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The design of inertial actuators for active vibration control is considered. Unlike 

reactive actuators, inertial actuators do not need to react off a base structure and can 

therefore be directly installed on a vibrating structure. In order to guarantee good 

stability margins with feedback controllers, however, the actuator resonance must 

have a low natural frequency and it must be well damped. Unfortunately, the need to 

have an inertial actuator with a low resonance frequency leads to unwanted static 

deflections of the actuator proof-mass. 

The behaviour of an inertial actuator is analysed with different inner feedback control 

schemes. First, it is shown that a phase-lag controller in the inner loop, based on the 

measurement of the transmitted force, can be used to significantly improve stability 

margin and performance of the system using relatively low gains. 

The use of integral displacement feedback as an inner loop can provide self-levelling 

capabilities for the inertial actuator thus overcoming the static deflection problem. A 

novel device for active vibration control, based on an inertial actuator with a proof­

mass displacement sensor and inner PID controller, is described and its performance 

is demonstrated expelimentally. It is found that the effective natural frequency and 

damping of the actuator can also be changed substantially with such a controller, thus 

allowing an inertial actuator to be customised for a specific application. 

The stability and performance are then analysed for an active isolation system using 

the modified inertial actuator and an outer velocity feedback control loop. The plant 

response, from force actuator input to sensor output, is delived in tenns of the 

mechanical mobilities of the equipment structure being isolated and the vibrating base 

structure, and the mechanical impedance of the intervening mount. The results of an 

experimental study of active vibration isolation using a modified inertial actuator are 

then described. Theory and experiments agree well, demonstrating the effectiveness 
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of the modified inertial actuator in isolating a piece of equipment from a vibrating 

base. 

In the second part of the thesis, strategies for the suppression of plate vibration are 

investigated by considering the equivalent impedance of power-minimising 

feedforward vibration controllers. The minimum power, transmitted to infinite and 

finite plates by a single primary force and a single secondary force, optimised at each 

frequency, has been compared with the power reduction that can be achieved with 

passive vibration treatments. The equivalent impedance is defined to be the ratio of 

the optimised secondary force to the total velocity at the secondary force location, but 

it is generally non-causal and so cannot be implemented for broadband random 

excitations. The approximation of the equivalent impedance by lumped parameter 

systems is considered. In particular, passive controllers, based on splings and 

dampers, have been analysed, although, in many practical applications, a rigid ground 

is not available to react these components off. 

The results of a theoretical and experimental study of active vibration suppression on 

a flexible plate using the modified inertial actuator are then described. Theory and 

experiments agree well, demonstrating the effectiveness of the modified inertial 

actuator in controlling vibrating panels. 
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Chapter 1 

Introduction 

1.1 Introduction to the thesis 

1.1.1 Problem and objectives 

Vibration occurs in most machines, structures, and dynamic systems, leading to many 

undesirable consequences. Vibration often becomes a problem due to "unpleasant" 

motion, noise and dynamic stresses, which could lead to fatigue and failure of the 

structure or machine, energy losses, decreased reliability, and degraded performance. 

Vibration control is aimed at reducing or modifying the vibration level of a 

mechanical structure. 

When a vibration problem needs to be remedied, it is desirable and often necessary to 

understand its whole nature. This includes, among others, understanding its 

originating source, the nature and direction of the vibration at the problem location, 

the path along which the vibrational energy reaches that location, and the frequency 

content of the vibration. In particular, a problem which arises in several application 

areas is the isolation of sensitive equipment from vibration of the base structure to 

which it is attached (Figure 1.1). 
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Equipment 

I Vibrating Base I 
Figure 1.1 Complete transmission of the vibrations to the equipment if no 
isolator is applied. 

Before attempting to apply any isolator (Figure 1.2), it is important to know as much 

as possible about the conditions under which it will be used and the fragility of the 

equipment to be mounted. This knowledge must be coupled with an understanding of 

the various types of vibration and shock isolators which might be applied to a given 

problem. Depending on the type of isolator, the material from which it is made, and 

the operating conditions, the performance of the isolator and its effectiveness can vary 

widely. These factors must be considered and the proper accommodations, to arrive at 

a reasonably accurate estimate of the performance of the isolated system, have to be 

made. 

Passive 
Mount 

Vibrating Base 

Figure 1.2 Passive vibration isolation with a passive mount. 

This thesis is specifically concerned with the use of inertial actuators in active 

vibration control systems. Inertial actuators do not need to react off a base structure, 

so they can be used as modules that can be directly installed on a vibrating structure. 

In particular, one application that this thesis addresses is the problem of vibration 

isolation of a sensitive piece of equipment (Figure 1.3) using inertial actuators. 
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Vibrating Base 

Figure 1.3 Active vibration isolation using an inertial actuator. 

Vibrating bodies usually generate vibration forces in more than one direction. 

Typically only the predominant vibrating direction is controlled, whether the mount is 

passive or active. Multiple axis active vibration isolators to minimize the transmission 

of vibration along translational and rotational axes have been considered in theory 

(Ryaboy, 1995, and Su et aI., 1996), but there are few repOlis of experimental work 

(Spanos et aI., 1995, and Horodinca et aI., 2002). In this research, single degree of 

freedom (SDOF) systems are considered. 

Before isolation is used to solve a vibration problem, attempts should be made to 

reduce the disturbance from the source. If this is not possible or impractical, it may be 

possible to modify the frequency response of the base structure so that it is less 

excited by the disturbance. The final part of the thesis is concerned with the use of 

active systems with inertial actuators for this purpose. 

1.1.2 Passive vibration control 

There are two classes of vibration control: paSSIve vibration control and active 

vibration control. Passive vibration control involves the modification of the stiffness, 

mass and damping of a vibrating system to make the system less responsive to its 

vibratory environment (von Flotow et aI., 1990). The modification may take the form 

of basic structural changes or the addition of passive elements such as masses (which 

can be chunks of concrete in buildings), springs (such as vibration isolators), fluid 

dampers or damped rubbers. These elements simply react passively in opposition to 

the accelerations, deflections or velocities imposed upon them by vibration. None of 

them require any external assistance to do this, apart from their immediate passive 
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neighbours or structural components that interact with them. A straightforward 

solution to many vibration problems is to increase the stiffness within a machine. 

There is however a practical limit in passively increasing the stiffness of a structure. 

Furthermore, due to structural design rules, vibrations in high-precision machines are 

typically badly damped. Introducing additional passive damping into high-precision 

structures however is complicated, as the stresses and strains to be damped are very 

small. However, the common and "fail safe" approach to vibration control of 

structures is still adding damping to the structure (Procopio, 1986). Damping 

dissipates some of the vibration energy of the structure either by transforming it into 

heat or by transferring it to a connected structure. Examples of passive damping 

materials include viscoelastic materials, viscous fluids, high damping alloys, and 

particle damping. The most common of these are viscoelastic materials. Viscoelastic 

materials dissipate mechanical energy into heat when they undergo cyclic stresses due 

to polymer chain interactions. Elastometric mounts (natural rubber for example, see 

Lord Corporation, 2002) have been used as vibration isolators for many years 

(Johnson, 1995). More recently, the development of fluid-filled mounts for a variety 

of applications including automotive (Fang et al., 2001), marine (Althaus and Ulbrich, 

1992), and aerospace (Owen et al., 1992) has provided the ability to improve their 

performance. Passive vibration cancellation can be achieved by appending an 

underdamped structure (a dynamic absorber) with the natural frequency similar to the 

disturbing frequency (Sun et al., 1995, and Brennan, 1997). In any event, the majority 

of these applications based on passive damping use viscoelastic matelials for 

vibration control. Although most passive damping treatments are inexpensive to 

fabricate, their successful application require a thorough understanding of the 

vibration problem in hand and the properties of the damping materials (Friswell et al., 

1997a). 

1.1.3 Passive vibration isolation 

In general, the isolation of any vibration-sensitive equipment from base vibration is 

usually perfonned on the transmission paths (mounts, Figure 1.2). The fundamental 

benefit provided by any mount is reduced structural vibration. In many applications, 

unwanted noise is a direct result of structural vibrations. Therefore, mounts also 

provide noise reduction benefits (Bies and Hansen, 1996). However, with such 

paSSIve mounts there is a trade-off between low and high frequency isolation 
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performances depending on the damping of the mount. In fact, a major challenge is to 

make the mount as stiff as possible, statically, to better couple and SUppOlt, and 

dynamically as soft as possible, to better isolate. This is difficult to accomplish with 

passive elastometric mounts, as described by Crede and Ruzicka (1996) and Ungar 

(1992). 

"Transmissibility IS a measure of the reduction of transmitted force or motion 

afforded by an isolator" (Crede and Ruzicka, 1996). If the source of vibration is an 

oscillating motion of the base, transmissibility is the ratio of the vibration amplitude 

of the equipment to the vibration amplitude of the foundation. The motion of the 

vibrating base and the equipment may be expressed in any consistent units, such as 

displacement, velocity, or acceleration, and the same expression for the 

transmissibility applies in each case (Crede and Ruzicka, 1996). An example of 

transmissibility of a typical single degree of freedom mass-spring-damper system 

subject to a base excitation (Figure 1.2) is shown in Figure 1.4 for different values of 

damping ratio (, using fixed values of mass and stiffness. Figure 1.4 shows that a 

damper with higher damping ratio will limit motion at resonance, but increases 

transmissibility at higher frequencies. This establishes the trade-off for the linear 

isolation system. 

20~--~~----~----~----~----~--~ 

15 

10 

-20 

-25 

_30L-----'------'------'------'------'------= 
o 3 

Frequency ratio (w/wo) 

Figure 1.4 Transmissibility of a simple mass-spring-damper system with 
base excitation and different damping ratio (, as a function of the 

frequency ratio (J) / {J)o' where {J)o is the resonance frequency of the 

system. 
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In the process of deciding on a vibration isolator for a particular application, there are 

a number of critical pieces of information which are necessary to define the desired 

functionality of the isolator. Some items are more critical than others but all should be 

considered in order to select, or design, the appropriate product. Some of the factors 

which must be considered are weight, size and centre-of-gravity of the equipment to 

be isolated. Obviously, the weight of the unit will have a direct bearing on the type 

and size of the isolator. The size or shape of the equipment can also affect the isolator 

design since this may dictate the type of attachment and the available space for the 

isolator. The centre of gravity location is quite important and isolators of different 

load capacities may be necessary at different points on the equipment due to weight 

distribution. The locations of the isolators relative to the centre of gravity, for 

example, could also affect the design of the isolator. 

Also, knowledge of the type of dynamic disturbances to be isolated is important. This 

is basic to the definition of the problem to be addressed by the isolator selection 

process. In order to make an educated selection or design of a vibration isolator, this 

type of information must be defined as well as possible. Typically, sinusoidal or 

random vibration spectra will be defined for the application. In many installations of 

military electronics equipment, random vibration tests have become commonplace 

and primary military specifications for the testing of this type of equipment (such as 

MIL-STD-81O) have placed heavy emphasis on random vibration, tailored to the 

actual application. Other equipment installations, such as in shipping containers, may 

still require significant amounts of sinusoidal vibration testing. 

Shock tests are often required of many types of equipment. Such tests are meant to 

simulate those operational (for example canier landing of aircraft) or handling (for 

example bench handling or drop) conditions which lead to impact loading of the 

equipment. 

In addition to the weight and dynamic loadings which isolators must react, there are 

some static loads which can impact the selection of the isolator. An example of such 

loading is that imposed by an aircraft in a high-speed turn. This manoeuvre loading 

must be reacted by the isolator and can cause, if severe enough, an increase in the 

isolator size. These loads are often superposed on the dynamic loads. This particular 

aspect will be focussed in details in Chapter 4. 

Allowable system response is another important information needed in order to 

appropriately choose the correct isolator. The equipment manufacturer or user should 
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have some knowledge of the fragility of the unit. This fragility, related to the specified 

dynamic loadings, will allow the selection of an appropriate isolator. This may be 

expressed in terms of the vibration level versus frequency or the maximum shock 

loading which the equipment can endure without breaking. 

The specification of allowable system response should include the maximum 

allowable motion of the isolated equipment. This is important to the selection of an 

isolator since it may define some mechanical, motion limiting feature which must be 

incorporated into the isolator design. It is fairly common to have an incompatibility 

between the allowable "sway space" and the motion necessary for the isolator to 

perform the desired function. In order for the isolator to give a certain level of 

performance, it is required that a definite amount of motion be allowed. Problems in 

this area typically arise when isolators are not considered early enough in the process 

of designing the equipment or the structural location of the equipment. 

The environment in which the equipment is to be used is very important to the 

selection of an isolator, particularly the temperature. Variations in temperature can 

cause variations in the performance of many typical vibration isolators. Consequently, 

it is quite important to know the temperatures to which the system will be exposed. 

The majority of common isolators are elastomeric. Elastomers tend to stiffen and gain 

damping at low temperatures and to soften and lose damping at elevated temperatures. 

The amounts of change depend on the type of elastomer selected for a particular 

installation. 

Other environmental effects from humidity, ozone level, atmospheric pressure, 

altitude, etc., are generally minimal and may be typically ignored. Some external 

factors that may not be thought of as environmental may impact the selection of an 

isolator. Fluids (oils, fuels, coolants, etc.), which may be in the area of the isolators, 

may cause a change in the material selection or the addition of some form of 

protection of the isolators. Also, light may effect the correct operation of some optical 

sensors. 

The length of time for which an isolator is expected to function effectively is another 

strong determining factor in the selection or design process. Vibration isolators, like 

other engineering structures, have finite lives. Those lives depend on the loads 

imposed on them. The prediction of the life of a vibration isolator depends on the 

distribution of loads over the typical operating spectrum of the equipment being 

isolated. Typically, the longer the desired life of the isolator, the larger that isolator 
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must be for a gIven set of operating parameters. The definition of the isolator 

operating conditions is important to any reliable prediction of life. 

1.1.4 Semi-active vibration control 

"In semi-active vibration control, the stiffness or damping properties are changed to 

adjust the internal dynamic forces in order to minimise the response" (Brennan, 

2003). For example air springs allow a system to change its stiffness, while 

electro/magneto rheological fluids allow a system to change its damping. Another 

example of semi-active control is obtained using tunable vibration absorbers, and in 

particular passive electronic damping using piezoelectric ceramics is a less 

temperature-sensitive and more tuneable alternative to viscoelastic damping 

treatments. In this damping technique, the mechanical energy of the structure is 

converted to electrical energy using piezoelectric materials. The high mechanical 

stiffness of the piezos enables efficient energy transfer to the piezo damper. The 

electrical energy is dissipated as heat in an electrical shunt circuit, allowing for 

specific vibration frequencies to be targeted and damped electronically. 

1.1.5 Active vibration control 

Active control augments the structure with sensors, actuators and some form of 

electronic control system, which specifically aims to reduce the measured vibration 

levels. In contrast to passive vibration control, active vibration control systems do 

require external assistance. They depend essentially upon a source of power to drive 

active devices, which may be electromechanical, electrohydraulic or electropneumatic 

actuators. 

Initial investigations into active vibration control were primarily interested in 

controlling tonal excitations. This is because of the relative simplicity of obtaining an 

appropriate reference signal, compared to broadband excitation. Discussion of the 

control of tonal excitation then addresses other subject areas, such as isolation of 

rotating machinery from supporting structures. 

Active vibration control systems are ideally suited for use in the low-frequency range, 

below approximately 1000 Hz. Although higher frequency active control systems 

have been built, a number of technical difficulties, both structural and electronic 

(where higher sampling rates are required), limit their efficiency. At higher 

frequencies, passive systems also become more cost effective. A complete vibration 
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control system generally consists of active control for low frequencies and passive 

control for higher frequencies. 

In addition, passive vibration damping and cancellation strategies become ineffective 

when the ~ynamics of the system or the frequencies of the disturbance vary with time. 

Moreover, active systems can provide increased effectiveness in controlling sound 

and vibration compared to passive approaches. Also, it is not suitable to attach large 

passive vibration control appendages, such as a tuned mass damper, to some 

applications. Active damping and cancellation control can address these concerns. 

Due to remarkable advances in sensor, actuator, and more importantly computer 

technologies in recent years, active systems have become cost effective solutions to 

most sound and vibration control problems. Active damping is sometimes necessary 

to achieve greater performance, or to produce controlled system properties. 

1.1.6 Active vibration isolation 

To provide a more favourable static and dynamic stiffness compromise in an active 

isolation systems, hybrid solutions must be used. These are usually based on mounts 

and actuators. When an active isolator is designed, two configurations are possible. 

The secondary actuator can be placed either in series or in parallel (this latter case is 

shown in Figure 1.5) with the passive mount. Blackwood and von Flotow (1993) 

investigated the first configuration by coupling a piezoelectric actuator in series with a 

passive mount. 

Reactive 
Mount 

Vibrating Base 

Figure 1.5 The secondary actuator is in parallel with the passive mount. 

However, the effectiveness of such a mounting design was shown to be heavily 

dependent upon the high stiffness of the actuators. Due to the small deflection 

capacity of piezoelectric actuators, the use of such actuation is limited to the isolation 

of very small amplitude motion of base structure. In many situations, the base 
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vibration is of the order of millimetres. As a result, an actuator with a longer stroke, 

such as an electromagnetic shaker, installed in parallel with the passive mount, is 

required. An experimental study was conducted by Serrand and Elliott (2000) on the 

active vibration isolation of a rigid equipment structure using two electromagnetic 

shakers, which were installed in parallel with two passive mounts. 

An active isolator can be implemented using various feedback control strategies, 

among which independent direct velocity feedback control is one of the most popular. 

The absolute velocities of the equipment structure are measured at each mounting 

point and directly fed back to the actuators driving that point. Using independent 

velocity feedback control, Kim et al. (1999 and 2001) investigated a four-mount 

active vibration isolation system with a rigid equipment structure. 

The work by Huang et al. (200Ia,b) investigates a similar four-mount system for 

active vibration isolation of a flexible equipment structure. Particular emphasis is 

placed on the isolation of low frequency vibration (0-200Hz), for which the mounts 

can be assumed to behave as lumped springs and dampers. The main objective was to 

investigate the control performance and stability issues associated with the four­

mount vibration isolation system when the additional flexibility of the equipment 

structure is introduced. Active isolation experiments were first implemented on a rigid 

base before moving to the final flexible base, in order to have a full understanding of 

the control mechanisms. With the rigid base structure, the actuator force that reacts 

off the base has no effect on the equipment velocity and so the actuator force on the 

equipment and velocity sensor on the equipment are, in principle, collocated. It was 

shown that under these conditions the control system is unconditionally stable. When 

the base structure is not rigid, however, the stability of the control system cannot be 

guaranteed a priori. Here, the equipment velocity is caused by both the actuator force 

acting directly on the equipment and the reactive actuator force causing the base to 

move. However, a careful analysis has demonstrated that good stability properties are 

still obtained. 

1.1.7 Reactive or inertial actuators 

Actuators are used in active vibration control to generate a secondary vibrational 

response, and in practice they can be configured either to react off the base structure 

or function as an inertial actuator (also called proof-mass actuator). Inertial actuators 

do not need a "ground" to push against, so they can be used as modules that can be 
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directly installed on a vibrating structure. This fact makes inertial actuation 

particularly suitable for stand-alone applications. This was investigated by Elliott et 

al., (2001a), and Benassi et al., (2002a,b,c,d) and this topic, being the core of this 

thesis, will be extensively discussed in the next chapters. 

1.1.8 Actuator types 

The actuation means suggested in the literature vary from servohydraulic devices to 

using controllable materials, such as piezoelectric devices. Piezoelectric actuators 

produce an electric charge when mechanically strained; conversely, they produce 

mechanical strain when an electric field is applied. There are two broad classes of 

piezoelectric materials used in vibration control: ceramics and polymers. The 

piezopolymers are mostly used as sensors, because they require high voltages and 

have a limited control authority. The best-known piezopolymer is poly-vinylidene­

fluoride (PVF2). Piezoceramics can be used as actuators and sensors over a wide 

range of frequencies, including ultrasonic applications. They are well suited for high 

precision up to the nanometer range. The most common piezoceramic is Lead 

Zirconate Titanate (PZT). Ceramic piezoelectric actuators are stiff and provide more 

actuation force than polymers, and they can be stacked for increased actuator 

displacement (Morgan Electro Ceramics, 2001). A lot of work on vibration control 

using piezos has been carried out (D'Cruz, 1998), and significant results have been 

obtained, in particular by Guigou et al. (1994), Garcia-Bonito et al. (1998), 

Balakrishnan (1999), Alvarez-Salazar (1999), Brennan et al. (1999) and Yousefi­

Koma and Vukovich (2000). Although these approaches have been extensively 

applied to simple structures, such as beams and plates, it has been suggested that their 

application to more realistic structures is difficult and complicated by the large 

number of sensors and actuators that are needed to adequately control the structure 

(Carabelli et al., 2000, Sun et al., 2001, and Wang et al., 2001). The challenge lies in 

managing all the sensors and actuators that are needed to define and control the 

complicated modal characteristics of a practical structure. This was illustrated by 

Blackwood and von Flotow (1993) and Baek and Elliott (2000). Another limitation to 

more widespread adoption of piezoelectric vibration suppression technology has been 

the lack of integration of the piezo transducers and the electronics used for power 

distribution, sensor conditioning and control. 
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The THUNDER piezoelectlic actuator is a newly developed active control device that 

possesses many advantages compared to other classical piezoelectric actuators. 

Particularly, its capacity in generating high displacement and its inherent high load 

capacity make it an ideal candidate in active isolation applications (Marouze' et al., 

2001). THUNDER is developed by NASA Langley Research Center, and its high 

displacement range and high load capacity result from its particular fabrication 

process. 

As was previously explained, an active structure consists of a structure fitted with a 

set of actuators and sensors coupled by a controller. If the bandwidth of the controller 

includes some vibration modes of the structure, its dynamic response must be 

considered. If the set of actuators and sensors are located at discrete points of the 

structure, they can be treated separately. The distinctive feature of smart structures is 

that actuators and sensors are often distributed and have a high degree of integration 

inside the structure, which makes a separate modelling impossible. 

From a mechanical point of view, classical structural materials are entirely described 

by their elastic constants, relating stress and strain, and their thermal expansion 

coefficient, relating strain to temperature. Smart materials are materials where strain 

can also be generated by different mechanisms involving temperature, electric field or 

magnetic field, etc., as a result of some coupling in their constitutive equations. 

The most celebrated smart material, beside piezos, is Shape Memory Alloys (SMA, 

Choi et al., 2000). They can recover large strains and are compact, but have no 

sensing capabilities. Although two-way applications are possible after education, 

SMAs are best suited for one-way tasks such as deployment. In any case, they can be 

used only at low frequency and for low precision applications, mainly because of the 

difficulty of cooling. Fatigue under thermal cycling is also a problem. SMAs are not 

used much in vibration control, although an interesting vibration neutralizer is under 

investigation at ISVR (Brennan, 2003). 

Another class of materials for active control is magnetostrictive materials such as 

Telfenol-D. These have been available for more than one hundred years, and are 

similar to piezoelectric materials in the sense that they change shape when exposed to 

a magnetic field (as opposed to an electric field for piezoelectric materials). The main 

advantage of magnetostrictive materials is that they can produce very high strains 

relative to piezoelectric materials (von Flotow et aI., 1994a,b). They have been 

applied in many fields, including active isolation of aircraft components (von Flotow, 
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1988 and 1997, McConnell, 1992, Sutton et at., 1997, and Tzou and Ding, 2001). The 

maximum response is obtained when the material is subjected to compressive loads. 

Magnetostrictive actuators have a long lifetime and can be used in high precision 

applications. 

Electrorheological (ER) fluids and magnetorheological (MR) fluids are materials that 

respond to an applied electric or magnetic field with a dramatic change in rheological 

behaviour. The essential characteristic of these fluids is their ability to reversely 

change from free-flowing liquids to semi-solids, having controllable yield strength, in 

milliseconds when exposed to either an electric or a magnetic field. By contrast with 

ER fluids, MR fluids have the advantages of having higher yield strength, being 

insensitive to pollutions, and using low voltage power. Semi-active and active control 

applications of controllable fluid technology in real-world systems have grown 

steadily (Meng et at., 2001, and Lord, 2002). Examples include controllable dampers 

for vehicular suspension systems, real-time rotary brakes that provide force feedback 

in steer-by-wire systems, rotary and linear dampers, etc. However, high power 

amplifiers are required and a rather complex magnetic circuit is needed in order to 

achieve good performance. 

1.1.9 Sensing 

The range of available devices to measure position, velocity, acceleration, and strain 

is extremely wide, and there are more to come, particularly in optomechanics. 

Displacements can be measured with inductive, capacitive and optical means (laser 

intelierometer, Ghoshal et at., 2000); the latter two have a resolution in the nanometer 

range. Piezoelectric accelerometers are very popular but they cannot measure a DC 

component. Strain can be measured with strain gauges, piezoceramics, piezopolymers 

and fiber optics. The latter can be embedded in a structure and give a global average 

measure of the deformation. 

Presently, a large safety factor is used in determining routine maintenance schedules 

for critical pm1s, such as replacement of skins for aircraft wings or damage detection 

in large space structures, because any failure during operation could prove 

catastrophic (Friswell et al., 1997b, and Friswell and Inman, 1999b). Assuming that 

the location of the structural damage can be identified at its inception, one could apply 

active vibration control on the structure as a means of reducing stresses in the damage 

zone, hence ensuring that the damage does not grow rapidly with time. However, the 
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probability of having an error sensor at the damage location is small, which indicates 

that a different approach would be required for implementing the active control. Work 

is reported (Dunn and Garcia, 1997) aimed at developing an active vibration control 

system that allows the control to minimize the stress or vibration at any arbitrary point 

on the vibrating structure, even where there is no error sensor present. This is 

accomplished by using what are referred to as "virtual sensors". These virtual sensors 

use information from physical sensors at other locations on the structure to estimate 

the vibration response at the virtual sensor location. This approach offers the 

possibility of being able to control the structural vibration at any desired location on 

the structure. The development of health monitoring systems also include the 

identification of specific modes. Modal sensors and actuators have been studies in 

order to reduce the problem of spillover and also reduce the number of transducers 

(Gawronski, 2000, Friswell, 2001). 

1.1.10 Control strategies and issues 

The active isolation control system used for vibration isolation purposes can be either 

feedforward or feedback. When a signal correlated to the disturbance is available, 

feedforward adaptive filtering constitutes an attractive alternative to feedback for 

disturbance rejection; it was Oliginally developed for noise control, but it is very 

efficient for vibration control as well. Its principle is explained in Figure 1.6. 

Pr imar Disturbance Source 

System .. 
Secondary 

Source 

I / 
Adaptive Filter 

~ 

~ 

Reference /' i 
Figure 1.6 Principle of feedforward control. 
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The method relies on the availability of a reference signal correlated to the primary 

disturbance. This signal is passed through an adaptive filter, the output of which is 

applied to the system by secondary sources. The filter coefficients are adapted in such 

a way that the error signal at one or several critical points is minimized. The idea is to 

produce a secondary disturbance that cancels the effect of the primary disturbance at 

the location of the error sensor. Of course, there is no guarantee that the global 

response is also reduced at other locations and, unless the response is dominated by a 

single mode, there are places where the response can be amplified. The method can 

therefore be considered a local one, in contrast to feedback control, which is global. 

Unlike active damping, which can only attenuate the disturbances near the 

resonances, feedforward works for any frequency and attempts to cancel the 

disturbance completely by generating a secondary signal of opposite phase. 

The method does not need a model of the system, but the adaptation procedure relies 

on the measured impulse response. The approach works better for narrow-band 

disturbances, but broadband applications have also been reported. Because it is less 

sensitive to phase lags than feedback, feedforward control can be used at higher 

frequency. This is why it has been so successful in acoustics (Grewal et al., 2001). 

Feedforward control has also been used extensively in the active machinery vibration 

isolation involving a time domain Least Mean Square (LMS) adaptive filter 

(Sommerfeldt et al., 1990, Jenkins, 1993, Jiang et al., 1993, Elliott et al., 1987 and 

1994, and Fuller et al., 1996). The use of an LMS controller allows the systems to 

track the disturbance frequencies as they change, therefore providing optimal isolation 

in the entire frequency range of interest. The efficiency of this method depends on 

determining an appropriate reference signal. When this signal cannot be obtained 

easily, a feedback control has to be used. For example, for known periodic 

disturbances, feedforward control may indeed be preferable, as shown by Nelson et 

al. (1987), but in many cases vibrations are not periodic in nature and it is not possible 

to obtain information of the incoming disturbance soon enough for a feedforward 

control to be effective (EI-Beheiry and Kamopp, 1996). Under those circumstances, 

feedback control is considered the best method. 

A typical feedback control system is shown in Figure 1.7, in which G(jOJ) is the 

frequency response of the plant and H(j OJ) is the frequency response of the feedback 
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controller. The design problem consists of finding the appropriate compensator H(j m) 

such that the closed-loop system is stable and behaves in the appropriate manner. 

uU m) 

Secondary 
actuator 
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Controller 
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+ .. 
+ 

Primary 
di t b ce sur an 

y(j m) 

R esponse 

Figure 1.7 Block diagram of a negative feedback control system including 
the plant and the controller. 

A very large number of papers have been concerned with vibration isolation problems 

and feedback active vibration control methods have been discussed. Karnopp (1995) 

proposed a velocity feedback control method for obtaining a non-resonant response, 

which has been applied to various vibration isolation systems. 

Position feedback has been investigated by Friswell and Inman (1999a). This strategy 

makes the rigidity increase and the transmissibility decrease, as shown by Bhat 

(1991a,b,c). However, to have zero transmissibility, the rigidity must be infinite, so 

the feedback coefficient must be infinite. Hence it is impossible to have zero 

transmissibility with the usual feedback control methods. An interesting discussion of 

the theory of velocity or position feedback control of large space structures is 

presented by Goh and Caughey (1985). In their work, the problem of instability 

caused by the interaction of the actuator dynamics is analysed and it is shown that 

velocity feedback can be unstable, while position feedback was a valid alternative. 

However, in their study an inertial actuator, whose resonance frequency is very close 

to the resonance frequency of the controlled structure, was used. As will be discussed 

later in this thesis, for these applications, the actuator resonance must have a lower 

natural frequency than that of the controlled structure. 
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The trade-off between damping low-frequency resonances and achieving good high­

frequency isolation may be overcome by skyhook damping. This was investigated by 

Beard, von Flotow and Schubert (1994). In their study, skyhook damping 

implementation was possible using reactive actuators since no base dynamics were 

taken into account in the control frequency range, so that an inertial ground was 

available. The effect of skyhook damping has also been investigated for an infinite 

impedance base (Kim, Elliott and Brennan, 1999 and 2001), or for a base without 

significant mobility. Also, a passive implementation of a viltual skyhook vibration 

isolation system is investigated by Griffin et al. (2002). The design and realization of 

the virtual skyhook damper involves the design of both the primary and secondary 

suspension systems. The primary suspension system is designed to meet the static 

deflection criteria and uses low damping to provide low transmissibility at high 

frequencies. The secondary mass-spring-damper is tuned close in frequency to the 

primary system's resonance, and has high damping. This yields a lightly damped 

primary system whose motion is limited at resonance by the virtual skyhook damper 

without increasing the transmissibility at higher frequencies. 

The stability of the feedback controller can be established from the frequency 

responses of the plant and controller, which are assumed to be individually stable. 

This is determined by whether the polar plot of the open loop frequency response, 

G(j m)H(j m), encloses the Nyquist point (-1,0) (Skogestad and Postlethwaite, 1996). 

For example, if reactive actuators are used, the system can be described as a rigid 

piece of equipment, which is supported on top of a base by a set of mounts (springs 

and dashpots in general) and a reactive actuator. In this case a direct velocity feedback 

control proves to be unconditionally stable. This is shown by Serrand et al. (2000) and 

Benassi et al. (2002a). The real part of the plant's frequency response is always 

positive and the control loop has infinite gain margin and a phase margin of 90°, since 

its Nyquist plot is entirely on the right hand side of the imaginary axis. 

In the study by Serrand et al. (1998 and 2000), the effect of the base structure 

dynamics on the formulation of direct velocity feedback control was investigated. In 

the case of a reactive implementation of the control actuators, the secondary forces 

were generated by reacting off the flexible base structure. Therefore the classical 

model of perfect skyhook damping was not valid and the stability of direct velocity 

feedback control had to be reconsidered (Balas, 1978). It was found that no instability 
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or vibration amplification was encountered from potential re-excitation of the flexible 

base by the secondary actuators in the frequency range of analysis. Moreover, changes 

in the dynamics of the base plate did not destabilize the control system, illustrating its 

robustness. 

On the other hand, considering the effects of the equipment and the mounts on the 

stability of the overall system, there are severe limitations. In theory, direct velocity 

feedback is unconditionally stable, provided the equipment can be modelled as a rigid 

body and the mounts as a lumped parameter spring and dampers. In practice, 

instability occurs at very low frequencies due to phase shifts of the electIical 

equipment used, the flexibility in the equipment structure, and the effect of resonances 

in the mount. It is found that although an ideal system might be unconditionally 

stable, real systems are often conditionally stable. Causes of instability at low and 

high frequencies in real systems are investigated by Miller et al. (1992a,b), Li and 

Gibson (1992), Ahmadian et al. (1993), and Ananthaganeshan et al. (2001). 

The practical implementation of feedback control can be either analogue (Swanson 

and Miller, 1993, Franklin, 1994, and Howard and Hansen, 1997) or digital (Gerhold 

and Rocha, 1987, Hodgson, 1991, and Melcher, 1992). The essential components in 

an active control system are the sensor (to detect the vibration), an electronic 

controller and actuators. They all play an important role in active vibration control 

and often place limits on the system performance (Gardonio et al., 1996, Elliott et al., 

1998 and 2001a). Accelerometers often need signal conditioning devices, which 

consist of filters to reject unwanted signals. These filters introduce extra phase shift at 

low frequencies, which is sometimes critical to the stability of the feedback vibration 

control system (Ananthaganeshan et al., 2001 and Benassi et al., 2002a). Actuators 

are used in active vibration control to generate a secondary vibrational response, and 

in practice they can be configured either to react off the base structure or function as 

an inertial actuator. This was investigated by Elliott et al., (2001b). This choice also 

influences the stability margin. In general, the design of a feedback controller 

involves a trade-off between performance (the attenuation of the disturbance) and 

robust stability (the ability to remain stable under changing conditions). 

An imp011ant question in active vibration control relates to actuator and sensor 

placement (Hiramoto et al., 2000). The use of co-located sensor-actuator pairs is 

attractive, because control loops for co-located sensor-actuator pairs can easily be 

guaranteed to be robustly stable (Sun, 1996 and Preumont, 1997 and 2001). 
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Furthermore, because of the relative ease of implementation, active structural 

elements for vibration control with co-located sensing and actuation have gained 

much interest. 

In conclusion, applications with actuators, controllers and passive mounts in an active 

isolator package provide many benefits including simplicity, effective vibration 

isolation, noise attenuation, higher static stiffness, dynamic adaptability, and safety. 

This suggests that there is ample motivation for the use of active mounting systems. 

1.1.11 Modelling 

Many studies of isolators involve systems having only a single mount vibrating in one 

direction (Gardonio and Elliott, 1996), and analytical methods can be used effectively. 

A more detailed study is needed for a system with many mounts (Sutton et al., 1997, 

Brennan, 1997, and Brennan et al., 2000), each of which is a distributed flexible 

component. The finite element method (FEM) could be employed for this type of 

study, although it generates large matrix models that require long simulations on a 

relatively small frequency range of analysis (Petyt, 1998). On the other hand, finite 

element models are very appropriate for describing complex structures, compared to 

analytical methods, and can be corrected using test results (Mottershead and Friswell, 

1993). Two alternative approaches are also suitable. The first one is the statistical 

energy analysis (SEA) approach studied in great detail by Lyon and Dejong (1995) 

and Ohayon and Soize (1998). This approach is based on power transmission 

concepts using coupling factors between source and receiver structures, assuming the 

two structures to be of either infinite or semi-infinite extent. Unfortunately, this 

simplification could lead to some problems in the so-called low-mid-frequency range. 

The second approach is based on impedance and mobility matrices (IMM). Recent 

studies on active isolation by Gardonio et al. (1997a,b, 1998, 1999, 2000) have 

suggested the need for mathematical models which give a detailed analysis of the 

coupled vibration transmission mechanism and, at the same time, provide a summary 

of the overall phenomenon and allow a global interpretation of the dynamics of the 

active isolator system. Good results have been obtained by using the IMM approach, 

where the system is divided into individual components and each component is 

studied in terms of input and transfer mobilities or impedances (Liang et al., 1992). 

The form of a point mobility of a typical structure depends upon the frequency range. 

At low frequencies, a freely suspended structure moves as a rigid body in a possible 
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six-degree-of-freedom system. Alternatively, a structure that is connected to ground 

behaves as a spring and dashpot combination. These are the simplest mobility 

elements, which may be added in various arrangements to model more complicated 

structures in what is called a lumped element formulation. In the second zone, at 

higher frequencies than the rigid body motion, the structure is free to move in its 

modes of natural vibration. The mobility of each mode is that of a single degree of 

freedom system. The point mobility of a structure therefore looks like the summation 

of all the modal responses. At high frequencies, or with heavy damping, the modes 

overlap in such a way that the mobility tends to resemble that of an equivalent infinite 

structure (Meirovitch, 1967 and 1990, and Crandall et al. 1978). 

Formulae for point and transfer mobilities of various homogeneous structures such as 

beams, plates, and shells are given by Bishop and Johnson (1960) and Leissa (1969). 

In this thesis, a matrix model has been used which assumes that the system is divided 

into elements, the dynamics of each of which, modelled either as lumped or 

distributed systems, is evaluated using point or transfer mobility terms. 

1.1.12 Applications 

Isolating a piece of delicate equipment from the vibration of a base structure is of 

practical importance in various engineering fields. Examples are the vibration 

isolation of the instrument boxes in an aircraft and the isolation of telescopes on 

satellites. An active isolation system can be implemented over a broad frequency band 

using different feedback control strategies (Gennesseaux, 1997). 

There are many possible applications for damping systems (Ivers and Miller, 1991), 

including space structures (Kaplow and Velman, 1980), aircraft, automobiles, 

electronic components (Scheuren et al., 1995), satellites, marine structures, consumer 

products, disk drives, and defence systems. One industry that is particularly 

interested in active damping systems is the semiconductor industry. Many machines 

used by the semiconductor industry are sensitive to disturbances from floor vibration 

from sound pressure deviations, and from their own internal moving parts (Alvarez­

Salazar, 2002). Examples include laser-based systems and photolithography systems. 

The Navy is also interested in active vibration damping to create an undetectable 

submarine (Senior, 2002). Currently, the five main sources of submarine noise and 

vibration are: machinery vibration, propeller/propulsion noise and vibration, global 

hull resonances, flow noise, and cavitations. The first three of these sources are tonal 
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noises that have frequencies in the range of 10 to 100 Hz. The last two are broadband 

noises, which means they have frequencies exceeding 10 kHz. Due to the limited 

recoverable strains of current materials and the constant need for novel active 

damping system, new active damping materials are to be explored. A very interesting 

and promising active vibration control solution is the "Smart Spring" mounting 

system, developed by BAE Systems and ALSTOM for the US Office of Naval 

Research (Daley et al., 2002). The main application of this technology is the 

machinery isolation from the hull in marine vessels. The "Smart Spring" mounting 

system is a hybrid active/passive system, based on a force feedback, which aims to 

zero the mounting stiffness. 

1.2 Contributions of the thesis 

The contributions of this thesis can be summarized as: 

• The theoretical analysis and experimental study of the stability and 

performance of an inertial actuator with inner force feedback control. 

• The theoretical design and experimental construction of a novel device, based 

on an inertial actuator with inner displacement feedback, for active vibration 

control. 

• The theoretical and experimental development of an active vibration isolation 

system using an inertial actuator with either inner force or inner displacement 

feedback control. 

• The theoretical and experimental analysis of the equivalent impedance and its 

approximations for active vibration control of panels. 
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1.3 Overview of the thesis 

The first necessary step for developing and understanding how inertial actuators can 

be used to either isolate sensitive pieces of equipment or suppress the vibrations of a 

plate is to analyse their dynamic behaviour and their topologies of construction. In 

Chapter 2 the mechanical model of a typical inertial actuator is investigated, followed 

by the analysis of the electro-magnetic components that are actually needed to supply 

the required force. Before entering the main part of the thesis, Chapter 2 reviews the 

main properties of the inertial actuators that have been used in the experimental 

phases of this research. 

Chapter 3 presents the theory behind the use of an inertial actuator with inner 

feedback control. In particular, when the total transmitted force by the inertial actuator 

is measured and fed back to the actuator, the actuator resonance frequency is lowered 

as if mass was added to the actuator moving mass. On the other hand, if the measured 

total transmitted force is integrated before being fed back, the overall effect on the 

actuator is to add damping to it, implementing, in essence, a skyhook damper. The 

first strategy turns out to be very sensitive to stability issues, even though it perfOlms 

very well. The second strategy, however, is more robust, but it does not perform as 

well as the first. The idea of implementing a phase-lag compensator as a trade-off 

between the two previous strategies is then discussed. 

Alternatively, we would like to be able to access the internal structure of the inertial 

actuator, modify its resonance frequency if it happens to be too high for the 

application and apply suitable control strategies in order to minimize the equipment 

velocity in a vibration isolation system, or minimize the total power in a vibrating 

panel. In Chapter 4 a new inertial actuator is presented, which suggests a very 

interesting way to design an inertial actuator using inner displacement feedback 

control, which turns out to be more rohust, simpler and therefore cheaper than the 

strategies described in Chapter 3. 

In Chapter 5 the active vibration isolation problem will be discussed using an inertial 

actuator and equipment velocity feedback. A review of different single loop and 
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optimal control strategies for active vibration isolation using an inertial actuator will 

be presented. For all of them, a matrix model has been used which assumes that the 

system is divided into four elements: base structure, passive mounts, equipment, and 

inertial actuator. Feedback stability margins and peiformance are considered for each 

case. In particular, once the theoretical analysis is completed, a realistic case using 

real commercial components is analysed. The aims of the chapter are to introduce one 

of the practical applications of an inertial actuator and to discuss two of the main 

constraints that a designer must take into account when working on vibration control 

with inertial actuators. These constraints are the fact that the inertial actuator 

resonance frequency has to be lower than the first resonance frequency of the 

controlled structure, and the fact that the resonance must be well damped in order to 

guarantee good stability margins. 

Chapter 6 analyses the active vibration isolation problem when the piece of equipment 

is installed (through passive mounts) on a flexible base and controlled with an inertial 

actuator having inner actuator force feedback. The specific problem considered in 

Chapter 6 is what can be done to minimize the equipment velocity using the devices 

described in Chapter 3, when the inertial actuator resonance frequency is lower than 

the first equipment resonance frequency. In Chapter 7, experiments are described to 

compare with the theoretical findings. 

In Chapter 8, the same piece of equipment is controlled using an inertial actuator with 

inner actuator displacement feedback. Chapter 8 suggests that using the device 

described in Chapter 4 for vibration isolation guarantees good stability margins and 

peifOlmance. The critical importance of the proof-mass of the inertial actuator will 

also be discussed. The experiments in Chapter 9 serve to verify and validate the 

theory. They also demonstrate the ability to build such a device for active isolation 

purposes. 

Active suppression of panel vibration is an important issue in many engineering 

applications and meeting stringent constraints such as maximum strength and 

minimum weight is a difficult task to accomplish. 

Chapter 10 addresses these issues and analyses optimal solutions in order to minimise 

the total power of a vibrating plate. A vibrating flexible finite plate is considered and 
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its equivalent impedance for global control is obtained. The study is performed at a 

theoretical level, and aims to determine approximations to the equivalent impedance 

in order to reduce the total power of the vibrating plate. These results are then 

compared to the performance of passive treatments based on springs and dampers. 

In Chapter 11, approximations to the equivalent impedance are proposed, obtained by 

a passive device as well as an active device, based on a modified inertial actuator with 

inner displacement feedback control. The vibration suppression of a flexible plate is 

then investigated experimentally, using the modified inertial actuator. 

The overall results of this research are then discussed in the conclusions in Chapter 

12, along with suggestions for further future work. 
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Chapter 2 

Inertial actuator review 

2.1 Introduction 

An inertial actuator is a mass supported on a spring and driven by an external force. 

The force in small actuators is normally generated by an electromagnetic circuit. The 

suspended mass can either be the magnets with supporting structure or in some cases 

the coil itself. Unlike reactive actuators, inertial actuators do not need to react off the 

base structure, so they can be used as modules that can be directly installed on a 

vibrating structure. This feature makes them very useful. 

Inertial actuators are mainly used for active control purposes (Holloway, 1993), 

including active vibration control of space structures (Garcia et ai., 1995), acti ve 

isolation systems on satellites (Flint et al., 2000) and active noise and vibration 

control on turbo-prop aircraft (Hinchliffe et ai., 2002). On a larger scale, applications 

of inertial actuators can be found in civil structures. In actively controlled civil 

structures, inertial actuators are common because the can generate the large forces 

required. On a smaller scale, inertial actuation can be used to suppress vibration and 

structure-borne noise using MEMS-based active tuned mass dampers (Dosch et ai., 

1995). 
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2.2 Dynamic model 

A simple mechanical model of an inertial actuator is shown in Figure 2.1. A proof­

mass, rna' is suspended on a spring, ka' and a damper, ca' and in parallel with them, 

an actuator force fa drives the proof-mass. The presence of an inertial force fi acting on 

the inertial actuator mass must also be considered. Va and Ve are, respectively, the 

moving mass velocity and the base velocity. 

Figure 2.1 Mechanical model and sign convention of an inertial actuator. 

The equation describing the dynamics of the system in Figure 2.1 is given by 

where va and ve are complex velocities and an e iax time dependence is assumed. 

Important parameters in characterising the behaviour of an inertial actuator are its 

resonance frequency, which is given by 

(2.2) 

and the actuator damping ratio, defined as 

(2.3) 

The transmitted force f t is a linear function of the actuator force fa and the 

equipment velocity Ve , and may be written as 
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(2.4) 

where 

(2.5) 

is the blocked response of the actuator and 

(2.6) 

is its mechanical impedance. The blocked response of a typical actuator with Sa = 

4.7% is illustrated in Figure 2.2, showing the resonance at its natural frequency. At 

high frequency this response tends to unity, with no phase shift, indicating that the 

transmitted force it follows the actuator force ia since the mass provides a stable 

inertial platform off which to react the force. The mechanical impedance of the 

actuator, as plotted in Figure 2.3, is mass-controlled at low frequency, stiffness­

controlled at higher frequency and at the resonance frequency is dominated by the 

actuator's damping. It is given by the parallel of the stiffness term ka and damping 

term ca ' with the series of the mass term n1a . 
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Figure 2.2 Blocked response, transmitted force per unit actuator force, of 
the inertial actuator as a Junction of normalized frequency. 

27 



60 

.:;50 
E 
Z 
C 40 

~ 
en 30 
"0 

0.5 1.5 2 2.5 3 3.5 4.5 
Normalized Frequency (ro/OJ.) 

+270 

+180 

+90 

~ 0 

-90 

-180 

-270 
0 0.5 U 2 ~ 3 U U 

Normalized Frequency (ro/oo) 

Figure 2.3 Mechanical impedance, reaction force per unit imposed 
velocity, of the inertial actuator as afunction of normalized frequency. 

The inertial response of the system is computed by setting the control force to zero in 

equation (2.1). The relative displacement x (between the actuator's proof-mass and 

the actuator's reference base) per unit inertial forcefi is therefore given by 

x 1 

f 2 . k 
i -({) ma + J{{}Ca + a 

(2.7) 

and is illustrated in Figure 2.4. In the low frequency regime (below the mechanical 

resonance) the actuator's inertial response is dominated by the mechanical stiffness. 

In fact, the response of the system to a static force is equal to lIka . The height of the 

resonance is dependent on any internal mechanical damping (1/ ({)aca) and in some 

cases eddy current damping. At this resonance, a phase shift occurs. Beyond the 

mechanical resonance, the inertial response is dominated by the actuator's mass. In 

this region, the phase of the transfer function is flat. 
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Figure 2.4 Inertial response, relative displacement per unit inertial force, 
of the inertial actuator. 

2.3 Electro-magnetic model 

In the previous section, in presenting and applying the dynamic model of the inertial 

actuator, the machine which would supply the force fit) to the system was not 

modelled, because the internal dynamics of such a machine are well beyond the 

bandwidth of the structural response. Consequently, they do not contribute 

significantly to the dynamics of the structure. However, knowing the model of the 

driving mechanism is essential in order to size and apply the light actuator for a given 

problem. 

Inertial actuators are direct drive, limited motion devices that utilize a permanent 

magnet field and a coil winding to produce a force proportional to the current applied 

to the coil. These non-commutated electromagnetic devices are used in linear 

applications requiring linear force output, and high acceleration, or high frequency 

actuation. There is extensive literature concerning the modelling of these devices, and 
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it will be here only reviewed. For a more extensive descliption of their modelling and 

operation, see Basak (1996), Boldea et al. (1997), and CSA Engineeling (2002). 

The electromechanical conversion mechanism of an inertial actuator is governed by 

the Lorentz Force Plinciple. This law of physics states that if a current-carrying 

conductor is placed in a magnetic field, a force will act upon it. The magnitude of this 

force is determined by the magnetic flux density B, the current i, and the olientation 

of the field and the current vectors. Furthermore, if a total of N conductors (in selies) 

of a length l are placed in the magnetic field, the force acting upon the conductors is 

given by 

(2.8) 

where kb equals a constant. The ratio of the force to current f / i = K f in equation 

(2.8) is called the magnetic force constant. Figure 2.5 is a simplified illustration of 

this law of physics. 

N S 

Figure 2.5 Illustration of the Lorentz Force Principle. 

In Figure 2.5, the direction of the force generated is a function of the direction of 

current and magnetic field vectors. Specifically, it is the cross product of the two 

vectors. If current flow is reversed, the direction of the force on the conductor will 

also reverse. If the magnetic field and the conductor length are constant, as they are in 

an inertial actuator, then the generated force is directly proportional to the input 

30 



cUlTent. Figure 2.5 also illustrates that a conductor moving though a magnetic field 

will have a voltage induced across the conductor. The magnitude of the voltage, Vb, is 

dependent on the magnetic flux density, B, the length of the conductor, 1, and the 

speed of the proof-mass, Va, as the moving mass traverses the field. The voltage 

potential induced in the conductor (i.e. the back EMF) is given by 

(2.9) 

where kE equals a constant and N equals the total number of the conductors of length 

l. Equations (2.8) and (2.9) can be restated as follows: a device that contains a 

permanent magnet field and a coil winding moving in the field will produce a force 

proportional to the CUlTent carried in the coil and a voltage proportional to the velocity 

of the proof-mass. 

In its simplest form, an inertial actuator is a tubular coil of wire situated within a 

radially oriented magnetic field as shown in Figure 2.6. 

permanent magnet 

coil fixed, working air gap 

Figure 2.6 Schematic of an inertial actuator. 

proof-mass and 
flux return (soft iron) 

stator and attachment 
to equipment 

The field is produced by permanent magnets embedded on the inside diameter of a 

felTomagnetic cylinder, alTanged so that the magnets facing the coil are all of the 

same polarity. An inner core of fenomagnetic material set along the axial centreline 

of the coil, joined at one end to the permanent magnet assembly, is used to complete 

the magnetic circuit. The force generated axially upon the coil when cunent flows 

though the coil will produce relative motion between the field assembly and the coil, 
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provided the force is large enough to overcome friction, ineltia, and any other forces 

from loads attached to the coil. 

An inertial actuator is a single-phase device. Application of a voltage across the two 

coil leads will generate a cunent in the coil, causing the coil to move axially along the 

air gap. The direction of the movement is determined by the direction of cunent flow 

in the wire. Within certain limits defined by the magnetic circuit geometry, the force 

produced by an inertial actuator is linearly proportional to the cunent through its coil, 

as shown in equation (2.8). 

Figure 2.7 depicts the equivalent electrical circuit of an inertial actuator. When a 

voltage V is applied across the terminals, a cunent i circulates through windings of 

resistance R. At the same time, the actuator generates a back electromotive force 

(EMF), given by equation (2.9). This back EMF Vb is proportional to the proof-mass 

velocity, Va , by a constant Kb and can be rewlitten as 

(2.10) 

It must be said that it directly opposes the applied voltage and the ratio between Kj 

and Kb is constant. In addition, the actuator coil has an inductive voltage drop (this 

value is usually small, often negligible) 

VI = L(dildt}. (2.11) 

Letting Vc represent the iR drop across the coil, application of Kirchhoffs Voltage 

Law thus gives the equation that describes the inertial actuator 

(2.12) 

It is now possible to derive all of the parameters needed in sizing and applying inertial 

actuators. 
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V/=Ldildt 

Figure 2.7 Equivalent electrical circuit of an inertial actuator. 

2.4 Practical issues concerned with inertial actuator design 

The performance of an inertial actuator is constrained by several factors, but in 

general the system will follow the equations described above. The first constraint is 

the possibility of fatigue of the mechanical spring elements that support the moving 

mass. Fatigue issues can generally be avoided through careful design of the flexures 

to ensure that the flexure material never experiences displacements that would push 

the stresses above allowable fatigue limits (Anderson et al., 2001). 

Depending on the actuation orientation with respect to gravity or other static 

accelerations, the effective end-stop limit can be reduced as the suspended mass is 

brought closer to one end stop. The worst case is when the actuator output axis is 

aligned with the local static acceleration field, which is the case in the problem 

analysed in this thesis. The severity of the gravity induced sag can be related directly 

to the inverse of the square of the internal resonance frequency (the relative 

mag g ~ 
displacement x of the proof-mass is given by x = -- = -2 ' where g "" 9.8 ms ). 

ka (j)a 

Consequently the lower the frequency, the greater the sag. Unfortunately, low 

resonance frequencies are required by design in order to provide good performance, 

for example, in vibration isolation systems (Elliott et al., 2001a). 
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The sag can be offset with a constant DC field (CSA Engineering, 2002) in the coil, 

but this creates a constant power consumption that might be undesirable in some 

applications. Another solution is to design the flexures to tolerate a large range of 

motion (Minus K Technology, 2002, and Motran Inc., 2002) such that any induced 

sag is a minor portion of the total stroke. This however introduces the possibility of 

cubic stiffening of the flexures in some designs which lead to distortions in the force 

output at large strokes. Finally, another interesting solution is proposed by Chase et 

al. (1999), where a controller, based on the measurement of the relative displacement 

of the proof-mass and its velocity with respect to the actuator's base, centres the 

moving mass at mid-stroke. 

The performance of an inertial actuator is also limited by the resistive nature of the 

actuator coil. Due to this resistance, power is internally dissipated inside of the coil. 

Higher dlive levels cause more dissipation and excessive levels could damage the 

coils. Finally, in the high frequency range there are generally limitations introduced 

by the power amplifiers used to drive the actuator. As a general rule, actuator force 

output scales with the available magnet volume and hence overall actuator weight 

(Flint et al., 2000). Performance can be enhanced by using higher grade magnets but 

this can result in a serious cost penalty. 

Stroke may be specified as the total displacement from one end of travel to the other 

end, or as a ± displacement from a mid-stroke reference. The mass or volume of an 

inertial actuator increases as its stroke and blocked force increase. This condition 

results from the added magnet materials needed in long stroke applications, as well as 

the additional back-iron needed to carry the flux of the added magnet. The trade off 

between maximum allowable stroke and maximum driving force must be considered 

(Lindner et al., 1991, 1994, and 1997). In fact, fa (max) = (j)2111a xmax ' which indicates 

that at low frequency larger strokes are allowed for a given maximum driving force. 

At higher frequencies, a given maximum driving force poses severe limitations on the 

stroke. 

A second design constraint is given by the force constant expressed by equation (2.6), 

which can also be expressed in relation to the maximum allowable driving force 

through the equation fa (max) = Krimax ' where imax is the maximum current that can be 

provided to the actuator. 
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2.5 Examples of inertial actuators 

For the experiments, three kinds of inertial actuators were considered. The actuator 

used in Chapter 7 was a modified commercial shaker LDS Ling Dynamic Systems 

VIOl, while the actuator used in Chapter 9 was a modified ULTRA Electronics 

Active Tuned Vibration Attenuator (ATVA). The Aura AST-2B-04 inertial actuators 

were also tested, but the specs vary from one to another because precision 

manufacturing is not guaranteed. For this reason, they were not used in the active 

control experiments. 

A simplified schematic of the LDS inertial actuator is assumed to be that one shown 

in Figure 2.6, in which the proof-mass is a moving permanent magnet and the stator 

holds the coil. In this configuration only one current is present and the movement of 

the proof-mass is in the vertical direction. It must be said that the LDS actuator was 

not taken apart in order to determine its exact construction, even if most of it can be 

found in the manuals. The product is sealed, and opening it would cause damage. A 

picture of an LDS VIOl is shown in Figure 2.8. In reality, the LDS VIOl is mostly 

used as a shaker which reacts off a base structure. Figure 2.9 shows how a simple 

modification allowed us to use this type of actuator as an inertial actuator. Four soft 

steel springs were used to sustain the weight of the case, which acted as the moving 

mass of the inertial actuator. Previously, four elastic bands were used, but they 

showed a very limited linear range. 

Table 2.1 reports some of the main properties of the actuator. Apart from the dynamic 

mass, which was gathered from the manual, the other electro-mechanical properties 

were measured experimentally. The actuator was mounted on a rigid steel block, 

whose mass is 6 kg. At the base of the steel block, soft foam was placed in order to 

have the base dynamics at very low frequency. A force gauge was installed between 

the inertial actuator and the base. The measured dynamic response (output force per 

uni t input voltage) is shown in Figure 2.10. After the resonance at about 11 Hz, the 

response is flat up to approximately 500 Hz. 
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Figure 2.8 LDS Ling Dynamic Systems VIOl used in the experiments in 
Chapter 7. 

Figure 2.9 Modification of the LDS Ling Dynamic Systems VIOl in order 
to make it operate as an inertial actuator. 
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Figure 2.10 Measured dynamic response of the LDS Ling Dynamic 
Systems VlOl inertial actuator. The input is white noise, connected to the 
actuator's leads, and the output is the force gauge measurement. 

The phase plot in Figure 2.10 shows that an extra phase shift is present in the system, 

beside the 1800 phase shift due to the actuator (Figure 2.2). This is mainly due to the 

inductance in the coil. In fact, the measurement of the electrical impedance (output 

voltage per unit input current) of the LDS VIOl (Figure 2.11) reveals that the phase is 

not constantly zero over the frequency range. At 500 Hz, the magnitude of the 

electrical impedance is about 4.17 Q and the mechanical resonance at 11 Hz is hardly 

noticeable. The magnetic force constant K f is obtained by mUltiplying the values in 

Figure 2.10, which shows the measured force/voltage, by the values in Figure 2.11, 

which shows the measured voltage/cUlTent. In particular, the magnitude of the 

magnetic force constant ends up being reasonably flat above the resonance frequency, 

since the measured dynamic response slightly descends and the electrical impedance 

increases over frequency. Also, the phase of the magnetic force constant looks like the 

theoretical curve in Figure 2.2, where a 1800 phase shift occurs. By summing the 

experimental phases in Figure 2.10 and Figure 2.11, it can be noted that the extra 

phase shift in Figure 2.10 is mostly compensated for by the electrical impedance. 
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Figure 2.11 Measured electrical impedance of the LDS Ling Dynamic 
Systems VIOl inertial actuator. 

An unsealed ULTRA ATVA (with no manual) was available for the experiments 

described in Chapter 9, so that the internal components could be accessed. Figure 2.12 

shows a picture of the ULTRA actuator as it can be purchased from ULTRA 

Electronics Ltd. and Figure 2.13 shows a schematic cross-section of some of its 

internal components (Hinchliffe et al., 2002). The ULTRA ATVA consists of a 

magnetised mass mounted between two springs with an electrical coil driven by an 

input signal. 

The dynamic response of the ULTRA actuator was tested. The actuator was mounted 

in the same manner as it was described previously for the LDS actuator. Figure 2.14 

shows the measured dynamic response of the system and the coherence obtained 

during the measurement. The presence of several resonances in the frequency 

response can be noted. In particular, the actuator's main resonance frequency is at 

73.8 Hz, while the internal resonance at 150 Hz is due to a rocking mode of the 

internal dynamic mass. The presence of other resonances in the frequency response at 

400 Hz and 1550 Hz due to internal dynamics can also be noted. Also, at higher 

frequencies, the magnitude is not flat. Table 2.1 reports other features of this actuator. 
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Figure 2.12 ULTRA Active Tuned Vibration Attenuator used in the 
experiments in Chapter 9. 

coil attached 
to body 

suspenSIOn 

moving 
magnet 

spnngs 

Figure 2.13 Schematic of the cross-section of an ULTRA Active Tuned 
Vibration Attenuator used in the experiments in Chapter 9. 
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Figure 2.14 Dynamic response of the ULTRA inertial actuator. The input 
is white noise, connected to the actuator's leads, and the output is the 
force gauge measurement. 

The phase plot in Figure 2.14 shows a greater extra phase shift than expected 

theoretically, which is in pati due to the electrical impedance. The measurement of the 

electrical impedance of the ULTRA actuator (Figure 2.15) shows this phase shift, as 

well as the ascending magnitude. This behaviour is mainly described by an 

impedance, dominated by a resistor at low frequency, and an inductance at high 

frequency (R + j mL). At 500 Hz, the magnitude of the electrical impedance is about 

5.62 Q and the distinct mechanical resonance at 73.8 Hz can be seen. 
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Figure 2.15 Measured electrical impedance of the ULTRA inertial 
actuator. 
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The Aura AST-2B-04 is designed to be used as a body shaker in videogames. Despite 

its low cost, it showed a very interesting behaviour. Unfortunately, these actuators are 

assembled by hand, and therefore show slightly different properties depending on the 

unit. However, they can be used effectively in active control applications (Li et al., 

1999). Table 2.1 shows the properties of one of our units . Apart from the dynamic 

mass , which was gathered from (Cazzolato, 2002), the properties of the Aura actuator 

:were measured experimentally. Figure 2.16 shows a picture of that unit and Figure 

2.17 shows its schematic. Since no casing is present, the schematic was obtained by 

direct inspection. It is composed of a housing, a moveable mass (which consists of a 

permanent magnet and a core), flexible diaphragms as springs, and a coil. The mass is 

supported on two diaphragms which are fixed to the housing. One diaphragm·is bolted 

to each side of the mass. Unlike the ULTRA actuator, which is provided with two 

flying leads, the Aura actuator and the LDS V101 are provided with two terminal 

posts. 

Figure 2.18 shows the measured dynamic response of the Aura actuator between input 

force and output moving mass acceleration, which is proportional to the transmitted 

force it ' as it will be explained in Chapter 3. After the resonance frequency, the 

response gradually descends. 

Figure 2.16 Aura AST-2B-04 inertial actuator. 
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Figure 2.17 Schematic of the cross-section of an Aura AST-2B-04. 
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Figure 2.18 Measured dynamic response of the Aura AST-2B-04 inertial 
actuator. The input is white noise, connected to the actuator's terminal 
posts, and the output is the proof-mass acceleration. 
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The phase plot in Figure 2.18 shows an extra phase shift, which is present in the 

system mainly due to the inductance in the coil. This is confirmed by the 

measurement of the electrical impedance in Figure 2.19. At 500 Hz, the magnitude of 

the electrical impedance is about 4.37 Q and the mechanical resonance is at 44.5 Hz. 
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Figure 2.19 Measured electrical impedance of the Aura AST-2B-04 
inertial actuator. 

Some of the properties of the three actuators were measured directly and some 

estimated by inspection, without damaging them. Table 2.1 shows the comparative 

results. In particular, the magnetic force constant K f was gathered from the high 

frequency behaviour of the ratio between transmitted force and actuator input voltage, 

and the electrical impedance. This latter physical quantity was computed by 

subtracting 1 Q from the ratio between the measured voltage across a system 

composed by the actuator and a 1 Q resistor placed in series, and the voltage across 

that 1 Q resistor. 
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Modified ULTRA Aura AST-2B-04 
LDS VIOl ATVA 

resonance frequency 11Hz 73.8 Hz 44.5 Hz 

damping ratio S 4.8 % 4% 4% 

total mass 1.01 kg 0.42 kg 0.64 kg 

dynamic mass rna 0.91 kg 0.24 kg 0.4 kg 

magnetic force 

constant K f 13.5 N/A 30N/A 7N/A 

electrical impedance 4.17 Q 5.62Q 4.37 Q 

stiffness ka 3900 N/m 51000 N/m 31000 N/m 

stroke ±1.25 mm ±3mm ±2mm 
max input voltage ±lOV ±4 V ±8.3 V 
max input CUlTent 1.5 A 1.5 A 1.3 A 

max bandwidth 2000 Hz 2000 Hz 2000 Hz 
tested 

overall diameter 65mm 60mm 120mm 
height 65mm 50mm 30mm 
cost $450 ? $12 

remarks usually used as a presence of flat response after 
reacti ve actuator resonances in the the resonance and 

frequency response up to 1 kHz, but 
due to internal magnitude depends 

dynamics on unit 
Table 2.1 Comparative results obtained experimentally of the inertial 
actuators used in the active control experiments. 
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Chapter 3 

Inertial actuator with inner force feedback 

3.1 Introduction 

In this chapter, the behaviour of an inertial actuator (Figure 3.1) with inner feedback control 

strategies, based on the measurement of the total transmitted force Jr, is analysed. ma is the 

inertial actuator dynamic mass (= 0.91 Kg), Ca is the inertial actuator damping factor (= 5.8 

N/ms- l
), ka is the inertial actuator spring stiffness (= 3900 N/m), fa is the control force, Va is 

the velocity of the moving mass, and Ve is the inertial actuator base velocity. These specific 

values of the parameters were used to match the behaviour of the commercial shaker LDS 

Ling Dynamic Systems V 101. 

Figure 3.1 Mechanical model and sign convention of an inertial actuator. 
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The transmitted force, fr, can be expressed as a function of the control force and the 

equipment velocity as in equation (2.4). In this specific case, the magnitude and phase of 

the blocked actuator response, Ta , is plotted in Figure 3.2(a) from which it can be seen 

that Ta is negative at low frequency. In fact, when fa is positive, the spring and damper 

components within the actuator are expanded and therefore they generate a force which 

tends to restore the system to its natural condition. Given the sign convention in Figure 

3.1, this force is equal to - fro Also, it can be seen that fr tends to fa above the inertial 

actuator's natural frequency. 

The magnitude and phase of the frequency response of the mechanical impedance of the 

passive components of the inertial actuator, Za' is shown in Figure 3.2(b), in which it can 

be seen that the real part is always greater than zero (passive behaviour). Also, at high 

frequency, the impedance tends to the damping term, as shown in Figure 2.3 as well. 
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Figure 3.2 (a): Magnitude and phase of the blocked response of the inertial 
actuator. (b): Magnitude and phase of the frequency response of the mechanical 
impedance of the passive components of the inertial actuator. 
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3.2 Direct force feedback control 

The inertial actuator with inner actuator force feedback control is shown schematically in 

Figure 3.3. The transmitted force it is measured and fed back to the inertial actuator 

through a feedback controller with frequency response H(jm). The command signal!c can 

be considered, in control terms, as the reference point (Franklin et al., 1994). In this 

section the stability and performance of the actuator with various types of inner actuator 

force feedback will be discussed. 

HUm) 

Figure 3.3 Schematic of an inertial actuator and implementation of the inner 
force feedback contralloop. 

If H(jm) = hj, where lLJ is a positive constant, direct force feedback is implemented. The 

Nyquist plot of the open loop response of the blocked actuator response is shown in Figure 

3.4, which allows the relative stability of the system to be assessed (Franklin et al., 1994). 

Direct force feedback control is seen to be unconditionally stable in this ideal case since 

for no feedback gain would the Nyquist plot enclose the (-1,0) point. At low frequency, 

the Nyquist plot does lie very close to the real axis, however, and therefore instability is 

likely to occur at high gains in real systems where an additional low frequency phase shift 

may be present due to the electronic components (Brennan et al., 2002, and Benassi et aI., 

2002b). 
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Figure 3.4 Nyquist plot of the open loop response for the inertial actuator with 
direct force feedback (hi = 1) attached to a rigid structure. 

It can also be noted that at high frequency the Nyquist plot does not go to the origin and 

this is due to the fact that the magnitude in the con'esponding Bode plot (Figure 3.2(a» 

tends to a constant. 

An important assumption that underlies the result shown in Figure 3.4 is that the 

supporting structure which the inertial actuator is attached to is assumed to be perfectly 

rigid. For a more general analysis equation (2.4) can be expanded with the base velocity 

v e written in terms of the input mobility of the structure Ye as 

(3.1) 

Substituting equation (3.1) into equation (2.4) the plant transfer function in this case, 

between actuator force Ia and transmitted force It, is given by 

(3.2) 
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The difference between the blocked plant response, Ta , and that when it is loaded by the 

structure, is the factor (1 + ZayJ-1 
• If the structure is vibrating with velocity vep before 

the actuator is attached, its velocity after the actuator has been attached is given by 

Ve = vep + Ye f t . (3.3) 

Assuming that the actuator is undriven, fa = 0, then f t from equation (2.4) will be equal 

to - Za ve. Substituting this into equation (3.3), the fractional change in the structure's 

velocity due to the attachment of the undriven actuator (i.e. its passive effect on the 

structure's vibration) is given by 

Ve 1 
=--- (3.4) 

which provides some physical interpretation of the effect of the mobility of the structure 

on the inertial actuator's plant response with inner force feedback. The reciprocal 

frequency response of the plant in the case of direct force feedback control, from equation 

(3.2), can be written as 

(3.5) 

The reciprocal of the blocked actuator response Ta (Figure 3.2(a)) has a phase shift 

between 0° and + 180°. Both Z a and Ye are passive terms and thus their individual phase 

shift is between ±90°. Consequent! y Z a Ye and thus [1 + Z aYe] could vary between ± 180°. 

The overall phase shift of equation (3.2) can therefore, in general, range between -180° 

and +360° ; and so in most general case a constant gain feedback loop is only 

conditionally stable. In the case of the ideal inertial actuator, however, the phase of Za is 
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restricted to being between 0° and +90° below its natural frequency and between -90° and 

0° above its natural frequency. 

One of the applications of the device described in this section, as will be discussed in 

Chapter 6, is the vibration isolation of a sensitive piece of equipment using an outer 

equipment velocity feedback loop to provide skyhook damping. In order to implement a 

stable outer closed-loop system with an inertial actuator, the actuator resonance must be 

below the first resonance frequency of the structure under control (Elliott et al., 2001a, 

and Benassi et al., 2002a). The modification of the plant response due to loading by the 

structure is not as severe in this case as in the most general case described above. For 

example the Nyquist plot of a system composed of an inertial actuator with inner force 

feedback control mounted on a rigid piece of equipment, which is connected to a vibrating 

base through a resilient mount, is shown in Figure 3.5, in which the natural frequency of 

the equipment on its resilient mount is about twice the actuator's natural frequency. The 

phase shift of the plant is again restricted to between 0° and + 180°, with the first loop, at 

low frequency, determined by the behaviour of the inertial actuator, while the smaller 

loop, at higher frequency, describes the dynamic loading effect of the equipment on its 

resilient mount on the actuator. 
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Figure 3.5 Nyquist plot of the open loop response for the inertial actuator with 
direct fo rce feedback (hI = 1) attached to a flexible structure. 
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The secondary force fa for the inner force feedback system shown in Figure 3.3 is given 

by 

(3.6) 

which, when substituted into equation (2.4) and expanded, provides the closed loop 

transmitted force as a function of the command signal and the equipment velocity. This is 

given by 

(3.7) 

which can be grouped as 

(3.8) 

where T~l and Z~l are the blocked response and mechanical impedance of the actuator, as 

modified by the inner feedback. The closed-loop response of the actuator with inner force 

feedback is given by the transmitted force it per unit control command fe , as plotted in 

Figure 3.6(a). When the inner feedback gain hfincreases, the transmitted force tends to the 

control command fc. This means that the transmitted force can be regulated using the 

command signal f e • A second important aspect is that when the feedback gain ht 

increases, the actuator resonance is shifted to lower frequencies, while its magnitude 

increases. The transmitted force it is proportional to the acceleration of the moving mass 

rna and consequently inner force feedback is equivalent to feeding back the acceleration of 

the moving mass. Inner force feedback control can thus be physically interpreted as 

adding an "apparent" mass to the inertial actuator moving mass (Benassi et al., 2DD2c). 

Although this lowering of the actuator's natural frequency is desirable when used for 

active isolation, it makes the stability of the inner feedback loop even more sensitive to 

low frequency phase shifts. 
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Figure 3.6(b) shows the transmitted forceft per unit equipment velocity, Ve , which is equal 

to the impedance of the actuator with inner force feedback. The lowering of the resonance 

frequency can again be observed. It can also be seen that as the feedback gain hI is 

increased, the actuator's impedance becomes smaller, particularly at high frequencies, as 

predicted by equation (3.7). 
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Figure 3.6 (a): Transmitted force per unit control command for the inertial 
actuator with inner force feedback when different feedback gains hf are used: hf 
=1 (solid), hf =20 (faint), hf =100 (dashed), and hf =100,000 (dotted). (b): 
Frequency response of the actuator's mechanical impedance when hf =0 (solid), 
hf =20 (faint), hf =100 (dashed), and hf =100,000 (dotted). 
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3.3 Integrated force feedback control 

hif 
If the inner feedback controller in Figure 3.3 is given by H(j{J)) = _.1_, then integrated 

J{j) 

force feedback control is implemented. The effect of an integrator in the feedback loop is 

to rotate the Nyquist plot of the plant response by 90° clockwise. The Nyquist plot of the 

open loop response for the actuator with integral force feedback on a rigid base, for 

example, is shown in Figure 3.7, which is a rotated version of Figure 3.4. The Nyquist plot 

now lies entirely on the right hand side of the complex plane, so that this control system is 
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inherently more robust than direct force feedback. In particular low frequency phase 

shifts, due to conditioning electronics, of up to +900 will not destabilize the system. Also, 

high frequency perturbations of the plant response due to the finite mobility of the 

structure under control, as discussed above, will not destabilize the system since for the 

isolation example, whose effect on force feedback was shown in Figure 3.5, the Nyquist 

plot will still be on the right hand side of the complex plane with integral force feedback. 
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Figure 3.7 Nyquist plot of the open loop response of the inertial actuator with 
integrated inner force feedback H(jOJ) =hif / jOJ., with hif = 1. 

The actuator force in this case is given by 

(3.9) 

where (VI is introduced to ensure that hif is dimensionless, and is assumed to have the 

value 138.2 radls for reasons that will be evident later. When equation (3.9) is substituted 

into equation (2.4), the transmitted force becomes 
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(3.10) 

which can be written in the compact form 

(3.11) 

where T(;2 and Z~2 are the blocked response and mechanical impedance of the actuator, 

as modified by the inner feedback. The blocked response of the actuator, the transmitted 

force Jr per unit control command!c, with integral force feedback, is plotted in Figure 

3.8(a). Unlike the previous case, the resonance frequency does not change significantly 

when the feedback gain increases, although Jr does tend to Ie when very high gains are 

implemented. For relatively low values of the feedback gain, however, the magnitude falls 

off above the resonance frequency and a phase shift occurs. Compared to the force 

feedback control, as shown in Figure 3.S(a), in which the closed loop response tends to 

unity with no phase shift at higher frequencies even for moderate feedback gains, higher 

integral feedback gains are needed with this control strategy in order to obtain the same 

levels of transmitted force. 

Figure 3.8(b) shows the frequency response of the actuator's mechanical impedance,JrI Ve, 

for different feedback gains hiJ. When the feedback gain hi! is increased, the impedance is 

reduced at the resonance frequency and for very high values of feedback gain the 

magnitude is reduced over the whole frequency range shown in Figure 3.8(b). The 

physical interpretation of this behaviour is that the integral of the transmitted force is 

proportional to the velocity of the actuator's proof-mass, and integral force feedback thus 

adds damping to the system. 

An intermediate scheme based on the measurement of the integrated transmitted force Jr 

was also analysed. The inner feedback gain H(jm) was chosen to be a positive real 

constant hlf' The Nyquist plot is shown in Figure 3.6 and the transmitted force per unit 

equipment velocity is shown in Figure 3.8(b). Unlike the other schemes, the transmitted 

force per unit control command Ie shows the weakness of this strategy. In fact, for very 
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high values of the gain hif' fr / Ie tends to hif' but when hif assumes reasonable values, fr / !c 

tends to j (J), which means that it is frequency dependent. For this reason, the 

implementation of this feedback control scheme is not recommended. 
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Figure 3.8 (a): Transmitted force per unit control command for the inertial 
actuator with inner integral force feedback when different feedback gains hif in 
H(jm)= hif/jm are used: hif =1 (solid), hif =20 (faint), hit =100 (dashed), and hif 
=100,000 (dotted). (b): Frequency response of the actuator's mechanical 
impedance when hit =0 (solid), hif =20 (faint), hlf =100 (dashed), and hif 
=100,000 (dotted). 

The force feedback control scheme does not guarantee a good stability margin at low 

frequency. This is especially true when the feedback gain is increased. In addition, when 

real electronic components are added to the ideal system, the stability margin rapidly 

decreases and the overall system falls very close to the unstable region. On the other hand, 

from a performance point of view, this scheme offers very good results using lower 

feedback gains than the other schemes, as it will be discussed in Chapter 6. When an 

integrator is added to the system, the overall system significantly improves its stability 

margin. This can be noted in the Nyquist plot, which is rotated by 90° clockwise. On the 

other hand, if high performance is needed, very high gains are necessary. It would 

therefore be a good idea to alter the inner feedback loop in such a way that it behaves like 

a force feedback controller at frequencies higher than a certain appropriate value and it 
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behaves like an integrated force feedback controller at low frequencies. By doing so, the 

system will preserve a high stability margin at low frequency and will also preserve good 

performance at high frequency. All these aspects will be discussed in the next sections. 

3.4 Phase-lag compensator 

The frequency response of a phase lag compensator, H(j(j)) = hp/ j(j).+ (j)I , is plotted in 
JW 

Figure 3.9 for the case where WI = 138.2 rad/s. If this is used as the inner controller in 

Figure 3.3, the Nyquist plot of the open loop system is shown in Figure 3.10. The stability 

of the closed loop system is between the behaviour of the previous two cases. In 

particular, at low frequency the stability margin of the closed loop system is almost as 

good as the integrated force feedback case and this is due to the -900 phase shift that the 

phase-lag controller adds to the plant response at low frequency. At higher frequencies the 

controller does not add any additional phase shifts and the behaviour of the plant is 

preserved. The stability of the controller is also robust to the effect of a finite mobility in 

the attached structure, since it will affect the Nyquist plot in a similar way to that shown in 

Figure 3.5. 

The value of (j)1 is chosen in order to provide a reasonable trade-off between stability of 

the overall system (especially at low frequency) and its performance. Since the inertial 

actuator resonance frequency is responsible for the conditional stability of the system, by 

adding an integrator to the feedback loop, the corresponding portion in the Nyquist plot is 

rotated by 90° clockwise, leading the closed-loop system away from a potential instability. 

In order to guarantee this feature, (j)] must be greater than the inertial actuator resonance 

frequency. On the other hand, in order to guarantee good performance, (j)1 should be small, 

such that the closed loop system can benefit from the inner force feedback controller. In 

this study, (j)1 was chosen to be 2n· 22 = 138.16 rad/s, where 22 Hz corresponds to the 

equipment-dominated resonance frequency of the vibration isolation problem discussed in 

Chapter 6. A detailed discussion on the appropriate choice of (j)] is given in Benassi et al. 

(2002c). 

56 



50 

~40 
:::'30 

e 
!g 20 

~ 
=\0 

0 
0 \0 15 20 25 30 35 40 45 50 

Frequency (Hz) 

+270 

+180 

+90 

~: 0 

-90 

-180 

-270 

10 15 20 25 30 35 40 45 50 
Frequency (Hz) 

Figure 3.9 Frequency response of the phase lag compensator H(jw)=hp/ (jw + 
WI) I jw, with hp/ = 1 and WI = 138.2 rad/s. 
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The actuator force in this case is given by 

(3.12) 

Substituting this into equation (2.4), the transmitted force becomes 

(3.13) 

which can be written in the compact form 

(3.14) 

where T~3 and Z~3 are the blocked response and mechanical impedance of the actuator, as 

modified by the inner feedback. Figure 3.11 (a) shows the transmitted force per unit 

control force. As the feedback gain hpl increases, it tends to !C. at all frequencies. Compared 

to the previous control scheme (Figure 3.8(a)), at frequencies higher than the resonance 

frequency, the magnitude is more level, indicating a better performance at high frequency 

since it is closer to Ie than in the previous case. Also, unlike the previous case, there is a 

smaller phase-lag at frequencies higher than the resonance frequency. 

Figure 3.11(b) shows the frequency response of the actuator's mechanical impedance for 

different feedback control gains hpl . When the feedback gain hpl increases, the impedance 

it / Ve tends to zero, but this is only achieved for large values of the gain. Otherwise, the 

behaviour is similar to the previous case. Compared to the uncontrolled case (solid line), 

when the controller is activated the first resonance is no longer present in the impedance 

equation. This can be physically explained considering the fact that when the feedback 

gain hp/ in the phase-lag compensator increases, the closed loop system tends to an 

equivalent system in which the inertial activator has been removed. 
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Figure 3.11 (a): Transmitted force per unit control command when different 
feedback gains hpl in the phase-lag compensator are used: hpl =1 (solid), hpl 
=20 (faint), hpl =100 (dashed), and hpl =100,000 (dotted). (b): Frequency 
response of the impedance when hpl =0 (solid), hpl =20 (faint), hpl =100 
(dashed), and hpl =100,000 (dotted). 

3.5 Conclusions 

An analysis of different inner feedback control strategies using an inertial actuator, based 

on the measurement of the transmitted force, has been presented. Physical interpretation, 

feedback stability margins and performance were considered for each case. 

The main finding is that using a phase-lag compensator, the most important advantage is 

the fact that it enhances the stability margin of the system at low frequency and, thanks to 

its phase recovery, restores the original behaviour of the force feedback control strategy at 

higher frequencies. 
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Chapter 4 

Inertial actuator with inner displacement feedback 

4.1 Introduction 

In this chapter we consider the effect of having an inner displacement feedback loop 

operating between the proof-mass and the inertial actuator reference plane, instead of 

the inner force feedback loop considered in the previous chapter. It is found that 

damping of the actuator can be achieved by feeding back the delivative of the relative 

displacement of the proof-mass. In addition, the inertial actuator's natural frequency 

can be lowered or increased by feeding back either negative or positive inner 

proportional displacement feedback. Self-levelling can also be implemented by 

feeding back the integral of the relative displacement, which overcomes the problem 

of excess actuator displacement due to gravitational forces on the moving mass (i.e. 

static sag due to low resonance frequency). 

A mechanical model of an inertial actuator was delived in Chapter 2, and is shown 

again in Figure 4.1 for convenience, where the effect of H (j (j)) should be neglected at 

this stage. A proof-mass, ma , is suspended on a spring, ka' and a damper, ca ' and in 

parallel with them, the actuator force fa drives the mass, which is also affected by the 

inertial force Ji (due to gravity for example). Va and Ve are, respectively, the moving 

mass velocity and the base velocity. 
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H(jm) 

Figure 4.1 Schematic of an inertial actuator and implementation of the 
inner displacement feedback control. 

The equation describing the dynamics of the system in Figure 4.1 is given by equation 

(2.1), where va and ve are complex velocities. In Figure 4.1, x is the relative 

displacement between the inertial actuator's proof-mass and the inertial actuator's 

reference base so that j ())X = va - Ve . 

The inertial actuator used for the experiments described below was a mechanically 

modified version of an active tuned vibration absorber (ATVA) manufactured by 

ULTRA Electronics, described by Hinchliffe et al. (2002) and analysed in detail in 

Chapter 2, from which the internal springs were removed, leaving the proof-mass (l11a 

= 0.24 Kg) attached to the case by eight thin flexible supports. This modification in 

the stiffness (so that ka = 2000 N/m) changed the actuator resonance frequency from 

73.8 Hz to 14.5 Hz. The measured damping ratio was used to estimate the damping 

factor as ca = 18 N/ms- I
. Figure 4.2 shows the dynamic response of the relative 

displacement of the proof-mass, x, per unit actuator force, fa' of this modified 

ULTRA inertial actuator. Both measured data and theoretical prediction, calculated 

from equation (2.1), are plotted, where the measured data was divided by BlI R , 

where Bl is the magnetic force constant of the inertial actuator and R is the inertial 

actuator electrical impedance, which was found to be resistive within this frequency 

range. This scaling was necessary in order to ensure the same units of displacement 

per unit force for both curves. In an electro-mechanical actuator the damping is given 

by the sum of the mechanical and electromagnetic damping and the latter is increased 

by the fact that a voltage amplifier was used to drive the actuator, which had a very 

low internal impedance. 
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Figure 4.2 Frequency response of the relative displacement of the proof­
mass per unit actuator force of the ULTRA inertial actuator. The solid line 
shows the measured data, while the dashed line shows the theoretical 
prediction. 

The displacement of the proof-mass was measured using strain gauges on the 

suspensions. A pair of strain gauges (RS 632-180-Nll-MAS-120-23), connected to 

self-compensate for temperature changes, was installed on opposite sides of one of the 

internal thin flexible supports which hold the proof-mass inside the actuator. Each 

strain gauge is a Smm rectangular foil type, and consists of a pattern of resistive foil 

which is mounted on a backing material. The strain gauges used in the actuator are 

connected to a Wheatstone Bridge circuit with a combination of four active gauges 

(full bridge). The complete Wheatstone Bridge, which was installed inside the inertial 

actuator, is excited with a stabilised DC supply and with additional conditioning 

electronics can be zeroed at the null point of measurement. As stress is applied to the 

bonded strain gauge, a change of resistance takes place and unbalances the 

Wheatstone Bridge. This results in a signal output related to the stress value, which is 

proportional to the proof-mass relative displacement. As the signal value is small (a 

few millivolts) the signal conditioning electronics provides amplification to increase 

the signal level to ±l V, a suitable level for the active vibration isolation application. 

In the following sections we will discuss how self-levelling can be implemented by 

feeding back the integrated displacement, which overcomes the problem of excess 
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actuator displacement due to gravitational forces on the moving mass (i.e. static sag 

due to low resonance frequency). The damping of the actuator can also be modified 

by feeding back the derivative of the relative displacement of the inertial actuator. In 

addition, the inertial actuator's natural frequency can be lowered or increased by 

feeding back inner proportional displacement feedback with either a positive or 

negative gain. 

4.2 An inertial actuator with self-levelling capabilities 

Self-levelling systems can be used to reduce static deflections, and systems based on 

integrated displacement feedback control have been described in the literature. For 

example, Homing and Schubert (1988) discuss the need for self-levelling in 

automotive applications and in "rocket-propelled missiles where a substantially 

constant acceleration is sustained for an appreciably long time". The most practical 

method of generating the forces required to counteract the manoeuvring loads is 

probably the use of air mounts (Elliott, 2000), but the pressure control mechanism 

must be fast enough to follow the changes in load. 

The self-levelling system described here uses the inherent actuator force fa (t) to 

level its proof-mass. The sensing element which measures the position of the actuator 

proof-mass relative to the inertial actuator reference plane was a strain gauge, 

although an optical sensor was also investigated for this purpose. The strain gauge 

was attached in such a way that the sensor is in its neutral position when the moving 

mass is at its desired operating height. The electllcal signal is integrated and amplified 

by the controller, providing electric power to operate the actuation device within the 

inertial actuator. The system produces a force that is proportional to the integral of the 

signal from the sensor. 

When a force of constant magnitude is applied to the moving mass, causing a relative 

deflection of the mass on its spring element, the sensor applies an electrical signal 

proportional to the mass relative displacement to the integral controller. In response, 

the controller generates an electrical signal that continues to increase in magnitude as 

long as the relative displacement is not zero. The signal from the controller is applied 

to the inertial actuator, which generates a force in a direction that decreases the mass 

deflection. The force follows the controller signal and continues to increase in 
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magnitude as long as the relative deflection is not zero. At some point in time the 

force will exactly equal the constant force applied on the moving mass, requiring a 

relative displacement of zero. The output from the sensor is zero, therefore the output 

from the controller no longer increases but is maintained at a constant magnitude 

required for the actuator to generate a force exactly equal to the constant force applied 

to the moving mass. 

The isolation system remains in this equilibrium condition until the force applied to 

the moving mass changes and causes a nonzero signal to be generated by the sensing 

element, and the process staris all over again. When air mounts are used (Homing and 

Schubert, 1988), a proportional scaled signal from the sensor may be used to operate 

an electromechanical servo valve, the flow response of the servo valve being 

proportional to its excitation signal. The servo valve fluid flow output is directed into 

the chamber of an air spring to produce the desired force applied to the supported 

body. The control function remains integral in nature since the internal pressure of the 

actuator responds to the volume output from the servo valve, which is the integral of 

its flow output. Hence, in this case, no electrical integration of the sensor signal is 

needed. 

The ineliial actuator with inner displacement feedback control is shown schematically 

in Figure 4.1. The relative displacement x is measured and fed back to the ineliial 

actuator through a feedback controller with frequency response H(jm), which in the 

first instance is equal to g 1/ jm. The control command Ie can be considered, in 

control terms, as the reference point (Franklin et al., 1994). If we assume that the 

control force is given by the sum of a control command};,. and the time integral of the 

measured relative displacement between the inertial actuator proof-mass and its 

reference base, multiplied by a gain gI 

Ia = Ie + gI fx(t)dt (4.1) 

then a self-levelling device is implemented. 

In order to examine the stability of the closed-loop system, composed of the inertial 

actuator and the self-levelling controller, the open loop gain was computed. It is given 

by the product of the plant response, G(jm) (measured relative displacement per unit 

control force, x/fa , obtained from equation (2.1) by imposing Ii = 0 and ve = 0, since 
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it is assumed to be mounted on a rigid base), multiplied by the control law 

H(jw) = ~l 
JW 

G(jw)H(jw) = ( 2 1. )(~J. 
- w rna + J{()Ca + ka JW 

(4.2) 

The faint line in Figure 4.3(a) shows the calculated Nyquist plot from equation (4.2), 

when gl is equal to 60,000 in equation (4.1). It can be noted that the system is 

conditionally stable and the Routh-Hurwitz criterion can be used to show that the 

system is only stable if A<l (Elliott, 2000), where 

(4.3) 

When gl is equal to 60,000, the corresponding A is equal to 0.4, which also coincides 

with the negative real part of G(jm)H (jm) when the imaginary part is zero in Figure 

4.3. The low frequency measurements in Figure 4(b) cannot be considered very 

reliable because of noise limitations, even though the general behaviour of the open 

loop system is clear, including the behaviour due to the real integrator. 

In a real system, the integrator's control law is not described by equation (4.2), but 

more realistically by an equation that includes a cut off frequency (at 1.5 Hz in this 

case), a finite DC magnitude, and a phase shift at DC of 0°, rather than 90°, as in the 

ideal case described by equation (4.2). A realistic expression for such control law is 

given by 

H(') gl 
1 JW = 1 + jWO.106 

(4.4) 
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Figure 4.3 (a): Predicted Nyquist plot of the open loop transfer junction, 
inertial actuator displacement per unit secondary force, when the 
controller includes a realistic (solid) or ideal (faint) model of the 
integrator in the controller. A was set to 0.4. (b): Corresponding measured 
data. 

0.8 

Consequently, the ideal open-loop system response described by equation (4.2) is then 

replaced by a more realistic equation given by 

(4.5) 

which shows that at DC the Nyquist plot starts at ~ on the positive real axis, and 
ka 

then behaves as shown by the solid line in Figure 4.3(a). The experimental result 

shown in Figure 4.3(b) is very close to this. 

The response of the actuator to an inertial force, Ii' can be computed by setting the 

control command to zero. The relative displacement x per unit inertial force fi , when 

an ideal self-levelling device is implemented, is then given by 
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x 1 

ii - uima + j())Ca + ka + HI (j{J) 
(4.6) 

whose behaviour is plotted in Figure 4.4 for different values of the inner displacement 

feedback gain gI. Without integral displacement feedback (solid line), the response of 

the system to a static force is equal to llka, while with ideal integral displacement 

feedback it tends to zero, which shows that the servo action of the feedback controller 

will compensate for any static load. In realistic implementations, as described by 

equation (4.6), the static deflection is equal to l/(ka + g I)' The low frequency 

behaviour is important because it determines how well the system performs in cases 

like an aircraft manoeuvre or a vehicle tum. In other words, besides counter-balancing 

the sagging effect due to gravity, the system must be able to centre the proof-mass and 

prevent it from banging against the stop-ends during manoeuvres. For example, 

without control the relative displacement of the proof-mass, due to the gravitational 

force ii = mag, where g = 9.8 ms·2 is the gravitational acceleration, on the spring 

ka is given by x = .L.. = 1.2 mm, while with the self-levelling control the relative 
ka 

ii displacement is equal to x = = 38 /.lm. In case of a 109 manoeuvre the 
ka + gl 

relative displacement without control would be an unsatisfactory 11.8 mm, while with 

control this distance would be reduced to 0.38 mm. However, at the inertial actuator 

resonance frequency, enhancement of the response is experienced and this 

enhancement increases with the gain gl , until the system becomes unstable. When the 

actuator stiffness, ka , decreases, the critical value of the gain gI decreases as well and 

therefore in order to have the same stability margin, lower gains are needed. 

Figure 4.5 shows the experimental proof-mass relative displacement x per unit control 

command ie ' which is given by 

x 1 
(4.7) =----:-----------

ie - {J)2ma + j{J)ca + ka + HI (j{J) 

which has the same form as equation (4.6) whose theoretical relative displacement per 

unit force is shown in Figure 4.5. In both theory and experiment the increase in 
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magnitude at the resonance can be noted, which is a sign that the system is getting 

closer to instability, along with an additional phase shift at low frequency. 
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Figure 4.4 Predicted inertial response of the system when different ideal 
inner self-levelling feedback loop gains g[ are used: g[ = 0 (solid, 
corresponding to A = 0, i.e. no control), g[ = 60,000 (faint, A = 0.4), and g[ 
= 105,000 (dashed, A = 0.7). 
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Figure 4.5 Measured relative displacement of the proof-mass per unit 
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Figure 4.4. 
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4.3 Inertial actuator with PID control 

4.3.1 Proportional feedback 

In the previous section we saw that with a displacement sensor integral control gave a 

self-levelling action. In this section we discuss the physical effect of proportional and 

derivative control in a general PID controller. 

If the inertial actuator resonance frequency is too high for the specific application, it 

can be lowered using a negative direct position feedback control loop, H 2 (jm) = g p, 

where g p is negative. In order to determine whether the closed-loop system in Figure 

4.1 is stable with such a controller, the open loop gain was computed. It is given by 

the product of the plant response, G(jm) , defined before, multiplied by H 2 (jm) 

(4.8) 

The maximum feedback gain g p before instability is equal to the value of the stiffness 

termka . Figure 4.6 shows the conesponding theoretical and experimental Nyquist 

plot for a value of the gain g p that is equal to - ka /2, which guarantees a 6 dB 

stability margin. Lowering the resonance frequency also implies that smaller values of 

the gain gl are needed for self-levelling purposes. 

Figure 4.7 shows the theoretical and measured proof-mass displacement x per unit 

control command Ie described in equation (4.7) when the inner feedback controller, 

H 2 (jm), comprises the proportional term, g p, only and this is either positive or 

negative. If the position feedback gain was positive, the natural frequency is 

increased, with no danger of instability. When negative position feedback gains are 

implemented, the actuator resonance frequency can be lowered, but stability issues 

emerge if the total system stiffness tends to zero. 
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measured data. 
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4.3.2 Derivative feedback 

The stability analysis of the closed-loop system when an ideal derivative controller, 

H 3 (j())) = j())gv, is used within the inner loop, is obtained by studying the open loop 

transfer function 

(4.9) 

which is composed of the product of the plant response, G(jm), times the controller's 

response. In a real implementation, the frequency response of the circuit used to 

generate the derivative term has a cut-off frequency, after which the input signal is 

just mUltiplied by a constant gain (Ananthaganeshan et al., 2001). As long as this cut­

off frequency lies above the maximum frequency of interest, then H 3 (j())) can be 

considered as a good approximation to this part of the feedback controller when 

modelling realistic systems. Figure 4.8 shows the predicted Nyquist plot of the open 

loop system, described by equation (4.9), and the corresponding measured data. 

Theory and experiment agree well, and they both lie in the positive real half plane, 

indicating that by increasing the controller gain gv, damping is added to the dynamics 

of the inertial actuator. At frequencies higher than the plotted range of interest, the 

experimental curve enters the third quadrant. This mainly happens because the circuit 

used to generate the derivative term is, in reality, a high pass filter (Ananthaganeshan 

et al., 2001), so that its magnitude becomes constant after a certain frequency and its 

phase tend to zero. This indicates that in a real implementation the stability margin of 

the closed-loop system is reduced and the amount of damping that can be added to the 

system is large, but finite. An additional limitation is that the noise that is present in 

the measured signal is amplified by the derivative controller. Figure 4.9 shows the 

frequency response of the uncontrolled inertial actuator and the controlled system 

when an inner derivative feedback loop is implemented. A value of the feedback gain 

gv was chosen so that is equal to the uncontrolled ca so that the overall value of the 

damping constant is doubled. The uncontrolled case is already damped appropriately, 

but since the self-levelling integral feedback loop tends to increase the magnitude of 

the resonance, an additional damping term will be required when the whole PID 

controller is implemented, as discussed below. The experimental measurements and 
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theoretical predictions agam agree well, indicating that usmg an mner derivative 

feedback controller it is possible to add damping and therefore change the dynamic 

behaviour of an inertial actuator. 

(a) (b) 

0.8 

0.6 

OA 

0.2 

-0.2 

-OA 

-0.6 

-0.8 

-1 
-0.5 

0.8 

(j) 0.6 

0.4 

0.2 

-0.2 

-OA 

-0.6 

-0.8 

-1 
0.5 1.5 -0.5 0.5 

Aeal Real 

Figure 4.8 (a): Predicted Nyquist plot of the open loop transfer junction, 
inertial actuator displacement per unit secondary force, when the 
controller is the derivative of the relative displacement (gv = 18). (b): 
Corresponding measured data. 

1.5 

(a) (b) 

~-50 

:s._60 

.. I-~~--­
rg -70 

1"_80 
_~L-~ __ ~ __ ~~ __ ~ __ ~ __ ~~ __ ~~ 

o 10 B W ~ ~ ~ 
Frequency (Hz) 

+1110 

.90 

~-~~----==~--~-~~==========~ 
-\8Q 

-270L-~--~--~~--~--~--~-----'---~~ 
o 10 15 20 25 30 35 40 45 50 

Frequency (Hz) 

-OOO~~--~10~-1~5--~ro--~~~-~~-----'-35~~--~~W 
Frequency (Hz) 

100 

..... -----.----------.. -~ 
_200L~ __ ~ __ ~~_=====;::::~=s::==:;::::===I 

o 10 15 ~ ~ ~ ~ ~ 45 ~ 

-100 

Frequency (Hz) 
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values of the derivative feedback gain: gv = 18 (faint). (b): Corresponding 
measured data. 
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4.3.3 Combined PID feedback 

If the integral displacement term, the proportional term and the delivative of the 

displacement are added in parallel within the inner feedback controller, the control 

law in Figure 4.1 becomes of the form 

H (j{j) = HI (j{j) + H 2 (j{j) + H 3 (j{j) (4.10) 

which describes a typical ideal PID controller. An image of the real PID controller 

which was used during the experiments is shown in Figure 4.10 and its schematic is 

given in Appendix B. 

Figure 4.10 Image of the PID controller and summing box used within 
the inner feedback loop. "Control" indicates the control signal input, 
"Strain" indicates the strain gauge signal input and "Laser" indicates 
the displacement laser sensor input, which was used to validate the strain 
gauge measurements. 

In order to determine whether the closed-loop system in Figure 4.1 is stable with such 

a controller, the open loop gain was computed. It is given by the product of the plant 

response, G(jm) , multiplied by H(jm) 
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G(jw)H(jw) = 2 1 (gp+ g[ +jwgv ) 
-Wm +j'OJc +k l+j·wO.106 a a a 

(4.11) 

Figure 4.11 shows the corresponding theoretical and experimental Nyquist plot for a 

value of the gain g p that is equal to - ka /2, a value of g [ which guarantees A = 0.4 , 

and a value of gv = 18. The closed loop system is conditionally stable, and the 

stability depends on the combined choice of the proportional gain and the self-

levelling gain. The curve starts off at g p + g [ and then intersects the real axis in its 
ka 

negative portion before reaching the origin. Figure 4.12 shows the theoretical and 

measured proof-mass relative displacement x per unit control command Ie for the 

uncontrolled inertial actuator and for the modified inertial actuator, when the inner 

feedback controller, H (j ())) , has the same value of the gains as above. In this case the 

inertial actuator natural frequency was lowered to about 10 Hz and this configuration 

was used in the active vibration isolation problem discussed in the next section. 
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Figure 4.11 (a): Predicted Nyquist plot of the open loop transfer junction, 
inertial actuator relative displacement per unit secondary force, when the 
controller is a PID with proportionality gain gp = -1000, self-levelling 
coefficient A = 0.4, and derivative gain gv = 18. (b): Corresponding 
measured data. 
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In summary, if it is necessary to reduce the resonance frequency of the actuator, 

because it is greater or equal to the first structural mode of the system that needs to be 

isolated, this can be done with a negative position feedback gain. If this action induces 

unwanted deflections because of the low stiffness of the closed-loop system, then a 

self-levelling mechanism can be employed, which is based on a integral displacement 

feedback. By doing so, however, the overall system gets closer to instability and 

additional damping is needed. Another reason why damping may be necessary is if an 

outer velocity feedback is to be implemented. It was shown by Elliott et al. (200la) 

that this kind of system is conditionally stable and the vicinity to the Nyquist point 

depends on how well damped the inertial actuator is. For these reasons the 

implementation of an inner rate feedback control turns out to be very effective in 

increasing the damping of the actuator. 

From Figure 4.1, the equation that describes the complete modified inertial actuator 

once the inner PID feedback control, described by equation (4.10), is implemented, 

can be calculated. It is given by 

= - OJ2 ma f _ (jmnak a - OJ2 macJ. (H (jOJ) + jOJZa) v (4.12) 
f t 

_ OJ2 ma + jOJca + ka + H(jOJ) C (- OJ2 117a + jOJca + ka + H(jOJ))jOJZa e 
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k 
where Za = ca + ~ is the mechanical impedance of the actuator suspension. 

Jm 

Equation (4.12) can be grouped as 

(4.13) 

where T~ and Z~ are the blocked response and mechanical impedance of the actuator, 

as modified by the inner displacement feedback. Figure 4.13 shows the predicted and 

measured blocked response of the uncontrolled inertial actuator and the modified 

inertial actuator. At frequencies higher than the actuator resonance, the transmitted 

force It tends to the control command Ie. This means that the blocked response 

shows that the transmitted force It can be regulated using the control command Ie. 

Figure 4.14 shows the calculated and measured mechanical impedance of the actuator 

before and after control. When gv increases, the mechanical impedance increases at 

high frequencies. The magnitude plot in Figure 4.14 shows that, starting from the 

solid line which tends, at high frequency, to Ca = 18 N/ms- 1
, the damping of the device 

increases to Ca + gv = 36 N/ms-1
. The phase plot in Figure 4.14 shows that above 

resonance, the mechanical impedance is damping dominated and the system shows a 

skyhook damping behaviour. 
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Figure 4.13 (a): Predicted blocked response of the inertial actuator (solid) 
and the modified inertial actuator when gp = -1000, A = 0.4 and gv = 18 
(faint). (b): Corresponding measured data. 
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(solid) and the modified inertial actuator when gp = -1000, A = 0.4 and gv 
= 18 (faint). (b): Corresponding measured data. 

4.5 Conclusions 

35 40 

-~ -'" 

35 40 

Actuators with very low resonance frequencies have large displacements due to 

gravity. To solve this problem, a new device has been proposed. It is based on an 

inertial actuator with very low stiffness and an inner PID feedback loop which uses 

the measurement of the relative displacement between the actuator base and the 

actuator moving mass. The control law is the sum of an integral term, which provides 

self-levelling and solves the sagging problem, a derivative term, which provides the 

device with sufficient initial damping to guarantee a very good stability margin, and a 

positive or negative proportional term, which determines the actuator resonance 

frequency. 
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Chapter 5 

Active isolation theory with equipment velocity feedback 

5.1 Introduction 

Isolators are generally required to protect a pIece of delicate equipment in a severe 

vibration environment. Often, very little can be done to reduce the base vibration since it 

is either of high impedance or characterized by complex dynamics. The isolation of any 

vibration-sensitive equipment from base vibration is therefore usually performed on the 

transmission paths (mounts). The fundamental benefit provided by any mount is reduced 

structural vibration. However, with such passive mounts there is a trade-off between low 

and high frequency isolation performances depending on the damping of the mount. In 

fact, a major challenge is to make the mount as stiff as possible, statically, to better 

support the equipment, and dynamically as soft as possible, to better isolate it. This is 

difficult to accomplish with passive elastometric mounts, as described by Crede and 

Ruzicka (1996) and Ungar (1992). 

To provide a more favourable static and dynamic stiffness compromise, active isolation 

solutions must be used, which are usually based on mounts and actuators. 

Applications with actuators and passive mounts in an active isolator package provide 

many benefits including simplicity, effective vibration isolation, noise attenuation, higher 

static stiffness, dynamic adaptability, and safety. This suggests that there is ample 

motivation for the use of active mounting systems. 
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This chapter deals with the stability analysis of a single degree of freedom system, 

composed of a piece of equipment, which is mounted on a base through a mount. Active 

control is performed through an inertial actuator. The aim of this chapter is to introduce 

the vibration isolation problem, provide its general model formulation and describe a 

popular control strategy based on the measurement of the equipment velocity. This simple 

control strategy is compared with an optimal LQG approach in Appendix A. Some 

practical issues that the designer has to cope with to build a real system are also discussed. 

5.2 Complete model formulation 

We assume the system to be composed of a vibrating base at the bottom, a piece of 

equipment mounted on top of the vibrating base through a passive mount, and an inertial 

actuator installed on the equipment. Figure 5.1 shows the mechanical model and the sign 

convention. Each velocity or force is assumed to be positive in the direction indicated by 

the corresponding vector. The equations that describe the system in Figure 5.1 can be 

written as 

(5.1) 

(5.2) 

11 + 12 = 0 (5.3) 

(5.4) 

(5.5) 

(5.6) 
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V4 = Y4414 (5.7) 

{f}[Z~ 
16 Z21 

Z§]t, } 
Z22 v6 

(5.8) 

v6 = v7 (5.9) 

16 + 17 =0 (5.10) 

v7 = Y77 (17 + 1p), (5.11) 

where the mobilities and impedances are defined as 

Y77 = plate - mobility (Gardonio and Elliott, 1998) 

Z a Za Za Za ka 
11 = 22 = - 12 = - 21 = ca +-.-

Jm 

Z m Zm Zm Zm km 
11 = 22 = - 12 = - 21 = cm +-.-

Jm 

Equations (5.1), (5.7) and (5.11) can be grouped as 

(5.12) 
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and rewritten as 

ma 

VI ~h 
V2 h 

Ca ka 

V3 h 

me 
V4 ~h 
V5 

cmt 
V6 

(5.13) 

ma = inertial actuator dynamic mass 
Inertial Ca = inertial actuator damping factor 

Actuator ka = inertial actuator spring stiffness 
fa = secondary force (control) 

Rigid me = equipment, modelled as a rigid mass 
Equipment 

Passive Cm = passive mount damping factor 
Mount km = passive mount spring stiffness 

Vibrating mb = mass of the vibrating base 
Base 

h = primary excitation 

Figure 5.1 Mechanical model of the vibration isolation system and sign 
convention. 

Considering equations (5.3), (5.6), (5.10), and (5.2), (5.5), (5.9), then equations (5.3), 

(5.4), (5.6), (5.8) and (5.10) can be grouped as 
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z~ 1{::} + l~ 1Jfa 
~22 J V7 0 

(5.14) 

and rewritten as 
(5.15) 

In summary, equations (5.13) and (5.15) represent a condensed form of the model of the 

system. Substituting equation (5.15) into (5.13) 

(5.16) 

and substituting equation (5.13) into (5.15) 

(5.17) 

From equations (5.16) and (5.17) it is possible to compute all the velocities and forces of 

interest within the system. Expanding equation (5.16), the analytical expressions for V], V4 

and V7 can be obtained: 

where 
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Similarly, expanding equation (5.17), the analytical expressions for flo f4 and 17 can be 

obtained. It is given by 

(5.20) 

Equations (5.18) and (5.20) lead to identical expressions as those that will be used in this 

thesis. 

5.3 Equipment velocity feedback control 

In this section, a simplified system is considered and a matrix model has been used which 

assumes that the system is divided into four elements: rigid base, passive mount, 

equipment, and inertial actuator. The dynamics of each of these elements modelled as 

lumped systems is evaluated using point mobility terms. Figure 5.2 shows the system and 

the numerical values assumed for the simulations. With these values the actuator has a 

natural frequency of about _l_J ko = iD.4 Hz and a damping ratio of about (=1.5%, and 
21r ma 

the equipment mount has a natural frequency of about _l_Jkm = 21.5 Hz (but the 
21r me 

presence of the vibration neutraliser pushes that frequency to higher values) and a 

damping ratio of about (=5.2%. 

The equation that describes the influence of the primary excitation, fa' and the base 

velocity, Vb' on the equipment velocity, Ve , can be shown to be 

(5.21) 
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where 

y" = _._1_ = Mobility of the rigid equipment 
J{J)me 

k . 
Zm = em + --?- = Impedance of the paSSIve mount. 

Jm 

(5.22) 

(5.23) 

Ta is the blocked response of the actuator described by equation (2.5) and Z a is its 

mechanical impedance (equation (2.6)). 

Inertial 
Actuator 

Rigid 
Equipment 

Passive 
Mount 

Vb 

ma= Inertial actuator dynamic mass = 0.91 Kg 
Ca = Inertial actuator damping factor = 5.8 Ns/m 
ka = Inertial actuator spring stiffness = 3900 N/m 
me = Equipment mass = 1.08 Kg 
Cm = Passive mount damping factor = 18 N s/m 
km = Passive mount spring stiffness = 20000 N/m 

fa = Control force (secondary force) 
Va = Inertial actuator velocity 
Ve = Equipment velocity 
Vb = Base velocity 

Figure 5.2 Schematic of a vibration isolation system with an inertial actuator. 

Equation (5.21) can be rewritten as 

(5.24) 

The first term, G(jm), can be regarded as the system plant, while the second term, 

Gd (jm), is the disturbance transfer function. Figure 5.3 shows a schematic of the 
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vibration isolation system with an inertial actuator with velocity feedback control, where 

the feedback path is described by 

HUm) 

Figure 5.3 Schematic of an active vibration isolation system with an inertial 
actuator andfeedback contro!' 

(5.25) 

Considering the feedback controller to be a real positive constant, H (j{j) = hv ' then direct 

equipment velocity feedback is implemented and the conesponding Bode plot of the open 

loop system, G(j{j)H(j{j) , is shown in Figure 5.4(a). The first peak, at about 9 Hz, is an 

actuator-dominated resonance in which ma and me are moving almost out of phase and 

the second peak at about 24 Hz is an equipment-dominated resonance in which ma hardly 

moves at all. The additional phase shift at low frequency due to the actuator resonance can 

destabilize the feedback system (Preumont et al., 1993). This is better shown in the 

Nyquist plot in Figure 5.4(b), where a portion of the curve at low frequency lies on the 

negative side of the x-axis. In particular, the real part of the actuator complex conjugate 

poles become positive when hv = cakm = 29 leading the system to the unstable region 
ka 
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(Elliott et at., 2001). The transmissibility of the system, defined as the ratio between 

equipment velocity and base velocity, is given by 

Ve YeZm 

Vb 1 + ZmYe + YeZa + YJaH(j{J) 
(5.26) 

When H (j (J) = hv is set to zero, equation (5.26) provides the transmissibility of the 

system without control (passive system). In Figure 5.5, when the gain is set to 29, the 

maximum attenuation at the equipment resonance is about 8 dB, while the average 

attenuation within the 15-30 Hz frequency range, is about 3 dB. On the other hand, the 

effect of velocity feedback on the inertial actuator leads the system to a potential 

instability, therefore the implementation of direct velocity feedback control represents a 

trade-off between performance and stability. Strictly speaking, the implementation of 

direct velocity feedback described in this section is not a skyhook damping 

implementation, but above the actuator resonance, it can be considered so. 

Velocity feedback control and skyhook damping implementations have been extensively 

analysed in the literature (Miu, 1991 and 1993, Howard and Hansen, 1997 and 2000, and 

Clark et at., 1998), even using inertial actuators (Serrand et ai., 2000). The purpose of the 

following sections and the next chapters is to investigate the limitations of direct velocity 

feedback control and overcome them using the devices described in Chapter 3 and Chapter 

4. 
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Figure 5.4 (a): Bode plot of the open loop response for the vibration isolation 
system with direct velocity feedback (hv = 1) attached to a rigid base, and (b) 
corresponding Nyquist plot. 
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Figure 5.5 Transmissibility of a vibration isolation system with an inertial 
actuator and velocity feedback control. Different velocity feedback gains are 
used: hv = 0 (solid, no control), hv = 15 (faint), hv = 29 (dashed). 
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5.4 Integrated equipment velocity feedback contol 

h. 
In Figure (5.3), if the controller is given by an integrator of the form H(jm) = --!i-, where 

Jm 

hiv is a real positive constant, the feedback stability of the closed loop system is then 

dramatically improved (Figure 5.6), and in particular this is illustrated by the Nyquist plot 

in Figure 5.6(b). Since part of the Nyquist curve lies within the unit circle centred at (-1, 

0), then enhancement is expected at low and high frequency. The transmissibility is 

illustrated in Figure 5.7. Although high gains might be required, the integrated velocity 

feedback control provides a very good attenuation within a considerable frequency range, 

which also includes the equipment-dominated resonance. In particular, for hiv= 10,000, the 

average attenuation within the frequency range 8 Hz to 28 Hz is over 5 dB. 
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Figure 5.6 (a): Bode plot of the open loop response for the vibration isolation 
system with integrated velocity feedback (hiv = 1) attached to a rigid base, and 
(b) corresponding Nyquist plot. 
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Figure 5.7 Transmissibility of a vibration isolation system with an inertial 
actuator and integrated velocity feedback control. Different integrator gains 
are used: hiv = a (solid, no control), hiv = 5,000 (faint), and hiv = 10,000 
(dashed). 

Expanding the transmissibility equation for this kind of controller, it can be noted that the 

effect of h iv on the actuator resonance is to influence ka , leading the overall system to a 

lower first resonance frequency. Past the actuator resonance frequency, hiv acts on kill, 

indicating that absolute equipment position feedback is implemented, and this is why the 

equipment dominated resonance increases. When hiv tends to infinity, no effect of the 

actuator is experienced and perfect isolation is expected, since the transmissibility goes to 

zero. This indicates that, past the first resonance, skyhook stiffness is implemented and 

when the gain tends to infinity, the equipment tends to a pinned system. 
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5.5 The use of other feedback controllers 

When a low pass filter, given by 

h 
H(jm) = I: 

1+}m'i 
(5.27) 

is used as a controller in equation (5.25), the stability and performance of the closed loop 

1 
system depend on the choice of the cut-off frequency -. When the chosen cut-off 

'i 

frequency is greater than the equipment-dominated resonance frequency, then the closed 

loop system behaves in a similar way to the direct velocity feedback case, where the 

feedback gain hv = hlp' When the cut-off frequency lies before the actuator's natural 

frequency, then the closed loop system behaves like in the integrated velocity control case. 

For intermediate values of the cut-off frequency, the system turns out to be conditionally 

stable and shows an intermediate behaviour between the previous two cases, but is no 

better than either. 

When a high pass filter is used in equation (5.23), described by 

(5.28) 

the stability and performance of the closed loop system again depend on the choice of the 

cut-off frequency!. By studying the stability behaviour and performance of the closed 
T 

loop system when varying the cut-off frequency, a good compromise was found when the 

cut-off frequency was chosen to lie between the actuator's natural frequency and the 

equipment dominated resonance frequency. Figure 5.8(a) shows the Bode plot of the open 

loop system when 'i = _1_, and Figure S.8(b) shows the corresponding Nyquist plot 
2n20 

when a 6 dB stability margin is guaranteed by applying a gain of hhP = 50. The closed 
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loop system is conditionally stable, although the stability was improved, compared to the 

direct velocity feedback control case, by means of a derivative element which acts at 

frequencies below the actuator's natural frequency. Figure 5.9 shows the transmissibility 

of the system for the same value of feedback gain. Above about 22 Hz, the vibration is 

attenuated and the maximum attenuation is about 8 dB, while at frequencies between 10 

Hz and 22 Hz, a slight enhancement, of about 2 dB, in the response is shown. When the 

cut-off frequency is chosen to be smaller than 20 Hz, the stability of the closed loop 

system is more critical, and lower gains must be used. Consequently, smaller attenuations 

are observed above a certain frequency, and smaller enhancement is predicted between the 

actuator's natural frequency and the equipment frequency. When the cut-off frequency is 

greater than the equipment dominated resonance frequency, greater gains can be used and 

greater attenuations can be obtained at higher frequencies. However, greater 

enhancements, of the order of 8 dB, are predicted between the first two frequencies. For 

this reason a cut-off frequency of 20 Hz was considered to be a good trade-off and this 

achieves a performance that is significantly better than velocity feedback alone, as shown 

in Figure 5.5. 

Finally, when a notch filter, given by 

l-air2 
H(jw)=hn . 22 

1 + }w4r - (J) r 
(5.29) 

is used as a controller in equation (5.25), the stability and performance of the closed loop 

system will depend on the choice of the notch frequency .!... 
r 

91 



e -10 
<D 
~ 

X-20 
Q. 

-30 

(a) 

I.' 

-OL--~~~~I5--~20~~ll--~30~-3~S--~40~-4~S~~ 
Frequency (Hz) 

.. 
~ 10

.
5 

+270 

+180 

I +90 
Q. 
~ 0 

-180 

-<l.' 

-270
0
L ----'--1~0 -~I5-~2~0 -""ll-~30:---3~S-~40--4~S ~so 

Frequency (Hz) 

-~,L ----,-<l.':-, ---'---'O'0.':---~---':'::.5---' 
Real 

Figure 5.8 (a): Bode plot of the open loop response for the vibration isolation 
system with a high pass filter (hhp = 50) attached to a rigid base, and (b) 
corresponding Nyquist plot. 

30,---,---.---,---,-----,----,---,----,-----.---, 

_wL-__ L-__ L-_L-__ ""-__ --'-_J-__ -'-__ -'-_~ __ ~ 
o 10 15 W ~ ~ 35 40 45 50 

Frequency (Hz) 

+270,---,---.---,---,-----,---,---,----,-----.---, 

+180 

+90 

-180 

_270'----L---L--L---""-----'--J----'----'--~---' 
o 10 15 20 25 30 35 40 45 50 

Frequency (Hz) 

Figure 5.9 Transmissibility of a vibration isolation system with an inertial 
actuator and a high pass filter. Different feedback gains are used: hhp = 0 
(solid, no control) and hhp = 50 (faint). 
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When the notch frequency is equal to the actuator's natural frequency at lOA Hz, good 

performance is obtained. Figure 5.1O(a) shows the Bode plot of the open loop system 

when T = 1 , and Figure 5. 10 (b) shows the corresponding Nyquist plot when a 6 dB 
2Jl"lOA 

stability margin is guaranteed by applying a gain of hI! = 700. The Nyquist plot shows 

that at low frequency the curve is quite close to the critical point (-1,0), therefore any 

phase lags at low frequency may reduce the stability margin quite substantially, as will be 

explained in the next section. Figure 5.11 shows the transmissibility of the system before 

and after control, given the above values of notch frequency and feedback gain. Although 

some enhancement is predicted at low frequency, the attenuation at higher frequencies is 

quite remarkable, showing that notching out the actuator's natural frequency is in principle 

a good control strategy for vibration isolation. 

Unfortunately, if the notch frequency is set to be close, but different from the actuator's 

natural frequency, then the gain hll must be reduced considerably in order to guarantee a 6 

dB stability margin. Consequently, the attenuation of the equipment-dominated resonance 

is reduced as well. This is a clear limitation of this strategy and the design of the notch 

filter would require detailed knowledge of the response of the mounted actuator. 
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Figure 5.10 (a): Bode plot of the open loop response for the vibration 
isolation system with a notch filter (hn = 700) attached to a rigid base, and (b) 
corresponding Nyquist plot. 
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Figure 5.11 Transmissibility of a vibration isolation system with an inertial 
actuator and a notch filter. Different feedback gains are used: hn = a (solid, 
no control) and hn = 700 (faint). 

5.6 Realistic closed-loop model formulation 

5.6.1 Effect on integrated equipment velocity feedback 

The closed loop system, when integrated velocity feedback control is implemented, is 

unconditionally stable for any feedback gain hiv. This is true only for ideal integrators. In 

fact, when the pole of the integrator is not exactly zero, the derivative of the Nyquist plot 

about (J) = ° is not zero, but it is positive. Therefore, from (J) = 0, the Nyquist plot initially 

starts in the third quadrant. This means that the curve encircles the point (-1,0) for hiv 

greater than a certain critical value (Figure 5.14). In other words, using real integrators, 

the system becomes conditionally stable. Also, high frequency causes of instability may 

affect the overall system. An analysis of the complete system with integrated velocity 

feedback shows how sensitive the closed loop system is with respect to some of the most 

common causes of high and low frequency instability. 
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In real systems many other components are present in the control loop (Ren, et al., 1997 

and Ananthaganeshan et al., 200 1). Figure 5.12 illustrates a more realistic block diagram 

for a practical active isolation system based on integrated equipment velocity control. 

Accelerometers are very common vibration transducers, and their output is often amplified 

by a charge amplifier, which behaves like a high-pass filter. If velocity is needed, the 

measured signal must be integrated. Ideal integrators do not exist, therefore their dynamics 

must be taken into account in the overall stability analysis. In the control segment of the 

loop, after the controller, a power amplifier is usually employed to amplify the signal and 

make it appropriate for the actuator. Also, a delay is usually present, mostly due to 

transmission lags of the electric signal. 

u(j OJ) 

Secondary 
actuator 
signal 

d(j OJ) Primary 
disturbance 

GijOJ) 

Charge 

Plant Amplifier Integrator 

G(jOJ) ~ CA(jUJ) r------. Int(jUJ) ~ y(j OJ) 

Delay Power Amplifier Controller 

e - jaJI' ~ PA(jUJ) ~ -H(jOJ) 

Figure 5.12 Block diagram of a realistic feedback control system including 
the plant, the controller, and the electronic components. 

R esponse 

The following equations illustrate the dynamics of the components in Figure 5.12. The 

numerical values have been chosen according to off-the-shelf commercial components 

currently used in the laboratory. In particular, thc charge amplifier cut-off frequency is 1 

Hz. In this case, the plant is different from equation (5.24) because in this case its output is 
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acceleration, not velocity. The controller is composed of a second order high-pass filter 

and an integrator. 

(5.30) 

H(
. ) _ -w20.1326 hiv JW - . ---'-'---

(1 + jwO.1326)2 1 + jwO.0909 
(5.31) 

CA(jw) = jmO.159 
1 + jwO.159 

(5.32) 

1 ( . ) 1 ntJm =----
1 + jw0.251 

(5.33) 

PA(jm) = jmO.1326 
1 + jwO.1326 

(5.34) 

A description of the effects of the main causes of instability in the vibration isolation 

problem using inertial actuators with inner and outer feedback control loops is given in 

Benassi et al. (2002a). The open loop frequency response function of the system shown in 

Figure 5.12 can be written as 

G (jm)H t (jw) = G(jm)CA(jm)Int(jm)H(jw)PA(jm)e- jOJT (5.35) 

where the e- jf1JT term represents a delay, as show in Figure 5.12, while the closed loop 

frequency response function is given by 

(5.36) 

where 

(5.37) 
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In particular, the overall frequency response of all the electronic components, given by 

HI (j{J)) = CA(j{J))Int(j{J))H (j{J))PA(j{J))e - j{OT , (5.38) 

is plotted in Figure 5.13. Oi ven the realistic system in Figure 5.12 and also assuming a 

time delay T=O.OOl seconds, the maximum gain hi)! that guarantees the system to be stable 

is about 6500 (it would be about 6000 if the base were flexible). This is illustrated in 

Figure 5.14. For this value of the feedback gain, the maximum attenuation in the closed 

loop response (Figure 5.15) is computed to be 6 dB, while the average attenuation 

between the two main resonance frequencies is 3 dB. At the critical point (-1,0), the 

frequency value that the Nyquist plot assumes is 9.4 Hz. 
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Figure 5.13 Bode plot of the overall frequency response of all the electronic 
components. 
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Figure 5.14 Nyquist plot of the open loop response for a realistic vibration 
isolation system with integrated velocity feedback (hiv = 1) attached to a rigid 
base. The delay is assumed to be 0.001 seconds. 
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Figure 5.15 Transmissibility of the ideal system without control (solid) and 
the realistic (faint) vibration isolation system with an inertial actuator and 
integrated velocity feedback control. Realistic electronic components are 
simulated, the delay is assumed to be 0.001 seconds, and the feedback gain is 
set to 6500. 
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5.6.2 Effect on inner force feedback 

In real systems based on inner force feedback control, unlike the integrated control 

solution, the force gauge measurement does not need to be integrated, but it still needs a 

charge amplifier. A typical Nyquist plot for such a system is shown in Figure 5.16, where, 

unlike the theoretical model in Figure 3.5, the closed-loop system turns out to be 

conditionally stable. The first loop describes the inertial actuator resonance, the second is 

associated to the equipment dynamics and the loop about the origin is due to the time 

delay present in the system, which affects its behaviour especially at high frequency by 

adding a term to the phase which is dependent on frequency (wT). 

In summary, although inner force feedback control is, in principle, a very effective control 

strategy, in real systems it raises robustness issues, which greatly limit its performance. 

An analysis of the system with inner integrated force feedback shows that in this case the 

phase margin is big enough to still allow large gains before instability in spite of the 

additional phase shifts due to instrumentation. 
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Figure 5.16 Nyquist plot of the open loop response for a realistic vibration 
isolation system with direct force feedback (hj = 1) attached to a rigid base. 
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5.7 Equipment isolation when the inertial actuator resonance frequency 

is greater than the structural frequency of interest 

When the inertial actuator resonance frequency is greater than the equipment resonance 

frequency of interest, the overall system turns out to be more difficult to control, therefore, 

when possible, an actuator resonance frequency below the structural frequency is 

recommended (Zimmerman et a!., 1990, Preumont et a!., 1993, Elliott et ai., 2001a, 

Benassi et a!., 2002a). 

Placing the cut-off frequency of the inertial actuator above the highest frequency of 

interest is not a feasible method of reducing the effects of the actuator dynamics on control 

design. In fact, the magnitude of the actuator force output rises at 40 dB/decade below the 

resonance frequency and the output force level would be severely limited at low 

frequencies, typically where the highest level of control force are required. Also, if the 

structure is very flexible, the model approaches a partial differential equation model with 

an infinite number of frequencies. Hence, by placing the cut-off frequency of the inertial 

actuator between two structural frequencies, potential unstable closed loops can be created 

due to the effect of the residual uncontrolled modes (Balas, 1978, and Goh and Caughey, 

1985). 

In this section the actuator mass was changed to 0.5 kg, its stiffness was changed to 

60,000 N/m, and its damping to 10 N/ms-I. This choice leads to an equipment resonance 

frequency of about 21 Hz and an ineltial actuator resonance frequency of about 55 Hz. 

When direct equipment velocity feedback is used to control the equipment velocity, an 

additional phase shift due to the structure compromises the feedback stability. The Nyquist 

plot (Figure 5.17) shows a portion of the curve at low frequency that lies in the negative 

real plane. In contrast to the conesponding case described in Section 5.2, this loop is the 

equipment -dominated resonance. 

When the feedback gain is set to 240, the stability limit is reached. In this configuration 

the closed loop behaviour shows good attenuation (15 dB maximum, 7 dB average) within 

45 and 65 Hz, but also amplification between 19 and 23 Hz. This phenomenon, which can 

be up to 20 dB, is exactly the opposite of what we aimed. In other words, the inertial 
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actuator is not able to be effective at frequencies below its own resonance frequency, 

where it turns out to be counterproductive. 
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Figure 5.17 Nyquist plot of the open loop response for the vibration isolation 
system with direct velocity feedback (hv = 1) attached to a rigid base. In this 
case, the actuator's natural frequency is greater than the equipment­
dominated resonance frequency. 

When integrated velocity feedback is applied, the Nyquist plot is rotated by 90°, as 

described in Section 5.3. Poor performance and poor robustness are also seen for real 

systems with this strategy. 

5.8 Conclusions 

A review of strategies for active vibration isolation using an inertial actuator with outer 

velocity feedback control was presented. A matrix model has been used which assumes 

that the system is divided into four elements: base, passive mounts, equipment, and 

inertial actuator. Feedback stability limits and performance were considered. In particular, 
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once the theoretical analysis was completed, a realistic case using real commercial 

components was analysed. 

The performance of active isolation systems with inertial actuators and direct equipment 

velocity feedback is known to be limited by the actuator resonance. The effect of various 

simple compensator circuits in the feedback loop were investigated, and it was found that 

a simple high-pass filter significantly improved the trade-off between high frequency 

attenuation and low frequency enhancement. 

Integrated equipment velocity feedback control IS unconditionally stable for an ideal 

system, while it is only conditionally stable for real systems. 

Throughout this study it has been assumed that the actuator resonance frequency was 

below the equipment natural frequency. If the inertial actuator resonance frequency is 

greater than the equipment natural frequency, it is shown that the overall system is more 

difficult to control and the control strategies here presented do not show good results. 

Another way of overcoming the performance problems associated with the actuator 

resonance would be to lower it by means of an inner force feedback control loop or 

implementing an inner displacement feedback. In the first case, an apparent mass is added 

to the inertial actuator moving mass, while in the second case stiffness is removed from 

the inertial actuator, as discussed in the following chapters. 
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Chapter 6 

Active vibration isolation theory with an inertial actuator 
controlled with inner force feedback 

6.1 Introduction 

This chapter deals with the stability and perfonnance analysis of a single degree of 

freedom system for active vibration isolation using the control strategies described in 

Chapter 3. This is based on inner actuator force feedback to improve the response of the 

actuator and outer equipment velocity feedback to minimize the equipment vibration. 

A matrix model has been used which assumes that the system is divided into four 

elements: the vibrating plate, a passive mount, the equipment, and the inertial actuator. In 

contrast to the analysis in Chapter 5, the base structure is not assumed to be perfectly 

rigid. The dynamics of each of these elements are evaluated using mobility or impedance 

functions. Figure 6.1 shows the typical system that has been used in this study and the 

numerical values assumed for the simulations. With these values the actuator has a 

resonance frequency at 11 Hz and a damping ratio of about (=4.5%, the equipment 

mounting system has a resonance frequency at 24 Hz and a damping ratio of about 

(=5.2%, and the vibrating base has a first resonance frequency of about 46 Hz and a 

damping ratio of about (=4.8%. 
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Inertial 
Actuator 

Rigid 

Va 

ma= Inertial actuator dynamic mass = 0.91 Kg 
Ca = Inertial actuator damping factor = 5.8 N/ms'! 

ka = Inertial actuator stiffness = 3900 N/m 

me = Equipment mass = 1.08 Kg 
Cm = Passive mount damping factor = 18 N/ms-! 

km = Passive mount stiffness = 20000 N/m 

Equipment Ve The mechanical properties of the vibrating plate, which 
is a steel plate with two clamped edges and two free 
edges, are fully described by Gardonio et al. (l997a) Passive 

Mount 
1;, = Primary force (disturbance) 
fa = Secondary force (control) 

1;, Va = Inertial actuator dynamic mass velocity 
Ve = Equipment velocity 

Figure 6.1 Mechanical model of an active vibration isolation system with an 
inertial actuator. 

Details of the mobilities and impedances used to describe the system can be found in 

Chapter 5, along with the sign conventions and the complete model equations. 

6.2 Inner actuator force feedback and outer equipment velocity feedback 

control 

Figure 6.2 shows the schematic of the entire system when the inner force feedback loop is 

implemented. The expression for the equipment velocity as a function of the primary 

force,}"p , and the transmitted force,ft, is given by 

(6.1) 
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H(jm) fa 

Figure 6.2 Schematic of an active vibration isolation system with an inertial 
actuator and implementation of the inner feedback control. 

Substituting equation (3.6) into equation (6.1), the expression of the equipment velocity, 

when the inner force feedback loop is implemented, is given by 

(6.2) 

When the control force, Ie , is set to zero and the direct force feedback gain hf tends to 

infinity, Z~l tends to zero and the equipment velocity per unit primary excitation, Vel h ' 

describes a system as if the actuator is no longer present. 

Figure 6.3 shows a schematic of the system when both mner and outer loops are 

implemented. The outer loop is a velocity feedback loop, which aims to take energy away 

from the system, through a controller which has the dimensions of an impedance Z D' 

which in the first instance will be taken as a constant real positive gain. In fact, 

(6.3) 
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Substituting equation (6.3) into equation (6.2) the equipment velocity per primary force, 

when the dual-loop is implemented, is given by 

ZD fe 
H(jm) 

fa 

.fr 

Ve 

Figure 6.3 Schematic of an active vibration isolation system with an inertial 
actuator and implementation of the inner force feedback control loop and the 
outer equipment velocity feedback control. 

(6.4) 

Va 

Ve 

Figure 6.4(a) shows the equipment velocity per unit control command, ve / Ie' for 

different values of the inner force feedback gain hI. The effect of increasing the equipment 

velocity and the lowering of the first resonance can be noted. Figure 6.4(b) shows the 

corresponding Nyquist plot, which determines the stability of the closed loop system once 

the outer velocity feedback control is implemented. The ideal closed-loop system is 

conditionally stable and a portion of the Nyquist plot relative to the first resonance lies 

within the unit circle centred at (-1,0), which indicates an enhancement of the closed-loop 

response. When the inner force feedback gain hI is increased, considering that the system 

with inner force feedback control is unconditionally stable (Figure 3.4), the effect of 
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increasing the outer velocity feedback gam ZD is good attenuation and unconditional 

stability for all frequencies greater than the first resonance, which happens to be at very 

low frequency. Unfortunately, as shown in Section 3.1, at low frequencies the Nyquist plot 

lies very close to the critical point and therefore instability is likely to happen especially to 

real systems where an additional phase shift is present due to the electronic components. 

In summary, from a stability point of view, the force and velocity controller raises some 

concerns and special attention must be paid when real systems are implemented. 
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Figure 6.4 (a): Equipment velocity per unit control command when different 
inner force feedback loop gains hf are used: hf = 1 (solid), hf = 20 (faint), hf = 
100 (dashed), and hf = 100,000 (dotted). (b): Nyquist plot of the equipment 
velocity per unit control command when hf = 20 (faint), hf = 100 (dashed), and 
hf = 100,000 (dotted). The solid line shows the case when no control is 
implemented. 

Figure 6.5 shows the equipment velocity per unit primary excitation, ve / i p , for different 

values of the gain ly when no outer loop is implemented. Although the direct inner force 

feedback loop causes the equipment velocity Ve to increase, it has the beneficial effect of 

bringing the first resonance to lower frequencies (in particular, see the faint line). Figure 

6.6 shows the equipment velocity per unit primary excitation when the inner force 

feedback control and the outer velocity feedback control are implemented. Performance­

wise, attenuation can be achieved with relatively low gains. In conclusion, there is a trade­

off between performance and stability margin, which makes the inner force feedback and 
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outer equipment velocity feedback control scheme very interesting on one hand, but on the 

other hand it makes it impractical because of the stability issues discussed above. 
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Figure 6.S Equipment velocity per unit primary force when hf = a (solid), hf = 
20 (faint), hf = 100 (dashed), and hf = 100,000 (dotted). In this case, no outer 
loop is implemented. 

-30,---,----,-----,-----.-----.----.---,--.-----.----, 

-35 

-40 

-45 

......................... 

-65 

-70 

-75 

10 15 20 25 30 35 40 45 50 
Frequency (Hz) 

Figure 6.6 Equipment velocity per primary excitation when the inner force 
feedback gain hf = 100 and different outer velocity feedback control gains are 
used: ZD=O (solid), ZD=50 (faint), ZD=100 (dashed), and ZD=200 (dotted). 
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The mechanical impedance of the equipment when the inner force feedback control and 

the outer equipment velocity feedback control are implemented is given by 

j())maka -())2 ma (Ca +hfZD ) 
Z=---------'--

ka + jwca - ())2ma (1 + hf ) 
(6.5) 

which is plotted in Figure 6.7. Even for low values of the inner force gain hf' the 

equipment mechanical impedance tends to Z D past the first resonance frequency, which 

indicates that the overall system tends to a skyhook damper. When hf = 0, the mechanical 

impedance tends to Ca above the resonance frequency. In conclusion, damping is added to 

the system in the form of the desired impedance ZD, which is a positive real constant value 

that can be imposed by the designer. 
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Figure 6.7 Mechanical impedance of the equipment when the inner force 
feedback control and the outer velocity feedback control are implemented. hi = 
10 and ZD = 50. 
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6.3 Integrated inner actuator force feedback and outer equipment 

velocity feedback control 

Substituting equation (3.10) into equation (6.1), when the inner feedback loop is based on 

integrated force feedback control, the expression for the equipment velocity, ve ' as a 

function of the primary excitation, i p ' and the control command, ie' is given by 

Even in this case, when the control force, ie , is set to zero and the integrated inner force 

feedback gain hif tends to infinity, Z~2 tends to zero and the equipment velocity per unit 

primary excitation, Vel jp , describes a system as if the actuator is no longer present. It can 

be noted that forie = 0, when hiftends to infinity, Z~2 tends to zero, and veljp describes a 

system as if the actuator is no longer present. Substituting equation (6.3) into equation 

(6.6) the equipment velocity per primary force is given by 

(6.7) 

and represents the effect of the integrated inner force feedback control and the outer 

velocity feedback control. Figure 6.8(a) shows the equipment velocity per unit command 

signal for different values of the inner feedback gain hif. For high values of the inner 

feedback gain hif the first resonance is very damped, following the behaviour described in 

Chapter 3. Figure 6.8(b) shows the corresponding Nyquist plot of Vel ie for different inner 

feedback gains, which determines the stability of the closed-loop system once the outer 

velocity feedback control is implemented. When the inner feedback gain hif is increased, 

since the system with the inner control loop is unconditionally stable and very robust, the 

effect of increasing ZD is good attenuation and unconditional stability. Figure 6.9 shows 

the equipment velocity per unit primary excitation for different values of the inner 
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feedback gam hif when no outer control is present. It is clear that the outer velocity 

feedback loop is needed, since the effectiveness of the sole inner feedback loop is not 

outstanding. 
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Figure 6.8 (a): Equipment velocity per unit control command when different 
inner feedback loop gains hif in H(jOJ)= hif/jOJ are used: hif = 1 (solid), hif = 20 
(faint), hif = 100 (dashed), and hif = 100,000 (dotted). (b): Nyquist plot of the 
equipment velocity per unit control command when hif = 20 (faint), hif = 100 
(dashed), and hif = 100,000 (dotted). The solid line shows the case when no 
control is implemented. 
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Figure 6.9 Equipment velocity per unit primary force when hif = a (solid), hif = 
20 (faint), hif = 100 (dashed), and hif = 100,000 (dotted).ln this case, no outer 
loop is present. 
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Figure 6.10 shows the equipment velocity per unit primary excitation when the integrated 

inner force feedback and the outer equipment velocity feedback control are implemented. 

The effect of the inner feedback gain hif can be seen from the damped first resonance 

frequency. It is also shown that good vibration isolation performance can be achieved, but 

high gains are needed. Also, at frequencies slightly higher than the equipment resonance 

frequency, enhancement (rather than attenuation) is experienced due to the velocity 

feedback, as explained in Section 5.4. This does not indicate good performance. In 

summary, the integrated inner force feedback control and outer velocity control posses a 

high stability margin. This is mainly due to the fact that even under ideal conditions, the 

stability plot entirely lies on the positive x-axis semi-plane. On the other hand, good 

performance can be achieved, but high outer loop gains are needed. 
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Figure 6.10 Equipment velocity per primary excitation when the inner loop 
gain hif = 100 and different outer velocity feedback control gains are used: 
ZD=O (solid), ZD=50 (faint), ZD=lOO (dashed), and ZD=200 (dotted). 

The mechanical impedance of the equipment when the dual-loop control is implemented is 

given by 
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j{J)ma(ka +hifZD)-{J)2maca 
Z =-k--' ---'--2---·--

h
-

a+j{J)ca-{J) ma+jOJrna if 
(6.8) 

and is illustrated in Figure 6.11. Like in the previous case, the mechanical impedance 

tends to Z D past the first resonance frequency, which indicates that the overall system 

tends to a skyhook damper. However, higher gains are needed to achieve this behaviour. 
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Figure 6.11 Mechanical impedance of the equipment when the inner integrated 
force feedback control and the outer velocity feedback control are implemented. 
In particular, hif = 100 and ZD = 100. 

So far, it has been shown that the inner force and outer equipment velocity feedback 

control strategy does not have an acceptable stability margin, but it performs very well. 

On the contrary, the integrated inner force and outer equipment velocity control strategy is 

more stable, but it requires higher gains in order to achieve comparable performance. In 

the next section a solution is presented which offers both a good stability margin and good 

performance. 
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6.4 Inner actuator phase-lag feedback and outer equipment velocity 

feedback control 

Substituting equation (3.13) into equation (6.1), when the inner feedback loop is based on 

a phase-lag compensator and the outer loop is a velocity feedback, the expression for the 

equipment velocity is given by 

Substituting equation (6.3) into equation (6.9) the equipment velocity per primary force is 
given by 

(6.10) 

Figure 6.12(a) shows the equipment velocity per unit control command for different 

values of the inner gain hpl. It can be noted that for high gains the first resonance is very 

damped. This is due to the fact that at low frequency the overall system behaves as if the 

integrated inner force controller is implemented. Figure 6.12(b) shows the corresponding 

Nyquist plot of Ve / !C. for different inner feedback gains. When the gain hpl is increased, 

since the system with the inner control loop is unconditionally stable and very robust, the 

effect of increasing ZD is good attenuation and unconditional stability. Figure 6.13 shows 

the equipment velocity per unit primary force for different values of the gain hpl when no 

outer lop is implemented. Even in this case, the outer equipment velocity feedback loop is 

needed in order to achieve some effective attenuation on the equipment resonance. 
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Figure 6.12 (a): Equipment velocity per unit control command when different 
inner feedback gains hp/ in the phase-lag compensator are used: hp/ = 1 (solid), 
hp/ = 20 (faint), hp/ = 100 (dashed), and hp/ = 100,000 (dotted). (b): Nyquist plot 
of the equipment velocity per unit control command when hpl = 20 (faint), hp/ = 
100 (dashed), and hp/ = 100,000 (dotted). The solid line shows the case when no 
control is implemented. 
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Figure 6.13 Equipment velocity per unit primary excitation when hp/ = a 
(solid), hpl = 20 (faint), hp/ = 100 (dashed), and hp/ = 100,000 (dotted). No outer 
loop is present. 
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Figure 6.14 shows the equipment velocity per unit primary excitation when both the inner 

phase-lag feedback loop and the outer equipment velocity feedback loop are implemented. 

Good vibration isolation conditions can be achieved at the mounted natural frequency of 

the equipment. This is due to the fact that at higher frequencies the inertial actuator 

behaves as an almost perfect force source. The system with both inner and outer feedback 

loops thus has a good stability margin and it performs well. Unlike the previous case, at 

frequencies slightly higher than the equipment resonance frequency attenuation is 

experienced. In conclusion, from a stability point of view, the system has a very good 

margin and it performs very well. 
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Figure 6.14 Equipment velocity per primary excitation when the inner feedback 
loop gains hpl = 100 and different outer velocity feedback control gains are 
used: ZD=O (solid), ZD=50 (faint), ZD=lOO (dashed), and ZD=200 (dotted). 

The mechanical impedance of the equipment when both inner force feedback control and 

outer velocity feedback control are implemented is given by 

j{tJlna(ka +hpI{tJjZD)-(02ma(ca +hpIZD) 
Z=-----"-----------''---

ka + j {J)C a - {tJ2ma (1 + h pi) + j{tJJ1la hpl{tJj 
(6.11) 
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which is plotted in Figure 6.15 for an inner phase-lag controller gain of hp/ = 100 and an 

outer velocity gain of Z D = 100. It can be noted that the actuator impedance Z = f t / ve 

tends to the desired impedance, Z D' past the first resonance frequency, which indicates 

that the overall system of the inertial actuator with both feedback loops tends to a skyhook 

damper, as required. However, unlike the previous case (Figure 6.11), the tendency to a 

skyhook damper is a bit more pronounced in this case (it can be seen from the phase 

recovery at higher frequencies) and this is due to the force-feedback-like behaviour of the 

system at higher frequencies. 
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Figure 6.15 Mechanical impedance of the equipment when the inner phase-lag 
control and the outer velocity feedback control are implemented. hp/ = 100 and 
ZD= 100. 

The force requirement fa for the three feedback control schemes presented in this chapter 

has been investigated (Benassi et al., 2002b). The aim was to determine if reasonable 

force quantities can be provided by the inertial actuator, given the computed gains which 

provide the desired performance of the closed loop system. The actuator requirement fa 

per unit primary force h was found to be 
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1. = H(jm)(Za - ZD )YeZmYb f 
a 1 + Zm (Ye + Yb) + YeZa (1 + YbZm) + H (jm)Ta + H (j{J))TaZm (Ye + Yb) + H (jm)TaYe Z D (1 + YbZ IIl ) P 

(6.12) 

where Ta is the blocked response and Za is the mechanical impedance described in 

equation (2.4) and H(jm) is the inner controller in Figure 6.3. When the inner force and 

outer equipment velocity feedback control scheme is implemented, for high gains the 

closed loop system gets closer to instability, therefore higher forces fa are required to 

control its behaviour. When the integrated inner force and outer equipment velocity or 

inner phase-lag and outer velocity control schemes are implemented, lower values of the 

force fa are needed compared to the previous case, but it must be taken into account the 

fact that the performance of the closed loop system is worse than the performance of the 

first case. 

6.S Conclusions 

An analysis of different feedback control strategies for active isolation using an inertial 

actuator, based on a inner actuator force feedback loop and an outer equipment velocity 

feedback loop, was presented. Physical interpretation, feedback stability margins and 

performance were considered for each case. It was found that an inner feedback loop 

based on a phase-lag compensator and an outer equipment velocity feedback loop provide 

a very good compromise between stability and performance of the system. 

In order to establish how well this dual-loop control strategy performs compared with an 

optimal feedback control strategy, some simulations of full state feedback, optimised 

using LQG control theory, are presented in Appendix A. If the control effort in these 

simulations is adjusted to be similar to those used by the dual-loop controller, very similar 

overall attenuations in the equipment velocity are obtained. 
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Chapter 7 

Experiments with inner actuator force feedback 

7.1 Introduction 

Isolating a piece of delicate equipment from the vibration of a base structure is of practical 

importance in various engineering fields. Examples are the vibration isolation of the 

instrument boxes in an aircraft and the isolation of telescopes on satellites. An active 

isolation system can be implemented over a broad frequency band using different 

feedback control strategies. 

This chapter describes the experimental work on the active isolation of a rigid piece of 

equipment structure from the vibration of a flexible base structure. The objective is to 

study the performance and control stability issues associated with the active vibration 

isolation system. Particular emphasis is placed on the isolation of low frequency vibration 

(O-50Hz), in which the equipment resonance lies and for which the mounts can be 

assumed to behave as lumped springs and dampers. The theoretical work is described in 

Chapter 6. Another objective of this work is then to compare those theoretical findings 

with the experiments. 
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7.2 Description of the experimental set-up 

In this section the equipment and set-up used to perform the experiments are described. 

Figure 7.1 shows the active mount system used in the experimental work. It consists of an 

aluminium rigid mass, two mounts placed symmetrically underneath the aluminium mass 

and one electromagnetic shaker to produce the control force. The aluminium plate had 

been previously shown (Serrand, 1998) to behave as a rigid mass up to 1000 Hz, which is 

well above the maximum frequency of interest in this experimental study. The shaker is 

placed on top of the mass and its weight is held by a suspension system. This arrangement 

is necessary in order for the shaker to behave as an inertial actuator. This system is 

attached to a flexible plate made of steel. Accelerometers and force gauges are used as 

sensors. 

7.2.1 The equipment 

The receiving body (simulating a delicate piece of equipment) is composed of a thick 

aluminium plate. The receiver behaves as a rigid mass in the frequency range 0-1000 Hz. 

At 1000 Hz, the passive isolation provides such good performances and the axial plate 

motion is so small that any little errors in the equipment rigidity assumption would bring 

no change to the assessment of the controller performances. The receiver is thus 

considered fully rigid in the frequency range of analysis. Further details are given in Table 

C1 in Appendix C and Gardonio et al. (1996). 

7.2.2 The passive mounts 

The passive isolation consists of a pair of rings of rubber each of which is mounted 

between two aluminium discs. The top disc is rigidly connected to the piece of equipment 

while the bottom disc can be bolted to the vibrating base structure. The passive parts of 

both mounts were assumed to have the same mechanical properties. Figure 7.2 shows a 

schematic diagram of the system and further details are given in Table C2 and Table C3 in 

Appendix C. 
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Figure 7.1 Schematic of a two mount active isolation system with a rigid 
equipment structure on a flexible base. 

7.2.3 The inertial actuator 

The active force is provided by an electromechanic shaker fixed on top of the piece of 

equipment. A single shaker is placed in the middle of the equipment structure so that the 

shaker itself acts as the inertial mass, as illustrated in Figure 7.1. The mechanical 

properties of the actuator are given in Table C4 in Appendix C. 

Its main components comprise a coil moving in the steady magnetic field of a permanent 

magnet. The force generated and transmitted to the piece of equipment is proportional to 

the product of the instantaneous CUlTent in the coil and the magnetic flux density. The 
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shaker can only generate axial forces and therefore only the axial motion can be entirely 

controlled, since the mass is supposed to be perfectly rigid in the frequency range of 

interest. A single channel system can consequently be regarded as controlling the heave 

mode (vertical translation) of the rigid mass on the mounts. Since the shaker and rubber 

mounts are symmetrically placed with respect to the mass centre of the aluminium plate, it 

is therefore possible to treat the system as a single degree of freedom system. The shaker 

is placed on top of the equipment and its weight is held by an external suspension system. 

This is clearly not a very desirable arrangement in practice, but it does allow a low 

actuator natural frequency to be achieved with standard laboratory equipment. 

7.2.4 The vibrating plate 

The third main element of the base vibration isolation problem is the flexible base on 

which the disturbances are generated. A steel plate clamped on two opposite edges and 

free on the two others was designed to model experimentally a realistic vibrating base. 

The requirements are: 

1. to use a simple design, enabling a relatively simple theoretical model; 

2. to design a base with a sufficient static rigidity to support the equipment; 

3. to get a large enough vibration on the base to drive the isolator so that the velocity 

response signals on the top of the receiving equipment can be easily measured. 

The requirement of a good dynamic range of plate vibration was motivated by the high 

expected efficiency of the passive isolation of the mounts. A low axial stiffness of the 

passive mounts provides an efficierit attenuation of the axial vibration at high frequency. 

To be able to assess the effectiveness of an active isolation in a wider frequency range 

than in the vicinity of the axial equipment rigid body modes, a strong plate motion is 

necessary in order to recover a measurable vibration signal on the top of the equipment 

that is not too corrupted by measurement noise. 

The choice of a clamped-free-clamped-free plate was made in the attempt to fulfil all these 

requirements (Leissa, 1969). A complete analysis of the design and construction of the 

vibrating plate can be found in Gm·donio's work (1996, 1997a,b,c) and its main physical 

and geometrical properties are listed in Table CS. A Matlab program of the coupled 

dynamics was written as the basis for all the theoretical simulations. 
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The first plate resonance lies around 33 Hz and the modal damping was assumed to be 1 % 

to better fit the experimental results. 

Appendix C lists the first nine modes of the base supporting plate. The experimental 

modal frequencies listed in Table C6 are lower than those predicted by the theoretical 

model. This can be explained by the imperfections of the clamping conditions. The 

strengthening pieces connecting the plate to the ticker vertical supports prevent almost any 

bending of the plate at the clamped edges at low frequencies in one sense of rotation 

(downwards) but not in the other (upwards). The second imperfection lies in the fact that 

the vertical supports are not absolutely rigid especially at low frequency. This acts to 

reduce the stiffness of the system, therefore shifting down the natural frequencies, 

particularly those for the lower order modes. 

The main differences between model and experiments at higher frequencies arise as the 

spacing between two consecutive bolts connecting the plate to the strengthening pieces is 

no longer negligible compared to the wavelength of the propagating wave. The junction 

between the strengthening pieces and the plate itself can thus not be regarded as a 

perfectly clamped junction. Secondly, the system dynamics will become affected by small 

structural details as the frequency increases, since the wavelength will get shorter. Further 

details about this topic are given in Serrand (1998). 

7.2.5 The primary shaker 

As shown in Figure 7.1, one shaker was used as primary force to drive the system. It was 

placed in the centre of the flexible base and it was driven by the output of the signal 

generator within the FFT analyser. Its main properties are described in Table C7. 

The foundation is not only moved by the shaker but also by the two cylindrical mounts as 

they are stretched and compressed. These two forces couple the dynamics of the plate and 

the isolator. 

7.2.6 Sensors 

Before any control technique is applied, identification of the experimental system and the 

characteristics of each instrument used are important. 

The force generated by the primary shaker is monitored using a piezoelectric force gauge 

(B&K type 8200) whose bottom side is bolted to the shaker and the top side is stuck to the 
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plate (Figure 7.2). The acceleration of the centre of the piece of equipment is measured at 

one point on the equipment using a piezoelectric accelerometer (B&K type 4375) 

monitoring the vertical motion. The total transmitted force to the equipment is measured 

by a second piezoelectric force gauge (B&K type 8200) whose top side is bolted to the 

secondary shaker (the inertial actuator) and bottom side is bolted to the centre of the 

aluminium mass. A complete list of the equipment used is given in Appendix C, Table C8 . 

After having analysed the different elements constituting the parts of the isolation 

problem, it is now possible to investigate the dynamics of the complete system when 

different control strategies are applied to the laboratory set-up shown in Figure 7.3 and 

Figure 7.4. This will be achieved by measuring the rigid mass response to the shaker 

excitation moving the flexible plate underneath. 
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Figure 7.2 Schematic of the location of sensors and actuator within the 
experimental set-up. 
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Figure 7.3 Image of the experimental set-up. 

Figure 7.4 Image of the core of the experimental set-up, which consists of the 
piece of equipment, which is mounted on top of passive rubber rings. The 
suspended inertial actuator is connected to the receiver and a force gauge in 
between measures the total transmitted force to the equipment. 
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7.3 Experimental implementation of the control strategies 

In order to approximate a single degree of freedom isolation problem, the shaker is located 

under the centre of the flexible plate which is the centre of symmetry of the foundation. 

The excitation is then on a nodal line of all the modes whose shapes are not symmetrical 

compared to this centre. They are then not excited and do not contribute to the plate 

motion. Provided the centre of the rigid mass of the isolation system is exactly at the 

vertical of the plate centre, both rubber mounts undergo the same displacement and the 

system tends to a single degree of freedom isolation problem. 

Setting apart the issue of how to position the primary and secondary shakers at the exact 

locations, such an idealization is obviously not perfect. Neither the rubber rings nor the 

shakers have a point connection with the plate. For instance, the surface at the bottom of 

the mounts attached to the foundations is rather large. The out of plane displacement of 

the support may therefore generate moments and displacements in torsion at the bottom of 

the mounts exciting the mass in transversal and longitudinal directions. However, because 

of the symmetry of the plate modes involved, these components act in opposite directions 

on the two mounts and cancel out. This effect is therefore unlikely to be significant. 

Another effect that was present in the measurements was that the resonance frequency of 

the inertial actuator dominated mode was a little greater than the predicted value. This was 

due to the suspension system, which in theory had to hold the actuator mass, but in 

practice it added a small contribution to the stiffness of the inertial actuator. This property 

of the system was detected by measuring the system dynamic response using different 

suspension systems. In order to reduce this effect, both rubber bands and steel wires with 

very soft springs were tested. It was decided to use the latter solution because it showed a 

better linear behaviour. 

Before conducting the experiments, the transfer functions of all the mechanical and 

electronic components were measured and their phase characteristics were accurately 

analysed for a better interpretation of the experimental measurements. The smallest 

frequency increment possible was chosen and the gathered data was not treated in the first 

place. Then some minor post-processing was performed on the data, as it will be presented 

in the next section. 
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Figure 7.5 shows a comparison between the measured plant response from primary force 

to equipment velocity and the simulation. The inertial actuator dominated resonance is at 

about 11 Hz. It can be noted that the real system appears more damped. At about 22 Hz 

the simulated equipment resonance shows a very good agreement with the experimental 

data, both in terms of magnitude and phase. The first flexible plate modal frequency which 

is visible from the accelerometer placed at the centre of the set-up is at about 40 Hz and its 

discrepancy with the simulation was explained in the previous section. Very good 

coherence was obtained during all the experimental measurements, and Figure 7.6 shows 

one example of it, taken from a force and velocity feedback scheme. At frequencies higher 

than 5 Hz the coherence is almost always unity, and at frequencies lower than 5 Hz the 

really poor coherence indicates that the experimental measurements have no physical 

meaning at such low frequencies. 
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Figure 7.5 (a): Measured and (b) simulated equipment velocity per primary 
excitation. 
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Figure 7.6 Example of measured coherence of the system. 

7.3.1 Velocity feedback control 

In order to evaluate the stability properties of the closed loop system by analysing the 

behaviour of the open loop system, white noise from the FFr analyser was used to drive 

the inertial actuator. This signal was also connected to channel A of the analyser. When 

the equipment structure was excited, the acceleration signal at centre of the piece of 

equipment was measured using an accelerometer. The acceleration signal was then passed 

to a charge amplifier and integrated to a velocity signal by a module inside the charge 

amplifier. The integrator was operated in conjunction with a high-pass filter, whose cut­

off frequency was preset to be 1 Hz. Finally the velocity signal was connected to channel 

B of the analyser to measure the frequency response function of the equipment velocity 

per unit secondary force. Figure 7.7 shows the experimental set-up, and Figure 7.9(a) 

shows the Nyquist plot obtained from this measurement. The vectors of the measured 

signals contain 801 values each, and they cover the frequency range 0-50 Hz. 
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Figure 7.7 Experimental set-up in order to measure the equipment velocity per 
unit secondary excitation. 

In order to evaluate the performance of direct velocity feedback control described in 

Chapter 5, the FFT analyser was used to measure the frequency response of the equipment 

velocity per primary excitation as well as generate the white noise signal. The white noise 

signal drove the primary shaker to excite the flexible base, and the excitation force signal 

. was measured by a force transducer connected to channel A of the analyser. When the 

equipment structure was excited, the acceleration signal measured as close as possible to 

the centre of the equipment was gathered via an accelerometer. The acceleration signal 

was then passed to a charge amplifier and integrated to a velocity signal. The integrator 

was operated in conjunction with a high-pass filter, whose cut-off frequency was preset to 

be 1 Hz. Finally, the velocity signal was connected to channel B of the analyser to 

measure the frequency response function of the absolute equipment velocity per unit 

excitation force. A built-in filter in the analyser was employed to reduce aliasing. Figure 

7.8 shows the experimental set-up, and Figure 7.9(b) shows the experimental results. 
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Figure 7.8 Experimental set-up in order to measure the equipment velocity 
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The measured plant response from secondary shaker input to integrated accelerometer 

output for the active isolation system with the inertial actuator is shown in Figure 7.9(a), 

which is similar to the simulated response shown in Figure 7.11(a), except for a more 

pronounced behaviour of the flexible base in the measured data. There is no primary 

disturbance arising from the base support and the loop on the left hand side of the Nyquist 

plot, which is due to the actuator resonance, indicates enhancement of the system response 

for gains within the stability region . The spectrum of the measured equipment velocity, 

normalized by the primary force, is shown in Figure 7.9(b) with no control and with three 

values of feedback gain. Attenuation of the vibration at the mounted equipment resonance 

at about 23 Hz can be achieved using this arrangement, but some enhancement of the 

disturbance at the actuator resonance frequency (11 Hz) then occurs, as predicted. This 

enhancement increases rapidly if the feedback gain is further increased until the system 

becomes unstable. Almost no attenuation was observed in the base resonances with this 

control scheme. The results of the computer simulations of the inertial control system are 
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shown in Figure 7.11 (b) and these are again comparable with the measurements. The 

maximum measured attenuation is about 12 dB, compared with a predicted value for this 

configuration of about 13 dB. In the simulations, for high gains, the actuator resonance is 

sharper than in the measurements and although attenuation is present as well in the 

simulated performance at frequencies greater than 30 Hz, in the measurements this 

behaviour was more pronounced. The theoretical prediction of the resonance at about 47 

Hz is the first flexible plate mode (mode (2,0)) that can be detected with this 

configuration. The measured data in Figure 7.9(b), on the other hand, shows the presence 

of two modes in the 35-40 Hz frequency range. It was found that the first mode at 37.2 Hz 

is the (2,0) mode (Table C9), while the other mode at about 40 Hz is the (2,1) mode of the 

plate when the isolation system is installed. This mode is not detected by the simulation 

because the excitation force is assumed to be at the centre of the base plate, while in the 

experiments the primary shaker had been connected to the plate in a slightly off-centre 

location. It can be noted that the control strategy is very effective within the equipment 

frequency range and effective in a minor way at higher frequencies. In any case, active 

vibration isolation is achieved since "the frequency response plot of the transfer function 

shows that damping values sufficient to control the resonance have no adverse effect on 

high frequency isolation" (Karnopp, 1995). 

Figure 7.9 shows the untreated data as it was gathered, comprising 801 points in the range 

0-50 Hz. 25 averages were taken in the frequency domain by the analyser. For a clearer 

presentation of the experimental results, the collected data was averaged every 8 data 

points and the results are shown in Figure 7.10. It was decided to apply this simple 

treatment to all the data collected and present the experimental results in this 'form. 
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Figure 7.9 (a): Nyquist plot of the untreated measured open loop response 
from secondary shaker input to integrated accelerometer output. (b): 
untreated measured velocity of the equipment per unit primary excitation. 
Results are shown for the passive system (control off, solid line) and for three 
values offeedback gain (faint lines): hv =8 (triangle), hv = 15 (square), and hv 
= 22 (circle). For gains greater than 22 the system was unstable. 
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Figure 7.10 (a): Nyquist plot of the treated measured open loop response 
from secondary shaker input to integrated accelerometer output. (b): treated 
measured velocity of the equipment per unit primary excitation. Results are 
shown for the passive system (control off, solid line) and for three values of 
feedback gain (faint lines): hv =8 (triangle), hv = 15 (square), and hv = 22 
(circle). For gains greater than 22 the system was unstable. 
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Figure 7.11 (a): Nyquist plot of the simulated open loop response from 
secondary shaker input to integrated accelerometer output. (b): simulated 
velocity of the equipment per unit primary excitation. Results are shown for 
the passive system (control off, solid line) and for three values of feedback 
gain: hv =8 (faint line), hv = 15 (dashed line), and hv = 22 (dotted line). For 
gains greater than 22.5 the simulated system was unstable. 

The following considerations were drawn while working on this first control strategy, but 

they were then applied to all the other experiments. 

Due to the imperfect operation of the electrical equipment and low coherence suffered at 

low frequencies, the conesponding plots from the experiment show very high values at 

very low frequencies. Smooth curves at low frequencies are observed in the simulation 

since perfect operation of the electrical equipment is assumed. Also, in the simulations the 

feedback control gain relating the secondary force to the control velocity in unit of N/ms- I 

must account for the different gains used in the experimental feedback loop, which 

comprises the charge amplifier gain, the power amplifier gain and the sensitivity of the 

actuator. The sensitivity of the accelerometer is directly taken into account by the charge 

amplifier. The feedback control gain values were therefore measured from the different 

components of the experimental set-up and modelled in the simulation for comparison 

purposes. The open and closed loop frequency response functions for velocity feedback 

control with 1 Hz and 10 Hz charge amplifier cut-off frequency were obtained keeping all 

the other conditions unchanged. It was experienced that when the amplifier cut-off 

133 



frequency within the charge amplifier is increased from 1 Hz to 10 Hz the maximum 

attainable gain reduces considerably. 

7.3.2 Integrated velocity feedback control 

In this experiment the same configurations as before were used in order to evaluate the 

stability properties and the performance of the closed loop system. The only difference 

was an ISVR-built passive integrator (R = 470 K,Q, C = 2.2 /-IF), which was used as a 

controller in the feedback loop before the power amplifier. This allowed the equipment 

velocity signal to be connected to the FFf analyser for measurement purposes, and also to 

be integrated within the feedback leg of the experimental set-up. 

The measured plant response, from secondary shaker input to integrated velocity output, 

for the active isolation system with the inertial actuator is shown in Figure 7.12(a), which 

reasonably matches with the simulated response shown in Figure 7.13(a), except for a 

more pronounced behaviour of the flexible base. Even in this case there is no primary 

disturbance arising from the base support. Compared to the previous case, the Nyquist plot 

appears rotated by 90° clockwise. This is due to the effect of the integrator in the 

controller. Also, the presence of low frequency phase shifts can be seen. The spectrum of 

the measured equipment velocity, normalized by the primary force, is shown in Figure 

7.12(b) with no control and with three values of feedback gain. It can be seen that 

attenuation of the vibration at the mounted equipment resonance can be achieved using 

this arrangement, but that some enhancement of the disturbance at the actuator resonance 

frequency then occurs. This is due to the non-perfect characteristics of the electronic 

components that were used during the experiments. This enhancement increases rapidly if 

the feedback gain is further increased until the system becomes unstable. The results of the 

computer simulations of the inertial control system with an ideal integrator show good 

agreement with the measurements (Figure 7.13b)). The maximum measured attenuation is 

about 8 dB and the tendency of separating the first two resonances apart when the gain is 

increased is clearly observed and predicted by the simulations. In summary, integrated 

velocity feedback control is unconditionally stable for an ideal system, while it is 

conditionally stable for real systems. The performance of an ideal integrated velocity 

feedback controller is good within a considerable frequency range, but unfortunately high 
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Figure 7.12 (a): Nyquist plot of the treated measured open loop response 
from secondary shaker input to integrated accelerometer output when the 
controller is an integrator. (b): treated measured velocity of the equipment 
per unit primary excitation. Results are shown for the passive system (control 
off, solid line) andfor three values offeedback gain (faint lines): hiv =1000 
(triangle), hiv = 3000 (square), and hiv = 6000 (circle). For gains greater than 
6000 the system was unstable. 
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Figure 7.13 (a): Nyquist plot of the simulated open loop response from 
secondary shaker input to integrated accelerometer output when the 
controller is an integrator. (b): simulated velocity of the equipment per unit 
primary excitation. Results are shown for the passive system (control off, solid 
line) and for three values of feedback gain: hiv = 1000 (faint line), hiv = 5000 
(dashed line), and hiv = 10000 (dotted line). The ideal system is 
unconditionally stable. 
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7.3.3 Inner force feedback control 

In order to evaluate the stability properties of the closed loop system by analysing the 

behaviour of the open loop system, white noise form the FFT analyser was used to drive 

the inertial actuator. This signal was also connected to channel A of the analyser. When 

the equipment structure was excited, the force signal between the inertial actuator and the 

piece of equipment was measured using a B&K 8200 force gauge. The force signal was 

then passed to a charge amplifier. Finally the force signal, which is in fact the transmitted 

force to the equipment, was connected to channel B of the analyser to measure the 

frequency response function of the transmitted force per unit secondary force . Figure 7.14 

shows the experimental set-up, and Figure 7. 17(a) shows the Nyquist plot obtained from 

this measurement. 
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Figure 7.14 Experimental set-up in order to measure the total transmitted f orce 
per unit secondary excitation. 

In order to evaluate the performance of this strategy, the FFT analyser was used to 

measure the frequency response of the equipment velocity as well as generate the white 

noise signal. The white noise signal drove the primary shaker to excite the flexible base, 

and the excitation force signal was measured by a force transducer which was al so 

connected to channel A of the analyser. When the equipment structure was excited, the 
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acceleration signal at the centre of the equipment was measured using an accelerometer. 

The acceleration signal was then connected to a charge amplifier and converted to a 

velocity signal similarly to the previous cases. Finally, the velocity signal was connected 

to channel B of the analyser to measure the frequency response function of the equipment 

velocity per unit excitation force. A built-in filter in the analyser was employed to reduce 

aliasing. Unlike the previous cases however, this feedback control strategy is based on the 

measurement of the transmitted force to the equipment. To implement this feature the 

force gauge between the inertial actuator and the equipment measures the transmitted 

force, whose signal is then fed to a charge amplifier. The output of the amplifier becomes 

the input to the power amplifier, which in fact acts as the gain module within the feedback 

leg. The amplified signal is then connected to the inertial actuator. Figure 7.15 shows a 

practical implementation of the experimental set-up, and Figure 7.17(b) shows the 

experimental results. 

Figure 7.16 shows the measured mechanical impedance, the transmitted force per unit 

equipment velocity, of the system. When the force feedback gain in increased, the inertial 

actuator resonance frequency is pushed to lower frequencies. As expected, the low 

coherence at the first flexible base resonance causes the data to be not well defined. Also, 

the base dynamics can be seen at about 45 Hz. 

The measured plant response, from secondary shaker input to transmitted force, for the 

active isolation system with the inertial actuator is shown in Figure 7.17(a), which is 

similar to the simulated response shown in Figure 7.18(a). Also in this case there is no 

primary disturbance arising from the base support. The stability analysis of such a system 

plays an important role in the discussion about whether inner force and outer velocity 

feedback control is a good solution to the equipment isolation problem. At low frequency, 

as predicted by the simulations, the Nyquist plot lies very close to the critical point and 

therefore instability is likely to happen when the gain is increased because of the 

electronic components. 

The spectrum of the measured equipment velocity, normalized by the primary force, is 

shown in Figure 7. 17 (b) with no control and with three values of feedback gain. It can be 

seen that enhancement of the vibration at the mounted equipment resonance is 

experienced using this anangement, as predicted by theory. 
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An important aspect is that, when the gain hf increases, the actuator resonance frequency 

is shifted to lower frequencies , while its magnitude increases, getting closer to the 

unstable region (Chapter 3). In the experiments, the first resonance frequency was 

lowered to 8.75 Hz. The corresponding simulation is plotted in Figure 7.18(b). Although 

an ideal system is unconditionally stable, and therefore the inertial actuator's resonance 

frequency can be lowered considerably, in a real system the inertial actuator's resonance 

frequency can be lowered only to a certain value, determined by the stability condition. 

Also, since the ideal Nyquist plot does not lie in the unit circle centred at (-1 ,0) as much 

as the measured one, smaller enhancement is predicted by the simulation at the 

equipment resonance. 
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Figure 7.15 Experimental set-up in order to measure the equipment velocity 
per unit primary excitation whenforcefeedback control is implemented. 

138 

000 

o 0 

• 
• 



12 

10 

~ 6 

~ 

I 

-30,---,--,-----;.------;---,---,---,---,----,----, 

------
-80 LLlL---'"----_'----"'--'_-'_----L_----L_--'-_---'-.....:.....--.J 

o ill U w B m u ~ ~ m 
Frequency (Hz) 

+270 

+180 

ill 15 20 25 30 35 40 ~ 50 
Frequency (Hz) 

Figure 7.16 Bode plot of the measured mechanical impedance, transmitted 
force per unit equipment velocity, of the active system. Three force feedback 
gains hf have been analysed: hf = 0 (bold line), hf = 3 (faint line), and hf = 10 
(dashed line). 
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Figure 7.17 (a): Nyquist plot of the treated measured open loop response 
from secondary shaker input to actuator force output. (b): treated measured 
velocity of the equipment per unit primary excitation. Results are shown for 
the passive system (control off, solid line) and for three values of feedback 
gain (faint lines): hf =3 (triangle), hf = 6 (square), and hf = 10 (circle). For 
gains greater than 10 the system was unstable. 
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Figure 7.18 (a): Nyquist plot of the simulated open loop response from 
secondary shaker input to actuator force output. (b): simulated velocity of the 
equipment per unit primary excitation. Results are shown for the passive 
system (control off, solid line) and for three values of feedback gain: hf = 3 
(faint line), hf = 6 (dashed line), and hf = 10 (dotted line). The ideal system is 
unconditionally stable. 

7.3.4 Integrated inner force feedback control 

In this experiment, the same configurations described above were used in order to evaluate 

the stability properties and the performance of the closed loop system. The only difference 

was an ISVR-built passive integrator, which was used as a controller in the feedback loop 

before the power amplifier. This allowed the transmitted force signal to be connected to 

the FIT analyser for measurement purposes, and also to be integrated within the feedback 

leg of the experimental set-up. 

Figure 7.19 shows the mechanical impedance, the transmitted force per unit equipment 

velocity, of the system. When the force feedback gain in increased, the inertial actuator 

resonance is damped. 
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Figure 7.19 Bode plot of the measured mechanical impedance, transmitted 
force per unit equipment velocity, of the active system, when the integrated 
force feedback scheme is implemented. Three force feedback gains hif have 
been analysed: hif = 0 (bold line), hif = 500 (faint line), and hif = 2500 (dashed 
line). 

The measured plant response, from secondary shaker input to integrated force output, for 

the active isolation system with the inertial actuator is shown in Figure 7.20(a), which 

matches very closely the simulated response shown in Figure 7.21(a). The Nyquist plot is 

rotated by 90° clockwise compared to the previous case and this is due to the effect of the 

integrator in the controller. 

In addition, the closed loop system is now significantly more stable than in the previous 

case despite the presence of low frequency causes of instability. The spectrum of the 

measured equipment velocity, normalized by the primary force, is shown in Figure 7.20(b) 

with no control and with three values of feedback gain. The corresponding simulations are 

shown in Figure 7.21(b). Also in this case the theoretical findings match quite well with 

the experimental measurements and in particular both effects on the first two resonances 

were experienced. Firstly, the magnitude of the inertial actuator resonance is attenuated. 

This damping effect was predicted and theoretically explained. Secondly, at the equipment 

resonance, the magnitude of the transfer function is greater then when no control is 

implemented (from this follows that an outer equipment velocity feedback loop is needed) 

and its frequency lowered. It was very difficult to increase the gain in such a way that it 
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would set the closed loop system unstable. Such high gains were difficult to obtain with 

the power amplifiers in use. Most of the time, the power limit was reached before reaching 

the stability limit. This definitely showed how robust this solution is. 
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Figure 7.20 (a): Nyquist plot of the treated measured open loop response 
from secondary shaker input to integrated force output. (b): treated measured 
velocity of the equipment per unit primary excitation. Results are shown for 
the passive system (control off, solid line) and for three values of feedback 
gain (faint lines): hif =500 (triangle), hif = 1000 (square), and hif = 2500 
(circle). For gains greater than 2500 the system was still stable, but 
limitations due to the electronics occurred. 
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Figure 7.21 (a): Nyquist plot of the simulated open loop response from 
secondary shaker input to integrated force output. (b): simulated velocity of 
the equipment per unit primary excitation. Results are shown for the passive 
system (control off, solid line) and for three values of feedback gain: hif =500 
(faint line), hif = 1000 (dashed line), and hif = 2500 (dotted line). 
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7.3.5 Inner actuator force feedback and outer equipment velocity feedback control 

In this case the plant is considered to be the original plant with in addition the inner force 

feedback loop. In order to evaluate the stability properties of the closed loop system, white 

noise from the FFf analyser was used to drive the command signal. This signal was also 

connected to channel A of the analyser. When the equipment structure was excited, the 

acceleration signal at centre of the equipment was measured using an accelerometer and 

then integrated. The integrator was operated in conjunction with a high-pass filter, whose 

cut-off frequency was preset to be 1 Hz. Finally, the velocity signal was connected into 

channel B of the analyser to measure the frequency response function of the absolute 

equipment velocity per unit command signal. The inner feedback loop was implemented 

using the signal from the force gauge underneath the inertial actuator. This signal was then 

connected to a charge amplifier, amplified and then connected to the secondary shaker. An 

ISVR-built passive summing box was used to add the command signal (white noise in this 

case, while it was the amplified equipment velocity in the performance measurement) to 

the output of the signal conditioner which carried the total transmitted force information. 

Figure 7.22 shows a practical implementation of the experimental set-up, and Figure 

7.24(a) shows the Nyquist plot obtained from this measurement for different values of the 

inner feedback gain. 
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Figure 7.22 Experimental set-up in order to measure the equipment velocity per 
control command. 

The set-up in Figure 7.22 was modified in order to evaluate the performance of this 

strategy. The FFT analyser was used to measure the frequency response of the equipment 

velocity per primary excitation as well as generate the white noise signal. The white noise 

signal drove the primary shaker to excite the flexible base, and the excitation force signal 

was measured by a force transducer connected to channel A of the analyser. When the 

equipment structure was excited, the equipment acceleration was measured and integrated. 

The velocity signal was then connected to channel B of the analyser to measure the 

frequency response function of the absolute equipment velocity per unit excitation force. 

A built-in filter in the analyser was employed to reduce aliasing. Figure 7.23 shows the 

experimental set-up, and Figure 7.24(b) shows the experimental results. 
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Figure 7.23 Experimental set-up in order to measure the equipment velocity 
per unit primary excitation when the inner force feedback control and the 
outer direct velocity feedback control are implemented. 
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The measured plant response, from control command to integrated accelerometer output, 

for the active isolation system with the inertial actuator is shown in Figure 7.24(a), which 

is similar to the simulated response shown in Figure 6.4(b). In this case there is no primary 

disturbance arising from the base support and three Nyquist plots are shown for different 

inner force feedback loop gains. The conclusion that can be drawn is that by increasing the 

inner feedback loop gain, the closed loop system (when the outer loop is also 

implemented) gets closer to instability. 

The spectrum of the measured equipment velocity, normalized by the primary force, is 

shown in Figure 7.24(b) with no control and with three values of feedback gain. This can 

be compared to the theoretical simulations of Figure 6.6. There is good agreement 

between simulations and theory, even if it must be taken into account the fact that in the 

simulation higher gains were used to show the potentials of this scheme. Experimentally, 

an attenuation of the vibration at the mounted equipment resonance can be achieved using 

this arrangement, but some enhancement of the disturbance at the inertial actuator 
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resonance frequency then occurs, as predicted by theory. This enhancement increases 

rapidly if the velocity feedback gain ZD is further increased until the system becomes 

unstable. Some attenuation was also observed in the higher frequency base resonances 

with this system. The maximum measured attenuation is about 12 dB, and this is due to 

the unstable nature of the system at high gains. The performance plot was obtained by 

keeping the inner force feedback gain h f constant and varying ZD. The main effect of the 

inner feedback loop is to lower the inertial actuator resonance frequency, while the main 

effect of the outer gain is to attenuate the magnitude of the equipment velocity. However, 

enhancement of the response is experienced at the first resonance when the desired 

impedance is increased and this will eventually lead the overall system to instability. Also, 

the low stability margin of the inner feedback loop tends to drive the system unstable even 

for small inner feedback loop gains. 
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Figure 7.24 (a): Nyquist plot of the treated measured open loop response 
from command signal to integrated accelerometer output when hi = 6. (b): 
Treated measured velocity of the equipment per unit primary excitation. 
Results are shown for the passive system (control off, solid line) and for three 
values of the velocity feedback gain (faint lines) when the force feedback gain 
was set to hi = 6: Zo =20 (triangle), Zo = 30 (square), and Zo = 50 (circle). 
For gains greater than 50 the system was unstable. 

146 



7.3.6 Integrated inner actuator force feedback and outer equipment velocity feedback 

control 

The same experimental set-up described above was used in this case in order to evaluate 

the stability properties and the performance of the closed loop system. The only difference 

was an ISVR-built passive integrator, which was used as a controller in the inner feedback 

loop before the power amplifier. This allowed the transmitted force signal to be connected 

to the FFf analyser for measurement purposes, and also to be integrated within the 

feedback leg of the experimental set-up. 

The measured plant response, from control command to integrated force output, for the 

active isolation system with the inertial actuator is shown in Figure 7.25(a), which 

matches closely the simulated response shown in Figure 6.S(b). Despite the presence of 

low frequency causes of instability due to the electronics, the closed loop system is now 

more stable than in the previous case. The spectrum of the measured equipment velocity, 

normalized by the primary force, is shown in Figure 7.25(b) with no control and with three 

values of feedback gain. The corresponding simulations are shown in Figure 6.10. Also in 

this case the theoretical findings match with the experimental measurements and in 

particular both effects on the first two resonances were experienced. Firstly, the magnitude 

of the inertial actuator resonance is attenuated and slightly shifted to lower frequencies. 

Secondly, at the equipment resonance, the magnitude of the transfer function is well 

attenuated, while at frequencies slightly greater than the second resonance a little 

enhancement is experienced, as predicted in Figure 6.10. 

Even in this case, it was very difficult to increase the outer loop gain in such a way that it 

would set the closed loop system unstable. Such high gains were difficult to obtain with 

the power amplifiers in use. The maximum attenuation that was obtained was about 13 

dB, but it must be noted that this does not represent a limit due to stability issues. This 

limit was reached because of the power limit of the audio amplifiers that were used during 

the experiments. 
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Figure 7.25 (a): Nyquist plot of the treated measured open loop response 
from command signal to integrated accelerometer output when an integrator 
is added within the inner feedback loop. Results are shown for hif = 2500. (b): 
Treated measured velocity of the equipment per unit primary excitation. 
Results are shown for the passive system (control off, solid line) and for three 
values of the velocity feedback gain (faint lines) when the force feedback gain 
was set to hif = 2500: ZD =60 (triangle), ZD = 80 (square), and ZD = 100 
(circle). For gains greater than 100 the system was still stable, but limitations 
due to the electronics occurred. 

7.3.7 Inner phase-lag compensator and outer equipment velocity feedback control 

The same configurations as above were used in this experiment. The only difference was a 

passive phase-lag compensator (Rl = 720 KQ, R2 = 72 KQ, C = 0.1 IlF), which was 

employed as a controller in the inner feedback loop before the power amplifier. This 

allowed the transmitted force signal to be connected to the FFT analyser for measurement 

purposes, and also to be integrated within the feedback leg of the experimental set-up. The 

measured plant response, from control command to integrated force output, for the active 

isolation system with the inertial actuator is shown in Figure 7.26(a), which matches the 

simulated response shown in Figure 6.12(b). Despite the presence of low frequency causes 

of instability due to the electronics, the closed loop system is now more stable than in the 

inner force and outer velocity feedback control scheme. However, since the Nyquist plot is 

not entirely on the right hand side of the imaginary axis and portions of it intersect the 

negative part of the x-axis, instabilities may happen at very high outer velocity feedback 

gains Z D • As predicted by the simulations, by increasing the inner feedback loop gain hpl' 

the stability properties of the overall feedback system improve. The spectrum of the 
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measured equipment velocity, normalized by the primary force, is shown in Figure 7.26(b) 

with no control and with three values of feedback gain. The corresponding simulations are 

shown in Figure 6.14. Also in this case the theoretical findings match with the 

experimental measurements and in particular both effects on the first two resonances were 

experienced. In fact, below the second cut-off frequency of the phase-lag compensator (22 

Hz), the systems behaves as if integrated inner force and outer equipment velocity 

feedback control was implemented, whereas at frequencies higher than 22 Hz, the system 

behaves as if inner force and outer velocity feedback control was implemented. As a 

result, the magnitude of the inertial actuator resonance is attenuated and slightly shifted to 

lower frequencies and at the equipment resonance, the magnitude of the transfer function 

is well attenuated, while at frequencies slightly greater than the second resonance no 

enhancement is experienced, unlike the previous case. Even in this case it was very 

difficult to increase the outer loop gain ZD in such a way that it would set the closed loop 

system unstable. Such high gains were difficult to obtain with the power amplifiers in use. 

The maximum attenuation that was obtained was about 13 dB, but it must be noted that 

this does not represent a limit due to stability issues. 
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Figure 7.26 (a): Nyquist plot of the treated measured open loop response 
from command signal to integrated accelerometer output when a phase~lag 
compensator is added within the inner feedback loop. Results are shown for 
hpl = 100. (b): Treated measured velocity of the equipment per unit primary 
excitation. Results are shown for the passive system (control off, solid line) 
and for three values of the velocity feedback gain (faint lines) when the force 
feedback gain was set to hpl = 100: ZD =20 (triangle), ZD = 50 (square), and 
ZD = 100 (circle). 
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7.4 Conclusions 

The objective of this experimental work was to investigate the active isolation of an 

equipment structure from a vibrating base structure using an inertial actuator with inner 

force feedback. The dynamics and control mechanisms of the mounted rigid equipment 

structure on a flexible base plate have been studied experimentally and the results have 

been compared to the theoretical findings previously obtained. The equipment velocity 

responses measured from the experiments agree reasonably well with the predicted results, 

which demonstrates that the theoretical model can be used to help to understand the 

dynamics of the overall system. Good stability margins of several feedback control 

strategies are verified in the experimental implementations. 

It was found from the simulations and the experiments that from a stability point of view, 

the inner actuator force feedback and outer equipment velocity feedback control scheme 

does not guarantee a good stability margin at low frequency. This is especially true when 

the outer velocity gain is increased. On the other hand, from a performance point of view, 

this scheme offers very good results using lower power than the other schemes. When an 

integrator is added to the inner loop, the overall system significantly improves its stability 

characteristics. On the other hand, if high performance is needed, very high gains are 

necessary. 

The use a phase-lag compensator within the inner feedback loop and an outer velocity 

feedback loop then appears to be very effective. In fact, simulations and experiments show 

that a strong reduction of the equipment resonance can be achieved, together with very 

good stability margins. 
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Chapter 8 

Active isolation theory with an inertial actuator having inner 
actuator displacement feedback 

8.1 Introduction 

In this chapter the active vibration isolation problem using an inertial actuator with 

inner actuator displacement feedback control is investigated. The same equipment 

structure used in the previous chapter and the same modified inertial actuator used in 

Chapter 2 will be considered in a simulation study, which will be followed, in the next 

chapter, by the experimental results. It will be seen that the ratio of actuator to 

equipment mass Jl = malme is an important parameter. In the first part of the study, Jl 

will be about 0.2, while in the second part of the chapter, it has been changed so that 

the ratio Jl = malme = 1 in order to describe the importance of the mass ratio in the 

performance. 

8.2 Simulations with a flexible base 

In this section we consider the use of an inertial actuator with inner feedback for the 

active isolation of a ligid equipment structure supported on a flexible base by a 

resilient mount. The arrangement, very similar to the arrangement described in 
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Chapter 6, is illustrated schematically in Figure 8.1 and is described fully by Benassi 

et ai. (2002d, 2003b). It consists of a flexible steel base plate 

700mm x 500mm x 1.85mm thick, clamped on the two longer sides, which SUppOltS a 

rigid equipment structure modelled as a point mass (me = 1.08 Kg) on which is 

mounted an ULTRA inertial actuator. The equipment structure is supported by a 

mount, which has stiffness, kl1l = 20000 N/m, and damping, CIIl = 18 N/ms- 1
• The model 

assumes that the system is divided into four elements: a vibrating plate acting as the 

base structure, a passive mount, the equipment, and the inertial actuator. 

H(jm) 

Vibrating Plate 

Figure 8.1 Schematic of a vibration isolation system with an inertial 
actuator and implementation of the inner control based on inertial actuator 
displacement feedback. 

The uncontrolled actuator has a resonance frequency of 14.5 Hz and has a damping 

ratio of about Sa = 0.4, the mounted equipment has a resonance frequency of about 

21.5 Hz and a damping ratio of about (= 5.2%, and the vibrating base has a first 

resonance frequency of about 44.8 Hz and a damping ratio of about (= 4.8%. An 

inner displacement feedback loop is used to modify the response of the inertial 

actuator, as discussed in Chapter 4, and an outer velocity feedback system, illustrated 

in Figure 8.2, is used to provide active skyhook damping for the equipment. 

The expression for the equipment velocity as a function of the primary forcejp and the 

transmitted forcefi, is given by equation (6.1) 
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(8.1) 

where, using the usual notation, Ye is the mobility of the equipment structure, Yb is 

the mobility of the base structure and Zm is the mechanical impedance of the mount. 

Since the equipment structure is assumed to behave entirely like a rigid body of mass 

me, its input mobility is equal to Ye =l/(j(tJme ). The mount is assumed to have a 

negligible mass, and so without loss of generality its impedance can be written as 

(8.2) 

where km is the mount's stiffness and CIIl its damping factor, both of which may be 

frequency dependent. Substituting equation (4.13) into equation (8.1), the expression 

for the equipment velocity, when the modified inertial actuator is attached on the 

equipment, is given by 

If the control law of the outer feedback loop is assumed to take the form Ie = -Z D ve , 

as shown in Figure 8.4, where Z D can be interpreted as the desired impedance of the 

outer feedback system, then equation (8.3) can be used to derive the equipment 

velocity per primary force with both feedback loops as given by 

(8.4) 
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H(jm) 

Vibrating Plate 

Figure 8.2 Schematic of a vibration isolation system with an inertial 
aCtuator and implementation of the inner control based on displacement 
feedback and the outer velocity feedback control. 

The stability of the closed loop system can be assessed from Figure 8.3, which shows 

the predicted Nyquist plot of the open loop response of the plant, based on the 

modified inertial actuator on the passive isolation system and described by the second 

term of equation (8.3), and the outer equipment velocity feedback control gain Z D' In 

this configuration, a gain of Z D = 60 guarantees a 6 dB stability margin. Figure 8.4 

shows the equipment velocity per unit primary excitation for the uncontrolled case 

and for different gains in the outer feedback loop. There is a difference between the 

equipment-dominated resonance frequency when no device is installed (solid line), 

and the new resonance frequency of the system when the modified inertial actuator is 

applied on top of the piece of equipment (faint line). This is due to the actuator acting 

as a tuned vibration neutraliser, as explained by den Hartog (1985). This "passive" 

effect of the modified inertial actuator with inner feedback on the equipment 

dynamics can be seen from the response when the outer loop is not implemented 

(Z D = 0), which shows a lowered and well damped first resonance frequency, 

dominated by the actuator's response, as well as a damped equipment resonance 

frequency. In this case, the damping effect seems to be more evident than the mass­

loading effect. When the inner feedback gain gv is increased, substantial damping is 
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added to the system and both the first and second resonances are well attenuated, 

while attenuation at higher frequencies is experienced for high values of the gain gv. 

Good vibration isolation conditions can be achieved at the mounted natural frequency 

of the equipment by the modified inertial actuator and the outer velocity feedback 

loop. The outer loop, with response ZD, improves the behaviour of the equipment­

dominated resonance, but it also enhances the magnitude of the inertial actuator 

resonance, as expected, by up to 10 dB at 10 Hz in Figure 8.4. When ZD = 60 (dashed 

line in Figure 8.4), an impressive 24 dB attenuation is present at the equipment 

resonance frequency compared to the case where no device is installed. 
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Figure 8.3 Predicted Nyquist plot of the open loop transfer function of the 
complete system in Figure 8.2, equipment velocity per unit command 
signal, when gp = -1000, the self-levelling coefficient A = 0.4, the 
derivative gain gv = 18, and the outer velocity control feedback gain ZD = 
60. The modified inertial actuator is directly installed on the equipment. 
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Figure 8.4 Predicted frequency response of the equipment velocity per 
primary excitation when no modified inertial actuator is installed (solid), 
when the modified inertial actuator is installed but no outer velocity 
feedback loop is implemented (faint), and when both the modified inertial 
actuator and the outer velocity feedback loop are implemented with ZD = 
60 (dashed). Under ideal conditions stability is guaranteed when ZD < 120. 

The mechanical impedance of the modified actuator with outer velocity feedback loop 

is given from equation (4.10) and equation (4.12) by substituting Ie = -ZDve 

Z = (jOJnla ka - ev 2macJ. [H (jev) + jevza] - jev3maZaZ D 

(ka + jOJca - ev 2ma + H (jev) )jevza ' 
(8.3) 

which is plotted in Figure 8.S for the same values of the PID gains used in Chapter 4 

and an outer velocity gain of Z D = 60. It can be noted that the actuator impedance 

Z = It Ive , past the first resonance frequency, tends to the desired impedance plus the 

derivative gain and the mechanical damping factor, ZD+gV+ca= 96 N/ms- l
, which 

indicates that the overall system, composed of the modified inertial actuator with 

outer feedback loop, is similar to a skyhook damper. 
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Figure 8.5 Mechanical Impedance of the inertial actuator with inner and 
outer feedback loops when the inner displacement feedback control and the 
outer velocity feedback control are implemented. In particular, gp = -1000, 
A = 0.4, gv = 18 and ZD = 60. 

8.3 Importance of the mass ratio between equipment mass and 

inertial actuator proof-mass 

In this section, the importance of the mass ratio between equipment mass and ineltial 

actuator moving mass, f.1 = n1a1n1e , will be discussed. In a realistic application, this 

ratio is likely to be less than 1, and in the specific simulated and experimental case 

described in this chapter and in Chapter 9 using the ULTRA actuator the ratio f.1 = 

n1aln1e is equal to 0.2. The equations derived in the last section still hold when the 

ratio in increased to about 1, which applies to the case where an LDS Ling VIOl 

shaker is used, whose internal mass is n1a = 0.91 Kg. For values of the mass ratio 

close to unity, the mechanical impedance shows that very good damping can be 

achieved by the inertial actuator with inner feedback, but without outer velocity 

feedback and this implies that the same values of the outer gain ZD can be used to 

achieve a better performance than the case described in the previous section. 

Figure 8.6 shows the Nyquist plot of the equipment velocity per unit command signal 

for different values of the inner velocity loop gain gv when the mass ratio is about l. 

The effect of the inner velocity feedback gain of increasing the damping at the 
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equipment-dominated resonance frequency and the inertial actuator resonance 

frequency can be noted. When the inner velocity feedback gain gv is increased, the 

portion of the curve on the left-hand side of the imaginary axis decreases, adding 

damping to the actuator resonance. This is highly beneficial to the overall system 

because it is more stable to begin with. The Nyquist plot also suggests that the effect 

of increasing ZD is good attenuation of the equipment-dominated resonance, and 

enhancement of the actuator resonance. It can be noted from the dashed line that the 

maximum gain ZD that is allowed before instability is 220. 

Figure 8.7 shows the equipment velocity per unit primary force for different values of 

the gain gv. There is a difference between the equipment-dominated resonance 

frequency when no device is installed (solid line), and the new resonance frequencies 

of the system when the modified inertial actuator is applied on top of the piece of 

equipment. In terms of performance, Figure 8.7 also shows the behaviour of the 

complete system when the device is installed and no outer loop is implemented. It is 

the situation depicted in Figure 8.1, where no commandt· is present. The faint line 

shows the effect of the self-levelling controller, which is an enhancement of the 

magnitude of the first resonance frequency. When the gain gv is increased, substantial 

damping is added to the system and both the first and second resonances are well 

attenuated, while attenuation at higher frequencies is experienced for high values of 

the gain gv. From a performance point of view, both gP and gI must be considered as 

set values. gP determines the position in frequency of the actuator resonance, and gI 

determines the response of the actuator. However, if gI is increased, the device moves 

closer to instability and therefore only gv can be considered as significant in 

improving the performance of the device. Also, between gv = 20 (dotted line) and gv 

= 100 (dashed-dotted line) the shape of the curve in Figure 8.7 changes considerably. 

In fact, when gv is increased, the device starts behaving as an overdamped system. As 

a result, high attenuation of the equipment resonance can be achieved, but at the same 
I 

time the device is mass-dominated. This leads to a lower resonance at about 15 Hz, 

which increases in magnitude when gv increases within the overdamped region. 
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Figure 8.6 Nyquist plot of the equipment velocity per unit command signal 
when A=0.4 and different inner feedback loop gains gv are used: gv =0 
(solid), gv =10 (faint), gv =20 (dashed), and gv =100 (dotted). Mass ratio 
,u==1. 
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Figure 8.7 Equipment velocity per unit primary force when no device is 
installed on the equipment (solid) and with an inertial actuator attached 
with inner feedback, where A=O.4, gp = 200, and different inner feedback 
loop gains gv are used: gv =0 (faint), gv =10 (dashed), gv =20 (dotted), 
and gjl =100 (dashed-dotted). Mass ratio ,u == 1. 
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Figure 8.8 shows the equipment velocity per unit primary excitation when both inner 

and outer feedback loops are implemented so that the outer controller is added to the 

"passive" effect provided by the device and its inner controller. The outer loop, based 

on ZD, improves the behaviour of the equipment-dominated resonance, but it also 

enhances the magnitude of the inertial actuator resonance, as expected. For example, 

when ZD = 200 (dotted line), an additional 18 dB attenuation is present at the 

equipment resonance frequency compared to the "passive" case, which leads to an 

overall 30 dB attenuation compared to the uncontrolled case in Figure 8.7. The 

comparison between the case where no device is installed on the equipment (solid line 

in Figure 8.7) and the performance plot in Figure 8.8 suggests that care must be taken 

to avoid possible instabilities due to the actuator resonance, but this feature can be 

achieved and, more importantly, a considerable attenuation in the equipment velocity 

can be obtained. 
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Figure 8.8 Equipment velocity per primary excitation when the inner 
feedback loop gains ),,=0.4, gp = 200, and gv =20 are used, and different 
outer velocity feedback control gains are implemented: ZD=O (solid), 
ZD=20 (faint), ZD=lOO (dashed), and ZD=200 (dotted). Under ideal 
conditions, stability is guaranteed when ZD < 220. 

In conclusion, even if a modified inertial actuator with low mass ratio f.1 = rna/me does 

not seem to provide the closed loop system with the same vibration attenuation as the 

above case, it becomes very helpful both in terms of stability and performance when 

the outer equipment velocity feedback loop is implemented. In fact, implementing the 

outer velocity feedback loop, good attenuation can be achieved. 
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As described in Chapter 2, the actuation force is proportional to max, X being the 

relative displacement of the proof-mass. But max = -uimax, which indicates that at 

low frequency, in order to obtain considerable force, long strokes are needed. This 

puts a limit in the size of the actuator and its performance. Also, since ma is involved 

in these considerations, this implies that Jl also limits the size of the actuator, because 

for smaller Jl, longer strokes are necessary. 

8.4 Conclusions 

It was found that the new device is effective in actively isolating a piece of equipment 

from the vibrations of a base structure. Although the overall system is conditionally 

stable, very good performance can be achieved. 

When the device is installed on top of the equipment and no outer loop is 

implemented, the overall system can achieve good performance if the ratio Jl between 

the moving mass of the actuator and the equipment mass is large. When Jl is small, 

the passive effect is consequently small, but encouraging performance can still be 

obtained with the outer feedback loop. Another important effect of the choice of Jl is 

the limitation imposed on the stroke of the inertial actuator. 

161 



Chapter 9 

Experiments on active isolation with an inertial actuator having 
inner actuator displacement feedback 

9.1 Introduction 

This chapter describes the experimental work on the active isolation of a rigid piece of 

equipment structure from the vibration of a flexible base structure using a modified 

inertial actuator and an outer velocity feedback control. The objective is to validate the 

theoretical findings described in Chapter 8 and to study the performance and control 

stability issues associated with the active vibration isolation system. Particular emphasis is 

placed on the isolation of low frequency vibration (O~50Hz), in which the equipment 

resonance lies and for which the mounts can be assumed to behave as lumped springs and 

dampers. The inertial actuator that was used for the experiments was the modified 

ULTRA ATVA described in Chapter 4, while the equipment and set-up used to perform 

the active vibration isolation experiments are very similar to what was used in Chapter 7. 

9.2 Description of the experimental set-up 

Figure 9.1 shows the active mount system used in the experimental work. It consists of an 

aluminium rigid mass, two mounts placed symmetrically underneath the aluminium mass 
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and one electromagnetic shaker to produce the control force . The inertial actuator is 

placed on top of the mass and no suspension system is required. Finally, an accelerometer 

is used to measure the equipment velocity and unlike the experiments described in Chapter 

7 no force gauges are used, making the system easier to assemble and more structurally 

robust. Figure 9.16 shows a closer image of the apparatus and it can be noted that also in 

this case the shaker can only generate axial forces and therefore only the axial motion can 

be entirely controlled, since the mass is supposed to be perfectly rigid in the frequency 

range of interest. 

Figure 9.1 Image of the experimental set-up, which consists of the piece of 
equipment, which is mounted on top of passive rubber rings, which is attached 
to a plate. Undemeath the plate, a shaker supplies the primary force. The 
ULTRA inertial actuator is directly connected to the equipment. 
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Figure 9.2 Image of the core of the experimental set-up, which consists of the 
piece of equipment, which is mounted on top of passive rubber rings. The 
ULTRA inertial actuator is directly connected to the receiver. 

9.3 Experimental implementation of the active isolation system with the 

modified inertial actuator 

The new experimental set-up was considered to be that described in Chapter 7 with in 

addition the inner displacement feedback loop described in Chapter 4. In order to evaluate 

the stability properties of the closed loop system, white noise from the FFT analyser was 

used to drive the command signal. This signal was also connected to channel A of the 

analyser. The acceleration signal at centre of the equipment was measured using an 

accelerometer and then integrated. The integrator was operated in conjunction with a high­

pass filter, whose cut-off frequency was preset to be 1 Hz. Finally, the velocity signal was 

connected into channel B of the analyser to measure the frequency response function of 

the equipment velocity per unit command signal. The inner feedback loop was 

implemented using the signal from the strain gauge internal to the inertial actuator. This 

signal was then connected to a signal amplifier and fed to the PID controller, the output of 

which was then connected to the summing box. The output of the summing box was 
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finally connected to the inertial actuator. Figure 9.3 shows an implementation of the 

experimental set-up. 

Charge 
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Figure 9.3 Experimental set-up in order to measure the equipment velocity 
per unit command signal when the inner PID feedback control scheme is 
implemented. 

The stability of the closed loop system can be assessed from Figure 9.4, which shows the 

measured Nyquist plot of the open loop response of the plant, based on the modified 

inertial actuator on the passive isolation system and the outer velocity feedback control 

gain Z D . In this experimental configuration, a gain of Z D = 45 guarantees a 6 dB 

stability margin. The corresponding theoretical prediction is shown in Figure 8.3, which 

shows that the same stability margin is guaranteed when Z D = 60 . 
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Figure 9.4 Measured Nyquist plot of the open loop transfer junction, equipment 
velocity per unit command signal, when gp = -1000, the self-levelling coefficient 
A = 0.4, the derivative gain gv = 18, and the outer velocity control feedback 
gain ZD = 60. The modified inertial actuator is directly installed on the 
equipment. 

The set-up in Figure 9.3 was then modified in order to evaluate the performance of the 

active isolation system with both an inner actuator displacement feedback loop and an 

outer equipment velocity feedback loop, as shown in Figure 9.5. The FFT analyser was 

used to measure the frequency response of the equipment velocity per primary excitation 

as well as generate the white noise signal. The white noise signal drove the primary shaker 

to excite the flexible base, and the excitation force signal was measured by a force 

transducer connected to channel A of the analyser. When the equipment structure was 

excited, the equipment acceleration was measured and integrated. The velocity signal was 

then connected to channel B of the analyser to measure the frequency response function of 

the equipment velocity per unit excitation force. A built-in filter in the analyser was 

employed to reduce aliasing. As explained above, both inner and outer feedback loops 

were implemented. 
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Figure 9.5 Experimental set-up in order to measure the equipment velocity 
per unit primary excitation when the inner PID feedback control and the outer 
velocity feedback control schemes are implemented. 
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Figure 9.6 shows the equipment velocity per unit primary excitation for the uncontrolled 

case, with the inertial actuator attached having only the inner feedback loop connected, 

and for different gains in the outer feedback loop. As explained in the previous chapter, 

there is a difference between the equipment-dominated resonance frequency when no 

device is installed (solid line), and the new resonance frequency of the system when the 

modified inertial actuator is applied on top of the piece of equipment (faint line). This 

"passive" effect of the modified inertial actuator with inner feedback on the equipment 

dynamics can be seen from the response when the outer loop is not implemented 

(Z D = 0), which shows a lowered and well damped equipment resonance frequency. Even 

better vibration isolation conditions can be achieved at the mounted natural frequency of 

the equipment by the modified inertial actuator and the outer velocity feedback loop. The 

outer loop, with response ZD, improves the behaviour of the equipment-dominated 

resonance, but it also enhances the magnitude of the inertial actuator resonance more than 

in the theoretical predictions in Figure 8.4, which is a sign of being closer to the unstable 
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region. The dashed line, obtained for ZD = 60, has a very good stability margin, which 

implies that ZD = 60 is a perfectly reasonable ambition in a real implementation and yet 

gives 22dB attenuation at the equipment resonance frequency. The system with both inner 

PID and outer velocity feedback loops thus has a good stability margin and it performs 

very well. 
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Figure 9.6 Measued frequency response of the equipment velocity per primary 
excitation when no modified inertial actuator is installed (solid), when the 
modified inertial actuator is installed but no outer velocity feedback loop is 
implemented (faint), and when both the modified inertial actuator and the outer 
velocity feedback loop are implemented with ZD = 60 (dashed). Under 
experimental conditions stability is guaranteed when ZD < 90. 

9.4 Conclusions 

The objective of this experimental work was to investigate the active isolation of a two­

mount flexible equipment structure from a vibrating base structure using a new device, 

based on an inertial actuator with inner displacement feedback control. The equipment 

velocity responses measured from the experiments agree reasonably well with the 

predicted results. Good stability margins of the multi-channel feedback control system are 

verified in the experimental implementations. 
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It was found from the simulations and the experiments that the new device is effective in 

actively isolate a piece of equipment from the vibrations caused by an underneath base 

structure. 
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Chapter 10 

The equivalent impedance of power-minimising vibration 
controllers on plates 

10.1 Introduction 

Inertial actuators could be used for the control of vibration on flexible structures as 

well as for active isolation. Whereas for active isolation it is clear that the target 

impedance of the actuator, Z D in the loops previously desclibed, should just be very 

large, it is not clear what this target impedance should be in the more general active 

vibration control case. In this chapter feedforward control of vibration on infinite and 

finite plates is considered in an attempt to understand what the target impedance 

should be in this case. 

A description has been given in Bardou et al. (1997) and Brennan et al. (1995, 1998) 

of the performance of two possible strategies that can be used to design an active 

vibration controller: total power minimization and maximization of the power 

absorption of the secondary source (Sharp et al., 2002). 

In this chapter, the total power generated by all the forces acting on the structure is 

used as a function to be minimised, as described by Howard et al. (2000). This 

approach has also been used as a noise control technique by Elliott et al. (1991) and 

Tanaka et al. (1988). If we assume the system to be linear such that the velocity fields 

produced by the forces can be superimposed, then the total power has a known 

minimum value that is associated with an optimal solution, as shown by Elliott et al. 
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(1991, 1997) and Nelson and Elliott (1992). This solution can be compared to what 

the passive treatments manage to accomplish. Since this solution is optimal, no other 

strategy can perform better. The question is then how well a certain passive control 

scheme performs with respect to the optimal solution when the optimal impedance is 

replaced with its equivalent passive approximation, as shown in Figure 10.1. This is 

one of the main issues discussed here. 

= (a) 

/ / 

= +-------" 

f, j f, j f.j Z~ 

(b) 

-= -= 

Figure 10.1 (a): A point primary force and a point secondary force applied to an 
infinite thin plate. (b): A point primary force and an equivalent impedance applied to 
an infinite thin plate. 

A lot of work has been carried out in order to synthesize load impedances which 

achieve desired performances (using semi-definite programming, for example, by 

Titterton, 1999), and in this study optimal impedances and impedances generated by 

passive devices (also studied by Guicking et a!., 1989) will be compared. The goal is 

to use these devices in order to reduce the total power, acting on a local basis, as also 

illustrated by Yuan (2002). Also, unlike most of the literature on this subject, the 

primary disturbance will be considered to be broadband rather than single frequency 

(Titterton, 1999 and Fuller et a!., 1997), and so the realisability of the equivalent 

impedance must be addressed. 

One of the limitations of some of the models presented in the literature is that the 

primary force and the secondary control force are acting along the same axis. In real 

systems, there will inevitably be some mismatch between the point of application of 

the primary force and the point of application of the secondary force. This issue has 
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been addressed by Jenkins et al. (1993), and their results show that appreciable 

reductions in total power can only be achieved if the secondary force is applied at a 

distance within 3A I /8 from the primary force, where AI is the flexural wavelength in 

the receiving structure at the frequency of interest. 

Infinite plates will be considered first and finite plates will then be analysed. In 

particular a flexible plate, clamped on two edges and free on the other two, will be 

considered. Then, the optimisation of the spring/damper approximation to the 

equivalent impedance is discussed, followed by the conclusions. 

10.2 Equivalent impedance for global control of vibrating infinite 

plates 

In order to analyse the problems described in the introduction, we now examine a 

single point secondary force Js separated by a distance r from a point primary force, /p, 

both forces being applied along the z-axis on an infinite plate. This configuration is 

depicted in Figure 1O.1(a). The expression for the driving point mobility Yoo = Zo (m) 
Jo(m) 

for an infinite plate, where Zo (m) is the velocity in the Z direction, evaluated at a point 

Po = (xo' Yo), and Jo (m) is the excitation force at Po' is given by 

y; _~_ 1 
00 - 8Dk 2 - 8.JDm ' 

(10.1) 

where D = El 2 is the plate's bending stiffness, E is its Young's modulus, 1 =~, 
I-v 12 

where h is the plate thickness, v is the Poisson's ratio, m = ph is the mass per unit 

area, and p is the density of the plate material. It is important to note that Yoo is 

independent of frequency and it is real. The transfer mobility, between two points 

~ =(X1'Yl) and Po =(xo,Yo), 1';0 = z,(m) is given by (Cremer et al., 1988) 
Jo(m) 
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_ ()) [ (2) (2).] YIO - --2 H 0 (kr) - H 0 (- ;kr) , 
8Dk 

(10.2) 

where r = ~ (Xl - XO)2 + (Yl - YO)2 IS the distance between the points, k = .!!l.-, 
CD 

CD = JD rm is the phase velocity, and H 62
) (.) is the second kind of Hankel function 

~-; 

of oth order. This function can be written as 

(10.3) 

where lo(kr) is the oth order Bessel function of the first kind and YoO is the Oth 

order Bessel function of the second kind. While H 62
) (kr) has real and imaginary 

parts, H62
) (- jkr) is entirely imaginary. 

It is now possible to define a cost function that will be used as the reference for all the 

remaining computations. The chosen cost function is the total power supplied to the 

plate, which is given by the sum of the power IT p due to the primary force acting in 

Po and the power IT s due to the secondary force acting in ~ . It can be expressed as 

(10.4) 

and rewritten considering that the total power is also one half of the real part of the 

forces times the complex transverse velocity of the plate at the position of the 

application of the forces. This total power can also be written as (Jenkins et al. 1993) 

(10.5) 

which is a quadratic form where the parameters of the last term of equation (10.5) are 

1 1 1[ [2 A=-Re(Yll ) , b=-Re(YIO)!p, C=-!p Re(Yoo), 
2 2 2 

(10.6,7,8) 
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where ~ 1 is the driving point mobility at location ~ = (Xl' YI). In particular, the 

power of the primary force only, which provides the power of the system without any 

sort of treatment, is given by setting the secondary force in equation (10.5) to zero. 

This leads to 

(10.9) 

Equation (10.5) has a well-defined minimum value 

(10.10) 

which is associated with an optimal secondary force Iso given by (Nelson et al., 

1992) 

(10.11) 

In the particular case of an infinite plate, from equation (10.1) follows that 

Re(Yoo) = Yoo ' (10.12) 

and from equation (10.2) and equation (10.3) the real part of the transfer mobility for 

an infinite plate is given by 

(10.13) 

Thus the optimal solution in equation (10.11) can be rewritten as (Jenkins et al. 1993) 

(10.14) 
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and its corresponding power is given by 

I1 oP1 = [1- J~ (kr)]I1 P • (10.15) 

The effectiveness of the optimal solution can be established by comparing equation 

(10.15) with the power input due to the primary disturbance i p ' given by equation 

(10.9). Equation (10.15) is plotted in Figure 10.2 as a function of kr. The optimal 

secondary force significantly reduces the total power supplied to the plate for values 

of kr below about 1. However, this attenuation tends to zero for larger values of kr. 

Thus placing the secondary force close to the primary force allows the system to 

perform well over a broad range of frequencies. If the location of the secondary force 

were to coincide with the location of the primary force, then the total power would be 

zero at all frequencies, which indicates a total cancellation of the disturbance. 
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Figure 10.2 Total power transmitted to an infinite plate, normalized to that due to 
the primary force only, when the primary and optimal secondary forces are applied 
(faint), and when the secondary force is replaced by a spring, whose stiffness is 
given by equation (10.23) (dashed). 

The optimal "equivalent" impedance that is presented to the system in order to obtain 

such attenuation in the total power is now computed. The velocity Vs of the base at 
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Pr, where the secondary force is acting, is given by a combination of the effects of the 

primary force, I p ' and the secondary force, Is, at Pr 

(10.16) 

where Yoo = Y11 in this case. If the secondary force Is is chosen to be the optimal 

solution, Iso, described in equation (10.14) and substituting equation (10.14) into 

equation (10.16), the velocity of the base at Pr as a function of the primary force, 

when the optimal solution is implemented, is found to be 

(10.17) 

From equation (10.14) it follows that 

(10.18) 

which substituted into equation (10.17) provides a way of calculating the equivalent 

impedance presented by te secondary actuator to the plate. This is given by 

~l [H 62
) (kr) - H 62

) (- jkr) - J 0 (kr)] , 
(10.19) 

and it expresses the impedance that the secondary optimal force is presenting to the 

system in order to minimise the cost function given by the total power. The numerator 

of equation (10.19) is real, and its denominator is purely imaginary, thus Zopt is 

entirely reactive (Elliott et ai., 1991). Considering only the first terms of the series 

expansion (Abramowitz et ai., 1972) of equation (10.19) in terms of kr, an 

approximated expression can be obtained 
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(kr )2 -1 
Iso _ 4 

v so - .V (kr)2 ( 1 I kr)' 
J1.11-;- y- + nl 

(10.20) 

where y = 0.577 is Euler's constant. The primary drawback of this result is that the 

compensator is non-causal (Miller et al., 1990). Equation (10.20) can be further 

expanded into 

(10.21) 

1 
where the dependence on -.- has been made explicit in order to be able to express 

Jm 

the remaining term as a stiffness coefficient ka . The low frequency approximation of 

the stiffness coefficient ka in equation (10.21) is given by 

(10.22) 

For very low frequencies and for separation distances kr == 0.01, in which case 

In kr == -5 , equation (10.22) can be rewritten as 
2 

81lD 
ka == 2( ) . r 6-y 

(10.23) 

The full expression for the equivalent impedance, equation (10.19), is plotted in 

Figure 10.3, along with its passive approximation, given by a stiffness term ~a 
Jm 

where ka = 1.2.106 N/m, as computed from equation (10.23) for the 1.85 mm plate 

when the distance r between primary and secondary forces is 2 cm. 
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Figure 10.3 Equivalent impedance due to the optimal solution (solid) and 

comparison with an impedance due to a spring whose stiffness is 1.2.106 Nlm 
(faint). 

At low frequency, the equivalent impedance is very similar to the impedance given by 

a spring, whose stiffness is very large. When the above passive approximation is used 

instead of the optimal solution, the total power as a function of kr is shown as the 

dashed line in Figure 10.2. As expected, at low values of kr the performance of the 

passive solution is close to optimum. For values of kr between about 1 and 2, 

however, the performance of the passive solution is worse than applying no control at 

all. Appreciable reductions in total power can only be achieved if the secondary force 

is applied at a distance within 3Af 18 from the primary force (Jenkins et ai. 1993), 

where Af is the frequency-dependent flexural wavelength in the receiving structure. 

When this distance is 2 cm on a 1.85 mm steel plate, reductions can be achieved up to 

550 Hz, while when this distance is 20 cm, the optimal solution is effective only up to 

60 Hz. When the value of the stiffness tends to infinity, the system behaves as an 

infinite plate pinned at the secondary location. In this case, attenuation in the total 

power for low values of kr is not as great as in the case when ka = 1.2.106 N/m. On 

the other hand, when kr assumes values between 0.5 and 1.5, the pinned case shows 

better results in terms of total power than the low kr approximation. One way to 

evaluate the performance of a passive control solution is the ratio of the frequency 
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(pc) / ) 
averaged power values. This ratio is defined as P = 10 loglo (p

u

) , where \Pc and 

(pu ) represent, respectively, the power of the controlled and uncontrolled system, 

averaged over the frequency range 0 Hz to 200 Hz. As a function of the passive 

stiffness constant ka , the frequency averaged power ratio reaches a minimum value 

when ka = 2.108 N/m, before it increases slightly and then it settles at the constant 

value of the averaged power ratio of -0.28 dB, which indicates that the plate is pinned 

and the system does not benefit from higher values of the stiffness. The choice of ka = 

1.2.106 N/m is thus appropriate in order to achieve the best possible reduction at low 

kr, using only a stiffness term, but in order to minimize the averaged power ratio as 

defined above, it is better to pin the secondary location. 

For kr > 1, the following Bessel's functions may be replaced with sufficient accuracy 

by their asymptotic representations (Skudrzyk, 1968), and in particular 

(10.24) 

(10.25) 

(10.26) 

Equation (10.1), equation (10.2) and equation (10.3) describe the terms to be used in 

equation (10.19) to compute the high-kr approximation of the optimal impedance, 

which is found to oscillate about 

ZoPt == 8.J Dm , (10.27) 
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which is equal to the infinite plate driving impedance obtained by the reciprocal of 

equation (10.1). Figure 10.3 shows that, after the stiffness-like behaviour for low 

values of kr, the optimal solution oscillates about an averaged value given by the 

driving point impedance of the infinite plate Zoo = _1_, which is equal to 323 N/ms- 1 

Yoo 

for the plate considered above. The equivalent impedance, equation (10.19), is 

entirely reactive and the mechanism of control, for low kr, is one of loading the 

primary force, since no power can be absorbed by a reactive impedance. For larger 

values of kr, the reductions in total power output are far less and the main problem in 

generating a realisable approximation to the equivalent impedance is the increase in 

the total power output that occurs at about kr = 1 with the equivalent spring, as seen 

in Figure 10.2. It has been found that larger attenuations can be obtained for kr == 1 if 

a damper, of value Zoo' is connected in parallel with the spring. Figure 10.4 shows the 

total power transmitted to the infinite plate when the secondary force is given by such 

passive ideal impedance (whose impedance is shown in Figure 10.5) and its 

performance is compared to the optimal case. For values of kr between 3 and 5, the 

equivalent impedance is either mass or stiffness dominated, whereas this passive 

approximation to the equivalent impedance is damping dominated, but nevertheless 

the total power with the equivalent impedance is not very different from the optimal 

case. Comparing Figure 10.2 and Figure 10.4, the improved performance due to the 

new approximation to the equivalent impedance can be noticed. The frequency 

averaged power ratio between the controlled system, which uses the spring-damper 

impedance and the uncontrolled system, as a function of the passive stiffness constant 

ka when the damper value is kept constant at 323 N/ms- 1
, shows that the minimum of 

the curve occurs when ka = 1.2.106 N/m. For this configuration of the approximation 

to the equivalent impedance, the averaged power ratio is about -0.444 dB, and this 

value is less than the -0.3 dB, which was obtained when implementing a stiffness as 

an approximation to the equivalent impedance. For large values of the stiffness ka, the 

ratio tends to -0.28 dB only, showing that for this value, the infinite plate is pinned at 

the secondary location. 
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Figure 10.4 Total power transmitted to an infinite plate, normalized to that due to 
the primary force only, when the primary and optimal secondary forces are applied 
(faint), and when the secondary force is replaced by a spring and a damper, whose 

stiffness and damping values are ka = 1.2.106 Nlm and Ca = IlYoo = 323 Nlms-1 

(dashed). 
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Figure 10.5 Equivalent impedance due to the optimal solution (solid) and 
comparison with an impedance due to a spring and a damper whose stiffness and 

damping values are ka = 1.2.106 Nlm and Ca = IlYoo = 323 Nlms-1 (faint). 
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In conclusion, when a secondary force is applied to an infinite plate to counteract the 

vibrations due to a primary force, the equivalent impedance of the optimal solution to 

the secondary force can be used to motivate a realisable passive approximation to the 

optimal active solution. This is given by the parallel combination of a spring and a 

damper. The stiffness approximates the behaviour of the optimal solution for small 

values of kr, while the damping approximates the frequency-averaged behaviour for 

greater values of kr, as shown in Figure 10.5. When the distance between primary and 

secondary forces is small compared with the flexural wavelength, the important part 

of the effective passive approximation to the optimal solution is thus the stiffness, 

while at greater distances, dissipating energy through a damper is the most effective 

way of controlling the power output. If calculations are performed with a number of 

primary forces having randomised phases, for which kr > 1 in each case, the optimal 

equivalent impedance, for minimum total power output, also tends to the driving point 

impedance of an infinite plate, Zoo. Since the equivalent impedance can no longer 

directly load the primary sources, its best strategy is to absorb power, and the 

impedance which absorbs the maximum power from a network is the conjugate of the 

network's driving point impedance (Elliott et al., 1991). This is known as the matched 

load, and since Zoo is real in this case, the matched load is also equal to Zoo. 

10.3 Equivalent impedance for global control of vibrating finite 

plates 

In order to apply the optimal solution to a finite plate, we now examine a single point 

secondary force is acting in R. separated by a distance r from a point primary force 

acting in Po' both forces being applied along the z-axis on a finite plate. This 

configuration is depicted in Figure 10.6. In the simulations it is assumed that the 700 

x 500 x 1.85 mm ( = Ix x ly x h) plate is clamped on two opposite ends and free to 

move on the other two. 
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Figure 10.6 A point primary force and a point secondary force applied to a finite 
700 x 500 x 1.85 mm plate clamped on two opposite edges andfree on the other two 
edges. 

These particular dimensions and boundary conditions were chosen to correspond to 

those of an experimental plate used in previous investigations (Benassi et a!., 

2003a,b). Y 00 is again the driving point mobility at Po = (xo, Yo), y 10 is the transfer 

mobility when the point of excitation is Po and the measurement occurs at 

~ = (x]' y]), and Y 11 is the driving point mobility at ~. The driving point and 

transfer mobilities, relating the vertical velocity and the force excitation at the 

locations Po and ~, can now be derived using a modal superposition approach 

(Soedel, 1993). The general expression for the mobility 1';j when the force is applied 

in Pj and the velocity is measured in P; is given by 

(10.28) 

where the indices m and n represent the number of half standing waves in the x and y 

directions for the natural mode <I> mil • The term emil is a normalising factor (Cremer et 

al., 1988), M is the total mass of the plate, (j)mn is the m,n-th natural frequency of the 

flexural vibration and 17 is the hysteretic loss factor (Cremer et al., 1988). The plate 

under study has two clamped edges and two free edges, therefore an exact solution of 

the wave equation and the boundary condition equations cannot be found. Thus an 

approximate solution must be used (Leissa, 1969). The expressions for the terms in 

equation (10.28) can be found in the work by Leissa (1969) and Bishop et a!. (1960). 

183 



The cost function given by the sum of the power input due to the primary and 

secondary force, II = II p + II s' can still be expressed in the quadratic fOlm of 

equations (10.5) to (10.8) and thus be minimised with an optimum secondary force. 

The total power due to the primary force only, equation (10.9), is compared in Figure 

10.7 with the total power described in equation (10.10) when the secondary force is 

given by the optimal solution described by equation (10.11). Figure 10.7 shows the 

power supplied to the finite plate due to the primary force only (solid line), applied at 

an arbitrary location Po = (0.32 m, 0.27 m), and due to the combination of the 

primary and optimal secondary force (faint line), applied at a distance r = 2 cm, at the 

location ~ = (0.3059 m, 0.2841 m) from the primary. The reduction is substantial, 

with some of the modes being almost cancelled, while others are greatly reduced. This 

is due to the particular location that was chosen for the secondary force. At that 

location, the secondary force can couple into most modes, but this location is either on 

or close to the nodal lines of those modes that are not completely flattened out. The 

impedance that the secondary force has to present to the system in order to minimise 

the total power is obtained by computing the optimal secondary force per unit velocity 

at the secondary location, Iso. The velocity of the base vso at ~ when the optimal 
vso 

solution is implemented is given by 

(10.29) 

Substituting equation (10.11) into equation (10.29), the equation becomes 

(10.30) 

which represents the velocity as a function of the primary force. Combining equations 

(10.11) and (10.30), the equivalent impedance when the optimal secondary force is 

implemented can be obtained. It is given by 
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z = 11'0 = Re(Yro) 
opt V so Re(Yro)Yr 1 - Re(Yr 1 )Yro 

(10.31) 

This equivalent impedance, which is again entirely reactive, is shown in Figure 10.8, 

where it can be seen that sharp transactions occur between the stiffness dominated 

regions and the mass dominated regions. Between 0 and about 45 Hz, the impedance 

is stiffness dominated, as it is between about 60 Hz and 120 Hz, and between 155 Hz 

and 175 Hz. In the remaining intervals within the 0-200 Hz window, the impedance is 

mass dominated. As for the infinite plate case, this impedance is non-causal (Miller et 

ai., 1990) as it can be verified by computing the FFT of the result shown in Figure 8. 

Equation (10.31) can be rewritten as 

1 
Z =------

opt Re(Y) , 
Y _ 11 Y 

11 Re(Yro) 10 

(10.32) 

where, from equation (10.28), 

(10.33) 

and 

(10.34) 

At very low frequency the ratio between the real parts in equation (10.32) can be 

approximated by taking only the first modal term, in which case 

Re(Yrl) _ <P11 (~) 
Re(Y

IO
) = <P 11 (Po) . 
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The mode shape of the first mode can be found in the work by Bishop and Johnson 

(1960), and at low frequency, for the chosen locations, from equation (10.35), then 

Re~y" l ,,0.84. At very low frequencies the driving point mobility Y" can also be 
Re 1';0 

approximated by 

v _. <1>~n (ED 
.ill = JW 2 ' 

Mcmnwmn 
(10.36) 

where 

(10.37) 

The expression for the coefficient q22 is provided by Bishop and Johnson (1960) and 

the normalising factor cll can be approximated using the factor for the free-free 

boundary condition, which is given by cll == 1:... Substituting the appropriate values in 
4 

the above equations, a low frequency approximation to the equivalent impedance ZoPt 

in equation (10.32) is given by 

7[4 Eh\,qi2 9.106 

Z opt == jw48(1- v2)1;<1> 11 (~)[<1> 11 (ID - 0.84<1> 11 (Po)] == j W 
(10.38) 

As well as the equivalent impedance in the optimal case, Figure 10.8 also shows the 

low-frequency approximation to the impedance given by a spring, whose stiffness is 

ka = 9.106 N/m. 
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Figure 10.7 Total power transmitted to the finite plate due to the primary force only 
(solid) and due to the primary and secondary forces when the optimal feedforward 
solution is applied and the distance between primary and secondary force is 2 cm 
(faint). 
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Figure 10.8 Equivalent impedance due to the optimal secondary force (solid) and 

the impedance of an ideal stiffness whose value is ka = 9.106 N/m (faint). The 
distance between primary and secondary force is 2 cm and the plate is finite. It can 
be noted that the real part of the impedance is zero. 
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When the distance r is equal to 20 cm, not as much attenuation in the total power is 

obtained, as shown in Figure 10.9, which is calculated for the case where Po = (0.32 

m, 0.27 m) and ~ = (0.179 m, 0.411 m). The optimal impedance also has lower 

average values, compared to the case when r = 2, as shown in Figure 10.10, which 

also shows the impedance of a spring, whose stiffness is ka = 2.5.105 N/m, that has 

been computed in an analogous way to that above. 

When the relative distance between primary and secondary forces is large and at low 

frequency, the driving point mobility dominates the transfer mobility in equation 

(10.32). Hence, when IY11I» I~o 1 then ZaPI == Zl1 = _1_. Equation (10.36) provides 
~l 

the approximation of the expression for the driving point mobility at low frequency 

and it is equivalent to a stiffness of about 7.104 N/m. In the simulations, this is the 

value of the stiffness that approximates the low frequency behaviour when the relative 

distance r = 80 cm. 

At high frequency or large relative distances r, the characteristic driving point or 

transfer mobility are equal to the driving point or transfer mobility of an infinite plate 

(Skudrzyk, 1968). Consequently, equation (10.12) and equation (10.13) describe the 

real part of the driving point and transfer mobility for an infinite plate, while equation 

(10.1), equation (10.2) and equation (10.3) describe the remaining terms to be used in 

equation (10.32) to compute the high-kr approximation to the equivalent impedance, 

which is found to oscillate about a value which is equal to the infinite plate driving 

impedance. Assuming a constant location of the secondary force, and varying the 

location of the primary force on the plate, it is found that for small relative distances 

between the primary and secondary forces, the average of the optimal equivalent 

impedance above 40 Hz can be approximated using a larger damper, whose maximum 

damping value was found to be about Ca = 4,000 N/ms- I when the distance r = 2 cm. 

For large distances between primary and secondary forces the averaged equivalent 

impedance can be approximated using lower values of the damping. The minimum 

value that was found is about Ca = 323 N/ms- I when the distance r = 80 cm, as 

expected from the above discussion. This indicates that even for finite plates, a 

simplified approximation to the equivalent impedance is given by the parallel of a 

spring and a damper. 
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Figure 10.9 Total power transmitted to the finite plate due to the primary force only 
(solid) and due to the primary and secondary forces when the optimal feedforward 
solution is applied and the distance between primary and secondary force is 20 cm 
(faint). 
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Figure 10.10 Equivalent impedance due to the optimal secondary force (solid) and 

the ideal stiffness whose value is ka = 2.5 .105 Nlm. The distance between primary 
and secondary force is 20 cm and the plate is finite. It can be noted that the real part 
of the impedance is zero. 
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10.4 Optimising the spring/damper approximation to the equivalent 

impedance 

The primary drawback of the optimal equivalent impedance shown in Figure 10.8 and 

Figure 10.10 is that it is non-causal and so cannot be implemented with broadband 

random excitations. Therefore, other solutions have been investigated even though 

their performance will be worse than that one provided by the optimal solution. In this 

section, the combination of an optimum stiffness and a damper will be analysed. 

Firstly, the two solutions are investigated independently, then they will be considered 

together, acting in parallel on the finite plate (Benassi and Elliott, 2003c). The relative 

distance, r, between primary and secondary forces is assumed to be 2 cm for these 

simulations. 

10.4.1 Control with a spring 

Figure 10.11 shows the ratio of the frequency-averaged power P , as defined above, as 

a function of stiffness. The function descends monotonically until it flattens off at 

about ka = 9.106 N/m, which indicates the minimum value of stiffness that provides 

the greatest attenuation in power (about 14 dB). At low values of the stiffness, the 

ratio of the frequency averaged power is very steep. Figure 10.12 shows the total 

power when the stiffness is chosen to be ka = 9.106 N/m (dashed line), compared to 

the optimal solution (faint line) and the uncontrolled case (solid line). It can be noted 

that high attenuations can be achieved at low frequency due to the similarity between 

optimal solution and passive equivalent approximation. Although ka = 9.106 N/m 

seems to be a good choice at low frequency, as discussed above, at higher frequency 

its effect is merely to pin the structure at the secondary location and therefore only a 

redistribution of the resonances is experienced. 
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Figure 10.11 Ratio of the frequency averaged power between power of 
the uncontrolled and controlled plate, as a function of the stiffness value 

ka. After about ka = 9 .106 Nlm, the average power ratio does not 
improve much. The distance between primary and secondary forces is 2 
cm. 
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Figure 10.12 Total power transmitted to the finite plate due to the 
primary force only (solid), the primary and secondary forces when the 
optimal feedforward solution (faint), and the primary and secondary 
forces when the ideal displacement feedback is implemented and the 

stiffness is ka = 9.106 Nlm (dashed). The distance between primary and 
secondary force is 2 cm. 
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10.4.2 Control with a damper 

Figure 10.13 shows the ratio of the frequency averaged power as a function of 

damping Ca introduced at p" . The minimum of the function at about Ca = 4,000 N/ms-1 

is -14.5 dB, and it indicates the value of damping that provides the greater attenuation 

in terms of power. At low gains, the frequency averaged power is very steep then, 

after reaching a minimum value, it settles towards the constant value -14 dB, which 

indicates that the system is pinned and it does not benefit from higher damping 

values. This limiting value is the same as that in Figure 10.11. Figure 10.14 shows the 

total power when Ca = 4,000 N/m (dashed line), compared to the optimal solution 

(faint line) and the uncontrolled case (solid line). Compared to Figure 10.12, lower 

attenuations are experienced below the first plate resonance and higher attenuations 

can be achieved at high frequency. 

-150:-----:'cO,5::-------'-----"1 ,-=-5 --:------::27,5 --:------:3:':-,5--':---:':4,5::----:5 

damping x 104 

Figure 10.13 Ratio of the frequency averaged power between power of 
the uncontrolled and controlled plate, as a function of the damping value 
Ca. The minimum of the function at about Ca = 4, 000 Nlms -1 indicates the 
value of the gain that provides the greater attenuation in terms of power. 
The distance between primary and secondary forces is 2 cm. 
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Figure 10.14 Total power transmitted to the finite plate due to the 
primary force only (solid), the primary and secondary forces when the 
optimal feedforward solution is applied (faint), and the primary and 
secondary forces when the ideal velocity feedback is applied and the 
damping value Ca = 4, 000 Nlms-1 (dashed). The distance between primary 
and secondary force is 2 cm. 

10.4.3 Control with a spring and a damper 

We now assume that the secondary force is generated by a spring and a damper, 

whose values are chosen by a joint optimisation. Figure 10.15 shows the contour plot 

of the ratio of the frequency-averaged power as a function of damping and stiffness. 

The ratio is maximum at the origin, after which it descends. The minimum of the 

function (about -14.62 dB) occurs when the damping value Ca = 4,000 N/ms-1 
, which 

coincides with the minimum of the curve in Figure 10.13, and the stiffness value ka = 

5.5.105 N/m. Figure 10.16 shows both the equivalent impedance of the optimal 

solution and the impedance of the chosen spring-damper system. In particular, the 

passive approximation does not match the equivalent impedance at low frequency, 

and this is due to the particular choice made for the stiffness, which minimises the 

frequency averaged power. Figure 10.17 shows the total power when the chosen 

spring-damper system is applied (dashed line). Compared to Figure 10.14, the system 

clearly benefits at low frequency from the stiffness, and above the first plate 

resonance, it benefits from the energy that has been taken away by the damper. 

Compared to Figure 10.12 and Figure 10.14, this case provides a better performance. 
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In summary, although the power reduction due to the parallel of a stiffness term and a 

damping term is greater than the results obtained by using either a spring or a damper, 

the difference in frequency averaged power between the parallel case and the single 

cases is not substantial. This result holds for the case where the relative distance 

between primary and secondary forces is relatively small and the frequency band of 

interest includes low and higher frequency components. These conditions are often 

met in practical vibration attenuation problems, while for limit cases, at very low or 

very high frequency, or very short or very long relative distances, as discussed above, 

the equations derived previously are valid. 
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Figure 10.15 Contour plot of the ratio of the frequency averaged power 
between power of the uncontrolled and controlled plate, as a function of 
the damping value Ca and the stiffness value ka . The minimum of the 

function at -14.62 dB occurs when Ca = 4,000 Nlms- l and ka = 5.5.105 

Nlm. The distance between primary and secondary forces is 2 cm. 
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Figure 10.16 Equivalent impedance due to the optimal secondary force (solid) and 
the ideal displacement and velocity feedback control, where the stiffness value ka = 
5.5.105 Nlm and the damping value Ca = 4,000 Nlms-1 (dashed). The distance 
between primary and secondary force is 2 cm. 
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Figure 10.17 Total power transmitted to the finite plate due to the 
primary force only (solid), the primary and secondary forces when the 
optimal feedforward solution is applied (faint), and the primary and 
secondary forces when the ideal displacement and velocity feedback is 

applied, where the stiffness value ka = 5.5.105 Nlm and the damping 
value Ca = 4,000 Nlms-1 (dashed). The distance between primary and 
secondary force is 2 cm. 
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10.5 Conclusions 

In this study the total power supplied to the structure by a primary and secondary 

force was chosen to be the cost function to be minimised. In particular, the effect of 

the distance between primary and secondary excitations was taken into account and 

simulated for both infinite and finite plates. 

The core of this study was the comparison between optimal solutions and the 

performance of idealised passive control treatments. In particular, the optimised 

equivalent impedance for global control was compared with its passIve 

approximation. It was found that, although the equivalent impedance is able to 

provide a substantial total power reduction compared to the other treatments, ideal 

passive solutions, based on the parallel configuration of a spring and a damper, can 

guarantee a good power reduction. The locations of the primary and secondary 

excitations and their relative distance may become an important aspect of the design 

of the panel vibration controller. In fact, depending on the location of the primary 

force with respect to the nodal lines, the power distribution of the uncontrolled system 

changes and, depending on the location of the secondary force with respect to the 

nodal lines, the optimal solution turns out to be more or less effective. Unfortunately, 

in many practical applications a rigid ground is not available and therefore these 

solutions cannot be implemented. The use of inertial actuators to provide substantial 

attenuation in panel vibration is analysed in the next chapter. 
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Chapter 11 

Global control of a vibrating plate using an inertial actuator 

11.1 Introduction 

The objective of this chapter is to compare the results obtained in the previous chapter 

with solutions obtained using inertial actuators for active vibration control. In order to 

understand the implications and the consequences of using inertial actuators, in this 

study we will be limited to using only one device. 

11.2 Approximated equivalent impedance for global control of 

vibrating finite plates 

11.2.1 Mass-spring-damper system on flexible plate 

Figure 11.1 shows the case where a passive system, comprising a mass, spring and a 

damper, is installed upon the plate at ~ = (0.3059 m, 0.2841 m), 2 cm from the 

primary force at Po = (0.32 m, 0.27 m). The values that were used in the simulations 

for the passive system corresponded to those of the modified ULTRA actuator and 

were rna = 0.24 Kg, Ca = 18 N/ms· I and ka = 2000 N/m, where rna is the proof-mass, Ca 

is the damping of the passive system and ka is its stiffness. 
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Flexible Plate 

Figure 11.1 A point primary jorce and a point secondary jorce, obtained 
through a mass-spring-damper system, applied to afinite 700 x 500 x 1.85 mm 
plate. The plate is clamped on two opposite edges and free on the other two 
edges. 

The transmitted force, it , exerted by a mass-spring-damper system is equal to the 

sec~ndary force Is and it is given by equation (2.6) 

i s = il = (11.1) 

The velocity, Vb' of the base at ~ is given by 

(11.2) 

which can be rewritten as 

~o V - i b - p 

1 + ~lZopell 
(11.3) 
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The total power IT, described by equation (l0.4), is shown in Figure 11.2 and in 

particular the dashed line shows the effect of the passive controller. The addition of 

~ . 
the resonance frequency, {j)a = _a ,at about 14.5 Hz can be hardly notIced, as well 

n1a 

as the fact that the first resonances are slightly shifted to higher frequencies due to the 

presence of the vibration neutralizer (den Hartog, 1985). Although some reduction in 

the total power is obtained, compared to the case where only the primary force is 

present, the difference with the optimal solution is large. The impedance of the 

passi ve system is shown in Figure 11.3. The impedance is passive and it is mass 

dominated between 0 Hz and the resonance frequency of the passive device, whereas 

it is mainly damping dominated at higher frequencies. The behaviour of the 

magnitude of the impedance is typical of the dynamic response of a vibration 

neutralizer, which is quite different from the optimal solution in Figure 10.7. This 

difference in the impedance presented to the system explains the considerable 

difference in performance, together with the fact that the damping value of the 

actuator is 18 N/ms- I
, which is much less than that calculated in Section 10.4.3 that is 

required for optimal control (4000 N/ms- I
). 
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Figure 11.2 Total power transmitted to the finite plate due to the primary force 
only (solid), the primary and secondary forces with the optimal feedforward 
solution (faint), and the primary and secondary forces when the mass-spring­
dashpot system with no other inner loop is applied (dashed). The distance 
between primary and secondary force is 2 cm. 
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Figure 11.3 Mechanical impedance of the mass-spring-dashpot system. 

11.2.2 Inertial actuator with inner actuator displacement feedback and outer 

equipment velocity feedback 

Figure 11.4 illustrates the case where a modified inertial actuator, based on an inertial 

actuator with inner displacement feedback, described in Chapter 4, is installed on the 

plate at a distance from the primary force of 2 cm. The measurement of the 

displacement of the proof-mass relative to the inertial actuator's base is connected to 

the usual PID controller, which modifies the frequency response of the actuator. The 

values within the PID controller that were used in the simulations are: proportional 

gain gP = -1000, integral gain gl = 10,000, and differential gain gv = 18. 

The secondary force Is is equal to the transmitted force It exerted by the device and its 

equation, as a function of the command signal, Ie' and the plate velocity at ~, Vb' is 

given by equation (4.12) 

- OJ2 m 
~=~= a ~ 

2 . k g I . -OJ ma + jOJca + a + gp +-.-+ jOJg v 
JOJ 

(j01n aka -OJ
2macJ{gl' +~+ jOJ(gv +Za)) , 

[-w'm. + jOX. +k. + g, + ~~ + jwg, }wZ. V. 

(11.4) 
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Ie 

Flexible Plate 

II 

Figure 11.4 A point primary force and a point secondary force, obtained 
through the modified inertial actuator, applied to a 700 x 500 x 1.85 mm plate. 
The plate is clamped on two opposite edges and free on the other two edges. 

k 
where Za = ca + ---!,-. The command force, Ie' will be used to implement the outer 

Jm 

velocity feedback control loop. Equation (11.4) can be grouped as 

(11.5) 

where T~ and Z~ are the blocked response and mechanical impedance of the actuator, 

as modified by the inner displacement feedback. The base velocity at ~ is given by 

(11.6) 

Substituting equation (11.5) into equation (11.6) the base velocity is computed as a 

function of the primary force Ip and the control command Ie 

(11.7) 

When the outer velocity feedback loop, described by 
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(11.8) 

IS implemented, the choice of the outer gain Z D becomes important in order to 

guarantee a certain stability margin and good performance. Figure 11.5 shows the 

ratio of the frequency averaged power between power of the "passive" controller 

(without outer loop) and the active control (with outer loop) as a function of the outer 

velocity feedback gain is Z D' assuming that the feedback loop is stable. The minimum 

of the function at Z D = 2080 indicates the value of the gain that provides the greatest 

attenuation in terms of power. In this case, the attenuation is about 11.2 dB. In terms 

of stability, when the device is installed and the outer equipment velocity feedback 

control loop is implemented based on the measurement of Vb' the Nyquist plot of the 

second term of equation (11.7) provides the means to determine the stability of the 

closed loop system. The theoretical active controller becomes unstable when the outer 

velocity feedback gain is greater than 2410, as shown by the Nyquist plot in Figure 

11.6. In the simulations, a velocity feedback gain of Z D = 150 was chosen in order to 

guarantee a 6 dB stability margin when the additional phase shifts present in the 

experimental system are accounted for. This implies, from Figure 11.5, that an 

attenuation of about 4 dB is achieved. 

-10 

-12oL----:5"'::-oo-----,-1O:':coo:--------:1~500::--------:2::'=00-::-0 ----' 
gain 

Figure 11.5 Ratio of the frequency averaged total power transmitted to the 
plate with the modified actuator before and after the outer feedback loop is 
implemented, as a function of the outer velocity feedback gain ZD. The 
minimum of the function at ZD = 2080 indicates the value of the gain that 
provides the greatest attenuation (about 11.2 dB) in terms of power. The 
active controller becomes unstable for outer velocity gains ZD > 2410. The 
distance between primary and secondary forces is 2 cm. 
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Figure 11.6 Nyquist plot of the idealised open loop system when the 
modified inertial actuator is applied and an outer velocity feedback control 
loop is implemented. The distance between primary and secondary force is 
2 cm and the plate is finite. The values within the PID controller that were 
used in the simulations are: gp = -1,000, g[ = 10,000, gv = 18, and 
the outer velocity feedback gain ZD = 150. 

When the outer velocity feedback loop in equation (11.8) is implemented, the base 

velocity, described in equation (11.7), becomes 

(11.9) 

Substituting equation (11.8) into equation (11.4), the transmitted force, iI' as a 

function of the bas velocity, Vb' is given by 

( j(O/1l k -aim c ).(gp+~+jW(gv+z )]-jW3Z ZD 
a a a a JW a a .(11.10) 

(
-w2m +jOJe +k +gp+~+jWgv]jWZ Vb 

a a a JW a 

f = 
t 

Once the base velocity in equation (11.9) is computed, then the transmitted force in 

equation (11.10) can be obtained and therefore the total power can be calculated. This 
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is plotted in Figure 11.7, where it can be noted that the reduction of the total power 

due to the modified inertial actuator (dashed line) is greater than the results obtained 

with the passive treatment, shown in Figure 11.2. Although the difference with the 

optimal solution is still large, useful reductions in power are predicted, which shows 

that the modified inertial actuator can be used effectively in reducing the vibration of 

panels. The impedance presented by the active mount to the system is given by 

equation (11.10), which is plotted in Figure 11.S. The impedance is not passive, 

unlike the previous case, and it is mainly damping dominated at frequencies greater 

than the inertial actuator's resonance frequency. As explained in Chapter 4, this is due 

to the choice of the inner feedback gains, and in particular the derivative term within 

the PID controller. In conclusion, the modified inertial actuator with outer velocity 

feedback loop is an effective way of adding damping to the system. 
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Figure 11.7 Total power transmitted to the finite plate due to the primary 
force only (solid), the primary and secondary forces when the optimal 
feedforward solution is applied (faint), and when the feedback system, 
based on the modified inertial actuator and an outer feedback loop with 
ZD = 150, is applied (dashed). The distance between primary and 
secondary force is 2 cm. 
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Figure 11.8 Mechanical Impedance of the inertial actuator with inner and 
outer feedback loops when the inner displacement feedback control and the 
outer velocity feedback control are implemented. In particular, 8p = -1000, 8[ 
= 10,000, 8v = 18 and ZD = 150. 

When the outer control gain ZD is chosen to be the equivalent impedance described in 

equation (10.31), the control system turns out to be unstable. If the outer feedback 

controller is an integrator of the form Z D = ~ D , interesting results are obtained. 
J{j) 

Choosing such a control impedance implies that only the first part of the optimal 

impedance in equation (10.31) is considered. In other words, kD is chosen to be the 

low frequency passive approximation of the optimal solution. In particular, when kD 

= 550,000 N/m (the same value was chosen as the passive approximation for this 

system in the previous chapter), the closed loop system turns out to be conditionally 

stable, and a 6 dB stability margin is guaranteed. This is shown in the Nyquist plot in 

Figure 11.9, where the curve at low frequency intersects the real axis at about -0.5. 
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Figure 11.9 Predicted Nyquist plot of the open loop system when the 
modified inertial actuator is applied and an outer feedback control loop, 
based on an integrator of the form ZD / jm, is implemented. The distance 
between primary and secondary force is 2 cm and the plate is finite. The 
values within the PID controller that were used in the simulations are: gp 

kD = -1,000, g[ = 10,000, gv = 18, and the outer feedback gain ZD = -.- whre 
Jm 

kD = 550,000. 

The total power for this case is plotted in Figure 11.10, where the reduction of the 

total power due to the modified inertial actuator and the outer controller, based on the 

passive approximation of the optimal solution, is quite outstanding and not very 

dissimilar from the optimal solution. At low frequency, attenuations of more than 40 

dB can be obtained, which indicates that the panel vibrations are almost suppressed. 

Unfortunately in real systems, due to low frequency phase shifts of the electronic 

components (Brennan et al., 2002), the stability margin of the system is greatly 

reduced and the performance of the closed loop system is not dissimilar to the outer 

velocity feedback case. By considering an outer feedback controller of the form 

Z D = ~ D , stiffness is added to the system (also illustrated in the impedance plot in 
Jm 

Figure 11.11) and this implies that the peaks in Figure 11.10 are moved to higher 

frequencies. This is beneficial in the low frequency range, but those peaks are not 

suppressed, they are simply moved to higher frequencies. Also, a portion of the 

inertial actuator resonance which occurs at low frequency is greatly amplified because 

of the integral velocity feedback control law. The impedance presented to the system 

is plotted in Figure 11.12. It is not passive, and it is mainly stiffness dominated, 
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except at very low frequency, where a phase shift occurs. The magnitude of the 

impedance is "that of the dynamic response of a vibration neutralizer", which is quite 

different from the optimal solution in Figure 10.7. 
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Figure 11.10 Total power transmitted to the finite plate due to the primary 
force only (solid), the primary and secondary forces with the optimal 
feedforward solution (faint), and the primary and secondary forces when the 
modified inertial actuator and the outer feedback controller, based on a 

passive approximation of the optimal solution ZD = kD f(jm) with 

k D = 550,000, are applied (dashed). The distance between primary and 
secondary force is 2 cm. 
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Figure 11.11 Mechanical Impedance of the inertial actuator with inner and 
outer feedback loops when the inner displacement feedback control and the 
outer integral feedback control are implemented. In particular, gp = -1000, g{ 

= 10,000, gv = 18 and ZD = kD f(jm) where kD = 550,000. 
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11.3 Experiments on active vibration suppression with the modified 

inertial actuator 

In this section we consider the practical use of an inertial actuator with inner feedback 

for the active suppression of a vibrating flexible plate. The arrangement is illustrated 

in Figure 11.12. It consists of the flexible steel plate 700mm x SOOmm x 1.8Smm, 

clamped on the two longer sides, as described in Chapter 7 and Chapter 9, on which is 

mounted a modified inertial actuator. The primary force is provided by an LDS Ling 

401 shaker, placed underneath the plate. The inertial actuator used for the experiments 

to produce the control force was a mechanically modified version of an active tuned 

vibration absorber (ATVA) manufactured by ULTRA Electronics, described in detail 

by Hinchliffe et al., 2002 and shown in Figure 11.12, from which the internal springs 

were removed, leaving the proof-mass (ma = 0.24 Kg) attached to the case by eight 

thin flexible supports. This modification in the stiffness (so that ka = 2000 N/m) 

changed the actuator resonance frequency from 73.8 Hz to 14.S Hz, as described in 

Chapter 4. The measured damping ratio was used to estimate the damping factor as 

ca = 18 N/ms- I
. An inner displacement feedback loop is used to modify the response 

of the inertial actuator, as discussed above, and an outer velocity feedback system is 

used to provide active skyhook damping for the equipment. The values of the gains 

within the PID controller were chosen in order to provide a modified inertial actuator 

with the characteristics described in Section 3.2. In this experimental configuration, 

an outer velocity feedback control gain Z D = ISO was chosen, which guarantees a 6 

dB stability margin. 
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Figure 11.12 The experimental arrangement, which consists of a finite fl exible 
plate, driven by a primary force (shaker underneath), and controlled by a 
modified ULTRA Electronics inertial actuator placed on the flexible plate. 

Figure 11.13(a) shows the theoretical prediction of the equipment velocity per unit 

primary excitation for the uncontrolled and the control cases when the relative 

distance is 2 cm. Good vibration isolation conditions can be achieved by the modified 

inertial actuator and the outer velocity feedback loop. The outer loop, with response 

ZD, improves the behaviour of the plate, but it also enhances its frequency response at 

low frequency, as predicted by the conditional stability of the closed loop system. The 

corresponding measured data is shown in Figure 11.13(b), where a 20 dB reduction at 

the first plate resonance frequencies was observed. The theoretical prediction and the 

experimental measurements agree well, demonstrating the effectiveness of the active 

control system based on a modified inertial actuator with inner displacement feedback 

control. 

This result was compared with an entirely passive vibration control method, when the 

flexible plate was entirely covered by either a passive unconstrained viscoelastic 

layer, composed of foam, or a 2.5 cm thick passive constrained layered absorber, 

composed of the same viscoelastic material with layers of aluminium. Figure 11 .14 

shows the measured data, compared to the uncontrolled case. Although the passive 
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treatment is equally or slightly more effective at higher frequencies, compared with 

Figure 1l.13(b), it is much less effective then the active treatment at lower 

frequencies. The mass of the first passive coating was 0.275 Kg, while the mass of the 

second passive coating was 0.645 Kg, which compared to either the mass of the 

proof-mass (0.24 Kg) or the mass of the whole modified inertial actuator (0.42 Kg) 

confirms the potentiality of the active solution. 
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Figure 11.13 Predicted (a) and measured (b) frequency response of the plate 
velocity at the secondary location per primary excitation when no control is 
implemented (solid), and when both the modified inertial actuator and the outer 
velocity feedback loop are implemented with ZD = 150 (faint). Under experimental 
conditions, stability is guaranteed when ZD < 300. 
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Figure 11.14 Measured frequency response of the plate velocity at the 
secondary location per primary excitation when no control is implemented 
(solid), when a passive vibration absorber, based on foam, is installed and 
covers the whole plate (a, faint), and when a passive vibration absorber, 
based on foam and aluminium layers, is installed and covers the whole 
plate (b, faint). 
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11.4 Kinetic energy analysis of the active vibration suppression 

system with the modified inertial actuator 

The control performance of the active vibration suppression system with the modified 

inertial actuator has been re-examined based on the kinetic energy. To calculate the 

true kinetic energy of the system, the vibration of both the ligid body modes and the 

flexible body modes would have to be accounted for. In the experiments, however, 

only the plate velocities at 40 locations were measured, when the modified inertial 

actuator with outer velocity feedback loop was installed at the same location as 

described above. The sum of squared velocities at each location is therefore used to 

evaluate the control performance of the system. Figure 11.15 shows the predicted and 

experimental results, which lead to similar conclusions as those drawn in the previous 

section. Theory and measurements agree well, showing up to 20 dB reduction in the 

vibration level and demonstrating the effectiveness of the modified inertial actuator. 
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Figure 11.15 Predicted (a) and measured (b) sum of square velocities of the 
plate when no control is implemented (solid), and when both the modified 
inertial actuator and the outer velocity feedback loop are implemented with ZD 
= 150 (faint). 
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11.5 Variation of performance with the location of the modified 

inertial actuator 

The objective of this section is to compare the previous results with solutions obtained 

by placing the modified inertial actuator with outer velocity feedback loop in other 

locations on the flexible plate (Benassi and Elliott, 2003d). Figure 11.16 shows the 

total power transmitted to the finite plate due to the primary force only, and with the 

modified inertial actuator having only the inner feedback loop. The controller is 

installed on the plate at ~ = (0.12 m, 0.27 m), 20 em from the primary force, which 

is located at Po = (0.32 m, 0.27 m). The plate resonances are attenuated, and in 

particular the first resonance is reduced by about 20 dB. 

When the outer velocity feedback loop is implemented, the choice of the outer gain 

Z D becomes important in order to guarantee a certain stability margin and good 

performance. Figure 11.17 shows the ratio of the frequency averaged power between 

the "passive" controller (the inertial actuator without outer loop) and the active 

controller (with outer loop) as a function of the outer velocity feedback gain is ZD . 

The minimum of the function at Z D = 200 indicates the value of the gain that 

provides the greatest attenuation in terms of power. In this case, the attenuation is 

only 2.4 dB, but this depends on the location of the primary and secondary forces, as 

explained below. For outer loop gains greater than about 1400 the ratio is positive, 

which indicates that the "passive" controller performs better than the active solution. 

The active controller becomes unstable when the outer velocity feedback gain is 

greater than 2450, as shown in the Nyquist plot in Figure 11.18. The Nyquist plot 

shows that the stability margin is mainly affected by the modified inertial actuator's 

natural frequency and in real systems the margin is greatly reduced, as experienced 

above, due to low frequency phase lags, which are present in the electronic 

components (Brennan et al., 2002). 
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Figure 11.16 Total power transmitted to the finite plate due to the primary 
force only with no actuator attached (solid), and with the modified inertial 
actuator ("passive" controller, faint). The distance between primary and 
secondary force is 20 cm. 
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Figure 11.17 Ratio of the frequency averaged total power transmitted to 
the plate with the modified actuator before and after the outer feedback 
loop is implemented, as a function of the outer velocity feedback gain ZD. 
The minimum of the function at ZD = 200 indicates the value of the gain 
that provides the greatest attenuation (about 2.4 dB) in terms of power. 
For gains greater than about 1400 the ratio is positive, indicating that the 
active controller is less effective than the "passive" controller. The active 
controller becomes unstable for outer velocity gains ZD > 2450. The 
distance between primary and secondary forces is 20 cm. 
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Figure 11.18 Predicted Nyquist plot of the open loop system when the 
modified inertial actuator is applied and an outer feedback control loop, 
based on velocity feedback control, is implemented. The distance between 
primary and secondary force is 20 cm and the plate is finite. The outer 
feedback gain ZD = 200 and this value minimises the function in Figure 
11.17 and intersects the x-axis at (-0.081,0), indicating that a gain of 2450 
would set the closed loop system unstable. 

The total power transmitted to the plate due to both the primary and the "passive" 

controller is shown as the solid line in Figure 11.19. This power is compared to the 

optimal solution, which defines the control target, since no other control can perform 

better. The dashed line in Figure 11.19 shows the total power due to the primary force 

and the active controller, whose outer feedback gain is Z D = 200. Although the 

stability margin is quite big and therefore the gain could be safely increased, this 

value guarantees the largest attenuation over the selected frequency range between 0 

Hz and 200 Hz. As predicted by the Nyquist plot, at some frequencies the total power 

due to the active control is greater than the power due to the "passive" control. At this 

particular location the vibration of only a few modes is reduced by more than 20 dB, 

while the total power of other modes is either unaffected or slightly enhanced. Figure 

11.20 shows the equivalent impedance due to the optimal secondary force compared 

with the impedance due to the modified inertial actuator with the outer feedback 

control loop described above. The mismatch between the two curves is quite evident 

at low frequency, while at higher frequencies the impedance of the active controller, 

which is damping dominated, seems to match the average value of the equivalent 

impedance quite well. 
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Figure 11.19 Total power transmitted to the finite plate due to the primary 
and secondary forces when the "passive" controller is applied (solid), the 
primary and secondary forces with the optimal feedforward solution 
(faint), and the primary and secondary forces when the modified inertial 
actuator and the outer velocity feedback controller are applied (dashed). In 
this case, the distance between primary and secondary force is 20 cm and 
ZD = 200. 
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Figure 11.20 Equivalent impedance due to the optimal secondary force 
(solid) and the impedance of the active controller, based on the modified 
inertial actuator and an outer velocity feedback loop whose gain ZD = 200 
(faint). The distance between primary and secondary forces is 20 cm. 
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Figure 11.21 shows the contour plot of the ratio of the frequency averaged power 

between power of the uncontrolled plate and the "passively" controlled plate, as a 

function of the x and y positions of the actuator on the flexible plate. In other words, 

the primary force is assumed to be at a location Po = (0.32 m, 0.27 m) which 

guarantees that a sufficient number of modes are excited, while the "passive" 

controller, based on the modified inertial actuator, is assumed to be installed in tum 

on the plate at different locations. For this purpose, 500 potential locations were 

selected. Figure 11.21 shows that the "passive" controller achieves at least a 3 dB 

reduction in the ratio of the frequency averaged power not only around the location of 

the primary force, as expected, but also at symmetrical locations on the plate. This 

distribution obviously changes if the location of the primary force changes. 
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Figure 11.21 Contour plot of the ratio of the frequency averaged power 
between power of the uncontrolled and the "passively" controlled plate 
with the modified inertial actuator, as a function of the x and y position of 
the controller on the flexible plate. The location of the primary force is 
indicated with a *. 

When the active control, based on the modified inertial actuator with outer velocity 

feedback loop, is implemented, the value of the feedback control gain Z D that 

minimises the ratio of the frequency averaged power, can be computed at each of the 

500 selected locations on the plate, and is shown in Figure 11.22. For each case, the 

stability of the closed loop system was guaranteed, although no specific stability 
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margin was set. Depending on the location, the maximum gain Z D before instability 

can change considerably, but the gain which minimises the ratio of the frequency 

averaged power was always computed to be less or equal than the stability limit. In 

Figure 11.22 three main regions can be identified: around the location of the primary 

force high outer loop gains are needed in order to achieve the best attenuation possible 

with the active controller. High gains are also required close to the clamped edges. In 

the rest of the plate, although there are some differences, lower gains are needed. 

Figure 11.23 shows the contour plot of the ratio of the frequency averaged power 

when the gains in Figure 11.22 are used in the outer feedback loop control. In other 

words, Figure 11.23 shows the best attenuation that can be obtained with the active 

controller for that specific primary force location. If the active controller is placed 

near the primary force, average attenuations of up to 12.9 dB can be achieved within 

the selected frequency range between a Hz and 200 Hz, using the high outer gains 

shown in Figure 11.22. This attenuation is decreased to about 9 dB if the active 

controller is installed about 8 cm away from the primary force, where the x direction 

seems to be a little more privileged than the y direction in terms of attenuation. 

Although high gains are needed along the edges, as shown in Figure 11.22, the 

attenuation is not significant, while in the rest of the plate attenuations, which vary 

from 2.3 dB to 5.4 dB, can be obtained, depending on the location of the secondary 

force. In Figure 11.24 and Figure 11.25 the same kind of analysis is repeated, but the 

ratio of the frequency averaged power between power of the "passively" controlled 

plate and the actively controlled plate is plotted, which shows the incremental effect 

of the outer loop. The outer velocity feedback gains that minimise the above ratio are 

very similar to Figure 11.22, where the ratio of the frequency averaged power 

between power of the uncontrolled controlled plate and the actively controlled plate 

was used, indicating that the same values can be used to minimise both ratios. The 

attenuations in Figure 11.25 are smaller than the attenuations in Figure 11.23, as 

expected since some attenuation has already been achieved by the "passive" actuator, 

but the qualitative nature of the results is quite similar. 

In summary, the performance of the control strategy, based on the modified inertial 

actuator with outer velocity feedback control, depends on both the relative distance 

between primary and secondary forces as well as their absolute location on the plate. 
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Ideally, the best solution would be to install the controller as close as possible to the 

primary disturbance. 
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Figure 11.22 Contour plot of the outer velocity feedback gain ZD which, 
for a specific location, provides the minimum of the ratio of the frequency 
averaged power between power of the plate with no actuator and the plate 
with the modified inertial actuator and outer velocity feedback loop, as a 
function of the x and y position of the controller on the flexible plate. The 
location of the primary force is indicated with a *. 
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Figure 11.23 Contour plot of the ratio of the frequency averaged power 
between power of the plate with no actuator and the plate with the modified 
inertial actuator and outer velocity feedback loop, as a function of the x 
and y position of the controller on the flexible plate. The controller is 
based on the modified inertial actuator with outer velocity feedback loop, 
whose gain ZD for a specific location was chosen from the corresponding 
location in Figure 11.22. The location of the primary force is indicated 
with a *. 
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Figure 11.24 Contour plot of the outer velocity feedback gain ZD which, 
for a specific location, provides the minimum of the ratio of the frequency 
averaged power between power of the plate with no actuator and the plate 
with the modified inertial actuator and outer velocity feedback loop, as a 
function of the x and y dimensions of the flexible plate. The location of the 
primary force is indicated with a *. 
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Figure 11.25 Contour plot of the ratio of the frequency averaged power 
between power of the plate with modified inertial actuator and the plate 
with the modified inertial actuator and outer velocity feedback loop, as a 
function of the x and y dimensions of the flexible plate. The active 
controller is based on the modified inertial actuator with outer velocity 
feedback loop, whose gain ZD for a specific location was chosen from the 
corresponding location in Figure 11.24. The location of the primary force 
is indicated with a *. 
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11.6 Conclusions 

In this chapter the total power of the forces exerting on a structure was minimised and 

a comparison was made between optimal solutions and the performance of various 

passive and active control treatments involving inertial actuators. In particular, the 

optimised impedance for global control was compared to the performance of a 

modified inertial actuator. It was found that, although the optimal impedance is able 

to provide a more substantial total power reduction than the other treatments, the 

modified inertial actuator can still guarantee a good power reduction, especially when 

combined with an outer velocity feedback controller. This seems to be a very 

promising solution to the vibration suppression problem, even though attention must 

be paid to the location of the secondary force in order to achieve the best possible 

attenuation. 

As we have seen m Chapter 5, in usmg an inertial actuator for active vibration 

isolation, the resonance frequency should be lower than the first natural frequency of 

the system under control and it should be well damped. The modified inertial actuator 

can be effectively employed for this kind of applications, although the phase shifts 

due to transducer conditioning circuitry limit the maximum gain which can be 

achieved in the outer loop of the actuator before instability. In the current arrangement 

a maximum gain of only 150 N/ms- 1 has been used, which only gives an impedance 

close to the optimal value when the actuator is positioned some distance from the 

primary source, as shown in Figure 11.22. Much larger reductions in power output 

from a single primary force are, in principle, possible if the destabilising phase shifts 

could be reduced and the inertial actuator was placed close to the primary excitation 

with a gain which was perhaps ten times that currently used. 
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Chapter 12 

Conclusions and suggestions for future work 

12.1 Conclusions 

Vibration control systems can be classified as linear or non-linear (Kolovsky, 1999), 

depending on whether or not their dynamic response is governed by a set of linear 

differential equations. They can be further classified as active or passive, depending 

on whether or not external power is required. The principal vibration control 

techniques employ resilient load-supporting mechanisms and energy dissipating 

mechanisms. Typical passive control systems employ metallic springs, elastometers 

or other cushioning devices. Active vibration control systems comprise vibration 

sensors, controllers and actuators. The sensors provide signals proportional to the 

dynamic excitation or the structural response. The controllers then generate the 

command signals as a function of the sensor signals. The actuators finally apply these 

forces in response to the command signals. 

This is the environment in which this thesis finds its place. In particular, during this 

thesis several methods have been investigated for active vibration control using an 

inertial actuator. Inertial actuators do not need to react off a base structure, so they can 

be used as modules that can be directly installed on a vibrating structure. This feature 

makes them very useful. 
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A review of different inner feedback loop strategies for active vibration control using 

an inertial actuator was presented. Feedback stability margins and performance were 

considered for each case. The main finding was that the use of a phase-lag 

compensator within the inner feedback loop provides good stability margins and good 

performance. 

There is an overall requirement for the actuator's natural frequency to be below that 

of the first structural mode of the system under control. Further analysis on the active 

vibration control problem led to the development of a new device, based on an inertial 

actuator with very low stiffness and an inner displacement feedback control loop. In 

particular, the controller is a PID which uses the measurement of the relative 

displacement between the actuator reference base and the actuator moving mass. The 

control law is the sum of an integral term, which solves the sagging problem, a 

derivative term, which provides the device with sufficient initial damping to guarantee 

a very good stability margin, and a proportional term, which sets the actuator 

resonance frequency. 

Then theoretical and experimental investigation of the active vibration isolation of a 

rigid piece of equipment structure from a vibrating base structure using an inertial 

actuator was carried out. The dynamics and control mechanisms of the mounted rigid 

equipment structure on a flexible base plate have been studied experimentally and the 

results have been compared with the theoretical findings. The equipment velocity 

responses, measured from the experiments, agree well with the predicted results, 

which demonstrates that the theoretical model can be used to help understand the 

dynamics of the overall system. It was found, from the simulations and the 

experiments, that from a stability point of view, the force and velocity feedback 

control scheme does not guarantee a good stability margin at low frequency. This is 

especially true when the outer velocity gain is increased. On the other hand, from a 

performance point of view, this scheme offers very good results using lower gains 

than the other schemes. When an integrator is added to the inner feedback controller, 

the overall system significantly improves its stability characteristics. On the other 

hand, if high performance is needed, very high gains are necessary. The results 

obtained by the implementation of a phase-lag compensator within the inner feedback 

loop and a velocity feedback outer loop seem to be very encouraging. In fact, 

simulations and experiments show that a strong reduction of the equipment resonance 

can be achieved, together with very good stability margins. 
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It was found from the simulations and the experiments that the new device is effective 

in actively isolating a piece of equipment from the vibrations of a base structure. 

Although the overall system is conditionally stable, very good performance can be 

achieved. 

In the second part of the thesis the active control of a vibrating panel was investigated. 

The total power supplied to the plate by a primary and a secondary force was chosen 

to be the cost function to be minimised. In particular, the effect of the distance 

between primary and secondary excitations was investigated and simulations were 

carried out for both infinite and finite plates. The core of this study was the theoretical 

and experimental comparison between optimal solutions in terms of secondary force, 

and the performance of passive and active control treatments. In particular, the 

optimised impedance for global control was compared to the impedance that the new 

device is able to add to the system in order to achieve the goal of minimizing the cost 

function. It was found that, although the optimal impedance is able to provide an 

outstanding power reduction compared to the other treatments, the new device 

guarantees very good power reduction and seems to be a promising solution to the 

vibration reduction problem, especially if combined with an outer controller based on 

a passive approximation of the optimal solution. 

12.2 Suggestions for future work 

The vibration isolation of large pieces of equipment or the vibration suppression of 

large panels may require that more than one device is installed. The study carried out 

in this thesis considers the investigation of the stability and performance of one device 

only, so a natural extension to this research would be the theoretical and experimental 

investigation of the effect of having several devices, all trying to either minimize the 

equipment velocity or minimize the total power. Each device would have its own 

inner control scheme, so another result of this future study would be the analysis of 

the mechanisms behind the decentralized control of structures using several inertial 

actuators. By doing this kind of investigation, the transition from a single degree of 

freedom problem to a multi degree of freedom problem would be made. 
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The protection of structures from the damaging effects of vibration and shock that 

occur in dynamic environments is of prime consideration in the design of such 

structures. Depending on the particular application, the structure to be protected may 

contain mechanical, electrical or optical systems, humans, etc. Traditionally, the terms 

vibration absorber and shock absorber refer, respectively, to absorbers of oscillations 

due to harmonic or random excitation and absorbers that deal with oscillations due to 

shock excitations or transient vibration in terms of initial conditions. Therefore, in a 

practical application, it may be necessary to combine these absorbers together. 

However, an absorber that exhibits good vibration suppression does not necessarily 

provide adequate shock attenuation. A shock may be defined as "a transmission of 

kinetic energy to a system which takes place in a relatively short time compared with 

the natural period of oscillation of the system" (Broch, 1980). For example, an 

impulsive excitation of a structure implies that all the modes at all frequencies are 

excited. If a certain vibration control scheme is effective only within a limited 

frequency range, then problems may occur due to those excited modes outside the 

frequency range. In particular, if stiffness is added to a structure, then the modal peaks 

are moved to higher frequencies and the frequency range of interest results with a 

larger stiffness dominated region. Those peaks outside the range of interest are still 

present in the system and therefore an impulsive excitation may excite them and 

possibly damage the structure. On the other hand, "if the duration of the shock pulse 

is short in comparison with one half period of the isolation system resonant frequency, 

the response of the system may not have serious consequences" (Broch, 1980). In 

summary, even though the principles involved in shock isolation are similar to those 

involved in vibration isolation, some differences exist due to the transient nature of a 

shock. In particular, the reduction in shock severity results from the storage of the 

shock energy within the isolator and its subsequent release in a smoother form (i.e. 

over a much longer period of time). It would be interesting to assess whether the new 

device is a good shock absorber as well as being a very good vibration absorber. 
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Appendix A 

Equipment isolation of a SDOF system with an inertial actuator 
using a linear quadratic regulator 

Optimal control can be employed to reduce the vibration transmission in structures, and in 

particular, lightweight structures with optimal controllers have been analysed by 

Politansky et ai. (1989), Balakrishnan (1993) and Anthony et ai. (2000a,b). 

In this appendix the performance of a full state feedback controller designed using optimal 

control theory will be investigated to compare with the performance obtained from the 

inertial actuator with inner force and outer velocity feedback. The response of the base 

plate is approximated by that of a single mass spring damper system, as shown in Figure 

A.I, in order to keep the state-space model simple. The parameters of this model of the 

base structure were chosen to best approximate the first mode of the base plate. The 

internal states of the system are given by the displacements of the base mass, equipment 

mass and actuator mass, n, Y;z, Y3 and their velocities Yl' Y2' Y3 and the system is driven 

by the forces 11' 12 and 13 . 
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Inertial 
Actuator 

Rigid 
Equipment 

Passive 
Mount 

Vibrating 
Base 

ng = Number of degrees of freedom = 3 
m3= 0.91 Kg 
m2= 1.08 Kg 
mJ=2Kg 
k3 = 3900 N/m 
k2 = 20000 N/m 
kJ = 146000 N/m 
d3 = 5.8 N/ms·1 

d2 = 18 N/ms·1 

d] = 36 N/ms·1 

Figure A.1 Schematic of the plant and numerical values used in the 
simulations of a vibration isolation system with full state feedback control. 

The model of the plant in generalized coordinates in Figure A.l is given by 

md\ = II + k2 (Y2 - YI) - klYI + d 2 (Y2 - YI) - dlYI (A.l) 

m2Y2 = 12 + k3(Y3 - Y2) -k2 (Y2 - YI) +d3(Y2 - YI) -d2 (Y2 - YI) (A.2) 

m3Y3=f3-k3(Y3-Y2)-d3(Y3-Y2) (A.3) 

which can be written as 

My(t) + Dy(t) + Ky(t) = f(t) (A.4) 

where 

(A.5) 
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(A.6) 

and 

(A.7) 

Multiplying both sides of equation (A.4) by M-1
, the following equation is obtained: 

(A.8) 

The equivalent model in modal coordinates is given by 

(A.9) 

where y = Vll and V is computed using VTM g V = Ing. Also, Dm = VTD g V and n is 

the resonance matrix. For each mode, the damping is given by ~Dmn-l. A more detailed 
2 

study on the implications of using a model in modal coordinates is given by Benassi et al. 

(2DD2c). 

Returning to the model in generalized coordinated, the state-space model (Zhou et al., 

1998), assuming that the system is driven by a disturbance II = I p ' controlled by an input 

u, where 12 = u and 13 = -u, and the output of the system is given by the equipment 

velocity r 2 = ve ' can be written as 

where 

x(t) = Ax(t) + Bu(t) + Rip (t) 

yet) = Cx(t) 
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x(t) = 

Yl (t) 

Y2 (t) 

Y3 (t) 
[ 0 I 1 A _ ng ng B-

Yl (t) , - -M-lK -M-lD' -

Y2 (t) 

Y3 (t) 

C = [0 0 0 0 1 0], R = 

o 
o 
o 

1/ml 

o 
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0 

0 

0 

0 
(A. 11) 

-11m2 

11m3 

(A.12) 

When the disturbance input is assumed to be white noise and the final time of the 

simulation is assumed to be infinity, the LQG regulator can be obtained by minimising the 

cost function 

J = min I~T (t)ay(t) + u T (t)u(t) ~t (A.13) 

to 

where changing a provides a family of results depending on the relative importance of 

reducing the equipment velocity and reducing the control effort. The solution of the LQG 

problem (Zhou et al., 1998) is given by 

u(t) = Kx(t) (A. 14) 

where K = -R-lBTS and S is the unique positive definite solution of the Algebraic 

Riccati Equation (ARE) 
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(A.15) 

If the instabilities are in the controllable part of (A,B) and the non-observable modes of 

(A,C) are stable, then u(t) = Kx(t) ensures that the system is stable and minimizes the 

cost function J. In the cases presented below, the non-controllable or non-observable parts 

of the system are related to the behaviour of the base, which is stable because it is 

"passi ve". 

It can be noted that K in equation (A.14) is a 1x6 matrix, which assumes that the state 

vector x(t) is known at all times. Full state feedback would either require the use of many 

more than two sensors, or the implementation of a Kalman filter, or state observer, with a 

very detailed model of the system under control, which makes the stability of the overall 

feedback system very sensitive to changes in the response of the system (Doyle et aI., 

1979, and Szefer, 2001). 

Figure A.2 shows the spectrum of the equipment velocity before any control and with full 

state feedback calculated to minimise equation (A.13) with a= 30 and a= 100, where the 

former seems to be a choice that is comparable to the classical solution with direct 

velocity feedback control (hv = 15) which guarantees a 6 dB stability margin. In the 

optimal control case, K = [-96.6 -413.7 347 4.56 -23.3 -0.53] when a= 30. Figure A.2 

also shows the spectrum of the equipment velocity with full state feedback calculated with 

a = 100. This can be compared to the performance in Figure 6.14, where an inner phase­

lag compensator and an outer equipment velocity feedback loop were implemented. This 

value of a for the optimal controller was chosen so that the control effort was similar to 

that required for ZD = 100 in Figure 6.14. In the optimal control case with a= 100, K = 

[-604.3 -2567.1 1694.8 13.03 -73.79 -4.62]. Although the LQ regulator may potentially 

perform better if a is increased, thanks to the fact that the control force is based on more 

information, a more complex controller and higher gains are needed to implement such a 

solution. In conclusion, classical methods based on an inner and an outer loop are not only 

robust, but they also perform well compared to an optimal LQ regulator, requiring a 

similar control effort. 
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Figure A.2 Bode plot of the equipment velocity per unit primary force when 
no control is implemented (solid), when direct velocity feedback control 
(faint) and when the full state feedback are implemented for a = 30 (dashed) 
and a = 100 (dotted).ln the full state feedback cases, the controller has been 
optimised using LQG control theory. 

The control effort in the simulation in Figure A.2 (dotted line) was adjusted to be similar 

to that used by the dual-loop controller, as shown in Figure A.3. In particular, equation 

(6.12) was used to compute the actuator requirement, the inertial actuator force per unit 

primary excitation, when the inner force feedback control and outer equipment velocity 

feedback control are implemented. 

In order to compare the magnitude of the required control effOlt in Figure A.3, the 

transmitted force that would guarantee zero equipment velocity was computed. From 

equation (6.1), if the equipment velocity ve is imposed to be zero, follows that 

(A. 16) 
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which is plotted in Figure A.4 along with the case where the LQG regulator is 

implemented, but no control effort is present in the cost function J. If u is allowed to 

assume any value, at low frequencies, a very large control effort is needed. 
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Figure A.3 Actuator requirement, inertial actuator force per unit primary 
excitation, when (solid) an inner phase-lag compensator with hp[ = 100 and 
an outer feedback control with ZD = 100 are implemented, and when (faint) 
an LQG regulator with a = 100 is implemented. 
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Figure A.4 Transmitted force per unit primary excitation necessary to obtain 
an equipment velocity equal to zero (solid), and actuator requirement when 
no control effort u is present in the cost function J (faint). 
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One way to overcome the problem of having to implement a state observer is to define the 

control force as u(t) = Ky(t) . In this case only the outputs are fed back and no knowledge 

on the internal states is needed. However, this solution does not offer any improvement 

compared to the analogue solutions. In fact, it can be shown (Benassi et al., 2002a) that 

when the equipment velocity Y2 is the only output and the feedback gain K varies from 

zero to infinity, the squared equipment velocity has its minimum when K = K opt ' where 

Kopt = Kvelocity jb (the optimal gain equals the largest gain before instability obtained when 

direct velocity feedback control is implemented). It can also be shown that the same 

applies when other classical control strategies are implemented. For example, if 

yet) = rna Y3 = It and u(t) = Ky(t) then Kopt = Kjorce Jb. In light of these results, it is 

pointless to analyse optimal control strategies based on u(t) = Ky(t) because we are after 

optimal controllers that perform better than classical techniques. To achieve this goal the 

constraint u(t) = Ky(t) has been relaxed to u(t) = Kx(t) and so far it has been assumed 

x(t) somehow known, therefore allowing K to be Ix6 matrix. 

If the state vector x(t) is not known, then an observer can be implemented, as shown in 

Figure A.5, in order to estimate the state vector from the knowledge of the outputs of the 

plant yet) and the control effort u, which is obtained from the output of the LQG regulator. 

The model of the complete system is given by equation (A.1O), equation (A.14) and the 

state-space model of the state observer, which is given by 

(A. 17) 

where A, B, C, y and u are described above. x is the vector of the estimated states and 

Ko is the vector of the observation gains, which were chosen to guarantee that 

ng ng 

~axRe[Ai(A -KoC)]« ~nRe[Ai(A + BK)] 
1=1 1=1 

(A.l8) 
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where Ai (-) indicates the i-th eigenvalue, and (A - KoC) and (A + BK) describe the 

dynamics of the of the estimation error x(t) - x(t) and the dynamics of the plant with full 

state LQG feedback, respectively. 

u 
.. Plant + ... 
r' ... ... Y 

.. x ... 
Observer ..... K ... ..... I-

... 

Figure A.S Block diagram of a closed-loop system, whose plant is composed 
of an active vibration isolation with an inertial actuator installed on a 
vibrating base, as described in Figure A. I. A full state feedback controller, 
optimised using LQG control theory, is implemented and the states of the 
plant are estimated through an observer, whose inputs are the outputs of the 
plant and the control effort u. 

If y = Y2 = ve then the output matrix C is given by equation (A.I2). However, in this case 

the rank of the observability matrix (A, C) is equal to 5, which means that the system is 

not completely observable and therefore a full state observer cannot be implemented. On 

the other hand, if yet) = ~. = e then { 
Y (t)} {v (t)} 

m3Y3 (t) it (t) 

° 1, D = [0 0] 
-d3 ° I (A.19) 
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and given the model of the controlled variable z = Hx = veto be used in the modified 

cost function 

] = min j[ZT (t)az(t) + uT (t)u(t)~t (A20) 
to 

then (A,e) turns out to be completely observable, and (A,B) is completely controllable, 

which is in reality a stronger condition of what it is actually required. Also, (A, H) is 

detectable, which means that the modes that are not observable by (A, H) are stable and 

in our case the flexible base is "passive" and therefore stable. Given the above satisfied 

conditions, there is a unique solution, which is given by equations (A 10), (AI4), (AI5), 

(AI7) and (AI8), to the estimation and the LQG regulation problem. Figure A6 shows 

the performance of the LQG regulator obtained through the estimation of the states 

(dashed line) compared to the case (faint line) where the states are known. Although the 

performance of the regulator with observer is generally worse than the performance of the 

full state regulator, the attenuation that can be achieved compared to the uncontrolled 

case is quite good. 

Returning to the case where the equipment velocity is the only output of the system, 

y = it 2 = ve ' since the rank of the observability matrix is 5, then a full state observer 

cannot be constructed, even though a reduced order observer can be implemented. In this 

case, the plant was decomposed in its observable and non-observable parts, which in 

practice implied that the states Yl and itl (base displacement and its velocity) were non 

estimated. The rank of both the observability and controllability matrices of the reduced 

system is 4 and Figure A7 shows the comparison between the performance of the LQR 

regulator obtained using a reduced order observer and the case where the states are 

known. It can be noted that the performance of the former is worse than what it was 

obtained in Figure A6 and in particular the regulator cannot do much to reduce the 

magnitude of the first base mode (in fact, there is enhancement), whose dynamics is not 

estimated by the observer. 
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Figure A.6 Bode plot of the equipment velocity per unit primary force when 
no control is implemented (solid), when the full state feedback, optimised 
using LQG control theory, is implemented for a = 100 (faint), and when full 
state feedback, obtained through a full state observer and an LQG regulator, 
is implemented for a = 100 (dashed). 
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Figure A.7 Bode plot of the equipment velocity per unit primary force when 
no control is implemented (solid), when the full state feedback, optimised 
using LQG control theory, is implemented for a = 100 (faint), and when full 
state feedback, obtained through a reduced observer and an LQG regulator, 
is implemented for a = 100 (dashed). 
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In conclusion, an LQG regulator may perform better than the classical strategies thanks to 

the fact that the control force is based on more information. However, the difference 

between the LQG regulator and some classical schemes is not significant, leading to the 

conclusion that the optimal control may not be worth the implementation because the 

difference in the performance is not massive and its actual realization would require a lot 

of extra effort in terms of electronic components and in general the accurate knowledge 

of the plant model is needed. 
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Appendix B 

PID schematic 
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Appendix C 

Geometrical and physical characteristics of the experimental 
set-up 

This appendix contains the geometrical and physical characteristics of the equipment used 

during the experimentation work presented in Chapter 7. 

Parameter Value 
Material Aluminium 
Plate dimensions 0.2 x 0.1 x 0.018 m 
Density 2700 kg/m

j 

Young's modulus of 7.1elO N/mL 

elasticity 
Shear modulus of elasticity 2.4elO N/mL 

Poisson's ratio 0.33 
Mass of the plate 1.08 kg 
Moment of inertia of the l.4e-2 kgmL 

receIver 
Table C.l Geometrical and physical characteristics of the receiver. 

Parameter Ring of rubber 
External diameter 60mm 
Internal diameter 40mm 
Height 60mm 
Area I.S7e-3 mL 

Moment of inertia S.le-7 m4 

Density 909 kg/mj 

Young's modulus of 8eS N/mL 
elasticity 
Shear modulus of elasticity 2.7eS N/mL 

Poisson's ratio 0.3 
Table C.2 Main characteristics of the rubber mounts. 
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Parameter Value 
Moment of inertia 1.4elO-~ kgm~ 

Total stiffness of each 24093 N/m 
mount 
Total viscous damping for 17.94 Ns/m 
each mount 
Effective mount damping 4.8 % 
ratio 
Distance between mounts 134mm 

Table C.3 Summary of the passive properties of the isolators (mounts). 

Specification Value 
Moving mass 0.91 kg 
Maximum sine force - peak 8.9N 
Max displacement pk-pk 2.5 mm 
(DC) 
Max sine velocity - ~eak 1.31 mls 
Max sine acceleration - pk 1373 mls~ 
Suspension axial stiffness 3.15 N/mm 
Electrical requirement - 0.09 kVA 
Amplifier 
Impedance at 500 Hz 4Q 

Table C.4 Specificatzons for a szngle control shaker LDS type VIOl. 

Parameter Value 
Material steel 
Dimensions 700 x 500 x 1.85 (mm) 
Damping ratio 0.01 

Table C.S Summary of the physlcal and geometrical propertles of 
the base. 
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Mode Experimental Calculated frequency 
frequency (Hz) (Hz) 

(2,0) 32.6 44.8 
(2,1) 37.7 49.0 
(2,2) 58.8 65.4 
(2,3) 91.1 98.8 
(3,0) 100.0 123.3 
(3,1) 105.0 129.2 
(3,2) 128.0 149.8 
(2,4) 139.0 151.8 
(3,3) 166.2 186.0 

Table e.6 First 9 modes of the base supporting plate. 

Specification Value 
Maximum sine force - peak 196 N 
Useful frequency range DC to 9 kHz 
Maximum displacement ±8.8 mm 
Maximum acceleration 981 m/sL 

Maximum input power 100 VA 
Maximum working current 9A 

Table e. 7 Specifications for a single control shaker LDS type V403. 

Equipment Type 
Accelerometer B&K4375 
Force ~auge B&K 8200 
Charge amplifier B&K 2635 
Power amplifier HH Electronics MOS-PET 
Integrator ISVR designed 
FFT Servo Advantest R9211B/C 
Analyzer/Generator 
Primary Shaker LDS 403 
Secondary shaker LDS 101 
Current meter 3 Aand5 A 
Summing Box ISVR designed 
Table e.S List of the equlpment. 
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Measurements Model 

Modes Without With Isolator Without With Isolator 
Isolator Isolator 

(2,0) 32.6 37.2 44.8 47.5 
(2,2) 58.8 63.1 65.4 70.4 
(2,4) 139.0 145.2 151.8 153.5 
(4,0) 225.9 226.0 241.7 241.9 
Table C.9 Base plate modes observed by measurements and by simulations with and without the 
effect of the active isolator system. 
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