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The design of inertial actuators for active vibration control is considered. Unlike
reactive actuators, inertial actuators do not need to react off a base structure and can
therefore be directly installed on a vibrating structure. In order to guarantee good
stability margins with feedback controllers, however, the actuator resonance must
have a low natural frequency and it must be well damped. Unfortunately, the need to
have an inertial actuator with a low resonance frequency leads to unwanted static
deflections of the actuator proof-mass.

The behaviour of an inertial actuator is analysed with different inner feedback control
schemes. First, it is shown that a phase-lag controller in the inner loop, based on the
measurement of the transmitted force, can be used to significantly improve stability
margin and performance of the system using relatively low gains.

The use of integral displacement feedback as an inner loop can provide self-levelling
capabilities for the inertial actuator thus overcoming the static deflection problem. A
novel device for active vibration control, based on an inertial actuator with a proof-
mass displacement sensor and inner PID controller, is described and its performance
is demonstrated experimentally. It is found that the effective natural frequency and
damping of the actuator can also be changed substantially with such a controller, thus
allowing an inertial actuator to be customised for a specific application.

The stability and performance are then analysed for an active isolation system using
the modified inertial actuator and an outer velocity feedback control loop. The plant
response, from force actuator input to sensor output, is derived in terms of the
mechanical mobilities of the equipment structure being isolated and the vibrating base
structure, and the mechanical impedance of the intervening mount. The results of an
experimental study of active vibration isolation using a modified inertial actuator are

then described. Theory and experiments agree well, demonstrating the effectiveness
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of the modified inertial actuator in isolating a piece of equipment from a vibrating
base.

In the second part of the thesis, strategies for the suppression of plate vibration are
investigated by considering the equivalent impedance of power-minimising
feedforward vibration controllers. The minimum power, transmitted to infinite and
finite plates by a single primary force and a single secondary force, optimised at each
frequency, has been compared with the power reduction that can be achieved with
passive vibration treatments. The equivalent impedance is defined to be the ratio of
the optimised secondary force to the total velocity at the secondary force location, but
it is generally non-causal and so cannot be implemented for broadband random
excitations. The approximation of the equivalent impedance by lumped parameter
systems is considered. In particular, passive controllers, based on springs and
dampers, have been analysed, although, in many practical applications, a rigid ground
is not available to react these components off.

The results of a theoretical and experimental study of active vibration suppression on
a flexible plate using the modified inertial actuator are then described. Theory and
experiments agree well, demonstrating the effectiveness of the modified inertial

actuator in controlling vibrating panels.
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6.5 Equipment velocity per unit primary force when Ay =0 (solid), 4= 20
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6.13 Equipment velocity per unit primary excitation when 4, = 0 (solid),

hpi = 20 (faint), h, = 100 (dashed), and A,; = 100,000 (dotted). No outer

loop is present.

X1V

108

108

109

111

111

112

113

115

115



6.14 Equipment velocity per primary excitation when the inner feedback
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for three values of feedback gain (faint lines): 4, =8 (triangle), 4, = 15
(square), and h, = 22 (circle). For gains greater than 22 the system was
unstable.

7.11 (a): Nyquist plot of the simulated open loop response from secondary
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Chapter 1

Introduction

1.1 Introduction to the thesis

1.1.1 Problem and objectives

Vibration occurs in most machines, structures, and dynamic systems, leading to many
undesirable consequences. Vibration often becomes a problem due to “unpleasant”
motion, noise and dynamic stresses, which could lead to fatigue and failure of the
structure or machine, energy losses, decreased reliability, and degraded performance.
Vibration control is aimed at reducing or modifying the vibration level of a
mechanical structure.

When a vibration problem needs to be remedied, it is desirable and often necessary to
understand its whole nature. This includes, among others, understanding its
originating source, the nature and direction of the vibration at the problem location,
the path along which the vibrational energy reaches that location, and the frequency
content of the vibration. In particular, a problem which arises in several application
areas is the isolation of sensitive equipment from vibration of the base structure to

which it is attached (Figure 1.1).
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Vibrating Base

Figure 1.1 Complete transmission of the vibrations to the equipment if no
isolator is applied.

Before attempting to apply any isolator (Figure 1.2), it is important to know as much
as possible about the conditions under which it will be used and the fragility of the
equipment to be mounted. This knowledge must be coupled with an understanding of
the various types of vibration and shock isolators which might be applied to a given
problem. Depending on the type of isolator, the material from which it is made, and
the operating conditions, the performance of the isolator and its effectiveness can vary
widely. These factors must be considered and the proper accommodations, to arrive at
a reasonably accurate estimate of the performance of the isolated system, have to be

made.
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Figure 1.2 Passive vibration isolation with a passive mount.
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This thesis is specifically concerned with the use of inertial actuators in active
vibration control systems. Inertial actuators do not need to react off a base structure,
so they can be used as modules that can be directly installed on a vibrating structure.
In particular, one application that this thesis addresses is the problem of vibration

isolation of a sensitive piece of equipment (Figure 1.3) using inertial actuators.
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Figure 1.3 Active vibration isolation using an inertial actuator.

Vibrating bodies usually generate vibration forces in more than one direction.
Typically only the predominant vibrating direction is controlled, whether the mount is
passive or active. Multiple axis active vibration isolators to minimize the transmission
of vibration along translational and rotational axes have been considered in theory
(Ryaboy, 1995, and Su et al., 1996), but there are few reports of experimental work
(Spanos et al., 1995, and Horodinca et al., 2002). In this research, single degree of
freedom (SDOF) systems are considered.

Before isolation is used to solve a vibration problem, attempts should be made to
reduce the disturbance from the source. If this is not possible or impractical, it may be
possible to modify the frequency response of the base structure so that it is less
excited by the disturbance. The final part of the thesis is concerned with the use of

active systems with inertial actuators for this purpose.

1.1.2 Passive vibration control

There are two classes of vibration control: passive vibration control and active
vibration control. Passive vibration control involves the modification of the stiffness,
mass and damping of a vibrating system to make the system less responsive to its
vibratory environment (von Flotow et al., 1990). The modification may take the form
of basic structural changes or the addition of passive elements such as masses (which
can be chunks of concrete in buildings), springs (such as vibration isolators), fluid
dampers or damped rubbers. These elements simply react passively in opposition to
the accelerations, deflections or velocities imposed upon them by vibration. None of

them require any external assistance to do this, apart from their immediate passive



neighbours or structural components that interact with them. A straightforward
solution to many vibration problems is to increase the stiffness within a machine.
There is however a practical limit in passively increasing the stiffness of a structure.
Furthermore, due to structural design rules, vibrations in high-precision machines are
typically badly damped. Introducing additional passive damping into high-precision
structures however is complicated, as the stresses and strains to be damped are very
small. However, the common and “fail safe” approach to vibration control of
structures is still adding damping to the structure (Procopio, 1986). Damping
dissipates some of the vibration energy of the structure either by transforming it into
heat or by transferring it to a connected structure. Examples of passive damping
materials include viscoelastic materials, viscous fluids, high damping alloys, and
particle damping. The most common of these are viscoelastic materials. Viscoelastic
materials dissipate mechanical energy into heat when they undergo cyclic stresses due
to polymer chain interactions. Elastometric mounts (natural rubber for example, see
Lord Corporation, 2002) have been used as vibration isolators for many years
(Johnson, 1995). More recently, the development of fluid-filled mounts for a variety
of applications including automotive (Fang ez al., 2001), marine (Althaus and Ulbrich,
1992), and aerospace (Owen et al., 1992) has provided the ability to improve their
performance. Passive vibration cancellation can be achieved by appending an
underdamped structure (a dynamic absorber) with the natural frequency similar to the
disturbing frequency (Sun ez al., 1995, and Brennan, 1997). In any event, the majority
of these applications based on passive damping use viscoelastic materials for
vibration control. Although most passive damping treatments are inexpensive to
fabricate, their successful application require a thorough understanding of the
vibration problem in hand and the properties of the damping materials (Friswell et al.,

1997a).

1.1.3 Passive vibration isolation

In general, the isolation of any vibration-sensitive equipment from base vibration is
usually performed on the transmission paths (mounts, Figure 1.2). The fundamental
benefit provided by any mount is reduced structural vibration. In many applications,
unwanted noise is a direct result of structural vibrations. Therefore, mounts also
provide noise reduction benefits (Bies and Hansen, 1996). However, with such

passive mounts there is a trade-off between low and high frequency isolation



performances depending on the damping of the mount. In fact, a major challenge is to
make the mount as stiff as possible, statically, to better couple and support, and
dynamically as soft as possible, to better isolate. This is difficult to accomplish with
passive elastometric mounts, as described by Crede and Ruzicka (1996) and Ungar
(1992).

“Transmissibility is a measure of the reduction of transmitted force or motion
afforded by an isolator” (Crede and Ruzicka, 1996). If the source of vibration is an
oscillating motion of the base, transmissibility is the ratio of the vibration amplitude
of the equipment to the vibration amplitude of the foundation. The motion of the
vibrating base and the equipment may be expressed in any consistent units, such as
displacement, velocity, or acceleration, and the same expression for the
transmissibility applies in each case (Crede and Ruzicka, 1996). An example of
transmissibility of a typical single degree of freedom mass-spring-damper system
subject to a base excitation (Figure 1.2) is shown in Figure 1.4 for different values of
damping ratio ¢, using fixed values of mass and stiffness. Figure 1.4 shows that a
damper with higher damping ratio will limit motion at resonance, but increases
transmissibility at higher frequencies. This establishes the trade-off for the linear

isolation system.
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Figure 1.4 Transmissibility of a simple mass-spring-damper system with
base excitation and different damping ratio {, as a function of the
frequency ratio @w/@®,, where @, is the resonance frequency of the

system.



In the process of deciding on a vibration isolator for a particular application, there are
a number of critical pieces of information which are necessary to define the desired
functionality of the isolator. Some items are more critical than others but all should be
considered in order to select, or design, the appropriate product. Some of the factors
which must be considered are weight, size and centre-of-gravity of the equipment to
be isolated. Obviously, the weight of the unit will have a direct bearing on the type
and size of the isolator. The size or shape of the equipment can also affect the isolator
design since this may dictate the type of attachment and the available space for the
isolator. The centre of gravity location is quite important and isolators of different
load capacities may be necessary at different points on the equipment due to weight
distribution. The locations of the isolators relative to the centre of gravity, for
example, could also affect the design of the isolator.

Also, knowledge of the type of dynamic disturbances to be isolated is important. This
is basic to the definition of the problem to be addressed by the isolator selection
process. In order to make an educated selection or design of a vibration isolator, this
type of information must be defined as well as possible. Typically, sinusoidal or
random vibration spectra will be defined for the application. In many installations of
military electronics equipment, random vibration tests have become commonplace
and primary military specifications for the testing of this type of equipment (such as
MIL-STD-810) have placed heavy emphasis on random vibration, tailored to the
actual application. Other equipment installations, such as in shipping containers, may
still require significant amounts of sinusoidal vibration testing.

Shock tests are often required of many types of equipment. Such tests are meant to
simulate those operational (for example carrier landing of aircraft) or handling (for
example bench handling or drop) conditions which lead to impact loading of the
equipment.

In addition to the weight and dynamic loadings which isolators must react, there are
some static loads which can impact the selection of the isolator. An example of such
loading is that imposed by an aircraft in a high-speed turn. This manoeuvre loading
must be reacted by the isolator and can cause, if severe enough, an increase in the
isolator size. These loads are often superposed on the dynamic loads. This particular
aspect will be focussed in details in Chapter 4.

Allowable system response is another important information needed in order to

appropriately choose the correct isolator. The equipment manufacturer or user should



have some knowledge of the fragility of the unit. This fragility, related to the specified
dynamic loadings, will allow the selection of an appropriate isolator. This may be
expressed in terms of the vibration level versus frequency or the maximum shock
loading which the equipment can endure without breaking.

The specification of allowable system response should include the maximum
allowable motion of the isolated equipment. This is important to the selection of an
isolator since it may define some mechanical, motion limiting feature which must be
incorporated into the isolator design. It is fairly common to have an incompatibility
between the allowable "sway space" and the motion necessary for the isolator to
perform the desired function. In order for the isolator to give a certain level of
performance, it is required that a definite amount of motion be allowed. Problems in
this area typically arise when isolators are not considered early enough in the process
of designing the equipment or the structural location of the equipment.

The environment in which the equipment is to be used is very important to the
selection of an isolator, particularly the temperature. Variations in temperature can
cause variations in the performance of many typical vibration isolators. Consequently,
it is quite important to know the temperatures to which the system will be exposed.
The majority of common isolators are elastomeric. Elastomers tend to stiffen and gain
damping at low temperatures and to soften and lose damping at elevated temperatures.
The amounts of change depend on the type of elastomer selected for a particular
installation.

Other environmental effects from humidity, ozone level, atmospheric pressure,
altitude, etc., are generally minimal and may be typically ignored. Some external
factors that may not be thought of as environmental may impact the selection of an
isolator. Fluids (oils, fuels, coolants, etc.), which may be in the area of the isolators,
may cause a change in the material selection or the addition of some form of
protection of the isolators. Also, light may effect the correct operation of some optical
SEnsors.

The length of time for which an isolator is expected to function effectively is another
strong determining factor in the selection or design process. Vibration isolators, like
other engineering structures, have finite lives. Those lives depend on the loads
imposed on them. The prediction of the life of a vibration isolator depends on the
distribution of loads over the typical operating spectrum of the equipment being

isolated. Typically, the longer the desired life of the isolator, the larger that isolator



must be for a given set of operating parameters. The definition of the isolator

operating conditions is important to any reliable prediction of life.

1.1.4 Semi-active vibration control

“In semi-active vibration control, the stiffness or damping properties are changed to
adjust the internal dynamic forces in order to minimise the response” (Brennan,
2003). For example air springs allow a system to change its stiffness, while
electro/magneto rheological fluids allow a system to change its damping. Another
example of semi-active control is obtained using tunable vibration absorbers, and in
particular passive electronic damping using piezoelectric ceramics is a less
temperature-sensitive and more tuneable alternative to viscoelastic damping
treatments. In this damping technique, the mechanical energy of the structure is
converted to electrical energy using piezoelectric materials. The high mechanical
stiffness of the piezos enables efficient energy transfer to the piezo damper. The
electrical energy is dissipated as heat in an electrical shunt circuit, allowing for

specific vibration frequencies to be targeted and damped electronically.

1.1.5 Active vibration control

Active control augments the structure with sensors, actuators and some form of
electronic control system, which specifically aims to reduce the measured vibration
levels. In contrast to passive vibration control, active vibration control systems do
require external assistance. They depend essentially upon a source of power to drive
active devices, which may be electromechanical, electrohydraulic or electropneumatic
actuators.

Initial investigations into active vibration control were primarily interested in
controlling tonal excitations. This is because of the relative simplicity of obtaining an
appropriate reference signal, compared to broadband excitation. Discussion of the
control of tonal excitation then addresses other subject areas, such as isolation of
rotating machinery from supporting structures.

Active vibration control systems are ideally suited for use in the low-frequency range,
below approximately 1000 Hz. Although higher frequency active control systems
have been built, a number of technical difficulties, both structural and electronic
(where higher sampling rates are required), limit their efficiency. At higher

frequencies, passive systems also become more cost effective. A complete vibration



control system generally consists of active control for low frequencies and passive
control for higher frequencies.

In addition, passive vibration damping and cancellation strategies become ineffective
when the dynamics of the system or the frequencies of the disturbance vary with time.
Moreover, active systems can provide increased effectiveness in controlling sound
and vibration compared to passive approaches. Also, it is not suitable to attach large
passive vibration control appendages, such as a tuned mass damper, to some
applications. Active damping and cancellation control can address these concerns.
Due to remarkable advances in sensor, actuator, and more importantly computer
technologies in recent years, active systems have become cost effective solutions to
most sound and vibration control problems. Active damping is sometimes necessary

to achieve greater performance, or to produce controlled system properties.

1.1.6 Active vibration isolation

To provide a more favourable static and dynamic stiffness compromise in an active
isolation systems, hybrid solutions must be used. These are usually based on mounts
and actuators. When an active isolator is designed, two configurations are possible.
The secondary actuator can be placed either in series or in parallel (this latter case is
shown in Figure 1.5) with the passive mount. Blackwood and von Flotow (1993)
investigated the first configuration by coupling a piezoelectric actuator in series with a

passive mount.
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Figure 1.5 The secondary actuator is in parallel with the passive mount.

However, the effectiveness of such a mounting design was shown to be heavily
dependent upon the high stiffness of the actuators. Due to the small deflection
capacity of piezoelectric actuators, the use of such actuation is limited to the isolation

of very small amplitude motion of base structure. In many situations, the base



vibration is of the order of millimetres. As a result, an actuator with a longer stroke,
such as an electromagnetic shaker, installed in parallel with the passive mount, is
required. An experimental study was conducted by Serrand and Elliott (2000) on the
active vibration isolation of a rigid equipment structure using two electromagnetic
shakers, which were installed in paralle] with two passive mounts.

An active isolator can be implemented using various feedback control strategies,
among which independent direct velocity feedback control is one of the most popular.
The absolute velocities of the equipment structure are measured at each mounting
point and directly fed back to the actuators driving that point. Using independent
velocity feedback control, Kim et al. (1999 and 2001) investigated a four-mount
active vibration isolation system with a rigid equipment structure.

The work by Huang et al. (2001a,b) investigates a similar four-mount system for
active vibration isolation of a flexible equipment structure. Particular emphasis is
placed on the isolation of low frequency vibration (0~200Hz), for which the mounts
can be assumed to behave as lumped springs and dampers. The main objective was to
investigate the control performance and stability issues associated with the four-
mount vibration isolation system when the additional flexibility of the equipment
structure is introduced. Active isolation experiments were first implemented on a rigid
base before moving to the final flexible base, in order to have a full understanding of
the control mechanisms. With the rigid base structure, the actuator force that reacts
off the base has no effect on the equipment velocity and so the actuator force on the
equipment and velocity sensor on the equipment are, in principle, collocated. It was
shown that under these conditions the control system is unconditionally stable. When
the base structure is not rigid, however, the stability of the control system cannot be
guaranteed a priori. Here, the equipment velocity is caused by both the actuator force
acting directly on the equipment and the reactive actuator force causing the base to
move. However, a careful analysis has demonstrated that good stability properties are

still obtained.

1.1.7 Reactive or inertial actuators

Actuators are used in active vibration control to generate a secondary vibrational
response, and in practice they can be configured either to react off the base structure
or function as an inertial actuator (also called proof-mass actuator). Inertial actuators

do not need a “ground” to push against, so they can be used as modules that can be
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directly installed on a vibrating structure. This fact makes inertial actuation
particularly suitable for stand-alone applications. This was investigated by Elliott ez
al., (2001a), and Benassi et al., (2002a,b,c,d) and this topic, being the core of this

thesis, will be extensively discussed in the next chapters.

1.1.8 Actuator types

The actuation means suggested in the literature vary from servohydraulic devices to
using controllable materials, such as piezoelectric devices. Piezoelectric actuators
produce an electric charge when mechanically strained; conversely, they produce
mechanical strain when an electric field is applied. There are two broad classes of
piezoelectric materials used in vibration control: ceramics and polymers. The
piezopolymers are mostly used as sensors, because they require high voltages and
have a limited control authority. The best-known piezopolymer is poly-vinylidene-
fluoride (PVF2). Piezoceramics can be used as actuators and sensors over a wide
range of frequencies, including ultrasonic applications. They are well suited for high
precision up to the nanometer range. The most common piezoceramic is Lead
Zirconate Titanate (PZT). Ceramic piezoelectric actuators are stiff and provide more
actuation force than polymers, and they can be stacked for increased actuator
displacement (Morgan Electro Ceramics, 2001). A lot of work on vibration control
using piezos has been carried out (D’Cruz, 1998), and significant results have been
obtained, in particular by Guigou er al. (1994), Garcia-Bonito er al. (1998),
Balakrishnan (1999), Alvarez-Salazar (1999), Brennan er al. (1999) and Yousefi-
Koma and Vukovich (2000). Although these approaches have been extensively
applied to simple structures, such as beams and plates, it has been suggested that their
application to more realistic structures is difficult and complicated by the large
number of sensors and actuators that are needed to adequately control the structure
(Carabelli et al., 2000, Sun et al., 2001, and Wang et al., 2001). The challenge lies in
managing all the sensors and actuators that are needed to define and control the
complicated modal characteristics of a practical structure. This was illustrated by
Blackwood and von Flotow (1993) and Baek and Elliott (2000). Another limitation to
more widespread adoption of piezoelectric vibration suppression technology has been
the lack of integration of the piezo transducers and the electronics used for power

distribution, sensor conditioning and control.
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The THUNDER piezoelectric actuator is a newly developed active control device that
possesses many advantages compared to other classical piezoelectric actuators.
Particularly, its capacity in generating high displacement and its inherent high load
capacity make it an ideal candidate in active isolation applications (Marouze’ et al.,
2001). THUNDER is developed by NASA Langley Research Center, and its high
displacement range and high load capacity result from its particular fabrication
process.

As was previously explained, an active structure consists of a structure fitted with a
set of actuators and sensors coupled by a controller. If the bandwidth of the controller
includes some vibration modes of the structure, its dynamic response must be
considered. If the set of actuators and sensors are located at discrete points of the
structure, they can be treated separately. The distinctive feature of smart structures is
that actuators and sensors are often distributed and have a high degree of integration
inside the structure, which makes a separate modelling impossible.

From a mechanical point of view, classical structural materials are entirely described
by their elastic constants, relating stress and strain, and their thermal expansion
coefficient, relating strain to temperature. Smart materials are materials where strain
can also be generated by different mechanisms involving temperature, electric field or
magnetic field, etc., as a result of some coupling in their constitutive equations.

The most celebrated smart material, beside piezos, is Shape Memory Alloys (SMA,
Choi er al., 2000). They can recover large strains and are compact, but have no
sensing capabilities. Although two-way applications are possible after education,
SMAs are best suited for one-way tasks such as deployment. In any case, they can be
used only at low frequency and for low precision applications, mainly because of the
difficulty of cooling. Fatigue under thermal cycling is also a problem. SMAs are not
used much in vibration control, although an interesting vibration neutralizer is under
investigation at ISVR (Brennan, 2003).

Another class of materials for active control is magnetostrictive materials such as
Terfenol-D. These have been available for more than one hundred years, and are
similar to piezoelectric materials in the sense that they change shape when exposed to
a magnetic field (as opposed to an electric field for piezoelectric materials). The main
advantage of magnetostrictive materials is that they can produce very high strains
relative to piezoelectric materials (von Flotow et al., 1994ab). They have been

applied in many fields, including active isolation of aircraft components (von Flotow,
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1988 and 1997, McConnell, 1992, Sutton et al., 1997, and Tzou and Ding, 2001). The
maximum response is obtained when the material is subjected to compressive loads.
Magnetostrictive actuators have a long lifetime and can be used in high precision
applications.

Electrorheological (ER) fluids and magnetorheological (MR) fluids are materials that
respond to an applied electric or magnetic field with a dramatic change in rheological
behaviour. The essential characteristic of these fluids is their ability to reversely
change from free-flowing liquids to semi-solids, having controllable yield strength, in
milliseconds when exposed to either an electric or a magnetic field. By contrast with
ER fluids, MR fluids have the advantages of having higher yield strength, being
insensitive to pollutions, and using low voltage power. Semi-active and active control
applications of controllable fluid technology in real-world systems have grown
steadily (Meng et al., 2001, and Lord, 2002). Examples include controllable dampers
for vehicular suspension systems, real-time rotary brakes that provide force feedback
in steer-by-wire systems, rotary and linear dampers, etc. However, high power
amplifiers are required and a rather complex magnetic circuit is needed in order to

achieve good performance.

1.1.9 Sensing

The range of available devices to measure position, velocity, acceleration, and strain
1s extremely wide, and there are more to come, particularly in optomechanics.
Displacements can be measured with inductive, capacitive and optical means (laser
interferometer, Ghoshal et al., 2000); the latter two have a resolution in the nanometer
range. Piezoelectric accelerometers are very popular but they cannot measure a DC
component. Strain can be measured with strain gauges, piezoceramics, piezopolymers
and fiber optics. The latter can be embedded in a structure and give a global average
measure of the deformation.

Presently, a large safety factor is used in determining routine maintenance schedules
for critical parts, such as replacement of skins for aircraft wings or damage detection
in large space structures, because any failure during operation could prove
catastrophic (Friswell et al., 1997b, and Friswell and Inman, 1999b). Assuming that
the location of the structural damage can be identified at its inception, one could apply
active vibration control on the structure as a means of reducing stresses in the damage

zone, hence ensuring that the damage does not grow rapidly with time. However, the
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probability of having an error sensor at the damage location is small, which indicates
that a different approach would be required for implementing the active control. Work
is reported (Dunn and Garcia, 1997) aimed at developing an active vibration control
system that allows the control to minimize the stress or vibration at any arbitrary point
on the vibrating structure, even where there is no error sensor present. This is
accomplished by using what are referred to as “virtual sensors”. These virtual sensors
use information from physical sensors at other locations on the structure to estimate
the vibration response at the virtual sensor location. This approach offers the
possibility of being able to control the structural vibration at any desired location on
the structure. The development of health monitoring systems also include the
identification of specific modes. Modal sensors and actuators have been studies in
order to reduce the problem of spillover and also reduce the number of transducers

(Gawronski, 2000, Friswell, 2001).

1.1.10 Control strategies and issues

The active isolation control system used for vibration isolation purposes can be either
feedforward or feedback. When a signal correlated to the disturbance is available,
feedforward adaptive filtering constitutes an attractive alternative to feedback for
disturbance rejection; it was originally developed for noise control, but it is very

efficient for vibration control as well. Its principle is explained in Figure 1.6.
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Figure 1.6 Principle of feedforward control.
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The method relies on the availability of a reference signal correlated to the primary
disturbance. This signal is passed through an adaptive filter, the output of which is
applied to the system by secondary sources. The filter coefficients are adapted in such
a way that the error signal at one or several critical points is minimized. The idea is to
produce a secondary disturbance that cancels the effect of the primary disturbance at
the location of the error sensor. Of course, there is no guarantee that the global
response is also reduced at other locations and, unless the response is dominated by a
single mode, there are places where the response can be amplified. The method can
therefore be considered a local one, in contrast to feedback control, which is global.
Unlike active damping, which can only attenuate the disturbances near the
resonances, feedforward works for any frequency and attempts to cancel the
disturbance completely by generating a secondary signal of opposite phase.

The method does not need a model of the system, but the adaptation procedure relies
on the measured impulse response. The approach works better for narrow-band
disturbances, but broadband applications have also been reported. Because it is less
sensitive to phase lags than feedback, feedforward control can be used at higher
frequency . This is why it has been so successful in acoustics (Grewal et al., 2001).
Feedforward control has also been used extensively in the active machinery vibration
isolation involving a time domain Least Mean Square (LMS) adaptive filter
(Sommerfeldt et al., 1990, Jenkins, 1993, Jiang et al., 1993, Elliott et al., 1987 and
1994, and Fuller et al., 1996). The use of an LMS controller allows the systems to
track the disturbance frequencies as they change, therefore providing optimal isolation
in the entire frequency range of interest. The efficiency of this method depends on
determining an appropriate reference signal. When this signal cannot be obtained
easily, a feedback control has to be used. For example, for known periodic
disturbances, feedforward control may indeed be preferable, as shown by Nelson et
al. (1987), but in many cases vibrations are not periodic in nature and it is not possible
to obtain information of the incoming disturbance soon enough for a feedforward
control to be effective (El-Beheiry and Karmopp, 1996). Under those circumstances,
feedback control is considered the best method.

A typical feedback control system is shown in Figure 1.7, in which G(jw) is the

frequency response of the plant and H(jw) is the frequency response of the feedback
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controller. The design problem consists of finding the appropriate compensator H(j w)

such that the closed-loop system is stable and behaves in the appropriate manner.

Primary
disturbance
Plant
; +
u(jw) _
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signal ' Controller Response
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Figure 1.7 Block diagram of a negative feedback control system including
the plant and the controller.

A very large number of papers have been concerned with vibration isolation problems
and feedback active vibration control methods have been discussed. Karnopp (1995)
proposed a velocity feedback control method for obtaining a non-resonant response,
which has been applied to various vibration isolation systems.

Position feedback has been investigated by Friswell and Inman (1999a). This strategy
makes the rigidity increase and the transmissibility decrease, as shown by Bhat
(1991a,b,c). However, to have zero transmissibility, the rigidity must be infinite, so
the feedback coefficient must be infinite. Hence it is impossible to have zero
transmissibility with the usual feedback control methods. An interesting discussion of
the theory of velocity or position feedback control of large space structures is
presented by Goh and Caughey (1985). In their work, the problem of instability
caused by the interaction of the actuator dynamics is analysed and it is shown that
velocity feedback can be unstable, while position feedback was a valid alternative.
However, in their study an inertial actuator, whose resonance frequency is very close
to the resonance frequency of the controlled structure, was used. As will be discussed
later in this thesis, for these applications, the actuator resonance must have a lower

natural frequency than that of the controlled structure.
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The trade-off between damping low-frequency resonances and achieving good high-
frequency isolation may be overcome by skyhook damping. This was investigated by
Beard, von Flotow and Schubert (1994). In their study, skyhook damping
implementation was possible using reactive actuators since no base dynamics were
taken into account in the control frequency range, so that an inertial ground was
available. The effect of skyhook damping has also been investigated for an infinite
impedance base (Kim, Elliott and Brennan, 1999 and 2001), or for a base without
significant mobility. Also, a passive implementation of a virtual skyhook vibration
isolation system is investigated by Griffin ez al. (2002). The design and realization of
the virtual skyhook damper involves the design of both the primary and secondary
suspension systems. The primary suspension system is designed to meet the static
deflection criteria and uses low damping to provide low transmissibility at high
frequencies. The secondary mass-spring-damper is tuned close in frequency to the
primary system’s resonance, and has high damping. This yields a lightly damped
primary system whose motion is limited at resonance by the virtual skyhook damper
without increasing the transmissibility at higher frequencies.

The stability of the feedback controller can be established from the frequency
responses of the plant and controller, which are assumed to be individually stable.
This is determined by whether the polar plot of the open loop frequency response,
G(jw)H(jw), encloses the Nyquist point (-1,0) (Skogestad and Postlethwaite, 1996).
For example, if reactive actuators are used, the system can be described as a rigid
piece of equipment, which is supported on top of a base by a set of mounts (springs
and dashpots in general) and a reactive actuator. In this case a direct velocity feedback
control proves to be unconditionally stable. This is shown by Serrand et al. (2000) and
Benassi et al. (2002a). The real part of the plant’s frequency response is always
positive and the control loop has infinite gain margin and a phase margin of 90°, since
its Nyquist plot is entirely on the right hand side of the imaginary axis.

In the study by Serrand er al. (1998 and 2000), the effect of the base structure
dynamics on the formulation of direct velocity feedback control was investigated. In
the case of a reactive implementation of the control actuators, the secondary forccs
were generated by reacting off the flexible base structure. Therefore the classical
model of perfect skyhook damping was not valid and the stability of direct velocity

feedback control had to be reconsidered (Balas, 1978). It was found that no instability
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or vibration amplification was encountered from potential re-excitation of the flexible
base by the secondary actuators in the frequency range of analysis. Moreover, changes
in the dynamics of the base plate did not destabilize the control system, illustrating its
robustness.

On the other hand, considering the effects of the equipment and the mounts on the
stability of the overall system, there are severe limitations. In theory, direct velocity
feedback is unconditionally stable, provided the equipment can be modelled as a rigid
body and the mounts as a lumped parameter spring and dampers. In practice,
instability occurs at very low frequencies due to phase shifts of the electrical
equipment used, the flexibility in the equipment structure, and the effect of resonances
in the mount. It is found that although an ideal system might be unconditionally
stable, real systems are often conditionally stable. Causes of instability at low and
high frequencies in real systems are investigated by Miller er al. (1992a,b), Li and
Gibson (1992), Ahmadian er al. (1993), and Ananthaganeshan et al. (2001).

The practical implementation of feedback control can be either analogue (Swanson
and Miller, 1993, Franklin, 1994, and Howard and Hansen, 1997) or digital (Gerhold
and Rocha, 1987, Hodgson, 1991, and Melcher, 1992). The essential components in
an active control system are the sensor (to detect the vibration), an electronic
controller and actuators. They all play an important role in active vibration control
and often place limits on the system performance (Gardonio et al., 1996, Elliott et al.,
1998 and 2001a). Accelerometers often need signal conditioning devices, which
consist of filters to reject unwanted signals. These filters introduce extra phase shift at
low frequencies, which is sometimes critical to the stability of the feedback vibration
control system (Ananthaganeshan er al., 2001 and Benassi er al., 2002a). Actuators
are used in active vibration control to generate a secondary vibrational response, and
in practice they can be configured either to react off the base structure or function as
an inertial actuator. This was investigated by Elliott et al., (2001b). This choice also
influences the stability margin. In general, the design of a feedback controller
involves a trade-off between performance (the attenuation of the disturbance) and
robust stability (the ability to remain stable under changing conditions).

An important question in active vibration control relates to actuator and sensor
placement (Hiramoto er al., 2000). The use of co-located sensor-actuator pairs is
attractive, because control loops for co-located sensor-actuator pairs can easily be

guaranteed to be robustly stable (Sun, 1996 and Preumont, 1997 and 2001).
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Furthermore, because of the relative ease of implementation, active structural
elements for vibration control with co-located sensing and actuation have gained
much interest.

In conclusion, applications with actuators, controllers and passive mounts in an active
isolator package provide many benefits including simplicity, effective vibration
isolation, noise attenuation, higher static stiffness, dynamic adaptability, and safety.

This suggests that there is ample motivation for the use of active mounting systems.

1.1.11 Modelling

Many studies of isolators involve systems having only a single mount vibrating in one
direction (Gardonio and Elliott, 1996), and analytical methods can be used effectively.
A more detailed study is needed for a system with many mounts (Sutton et al., 1997,
Brennan, 1997, and Brennan et al., 2000), each of which is a distributed flexible
component. The finite element method (FEM) could be employed for this type of
study, although it generates large matrix models that require long simulations on a
relatively small frequency range of analysis (Petyt, 1998). On the other hand, finite
element models are very appropriate for describing complex structures, compared to
analytical methods, and can be corrected using test results (Mottershead and Friswell,
1993). Two alternative approaches are also suitable. The first one is the statistical
energy analysis (SEA) approach studied in great detail by Lyon and Dejong (1995)
and Ohayon and Soize (1998). This approach is based on power transmission
concepts using coupling factors between source and receiver structures, assuming the
two structures to be of either infinite or semi-infinite extent. Unfortunately, this
simplification could lead to some problems in the so-called low-mid-frequency range.
The second approach is based on impedance and mobility matrices (IMM). Recent
studies on active isolation by Gardonio et al. (1997a,b, 1998, 1999, 2000) have
suggested the need for mathematical models which give a detailed analysis of the
coupled vibration transmission mechanism and, at the same time, provide a summary
of the overall phenomenon and allow a global interpretation of the dynamics of the
active isolator system. Good results have been obtained by using the IMM approach,
where the system is divided into individual components and each component is
studied in terms of input and transfer mobilities or impedances (Liang et al., 1992).
The form of a point mobility of a typical structure depends upon the frequency range.

At low frequencies, a freely suspended structure moves as a rigid body in a possible
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six-degree-of-freedom system. Alternatively, a structure that is connected to ground
behaves as a spring and dashpot combination. These are the simplest mobility
elements, which may be added in various arrangements to model more complicated
structures in what is called a lumped element formulation. In the second zone, at
higher frequencies than the rigid body motion, the structure is free to move in its
modes of natural vibration. The mobility of each mode is that of a single degree of
freedom system. The point mobility of a structure therefore looks like the summation
of all the modal responses. At high frequencies, or with heavy damping, the modes
overlap in such a way that the mobility tends to resemble that of an equivalent infinite
structure (Meirovitch, 1967 and 1990, and Crandall er al. 1978).

Formulae for point and transfer mobilities of various homogeneous structures such as
beams, plates, and shells are given by Bishop and Johnson (1960) and Leissa (1969).
In this thesis, a matrix model has been used which assumes that the system is divided
into elements, the dynamics of each of which, modelled either as lumped or

distributed systems, is evaluated using point or transfer mobility terms.

1.1.12 Applications

Isolating a piece of delicate equipment from the vibration of a base structure is of
practical importance in various engineering fields. Examples are the vibration
isolation of the instrument boxes in an aircraft and the isolation of telescopes on
satellites. An active isolation system can be implemented over a broad frequency band
using different feedback control strategies (Gennesseaux, 1997).

There are many possible applications for damping systems (Ivers and Miller, 1991),
including space structures (Kaplow and Velman, 1980), aircraft, automobiles,
electronic components (Scheuren et al., 1995), satellites, marine structures, consumer
products, disk drives, and defence systems. One industry that is particularly
interested in active damping systems is the semiconductor industry. Many machines
used by the semiconductor industry are sensitive to disturbances from floor vibration
from sound pressure deviations, and from their own internal moving parts (Alvarez-
Salazar, 2002). Examples include laser-based systems and photolithography systems.
The Navy is also interested in active vibration damping to create an undetectable
submarine (Senior, 2002). Currently, the five main sources of submarine noise and
vibration are: machinery vibration, propeller/propulsion noise and vibration, global

hull resonances, flow noise, and cavitations. The first three of these sources are tonal
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noises that have frequencies in the range of 10 to 100 Hz. The last two are broadband
noises, which means they have frequencies exceeding 10 kHz. Due to the limited
recoverable strains of current materials and the constant need for novel active
damping system, new active damping materials are to be explored. A very interesting
and promising active vibration control solution is the “Smart Spring” mounting
system, developed by BAE Systems and ALSTOM for the US Office of Naval
Research (Daley et al., 2002). The main application of this technology is the
machinery isolation from the hull in marine vessels. The “Smart Spring” mounting
system is a hybrid active/passive system, based on a force feedback, which aims to

zero the mounting stiffness.

1.2 Contributions of the thesis

The contributions of this thesis can be summarized as:

e The theoretical analysis and experimental study of the stability and
performance of an inertial actuator with inner force feedback control.

e The theoretical design and experimental construction of a novel device, based
on an inertial actuator with inner displacement feedback, for active vibration
control.

e The theoretical and experimental development of an active vibration isolation
system using an inertial actuator with either inner force or inner displacement
feedback control.

e The theoretical and experimental analysis of the equivalent impedance and its

approximations for active vibration control of panels.
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1.3 Overview of the thesis

The first necessary step for developing and understanding how inertial actuators can
be used to either isolate sensitive pieces of equipment or suppress the vibrations of a
plate is to analyse their dynamic behaviour and their topologies of construction. In
Chapter 2 the mechanical model of a typical inertial actuator is investigated, followed
by the analysis of the electro-magnetic components that are actually needed to supply
the required force. Before entering the main part of the thesis, Chapter 2 reviews the
main properties of the inertial actuators that have been used in the experimental

phases of this research.

Chapter 3 presents the theory behind the use of an inertial actuator with inner
feedback control. In particular, when the total transmitted force by the inertial actuator
is measured and fed back to the actuator, the actuator resonance frequency is lowered
as if mass was added to the actuator moving mass. On the other hand, if the measured
total transmitted force is integrated before being fed back, the overall effect on the
actuator is to add damping to it, implementing, in essence, a skyhook damper. The
first strategy turns out to be very sensitive to stability issues, even though it performs
very well. The second strategy, however, is more robust, but it does not perform as
well as the first. The idea of implementing a phase-lag compensator as a trade-off

between the two previous strategies is then discussed.

Alternatively, we would like to be able to access the internal structure of the inertial
actuator, modify its resonance frequency if it happens to be too high for the
application and apply suitable control strategies in order to minimize the equipment
velocity in a vibration isolation system, or minimize the total power in a vibrating
panel. In Chapter 4 a new inertial actuator is presented, which suggests a very
interesting way to design an inertial actuator using inner displacement feedback
control, which turns out to be more robust, simpler and therefore cheaper than the

strategies described in Chapter 3.

In Chapter 5 the active vibration isolation problem will be discussed using an inertial

actuator and equipment velocity feedback. A review of different single loop and
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optimal control strategies for active vibration isolation using an inertial actuator will
be presented. For all of them, a matrix model has been used which assumes that the
system is divided into four elements: base structure, passive mounts, equipment, and
inertial actuator. Feedback stability margins and performance are considered for each
case. In particular, once the theoretical analysis is completed, a realistic case using
real commercial components is analysed. The aims of the chapter are to introduce one
of the practical applications of an inertial actuator and to discuss two of the main
constraints that a designer must take into account when working on vibration control
with inertial actuators. These constraints are the fact that the inertial actuator
resonance frequency has to be lower than the first resonance frequency of the
controlled structure, and the fact that the resonance must be well damped in order to

guarantee good stability margins.

Chapter 6 analyses the active vibration isolation problem when the piece of equipment
is installed (through passive mounts) on a flexible base and controlled with an inertial
actuator having inner actuator force feedback. The specific problem considered in
Chapter 6 is what can be done to minimize the equipment velocity using the devices
described in Chapter 3, when the inertial actuator resonance frequency is lower than
the first equipment resonance frequency. In Chapter 7, experiments are described to

compare with the theoretical findings.

In Chapter 8, the same piece of equipment is controlled using an inertial actuator with
inner actuator displacement feedback. Chapter 8§ suggests that using the device
described in Chapter 4 for vibration isolation guarantees good stability margins and
performance. The critical importance of the proof-mass of the inertial actuator will
also be discussed. The experiments in Chapter 9 serve to verify and validate the
theory. They also demonstrate the ability to build such a device for active isolation

purposes.

Active suppression of panel vibration is an important issue in many engineering
applications and meeting stringent constraints such as maximum strength and
minimum weight is a difficult task to accomplish.

Chapter 10 addresses these issues and analyses optimal solutions in order to minimise

the total power of a vibrating plate. A vibrating flexible finite plate is considered and
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its equivalent impedance for global control is obtained. The study is performed at a
theoretical level, and aims to determine approximations to the equivalent impedance
in order to reduce the total power of the vibrating plate. These results are then
compared to the performance of passive treatments based on springs and dampers.

In Chapter 11, approximations to the equivalent impedance are proposed, obtained by
a passive device as well as an active device, based on a modified inertial actuator with
inner displacement feedback control. The vibration suppression of a flexible plate is

then investigated experimentally, using the modified inertial actuator.

The overall results of this research are then discussed in the conclusions in Chapter

12, along with suggestions for further future work.
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Chapter 2

Inertial actuator review

2.1 Introduction

An inertial actuator is a mass supported on a spring and driven by an external force.
The force in small actuators is normally generated by an electromagnetic circuit. The
suspended mass can either be the magnets with supporting structure or in some cases
the coil itself. Unlike reactive actuators, inertial actuators do not need to react off the
base structure, so they can be used as modules that can be directly installed on a
vibrating structure. This feature makes them very useful.

Inertial actuators are mainly used for active control purposes (Holloway, 1993),
including active vibration control of space structures (Garcia et al., 1995), active
isolation systems on satellites (Flint er al., 2000) and active noise and vibration
control on turbo-prop aircraft (Hinchliffe et al., 2002). On a larger scale, applications
of inertial actuators can be found in civil structures. In actively controlled civil
structures, inertial actuators are common because the can generate the large forces
required. On a smaller scale, inertial actuation can be used to suppress vibration and
structure-borne noise using MEMS-based active tuned mass dampers (Dosch et al.,

1995).
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2.2 Dynamic model

A simple mechanical model of an inertial actuator is shown in Figure 2.1. A proof-

mass, m, , is suspended on a spring, k., and a damper, c_, and in parallel with them,

a’
an actuator force f, drives the proof-mass. The presence of an inertial force f; acting on
the inertial actuator mass must also be considered. v, and v, are, respectively, the

moving mass velocity and the base velocity.

i

Figure 2.1 Mechanical model and sign convention of an inertial actuator.

The equation describing the dynamics of the system in Figure 2.1 is given by
jomgv, +c,(v, =v, )+ k, (v, =v,) jo = f; - f,, (2.1)

where v, and v, are complex velocities and an e’ time dependence is assumed.

Important parameters in characterising the behaviour of an inertial actuator are its

resonance frequency, which is given by

w, = |2 (2.2)

and the actuator damping ratio, defined as

(2.3)

"2 e,

The transmitted force f, is a linear function of the actuator force f, and the

equipment velocity v, , and may be written as
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ft =Tafa _Zave’ (24)

where

T, = : 2.5)

is the blocked response of the actuator and

_ jomk, ~w*m,c, | 2.6)

Z, = 2
k,—w°m, + jaxc,

a

is its mechanical impedance. The blocked response of a typical actuator with ¢, =
4.7% 1is illustrated in Figure 2.2, showing the resonance at its natural frequency. At
high frequency this response tends to unity, with no phase shift, indicating that the
transmitted force f, follows the actuator force f, since the mass provides a stable
inertial platform off which to react the force. The mechanical impedance of the
actuator, as plotted in Figure 2.3, is mass-controlled at low frequency, stiffness-
controlled at higher frequency and at the resonance frequency is dominated by the

actuator’s damping. It is given by the parallel of the stiffness term k, and damping

term c, , with the series of the mass term m,, .
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Figure 2.2 Blocked response, transmitted force per unit actuator force, of
the inertial actuator as a function of normalized frequency.
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Figure 2.3 Mechanical impedance, reaction force per unit imposed
velocity, of the inertial actuator as a function of normalized frequency.

The inertial response of the system is computed by setting the control force to zero in
equation (2.1). The relative displacement x (between the actuator’s proof-mass and
the actuator’s reference base) per unit inertial force f; is therefore given by

. 1 2.7)

2 .
fi - ma+]a)ca+ka

and is illustrated in Figure 2.4. In the low frequency regime (below the mechanical
resonance) the actuator’s inertial response is dominated by the mechanical stiffness.
In fact, the response of the system to a static force is equal to 1/k,. The height of the
resonance is dependent on any internal mechanical damping (1/a,c,) and in some
cases eddy current damping. At this resonance, a phase shift occurs. Beyond the
mechanical resonance, the inertial response is dominated by the actuator’s mass. In

this region, the phase of the transfer function is flat.
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Figure 2.4 Inertial response, relative displacement per unit inertial force,
of the inertial actuator.

2.3 Electro-magnetic model

In the previous section, in presenting and applying the dynamic model of the inertial
actuator, the machine which would supply the force f,(t) to the system was not
modelled, because the internal dynamics of such a machine are well beyond the
bandwidth of the structural response. Consequently, they do not contribute
significantly to the dynamics of the structure. However, knowing the model of the
driving mechanism is essential in order to size and apply the right actuator for a given
problem.

Inertial actuators are direct drive, limited motion devices that utilize a permanent
magnet field and a coil winding to produce a force proportional to the current applied
to the coil. These non-commutated electromagnetic devices are used in linear
applications requiring linear force output, and high acceleration, or high frequency

actuation. There is extensive literature concerning the modelling of these devices, and
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it will be here only reviewed. For a more extensive description of their modelling and
operation, see Basak (1996), Boldea et al. (1997), and CSA Engineering (2002).

The electromechanical conversion mechanism of an inertial actuator is governed by
the Lorentz Force Principle. This law of physics states that if a current-carrying
conductor is placed in a magnetic field, a force will act upon it. The magnitude of this
force is determined by the magnetic flux density B, the current i, and the orientation
of the field and the current vectors. Furthermore, if a total of N conductors (in series)
of a length [ are placed in the magnetic field, the force acting upon the conductors is

given by
f=kBIiN, (2.8)

where k, equals a constant. The ratio of the force to current f/i =K, in equation

(2.8) is called the magnetic force constant. Figure 2.5 is a simplified illustration of

this law of physics.

‘}'

4

/

f

Figure 2.5 Illustration of the Lorentz Force Principle .

In Figure 2.5, the direction of the force generated is a function of the direction of
current and magnetic field vectors. Specifically, it is the cross product of the two
vectors. If current flow is reversed, the direction of the force on the conductor will
also reverse. If the magnetic field and the conductor length are constant, as they are in

an inertial actuator, then the generated force is directly proportional to the input
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current. Figure 2.5 also illustrates that a conductor moving though a magnetic field
will have a voltage induced across the conductor. The magnitude of the voltage, Vj, is
dependent on the magnetic flux density, B, the length of the conductor, [, and the
speed of the proof-mass, v,, as the moving mass traverses the field. The voltage

potential induced in the conductor (i.e. the back EMF) is given by

Vo=kelva N, (2.9)

where kg equals a constant and N equals the total number of the conductors of length
. Equations (2.8) and (2.9) can be restated as follows: a device that contains a
permanent magnet field and a coil winding moving in the field will produce a force
proportional to the current carried in the coil and a voltage proportional to the velocity
of the proof-mass.

In its simplest form, an inertial actuator is a tubular coil of wire situated within a

radially oriented magnetic field as shown in Figure 2.6.

permanent magnet proof-mass and
flux return (soft iron)

stator and attachment

- f to equipment

/

coil fixed, working air gap

Figure 2.6 Schematic of an inertial actuator.

The field is produced by permanent magnets embedded on the inside diameter of a
ferromagnetic cylinder, arranged so that the magnets facing the coil are all of the
same polarity. An inner core of ferromagnetic material set along the axial centreline
of the coil, joined at one end to the permanent magnet assembly, is used to complete
the magnetic circuit. The force generated axially upon the coil when current flows

though the coil will produce relative motion between the field assembly and the coil,
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provided the force is large enough to overcome friction, inertia, and any other forces
from loads attached to the coil.

An inertial actuator is a single-phase device. Application of a voltage across the two
coil leads will generate a current in the coil, causing the coil to move axially along the
air gap. The direction of the movement is determined by the direction of current flow
in the wire. Within certain limits defined by the magnetic circuit geometry, the force
produced by an inertial actuator is linearly proportional to the current through its coil,
as shown in equation (2.8).

Figure 2.7 depicts the equivalent electrical circuit of an inertial actuator. When a
voltage V is applied across the terminals, a current i circulates through windings of
resistance R. At the same time, the actuator generates a back electromotive force
(EMF), given by equation (2.9). This back EMF V,, is proportional to the proof-mass

velocity, v, , by a constant K, and can be rewritten as

Vi = Kp v, (2.10)
It must be said that it directly opposes the applied voltage and the ratio between Ky
and K, is constant. In addition, the actuator coil has an inductive voltage drop (this
value is usually small, often negligible)

V, = L(di/dt). @2.11)

Letting V. represent the iR drop across the coil, application of Kirchhoff's Voltage

Law thus gives the equation that describes the inertial actuator

V=V+V,+ W (2.12)

It is now possible to derive all of the parameters needed in sizing and applying inertial

actuators.
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Vb = Kbv,,

Vi=L di/dt

Figure 2.7 Equivalent electrical circuit of an inertial actuator.

2.4 Practical issues concerned with inertial actuator design

The performance of an inertial actuator is constrained by several factors, but in
general the system will follow the equations described above. The first constraint is
the possibility of fatigue of the mechanical spring elements that support the moving
mass. Fatigue issues can generally be avoided through careful design of the flexures
to ensure that the flexure material never experiences displacements that would push
the stresses above allowable fatigue limits (Anderson et al., 2001).

Depending on the actuation orientation with respect to gravity or other static
accelerations, the effective end-stop limit can be reduced as the suspended mass is
brought closer to one end stop. The worst case is when the actuator output axis is
aligned with the local static acceleration field, which is the case in the problem
analysed in this thesis. The severity of the gravity induced sag can be related directly

to the inverse of the square of the internal resonance frequency (the relative

displacement x of the proof-mass is given by x = T8 _ i, where g = 9.8 ms™).

2
k, w;

Consequently the lower the frequency, the greater the sag. Unfortunately, low
resonance frequencies are required by design in order to provide good performance,

for example, in vibration isolation systems (Elliott ez al., 2001a).
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The sag can be offset with a constant DC field (CSA Engineering, 2002) in the cail,
but this creates a constant power consumption that might be undesirable in some
applications. Another solution is to design the flexures to tolerate a large range of
motion (Minus K Technology, 2002, and Motran Inc., 2002) such that any induced
sag is a minor portion of the total stroke. This however introduces the possibility of
cubic stiffening of the flexures in some designs which lead to distortions in the force
output at large strokes. Finally, another interesting solution is proposed by Chase et
al. (1999), where a controller, based on the measurement of the relative displacement
of the proof-mass and its velocity with respect to the actuator’s base, centres the
moving mass at mid-stroke.

The performance of an inertial actuator is also limited by the resistive nature of the
actuator coil. Due to this resistance, power is internally dissipated inside of the coil.
Higher drive levels cause more dissipation and excessive levels could damage the
coils. Finally, in the high frequency range there are generally limitations introduced
by the power amplifiers used to drive the actuator. As a general rule, actuator force
output scales with the available magnet volume and hence overall actuator weight
(Flint et al., 2000). Performance can be enhanced by using higher grade magnets but
this can result in a serious cost penalty.

Stroke may be specified as the total displacement from one end of travel to the other
end, or as a * displacement from a mid-stroke reference. The mass or volume of an
inertial actuator increases as its stroke and blocked force increase. This condition
results from the added magnet materials needed in long stroke applications, as well as
the additional back-iron needed to carry the flux of the added magnet. The trade off

between maximum allowable stroke and maximum driving force must be considered

(Lindner et al., 1991, 1994, and 1997). In fact, f, = w*m,x,_,, , which indicates

(max)
that at low frequency larger strokes are allowed for a given maximum driving force.
At higher frequencies, a given maximum driving force poses severe limitations on the
stroke.
A second design constraint is given by the force constant expressed by equation (2.6),
which can also be expressed in relation to the maximum allowable driving force

through the equation f, (max) = Kl where i, 1S the maximum current that can be

provided to the actuator.
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2.5 Examples of inertial actuators

For the experiments, three kinds of inertial actuators were considered. The actuator
used in Chapter 7 was a modified commercial shaker LDS Ling Dynamic Systems
V101, while the actuator used in Chapter 9 was a modified ULTRA Electronics
Active Tuned Vibration Attenuator (ATVA). The Aura AST-2B-04 inertial actuators
were also tested, but the specs vary from one to another because precision
manufacturing is not guaranteed. For this reason, they were not used in the active
control experiments.

A simplified schematic of the LDS inertial actuator is assumed to be that one shown
in Figure 2.6, in which the proof-mass is a moving permanent magnet and the stator
holds the coil. In this configuration only one current is present and the movement of
the proof-mass is in the vertical direction. It must be said that the LDS actuator was
not taken apart in order to determine its exact construction, even if most of it can be
found in the manuals. The product is sealed, and opening it would cause damage. A
picture of an LDS V101 is shown in Figure 2.8. In reality, the LDS V101 is mostly
used as a shaker which reacts off a base structure. Figure 2.9 shows how a simple
modification allowed us to use this type of actuator as an inertial actuator. Four soft
steel springs were used to sustain the weight of the case, which acted as the moving
mass of the inertial actuator. Previously, four elastic bands were used, but they
showed a very limited linear range.

Table 2.1 reports some of the main properties of the actuator. Apart from the dynamic
mass, which was gathered from the manual, the other electro-mechanical properties
were measured experimentally. The actuator was mounted on a rigid steel block,
whose mass is 6 kg. At the base of the steel block, soft foam was placed in order to
have the base dynamics at very low frequency. A force gauge was installed between
the inertial actuator and the base. The measured dynamic response (output force per
unit input voltage) is shown in Figure 2.10. After the resonance at about 11 Hz, the

response is flat up to approximately 500 Hz.
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Figure 2.8 LDS Ling Dynamic Systems V101 used in the experiments in
Chapter 7.

Figure 2.9 Modification of the LDS Ling Dynamic Systems V101 in order
to make it operate as an inertial actuator.
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Figure 2.10 Measured dynamic response of the LDS Ling Dynamic
Systems V101 inertial actuator. The input is white noise, connected to the
actuator’s leads, and the output is the force gauge measurement.

The phase plot in Figure 2.10 shows that an extra phase shift is present in the system,
beside the 180° phase shift due to the actuator (Figure 2.2). This is mainly due to the
inductance in the coil. In fact, the measurement of the electrical impedance (output
voltage per unit input current) of the LDS V101 (Figure 2.11) reveals that the phase is
not constantly zero over the frequency range. At 500 Hz, the magnitude of the
electrical impedance is about 4.17 Q and the mechanical resonance at 11 Hz is hardly

noticeable. The magnetic force constant K , is obtained by multiplying the values in

Figure 2.10, which shows the measured force/voltage, by the values in Figure 2.11,
which shows the measured voltage/current. In particular, the magnitude of the
magnetic force constant ends up being reasonably flat above the resonance frequency,
since the measured dynamic response slightly descends and the electrical impedance
increases over frequency. Also, the phase of the magnetic force constant looks like the
theoretical curve in Figure 2.2, where a 180° phase shift occurs. By summing the
experimental phases in Figure 2.10 and Figure 2.11, it can be noted that the extra

phase shift in Figure 2.10 is mostly compensated for by the electrical impedance.
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Figure 2.11 Measured electrical impedance of the LDS Ling Dynamic
Systems V101 inertial actuator.

An unsealed ULTRA ATVA (with no manual) was available for the experiments
described in Chapter 9, so that the internal components could be accessed. Figure 2.12
shows a picture of the ULTRA actuator as it can be purchased from ULTRA
Electronics Ltd. and Figure 2.13 shows a schematic cross-section of some of its
internal components (Hinchliffe et al., 2002). The ULTRA ATVA consists of a
magnetised mass mounted between two springs with an electrical coil driven by an
input signal.

The dynamic response of the ULTRA actuator was tested. The actuator was mounted
in the same manner as it was described previously for the LDS actuator. Figure 2.14
shows the measured dynamic response of the system and the coherence obtained
during the measurement. The presence of several resonances in the frequency
response can be noted. In particular, the actuator’s main resonance frequency is at
73.8 Hz, while the internal resonance at 150 Hz is due to a rocking mode of the
internal dynamic mass. The presence of other resonances in the frequency response at
400 Hz and 1550 Hz due to internal dynamics can also be noted. Also, at higher

frequencies, the magnitude is not flat. Table 2.1 reports other features of this actuator.
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Figure 2.12 ULTRA Active Tuned Vibration Attenuator used in the
experiments in Chapter 9.

coil attached

to body
moving
magnet
suspension
springs

Figure 2.13 Schematic of the cross-section of an ULTRA Active Tuned
Vibration Attenuator used in the experiments in Chapter 9.

39



el. (1 N/N)

1/ dB re

! \ 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
=

200 T T T T

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
T

1 ( T T T L T T T T

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 2.14 Dynamic response of the ULTRA inertial actuator. The input
is white noise, connected to the actuator’s leads, and the output is the
force gauge measurement.

The phase plot in Figure 2.14 shows a greater extra phase shift than expected
theoretically, which is in part due to the electrical impedance. The measurement of the
electrical impedance of the ULTRA actuator (Figure 2.15) shows this phase shift, as
well as the ascending magnitude. This behaviour is mainly described by an
impedance, dominated by a resistor at low frequency, and an inductance at high

frequency (R + jwL). At 500 Hz, the magnitude of the electrical impedance is about

5.62 £ and the distinct mechanical resonance at 73.8 Hz can be seen.
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Figure 2.15 Measured electrical impedance of the ULTRA inertial
actuator.
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The Aura AST-2B-04 is designed to be used as a body shaker in videogames. Despite
its low cost, it showed a very interesting behaviour. Unfortunately, these actuators are
assembled by hand, and therefore show slightly different properties depending on the
unit. However, they can be used effectively in active control applications (Li et al.,
1999). Table 2.1 shows the properties of one of our units. Apart from the dynamic
mass, which was gathered from (Cazzolato, 2002), the properties of the Aura actuator
were measured experimentally. Figure 2.16 shows a picture of that unit and Figure
2.17 shows its schematic. Since no casing is present, the schematic was obtained by
direct inspection. It is composed of a housing, a moveable mass (which consists of a
permanent magnet and a core), flexible diaphragms as springs, and a coil. The mass is
supported on two diaphragms which are fixed to the housing. One diaphragmis bolted
to each side of the mass. Unlike the ULTRA actuator, which is provided with two
flying leads, the Aura actuator and the LDS V101 are provided with two terminal
posts.

Figure 2.18 shows the measured dynamic response of the Aura actuator between input

force and output moving mass acceleration, which is proportional to the transmitted
force f, , as it will be explained in Chapter 3. After the resonance frequency, the

response gradually descends.

Figure 2.16 Aura AST-2B-04 inertial actuator.
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Figure 2.17 Schematic of the cross-section of an Aura AST-2B-04.
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Figure 2.18 Measured dynamic response of the Aura AST-2B-04 inertial
actuator. The input is white noise, connected to the actuator’s terminal

posts, and the output is the proof-mass acceleration.
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The phase plot in Figure 2.18 shows an extra phase shift, which is present in the
system mainly due to the inductance in the coil. This is confirmed by the
measurement of the electrical impedance in Figure 2.19. At 500 Hz, the magnitude of

the electrical impedance is about 4.37 Q and the mechanical resonance is at 44.5 Hz.
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Figure 2.19 Measured electrical impedance of the Aura AST-2B-04
inertial actuator.

Some of the properties of the three actuators were measured directly and some
estimated by inspection, without damaging them. Table 2.1 shows the comparative
results. In particular, the magnetic force constant K, was gathered from the high
frequency behaviour of the ratio between transmitted force and actuator input voltage,
and the electrical impedance. This latter physical quantity was computed by
subtracting 1 & from the ratio between the measured voltage across a system

composed by the actuator and a 1 € resistor placed in series, and the voltage across

that 1 Q resistor.
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Modified ULTRA Aura AST-2B-04
LDS V101 ATVA
resonance frequency 11 Hz 73.8 Hz 44.5 Hz
damping ratio { 4.8 % 4 % 4 %
total mass 1.01 kg 0.42 kg 0.64 kg
dynamic mass m, 0.91 kg 0.24 kg 0.4 kg
magnetic force
constant K, 13.5 N/A 30 N/A 7 N/A
electrical impedance 4.17 Q 5.62 Q 4.37 Q
stiffness k, 3900 N/m 51000 N/m 31000 N/m
stroke +1.25 mm 13 mm 12 mm
max input voltage 10V +4 'V 8.3V
max input current 1.5A 1.5A 1.3A
max bandwidth 2000 Hz 2000 Hz 2000 Hz
tested
overall diameter 65 mm 60 mm 120 mm
height 65 mm 50 mm 30 mm
cost $450 ? $12
remarks usually used as a presence of flat response after

reactive actuator

resonances in the
frequency response
due to internal
dynamics

the resonance and
up to 1 kHz, but
magnitude depends
on unit

Table 2.1 Comparative results obtained experimentally of the inertial
actuators used in the active control experiments.
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Chapter 3

Inertial actuator with inner force feedback

3.1 Introduction

In this chapter, the behaviour of an inertial actuator (Figure 3.1) with inner feedback control
strategies, based on the measurement of the total transmittéd force f;, is analysed. m, is the
inertial actuator dynamic mass (= 0.91 Kg), ¢, is the inertial actuator damping factor (= 5.8
N/ms'l), k, is the inertial actuator spring stiffness (= 3900 N/m), f, is the control force, v, is
the velocity of the moving mass, and v, is the inertial actuator base velocity. These specific
values of the parameters were used to match the behaviour of the commercial shaker LDS

Ling Dynamic Systems V101.

My j
Va

Ja

Ve

fi

Figure 3.1 Mechanical model and sign convention of an inertial actuator.
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The transmitted force, f;, can be expressed as a function of the control force and the
equipment velocity as in equation (2.4). In this specific case, the magnitude and phase of
the blocked actuator response, T, is plotted in Figure 3.2(a) from which it can be seen
that 7, is negative at low frequency. In fact, when f, is positive, the spring and damper
components within the actuator are expanded and therefore they generate a force which
tends to restore the system to its natural condition. Given the sign convention in Figure
3.1, this force is equal to — fi. Also, it can be seen that f; tends to f, above the inertial

actuator’s natural frequency.

The magnitude and phase of the frequency response of the mechanical impedance of the

passive components of the inertial actuator, Z_, is shown in Figure 3.2(b), in which it can

be seen that the real part is always greater than zero (passive behaviour). Also, at high

frequency, the impedance tends to the damping term, as shown in Figure 2.3 as well.
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Figure 3.2 (a): Magnitude and phase of the blocked response of the inertial

actuator. (b): Magnitude and phase of the frequency response of the mechanical
impedance of the passive components of the inertial actuator.
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3.2 Direct force feedback control

The inertial actuator with inner actuator force feedback control is shown schematically in
Figure 3.3. The transmitted force f; is measured and fed back to the inertial actuator
through a feedback controller with frequency response H(jw). The command signal f, can
be considered, in control terms, as the reference point (Franklin er al., 1994). In this
section the stability and performance of the actuator with various types of inner actuator

force feedback will be discussed.

Figure 3.3 Schematic of an inertial actuator and implementation of the inner
force feedback control loop.

If H(jw) = hy, where hf is a positive constant, direct force feedback is implemented. The
Nyquist plot of the open loop response of the blocked actuator response is shown in Figure
3.4, which allows the relative stability of the system to be assessed (Franklin et al., 1994).
Direct force feedback control is seen to be unconditionally stable in this ideal case since
for no feedback gain would the Nyquist plot enclose the (—1,0) point. At low frequency,
the Nyquist plot does lie very close to the real axis, however, and therefore instability is
likely to occur at high gains in real systems where an additional low frequency phase shift
may be present due to the electronic components (Brennan et al., 2002, and Benassi et al.,

2002b).

47



10

Imaginary GH(j w)
o
T
I

n
T
L

2 1 1 I I
- 0 2
Real GH(jw)

Figure 3.4 Nyquist plot of the open loop response for the inertial actuator with
direct force feedback (hy = 1) attached to a rigid structure.

It can also be noted that at high frequency the Nyquist plot does not go to the origin and
this is due to the fact that the magnitude in the corresponding Bode plot (Figure 3.2(a))

tends to a constant.

An important assumption that underlies the result shown in Figure 3.4 is that the
supporting structure which the inertial actuator is attached to is assumed to be perfectly
rigid. For a more general analysis equation (2.4) can be expanded with the base velocity

v, written in terms of the input mobility of the structure Y, as

v, =Y,f,. 3.1)

Substituting equation (3.1) into equation (2.4) the plant transfer function in this case,

between actuator force f, and transmitted force f,, is given by

T,
sziz—“ : (3.2)
f. 1+Z.7Y,
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The difference between the blocked plant response, 7, and that when it is loaded by the

structure, is the factor (1+ Z,7, )_1. If the structure is vibrating with velocity v,, before

the actuator is attached, its velocity after the actuator has been attached is given by

v, =v,, +1,f,. (3.3)

Assuming that the actuator is undriven, f, =0, then f, from equation (2.4) will be equal
to —Z,v,. Substituting this into equation (3.3), the fractional change in the structure’s

velocity due to the attachment of the undriven actuator (i.e. its passive effect on the

structure’s vibration) is given by

v, 1
v, 1-Y,2,°

(3.4)

which provides some physical interpretation of the effect of the mobility of the structure
on the inertial actuator’s plant response with inner force feedback. The reciprocal
frequency response of the plant in the case of direct force feedback control, from equation

(3.2), can be written as
G, =T, [1+Z,7,]. (3.5)

The reciprocal of the blocked actuator response 7, (Figure 3.2(a)) has a phase shift
between 0° and +180°. Both Z, and Y, are passive terms and thus their individual phase
shift is between +90°. Consequently Z,Y, and thus [1+ ZaYe] could vary between £180°.

The overall phase shift of equation (3.2) can therefore, in general, range between -180°
and +360° ; and so in most general case a constant gain feedback loop is only

conditionally stable. In the case of the ideal inertial actuator, however, the phase of Z, is
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restricted to being between 0° and +90° below its natural frequency and between -90° and
0° above its natural frequency.

One of the applications of the device described in this section, as will be discussed in
Chapter 6, is the vibration isolation of a sensitive piece of equipment using an outer
equipment velocity feedback loop to provide skyhook damping. In order to implement a
stable outer closed-loop system with an inertial actuator, the actuator resonance must be
below the first resonance frequency of the structure under control (Elliott et al., 2001a,
and Benassi et al., 2002a). The modification of the plant response due to loading by the
structure is not as severe in this case as in the most general case described above. For
example the Nyquist plot of a system composed of an inertial actuator with inner force
feedback control mounted on a rigid piece of equipment, which is connected to a vibrating
base through a resilient mount, is shown in Figure 3.5, in which the natural frequency of
the equipment on its resilient mount is about twice the actuator’s natural frequency. The
phase shift of the plant is again restricted to between 0° and +180°, with the first loop, at
low frequency, determined by the behaviour of the inertial actuator, while the smaller
loop, at higher frequency, describes the dynamic loading effect of the equipment on its

resilient mount on the actuator.

Imaginary GH(j ©)

2 1 1 1 I
6 -4 -2 0 2 4 6
Real GHjw)

Figure 3.5 Nyquist plot of the open loop response for the inertial actuator with
direct force feedback (hs = 1) attached to a flexible structure.
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The secondary force f, for the inner force feedback system shown in Figure 3.3 is given
by
Ja=he(fe =S (3.6)

which, when substituted into equation (2.4) and expanded, provides the closed loop
transmitted force as a function of the command signal and the equipment velocity. This is

given by

2
—w*mh iwm k, —w*m,c,
fi= ; i fo- IR Ve @.7)
k, +joc,—w'm,(1+h;) k,+ jac,—w'm,(1+h;)

which can be grouped as

fi=Tuf = Zav,. (3.8)

where T, and Z_, are the blocked response and mechanical impedance of the actuator, as

modified by the inner feedback. The closed-loop response of the actuator with inner force
feedback is given by the transmitted force f; per unit control command f, , as plotted in
Figure 3.6(a). When the inner feedback gain /rincreases, the transmitted force tends to the
control command f.. This means that the transmitted force can be regulated using the

command signal f, . A second important aspect is that when the feedback gain A,

increases, the actuator resonance is shifted to lower frequencies, while its magnitude
increases. The transmitted force f; is proportional to the acceleration of the moving mass
m, and consequently inner force feedback is equivalent to feeding back the acceleration of
the moving mass. Inner force feedback control can thus be physically interpreted as
adding an “apparent” mass to the inertial actuator moving mass (Benassi et al., 2002c).
Although this lowering of the actuator’s natural frequency is desirable when used for
active isolation, it makes the stability of the inner feedback loop even more sensitive to

low frequency phase shifts.
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Figure 3.6(b) shows the transmitted force f; per unit equipment velocity, v, , which is equal
to the impedance of the actuator with inner force feedback. The lowering of the resonance
frequency can again be observed. It can also be seen that as the feedback gain 7y is
increased, the actuator’s impedance becomes smaller, particularly at high frequencies, as

predicted by equation (3.7).

(a) (b)

3

g
=
2
=3
T

5
o B
T

|’(",| dBrel. (1 Nims™)

=
3

| <8 rel. (1 AN
s

B
—

L . 1 L ol
0 35 40 45 50

» 25 3
Frequency (H2)

n

L s L L .
2 25 ki) 35 40 45 50 0 5 10 15
Frequency (Hz)

Figure 3.6 (a): Transmitted force per unit control command for the inertial
actuator with inner force feedback when different feedback gains hy are used: hy
=1 (solid), hy =20 (faint), hy =100 (dashed), and ks =100,000 (dotted). (b):
Frequency response of the actuator’s mechanical impedance when hy =0 (solid),
he =20 (faint), hy =100 (dashed), and hy =100,000 (dotted).

3.3 Integrated force feedback control

h.
If the inner feedback controller in Figure 3.3 is given by H(jw) =+f, then integrated
ja

force feedback control is implemented. The effect of an integrator in the feedback loop is
to rotate the Nyquist plot of the plant response by 90° clockwise. The Nyquist plot of the
open loop response for the actuator with integral force feedback on a rigid base, for
example, is shown in Figure 3.7, which is a rotated version of Figure 3.4. The Nyquist plot

now lies entirely on the right hand side of the complex plane, so that this control system is
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inherently more robust than direct force feedback. In particular low frequency phase
shifts, due to conditioning electronics, of up to +90° will not destabilize the system. Also,
high frequency perturbations of the plant response due to the finite mobility of the
structure under control, as discussed above, will not destabilize the system since for the
isolation example, whose effect on force feedback was shown in Figure 3.5, the Nyquist

plot will still be on the right hand side of the complex plane with integral force feedback.
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Figure 3.7 Nyquist plot of the open loop response of the inertial actuator with
integrated inner force feedback H(jw)=hy/ jo., with hy= 1.

The actuator force in this case is given by

By
fa :]_a)l(f =) (3.9)

where @, is introduced to ensure that hl-f is dimensionless, and is assumed to have the

value 138.2 rad/s for reasons that will be evident later. When equation (3.9) is substituted

into equation (2.4), the transmitted force becomes
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jam,h, o, _ jomk, —w'mc, ) (3.10)
k,+ joc, -w*m, + jom ho, '

c

a k,+ jac, —w'm, + jaom b,
which can be written in the compact form
fi=Totfe=Zav.. (3.11)

where T,, and Z,, are the blocked response and mechanical impedance of the actuator,

as modified by the inner feedback. The blocked response of the actuator, the transmitted
force f; per unit control command f,, with integral force feedback, is plotted in Figure
3.8(a). Unlike the previous case, the resonance frequency does not change significantly
when the feedback gain increases, although f; does tend to f. when very high gains are
implemented. For relatively low values of the feedback gain, however, the magnitude falls
off above the resonance frequency and a phase shift occurs. Compared to the force
feedback control, as shown in Figure 3.5(a), in which the closed loop response tends to
unity with no phase shift at higher frequencies even for moderate feedback gains, higher
integral feedback gains are needed with this control strategy in order to obtain the same
levels of transmitted force.

Figure 3.8(b) shows the frequency response of the actuator’s mechanical impedance, f;/ v,,
for different feedback gains iz When the feedback gain 5 is increased, the impedance is
reduced at the resonance frequency and for very high values of feedback gain the
magnitude is reduced over the whole frequency range shown in Figure 3.8(b). The
physical interpretation of this behaviour is that the integral of the transmitted force is
proportional to the velocity of the actuator’s proof-mass, and integral force feedback thus
adds damping to the system.

An intermediate scheme based on the measurement of the integrated transmitted force f;
was also analysed. The inner feedback gain H(jw) was chosen to be a positive real
constant h;. The Nyquist plot is shown in Figure 3.6 and the transmitted force per unit
equipment velocity is shown in Figure 3.8(b). Unlike the other schemes, the transmitted

force per unit control command f. shows the weakness of this strategy. In fact, for very
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high values of the gain Ay, f; / f. tends to hy; but when A assumes reasonable values, f;/ f;
tends to jw, which means that it is frequency dependent. For this reason, the

implementation of this feedback control scheme is not recommended.
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Figure 3.8 (a): Transmitted force per unit control command for the inertial
actuator with inner integral force feedback when different feedback gains hjin
H(jw)= hy/jw are used: hy=1 (solid), hiy =20 (faint), hyy =100 (dashed), and hy
=100,000 (dotted). (b): Frequency response of the actuator’s mechanical
impedance when hy =0 (solid), hy =20 (faint), hy =100 (dashed), and hy
=100,000 (dotted).

The force feedback control scheme does not guarantee a good stability margin at low
frequency. This is especially true when the feedback gain is increased. In addition, when
real electronic components are added to the ideal system, the stability margin rapidly
decreases and the overall system falls very close to the unstable region. On the other hand,
from a performance point of view, this scheme offers very good results using lower
feedback gains than the other schemes, as it will be discussed in Chapter 6. When an
integrator is added to the system, the overall system significantly improves its stability
margin. This can be noted in the Nyquist plot, which is rotated by 90° clockwise. On the
other hand, if high performance is needed, very high gains are necessary. It would
therefore be a good idea to alter the inner feedback loop in such a way that it behaves like

a force feedback controller at frequencies higher than a certain appropriate value and it
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behaves like an integrated force feedback controller at low frequencies. By doing so, the
system will preserve a high stability margin at low frequency and will also preserve good

performance at high frequency. All these aspects will be discussed in the next sections.

3.4 Phase-lag compensator

w+w; . ,
The frequency response of a phase lag compensator, H(jw)=h, g is plotted in
Ja

Figure 3.9 for the case where @, =138.2 rad/s. If this is used as the inner controller in
Figure 3.3, the Nyquist plot of the open loop system is shown in Figure 3.10. The stability
of the closed loop system is between the behaviour of the previous two cases. In
particular, at low frequency the stability margin of the closed loop system is almost as
good as the integrated force feedback case and this is due to the -90° phase shift that the
phase-lag controller adds to the plant response at low frequency. At higher frequencies the
controller does not add any additional phase shifts and the behaviour of the plant is
preserved. The stability of the controller is also robust to the effect of a finite mobility in
the attached structure, since it will affect the Nyquist plot in a similar way to that shown in
Figure 3.5.

The value of @, is chosen in order to provide a reasonable trade-off between stability of
the overall system (especially at low frequency) and its performance. Since the inertial
actuator resonance frequency is responsible for the conditional stability of the system, by
adding an integrator to the feedback loop, the corresponding portion in the Nyquist plot is
rotated by 90° clockwise, leading the closed-loop system away from a potential instability.
In order to guarantee this feature, w; must be greater than the inertial actuator resonance
frequency. On the other hand, in order to guarantee good performance, @, should be small,
such that the closed loop system can benefit from the inner force feedback controller. In
this study, @, was chosen to be 27 -22 = 138.16 rad/s, where 22 Hz corresponds to the
equipment-dominated resonance frequency of the vibration isolation problem discussed in
Chapter 6. A detailed discussion on the appropriate choice of @j is given in Benassi et al.

(2002c).
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Figure 3.9 Frequency response of the phase lag compensator H(jw)=hy (jo +
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Figure 3.10 Nyquist plot of the blocked actuator response when the phase-lag
compensator H(jw)=hy (jo + w;) / jw is implemented, with h, = 1 and
w, =27 -22Hz.



The actuator force in this case is given by

jo+aw,

Jomhy——Uc—f)- (3.12)
j

Substituting this into equation (2.4), the transmitted force becomes

s —w*myh, + jom,h,w,
‘ k, + joc, ~w*m, A+ hy)+ jom,h (3.13)
jom,k, — a)zmaca '
- 1%
ky + joc, —w*m, U+ hy) + jom,h, o
which can be written in the compact form
fo =Tk = Zysv, (3.14)

where T, and Z_, are the blocked response and mechanical impedance of the actuator, as

modified by the inner feedback. Figure 3.11(a) shows the transmitted force per unit
control force. As the feedback gain £, increases, f; tends to f- at all frequencies. Compared
to the previous control scheme (Figure 3.8(a)), at frequencies higher than the resonance
frequency, the magnitude is more level, indicating a better performance at high frequency
since f; is closer to f. than in the previous case. Also, unlike the previous case, there is a
smaller phase-lag at frequencies higher than the resonance frequency.

Figure 3.11(b) shows the frequency response of the actuator’s mechanical impedance for
different feedback control gains 4, When the feedback gain 7, increases, the impedance
J:/ ve tends to zero, but this is only achieved for large values of the gain. Otherwise, the
behaviour is similar to the previous case. Compared to the uncontrolled case (solid line),
when the controller is activated the first resonance is no longer present in the impedance
equation. This can be physically explained considering the fact that when the feedback
gain hy in the phase-lag compensator increases, the closed loop system tends to an

equivalent system in which the inertial activator has been removed.
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Figure 3.11 (a): Transmitted force per unit control command when different
feedback gains hy, in the phase-lag compensator are used: hy =1 (solid), hy
=20 (faint), h, =100 (dashed), and hy, =100,000 (dotted). (b): Frequency
response of the impedance when h, =0 (solid), h, =20 (faint), h, =100
(dashed), and h,, =100,000(dotted).

3.5 Conclusions

An analysis of different inner feedback control strategies using an inertial actuator, based
on the measurement of the transmitted force, has been presented. Physical interpretation,
feedback stability margins and performance were considered for each case.

The main finding is that using a phase-lag compensator, the most important advantage is
the fact that it enhances the stability margin of the system at low frequency and, thanks to
its phase recovery, restores the original behaviour of the force feedback control strategy at

higher frequencies.
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Chapter 4

Inertial actuator with inner displacement feedback

4.1 Introduction

In this chapter we consider the effect of having an inner displacement feedback loop
operating between the proof-mass and the inertial actuator reference plane, instead of
the inner force feedback loop considered in the previous chapter. It is found that
damping of the actuator can be achieved by feeding back the derivative of the relative
displacement of the proof-mass. In addition, the inertial actuator’s natural frequency
can be lowered or increased by feeding back either negative or positive inner
proportional displacement feedback. Self-levelling can also be implemented by
feeding back the integral of the relative displacement, which overcomes the problem
of excess actuator displacement due to gravitational forces on the moving mass (i.e.
static sag due to low resonance frequency).

A mechanical model of an inertial actuator was derived in Chapter 2, and is shown

again in Figure 4.1 for convenience, where the effect of H(jw) should be neglected at
this stage. A proof-mass, m,, is suspended on a spring, k,, and a damper, c,, and in

parallel with them, the actuator force f, drives the mass, which is also affected by the
inertial force f; (due to gravity for example). v, and v, are, respectively, the moving

mass velocity and the base velocity.
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H(jw)

Figure 4.1 Schematic of an inertial actuator and implementation of the
inner displacement feedback control.

The equation describing the dynamics of the system in Figure 4.1 is given by equation
(2.1), where v, and v, are complex velocities. In Figure 4.1, x is the relative
displacement between the inertial actuator’s proof-mass and the inertial actuator’s
reference base so that jox=v, —v,.

The inertial actuator used for the experiments described below was a mechanically

modified version of an active tuned vibration absorber (ATVA) manufactured by

ULTRA Electronics, described by Hinchliffe er al. (2002) and analysed in detail in

Chapter 2, from which the internal springs were removed, leaving the proof-mass (1,

= (.24 Kg) attached to the case by eight thin flexible supports. This modification in

the stiffness (so that k, = 2000 N/m) changed the actuator resonance frequency from

73.8 Hz to 14.5 Hz. The measured damping ratio was used to estimate the damping

factor as ¢, = 18 N/ms™. Figure 4.2 shows the dynamic response of the relative
displacement of the proof-mass, x, per unit actuator force, f,, of this modified

ULTRA inertial actuator. Both measured data and theoretical prediction, calculated
from equation (2.1), are plotted, where the measured data was divided by BI/R,
where Bl is the magnetic force constant of the inertial actuator and R is the inertial
actuator electrical impedance, which was found to be resistive within this frequency
range. This scaling was necessary in order to ensure the same units of displacement
per unit force for both curves. In an electro-mechanical actuator the damping is given
by the sum of the mechanical and electromagnetic damping and the latter is increased
by the fact that a voltage amplifier was used to drive the actuator, which had a very

low internal impedance.
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Figure 4.2 Frequency response of the relative displacement of the proof-
mass per unit actuator force of the ULTRA inertial actuator. The solid line
shows the measured data, while the dashed line shows the theoretical
prediction.

The displacement of the proof-mass was measured using strain gauges on the
suspensions. A pair of strain gauges (RS 632-180-N11-MAS5-120-23), connected to
self-compensate for temperature changes, was installed on opposite sides of one of the
internal thin flexible supports which hold the proof-mass inside the actuator. Each
strain gauge is a Smm rectangular foil type, and consists of a pattern of resistive foil
which is mounted on a backing material. The strain gauges used in the actuator are
connected to a Wheatstone Bridge circuit with a combination of four active gauges
(full bridge). The complete Wheatstone Bridge, which was installed inside the inertial
actuator, is excited with a stabilised DC supply and with additional conditioning
electronics can be zeroed at the null point of measurement. As stress is applied to the
bonded strain gauge, a change of resistance takes place and unbalances the
Wheatstone Bridge. This results in a signal output related to the stress value, which is
proportional to the proof-mass relative displacement. As the signal value is small (a
few millivolts) the signal conditioning electronics provides amplification to increase
the signal level to =1 V, a suitable level for the active vibration isolation application.

In the following sections we will discuss how self-levelling can be implemented by

feeding back the integrated displacement, which overcomes the problem of excess
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actuator displacement due to gravitational forces on the moving mass (i.e. static sag
due to low resonance frequency). The damping of the actuator can also be modified
by feeding back the derivative of the relative displacement of the inertial actuator. In
addition, the inertial actuator’s natural frequency can be lowered or increased by
feeding back inner proportional displacement feedback with either a positive or

negative gain.

4.2 An inertial actuator with self-levelling capabilities

Self-levelling systems can be used to reduce static deflections, and systems based on
integrated displacement feedback control have been described in the literature. For
example, Horning and Schubert (1988) discuss the need for self-levelling in
automotive applications and in “rocket-propelled missiles where a substantially
constant acceleration is sustained for an appreciably long time”. The most practical
method of generating the forces required to counteract the manoeuvring loads is
probably the use of air mounts (Elliott, 2000), but the pressure control mechanism
must be fast enough to follow the changes in load.

The self-levelling system described here uses the inherent actuator force f,(¢) to

level its proof-mass. The sensing element which measures the position of the actuator
proof-mass relative to the inertial actuator reference plane was a strain gauge,
although an optical sensor was also investigated for this purpose. The strain gauge
was attached in such a way that the sensor is in its neutral position when the moving
mass is at its desired operating height. The electrical signal is integrated and amplified
by the controller, providing electric power to operate the actuation device within the
inertial actuator. The system produces a force that is proportional to the integral of the
signal from the sensor.

When a force of constant magnitude is applied to the moving mass, causing a relative
deflection of the mass on its spring element, the sensor applies an electrical signal
proportional to the mass relative displacement to the integral controller. In response,
the controller generates an electrical signal that continues to increase in magnitude as
long as the relative displacement is not zero. The signal from the controller is applied
to the inertial actuator, which generates a force in a direction that decreases the mass

deflection. The force follows the controller signal and continues to increase in
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magnitude as long as the relative deflection is not zero. At some point in time the
force will exactly equal the constant force applied on the moving mass, requiring a
relative displacement of zero. The output from the sensor is zero, therefore the output
from the controller no longer increases but is maintained at a constant magnitude
required for the actuator to generate a force exactly equal to the constant force applied
to the moving mass.

The isolation system remains in this equilibrium condition until the force applied to
the moving mass changes and causes a nonzero signal to be generated by the sensing
element, and the process starts all over again. When air mounts are used (Horning and
Schubert, 1988), a proportional scaled signal from the sensor may be used to operate
an electromechanical servo valve, the flow response of the servo valve being
proportional to its excitation signal. The servo valve fluid flow output is directed into
the chamber of an air spring to produce the desired force applied to the supported
body. The control function remains integral in nature since the internal pressure of the
actuator responds to the volume output from the servo valve, which is the integral of
its flow output. Hence, in this case, no electrical integration of the sensor signal is
needed.

The inertial actuator with inner displacement feedback control is shown schematically
in Figure 4.1. The relative displacement x is measured and fed back to the inertial
actuator through a feedback controller with frequency response H(jw), which in the

first instance is equal to g,/ jw. The control command f. can be considered, in

control terms, as the reference point (Franklin et al., 1994). If we assume that the
control force is given by the sum of a control command f. and the time integral of the
measured relative displacement between the inertial actuator proof-mass and its

reference base, multiplied by a gain g;
fo=Ffotg; [x@dr 4.1)

then a self-levelling device is implemented.
In order to examine the stability of the closed-loop system, composed of the inertial
actuator and the self-levelling controller, the open loop gain was computed. It is given

by the product of the plant response, G(jw) (measured relative displacement per unit

control force, x/f, , obtained from equation (2.1) by imposing f, =0 and v, =0, since
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it is assumed to be mounted on a rigid base), multiplied by the control law

H(jw) =L
Jw

. . 1
CUDHO) =1 )[f—;}] (4.2)

The faint line in Figure 4.3(a) shows the calculated Nyquist plot from equation (4.2),
when g; is equal to 60,000 in equation (4.1). It can be noted that the system is
conditionally stable and the Routh-Hurwitz criterion can be used to show that the

system is only stable if A<1 (Elliott, 2000), where

A=—8r (4.3)
2§aa)aka

When g; is equal to 60,000, the corresponding A is equal to 0.4, which also coincides
with the negative real part of G(jw)H (jw)when the imaginary part is zero in Figure
4.3. The low frequency measurements in Figure 4(b) cannot be considered very
reliable because of noise limitations, even though the general behaviour of the open
loop system is clear, including the behaviour due to the real integrator.

In a real system, the integrator’s control law is not described by equation (4.2), but
more realistically by an equation that includes a cut off frequency (at 1.5 Hz in this
case), a finite DC magnitude, and a phase shift at DC of 0°, rather than 90°, as in the
ideal case described by equation (4.2). A realistic expression for such control law is

given by

. 81
H (jo)y=—S8 4.4
)= 0,106 “4)
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Figure 4.3 (a): Predicted Nyquist plot of the open loop transfer function,
inertial actuator displacement per unit secondary force, when the
controller includes a realistic (solid) or ideal (faint) model of the
integrator in the controller. A was set to 0.4. (b): Corresponding measured
data.

Consequently, the ideal open-loop system response described by equation (4.2) is then

replaced by a more realistic equation given by

Gl () =7 ! cd 4.5)

—w’m, + joc, +k, )1+ j00.106)

which shows that at DC the Nyquist plot starts at i—’ on the positive real axis, and

a
then behaves as shown by the solid line in Figure 4.3(a). The experimental result
shown in Figure 4.3(b) is very close to this.

The response of the actuator to an inertial force, f;, can be computed by setting the
control command to zero. The relative displacement x per unit inertial force f; , when

an ideal self-levelling device is implemented, is then given by
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= - ! 4.6)

i —@Pm, + jwc, vk, +H (jo)

whose behaviour is plotted in Figure 4.4 for different values of the inner displacement
feedback gain g;. Without integral displacement feedback (solid line), the response of
the system to a static force is equal to 1/k,, while with ideal integral displacement
feedback it tends to zero, which shows that the servo action of the feedback controller
will compensate for any static load. In realistic implementations, as described by

equation (4.6), the static deflection is equal to 1/(k, +g,). The low frequency

behaviour is important because it determines how well the system performs in cases
like an aircraft manoeuvre or a vehicle turn. In other words, besides counter-balancing
the sagging effect due to gravity, the system must be able to centre the proof-mass and
prevent it from banging against the stop-ends during manoeuvres. For example,
without control the relative displacement of the proof-mass, due to the gravitational

force f; =m,g, where g=9.8 ms™ is the gravitational acceleration, on the spring

2

k, is given by x:£:1.2mm, while with the self-levelling control the relative

a
a

fi

=38 um. In case of a 10g manoeuvre the
ka + 81

displacement is equal to x=

relative displacement without control would be an unsatisfactory 11.8 mm, while with
control this distance would be reduced to 0.38 mm. However, at the inertial actuator
resonance frequency, enhancement of the response is experienced and this
enhancement increases with the gain g; , until the system becomes unstable. When the
actuator stiffness, k, , decreases, the critical value of the gain g; decreases as well and
therefore in order to have the same stability margin, lower gains are needed.

Figure 4.5 shows the experimental proof-mass relative displacement x per unit control

command f, , which is given by

SR _ | —, (4.7)
f. —w'm, + joc,+k,+H (jw)

which has the same form as equation (4.6) whose theoretical relative displacement per

unit force is shown in Figure 4.5. In both theory and experiment the increase in
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magnitude at the resonance can be noted, which is a sign that the system is getting

closer to instability, along with an additional phase shift at low frequency.
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Figure 4.4 Predicted inertial response of the system when different ideal

inner self-levelling feedback loop gains g, are used: g = 0 (solid,

corresponding to A = 0, i.e. no control), g; = 60,000 (faint, A = 0.4), and g,

= 105,000 (dashed, A = 0.7).
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Figure 4.5 Measured relative displacement of the proof-mass per unit
command force for the passive system (control off, solid) and for two
values of the integral feedback gain: A = 0.4 (faint), and A = 0.7 (dashed).
The theoretical prediction for this response is the same as that shown in
Figure 4.4.
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4.3 Inertial actuator with PID control

4.3.1 Proportional feedback

In the previous section we saw that with a displacement sensor integral control gave a
self-levelling action. In this section we discuss the physical effect of proportional and
derivative control in a general PID controller.

If the inertial actuator resonance frequency is too high for the specific application, it
can be lowered using a negative direct position feedback control loop, H,(jw) = gp,
where g, 1s negative. In order to determine whether the closed-loop system in Figure

4.1 is stable with such a controller, the open loop gain was computed. It is given by

the product of the plant response, G(jw), defined before, multiplied by H, (jw)

G(jo)H,(jw) = (gp) - (4.8)

2 ]
-w'm, + joc, +k,

The maximum feedback gain g, before instability is equal to the value of the stiffness
termk,. Figure 4.6 shows the corresponding theoretical and experimental Nyquist
plot for a value of the gaing, that is equal to -k,/2, which guarantees a 6 dB

stability margin. Lowering the resonance frequency also implies that smaller values of
the gain g; are needed for self-levelling purposes.
Figure 4.7 shows the theoretical and measured proof-mass displacement x per unit

control command f, described in equation (4.7) when the inner feedback controller,

H,(jw), comprises the proportional term, gp, only and this is either positive or

negative. If the position feedback gain was positive, the natural frequency is
increased, with no danger of instability. When negative position feedback gains are
implemented, the actuator resonance frequency can be lowered, but stability issues

emerge if the total system stiffness tends to zero.
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Figure 4.6 (a): Predicted Nyquist plot of the open loop transfer function,
inertial actuator relative displacement per unit secondary force, when the
controller is a proportional device based on a negative position feedback
gain. For w = 0 the system guarantees a 6 dB stability margin when gp = -
1000. (b): Corresponding measured data.
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Figure 4.7 (a): Predicted relative displacement of the inertial actuator’s
proof-mass per unit command force for the passive system (control off,
solid) and for three values of the proportional feedback gain: gp = +3100
(faint), gp = -900 (dashed), and gp = -1400 (dotted). (b): Corresponding
measured data.
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4.3.2 Derivative feedback

The stability analysis of the closed-loop system when an ideal derivative controller,
H;(jw)= jwgy , is used within the inner loop, is obtained by studying the open loop

transfer function

1

a— (jogy ) (4.9)
—w'm, + joc, +k,

G(jw)H;3(jw) =

which is composed of the product of the plant response, G(j@), times the controller’s

response. In a real implementation, the frequency response of the circuit used to
generate the derivative term has a cut-off frequency, after which the input signal is
just multiplied by a constant gain (Ananthaganeshan et al., 2001). As long as this cut-

off frequency lies above the maximum frequency of interest, then H;(jw) can be

considered as a good approximation to this part of the feedback controller when
modelling realistic systems. Figure 4.8 shows the predicted Nyquist plot of the open
loop system, described by equation (4.9), and the corresponding measured data.
Theory and experiment agree well, and they both lie in the positive real half plane,
indicating that by increasing the controller gain gy, damping is added to the dynamics
of the inertial actuator. At frequencies higher than the plotted range of interest, the
experimental curve enters the third quadrant. This mainly happens because the circuit
used to generate the derivative term is, in reality, a high pass filter (Ananthaganeshan
et al., 2001), so that its magnitude becomes constant after a certain frequency and its
phase tend to zero. This indicates that in a real implementation the stability margin of
the closed-loop system is reduced and the amount of damping that can be added to the
system is large, but finite. An additional limitation is that the noise that is present in
the measured signal is amplified by the derivative controller. Figure 4.9 shows the
frequency response of the uncontrolled inertial actuator and the controlled system
when an inner derivative feedback loop is implemented. A value of the feedback gain
gy was chosen so that is equal to the uncontrolled ¢, so that the overall value of the
damping constant is doubled. The uncontrolled case is already damped appropriately,
but since the self-levelling integral feedback loop tends to increase the magnitude of
the resonance, an additional damping term will be required when the whole PID

controller is implemented, as discussed below. The experimental measurements and
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theoretical predictions again agree well, indicating that using an inner derivative

feedback controller it is possible to add damping and therefore change the dynamic

behaviour of an inertial actuator.
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Figure 4.8 (a): Predicted Nyquist plot of the open loop transfer function,
inertial actuator displacement per unit secondary force, when the
controller is the derivative of the relative displacement (gy = 18). (b):
Corresponding measured data.
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Figure 4.9 (a): Predicted relative displacement of the proof-mass per unit
command force for the passive system (control off, solid) and for one
values of the derivative feedback gain: gy = 18 (faint). (b): Corresponding
measured data.
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4.3.3 Combined PID feedback
If the integral displacement term, the proportional term and the derivative of the
displacement are added in parallel within the inner feedback controller, the control

law in Figure 4.1 becomes of the form

H(jw)=H,(jo)+H,(jo)+ H;(jw) (4.10)

which describes a typical ideal PID controller. An image of the real PID controller
which was used during the experiments is shown in Figure 4.10 and its schematic is

given in Appendix B.

Figure 4.10 Iimage of the PID controller and summing box used within
the inner feedback loop. "Control” indicates the control signal input,
“Strain” indicates the strain gauge signal input and “Laser” indicates
the displacement laser sensor input, which was used to validate the strain
gauge measurements.

In order to determine whether the closed-loop system in Figure 4.1 is stable with such

a controller, the open loop gain was computed. It is given by the product of the plant

response, G(jw), multiplied by H(jw)
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G(jw)H (jw) = + jagy) @.11)

—w’m, + jowc, +k, | 1+ jw0.106

Figure 4.11 shows the corresponding theoretical and experimental Nyquist plot for a

value of the gain g, thatis equal to -k, /2, a value of g, which guarantees A =0.4,
and a value of gy = 18. The closed loop system is conditionally stable, and the
stability depends on the combined choice of the proportional gain and the self-

. . + . .
levelling gain. The curve starts off at gpk—gl and then intersects the real axis in its

a

negative portion before reaching the origin. Figure 4.12 shows the theoretical and
measured proof-mass relative displacement x per unit control command f, for the
uncontrolled inertial actuator and for the modified inertial actuator, when the inner
feedback controller, H (jw), has the same value of the gains as above. In this case the

inertial actuator natural frequency was lowered to about 10 Hz and this configuration

was used in the active vibration isolation problem discussed in the next section.
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Figure 4.11 (a): Predicted Nyquist plot of the open loop transfer function,
inertial actuator relative displacement per unit secondary force, when the
controller is a PID with proportionality gain gp = -1000, self-levelling
coefficient A = 0.4, and derivative gain gy = 18. (b): Corresponding
measured data.
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Figure 4.12 (a): Predicted relative displacement of the proof-mass per unit
command force for the passive system (control off, solid) and with the inner
PID feedback controller on (faint), with gp = -1000, A = 0.4, and gv = 18.
(b): Corresponding measured data.

In summary, if it is necessary to reduce the resonance frequency of the actuator,
because it is greater or equal to the first structural mode of the system that needs to be
isolated, this can be done with a negative position feedback gain. If this action induces
unwanted deflections because of the low stiffness of the closed-loop system, then a
self-levelling mechanism can be employed, which is based on a integral displacement
feedback. By doing so, however, the overall system gets closer to instability and
additional damping is needed. Another reason why damping may be necessary is if an
outer velocity feedback is to be implemented. It was shown by Elliott et al. (2001a)
that this kind of system is conditionally stable and the vicinity to the Nyquist point
depends on how well damped the inertial actuator is. For these reasons the
implementation of an inner rate feedback control turns out to be very effective in
increasing the damping of the actuator.

From Figure 4.1, the equation that describes the complete modified inertial actuator
once the inner PID feedback control, described by equation (4.10), is implemented,

can be calculated. It is given by

_a)znla (ja)’ﬂaka _a)znlaca)'(H(ja))+ja)Za) (4 12)
c Ve )
_a)-’-ma + joc, +k, + H(jo) ta)zma + joc, +k, + H(ja)))ja)Za

fi=
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k, . L :
where Z, =c, +—— is the mechanical impedance of the actuator suspension.
Jw

Equation (4.12) can be grouped as
fo=Tfe=Zyv, (4.13)

where T, and Z a are the blocked response and mechanical impedance of the actuator,

as modified by the inner displacement feedback. Figure 4.13 shows the predicted and
measured blocked response of the uncontrolled inertial actuator and the modified
inertial actuator. At frequencies higher than the actuator resonance, the transmitted

force f, tends to the control command f,. This means that the blocked response

shows that the transmitted force f, can be regulated using the control command f,.

Figure 4.14 shows the calculated and measured mechanical impedance of the actuator
before and after control. When gy increases, the mechanical impedance increases at
high frequencies. The magnitude plot in Figure 4.14 shows that, starting from the
solid line which tends, at high frequency, to ¢, = 18 N/ms™, the damping of the device
increases to ¢, + gy = 36 N/ms". The phase plot in Figure 4.14 shows that above
resonance, the mechanical impedance is damping dominated and the system shows a

skyhook damping behaviour.
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Figure 4.13 (a): Predicted blocked response of the inertial actuator (solid)
and the modified inertial actuator when gp = -1000, A = 0.4 and gy = 18
(faint). (b): Corresponding measured data.
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Figure 4.14 (a): Predicted mechanical impedance of the inertial actuator
(solid) and the modified inertial actuator when gp = -1000, A = 0.4 and gy
= 18 (faint). (b): Corresponding measured data.

4.5 Conclusions

Actuators with very low resonance frequencies have large displacements due to
gravity. To solve this problem, a new device has been proposed. It is based on an
inertial actuator with very low stiffness and an inner PID feedback loop which uses
the measurement of the relative displacement between the actuator base and the
actuator moving mass. The control law is the sum of an integral term, which provides
self-levelling and solves the sagging problem, a derivative term, which provides the
device with sufficient initial damping to guarantee a very good stability margin, and a
positive or negative proportional term, which determines the actuator resonance

frequency.
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Chapter 5

Active isolation theory with equipment velocity feedback

5.1 Introduction

Isolators are generally required to protect a piece of delicate equipment in a severe
vibration environment. Often, very little can be done to reduce the base vibration since it
is either of high impedance or characterized by complex dynamics. The isolation of any
vibration-sensitive equipment from base vibration is therefore usually performed on the
transmission paths (mounts). The fundamental benefit provided by any mount is reduced
structural vibration. However, with such passive mounts there is a trade-off between low
and high frequency isolation performances depending on the damping of the mount. In
fact, a major challenge is to make the mount as stiff as possible, statically, to better
support the equipment, and dynamically as soft as possible, to better isolate it. This is
difficult to accomplish with passive elastometric mounts, as described by Crede and
Ruzicka (1996) and Ungar (1992).

To provide a more favourable static and dynamic stiffness compromise, active isolation
solutions must be used, which are usually based on mounts and actuators.

Applications with actuators and passive mounts in an active isolator package provide
many benefits including simplicity, effective vibration isolation, noise attenuation, higher
static stiffness, dynamic adaptability, and safety. This suggests that there is ample

motivation for the use of active mounting systems.
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This chapter deals with the stability analysis of a single degree of freedom system,
composed of a piece of equipment, which is mounted on a base through a mount. Active
control is performed through an inertial actuator. The aim of this chapter is to introduce
the vibration isolation problem, provide its general model formulation and describe a
popular control strategy based on the measurement of the equipment velocity. This simple
control strategy is compared with an optimal LQG approach in Appendix A. Some

practical issues that the designer has to cope with to build a real system are also discussed.

5.2 Complete model formulation

We assume the system to be composed of a vibrating base at the bottom, a piece of
equipment mounted on top of the vibrating base through a passive mount, and an inertial
actuator installed on the equipment. Figure 5.1 shows the mechanical model and the sign
convention. Each velocity or force is assumed to be positive in the direction indicated by
the corresponding vector. The equations that describe the system in Figure 5.1 can be

written as

"= tud; 5.1)
nTh (5.2)
fit =0 (5.3)
{;j ) [Z; 22 sz} * [—ll}fa (5.4)
BTV 5.5)
f3+fi+fs=0 (5.6)
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vy=Yuf, 5.7

ARCE: I
fs Zyn Zyp |vs

Ve = Vg (5.9)
fe+f=0 (5.10)
v, =Y, (fr + ), (5.11)

where the mobilities and impedances are defined as

1
N, =-
jwm,
1
Yy =—
Jwm,

Y., = plate — mobility (Gardonio and Elliott, 1998)

a _ ~»a _ a _ a __
Zy=Zy=-2Zp=-2Zy=c,+

jw

k

m _ >m _ m _ m __ m
Zh=Zyp=-2jy=—Zy =c, +—.
jw

Equations (5.1), (5.7) and (5.11) can be grouped as

Y1 v, 0 0 0
Yoo O [NSapt| O |f, (5.12)

0
0 0 Yyllfs Y7
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and rewritten as

v=Yf+Y,f,. (5.13)
A
Mg
Vi l fi
m, = inertial actuator dynamic mass
"2 l % > Inertial ¢, = inertial actuator damping factor
J_ Actuator  k, = inertial actuator spring stiffness
J o1 Ko = secondary f 1
Jfa = secondary force (control)
ny b )
m, Rigid  m,= equipment, modelled as a rigid mass
Equipment
V4 l Ja
Vs fs N\
Crm L_‘:IL_I K Passive Cm= passive mount damping factor
ﬁ Mount %, = passive mount spring stiffness
ve | Js
J/
"y Vibrating ;= mass of the vibrating base
l 7 Base
V7 7
fo l f, = primary excitation

Figure 5.1 Mechanical model of the vibration isolation system and sign
convention.

Considering equations (5.3), (5.6), (5.10), and (5.2), (5.5), (5.9), then equations (5.3),
(5.4), (5.6), (5.8) and (5.10) can be grouped as
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h Zlal Zla2 0 |In 1

fa 0 Z Zy ||v 0
and rewritten as
f=-Zv+Z,f,. (5.15)

In summary, equations (5.13) and (5.15) represent a condensed form of the model of the

system. Substituting equation (5.15) into (5.13)
v=[I+YZ]'YZ,f, +[1+YZ]'Y, f, (5.16)
and substituting equation (5.13) into (5.15)

t=[1+2ZY]"'Z,f, -[1+ZY]"'ZY,f,. (5.17)

From equations (5.16) and (5.17) it is possible to compute all the velocities and forces of
interest within the system. Expanding equation (5.16), the analytical expressions for v;, v4

and v; can be obtained:

l (1 + Y4421"1' + Y77Z;Z)),11 l )IIIZIHZY44Z{;Y77
:B ~(1+Y,Z2,)Y,, £, +5 -(I+Y,Z)Y,,Z],Y, fp (5.18)
Y77Z;11Y44 (1 + ),llzlal + )’1121"1)’4421”1' + Y44ZIH; + Y44Z;2)Y77
where

D=1+ Yllzlal + YllZl(llY4r4zlnll + YIIZIHIYWZ;"Z + Y44 (ZI"II + Z;Z) + Y44Z;2Y77Z;"2 + Y77Z;2 (519)
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Similarly, expanding equation (5.17), the analytical expressions for f;, fy and f; can be

obtained. It is given by

f1 1 1'i”Y77Z;"2 1 Y1121a2Y4421”2'Y77
fe =5 UYL Z5) (fot=| A+ NZ0YZ0Y,  |f,. (5.20)
f7 Y44Z1'; Y77Z;"2(1+Y1121al +Y44Z;2>

Equations (5.18) and (5.20) lead to identical expressions as those that will be used in this

thesis.

5.3 Equipment velocity feedback control

In this section, a simplified system is considered and a matrix model has been used which
assumes that the system is divided into four elements: rigid base, passive mount,
equipment, and inertial actuator. The dynamics of each of these elements modelled as
lumped systems is evaluated using point mobility terms. Figure 5.2 shows the system and

the numerical values assumed for the simulations. With these values the actuator has a

k
natural frequency of about % £ =10.4 Hz and a damping ratio of about {=4.5%, and
7w\ m,

/ k
the equipment mount has a natural frequency of about 2L — = 21.5 Hz (but the
7\ m,

presence of the vibration neutraliser pushes that frequency to higher values) and a
damping ratio of about {=5.2%.

The equation that describes the influence of the primary excitation, f,, and the base

velocity, v,, on the equipment velocity, v,, can be shown to be

YeZm
v
Y,+Y,Z,

YT
e d fa+

v, = b > (5.21)
1+2,Y,+Y,2, "% 1+2

m
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where

1
Y, = —— = Mobility of the rigid equipment (5.22)
jom,

k
Z, =c, +—— =Impedance of the passive mount. (5.23)
jo

T, is the blocked response of the actuator described by equation (2.5) and Z, is its

a

mechanical impedance (equation (2.6)).

m, = Inertial actuator dynamic mass = 0.91 Kg
¢, = Inertial actuator damping factor = 5.8 Ns/m

my
Tnertial ; ke = Inert.ial actuator spring stiffness = 3900 N/m
Actuator 41 == k, ) m,= Equipment mass = 1.08 Kg

¢, = Passive mount damping factor = 18 Ns/m
k,,= Passive mount spring stiffness = 20000 N/m

Rigid .
Equipment Equipment, m, fa = Control force (secondary force)
v v, = Inertial actuator velocity
Passive ’ Cm | ——| Kin v, = Equipment velocity
Mount v, = Base velocity

l NN N N NN NNNN
Vb

Figure 5.2 Schematic of a vibration isolation system with an inertial actuator.

Equation (5.21) can be rewritten as

v, =G(jw) f, +G,(jw)v, (5.24)

The first term, G(jw), can be regarded as the system plant, while the second term,

G,(jw), is the disturbance transfer function. Figure 5.3 shows a schematic of the
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vibration isolation system with an inertial actuator with velocity feedback control, where

the feedback path is described by

f.,=—H(jw)v,. (5.25)

-

va l__L_I Ca ka
Jfa

H(jw)

Equipment, m,
l I

v, v,
¢ Cm L=/ ] % km ¢

l N N NN N NN

Vp

Figure 5.3 Schematic of an active vibration isolation system with an inertial
actuator and feedback control.

Considering the feedback controller to be a real positive constant, H(jw) = h,, then direct

equipment velocity feedback is implemented and the corresponding Bode plot of the open

loop system, G(jw)H (jw), is shown in Figure 5.4(a). The first peak, at about 9 Hz, is an
actuator-dominated resonance in which m_, and m, are moving almost out of phase and
the second peak at about 24 Hz is an equipment-dominated resonance in which m_ hardly

moves at all. The additional phase shift at low frequency due to the actuator resonance can
destabilize the feedback system (Preumont et al., 1993). This is better shown in the
Nyquist plot in Figure 5.4(b), where a portion of the curve at low frequency lies on the
negative side of the x-axis. In particular, the real part of the actuator complex conjugate

K,

a

poles become positive when h, = = 29 leading the system to the unstable region

a
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(Elliott et al., 2001). The transmissibility of the system, defined as the ratio between

equipment velocity and base velocity, is given by

Y.Z
Le o em . (5.26)
v, 1+Z Y +Y.Z, +Y.T.H(jw)

m

When H(jw)=h, is set to zero, equation (5.26) provides the transmissibility of the

system without control (passive system). In Figure 5.5, when the gain is set to 29, the
maximum attenuation at the equipment resonance is about 8 dB, while the average
attenuation within the 15-30 Hz frequency range, is about 3 dB. On the other hand, the
effect of velocity feedback on the inertial actuator leads the system to a potential
instability, therefore the implementation of direct velocity feedback control represents a
trade-off between performance and stability. Strictly speaking, the implementation of
direct velocity feedback described in this section is not a skyhook damping
implementation, but above the actuator resonance, it can be considered so.

Velocity feedback control and skyhook damping implementations have been extensively
analysed in the literature (Miu, 1991 and 1993, Howard and Hansen, 1997 and 2000, and
Clark et al., 1998), even using inertial actuators (Serrand et al., 2000). The purpose of the
following sections and the next chapters is to investigate the limitations of direct velocity
feedback control and overcome them using the devices described in Chapter 3 and Chapter

4.
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Figure 5.4 (a): Bode plot of the open loop response for the vibration isolation
system with direct velocity feedback (h, = 1) attached to a rigid base, and (b)

corresponding Nyquist plot.
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Figure 5.5 Transmissibility of a vibration isolation system with an inertial
actuator and velocity feedback control. Different velocity feedback gains are
used: h, = 0 (solid, no control), h, = 15 (faint), h, = 29 (dashed).
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5.4 Integrated equipment velocity feedback contol

v

In Figure (5.3), if the controller is given by an integrator of the form H(jw) = , where

h; is a real positive constant, the feedback stability of the closed loop system is then

dramatically improved (Figure 5.6), and in particular this is illustrated by the Nyquist plot
in Figure 5.6(b). Since part of the Nyquist curve lies within the unit circle centred at (-1,
0), then enhancement is expected at low and high frequency. The transmissibility is
illustrated in Figure 5.7. Although high gains might be required, the integrated velocity
feedback control provides a very good attenuation within a considerable frequency range,
which also includes the equipment-dominated resonance. In particular, for 4;,=10,000, the

average attenuation within the frequency range 8 Hz to 28 Hz is over 5 dB.

(b)

. \ . . 1 1 1 . )
o 5 10 15 20 25 30 35 40 45 50
Fraquency (Hz)

ary

Imagin

=T

) ) . . . . . .
Q 5 1o 15 20 25 30 35 40 45 50
Fraquency (Hz)

Figure 5.6 (a): Bode plot of the open loop response for the vibration isolation
system with integrated velocity feedback (hi, = 1) attached to a rigid base, and
(b) corresponding Nyquist plot.
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Figure 5.7 Transmissibility of a vibration isolation system with an inertial
actuator and integrated velocity feedback control. Different integrator gains
are used: h;,, = 0 (solid, no control), h;, = 5000 (faint), and h;, = 10,000
(dashed).

Expanding the transmissibility equation for this kind of controller, it can be noted that the
effect of 4; on the actuator resonance is to influence %, , leading the overall system to a
lower first resonance frequency. Past the actuator resonance frequency, A;, acts on ky,
indicating that absolute equipment position feedback is implemented, and this is why the
equipment dominated resonance increases. When #;, tends to infinity, no effect of the
actuator 1s experienced and perfect isolation is expected, since the transmissibility goes to
zero. This indicates that, past the first resonance, skyhook stiffness is implemented and

when the gain tends to infinity, the equipment tends to a pinned system.
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5.5 The use of other feedback controllers

When a low pass filter, given by

h
H(jw)=—2 (5.27)
1+ jwr

is used as a controller in equation (5.25), the stability and performance of the closed loop
system depend on the choice of the cut-off frequency l When the chosen cut-off
T

frequency is greater than the equipment-dominated resonance frequency, then the closed
loop system behaves in a similar way to the direct velocity feedback case, where the

feedback gain h, =h,. When the cut-off frequency lies before the actuator’s natural

frequency, then the closed loop system behaves like in the integrated velocity control case.
For intermediate values of the cut-off frequency, the system turns out to be conditionally
stable and shows an intermediate behaviour between the previous two cases, but is no
better than either.

When a high pass filter is used in equation (5.23), described by

jot

H(ja)):hhpm y

(5.28)

the stability and performance of the closed loop system again depend on the choice of the
cut-off frequency l By studying the stability behaviour and performance of the closed
T

loop system when varying the cut-off frequency, a good compromise was found when the
cut-off frequency was chosen to lie between the actuator’s natural frequency and the

equipment dominated resonance frequency. Figure 5.8(a) shows the Bode plot of the open

loop system when 7 = L 0’ and Figure 5.8(b) shows the corresponding Nyquist plot

when a 6 dB stability margin is guaranteed by applying a gain of h,, =50. The closed
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loop system is conditionally stable, although the stability was improved, compared to the
direct velocity feedback control case, by means of a derivative element which acts at
frequencies below the actuator’s natural frequency. Figure 5.9 shows the transmissibility
of the system for the same value of feedback gain. Above about 22 Hz, the vibration is
attenuated and the maximum attenuation is about 8 dB, while at frequencies between 10
Hz and 22 Hz, a slight enhancement, of about 2 dB, in the response is shown. When the
cut-off frequency is chosen to be smaller than 20 Hz, the stability of the closed loop
system is more critical, and lower gains must be used. Consequently, smaller attenuations
are observed above a certain frequency, and smaller enhancement is predicted between the
actuator’s natural frequency and the equipment frequency. When the cut-off frequency is
greater than the equipment dominated resonance frequency, greater gains can be used and
greater attenuations can be obtained at higher frequencies. However, greater
enhancements, of the order of 8 dB, are predicted between the first two frequencies. For
this reason a cut-off frequency of 20 Hz was considered to be a good trade-off and this
achieves a performance that is significantly better than velocity feedback alone, as shown
in Figure 5.5.

Finally, when a notch filter, given by

1-w’t?
H(jw)=nh 5.29
(o) =h, 1+ jwdt — w°c? (529

is used as a controller in equation (5.25), the stability and performance of the closed loop

1
system will depend on the choice of the notch frequency —.
T
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Figure 5.8 (a): Bode plot of the open loop response for the vibration isolation
system with a high pass filter (h,, = 50) attached to a rigid base, and (b)
corresponding Nyquist plot.
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Figure 5.9 Transmissibility of a vibration isolation system with an inertial
actuator and a high pass filter. Different feedback gains are used: hy, = 0
(solid, no control) and hy, = 50 (faint).
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When the notch frequency is equal to the actuator’s natural frequency at 10.4 Hz, good

performance is obtained. Figure 5.10(a) shows the Bode plot of the open loop system

when 7=

104’ and Figure 5.10(b) shows the corresponding Nyquist plot when a 6 dB
V4

stability margin is guaranteed by applying a gain of A, =700. The Nyquist plot shows

that at low frequency the curve is quite close to the critical point (-1,0), therefore any
phase lags at low frequency may reduce the stability margin quite substantially, as will be
explained in the next section. Figure 5.11 shows the transmissibility of the system before
and after control, given the above values of notch frequency and feedback gain. Although
some enhancement is predicted at low frequency, the attenuation at higher frequencies is
quite remarkable, showing that notching out the actuator’s natural frequency is in principle
a good control strategy for vibration isolation.

Unfortunately, if the notch frequency is set to be close, but different from the actuator’s

natural frequency, then the gain 4, must be reduced considerably in order to guarantee a 6

dB stability margin. Consequently, the attenuation of the equipment-dominated resonance
is reduced as well. This is a clear limitation of this strategy and the design of the notch

filter would require detailed knowledge of the response of the mounted actuator.
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Fraquency (Hz) Rosl

Figure 5.10 (a): Bode plot of the open loop response for the vibration
isolation system with a notch filter (h, = 700) attached to a rigid base, and (b)
corresponding Nyquist plot.
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Figure 5.11 Transmissibility of a vibration isolation system with an inertial
actuator and a notch filter. Different feedback gains are used: h, = 0 (solid,
no control) and h, = 700 (faint).

5.6 Realistic closed-loop model formulation

5.6.1 Effect on integrated equipment velocity feedback

The closed loop system, when integrated velocity feedback control is implemented, is
unconditionally stable for any feedback gain ;. This is true only for ideal integrators. In
fact, when the pole of the integrator is not exactly zero, the derivative of the Nyquist plot
about @ = 0 is not zero, but it is positive. Therefore, from @ = 0, the Nyquist plot initially
starts in the third quadrant. This means that the curve encircles the point (-1,0) for A;
greater than a certain critical value (Figure 5.14). In other words, using real integrators,
the system becomes conditionally stable. Also, high frequency causes of instability may
affect the overall system. An analysis of the complete system with integrated velocity
feedback shows how sensitive the closed loop system is with respect to some of the most

common causes of high and low frequency instability.
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In real systems many other components are present in the control loop (Ren, et al., 1997
and Ananthaganeshan et al., 2001). Figure 5.12 illustrates a more realistic block diagram
for a practical active isolation system based on integrated equipment velocity control.
Accelerometers are very common vibration transducers, and their output is often amplified
by a charge amplifier, which behaves like a high-pass filter. If velocity is needed, the
measured signal must be integrated. Ideal integrators do not exist, therefore their dynamics
must be taken into account in the overall stability analysis. In the control segment of the
loop, after the controller, a power amplifier is usually employed to amplify the signal and
make it appropriate for the actuator. Also, a delay is usually present, mostly due to

transmission lags of the electric signal.

d(jw) Primary
l disturbance

Gujw)
Charge
Plant Amplifier Integrator
. +¥_accel
u(jw) - _ - _ o
Gljw) A CA(jw) [ Int(je) > Yjw)
Secondary
actuator
signal Delay Power Amplifier Controller Response
e[ PAGjo)  [* -Hjw)

Figure 5.12 Block diagram of a realistic feedback control system including
the plant, the controller, and the electronic components.

The following equations illustrate the dynamics of the components in Figure 5.12. The
numerical values have been chosen according to off-the-shelf commercial components
currently used in the laboratory. In particular, the charge amplifier cut-off frequency is 1

Hz. In this case, the plant is different from equation (5.24) because in this case its output is
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acceleration, not velocity. The controller is composed of a second order high-pass filter

and an integrator.

. jwY T
G(jw) = ela 5.30
(@) 1+2,Y,+Y,Z, ( )
2
. — ©°0.1326 h,
H(jw)= : > (5.31)
(1+ jw0.1326)* 1+ jw0.0909
CA(jw) = 22019 (5.32)
1+ jw0.159
Int(jw) = S — (5.33)
I Y jwo.251 '
PA(jw) = 1201326 (5.34)
1+ jw0.1326

A description of the effects of the main causes of instability in the vibration isolation
problem using inertial actuators with inner and outer feedback control loops is given in
Benassi et al. (2002a). The open loop frequency response function of the system shown in

Figure 5.12 can be written as

G (jo)H,(jw) = G(jw)CA(jo)Int(jw)H (jw)PA(jw)e ™" (5.35)

where the ¢ ’“" term represents a delay, as show in Figure 5.12, while the closed loop

frequency response function is given by

y, =—daU® (5.36)
1+ G(jw)H, (jw)
where
WY Z
P ol (5.37)

T 1+Z,Y,+Y,Z,
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In particular, the overall frequency response of all the electronic components, given by

H,(jw) = CA(jw)Int(jw)H (jw)PA(jw)e T, (5.38)

is plotted in Figure 5.13. Given the realistic system in Figure 5.12 and also assuming a
time delay 7=0.001 seconds, the maximum gain #;, that guarantees the system to be stable
is about 6500 (it would be about 6000 if the base were flexible). This is illustrated in
Figure 5.14. For this value of the feedback gain, the maximum attenuation in the closed
loop response (Figure 5.15) is computed to be 6 dB, while the average attenuation
between the two main resonance frequencies is 3 dB. At the critical point (-1,0), the

frequency value that the Nyquist plot assumes is 9.4 Hz.
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Figure 5.13 Bode plot of the overall frequency response of all the electronic
components.
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Figure 5.14 Nyquist plot of the open loop response for a realistic vibration
isolation system with integrated velocity feedback (h; = 1) attached to a rigid
base. The delay is assumed to be 0.001 seconds.
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Figure 5.15 Transmissibility of the ideal system without control (solid) and
the realistic (faint) vibration isolation system with an inertial actuator and
integrated velocity feedback comtrol. Realistic electronic components are
simulated, the delay is assumed to be 0.001 seconds, and the feedback gain is
set to 6500.
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5.6.2 Effect on inner force feedback

In real systems based on inner force feedback control, unlike the integrated control
solution, the force gauge measurement does not need to be integrated, but it still needs a
charge amplifier. A typical Nyquist plot for such a system is shown in Figure 5.16, where,
unlike the theoretical model in Figure 3.5, the closed-loop system turns out to be
conditionally stable. The first loop describes the inertial actuator resonance, the second is
associated to the equipment dynamics and the loop about the origin is due to the time
delay present in the system, which affects its behaviour especially at high frequency by
adding a term to the phase which is dependent on frequency (@T).

In summary, although inner force feedback control is, in principle, a very effective control
strategy, in real systems it raises robustness issues, which greatly limit its performance.

An analysis of the system with inner integrated force feedback shows that in this case the
phase margin is big enough to still allow large gains before instability in spite of the

additional phase shifts due to instrumentation.

Imaginary
i

0.5

1 1 | 1 1 L
-2 -1.5 -1 -05 0 0.5 1 1.5
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Figure 5.16 Nyquist plot of the open loop response for a realistic vibration
isolation system with direct force feedback (hs = 1) attached to a rigid base.
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5.7 Equipment isolation when the inertial actuator resonance frequency

is greater than the structural frequency of interest

When the inertial actuator resonance frequency is greater than the equipment resonance
frequency of interest, the overall system turns out to be more difficult to control, therefore,
when possible, an actuator resonance frequency below the structural frequency is
recommended (Zimmerman er al., 1990, Preumont er al., 1993, Elliott et al., 2001a,
Benassi et al., 2002a).

Placing the cut-off frequency of the inertial actuator above the highest frequency of
interest is not a feasible method of reducing the effects of the actuator dynamics on control
design. In fact, the magnitude of the actuator force output rises at 40 dB/decade below the
resonance frequency and the output force level would be severely limited at low
frequencies, typically where the highest level of control force are required. Also, if the
structure is very flexible, the model approaches a partial differential equation model with
an infinite number of frequencies. Hence, by placing the cut-off frequency of the inertial
actuator between two structural frequencies, potential unstable closed loops can be created
due to the effect of the residual uncontrolled modes (Balas, 1978, and Goh and Caughey,
1985).

In this section the actuator mass was changed to 0.5 kg, its stiffness was changed to
60,000 N/m, and its damping to 10 N/ms™'. This choice leads to an equipment resonance
frequency of about 21 Hz and an inertial actuator resonance frequency of about 55 Hz.
When direct equipment velocity feedback is used to control the equipment velocity, an
additional phase shift due to the structure compromises the feedback stability. The Nyquist
plot (Figure 5.17) shows a portion of the curve at low frequency that lies in the negative
real plane. In contrast to the corresponding case described in Section 5.2, this loop is the
equipment-dominated resonance.

When the feedback gain is set to 240, the stability limit is reached. In this configuration
the closed loop behaviour shows good attenuation (15 dB maximum, 7 dB average) within
45 and 65 Hz, but also amplification between 19 and 23 Hz. This phenomenon, which can

be up to 20 dB, is exactly the opposite of what we aimed. In other words, the inertial
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actuator is not able to be effective at frequencies below its own resonance frequency,

where it turns out to be counterproductive.
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Figure 5.17 Nyquist plot of the open loop response for the vibration isolation
system with direct velocity feedback (h, = 1) attached to a rigid base. In this
case, the actuator’s natural frequency is greater than the equipment-
dominated resonance frequency.

When integrated velocity feedback is applied, the Nyquist plot is rotated by 90°, as
described in Section 5.3. Poor performance and poor robustness are also seen for real

systems with this strategy.

5.8 Conclusions

A review of strategies for active vibration isolation using an inertial actuator with outer
velocity feedback control was presented. A matrix model has been used which assumes
that the system is divided into four elements: base, passive mounts, equipment, and

inertial actuator. Feedback stability limits and performance were considered. In particular,
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once the theoretical analysis was completed, a realistic case using real commercial
components was analysed.

The performance of active isolation systems with inertial actuators and direct equipment
velocity feedback is known to be limited by the actuator resonance. The effect of various
simple compensator circuits in the feedback loop were investigated, and it was found that
a simple high-pass filter significantly improved the trade-off between high frequency
attenuation and low frequency enhancement.

Integrated equipment velocity feedback control is unconditionally stable for an ideal
system, while it is only conditionally stable for real systems.

Throughout this study it has been assumed that the actuator resonance frequency was
below the equipment natural frequency. If the inertial actuator resonance frequency is
greater than the equipment natural frequency, it is shown that the overall system is more
difficult to control and the control strategies here presented do not show good results.
Another way of overcoming the performance problems associated with the actuator
resonance would be to lower it by means of an inner force feedback control loop or
implementing an inner displacement feedback. In the first case, an apparent mass is added
to the inertial actuator moving mass, while in the second case stiffness is removed from

the inertial actuator, as discussed in the following chapters.
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Chapter 6

Active vibration isolation theory with an inertial actuator
controlled with inner force feedback

6.1 Introduction

This chapter deals with the stability and performance analysis of a single degree of
freedom system for active vibration isolation using the control strategies described in
Chapter 3. This is based on inner actuator force feedback to improve the response of the
actuator and outer equipment velocity feedback to minimize the equipment vibration.

A matrix model has been used which assumes that the system is divided into four
elements: the vibrating plate, a passive mount, the equipment, and the inertial actuator. In
contrast to the analysis in Chapter 5, the base structure is not assumed to be perfectly
rigid. The dynamics of each of these elements are evaluated using mobility or impedance
functions. Figure 6.1 shows the typical system that has been used in this study and the
numerical values assumed for the simulations. With these values the actuator has a
resonance frequency at 11 Hz and a damping ratio of about {=4.5%, the equipment
mounting system has a resonance frequency at 24 Hz and a damping ratio of about
¢=5.2%, and the vibrating base has a first resonance frequency of about 46 Hz and a

damping ratio of about {=4.8%.
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m, = Inertial actuator dynamic mass = 0.91 Kg
Mq ¢, = Inertial actuator damping factor = 5.8 N/ms

Inertial J_ —1 Ya k, = Inertial actuator stiffness = 3900 N/m

Actuator | /2 Ca | =/~ ko m,= Equipment mass = 1.08 Kg
¢m= Passive mount damping factor = 18 N/ms™'
k,,= Passive mount stiffness = 20000 N/m

Rigid My
Equipment T Ve The mechanical properties of the vibrating plate, which

_J_ X is a steel plate with two clamped edges and two free

. Cm
Passive L edges, are fully described by Gardonio et al. (1997a)
Mount

Jp = Primary force (disturbance)
[+ = Secondary force (control)
5 l v, = Inertial actuator dynamic mass velocity
v, = Equipment velocity
Figure 6.1 Mechanical model of an active vibration isolation system with an
inertial actuator.

Vibrating Base

Details of the mobilities and impedances used to describe the system can be found in

Chapter 5, along with the sign conventions and the complete model equations.

6.2 Inner actuator force feedback and outer equipment velocity feedback

control

Figure 6.2 shows the schematic of the entire system when the inner force feedback loop is
implemented. The expression for the equipment velocity as a function of the primary

force, f, , and the transmitted force, f; , is given by

b = Y,z Y, N Y,1+Y%,2Z,)
¢ 1+Z,,+Y,) " 1+Z,(Y,+Y,)

£ 6.1)
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Cm L= | ks

Vibrating Plate
3

Figure 6.2 Schematic of an active vibration isolation system with an inertial
actuator and implementation of the inner feedback control.

Substituting equation (3.6) into equation (6.1), the expression of the equipment velocity,

when the inner force feedback loop is implemented, is given by

Y,Z,Y,

e—m

_ f + YeTall(l-i_Yme)
1+Z, (Y, +Y, +Y,Z, Y)+Y,Z,, " F 1+Z, (Y, +Y,+Y,Z, YV,)+Y,Z

al m

fe- (62)

Ve

When the control force, f, , is set to zero and the direct force feedback gain %, tends to
infinity, Z;n tends to zero and the equipment velocity per unit primary excitation, v./ f, ,

describes a system as if the actuator is no longer present.
Figure 6.3 shows a schematic of the system when both inner and outer loops are
implemented. The outer loop is a velocity feedback loop, which aims to take energy away

from the system, through a controller which has the dimensions of an impedance Z,,

which in the first instance will be taken as a constant real positive gain. In fact,

Je==2Zpv,. (6.3)
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Substituting equation (6.3) into equation (6.2) the equipment velocity per primary force,

when the dual-loop is implemented, is given by

_ YeZmYb
+2Z, (Y, +Y, +V,Z Y )+Y,Z +Y, T, 1+Y,Z, )Z,

£, (6.4)

e

o 2 f—?—> H(jo)
fi
ve Cm I__J__I km
Vibrating Plate

3

Figure 6.3 Schematic of an active vibration isolation system with an inertial
actuator and implementation of the inner force feedback control loop and the
outer equipment velocity feedback control.

Figure 6.4(a) shows the equipment velocity per unit control command, v,/ f., for

different values of the inner force feedback gain A The effect of increasing the equipment
velocity and the lowering of the first resonance can be noted. Figure 6.4(b) shows the
corresponding Nyquist plot, which determines the stability of the closed loop system once
the outer velocity feedback control is implemented. The ideal closed-loop system is
conditionally stable and a portion of the Nyquist plot relative to the first resonance lies
within the unit circle centred at (-1,0), which indicates an enhancement of the closed-loop
response. When the inner force feedback gain /yis increased, considering that the system

with inner force feedback control is unconditionally stable (Figure 3.4), the effect of
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increasing the outer velocity feedback gain Zp is good attenuation and unconditional
stability for all frequencies greater than the first resonance, which happens to be at very
low frequency. Unfortunately, as shown in Section 3.1, at low frequencies the Nyquist plot
lies very close to the critical point and therefore instability is likely to happen especially to
real systems where an additional phase shift is present due to the electronic components.

In summary, from a stability point of view, the force and velocity controller raises some

concerns and special attention must be paid when real systems are implemented.

. : 1 . . . : )
s 10 15 20 5 30 3s a0 45 50
Fraquency (Hz)
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Figure 6.4 (a): Equipment velocity per unit control command when different
inner force feedback loop gains hy are used: hy = 1 (solid), hy = 20 (faint), by =
100 (dashed), and hy = 100,000 (dotted). (b): Nyquist plot of the equipment
velocity per unit control command when hy = 20 (faint), hy = 100 (dashed), and
he = 100,000 (dotted). The solid line shows the case when no control is
implemented.

Figure 6.5 shows the equipment velocity per unit primary excitation, v,/ f, , for different

values of the gain 4y when no outer loop is implemented. Although the direct inner force
feedback loop causes the equipment velocity v, to increase, it has the beneficial effect of
bringing the first resonance to lower frequencies (in particular, see the faint line). Figure
6.6 shows the equipment velocity per unit primary excitation when the inner force
feedback control and the outer velocity feedback control are implemented. Performance-
wise, attenuation can be achieved with relatively low gains. In conclusion, there is a trade-

off between performance and stability margin, which makes the inner force feedback and
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outer equipment velocity feedback control scheme very interesting on one hand, but on the

other hand it makes it impractical because of the stability issues discussed above.

v/ | dB rel. (1 ms™'N)
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Figure 6.5 Equipment velocity per unit primary force when hs = 0 (solid), hy =
20 (faint), hy = 100 (dashed), and hy = 100,000 (dotted). In this case, no outer

loop is implemented.
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Figure 6.6 Equipment velocity per primary excitation when the inner force
feedback gain hy = 100 and different outer velocity feedback control gains are
used: Zp=0 (solid), Zp=>50 (faint), Zp=100 (dashed), and Zp=200 (dotted).
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The mechanical impedance of the equipment when the inner force feedback control and

the outer equipment velocity feedback control are implemented is given by

iom k. —w*m (c, +h,Z
:-] a™a a( a f D) (65)

k, + joc, —w*m, (1+ hy)

which is plotted in Figure 6.7. Even for low values of the inner force gain £, the

equipment mechanical impedance tends to Z,, past the first resonance frequency, which
indicates that the overall system tends to a skyhook damper. When Ay = 0, the mechanical
impedance tends to ¢, above the resonance frequency. In conclusion, damping is added to
the system in the form of the desired impedance Zp, which is a positive real constant value

that can be imposed by the designer.
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Figure 6.7 Mechanical impedance of the equipment when the inner force
feedback control and the outer velocity feedback control are implemented. hy =
10 and Z, = 50.
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6.3 Integrated inner actuator force feedback and outer equipment

velocity feedback control

Substituting equation (3.10) into equation (6.1), when the inner feedback loop is based on

integrated force feedback control, the expression for the equipment velocity, v,, as a
function of the primary excitation, f,, and the control command, f,, is given by
Y,Z Y, YT.,1+Y,Z
ve e—m-b + e a2( b m) fc‘ (66)

= ' ‘ f ' .
1+2, &, +Y, +Y,Z .Y )+Y Z,, P l+vz Y, +Y,+Y,Z,Y)+Y,Z,

m

Even in this case, when the control force, f. , is set to zero and the integrated inner force
feedback gain Ay tends to infinity, Z;z tends to zero and the equipment velocity per unit
primary excitation, v./ f, , describes a system as if the actuator is no longer present. It can
be noted that for f. = 0, when f; tends to infinity, Z,, tends to zero, and v, /f, describes a

system as if the actuator is no longer present. Substituting equation (6.3) into equation

(6.6) the equipment velocity per primary force is given by

Y,Z,Y,

e m

JYNV+Y,Z, + YT, (+Y,Z VZ,

Ve

£, 6.7)

C1+Z,(Y, +Y,+V,Z

a

and represents the effect of the integrated inner force feedback control and the outer
velocity feedback control. Figure 6.8(a) shows the equipment velocity per unit command
signal for different values of the inner feedback gain %y For high values of the inner

feedback gain h, the first resonance is very damped, following the behaviour described in

Chapter 3. Figure 6.8(b) shows the corresponding Nyquist plot of v, / f. for different inner
feedback gains, which determines the stability of the closed-loop system once the outer
velocity feedback control is implemented. When the inner feedback gain A is increased,
since the system with the inner control loop is unconditionally stable and very robust, the
effect of increasing Zp is good attenuation and unconditional stability. Figure 6.9 shows

the equipment velocity per unit primary excitation for different values of the inner
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feedback gain h;y when no outer control is present. It is clear that the outer velocity

feedback loop is needed, since the effectiveness of the sole inner feedback loop is not

outstanding.
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Figure 6.8 (a): Equipment velocity per unit control command when different
inner feedback loop gains hy in H(jw)= hy/jew are used: hy = 1 (solid), hy = 20
(faint), hy = 100 (dashed), and hy = 100,000 (dotted). (b): Nyquist plot of the
equipment velocity per unit control command when hy = 20 (faint), hy = 100
(dashed), and hy = 100,000 (dotted). The solid line shows the case when no
control is implemented.
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Figure 6.9 Equipment velocity per unit primary force when hy = 0 (solid), hy =
20 (faint), hy = 100 (dashed), and hy = 100,000 (dotted).In this case, no outer
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Figure 6.10 shows the equipment velocity per unit primary excitation when the integrated
inner force feedback and the outer equipment velocity feedback control are implemented.
The effect of the inner feedback gain A can be seen from the damped first resonance
frequency. It is also shown that good vibration isolation performance can be achieved, but
high gains are needed. Also, at frequencies slightly higher than the equipment resonance
frequency, enhancement (rather than attenuation) is experienced due to the velocity
feedback, as explained in Section 5.4. This does not indicate good performance. In
summary, the integrated inner force feedback control and outer velocity control posses a
high stability margin. This is mainly due to the fact that even under ideal conditions, the
stability plot entirely lies on the positive x-axis semi-plane. On the other hand, good

performance can be achieved, but high outer loop gains are needed.
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Figure 6.10 Equipment velocity per primary excitation when the inner loop
gain hy = 100 and different outer velocity feedback control gains are used:
Zp=0 (solid), Zp=>50 (faint), Zp=100 (dashed), and Zp=200 (dotted).

The mechanical impedance of the equipment when the dual-loop control is implemented is

given by
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_ Jom, (k, +hyZp) ~w’myc,

. 2 .
k,+ jawc, —w"m, +]a)mah,~f

(6.8)

and is illustrated in Figure 6.11. Like in the previous case, the mechanical impedance

tends toZ,, past the first resonance frequency, which indicates that the overall system

tends to a skyhook damper. However, higher gains are needed to achieve this behaviour.
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Figure 6.11 Mechanical impedance of the equipment when the inner integrated
force feedback control and the outer velocity feedback control are implemented.
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In particular, hy= 100 and Zp = 100.

So far, it has been shown that the inner force and outer equipment velocity feedback

control strategy does not have an acceptable stability margin, but it performs very well.

On the contrary, the integrated inner force and outer equipment velocity control strategy is

more stable, but it requires higher gains in order to achieve comparable performance. In

the next section a solution is presented which offers both a good stability margin and good

performance.
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6.4 Inner actuator phase-lag feedback and outer equipment velocity

feedback control

Substituting equation (3.13) into equation (6.1), when the inner feedback loop is based on
a phase-lag compensator and the outer loop is a velocity feedback, the expression for the

equipment velocity is given by

Y,Z,Y, Y,T,,(1+Y,Z,)

— e—m 'f+ -
+Z, (Y, +Y, +V,Z Y +Y,Z., * 1+Z, (Y, +Y, +Y,Z.. V) +Y,Z,,

fe (6.9)

Ve

a a

Substituting equation (6.3) into equation (6.9) the equipment velocity per primary force is
given by

Y,Z,Y,

e m

‘ ‘ f» (6.10)
Vo) + Y, 25 +Y,T5(1+ Y, 2, )Z)

v, =
1+Z, &, +Y, +Y,Z

a

Figure 6.12(a) shows the equipment velocity per unit control command for different
values of the inner gain 4, It can be noted that for high gains the first resonance is very
damped. This is due to the fact that at low frequency the overall system behaves as if the
integrated inner force controller is implemented. Figure 6.12(b) shows the corresponding
Nyquist plot of v,/ f. for different inner feedback gains. When the gain 4, is increased,
since the system with the inner control loop is unconditionally stable and very robust, the
effect of increasing Zp is good attenuation and unconditional stability. Figure 6.13 shows
the equipment velocity per unit primary force for different values of the gain 4, when no
outer lop is implemented. Even in this case, the outer equipment velocity feedback loop is

needed in order to achieve some effective attenuation on the equipment resonance.
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Figure 6.12 (a): Equipment velocity per unit control command when different
inner feedback gains hy, in the phase-lag compensator are used: hy = 1 (solid),
hy = 20 (faint), hy = 100 (dashed), and h,; = 100,000 (dotted). (b): Nyquist plot
of the equipment velocity per unit control command when hy = 20 (faint), hy =
100 (dashed), and hy,; = 100,000 (dotted). The solid line shows the case when no
control is implemented.
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Figure 6.13 Equipment velocity per unit primary excitation when h, = 0
(solid), hy, = 20 (faint), hy = 100 (dashed), and hy, = 100,000 (dotted). No outer

loop is present.
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Figure 6.14 shows the equipment velocity per unit primary excitation when both the inner
phase-lag feedback loop and the outer equipment velocity feedback loop are implemented.
Good vibration isolation conditions can be achieved at the mounted natural frequency of
the equipment. This is due to the fact that at higher frequencies the inertial actuator
behaves as an almost perfect force source. The system with both inner and outer feedback
loops thus has a good stability margin and it performs well. Unlike the previous case, at
frequencies slightly higher than the equipment resonance frequency attenuation is
experienced. In conclusion, from a stability point of view, the system has a very good

margin and it performs very well.
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Figure 6.14 Equipment velocity per primary excitation when the inner feedback
loop gains h, = 100 and different outer velocity feedback control gains are
used: Zp=0 (solid), Zp=50 (faint), Zp=100 (dashed), and Zp=200 (dotted).

The mechanical impedance of the equipment when both inner force feedback control and
outer velocity feedback control are implemented is given by

jom (k. +h wZ,)—-w*m (c. +h ,Z
:] a( a pl™1 D) a(a pl D) (611)

k, + joc, —w*m, (+hy) + jomh, o,
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which is plotted in Figure 6.15 for an inner phase-lag controller gain of %, =100 and an
outer velocity gain of Z, =100. It can be noted that the actuator impedance Z = f, /v,

tends to the desired impedance, Z,,, past the first resonance frequency, which indicates
that the overall system of the inertial actuator with both feedback loops tends to a skyhook
damper, as required. However, unlike the previous case (Figure 6.11), the tendency to a
skyhook damper is a bit more pronounced in this case (it can be seen from the phase
recovery at higher frequencies) and this is due to the force-feedback-like behaviour of the

system at higher frequencies.
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Figure 6.15 Mechanical impedance of the equipment when the inner phase-lag
control and the outer velocity feedback control are implemented. hy, = 100 and
Zp=100.

The force requirement f; for the three feedback control schemes presented in this chapter
has been investigated (Benassi et al., 2002b). The aim was to determine if reasonable
force quantities can be provided by the inertial actuator, given the computed gains which
provide the desired performance of the closed loop system. The actuator requirement f,

per unit primary force f, was found to be
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_ H(jw)Z,-Zp)Y,Z,Y,
1+Z, (Y, +Y)+Y,Z,A+Y,Z )+ H(jo)T, + H(jo)T,Z, (Y, +¥,)+ H jo)T,Y,Z,(1+Y,Z,)
(6.12)

fa fo

where T, is the blocked response and Z, is the mechanical impedance described in

equation (2.4) and H(jw) is the inner controller in Figure 6.3. When the inner force and
outer equipment velocity feedback control scheme is implemented, for high gains the
closed loop system gets closer to instability, therefore higher forces f, are required to
control its behaviour. When the integrated inner force and outer equipment velocity or
inner phase-lag and outer velocity control schemes are implemented, lower values of the
force f, are needed compared to the previous case, but it must be taken into account the
fact that the performance of the closed loop system is worse than the performance of the

first case.

6.5 Conclusions

An analysis of different feedback control strategies for active isolation using an inertial
actuator, based on a inner actuator force feedback loop and an outer equipment velocity
feedback loop, was presented. Physical interpretation, feedback stability margins and
performance were considered for each case. It was found that an inner feedback loop
based on a phase-lag compensator and an outer equipment velocity feedback loop provide
a very good compromise between stability and performance of the system.

In order to establish how well this dual-loop control strategy performs compared with an
optimal feedback control strategy, some simulations of full state feedback, optimised
using LQG control theory, are presented in Appendix A. If the control effort in these
simulations is adjusted to be similar to those used by the dual-loop controller, very similar

overall attenuations in the equipment velocity are obtained.
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Chapter 7

Experiments with inner actuator force feedback

7.1 Introduction

Isolating a piece of delicate equipment from the vibration of a base structure is of practical
importance in various engineering fields. Examples are the vibration isolation of the
instrument boxes in an aircraft and the isolation of telescopes on satellites. An active
isolation system can be implemented over a broad frequency band using different
feedback control strategies.

This chapter describes the experimental work on the active isolation of a rigid piece of
equipment structure from the vibration of a flexible base structure. The objective is to
study the performance and control stability issues associated with the active vibration
isolation system. Particular emphasis is placed on the isolation of low frequency vibration
(0~50Hz), in which the equipment resonance lies and for which the mounts can be
assumed to behave as lumped springs and dampers. The theoretical work is described in
Chapter 6. Another objective of this work is then to compare those theoretical findings

with the experiments.
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7.2 Description of the experimental set-up

In this section the equipment and set-up used to perform the experiments are described.
Figure 7.1 shows the active mount system used in the experimental work. It consists of an
aluminium rigid mass, two mounts placed symmetrically underneath the aluminium mass
and one electromagnetic shaker to produce the control force. The aluminium plate had
been previously shown (Serrand, 1998) to behave as a rigid mass up to 1000 Hz, which is
well above the maximum frequency of interest in this experimental study. The shaker is
placed on top of the mass and its weight is held by a suspension system. This arrangement
is necessary in order for the shaker to behave as an inertial actuator. This system is
attached to a flexible plate made of steel. Accelerometers and force gauges are used as

SENSOors.

7.2.1 The equipment

The receiving body (simulating a delicate piece of equipment) is composed of a thick
aluminium plate. The receiver behaves as a rigid mass in the frequency range 0~1000 Hz.
At 1000 Hz, the passive isolation provides such good performances and the axial plate
motion is so small that any little errors in the equipment rigidity assumption would bring
no change to the assessment of the controller performances. The receiver is thus
considered fully rigid in the frequency range of analysis. Further details are given in Table

C1 in Appendix C and Gardonio ez al. (1996).

7.2.2 The passive mounts

The passive isolation consists of a pair of rings of rubber each of which is mounted
between two aluminium discs. The top disc is rigidly connected to the piece of equipment
while the bottom disc can be bolted to the vibrating base structure. The passive parts of
both mounts were assumed to have the same mechanical properties. Figure 7.2 shows a
schematic diagram of the system and further details are given in Table C2 and Table C3 in

Appendix C.
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Figure 7.1 Schematic of a two mount active isolation system with a rigid
equipment structure on a flexible base.

7.2.3 The inertial actuator

The active force is provided by an electromechanic shaker fixed on top of the piece of
equipment. A single shaker is placed in the middle of the equipment structure so that the
shaker itself acts as the inertial mass, as illustrated in Figure 7.1. The mechanical
properties of the actuator are given in Table C4 in Appendix C.

Its main components comprise a coil moving in the steady magnetic field of a permanent
magnet. The force generated and transmitted to the piece of equipment is proportional to

the product of the instantaneous current in the coil and the magnetic flux density. The
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shaker can only generate axial forces and therefore only the axial motion can be entirely
controlled, since the mass is supposed to be perfectly rigid in the frequency range of
interest. A single channel system can consequently be regarded as controlling the heave
mode (vertical translation) of the rigid mass on the mounts. Since the shaker and rubber
mounts are symmetrically placed with respect to the mass centre of the aluminium plate, it
is therefore possible to treat the system as a single degree of freedom system. The shaker
is placed on top of the equipment and its weight is held by an external suspension system.
This is clearly not a very desirable arrangement in practice, but it does allow a low

actuator natural frequency to be achieved with standard laboratory equipment.

7.2.4 The vibrating plate
The third main element of the base vibration isolation problem is the flexible base on
which the disturbances are generated. A steel plate clamped on two opposite edges and
free on the two others was designed to model experimentally a realistic vibrating base.
The requirements are:

1. to use a simple design, enabling a relatively simple theoretical model;

2. to design a base with a sufficient static rigidity to support the equipment;

3. to get a large enough vibration on the base to drive the isolator so that the velocity

response signals on the top of the receiving equipment can be easily measured.

The requirement of a good dynamic range of plate vibration was motivated by the high
expected efficiency of the passive isolation of the mounts. A low axial stiffness of the
passive mounts provides an efficient attenuation of the axial vibration at high frequency.
To be able to assess the effectiveness of an active isolation in a wider frequency range
than in the vicinity of the axial equipment rigid body modes, a strong plate motion is
necessary in order to recover a measurable vibration signal on the top of the equipment
that is not too corrupted by measurement noise.
The choice of a clamped-free-clamped-free plate was made in the attempt to fulfil all these
requirements (Leissa, 1969). A complete analysis of the design and construction of the
vibrating plate can be found in Gardonio’s work (1996, 1997a,b,c) and its main physical
and geometrical properties are listed in Table C5. A Matlab program of the coupled

dynamics was written as the basis for all the theoretical simulations.
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The first plate resonance lies around 33 Hz and the modal damping was assumed to be 1%
to better fit the experimental results.

Appendix C lists the first nine modes of the base supporting plate. The experimental
modal frequencies listed in Table C6 are lower than those predicted by the theoretical
model. This can be explained by the imperfections of the clamping conditions. The
strengthening pieces connecting the plate to the ticker vertical supports prevent almost any
bending of the plate at the clamped edges at low frequencies in one sense of rotation
(downwards) but not in the other (upwards). The second imperfection lies in the fact that
the vertical supports are not absolutely rigid especially at low frequency. This acts to
reduce the stiffness of the system, therefore shifting down the natural frequencies,
particularly those for the lower order modes.

The main differences between model and experiments at higher frequencies arise as the
spacing between two consecutive bolts connecting the plate to the strengthening pieces is
no longer negligible compared to the wavelength of the propagating wave. The junction
between the strengthening pieces and the plate itself can thus not be regarded as a
perfectly clamped junction. Secondly, the system dynamics will become affected by small
structural details as the frequency increases, since the wavelength will get shorter. Further

details about this topic are given in Serrand (1998).

7.2.5 The primary shaker

As shown in Figure 7.1, one shaker was used as primary force to drive the system. It was
placed in the centre of the flexible base and it was driven by the output of the signal
generator within the FFT analyser. Its main properties are described in Table C7.

The foundation is not only moved by the shaker but also by the two cylindrical mounts as
they are stretched and compressed. These two forces couple the dynamics of the plate and

the isolator.

7.2.6 Sensors

Before any control technique is applied, identification of the experimental system and the
characteristics of each instrument used are important.

The force generated by the primary shaker is monitored using a piezoelectric force gauge

(B&K type 8200) whose bottom side is bolted to the shaker and the top side is stuck to the
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plate (Figure 7.2). The acceleration of the centre of the piece of equipment is measured at
one point on the equipment using a piezoelectric accelerometer (B&K type 4375)
monitoring the vertical motion. The total transmitted force to the equipment is measured
by a second piezoelectric force gauge (B&K type 8200) whose top side is bolted to the
secondary shaker (the inertial actuator) and bottom side is bolted to the centre of the
aluminium mass. A complete list of the equipment used is given in Appendix C, Table C8.
After having analysed the different elements constituting the parts of the isolation
problem, it is now possible to investigate the dynamics of the complete system when
different control strategies are applied to the laboratory set-up shown in Figure 7.3 and
Figure 7.4. This will be achieved by measuring the rigid mass response to the shaker

excitation moving the flexible plate underneath.

1 Electromagnetic Actuator

2 Suspension System

3 Support

4 Force Gauge

5 Rigid Equipment

6 Adapter

7 Rubber Mounts

8 Accelerometer

9 Steel Washer
10 Flexible Base

11 Force Gauge

12 Primary Shaker

SRR NNR N

Figure 7.2 Schematic of the location of sensors and actuator within the
experimental set-up.
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Figure 7.3 Image of the experimental set-up.

Figure 7.4 Image of the core of the experimental set-up, which consists of the
piece of equipment, which is mounted on top of passive rubber rings. The
suspended inertial actuator is connected to the receiver and a force gauge in
between measures the total transmitted force to the equipment.
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7.3 Experimental implementation of the control strategies

In order to approximate a single degree of freedom isolation problem, the shaker is located
under the centre of the flexible plate which is the centre of symmetry of the foundation.
The excitation is then on a nodal line of all the modes whose shapes are not symmetrical
compared to this centre. They are then not excited and do not contribute to the plate
motion. Provided the centre of the rigid mass of the isolation system is exactly at the
vertical of the plate centre, both rubber mounts undergo the same displacement and the
system tends to a single degree of freedom isolation problem.

Setting apart the issue of how to position the primary and secondary shakers at the exact
locations, such an idealization is obviously not perfect. Neither the rubber rings nor the
shakers have a point connection with the plate. For instance, the surface at the bottom of
the mounts attached to the foundations is rather large. The out of plane displacement of
' the support may therefore generate moments and displacements in torsion at the bottom of
the mounts exciting the mass in transversal and longitudinal directions. However, because
of the symmetry of the plate modes involved, these components act in opposite directions
on the two mounts and cancel out. This effect is therefore unlikely to be significant.
Another effect that was present in the measurements was that the resonance frequency of
the inertial actuator dominated mode was a little greater than the predicted value. This was
due to the suspension system, which in theory had to hold the actuator mass, but in
practice it added a small contribution to the stiffness of the inertial actuator. This property
of the system was detected by measuring the system dynamic response using different
suspension systems. In order to reduce this effect, both rubber bands and steel wires with
very soft springs were tested. It was decided to use the latter solution because it showed a
better linear behaviour.

Before conducting the experiments, the transfer functions of all the mechanical and
electronic components were measured and their phase characteristics were accurately
analysed for a better interpretation of the experimental measurements. The smallest
frequency increment possible was chosen and the gathered data was not treated in the first
place. Then some minor post-processing was performed on the data, as it will be presented

in the next section.
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Figure 7.5 shows a comparison between the measured plant response from primary force
to equipment velocity and the simulation. The inertial actuator dominated resonance is at
about 11 Hz. It can be noted that the real system appears more damped. At about 22 Hz
the simulated equipment resonance shows a very good agreement with the experimental
data, both in terms of magnitude and phase. The first flexible plate modal frequency which
1s visible from the accelerometer placed at the centre of the set-up is at about 40 Hz and its
discrepancy with the simulation was explained in the previous section. Very good
coherence was obtained during all the experimental measurements, and Figure 7.6 shows
one example of it, taken from a force and velocity feedback scheme. At frequencies higher
than 5 Hz the coherence is almost always unity, and at frequencies lower than 5 Hz the
really poor coherence indicates that the experimental measurements have no physical

meaning at such low frequencies.
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Figure 7.5 (a): Measured and (b) simulated equipment velocity per primary
excitation.
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Figure 7.6 Example of measured coherence of the system.

7.3.1 Velocity feedback control

In order to evaluate the stability properties of the closed loop system by analysing the
behaviour of the open loop system, white noise from the FFT analyser was used to drive
the inertial actuator. This signal was also connected to channel A of the analyser. When
the equipment structure was excited, the acceleration signal at centre of the piece of
equipment was measured using an accelerometer. The acceleration signal was then passed
to a charge amplifier and integrated to a velocity signal by a module inside the charge
amplifier. The integrator was operated in conjunction with a high-pass filter, whose cut-
off frequency was preset to be 1 Hz. Finally the velocity signal was connected to channel
B of the analyser to measure the frequency response function of the equipment velocity
per unit secondary force. Figure 7.7 shows the experimental set-up, and Figure 7.9(a)
shows the Nyquist plot obtained from this measurement. The vectors of the measured

signals contain 801 values each, and they cover the frequency range 0~50 Hz.

128



=] g oo
=] [ =]
[~ | B¢
FFT  Cha chlp
Analyzer @
Y
e Actuator
o o :
Chb o |
In Power Oyt L  |Equipment
Amplifier e o 1
Cha EY Acce
Charge 7
Amplifier

Figure 7.7 Experimental set-up in order to measure the equipment velocity per
unit secondary excitation.

In order to evaluate the performance of direct velocity feedback control described in
Chapter 5, the FFT analyser was used to measure the frequency response of the equipment
velocity per primary excitation as well as generate the white noise signal. The white noise
signal drove the primary shaker to excite the flexible base, and the excitation force signal
was measured by a force transducer connected to channel A of the analyser. When the
equipment structure was excited, the acceleration signal measured as close as possible to
the centre of the equipment was gathered via an accelerometer. The acceleration signal
was then passed to a charge amplifier and integrated to a velocity signal. The integrator
was operated in conjunction with a high-pass filter, whose cut-off frequency was preset to
be 1 Hz. Finally, the velocity signal was connected to channel B of the analyser to
measure the frequency response function of the absolute equipment velocity per unit
excitation force. A built-in filter in the analyser was employed to reduce aliasing. Figure

7.8 shows the experimental set-up, and Figure 7.9(b) shows the experimental results.
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Figure 7.8 Experimental set-up in order to measure the equipment velocity
per unit primary excitation.

The measured plant response from secondary shaker input to integrated accelerometer
output for the active isolation system with the inertial actuator is shown in Figure 7.9(a),
which is similar to the simulated response shown in Figure 7.11(a), except for a more
pronounced behaviour of the flexible base in the measured data. There is no primary
disturbance arising from the base support and the loop on the left hand side of the Nyquist
plot, which is due to the actuator resonance, indicates enhancement of the system response
for gains within the stability region. The spectrum of the measured equipment velocity,
normalized by the primary force, is shown in Figure 7.9(b) with no control and with three
values of feedback gain. Attenuation of the vibration at the mounted equipment resonance
at about 23 Hz can be achieved using this arrangement, but some enhancement of the
disturbance at the actuator resonance frequency (11 Hz) then occurs, as predicted. This
enhancement increases rapidly if the feedback gain is further increased until the system
becomes unstable. Almost no attenuation was observed in the base resonances with this

control scheme. The results of the computer simulations of the inertial control system are
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shown in Figure 7.11(b) and these are again comparable with the measurements. The
maximum measured attenuation is about 12 dB, compared with a predicted value for this
configuration of about 13 dB. In the simulations, for high gains, the actuator resonance is
sharper than in the measurements and although attenuation is present as well in the
simulated performance at frequencies greater than 30 Hz, in the measurements this
behaviour was more pronounced. The theoretical prediction of the resonance at about 47
Hz is the first flexible plate mode (mode (2,0)) that can be detected with this
configuration. The measured data in Figure 7.9(b), on the other hand, shows the presence
of two modes in the 35-40 Hz frequency range. It was found that the first mode at 37.2 Hz
is the (2,0) mode (Table C9), while the other mode at about 40 Hz is the (2,1) mode of the
plate when the isolation system is installed. This mode is not detected by the simulation
because the excitation force is assumed to be at the centre of the base plate, while in the
experiments the primary shaker had been connected to the plate in a slightly off-centre
location. It can be noted that the control strategy is very effective within the equipment
frequency range and effective in a minor way at higher frequencies. In any case, active
vibration isolation is achieved since “the frequency response plot of the transfer function
shows that damping values sufficient to control the resonance have no adverse effect on
high frequency isolation” (Karnopp, 1995).

Figure 7.9 shows the untreated data as it was gathered, comprising 801 points in the range
0~50 Hz. 25 averages were taken in the frequency domain by the analyser. For a clearer
presentation of the experimental results, the collected data was averaged every 8 data
points and the results are shown in Figure 7.10. It was decided to apply this simple

treatment to all the data collected and present the experimental results in this form.
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Figure 7.9 (a): Nyquist plot of the untreated measured open loop response
from secondary shaker input to integrated accelerometer output. (b):
untreated measured velocity of the equipment per unit primary excitation.
Results are shown for the passive system (control off, solid line) and for three
values of feedback gain (faint lines): h, =8 (triangle), h, = 15 (square), and h,
= 22 (circle). For gains greater than 22 the system was unstable.
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Figure 7.10 (a}): Nyquist plot of the treated measured open loop response
from secondary shaker input to integrated accelerometer output. (b): treated
measured velocity of the equipment per unit primary excitation. Results are
shown for the passive system (control off, solid line) and for three values of
feedback gain (faint lines): h, =8 (triangle), h, = 15 (square), and h, = 22
(circle). For gains greater than 22 the system was unstable.
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Figure 7.11 (a): Nyquist plot of the simulated open loop response from
secondary shaker input to integrated accelerometer output. (b): simulated
velocity of the equipment per unit primary excitation. Results are shown for
the passive system (control off, solid line) and for three values of feedback
gain: h, =8 (faint line), h, = 15 (dashed line), and h, = 22 (dotted line). For
gains greater than 22.5 the simulated system was unstable.

The following considerations were drawn while working on this first control strategy, but
they were then applied to all the other experiments.

Due to the imperfect operation of the electrical equipment and low coherence suffered at
low frequencies, the corresponding plots from the experiment show very high values at
very low frequencies. Smooth curves at low frequencies are observed in the simulation
since perfect operation of the electrical equipment is assumed. Also, in the simulations the
feedback control gain relating the secondary force to the control velocity in unit of N/ms™
must account for the different gains used in the experimental feedback loop, which
comprises the charge amplifier gain, the power amplifier gain and the sensitivity of the
actuator. The sensitivity of the accelerometer is directly taken into account by the charge
amplifier. The feedback control gain values were therefore measured from the different
components of the experimental set-up and modelled in the simulation for comparison
purposes. The open and closed loop frequency response functions for velocity feedback
control with 1 Hz and 10 Hz charge amplifier cut-off frequency were obtained keeping all

the other conditions unchanged. It was experienced that when the amplifier cut-off
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frequency within the charge amplifier is increased from ! Hz to 10 Hz the maximum

attainable gain reduces considerably.

7.3.2 Integrated velocity feedback control

In this experiment the same configurations as before were used in order to evaluate the
stability properties and the performance of the closed loop system. The only difference
was an ISVR-built passive integrator (R = 470 KQ, C = 2.2 uF), which was used as a
controller in the feedback loop before the power amplifier. This allowed the equipment
velocity signal to be connected to the FFT analyser for measurement purposes, and also to
be integrated within the feedback leg of the experimental set-up.

The measured plant response, from secondary shaker input to integrated velocity output,
for the active isolation system with the inertial actuator is shown in Figure 7.12(a), which
reasonably matches with the simulated response shown in Figure 7.13(a), except for a
more pronounced behaviour of the flexible base. Even in this case there is no primary
disturbance arising from the base support. Compared to the previous case, the Nyquist plot
appears rotated by 90° clockwise. This is due to the effect of the integrator in the
controller. Also, the presence of low frequency phase shifts can be seen. The spectrum of
the measured equipment velocity, normalized by the primary force, is shown in Figure
7.12(b) with no control and with three values of feedback gain. It can be seen that
attenuation of the vibration at the mounted equipment resonance can be achieved using
this arrangement, but that some enhancement of the disturbance at the actuator resonance
frequency then occurs. This is due to the non-perfect characteristics of the electronic
components that were used during the experiments. This enhancement increases rapidly if
the feedback gain is further increased until the system becomes unstable. The results of the
computer simulations of the inertial control system with an ideal integrator show good
agreement with the measurements (Figure 7.13b)). The maximum measured attenuation is
about 8 dB and the tendency of separating the first two resonances apart when the gain is
increased is clearly observed and predicted by the simulations. In summary, integrated
velocity feedback control is unconditionally stable for an ideal system, while it is
conditionally stable for real systems. The performance of an ideal integrated velocity

feedback controller is good within a considerable frequency range, but unfortunately high
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gains may be needed to obtain substantial attenuation and this is clearly a limit because in

real systems high gains do not guarantee stability.
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Figure 7.12 (a): Nyquist plot of the treated measured open loop response
from secondary shaker input to integrated accelerometer output when the
controller is an integrator. (b): treated measured velocity of the equipment
per unit primary excitation. Results are shown for the passive system (control
off, solid line) and for three values of feedback gain (faint lines): h,, =1000
(triangle), hy, = 3000 (square), and h;, = 6000 (circle). For gains greater than
6000 the system was unstable.
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Figure 7.13 (a): Nyquist plot of the simulated open loop response from
secondary shaker input to integrated accelerometer output when the
controller is an integrator. (b): simulated velocity of the equipment per unit
primary excitation. Results are shown for the passive system (control off, solid
line) and for three values of feedback gain: h,, =1000 (faint line), h;, = 5000
(dashed line), and h;, = 10000 (dotted line). The ideal system is
unconditionally stable.
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7.3.3 Inner force feedback control

In order to evaluate the stability properties of the closed loop system by analysing the
behaviour of the open loop system, white noise form the FFT analyser was used to drive
the inertial actuator. This signal was also connected to channel A of the analyser. When
the equipment structure was excited, the force signal between the inertial actuator and the
piece of equipment was measured using a B&K 8200 force gauge. The force signal was
then passed to a charge amplifier. Finally the force signal, which is in fact the transmitted
force to the equipment, was connected to channel B of the analyser to measure the
frequency response function of the transmitted force per unit secondary force. Figure 7.14
shows the experimental set-up, and Figure 7.17(a) shows the Nyquist plot obtained from

this measurement.
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Figure 7.14 Experimental set-up in order to measure the total transmitted force
per unit secondary excitation.

In order to evaluate the performance of this strategy, the FFT analyser was used to
measure the frequency response of the equipment velocity as well as generate the white
noise signal. The white noise signal drove the primary shaker to excite the flexible base,
and the excitation force signal was measured by a force transducer which was also

connected to channel A of the analyser. When the equipment structure was excited, the
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acceleration signal at the centre of the equipment was measured using an accelerometer.
The acceleration signal was then connected to a charge amplifier and converted to a
velocity signal similarly to the previous cases. Finally, the velocity signal was connected
to channel B of the analyser to measure the frequency response function of the equipment
velocity per unit excitation force. A built-in filter in the analyser was employed to reduce
aliasing. Unlike the previous cases however, this feedback control strategy is based on the
measurement of the transmitted force to the equipment. To implement this feature the
force gauge between the inertial actuator and the equipment measures the transmitted
force, whose signal is then fed to a charge amplifier. The output of the amplifier becomes
the input to the power amplifier, which in fact acts as the gain module within the feedback
leg. The amplified signal is then connected to the inertial actuator. Figure 7.15 shows a
practical implementation of the experimental set-up, and Figure 7.17(b) shows the
experimental results.

Figure 7.16 shows the measured mechanical impedance, the transmitted force per unit
equipment velocity, of the system. When the force feedback gain in increased, the inertial
actuator resonance frequency is pushed to lower frequencies. As expected, the low
coherence at the first flexible base resonance causes the data to be not well defined. Also,
the base dynamics can be seen at about 45 Hz.

The measured plant response, from secondary shaker input to transmitted force, for the
active isolation system with the inertial actuator is shown in Figure 7.17(a), which is
similar to the simulated response shown in Figure 7.18(a). Also in this case there is no
primary disturbance arising from the base support. The stability analysis of such a system
plays an important role in the discussion about whether inner force and outer velocity
feedback control is a good solution to the equipment isolation problem. At low frequency,
as predicted by the simulations, the Nyquist plot lies very close to the critical point and
therefore instability is likely to happen when the gain is increased because of the
electronic components.

The spectrum of the measured equipment velocity, normalized by the primary force, is
shown in Figure 7.17(b) with no control and with three values of feedback gain. It can be
seen that enhancement of the vibration at the mounted equipment resonance is

experienced using this arrangement, as predicted by theory.
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An important aspect is that, when the gain /s increases, the actuator resonance frequency
is shifted to lower frequencies, while its magnitude increases, getting closer to the
unstable region (Chapter 3). In the experiments, the first resonance frequency was
lowered to 8.75 Hz. The corresponding simulation is plotted in Figure 7.18(b). Although
an ideal system is unconditionally stable, and therefore the inertial actuator’s resonance
frequency can be lowered considerably, in a real system the inertial actuator’s resonance
frequency can be lowered only to a certain value, determined by the stability condition.
Also, since the ideal Nyquist plot does not lie in the unit circle centred at (-1,0) as much
as the measured one, smaller enhancement is predicted by the simulation at the

equipment resonance.
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Figure 7.15 Experimental set-up in order to measure the equipment velocity
per unit primary excitation when force feedback control is implemented.
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Figure 7.16 Bode plot of the measured mechanical impedance, transmitted
force per unit equipment velocity, of the active system. Three force feedback
gains hy have been analysed: hy = 0 (bold line), hy = 3 (faint line), and hy = 10
(dashed line).
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Figure 7.17 (a): Nyquist plot of the treated measured open loop response
from secondary shaker input to actuator force output. (b): treated measured
velocity of the equipment per unit primary excitation. Results are shown for
the passive system (control off, solid line) and for three values of feedback
gain (faint lines): hy =3 (triangle), by = 6 (square), and hy = 10 (circle). For
gains greater than 10 the system was unstable.
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Figure 7.18 (a): Nyquist plot of the simulated open loop response from
secondary shaker input to actuator force output. (b): simulated velocity of the
equipment per unit primary excitation. Results are shown for the passive
system (control off, solid line) and for three values of feedback gain: hf = 3
(faint line), hy = 6 (dashed line), and hy = 10 (dotted line). The ideal system is
unconditionally stable.

7.3.4 Integrated inner force feedback control

In this experiment, the same configurations described above were used in order to evaluate
the stability properties and the performance of the closed loop system. The only difference
was an ISVR-built passive integrator, which was used as a controller in the feedback loop
before the power amplifier. This allowed the transmitted force signal to be connected to
the FFT analyser for measurement purposes, and also to be integrated within the feedback
leg of the experimental set-up.

Figure 7.19 shows the mechanical impedance, the transmitted force per unit equipment
velocity, of the system. When the force feedback gain in increased, the inertial actuator

resonance is damped.
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Figure 7.19 Bode plot of the measured mechanical impedance, transmitted

force per unit equipment velocity, of the active system, when the integrated

force feedback scheme is implemented. Three force feedback gains hy have

been analysed: hy= 0 (bold line), hy = 500 (faint line), and hy = 2500 (dashed

line).
The measured plant response, from secondary shaker input to integrated force output, for
the active isolation system with the inertial actuator is shown in Figure 7.20(a), which
matches very closely the simulated response shown in Figure 7.21(a). The Nyquist plot is
rotated by 90° clockwise compared to the previous case and this is due to the effect of the
integrator in the controller.
In addition, the closed loop system is now significantly more stable than in the previous
case despite the presence of low frequency causes of instability. The spectrum of the
measured equipment velocity, normalized by the primary force, is shown in Figure 7.20(b)
with no control and with three values of feedback gain. The corresponding simulations are
shown in Figure 7.21(b). Also in this case the theoretical findings match quite well with
the experimental measurements and in particular both effects on the first two resonances
were experienced. Firstly, the magnitude of the inertial actuator resonance is attenuated.
This damping effect was predicted and theoretically explained. Secondly, at the equipment
resonance, the magnitude of the transfer function is greater then when no control is
implemented (from this follows that an outer equipment velocity feedback loop is needed)

and its frequency lowered. It was very difficult to increase the gain in such a way that it
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would set the closed loop system unstable. Such high gains were difficult to obtain with

the power amplifiers in use. Most of the time, the power limit was reached before reaching

the stability limit. This definitely showed how robust this solution is.
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Figure 7.20 (a): Nyquist plot of the treated measured open loop response
from secondary shaker input to integrated force output. (b): treated measured
velocity of the equipment per unit primary excitation. Results are shown for
the passive system (control off, solid line) and for three values of feedback
gain (faint lines): hy =500 (triangle), hy = 1000 (square), and hy = 2500
(circle). For gains greater than 2500 the system was still stable, but
limitations due to the electronics occurred.
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Figure 7.21 (a): Nyquist plot of the simulated open loop response from
secondary shaker input to integrated force output. (b): simulated velocity of
the equipment per unit primary excitation. Results are shown for the passive
system (control off, solid line) and for three values of feedback gain: hy =500
(faint line), hy = 1000 (dashed line), and hy= 2500 (dotted line).
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7.3.5 Inner actuator force feedback and outer equipment velocity feedback control

In this case the plant is considered to be the original plant with in addition the inner force
feedback loop. In order to evaluate the stability properties of the closed loop system, white
noise from the FFT analyser was used to drive the command signal. This signal was also
connected to channel A of the analyser. When the equipment structure was excited, the
acceleration signal at centre of the equipment was measured using an accelerometer and
then integrated. The integrator was operated in conjunction with a high-pass filter, whose
cut-off frequency was preset to be 1 Hz. Finally, the velocity signal was connected into
channel B of the analyser to measure the frequency response function of the absolute
equipment velocity per unit command signal. The inner feedback loop was implemented
using the signal from the force gauge underneath the inertial actuator. This signal was then
connected to a charge amplifier, amplified and then connected to the secondary shaker. An
ISVR-built passive summing box was used to add the command signal (white noise in this
case, while it was the amplified equipment velocity in the performance measurement) to
the output of the signal conditioner which carried the total transmitted force information.
Figure 7.22 shows a practical implementation of the experimental set-up, and Figure
7.24(a) shows the Nyquist plot obtained from this measurement for different values of the

inner feedback gain.
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Figure 7.22 Experimental set-up in order to measure the equipment velocity per
control command.

The set-up in Figure 7.22 was modified in order to evaluate the performance of this
strategy. The FFT analyser was used to measure the frequency response of the equipment
velocity per primary excitation as well as generate the white noise signal. The white noise
signal drove the primary shaker to excite the flexible base, and the excitation force signal
was measured by a force transducer connected to channel A of the analyser. When the
equipment structure was excited, the equipment acceleration was measured and integrated.
The velocity signal was then connected to channel B of the analyser to measure the
frequency response function of the absolute equipment velocity per unit excitation force.
A built-in filter in the analyser was employed to reduce aliasing. Figure 7.23 shows the

experimental set-up, and Figure 7.24(b) shows the experimental results.
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Figure 7.23 Experimental set-up in order to measure the equipment velocity
per unit primary excitation when the inner force feedback control and the
outer direct velocity feedback control are implemented.

The measured plant response, from control command to integrated accelerometer output,
for the active isolation system with the inertial actuator is shown in Figure 7.24(a), which
is similar to the simulated response shown in Figure 6.4(b). In this case there is no primary
disturbance arising from the base support and three Nyquist plots are shown for different
inner force feedback loop gains. The conclusion that can be drawn is that by increasing the
inner feedback loop gain, the closed loop system (when the outer loop is also
implemented) gets closer to instability.

The spectrum of the measured equipment velocity, normalized by the primary force, is
shown in Figure 7.24(b) with no control and with three values of feedback gain. This can
be compared to the theoretical simulations of Figure 6.6. There is good agreement
between simulations and theory, even if it must be taken into account the fact that in the
simulation higher gains were used to show the potentials of this scheme. Experimentally,
an attenuation of the vibration at the mounted equipment resonance can be achieved using

this arrangement, but some enhancement of the disturbance at the inertial actuator
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resonance frequency then occurs, as predicted by theory. This enhancement increases
rapidly if the velocity feedback gain Zp is further increased until the system becomes
unstable. Some attenuation was also observed in the higher frequency base resonances
with this system. The maximum measured attenuation is about 12 dB, and this is due to
the unstable nature of the system at high gains. The performance plot was obtained by

keeping the inner force feedback gain %, constant and varying Zp. The main effect of the

inner feedback loop is to lower the inertial actuator resonance frequency, while the main
effect of the outer gain is to attenuate the magnitude of the equipment velocity. However,
enhancement of the response is experienced at the first resonance when the desired
impedance is increased and this will eventually lead the overall system to instability. Also,
the low stability margin of the inner feedback loop tends to drive the system unstable even

for small inner feedback loop gains.
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Figure 7.24 (a): Nyquist plot of the treated measured open loop response
from command signal to integrated accelerometer output when hy = 6. (b):
Treated measured velocity of the equipment per unit primary excitation.
Results are shown for the passive system (control off, solid line) and for three
values of the velocity feedback gain (faint lines) when the force feedback gain
was set to hg = 6: Zp =20 (triangle), Zp = 30 (square), and Zp = 50 (circle).
For gains greater than 50 the system was unstable.
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7.3.6 Integrated inner actuator force feedback and outer equipment velocity feedback
control

The same experimental set-up described above was used in this case in order to evaluate
the stability properties and the performance of the closed loop system. The only difference
was an ISVR-built passive integrator, which was used as a controller in the inner feedback
loop before the power amplifier. This allowed the transmitted force signal to be connected
to the FFT analyser for measurement purposes, and also to be integrated within the
feedback leg of the experimental set-up.

The measured plant response, from control command to integrated force output, for the
active isolation system with the inertial actuator is shown in Figure 7.25(a), which
matches closely the simulated response shown in Figure 6.8(b). Despite the presence of
low frequency causes of instability due to the electronics, the closed loop system is now
more stable than in the previous case. The spectrum of the measured equipment velocity,
normalized by the primary force, is shown in Figure 7.25(b) with no control and with three
values of feedback gain. The corresponding simulations are shown in Figure 6.10. Also in
this case the theoretical findings match with the experimental measurements and in
particular both effects on the first two resonances were experienced. Firstly, the magnitude
of the inertial actuator resonance is attenuated and slightly shifted to lower frequencies.
Secondly, at the equipment resonance, the magnitude of the transfer function is well
attenuated, while at frequencies slightly greater than the second resonance a little
enhancement is experienced, as predicted in Figure 6.10.

Even in this case, it was very difficult to increase the outer loop gain in such a way that it
would set the closed loop system unstable. Such high gains were difficult to obtain with
the power amplifiers in use. The maximum attenuation that was obtained was about 13
dB, but it must be noted that this does not represent a limit due to stability issues. This
limit was reached because of the power limit of the audio amplifiers that were used during

the experiments.
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Figure 7.25 (a): Nyquist plot of the treated measured open loop response
from command signal to integrated accelerometer output when an integrator
is added within the inner feedback loop. Results are shown for hy = 2500. (b):
Treated measured velocity of the equipment per unit primary excitation.
Results are shown for the passive system (control off, solid line) and for three
values of the velocity feedback gain (faint lines) when the force feedback gain
was set to hy = 2500: Zp =60 (triangle), Zp = 80 (square), and Zp = 100
(circle). For gains greater than 100 the system was still stable, but limitations
due to the electronics occurred.

7.3.7 Inner phase-lag compensator and outer equipment velocity feedback control

The same configurations as above were used in this experiment. The only difference was a
passive phase-lag compensator (R; = 720 KQ, Ry = 72 KQ, C = 0.1 uF), which was
employed as a controller in the inner feedback loop before the power amplifier. This
allowed the transmitted force signal to be connected to the FFT analyser for measurement
purposes, and also to be integrated within the feedback leg of the experimental set-up. The
measured plant response, from control command to integrated force output, for the active
isolation system with the inertial actuator is shown in Figure 7.26(a), which matches the
simulated response shown in Figure 6.12(b). Despite the presence of low frequency causes
of instability due to the electronics, the closed loop system is now more stable than in the
inner force and outer velocity feedback control scheme. However, since the Nyquist plot is
not entirely on the right hand side of the imaginary axis and portions of it intersect the
negative part of the x-axis, instabilities may happen at very high outer velocity feedback
gains Z,,. As predicted by the simulations, by increasing the inner feedback loop gain 7,

the stability properties of the overall feedback system improve. The spectrum of the
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measured equipment velocity, normalized by the primary force, is shown in Figure 7.26(b)
with no control and with three values of feedback gain. The corresponding simulations are
shown in Figure 6.14. Also in this case the theoretical findings match with the
experimental measurements and in particular both effects on the first two resonances were
experienced. In fact, below the second cut-off frequency of the phase-lag compensator (22
Hz), the systems behaves as if integrated inner force and outer equipment velocity
feedback control was implemented, whereas at frequencies higher than 22 Hz, the system
behaves as if inner force and outer velocity feedback control was implemented. As a
result, the magnitude of the inertial actuator resonance is attenuated and slightly shifted to
lower frequencies and at the equipment resonance, the magnitude of the transfer function
is well attenuated, while at frequencies slightly greater than the second resonance no
enhancement is experienced, unlike the previous case. Even in this case it was very
difficult to increase the outer loop gain Zp in such a way that it would set the closed loop
system unstable. Such high gains were difficult to obtain with the power amplifiers in use.
The maximum attenuation that was obtained was about 13 dB, but it must be noted that

this does not represent a limit due to stability issues.
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Figure 7.26 (a): Nyquist plot of the treated measured open loop response
from command signal to integrated accelerometer output when a phase-lag
compensator is added within the inner feedback loop. Results are shown for
hy = 100. (b): Treated measured velocity of the equipment per unit primary
excitation. Results are shown for the passive system (control off, solid line)
and for three values of the velocity feedback gain (faint lines) when the force
feedback gain was set to hy = 100: Zp =20 (triangle), Zp = 50 (square), and
Zp = 100 (circle).
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7.4 Conclusions

The objective of this experimental work was to investigate the active isolation of an
equipment structure from a vibrating base structure using an inertial actuator with inner
force feedback. The dynamics and control mechanisms of the mounted rigid equipment
structure on a flexible base plate have been studied experimentally and the results have
been compared to the theoretical findings previously obtained. The equipment velocity
responses measured from the experiments agree reasonably well with the predicted results,
which demonstrates that the theoretical model can be used to help to understand the
dynamics of the overall system. Good stability margins of several feedback control
strategies are verified in the experimental implementations.

It was found from the simulations and the experiments that from a stability point of view,
the inner actuator force feedback and outer equipment velocity feedback control scheme
does not guarantee a good stability margin at low frequency. This is especially true when
the outer velocity gain is increased. On the other hand, from a performance point of view,
this scheme offers very good results using lower power than the other schemes. When an
integrator is added to the inner loop, the overall system significantly improves its stability
characteristics. On the other hand, if high performance is needed, very high gains are
necessary.

The use a phase-lag compensator within the inner feedback loop and an outer velocity
feedback loop then appears to be very effective. In fact, simulations and experiments show
that a strong reduction of the equipment resonance can be achieved, together with very

good stability margins.
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Chapter 8

Active isolation theory with an inertial actuator having inner
actuator displacement feedback

8.1 Introduction

In this chapter the active vibration isolation problem using an inertial actuator with
inner actuator displacement feedback control is investigated. The same equipment
structure used in the previous chapter and the same modified inertial actuator used in
Chapter 2 will be considered in a simulation study, which will be followed, in the next
chapter, by the experimental results. It will be seen that the ratio of actuator to
equipment mass i = m,/m, is an important parameter. In the first part of the study, u
will be about 0.2, while in the second part of the chapter, it has been changed so that
the ratio u# = m,/m, = 1 in order to describe the importance of the mass ratio in the

performance.

8.2 Simulations with a flexible base

In this section we consider the use of an inertial actuator with inner feedback for the
active isolation of a rigid equipment structure supported on a flexible base by a

resilient mount. The arrangement, very similar to the arrangement described in
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Chapter 6, is illustrated schematically in Figure 8.1 and is described fully by Benassi
et al. (2002d, 2003b). It consists of a flexible steel base plate
700mm x 500mm x 1.85mm thick, clamped on the two longer sides, which supports a
rigid equipment structure modelled as a point mass (m, = 1.08 Kg) on which is
mounted an ULTRA inertial actuator. The equipment structure is supported by a
mount, which has stiffness, &, = 20000 N/m, and damping, ¢,,= 18 N/ms™. The model
assumes that the system is divided into four elements: a vibrating plate acting as the

base structure, a passive mount, the equipment, and the inertial actuator.

Cm | —— | km

‘ Vibrating Plate
by

Figure 8.1 Schematic of a vibration isolation system with an inertial
actuator and implementation of the inner control based on inertial actuator
displacement feedback.

The uncontrolled actuator has a resonance frequency of 14.5 Hz and has a damping
ratio of about ¢, = 0.4, the mounted equipment has a resonance frequency of about
21.5 Hz and a damping ratio of about ¢ = 5.2%, and the vibrating base has a first
resonance frequency of about 44.8 Hz and a damping ratio of about {= 4.8%. An
inner displacement feedback loop is used to modify the response of the inertial
actuator, as discussed in Chapter 4, and an outer velocity feedback system, illustrated
in Figure 8.2, is used to provide active skyhook damping for the equipment.

The expression for the equipment velocity as a function of the primary force f, and the

transmitted force f; , is given by equation (6.1)
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m

where, using the usual notation, Y, is the mobility of the equipment structure, Y, is
the mobility of the base structure and Z,, is the mechanical impedance of the mount.

Since the equipment structure is assumed to behave entirely like a rigid body of mass

m,, its input mobility is equal to Y, =1/(ja)me). The mount is assumed to have a

negligible mass, and so without loss of generality its impedance can be written as

(8.2)

where k,, is the mount's stiffness and c,, its damping factor, both of which may be
frequency dependent. Substituting equation (4.13) into equation (8.1), the expression
for the equipment velocity, when the modified inertial actuator is attached on the

equipment, is given by

_ YeZm
1+2, (Y, +Y, +V,Z,Y,)+Y,Z,

m

Y, Fa Y,T,1+Y,Z,)
P14z, (¥, +Y, +Y,Z,Y,)+Y,Z,

m

f.. (8.3)

€

If the control law of the outer feedback loop is assumed to take the form f. =-Zpv,,

as shown in Figure 8.4, where Z,, can be interpreted as the desired impedance of the

outer feedback system, then equation (8.3) can be used to derive the equipment

velocity per primary force with both feedback loops as given by

_ YeZmYb
1+2, (Y, +Y, +Y,Z2,Y)+Y,Z, +Y,T,(+Y,Z,)Z,

m

fre (84)

Ve
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Figure 8.2 Schematic of a vibration isolation system with an inertial
actuator and implementation of the inner control based on displacement
feedback and the outer velocity feedback control.

The stability of the closed loop system can be assessed from Figure 8.3, which shows
the predicted Nyquist plot of the open loop response of the plant, based on the
modified inertial actuator on the passive isolation system and described by the second

term of equation (8.3), and the outer equipment velocity feedback control gain Z,. In
this configuration, a gain of Z, =60 guarantees a 6 dB stability margin. Figure 8.4

shows the equipment velocity per unit primary excitation for the uncontrolled case
and for different gains in the outer feedback loop. There is a difference between the
equipment-dominated resonance frequency when no device is installed (solid line),
and the new resonance frequency of the system when the modified inertial actuator is
applied on top of the piece of equipment (faint line). This is due to the actuator acting
as a tuned vibration neutraliser, as explained by den Hartog (1985). This “passive”
effect of the modified inertial actuator with inner feedback on the equipment
dynamics can be seen from the response when the outer loop is not implemented
(Z, =0), which shows a lowered and well damped first resonance frequency,
dominated by the actuator’s response, as well as a damped equipment resonance
frequency. In this case, the damping effect seems to be more evident than the mass-

loading effect. When the inner feedback gain gy is increased, substantial damping is
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added to the system and both the first and second resonances are well attenuated,
while attenuation at higher frequencies is experienced for high values of the gain gy.

Good vibration isolation conditions can be achieved at the mounted natural frequency
of the equipment by the modified inertial actuator and the outer velocity feedback
loop. The outer loop, with response Zp, improves the behaviour of the equipment-
dominated resonance, but it also enhances the magnitude of the inertial actuator
resonance, as expected, by up to 10 dB at 10 Hz in Figure 8.4. When Zp = 60 (dashed
line in Figure 8.4), an impressive 24 dB attenuation is present at the equipment

resonance frequency compared to the case where no device is installed.

0.5

Imaginary

Real

Figure 8.3 Predicted Nyquist plot of the open loop transfer function of the
complete system in Figure 8.2, equipment velocity per unit command
signal, when gp = -1000, the self-levelling coefficient A = 0.4, the
derivative gain gy = 18, and the outer velocity control feedback gain Zp =
60. The modified inertial actuator is directly installed on the equipment.
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Figure 8.4 Predicted frequency response of the equipment velocity per
primary excitation when no modified inertial actuator is installed (solid),
when the modified inertial actuator is installed but no outer velocity
feedback loop is implemented (faint), and when both the modified inertial
actuator and the outer velocity feedback loop are implemented with Zp =
60 (dashed). Under ideal conditions stability is guaranteed when Zp < 120.

The mechanical impedance of the modified actuator with outer velocity feedback loop

1s given from equation (4.10) and equation (4.12) by substituting f, =—-Zpv,

- (jam,k, —w*myc, ) [H(jo) + joz,|- jo’m,Z,Z,

- 2 . , (8.3)
(ka + jawc, —w m, +H(]a)))]a)Za

which is plotted in Figure 8.5 for the same values of the PID gains used in Chapter 4

and an outer velocity gain of Z, =60. It can be noted that the actuator impedance
Z = f, /v,, past the first resonance frequency, tends to the desired impedance plus the
derivative gain and the mechanical damping factor, Zp+ g, +c,= 96 N/ms™, which

indicates that the overall system, composed of the modified inertial actuator with

outer feedback loop, is similar to a skyhook damper.
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Figure 8.5 Mechanical Impedance of the inertial actuator with inner and
outer feedback loops when the inner displacement feedback control and the
outer velocity feedback control are implemented. In particular, gp = -1000,
A=04, gy =18 and Zp = 60.

8.3 Importance of the mass ratio between equipment mass and

inertial actuator proof-mass

In this section, the importance of the mass ratio between equipment mass and inertial
actuator moving mass, K& = mg,/m, , will be discussed. In a realistic application, this
ratio is likely to be less than 1, and in the specific simulated and experimental case
described in this chapter and in Chapter 9 using the ULTRA actuator the ratio u =
ma/m, 1is equal to 0.2. The equations derived in the last section still hold when the
ratio in increased to about 1, which applies to the case where an LDS Ling V101
shaker is used, whose internal mass is m, = 0.91 Kg. For values of the mass ratio
close to unity, the mechanical impedance shows that very good damping can be
achieved by the inertial actuator with inner feedback, but without outer velocity
feedback and this implies that the same values of the outer gain Zp can be used to
achieve a better performance than the case described in the previous section.

Figure 8.6 shows the Nyquist plot of the equipment velocity per unit command signal
for different values of the inner velocity loop gain gy when the mass ratio is about 1.

The effect of the inner velocity feedback gain of increasing the damping at the
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equipment-dominated resonance frequency and the inertial actuator resonance
frequency can be noted. When the inner velocity feedback gain gy is increased, the
portion of the curve on the left-hand side of the imaginary axis decreases, adding
~damping to the actuator resonance. This is highly beneficial to the overall system
because it is more stable to begin with. The Nyquist plot also suggests that the effect
of increasing Zp is good attenuation of the equipment-dominated resonance, and
enhancement of the actuator resonance. It can be noted from the dashed line that the
maximum gain Zp that is allowed before instability is 220.

Figure 8.7 shows the equipment velocity per unit primary force for different values of
the gain gy. There is a difference between the equipment-dominated resonance
frequency when no device is installed (solid line), and the new resonance frequencies
of the system when the modified inertial actuator is applied on top of the piece of
equipment. In terms of performance, Figure 8.7 also shows the behaviour of the
complete system when the device is installed and no outer loop is implemented. It is
the situation depicted in Figure 8.1, where no command f, is present. The faint line
shows the effect of the self-levelling controller, which is an enhancement of the
magnitude of the first resonance frequency. When the gain gy is increased, substantial
damping is added to the system and both the first and second resonances are well
attenuated, while attenuation at higher frequencies is experienced for high values of
the gain gy. From a performance point of view, both gp and g; must be considered as
set values. gp determines the position in frequency of the actuator resonance, and g,
determines the response of the actuator. However, if g;is increased, the device moves
closer to instability and therefore only gy can be considered as significant in
improving the performance of the device. Also, between gy = 20 (dotted line) and gy
= 100 (dashed-dotted line) the shape of the curve in Figure 8.7 changes considerably.
In fact, when gy is increased, the device starts behaving as an overdamped system. As
a result, high attenuation of the equipment resonance can be achieved, but at the same
time the device is mass-dominated. This leads to a lower resonance at about 15 Hz,

which increases in magnitude when gy increases within the overdamped region.
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Figure 8.6 Nyquist plot of the equipment velocity per unit command signal
when A=0.4 and different inner feedback loop gains gv are used: gy =0
(solid), gy =10 (faint), gy =20 (dashed), and gy =100 (dotted). Mass ratio
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Figure 8.7 Equipment velocity per unit primary force when no device is
installed on the equipment (solid) and with an inertial actuator attached
with inner feedback, where A=0.4, gp = 200, and different inner feedback
loop gains gy are used: gy =0 (faint), gy =10 (dashed), gy =20 (dotted),
and gy =100 (dashed-dotted). Mass ratio (Lt =1.

159



Figure 8.8 shows the equipment velocity per unit primary excitation when both inner
and outer feedback loops are implemented so that the outer controller is added to the
“passive” effect provided by the device and its inner controller. The outer loop, based
on Zp, improves the behaviour of the equipment-dominated resonance, but it also
enhances the magnitude of the inertial actuator resonance, as expected. For example,
when Zp = 200 (dotted line), an additional 18 dB attenuation is present at the
equipment resonance frequency compared to the “passive” case, which leads to an
overall 30 dB attenuation compared to the uncontrolled case in Figure 8.7. The
comparison between the case where no device is installed on the equipment (solid line
in Figure 8.7) and the performance plot in Figure 8.8 suggests that care must be taken
to avoid possible instabilities due to the actuator resonance, but this feature can be
achieved and, more importantly, a considerable attenuation in the equipment velocity

can be obtained.
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Figure 8.8 Equipment velocity per primary excitation when the inner
feedback loop gains A=0.4, gp = 200, and gy =20 are used, and different
outer velocity feedback control gains are implemented: Zp=0 (solid),
Zp=20 (faint), Zp=100 (dashed), and Zp=200 (dotted). Under ideal
conditions, stability is guaranteed when Zp < 220.

In conclusion, even if a modified inertial actuator with low mass ratio & = m,/m, does
not seem to provide the closed loop system with the same vibration attenuation as the
above case, it becomes very helpful both in terms of stability and performance when
the outer equipment velocity feedback loop is implemented. In fact, implementing the

outer velocity feedback loop, good attenuation can be achieved.
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As described in Chapter 2, the actuation force is proportional to m, X, x being the

relative displacement of the proof-mass. But m, ¥ = —@”m,x, which indicates that at

low frequency, in order to obtain considerable force, long strokes are needed. This

puts a limit in the size of the actuator and its performance. Also, since m, is involved

in these considerations, this implies that # also limits the size of the actuator, because

for smaller 4, longer strokes are necessary.

8.4 Conclusions

It was found that the new device is effective in actively isolating a piece of equipment
from the vibrations of a base structure. Although the overall system is conditionally
stable, very good performance can be achieved.

When the device is installed on top of the equipment and no outer loop is
implemented, the overall system can achieve good performance if the ratio ¢ between
the moving mass of the actuator and the equipment mass is large. When g is small,
the passive effect is consequently small, but encouraging performance can still be
obtained with the outer feedback loop. Another important effect of the choice of uis

the limitation imposed on the stroke of the inertial actuator.
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Chapter 9

Experiments on active isolation with an inertial actuator having
inner actuator displacement feedback

9.1 Introduction

This chapter describes the experimental work on the active isolation of a rigid piece of
equipment structure from the vibration of a flexible base structure using a modified
inertial actuator and an outer velocity feedback control. The objective is to validate the
theoretical findings described in Chapter 8 and to study the performance and control
stability issues associated with the active vibration isolation system. Particular emphasis is
placed on the isolation of low frequency vibration (0~50Hz), in which the equipment
resonance lies and for which the mounts can be assumed to behave as lumped springs and
dampers. The inertial actuator that was used for the experiments was the modified
ULTRA ATVA described in Chapter 4, while the equipment and set-up used to perform

the active vibration isolation experiments are very similar to what was used in Chapter 7.

9.2 Description of the experimental set-up

Figure 9.1 shows the active mount system used in the experimental work. It consists of an

aluminium rigid mass, two mounts placed symmetrically underneath the aluminium mass
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and one electromagnetic shaker to produce the control force. The inertial actuator is
placed on top of the mass and no suspension system is required. Finally, an accelerometer
is used to measure the equipment velocity and unlike the experiments described in Chapter
7 no force gauges are used, making the system easier to assemble and more structurally
robust. Figure 9.16 shows a closer image of the apparatus and it can be noted that also in
this case the shaker can only generate axial forces and therefore only the axial motion can
be entirely controlled, since the mass is supposed to be perfectly rigid in the frequency

range of interest.

Figure 9.1 Image of the experimental set-up, which consists of the piece of
equipment, which is mounted on top of passive rubber rings, which is attached
to a plate. Underneath the plate, a shaker supplies the primary force. The
ULTRA inertial actuator is directly connected to the equipment.
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Figure 9.2 Image of the core of the experimental set-up, which consists of the
piece of equipment, which is mounted on top of passive rubber rings. The
ULTRA inertial actuator is directly connected to the receiver.

9.3 Experimental implementation of the active isolation system with the

modified inertial actuator

The new experimental set-up was considered to be that described in Chapter 7 with in
addition the inner displacement feedback loop described in Chapter 4. In order to evaluate
the stability properties of the closed loop system, white noise from the FFT analyser was
used to drive the command signal. This signal was also connected to channel A of the
analyser. The acceleration signal at centre of the equipment was measured using an
accelerometer and then integrated. The integrator was operated in conjunction with a high-
pass filter, whose cut-off frequency was preset to be 1 Hz. Finally, the velocity signal was
connected into channel B of the analyser to measure the frequency response function of
the equipment velocity per unit command signal. The inner feedback loop was
implemented using the signal from the strain gauge internal to the inertial actuator. This
signal was then connected to a signal amplifier and fed to the PID controller, the output of

which was then connected to the summing box. The output of the summing box was

164



finally connected to the inertial actuator. Figure 9.3 shows an implementation of the

experimental set-up.
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Figure 9.3 Experimental set-up in order to measure the equipment velocity
per unit command signal when the inner PID feedback control scheme is

implemented.

The stability of the closed loop system can be assessed from Figure 9.4, which shows the
measured Nyquist plot of the open loop response of the plant, based on the modified

inertial actuator on the passive isolation system and the outer velocity feedback control
gain Z,. In this experimental configuration, a gain of Z, =45 guarantees a 6 dB
stability margin. The corresponding theoretical prediction is shown in Figure 8.3, which

shows that the same stability margin is guaranteed when Z, =60 .

165



Real

Figure 9.4 Measured Nyquist plot of the open loop transfer function, equipment
velocity per unit command signal, when gp = -1000, the self-levelling coefficient
A = 0.4, the derivative gain gy = 18, and the outer velocity control feedback
gain Zp = 60. The modified inertial actuator is directly installed on the
equipment.

The set-up in Figure 9.3 was then modified in order to evaluate the performance of the
active isolation system with both an inner actuator displacement feedback loop and an
outer equipment velocity feedback loop, as shown in Figure 9.5. The FFT analyser was
used to measure the frequency response of the equipment velocity per primary excitation
as well as generate the white noise signal. The white noise signal drove the primary shaker
to excite the flexible base, and the excitation force signal was measured by a force
transducer connected to channel A of the analyser. When the equipment structure was
excited, the equipment acceleration was measured and integrated. The velocity signal was
then connected to channel B of the analyser to measure the frequency response function of
the equipment velocity per unit excitation force. A built-in filter in the analyser was
employed to reduce aliasing. As explained above, both inner and outer feedback loops

were implemented.
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Figure 9.5 Experimental set-up in order to measure the equipment velocity
per unit primary excitation when the inner PID feedback control and the outer
velocity feedback control schemes are implemented.

Figure 9.6 shows the equipment velocity per unit primary excitation for the uncontrolled
case, with the inertial actuator attached having only the inner feedback loop connected,
and for different gains in the outer feedback loop. As explained in the previous chapter,
there is a difference between the equipment-dominated resonance frequency when no
device is installed (solid line), and the new resonance frequency of the system when the
modified inertial actuator is applied on top of the piece of equipment (faint line). This
“passive” effect of the modified inertial actuator with inner feedback on the equipment
dynamics can be seen from the response when the outer loop is not implemented

(Z, =0), which shows a lowered and well damped equipment resonance frequency. Even

better vibration isolation conditions can be achieved at the mounted natural frequency of
the equipment by the modified inertial actuator and the outer velocity feedback loop. The
outer loop, with response Zp, improves the behaviour of the equipment-dominated
resonance, but it also enhances the magnitude of the inertial actuator resonance more than

in the theoretical predictions in Figure 8.4, which is a sign of being closer to the unstable
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region. The dashed line, obtained for Zp = 60, has a very good stability margin, which
implies that Zp = 60 is a perfectly reasonable ambition in a real implementation and yet
gives 22dB attenuation at the equipment resonance frequency. The system with both inner
PID and outer velocity feedback loops thus has a good stability margin and it performs

very well.
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Figure 9.6 Measued frequency response of the equipment velocity per primary
excitation when no modified inertial actuator is installed (solid), when the
modified inertial actuator is installed but no outer velocity feedback loop is
implemented (faint), and when both the modified inertial actuator and the outer
velocity feedback loop are implemented with Zp = 60 (dashed). Under
experimental conditions stability is guaranteed when Zp < 90.

9.4 Conclusions

The objective of this experimental work was to investigate the active isolation of a two-
mount flexible equipment structure from a vibrating base structure using a new device,
based on an inertial actuator with inner displacement feedback control. The equipment
velocity responses measured from the experiments agree reasonably well with the
predicted results. Good stability margins of the multi-channel feedback control system are

verified in the experimental implementations.
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It was found from the simulations and the experiments that the new device is effective in
actively isolate a piece of equipment from the vibrations caused by an underneath base

structure.
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Chapter 10

The equivalent impedance of power-minimising vibration
controllers on plates

10.1 Introduction

Inertial actuators could be used for the control of vibration on flexible structures as

well as for active isolation. Whereas for active isolation it is clear that the target
impedance of the actuator, Z, in the loops previously described, should just be very

large, it is not clear what this target impedance should be in the more general active
vibration control case. In this chapter feedforward control of vibration on infinite and
finite plates is considered in an attempt to understand what the target impedance
should be in this case.

A description has been given in Bardou et al. (1997) and Brennan et al. (1995, 1998)
of the performance of two possible strategies that can be used to design an active
vibration controller: total power minimization and maximization of the power
absorption of the secondary source (Sharp et al., 2002).

In this chapter, the total power generated by all the forces acting on the structure is
used as a function to be minimised, as described by Howard er al. (2000). This
approach has also been used as a noise control technique by Elliott et al. (1991) and
Tanaka er al. (1988). If we assume the system to be linear such that the velocity fields
produced by the forces can be superimposed, then the total power has a known

minimum value that is associated with an optimal solution, as shown by Elliott et al.
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(1991, 1997) and Nelson and Elliott (1992). This solution can be compared to what
the passive treatments manage to accomplish. Since this solution is optimal, no other
strategy can perform better. The question is then how well a certain passive control
scheme performs with respect to the optimal solution when the optimal impedance is
replaced with its equivalent passive approximation, as shown in Figure 10.1. This is

one of the main issues discussed here.

Figure 10.1 (a): A point primary force and a point secondary force applied to an
infinite thin plate. (b): A point primary force and an equivalent impedance applied to
an infinite thin plate.

A lot of work has been carried out in order to synthesize load impedances which
achieve desired performances (using semi-definite programming, for example, by
Titterton, 1999), and in this study optimal impedances and impedances generated by
passive devices (also studied by Guicking ez al., 1989) will be compared. The goal is
to use these devices in order to reduce the total power, acting on a local basis, as also
illustrated by Yuan (2002). Also, unlike most of the literature on this subject, the
primary disturbance will be considered to be broadband rather than single frequency
(Titterton, 1999 and Fuller et al., 1997), and so the realisability of the equivalent
impedance must be addressed.

One of the limitations of some of the models presented in the literature is that the
primary force and the secondary control force are acting along the same axis. In real
systems, there will inevitably be some mismatch between the point of application of

the primary force and the point of application of the secondary force. This issue has
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been addressed by Jenkins et al. (1993), and their results show that appreciable

reductions in total power can only be achieved if the secondary force is applied at a

distance within 34, /8 from the primary force, where Ay is the flexural wavelength in

the receiving structure at the frequency of interest.

Infinite plates will be considered first and finite plates will then be analysed. In
particular a flexible plate, clamped on two edges and free on the other two, will be
considered. Then, the optimisation of the spring/damper approximation to the

equivalent impedance is discussed, followed by the conclusions.

10.2 Equivalent impedance for global control of vibrating infinite

plates

In order to analyse the problems described in the introduction, we now examine a
single point secondary force f; separated by a distance r from a point primary force, f,,
both forces being applied along the z-axis on an infinite plate. This configuration is
2o (@)

folw)

for an infinite plate, where z,(w)is the velocity in the z direction, evaluated at a point

depicted in Figure 10.1(a). The expression for the driving point mobility Y, =

Py =(xy,¥0),and f,(w) is the excitation force at F,, is given by

w 1

Yoo = = , (10.1)
® " 8Dk?  8JDm
3
where D = P is the plate’s bending stiffness, E is its Young’s modulus, [ = TR
-0

where # is the plate thickness, ¥ is the Poisson’s ratio, m = ph is the mass per unit
area, and p is the density of the plate material. It is important to note that Y, is
independent of frequency and it is real. The transfer mobility, between two points

z,(w)

fo(w)

P =(x;,y,) and Py =(x5,¥¢), Yio = is given by (Cremer et al., 1988)
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_w ) @
YIO—W[HO (kr)—H$P( ]kr)], (10.2)

. . : w
where r = \/(x1 —xo)2 +(y; — yo)2 is the distance between the points, k& =—,
‘p

D
c¢p =4/—+ @ is the phase velocity, and H éz) (+) is the second kind of Hankel function
m

of 0™ order. This function can be written as
HP (kr) = J,(kr)— jY, (kr), (10.3)

where J,(kr) is the O™ order Bessel function of the first kind and Y,(-) is the 0"
order Bessel function of the second kind. While Hé2) (kr) has real and imaginary
parts, H 82) (—jkr) is entirely imaginary.

It is now possible to define a cost function that will be used as the reference for all the

remaining computations. The chosen cost function is the total power supplied to the

plate, which is given by the sum of the power II, due to the primary force acting in

P, and the power II due to the secondary force acting in P, . It can be expressed as
[T=1I, +1I1; (10.4)

and rewritten considering that the total power is also one half of the real part of the
forces times the complex transverse velocity of the plate at the position of the

application of the forces. This total power can also be written as (Jenkins et al. 1993)
M=1Relfiv, + v )= Alf | + £1b+0° 10.5
= eV, v, + v = AL + f+b"f, +c, (10.5)

which is a quadratic form where the parameters of the last term of equation (10.5) are

1 1 1 2
A=_Re(t,) , b=_Re(ty)f ,czg‘fp| Re(Yy,),  (10.6,7,8)
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where Y;; is the driving point mobility at location P, =(x,,y,). In particular, the

power of the primary force only, which provides the power of the system without any
sort of treatment, is given by setting the secondary force in equation (10.5) to zero.

This leads to

IT,=c. (10.9)

I,  =c———, (10.10)

which is associated with an optimal secondary force f,, given by (Nelson et al.,

1992)

fo=—7=~ f>- (10.11)

In the particular case of an infinite plate, from equation (10.1) follows that

Re(Y,,) =Y, (10.12)

and from equation (10.2) and equation (10.3) the real part of the transfer mobility for

an infinite plate is given by

Re(Y,,) = Yoo o (k7). (10.13)

Thus the optimal solution in equation (10.11) can be rewritten as (Jenkins et al. 1993)

fso = _JO (kr)fp (1014)
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and its corresponding power is given by

I1,, =[1-Jg (k). (10.15)

The effectiveness of the optimal solution can be established by comparing equation

(10.15) with the power input due to the primary disturbance f,, given by equation

(10.9). Equation (10.15) is plotted in Figure 10.2 as a function of kr. The optimal
secondary force significantly reduces the total power supplied to the plate for values
of kr below about 1. However, this attenuation tends to zero for larger values of kr.
Thus placing the secondary force close to the primary force allows the system to
perform well over a broad range of frequencies. If the location of the secondary force
were to coincide with the location of the primary force, then the total power would be

zero at all frequencies, which indicates a total cancellation of the disturbance.

Total power (dB)

-50

Figure 10.2 Total power transmitted to an infinite plate, normalized to that due to
the primary force only, when the primary and optimal secondary forces are applied
(faint), and when the secondary force is replaced by a spring, whose stiffness is
given by equation (10.23) (dashed).

The optimal “equivalent” impedance that is presented to the system in order to obtain

such attenuation in the total power is now computed. The velocity v, of the base at
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P, where the secondary force is acting, is given by a combination of the effects of the

primary force, f,, and the secondary force, f,, at P,
v, =Y f, + Y0 Sy (10.16)

where Y, =Y;; in this case. If the secondary force f, is chosen to be the optimal
solution, f,,, described in equation (10.14) and substituting equation (10.14) into

equation (10.16), the velocity of the base at P, as a function of the primary force,

when the optimal solution is implemented, is found to be
v, =YY o kI, - (10.17)

From equation (10.14) it follows that

1
=- 1
fP Jo (kr) f.m’ (10 8)

which substituted into equation (10.17) provides a way of calculating the equivalent

impedance presented by te secondary actuator to the plate. This is given by

z, =TT __ Tor) (10.19)

Py Y=Y (kr) Y (HP k) -HO (= jkr) =T, (kr)]

S0

and it expresses the impedance that the secondary optimal force is presenting to the
system in order to minimise the cost function given by the total power. The numerator

of equation (10.19) is real, and its denominator is purely imaginary, thus Z,, is

entirely reactive (Elliott et al., 1991). Considering only the first terms of the series
expansion (Abramowitz et al., 1972) of equation (10.19) in terms of r, an

approximated expression can be obtained
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(10.20)

where ¥ = 0.577 is Euler’s constant. The primary drawback of this result is that the

compensator is non-causal (Miller et al., 1990). Equation (10.20) can be further

expanded into

fu _ 1 22Dl —4JDim) &, 1021)
Vo JW rz(y—l+ln%] J@

where the dependence on L has been made explicit in order to be able to express
J

the remaining term as a stiffness coefficient k,. The low frequency approximation of

the stiffness coefficient k, in equation (10.21) is given by

ko= 87D . (10.22)

¢ kr
r}1-In—-— j
[ 27

For very low frequencies and for separation distances kr =0.01, in which case

ln% = -5, equation (10.22) can be rewritten as

k, = D (10.23)

a = r2(6 _ }/) .
The full expression for the equivalent impedance, equation (10.19), is plotted in
Figure 10.3, along with its passive approximation, given by a stiffness term ]f—“,
jw
where k, = 1.2-10° N/m, as computed from equation (10.23) for the 1.85 mm plate

when the distance r between primary and secondary forces is 2 cm.
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Figure 10.3 Equivalent impedance due to the optimal solution (solid) and

comparison with an impedance due to a spring whose stiffness is 1.2-10° N/m

(faint).

At low frequency, the equivalent impedance is very similar to the impedance given by
a spring, whose stiffness is very large. When the above passive approximation is used
instead of the optimal solution, the total power as a function of k7 is shown as the
dashed line in Figure 10.2. As expected, at low values of kr the performance of the
passive solution is close to optimum. For values of kr between about 1 and 2,
however, the performance of the passive solution is worse than applying no control at
all. Appreciable reductions in total power can only be achieved if the secondary force

is applied at a distance within 34, /8 from the primary force (Jenkins et al. 1993),

where A is the frequency-dependent flexural wavelength in the receiving structure.
When this distance is 2 cm on a 1.85 mm steel plate, reductions can be achieved up to
550 Hz, while when this distance is 20 cm, the optimal solution is effective only up to
60 Hz. When the value of the stiffness tends to infinity, the system behaves as an
infinite plate pinned at the secondary location. In this case, attenuation in the total
power for low values of kr is not as great as in the case when k, = 1.2-10° N/m. On
the other hand, when kr assumes values between 0.5 and 1.5, the pinned case shows
better results in terms of total power than the low kr approximation. One way to

evaluate the performance of a passive control solution is the ratio of the frequency
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(P

averaged power values. This ratio is defined as P =10log,,+——, where (Pr> and

(R.)

(Pu> represent, respectively, the power of the controlled and uncontrolled system,

averaged over the frequency range 0 Hz to 200 Hz. As a function of the passive

stiffness constant &, , the frequency averaged power ratio reaches a minimum value

when k, = 2-10® N/m, before it increases slightly and then it settles at the constant
value of the averaged power ratio of —0.28 dB, which indicates that the plate is pinned
and the system does not benefit from higher values of the stiffness. The choice of k, =
1.2-10° N/m is thus appropriate in order to achieve the best possible reduction at low
kr, using only a stiffness term, but in order to minimize the averaged power ratio as
defined above, it is better to pin the secondary location.

For kr > 1, the following Bessel’s functions may be replaced with sufficient accuracy

by their asymptotic representations (Skudrzyk, 1968), and in particular

2 V4

J (kr)= |—cos| kr —— 10.24

o (k1) e ( 4J ( )
27 . T

Y,(kr) = —sm(kr——j (10.25)
kr 4

H® (kr) = \/mze_j[kr_%]. (10.26)
r

Equation (10.1), equation (10.2) and equation (10.3) describe the terms to be used in
equation (10.19) to compute the high-kr approximation of the optimal impedance,

which is found to oscillate about

Z,, =8/Dm, (10.27)
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which is equal to the infinite plate driving impedance obtained by the reciprocal of
equation (10.1). Figure 10.3 shows that, after the stiffness-like behaviour for low
values of kr, the optimal solution oscillates about an averaged value given by the
driving point impedance of the infinite plate Z,, = L, which is equal to 323 N/ms’'
00
for the plate considered above. The equivalent impedance, equation (10.19), is
entirely reactive and the mechanism of control, for low kr, is one of loading the
primary force, since no power can be absorbed by a reactive impedance. For larger
values of kr, the reductions in total power output are far less and the main problem in
generating a realisable approximation to the equivalent impedance is the increase in
the total power output that occurs at about k» =1 with the equivalent spring, as seen
in Figure 10.2. It has been found that larger attenuations can be obtained for kr =1 if

a damper, of value Z,, is connected in parallel with the spring. Figure 10.4 shows the

total power transmitted to the infinite plate when the secondary force is given by such
passive ideal impedance (whose impedance is shown in Figure 10.5) and its
performance is compared to the optimal case. For values of kr between 3 and 5, the
equivalent impedance is either mass or stiffness dominated, whereas this passive
approximation to the equivalent impedance is damping dominated, but nevertheless
the total power with the equivalent impedance is not very different from the optimal
case. Comparing Figure 10.2 and Figure 10.4, the improved performance due to the
new approximation to the equivalent impedance can be noticed. The frequency
averaged power ratio between the controlled system, which uses the spring-damper
impedance and the uncontrolled system, as a function of the passive stiffness constant
k. when the damper value is kept constant at 323 N/ms'l, shows that the minimum of
the curve occurs when k, = 1.2-10° N/m. For this configuration of the approximation
to the equivalent impedance, the averaged power ratio is about —0.444 dB, and this
value is less than the —0.3 dB, which was obtained when implementing a stiffness as
an approximation to the equivalent impedance. For large values of the stiffness %, , the
ratio tends to —0.28 dB only, showing that for this value, the infinite plate is pinned at

the secondary location.
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Tolal power (dB)

Figure 10.4 Total power transmitted to an infinite plate, normalized to that due to
the primary force only, when the primary and optimal secondary forces are applied
(faint), and when the secondary force is replaced by a spring and a damper, whose
stiffness and damping values are k, = 1.2-10° N/m and ¢, = 1/Yg = 323 N/ms™
(dashed).
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Figure 10.5 Equivalent impedance due to the optimal solution (solid) and
comparison with an impedance due to a spring and a damper whose stiffness and

damping values are k, = 1.2 - 10° N/m and ¢, = 1/Yyp = 323 N/ms™ (faint).
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In conclusion, when a secondary force is applied to an infinite plate to counteract the
vibrations due to a primary force, the equivalent impedance of the optimal solution to
the secondary force can be used to motivate a realisable passive approximation to the
optimal active solution. This is given by the parallel combination of a spring and a
damper. The stiffness approximates the behaviour of the optimal solution for small
values of kr, while the damping approximates the frequency-averaged behaviour for
greater values of kr, as shown in Figure 10.5. When the distance between primary and
secondary forces is small compared with the flexural wavelength, the important part
of the effective passive approximation to the optimal solution is thus the stiffness,
while at greater distances, dissipating energy through a damper is the most effective
way of controlling the power output. If calculations are performed with a number of
primary forces having randomised phases, for which kr > 1 in each case, the optimal
equivalent impedance, for minimum total power output, also tends to the driving point

impedance of an infinite plate, Z,, . Since the equivalent impedance can no longer

directly load the primary sources, its best strategy is to absorb power, and the
impedance which absorbs the maximum power from a network is the conjugate of the
network’s driving point impedance (Elliott et al., 1991). This is known as the matched

load, and since Z,, is real in this case, the matched load is also equal to Z .

10.3 Equivalent impedance for global control of vibrating finite

plates

In order to apply the optimal solution to a finite plate, we now examine a single point

secondary force f; acting in P, separated by a distance r from a point primary force
acting in P,, both forces being applied along the z-axis on a finite plate. This

configuration is depicted in Figure 10.6. In the simulations it is assumed that the 700

x 500 x 1.85 mm (=[x [, x h) plate is clamped on two opposite ends and free to

move on the other two.
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Figure 10.6 A point primary force and a point secondary force applied to a finite
700 x 500 x 1.85 mm plate clamped on two opposite edges and free on the other two
edges.

These particular dimensions and boundary conditions were chosen to correspond to
those of an experimental plate used in previous investigations (Benassi et al.,
2003a,b). Y, is again the driving point mobility at Py = (x,,y,), Y, is the transfer
mobility when the point of excitation is F, and the measurement occurs at
P, =(x;,y;), and Y, is the driving point mobility at F . The driving point and
transfer mobilities, relating the vertical velocity and the force excitation at the
locations F, and F, can now be derived using a modal superposition approach

(Soedel, 1993). The general expression for the mobility ¥, when the force is applied

in P, and the velocity is measured in P, is given by

(P)®,, (P;)

j o mn mn
y, =22 (10.28)
’ M Z= Zl lmz a)mn (1 + ]77) w ]

where the indices m and n represent the number of half standing waves in the x and y

directions for the natural mode @, . The term &, is a normalising factor (Cremer et

mn mn

al., 1988), M is the total mass of the plate, o,

mn

is the m,n-th natural frequency of the
flexural vibration and 7 is the hysteretic loss factor (Cremer et al., 1988). The plate

under study has two clamped edges and two free edges, therefore an exact solution of
the wave equation and the boundary condition equations cannot be found. Thus an
approximate solution must be used (Leissa, 1969). The expressions for the terms in

equation (10.28) can be found in the work by Leissa (1969) and Bishop et al. (1960).
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The cost function given by the sum of the power input due to the primary and

secondary force, II=TI,+II , can still be expressed in the quadratic form of

equations (10.5) to (10.8) and thus be minimised with an optimum secondary force.
The total power due to the primary force only, equation (10.9), is compared in Figure
10.7 with the total power described in equation (10.10) when the secondary force is
given by the optimal solution described by equation (10.11). Figure 10.7 shows the
power supplied to the finite plate due to the primary force only (solid line), applied at

an arbitrary location P; = (0.32 m, 0.27 m), and due to the combination of the

primary and optimal secondary force (faint line), applied at a distance r = 2 cm, at the
location P, = (0.3059 m, 0.2841 m) from the primary. The reduction is substantial,
with some of the modes being almost cancelled, while others are greatly reduced. This
is due to the particular location that was chosen for the secondary force. At that
location, the secondary force can couple into most modes, but this location is either on
or close to the nodal lines of those modes that are not completely flattened out. The
impedance that the secondary force has to present to the system in order to minimise
the total power is obtained by computing the optimal secondary force per unit velocity
s

vSO

at the secondary location,

. The velocity of the base v,, at P, when the optimal

solution is implemented is given by

Vso = YlOfp +Y11 $0° (1029)

Substituting equation (10.11) into equation (10.29), the equation becomes

Re(Y,
v, =Yof, _YII[RZEYf;J’IP , (10.30)

which represents the velocity as a function of the primary force. Combining equations
(10.11) and (10.30), the equivalent impedance when the optimal secondary force is

implemented can be obtained. It is given by
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fu Re(Y;,)

Z o = : (10.31)
Ve Re(lp)¥y, —Re(¥})Y,

This equivalent impedance, which is again entirely reactive, is shown in Figure 10.8,
where it can be seen that sharp transactions occur between the stiffness dominated
regions and the mass dominated regions. Between 0 and about 45 Hz, the impedance
is stiffness dominated, as it is between about 60 Hz and 120 Hz, and between 155 Hz
and 175 Hz. In the remaining intervals within the 0~200 Hz window, the impedance is
mass dominated. As for the infinite plate case, this impedance is non-causal (Miller et
al., 1990) as it can be verified by computing the FFT of the result shown in Figure 8.

Equation (10.31) can be rewritten as

1
Z = , (10.32)
opt Re(Y.
1 L“)Ym
Re(Y),)
where, from equation (10.28),
=& @2 (P)oww?,
Re(¥,)=YY m ] (10.33)
m=ln=l A, [(a)m,l - ) +nw,, |
and
=D (P)D (P 2
Re(Ylo): ZZ mn( 1) mn( O)Cl)a)m”ﬂ (1034)

2 .
wm A 0?0 0t

At very low frequency the ratio between the real parts in equation (10.32) can be

approximated by taking only the first modal term, in which case

RC(YII) CI)ll(Pl)
Re(Y,)) @, (R)

(10.35)

I
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The mode shape of the first mode can be found in the work by Bishop and Johnson

(1960), and at low frequency, for the chosen locations, from equation (10.35), then

RelY,
e(¥,) =0.84. At very low frequencies the driving point mobility ¥,, can also be
RC(Y ) y q g 1
10
approximated by
@2 (P
Y, = ]a)M;"(wlz) , (10.36)
where
2
ER’ z
a)“ = W(Z_J qzz- (1037)

The expression for the coefficient g,, is provided by Bishop and Johnson (1960) and

the normalising factor &, can be approximated using the factor for the free-free
boundary condition, which is given by g, = 1 Substituting the appropriate values in

the above equations, a low frequency approximation to the equivalent impedance Z,,

in equation (10.32) is given by

n*ER’l q2, 10°
Z,, =— —— 42 =2 ‘10 . (10.38)
jwa8(1- )LD (P)[®,,(B)-0.84®,(P)]  jo

As well as the equivalent impedance in the optimal case, Figure 10.8 also shows the

low-frequency approximation to the impedance given by a spring, whose stiffness is

ks = 9-10° N/m.
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Figure 10.7 Total power transmitted to the finite plate due to the primary force only
(solid) and due to the primary and secondary forces when the optimal feedforward
solution is applied and the distance between primary and secondary force is 2 cm

(faint).
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Figure 10.8 Equivalent impedance due to the optimal secondary force (solid) and

the impedance of an ideal stiffness whose value is k, = 9-10° N/m (faint). The
distance between primary and secondary force is 2 cm and the plate is finite. It can

be noted that the real part of the impedance is zero.
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When the distance r is equal to 20 cm, not as much attenuation in the total power is

obtained, as shown in Figure 10.9, which is calculated for the case where F, = (0.32

m, 0.27 m) and B = (0.179 m, 0.411 m). The optimal impedance also has lower
average values, compared to the case when r = 2, as shown in Figure 10.10, which
also shows the impedance of a spring, whose stiffness is k, = 2.5-10° N/m, that has
been computed in an analogous way to that above.

When the relative distance between primary and secondary forces is large and at low

frequency, the driving point mobility dominates the transfer mobility in equation

(10.32). Hence, when |YU‘ >> ‘Ym‘ then Z,, =7, =—Yl—. Equation (10.36) provides

11

opt

the approximation of the expression for the driving point mobility at low frequency

and it is equivalent to a stiffness of about 7-10* N/m. In the simulations, this is the
value of the stiffness that approximates the low frequency behaviour when the relative
distance r = 80 cm.

At high frequency or large relative distances r, the characteristic driving point or
transfer mobility are equal to the driving point or transfer mobility of an infinite plate
(Skudrzyk, 1968). Consequently, equation (10.12) and equation (10.13) describe the
real part of the driving point and transfer mobility for an infinite plate, while equation
(10.1), equation (10.2) and equation (10.3) describe the remaining terms to be used in
equation (10.32) to compute the high-kr approximation to the equivalent impedance,
which is found to oscillate about a value which is equal to the infinite plate driving
impedance. Assuming a constant location of the secondary force, and varying the
location of the primary force on the plate, it is found that for small relative distances
between the primary and secondary forces, the average of the optimal equivalent
impedance above 40 Hz can be approximated using a larger damper, whose maximum
damping value was found to be about ¢, = 4,000 N/ms™ when the distance » = 2 cm.
For large distances between primary and secondary forces the averaged equivalent
impedance can be approximated using lower values of the damping. The minimum
value that was found is about ¢, = 323 N/ms! when the distance r = 80 cm, as
expected from the above discussion. This indicates that even for finite plates, a
simplified approximation to the equivalent impedance is given by the parallel of a

spring and a damper.

188



-60

Power dB
|
o«
3

—-100

-120

L 1 ' L
0 20 40 80 80 100 120 140 180 180 200
Frequency (Hz)

N

Figure 10.9 Total power transmitted to the finite plate due to the primary force only
(solid) and due to the primary and secondary forces when the optimal feedforward
solution is applied and the distance between primary and secondary force is 20 cm

(faint).
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Figure 10.10 Equivalent impedance due to the optimal secondary force (solid) and

the ideal stiffness whose value is k, = 2.5-10° N/m. The distance between primary
and secondary force is 20 cm and the plate is finite. It can be noted that the real part
of the impedance is zero.
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10.4 Optimising the spring/damper approximation to the equivalent

impedance

The primary drawback of the optimal equivalent impedance shown in Figure 10.8 and
Figure 10.10 is that it is non-causal and so cannot be implemented with broadband
random excitations. Therefore, other solutions have been investigated even though
their performance will be worse than that one provided by the optimal solution. In this
section, the combination of an optimum stiffness and a damper will be analysed.
Firstly, the two solutions are investigated independently, then they will be considered
together, acting in parallel on the finite plate (Benassi and Elliott, 2003c). The relative
distance, r, between primary and secondary forces is assumed to be 2 cm for these

simulations.

10.4.1 Control with a spring

Figure 10.11 shows the ratio of the frequency-averaged power P , as defined above, as
a function of stiffness. The function descends monotonically until it flattens off at
about k, = 9-10° N/m, which indicates the minimum value of stiffness that provides
the greatest attenuation in power (about 14 dB). At low values of the stiffness, the

ratio of the frequency averaged power is very steep. Figure 10.12 shows the total

power when the stiffness is chosen to be k, = 9-10° N/m (dashed line), compared to
the optimal solution (faint line) and the uncontrolled case (solid line). It can be noted
that high attenuations can be achieved at low frequency due to the similarity between
optimal solution and passive equivalent approximation. Although k, = 9-10° N/m
seems to be a good choice at low frequency, as discussed above, at higher frequency
its effect is merely to pin the structure at the secondary location and therefore only a

redistribution of the resonances is experienced.
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Figure 10.11 Ratio of the frequency averaged power between power of
the uncontrolled and controlled plate, as a function of the stiffness value

k. After about k, = 9-10° N/m, the average power ratio does not

improve much. The distance between primary and secondary forces is 2
cm.
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Figure 10.12 Total power transmitted to the finite plate due to the
primary force only (solid), the primary and secondary forces when the
optimal feedforward solution (faint), and the primary and secondary
forces when the ideal displacement feedback is implemented and the
stiffness is k, = 9-10° N/m (dashed). The distance between primary and
secondary force is 2 cm.
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10.4.2 Control with a damper

Figure 10.13 shows the ratio of the frequency averaged power as a function of
damping ¢, introduced at P,. The minimum of the function at about ¢, = 4,000 N/ms’!

is —14.5 dB, and it indicates the value of damping that provides the greater attenuation
in terms of power. At low gains, the frequency averaged power is very steep then,
after reaching a minimum value, it settles towards the constant value —14 dB, which
indicates that the system is pinned and it does not benefit from higher damping
values. This limiting value is the same as that in Figure 10.11. Figure 10.14 shows the
total power when ¢, = 4,000 N/m (dashed line), compared to the optimal solution
(faint line) and the uncontrolled case (solid line). Compared to Figure 10.12, lower
attenuations are experienced below the first plate resonance and higher attenuations

can be achieved at high frequency.

Frequency averaged power ralio (dB)

os 1 15 2 25 8 85 4 45 s
damping <10*

Figure 10.13 Ratio of the frequency averaged power between power of

the uncontrolled and controlled plate, as a function of the damping value

¢o. The minimum of the function at about c, = 4,000 N/ms™ indicates the

value of the gain that provides the greater attenuation in terms of power.

The distance between primary and secondary forces is 2 cm.
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Figure 10.14 Total power transmitted to the finite plate due to the
primary force only (solid), the primary and secondary forces when the
optimal feedforward solution is applied (faint), and the primary and
secondary forces when the ideal velocity feedback is applied and the
damping value ¢, = 4,000 N/ms” (dashed). The distance between primary
and secondary force is 2 cm.

10.4.3 Control with a spring and a damper

We now assume that the secondary force is generated by a spring and a damper,
whose values are chosen by a joint optimisation. Figure 10.15 shows the contour plot
of the ratio of the frequency-averaged power as a function of damping and stiffness.
The ratio is maximum at the origin, after which it descends. The minimum of the
function (about —14.62 dB) occurs when the damping value ¢, = 4,000 N/ms’! , Which

coincides with the minimum of the curve in Figure 10.13, and the stiffness value k, =

5.5-105 N/m. Figure 10.16 shows both the equivalent impedance of the optimal
solution and the impedance of the chosen spring-damper system. In particular, the
passive approximation does not match the equivalent impedance at low frequency,
and this is due to the particular choice made for the stiffness, which minimises the
frequency averaged power. Figure 10.17 shows the total power when the chosen
spring-damper system is applied (dashed line). Compared to Figure 10.14, the system
clearly benefits at low frequency from the stiffness, and above the first plate
resonance, it benefits from the energy that has been taken away by the damper.

Compared to Figure 10.12 and Figure 10.14, this case provides a better performance.
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In summary, although the power reduction due to the parallel of a stiffness term and a
damping term is greater than the results obtained by using either a spring or a damper,
the difference in frequency averaged power between the parallel case and the single
cases 1s not substantial. This result holds for the case where the relative distance
between primary and secondary forces is relatively small and the frequency band of
interest includes low and higher frequency components. These conditions are often
met in practical vibration attenuation problems, while for limit cases, at very low or
very high frequency, or very short or very long relative distances, as discussed above,

the equations derived previously are valid.
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Figure 10.15 Contour plot of the ratio of the frequency averaged power
between power of the uncontrolled and controlled plate, as a function of
the damping value c, and the stiffness value k, . The minimum of the
function at —14.62 dB occurs when ¢, = 4,000 N/ms™" and k, = 5.5- 10°

N/m. The distance between primary and secondary forces is 2 cm.
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Figure 10.16 Equivalent impedance due to the optimal secondary force (solid) and
the ideal displacement and velocity feedback control, where the stiffness value k, =

5.5-10° N/m and the damping value c, = 4,000 N/ms” (dashed). The distance
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between primary and secondary force is 2 cm.
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Figure 10.17 Total power transmitted to the finite plate due to the
primary force only (solid), the primary and secondary forces when the
optimal feedforward solution is applied (faint), and the primary and
secondary forces when the ideal displacement and velocity feedback is

applied, where the stiffness value k, = 5.5-10° N/m and the damping
value ¢, = 4,000 N/ms” (dashed). The distance between primary and
secondary force is 2 cm.
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10.5 Conclusions

In this study the total power supplied to the structure by a primary and secondary
force was chosen to be the cost function to be minimised. In particular, the effect of
the distance between primary and secondary excitations was taken into account and
simulated for both infinite and finite plates.

The core of this study was the comparison between optimal solutions and the
performance of idealised passive control treatments. In particular, the optimised
equivalent impedance for global control was compared with its passive
approximation. It was found that, although the equivalent impedance is able to
provide a substantial total power reduction compared to the other treatments, ideal
passive solutions, based on the parallel configuration of a spring and a damper, can
guarantee a good power reduction. The locations of the primary and secondary
excitations and their relative distance may become an important aspect of the design
of the panel vibration controller. In fact, depending on the location of the primary
force with respect to the nodal lines, the power distribution of the uncontrolled system
changes and, depending on the location of the secondary force with respect to the
nodal lines, the optimal solution turns out to be more or less effective. Unfortunately,
in many practical applications a rigid ground is not available and therefore these
solutions cannot be implemented. The use of inertial actuators to provide substantial

attenuation in panel vibration is analysed in the next chapter.
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Chapter 11

Global control of a vibrating plate using an inertial actuator

11.1 Introduction

The objective of this chapter is to compare the results obtained in the previous chapter
with solutions obtained using inertial actuators for active vibration control. In order to
understand the implications and the consequences of using inertial actuators, in this

study we will be limited to using only one device.

11.2 Approximated equivalent impedance for global control of

vibrating finite plates

11.2.1 Mass-spring-damper system on flexible plate

Figure 11.1 shows the case where a passive system, comprising a mass, spring and a

damper, is installed upon the plate at P, = (0.3059 m, 0.2841 m), 2 cm from the
primary force at P, = (0.32 m, 0.27 m). The values that were used in the simulations

for the passive system corresponded to those of the modified ULTRA actuator and
were m, = 0.24 Kg, ¢, = 18 N/ms™! and ks = 2000 N/m, where m, is the proof-mass, ¢,

is the damping of the passive system and %, 1s its stiffness.
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Figure 11.1 A point primary force and a point secondary force, obtained
through a mass-spring-damper system, applied to a finite 700 x 500 x 1.85 mm
plate. The plate is clamped on two opposite edges and free on the other two
edges.

The transmitted force, f; , exerted by a mass-spring-damper system is equal to the

secondary force f; and it is given by equation (2.6)

_ jomk,—w*m.c,

=f = v, =—Z .V, . 15 !
te=d k,+ joc, —w'm, ° il R

The velocity, v, , of the base at P, is given by
Vi =Y10fp +1,/, :mep et 1T (11.2)

which can be rewritten as
Yo

v, =————f . 11.3
b A Ty i
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The total power I, described by equation (10.4), is shown in Figure 11.2 and in

particular the dashed line shows the effect of the passive controller. The addition of

k
the resonance frequency, @, = [—*, at about 14.5 Hz can be hardly noticed, as well

m

as the fact that the first resonances are slightly shifted to higher frequencies due to the
presence of the vibration neutralizer (den Hartog, 1985). Although some reduction in
the total power is obtained, compared to the case where only the primary force is
present, the difference with the optimal solution is large. The impedance of the
passive system is shown in Figure 11.3. The impedance is passive and it is mass
dominated between 0 Hz and the resonance frequency of the passive device, whereas
it is mainly damping dominated at higher frequencies. The behaviour of the
magnitude of the impedance is typical of the dynamic response of a vibration
neutralizer, which is quite different from the optimal solution in Figure 10.7. This
difference in the impedance presented to the system explains the considerable
difference in performance, together with the fact that the damping value of the
actuator is 18 N/ms‘l, which is much less than that calculated in Section 10.4.3 that is

required for optimal control (4000 N/ms™).
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Figure 11.2 Total power transmitted to the finite plate due to the primary force
only (solid), the primary and secondary forces with the optimal feedforward
solution (faint), and the primary and secondary forces when the mass-spring-
dashpot system with no other inner loop is applied (dashed). The distance
between primary and secondary force is 2 cm.
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Figure 11.3 Mechanical impedance of the mass-spring-dashpot system.

11.2.2 Inertial actuator with inner actuator displacement feedback and outer
equipment velocity feedback

Figure 11.4 illustrates the case where a modified inertial actuator, based on an inertial
actuator with inner displacement feedback, described in Chapter 4, is installed on the
plate at a distance from the primary force of 2 cm. The measurement of the
displacement of the proof-mass relative to the inertial actuator’s base is connected to
the usual PID controller, which modifies the frequency response of the actuator. The
values within the PID controller that were used in the simulations are: proportional
gain gp = -1000, integral gain g; = 10,000, and differential gain gy = 18.

The secondary force f; is equal to the transmitted force f; exerted by the device and its

equation, as a function of the command signal, f,, and the plate velocity at P, v,, is

given by equation (4.12)

2
-w’m,
fi=rf= P fe
—w'm, + joc, +k, + g, +>+ jog,
jow

, (11.4)
(jwmaka —wzmaca){gp +ﬁ+ JaxXgy +Z,,)]
. jo

[_a)zma +jax‘a +ka +gP +g._[+ja)gvjja)zn
jw
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Figure 11.4 A point primary force and a point secondary force, obtained
through the modified inertial actuator, applied to a 700 x 500 x 1.85 mm plate.
The plate is clamped on two opposite edges and free on the other two edges.

a

jo

where Z, =c, +—=. The command force, f,, will be used to implement the outer

velocity feedback control loop. Equation (11.4) can be grouped as
£ =Tf. =2 (11.5)

where T, and Z, are the blocked response and mechanical impedance of the actuator,

as modified by the inner displacement feedback. The base velocity at P, is given by

M= lOfp +1,f, . (11.6)

Substituting equation (11.5) into equation (11.6) the base velocity is computed as a

function of the primary force f, and the control command f,

Yo

P e v
1+Y,Z,

+ e
Sy 1+Y,Z,

i o (11.7)

Vy

When the outer velocity feedback loop, described by
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f.==Zyv,, (11.8)
is implemented, the choice of the outer gain Z, becomes important in order to
guarantee a certain stability margin and good performance. Figure 11.5 shows the
ratio of the frequency averaged power between power of the “passive” controller
(without outer loop) and the active control (with outer loop) as a function of the outer

velocity feedback gain is Z ,, assuming that the feedback loop is stable. The minimum

of the function at Z,, = 2080 indicates the value of the gain that provides the greatest
attenuation in terms of power. In this case, the attenuation is about 11.2 dB. In terms
of stability, when the device is installed and the outer equipment velocity feedback

control loop is implemented based on the measurement of v, , the Nyquist plot of the

second term of equation (11.7) provides the means to determine the stability of the
closed loop system. The theoretical active controller becomes unstable when the outer
velocity feedback gain is greater than 2410, as shown by the Nyquist plot in Figure
11.6. In the simulations, a velocity feedback gain of Z, = 150 was chosen in order to
guarantee a 6 dB stability margin when the additional phase shifts present in the
experimental system are accounted for. This implies, from Figure 11.5, that an

attenuation of about 4 dB is achieved.
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Figure 11.5 Ratio of the frequency averaged total power transmitted to the
plate with the modified actuator before and after the outer feedback loop is
implemented, as a function of the outer velocity feedback gain Zp The
minimum of the function at Zp = 2080 indicates the value of the gain that
provides the greatest attenuation (about 11.2 dB) in terms of power. The
active controller becomes unstable for outer velocity gains Zp > 2410. The
distance between primary and secondary forces is 2 cm.
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Figure 11.6 Nyquist plot of the idealised open loop system when the
modified inertial actuator is applied and an outer velocity feedback control
loop is implemented. The distance between primary and secondary force is
2 c¢cm and the plate is finite. The values within the PID controller that were
used in the simulations are: gp = -1,000, g = 10,000, gy = 18, and
the outer velocity feedback gain Zp = 150.

When the outer velocity feedback loop in equation (11.8) is implemented, the base

velocity, described in equation (11.7), becomes

_ Y
1+1,Z, +1, 1,2,

£, . (11.9)

Yy

Substituting equation (11.8) into equation (11.4), the transmitted force, f,, as a

function of the bas velocity, v, , is given by

. 2 &1 . .3
(]am k —w°m ¢ j g +—+joulg,, +2Z )}‘]w zZ Z
ata " Ta'a [ Pjo TNV Ta b 110

a 2 &1 b
- ma +]a)ca +ka +gP +j—w+]a)gv ]a)Za

Once the base velocity in equation (11.9) is computed, then the transmitted force in

equation (11.10) can be obtained and therefore the total power can be calculated. This
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is plotted in Figure 11.7, where it can be noted that the reduction of the total power
due to the modified inertial actuator (dashed line) is greater than the results obtained
with the passive treatment, shown in Figure 11.2. Although the difference with the
optimal solution is still large, useful reductions in power are predicted, which shows
that the modified inertial actuator can be used effectively in reducing the vibration of
panels. The impedance presented by the active mount to the system is given by
equation (11.10), which is plotted in Figure 11.8. The impedance is not passive,
unlike the previous case, and it is mainly damping dominated at frequencies greater
than the inertial actuator’s resonance frequency. As explained in Chapter 4, this is due
to the choice of the inner feedback gains, and in particular the derivative term within
the PID controller. In conclusion, the modified inertial actuator with outer velocity

feedback loop is an effective way of adding damping to the system.
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Figure 11.7 Total power transmitted to the finite plate due to the primary
force only (solid), the primary and secondary forces when the optimal
feedforward solution is applied (faint), and when the feedback system,
based on the modified inertial actuator and an outer feedback loop with

Zp = 150, is applied (dashed). The distance between primary and
secondary force is 2 cm.
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Figure 11.8 Mechanical Impedance of the inertial actuator with inner and
outer feedback loops when the inner displacement feedback control and the
outer velocity feedback control are implemented. In particular, gp = -1000, g,
= 10,000, gy = 18 and Zp = 150.

When the outer control gain Zp is chosen to be the equivalent impedance described in

equation (10.31), the control system turns out to be unstable. If the outer feedback

. . kp . . .
controller is an integrator of the form Z, =—2-, interesting results are obtained.
jw

Choosing such a control impedance implies that only the first part of the optimal
impedance in equation (10.31) is considered. In other words, kp is chosen to be the
low frequency passive approximation of the optimal solution. In particular, when k&,
= 550,000 N/m (the same value was chosen as the passive approximation for this
system in the previous chapter), the closed loop system turns out to be conditionally
stable, and a 6 dB stability margin is guaranteed. This is shown in the Nyquist plot in

Figure 11.9, where the curve at low frequency intersects the real axis at about —0.5.
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Figure 11.9 Predicted Nyquist plot of the open loop system when the
modified inertial actuator is applied and an outer feedback control loop,
based on an integrator of the form Zp / ja@, is implemented. The distance
between primary and secondary force is 2 cm and the plate is finite. The
values within the PID controller that were used in the simulations are: gp

k

= -1,000, g; = 10,000, gy = 18, and the outer feedback gain Zp = '—D whre
ja

k, =550,000.

The total power for this case is plotted in Figure 11.10, where the reduction of the
total power due to the modified inertial actuator and the outer controller, based on the
passive approximation of the optimal solution, is quite outstanding and not very
dissimilar from the optimal solution. At low frequency, attenuations of more than 40
dB can be obtained, which indicates that the panel vibrations are almost suppressed.
Unfortunately in real systems, due to low frequency phase shifts of the electronic
components (Brennan ez al., 2002), the stability margin of the system is greatly
reduced and the performance of the closed loop system is not dissimilar to the outer

velocity feedback case. By considering an outer feedback controller of the form

Z,= k.—D, stiffness is added to the system (also illustrated in the impedance plot in
Jw

Figure 11.11) and this implies that the peaks in Figure 11.10 are moved to higher
frequencies. This is beneficial in the low frequency range, but those peaks are not
suppressed, they are simply moved to higher frequencies. Also, a portion of the
inertial actuator resonance which occurs at low f;equency is greatly amplified because
of the integral velocity feedback control law. The impedance presented to the system

is plotted in Figure 11.12. It is not passive, and it is mainly stiffness dominated,
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except at very low frequency, where a phase shift occurs. The magnitude of the
impedance is “that of the dynamic response of a vibration neutralizer”, which is quite

different from the optimal solution in Figure 10.7.
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Figure 11.10 Total power transmitted to the finite plate due to the primary
force only (solid), the primary and secondary forces with the optimal
feedforward solution (faint), and the primary and secondary forces when the
modified inertial actuator and the outer feedback controller, based on a

passive approximation of the optimal solution Zp =k /( ]a)) with
k, =550,000, are applied (dashed). The distance between primary and
secondary force is 2 cm.
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Figure 11.11 Mechanical Impedance of the inertial actuator with inner and
outer feedback loops when the inner displacement feedback control and the
outer integral feedback control are implemented. In particular, gp = -1000, g,

= 10,000, gy = 18 and Zp =k, /(jw) where k, = 550,000.
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11.3 Experiments on active vibration suppression with the modified

inertial actuator

In this section we consider the practical use of an inertial actuator with inner feedback
for the active suppression of a vibrating flexible plate. The arrangement is illustrated
in Figure 11.12. It consists of the flexible steel plate 700mm x 500mm x 1.85mm,
clamped on the two longer sides, as described in Chapter 7 and Chapter 9, on which is
mounted a modified inertial actuator. The primary force is provided by an LDS Ling
401 shaker, placed underneath the plate. The inertial actuator used for the experiments
to produce the control force was a mechanically modified version of an active tuned
vibration absorber (ATVA) manufactured by ULTRA Electronics, described in detail
by Hinchliffe et al., 2002 and shown in Figure 11.12, from which the internal springs
were removed, leaving the proof-mass (m, = 0.24 Kg) attached to the case by eight
thin flexible supports. This modification in the stiffness (so that k, = 2000 N/m)
changed the actuator resonance frequency from 73.8 Hz to 14.5 Hz, as described in
Chapter 4. The measured damping ratio was used to estimate the damping factor as

¢, =18 N/ms™. An inner displacement feedback loop is used to modify the response

of the inertial actuator, as discussed above, and an outer velocity feedback system is
used to provide active skyhook damping for the equipment. The values of the gains
within the PID controller were chosen in order to provide a modified inertial actuator
with the characteristics described in Section 3.2. In this experimental configuration,

an outer velocity feedback control gain Z, =150 was chosen, which guarantees a 6

dB stability margin.
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Figure 11.12 The experimental arrangement, which consists of a finite flexible
plate, driven by a primary force (shaker underneath), and controlled by a
modified ULTRA Electronics inertial actuator placed on the flexible plate.

Figure 11.13(a) shows the theoretical prediction of the equipment velocity per unit
primary excitation for the uncontrolled and the control cases when the relative
distance is 2 cm. Good vibration isolation conditions can be achieved by the modified
inertial actuator and the outer velocity feedback loop. The outer loop, with response
Zp, improves the behaviour of the plate, but it also enhances its frequency response at
low frequency, as predicted by the conditional stability of the closed loop system. The
corresponding measured data is shown in Figure 11.13(b), where a 20 dB reduction at
the first plate resonance frequencies was observed. The theoretical prediction and the
experimental measurements agree well, demonstrating the effectiveness of the active
control system based on a modified inertial actuator with inner displacement feedback
control.

This result was compared with an entirely passive vibration control method, when the
flexible plate was entirely covered by either a passive unconstrained viscoelastic
layer, composed of foam, or a 2.5 cm thick passive constrained layered absorber,
composed of the same viscoelastic material with layers of aluminium. Figure 11.14

shows the measured data, compared to the uncontrolled case. Although the passive
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treatment is equally or slightly more effective at higher frequencies, compared with
Figure 11.13(b), it is much less effective then the active treatment at lower
frequencies. The mass of the first passive coating was 0.275 Kg, while the mass of the
second passive coating was 0.645 Kg, which compared to either the mass of the
proof-mass (0.24 Kg) or the mass of the whole modified inertial actuator (0.42 Kg)

confirms the potentiality of the active solution.
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Figure 11.13 Predicted (a) and measured (b) frequency response of the plate
velocity at the secondary location per primary excitation when no control is
implemented (solid), and when both the modified inertial actuator and the outer
velocity feedback loop are implemented with Zp = 150 (faint). Under experimental
conditions, stability is guaranteed when Zp < 300.
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Figure 11.14 Measured frequency response of the plate velocity at the
secondary location per primary excitation when no control is implemented
(solid), when a passive vibration absorber, based on foam, is installed and
covers the whole plate (a, faint), and when a passive vibration absorber,
based on foam and aluminium layers, is installed and covers the whole
plate (b, faint).
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11.4 Kinetic energy analysis of the active vibration suppression

system with the modified inertial actuator

The control performance of the active vibration suppression system with the modified
inertial actuator has been re-examined based on the kinetic energy. To calculate the
true kinetic energy of the system, the vibration of both the rigid body modes and the
flexible body modes would have to be accounted for. In the experiments, however,
only the plate velocities at 40 locations were measured, when the modified inertial
actuator with outer velocity feedback loop was installed at the same location as
described above. The sum of squared velocities at each location is therefore used to
evaluate the control performance of the system. Figure 11.15 shows the predicted and
experimental results, which lead to similar conclusions as those drawn in the previous
section. Theory and measurements agree well, showing up to 20 dB reduction in the

vibration level and demonstrating the effectiveness of the modified inertial actuator.

(b)

Sum of Squared Veloclty dB
Sum of Squared Velocity dB
&

2

g

=120 -

L L L L : L L . L -140 ' L 1 L 2 L L ' L
o 20 40 80 80 100 120 140 160 180 200 o 20 40 80 B8O 100 120 140 180 180 200
Fraquency ( Hz } Fraquency { Hz )

Figure 11.15 Predicted (a) and measured (b) sum of square velocities of the
plate when no control is implemented (solid), and when both the modified
inertial actuator and the outer velocity feedback loop are implemented with Zp
= 150 (faint).
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11.5 Variation of performance with the location of the modified

inertial actuator

The objective of this section is to compare the previous results with solutions obtained
by placing the modified inertial actuator with outer velocity feedback loop in other
locations on the flexible plate (Benassi and Elliott, 2003d). Figure 11.16 shows the
total power transmitted to the finite plate due to the primary force only, and with the
modified inertial actuator having only the inner feedback loop. The controller is

installed on the plate at £ = (0.12 m, 0.27 m), 20 cm from the primary force, which
is located at P, = (0.32 m, 0.27 m). The plate resonances are attenuated, and in

particular the first resonance is reduced by about 20 dB.

When the outer velocity feedback loop is implemented, the choice of the outer gain
Z, becomes important in order to guarantee a certain stability margin and good
performance. Figure 11.17 shows the ratio of the frequency averaged power between
the “passive” controller (the inertial actuator without outer loop) and the active

controller (with outer loop) as a function of the outer velocity feedback gain is Z,, .
The minimum of the function at Z, = 200 indicates the value of the gain that

provides the greatest attenuation in terms of power. In this case, the attenuation is
only 2.4 dB, but this depends on the location of the primary and secondary forces, as
explained below. For outer loop gains greater than about 1400 the ratio is positive,
which indicates that the “passive” controller performs better than the active solution.
The active controller becomes unstable when the outer velocity feedback gain is
greater than 2450, as shown in the Nyquist plot in Figure 11.18. The Nyquist plot
shows that the stability margin is mainly affected by the modified inertial actuator’s
natural frequency and in real systems the margin is greatly reduced, as experienced
above, due to low frequency phase lags, which are present in the electronic

components (Brennan et al., 2002).
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Figure 11.16 Total power transmitted to the finite plate due to the primary
Jforce only with no actuator attached (solid), and with the modified inertial
actuator (“passive” controller, faint). The distance between primary and
secondary force is 20 cm.
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Figure 11.17 Ratio of the frequency averaged total power transmitted to
the plate with the modified actuator before and after the outer feedback
loop is implemented, as a function of the outer velocity feedback gain Zp,.
The minimum of the function at Zp = 200 indicates the value of the gain
that provides the greatest attenuation (about 2.4 dB) in terms of power.
For gains greater than about 1400 the ratio is positive, indicating that the
active controller is less effective than the “passive” controller. The active
controller becomes unstable for outer velocity gains Zp > 2450. The
distance between primary and secondary forces is 20 cm.
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Figure 11.18 Predicted Nyquist plot of the open loop system when the
modified inertial actuator is applied and an outer feedback control loop,
based on velocity feedback control, is implemented. The distance between
primary and secondary force is 20 cm and the plate is finite. The outer
feedback gain Zp = 200 and this value minimises the function in Figure
11.17 and intersects the x-axis at (-0.081,0), indicating that a gain of 2450
would set the closed loop system unstable.

The total power transmitted to the plate due to both the primary and the “passive”
controller is shown as the solid line in Figure 11.19. This power is compared to the
optimal solution, which defines the control target, since no other control can perform
better. The dashed line in Figure 11.19 shows the total power due to the primary force

and the active controller, whose outer feedback gain isZ, = 200. Although the

stability margin is quite big and therefore the gain could be safely increased, this
value guarantees the largest attenuation over the selected frequency range between 0
Hz and 200 Hz. As predicted by the Nyquist plot, at some frequencies the total power
due to the active control is greater than the power due to the “passive” control. At this
particular location the vibration of only a few modes is reduced by more than 20 dB,
while the total power of other modes is either unaffected or slightly enhanced. Figure
11.20 shows the equivalent impedance due to the optimal secondary force compared
with the impedance due to the modified inertial actuator with the outer feedback
control loop described above. The mismatch between the two curves is quite evident
at low frequency, while at higher frequencies the impedance of the active controller,
which is damping dominated, seems to match the average value of the equivalent

impedance quite well.
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Figure 11.19 Total power transmitted to the finite plate due to the primary
and secondary forces when the “passive” controller is applied (solid), the
primary and secondary forces with the optimal feedforward solution
(faint), and the primary and secondary forces when the modified inertial
actuator and the outer velocity feedback controller are applied (dashed). In
this case, the distance between primary and secondary force is 20 cm and
ZD = 200

.60

20 40 60 80 100 120 140 160 180 200
Frequency (Hz)
+270 T T T T T T T T T
+180 N 9
i
90} —
> S e
Z of [ .
N
%0 J g
-180 q
270 L L ' L : s I ' L
Q 20 40 60 80 100 120 140 160 180 200
Frequency ( Hz)

Figure 11.20 Equivalent impedance due to the optimal secondary force
(solid) and the impedance of the active controller, based on the modified
inertial actuator and an outer velocity feedback loop whose gain Zp = 200
(faint). The distance between primary and secondary forces is 20 cm.
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Figure 11.21 shows the contour plot of the ratio of the frequency averaged power
between power of the uncontrolled plate and the “passively” controlled plate, as a
function of the x and y positions of the actuator on the flexible plate. In other words,

the primary force is assumed to be at a location P, = (0.32 m, 0.27 m) which

guarantees that a sufficient number of modes are excited, while the “passive”
controller, based on the modified inertial actuator, is assumed to be installed in turn
on the plate at different locations. For this purpose, 500 potential locations were
selected. Figure 11.21 shows that the “passive” controller achieves at least a 3 dB
reduction in the ratio of the frequency averaged power not only around the location of
the primary force, as expected, but also at symmetrical locations on the plate. This

distribution obviously changes if the location of the primary force changes.
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Figure 11.21 Contour plot of the ratio of the frequency averaged power
between power of the uncontrolled and the “passively” controlled plate
with the modified inertial actuator, as a function of the x and y position of
the controller on the flexible plate. The location of the primary force is
indicated with a *.

When the active control, based on the modified inertial actuator with outer velocity
feedback loop, is implemented, the value of the feedback control gain Z, that
minimises the ratio of the frequency averaged power, can be computed at each of the
500 selected locations on the plate, and is shown in Figure 11.22. For each case, the

stability of the closed loop system was guaranteed, although no specific stability
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margin was set. Depending on the location, the maximum gain Z, before instability

can change considerably, but the gain which minimises the ratio of the frequency
averaged power was always computed to be less or equal than the stability limit. In
Figure 11.22 three main regions can be identified: around the location of the primary
force high outer loop gains are needed in order to achieve the best attenuation possible
with the active controller. High gains are also required close to the clamped edges. In
the rest of the plate, although there are some differences, lower gains are needed.
Figure 11.23 shows the contour plot of the ratio of the frequency averaged power
when the gains in Figure 11.22 are used in the outer feedback loop control. In other
words, Figure 11.23 shows the best attenuation that can be obtained with the active
controller for that specific primary force location. If the active controller is placed
near the primary force, average attenuations of up to 12.9 dB can be achieved within
the selected frequency range between 0 Hz and 200 Hz, using the high outer gains
shown in Figure 11.22. This attenuation is decreased to about 9 dB if the active
controller is installed about 8§ cm away from the primary force, where the x direction
seems to be a little more privileged than the y direction in terms of attenuation.
Although high gains are needed along the edges, as shown in Figure 11.22, the
attenuation is not significant, while in the rest of the plate attenuations, which vary
from 2.3 dB to 5.4 dB, can be obtained, depending on the location of the secondary
force. In Figure 11.24 and Figure 11.25 the same kind of analysis is repeated, but the
ratio of the frequency averaged power between power of the “passively” controlled
plate and the actively controlled plate is plotted, which shows the incremental effect
of the outer loop. The outer velocity feedback gains that minimise the above ratio are
very similar to Figure 11.22, where the ratio of the frequency averaged power
between power of the uncontrolled controlled plate and the actively controlled plate
was used, indicating that the same values can be used to minimise both ratios. The
attenuations in Figure 11.25 are smaller than the attenuations in Figure 11.23, as
expected since some attenuation has already been achieved by the “passive” actuator,
but the qualitative nature of the results is quite similar.

In summary, the performance of the control strategy, based on the modified inertial
actuator with outer velocity feedback control, depends on both the relative distance

between primary and secondary forces as well as their absolute location on the plate.
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Ideally, the best solution would be to install the controller as close as possible to the

primary disturbance.
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Figure 11.22 Contour plot of the outer velocity feedback gain Zp which,
for a specific location, provides the minimum of the ratio of the frequency
averaged power between power of the plate with no actuator and the plate
with the modified inertial actuator and outer velocity feedback loop, as a
function of the x and y position of the controller on the flexible plate. The
location of the primary force is indicated with a *.
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Figure 11.23 Contour plot of the ratio of the frequency averaged power
between power of the plate with no actuator and the plate with the modified
inertial actuator and outer velocity feedback loop, as a function of the x
and y position of the controller on the flexible plate. The controller is
based on the modified inertial actuator with outer velocity feedback loop,
whose gain Zp for a specific location was chosen from the corresponding
location in Figure 11.22. The location of the primary force is indicated
with a *.
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Figure 11.24 Contour plot of the outer velocity feedback gain Zp which,
for a specific location, provides the minimum of the ratio of the frequency
averaged power between power of the plate with no actuator and the plate
with the modified inertial actuator and outer velocity feedback loop, as a
function of the x and y dimensions of the flexible plate. The location of the
primary force is indicated with a *.
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Figure 11.25 Contour plot of the ratio of the frequency averaged power
between power of the plate with modified inertial actuator and the plate
with the modified inertial actuator and outer velocity feedback loop, as a
function of the x and y dimensions of the flexible plate. The active
controller is based on the modified inertial actuator with outer velocity
Sfeedback loop, whose gain Zp for a specific location was chosen from the
corresponding location in Figure 11.24. The location of the primary force
is indicated with a *.
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11.6 Conclusions

In this chapter the total power of the forces exerting on a structure was minimised and
a comparison was made between optimal solutions and the performance of various
passive and active control treatments involving inertial actuators. In particular, the
optimised impedance for global control was compared to the performance of a
modified inertial actuator. It was found that, although the optimal impedance is able
to provide a more substantial total power reduction than the other treatments, the
modified inertial actuator can still guarantee a good power reduction, especially when
combined with an outer velocity feedback controller. This seems to be a very
promising solution to the vibration suppression problem, even though attention must
be paid to the location of the secondary force in order to achieve the best possible
attenuation.

As we have seen in Chapter 5, in using an inertial actuator for active vibration
isolation, the resonance frequency should be lower than the first natural frequency of
the system under control and it should be well damped. The modified inertial actuator
can be effectively employed for this kind of applications, although the phase shifts
due to transducer conditioning circuitry limit the maximum gain which can be
achieved in the outer loop of the actuator before instability. In the current arrangement
a maximum gain of only 150 N/ms™ has been used, which only gives an impedance
close to the optimal value when the actuator is positioned some distance from the
primary source, as shown in Figure 11.22. Much larger reductions in power output
from a single primary force are, in principle, possible if the destabilising phase shifts
could be reduced and the inertial actuator was placed close to the primary excitation

with a gain which was perhaps ten times that currently used.
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Chapter 12

Conclusions and suggestions for future work

12.1 Conclusions

Vibration control systems can be classified as linear or non-linear (Kolovsky, 1999),
depending on whether or not their dynamic response is governed by a set of linear
differential equations. They can be further classified as active or passive, depending
on whether or not external power is required. The principal vibration control
techniques employ resilient load-supporting mechanisms and energy dissipating
mechanisms. Typical passive control systems employ metallic springs, elastometers
or other cushioning devices. Active vibration control systems comprise vibration
sensors, controllers and actuators. The sensors provide signals proportional to the
dynamic excitation or the structural response. The controllers then generate the
command signals as a function of the sensor signals. The actuators finally apply these
forces in response to the command signals.

This is the environment in which this thesis finds its place. In particular, during this
thesis several methods have been investigated for active vibration control using an
inertial actuator. Inertial actuators do not need to react off a base structure, so they can
be used as modules that can be directly installed on a vibrating structure. This feature

makes them very useful.
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A review of different inner feedback loop strategies for active vibration control using
an inertial actuator was presented. Feedback stability margins and performance were
considered for each case. The main finding was that the use of a phase-lag
compensator within the inner feedback loop provides good stability margins and good
performance.

There is an overall requirement for the actuator’s natural frequency to be below that
of the first structural mode of the system under control. Further analysis on the active
vibration control problem led to the development of a new device, based on an inertial
actuator with very low stiffness and an inner displacement feedback control loop. In
particular, the controller is a PID which uses the measurement of the relative
displacement between the actuator reference base and the actuator moving mass. The
control law is the sum of an integral term, which solves the sagging problem, a
derivative term, which provides the device with sufficient initial damping to guarantee
a very good stability margin, and a proportional term, which sets the actuator
resonance frequency.

Then theoretical and experimental investigation of the active vibration isolation of a
rigid piece of equipment structure from a vibrating base structure using an inertial
actuator was carried out. The dynamics and control mechanisms of the mounted rigid
equipment structure on a flexible base plate have been studied experimentally and the
results have been compared with the theoretical findings. The equipment velocity
responses, measured from the experiments, agree well with the predicted results,
which demonstrates that the theoretical model can be used to help understand the
dynamics of the overall system. It was found, from the simulations and the
experiments, that from a stability point of view, the force and velocity feedback
control scheme does not guarantee a good stability margin at low frequency. This is
especially true when the outer velocity gain is increased. On the other hand, from a
performance point of view, this scheme offers very good results using lower gains
than the other schemes. When an integrator is added to the inner feedback controller,
the overall system significantly improves its stability characteristics. On the other
hand, if high performance is needed, very high gains are necessary. The results
obtained by the implementation of a phase-lag compensator within the inner feedback
loop and a velocity feedback outer loop seem to be very encouraging. In fact,
simulations and experiments show that a strong reduction of the equipment resonance

can be achieved, together with very good stability margins.
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It was found from the simulations and the experiments that the new device is effective
in actively isolating a piece of equipment from the vibrations of a base structure.
Although the overall system is conditionally stable, very good performance can be
achieved.

In the second part of the thesis the active control of a vibrating panel was investigated.
The total power supplied to the plate by a primary and a secondary force was chosen
to be the cost function to be minimised. In particular, the effect of the distance
between primary and secondary excitations was investigated and simulations were
carried out for both infinite and finite plates. The core of this study was the theoretical
and experimental comparison between optimal solutions in terms of secondary force,
and the performance of passive and active control treatments. In particular, the
optimised impedance for global control was compared to the impedance that the new
device is able to add to the system in order to achieve the goal of minimizing the cost
function. It was found that, although the optimal impedance is able to provide an
outstanding power reduction compared to the other treatments, the new device
guarantees very good power reduction and seems to be a promising solution to the
vibration reduction problem, especially if combined with an outer controller based on

a passive approximation of the optimal solution.

12.2 Suggestions for future work

The vibration isolation of large pieces of equipment or the vibration suppression of
large panels may require that more than one device is installed. The study carried out
in this thesis considers the investigation of the stability and performance of one device
only, so a natural extension to this research would be the theoretical and experimental
investigation of the effect of having several devices, all trying to either minimize the
equipment velocity or minimize the total power. Each device would have its own
inner control scheme, so another result of this future study would be the analysis of
the mechanisms behind the decentralized control of structures using several inertial
actuators. By doing this kind of investigation, the transition from a single degree of

freedom problem to a multi degree of freedom problem would be made.
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The protection of structures from the damaging effects of vibration and shock that
occur in dynamic environments is of prime consideration in the design of such
structures. Depending on the particular application, the structure to be protected may
contain mechanical, electrical or optical systems, humans, etc. Traditionally, the terms
vibration absorber and shock absorber refer, respectively, to absorbers of oscillations
due to harmonic or random excitation and absorbers that deal with oscillations due to
shock excitations or transient vibration in terms of initial conditions. Therefore, in a
practical application, it may be necessary to combine these absorbers together.
However, an absorber that exhibits good vibration suppression does not necessarily
provide adequate shock attenuation. A shock may be defined as “a transmission of
kinetic energy to a system which takes place in a relatively short time compared with
the natural period of oscillation of the system” (Broch, 1980). For example, an
impulsive excitation of a structure implies that all the modes at all frequencies are
excited. If a certain vibration control scheme is effecti‘ve only within a limited
frequency range, then problems may occur due to those excited modes outside the
frequency range. In particular, if stiffness is added to a structure, then the modal peaks
are moved to higher frequencies and the frequency range of interest results with a
larger stiffness dominated region. Those peaks outside the range of interest are still
present in the system and therefore an impulsive excitation may excite them and
possibly damage the structure. On the other hand, “if the duration of the shock pulse
is short in comparison with one half period of the isolation system resonant frequency,
the response of the system may not have serious consequences” (Broch, 1980). In
summary, even though the principles involved in shock isolation are similar to those
involved in vibration isolation, some differences exist due to the transient nature of a
shock. In particular, the reduction in shock severity results from the storage of the
shock energy within the isolator and its subsequent release in a smoother form (i.e.
over a much longer period of time). It would be interesting to assess whether the new

device is a good shock absorber as well as being a very good vibration absorber.
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Appendix A

Equipment isolation of a SDOF system with an inertial actuator
using a linear quadratic regulator

Optimal control can be employed to reduce the vibration transmission in structures, and in
particular, lightweight structures with optimal controllers have been analysed by
Politansky et al. (1989), Balakrishnan (1993) and Anthony ez al. (2000a,b).

In this appendix the performance of a full state feedback controller designed using optimal
control theory will be investigated to compare with the performance obtained from the
inertial actuator with inner force and outer velocity feedback. The response of the base
plate is approximated by that of a single mass spring damper system, as shown in Figure
A.1, in order to keep the state-space model simple. The parameters of this model of the
base structure were chosen to best approximate the first mode of the base plate. The
internal states of the system are given by the displacements of the base mass, equipment

mass and actuator mass, };, 5, 3 and their velocities 7,, 7,, ¥; and the system is driven

by the forces f;, f, and f; .
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Figure A.1 Schematic of the plant and numerical values used in the
simulations of a vibration isolation system with full state feedback control.

The model of the plant in generalized coordinates in Figure A.1 is given by

mpy = fi+k, (Vs — v~k +d, (7, — 1) —dih (A.1)
myVy = Fotks(¥s = 1) —ky (Y — v +ds (P, = 71) —dy (7, — 1) (A.2)
ma¥y = f3—ks(¥3—¥,)—ds(V3—7,) (A.3)

which can be written as

My (1) + Dy () + Ky (@) = £(2) (A.4)

where

M =diag{m, m, m,} (A.S5)
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(k; +k,) -k, 0 (d,+d,) -d, 0

K=| -k, (ky +ky) —ky|,D=| -d, (d, +dy) -—d, (A.6)
0 —k, k, 0 —d, d,
and
71(0) 5@
y@) =y, @) |, @) =| fL,®)|. (A7)
¥3(t) Sf3(0)

Multiplying both sides of equation (A.4) by M ™, the following equation is obtained:

FO+MTDYO) +M Ky (t) =M (). (A.8)

The equivalent model in modal coordinates is given by

(D) +D,, 1) + Q°n(r) = V'{ @) (A9)
where ¥ =Vn and V is computed using VTMgV =1,,. Also, D, = VTDgV and Q is

the resonance matrix. For each mode, the damping is given by %Dmﬂ_l. A more detailed

study on the implications of using a model in modal coordinates is given by Benassi et al.
(2002c).

Returning to the model in generalized coordinated, the state-space model (Zhou et al.,
1998), assuming that the system is driven by a disturbance f; = f,, controlled by an input

u, where f, =u and f; =-u, and the output of the system is given by the equipment

velocity ¥, =v,, can be written as

X(2) = Ax(?) + Bu(?) + Rf, (1)
y(0) = Cx(0)

(A.10)

where
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FAG) [0
210 0
x<r>=<y.3(t)r,A=[ O"i I"g_l },B=< 0 (A.11)
7 @) ~M7K -M7D o |
210 ~1/m,
73] | U/my |
o)
0
0
C=[0 0 0 01 0],R=4 . (A.12)
l/mlf
0
0 J

When the disturbance input is assumed to be white noise and the final time of the
simulation is assumed to be infinity, the LQG regulator can be obtained by minimising the

cost function

7 =min [[y" ©ay@)+u” Ouekr (A.13)

10
where changing « provides a family of results depending on the relative importance of
reducing the equipment velocity and reducing the control effort. The solution of the LQG

problem (Zhou et al., 1998) is given by

u(?) = Kx(r) (A.14)

where K =-R7'B”S and S is the unique positive definite solution of the Algebraic
Riccati Equation (ARE)
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SA+ATS-SBRB’S+CT'QC=0 (A.15)

If the instabilities are in the controllable part of (A,B) and the non-observable modes of
(A,C) are stable, then u(r) = Kx(z) ensures that the system is stable and minimizes the
cost function J. In the cases presented below, the non-controllable or non-observable parts
of the system are related to the behaviour of the base, which is stable because it is
“passive”.

It can be noted that K in equation (A.14) is a 1x6 matrix, which assumes that the state
vector x(¢) is known at all times. Full state feedback would either require the use of many
more than two sensors, or the implementation of a Kalman filter, or state observer, with a
very detailed model of the system under control, which makes the stability of the overall
feedback system very sensitive to changes in the response of the system (Doyle et al.,
1979, and Szefer, 2001).

Figure A.2 shows the spectrum of the equipment velocity before any control and with full
state feedback calculated to minimise equation (A.13) with =30 and « = 100, where the
former seems to be a choice that is comparable to the classical solution with direct

velocity feedback control (4, =15) which guarantees a 6 dB stability margin. In the

optimal control case, K = [-96.6 —413.7 347 4.56 -23.3 —0.53] when « = 30. Figure A.2
also shows the spectrum of the equipment velocity with full state feedback calculated with
«a = 100. This can be compared to the performance in Figure 6.14, where an inner phase-
lag compensator and an outer equipment velocity feedback loop were implemented. This
value of « for the optimal controller was chosen so that the control effort was similar to

that required for Z, =100 in Figure 6.14. In the optimal control case with &= 100, K =

[-604.3 —2567.1 1694.8 13.03 -73.79 —4.62]. Although the LQ regulator may potentially
perform better if « is increased, thanks to the fact that the control force is based on more
information, a more complex controller and higher gains are needed to implement such a
solution. In conclusion, classical methods based on an inner and an outer loop are not only
robust, but they also perform well compared to an optimal LQ regulator, requiring a

similar control effort.
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Figure A.2 Bode plot of the equipment velocity per unit primary force when
no control is implemented (solid), when direct velocity feedback control
(faint) and when the full state feedback are implemented for o = 30 (dashed)
and « = 100 (dotted).In the full state feedback cases, the controller has been
optimised using LQG control theory.

The control effort in the simulation in Figure A.2 (dotted line) was adjusted to be similar
to that used by the dual-loop controller, as shown in Figure A.3. In particular, equation
(6.12) was used to compute the actuator requirement, the inertial actuator force per unit
primary excitation, when the inner force feedback control and outer equipment velocity
feedback control are implemented.

In order to compare the magnitude of the required control effort in Figure A.3, the
transmitted force that would guarantee zero equipment velocity was computed. From

equation (6.1), if the equipment velocity v, is imposed to be zero, follows that

Sl Zuls (A.16)

fp _1+ZmYb
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which is plotted in Figure A.4 along with the case where the LQG regulator is
implemented, but no control effort is present in the cost function J. If u is allowed to

assume any value, at low frequencies, a very large control effort is needed.

[f./6 ] dB rel. (1 N/N)
5

3P

' 1 1 ! ! L
5 10 15 20 25 30 35 40 45 50
Frequency (Hz)

Figure A.3 Actuator requirement, inertial actuator force per unit primary
excitation, when (solid) an inner phase-lag compensator with h, = 100 and
an outer feedback control with Zp = 100 are implemented, and when (faint)
an LQG regulator with a = 100 is implemented.
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Figure A.4 Transmitted force per unit primary excitation necessary to obtain
an equipment velocity equal to zero (solid), and actuator requirement when
no control effort u is present in the cost function J (faint).
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One way to overcome the problem of having to implement a state observer is to define the
control force as u(r) = Ky(z) . In this case only the outputs are fed back and no knowledge
on the internal states is needed. However, this solution does not offer any improvement
compared to the analogue solutions. In fact, it can be shown (Benassi et al., 2002a) that

when the equipment velocity 7, is the only output and the feedback gain X varies from
zero to infinity, the squared equipment velocity has its minimum when K =K, , where

Kopi = Kyelociry o (the optimal gain equals the largest gain before instability obtained when
direct velocity feedback control is implemented). It can also be shown that the same
applies when other classical control strategies are implemented. For example, if
y(@#)=m,y; = f, and u(t) = Ky(t) then Kop = Kpree p. In light of these results, it is
pointless to analyse optimal control strategies based on u(r) = Ky(z) because we are after

optimal controllers that perform better than classical techniques. To achieve this goal the
constraint u(z) = Ky(¢) has been relaxed to u(¢r) = Kx(¢)and so far it has been assumed
X(t) somehow known, therefore allowing K to be 1x6 matrix.

If the state vector x(z) is not known, then an observer can be implemented, as shown in
Figure A.5, in order to estimate the state vector from the knowledge of the outputs of the
plant y(t) and the control effort u, which is obtained from the output of the LQG regulator.
The model of the complete system is given by equation (A.10), equation (A.14) and the

state-space model of the state observer, which is given by
x=(A-K Ck+Bu+K,y (A.17)

where A, B, C, y and u are described above. X is the vector of the estimated states and

K, is the vector of the observation gains, which were chosen to guarantee that

o

ng ng

max Re[4; (A - K ,C)] << minRe[4; (A + BK )] (A.18)

i=1 i=1
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where A,(-) indicates the i-th eigenvalue, and (A - KOC) and (A + BK) describe the
dynamics of the of the estimation error x(¢) —X(¢) and the dynamics of the plant with full

state LQG feedback, respectively.

fi

—  » Plant + > y

Observer % K

Figure A.5 Block diagram of a closed-loop system, whose plant is composed
of an active vibration isolation with an inertial actuator installed on a
vibrating base, as described in Figure A.l. A full state feedback controller,
optimised using LQG control theory, is implemented and the states of the
plant are estimated through an observer, whose inputs are the outputs of the
plant and the control effort u.

If y =y, =v, then the output matrix C is given by equation (A.12). However, in this case

the rank of the observability matrix (A,C) is equal to 5, which means that the system is

not completely observable and therefore a full state observer cannot be implemented. On

the other hand, if y(z) = { 720) } = {ve (t)} then

myys ()] S @)
o0 0 0 1 0 00
C= , D= (A.19)
0 k, -k, 0 dy —d, 0 1
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and given the model of the controlled variable z = Hx = v, to be used in the modified

cost function

o0

J =min j[zT(t)oa(t) + uT(t)u(t)]dt (A.20)

g

then (A, C) turns out to be completely observable, and (A,B) is completely controllable,
which is in reality a stronger condition of what it is actually required. Also, (A,H) is
detectable, which means that the modes that are not observable by (A,H) are stable and

in our case the flexible base is “passive” and therefore stable. Given the above satisfied
conditions, there is a unique solution, which is given by equations (A.10), (A.14), (A.15),
(A.17) and (A.18), to the estimation and the L.QG regulation problem. Figure A.6 shows
the performance of the LQG regulator obtained through the estimation of the states
(dashed line) compared to the case (faint line) where the states are known. Although the
performance of the regulator with observer is generally worse than the performance of the
full state regulator, the attenuation that can be achieved compared to the uncontrolled
case is quite good.

Returning to the case where the equipment velocity is the only output of the system,

y =¥, =v,, since the rank of the observability matrix is 5, then a full state observer

cannot be constructed, even though a reduced order observer can be implemented. In this
case, the plant was decomposed in its observable and non-observable parts, which in
practice implied that the states y, and y, (base displacement and its velocity) were non
estimated. The rank of both the observability and controllability matrices of the reduced
system is 4 and Figure A.7 shows the comparison between the performance of the LQR
regulator obtained using a reduced order observer and the case where the states are
known. It can be noted that the performance of the former is worse than what it was
obtained in Figure A.6 and in particular the regulator cannot do much to reduce the
magnitude of the first base mode (in fact, there is enhancement), whose dynamics is not

estimated by the observer.
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Figure A.6 Bode plot of the equipment velocity per unit primary force when
no control is implemented (solid), when the full state feedback, optimised
using LOQG control theory, is implemented for a = 100 (faint), and when full
state feedback, obtained through a full state observer and an LQG regulator ,
is implemented for = 100 (dashed).
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Figure A.7 Bode plot of the equipment velocity per unit primary force when
no control is implemented (solid), when the full state feedback, optimised
using LQG control theory, is implemented for o = 100 (faint), and when full
state feedback, obtained through a reduced observer and an LQG regulator,
is implemented for = 100 (dashed).
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In conclusion, an LQG regulator may perform better than the classical strategies thanks to
the fact that the control force is based on more information. However, the difference
between the LQG regulator and some classical schemes is not significant, leading to the
conclusion that the optimal control may not be worth the implementation because the
difference in the performance is not massive and its actual realization would require a lot
of extra effort in terms of electronic components and in general the accurate knowledge

of the plant model is needed.
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Appendix C

Geometrical and physical characteristics of the experimental
set-up

This appendix contains the geometrical and physical characteristics of the equipment used

during the experimentation work presented in Chapter 7.

Parameter Value
Material Aluminium
Plate dimensions 0.2x0.1 x0.018 m
Density 2700 kg/m’
Young’s modulus of 7.1e10 N/m”
elasticity

Shear modulus of elasticity | 2.4e10 N/m*
Poisson’s ratio 0.33

Mass of the plate 1.08 kg
Moment of inertia of the 1.4e-2 kgm*
receiver

Table C.1 Geometrical and physical characteristics of the receiver.

Parameter Ring of rubber
External diameter 60 mm
Internal diameter 40 mm
Height 60 mm
Area 1.57e-3 m"
Moment of inertia 5.1e-7 m*
Density 909 kg/m’
Young’s modulus of 8e5 N/m”
elasticity

Shear modulus of elasticity | 2.7e5 N/m”
Poisson’s ratio 0.3

Table C.2 Main characteristics of the rubber mounts.
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Parameter Value
Moment of inertia 1.4e10” kgm”
Total stiffness of each 24093 N/m
mount

Total viscous damping for 17.94 Ns/m
each mount

Effective mount damping 4.8 %

ratio

Distance between mounts 134 mm

Table C.3 Summary of the passive properties of the isolators (mounts).

Specification Value
Moving mass 0.91 kg
Maximum sine force — peak | 89N
Max displacement pk-pk 2.5 mm
(DO)

Max sine velocity — peak 1.31 m/s

Max sine acceleration — pk | 1373 m/s”

Suspension axial stiffness 3.15 N/mm
Electrical requirement — 0.09 kVA
Amplifier

Impedance at 500 Hz 40

Table C.4 Specifications for a single control shaker LDS type VI01.

Parameter Value

Material steel

Dimensions 700 x 500 x 1.85 (mm)
Damping ratio 0.01

Table C.5 Summary of the physical and geometrical properties of
the base.
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Mode Experimental Calculated frequency
frequency (Hz) (Hz)
(2,0) 32.6 44.8
2,1) 37.7 49.0
(2,2) 58.8 65.4
(2,3) 91.1 98.8
(3,0) 100.0 123.3
(3,1 105.0 129.2
(3,2) 128.0 149.8
(2,4) 139.0 151.8
(3,3) 166.2 186.0

Table C.6 First 9 modes of the base supporting plate.

Specification Value
Maximum sine force — peak | 196 N
Useful frequency range DC to 9 kHz
Maximum displacement 18.8 mm
Maximum acceleration 981 m/s”
Maximum input power 100 VA
Maximum working current | 9 A

Table C.7 Specifications for a single control shaker LDS type V403.

Equipment Type

Accelerometer B&K 4375

Force gauge B&K 8200

Charge amplifier B&K 2635

Power amplifier HH Electronics MOS-FET
Integrator ISVR designed

FFT Servo Advantest R9211B/C
Analyzer/Generator

Primary Shaker LDS 403

Secondary shaker LDS 101

Current meter 3Aand5S A
Summing Box ISVR designed

Table C.8 List of the equipment.
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Measurements Model

Modes Without With Isolator Without With Isolator
Isolator Isolator

(2,0) 32.6 37.2 44.8 47.5

(2,2) 58.8 63.1 654 70.4

2,4) 139.0 145.2 151.8 153.5

4,0) 2259 226.0 241.7 241.9

Table C.9 Base plate modes observed by measurements and by simulations with and without the

effect of the active isolator system.
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