasaeaseeeaeeebeseeeaae e bases e e aenen s aa s b aan s e et aanteassaansas v
LISt OF TabIes. c.ueeiiee ettt s e vii
ACKNOWIEAZEMENES «..iiiieiiiii ittt et ste et e et e e st e reme b eeneseeasssesabesssnneesnsssasnaseas ix
Chapter 1 IntrodUCTION. ...coiiueeieiiieetisie et et 1
1.1 Motivation......ccocveveeceeernnenn e eteteetreerreteesbeeiseesateeesaraetenttinreton et e ret et e ie e e s s e s e e e eaan e bt e n s 2

[A 7§ o] 21 1 L= L OO U O OO SO U PO VOO U UTPIUOPPPPTO 3
1.3 Contributions 0f the thesiS. .t 4
1.4 Structure 0f the TheSIS. . .iiiiiiiiiiietieeie e eere e e ete e et re s e et ae s b ba e sbb et enarse s eanne s 6
Chapter 2 Agent-Based Production Control........cccvveoniiiiniiiiiiiier e 8
2.1 Production COMTIOL ... ottt ettt e e e e e e eeraae e s e s s sssse s ne e st et 9
2.1.1 Examples of production SYSIEIMIS.cccuvuirurrimriiiiiiiiieice ittt 12
2.1.2 ProdUuCTiOn OPEIATION. .. .coeeiiureisieceriirteir et isteesacrees et e ensshe s ieese s nass s sasaas s b e e b s ne b s benasabans s innas 14
2.1.3 State-of-the-art and HMITATIONS......curiiiiiieeeeriee e sie e s st e et resabn s s as e sens i 16
2.1.4 New requirements on production COMLrol... ..o 19
2.1.5 SUIMMMIAIY . ..eucriiviierteeeeteeeree et e s ee st sae s s s em et et e s s et e s h s e s b s e s s R e b8 2 eassasebesb e ea b b ten s e r st s b s enants 20

2.2 Software agent teChMOLOZY .. c.ccireruriiieiicine et e e 20
2.2.1 AZENE MOUEIS....coiiiiiiiiiirencriccreetetr ettt sesa e e as e b e s e e esb s R e e e et e e 22
2.2.1.1 REACTIVE BEEMTS....uieeieieres ettt et se e esere e sa s e e ab s b b raese bt ab s e sn s snn e 22
2.2.1.2 DeliDEratiVe @BEIMTS. . .coorirreeieeeeeareiieeceeereie it set st ie s s b s erees et r bt ss et r e 23
2.2.1.3 HybIid 8gents.. . iiir e ettt eecrie et ettt ia s b s e e s e eeas 24

2.2.2 AGENT INTBTACTION. cteeteitiiteetreteeie et eetre et ereerireseseare st s sre st e s e s e abae b e abe e sa s e s e e s e s s e b e e n e an 25
2.2.2.1 COmOrAINAIION. .e.tiiiieieii et eee e erre et estscene st snsesies it enen s e s e ss s ebe s sar s aabas st asnteanssunsabbaaes 25
2.2.2.2 NEZOUALION. . c.crtrrereerertenrirtente ettt esr e n s e eare s e s s e s e S sas e s ceena s ar e s s e b b s e s atebs 2t 0 s 29

2.3 Agent-based control SYSIEMS.....iiviiiiivir ittt e s 33
2.3.1 BaSIC COMCEPS. . oviriuriiarrericreriacaestesensesasasessessessessertensassetesseseaetaesmassssanssasaassssessesutssbosniasasssssns 34
2.3.2 Trends in production resEarch.......ciciieniniciiiiiii i 36
2.3.2.1 Heterarchical CONLIOL c.iciiiiiiiaiiiiiianiiecrnarecessne e sansasssasssasansssassscesusesnesnnsnens 37
2.3.2.2 Holonic manufacturing SYSIEIMIS......cerverierierserereareeresiesrricemsnssnearrearssssessasssestescensnnsssesiaens 38
2.3.2.3 SUMIMAIY . .cieiiietieiiit et eireeeeetren e a s cnsesbe e b esastaesae e aseesassa s sas b smeaasneb s eeunesbas s ks e s a e sba s bnans 40

2.3.3 Industrial appliCationS... oo et et 40
2.3.3.1 Production 2000o iiniecirreciniresitre e st sebresa s e e e as e sttt n e e 40
2.3.3.2 HOIOMODIIES. c.ovtieiciieeeit ettt ettt e ce e eaesre s sa s ns e be et e a b s e b et n e e 42

2.3.4 Design of agent-based control SYSLEINS.......coviviiiciriririiiiii s e e e 45

2.4 CONCIUSIONS. c.ot ittt ittt ettt et et e et e e ebas s ht e e e nea ettt e aste e rea bt esbn e e s s aesaas s s e a s b e snne et enaeb e e es 46
Chapter 3 Design MethodOlogIes.....ccuierueiriiiiiiniiiiiii it 48
3.1 What i3 @ MethodoloZY 2. cuiiiciii ittt ce e eee e bva e s b se e st sae s e e 49
3.1.1 Requirements for a methodology........ccccviviiiiiiniiiiiii e 50

3.2 Data-oriented and structured design methodologies......covviiiiiiriiiiiniicc 54

3.2.1 Data-oriented methodologies.. .o 54
3.2.2 Structured methodolOZIes. ..o 56
323 BVAIUATIOM. 1cvetreteieiee ettt bbbttt 58
3.3 Object-oriented design methodologies. ..o .58
3.3.1 Object-Oriented Design and Object-Oriented Analysis and DeSign.........cocovcrvnncnnnicinnnnis 59
3.3.2 Object Modelling TEChNIQUE......coeiiiriieriiiiiei et .. 60
3.3.3 Hierarchical Object-Oriented Desi........cccoooiiiiiiiiiiiiniiie e 61
3.3.4 Responsibility Driven DeSIZN.....coccicirniicniiiiiniiieeciee sttt en s 62
3.3.5 Evaluation of object-oriented methodologies... ...t 63
3.4 Manufacturing control design methodologies.... ..o, 65
3.4.1 SADT/IDEF-based design of manufacturing SySteImMS.......ccovrveuremiiiinenie et 66
3.4.2 Modelling control with diSCrete EVENt SYSIETIIS. . cviuircrarrriisiaseasresriatanssssanias s atssssns s senes 68
3.4.3 Petri net-based methodoloGIes......ooveviiieciiiiic 68
3.4.3.1 Synthesising Petri-net-based control programs.. ... 69
3.4.3.2 Knowledge-based design of control programis............coeeiieeniniinnncisiie s 70
3.4.3.3 Conflict-driven design of cOntrol programs..........ocoeieieiieriin i 72
3.5 Agent-oriented design methodologies. ...
3.5.1 Extensions of knowledge-oriented methodologies.ooviveoiiiininini
3.5.1.1 CoMoMAS development methodolOogy.......cocoiviiimniiiiiiis e
3.5.1.2 MAS-CommonKADS analysis and design.
3.5.1.3 EVAIUBLION weoivveieieereeiieeereesrecesnsnsners st s sresaens s e s nanees
3.5.2 Extensions of object-oriented and manufacturing methodologies.
3.5.2.1 Burmeister — Agent-oriented analysis methodology........ocieeiinii
3.5.2.2 Agent-oriented development methodologies for manufacturing.......cocovvioniiiniinininness 78
3.5.2.3 The PROSA MEthodOLOZY ... cveriirriireeiiriireearinitece i arees e s sbeas et 79
3.5.2.4 Manufacturing-oriented agentification methods...........ocviiic 79
3.5.2.5 EVAIUALION......oceciitioieeeeteinie ettt a s b e s st et 80
3.5.3 Role-based MethodOlogies......cccuriiriiiiieciinitee et et 81
3.5.3.1 MASB MethOdOIOZYcvecrueerrerericesiereiiieiee it ns bbb s s 81
3.5.3.2 The methodology of Kinny and Georgeff. ... 82
3.5.3.3 The Gaia MethodOlOZY vttt s s s et s sttt 83
3.5.3.4 Extensions of the Gaia methodology.....ceoevivreeeiimniniii i 84
3.5.3.5 The MaSE methodology ..o
3.5.3.6 EVAIUALION 1ovivvriiiiiteeiieeeeecaetteaea e sttt sttt se e s et ebba b e s e £ re s b et nr et b bbb Rt s
3.5.4 System-oriented methodologIes.... ..o
3.5.4.1 The MASSIVE methodology................
3.5.4.2 The MESSAGE methodology
3.5.4.3 Elammari and Lalonde — An agent-oriented methodology......coeceiniciivniinnn 89
3.5.4.4 The Tropos MethOdOLOZYcceccriiiiiimriiin e 90
3.5.4.5 The Prometheus methodOlogy. ..o e 90
3.5.4.6 EVAIUALION «.cviiveiteierierieeti et ate e st ettt ie s s b sre e m e e ek e 91
3.5.5 Interaction-oriented MethOAOLOZIES. ..covivevveiiiiieciiiiiiici et 92
3.5.5.1 Agent interaction analySiS.....ccocomciiimrimririin it 92
3.5.5.2 EVAIIATION. ...ttt rteeie et et ctereesteebtraaess s ebs s s b s st shea s s e e et e e b s e b s e n R 93
3.5.6 Behaviour-oriented methodolOZIes....c..ooiviiiiriiniiiiiee e 93
3.5.6.1 The design methodology CassiOPeia......ouiiericcinieiierie e s 94
3.5.6.2 The synthetic ecosyStems apProach. . ..o ie it 94
3.5.6.3 EVAIUALION .1itiieieiiiiieti e rteeec et sieenv e et esb e reesbs et evtesa s obs s e as s e e o2 abnems e E s s n St e e 96
3.5.7 Summarising the evaluation of agent-oriented methodologies.. .o 97
3.0 REUS .ttt ieiieecii e iiee e e sa et area s b e e e e e e e e e e e s a R e S SRR e RS e g e R R R R eSS RS d RS s e 98
3.6.1 General concepts i SOTIWAIE T8-USE.....c.oviiiiiiiiiinii e s i 98
3.6.2 AZENI-OTIENEEA TE-USE....iveterereriteteriereeteirisistiieisa bt i et st s st sun bbb e e sdsa s s abe bbb b aen 102
3.7 CONCIUSIONS. .t iiiteeir e et ecte e ite e st e ie et e et e bt eereesas e sie e st e sae s be s e s e s e b e s re e e e s s a e b s 104
Chapter 4 The DACS Design Methodology for Production Control.cconee e 107
4.1 Specification of the production control problemo 109

4.2 Analysis of cONtrol eCiSTONS i iiieieeet ittt 112

4.2.1 Identification of effectoric dECISIONS. .. i i iiriiairearsrcamnisaensretssrae st nra s s st asasssas s sens e 114
4.2.1.1 Modelling control deCISIONS.....covuririmiiiiririiere sttt 114
4.2.1.2 Identifying effectoric dECISIONS.oivriiirmmiriie et e 115
4.2.1.3 Characterising effectoric deciSIons......vii e 118

4.2.2 Tdentification of decision dependencies... ...t 124
4.2.2.1 Identifying dependenciBs........cceviimiiririniniiein et 125
4.2.2.2 Characterising decision dependencies........coviiminrririneaiii s 126

4.2.3 Result of the Analysis SIEPS. ..o ettt s 129

4.3 Identification OF ZEILS. .. .coveererteirriieterteaeiereiiere s b e et s st 130

4.3.1 Clustering of deciSion TaSKS.....c.ciciiiaimierinimi st e 132
4.3.1.1 Clustering algorithm. ..o 132
4.3.1.2 CIUSIEIINE TUIES....coveieere e st res e siesres s b e ais et s s st 133

4.3.2 Improving the decision MOdel ..o 138
4.3.2.1 Distributing deciSIon tASKS......oocurviiiruiriininiiiii e 139
4.3.2.2 Introducing new decisiOn faSKS.....c.ooiiiiiomii it e 143

4.3.3 Summary of agent identification STED......ioiii 147

4.4 Selection of INteraction ProtoCOIS. ..o

4.4.1 Classiflcation SCHEMIE. . ..ot it ecere ettt s s ettt ,
A,4.1.1 SEAIT STEUALIOMS. cuvrveeereerieiureeeersseraseeasesresresasonteraesbesanesaabee s s o s eaed s e ta s s b e btk asissun s s neetes
4. 7.2 GOAL SEALE. cuveeeeiieeee e eiteee et eie e e bt e s e s s et r b s b et e abs e e b e s bbb et
4.4.1.3 Process FEQUITEIMIENTS. ..c.ouruciiriiriee ettt fet it s m e bbbt st
4414 SUITIIIAIY .coveeeecerevetescct b eretsst st saessatsses e e anasasss bt eeaan s b e s b E s s b b e she s e b s b e b S e s s e ses b

4.4.2 Characterising interaction protocols........

4.4.3 Matching and protocol customisation
4.4.3.1 Matching dependencies with interaction protocols......oveviiiiiii s 165
4.43.2 Customising interaction ProtoCOIS.. ..o 167

4.4.4 Result of interaction protocol SElECHION.....ocuviiiiii ittt 169

4.5 SUMMALY...ccovvriverniniirirnnns et eeeeeeeeeeetenteeasistteisrreeessreeeasaareeiaeennneteitaaaresaartte s n e e et e e 170
Chapter 5 Evaluation of the DACS Methodology........cceviviiinmiiiin 173
5.1 Applicability to production control problems.........oiiiimiiniiiiie 174
5.2 Comparison to the state-0f-the-art 176
5.3 THITA-PAILY TEVIEWS. . crurueecrieririirisiritses it sss bbbt st n s 178

5.3.1 First third-party Case STIAY. ..o s s e 175

5.3.2 Second third-party CASE STUAY.......ococuririerrsiaiit et n 181

5.3.3 THIFA-PAITY TEVIEWS. .ocuruiuetrieeuiiicseinses st stss st b £ p eSS 182
5.3.3.1 Review by Schneider EIECIIIC......coiiimiiiiiiiici e 182
5.3.3.2 Review by DaimlerCRrysIer ... 133
5.3.3.3 SUIMMATY......0orveeariarereeeserveecsierssasesasatatsseb st s b st ss s b th s saer b8 S S TR s s 184

54 SUITIINIAIY «veveveeveviseeesteseseseeseaeresosesesessesbs et es s e bn s st e s s b e ke ben s e b e s s m s S b e bR S0 184
 Chapter 6 CONCIUSION. co.uvieieiiiriertieiet e 186
6.1 RBVIEW .o eeeeeeeesceereeeeeeers e e s s es s e esteste s saesereareess s e r e et e aa s e ran bt ead e s e e e Er e eSSt et 186
6.2 The WOrk Il COMEKT . oiviieriieieei s 189
6.3 FULULE WOTK.eeiiee et eeieiavsereeniesestee st sbeastrsneabassaesreea s b e bt s ba b s s s b RS e b e bt s bbb 191
Appendix A Characterisation of Example Interaction Protocols........ccovvneinniininnsenes 193
AL VOUIIE oottt bbb SRR 194
A.1.1 The plurality VOtNE ProtOCOL...oiiriiiir s et e 194
A.1.2 The Clarke tax ProtoCOL .o ittt 196

A2 NEGOIATION. cv.irreiereeresceeiencarieeareee st 197
A.2.1 Service-oriented NEGOUALION. ... vvuiviviciiiriir e s 197
A.2.2 The monotonic concession protocol 198

iii

A.2.3 The DECIDE conflict resolution protocol...... e 199

A3 A UG ONS . cttetieeieiertecee et ercaestescecae st ee et e ee e seeene e aeeeenre s sae e s e s e e s e s ey s bbbt 200
A.3.1 The English aUCHOM. ..ot 200
A.3.2 The contract net Protocol.......cc i s 201
A.3.3 The continuous double QUCLION......cccuvrerienrciiiiiii e 202

A.4 Distributed constraint SatiSTaCtION. ... cooiiiiiiiri ettt 204
A.4.1 Asynchronous backtracking search...........ciii 204

A.5 Coalition fOormation........occovvereneeveneiiiceeicce e e ersneesneneneeneen 205

A.6 Co-ordination of multi-agent Plans........ccveviinniiicii e 207
A.6.1 Partial global planning.......ccceivieiiniciiiniic s 207
A.6.2 Generalised partial global planning.......c..covivmiiiece 209
A.6.3 Consensus-based distributed planmiing.... ..ot 209

A7 Application-specific interaction protoColS........coiiiiiaiiiiinniicrae e 209
A.7.1 Kowest work-in-process control protocol........ocoviininiii e 209

A.8 Simple INteraction ProtOCOLS......coiriiiiiiniiiccrrriin st 211
AL8.1 ReqUESTING ACHIOM. ...ovieirceiiiicic et ittt bbb bbbt 211

ALD SOCIAL AWS.coviiiiiieiiieiis ettt sttt et s s aa e e b 212

Appendix B Application of the DACS Methodology to an Industrial Test Case............... 214

B.1 Specification of the production control problem........ccinni P 214
B.1.1 Production SYSEEIML......ocieueiiieciniiiine ittt tes s ars e sa st 215
B.1.2 Production operation cOnAitionS.......ccoiieiriininiariiseiiss sttt 216
B.1.3 CONtrol INEITACES....eivivieeicrirerieieeeecrerree e eeraesetesee e st sas s b er s e s bs s s et s baeee st esnesassa e ta b s s enes 217
B.1.4 Production goals and reqUIremMents...........oooruiiuiiiiiinieniniiisn et 217

B.2 Analysis of decision MaKINZ. ...coveeeiiiimecniiiinieieiriier ettt 218
B.2.1 Identification of effectoric deCiSIONS. . .ooiviririct et e et 218
B.2.2 Identification of decision dependencies............ccouiiimiiiiniiii s e 222

B.3 Ildentification of TGS 111U O PSP UOU TP OTUPUPO ORI PRSI 224
B.3.1 Improving the decision MOdel.....ccov i 224
B.3.2 Clustering of decision tasKs.......cccoiviiiiiiiiminiiiicr e 230

B.4 Selection of Interaction pProtoCOLS.... ..o 231
B.4.1 Dependency DP5. ..t 231
B.4.2 Dependency DP6.......ccvurrcceeieiiisen ettt s 232
B.4.3 DependeniCy DP7. ..ottt st e 234
B.4.4 Dependency DPB.....c e 234
B.4.5 Dependencies DP1, DP2 and DP3 ..ottt s 235
B.4.6 Dependency DP4... ..ottt s s 237

B.4.6.1 Adaptation of the generalised partial global planning approach.........covieininncis 238

B4, 7 SUITITIIY .ot eeereireseemerecer et etser st sesassba s be b ebe s s a8 st abe e b e R s p s e s emem s s be LS AR aE et bRt 240

B.5 Results from the teST CASE..uiiiiiiiiaieiriecerrt et e et aaas s e s ses s s s et st 240
B.6 SUmmary Of the TEST CASE..vuiiteierrrrereieeeesete sttt smere e e s s st e st 242
Appendix C Third-Party ReVIEWS......cccoimiiiiiiiriesieiee e 244

C.1 Review by Ilka LehweB-LitZmann. ... 244

C.2 Review by Laura OBIetiN. ..o it st 245

C.3 Review by Schneider EIeCIIC. ...cooiieniiiiiiiiisir i sttt 245

C.4 Review by the DaimlerChrysIer. ... 247

RETEIENCES. . teviiretrecctteetiiete e et e st e s e et st e ebteesteeentasar e s bt eiaeers e s s s e s e s s eanns e re s e e ts st etees 249

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.3
2.9
2.10
2.11
212
2.13
2.14
2.15
2.16
2.17
2.18
2.19

NI
NN
— D

Lok Lo

LI W LI L L LD W) L Ll L W W

[S Y
b - O

A
(ORI N

=
W s

Production as a transformation ProCess........ceouviciriiveiniiminnins s s 9
Production functions and IPULS......ccoveerrceeireir et sre e 11
A flexible manufacturing SYSIEML.....ccvveuriieciieieciirinir e et 13
The block and cylinder head assembly of NVM. ..o 14
Production CONIo) 00D, ...ue ittt et 16
Classical approach to production control.......ocooiiiniiiiie 17
Goal-driven production CONtIOl......oomvuiiiiiimiiciiie e 18
Basic model 0f @n @Zent.....c.coeceriioriiiiiiiii e 22
SubSUMPLION ArCHITECIUIE. .c.cviiiviiiiririeiaits et tsei s s is sttt s 23
BT ArCHITECTUIE. ..cvvviviiitreetieeeteseeeraeesatesieeericesiacsae st easesssbe st st sntsnaeeanans 24
INtERRAP ArChItECIUIE. . eevvieiuieieieeeireeier et es e s sae et 25
Task/resource dependenCies. ..o 27
The contract-net protocol (and its phases)......ccoeiirinmreeniiiii s 31
An example factory hierarchy in YAMS.. oo 34
Centralised, hierarchical, and heterarchical control architectures........c.ccoooveiins 37
HOION INTEITACES. ..cuveeiveeiieeireeeeite et ree e eei st s st s e e s e e sea e s r s e b a s st 39
Production layout P20004.......ccoviiiiiiciiicieiin s 41
Control agents 0f P2000F.......ccoiiiiiiriiiiiiiiini vt 41
DaimlerChrysler Prototype P2000+ ..o 42
Assembly layout of HOIOMODbILES.......cvviiieiiii 43
Control holons in HolomObIles.......uccceiiiieniiiiiiiiiiin e 44
Application of @ methodolOgY......cooiviiimiiiiiiiiii 50
Example of a Jackson Structured Diagram......c.cooveivivenin e 55
An example 0f @ StruCture Chart........ccoeovrieineiei e 57
The SADT box representing an OPEration........coveceeraesuerecensenmssssassessseenes 66
An SADT functional NEtWOIrK........cevrreeiiiiniiciiiiiriii e 67
Example Petri net-based control program.........cueserrerseminninenisssisssesees 70
Functional Knowledge SChema.........ccoivviiiiiiiiimiirii i 71
Conversionof functional ag@regation.........ccciiirriiiiierereeee e 71
Hierarchical procedure for resolving conflicts . ..o 73
The Gaila MOELS.....vi ittt s e e s e see s st a s 84
The MESSAGE model of agent-based SyStEmMS.....ccuiiurmmmmmremiiiiiies 89
Goals implying interactions between roles in Agent Interaction Analysis............ 93
Major steps of the methodology.......ccooiii 109
Example production SYSIEIM.......c.cveiiiriiiiieniiie et 110
Operation CONAItIONS. ...c.vvivruiiriririieee e s 111
Steps for the analysis of control deCISIONS.oveuruieiiiiee it 113
Abstract model of control deciSIONS...uuuiiiiiiiiiiii s 115

4.6 Typical scenarios for a workpiece and a machine.............cocccoviicnincen 117

4.7 The trigger diagram for the example production SySte€m........ccccevvriiminiinncnniens 123
4.8 The dependency diagram for the example production SysStem..........ceecerninnnen 129
4.9 Steps for the identification of agents.......cccovviviriiiiiiii i 131
4.10 EXample CIUSEIINE. ..iiii ittt st e saiee s e sas s ate s ansea s anas 133
4.11 Spot welding lne.......ocoooiiviiiiiiiiiiici e 136
4,12 The Aistribube OPeration...c.ccoiiiiiieiiiiiiiiicir e et 139
4.13 Trigger diagram after distributing decision tasks in the example production
SYSEEIML1netteueeerereeieeeeeertsttr e s ass e e et e erae e b et eerereeeeaeaatabeaeenee e st e s e s re e 142
4.14 The 1intTOAUCE OPETALION. ...ecittiiirrriecieriectieiiertettraete e snesse e s sba e st aanes 144
4.15 Trigger diagram after introducing the abstract decision Choosing next machine in
the example production SYSLEIM......cecteriireiiiiiireiciitir e 145
4.16 Dependency diagram after introducing the abstract decision Choosing next
machine in the example production SYSEM.......c.ccveeririiiiviiiiiiieiiiice e 146
4.17 The process for selecting interaction protoCols.......ccoeeivecirvininiiniinieneneniiinns 148
4.18 Steps for the selection of interaction protocols........cceeeviiiiinninienenins 150
4.19 Results of the methodology.....cocveviriiriiiiiiieiiiii e 171
5.1 Example assembly 1ayoul.......ccccociiiiiiiiiiiiiiiiiii e 180
A.l The decision structure of the plurality voting protocol.........cceeiniineinnnns 196
A.2 The decision structure of the English auction........cccoooiiiin. 201
A.3 The decision structure of the continous double auction........ccceveiieiinnene 204
B.1 Layout of the backboard welding Shop.......coooiviiiiieriii 215
B.2 Manual 10ading of AGVS. ..ot 216
B.3 The trigger diagram for the BWS decision process........cccvieieininnniciiiinniianiens 221
B.4 Dependencies in the BWS decision process........coouieeeeeiiiniiveniiniiniiniins 224
B.5 The adapted decision Model.......cccociiiiiiiiiiiiinii i 225
B.6 Additional dependencies after splitting the decision tasks........cccoooevniiiiniii 230
B.7 Simulation screen shot of the BW S, 241
B.8 Deviation in the BWS produced by the agent-based control........cccoeeniinecins 242

Vi

List of Tables

4.1 Schema for effectoric decision tasks.......ccocvuiiiiiiiiiniini e 118
4.2 A typical specification of an effectoric decision task.........coccceviiininiiiinninn 120
4.3 Example effectoric decision task at SWitCh Ss.......oooiiiiiiiins 121
4.4 Example effectoric decision task at switCh Sa.....cccocooviiiii 121
4.5 Example effectoric decision task for the loading station............coeiiiinnncncnns 122
4.6 Example effectoric decision task for the machines...........ccoocviiinnniinnn 122
4.7 Schema for decision dependencies.........cccoveviiiiiiiiiiiiin e 127
4.8 Example dependency for routing WorkpieCes.......ccocvvvvveeeiiiiiiiiiiiveininiicsesenees 127
4.9 Example dependency for choosing machines.........cccvcvcviieirinininisiiniesencene 128
4.10 Example dependency for loading workpieces........cccvvuriirniiiiiiininninininneenennee 128
4.11 Effectoric decision task Dqma of the example production system.........oceceeee 141
4.12 Effectoric decision task Daswe of the example production system.......c.ccooeeeueeee 142
4.13 Abstract decision task Ds of the example production system........cccoovievcnce 145
4.14 Agents identified for the example production SyStem..........ooceiiiniinieniveenicens 146
4.15 Classification of a start SItUAtION.ccceeviiiiiiiiiiiiiii e 155
4.16 Classification of the required joint COMMITMENTS......ccoveivmrrriiiinieiineeeiieene 159
4.17 Classification according to the agent roles of a dependency.......ccceceeviiieniininene 160
4.18 Classification according to the process reqUIrements..........eeevvevricieninsenenieeneennes 162
4.19 Example characteriSations.....cocoveiciiiiiiiiiniiiniiiin et se e sns s e 164
4.20 Classification of dependency between the decision aspects Ds.wp and Ds.va...... 166
A.1 Characterisation of the plurality voting protocol................coooviiiviinieiinnccnenenn 195
A.2 Characterisation of the Clarke tax protocol...............ccccoovvvmiiiniinininiiinninnns 197
A.3 Characterisation of the Service-oriented negotiation............c.ooeveeviniinccninnnns 198
A.4 Characterisation of the Monotonic concession protocol..............ccoveveeiicnnicns 199
A.5 Characterisation of the DECIDE conflict resolution protocol........ccccieiiian 199
A.6 Characterisation of the English GuCtiON...........cccccocvvviineieeieniiniencses 201
A.7 Characterisation of the Contract net protocol.............cc..cooouiiiiiiiniiinnicnnennns 202
A.8 Characterisation of the Continous double auction...............cccoovevininiiiniiniins 203
A.9 Characterisation of the Asynchronous backtracking search.........c.cocoeeniniiiiinn. 205
A.10 Characterisation of the Shehory and Kraus Coalition formation algorithm....... 206
A.11 Characterisation of the Partial global planning algorithm........c.co.ocniniiinnn 208
A.12 Characterisation of the Kowest work-in-process control protocol........c.coceeuei. 211
A.13 Characterisation of the Requesting action protocol.............c.cccvciniiniiiinniens 212
B.1 Effectoric decision Do 220
B.2 Effectoric decision Da...ccioieceeiiiiceiiniceeiininee it 220
B.3 Effectoric deciSion Dia.iiiiieeeeeeecieiersesiesseesnse e esesecsesssssesssnsssnsesees 220
B.4 Effectoric deciSion Da.eceeuieieecicanieiiiiiiiiicniiiiiciie s 221
B.5 Dependency DPi...occoiniiiiiinnnnnin, TP PRSP 222

vil

B.6 Dependency DPa....cciiiriiiici i 222

B.7 Dependency DPs.....cciiiii i 222
B.8 Dependency DPa. .o 223
B.9 Effectoric deCiSION D1 0B ererreerorereieeerreerietraeesesireesisressenirenssasssessssnsnasnessanenes 226
B.10 Effectoric deCiSION D iaGy. . eecmierercuerversiersecenienitecsrersiaesaesessresssisennrsasasssesnesssssens 226
B.11 Effectoric deCiSION Do agv. e reoireeeereeeisreniirriieerecererteeseeseeenrasiesisssssersssssasnessansens 226
B.12 Effectoric deciSIon Dach e ceereceerreeneertieccietsrreeetissanr s s s sreessnssrsssssenssnes 227
B.13 Effectoric deCiSion D3 agy. e eeireorereerienreaisiiesiie it s e s es s siaesissassssssesessiessensans 227
B.14 Effectoric decision Di.wo...reeerveeeee. JS SO U U UUUUUUUURRRRRR 227
B.15 Effectoric deciSion Daagy.ce eecrrermrerrierieeeeiteeeiienieeae e stete e esasas s ecnes 228
B.16 Dependency DPs......ccooiiiiiiiiiiiiie it 228
B.17 Dependency DPs.......ccccoiiiiiiiiiiiii i 228
B.18 Dependency DP ...t 229
B.19 Dependency DPg......ccciiieniiiniiiiiie et 229
B.20 Agents and associated decision tasks........ooooiimiiiiinii 230
B.21 Dependency DPs ..ot 231
B.22 Classification of dependency DPs.....cooiiiiii 232
B.23 Dependency DPp.......cccoioiiiniiiiiiiiniiinie it 232
B.24 Classification of dependency DPe........coooiiimiiiiiiiiiiinie 233
B.25 Dependency DP. ..o 234
B.26 Dependency DPs.......cc.coiiiiiiiiieiie s 234
B.27 Classification of dependency DPs........cciiiiiiiiiiiiiiiiiiinie 235
B.28 Dependency DP ...t 236
B.29 Dependency DP. ..o 236
B.30 Dependency DPi.... .ot 236
B.31 Dependency DPa....c.coucciiiiiiiiiiiininii e 237
B.32 Classification of dependency DPu......c.ccoiiiiiiiiiiiiiinee 238
B.33 Dependencies and interaction protocols resolving the dependencies................ 240

viii

Acknowledgements

First of all, I would like to thank my supervisors Professor Nick Jennings and Professor
Mike Wooldridge for their excellent supervision. Their frequent and constructive
feedback has been very helpful and has contributed significantly to the success of my
PhD. I would also like to thank Nick for accepting me as a part-time PhD student,
despite all the difficulties that go with it, and Mike for being the second supervisor,
despite the long time it took me to finish the PhD.

[would also like to thank Dr Kurt Sundermeyer who motivated me to do my PhD in
England and who supported my PhD at work. Also thanks to DaimlerChrysler who
made it possible for me to do the PhD in parallel to my job.

Furthermore, I would like to thank all those who helped me with the evaluation of the
methodology. In particular, I would like to thank Ilka LehweB-Litzmann and Laura
Obretin for their engagement during the case studies. This thanks also goes to Jorg
Sieverding who struggled with a very early version of the methodology in the
Holomobiles project. And I would like to thank Ralf Neubert, Armando Walter
Colombo, Boris Siissmann, Dirk Hofmann, and Raimund Krieg for reviewing the
methodology. Special thanks goes to Walter Colombo who even reviewed part of the
PhD as well as to Duncan McFarlane with whom I had many fruitful discussions over

the years about the pros and cons of agent-based systems for manufacturing.

Here, 1 would also like to thank those who made developing agent-based control
systems a fun and successful activity: Klaus Schild, Hartwig Baumgértel, Sven
Briickner, and Harald Windisch from our lab; Christian Anders, Gerold Winz, and
Christoph Siegel from DaimlerChrysler; as well as Ralf Neubert and Ronald Schoop
from Schneider Electric. It was a great time and I hope that we can develop many more

systems like these in the future.

And most importantly, I owe a big thanks to my wife who supported me all the way,
even when the PhD got very time-consuming and stressful, as well as to my children
who — even though not knowing why — have not always seen as much of me as they
would have liked. This PhD is therefore dedicated to them.

To my wife Martina

and my children Anabel and Silvia

Chapter 1

Introduction

Software agents offer a new approach to designing and building complex distributed
systems that significantly extends previous approaches like object-oriented or
distributed computing (Jennings 2000, Zambonelli 2003). Instead of modelling
distributed systems as software programs exchanging data and commands, agent
technology creates autonomous decision makers which communicate their preferences,
negotiate sub-goals, and co-ordinate their intentions in order to achieve the individual
or system goals (O’Hare 1996, Weiss 1999). This decision- and interaction-based
approach to computing makes it possible to build systems that can dynamically react to
unforeseen events, incorporate different preferences and attitudes, exploit different
capabilities of components, and adapt flexibly to changes in the environment. The
ability of agents to adapt their behaviour during computation reduces the need for the
designer to foresee all possible scenarios and changes the system will encounter
(Jennings 2000). Moreover, an agent-oriented design is often a natural fit to the
distributed nature of decision making in many application domains and thus increases
the understandability and maintainability of the software system.

The advantages of agent technology have been widely recognised and have led to a
wide range of application studies in many different domains. The applications reported
include industrial applications (process control, air traffic control), commercial
applications (information management, electronic commerce, business process
management), medical applications (patient monitoring, health care) and entertainment
(games, interactive theatre and cinema) (Jennings 1998). One of these application
domains that has been the target of many agent applications in the past is production
control (Parunak 1999, Parunak 2000). Production control has been attractive to agent
researchers for several reasons. First of all, production is an important industrial
activity, responsible for a large portion of the gross national product in industrial
nations (Eurostat 2002). Second, production systems are inherently distributed and
dynamic systems exhibiting many changes and disturbances during operation (Parunak

1987). Third, and perhaps most importantly, agent technology promises to meet the
forthcoming challenges in (non-real-time) production control which will go beyond the
capabilities of current control technology. The following sections therefore evaluate the
trends in production control and analyse the requirements on agent technology to meet
these challenges.

1.1 Motivation

At the beginning of the 21" century, production faces a fundamental change from a
vendor’s to a customer’s market. The growing surplus of industrial capacity provides
the customer with a greater choice, and increases competition between vendors. Aware
of his power, the customer becomes more demanding and less loyal to a brand. He
demands constant product innovation, low-cost customisation, better service, and
chooses the product which meets his requirements best (McFarlane 2003). The
consequences for the industry are manifold. Companies must shorten product-life
cycles, reduce time-to-market, increase product variety, quickly satisfy demand, reduce
investment costs, and so on. For production, these consequences imply more complex
products, faster changing products, faster introduction of products, a volatile order
volume, and reduced investment (McFarlane 2003). The effects on production can be
summarised as increasing complexity and constant change with decreasing investment.

The above trends have motivated researchers in academia and industry to create and
exploit new production paradigms on the basis of autonomy and co-operation because
both concepts are necessary to create flexible behaviour and thus to adapt to the
changing production conditions (Tharumarajah 2003). Holonic manufacturing, for
instance, as one of these new production paradigms, proposes the introduction of
autonomous and co-operative building blocks, called holons, which organise
themselves into flexible hierarchies, called holarchies (van Leeuwen 1997). Agent
technology can be regarded as a key technology for realising the information processing
of such systems (Bussmann 1998). In this context, agents are autonomous and co-
operative units which due to their decision making and interaction capabilities are able
to create and continuously adapt flexible process behaviour in the face of constant
changes and disturbances. The ability of agent technology to address these challenges,
as well as the industrial feasibility of an agent-based control approach have already
been demonstrated with a number of industrial prototypes (Parunak 1996, Parunak
2000). But despite the numerous advantages of agent technology, installations of agent-
based control systems are still rare in practice.

The reason for the slow industrial take-up are manifold, and in part certainly typical for
the introduction of any new technology. Some reasons for the slow take-up, however,
are technology-specific. Arguably the most important technology-specific reason for

this is that agent technology provides a large set of decision and interaction capabilities
which are able to create a wide variety of system behaviours (Parunak 1997, Weiss
1999, Wooldridge 2002). Engineering such a system thus requires that the designer
applies these capabilities very carefully in order to achieve the intended system
behaviour. Without such a careful design, the designer may produce an agent-based
system that shows a different, non-intended behaviour, or that achieves the intended
behaviour in an inefficient way. In particular, the design may be more difficult to
implement or maintain than necessary. A design, however, which is more difficult to
implement or maintain will surely be more costly. In a domain such as production
control, where investment must be continuously reduced, this is a “knock-out” criterion
against using a new technology. The designer of a control system must therefore very
carefully analyse and decide which agent-oriented mechanisms he requires in order to
achieve the system requirements. The designers of control systems, however, are
usually not computer scientists experienced at developing agent-based systems. The
designer of a control system is typically an engineer with a background in production or
control engineering, but with only minimal training in agent concepts at best and no
experience with agent-based development in most cases. These designers thus require a
methodology explaining how to perform the analysis and design of an agent-oriented
production control system. In particular, such a methodology must include all the agent-
oriented design criteria necessary to arrive at a well-designed agent-based system. To
provide such a methodology, the next section looks at existing design methodologies
and assesses whether these are sufficient to support a control engineer in developing

agent-based control systems.

1.2 State-of-the-art

Many methodologies for designing software systems have been proposed in the past,
some even for designing control systems (see chapter 3). The methodologies proposed
include object-oriented, manufacturing.control, and agent-oriented methodologies. A
careful analysis of the wide variety of methodologies, however, reveals that existing
methodologies are either not appropriate or not sufficiently prescriptive for designing
agent-based production control systems. Object-oriented methodologies mainly fail to
support the design of such systems because the modelling concepts of these
methodologies are not appropriate for modelling the decision making of a control
system (see section 3.3). In particular, objects are generally passive in nature, do not
encapsulate behaviour activation, exchange only data or commands, and provide only
minimal support for structuring organisations, whereas agents pro-actively follow their
own goals, initiate interactions with other agents that were not foreseen at design time,
and are able to adapt their organisational relationships (Jennings 2001). Object-oriented
methodologies therefore miss many important aspects of an agent-based (control)

(5}

system. Manufacturing control methodologies, in turn, provide elaborated models for
capturing the actual production process and the associated control decisions. The
decision making, however, is modelled in a centralised or hierarchical form which
conflicts with the autonomous and co-operative approach required for future production
systems (see section 3.4). A designer can therefore rely on existing manufacturing
methodologies to model the actual production process. But for the control system, the
designer requires a methodology that prescribes how to design the agent-oriented

aspects of such a system.

The limitations of object-oriented and manufacturing control methodologies have
prompted many agent researchers to develop specifically agent-oriented design
methodologies (see section 3.5). These methodologies are obviously able to adequately
model agent-based systems. The existing agent-oriented design methodologies,
nevertheless, are either inappropriate or not sufficiently prescriptive for modelling
agent-based production control systems (see subsection 3.5.7). This is mainly due to
the fact that most agent-oriented methodologies have been developed for applications
other than production control. These methodologies therefore focus on concepts like
roles, goals, and organisations, and thus miss the most important aspect of control, the
decision making. Furthermore, existing agent-oriented methodologies are not
sufficiently prescriptive for identifying production control agents. Most methodologies
do provide criteria for agent identification. However, these are either too vague or lead
to an inappropriate set of agents for production control. Finally, only few
methodologies provide methods for designing or even re-using interaction protocols.
The few that do consider the design of interactions only cover some aspects of the

design process.

In summary, to date there does not exist a design methodology for agent-oriented
production control systems that is appropriate and sufficiently prescriptive to be applied
by a control engineer. However, such a design methodology, as argued above, is
absolutely necessary for promoting the wide-spread use of agent technology in industry.
Against this background, the aim of this research is therefore to develop such a

methodology.

1.3 Contributions of the thesis

The goal of this thesis is to develop a methodology for the design of agent-based
production control systems which can be successfully applied by a control engineer
with only minimal training in agent technology and no prior experience in agent
development. To this end, this thesis proposes a methodology for Designing Agent-
based Control Systems, called DACS. This methodology starts with a specification of
the control problem including

(i) a specification of the (physical) production process to be controlled,

(ii) a specification of the production operation conditions, and

(iii) a specification of the production goals and requirements.

An agent-based control system satisfying the above specification is then developed with

the help of three methods which build upon each other:

1.

The method for the analysis of decision making analyses the specification of
the control problem in order to identify the decision tasks necessary to solve the
control problem and any dependencies between these decision tasks.

The method for the identification of agents clusters the decision tasks
according to agent-oriented criteria and assigns each cluster to an agent. If
necessary, the decision tasks are re-organised before clustering in order to
facilitate the identification of agents. Furthermore, the method includes a rule
for assessing the applicability of an agent-oriented approach.

The method for the selection of interaction protocols classifies each decision
dependency between different agents and matches this classification against a
library of existing interaction protocols, in order to identify a protocol that is
able to resolve the dependency. This protocol is then customised to the specific
dependency situation arising between the control agents.

The output of the methodology is thus a list of agents with their distinct decision
responsibilities and the interaction protocols required to resolve any decision

dependencies. Due to the explicit specification of the dependencies and the associated

interaction protocols able to resolve the dependencies, the resulting design is

sufficiently modular so that each agent can be implemented independently.

The DACS methodology thus covers all agent-oriented design steps from analysing the
production control problem, through identifying the control agents, to re-using existing
interaction protocols. In particular, the DACS methodology extends the state-of-the-art
in at least three respects:

The methodology provides a method for analysing the production control
problem that creates an agent-oriented decision model specified only in terms
of domain concepts. In contrast to current approaches described in the
literature, the methodology thus bridges the gap between the domain of

-production control and agent-based systems.

The methodology provides a set of criteria for identifying agents — based on the
decision model developed during the analysis — which either leads to an
appropriate set of control agents or else suggests abandoning an agent-oriented
approach. In contrast to the approaches in the literature, the methodology thus

provides a set of design rules that capture agent-oriented design knowledge in
terms of rules directly related to the domain concepts.

e The methodology provides a classification scheme for re-using interaction
protocols that is defined only in terms of the decision situation arising during
the production process. In contrast to the literature, selecting an interaction
protocol can thus be performed without any knowledge of the interaction
protocols, and is therefore scalable to a large set of existing protocols.

Altogether, the DACS methodology thus significantly reduces the knowledge of and the
experience in agent technology required during the design process and consequently
enables a control engineer with only minimal training in agent technology and no prior
experience in agent development to successfully design an agent-based production
control system. '

1.4 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of
agent-based production control. It defines the terms “production” as well as “production
control” and discusses the new requirements on future production systems. The chapter
furthermore reviews agent technology and presents the state-of-the-art in agent-based
production control.

Chapter 3, in turn, specifies the requirements on a design methodology for agent-based
production control systems and reviews the state-of-the-art concerning design
methodologies. In particular, it reviews object-oriented, manufacturing control, and
agent-oriented methodologies, and shows in which respects these methodologies fail to
meet the requirements on an agent-based design of production control systems.
Furthermore, chapter 3 discusses the state-of-the-art in re-use and reviews the extent to
which re-use has already been applied to the design of agent-based systems.

Chapter 4 then presents the main contribution of this work: the DACS design
methodology for agent-based production control systems. The chapter specifies the
input and output of the methodology, as well as each step of the methodology, namely
the analysis of decision making, the identification of agents, and the selection of

interaction protocols.

An evaluation of the methodology is given in chapter 5. This chapter provides initial
evidence that the methodology is applicable by a control engineer with no prior
experience in agent development. To this end, the chapter discusses two industrial case
studies carried out by the author, a comparison of the methodology with the state-of-
the-art, and two case studies performed by students as well as two reviews of the

methodology performed by control engineers. Chapter 6 then concludes the thesis and

points to future work.

Finally, three appendices provide additional information. Appendix A lists the
characterisations of several interaction protocols according to the classification scheme
developed in chapter 4. Appendix B presents the application of the design methodology
to an industrial test case. And appendix C lists the questionnaires used in the third-party
reviews and the feedback received during these reviews.

Chapter 2

Agent-Based Production Control

An agent-oriented design methodology for production control is at the intersection of a
new software technology, namely software agents, and an application domain, in this
case production control. In order to understand the motivation for this particular design
methodology, it is necessary to answer a set of questions: '

1. What is production control? Why is it important and what is challenging about
designing production control systems?

2. What is agent technology? And why does it help to meet the challenges in
production control?

3. How is agent technology applied to production control? And why is it
necessary to develop a design methodology for agent-based control systems?

All these questions will be answered in the following sections. First, section 2.1 will
explain what production control is, why it is important, and what is challenging about
it. This section will give basic definitions for what production, a production system,
and production control is. Tt will furthermore review the state-of-the-art in production
control and discuss why existing control techniques are not able to meet current
challenges in the production industry. Section 2.2, in turn, will give an overview of
software agent technology. It will provide basic definitions of an agent and a multi-
agent system, and will review the agent-oriented techniques necessary to meet the
challenges of modern production control. Finally, section 2.3 will show how agent
technology can be applied to production control problems and will give examples of
control applications using software agents. In particular, this section will discuss why
there is no universal design for all production control problems and why, consequently,
a design methodology must be developed.

2.1 Production control

Production is defined as the transformation of (physical) goods (Hoitsch 1993, Groover
1987, Hitomi 1994). The goods which are consumed by the transformation process are
called raw materials and the goods produced are referred to as products. The process of
providing raw material is called procurement (or supply) and the products are
distributed through shipping. Procurement and shipping thus define the boundaries of
the production process (see figure 2.1).

throughput

input output o
procurement — (production) — shipping

Figure 2.1: Production as a transformation process.

Production processes can be classified in many different ways. A common
classification distinguishes production processes with respect to the types of products
produced. The Federal Statistical Office of Germany, for instance, divides the
production industry into the following main product branches: automobiles, chemicals,
clothing, computing, electrical equipment, glass, machinery, food, furniture, metals, oil
refinement, paper, publishing, textiles, tobacco, and wood (Federal Statistics Office of
Germany 2001). The statistics also show how important this industry is. In 1999, the
production industry has created a gross added-value of 1.342 billion Euros within the
European Union', and 410 billion Euros in Germany (Eurostat 2002). The automotive
industry alone accounts for 143 billion Euros in Europe?, and 60 billion Euros in
Germany. The production industry is thus an important economic factor in Europe
(creating for example 25 % of the gross national product of Germany (Federal Statistics
Office of Germany 2001)).

Another important classification of production processes is the distinction between
discrete manufacturing and process industry. This distinction refers to the general
mode of operation. Discrete manufacturing is concerned with the processing of solid
goods, such as metal, textiles, or wood which are processed individually, whereas the
process industry takes liquids, such as milk, liquefied sugar, or oil, as input and then
processes them continuously (Moore 1991). The distinction between discrete
manufacturing and the process industry is obviously important to production control
(Chokshi 2002): Solid goods are usually processed with tools and transported on
conveyors. Liquids, on the other hand, are processed in tanks and transported through
pipes. This work clearly focuses on discrete manufacturing (which created in 1999 at
least 48% of the turnover of the production industry in Germany (Federal Statistical

' 15 European states without Spain and Ireland for which the data were not available yet.
2 dito.

Office of Germany 2001)). In section 6.2, though, this focus will be revisited and the
contribution of this work will be evaluated with respect to its applicability to other
types of production processes.

A third common classification which is relevant to this work is the classification of
production processes with respect to the product quantity made. The two extreme cases
here are: job-shop and mass production (Groover 1987, p. 18). Injob-shop production,
the quantities made of one product are usually small, often of size one. The products are
typically created according to specific customer requirements and, as a consequence, a
job-shop factory must be able to produce a wide variety of such products. Typical
products produced in a job-shop factory are heavy machinery and ships. In mass
production, the product is produced in large quantities, sometimes with more than one
million units per year. A factory for mass production is usually dedicated to a specific
product in order to achieve the required quantity and to benefit from economies of scale
due to the mass production. If the quantity produced is high, but the product varies
slightly, mass production is often referred to as large-series production. A typical
example for a mass product is mineral water, typical examples for products
manufactured in large-series are automobiles and household appliances.

To transform raw material into products, any of the above production types must
implement certain production functions. Obviously, the main task of production is to
process the raw material and transform it into an intermediate or finished product. But
processing alone is not sufficient to create physical products. For example, the
processing requires material which must be supplied somehow to the processing
operations. For discrete manufacturing, Groover lists four basic functions that are
necessary in modern production ((Groover 1987, p. 20), see also (Hitomi 1994, pp.
415))7

e processing
e assembly
e material handling and storage

e inspection and testing

Processing and assembly are the operations that add value to the product by either
changing the properties of the material (through processing) or by combining several
workpieces into one (through assembly). Material handling and storage is necessary in
order to (physically) provide the material at the right time and in the right quantity to
the processing and assembly functions, whereas inspection and testing, also called
quality assurance, is needed to verify that the processing and assembly operations meet
the required quality standards. Naturally, there may be more functions necessary for

3 (Groover 1987) also lists control as a basic production function. Control, however, will be dealt with
separately in this section.

10

specific production types, but the above functions can be found in any (discrete)
manufacturing system.

To perform the above functions, a production process obviously requires more input
than the mere raw material (Groover 1987, p. 22). First of all, a production process
requires (physical) equipment to perform its functions. The physical equipment may
include machines, tools, and fixtures for processing; conveyors, forklifts, and buffers
for material handling; and measuring tools and machines for quality assurance.
Secondly, any factory requires labour, either because a production function must be
performed manually, or because the equipment must be set up and maintained
manually. And thirdly, any production process consumes energy, sometimes also other
auxiliary material, such as water or machine oil. All these inputs (including the raw
material) are referred to as the production factors (Hoitsch 1993). They constitute
everything that is physically necessary to run a production process.! The production
functions and factors are schematically summarised in figure 2.2.

equipment
/

processing and assembly

1
raw material material handling and storage products

A
inspection and testing

f f

labour auxiliary
material

Figure 2.2: Production functions and inputs.

Production factors that are non-consumable, like machines or conveyors, are also called
production resources. Production resources are particularly important because they
usually require a major investment and must be installed before any production can
start. Because of their (largely) static nature, the production resources and their
arrangement on the factory floor also determine the structure of the production process
(Hitomi 1994). The structure of a production process, commonly referred to as the
production system, is particularly relevant to control and is therefore explicitly defined
in the following:

* Again, any planning and control aspects are omitted here because they will be addressed later in this
section.

11

Definition: A set of production resources and a (spatial) arrangement of these
resources is called a production system. The arrangement is called the
production layout (or the plant layout).

The production system is sometimes also referred to as the factory floor or the shop
Aoor. These terms are used in particular to emphasise the difference between planning
and reality (on the shop floor).

Two examples of typical production systems in discrete manufacturing will be given in
the following subsection: one for job-shop and one for large-series production.
Subsection 2.1.2 will then discuss what is necessary to operate a production system. In
particular, it will define the term production control. Subsections 2.1.3 and 2.1.4 will
review the state-of-the-practice in production control, analyse the current limitations,
and infer the requirements for future production processes. Finally, a summary of this
section is given in subsection 2.1.5.

2.1.1 Examples of production systems

An example of a production system is the flexible manufacturing system (FMS)
(Hartley 1984). A typical FMS consists of several machines, a loading and unloading
station, a transportation system, and a system buffer. Figure 2.3 shows a FMS with a
circular layout, i.e., the stations are arranged in a circle and the workpieces move
around this circle with the possibility of either entering a machine or continuing on the
circle. The operation of this manufacturing system is as follows. A worker loads a
workpiece on a pallet at the loading station and feeds it into the manufacturing system.
The workpiece is transported to a machine over the circular conveyor system and
processed (automatically) by the machine. The processing is continued at other
machines until the workpiece is finished, i.e., has received all operations prescribed by
its process plan. As a final step, the workpiece is returned to the unloading station and
taken off the pallet. Occasionally, if different workpieces are competing for the same
machines, some workpieces have to be temporarily stored in the buffer until their

machines are free to process them.

A flexible manufacturing system is used for job-shop production in highly automated
environments. Machines are usually computerised numeric control (CNC) machines
which are able to perform almost any operation if programmed accordingly. The.
greatest disadvantage of FMS, however, is the low volume and the high costs per

product.

12

machine machine

M, M,
¢ A
OHNME — v
|
loading / v ? system
unloading <P <p
station buffer
L] : —> t_.._J
machine machine
M, M,

Figure 2.3: A flexible manufacturing system.

Because of their flexibility, CNC machines are slower and more expensive than
dedicated machines. Large-series and mass production is therefore organised as a so-
called line production. The new V-engine assembly plant (NVM) of DaimlerChrysler
in Stuttgart (Germany) is a typical example of a line production system (Weber 1997,
Bussmann 2001). The assembly system consists of approximately 60 stations which are
mostly linearly connected, performing engine block assembly, cylinder head assembly,
final assembly, and testing. Around half of the stations are automatic, the remaining
require workers to perform the assembly step. At several stations, mostly for heavy
parts, material is supplied through automated buffers. Block and cylinder head
assembly are schematically shown in figure 2.4.

The assembly starts with the crankcase, which is put on a pallet at the first station. The
pallet then runs nearly linearly through every station until it reaches the shipping station
at the end of the assembly system. Since all stations are dedicated to a single operation
for the given product, the stations operate at a short cycle time (about 60 seconds).
Because of this short cycle time, the assembly system is able to produce a much higher
volume at comparably lower costs than the flexible manufacturing system. The
disadvantage of the assembly system, though, is that it has almost no product or volume
flexibility. It can only produce a specific product family at a fixed volume.

Because of the relative advantages and disadvantages of the two production systems,
there is no dominant type of production - both types (and many more) can be found in
industry.

13

BO1 B02
crank crank
case shaft
[
et a0t [T| avz [TTTTTITIIT] A0s acs [TTTTITITITTIIIIT] mos wos [| Aoz [TT] s ||

Butter | [Buwr QMO
B06 B0S B04
i A11 A10 A09
Buffer B03
a7 [T]ITTTI] A1e a5 [T]] M14 mi3 [[]][] w2 M connecting rod
Buffer Buffer Buffer B09
BO7 B08 cylinder head
—[r N20 . H
ate [TTTT] ate [TTITCXTIT] At CJITIIIT] Ase [TT] mss MISEH] | M3, A3
A33 10
O T T T T T T T T T T L T LTI

Figure 2.4: The block and cylinder head assembly of NVM
with automatic (A), manual (M) and rework (N) stations.

2.1.2 Production operation

A production system, as defined above, consists only of the physical resources
necessary to perform the production functions. To actually run a production process,
however, it is also necessary to perform several management functions that prepare or
guide the production process. These management functions are commonly
distinguished into production planning and production control activities (Groover 1987,
Hoitsch 1993, Hitomi 1994).° Production planning includes any activity for planning
the production program (how many products of what type to produce), the production
process (in which steps to create the product) and the production factors (how much
equipment, labour, and auxiliary material is needed). Production control, on the other
hand, takes orders from the production program and assigns them to resources
(resource allocation), initiates processing and handling of workpieces (execution), and
supervises the performance of the production system (monitoring). Production control
is thus the link between the planning processes of a manufacturing firm and the actual
execution of the plans at the shop floor. As Groover and Monden emphasise, the main
responsibility of production control is to achieve the production plans:

* Naturally, there are more management activities necessary in a manufacturing firm (such as product
development or sales). This work, though, focuses on those functions that are closely related to the actual
production process.

14

Manufacturing control is concerned with managing and controlling the
physical operations in the factory to implement the manufacturing plans.
(Groover, p. 26)

Controls the production of the necessary products in the necessary
quantities at the necessary time in every process of a factory and also
among companies. (Monden 1983)

To achieve the production plans, production control must decompose the production
program into instructions for the shop floor. The following definition of production
control emphasises this task:

Production control is the function of management which plans, directs, and
controls the materials supply and processing activities of an enterprise.
Where, planning is the process of deciding what to do in the future,
directing comprises the operation of issuing orders, and control can be
described as the constraining of events to follow plans. (Burbridge 1978)

What makes production control challenging, however, is that it is not enough to simply
decompose a production program into single shop floor actions and to issue these
actions as instructions. Physical processes fundamentally carry the risk of failure. Tools
may break, operations may miss tolerances, transportation devices may jam, and so on.
These contingencies must be taken into account when running a production process
(Parunak 1991). Some researchers have even defined (production) control to be only a

monitoring and correcting activity:

[The task of production control:] Whenever the actual production progress
and performances deviate from the production standards (plans and
schedules) set at the planning stages [...], such deviations are measured and
modifications are appropriately made. (Hitomi 1994, p. 420)

Shop floor control is concerned with the problem of monitoring the
progress of the product as it is being processed, assembled, moved, and
inspected in the factory. (Groover, p. 27)

To optimally run a production process, it is thus necessary to choose the production
instructions such that these fulfil the production plans. But also vice versa, the
production instructions should be chosen with respect to the reality on the shop floor
and what can be reasonably expected to be executed. Production control should thus
take the production plans, monitor the production performance, and issue those
production instructions that optimally achieve the production plans given the current
situation on the shop floor (see figure 2.5). Within the context of this work, production
control is therefore defined as follows (see also (Dean 1991)):

15

Definition: Production control is the process of choosing, initiating, and monitoring
actions in a production system in order to achieve or optimise a given
production program.

production program

production control | choosing

monitoringj i initiating

production system

Figure 2.5: Production control loop.

Note that the above definition — as all other definitions of production control in the
literature — deliberately excludes the actual execution of an action (the action is only
initiated). The reason is that the execution of an action requires an actuator to
physically perform a movement (or some other physical state change) in the production
system. There is a large body of technology, commonly referred to as control theory
(Dorf 1998), that is able to control these state changes (at least for discrete
manufacturing). With this technology, machines can drill holes, robots can assemble
parts, and switches can move pallets to their exits. The focus of this work, and thus of
the above definition, though, is to determine which hole to drill, which parts o
assemble, and where to move the pallet (i.e., how to decompose the production plans
into instructions for the shop floor). It can be safely assumed that, with the existing
control technology, the instructions can be executed. Note that the above definition also
excludes most of the real-time issues because in discrete manufacturing these can be
handled by existing control technology at lower levels when executing the instructions.

To clearly identify the interface between production control — as defined above — and
the control components actually executing the production actions, the latter components
will be called (local) controllers in the rest of this work (see also (Veeramani 1994, p.
553)). That is, it is assumed that every physical component supposed to execute actions
is associated with a control component providing an appropriate interface to the
production control system (cf. figure 2.6).

2.1.3 State-of-the-art and limitations

The classical approach to production control is best characterised as hierarchical and
schedule-driven. First of all, control systems are organised in a command hierarchy, in
which sub-ordinate units are only supposed to execute the commands given by the

16

super-ordinate levels (see also proper hierarchies in (Dilts 1991)). Secondly, the control
process starts at the top with an abstract scheduling of the production program (Hitomi
1994, Becker 1994) and consecutively details and distributes this production schedule
on each level until executable actions reach the controllers (see figure 2.6). In
particular, each level of the hierarchy creates production schedules for its subordinate
units with only minimal feedback from the lower levels. An adaptation of the schedule
is only done within one unit with hardly any consultation of neighbouring or superior
units. Failures to achieve a production schedule are fixed within the next scheduling
cycle.

production program

scheduling 1

/ \sihedule distribution

system control system control
/ \ local re-scheduling / \
controller controller controller controller

¢ material flow ‘ * $
|
resource » resource‘r-} resource -* resource

Figure 2.6: Classical approach to production control.

This approach works optimally if actions are executed as planned, but fails completely
otherwise. In case of a disturbance, a controller is not able to execute its actions or has
to postpone them. Since production operations are optimised in order to maximise
productivity and minimise costs, resource capacities are quy utilised and buffer sizes
are reduced to an absolute minimum. As a consequence, any deviation from the
schedule quickly affects neighbouring units resulting in a cascading effect of the
disturbance. Since the hierarchical and schedule-driven control organisation does not
support system-wide re-scheduling, the impact of a disturbance on production cannot be
constrained. As every real production system is regularly affected by disturbances
(Parunak 1991), production operations soon deviate from the production schedule. It is
even “proverbial among shop foremen that the schedules produced by the front office
are out of date the moment they hit the [shop] floor” (Parunak 1987, p. 303). This gap
between the “reality of planning” and the “reality of the shop floor” (Scherer 1998) will
increase even further as production is faced with accelerating business trends towards
more product complexity and volatile markets (Chokshi 2002, McFarlane 2003).

To overcome the limitations of the current approach to production control, the planning

17

process must be pushed down the hierarchy and interleaved with execution (Hatvany
1985, Scherer 1998b). Each unit must have the freedom to choose the right actions
depending on the current situation. To achieve this freedom, the production program
must be decomposed and distributed as subgoals to the subordinate units. Each unit
then pursues its assigned goals and, in doing so, co-operates with other units to ensure
that the fulfilment of the subgoals leads to the fulfilment of the production program.
The production units thus retain their freedom in order to react to unforeseen events,
while the production program emerges from the interaction of the previously created
subgoals (see figure 2.7).

production program

plant control

goal negotiation

co-ordination
system control | < P system control
J E local decision making f a
controller |<4—¥ controller |4 controller controller

+ material flow * + $

resource » resource » resource]-} resource

Figure 2.7: Goal-driven production control.

Such a goal-driven and co-operative approach to production control not only supports
robustness, but also increases flexibility and reconfigurability of the production process
(Duffie 1988) — two requirements which are becoming even more important than
robustness in a global economy with decreasing product life-cycles. A distribution of
goals implies the distribution of the corresponding decision making, and thus empowers
the controllers not only to react to disturbances on the shop floor, but also to adapt to
changes of customer orders. It becomes transparent to the controller where changes
come from and it can apply the same techniques for coping with disturbances to handle
changes. Furthermore, the distribution of control functionality to local controllers
increases their ability to act irrespective of the context a controller is placed in. Changes
in the configuration of the production system are treated just like all other internal or
external changes to which a controller constantly adapts its goal achievement. The
combination of robustness, flexibility, and reconfigurability — enabled by the goal-
driven approach — thus leads to a truly agile performance in an increasingly dynamic
production environment.

18

2.1.4 New requirements on production control

A goal-driven approach, however, places new requirements on the design of production
control systems (Brennan 2003, McFarlane 2003). First of all, the control should be
distributed to physical components of the production system instead of being divided
into central control functions (Duffie 1988). A local controller will require all the
decision capabilities necessary to choose the optimal actions under varying production
conditions given its local goal. Scheduling, for instance, will no longer exist as a single
central control function, but will be distributed over the factory floor with every
controller being able to do its own (local) scheduling.

Secondly, a local controller must be equipped with reactive and goal-directed decision
making capabilities (Valckenaers 1999). While the reactiveness ensures that the
controller is able to adapt to any change or disturbance, the goal-directedness
guarantees that the controller eventually reaches its goal despite the dynamics of its
environment. In particular, the controller must be goal-directed in that it is able to
decompose its goals into the necessary actions and to initiate these actions at its own or
other resources.

Thirdly, the local controllers must co-operate in a flexible manner (Hatvany 1985,
Duffie 1988). If a disturbance cannot be constrained within the responsibility of a single
controller, this unit has to co-ordinate its actions with neighbouring units to reduce the
impact of the disturbance or to re-negotiate its goals with superior units if the goals can
no longer be met. Co-operation thus makes it possible to treat a failure to achieve a goal
immediately at the appropriate level of the hierarchy, and therefore keeps the deviation
from the overall goals to a minimum. The co-operation process, however, cannot be
fixed at design time because changes may require a controller to adapt its interactions
just as it adapts its actions.

Finally, a controller should follow the strategy of low and late commitment
(Valckenaers 1994). An early or over-constraining commitment to an action may turn
out to be sub-optimal or even counter-productive if the situation changes in the
meantime. A decision that is made at the latest moment possible with the least
commitment minimises the probability that events change the situation. A low and late
commitment thus increases robustness, but also supports flexibility as controllers gain
the maximum freedom to adapt to the changing production conditions.

A production control system that fulfils these requirements will operate quite
differently in comparison to the hierarchical control systems (Dilts 1991). This is
particularly true for the operation of the local controllers. While in the hierarchical and
schedule-driven approach a controller only executes the given schedule (determined by
a central scheduler), the new controller must autonomously choose an appropriate
action in its current situation, and, at the same time, be able to co-operate with the

19

neighbouring controllers in order to optimise the overall system performance (Duffie
1988). In short, the new controller must be an autonomous and co-operative decision

maker.

2.1.5 Summary

Current production control systems are hierarchically organised and separate scheduling
from execution. Because of this separation, there exists a constant gap between
schedule and shop floor reality that leads to a significant decrease of the performance.
To overcome this gap, future control systems require controllers that are capable of
goal-based decision-making and co-operation with other controllers. To guide these
controllers, the production program must be decomposed and distributed in terms of
goals instead of schedules. The production program is then achieved through the
flexible decision making and interaction of the local controllers. In the next section, it
will be shown that agent technology is ideally suited for modelling and implementing
such a goal-driven approach.

2.2 Software agent technology

Software agent technology has been a very active field of research for more than two
decades now (see (Wooldridge 2002) for a brief history of the field). It started in the
early 1980's as a sub-field of artificial intelligence, namely as distributed artificial
intelligence, focusing its research on aspects of multi-agent planning and distributed
problem solving (Bond 1988). Since then, it has constantly attracted more researchers
who have expanded the field to cover now the whole range from rational over
emotional to social agenthood (AAMAS 2002). Today, even though the research field
of agent technology is still very heterogeneous and lacks a unifying umbrella, it has
established itself as a major stream of computer science and artificial intelligence in
particular.

One stream of agent research, often referred to as multi-agent systems, is of particular
relevance to the domain of production control. Multi-agent systems research
investigates how to model and implement individual and social behaviour in distributed
systems. It explores on the one hand notions like autonomy, reactivity, and goal-
directed reasoning in order to model and implement (rational) individual behaviour (see
for example (O’Hare 1996, Huhns 1998, Miiller 1996)). On the other hand, it examines
aspects of co-operation, co-ordination, negotiation, coalition formation, role
assignment, and self-organisation in order to create social behaviour (see for example
(O’Hare 1996, Weiss 1999)). To date, multi-agent systems research has already
developed theories for social and individual behaviour, agent architectures,

20

communication and co-operation techniques, as well as new programming languages
(Wooldridge 1995, Meyer 2002).

Despite the significant amount of research undertaken in multi-agent systems, however,
there is still no universally accepted definition of an agent or a multi-agent system.
Some researchers define an agent in terms of mental states such as beliefs, capabilities,
choices, and commitments (Shoham 1993); others stress the ability of an agent to act
autonomously in a dynamic environment (Weiss 1999); while still others include in
their spectrum of agenthood properties such as adaptability, personality, or mobility
(see also (Bradshaw 1997, Franklin 1997, Nwana 1997, Huhns 1998, d’Inverno 2001)
for a selection of agent definitions and viewpoints). In the context of this work, the
definition of an (intelligent) agent by Wooldridge and Jennings (Wooldridge 1995) is
adopted because their definition equally stresses the ability of an agent to autonomously
make decisions in a dynamic environment as well as the ability to flexibly interact with
other decision makers. Other aspects, like adaptability or mobility, are not relevant to
all control applications and should therefore not be included in a general definition of

an agent.

Definition: An agent is a software process with the following properties
{(Wooldridge 1995):

e ‘“autonomy: agents operate without the direct intervention of humans
or others, and have control over their actions and internal state [...];

e social ability: agents interact with other agents (possibly humans) via
some kind of agent-communication language [...];

e reactivity: agents perceive their environment [...], and respond in a
timely fashion to changes that occur in it;

e pro-activeness: agents do not simply act in response to their
environment, they are able to exhibit goal-directed behaviour by
taking the initiative.”

A multi-agent system is then simply defined as a collection of agents that somehow
interact.

Definition: A multi-agent system is a collection of interacting agents.

The remainder of this section will review techniques to model and implement multi-
agent systems. Since multi-agent systems research has produced (and is still producing)
a large variety of techniques, it is not possible within the limits of this work to review
all results. This review will therefore focus on those aspects of multi-agent systems
which are relevant to production control. In particular, subsection 2.2.1 will review

21

existing agent models for building production control agents, whereas subsection 2.2.2
will focus on techniques suitable for the interaction between such agents.

2.2.1 Agent models

According to the above definition, the first fundamental property of an agent is its
ability to act autonomously. That is, an agent is situated in an environment, in which it
can sense and act (see figure 2.8), and has complete control over its own actions in that
environment (Wooldridge 1999, p. 29).

rb agent
sensing acting
L' environment

Figure 2.8: Basic model of an agent.

The property of autonomous action, though, furthermore implies that the agent is able
to choose its actions on its own — without the direct intervention from outside. The
question — around which much of agent research is centred — is thus how can and
should an agent choose its actions. As Wooldridge notes: “The key problem facing an
agent is that of deciding which of its actions it should perform in order to best satisfy its
design objectives.” (Wooldridge 1999, p. 30). To solve this decision problem, several
agent models and architectures have been proposed. Here, three main types of agent
architectures are briefly reviewed:

e reactive agents
e deliberative agents

e hybrid agents

2.2.1.1 Reactive agents

In reactive agent architectures, the sensory input is directly linked to the action
capabilities of an agent. That is, the designer of a reactive agent specifies, for each
possible sensory input, which action the agent should (immediately) perform upon this
input. During execution, the agent thus only needs to repeatedly take its sensory input
and match this against the conditions for each action. A problem, though, arises if more
than one condition matches the same sensory input, and the actions associated with
these conditions are in conflict. To overcome this problem, Brooks proposed the

22

subsumption architecture (Brooks 1986). Put simply, each condition, also called
behaviour in this architecture, is associated with a list of lower-prioritised behaviours
which it inhibits (see figure 2.9). A behaviour thus only executes its action if no other
behaviour inhibits this behaviour (for more details see (Brooks 1986)).

E— behaviour 4 actions
inhibit
—» behaviour 3 B actions -
—p behaviour 2 P actions
l inhibit
SiZ;Z:y — P behaviour 1 ——L~—> actions

Figure 2.9: Subsumption architecture.

Reactive agent architectures clearly implement autonomous agents. The agents choose
on their own — even if this choice is hardwired — how to react to a specific situation in
the environment. Obviously, these agent architectures ensure the reactiveness of an
agent. The main disadvantage of these architectures, however, is that it is difficult to
implement pro-activeness and goal-directed behaviour in such an architecture
(Wooldridge, p. 53). Reactive architectures only look at the current situation and have
no means to initiate behaviour or take into account longer terfn goals. In the extreme,
purely reactive agents do not act unless something in the environment changes.

2.2.1.2 Deliberative agents

Deliberative agent architectures explicitly represent goals and form plans about how the
agent wants to behave in the future in order to achieve its goals. Probably the most
prominent deliberative agent architecture is the belief-desire-intention (BDI)
architecture of Rao and Georgeff (d’Inverno 1998, Rao 1992). In this architecture, the
agent takes its beliefs, i.e., the sensory input accumulated over time, and its desires, i.e.,
its goals, and forms intentions about what it is going to do in the future (see figure
2.10). Intentions are courses of actions to which an agent commits itself, i.e., the agent
will execute these actions unless certain specified situations arise in which the agent has
to abandon its intention. The current set of intentions formed then determines which

actions the agent should perform.

In contrast to reactive architectures, BDI agents are able to follow their goals pro-
actively and, at the same time, to react to their environment. In case the beliefs (derived
from the sensory input) no longer support an intention, the intention is either changed
or abandoned and thus the behaviour of the agent is adapted. The BDI agent

architecture is thus able to implement autonomous, reactive, and pro-active agents. A
disadvantage of BDI agents, however, is that they can only react after the new sensory
information has run through the different steps necessary to form an intention (i.e., it is
necessary to form a belief about the change and to adapt the intentions before the
corresponding actions can be executed). For complex agents, this may take a long time,
in highly dynamic environments possibly too long. To avoid this problem, hybrid
architectures were proposed.

beliefs lif)i’aar;y
f
sensory ——~————v>[reasoner |—————P

desires intentions

action
output

Figure 2.10: BDI architecture.

22.13 Hybrid agents

Hybrid agent architectures incorporate both reactive and deliberative mechanisms into
one architecture (typically by introducing a layer for each mechanism). The InteRRaP
architecture (Miiller 1996), for instance, consists of three layers (each equipped with a
database): a behavioural layer for reactive situation-action rules, a plan layer for goal-
directed pro-active planning, and a co-operation layer for modelling and handling
interactions with other agents (see figure 2.11). In this architecture, the sensory input is
first provided to the behavioural layer. If one of the situation-action rules is applicable
to the input, the rule ‘fires’ its actions. If no rule matches the input, the sensory input is
handed to the next higher layer. Here again, the layer decides whether it can handle the
input (e.g., through planning) or hands it further to the next layer. When a higher layer
chooses a certain course of action, this information is handed down the hierarchy to the
lower levels for execution. That is, whatever any of the layers decide, the behavioural

layer must execute the corresponding actions.

Hybrid architectures fulfil all requirements imposed on an agent. A hybrid agent is
autonomous, reactive, pro-active, and — in many cases because of a co-operation layer —
also capable of social behaviour. The only disadvantage of hybrid architectures is that it
is difficult for the designer of such an agent to co-ordinate the different layers in order
to produce a coherent agent behaviour. In particular, there is still no clear semantics or

24

methodology for programming such a kind of architecture, as it exists for example for
BDI architectures (Wooldridge 1999).

co-operation layer 4—»@
A |
| v

plan layer 4—»@

t v

behaviour layer 0@

sensory z'nput? # actions

world interface

Figure 2.11: InteRRaP architecture.

2.2.2 Agent interaction

As defined above, the second fundamental pfoperty of an agent is its ability to interact
with other agents. The environment an agent is situated in is usually not purely passive.
There are often other agents which also act autonomously and pro-actively. To meet its
goals, an agent may either have to avoid negative or be able to exploit positive
interactions with other agents. In particular, certain goals may not be achievable with
the limited capabilities of a single agent, but only if a whole set of agents works co-
operatively towards these goals. Interaction may thus be indispensable to the goal
achievement of an agent.

In general, interaction is any kind of information exchange that somehow influences
the actions of another agent (Bond 1988). Interactions can thus take many different
forms. This subsection, though, will only briefly review those main types of interaction
techniques, namely co-ordination and negotiation, that are most commonly used in
agent-based production control. Other forms and in particular a more thorough
treatment of interactions can be found in (O’Hare 1996, Weiss 1999, Wooldridge
2002).

2.2.2.1 Co-ordination

Co-ordination is the process by which agents ensure that their community acts in a
well-defined manner (Jennings 1996, Bond 1988). While co-ordination itself is nearly
invisible, the lack of co-ordination becomes immediately apparent. In a well-run
conference everything happens as expected, while in a badly organised conference the

25

participants immediately recognise if something goes wrong; if, for example, the
conference rooms are not clearly marked, the presentation is not set up in time, or the
coffee is not served at the beginning of the breaks. The problem of co-ordination
becomes particularly difficult in a multi-agent system where there is no central control
and every agent can autonomously choose its actions. In such a system, co-ordination is
not an inherent system property, but can only be achieved through an explicit effort of
the agents. Jennings (Jennings 1996) gives three main reasons why co-ordination may
be difficult to achieve:

1. The actions of the agents may interfere.
Two robots reaching for the same workpiece, for instance, will collide.
2. There may be global constraints to be met.

The processing of a workpiece at different machines may have to be scheduled
such that the workpiece is finished by a certain deadline.

3. No individual agent has sufficient capabilities or resources to achieve its or the
system’s goals.

A single machine is usually not sufficient to perform all the operations required
by a workpiece. In contrast, to process a workpiece, several machines, handling
systems, and possibly other resources must co-ordinate their actions.

All of the above cases have in common that there is some kind of dependency between
the agents. The agents are dependent on each other for performing (or avoiding) certain
actions in order to arrive at the desired overall system behaviour. Malone and Crowston
therefore define co-ordination to be simply “managing dependencies between
activities” (Malone 1994, p. 90). Or, as they say, “if there is no interdependence, there
is nothing to coordinate” (Malone 1994, p. 90). To achieve system co-ordination, it is
therefore necessary to first understand the possible dependencies that may exist and
then to derive interaction techniques that are able to handle these dependencies.

Several researchers have modelled and classified dependencies between agents.
Castelfranchi et al. (Castelfranchi 1992) as well as Sichman et al. (Sichman 1994) have
modelled the goals and plans of agents and have investigated how these can be
dependent on other agents’ goals and plans in order to analyse how co-operation can
evolve from these dependencies (see also (Jennings 1996, d’Inverno 2001, Sichman
2002, Yu 2002)). In particular, they have distinguished:

o unilateral dependence: One agent is dependent on another, but not vice versa.

e mutual dependence: Two agents are dependent on each other for the same
goal or plan.

e reciprocal dependence: Two agents are dependent on each other, but for
different goals or plans.

Malone, Crowston et al. (Malone 1994, Crowston 1994, Malone 1999) have intensively
studied co-ordination and the underlying dependencies in organisational processes. To
study these processes, they have adopted a task/resource model and have identified the
types of dependencies that can arise in such a process model. Malone et al. (Malone
1999), for instance, distinguish between fit, flow, and sharing dependencies (see figure
2.12).

fit flow sharing
] G
(i A
— O O & v

Figure 2.12: Task/resource dependencies.

In a fit dependency, multiple activities collectively produce a single resource and have
to make sure that whatever is created fits together. A flow dependency arises whenever
one activity produces a resource that is to be used by another activity. This resource
must then be provided at the right time (‘prerequisite’ dependency), at the right place
(‘accessibility’ dependency), and in the right form (‘usability’ dependency). Finally,
there may be a sharing dependency between activities, i.e., two (or more) activities use
the same resource. In this case, Crowston (Crowston 1994) further distinguishes
whether the resource is shareable or non-shareable by more than one activity, and
whether it is re-usable or non-reusable; in the latter case, the resource is totally or
partly consumed after its usage.

Von Martial (von Martial 1992) and Decker and Lesser (Decker 1992b) have studied
dependencies that may arise between multi-agent goals or plans. Von Martial has
proposed a set of plan relations that capture positive or negative dependencies between
several agents. Obviously, agents executing their individual plans may run into conflicts
concerning the usage of resources or the achievement of (incompatible) states in their
common environment. But agents may also encounter positive plan relations. Their
planned actions may be identical or may subsume each other so that the agents save
time and effort if they co-ordinate their plans. Von Martial also identified the favour
relationship in which a plan of one agent does not make the plan of another agent
obsolete, but significantly reduces the effort the other agent has to put into its plans.

Similarly, Decker and Lesser studied possible relationships in augmented goal
structures — an abstract representation of task and goal activities — and derived a whole
range of possible relationships in (Decker 1992, Decker 1992b) (for a formal model of
plan relationships see also (Ossowski 1999)):

27

e basic domain relationships: enables, facilitates, hinders, precedes, causes,
share-results, cancels, and favours;

e goal relationships: overlaps, necessary, sufficient, extends,
subsumes, and competes;

e temporal relationships: before, equal, meets, overlaps, during, starts,
finishes, and their inverses; and

e resource constraints: use.

To handle these goal and plan relationships, Decker and Lesser (Decker 1995, Decker
1992) generalised the partial global planning (PGP) approach of Durfee (1996). In
PGP, distributed planners co-ordinate their actions by abstracting from their plans and
exchanging these abstractions. Given the different local plan abstractions, each agent is
then able to identify common goals to which the local goals of the agents contribute.
Since these common goals may be only partially known to the agents, they are called
partial global goals. Once a partial global goal has been identified, the local plans can
be integrated into partial global plans. In its original design, though, PGP provides only
two mechanisms to perform this integration: redundant tasks are avoided, and tasks are
performed earlier if this facilitates the work of other agents. Decker and Lesser
therefore extended PGP into generalised partial global planning (GPGP). GPGP
generalises PGP first of all because it uses the domain-independent goal relationships
described above. But GPGP also provides a set of domain-independent co-ordination

mechanisms:

1. Updating non-local viewpoints
The agents exchange local information in order to detect new co-ordination
relationships.

2. Communicating results
The agents communicate all the results of their activities (‘all’ policy) or only
those which are necessary to satisfy any commitments to other agents (‘minimal’
policy).

3. Handling simple redundancy
Once redundant actions planned by more than one agent are detected, the agents
randomly choose one agent to execute the action and communicate the results.

4. Handling hard co-ordination relationships
The agents schedule activities such that any hard temporal ordering constraints
are obeyed.

5. Handling soft co-ordination relationships
As for the previous co-ordination mechanism, the agents try to schedule

28

activities such that ordering constraints, like for example facilitates, are obeyed
if the corresponding schedule is acceptable to the agent.

Despite the domain-independent approach, GPGP is not — and was not intended to be —
a complete set of co-ordination mechanisms. In contrast, the co-ordination relationships
as well as the co-ordination mechanisms can be extended to accommodate new
applications, as was done in (Decker 2000) by introducing the mutual exclusion
relationship and a co-ordination mechanism for mutual exclusion based on bidding.

Other co-ordination techniques that have been developed include, for example,
distributed problem solving (Durfee 1999), search algorithms (Yokoo 1999), and social
laws (Shoham 1995, Fitoussi 2000). Distributed problem solving is concerned with
distributing a system task or sharing distributedly computed results in order to make use
of the capabilities of several problem solvers. Search algorithms explore a search space
in a distributed manner. Distributed constraint satisfaction algorithms, for instance, are
able to solve a constraint net if variables (or constraints) of the net are distributed to
different agents. Social laws, finally, attempt to avoid the interactions of agents in the
first place. They define behavioural conventions which make any explicit co-ordination
obsolete. Robots, for example, which always move on the right side of a (sufficiently
large) passage, never collide — even without communication. If such conventions exist
and the agents can be expected to obey them, social laws significantly reduce the co-
ordination requirements. Dynamically identifying suitable social laws and agreeing
upon them, though, can be a co-ordination problem in itself.

2.2.2.2 Negotiation

As for co-ordination, negotiation is a common form of interaction between human
beings and has therefore been extensively studied in sociology (see for example (Pruitt
1981)). In sociology, any (human) interaction is regarded as a negotiation in which the
participants of the interaction, usually called parties, have a conflict of interests, but
must come to a joint decision. Pruitt (1981), for instance, defines negotiation as

follows:

Negotiation is a process by which a joint decision is made by two or more
parties. The parties first verbalize contradictory demands and then move
towards agreement by a process of concession or search for new

alternatives.

Contflicts are a natural part of our (human) life, since everyone has their own special
interests. But with autonomous agents, conflicts also become a natural phenomenon in
software systems. If each software agent has its own interests and goals, conflicts
between software agents are inevitable. One of the objectives of multi-agent systems
research is therefore to enable software agents to perform negotiations in order to

29

resolve any conflicts (Wooldridge 2002, p. 129). To achieve this objective, many of the
negotiation forms existing in human societies have been adopted or extended for
software agents. The most prominent examples of these negotiation techniques will be
reviewed in the following. This will include auctions, general equilibrium market
mechanisms, service negotiation, and conflict resolution techniques.

Auctions are trade mechanisms for exchanging commodities (Friedman 1991). The
commodities can be any kind of goods, but usually some good is exchanged for money,
as for example in a stock exchange. There are one-sided and two-sided auctions, as well
as continuous auctions. In a one-sided auction, there is one auctioneer that either only
accepts bids — if he wants to sell a good — or only accepts asks — if he wants to buy a
good. The result is always a single trade (for the good that was auctioned off). Intwo-
sided auctions, the auctioneer allows the agents to place bids and asks and then matches
these in order to create several trades. Finally, an auction is called continuous if it
allows bids and asks to arrive over time (and matches both over time). For each of the
above auction categories there already exists a large set of possible auction protocols,
and probably many more will be developed in the future (see (Sandholm 1999,
Friedman 1991)). In the following, only three typical examples of common auction
protocols are briefly characterised, namely the English auction, the continuous double
auction, and the contract-net protocol.

The standard example for a one-sided auction is the English auction. In the English
auction, an auctioneer wants to sell a (specific) good for the highest price possible and
requests a set of potential buyers to make bids. The (potential) buyers respond with bids
and increase their bids until no bidder offers a higher price. The auctioneer then sells
the good to the bidder with the highest bid for the price of the highest bid.

In the continuous double auction (CDA) participants may pose bids or asks. The bids
and asks are continuously matched by a neutral auctioneer according to a set of market
rules. The rules basically state that bids and asks are matched if the price of the bid is
higher than the price of the ask. The actual auction rules, though, depend on the specific
CDA installation (see (Friedman 1991) for a discussion).

The contract-net protocol (CNP) is a simple, but efficient protocol for assigning tasks
to individual nodes in a network (Smith 1980). It assumes that one node has a task that
needs to be executed (by another node) and that there are (potentially) several nodes
that are able to execute this task. The node with the task is called the manager and the
other nodes are (potential) contractors (see figure 2.13). The manager initiates the
protocol and proceeds as follows. First, it announces the task to the potential
contractors. The contractors answer with a bid. The necessary information provided in
the bid was specified by the manager in the announcement message. The manager
compares the bids and chooses the best bid according to its preferences. The node
which has sent the best bid then receives an award message and is said to have a

contract with the manager about the execution of the task. The other nodes may or may
not receive a reject message.

~ Even though the CNP was originally designed for task distribution, it is actually a one-
sided first-price sealed-bid auction. First of all, it is irrelevant to the protocol whether
the agents exchange a task or some other kind of good. Secondly, the CNP simply stops
after the auctioneer received the first bid from each bidder (‘first-price’), instead of
repeating the auction until no bidder changes its bid. And thirdly, the bid is ‘sealed’,
i.e., not made known to the other bidders. In the English auction, it is a fundamental
prerequisite that the bids are made ‘open-cry’, i.e., are broadcast to all agents because
otherwise the other bidders do not know whether they need to raise their bid in order to
win the auction. The contract-net protocol can thus be viewed as an auction mechanism,
even if there may not necessarily be a conflict between the manager and the potential

contractors.

contractor C,

contractor C,
manager

contractor C,,

3. award

Figure 2.13: The contract-net protocol (and its phases).

All of the above auctions have in common that they are able to match buyers and
sellers, but, in doing so, hardly take into account any global constraints or optimisation
criteria. General equilibrium market (GEM) mechanisms (Sandholm 1999), on the
contrary, are able to optimise the allocation of goods and resources among agents
through the identification of a market clearing price. That is, the market price for each
good is varied until an optimal allocation of goods is found. More precisely, a GEM
consists of producers and consumers which create or consume goods. The actual
production or consumption of each agent, however, depends on the market price for
each good. The higher the price, the less the consumers will consume and the more the
producers will wish to produce. And, vice versa, the lower the price, the more the
consumers will consume and the less the producers will wish to produce. The market is

thus in equilibrium if:

(i) the amount of goods consumed is equal to the amount of goods produced;

(i) the consumers are able to consume the maximum amount of goods they demand
given the prices; and

(ii1) the producers maximise their profit (which is price multiplied by the amount
produced).

The task of a market clearing algorithm is to find such a clearing price. A common
algorithm for clearing markets is the distributed price titonnement algorithm
(Sandholm 1999). In this algorithm, each producer and consumer determines, given the
current prices, how much it will produce or consume in order to maximise its profit or
utility function. A central price controller then adjusts the prices according to the
difference between the production and consumption plans. This process is repeated
until production and consumption plans reach an equilibrium. Only then may
production and consumption start. The GEM markets are thus a static approach: the
solution must be completely known before execution can start.

Another drawback of auctions, and also of the GEM mechanisms, is that they can only
negotiate prices (or the combination of prices and amount), whereas the actual good to
be exchanged is fixed. In many settings, though, it is also necessary to alter other
aspects of the negotiation subject in order to find an agreement. For instance, several
agents planning a joint holiday will have to consider different ways of making holidays
(staying at a beach hotel, hiking through the mountains, visiting an exciting city, and so
on) in order to devise a trip that satisfies the interests of all agents. For these settings, it
is therefore necessary to employ more sophisticated negotiation techniques. Two
examples of such negotiation techniques are briefly reviewed.

Faratin (Faratin 1998) developed a sophisticated interaction model for bilateral
negotiation of services. In this model, the two negotiation agents basically exchangé
new proposals until either both agents accept the last proposal or one of the agents
withdraws from the negotiation. This interaction process is complemented by a set of
negotiation tactics and strategies for generating new proposals. Faratin defined tactics
for reacting to time or resource constraints, for imitating an opponent’s behaviour, for
trading off different aspects, or for manipulating the set of negotiation issues (Faratin
2000). These tactics are combined into strategies by assessing the influence of a tactic
on the generation of the next proposal. With these negotiation techniques, an agent is
able to exhibit a more flexible negotiation behaviour than to merely change prices. In
particular, the agent can trade off different aspects of the negotiation subject.

Hollmann et al. (Hollmann 2000) proposed an interaction technique for resolving
conflicts between agents that are supposed to find a common proposal (on some
matter). The task of the agents is thus to search for a proposal which satisfies all the
agents. An agent is ‘satisfied” with a proposal if the evaluation result of the proposal
passes a given threshold. To find such a proposal, each ‘unsatisfied” agent is requested

to put forward a new proposal that only minimally changes an already existing proposal
such that the evaluation function of the agent is satisfied. These new proposals are
generated until either a proposal is found satisfying all the agents or it can be asserted
that there is no solution. The advantage of this interaction technique is that it is able to
negotiate complex matters between several agents. However, the disadvantage is that it
is not able to reconcile opposing interests. The agents make new proposals, but there is
no explicit process of concession (of course, the agents could always concede by
themselves). This negotiation technique can thus only be applied if there is a solution to
which all agents would agree.

There are certainly many more negotiation techniques that could be reviewed here. This
review, though, was only intended to give an impression of the different techniques that
exist and are potentially relevant to production control. For more complete overviews
of negotiation techniques see (Sandholm 1999, Jennings 2001b, Wooldridge 2002).

2.3 Agent-based control systems

The review of agent technology has shown that software agents are an appropriate
technology to meet most of the new requirements for modern production control
systems (see subsection 2.1.4). First of all, multi-agent systems distribute the decision
capabilities of the control system to the individual agents of a production system,
usually to the local controllers. Secondly, an agent is by definition a reactive and pro-
active decision maker (see subsection 2.2.1). And thirdly, also by definition, agents are
able to co-operate in a flexible manner, either to improve their own or the system’s
performance (see subsection 2.2.2.1). Only the requirement of low and late
commitment does not immediately follow from the definition and concepts of agent
technology, although agents can be designed to pursue such a strategy. Thus, agent
technology provides many of the (software) techniques that are necessary to design and
implement modern production control systems. This potential was recognised as early
as 1985 when the first control systems based on agent-oriented concepts were proposed
(Parunak 1985, Shaw 1985). Since then, much work has been invested into developing
agent-based control systems. This work as well as its context will be reviewed in this

section.

This section is organised as follows. It will review the basic concepts of agent-based
production control (see subsection 2.3.1); look at the relation of these concepts to other
trends in production research (see subsection 2.3.2); present industrial applications of
agent-based control systems (see subsection 2.3.3); and finally discuss the design of
such systems (see subsection 2.3.4).

(93]
(9%}

2.3.1 Basic concepts

One of the very first applications of agent-oriented concepts to manufacturing control
was the prototype factory control system YAMS of Parunak et al. (Parunak 1985,
Parunak 1986, Parunak 1987). In YAMS, the manufacturing enterprise is modelled as a
hierarchy of production units, of which the smallest units are called workcells. An
engine plant, for example, may consist of a block, an oil pump, a head and an assembly
flexible manufacturing system (FMS). Each FMS may, in turn, consist of a set of
workeells which perform the actual operations like drilling or milling (see figure 2.14).
The hierarchy, however, records only composition, not control. Task distribution down
the hierarchy is done through a negotiation process that is based on the contract-net
protocol (see subsection 2.2.2.2). A node announces a task, units capable of performing
the task reply with a bid, and the node in turn assigns the task to the unit with the best
bid. Because of this negotiation process between superior and subordinate units, the
assignment process is able to take into account any changes or disturbances that may
occur during the planning process. A superior unit may even repeat the negotiation if
the unit that was assigned to the task fails to execute it.

3. assign

2. bid

P engine plant <4 55

1
i
1. announce !

block FMS oil pump FMS head FMS =B assembly FMS I—-}

------ composition
——® interaction
=P material fow

Figure 2.14: An example factory hierarchy in YAMS (Parunak 1985).

Once a manufacturing task has been assigned to a production unit, this unit must
request the corresponding material from the material handling system. The material
handling system in YAMS consists of a mover agent for each workcell and for each
part of the transportation system. These movers keep track of each pallet in their
physical vicinity and forward a pallet if it is requested by a neighbouring unit or request
it themselves from their neighbours if the pallet is not available yet. A pallet, however,
is only forwarded if the number of pallets, i.e., the work-in-process, at the target mover
does not exceed a certain physical limit. If the limit is exceeded, the pallet is delayed
until the work-in-process of the target cell decreases again. Through this mechanism,

34

the control system ensures that the material flow is automatically adjusted to the current
capacity and workload of each workcell. In case of disturbances, for instance, the
material flow is slowed down exactly to the reduced capacity of the disturbed workcell.
Both control mechanisms, the top-down negotiation and the work-in-process limitation,
thus enable the manufacturing system to adapt its assignment and execution process 1o
any changes and disturbances in the manufacturing system (cf. subsection 2.1.3).

In parallel to Parunak’s work, Shaw and Whinston (Shaw 1985, Shaw 1987) also
developed a distributed scheduling method based on the contract-net protocol. As in
YAMS, manufacturing tasks are contracted out to workcells through a bidding process
in which the workcells bid for the tasks. The work in (Shaw 1987), though, focussed on
evaluating different decision rules for choosing the winner of the bidding process, in
particular comparing these to centralised scheduling using the same decision rules. The
comparison included a centralised scheduler preferring the shortest processing time
when assigning a manufacturing task, and two bidding schemes, one choosing the bid
with the shortest processing time and one the bid with the earliest finish time. In a set of
simulations with randomly created manufacturing tasks, the decentralised bidding
scheme outperformed the centralised scheduler in each case. This is because the
bidding algorithm is based on more accurate information. Instead of duplicating the
shop-floor information in a centralised scheduler, the bidding scheme lets the
workcells, which have the most up-to-date information, bid themselves for the tasks.
This leads to more realistic schedules and thus to a better performance.

Since this early work on agent-based control systems, the contract-net-based approach
to scheduling has been very popular (see (Tilley 1992, Maturana 1996, Saad 1997,
Maley 1998, Sousa 1998)) and was further evaluated and extended by several
researchers. Tilley and Williams (Tilley 1992, Tilley 1996), for instance, studied the
communication performance of a distributed bidding scheme, while Saad et al. (Saad
1997) evaluated the performance of four additional decision rules for choosing the
winner of the bidding process. Approaches similar to the contract-net were also
proposed in (Bussmann 1996) and (Hahndel 1996). In (Bussmann 1996) a co-ordination
algorithm for scheduling transportation tasks was presented. As in YAMS, tasks are
announced to the transport units. In contrast to YAMS, however, these units perform
only a local analysis of the task and return the result of the analysis to a co-ordinator.
The co-ordinator then synthesises the results into a global schedule. Hahndel et al.
(Hahndel 1996) developed a completely decentralised approach to scheduling assembly
tasks consisting of several steps. As in previous work, each step of a manufacturing
task is assigned to a workcell through a contract-net-based negotiation. Once the first
step is assigned, though, the responsibility for assigning the next step goes to the
workcell that is assigned to the last step. This workcell is then not only supposed to
execute the assigned step, it is also responsible for finding the next workcell. In case of
assembly steps, there are several workcells for the same tasks which are looking for the

next workcell. To ensure that these workcells choose the same assembly cell, the
workcells select a synchronisation agent. This synchronisation agent, in essence,
chooses the assembly cell for the next step.

The contract-net-based scheduling approach also inspired new approaches, such as the
market-driven control scheme (see for example (Baker 1996, Markus 1996)). In
(Markus 1996, Vancza 1998), for instance, tasks are assigned to machine agents
through a bidding scheme based on prices. That is, a superior unit, called ‘management’
in (Markus 1996), still announces the manufacturing tasks, but the machine agents now
bid for tasks by returning only the costs for executing the tasks. The management then
tries to maximise the ‘profit’ of the manufacturing system by choosing the bid offering
the lowest costs. The advantage of this approach is that the performance of all
production units, as well as of the production system itself, can be (constantly)
evaluated on the basis of one single measure, namely profit. Components which
underperform because their earnings, for instance, are significantly less than their actual
costs can be removed from the system. From the work presented to date, however, it is
not clear whether a production system making greater ‘profit’ really performs better in
terms of the company’s goals. The ‘manufacturing profit’ proposed in (Markus 1996) is
a only virtual concept and does not directly correspond to the company’s real profit.
Furthermore, it is also not clear whether this approach outperforms the classical
contract-net-based approach. The market-driven approach certainly requires more

evaluation.

An exception to the predominant contract-net and market based approaches is the team-
based approach of Fischer (Fischer 1994). In this approach, the central shop floor
control announces the manufacturing jobs to the workcells by adding these to a global
task list. The workeells examine the list and ask other resources to join a team for a
particular job. Once the team is complete, i.e., the team can perform the job
autonomously, the team leader requests the job. To avoid any resource conflicts
between parallel team formation attempts, Fischer proposed a protocol that is conflict-

free.

To summarise, research into agent-based production control systems has focussed much
on the decentralised assignment of manufacturing tasks to production units. In applying
negotiation techniques, like the contract-net protocol, this process becomes more
flexible with respect to changes and disturbances in the production system. The
following section will show that this research is part of a much larger effort to introduce
flexibility into production.

2.3.2 Trends in production research

The limitations of the pre-dominant approach to production control, discussed in

36

subsection 2.1.3, have also motivated the development of new control concepts in
production research. The starting point of these developments, though, was not the
application of a (software) technology to specific control tasks, but the design of new
control, or even new production paradigms. These new developments consequently take
a more holistic view on production control, encompassing all control tasks necessary to
run a production facility. The two developments which are (most) relevant to this work
are heterarchical control architectures and holonic manufacturing systems. Each
development will be reviewed in the following and a comparison of both with agent-
based control systems is given at the end of this subsection. Other approaches, which
are less relevant to this discussion, are for example random (Iwata 1994), fractal
(Warnecke 1993), or bionic (Okino 1993, Ueda 1993) manufacturing (for a comparison
of holonic, fractal, and bionic manufacturing see also (Tharumarajah 2003)).

2.3.2.1 Heterarchical control

Heterarchical control was motivated by the limitations of centralised and hierarchical
control architectures (Dilts 1991). Both centralised and hierarchical control
architectures result in quite complex control systems because they centralise distributed
information. The information thus becomes quickly out-of-date and the control logic is
difficult to implement due to the enormous number of cases that arise in a larger
production system. As a consequence, these systems are difficult to modify or extend
and exhibit a very low fault-tolerance. Heterarchical control, in contrast, eliminates any
centralised elements and increases the autonomy of each controller (Duffie 1987). That
is, all controllers are connected via a communication network and are solely responsible
for any control tasks within their vicinity (see figure 2.15).

sDy B8 9%

Figure 2.15: Centralised, hierarchical, and heterarchical
control architectures (Dilts 1991).

controller

machines

Autonomy, however, is not enough to make heterarchical control systems work. A
control system in which each controller only pursues its own goals without regard to the
goals of others will result in a chaotic, sub-optimal production process. To optimise a
production process, the controllers must co-operate with respect to the overall
production goals (cf. subsection 2.1.3). Hatvany therefore proposed ‘co-operative
heterarchies’ (Hatvany 1985), and Duffie stressed the concept of ‘co-operating
autonomous entities’ (Duffie 1988). This co-operation is usually achieved by the same

interaction techniques as in agent-based control systems. Duffie, for instance, uses a
protocol similar to the contract-net protocol (Duffie 1988).

2.3.2.2 Holonic manufacturing systems

Holonic manufacturing, in turn, takes a much larger perspective than heterarchical
control by looking at the whole manufacturing process- instead of only the control.
Originally, holonic manufacturing systems (HMS) were proposed in the early 1990’s as
a new manufacturing paradigm to address the upcoming challenges of the 21% century
(Suda 1989, 1990). These challenges are mainly globalisation and industrial over-
capacity which result in a shift from a vendor’s to a customer’s market and in particular
in shorter product life-cycle, reduced time-to-market, mass-customisation, volatile
demand, and constant cost pressure (McFarlane 2003, Brennan 2003). As a
consequence, production operations are faced with increasing complexity and constant
change under decreasing investments (cf. subsection 2.1.4). In addressing these
challenges, holonic manufacturing was inspired by the work of the philosopher Arthur
Koestler who tried to explain the evolution of biological and social systems (Koestler
1989). On the one hand, these systems develop stable intermediate forms during
evolution that are self-reliant. On the other hand, it is difficult in living and
organisational systems to distinguish between ‘wholes’ and ‘parts’: almost everything is
both part and whole at once. These observations led Koestler to propose the word
“holon”, which is a combination of the Greek word ‘holos’ meaning whole and the

Greek suffix ‘on’ meaning particle or part (as in proton or neutron).

Following the holonic concept, a holonic manufacturing system thus consists of
autonomous and self-reliant manufacturing units, called holons, which operate in a
flexible hierarchy. In such a system, any unit can be a holon as long as the unit is able
to create and control the execution of its own plans and/or strategies (see the HMS
definition of autonomy (Christensen 1994, van Leeuwen 1997)). Machines, conveyors,
and automated guided vehicles as well as human workers are obviously holons, but also
orders can be holons as long as the orders are able to pro-actively pursue their own
processing. For this reason, Christensen (Christensen 1994) foresees three major
interfaces to an artificial holon: a physical processing interface, an inter-holon interface,
and a human interface (see figure 2.16). The physical processing interface is optional as
holons, such as an order holon, need not contain any physical components at all.

Holons co-operate with other holons during the production process in order to
accomplish the production goals. Co-operation, in the form of co-ordination and
negotiation, develops wherever and whenever necessary, usually along material and
information flow. A system of holons which can co-operate to achieve a goal or
objective is called a holarchy (van Leeuwen 1997). Holarchies are recursive in the
sense that a holon may itself be an entire holarchy that acts as an autonomous and co-

38

operative unit in the first holarchy. Holons within a holarchy may dynamically create
and change hierarchies. Moreover, holons may engage in multiple hierarchies at the
same time. In contrast to hierarchical control systems, though, HMS creates only loose
and flexible communication hierarchies which never force a holon to perform a certain
task (Valckenaers 1994).

information

intelligent
control

resources <

material /
information

7 resources

. material /
Ll . .
information

processing
system

holonj

Figure 2.16: Holon interfaces (Christensen 1994).

Since its conception in the early 1990°s, holonic manufacturing has received a lot of
attention in academia and industry (see for example (van Leeuwen 1997, Deen 2003,
Marik 2003)). In particular, holonic manufacturing was one of the six test cases in the
international Intelligent Manufacturing Systems (IMS) feasibility study that was set up
in 1992 (Hayashi 1993). The success of the holonic manufacturing test case, both with
respect to the feasibility of the holonic concept as well as to the international
collaboration, led to the endorsement of holonic manufacturing as an international IMS
project in 1994, with a 10 year research program (van Leeuwen 1997). Over 30
academic and industrial partners from the IMS regions Australia, Canada, Europe,
Japan, and the United States are now participating in this international pre-competitive
research collaboration (Holonic Manufacturing Systems Consortium 2002).

To date, a large amount of research into holonic manufacturing has been conducted
inside and outside of the HMS project. This research includes the development of
generic technologies for designing and implementing holonic manufacturing systems as
well as the application of these concepts to machining units, workpiece fixturing,
material handling, and resource management, i.e. planning and control of
manufacturing systems (van Leeuwen 1997). Concerning planning and control, HMS

research has addressed issues such as:
o distributed decomposition of orders into manufacturing tasks;

e distributed scheduling of manufacturing tasks between autonomous and co-

operative units, i.e., holons;

e autonomous execution of manufacturing tasks that interfaces with the
scheduling process; and

e machine control architectures consisting of co-operative devices.

For a complete overview of the research into planning and control aspects of HMS, see
also (McFarlane 2000).

2.3.2.3 Summary

As for agent-based control, autonomy and co-operation are the key concepts in both
heterarchical control and holonic manufacturing systems. Both paradigms, however,
use autonomy and co-operation to realise a certain organisation of the production
process: Heterarchical control proposes a flat hierarchy of local controllers, while
holonic manufacturing systems envision flexible hierarchies which emerge from the
production process. Agent-based control, in contrast, is a software technology that can
be used to implement any kind of autonomous and co-operative control behaviour, be
this hierarchically or heterarchically organised. In fact, it can be argued that the
information processing part of a holonic manufacturing system, and certainly that of a
heterarchical control system, is an agent-based system (Bussmann 1998). Agent-based
control is consequently an enabling (software) technology for both manufacturing
paradigms, in particular for holonic manufacturing systems (McFarlane 1995, Marik
2002).

2.3.3 Industrial applications

This section reviews two industrial applications of agent-oriented production control

systems.

2.3.3.1 Production 2000+

Probably the first full-scale industrial agent-based production system that has brought
agent-oriented concepts into operation is the cylinder head manufacturing system
Production 2000+ (P2000+) of DaimlerChrysler (Bussmann 2001b). This
manufacturing system consists of flexible CNC machines which are configured to
process a range of products. To achieve robustness, each operation of the
manufacturing system is provided by at least two machines. In case of a single machine
failure, there is thus at least one other machine able to process the workpieces. The
- above flexibility and robustness requires a flexible transportation system such that a
workpiece may be moved from any machine to any other machine. This flexible
transportation is provided by a system of forward conveyors, backward conveyors, and

40

shifting tables moving the workpieces in and out of the machines (see figure 2.17).

transportation system shifting table
F s A\] backward conveyor

s B ¢ [] forward conveyor

machines

Figure 2.17: Production layout P2000+.

To operate such a manufacturing system, the associated control system must decide
during the production process — among other aspects — how and when the workpieces
are assigned to the individual machines. To this end, DaimlerChrysler and Schneider
Electric have designed and implemented an agent-based control system consisting of
agents for each machine, each transportation switch, and each workpiece (see figure
2.18). These agents interact in order to achieve a robust and flexible material flow
through the manufacturing system: The workpiece agent manages the state of the
workpiece and searches for machines to process the workpiece. The machine agent
controls the workload of the machine and bids for suitable workpieces. The workpiece
agent in turn chooses the best machine for the next operation based on processing as
well as workload criteria. Finally, the transportation agent chooses a route to the next
machine taking into account the current load of the transportation system (more details
and some properties of the control behaviour are given in (Bussmann 2000)).

’ switch agent , ‘ switch agent | I switch agent | (switch agenﬂ) switch agent ’

‘ |
o . g |
workpiece agent workpiece agent | :

[workpiece agent

‘ machine agent] ' machine agent ’ , machine agenﬂ { machine agent

£

| workpiece agent
ey

Figure 2.18: Control agents of P2000+.

The manufacturing system consisting of six machines was installed in 1999 as a bypass
to an existing large-series manufacturing line at the DaimlerChrysler engine plant in
Stuttgart-Untertiirkheim, Germany (see figure 2.19). After a suite of performance tests
which demonstrated the industrial feasibility and performance of the agent-based
approach, this prototype was extended by two machining units and an automatic
loading machine in order to produce in series the cylinder head for a four cylinder

41

diesel engine (offered in the Mercedes-Benz C- and E-class 220 CDI). The prototype
has now been in operation since 1999 and, during that time, has proven that it is able to
hold its high standard even in day-to-day operation. This prototype can thus be viewed
as a proof for the industrial feasibility of agent technology (for manufacturing

operations).

Figure 2.19: DaimlerChrysler Prototype P2000+.

(Courtesy of Bleichert, Osterburken, Germany)

2.3.3.2 Holomobiles

Another example of an agent-based control system was developed by the holomobiles
workpackage of the HMS project (Bussmann 2001). The workpackage analysed the
limitations of existing engine assembly systems in the automotive industry and
designed a new material flow concept that improves the robustness and volume
flexibility of the assembly process. To achieve the volume flexibility, the new assembly
concept included a migration path from the existing assembly system to the new design,
in which resources are added step by step. This migration path required that the control
is able to incrementally incorporate additional resources into the assembly process, and
that the control itself is scalable in the same steps as the assembly system — two
requirements that are easily fulfilled by holonic manufacturing systems. The
development of the new assembly concept therefore included the design of a holonic
control system for the new assembly process. The new assembly process, the holonic
control systems as well as the results of a feasibility study are briefly discussed in the
following.

The new assembly process consists of a main assembly line, as it was described in
subsection 2.1.1, and a pool of additional resources that are located along the main line

42

(see figure 2.20). The main line is a standard assembly line covering the whole engine
assembly process. During the scaling process, this line is extended with additional
resources at bottleneck stations whenever the volume of the assembly system should be
increased. There are two possibilities to perform this extension. The first is to add
flexible buffers in order to de-couple failure-prone stations. And the second is to add
multi-functional (MF) stations that are able to perform part of the assembly process in
order to increase capacity at specific bottleneck stations. To connect the main line with
the additional resources, automated guided vehicles (AGVs) take engines off the main
line at so-called docking stations, transport these engines to the flexible buffers or the
MF-stations, and bring the engines back to the same docking station (in case they have
only been buffered) or to succeeding docking stations (in case they have been
processed). The task of the control system is therefore to decide when to take an engine
off the main line, whether to buffer or process an engine, how many operations to apply
to an engine, and when to bring an engine back to the main line.

E MFO01 E MFO_Z

H B

A01 A02 A03 Mo04 A0 :}j
s —

Figure 2.20: Assembly layout of Holomobiles.

To solve the control task and, at the same time, to meet the requirement for scalability
of the control system, Holomobiles introduced a control holon for each docking station
(DS), each engine buffer (EB), each MF-station (MF), and each AGV (see figure 2.21).
An important aspect in this design was that no holon was introduced for components of
the main assembly line. Such holons were avoided in order to allow the main assembly
line to operate without the existence or the operation of the additional resources. This
has the clear advantage that the main assembly line can be built solely with standard
(control) technology. The main line must only provide enough space to add docking
stations in later steps of the scaling process.

The control holons basically perform the control tasks identified above. The docking
station holon determines — based on the situation around it — whether it should send an
engine off the main line. It does so if two conditions hold. The first condition holds
when both its exit and its entry are blocked. In this case there is obviously a bottleneck
behind the docking station. The second condition is that the docking station is closest to

43

the bottleneck. To verify this, the docking station agent runs an election protocol with
the docking stations following it. It wins the election, and may thus divert engines, if
there is no docking station directly behind it that has also detected a bottleneck. To
divert an engine, a DS holon must find either an MF-station that will process the
engine, or a buffer currently capable to store the engine. It does so by requesting
capacity from the corresponding holons. Once it has received the required capacity, the
DS holon requests an AGV holon to do the transportation and waits for the engine to be
picked up. An MF holon decides for each arriving engine where to send it to next. To
do so, it requests DS holons, other MF holons, or EB holons to accept the engine for
further processing (or buffering). Depending on the holon that accepts the engine, the
MF-station performs the assembly operations necessary to put the engine in the correct
processing state. Similarly, the EB holon decides when and where to send the engine to
next. These decisions are co-ordinated by the EB holons in order to achieve a buffering
strategy that optimally uses the system-wide buffering capacity. Finally, the AGV
holons offer their transportation capacity to any holon that requests it.

engine buffer MF-station
holon holon
MF01 T MF02
a AGV
” holon
F_L —
dockmg station | A03 Mo04 A0
holon

Figure 2.21: Control holons in Holomobiles.

To evaluate the new assembly as well as the holonic control approach, the performance
of the new assembly system was compared to that of an existing industrial assembly
line. The comparison was based on a set of common scenarios that were simulated with
data taken from the existing line. The main results are briefly reviewed here (for more
details see (Bussmann 2001)). First of all, the holonic system showed a more robust
behaviour than the existing assembly system because the additional resources are used
to de-couple failure-prone stations. Secondly, and more importantly, the holonic system
can be scaled up in small steps as additional resources are added to the system. The
introduction of flexible buffers not only increases robustness, it also increases, as a side
effect, the throughput and thus scales up the volume of the assembly system. Likewise,
the introduction of MF-stations increases the capacity of assembly sections and thus
also increases the volume. The new assembly system designed by Holomobiles thus

44

offers robustness and scalability which are unprecedented in existing assembly systems.

The above examples of industrial applications provide a glimpse at the variety of agent-
based production control systems that are required in industry. More examples of
different industrial control systems can be found in (Parunak 1999, Parunak 2000).

2.3.4 Design of agent-based control systems

Agent-based control techniques address the need for more flexible production control
systems and have demonstrated their industrial flexibility in several applications. The
applications, however, have also shown that there is no universal design for an agent-
based control system. The two applications presented in the previous section, for
instance, have a completely different architecture and employ (partly) different control
algorithms. While the P2000+ control system consists of workpiece, machine, and
switch agents, the Holomobiles control system has no workpiece agents (that represent
the engines). This is due to the fact that in Holomobiles the main assembly line must be
operated by the traditional control system in which engines are not explicitly
represented. However, it is also not necessary to represent engines because in
Holomobiles the engines all receive the same set of assembly operations. Consequently,
there is no need for an engine agent to ensure that the processing graph of the engine is
respected.®

The architectures of P2000+ and Holomobiles also differ with respect to the type of
resource agents used. P2000+ has machine and switch agents, whereas Holomobiles
requires agents for the MF-stations, the engine buffers, the AGVs, and the docking
stations. This difference is not only a matter of terminology, but manifests itself in a
quite different functionality of each agent. In Holomobiles, the MF-station and engine
buffer agents pro-actively manage the processing (and buffering) of the engines; the
AGV agents offer a transportation task instead of simply forwarding workpieces; and
the docking stations supervise the main line by identifying bottlenecks.

Finally, Holomobiles requires additional interaction protocols. It uses, as the P2000+
control system, a contract-net protocol to request resources such as MF-stations or
AGVs. But Holomobiles agents must also run an election protocol between the docking
stations in order to identify those docking stations directly in front of a bottleneck and a
co-ordination protocol between the resource agents and the docking station agents in
order to determine in which state to transform the engines and when to return them to

the main line.

All in all, the agent-based control design of P2000+ and Holomobiles share common
aspects, but there are also significant differences between both designs that make it

" ¢ The point here is not whether it is possible to introduce engine agents, but which design is easier to
implement and to maintain. .

45

impossible to derive a common control design for both applications. In general, this is
true for most control applications. The overall architectures of most agent-based control
systems are similar in that they all require resource, transportation, and sometimes
workpiece agents, but in detail these agents have quite different functionality and
employ quite different interaction protocols to achieve their goals. These differences are
mainly due to the different nature of the production processes that need to be
controlled. A cylinder head manufacturing process is obviously different to an engine
assembly process. But the differences may also be due to the product being produced or
the requirements on the production process. For instance, the P2000+ system was
supposed to be flexible and robust, while the Holomobiles system was intended to be
robust and scalable from the existing traditional assembly system. Different control
applications will thus require different agent-based control designs. This will be true
even if a universal design of an agent-based control system existed or will be developed
in the future. Such a universal design would have to cover all the different control
aspects of any possible application and would thus require the realisation and test of a
large set of functionality. However, the more functionality a control system consists of,
the more costly it is to develop and maintain it. Given the constantly increasing cost
pressure in industry, it is therefore imperative to avoid unused functionality. A control
system will thus always be tailored to the specific needs of a production process.

2.4 Conclusions

Agent technology has the potential to meet the future challenges in production control.
It provides conceptual models and implementation architectures for goal-based
decision-making as well as for negotiation and co-ordination of goals and actions,
which — as pointed out in section 2.1.4 — will be indispensable features of future control
systems. Many aspects of agent-based production control systems have been
investigated in the literature over the last fifteen years, and the potential of this
approach has been demonstrated in several prototypical applications. Recently, even the
industrial feasibility and the economic benefits of this approach have been proven in
probably the first full-scale industrial manufacturing system for large-series automotive
production. The technology of agent-based production control is consequently ready for

exploitation in industry.

Recent applications of agent technology, however, have also shown that there is no
universal design of an agent-based production control system that can be re-used for
every production control problem. On the contrary, the required design of a control
system may vary significantly depending on the product to be produced, the production
process necessary to produce the product, and the business requirements on the
production process (see subsection 2.3.4). Even the two supposedly similar production

46

tasks of engine manufacturing and assembly in the automotive industry require quite
different control systems because the production process and the business requirements
differ in both cases. The lack of a universal design for agent-based production control
thus implies that for most production control problems a new design effort is necessary
in order to develop a cost-efficient agent-based design for the control problem at hand.
This recurrent design effort, however, hampers the exploitation of the agent-based
production control technology in industry because to date this design effort requires the
designer of a control system to be an expert in agent technology: designing agent-based
production control systems is still a research activity (cf. the international Holonic
Manufacturing Systems project in subsection 2.3.2.2). But no matter how important,
agent-based control is only one aspect in the design of an industrial production control
system, which also includes the design and optimisation of machining and robotic
control programs, of transportation device and buffer programs, of human worker
integration, of performance and quality monitoring systems, of material supply and
conditioning processes (Dorf 1994, Groover 1988). A control engineer thus cannot be
expected to specialise in agent technology (and it is also not economically reasonable to
install specialists for this design aspect because these specialists would only be required
in certain phases of the development). Consequently, to facilitate the use of agent
technology, there must be some kind of design methodology that allows even a non-
expert in agent technology to design an agent-based production control system given
the specification of a production control problem. With such a design methodology the
recurrent design effort for agent-based production control systems is no longer an
obstacle to the industrial exploitation of agent technology.

The ultimate goal of this thesis is therefore to provide a design methodology for agent-
based production control systems that can be successfully applied by a non-expert in
agent technology. From the point of view of agent technology, the deliberate focus of
this design methodology on production control is justified for two reasons. First of all,
production control is an application domain with special requirements on the agent-
based design because an agent-based production control systems needs to interface with -
a physical system (of a specific structure) to achieve its goals. This puts special
requirements on the agent-based system to be designed (Parunak 1987, Parunak 1991).
Secondly, production is an important economical factor in industrialised countries (see
section 2.1). Optimising agent-based systems towards these special requirements is in
particular justified when considering the added value produced by some of the
production systems (an automotive car plant, for instance, creates an added value of
several billion Euros per year). A design methodology for agent-based production
control systems is thus at once scientifically and economically worthwhile. But before a
design methodology tailored to production control is developed, it should first be
verified that existing methodologies fail to address the needs of production control.

This is done in the next chapter.

47

Chapter 3

Design Methodologies

The need for methodologies in software development was already recognised in the late
1960s (Dijkstra 1968, Wirth 1971, Parnas 1972) and led to the introduction of the field
of software engineering (Sommerville 1995). Since then, many methodologies have
been proposed for the different phases of software development. In particular, there are
a large number of methodologies for designing software systems, the most prominent
probably being structured and object-oriented design methodologies. Many of these
design methodologies claim to be applicable to any (software) design problem and must
consequently also be applicable to the design of agent-based production control
systems. This chapter will therefore review the main existing design methodologies that
are potentially applicable to agent-based production control systems and will assess to
what extent these methodologies are able to adequately support the design of such

systems.

Generally speaking, design methodologies are classified according to their underlying
programming paradigms. In 1992, Fichman and Kemerer (1992) classified the existing
methodologies into (i) structured approaches, (ii) data-oriented approaches, and (iii)
object-oriented approaches. For the purpose of this review, this classification is
extended by approaches from (iv) manufacturing control, and (v) agent-based systems.
Manufacturing control methodologies are obviously relevant to this review because
they were specifically developed for designing manufacturing control systems. Agent-
oriented methodologies, in turn, are a recent development in software engineering that
tailors the design process to the specific needs of agent-based systems. These
methodologies are thus also potential candidates for designing agent-based production
control systems, even though most of these were not developed for this particular type
of application domain. Finally, the classification will be complemented by (vi) re-use
approaches. Design methodologies generally focus on designing a software system from
scratch. A more efficient and usually more reliable approach, though, is to (at least
partly) re-use existing designs (Krueger 1992, Coulange 1998). Naturally, re-use may

48

not be the sole approach because re-use requires that some designs have already been
created. Nevertheless, re-use has the potential to significantly reduce the required
design effort and should therefore be included in this review.

The review is thus organised as follows. Each of the above classes of design
methodologies will be discussed in one of the following sections: structured and data-
oriented methodologies in section 3.2; object-oriented methodologies in section 3.3;
manufacturing control methodologies in section 3.4; and agent-oriented methodologies
in section 3.5. Furthermore, in section 3.6, this review will look at recent developments
in re-use and to what extent these developments can facilitate the design of agent-based
systems. Finally, section 3.7 will summarise the review and draw some conclusions.
But before the review may start, it is necessary to first define the term methodology and
identify criteria which assess whether a methodology adequately supports the design of
agent-based production systems. This is done in section 3.1.

3.1 What is a methodology?

A methodology is a “recipe” that enables a designer to find a solution to a specified set
of problems. This recipe supports the designer by specifying many aspects of the design
process, while leaving some of the design issues to the creativity of the designer. This is
in contrast to a procedure which fully specifies how the solution to a specific problem
is determined (and which can therefore be implemented on a computer). To capture this
distinction, a methodology is defined as follows (see (HuBmann 1997, pp. 13; Budgen
1994, pp. 143)):

Definition: A Methodology7 always consists of the following components:

e An (optional) definition of the problem space to which the
methodology is applicable.

e A set of models which represent different aspects of the problem
domain or the solution at different stages.

e A set of methods which transform instances of one model into

another model.

e A set of procedural guidelines which define an order for the
systematic application of the methodological steps.

The application of a methodology starts with a problem statement (which must belong
to the problem space specified) and ends with a solution to the problem. Methods and

7 Some authors, like Hufmann (1997), use the term method instead of methodology. In this thesis,
however, the term methodology is preferred because method will be used for a single model
transformation.

49

guidelines tell the designer how to create an initial model of the design problem and
how to transform this model — with possibly many intermediate models — into a model
representing a solution to the design problem (see figure 3.1). The set of models thus
contains at least one model to represent the problem statement and one model to specify
the solution.

design
solution

D models

application
of methods

Figure 3.1: Application of a methodology.

Most of the existing design methodologies provide models, methods, and procedural
guidelines for the design process, but do not specify the problem space to which the
methodology is applicable, or alternatively they claim that it is generally applicable
(i.e., applicable to any software design problem). In practice, however, any
methodology will be more suitable for some problems than for others (Sommerville
1995, p. 216). Budgen even doubts “whether there can ever be a ‘right’ method that
would be appropriate for all problems ...” (Budgen 1994, p. 365). To assess the
suitability of a methodology for a particular class of design problems, it is therefore
necessary to determine whether the application of a methodology is appropriate rather
than possible. The following subsection will therefore identify a set of criteria which
assess the suitability of a methodology for the design of agent-based production control

systems.

3.1.1 Requirements for a methodology

A design methodology for agent-based production control systems should obviously
provide models and methods that (somehow) capture the key agent-oriented aspects of
the design (see section 2.2) because otherwise they are not able to specify the agent-
based solution (see also (Fisher 1997)). Modelling agent-oriented aspects, though, is
not a sufficient criterion for the appropriateness of a methodology. Methodologies, by
definition, are supposed to support human designers in developing a design solution. A

50

methodology is thus appropriate only when the designer is able to apply the models and
methods of the methodology to his design problem. Therefore, it is also necessary to
look at the designer and his capabilities to apply the design methodology.

The design of (agent-based) production control systems will be primarily performed by
production engineers who are also charged with many other engineering tasks, such as
robot programming and optimisation, device programming, or quality engineering.
Consequently, these designers cannot be expected to be experts in agent-based systems
because agent-oriented control — no matter how important — will not become effective
without the simultaneous implementation of the other engineering aspects (see also
section 2.4). Rather, the designer of a production control system can only be expected
to satisfy the following minimal requirements:

e The designer has an education in production or control engineering, but none in

computer science.
e The designer has only basic training in agent technology.

e The designer has no or little experience with agent-based development.

The methodology should thus enable a designer with a minimal qualification in agent
technology to derive an agent-based solution from the specification of a production
control problem (i.e., to transform the problem specification into an agent-based
solution). This transformation, however, must bridge the gap between the problem and
the solution domain. As Kaindl (1999) points out, objects of the problem domain are
inherently different to those of the solution domain. In the case of designing agent-
based production control systems, the objects of the problem domain are physical
components, such as machines and workpieces, whereas the solution domain consists
of software artefacts that are supposed to show autonomous and co-operative
behaviour. The difficulty of the design is thus the transition from the problem to the
solution objects (Kaindl 1999). Since this transition is accomplished by the creation of
models (see figure 3.1), the models must reflect this transition. In other words, each
model created must be somehow related to the previously created models such that any
new concepts are put into relation to previously introduced concepts. This is
particularly true for agent-criented concepts which are not part of the problem domain
(machines are not per se autonomous and co-operative entities!). Any agent-oriented
concepts must thus be introduced by relating these either to production or previously
introduced concepts. This translates, in turn, into the following requirement on the

design methodology:

e Model appropriateness. The models of a methodology should be clearly related to
the relevant concepts of the problem domain. The initial model should be based on
domain concepts and any new concepts should be related to those already
introduced. This applies in particular to the introduction of agent-oriented concepts.

51

The appropriateness of the models used in a design process, however, is not sufficient
to enable a novice (in agent technology) to apply the methodology, because the designer
must also know Aow to instantiate the models for his particular design problem. This
instantiation is performed by the methods of the methodology — they tell the designer
how to parameterise the models (see figure 3.1). To support the designer in
parameterising the models, however, the methods must be sufficiently prescriptive —
otherwise it is left to the designer to decide how to actually instantiate the models. The
prescriptiveness of the methods is particularly important with respect to the agent-
oriented concepts. If the designer is not familiar with introducing or defining agents, he
will have difficulties to do so even if the methodology tells him that the next model to
be created should include agents: he will not know which agents to introduce. The
methods of the methodology therefore need to provide all the (agent-related) rationales
necessary to derive the agent-oriented design aspects. This translates into the second
requirement on the methodology:

e Method prescriptiveness. The methods of the methodology should be prescriptive
in the sense that they prescribe each step the designer has to go through, and for
each step clearly identify what the task of the designer is and — at least for any
agent-oriented design aspect — explain how the task should be performed.

A methodology fulfilling the above requirements will enable a designer with only
minimal qualification in agent technology to perform the design of agent-based
production control systems. The first requirement ensures that the designer understands
the links between the design problem and the models he is creating on behalf of the
methodology. He can start the design process by modelling the domain he is familiar
with, and any new model he is creating clearly identifies new concepts and explains
them in terms of the concepts already used. This straight transition between analysis
and design models allows the designer to incorporate more sophisticated agent concepts
into the control design despite his lack of training in agent technology. The second
requirement ensures that when the designer moves from one model to another he knows
how to perform this step. Either the methodology clearly identifies the required results
if the design step involves domain reasoning (it is assumed that the designer knows
how to perform domain reasoning)®, or the methodology provides all the design rules
that are necessary to perform the design step if it involves agent-related reasoning. The
latter ensures that the design process does not require experience in agent design (even

though experience is always beneficial).

Recently, there have been several attempts to provide frameworks for evaluating agent-
based design methodologies (O’Malley 2002, Cernuzzi 2002, Sturm 2003, Dam 2003),
mostly motivated by the diverse range of existing agent-oriented methodologies. These

$ It can be safely assumed that the designer knows how to perform domain reasoning, if he wants to
design a production control system. This work therefore focuses on the agent-oriented reasoning.

52

evaluation frameworks, however, are not applicable to the evaluation of agent-oriented
design methodologies for production control. First of all, all of the above frameworks
presuppose a specific agent or even multi-agent model. In particular, they evaluate to
what extent concepts such as beliefs, desires, intentions, roles, norms, organisational
relationships, and so on, are modelled. As shown in subsection 2.3.3, however, an
agent-based system may be successfully deployed with fewer or different concepts. The
frameworks are thus restricted to specialised agent-oriented approaches. Secondly, there
is as yet no consolidation between the evaluation frameworks. Each framework
proposes a different set of criteria, and, generally speaking, these criteria are not well
justified. It is therefore difficult to see which framework should be used and whether
this framework is really able to identify the “best” methodology. Given this fact, the
work described in this thesis focuses on the two criteria identified above, i.e., model
appropriateness and method prescriptiveness, since these criteria must be satisfied in

order for a methodology to be suitable.

To summarise, a methodology is suitable for the design of agent-based production
control systems if it fulfils the following requirements.

Requirement I:
It meets the definition of a methodology.

Requirement I1:
It is able to model the agent-oriented aspects of a production control system.

Requirement III:
Its models provide a straight and comprehensible transition from domain

concepts to the agent-based system (model appropriateness).

Requirement I'V:
The methodology provides all the necessary methods and criteria to perform
agent-related design decisions (method prescriptiveness).

To assess the suitability of existing methodologies for the design of agent-based
production control systems, the following review is performed in two steps. First, it is
assessed whether a methodology is generally suitable for the design of an agent-based
system (i.e., is it able to model agent-oriented concepts?). If yes, the methodology is
additionally assessed with respect to the above requirements of model appropriateness
and method prescriptiveness in order to determine its suitability for the design of an
agent-based production control system. To this end, the review will focus on two basic
aspects that are central to the design of agent-based systems: (i) the modelling and
identification of agents; and (ii) the identification and design of interactions between

the agents (see sections 2.2 and 2.3.4).

Even though chapter 2 has already shown that the requirements on future production
control will require an agent-oriented approach, the following review nevertheless starts

wn
(%]

with conventional approaches to software design. This is done for two reasons. First of
all, conventional approaches, in particular object-oriented approaches, are necessary to
understand the manufacturing control and some of the agent-oriented design
methodologies. And second, some aspects of structured and object-oriented approaches
have been incorporated into the DACS design methodology.

3.2 Data-oriented and structured design methodologies

The very first design methodologies developed in the 1970’s were based on the
contemporary programming concepts, namely data and functions. In order to create a
program design, these methodologies either started from the input and output data
(data-oriented methodologies) or from the functions necessary to process the data
(structured methodologies). Both classes of methodologies are shortly reviewed in the

following subsections.

3.2.1 Data-oriented methodologies

Jackson (1975) developed a data-oriented approach to designing functional pfograms,
i.e., programs which convert well-defined input data into the corresponding output data
as specified by the program function (Budgen 1994, p. 178). This design approach,
called the Jackson Structured Programming (JSP) method, starts with the data
structures of the program input and output and derives a hierarchical program structure
by first merging the input and output of the program into a common (hierarchical) data
structure. This common data structure is then transformed into a hierarchy of
programming instructions by assigning to each node of the program hierarchy the data
operations that are necessary to convert the input data of the node into the
corresponding output data (see figure 3.2). The motivation for this data-oriented
approach was to create a program whose internal structure reflects the structure of the
input and output data, because this structure was expected to change less frequently
than the programming instructions.

54

P - records

|

‘ C - new record *
E P - new record

|
l | | |

,’ C - records

C - pump .1d C - grade of C - volume P - total cost
P - pump id petrol P - volume
O O
C - leaded C - unleaded

Figure 3.2: Example of a Jackson Structured Diagram
with the data structures consumed (C) and produced (P) by each node
(Budgen 1994, p. 187).

In later work, Jackson and co-workers generalised JSP into an analysis and design
method, which was called the Jackson System Development (JSD) approach (Jackson
1983, Cameron 1986, Sutcliffe 1988). JSD shares with JSP the philosophy of deriving
the basic system structure from a model of the real world in order to reduce the effects
of environment changes on the program. The expressiveness of the real world model,
however, was significantly enhanced in JSD. Instead of modelling only functional tasks
transforming data structures, JSD starts with a model of ‘long-running’ interacting
concurrent processes performing actions in their environment and derives the functional
tasks of the desired system from this analysis model (Budgen 1994, p. 240). Because of
this increased emphasis on modelling, the development process in JSD is divided into
three main phases: “the Model phase, in which the model processes are selected and
defined, the Network phase in which the rest of the specification is developed, and the
Implementation phase in which the processes and their data are fitted on to the available
processors and memory” (Cameron 1986, p. 222). More specifically, the three
development phases consist of the following steps:

e Modelling phase: In this phase, the real world “entities and the actions they
perform or suffer” are identified (Jackson 1983, pp. 39). In order to express the
time-ordering of actions, processes (i.e., sequential sets of actions), are
“described by structure diagrams — tree structures whose leaves are the actions”
(Cameron 1986, p. 228). These structure diagrams allow sequence, iteration,
and selection of actions to be expressed.

e Network phase: The network phase elaborates the analysis model into a design
specification by identifying the external triggers to the system, linking the
processes that need to be executed upon the triggers, and determining the

55

outputs that are to be generated in the particular situation (Cameron 1986, pp.
228, Budgen 1994, pp. 252). This phase may also specify the timing of the
processes by assigning priorities or specifying scheduling rules.

o Implementation phase: This phase finally focuses on data design, the
mapping of tasks onto available processors, and the actual scheduling of the
tasks.

Martin et al. also developed a data-oriented analysis and design methodology. This
methodology, though, focused on the modelling of an enterprise and its mapping onto a
(distributed) database (Martin 1989). The methodology therefore includes many
additional data representation forms, such as decomposition diagrams, dependency
diagrams, state-transition diagrams, and entity-relationship diagrams (Martin 1985), as
well as several business and data analysis methods (Martin 1989), but introduces no
additional methods for analysing or designing software. The applicability of the
methodology is thus restricted — as intended by the authors — to information

engineering.

3.2.2 Structured methodologies

In contrast to the bottom-up approach of data-oriented methodologies, structured
methodologies — in their original form — proposed a top-down functional decomposition
strategy for designing software (Budgen 1994, pp. 211). A typical representative of this
kind of methodology is the structured design (SD) approach, initially proposed by
Yourdon and Constantine (Yourdon 1979) — other examples are SSADM (Ashworth
1988) and SADT (Ross 1977, Ross 1977b) (SADT is discussed in subsection 3.4.1).
The basic idea of SD is to partition the computational system into black boxes, which
are organised in a hierarchy of control (see also (Page-Jones 1988)). The
modularization of the system is intended to lead to manageable and cost-minimal
systems. To assess the optimality of a modularization, Yourdon and Constantine
introduced the notions of coupling and cohesion. According to (Yourdon 1979),
coupling is “a measure of the strength of interconnection”, whereas cohesion is the
“intramodular functional relatedness” (p. 85 and 106). A system is considered to be
well designed if the cohesion is strong and the coupling is weak.

To arrive at a good “structured” design, Yourdon and Constantine propose two design
strategies: (i) transform analysis and (ii) transaction analysis. In the transform analysis,
the computational problem is first restated as a data flow diagram. The analysis then
identifies data flow elements which read, process, or write system data. These are —
depending on their position in the data flow diagram — organised into a hierarchical
structure chart which prescribes in which order subordinate modules are called (see
figure 3.3). The design is said to be completely factored if the actual processing of data

56

is accomplished only by bottom-level modules in the structure chart. In the transaction
analysis, several transformation processes are organised into a single structure chart by
using a dispatcher at the highest level of the chart. The dispatcher chooses the
appropriate module to process the current transaction.

main

AR SN

module A module B module C
module A, module A, l module C, module C,

—p flow of control

Figure 3.3: An example of a structure chart.

SD was complemented by structured systems analysis (SSA) in order to provide a well-
structured input to the design process of SD (see for example (De Marco 1978, Gane
1979, Yourdon 1989)). As an analysis method, SSA is concerned with modelling the
problem-oriented aspects of the system to be developed and producing a functional
specification of what the system is supposed to do (Budgen 1994, p. 212). To create this
functional specification, SSA starts with modelling the desired system as a single entity
interfacing with its environment. This “context diagram” is then refined by expanding
the single entity “system” into a data flow diagram which models the necessary flow of
information through the system (Budgen 1994, p. 97). For the refinement step, SSA
basically proposes two alternative strategies ((Budgen 1994, p. 214), see also (Yourdon
1989)):

e Top-down functional decomposition: The system function is repeatedly divided
into sub-functions until a sub-function is considered sufficiently simple to be
specified.

e Event partitioning: The different threads of system actions associated with
external events are identified and represented as information flows in the data
flow diagram. These information flows are then either grouped to create the
overall system structure or further refined by the functional decomposition
strategy.

The resulting data flow diagram then represents the functional specification of the
system to be developed and is handed over to the SD phase. In addition to the data flow
diagram, the SSA may also produce data dictionaries, process specifications (structured
English, decision tables, or decision trees), and data store descriptions to complete the
functional specification.

57

An important extension of SSA/SD for control applications was proposed by Gomaa
(1984) with the Design Approach for Real-Time Systems (DARTS). DARTS introduces
the concepts of concurrency and system states into the analysis and design process of
SSA/SD in order to meet the specific requirements of real-time systems. Concurrency is
introduced by separating the functions of the data flow diagrams into tasks which can
be executed concurrently. Criteria for separating tasks are the dependence on specific
I/O devices, time criticality, high computational requirements, or periodic execution,
while functions should be grouped into one task if they are functionally or temporally
cohesive. To design the concurrent tasks, DARTS extends SD in that the resulting
transaction dispatcher not only chooses the right function for some input data, but also
manages the corresponding system states and passes these to the function. Furthermore,
DARTS provides four communication interfaces to enable tasks to interact during
execution: message-based communication with/without a message queue, task
synchronisation through events, and a shared data repository.

3.2.3 Evaluation

Data-oriented and structured methodologies were the first systematic design
. methodologies to be proposed, and therefore represent important milestones for
software engineering. In particular, these methodologies defined models for capturing a
design, clearly separated analysis and design activities, and introduced design measures,
such as coupling and cohesion, in order to assess a design. Despite these achievements,
however, these methodologies are insufficient to design agent-based production control,
or even agent-based systems (see requirement II). The basic computational model of all
these methodologies is a hierarchically organised, functional program transforming a
distinct set of input data into the desired output data. Some methodologies, like JSD
and DARTS, do introduce distribution and concurrency into the computational model.
A node of the distributed system, however, is still a functional program, and the
communication between the nodes is modelled as pure message passing or shared data
access. The underlying computational model of the data-oriented and structured
methodologies is thus clearly inappropriate for modelling and designing the autonomy
and flexible interactions of agent-based systems — a deficit that is partly remedied by

object-oriented programming.

3.3 Object-oriented design methodologies

In many ways, object-oriented methodologies break with conventional approaches’ to
software development (Fichman 1992). This methodological revolution is caused by the

? The term conventional approaches or methodologies is used by object-oriented experts to refer to pre-
object-oriented work (as discussed in section 3.2).

58

underlying object-oriented programming paradigm, which is characterised by four basic
concepts: object, class, inheritance, and method invocation (see for example (Korson
1990, Wirfs-Brock 1990)). Objects are the basic building blocks of an object-oriented
model or program. An object contains data and is associated with operations on this
data. In contrast to the programming concepts of data-oriented and structured
approaches, an object thus encapsulates both state and behaviour. A class defines a set
of objects with the same data structures and operations. By declaring data structures and
implementations of operations as private to a class, object-oriented programming
supports the design principle of information hiding. Inheritance, in turn, makes it
possible to derive the definition of a class from an existing class, and thus to re-use the
code of a class. The derived class inherits all data structures and operations, but may
alter or extend both. Finally, method invocation allows objects to interact. An object
can request a (public) operation from another object by sending it a message
corresponding to a call of this method. The receiving object then immediately executes
this request. As with conventional procedures or functions, the method simply returns
the result of a function or a notification upon termination. Method invocation can thus
be best characterised as client-server interaction (Wirfs-Brock 1990). The requesting
object is the client and the executing object is the server. The server always executes
the request and terminates the interaction after execution.

The object-oriented programming paradigm prompted the development of new analysis
and design methodologies because conventional methodologies were felt to be no
longer appropriate. This section therefore evaluates the main object-oriented design
methodologies with respect to the design of agent-based (production control) systems.

3.3.1 Object-Oriented Design and Object-Oriented Analysis and
Design

The methodologies Object-Oriented Design (OOD) proposed by Booch (1991) and
Object-Oriented Analysis and Design (OOAD) proposed by Coad and Yourdon (1991,
1991b) are both bottom-up design approaches that create an object-oriented system by
first identifying the objects (and the classes) of the system and then elaborating other
aspects of the design, such as inheritance or interaction. The OOD methodology of
Booch, for instance, consists of four major steps (pp. 190):

1. Identify classes and objects. Identify the key abstractions in the problem space
and label them as candidate classes and objects. To identify the key
abstractions, collect typical “objects”, such as (physical) things, people, roles,
events, and so on, from a description of the problem domain (pp. 141).

2. Identify the semantics of classes and objects. Establish the meaning of the
classes and objects by analysing “scripts” that define the life cycle of each

59

object from creation to destruction. The result is captured in object and class
diagrams.

This step is also supposed to identify the mechanisms between the objects, i.e.,
the messages the objects should exchange to solve the system task. OOD,
though, does not specify how these interactions should be identified or
designed.

3. Identify relationships between classes and objects. Relationships can be either
inheritance or visibility between objects and classes.

4. Implement classes and objects.

Similarly to OOD, the OOAD methodology of Coad and Yourdon prescribes five major
steps to design the object-oriented system bottom-up from the objects and classes (p.
34):
1. Finding classes and objects. Find the key abstractions of the problem domain
(with basically the same methods as proposed by OOD).

2. Identify structures. Identify generalisation and specialisation relationships, in
particular inheritance and composition.

3. Identify subjects. Identify entities which are too large for objects (containing

several different object types).
4. Define attributes of objects.

5. Define services to other objects and specify the computation of a service.

With step 5, OOAD goes beyond OOD in that it explicitly identifies the services an
object should provide to other objects. In OOAD, services (and thus interactions) are
identified by looking at the computations an object is able to perform (and is thus able
to provide as a service) and the need of the other objects to receive this service in order
to fulfil their own computational tasks. Whenever such a link is identified, the
corresponding service, i.e., the object method interface, is specified.

During the design phase of OOAD, the analysis results are mapped onto a problem
domain, a human interaction, a task management, and a data management component,
and the results are modified according to implementation considerations, if necessary
(Coad 1991b).

3.3.2 Object Modelling Technique

The Object Modelling Technique (OMT) proposed by Rumbaugh et al. (1991) is an
elaborated object-oriented analysis and design methodology. It produces three models
which each capture a different view of the software system (pp. 17).

60

o The object model describes the structure of objects in a system, in particular
their identity, their relationships to other objects, their attributes, and their
operations.

o The dynamic model describes those aspects of a system concerned with time
and the sequencing of operations, in particular events that mark changes,
sequences of events, states that define the context for events, and the
organisation of events and states.

e The functional model describes those aspects of a system concerned with
transformations of value, in particular functions, mappings, constraints, and
functional dependencies.

Each model is associated with a rich set of modelling tools in order to represent
different aspects of object-oriented systems: (i) the object model consists of object and
class diagrams with attributes, operations, links between objects/classes, link attributes,
roles, aggregation, multiple inheritance, modules, meta-data, and constraints (on objects
and classes); (ii) the dynamic model consists of (nested) stafe diagrams with events,
conditions, actions, and concurrency; and (iii) the functional model consists of data
flow diagrams with processes, data flows, actors, data stores, and control flows.

To derive the different models, OMT proposes an analysis phase with a sequence of
steps for each model (pp. 148). For the object modelling, potential objects are identified
through a linguistic analysis of the problem statement (i.e., by listing the nouns found in
the written description of the problem). For the dynamic modelling, the interactions
between objects are identified through the analysis of typical scenarios in which the
object-oriented system is used. In this analysis, the external events received by the
system are traced through the objects in order to determine which object needs to pass
or request information from another object. Finally for the functional modelling, the
required computations of each object are specified.

After the analysis phase, details of the implementation are determined (this phase is
called design in OMT). The design includes, among other things, the organisation of the
system into subsystems, the identification of concurrency, the allocation of subsystems
to processors, and the implementation of each object (p. 199).

3.3.3 Hierarchical Object-Oriented Design

In contrast to the previously discussed object-oriented methodologies, the Hierarchical
Object-Oriented Design (HOOD) method proposed by Robinson (1992) takes a
hierarchical, top-down approach to the design of object-oriented systems. The method
starts with a specification of the program to be developed, regarded as the root object,
and successively decomposes an object of level i into a set of child objects at level

61

i+1 until an object is marked as a ferminal object. The result of this design method is a
design tree with the root object as the root of the tree and terminal objects as the leaves.

Each design step leading to the introduction of a new level of the design tree is
structured into four phases (pp. 14):

1. Problem definition: The context of the object to be refined is stated, with the
goal of organising and structuring the data from the requirement analysis phase.

2. Development of solution strategy: The outline solution of the problem stated
above is described in terms of objects at a high level of abstraction.

Formalisation of the strategy: The objects and their associated operations are

(V8]

defined. This phase has five sub-phases:
a) Object identification

b) Operation identification

c) Grouping of objects and operations
d) Graphical description

e) Justification of design decisions

4. Formalisation of the solution: The solution is formalised through the formal
definition of provided object interfaces and the formal definition of object and

operation control structures.

The identification of objects and operations in phase 3 is based on a linguistic analysis
of the requirements specification, as in most other object-oriented methodologies.
Candidate objects are identified by looking at the nouns and noun phrases, and possible
operations are identified by examining the verbs of the specification. An alternative
approach is proposed if the specification is given in terms of data flow diagrams. In this
case, objects are identified in the data flow diagram by grouping either external
interfaces or internal data stores with the corresponding data flows.

For the specification of the resulting design, HOOD provides an object description
skeleton covering interfaces, data flows and control structures; a class skeleton; and a

diagram representing “include” relationships.

3.3.4 Responsibility Driven Design

Wirfs-Brock, Wilkerson, and Wiener (1990) propose a design process on the basis of
the concepts responsibility and collaboration, called Responsibility Driven Design
(RDD). An object is said to be responsible for providing its service, i.e., its operations,
to any object which may request it. A collaboration is said to be present when an object
requests a service from another object; two collaborating objects are said to have a

62

service contract. On the basis of this terminology, RDD suggests three initial steps in
the design process (p. 29):

1. Find the classes of the system (through a linguistic analysis of the requirements
specification).

2. Determine what operations each class is responsible for performing, and what
knowledge it should maintain (by analysing typical scenarios).

3. Determine the way in which objects collaborate with other objects in order to
discharge their responsibilities (by identifying operations an object is unable to
perform on its own and the corresponding objects that can provide the missing
knowledge or capabilities).

To support the design process, the methodology provides schemata for recording class
responsibilities and collaborations, as well as graphs for defining inheritance
hierarchies, visualising collaborations, and defining subsystems. In later steps of the
design, Wirfs-Brock et al. also talk of protocols between objects. Protocols, however,

only define the specific signatures for method invocation.

3.3.5 Evaluation of object-oriented methodologies

Because of the encapsulation of both state and behaviour in a single object, the object-
oriented approach provides a more powerful model for capturing the characteristics of
real-world domains than conventional approaches (Johnson 2000). This model,
however, still misses many essential aspects of domains which consist of interacting
agents. Jennings points out that (i) objects are generally passive in nature; (ii) objects
do not encapsulate behaviour activation; (iii) object-oriented concepts and mechanisms
are too fine-grained to model complex systems; and (iv) object-oriented approaches
provide only minimal support for structuring organisations (Jennings 2001, p. 39; see
also Wooldridge 1997). On the contrary, agents are conceptualised in terms of goals,
high-level interactions, and organisational relationships: (i) agents pro-actively follow
their own goals and decide autonomously what to do and with whom to co-operate; (ii)
they are able to initiate and execute interactions with other agents that were not
foreseen at design time; and finally (iii) agents are able to take into account and also to
adapt their organisational relationships (Jennings 2000, pp. 280). Objects are thus an
inappropriate. concept for modelling interacting agents (Booch 1994, Wooldridge
1997). These limitations of objects are only partly remedied by concurrent objects
(Agha 1990) which only add pro-activeness to the objects without addressing the other
limitations (Wooldridge 1997).

Because of the general limitations of objects to capture essential features of agents, the
object-oriented approach falls equally short to model the production control systems

63

envisioned in section 2.3. Production control agents are assigned production goals, such
as bringing a workpiece into a specified product state, and must autonomously decide
how to achieve this goal state irrespective of the current situation in the production
system. To achieve these goals, the production control agents must flexibly interact
with other agents of the production system either to use their services, such as
processing and transportation, or to avoid conflicts with other independently pursued
goals. In doing so, the agents may have to form teams or other kinds of organisational
structures in order to create an overall coherent system behaviour.

The general inability of the underlying programming concepts to model agent-oriented
aspects also makes the associated design methodologies inappropriate for designing
agent-based (production cohtrol) systems. At first glance, identifying “objects” and
their interactions is the same design task that is necessary for agent-based systems. But
the tools for identifying objects and their interactions miss many aspects of agents and
thus lead to a wrong design for agent-based systems. Object-oriented methodologies
identify objects either through the identification of key abstractions (OOD, OOAD), or
a linguistic case analysis of the problem description (OMT, HOOD). Interactions, in
turn, are identified through an analysis of the relationships of objects (OOD), through
the definition of services (OOAD, RDD), through the analysis of typical scenarios
(OMT), or through a linguistic case analysis (HOOD). These identification techniques
are clearly insufficient for agent-based systems. First of all, these techniques may
identify too many objects which are not agents. Many entities in a production system
are relevant to the control system, but only a few are able to make decisions about the
course of the production process. Secondly, these techniques may even fail to identify
necessary agents. Instead of identifying an agent, the identification step may find
objects which are part of the agent or overlap with it because of common data
structures. Finally, even though some methodologies identify services or patterns of co-
operation among objects, the modelling tools do not provide sufficient support for
modelling complex multi-stage interactions. For interaction modelling, the
methodologies only provide use-relationships, message connections, or event and state
diagrams, but no means to model purpose, reasoning, or flexibility of agent interactions
(see section 2.2). This overall critique equally applies to more recent object-oriented
design methodologies, such as Fusion (Coleman 1994) or OPM (Dori 2002).

The use of an agent-oriented terminology in some methodologies does not remedy these
limitations. The anthropomorphic approach of RDD to design, for instance, can only be
viewed as “an aid to conceptualization” (Wirfs-Brock 1990, p. 7). A close examination
of the concepts reveals that the terms “responsibility” and “collaboration” are merely
metaphors for ordinary object-oriented concepts, like public methods and method
invocation. Similarly, the term “protocol” is equated with method signature. Even
though the metaphors may be helpful in ordinary object-oriented design, they are
misleading in the design of an agent-based system, as these terms have a different

64

meaning in agent technology. Deprived of the metaphoric terms, the RDD methodology
operates on the same level of abstraction as other object-oriented methodologies. The
basic building block is an object which encapsulates information and operations, and
objects interact through method invocation. The critique put forward above therefore
equally applies to this methodology.

All in all, despite the prescriptiveness of the methodologiesvfrom the object-oriented
point of view and the agent-like terminology in some of the methodologies, object-
oriented methodologies fail to adequately model agent-oriented concepts and to provide
the rationales related to an appropriate agent-oriented design. The object-oriented
methodologies are therefore not only inappropriate because of their underlying model,
but are also insufficiently prescriptive for designing agent-based systems.

Despite their limitations with respect to agent-oriented design, object-oriented
methodologies, however, have made their contribution to the state-of-the-art in
designing software systems. Object-oriented methodologies start by identifying the
entities of the domain and transforming these into analysis and design objects. Object-
oriented methodologies thus provide a more natural and appropriate design process than
earlier methodologies. In conjunction with the encapsulation of state and behaviour,
object-oriented methodologies have also clearly separated the design of the objects (and
their functions) from the design of the interactions between the objects. These two
important improvements should therefore be honoured in an agent-oriented design

approach.

3.4 Manufacturing control design methodologies

The general software design methodologies discussed in the previous sections should in
principle be also applicable to designing manufacturing control systems as these are
basically software systems. Manufacturing control, however, exhibits some peculiarities
that require special attention during the design process (Parunak 1987). In particular,
the software system to be developed is always supposed to control a physical system,
namely the manufacturing system (cf. figure 2.5). The control system must therefore
have interfaces for sensing and acting in this physical system, and these control
interfaces must be served in (soft) real-time because the processes behind these
interfaces have their own physical dynamics. Moreover, a control system must take into
account the fact that physical actions may fail or unexpected events may occur.
Basically, control software must meet the requirements discussed in subsection 2.1.4.
To address the above peculiarities of control software, manufacturing research has
therefore developed methodologies tailored to the development of manufacturing
control systems. Most of these methodologies, though, are concerned with modelling
and specifying the control system (see for example (Castillo 2002, Booth 1998)). This

65

section will therefore review only those methodologies that cover at least some aspects
of the design of control systems.

3.4.1 SADT/IDEF-based design of manufacturing systems

The Structured Analysis and Design Technigue (SADT), originally developed for
software systems (Ross 1977, Ross 1977b), has repeatedly been used to model
manufacturing systems. SADT is a structured analysis methodology that follows a
functional decomposition strategy in order to create a hierarchical model of the system
to be designed (Budgen 1994). The basic building block of this model is a black box
representing an operation or function of the system. This operational box has four types
of interfaces that are distinguished graphically: (i) inputs to the operation are shown
entering on the left side; (ii) control flows are shown at the top; (iii) outputs emerge on
the right side; and (iv) mechanisms, such as tools, are provided at the bottom (see figure
3.4).

controls

v v

, —p . —
inputs operation outputs
—P 3

Pt

mechanisms

Figure 3.4: The SADT box representing an operation.

Different operations are combined by linking their interfaces in a diagram (see figure
3.5). A link, though, does not necessarily imply a flow of material or information. It
only states that there is a dependency between the operations, and thus the goal
operation of the link is constrained by the source of the link. Furthermore, an operation
can be refined by creating a new diagram representing the “parent box”. For the new
diagram, the set of external interfaces must be identical to those of the parent box. This
refinement mechanism allows a hierarchy of diagrams to be created with the top
diagram representing the system to be developed and the main steps of the SADT
methodology are actually concerned with creating this hierarchy of operations (Budgen
1994). Strictly speaking, SADT is thus only a specification and not a design
methodology, as its name suggests.

66

|

e

—® operation A
2 B 4

operation B

4 v
operation C

A 4

- constraint

Figure 3.5: An SADT functional network.

SADT was adopted in the 1970s by the Integrated Computer Aided Manufacturing
Definition (IDEF) initiative as the standard IDEF0 for modelling the functions of a
manufacturing system (Bravoco 1985). Since then, both SADT and IDEFO0 have been
used in several methodologies for designing manufacturing (control) systems. One such
example of a design methodology for control systems employing SADT is the
methodology for designing logic controllers proposed by Zaytoon (1996) (see also
subsection 3.5.2 for other SADT/IDEF0-based methodologies). This design
methodology integrates SADT with Petri Nets and Grafcets'® by transforming an SADT
design into a Petri net and then into a set of Grafcets programs for the local controllers.
To achieve this transformation, Zaytoon defines a set of temporal relationships for
synchronising the control operations which are added to the initial SADT design of the
control system. Once added, the augmented SADT design can be automatically
transformed into a Petri net that executes the control operations in the same order as
specified by the temporal relationships. The advantage of the Petri net representation is
that certain properties of the system behaviour can be verified automatically. After
verification, the Petri net is again converted automatically into a set of Grafcet
skeletons which then must be filled with Grafcet commands specifying the actual

control steps.

The strength of the methodology proposed by Zaytoon is certainly the verification step
and the matching onto a programming language for logic controllers. Just like SADT,
however, this methodology does not provide any techniques for creating the initial
control design. For the initial design, Zaytoon relies completely on SADT which, as
pointed out above, is only a specification methodology. Neither SADT nor the
methodology of Zaytoon specify how to identify the necessary control operations, how
to structure these into a functional hierarchy or map these onto a set of local controllers,
and how to identify and design the interactions of these controllers. Zaytoon does

' Grafcet is a controller programming language.

67

define a set of temporal relationships for synchronising the control operations. His
methodology, though, does not provide any criteria for when and where to add these
relationships to the design model.

3.4.2 Modelling control with discrete event systems

Fanti et al. (1996) provide a modelling framework for designing generic control
software of flexible manufacturing systems, with the focus on the job release and
material flow decisions. The model is based on the theory of discrete event systems
(Zeigler 1984) and essentially captures the entities of the manufacturing system
(resources, operations, and jobs), the associations between these entities (static and
dynamic relations specifying the configuration of the manufacturing system and its state
changes), and in particular the decision rules necessary to control the flow of material in
the manufacturing system. This model, however, is only a basic architecture for generic
control software which must be instantiated for a given manufacturing system by
specifying the actual decision rules with which the manufacturing system should be
controlled. And just like the SADT-based methodologies, the framework of Fanti et al.
does not provide any techniques for identifying the necessary control rules.
Furthermore, the envisioned (generic) control system is centralised. It consists only of a
knowledge base capturing the system’s state, one job release manager and one job flow
manager. The modelling framework is thus not even able to model the distributed
nature of agent-based control systems.

3.4.3 Petri net-based methodologies

A third common formalism to model and design control systems are Petri nets. A Petri
net is a directed graph whose nodes are either places or transitions (Murata 1989).
Places are able to hold tokens, while transitions move tokens from the input places to
the output places of the transition once all input places are occupied by a token. An
example of a Petri net controlling a simple manufacturing workcell with two machines
and a loading device that a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>