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Hyperspectral data offer refined spectral discrimination of ground targets, but come at a substantial
cost. For some sensors, the number of spatial pixels (swath width) needs to be reduced to acquire a
large number of bands. In addition, coarser spatial resolution is required to achieve enough signal
from narrow bands. This study aimed to investigate whether it was possible to reduce the number of
bands and broaden their widths, while achieving the same or higher application accuracy as with

hyperspecitral data.

Three innovative band selection methods were developed as tools for this investigation. They were
designed primarily for Maximum Likelihood Classification (MLC) applications, but their use with
respect to other applications was discussed. All algorithms aimed to optimise the band iocation,
width and number with respect to the MLC accuracy for the given classification task. The supervised
band selection (SBS) algorithm is based on conventional feature selection techniques, while the
unsupervised band selection (UBS) method aims to decorrelate the band set. The unsupervised
clustering-based SBS (CSBS) algorithm uses the SBS, but with classes being defined by clustering.

The three approaches were evaluated on real data sets. All algorithms gave physically meaningful
band sets, which achieved similar or higher ML.C accuracies than band sets of current airborne and
satellite sensors. The sub-optimality of the SBS bands was found to be least (7%) for sets with
maximum three bands. The band number criteria were shown to be effective estimates of the
intrinsic data dimensionality, although some subjectivity remains. Only SBS may be used to test
whether narrow band data have a significant advantage over broad band data. UBS depends on
dark image data for band expansion and requires each band to be normally distributed, which is only
justified if the scene is made up of a single material type. CSBS has the drawback of producing
inconsistent results depending on the initialisation and parameter settings of the clustering routine.

The methods can be applied with programmable sensors in a repeat-pass fashion: Band selection
may be performed on hyperspectral data acquired over a representative part of the scene. Then,
multispectral data may be collected over the same scene with the optimised band set under similar
solar and atmospheric conditions. Both UBS and CSBS may be employed in-flight. For non-
programmable sensors, a more generic band set is sought for a given classification scheme, which
needs to be optimised to a large number of scenes.

The author believes that current data acquisition is inefficient in that spectrally redundant data are
collected with most imaging spectrometers, often using narrow band data where this is not
necessary. Application of the above band selection methods to real data sets showed that for all
three classification tasks, the number of bands to acquire could be reduced dramatically with a
maximum loss of 5% in MLC accuracy, and for two out of the three tasks, coarsening the spectral
sensor resolution may be justified. This would aliow collecting supplementary data and refining the
sensor’s spatial resolution. Coupled with algorithms to optimise other acquisition parameters, the
band selection methods developed in this thesis lead the way towards an intelligent remote sensing

expert system for data acquisition.
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iterations (1 to 4) for the New Forest data set.

Figure 5.7: ML.C accuracy plotted against the number of bands selected by the clustering-
based SBS algorithm for varying number of clusters (2 to 8), one iteration cycle and the New
Forest class and data set.

Figure 5.8: MLC accuracy plotted against the number of clusters for varying number of
iterations (1 to 4) for the River Severn data set.

Figure 5.9: MLC accuracy plotted against the number of bands selected by the clustering-
based SBS algorithm for varying number of clusters (2 to 6), one iteration cycle and the River
Severn class and data set.

Figure 5.10: MLC accuracy of optimal band sets derived using an exhaustive search with
MLC accuracy (MLC-EXH), the UBS (start with least correlated, LC, and noisy, LN, bands),
and CSBS algorithm for the New Forest data.

Figure 5.11: MLC accuracy of optimal band sets derived using an exhaustive search with
MLC accuracy (MLC-EXH), the UBS (start with least correlated, LC, and noisy, LN, bands)
and CSBS algorithm for the River Severn data.

Figure 5.12: MLC accuracy of the ‘optimal’ UBS (start with least correlated, LC, and noisy,
LN, bands) and CSBS band sets compared with the one of satellite and airborne band sets
for the New Forest data.

Figure 5.13: MLC accuracy of the optimal UBS (start with least correlated, LC, and noisy,
LN, bands) and SBS band sets compared with the one of satellite and airborne band sets for
the River Severn data.

Figure 5.14: First six bands selected by UBS for the New Forest data set (see table 5.4).
Wavelengths not available for band selection are indicated by grey bars.

Figure 5.15: First six bands selected by UBS for the River Severn data set (see table 5.4).
Wavelengths not available for band selection are indicated by grey bars.

Figure 5.16: Masked HYMAP New Forest data displayed using the first three optimal bands
output by the UBS algorithm (see table 5.4, R = band 2, G = band 1, B = band 3).

Figure 5.17: New Forest Maximum Likelihood Classification result using the first six bands
selected by the UBS algorithm (see table 5.4; Lake, blue; Asphalt, white; Bracken, yellow;
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath,
green; Valley Mire, dark green).

Figure 5.18: Masked CASI River Severn data displayed using the first three optimal bands
output by the UBS algorithm (see table 5.4, R = band 2, G = band 3, B = band 1).
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Figure 5.19: River Severn Maximum Likelihood Classification result using the first six bands
selected by the UBS algorithm (see table 5.4; Bare Rock, white; Pioneer Marsh, bright green;
Mid Marsh, green; High Marsh, dark green; Bare Mud, brown).

Figure 5.20: First six bands selected by CSBS for the New Forest data set (see table 5.5).
Wavelengths not available for band selection are indicated by grey bars.

Figure 5.21: First six bands selected by CSBS for the River Severn data set (see table 5.5).
Wavelengths not available for band selection are indicated by grey bars.

Figure 5.22: River Severn Maximum Likelihood Classification result using the first six bands
selected by the CSBS algorithm (see table 5.5; Bare Rock, white; Pioneer Marsh, bright
green; Mid Marsh, green; High Marsh, dark green; Bare Mud, brown).

Figure 5.23: New Forest Maximum Likelihood Classification result using the first six bands
selected by the CSBS algorithm (see table 5.5; Lake, blue; Asphalt, white; Bracken, yellow;
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath,
green; Valley Mire, dark green).

Figure 5.24: Estimate of amount of image samples against the execution time of the
Datastats routine (see section G.4) for a 288-band data set and a 1 GHz processor.

Figure 5.25: Estimate of amount of output image samples against the execution time of the
Resizing ENVI™ routine for a 288-band data set and a 1 GHz processor.

Figure 6.1: ML.C accuracy of band sets output by the SBS, UBS LC, UBS LN and CSBS
algorithms for the New Forest data set.

Figure 6.2: ML.C accuracy of band sets output by the SBS, UBS L.C, UBS LN and CSBS
algorithms for the River Severn data set.

Figure 6.3: MLC accuracy of the SBS band set compared with the one of randomly and
uniformly spaced band sets for the New Forest data set.

Figure 6.4: MLC accuracy of the SBS band set compared with the one of randomly and
uniformly spaced band sets for the River Severn data set.

Figure 6.5: Accuracy of SBS band sets for increasing bandwidth for the New Forest data set.
The width was fixed to 1, 5, 9, 13, 17, 21, 25 and 29 rows to be merged. The number in the
legend is the corresponding minimum width (in nm) of the bands in each set.

Figure 6.6: Accuracy of SBS band sets for increasing bandwidth for the River Severn data
set. The width was fixed to 1, 5, 9, 13, 17, 21, 25 and 29 rows to be merged. The number in
the legend is the corresponding minimum width (in nm) of the bands in each set.

Figure 6.7: False colour CASI-2 image of the Tregaron bog (R = band 40, G = band 22, B =
band 14). © UK Natural Environment Research Council, 2001.

Figure 6.8: J. Schulz’s map of surface condition classes for the Tregaron bog (Milton ef af.,
2003). The classes used are explained in table 6.3.

Figure 6.9: Scatter plots of the Transformed Divergence measure against MLC overall
accuracy estimated with the holdout method for the Tregaron data set. The regression line is
displayed (correlation coefficient r = 0.99).

Figure 6.10: ML.C accuracy of optimal band sets derived using an exhaustive search with
MLC accuracy (MLC-EXH) and SBS algorithm for the Tregaron data set.

Figure 6.11: First six bands selected by SBS for the Tregaron classification task (see table
6.3 and 6.4). Wavelengths not available for band selection are indicated by grey bars.
Figure 6.12: MLC accuracy of the SBS band set compared with the one of randomly and
uniformly spaced band sets for the Tregaron data set.

Figure 6.13: Accuracy of SBS band sets for increasing bandwidth for the Tregaron data set.
The width was fixed to 1, 3, 5,7, 9, 11, 13, 15 and 17 rows to be merged. The number in the
legend corresponds to the minimum width (in nm) of the bands in each set.

Figure B.1: Skewness calculated for all classes of the Mid Severn Estuary study area for
bands 21, 33, 45 and 57.
Figure B.2: Kurtosis calculated for all classes of the Mid Severn Estuary study area for

bands 21, 33, 45 and 57.
Figure B.3: Skewness calculated for all classes of the New Forest study area for bands 10,

40, 80 and 100.
Figure B.4: Kurtosis calculated for all classes of the New Forest study area for bands 10, 40,

80 and 100.

Figure C.1: Atmospheric transmission for 0.7 to 1.0 um wavelength range modelled with 6S
for different water vapour contents (g/cm?) in a US 1962 standard atmosphere.
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Figure C.2: Atmospheric transmission for 1.0 to 2.0 um wavelength range modelled with 6S
for different water vapour contents (g/cmz) ina US 1962 standard atmosphere.

Figure C.3: Atmospheric transmission for 0.7 to 1.0 um wavelength range modelled with 6S
for different solar zenith angles (°) in a midlatitude summer atmosphere.

Figure C.4: Atmospheric transmission for 1.0 to 2.0 um wavelength range modelled with 6S
for different solar zenith angles (°) in a midlatitude summer atmosphere.

Figure C.5: Atmospheric transmission for 0.7 to 1.0 pm wavelength range modelled with 6S
for different aircraft heights (km) in a midlatitude summer atmosphere.

Figure C.6: Atmospheric transmission for 1.0 to 2.0 pm wavelength range modelled with 65
for different aircraft heights (km) in a midlatitude summer atmosphere.

Figure G.1: Algorithm choices for the SBS (Supervised Band Selection) program.
Figure G.2: ENVI™ widget allowing the user to choose between the given SBS program
options.

Figure G.3; ENVI™ widget for the option-dependent definition of further parameters.
Figure G.4: ENVI™ widget report about successful program operation.

Figure G.5: Algorithm choices for the UBS (Unsupervised Band Selection) program.
Figure G.6: ENvVI™ widget allowing the user to choose between the given UBS program
options.

15

257
257
257
2567
257
291
292
293
294

295
296



ACKNOWLEDGEMENTS

| am greatly indebted to my supervisor Prof. Edward Milton, for his unerring support, guidance and
inspiration at all times during my work on this thesis. ‘Ted’ gave me the opportunity to work part-time
in the NERC Equipment Pool for Field Spectroscopy (EPFS), which allowed me to receive a full
grant as a European student. At this point, [ would like to thank the University of Southampton,

which funded the main part of my research.

I am also grateful to Prof. Peter Atkinson and Dr. Jonathan Forster for checking on statistics and
formulae, and for all the constructive comments they made. | am also thankful to NERC for
supplying the HyMAP and CASI-2 data acquired over the New Forest and the Tregaron bog,

respectively. In addition, | thank the Environment Agency for supplying the CASI data acquired over

the River Severn.

| also would like to thank Karen Anderson for her assistance during field work, and her advice for the
New Forest training site selection. Also a great thank you to Eloise Peters for her assistance during
field work, to Jenny Schulz for her advice in the training site selection for the Tregaron site, and to

Bill Damon for his technical support.

I am also gratefu! to the following people for their general assistance at the School of Geography,
University of Southampton: Dr. Charles Kerr, Dr. Jim Milne, Sally Kelday, Dr. Liz Rollin, John Hurst,
Tim Aspen, Andy Vowles, Roz Campbell, and Prof. David Martin. Thanks, too, to lise Steyl, Jana
Fried, Matthew Wilson, Dr. Sally Priest, Reno Choi, Nicholas Odoni, Marie Cribb and all other

members of the Graduate School, School of Geography, University of Southampton.

Finally, thanks to my parents, family and friends for their continuous support.

16



ACORN
AISA
AMD
ANN
ARSF
ARVI
ATREM
AVHRR
AVIRIS
BNSC
CA
CASI/ CASI-2
ccb
CHRIS
CSBS
DA / DAFE
DBFE
DN

DP

EA

EL

EM
EPFS
EVI

FA

FOV
FWHM
GA
GERIS
GIFOV
GMES
GVI
HyMAP
IARR
ICA

ID

IDD
IFOV
ISODATA

ABBREVIATIONS

Atmospheric Correction Now

Airborne Imaging Spectrometer

Absolute mean difference

Artificial neural network

NERC Airborne Remote Sensing Facility
Atmospherically resistant Vi

Atmosphere Removal Program

Advanced Very High Resolution Radiometer
Airborne Visible/Infrared Imaging Spectrometer
British National Space Centre

Canonical analysis

[tres Instruments Compact Airborne Spectrographic Imager
Charge-coupled device

Compact High Resolution Imaging Spectrometer
Clustering-based SBS

Discriminant analysis {feature extraction)
Decision boundary feature extraction

Digital number

Discriminant power

Environment Agency

Empirical line

Endmember

NERC Equipment Pool For Field Spectroscopy
Enhanced VI

Factor analysis

Field-of-view

Full-width-half-maximum

Genetic algorithm

Geophysical Environmental Research Imaging Spectrometer
Ground-projected IFOV

Global Monitoring of Environment and Security
Green Vi

Hyperspectral Mapper

Internal average relative reflectance
Independent component analysis

Intrinsic dimensionality

Intrinsic discriminant dimensionality
Instantaneous FOV

lterative Self-Organising Data Analysis

17



KL

LAI

LC

LN
LOWTRAN
LSMM
LSU
MAF
MDS
MEIS
MLC
MNF
MODTRAN
MSPCA
MTF
NERC
NIR
NPL
OIF
OMBVI
OSP
PC
PCA
PCVI
P
pixel
PMAMA
PMATD
PN

PP
PPDA
PPDB
PPFS
PSF
RBD
RGB
RMSE
ROI
ROSIS
RTGC
RTM

Karhunen-Loéve

Leaf-area index

Least correlated band pair first (UBS algorithm option)
Least noisy band first (UBS algorithm option)

Low Resolution Atmospheric Radiance And Transmittance
Linear spectral mixture model

Linear spectral unmixing

Minimum/maximum autocorrelation factors
Multidimensional scaling

Multi-detector Electro-optical Imaging Scanner
Maximum likelihood classifier / classification
Maximum noise fraction

Moderate resolution atmospheric radiance and transmittance model
Modified stepwise PCA

Modulation transfer function

Natural Environment Research Council, UK

Near infrared

National Physical Laboratory

Optimal index factor

Optimum multiple-band VI

Orthogonal subspace projection

Principal component

Principal components analysis

Principal component Vi

Projection index

Picture element

Proportion of maximum achievable MLC accuracy
Proportion of maximum achievable Transformed Divergence
Priority number

Projection pursuit

PP pre-processing and DAFE combined

PP pre-processing and DBFE combined
Projection pursuit feature selection

Point spread function

Relative absorption band-depth

Red-green-blue

Root mean square error

Region of interest

Reflective Optics System Imaging Spectrometer
Radiative transfer ground calibration

Radiative transfer model

18



SA
SAC
SAM
SBaFs
SBaS
SBS
SFF
SFFS
SFS

Sl
SNR
SPA
SSS|
SWIR
TBVI
D
TOAVI
uBsS
ValDEOS
\

VIS

Simulated annealing

Special area of conservation

Spectral angle mapper

Sequential backward floating selection
Sequential backward selection
Supervised band selection algorithm
Spectral feature fitting

Sequential forward floating search
Sequential forward selection

Systéme International

Signal-to-noise ratio

Special protection area

Site of special scientific interest
Short-wave infrared

Two-band VI

Transformed divergence
Top-of-atmosphere Vi

Unsupervised band selection aigorithm
Validation of data for Earth observation services
Vegetation index

Visible

19



1 Introduction

In this research project, new band selection methods for imaging spectrometers were developed and
evaluated. In this introductory chapter, the rationale behind the research is explained, followed by a

statement of the specific research objectives. The chapter closes with a description of the structure

of the thesis.

1.1 Rationale

Remote sensing denotes the process of measuring physical characteristics of distant objects. In a
typical remote sensing system, electromagnetic energy reflected and emitted from remote objects on
the Earth’s surface is recorded at different wavelengths by a sensor onboard an aircraft or satellite.
From these measurements information may be inferred to identify or characterise these objects, for

example, in terms of their physical or chemical properties.

In this thesis, the author will limit himself to optical solar-reflective passive remote sensing with the
Sun as illumination source and the Earth’s surface as target. The optical solar-reflective wavelength
range includes the visible (VIS, 0.38 - 0.76 um), the near infrared (NIR, 0.76 - 1.5 ym) and the short-
wavelength infrared (SWIR, 1.5 — 3 pm) (Chen, 1997).

Remotely sensed radiation is, after atmospheric correction, a function of the location, time,
wavelength and viewing geometry of a given resolution element (Verstraete and Pinty, 1992). In this

thesis, the analysis was based exclusively on extracting information from detectable changes in the

wavelength parameter of the measured radiance.

Until recently, many subtle changes in radiation with wavelength were not detectable with remote
sensing (Curran, 1994). Available sensors sampled the spectrum with broad bands of around 0.1 -
0.2 ym in width (e.g. Landsat MSS, TM and SPOT), while most terrestrial materials are
characterised by narrow absorption features typically 0.02 - 0.04 um in width (Hunt, 1980).

Imaging Spectrometry

[n the last decades, advances in sensor technology have produced a new generation of airborne
and satellite sensors, called imaging spectrometers. Imaging spectrometers record a continuous
radiance spectrum for each image pixel via numerous contiguous and narrow bands (see figure 1.1).
Their spectral resolution is approximating closely the one in spectroscopy, typically 0.01 to 0.02 pym.

That is, in contrast to broadband sensors, imaging spectrometers allow the detection of narrow
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material-specific absorption features, resulting in increased mapping capacities. In addition, imaging
spectrometer data enable the extraction of reflectance spectra at a pixel scale, which are directly
comparable to reflectance spectra gathered in the field or laboratory. For a historical review of
imaging spectrometry, the reader is referred to Kruse et al. (1990) and Van der Meer et al. (2001).
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Figure 1.1: Imaging spectrometry data acquisition
(source: http://lwww.apex-esa.org).

As with non-imaging spectrometers, the incoming radiation is usually dispersed by optical elements
such as prisms, diffraction gratings, or in a special case, interferometers onto a detection device
(usually a charge-coupled device, CCD, array). The spatial extent of the image is acquired using
across-track scanning techniques (e.g. pushbroom, whiskbroom) and their inherent movement

along-track.

In contrast to field and laboratory spectrometers which are usually employed on the ground, imaging

spectrometers are typically airborne or spaceborne. That is, their data have a lower signal-to-noise
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ratio (SNR) due to the distant radiation sources and the limited available dwell time of the sensor
over the target. Since their field of view (FOV) is typically in the order of several meters for airborne
sensors, the measurement sample within it is most likely to be heterogeneous. Being remotely-
sensed image data, imaging spectrometer data may aiso be affected by varying topography, viewing
geometry and atmospheric noise (Curran, 1994; Tsai and Philpot, 1998). In addition, depending on

the sensor design, the bandwidth may vary over the spectrum.

Different names have been created {o describe this new area of remote sensing: imaging
spectrometry (‘measuring’), imaging spectroscopy (‘seeing’) and hyperspectral remote sensing
(‘many bands’) (Van der Meer and De Jong, 2001). Usually, an imaging spectrometer is calibrated to
perform absolute measurements in one of the internationally recognised Systéme International (SI)
base units, such as spectral radiance. It should then be referred to as ‘imaging spectroradiometer’

(see definition of ‘spectroradiometer’ in Wyatt, 1978).

A calibration to spectral radiance units is especially important when comparing measurements
between different instruments or from different acquisition times (Mather, 1999). In addition, some
radiative transfer models need physical quantities such as upwelling radiance as input variables to

calculate an atmospheric correction that relates apparent at-sensor radiance to the radiance of the

ground feature (Slater, 1984).
Imaging Spectrometers

After the commercialisation of airborne imaging spectrometers in the early 1980s, numerous
instrument types have been developed. A good compilation of airborne imaging spectrometers can
be found in Curran (1994) and Van der Meer et al. (2001). Table 1.1 and 1.2 list some of the

airborne and spaceborne VNIR sensors that have been operated or planned since 2002.

Table 1.3 shows specifications of two airborne imaging spectrometer systems, the CASI-2 and the
HyMAP, the data of which will be used in this thesis. Unlike the HyMAP sensor, the CASI-2 is
programmable with respect to band location, width and number. Due to data recording rate limits of
the CASI-2 hard drive subsystem, a trade-off exists between a maximal swath width and high
spectral resolution. The full swath width (512 imaging pixels) is recorded in CASI-2’s spatial mode,
however at the cost of a reduced number of maximum 19 spectral bands (ITRES, 2001). In contrast,
all 288 bands may be recorded in CASI-2’s enhanced spectral mode, but with a much narrower

swath (101 imaging pixels). For a more detailed summary see Riedmann (2003).

While airborne imaging spectrometers have a very fine spatial resolution (up to 1 m, e.g. CASI-2),
their spaceborne counterparts possess coarser spatial resolution (typically 30 - 500 m), but similar
spectral resolution. Table 1.4 presents some examples of currently orbiting spaceborne imaging

spectrometers.
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Table 1.1: Airborne VNIR Sensors operating in year 2002 and beyond. Hyperlinks were last verified on 10/10/2002.

Acronym Name Manufacturer Operator Instrument/Calibration Hyperlink

AAHIS-3 Advanced Airborne Hyperspectral STl Government Systems http:/iww.sti-government.com/Optical_Imaging_Systems/AAHIS himl
Imaging System

AirMISR Airborne Multi-angle Imaging JPL NASA

Spectro-Radiometer
http/iwww-misr jpl.nasa.gov/mission/valwork/mivcalres htm

AISA Airborne Imaging Spectrometer for Specim Ltd. Specim Ltd. CaliGeo post-processing software

Applications http://www,specim.fi/products-aisa.html
Calibration technique (CARSTAD)
hitp://carstad.gsfc.nasa.gov/topics/erim39web.himl

AMSS Airborne Multispectral Scanner SpecTerra Systems Pty hitp://www specterra.com.au/amss_frame.htmi
Ltd (sTs)
APEX Airborne PRISM Experiment ESA http:/iwww.apex-esa.org/ :
System > Scanner Specifications > System Recommendations
ASAS Advanced Solid State Array NASA NASA hitp://asas.gsfc.nasa.gov/
Spectroradiometer
AVIRIS Airbarne Visible/Infrared Imaging NASA, JPL NASA, Ames hitp:/iaviris.jpl.nasa.gov/

Spectrometer AVIRIS calibration (JPL publication)
hitp://popo.jpl.nasa.gov/docs/aviris87/1-VANE 1.PDF
hitp.//popo.jpl.nasa.gov/docs/workshops/90_docs/1.PDF
http:/iwww.optics arizona.edu/rsa/

CAESAR CCD Airborne Experimental NLR NLR hitp:/iwww itc.nli~bakker/info/rs-data/platform.html

Scanner for Applications in Remote

Sensing

CASI-2 Compact Airborne Spectrographic ltres Research Lid. NERC ARSF, http:/fwww.itres.com
Imager EA For calibration see chapter 3 of this thesis
DAIS 7915 Digital Airborne Imaging GER Corp. DLR/JRC hitp://www.op.dir.de/DAIS/
Spectrometer Calibration
hitp:/iwww.op.dir.de/dais/dais-cal.htm
EPS-H Environmental Probe System GER Corp. hitp://www.ger.com/epshman.html
Calibration
hitp://www.ger.com/epshman himiftsyscal
HRIS High Resolution Imaging ESA/DSS hitp/iwww gisdevelopment.net/aars/acrs/1999/ts10/ts10210pf.htm
Spectrometer
HYDICE Hyperspectral Digital Imagery Naval Research ERIM hitp:/irsd-www.nrl.navy.mil/hydice/

Collection Experiment Labaratory Calibration

hitp://www .optics.arizona.edu/rsg/
HYMAP Hyperspectral Mapper Integrated Spectronics HyVista Corp. | hitp://www.intspec.com

hitp:/iwww.hyvista.com/hymap.html

Calibration:

hitp:/iwww.aiglic.com/pdf/EARSEL98 HyMap pdf )
ISM Imaging Spectroscopic Mapper IAS and DESPA (Paris hitp/iwww.Ipi.usra.edu/science/kirkland/Workshop1/ERARD2.PDF

Observatory)

hitp://www.ias fricdp/ISM/welcome . html
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http://aviris.ipl.nasa.aov/
http://Dooo.ipl.nasa.aov/docs/workshops/90
http://www.optics.arizona.edu/rsg/
http://www.itc.nl/~bakker/info/rs-data/olatform.html
http://www.itres.com
http://www.op.dlr.de/DAIS/
http://www.oD.dlr.de/dais/dais-cal.htm
http://www.aer.com/eDshman.html%23SYScal
http://www.aisdevelopment.net/aars/acrs/1999/ts10/ts10210pf.htm
http://www.nrl.navv.mil/hvdice/
http://www.oDtics.arizona.edu/rsa/
http://www.intspec.com
http://www.hvvista.com/hvmap.html
http://www.aiqllc.com/pdf/EARSEL98
http://www.lpi.usra.edu/science/kirklandA/Vorkshop1/ERARD2.PDF
http://www.ias
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Table 1.1 continued.

MAIS Modular Airborne Imaging Shanghai Institute of
Spectrometer Technical Physics
MAMS Multispectral Atmospheric Mapping Daedalus Enterprise Inc. NASA, MSFC | hitp://asapdata.arc.nasa.gov/dscrptns.him
Sensor
MAS / AMS | MODIS Airborne Simulator Daedalus Enterprise Inc. NASA, hitp://mas.arc.nasa.gov/
GSFC Calibration
hitp://www oplics arizona.edufrsg/
MASTER MODIS/ASTER Airborne Simulator Daedalus Enterprise Inc. NASA, hitp://masterweb.jpl.nasa.gov/
JPL Calibration:
hitp://www optics.arizona.edu/rsg/
MEIS-II Multispectral Electro-optical Imaging | CCRS Innotech
Sensor
MISI Modular Imaging Spectrometer Rochester Institute of http://www2 rit.edu/fic/pub205¢0.isp
Instrument Technology (RIT) Calibration:
http://www.cis rit.edu/research/dirs/annualreport 98/research/vis _call
MIVIS Multispectral Infrared and Visible SenSyTech Inc. CNR, Rome hitp://www sensytech.com/imaging/MIVIS.him|
Imaging Spectrometer Calibration:
hitp://itpwww.gsfc.nasa.gov/ISSSR-95/mivisair.htm
PHILLS Portable Hyperspectral Imager for Naval Research hitp//rsd-www.nrl.navy mil/7212/phills.htm
Low -Light Spectroscopy Laboratory Calibration:
hitp://rsd-www.nrl.navy.mil/7212/pdf/20020225 OF pdf
PROBE-1 Earth Search Sciences Inc. hitp://www.earthsearch.com/technology/frame_about_probe1.html
ROSIS Reflective Optics System Imaging DLR, GKSS, MBB DLR hitp:/fiwww.op.dir.de/ne-oeffolrosisihome himi
Spectrometer
TRWIS-III TRW Imaging Spectrometer TRW Inc. hitp:/iwww trw.com/marketplace/main/Q.1151.39_1541 415 564 578557
87578.00.html
VIFIS Variable Interference Filter Imaging Univ. of Dundee hitp://www somis.dundee.ac.uk/staffprofiles/e/R_SE15RA001/
Spectrometer
WIS Wedge Imaging Spectrometer Hughes Santa Barbara NASA SSC

Research Center
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Table 1.2: Satellite VNIR Sensors operating in year 2002 and beyond. Hyperlinks were last verified on 10/10/2002.

Acronym Name Agency Platform Launch | Instrument/Calibration Hyperlink
AATSR Advanced Along Track | ESA ENVISAT 03/2002 hitp://envisat.esa.int/instruments/aatsr/
Scanning Radiometer on-board visible calibration system
hitp:/fwww le ac.uk/physicsiresearch/eos/aatsr/pheapr_6.hmi
hitp:/envisat.esa.int/calval/cr/12092002/AATSR/
ALl Advanced Land Imager | NASA EO-1 11/2000 hitp://eol.gsfc.nasa.gov/Technology/Al.lhome1.htm
Calibration
hitp://eo1.usgs.gov/documents/ALI/SPIE_07-99¢10.pdf
AMODIS Advanced Moderate- NASA EOS-AM2 20047 http://pac.gsfc.nasa.gov/gsic/service/gallery/fact sheets/earthsci/fs-96(07)-13.htm
Resolution Imaging :
Spectroradiometer
ARIES Australian Resource Australia ARIES-1,2,3 2002? hitp://www.auspace.com.au/projecis/aries.htm
Information and Calibration
Environment Satellite hitp://www .sdl.usu.edu/conferences/smallsat/proceedings/11/tech03.pdf
ASTER Advanced Spaceborne | NASA EOS AM-1 1999 hitp://asterweb.jpl.nasa.gov
Thermal Emission and (TERRA) hitp:/leospso.gsfe.nasa.govieos_homepageffor_scientists/atbd/viewlnstrument.php?instr
Reflection Radiometer ument=ASTER
Calibration
hitp://www.optics.arizona.edu/rsg/
hitp://edcdaac.usgs .gov/aster/asterprocessing.htmi
ATSR Along Track Scanning ESA ERS-1 1991
Radiometer ERS-2 1995
AVHRR Advanced Very High NASA NOAA-J 1994 hitp:/ffermi.jhuapl.edu/avhrriindex.htmi
Resolution Radiometer NOAA-K 05/1998 hitp:/iwww.itc.nli~bakker/noaa.htm]
NOAA-L 2000 hitp//www .agrecon.canberra.edu.au/Products/Satellite_Imagery/NOAA/NOAA.htm
NOAA-M 2002 Calibration
NOAA-N 20037 hittp://iwww.optics.arizona.edu/rsg/
hitp:/lwww.ccrs.nrcan.ge.calcers/rd/ana/calval/calhome_e.himl
hitp://www pcigeomatics.com/cgi-hin/pcinip/AVHRRAD
AVHRR/ Advanced Very High NOAA-N 2004/ hitp:/iwww.itc.nl/~bakker/noaa.html
HRIS Resolution Radiometer 20087
AVNIR-2 Advanced Visible and NASDA ALOS 20047 hitp:/fwww sore.nasda.go.jp/ALOS/abouti2avnir him
Near Infrared (Japan) hitp://www.eoc.nasda.go.jp/guide/satellite/sendata/avnir_e.html
Radiometer type 2 Calibration
hitp./fwww.eorc.nasda.go.jp/ALOS/da/2example.htm
CCD High Resolution CCD CAST / INPE CBERS-1 1999 hitp://www .dgi.inpe.br/html/feng/cbers.htm
Camera CBERS-2 20037 hitp://www.inpe.br/programas/cbers/english/satelite.htmi
Calibration
http://www.gisdevelopment.net/aars/acrs/1999/ts7/ts7201.shtml
CHRIS Compact High ESA PROBA 10/2001 www.rsacl.co.uk/chris
Resolution Imaging Calibration
Spectrometer hitp://www.cossa.csiro.au/reports/prata/chris_meeting.htm|
CIS Chinese Imaging China N/A N/A Shanghai Institute of Technical Physics, Shanghai

Spectrometer



http://eo1
http://www.auspace.com.au/Droiects/arles.htm
http://www.sdl.usu.edu/conferences/smaNsat/Droceedinas/11/tech03.pdf
http://asterweb.jpl.nasa.gov
http://www.optics.arizona.edu/rsq/
http://www.itc.nl/~bakker/noaa.html
http://www.aqrecon.canberra.edu.au/Products/Satellite
http://www.optics
http://www.ccrs.nrcan.oc.ca/ccrs/rd/ana/calval/calhome
http://www.Dciqeomatics.com/cqi-bin/pcihlD/AVHRRAD
http://www.itc.nl/~bakker/noaa.html
http://www.eoc.nasda.ao.iD/quide/satellite/sendata/avnir
http://www.eorc.nasda.gpJp/ALOS/da/2examDle.htm
http://www.dqi.inDe.br/html/enq/cbers.htm
http://www.inDe.br/Droaramas/cbers/enolish/satelite.html
http://www.aisdeveloDment.net/aars/acrs/1999/ts7/ts7201.shtml
http://www.rsacl.co.uk/chris
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Table 1.2 continued.

COIS/PIC

Coastal Ocean us NEMO 2002 hitp:/imww.nrl.navy.mil/

Imaging Spectrometer / hitp://www tec.army.mil/tio/nemo.htm

Panchromatic Imaging Calibration

Camera http://rsd-www.nrl.navy mil/7212/pdfi20020225 QE.pdf

DAVID ISA, DLR DAVID 20027 hitp://beta.most.gov.il/sela_dir/DAVID.htm!
www .ohb-system.de
EROS-A1 Earth Remote Sensing | ImageSat Int. EROS-A 12/2000 hitp://www.imagesatintl.com/aboutus/satellites/satellites.shtmi#
EROS-B1 Observation Satellite EROS-B 20037
ETM+ Enhanced Thematic NASA LANDSAT-7 1999 hitp://landsat.gsfc.nasa.gov/

Mapper Plus Calibration:
hitp://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmis/chapter8/chapter8.html
hitp://www optics arizona.edulrsg/

FTHSI Fourier Transform US Air Force Mighty Sat Il 05/1999 http:/fwww.vs.afrlaf.mil/TechProgs/MightySatil/F THS|.htm|

Hyperspectral Imager Phillips Lab hitp:/fwww vs.afrl.af.mil/factsheets/msat2.html

GLI Global Imager Japan ADEOS-2 20027 hitp://adeos2.hqg.nasda.go.jp/shosai_gli_e.him
Calibration
hitp://sharaku.eorc.nasda.go jp/GLmeet/2001/40 pdf
HIRS/3 High Resolution NOAA NOAA-K 05/1998 hitp://iwww.eumetsat.de/en/index.himi?area=left4d.htmi&body=/en/aread/aapp/hirs_3.htm
Infrared Radiation NOAA-L 2000 1&2=4208&b=18c=400&d=4008&e=0
Sounder NOAA-M 2002 hitp//margotie univ-paris1.fr/cogms/en/ap10-09.htm
NOAA-N 20037 Calibration
hitp://www2 .ncde.noaa.govidocs/kim/himl/c3/sec3-2 him
HRV High Resolution Visible | Spot Image, SPOT-2 01/1990 hitp://www.spotimage fr/
Sensor CNES Calibration
HRVIR High Resolution Visible SPOT-4 03/1998 hitp:/fwww.optics.arizona.edu/rsg/
and Infrared sensor hitp:/ivegetation.cnes.fr/vgtprep/ivgt2000/henry.pdf
High Resolution
HRG Geometric Sensor SPOT-5 05/2002
HYPERION NASA EO-1 11/2000 hitp://eo.gsfc.nasa.gov/Technology/Hyperion.html
Calibration:
hitp:/lwww . trw.com/extlink/1...00.htmi?ExternalTRW=/images/hyperion_cal.pdf
hitp:/iwww.ece.arizona.edu/~diallbase_files/NewPage/eo1.html
hitp://www.eoc.csiro.au/hswww/Hyperion.htm
IR-MSS Infrared Multispectral CAST / INPE CBERS-1 1999 hitp://www.dgi.inpe.br/html/eng/cbers.htm

Scanner CBERS-2 20037 hitp://www.inpe.br/programas/cbers/english/satelite htmi
Calibration
hitp:/Awww.gisdevelopment.net/aars/acrs/1999/ps2/ps20034pf.him

IKONOS Space IKONOS 09/1999 htp://www.spaceimaging.com/products/ikonos/index.htm
Imaging Calibration
hitp://Awww.spaceimaging.com/aboutus/satellites/IKONOS/spectral.htm
hitp://www geosystems.de/atcor/sensors/IKONOS.himl
KVR-1000 2 m resolution Russia SPIN-2 02/1998 hitp:/Awww tec.army. milftio/SPINZ htm
TK-350 10 m resolution
pan. Cameras



http://www.nrl.navv.mil/
http://www.tec.armv.mil/tio/nemo.htm
http://www.nrl.navv.mil/7212/Ddf/20020225
http://beta.most.aov.il/sela
http://www.ohb-system.de
http://www.imaaesatintl.eom/aboutus/satellites/satellites.shtml%23
http://ltpwww.asfc.nasa.aov/lAS/handbook/handbook
http://www.QDtics.arizona.edu/rsq/
http://www.vs.afrl.af.mil/TechProas/MiahtvSatll/FTHSi.html
http://www.vs.afrl.af.mil/factsheets/msat2.html
http://sharaku.eorc.nasda.ao.ip/GLI/meet/2001/40.pdf
http://www
http://www.optics.arizona.edu/rsg/
http://www.ece.arizona.edu/~dial/base
http://www.eoc.csiro.au/hswww/HvDerion.htm
http://www.dgi.inpe.br/html/eng/cbers.htm
http://www.inpe.br/proaramas/cbers/enalish/satelite.html
http://www.qisdevelopment.net/aars/acrs/1999/ps2/ps20034pf.htm
http://www.spaceimaaina.com/products/ikonos/index.htm
http://www.spaceimaaina.eom/aboutus/satellites/IKONOS/spectral.htm
http://www.aeosvstems.de/atcor/sensors/IKONOS.html
http://www.tec.armv.mil/tio/SPIN2.htm
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Table 1.2 continued.

LAC Linear etalon imaging NASA EO-1 11/2000 http://eo1.gsfc.nasa.gov/overview/RTR/Sec-12-AC/
spectrometer array http://eo1.usgs.goviinstru/leisa.asp
(LEISA) Atmospheric Calibration
Corrector hitp:/Idcm.usgs.gov/eo-1forum/Validation Reports/LAC .pdf
LISS-I Linear Self-Scanning India IRS-1B 08/1991 hitp://www.euromap.de/
LISS-l Sensor IRS-1C 12/1995 Calibration
LISS-i IRS-1D 09/1997 hitp://www.euromap.de/
LISS-IV IRS-P6 20027
M5 Multispectral 5m DigitalGlobe™ | N/A 20067 hitp:/iwww digitalglobe.com
resolution
M10 Multispectral 10 m Resource21 Resource21 20047 http://www.resource21.com/default.htm
resolution
MERIS Medium Resolution ESA ENVISAT 03/2002 http://envisat.esa.int/instruments/meris/
Imaging Spectrometer Calibration
hitp:/fenvisat.esa.int/calval/cr/10092002/MERIS/
MISR Multi-Angle Imaging NASA EOS AM-1 12/1999 hitp://www-misr jpl.nasa.gov
Spectroradiometer (TERRA) Calibration
hitp://www-misr jpl.nasa.gov/mission/calib.html
MMRS Mulitspectral Medium CONAE SAC-C 11/2000 hitp:/iwww gsfc.nasa.gov/gsfc/service/gallery/fact_sheets/spacesci/sac-c.htm
Resolution Scanner Argentina
MODIS Moderate- Resolution NASA EOS AM-1 12/1999 hitp://modis.gsfc.nasa.gov
Imaging (TERRA) Calibration
Spectroradiometer EOS PM-1 05/2002 hitp:/fwww.optics.arizona.edu/rsg/
(AQUA)
MOS Modular Optoelectronic | DLR IRS-P3 03/1996 hitp:/iwww ba.dlr.de/NE-WS/ws5/mos_home.html
Scanner Calibration
hitp://iwww.ba.dlr.de/NE-WS/ws5/index_mos . html
MSU-SK / Medium-resolution / Russia RESURS- http://sputnik.infospace.ru/resurs/engl/resurs.htm
MSU-E high-resolution 01-3 10/1994 hitp://ceos.cnes.fr:8100/cdrom-00b2/ceos1/satellit/scanex/resursiresurs_o.htm
multispectral scanner 01-4 07/1998 | hitp:/iwww scanex.ru/stations/resurs htm#MSUSK
OClI Ocean Colour Imager Taiwan ROCSAT-1 12/1998 hitp://www.nspo.gov.tw/e50/menu0504.htmi
hitp://rocsatl oci.ntou.edu fw/enfocifindex.him
OCM Ocean Colour Monitor India IRS-P4 1999 hitp:/iwww.isro.orglirspd.htm
[ Oceansat hitp://202.54.32 164 /test/docu/irsp4/c231 .himl
OCTS Ocean Color and 08/1996-
Temperature Scanner 06/1997
OrbView Orbimage Orbview-3 20037 hitp://www .orbimage.com/corp/orbimage _system/ov3/
Calibration
hitp://www.optics.arizona.edulrsg/
OsSMI Ocean Scanning Multi- | Korea KOMPSAT-1 12/1999 http://kompsat.kari.re krfenglish/index.asp
spectral Imager (Site Map > OSMI)
PAN India IRS-1C 1995 hitp//www.euromap.de/doc_000.htm
IRS-1D 09/1997 Calibration
IRS-P5 20037 hitp://www.ipi.uni-hannover.de/html/publikationen/1998/jacobsen/jiac_98 calib_irs1c.pdf



http://eo1
http://eo1.usas.qov/instru/leisa.asp
http://www.euromap.de/
http://www.euromap.de/
http://www.di5.italglobe.com
http://www.resource21.com/default.htm
http://envisat.esa.int/instruments/mens/
http://www-misr.jpl.nasa.aov/mlssion/calib.html
http://www.qsfc.nasa.aov/asfc/service/oallerv/fact
http://modis.gsfc.nasa.gov
http://www.optics.artzona.edu/rgg/
http://www.ba.dlr.de/NE-WS/ws5/mos
http://www.ba.dlr.de/NE-WS/ws5/index
http://sputnik.infospace.ru/resurs/enal/resurs.htm
http://ceos.cnes.fr:8100/cdrom-00b2/ceos1/satellit/scanex/resurs/resurs
http://www.scanex.ru/stations/resurs.htm%23ISUSK
http://www.nsDO.aov.tw/e50/menu0504.html
http://www.isro.org/irsp4.hlm
http://202.54.32.164/test/docu/irsp4/c231.html
http://www.eorc.nasda.go.jp/ADEOS/Prolect/Octs.html
http://www.Drbimaae.com/corD/orbimaae
http://www.0Dtics.arizona.edu/rsa/
http://kompsat.kan.re.kr/enalish/index.aso
http://www.ioi.uni-hannover.de/html/oublikationen/1998/iacobsen/iac
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Table 1.2 continued.

POLDER-2 Polarization and CNES ADEOS-2 20027 http:/fadeos2.hg.nasda.go jp/shosai_polder_e.htm
Directionality of the NASDA hitp://ceos.cnes.fr:8100/cdrom-00b2/ceos 1/satellit/polder/index.htm
Earth's Reflectance Calibration
hitp://smsc.cnes. fr/POLDER/A calibration.htm
PRISM Panchromatic Remote- | NASDA ALOS 2004 hitp:/iwww .eorc.nasda.go.jp/ALOS/about/prism.him
1 sensing Instrument for | (Japan) Calibration
Stereo Mapping hitp://iwww.eorc.nasda.go.jp/ALOS/da/Zexample .htm
Quickbird DigitalGlobe ™ | Quickbird 10/2001 http://www digitalgiobe.com/products/quickbird. shtml
SeaWiFS Sea-viewing Wide Orbimage OrbView-2 08/1997 hitp://seawifs.gsfc.nasa.gov/ISEAWIFS himl
Field-of-view Sensor / SeaStar Calibration
hitp/fwww .optics . arizona.edufrsg/
hitp://www.seaspace.com/service/support/TeraScan_Docs/doc/mant/seawifscal.html
Sciamachy SCanning Imaging ESA ENVISAT 03/2002 hitp://fenvisat.esa.int/instruments/sciamachy/
Absorption Calibration
SpectroMeter for hitp://envisat.esa.int/calvalicr/11092002/SCIAMACHY/
Atmospheric
CHartographY
™ Thematic Mapper NASA LANDSAT-5 01/1984 hitp://geo.arc.nasa.gov/sge/landsat/landsat.htmi
Calibration
hitp//www.nal.usda.gov/ttic/tekiran/data/000007/14/0000071413.himl
hitp//www.ccrs.nrcan.ge.calcers/rd/analcalivalieffort e himi
hitp:/iwww.bsrsi.msu.edu/trfic/data_portal/l.andsat?doc/landsatch8.html
Uvisl Ultraviolet and Visible us MSX 04/1996 hitp://spider.ipac.caltech.edu/stafiimmm/msx-related/td1702/hefernan.pdf
(SPIM) imagers and Calibration
Spectrographic Imager hitp://simbios.gsfc.nasa.gov/Info/sensor_table html
VEGETATION-1 Spotimage, SPOT-4 03/1998 hitp://www spotimage. frlhome/system/introsat/payload/vegetati/welcome.htm
VEGETATION-2 CNES SPOT-5 05/2002 Calibration
hitp//vegetation.cnes frivatprep/vat2000/henry.pdf
VIRS Visible Infrared NASA TRMM 11/1997 hitp://trmm.gsfc.nasa.gov/overview_dir/virs.htmi
Scanner Calibration
hitp/firmm.gsfc.nasa.gov/1b01 htmi
VIRSR Visible and Infra-red NOAA NOAA-O 20057 hitp/lwww.ccrs.nrcan.ge.ca/cers/data/satsens/sats/noaa_e himi#noaao
Scanning Radiometer
WAOSS Wide Angle DLR BIRD 1999 hitp://iwww.ba.dlr.de/ne/ws/projects/waoss/waoss.html
Optoelectronic Stereo Calibration
Scanner hitp:/Awww.ba.dir de/NE-WS/ws3/cglws-dt-cg.html
WIiFS Wide Field Sensor India IRS-1C 1995 hitp://www .euromap.de/
IRS-1D 09/1997 Calibration
IRS-2A 2000 hitp://www.euroman.de/
AWIFS IRS-P6 20027
WFI Wide Field Imager CAST / INPE CBERS-1 1999 hitp://msowww.anu.edu.au/observing/wfi/intro.shim!
CBERS-2 20037 hitp:/iwww inpe br/programas/chersienglish/satelite.html
Calibration
hitp:/AMmww cresda.com.cn/en/products_01.htm



http://adeos2.hq.nasda.ao.ip/shosai
http://www.eorc.nasda.ao.iD/ALOS/about/orism.htm
http://www.eorc.nasda.ao.iD/ALOS/da/2examDle.htm
http://www.dialta
http://seawifs.asfc.nasa.aov/SEAWIFS.html
http://www.seaspace.com/service/support/TeraScan
http://envisat.esa.int/instruments/sciamachv/
http://aeo.arc.nasa.aov/sae/landsat/landsat.html
http://www.ccrs.nrcan.gc.ca/ccrs/rd/ana/calval/effort
http://www.bsrsi.msu.edu/trfic/data
http://spider.ipac.caltech.edu/staff/mmm/msx-related/td1702/hefernan.pdf
http://www.spotimage.fr/home/s_ystem/introsat/payload/vegetati/welcome.htm
http://trmm.asfc.nasa.aov/overview
http://www.ccrs.nrcan.qc.ca/ccrs/data/satsens/sats/noaa
http://www.ba.dlr.de/ne/ws/Droiects/waoss/waoss.html
http://www.ba.dlr.de/NE-WS/ws3/cq/ws-dt-cq.html
http://www.euro
http://www.euromap.de/
http://msowww.anu.edu.au/observing/wfi/intro.shtml
http://wwfw.inpe.br/proaramas/cbers/enalish/satelite.html
http://www.cresda.com.cn/en/products

Table 1.3: Specifications of the airborne imaging spectrometers CASI-2 and HyMAP(*).

CASI-2 HyMAP
Full name Compact Airborne Spectrographic | Hyperspectral Mapper
Imager
Manufacturer ITRES Research Ltd., Canada Integrated Spectronics Pty. Lid.,
Australia
Operator Natural Environment Research HyVISTA Corp. Pty. Ltd.,
Coungcil Airborne Remote Sensing | Australia
Facility (NERC ARSF), UK
Type Pushbroom Whiskbroom

Spectral range and

545 nm between 400 and 1000

450 - 2500 nm, continuous
except gaps at 1400 & 1900 nm

coverage nm, continuous

Number of bands 288 (maximum) 126
Bandwidth 2.2-7.8nm 11-22 nm
Programmable wavebands | Yes No
Number of spatial pixels 512 (maximum) 512
IFOV(**) across-track 1.8 mrad 2.0 mrad
FOV 54.4 ° (customised lens) 61.3°
GIFOV(*™) 1-7m 3-10m

Signal-to-noise ratio

420:1 peak in laboratory with

integrating sphere

500:1 peak outside, 30° Sun
angle, 50% reflective standard

On-board calibration

No

Yes (spectral and radiometric)

(*) Only the details of the solar reflective HyMAP sensor are shown in this table.
(**) Instantaneous FOV

(***) Ground-projected instantaneous FOV

(Source: hitp://www.itres.com/, hitp://www hyvista.com/, verified last on 22/09/2003)

Table 1.4: Characteristics of the spaceborne imaging spectrometers ASTER, CHRIS,
Hyperion, MERIS, MODIS and MOS for the VNIR and SWIR wavelength regions.

ASTER(*) CHRIS Hyperion MERIS MODIS(¥) MOS
Sponsor NASA ESA NASA ESA NASA DLR
Platform Terra PROBA EO-1 Envisat Aqua IRS-P3
Launch Dec 1999 Oct 2001 Nov 2000 Mar 2002 May 2002 Mar 1996
Type pushbroom | pushbroom | pushbroom | pushbroom | whiskbroom | pushbroom
Spectral 05-25uym {04-10um | 04-25um | 04-10pum 1 04-22um | 04-1.0um
range
No. of 3 (VNIR) 19 or 62 220 15 20 18
bands 6 (SWIR)
Spectral 40-100nm | 1.3-11nm | 10 nm 3.7-20nm | 10-50 nm 1.4, 10, 100
resolution nm
Spectral discrete discrete continuous | discrete discrete discrete
coverage
GIFOV 15 m, VNIR | 250r 50 m 30m 300 mor 250,500m | 500 m

30 m, SWIR 1.2 km or 1 km

Swath width | 60 km 19 km 7.5 km 1150 km 2330 km 200 km

(*) Only the details of the solar reflective ASTER and MODIS sensors (VNIR, SWIR) are shown in

this table.

(Source: http://asterweb.ipl.nasa.gov/, hitp://www.rsacl.co.uk/chris/, hitp.//modis.gsfc.nasa.gov,

hitp://eo1.gsfc.nasa.gov/Technology/Hyperion.htmi, hitp://fenvisat.esa.int/instruments/meris,

http://www ba dir.de/NE-WS/ws5/mos_home.html, verified last on 22/09/2003)
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http://www.hwista.com/
http://www.ba.dlr.de/NE-WS/ws5/mos

In the remote sensing community, some spaceborne sensors are referred to as imaging
spectrometers simply because of their narrow bands, ignoring the fact that they do not sample the
spectrum continuously (see table 1.4). Until now, Hyperion seems to represent the only true

spaceborne imaging spectrometer recording data contiguously in the VNIR and SWIR wavelength

regions with very fine bands.
The Benefits and Costs of Hyperspectral Data

The benefits of hyperspectral data are widely acknowledged: relevant narrow spectral absorption
and emission features may be detected within the image spectra, allowing an improved identification
and discrimination of ground targets, and characterisation of their related physical or chemical
properties. Many rocks and minerals, and some plant species have been remotely identified and

mapped on the basis of imaging spectrometer data (Vane and Goetz, 1988; Kruse, 1988).
Though very beneficial, hyperspectral capability does not come without cost:

1) Data handling cost: Both increased storage space and transmission time are necessary to
cope with greater data volumes. Conventional data compression techniques may be applied, but
not without loss (Chen and Landgrebe, 1989).

2) SNR reduction: The imaging spectrometer distributes the incoming radiation from a given area
per unit time to a large number of spectral bands achieving a lower band SNR than broad band
sensors, even with the aperture wide open. Then, the spatial resolution has to be degraded or
the sensor residence time increased to reach an acceptable signal level (Price, 1994a), which is
often not possible due to uncompromising data requirements or dwell time limitations.

3) Dataredundancy: Imaging spectrometer data are highly correlated between adjacent bands,
due fo the closely located and overlapping speétral sampling intervals, and the typically
gradually changing nature of the reflectance of most terrestrial materials with wavelength
(Curran ef al., 1998). That is, high-dimensional feature spaces will be mainly empty with the
significant information-bearing structure existing in a lower dimensional space (Landgrebe,
2000).

4) Data processing cost: Some data processing methods encounter difficulties when confronted
with the high dimensionality of the data set. Standard matrix-based methods including matrix
inversions, such as Principal Component Analysis (PCA), may be computationally unstable
since being subject to round-off and truncation errors in the higher order terms (Price, 1990,
1994a). For other methods, such as Artificial Neura!l Networks (ANN), high dimensional inputs
require a large number of parameters fo train, resulting in long training times and low
generalisation capabilities (Benediktsson and Sveinsson, 1997; Kavzoglu and Mather, 2000).

5) Sampling cost: Given a limited number of training samples, the overall application performance
initially improves as new features are added, but at a certain point inclusion of further features

will result in performance degradation. This phenomenon referred to as 'curse of dimensionality’,
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'peaking phenomenon' or 'Hughes phenomenon’, was discovered by Hughes (1968) (Kittler,
1986). That is, the number of training samples needed to characterise classes accurately
increases with dimensionality, and since ground samples are often limited, this may cause a
problem.

6) Data visualisation cost: The feature space cannot be visualised in its entirety as for two- or

three-dimensional data.

The last four costs from the above list can be eliminated via data reduction methods at processing
level after data acquisition. For example, feature selection or extraction aigorithms may be employed
to reduce the data to the most information bearing features. Features are defined here as input
dimensions into a processing algorithm and may represent image bands or transforms of those

bands.

However, a solution for the first two problems can only exist ‘at sensor level’, i.e. a smaller amount of
data has to be acquired. Some airborne and spaceborne sensors are designed to record only a
reduced number of discrete wavebands specific to certain research field applications, such as land
cover classification, atmospheric water vapour retrieval, etc. For a list of typical vegetation and
coastal band sets of some imaging spectrometers, the reader is referred to table C.3 in the
appendix. A band is defined in this context as a wavelength interval in the electromagnetic (EM)
spectrum that may correspond to the bandpass of a channel or channel assemblages. A channel is

a physical CCD detector element that records signals of specific wavelengths of the EM spectrum.

However, these pre-determined band sets may not be optimal for a specific application task chosen
by the data user. For instance, a user may want to classify different vegetation species, but the
sensor’s default ‘vegetation’ band set may only offer bands which discriminate vegetation classes

from non-vegetation classes, and not between different vegetation species.
Application-specific band selection has the potential of practically overcoming all of the problems

associated with hyperspectral data. However, until now, only few researchers have exploited this

idea, many of them guided by traditional band sets from earlier sensors.

1.2 Research Objectives

The main objectives of this research project were

= to develop and evaluate supervised and unsupervised band selection approaches for
imaging sensors with respect to the Maximum Likelihood classification (MLC) as data

application, and
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= to generate computationally efficient ENVIT™ programs to be used mainly with hyperspectral

data from airborne and satellite sensors.
Subsidiary research objectives were

= to review dimensionality reduction methods for hyperspectral data, such as feature selection
and feature extraction,

= to apply some of the reviewed dimensionality reduction methods to real hyperspectral image
data and evaluate their effectiveness with respect to classification accuracy,

= {0 estimate the intrinsic dimensionality of hyperspectral data sets,

» {0 compare the classification accuracy of the band sets defined by the band selection
methods developed in this thesis with the one generated using the default band
configurations of common airborne and satellite sensors,

= {o test the effectiveness of band selection and the benefit of hyperspectral data for the given
classification tasks,

= to generalise the band selection methods to other applications such as other hard
classification methods, regression, linear spectral unmixing or spectral angle mapper, and

» o discuss data simulation in cases where hyperspectral input data could not be acquired

with the target sensor (e.g. for sensor design studies).

1.3 Thesis Outline

The outline of the thesis is illustrated in a data flow diagram in figure 1.2. Initially, in chapter 1, the
reader is introduced to the concepts of remote sensing and imaging spectrometry, and the rationale
and outline of the thesis are exposed. Chapter 2 provides a review of dimensionality reduction
methods, some of which are applied to real data sets in chapter 3 with Maximum Likelihood
classification (MLC) as application. The study areas and data resources are fully described in the
latter chapter. A supervised band selection algorithm for MLC is described in chapter 4, and
unsupervised strategies are presented in chapter 5. Both chapters 4 and 5 include a distinct analysis
of the proposed methodology, its evaluation with respect to real hyperspectral data sets, and the
comparison of derived band sets to commonly used band sets of airborne and satellite sensors.
Some issues of discussion are raised in chapter 6, including the comparison between methods, their
generalisation to other applications, and the investigation whether or not hyperspectral data are of
additional benefit for the given application task. Finally, based on the research findings, a concluding

summary is given in chapter 7.
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Figure 1.2: Data flow diagram illustrating the course of action (solid line) and the link of each
data transformation to a chapter of the thesis (dashed line).

33




2 Dimensionality Reduction

2.1 Introduction

As explained in chapter 1, a reduction of hyperspectral data measurements at processing level is

beneficial for the following reasons:

1) to reduce the overall cost of storage and processing (easier subsequent analysis and less
computation time),

2) to improve application performance by discarding irrelevant, redundant, non-discriminatory and
noisy bands, ‘

3) toincrease the stability of data processing algorithms and decrease their complexity (number of
parameters) to avoid poor generalisation performance (Webb, 19989),

4) to gain a stable representation of classes for a limited number of training samples, and

5) to explore the underlying structure by obtaining a graphical representation (Webb, 1999).

Mathematical tools for reducing the data dimensionality are called ordination methods or geometrical
methods in multivariate analysis (Webb, 1999), while in pattern recognition they are referred to as
feature selection and feature extraction. In this thesis, the pattern recognition terminology is
adopted. The word feature in this context refers to both sensor bands and any transforms of them.

Features are arranged in vector form for each pixel. The number of vector elements determines the

dimensionality of the feature space.

Feature selection is the process of selecting a subset of measurements out of the original set of
measurements. A feature selection algorithm needs a criterion according to which it will select
features, and a technique to search for the optimal feature subset in a systematic way. Section 2.2
intfroduces common unsupervised and supervised criterion functions (section 2.2.2) and the main

optimal and suboptimal search algorithms (section 2.2.3) used for feature selection.

In contrast to feature selection, feature extraction methods transform the original high-dimensional
measurement space into a new lower-dimensional feature space by optimising a certain criterion.
The underlying type of transformation has to be determined, for example a linear or non-linear
transformation. In this thesis, only linear transformations were considered, since they have the
advantage of being simple, well defined, analytically tractable and computationally feasible (Kittler,
1986). Section 2.3 presents some unsupervised and supervised feature extraction technigues found

in the literature. Non-linear frequency-based transformations, such as the discrete Fourier or wavelet

transform, are not discussed in this thesis.
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The methods presented in this chapter are aimed to select or extract features at the processing level

after data acquisition. For a band selection review, the reader is referred to chapter 5.

Dimensionality reduction methods assume redundancy to be present in the data and that the main
features can be described in terms of a tendency for the point cloud to concentrate into clusters
(Jones and Sibson, 1987). The number of these features is commonly referred to as intrinsic
dimensionality for representation. In contrast, the intrinsic dimensionality for classification (or intrinsic
discriminant dimensionality) is the number of significantly reduced dimensions that still result in
satisfactory classification accuracy. Section 2.4 presents both heuristic and statistical methods,
which use the outcome of mainly feature extraction methods to determine the intrinsic dimensionality

for either representation or classification.

Concept and notation

For the discussion of this chapter, the following concept and notation will be used. A statistical basis
is assumed for both feature selection and feature extraction methods to explain the variability of the
feature representation. A remotely sensed measurement set is understood to be generated by a
state of nature, with one individual measurement representing one realisation of a continuous
random variable defined over elements of the sensor sample space (Devijver and Kittler, 1982). The
underlying model of the measurement process is a probability density function, which associates
with each sample value the probability that this value will be assumed, and is usually approximated
by a Gaussian function. This statistical framework will describe the extraneous (e.g. instrument
noise) and intrinsic (e.g. pattern noise) variability of measurements, and may be applied to the entire

data set or to specific measurements of user-defined classes.

The original pixel measurement for N bands is denoted by X, j=12,...,N, orin vector form by
X, thatis, x= [x1 e Xy ]T, Each pixel vector x is supposed to belong to one of M possible
classes w,, k =1,2,..., M . The pixel measurement is assumed to be generated by a random
process with a model characterised by class-conditional density functions p(x | a)k) and a priori

class probabilities P(a)k),

To analyse and summarise the data, descriptive measures will be used. As a measure of central

tendency, indicating the centre of a density function, the (arithmetic) sample mean m  is used
(equation 2.1). It may be combined with the means of all other bands in the sample mean vector

m:[m1 mN]T,With

1
mj:—le.j (2.1)
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where m, Sample mean for band j
Pixel measurement i for band j
n Number of pixel measurements

For band j, the dispersion or scatter of the density function around its centre m ; is estimated by

the sample variance sz.j , defined by equation 2.2. The sample standard deviation s ; is the square

root of the sample variance.

st = ! 1.‘12(% —mj)2 (2.2)

where 52 Sample variance for band j
)

. 2 . . .
Often, the sample variances s; of all bands are combined with the sample covariances s

between the bands (equation 2.3) to form the symmetric N x N sample covariance matrix S. To
avoid the singularity of S, the number of samples #n needs to be larger than the dimension NV

(Fukunaga, 1982). Kalayeh and Landgrebe (1983) suggest #n being five times N to achieve a good

estimate of S.

1 n
Sp = Z(J”y "mjxxil _ml) (2.3)
n-147

where S, Sample covariance for bands jand /

Jl

The sample correlation coefficient 7, (7, € [— ],1]) is defined for bands jand / by equation 2.4
and may be used to form a symmetric N x N sample correlation matrix R for all bands. The
square of the correlation coefficient rj is termed the coefficient of determination (rj € [O,]]) and

represents the proportion of the total variance of pixel values in band /" which is due to the linear

relationship between values of bands j and /.

S
ry =t (2.4)
S iSu
where . Sample correlation coefficient of pixel values for bands jand [

Jl

To compare the variation in several sets of data, the sample variance may be an inappropriate
measure, since it quantifies absolute variation and is therefore dependent on the measurement

scale. The coefficient of variation is defined as a measure of relative variation (in %):
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A
cv, =—2-100 (2.5)
m,;

where cv; Coefficient of variation for band j (in %)

Further measures may be calculated to explain the shape of the probability density function. The
skewness describes the deviation of the class density from symmetry (see equation 2.6), while the
kurtosis quantifies its peakedness (equation 2.7). Both measures have a zero value for a normal

probability density function (Press et al., 1992).

1 [ x, —m,
skewness :—-Z <7 (2.6)
nia S
1 ‘]
n x” — m N
kurtosis , = MZ -3 (2.7)
J
nia S
Where skewnessj Skewness for band ]

kurtosis Kurtosis for band ;

2.2 Feature Selection

2.21 Introduction

Feature selection techniques choose a subset of bands of given size out of all image bands that
contains the highest possible amount of information. They are based on the assumption that not all
bands carry the same amount of information, which is particularly justified for hyperspectral data
sets where adjacent bands are typically highly correlated (Tu et a/., 1998). Information is considered

as any extracted data useful to the analyst.

A feature selection algorithm needs a criterion, which quantifies the amount of information of each
band subset under investigation. One may distinguish between unsupervised (class-independent)
and supervised (class-dependent) criterion functions, depending on whether or not class information
is used within the criteria. Section 2.2.2 reviews common criterion functions used in feature
selection. In addition, band subsets need io be searched for in a systematic manner via search

algorithms. Section 2.2.3 presents common optimal and sub-optimal search algorithms.

Siedlecki and Skiansky (1988) perceive feature selection as ‘an extremely difficult task’, since it is

charged with both theoretical and computational problems. The user has to trade-off between the
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optimality of the resulting feature subset and the computational efficiency of the feature selection
algorithm. This review focuses on feature selection techniques based on statistical pattern

recognition techniques alone, excluding those techniques related to artificial neural networks (such

as node pruning).

2.2.2 Criterion Functions

This section presents common supervised and unsupervised criterion functions that make use of

class statistics or not, respectively.
Unsupervised criterion functions

Unsupervised criterion functions do not require a priori knowledge of class spectra. They may be

used in data exploration technigues for classification.
1) Variance and standard deviation

Variance and standard deviation have been widely employed to measure information content in the
context of feature selection for image visualisation. Examples are Chavez et al. (1982), Sheffield

(1985), and Beauchemin and Fung (2001).

2) Coefficient of variation

The coefficient of variation (equation 2.5) is the sample standard deviation divided by the sample
mean of the same data set. It is independent of the units of measurements and often used as a
measure of noise (i.e. random noise in this context). Shaban and Dikshit (2001) used the muiti-class
average coefficient of variation as a criterion to select textural and spectral features for the

classification of urban area. The measure has been found to decrease with increasing classification

accuracy.
3) Priority number (PN) criterion

Lin and Chang (2001) introduced a criterion for band selection that is based on the relative mean
ratio (band mean divided by the smallest mean of all bands) and the relative variance ratio

(analogue to relative mean ratio):

2
PN = N (2.8)

/" rank(RMR, )- rank(RVR, )
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n .
RMR, = —/ (2.9)

mini\m
j J
RVR sz
VA O (2.10)
mjm‘s ; ’
Where PN Priority Number (PN) for band j

ranli(-) Number assigned by priority in decreasing order
RMR, Relative mean ratio for band ;
RVR, Relative variance ratio for band j
mm() Minimum over all bands /
J

The higher the value of the PN criterion for band j, the more important the band is considered. As

equivalent measure to be maximised, Lin and Chang (2001) propose the simple product of RMR].

and RVRj.

4) Band correlation coefficient

The correlation coefficient (equation 2.4) measures the strength of the linear association between
two variables, here two sensor bands. It is not affected by changes in the unit of measurement of
either or both variables. For the textural and spectral classification of urban areas, Shaban and
Dikshit (2001) selected textural features which had a low correlation coefficient with the spectral
bands and between themselves. Chavez et al. (1982), Sheffield (1985) and Beauchemin and Fung
(2001) employed the correlation matrix in their feature selection criteria for image visualisation to
achieve a low pairwise correlation between the selected features. Ebert (1987) uses the correlation
coefficient in combination with the divergence measure to select features for cloud detection and

classification.
5) Image signal-to-noise ratio (SNR)

The signal-to-noise ratio (SNR) may be defined as the ratio between signal and noise. The signal
carries the information of interest to the user, while noise represents unwanted variations added or
multiplied to the signal. As the definitions of signal and noise change with application, no single
definition of SNR exists (Schowengerdt, 1997). For imaging spectrometry, the image signal may be
described by the average measured at-sensor radiance or reflectance. Image noise is introduced by
the atmosphere, the sensor and the platform (Smith and Curran, 1999). While its systematic
components can be measured and removed, its random contributions may vary from image to image
and may be estimated from the methods outlined in section 2.3.2. Lin and Chang (2001) chose the

image SNR as a feature selection criterion to be maximised.
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6) Spatial autocorrelation of ratioed bands

Warner et al. (1999) aimed to exclude noisy bands from the maximum likelihood classification of
different plant communities. They assumed an H-resolution image scene (Strahler ef al., 1986) for
the classes of interest and based their technique on the idea that under this assumption class

information is spatially autocorrelated, while noise is not.

Spatial autocorrelation is quantified by local variance relative to the overall variance in the scene.
Both local and global variations are similar for random noise (small spatial autocorrelation), while the
local variation is much smaller than global variance for large homogeneous objects in the image

scene (high spatial autocorrelation) (Warner and Shank, 1997).

Warner et al. (1999) chose the spatial autocorrelation of the ratio of a pair of bands as unsupervised
feature selection criterion, which is maximised when the bands are not noisy. A band ratio is
evaluated rather than a single band in order to suppress radiance changes due to variations in
illumination across the scene. The pair of bands resulting in the highest spatial autocorrelation
includes the optimal two bands. The next best feature then gives the highest spatial autocorrelation

when ratioed with each one of the previously chosen features.

The authors concluded that the incorporation of spatial analysis in the feature selection process
might reduce noisy bands being chosen that might otherwise decrease classification accuracy
significantly. However, in cases where within-class variances are larger than between-class

variances the criterion is not applicable.
Supervised criterion functions

All criteria presented in this section require information about the classes under investigation, which
is usually gained from training and/or test pixels of the image to be classified. In classification, the
analyst may be interested in an accurate or reliable classification result. The main objective of
feature selection for classification is then to select a band subset of given size that maximises the
classification accuracy. The classification accuracy may be estimated with measures derived from

the classification error matrix, which represent the criterion functions to be optimised.

A surrogate method is to measure the overlap between class distributions for different features,
since highly separated classes in feature space result in a small misclassification error. Penaloza
and Welch (1996) quantified the class overlap by calculating the histograms for each feature and
class pair. However, this procedure needs to store all samples in all dimensions and is very

expensive to compute for high-dimensional data sets.
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A computationally less costly way to quantify class overlap is to define a distance measure (also
referred to as separability or dissimilarity measure) that estimates the separability between the class
probability distributions under investigation. One may distinguish between criteria derived from
heuristic reasoning (heuristic distance measures), and those based on information theory and

statistics (probabilistic distance measures) (Fu, 1982).

In the following paragraphs, classification accuracy estimates are investigated, as well as heuristic
and probabilistic distance measures for both the two-class and multi-class case. Probabilistic

dependence and entropy measures are not considered here because of the difficulties in estimating

their relatively complex expressions.
1) Classification accuracy estimates

The classification accuracy may be estimated by statistics derived from the error matrix (or
confusion matrix or contingency table). Many accuracy measures exist (Foody, 2002), including the

overall accuracy (or percentage agreement), the normalised accuracy, the TAU coefficient, and the

KHAT estimate (KAPPA analysis).

The error matrix is made up of M x M elements, where each element n; refers the number of test
samples that have been classified as class i although they belong to class ;. The main diagonal

elements 7, represent the pixels that have been correctly classified. The error matrix is usually

constructed on the basis of a test set that is independent of the training set used to form the
classifier (‘Holdout estimate’, Webb, 1999). In case of low availability of training samples, a cross-
validation method (‘leave-one-out’) can be employed, which is approximately unbiased (Webb,
1999). The latter method uses all samples except one as training samples and tests the classifier on
the remaining test sample. This procedure is repeated for all samples being individually used as test
samples. The ‘re-substitution’ method employs all samples for both training and testing sets and is

generally considered as biased. It will therefore be neglected in this study.

The overall accuracy is the sum of the total number of correctly classified pixels (sum of main

diagonal matrix elements) divided by the total number of pixels in the error matrix:

1 M
Py=—> n, (2.11)
Ny i3
Where P, Overall accuracy
N Total number of pixels in the error matrix
E

Number of correctly classified pixels for class i
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The normalised accuracy is the analogue criterion to P, of a normalised or standardised error

matrix obtained by forcing each row and column to sum to one via an iterative proportional fitting
procedure (Bishop et al., 1975 in Congalton, 1991). Standardisation makes error matrices directly
comparable to other matrices since their differences in sample sizes are removed. Since the
normalised accuracy indirectly contains information about off-diagonal matrix elements, it is said to

be a better representation of the classification accuracy than the overall accuracy (Congalton, 1991).

However, P, and the normalised accuracy do not consider the proportion of agreement between the

training and test data set that is due to chance alone and therefore tend to overestimate
classification accuracy (Ma and Redmond, 1995). The KAPPA analysis, defined by Cohen (1960),
aims to account for the proportion of agreement between the training and test data set that is due to
chance alone. It may be performed with the KHAT statistic, a maximum likelihood estimate of
KAPPA. KHAT directly incorporates off-diagonal error matrix elements in form of the marginal row

and column totals:

. P, —-P
s — (2.12)
1- P,
1 M
Po=— > n.n, (2.13)
NE i=1
Where 7 KHAT statistics
P. Chance agreement
n,, Marginal total of row i of the error matrix
n Marginal total of column i of the error matrix

+i

Nevertheless, KHAT assumes a multinomial sampling model, i.e. it requires pixel sampling with

replacement, which is not applied in practice (Thomas and Alicock, 1984). This can, however, be
ignored for a large number of samples. Foody (1992) showed that € overestimates the chance
agreement P, without modifications. The TAU coefficient includes a priori probabilities apart from

the marginal distributions of the reference data (Klecka, 1980):

P,-P
r=10""F

(2.14)
-7
] M
Pr=—)>n.n, (2.15)
Where T Tau statistics
P, Prior probability
n A priori number of pixels belonging to class i out of N pixels; equals

xi

N /M for equal a priori class probabilities 1/ M
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Ma and Redmond (1985) introduced a variation of the Tau statistics, 7_, which measures the
improvement of a classification over a random class assignment of pixels. The measure is
calculated by replacing P, with 1/ M in equation 2.14, and gives, according to Ma and Redmond

(1995), an accurate measure of classification accuracy.

2) Two-class heuristic distance measures

Heuristic distance measures have been defined on the basis of the experience that with decreasing
distance between class distributions, the ability to separate between them lessens. Some popular
distance measures are presented in table 2.1. Note that all pairwise criterion functions are not

calculated for individual bands, but over all D candidate bands using the class mean vectors m .

Table 2.1: Common heuristic distance measures to quantify the average pairwise separability
between classes w, and @, using their mean vectors m.

Distance measure Mathematical form

car, absolute value)

Euclidean D
distance d.(k,0)= \/z (mjﬁk —m,, )2
=1
City-block D
distance dg (k,0) = Ztmj,k M,
(Manhattan, box- /=

Chebyshev
distance
(maximum value)

d., (k,0) = mjaxlmj’k -m,,

Minkowski
distance of order
t

dy(k,0)= z\/i(mj,k —mm)’

j=1

Quadratic distance

D D
dq(k: 0)= ZZ(ml,k -m, )Qlj (mj,k - mj-,o)

=1 j=1
where Q is a positive definite matrix

Canberra distance

d,, (k,0) = i—-————————lm’ *

oL My T,

Nonlinear distance

constant d_(k,0) > threshold

d_(k,0) =
» (£:0) { 0 d (ko)< threshold

Angular
separation

D
Z M Mo
=1

D D

2
Z mj k Z mj 4
j=1 J=1

(Source: Webb, 1999)
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The city-block metric is cheaper to compute than the Euclidean distance, while the Chebyshev
distance is the cheapest to calculate out of the three measures. The Minkowski distance is a more
general form of the city-block distance (¢ = 1) and the Euclidean distance (¢ = 2). The higher ¢ is
chosen, the more emphasis is placed onto larger distances, leading towards the Chebyshev
distance for ¢ tending towards infinity (Webb, 1999). The quadratic distance is similar to the
Mahalanobis distance between two distributions (see below), and allows the simplification of the
multiclass distance criterion (see below). The Canberra distance may be applied to variables with
non-negative values. If both class means are zero, its ratio is taken zero. The angular separation
measures the angle between the class mean vectors in feature space and may be applied when
only the relative magnitudes are important (Webb, 1999). For example, Price (1994b) used the
Euclidean distance measure and the angular separation measure to quantify within-class variability.
Kittler (1975, in Kittler, 1986) gives guidelines for the selection of the constant and threshold of the

nonlinear distance, which is likely to reflect class separability most reliably.

The heuristic measures presented so far exploit only the differences in class mean vectors. Kamp ef
al. (1997) used additionally the differences of the standard deviations of two class spectra to define

spectral intervals where the discrimination between the given classes was possible.

The advantage of the above heuristic distance measures is that they do not involve the estimation of
probability density functions and are therefore attractive for computational reasons and when the
statistical model of the problem is not known. However, heuristic measures usually have no explicit
relation to the classification accuracy: the extrapolation ‘the larger the distance, the higher the
classification accuracy’ cannot be made. For example, let two class distributions be already perfectly
(100%) separated and classified at small inter-class distance. While the distance between the

distributions may be artificially increased, their separability and classification accuracy may not.

3) Two-class probabilistic distance measures

Probabilistic feature selection criteria are based on mathematical statistics and information theory,
and require the estimation of the probability density functions of the classes under investigation. As
stated earlier, the optimum criterion is the classification accuracy, i.e. the probability of error of the
classifier. A direct calculation of the probability of error is often impractical partially due to the lack of

general analytical expressions which are simple enough to be treated (Fukunaga, 1972).

Fukunaga (1972) describes the desirable characteristics of an alternative probability measure, which

can be readily computed: it should
1) have a monotonic relationship with the probability of error, or with its lower or upper bounds,

be positive for unequal classes and zero for the same classes,

)
3) be monotonic, and
) be additive for independent features.
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A number of probability distance measures have been proposed in the pattern recognition literature
which are indirectly related to the probability of error. These relatively complex measures are derived
analytically from upper bounds to the error probability (Fu, 1982). They can be simplified under the
assumption that the classes are normally distributed, and they are maximum when the classes are

disjoint, i.e. the probability of error is small.

Table 2.2. Common pairwise probabilistic distance measures for normally distributed classes
®, and @, using their mean vectors m and covariance matrices S.

Distance Parametric Form
measure

d,(k,0)=0.55(1-s)(m, —m, ) [(1-s)S, +sS,['(m, —m, )+

1-s)S, +sS
Chernoff +0.5In ( )lik —2! | where s € [0,1]
Isk So
Bhattacharyya — r -1 [Sk +S,
d,(k,0)=025m, -m,)'[S, +S,]"(m, ~m, )+ 0.5In| ————=—
2(s,]s,))
Jeffries- _ —dy (k.0)
Matusita dju(k,0) =y2[1—e
Divergence | 4 (k,0)=0.5(m, -m, )’ [S;' +8,'[m, —m, )+0.5trace(S;'s, +S.'S, —2I)
, where T Identity matrix
trace(~) Trace of a matrix
_dy(k0)
d(k,0) = al:1-e b }
Transformed
. 2 dd(kra)
D & —tan
ivergence d', (ko) =dl 1—e [ ; ]

a, b selected saturation and range values, e.g. 2000 and 8, respectively
(Card and Angelici, 1983)

d,, (k,0) = (m, ~m, ) [s;' +S; Jm, ~m,)
d;(k,O) :(mo _mk)TS;li(mo _mk) for So :Sk :Sak

Mahalanobis

Patrick- _ -0.5D -05 -05 05 _05(m,-m; )’ [S,+S,]" (m,~m; )
Fischer dye(k,0) = (27[) {[ZSk[ + |2So - 2}Sk +S,] e

(Sources: Webb, 1999; Kittler, 1986; Swain and Davis, 1978)
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The most commonly used parametric probabilistic distance measures for normal class distributions
are summarised in table 2.2. Recursive equations exist for these distance measures which allow a

more rapid computation as one feature is removed or added to the subset (Goodenough ef al.,

1978).

The Mahalanobis distance may be interpreted as the square of the distance between two class
means expressed in terms of variances. It is identical to the quadratic distance (see table 2.1) with
Q being the sum of the inverse class covariance matrices. However, it does not account for the
differences between the class covariance matrices, which may provide further class discriminatory

information, especially for hyperspectral data.

The Divergence measure combines the Mahalanobis distance with a term that exploits the
differences between the class covariance matrices. But, both the Mahalanobis and the Divergence
criterion suffer from the same unsaturating behaviour as the heuristic distance measures: they

continue to increase for growing class mean distances, even after the classes are fully (100%)

separated (Thomas et al., 1987).

The Transformed Divergence takes the unsaturating nature of the Divergence measure into account
and transforms it into a saturating function with a saturation value a and range value b . Different
functions are proposed in Swain and Davis (1978), two of which are shown in table 2.2. Generally,

the Transformed Divergence is regarded as superior to the Divergence measure.

The Jeffries-Matusita distance is the saturated form of the Bhattacharyya distance. It is
computationally less efficient than the Transformed Divergence measure, since one additional matrix

inversion has to be performed per class pair.

The analytical derivation of the above probabilistic class distance measures can be found in Swain

and Davis (1978), Kittler (1986) or Thomas ef al. (1987).

However, the classes may not be normally distributed for the given features and above distance
measures may prove to be ineffective. In this case, Shaban and Dikshit (2001) used the skewness
and kurtosis moment measures (equations 2.6 and 2.7) as criteria to select textural and spectral
features for the classification of urban areas. They found that the absolute and averaged multi-class

form of these measures were inverse proportional to the classification accuracy (KHAT coefficient).

4) Multi-class distance measures
The most common multi-class form of any of the above two-class distance measures is calculated

as the sum of all pairwise distances (‘maximum average’, equation 2.16). In the case of probabilistic

distance measures, the two-class distance value may be multiplied first by its corresponding class a

46



priori probabilities before being summed (equation 2.17). The use of the prior probability is
important, especially when one or two classes are spatially dominant (Borak and Strahler, 1999).
However, the latter criterion will not maintain a close relationship with the probability of error (Kittler,

1986) and may give sub-optimal results.

Z Zd(k 0 (2.16)

i ip (@, )d(k.0) (2.17)

An alternative strategy is 1o select the feature subset that maximises the minimum distance value
calculated from all class pairs. It will ensure that the selected feature set discriminates best between

the pair of classes which is hardest to separate (‘maximum minimum’) (Swain and Davis, 1978).

Bruzzone et al. (1995) introduced an alternative to the weighted average multi-class form of the
Jeffries-Matusita distance measure, which is equivalent to the Bhattacharyya bound (equation 2.18),
but cannot be proved fo always perform better than the weighted average criterion for the Jeffries-

Matusita distance. However, it gives more importance to classes with low a priori probabilities.

duw =3 3P0, )P0, )42 (k20) 218)

k=1 o=k+]

Jun

Bruzzone and Serpico (2000) proposed a criterion for multiclass cases that is related to the upper
bound to the Bayes error probability and assumes Gaussian class distribution and equal class
covariance matrices. The criterion was found to give greater weight to classes with low a priori
probabilities as compared to the weighted average criterion. Its main drawback is that it does not

use the class covariance matrices to measure the separability between classes.

Bruzzone (2000) presented an extension to the average weighted multi-class distance measure for
the Bayes classifier for minimum cost, taking into account the cost associated with each confused
class pair (equation 2.19). The latter was developed in the context of producing a land cover map to
assess the risks of natural disasters, where it was critical not to confuse classes with highly different

risks. A high cost corresponds to a situation in which the confusion of two classes is very critical.

M M
Z Z (ck,o - Ca,o Xc(),k - ck,k )P(COA )P(wo )d(k> 0) (21 9)
k=1 o=k+1
Where Cro Cost of deciding x € @, , when inreality x € @,
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Alternative heuristic multi-class criterion functions are based on sample based estimates of the

within-class (S, ) and between-class (S, ) scatter matrices, which are defined as follows

(Fukunaga, 1972):

M
S, = ZP(C‘)L- )Sk (2.20)
k1
& r
S, :ZP(wk)(mk_mO)(mk_mO) (2.21)
=

M
m, = ;P(wk)nlk (2.22)

The prior probability of class @, , P(a)k ) can be approximated by the ratio of the number class

training samples to the total number of training samples (Webb, 1999).

Several class separability measures have been derived from these scatter matrices, which aim fo
minimise the within-class spread and maximise the between-class spread simultaneously

(Fukunaga, 1972). For example, a possible criterion is given by Liu and Jernigan (1990);

S, +S
d= !__.VL_b’ (2.23)
SW
Where H Determinant of a matrix
Penaloza and Welch (1996) defined dp as separability measure:
(2.24)

d, = trace(S ;‘Sb)

However, the latter type of measures based on scatter matrices presents the same disadvantage as
other heuristic distance measures: they do not exhibit a saturating effect for large distance values.
Moreover, within-class covariance matrices are not estimated reliably with a limited number of

training samples (Jia and Richards, 1998). For more details, the reader is referred to Devijver and

Kittler (1982).

San Miguel-Ayanz and Biging (1996) avoided using multi-class measures by considering only a
class pair at each stage of a progressive multiple-stage feature selection and maximum likelihood
classification approach. The procedure allows classifying each class pair on an individually selected
best feature subset. Jia and Richards (1998) extended this binary method by allowing the classifier
to adapt to the amount of training samples available for each class. The method chooses the
maximum-likelihood classifier if sufficient training samples are available for the two classes, and the

Euclidean distance classifier if not. Although increasing the computational cost, the multiple-stage
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method gave an improved classification performance compared to the single-layer classification

(San Miguel-Ayanz and Biging, 1996; Jia and Richards, 1998).

Choice of criterion function

Unless class samples are not available, feature selection for classification should be based on

supervised criteria {o approximate best the classification accuracy.

With respect to the classification accuracy estimates presented above, there are no clearcut rules as
to when each measure should be used (Congalton, 1991). The feature selection process empioying
these measures then consists of a series of classifications using different band combinations, with
the band subsets being ranked according to their resulting mapping accuracy. The advantage of this
approach is that the ultimate accuracy of the actual classifier is directly optimised instead of a non-
specific distance measure used for its approximation. However, since all classification accuracy
estimates reguire the construction of the classifier to be used, the feature selection procedure may

invalve high computational cost. Despite this, some authors used this method for feature selection,

e.g. Penaloza and Welch (1996).

The choice of a supervised distance measure should be guided by its ability to represent the
probability of error accurately. Generally, probabilistic measures may outperform non-probabilistic
measures, since, apart from the class mean vectors, they make use of the class covariance
matrices, describing the entire shape of the class distribution. Landgrebe (1999, 2000) claimed that
second-order statistics were more relevant than first order statistics in discriminating among classes
for high dimensional data. Kittler (1986) stressed that first-order information could be entirely wiped
out by large class variances and covariances. However, in cases where the execution speed of the
feature selection algorithm is important, heuristic distance measures may be the preferred to the

more accurate probabilistic measures.

Generally, the chosen feature selection criteria should reflect the complexity of the classification
approach used. If, for example, a minimum-distance classifier is used for classification, the same

heuristic distance measure should be applied also for feature selection.

if a probabilistic classifier is used, saturated probabilistic measures (such as the Transformed
Divergence and the Jeffries-Matusita) are usually considered superior to their unsaturated
counterparts (Divergence and Bhattacharyya) for representing error probability in most parts of the
separability range. However, in some parts where the saturating function does not approximate well
the behaviour of the error probability, they are inferior to the unsaturated measures. Thomas et al.

(1987) suggested the following approach for choosing which measure to use:
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1) If relatively homogeneous classes are used together with a reduced number of bands, the
Divergence measure should be chosen.

2) Ifrelatively homogeneous classes are used together with all bands, the Transformed Divergence
measure should be chosen.

3) Ifless truly homogeneous classes are used together with a reduced number of bands, the
Bhattacharyya Distance measure should be chosen.

4) If less truly homogeneous classes are used together with all bands, the Jeffries-Matusita

Distance measure should be chosen.

Some researchers made experimental comparisons to evaluate the performance of different criteria
for a specific data set. Typically, a classification accuracy estimate was used as performance
measure, obtained by the feature subsets selected by the different criterion functions as input to the
chosen classifier. Examples are Goodenough et al.{(1978), San Miguel-Ayanz and Biging (1996),
Mausel ef al.(1990), Kavzoglu and Mather (2000), Bruzzone and Serpico (2000). However, to isolate
the effects of the various criterion functions on the classification accuracy estimate, an optimal
search algorithm should be used for feature selection, together with a cross-validation method for
accuracy estimation to minimise the effect of the generalisation error (Bruzzone and Serpico, 2000).
Chen (1973) pointed out that incorrect assumptions on class distribution or the limited number of

available training samples might result in erroneous conclusions. He claimed that only a theoretical

comparison could provide unique resulits.

To summarise, rigid recommendations as to which measures should be used cannot be made
because of the choice being very much problem-specific and dependent on the classifier to be used.
Clearly, classification accuracy estimates are the preferred choice, but may result in a
computationally unfeasible task. In cases where the data are not normally distributed, Webb (1999)
recommended, from a computational point of view, to use a measure that simplifies for normal

distributions. However, the effect of non-normality is not known (Mather, 1999).

2.2.3 Search Algorithms

In feature selection, the search algorithm generates and compares possible feature subset solutions
utilising the criterion function as a measure of the effectiveness of the feature subsets under
consideration. The most effective feature subset optimises the criterion and is the result of the
search algorithm. Commonly used selection methods employ either optimal or sub-optimal search

algorithms.
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Optimal search algorithms

Optimal methods consider all feature subsets resulting in a globally optimal solution. They include

exhaustive search methods and accelerated search methods (Branch-and-Bound methods).

The exhaustive search method evaluates the criterion function for each candidate feature subset
individually. To select D features out of a possible set of N features (D < V'), the number 4 of

possible subset combinations (without repetition) equals:

N N!
AN,D)= =
(v.D) (DJ D!(N - D) (2.25)
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Figure 2.1: Number of possible subset Figure 2.2: Number of possible subset
combinations A(N,20). combinations A(120,D).

Figures 2.1 and 2.2 illustrate A as a function of increasing D and N , respectively. It can be seen
from these figures that A increases exponentially with increasing dimension N , and that 4 is

excessive even for moderate values of D and N . That is, for a hyperspectral data set with around
a hundred bands, the exhaustive search method would represent unacceptable computational cost
and could very quickly cease to be computationally feasible, considering the computation effort

involved in estimating the criterion function alone.

Consequently, an exhaustive search may be applied only to a data set of small dimensionality N,

or to a very small subset dimension D . In the following paragraphs alternative search procedures

are presented that find optimal and sub-optimal feature combinations at reduced computational cost.

The Branch-and-Bound algorithm (Narendra and Fukunaga, 1977) relies on the feature selection

criterion being monotonic. The monotonicity property of a criterion implies that for a nested feature

set X, relatedas X, ¢ X, c X,...c X, the criterion function satisfies
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d(x,)< d(x,)<d(x,)..< d(Xp) (Kittler, 1986). In other words, the criterion value of a feature

subset is smaller than or equal to the criterion value caiculated on the entire feature set. The
procedure is a top-down search method, starting with the entire N -dimensional data set and

constructing a tree structure by deleting features successively. First, the criterion value of the entire

feature set is computed as an upper bound d(Xp). Second, the optimal (N— 1) -dimensional

N
subset is found from (N ] possible subsets, giving a lower bound d(Xp_l) to d(Xp). All other

non-optimal subsets with smaller criterion values than d(Xp_l) are eliminated, since the deletion of

any additional features of one of these subsets will result in a further decrease of its criterion value

{according to the monotonicity criterion). In such a way, the subset is reduced consecutively until the

desired feature subset size D is reached (Kittler, 1986).

The algorithm considers all feature subsets by either implicitly rejecting or explicitly evaluating them,

and ensures that the giobally optimal feature subset will be found (Goodenough ef al., 1978).

Sub-optimal search algorithms

fn contrast to optimal methods, sub-optimal search algorithms do not evaluate all possible feature
combinations. They can be grouped into deterministic methods that produce the same subset on a

given problem every time, and stochastic methods that include a random element and may produce

different subsets every run.

The deterministic methods typically construct the final feature subset incrementally by including
(‘bottom-up’) or excluding (‘top-down’) features from preceding subsets. Bottom-up methods start
with an empty set, while fop-down strategies begin with the full feature set. Since the best subset of
features is not necessarily made up of the features of preceding subsets (due to the correlation
between features), the search result will not be the optimal one. The two stochastic methods
presented here are Monte Carlo optimisation methods for combinatorial problems: genetic

algorithms and simulated annealing. They use random elements to search the feature space for the

sub-optimal subset.
1) Best individual

The ‘best individual’ method evaluates each feature of the original set individually with respect to the
feature selection criterion. It is the simplest method, and may give some good results if the features

in the original set are uncorrelated (Webb, 1999).
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2) Sequential forward selection (SFS)

The SFS algorithm is a bottom-up method, which starts with an empty set. First, the best individual
feature is selected. Then, at each subsequent stage, the feature from the remaining original set, that
achieves the maximum criterion value in combination with all features already selected, is added to
the preceding subset, until the desired subset dimension is reached or the best improvement makes
the feature subset worse. Penaloza and Welch (1996) presented a fast version of the SFS, which
deletes any features from the available original set if their performance together with the previously
selected features they are added to, is worse than the performance of the already chosen features
themselves. The generalised form of the SFS algorithm adds at each stage L. features (L >1) from
the remaining feature set to the selected subset. All possible sets of size L. are evaluated, and the
set that maximises the criterion value in combination with the already selected subset, is included
into the final subset. The sequential forward floating search (SFFS) algorithm is a modification of the
generalised form, which allows L to ‘float’, i.e. L may change at different stages of the search. An

example for floating search methods is given by Pudil et al. (1994).

The SFS results in a sub-optimal feature set, because selected features that were made redundant
by additional ones, cannot be removed from the subset by the algorithm (Kittler, 1986). However,
Zongker and Jain (1996, in Webb, 1999) found that the floating search method gave near optimal

results close to the ones generated by the much slower Brach-and-Bound method.

3) Sequential backward selection (SBaS)

The SBaS is the top-down analogy to the SFS, starting from the complete feature set and deleting
one feature at a time until the desired number of features remain. The feature selected for

elimination is the one that results in the lowest reduction in the value of the criterion function. The
fast version of the SBaS is similar to the one of the SFS (see above, Penaloza and Welch, 1996).
The generalised form of the SBaS reduces the current feature set by R features at a time, and is

the counterpart of the generalised form of the SFS. The sequential backward floating selection

(SBaFS) algorithm is the counterpart to the SFFS, enabling R to vary during the search process.
The SBaS is a sub-optimal search algorithm, since it does not allow discarded features to be
reconsidered (Kittler, 1986). Computationally, the SBaS is more costly than the SFS, because the

criterion function is evaluated over larger feature subsets. Zongker and Jain (1996, in Webb, 1999)

claim that the floating selection method results were near optimal.

4) Plus L — Take Away R

The ‘Plus L — Take Away R’ search algorithm combines the generalised forms of the SFS and

SBaS methods to remove partially the problem of nesting of the feature set. Due to the correlation
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between features, the best feature subset at a given stage does not necessarily include the selected
features from a previous stage. After adding the L best features with the SFS, the worst R features
are eliminated with the SBaS, etc. The net change in subset size equals to L — R . The method is of

type bottom-up for L > R, and top-down for L < R .
5) Max-Min Feature Selection

The ‘Max-Min Feature Selection’ search algorithm is similar to the SFS method. But instead of
adding the best available feature that maximises the criterion function in combination with all pre-
selected features, it chooses the next available feature that maximises the minimum criterion
function value that the new feature achieves with each of the pre-selected features individually. This
ensures that the new feature adds significant information to all already selected features. The
advantage of this search technique is that feature selection is performed on the individual and

pairwise merit of features only, i.e. the criterion function needs to be evaluated in feature spaces of

maximum two dimensions (Kittler, 1986).

6) Beam Search

The Beam Search technique (Siedlecki and Sklansky, 1988) is an extended version of the artificial
intelligence best-first technique. The algorithm starts with the full feature set and creates a queue (of
a maximal number) of best subsets with one feature less than the original set according to
decreasing values of the criterion function. Next, some subsets of a few dimensions smaller than the
current subset are drawn at random and evaluated with the criterion function. If one of the latter
subsets has a higher criterion value than the first subset in the queue, then the best subset is
chosen from the queue, which includes the subset from the lower level. Otherwise, the first subset
from the queue will be chosen as the current subset. This process is repeated until a subset of given
dimension is reached. The algorithm may be seen as a generalisation of the sequential feature

selection algorithms.
7) Genetic Algorithm (GA)

GA (Holland, 1975) is a stochastic search technique, which helps to choose which candidate
solutions should be tested at each stage of the search. The GA concept is inspired by the

mechanics of evolution and will be explained here in the context of feature selection.

An initially (e.g. randomly or heuristically) selected collection of feature subsets of the desired
dimension D (‘population of Chromosbmes’) will be filtered according to the feature selection
criterion function (‘fitness function’). The eliminated feature subsets will be replaced by new possible
subsets (‘offspring’), generated via ‘crossover’ and ‘mutation’. Crossover randomly exchanges

feature groups (‘genetic material’) between two subsets chosen by the fitness function
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(‘chromosome parents’). In contrast, mutation randomly replaces a feature by another one chosen
out of all possible features. The latter will ensure that the GA will not be limited by local maxima (Tso
and Mather, 2001). A binary encoding technique may be used to represent a feature subset by a
binary string. For example, a feature may have its fixed place within a sequence of features, and
have a value of 1 or 0, depending on whether the feature belongs to the candidate subset or not,

respectively. The GA may be iterated until the feature selection criterion converges.

An advantage of the GA is that multiple points in search space are used to start the search for the
global maximum (rather than just one starting point). Additionally, the transition from one generation
to the next is based on probabilistic rules, rather than on deterministic ones (Goldberg, 1989 in Tso
and Mather, 2001). However, many decisions need to be made on the implementation of each step
in the algorithm (e.g. initial populations, mutation rate, convergence limit of criterion function or
number of iterations), and these might prove to be sub-optimal for complex problems (Priigel-

Bennett and Shapiro, 1994).

For more details on GAs the reader is referred to Holland {(1975), Mitchell (1996), Tso and Mather
(2001), and Siedlecki and Sklansky (1988).

8) Simulated Annealing (SA)

As genetic algorithms, SA can be employed for combinatorial optimisation problems, where a

criterion function is to be optimised over a discrete and large configuration space.

SA has its roots in thermodynamics, specifically in the processes of freezing liquids or cooling
metals. If a liquid is cooled slowly enough, the freely moving atoms are often able to line themselves
up to create a pure crystal, which represents the state of minimum energy for this system. This
process of slowly cooling a system allowing ample time for the redistribution of the atoms is termed
annealing and was introduced to numerical methods by Metropolis ef al. (1953). Kirkpatrick et al.

(1983) applied the same idea to search for solutions of other problems (simulated annealing).

The system starts at an initial configuration, which is updated repeatedly until the system is frozen.
The selection of trial moves reachable from the current configuration can be random or informed
(e.g. by downhill simplex method). If the trial move improves the search, it is always accepted. But if
it makes it worse, it might be still accepted according to a probability given by a Boltzman factor in
the change in the criterion function. This allows the algorithm to escape sub-optimal combinations
and to continue searching for a better solution. The cooling rate has to be designed to be
computationally efficient and to allow the system to find a good solution, i.e. neither too slow nor too
fast. It can be determined empirically by running successively slower rates until the solution stops

improving. For more details, the reader is directed to Press et al. (1992) and Siedlecki and Sklansky

(1988).
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Choice of search algorithm

if the features are statistically independent, sub-optimal strategies will yield optimal results.
However, if the features are correlated with each other, sub-optimal search methods will result in
sub-optimal feature subsets, whose departure from optimality is not bounded (Van Campenhout,

1980). This implies that the optimal feature subset will not consist of the optimal subsets of smaller

dimension.

The degree of correlation is known to be high in hyperspectral remote sensing bands, and optimal
methods that consider all possible feature subset combinations are the only protection against the
bias of nesting. But sub-optimal search algorithms still may be preferred to optimal methods
because of their computational efficiency, or the inappropriateness of the assumptions made by

optimal methods (e.g. monotonicity criterion of the Branch-and-Bound algorithm).

The Monte Carlo optimisation methods (genetic algorithms and simulated annealing) were found to
be extremely well suited for large-scale feature selection problems (Siedlecki and Sklansky, 1988).
Kavzoglu and Mather (2000) compared the results of the SFS with the ones of the GA using a range

of criterion functions. They found that the features selected by the GA algorithm performed better

than those selected by the SFS.

Labovitz (1986) compared the result of the exhaustive search with the subset chosen by the sub-
optimal SFS. An average decrease of 7-10% in classification accuracy was found when using the
sub-optimal method instead of the optimal one. Labovitz (1986) predicted that this difference in
classification accuracy would be more dramatic with hyperspectral data, where many more bands
allow for a higher number of band combinations (less likelihood that the optimal band subset will be

selected by chance) and the bands are typically highly correlated.

It is generally recognised that no perfect search algorithm exists and Press ef al. (1992)

recommended the use of more than one method in comparative fashion.

2.3 Feature Extraction

2.3.1 Introduction

Generally, feature extraction methods aim tc map all of the original measurements into more

informative new features for the purpose of data compression. The resulting feature vector

y= [yl v Yy ]T results from a transformation F of the original measurement vector

X = [xl e Xy ]T, optimised by a criterion function:
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y = F(x) (2.26)

where X Original pixel vector
y Transformed feature vector
F Mapping function

All supervised and unsupervised criterion functions used for feature selection (section 2.2.2) may be

readily applied as criterion functions for feature extraction.

The natural form of the optimal mapping function F will be unknown. In this thesis, only linear
transformations will be considered, since they have the advantage of being simple, well defined,

analytically tractable and computationally feasible (Kittler, 1986). The problem of finding the optimal

mapping function is then reduced to obtaining the coefficients a;, of the linear function so as to

maximise or minimise the criterion function:

y = Alx (2.27)
Yy FAuad T apaXy heehdy v Xy (2.28)
where a., Linear mapping coefficients
s
A Transformation matrix (N,N) with elements .y

The mapping coefficients may be found analytically for simple criteria by expressing the parameters
of the criterion function in the mapped feature space via the transformation matrix, constructing the
first derivative of the criterion and using numerical methods (Kittler, 1986). For more complex
criteria, common multidimensional optimisation techniques for continuous functions can be drawn
upon that require criterion function evaluations only, for example, the downhill simplex method,

direction-set (Powell's) methods, GA and SA (Fukunaga, 1972).

The transformation scheme is closely linked with the criterion used (Kittler, 1986). In cases where
important features are highly non-linear functions of original measurements, a suitable non-linear
mapping function has to be found. However, a general theory to generate mapping functions
systematically and to find the optimum one is not available and the selection of features becomes
very much problem orientated (Fukunaga, 1972). In these cases, multi-layer neural networks may be

used to perform non-linear feature extraction (Bishop, 1995).

Feature extraction methods may be used to generate and select features, and o determine the
intrinsic dimensionality of a data set according to some criterion. The following sections investigate

common unsupervised and supervised feature extraction methods used in pattern recognition and

remote sensing.
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2.3.2 Unsupervised Feature Extraction

When the classes of interest are unknown or poorly defined, the information content in the data may
be measured via descriptive statistics, such as the data variance, correlation coefficient, etc. (see
sections 2.1 and 2.2.2). In this section, frequently used feature extraction technigues using

unsupervised criterion functions are presented.
Principal components analysis (PCA)

PCA (Pearson, 1901) is an unsupervised feature extraction technique to reduce the number of
features to a smaller number of uncorrelated indices called principal components (PCs). This is

achieved by diagonalising the global data covariance matrix via eigenanalysis:

Sa, = 4,a, (2.29)
where a, Eigenvector of covariance matrix S
A, Eigenvalue of covariance matrix S

The PCs are linear combinations of the original bands. The eigenvectors a, form the columns of the

transformation matrix A (equation 2.27). Geometrically, PCA can be seen as a rotation of the axes
of the original coordinate system to a new set of orthogonal axes, the eigenvectors. The information
can then be presented in component images, which are projections of the data onto the

eigenvectors.

The eigenvector coefficients, or loadings, can be plotted as an eigenfunction of the original features.
Given some knowledge of the ground scene, the shapes of these curves may be interpreted to some
degree. Generally, the magnitude of the eigenvector loadings indicates the relative importancé of
their corresponding original features in representing the newly transformed ‘optimal’ feature

(Wiersma and Landgrebe, 1980).

The eigenvalues A, of the PCs correspond to their ability to account for the data variance and are
ordered by decreasing amount of variance. When the noise variance can be assumed to be the
same in all bands, the amount of data variance captured in a PC can be interpreted as a measure of

its information content (Manly, 1994).

Since PCA is based on the data covariance matrix S, a scale-dependent bias may be introduced in
subsequent analysis. A standardised form of the PCA may be achieved by using the data correlation
matrix instead of the covariance matrix for eigen-decomposition, or simply by transforming the

original data first to zero mean and unit variance.
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Other variants include the independent component analysis (ICA)(Karhunen et al., 1997), which
does not apply the orthogonal constraint to the axes transformation, and the common PCA (Flury,
1988), which generalises to several populations within the data, assuming identical principal
components for all groups, but different variances. Nirala and Venkatachalam (2000) examined PCA

versions, which maximise the data covariances or the covariance-to-variance ratios instead of the

data variances.

Jia and Richards (1999) proposed a segmenied PCA method, in which the complete band set is
ordered and partitioned into subgroups of highly correlated bands that are transformed individually
with PCA. The most informative PCs of all subgroups are regrouped and compressed further via
PCA, until the required data reduction ratio is achieved for classification or storage purposes. The

method is based on the idea that PCA works most efficiently on highly correlated features.

Wiersma and Landgrebe (1980) suggested the use of a diagonal weight matrix W in equation 2.29,
specifying a weight factor for each original band to mask out noisy spectral bands:

SWa, = 4,a, (2.30)

where AvY Diagonal matrix of weight coefficients

Maximum noise fraction (MNF)

Green ef al. (1988) introduced the MNF transformation, or noise adjusted PCA, which chooses the
new components in order to maximise the image SNR as indicator for image quality. Instead of the
covariance matrix, the noise covariance matrix is diagonalised to minimise the noise effects on the
signal sources. The MNF was designed for data that have unequal noise variances in different
bands, such as imaging spectrometer data, where different levels of noise may be present in
different regions of the optical spectrum {(e.g. non-uniform detector noise). Being dependent on only

the SNR, the transformation is invariant under scale changes to any band.

The image noise covariance matrix may be estimated with the sensor noise covariance matrix
derived from dark reference measurements during a laboratory or in-flight sensor calibration (e.g.
Lee et al., 1990; Smith and Curran, 1999). Dark current images are at present also routinely
collected before or after data acquisition for most airborne sensors. However, these data are
generally not made available to the end user. Although accurate, instrument noise estimates do not
account for atmospheric noise contributions (i.e. absorption and scattering). The latter may be partly

avoided by choosing bands from well within atmospheric windows only.

Random image noise may also be quantified over spatially and spectrally homogeneous image

areas, by subtracting from the current pixel neighbouring pixels, the local mean or median (Nielsen,
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1994), or by calculating the local standard deviation (e.g. Fujimoto et al., 1989). Other approaches to
noise estimation using the principle of homogeneous image areas include
= dividing the image into homogeneous blocks and using the mean block standard deviation
as noise estimate of the entire image (Gao, 1993),
= deriving residuals from a linear regression which models the pixel’s response as a function
of its responses from adjacent wavebands and one adjacent pixel (Roger and Arnold, 1996),
= deriving residuals in a simultaneous autoregressive model or from a fitted quadratic surface
in a neighbourhood (Nielsen, 1994),
= ysing image training pixels to infer a maximume-likelihood estimate of the noise covariance
matrix (Settle and Drake, 1993),
= using the square root of the nugget variance as noise estimate (Curran and Dungan, 1989),
= using the spatial correlation between adjacent pixels (minimum/maximum autocorrelation
factors, MAF; Switzer and Green, 1984; Green ef al., 1988)
= using the ratio of local variance to global variance (Warner and Shank, 1997; Warner ef al.,
1999), where the local variance is estimated as the sum of the squared difference between

data values of neighbouring pixels over the entire scene (Geary’s ¢ metric; Geary, 1954).

The homogeneous image areas may be defined with the analyst’s scene knowledge as an area of
one object class, or with a clustering algorithm. The accuracy of the noise estimate then depends on
1) the homogeneity of the defined regions, 2) their signal level (low-signal regions contain less noise

than high-signal ones), and 3) them being representative of the entire image.

However, if the image areas under investigation include some spatial variation, the image noise will
be over-estimated. Boardman and Goetz (1991) developed a method, which estimates this scene
variation by extrapolating the noise standard deviation for an infinite number of homogeneous pixels.
The method assumes that the instrument and atmospheric noise will be averaged out for an

increasing number of pixels used.

Some of the ‘homogeneous area’-based methods mentioned above were reviewed and compared
by Smith and Curran (1999) for image SNR estimation, and the authors concluded that different
methods achieved different SNR results. Image noise may therefore best be estimated by sensor

noise alone, i.e., using dark reference measurements.
Projection pursuit (PP)

PP is the term used to describe a method of numerical optimisation of a criterion (projection index or
PI) for finding the most ‘interesting’ low-dimensional projections of a high-dimensional data cloud
(only linear and orthogonal transformations are considered here). Friedman and Tukey (1974) first

successfully implemented the technigque, whose basic strategy is to project the data first with an

initial transformation matrix AO into lower-dimensional feature space, in which AO is recomputed
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by optimising the PI. The method is repeated, until the transformation matrix does not change any

more.

So far, many authors have chosen unsupervised projection indices that quantify the difference
between the Gaussian and the estimated probability distribution of a projection, since they believed
to detect spectral classes via ‘anomalous’, i.e. multimodal and skewed distributions. For example,
Ifarraguerri and Chang (2000) used the information divergence as Pl, while Chiang and Chang

(1999, in Ifarraguerri and Chang, 2000) based their Pl on skewness and kurtosis statistics.

PCA may be interpreted as a special case of the PP methods using the proportion of the total
variance accounted for by the projected data as projection index (Jones and Sibson, 1987).
Bachmann and Donato (2000) compared the performance of the unsupervised PP method, using
the product of trimmed variance and compactness function as projection index, with PCA for
separating land cover ciasses. They found that PCA works best for separating broad class clusters,

but performs worse than PP for classifying narrower sub-clusters.

ifarraguerri and Chang (2000) preprocessed their data by applying PCA and scaling the PC with
their corresponding eigenvalue (sphering). They chose a suboptimal optimisation technigue by
taking every pixel spectrum as possible projection vector. However, the optimal projection may not
be found along a given data point. Using the information divergence as Pl, they compared the

resulting PPs with the PCs, which showed that the PPs tend to correspond better to spectral objects

than PCs.

Factor analysis (FA)

FA aims to represent a set of features in terms of a smaller underlying set of variables called factors.

The factor analysis model may be formulated as follows (Harman, 1976):

x=Af+s (2.31)
where £ Common factor vector
A Matrix of factor loadings
e Specific or unique factor vector

This approach differs from the general feature extraction methodology presented here in that the
pixel measurements X are expressed as a linear combination of the unobserved factors & and €,
which are chosen to account for the correlation between the measurements. in conirast to PCA, FA
is based on a statistical model, requires a large number of assumptions, and has no unique solution

due to the many different methods of obtaining the factor loadings A . Factor analysis is a widely
criticised method, mainly due to the subjectivity of the decisions involved (Webb, 1999) and will not

be pursued any further here. For a detailed review, the reader is referred to Mather (1976) or Webb

(1992).
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2.3.3 Supervised Feature Extraction

If feature extraction is applied for classification processing, the classification accuracy has to be
considered as the primary criterion function in the extraction process. All supervised criterion
functions employed for feature selection (section 2.2.2) may be applied as surrogates for

classification accuracy estimates.
Karhunen-Loéve (KL) expansion

The KL transformation is in one of its most basic forms identical to PCA, but includes variants that

use supervised criteria. The eigenanalysis may be performed on the within-class covariance matrix
S, (equation 2.15) as opposed to the global covariance matrix S in the case of PCA. The
transformation matrix A is formed by the eigenvectors resulting from eigen-decomposition (as for
PCA, section 2.3.2). The ordering of the new uncorrelated features may be carried out on the basis
of the eigenvalues alone or in combination with a measure of discriminability. Webb (1999) gives a
detailed review about the KL variants proposed by Chien and Fu (1967), Devijver and Kittler (1982)
and Kittler and Young (1973).

Linear discriminant analysis (DA) / canonical analysis (CA)

In the context of feature extraction, linear DA is understood as a method of finding a transformation
that maximises between-class separability and minimises within-class variability. It is based on

Fischer’s two-class criterion, which may be generalised to the multiclass situation by using the

sample based estimates of within-class and between-class scatter matrices, S, and S, (equations

2.15-2.17)(Webb, 1999):
T
a.S.a
dp = ——2F (2.32)
a, S a,
Generally, the columns a, of the transformation matrix A are chosen to maximise equation 2.32.

Canonical analysis is identical to linear discriminant analysis expect of being constraint by
transforming S, into the identity matrix I, giving orthogonal and uncorrelated features in the
transformed space (Chen and Landgrebe, 1989). It leads to the following eigenvector equation:
-1 _ 2.33
S.S,a, =4,a, (2.33)
However, the matrix S;VISb is not symmetric, but can be reduced to a symmetric eigenvector

problem using Cholesky decomposition (Press et al., 1992).
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Foley and Sammon (1975) proposed an alternative approach to find orthogonal transformed axes

progressively: the first vector a, is to maximise equation 2.32. The second vector a, is chosen to

maximise equation 2.32 subject to the orthogonality constraint a,a, = 0, etc. Merembeck and

Turner (1980) proposed a directed form of DA, which allows to account for user-specified contrasts
defining underlying relationships among categories known a priori to exist within the data. This

technique can only be used for adequate sample sizes.

CA produces a transformed feature space of dimension M —1, where M is the number of classes.
The method is only appropriate for classes with different mean vectors, since it does not exploit
differences between class covariance matrices (Hsieh and Landgrebe, 1998). Additionally, a class
mean vector that is very different from the mean vectors of the other classes will dominate the
calculation of the between-class scatter matrix. Moreover, the method requires a sufficiently large
amount of training samples to estimate the within-class covariance maitrix, and does not have a

direct relationship to the probability of classification error.

On the other hand, CA is simple, popular, fast and easy to implement (Hsieh and Landgrebe, 1998),

and, in contrast to PCA, it does not demand any correlation between the bands (Csillag ef al., 1993).

Decision boundary feature extraction (DBFE)

L.ee and Landgrebe (1993) introduced DBFE, a feature extraction method based on decision
boundaries. The method classifies the training sample data directly with the Bayes’ decision rule for
minimum error to locate decision boundaries between the classes. Lee and Landgrebe (1993) called
the normal vectors to the decision boundaries ‘discriminantly informative’ features and creates a
‘decision boundary feature matrix’ with them. The eigenvectors of the {atter matrix represent the
columns of the transformation matrix A , which results in the desired new feature vectors with the
eigenvalues being directly related to the usefuiness of the corresponding features for discriminating

between the given classes.

DBFE has the advantage of not making assumptions about the underlying probability distribution of
the training classes. In addition, its performance does not get worse when the differences in mean or
covariance are small. However, the procedure suffers from Hughes phenomenon (section 1.1) and
requires a large number of training samples for good performance, at least the number of
dimensions plus one to avoid singularity. DBFE is suboptimal for more than two classes and very

time-consuming (Hsieh and Landgrebe, 1998; Tadjudin and Landgrebe, 1998).
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Projection pursuit (PP)

The PP method has been introduced earlier in section 2.3.2. In this paragraph, only the supervised
PP variants are presented, i.e. with ‘interestingness’ defined as ability to differentiate between

classes and the Pl based on class statistics. All of the supervised feature selection criteria (section

2.2.2) may be promptly used for PP.

Petraskos et al. (1999) used the ‘maximum minimum’ muilticlass version of the Mahalanobis,
Bhattacharyya and Jeffries-Matusita distance as Pls to find the best PP features for three-

dimensional visualisation of the classes under investigation.

Jimenez and Landgrebe {1999) proposed a sequential version of the PP where the original feature
space is partitioned into groups of adjacent bands that are projected individually in turn to maximise
the minimum Bhattacharyya distance among classes, while keeping the other transformation vectors

constant and orthogonal to each other. The iteration stops when the initial (or updated)

transformation matrix A no longer changes significantly.

The grouping of bands is based on a hybrid binary decision-tree technique. The Iatter method keeps
dividing the groups of bands symmetrically into two halves (top-down approach), as long as the
improvement of the Pl relative to the previous separation exceeds a predefined threshold value. If no
more improvement can be achieved, the corresponding bottom-up method is applied, where
adjacent groups of bands are merged when increasing the Pl significantly with respect to the

previous grouping, etc.

This sequential method ensures that the extracted features relate to certain parts of the spectrum
and can therefore be interpreted by the user. But only the best feature out of one group is chosen

and any additional dimensions are neglected. In addition, the final feature set is not optimal in a

global sense.

Jimenez and Landgrebe (1999) also suggested a feature selection procedure based on the above
grouping method by choosing the best band out of each group for maximising the Pl. Nevertheless,

the bands are only selected best from adjacent features, but not globally from the entire band set.

Generally, PP has the advantage of estimating the class statistics more accurately in the projected
low- rather than in the original high-dimensional space for limited training samples, especially true
for hyperspectral data sets. In addition, Jimenez and Landgrebe (1999) point out that the
assumption of a normal distribution of class data, mostly used in projection indices, is more justified
in a subspace emerging from a linear projection of a higher dimensional space, as the

dimensionality tends to infinity.
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Multidimensional scaling (MDS)

MDS refers to a variety of feature extraction techniques that use supervised two-class distance
measures as criterion functions (Webb, 1999). Only linear (metric) scaling techniques are

investigated in this paragraph. MDS for feature extraction is termed MDS by transformation.

MDS by transformation aims to minimise the discrepancy between the criterion function value d,_,
measured in the original feature space between pixels & and o, and the distance value D,

between pixels £ and o in the new feature space to be found. An objective function O can be
formulated as a function of this discrepancy, which is to be minimised with respect to the
transformation parameters. Many forms exist for the objective function O. An example is given in

equations (2.34 - 2.36) (Webb, 1999):

d,, =|x, —x, (2.34)
D, = IATX,C -A'x, (2.35)
o(A)= ».(d,~D,)—5—>min (2.36)
1<o<k<n
where d, Supervised class distance (or separability) measure, measured in original
¢ feature space
D, Distance measure, measured in fransformed feature space
0 Objective or stress function

If d,, corresponds exactly to the Euclidean distance measure (as above), the classical form of MDS

results, which gives an identical transformation as PCA. Usually standard gradient methods are
used for optimisation (Webb, 1999). The main problem for the application of MDS to remote sensing

data is that all n image pixels need to be fed into the optimisation algorithm (2.36) and the storage

of an (#, n) matrix may be problematic for large 7.

2.3.4 Choice of Feature Extraction Technique

If no ground data are available, unsupervised feature extraction techniques may help to reduce the
dimensionality of the data set. From the unsupervised methods presented above, the author
recommends the PCA, mainly due to its simplicity and ease of implementation. If the features are
measured in different scales, the standardised version of the PCA should be applied. However, this
is unlikely for optical remote sensing data. The MNF is advised only when the detectors of the
sensor are known to produce different noise variances and dark reference measurements are
available. However, techniques for the estimation of the noise covariance matrix are not available for
including structured noise such as edge effects or image striping. The latter should be dealt with via

common image enhancement techniques. Unsupervised PP does not seem to offer any particular
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benefit in comparison to PCA, and is more difficult to implement. Factor analysis is generally

considered as an ambiguous and subjective method, not recommended for dimensionality reduction.

In feature extraction for classification, the new features should be chosen so as to discriminate best
between the user-defined classes (Kittler, 1986). Since unsupervised methods are not based on
class statistics, they may produce features that are not optimal with respect to class separability by
merging different classes or neglecting some. For example, in the case of PCA, some valuable
information for class discrimination may be contained in eigenvectors of low eigenvalues, generally

considered as noisy and removed from the feature set.

If some class objects are small relative to the size of the image scene, they will contribute only a
small amount to the overall variance. These small objects will not be captured by PCA unless their
spectra are nearly orthogonal to the background spectra (Ifarraguerri and Chang, 2000). In addition,
Jones and Sibson (1987) observed that the information related to the segmentation of different

objects and background types does not generally align itself with the main PC axes.

Consequently, if ground data are available, they should be used in conjunction with supervised
feature extraction methods. PCA may be used as no more than a suboptimal comparison, since

classes can sometimes be distributed in the direction of maximum scatter for remotely sensed data

(Richards and Jia, 1999).

Hsieh and Landgrebe (1998) stressed the use of both first and second order statistics for feature
extraction to adequately discriminate between the classes. The KL expansion uses only the within-
class covariance matrix as compared to CA, which also employs the between-class scatter matrix.
However, both KL and CA have no relationship to the probability of error. In addition, a reliable
estimation of the class covariance matrix requires a large number of training samples for

hyperspectral data sets (Hughes phenomenon), which are not always available.

DBFE directly estimates the decision boundaries from the training samples without any assumptions
about class distributions. Benediktsson and Sveinsson (1997) showed empirically that DBFE

produced features giving lower classification variance than both PCA and CA. However, the method
is considered as slow and requires many training samples, which are normally limited in availability.

in addition, it is considered as suboptimal for more than two classes.

PP offers a framework to incorporate any separability measure with direct relation to the probability
of error using both first- and second-order statistics. Since PP estimates the statistics at lower
dimensional space, less training samples are necessary for reliable estimates. Nonetheless, the
implementation of the Pl optimisation including an orthogonality constraint may prove very difficuit

(Siedlecki et al., 1988).
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The structure offered by MDS is convenient insofar as it allows the use of any suitable separability
measure. However, it is only optimal for the entire image scene if all image pixels feed into the
optimisation procedure, which may cause problems for large images with respect to computer

storage.

As a consequence, the author recommends DBFE as supervised feature extraction method if
sufficient training samples are available to the user. If this is not the case, PP should be considered
as second choice in conjunction with a separability measure with a strong relation to the probability

of misclassification employing first- and second-order statistics.

2.3.5 Feature Extraction for Band Selection

Some authors perform band selection not directly via feature selection, but indirectly via
eigenanalysis-based feature extraction. In this case, not the transformed features, but the results of
the eigen-decomposition, i.e. the eigenvectors and eigenvalues, are of interest to the user. Both
unsupervised and supervised feature extraction criteria can be used for the eigenanalysis, such as

variance, image signal-to-noise ratio or DA criteria.

Eigenvector loadings

One technique is founded on the ranking of the original bands according to the loadings of the
eigenvector(s) with extreme eigenvalue(s) indicating their contribution (or importance) to the
resulting feature. For example, if the most informative bands are to be chosen and information
content is {o be represented by data variance, an eigenanalysis may be performed on the data
covariance matrix (PCA). The bands contributing most to the eigenvectors with the highest

eigenvalues may be selected, where the contribution of each band is indicated by the loadings of

this eigenvector.

However, the analysis of the eigenvectors loadings may be very subjective, since it is unclear how
many eigenvectors and bands need to be considered (Mausel et al., 1990). The following two

approaches tackle this problem.

Tu et al. (1998) created a ( N , V) loading factor matrix F, the columns of which can be calculated

by multiplying the normalised eigenvectors by the square root of their corresponding eigenvalues

A

£ :\/ZWEI—H (2.37)
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Where f, Column of the loading factor matrix, f, :[ v Ju o I ]T
H” Euclidean vector norm

To prioritise the original bands, they defined a measure for each band ;, the discriminant power

p; , which is the sum of the squared loading factors fj over all N eigenvectors:

N
2
p,=>fa (2.38)
I=1
Where P, Discriminant power of band

The larger value of P the more significance is implied for the corresponding band. On the other

hand, the discriminant power measure does not consider the spectral correlation between the

prioritised bands (Chang et al., 1999).

Csillag et al. (1993) proposed a top-down band selection method based on both PCA and DA. First,
the dimension of the band set is reduced iteratively. In each step, a PCA is performed on the data,
and the band that contributes most to the eigenvector with the smallest eigenvalue will be
considered noisiest and will be discarded. This step is repeated until a stopping criterion is reached,
such as the desired number of bands or the minimum classification accuracy (also referred to as
modified stepwise PCA, MSPCA). Second, DA is performed on the reduced set of PC features using
a predefined classification scheme. For each discriminant feature, the bands are assigned a rank (1
to number of bands) in order of importance to the feature. The overall grade of a band is calculated
by multiplying its rank in all discriminant features by the eigenvalue of the corresponding feature and
summing the latter products for all features. Both variance and class separation measures are

integrated in this approach. However, bands are discarded only on the basis of their data variance.

Eigenvector axis crossings

In pattern recognition, the axis crossing information of the eigenvector loadings has been shown to

hold a substantial proportion of the information contained in the transformed feature (Chen and

Landgrebe, 1989).

Chen and Landgrebe (1989) produced hard limited eigenvectors by converting their values into their
signed form, i.e. +1, -1 or 0 for positive, negative or zero values, respectively. That is, the
transformed features result from summing, subtracting and omitting the original features. The
authors suggested the transformation to be carried out on-board the sensor in order to reduce the
number of features to be transmitted. However, the procedure does not reduce the actual number of

bands to be collected.
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The summation of adjacent bands may be interpreted as the grouping of narrow bands to broad
bands, the edges of which are defined by the axis crossings. It is unclear whether the optimal
feature set shouid be defined on the basis of the broad bands of the first eigenvector alone, or if the

bands of other eigenvectors should be considered as well.

Henderson ef al. (1989) averaged the first few eigenvectors, and defined the band edges as the
features where a transition in sign occurred. He determined the number of eigenvectors to be
averaged by choosing the mean-square error of the representation to be 0.4% in order to limit the
error’s effect on the image SNR. But, averaging the eigenvectors as suggested does not consider
the relative importance of the eigenvectors and may alter the original locations of the axis crossing,

resulting in suboptimal bands.

Other examples based on one of the methods presented in this section include Spanner et al. (1984,
PCA eigenvector loadings), Wu and Linders (2000, MSPCA), Chang et al. (1999) and Pu and Gong

(2000, discriminant power).

2.4 Intrinsic Dimensionality Estimation

In pattern recognition, the term intrinsic dimensionality (for representation) refers to the minimum
number of features required to capture the structure within the data (Webb, 1999). The geometric
interpretation is that the whole data lie on a topological hypersurface of dimension equal to the
intrinsic dimensionality (Fukunaga, 1982). In remote sensing, the data structure is usually
represented by the data variance, and the intrinsic dimensionality is understood as the minimum
number of features needed to account for most of the image variance. Eigenanalysis-based
unsupervised feature extraction methods (such as PCA or MNF) are typically employed to create

uncorrelated features, whose eigenvaiues represent their contribution to the overall variance (in the

case of PCA).

In contrast, L.ee and Landgrebe (1993) defined the intrinsic discriminant dimensions (for
classification) “as the smallest dimensional subspace wherein the same classification accuracy can

be obtained as could be obtained in the original space”. In this case, the dimensionality is dependent
on the number of classes M . The optimum features of the Bayes classifier are the M class

posterior probabilities, and since they all sum to one, only M —1 dimensions are linearly

independent (Fukunaga, 1982). Thus, the intrinsic dimensionality for classification cannot exceed

M-1.

Supervised feature extraction methods using eigenanalysis (such as DBFE, CA or KL expansion)

may be employed to derive the intrinsic discriminant dimensionality. Alternatively, the best subsets

of uncorrelated features of dimensions 1 to M —1, derived via feature selection or feature
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extraction, may be classified directly. Hypothesis tests may then be performed to see whether
differences between the performances of two feature subsets (with one subset having one more

feature than the other) are significant or not.

Many heuristic and statistical methods exist for estimating the intrinsic (discriminant) dimensionality
of a data set, but only the most common and practical are presented in the following sections. The
problem of the estimation of the intrinsic dimensionality corresponds to finding the number of

significant features or eigenvalues.

241 Heuristic Methods
The heuristic methods presented here use criteria that are all based on eigenanalysis.
Eigenimage analysis

The eigenimages, i.e. the two-dimensional display of the projection of the image data points onto the
eigenvectors, can be analysed with respect to the spatial information content they carry. This
requires an extreme familiarity of the analyst with the ground to identify possible spatial patterns of

the prevalent classes. The method is very subjective and depends entirely on the knowledge of the

analyst.
Scree plot

The term scree plot refers to a graph where the values of consecutive eigenvalues are plotted
against the rank order. It visualises the importance of each eigenvalue with respect to the others and
its contribution to the variance. The latter might be emphasised with a graph printing the cumulative

percentage of variance accounted for by the eigenvalues as a function of rank order.

Cattell and Vogelmann (1977) suggested dividing the plot into a horizontal line of small eigenvalues
representing random variation, and relatively large eigenvalues that clearly leave that line. They
estimated the intrinsic dimensionality as the number of the line-departing eigenvalues plus one.
However, frequently the plot does not present any obvious break points, and the identification of the

horizontal line becomes completely subjective.

Proportion of the total variance
Many researchers chose the intrinsic dimensionality as the number of the first eigenvalues that

represent together a certain proportion of the total variance, usually around 90% to 95% (Biwas et

al., 1981). Nonetheless, the proportion threshold is set completely arbitrarily, and the suggestion of a
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fixed value cannot be vital due to strong data dependence of the threshold value (Ferré, 1995).
Henderson et al. (1989) considered the maximal noise level of a remote sensing system (around

2%) to guide their choice of threshold value.

Kaiser’s criteria

The Kaiser-Guttman criterion (Guttman, 1954) estimates the intrinsic dimensionality as the number
of eigenvalues that are greater than the average eigenvalue. Other methods compare the
eigenvalues directly with an arbitrary value, e.g. 1/ N , where N is the number of original
dimensions (Kaiser, 1960). In all cases, the vaiue threshold eigenvalue is very subjective and cannot

be justified (Ferré, 1995).
Broken-stick method

Horn (1965) suggested a modification to the scree plot for more objective dimensionality estimation
by creating various matrices of random data with all the new uncorrelated features. The eigenvalues
of these ‘random’ matrices are calculated, averaged and plotted on the originai scree plot. The point

where the two lines cross represents the threshold for significant eigenvalues.

Frontier (1976) provides a model for the distribution of eigenvalues, if the total data variance is
dispersed randomly amongst all components: the broken-stick distribution. The eigenvalues

distributed under the broken-stick model can be calculated as follows:

Y1
A=) — (2.39)
i JN
Where lf Eigenvalue of the /th component under the broken-stick model

Eigenvalues are regarded as significant if their value is larger than that of the eigenvalues generated
by the broken-stick model. However, the method does not account for cases where multiple
intersection points exist between the scree plot and the broken-stick distribution. In addition, Ferré

(1995) argues that it cannot be justified why the given data should be compared with a given fixed

distribution.

2.4.2 Statistical Methods

Statistical methods require the knowledge of the distribution of the statistics under consideration to
perform hypothesis or significance tests, such as whether eigenvalues are significantly different or

whether the classification performance of a feature subsets differs significantly from that of another

subset. They may help to determine significant features and thus the intrinsic data dimensionality.
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Bartlett’s test for sphericity

Bartlett’s test for sphericity is based on the idea that some of the eigenvalues bearing random noise

are equal, and the test aims to investigate whether each sequential eigenvalue, A,, differs
significantly from the remaining eigenvalues. The test statistic for A, given in equation 2.40 is

% distributed with O.S(N— /- 1)(N—l+ 2) degrees of freedom (Jackson, 1993).

v :(n_l)(N—l)ln[EN: ’%l]._(n_z)izj (2.40)

j=t1 4V J=l+1

Where ZZ Test statistic to test hypothesis that A, differs significantly from the
remaining eigenvalues

The intrinsic dimensionality is chosen as the value of / for which the eigenvalue A, was tested to be

different from following eigenvalues for the last time.

Other statistics have been proposed, including tests whether the first or second eigenvalues are
equal to the remaining set of eigenvalues (Bartlett’s test of equality and Lawley’s test,
respectively)(Jackson, 1993). Nevertheless, these tests for sphericity are made up of nested and

dependent hypothesis tests, which may result in an unknown overall level of significance (Ferreé,

1995).
Bootstrap eigenvalue-eigenvector

To sample the distribution of the eigenvectors and eigenvalues, bootstrap techniques may be
employed which generate sets of bootstrap observations and provide nonparametric approximations
of the eigenvalues and eigenvectors (Webb, 1999). Jackson (1983) bootstrapped the PCA 100 times
and calculated average eigenvalues and eigenvectors with 95% confidence limits. Where the
confidence intervals between pairs of successive eigenvalues did not overlap, the eigenvalues were
assumed to be significant. In addition, only eigenvectors with two or more coefficients differing

significantly from zero were regarded as informative.

Classification accuracy

The intrinsic discriminant dimensionality of a data set can be estimated by testing the significance of
the difference in classification performance between a feature subset and all the remaining subsets
of higher dimensionality. Successively, subsets of different"size are tested with increasing
dimensionality, until the difference in performance between the current subset and the remaining

subsets is no longer significant. Then, the number of features in the current subset represents the

72



intrinsic discriminant dimensionality. The subset performances may be quantified by a measure of

classification accuracy (see section 2.2.2).

In practical terms, a statistical test of the null hypothesis “Two feature subsets have the same
classification accuracy estimate’ will be performed on the assumption of independent random
samples. Given the classification accuracy estimates of the two feature subsets, the sample
variances of the accuracy measures will be needed to test the significance between the accuracy

estimates via the z-statistic:

Cl B Cz
z=—= : (2.41)
\/S (C1)+S (Cz)
Where z z-statistic
C Accuracy estimate of feature subset 7, i € {1,2}

SZ(CI.) Sample variance of C,

 The z-statistic is generally used to test the difference between the means of two random variables,
which are estimated on the basis of known variances and a large number of independent random

samples (Miller and Freund, 1965).

If one wishes to test the null hypotheses (equality of the population means) at the 5% (1%)
significance level, the critical values are —1.96 (-2.58) and 1.96 (2.58). In other words, if the statistic
gives a value between these critical values, the null hypothesis cannot be rejected and the observed

difference between the sample means can well be attributed to chance. The critical value for a one-

sided test is 1.645 (2.33).

The variances of the accuracy estimates from section 2.2.2 are presented hereafter. /, (equation

2.11) follows a discrete binomial probability distribution and, according to the Central Limit Theorem,

the discrete binomial distribution converges to the continuous normal distribution for the sample size

N tending towards infinity (Bishop et al., 1975 in Congalton, 1991). If the total population has both

a finite mean and standard deviation for large V.., then the large sample (or asymptotic) variance

may be described as follows (Thomas and Allcock, 1984):

1
si(Bo)= - Ro(l=F,) (2.42)
E
Where s2 (PO) Asymptotic sample variance of P,

Thus, for hypothesis testing on 7, , one can use the normal distribution, given that a large number

of test samples are available to build the error matrix (greater than 100, Ma and Redmond, 1995). If
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the distribution of the £, statistic is asymptotically normally distributed, so are the KHAT and TAU

statistics. It can then be shown that

2 Po (1 - Po)
w\le )= T 5 2.43
’ (T) NE(I_‘PR)Z ( :
s2(®)~ M (2.44)
NE (1 - Pc )
Where s2 (Te) Asymptotic sample variance of 7,

Si (ié) Asymptotic sample variance of K€
(Ma and Redmond, 1995; Cohen, 1960).

Shaban and Dikshit (2001) used the z-statistic to test the equality of the classification results of two
feature subsets measured by the KHAT statistic. Dutra and Huber (1999) applied the 7, statistic to

quantify classification accuracy and tested the statistical significance of the difference between error

matrices obtained from different classifiers.

McNemar’s test

McNemars's test (e.g. Dietterich, 1998) involves a statistic to test the classification error of two
feature subsets, A and B. The criterion is not based on the error matrix but on the number of
samples that were classified incorrectly exclusively by one of the two feature subsets (see equation
2.45). A table including all misclassified samples from one subset needs to be stored and compared

with the classification results of the other subset.

2
2% = 0”01 1y ”]) (2.45)
’ Ry + My
Where Ry, Number of samples misclassified by A but not by B

My, Number of samples misclassified by B but not by A

The statistic is approximately )52 distributed with one degree of freedom. The null hypothesis, that

the feature subsets have the same accuracy, can be rejected on a significance level of 95% if

%] >3.841459.

Separability measures

Instead of classification accuracy measures, class separability criteria from section 2.2.2 may also

be employed to approximate classification performance, as long as their distribution is known. For
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example, Penaloza and Welch (1996) used the separability measure dp (equation 2.19), which

follows the F-distribution, as an indicator for class discrimination. They tested the class

discrimination ability of a reduced feature subset with respect to the one of the original feature set.

2.4.3 Choice of Methods

There is no ‘ideal’ sclution to the problem of intrinsic dimensionality determination. The most
important deficiencies have already been highlighted for each method. But how can the users be

guided to pick out the method which suites their problem best?

First of all, the users have to decide whether they would like to determine the intrinsic data

dimensionality or its supervised discriminant form.

If they decide themselves for the former, they have a range of heuristic and statistical eigenanalysis-
based methods to choose from (all above methods except classification accuracy, classification
error, or separability measures). Jackson (1993) and Ferré (1995) performed comparative studies of

the most of the unsupervised methods presented above on simulated data of known dimensionality.

From the methods Jackson (1993) compared (scree plot, proportion of the fotal variance, Kaiser's
criteria, bocken-stick, Bartlett’s test, bootstrap eigenvaiue-eigenvector), the broken-stick model and

the bootstrapped eigenvalues-eigenvector gave the most consistent results.

Ferre (1995) advised methods, where failure of the method can be controlled (e.g. percentage of
total variance, Kaiser's methods). For example, the scree plot after Cattell and Vogelmann (1977)
relies completely on the scale of the display and the perception of a straight line, and may lead to

uncontrolled failure.

Although statistical tests are less subjective than heuristic methods, caution has to be taken with
respect to the overall level of significance of the procedure. They should be considered as
approximate heuristic tests rather than rigorously correct statistical tests. If the distribution of some
statistic is not known, it has to be resampled with the bootstrap technique or similar methods (Monte
Carlo methods, or infinitesimal Jack-Knife approaches), which may require considerable

computational time and be therefore limited in its practical use.

if the users intend to approximate the instrinsic discriminant dimensionality, they can choose from all
of the methods presented above. The ones based on classification accuracy measures may be
interpreted as the most direct and objective ones. All statistics depending on the error matrix require
the matrix to be constructed from a large number of samples, so that the statistic’s asymptotic

variance can be estimated with confidence. The leave-one-out cross-validation method is
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recommended for the error matrix estimation, since it makes most use of the available samples and
gives an almost unbiased estimate. In addition, for intrinsic dimensionality estimation, the user is not
interested in the best approximation of absolute classification accuracy (i.e. the generalisation error),

but in the relative loss of classification accuracy when applying dimensionality reduction methods.

Linearly extracted features used for infrinsic (discriminant) dimensionality estimation are prone to
both noise and surface convolutions, which tend to enlarge the dimensionality estimate (Fukunaga,
1982). It is recommended to remove any noise from the data before the dimensionality is estimated.
Still, the effect of surface convolutions may only be tackled with non-linear transformations. For
example, a curved line in feature space has only one intrinsic dimension, which could be revealed
via non-linear transformations. In contrast, linear feature extraction will always produce more than
one significant feature. For intrinsic dimensionality determination using nonlinear mapping

algorithms, see Fukunaga (1972) or Fukunaga (1982).

2.5 Summary

Chapter 2 introduced common feature selection and extraction techniques, and highlighted their
advantages and disadvantages. Dimensionality reduction is not an easy task and relies heavily on
the type of classifier to be used and the available data set. The user has to trade-off between
computational efficiency and optimality of the result when choosing the dimensionality reduction

algorithm. Therefore, a universally best feature subset does not exist.

Feature extraction methods should be preferred to feature seiection technigues when the user is
interested in a set of most informative and uncorrelated features, as the latter can be found only by
transfoms of the original features (Benediktsson and Sveinsson, 1997). However, the transformed
features may not have a physical significance and may not be interpreted easily. Moreover, they rely
on all sensor output bands, that is, the complexity of the data acquisition system will not be reduced.
That is, with respect to band selection, feature selection techniques are more applicable than feature

extraction methods.

This chapter also presented techniques to estimate the intrinsic dimensionality of a data set on the
basis of feature selection or extraction methodologies for both the supervised and unsupervised
case. Again, it is difficult to give precise rules for the selection of a particular method or its reliability
for a given data set and application. Practically, lower and upper value limits for the intrinsic

dimensionality may be calculated by deriving multiple estimates from different techniques.
In the next chapter, some of the dimensionality reduction methods presented in this chapter were

applied to real hyperspectral data sets acquired with the HyMAP and CASI-2 sensors, mainly with

the intention to derive an optimal sensor band set for the given classification schemes.

76



3 Pilot Study

3.1 Introduction

This pilot study aimed to familiarise the author with the study areas and data sets available, to define
classes and to explore some of the dimensionality reduction methods reviewed in chapter 2, for
classification as application task. The objective was to see whether any major differences result from
different dimensionality reduction and intrinsic dimensionality estimation techniques for the given

class and data sets.

Section 3.2 infroduces the two study areas used for subsequent analysis: the Mid Severn Estuary
and the New Forest, Hampshire (both in the UK, figure 3.1). Both the intertidal and the heathland
area represent semi-natural environments that exhibit only subtle spectral variation between some of
their classes and are spatially complex. One of the aims of chapter 4 was to investigate whether the

‘established’ vegetation band sets (see chapter 4) would also be applicable to map these types of

environments.

In this chapter, the land category of each study area is presented and specific details are given
about the data sets acquired: remotely sensed imagery (with CASI and HyMAP) and in situ
reference data. All data pre-processing is described. The general methodology for this pilot study is
outlined in section 3.3, including guidelines for class definition and class training (section 3.3.1), and
a plan of dimensionality reduction experiments with some of the methods reviewed in chapter 2
(section 3.3.2). The selected land cover classes are portrayed in section 3.4 for both study areas,
and the results of the dimensionality reduction experiments are presented and discussed. Finally,

some general conclusions are drawn in a closing summary.

3.2 Study Areas and Data

3.21 Mid Severn Estuary, UK
The study area consists of a 5.5 km long coastline north of the Mid Severn Estuary, UK, between

Summerleaze and the Severn M4 motorway crossing (see figure 3.1). It is dominated by saltmarsh

vegetation and includes the sites Magor Pill, Collister Pill and West Pill.
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Figure 3.1: Ordnance Survey maps of the Mid Severn Estuary (above) and the New Forest in
Hampshire (all maps © Crown copyright).
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Land category

Coastal saltmarshes are marshland areas vegetated by herbs, grasses or low shrubs and bordering

saline water bodies by which they are regularly inundated due to tidal action. Saltmarshes are highly

productive and sensitive ecosystems acting as a buffer zone between the sea and the upland.

Usually they are protected areas of conservation as they

= gupport a great diversity of life forms,

= provide a nursery habitat for fish and invertebrates,

= offer major breeding, nesting and migration staging areas for waterfowl and shorebirds,

= protect shorelines from erosion and flooding, as the water is slowed as it passes through
shallow, plantfilled areas, facilitating the sediments to deposit and stabilise and water to be

stored, and
= act as filters and help to neutralise and detoxify substances in the water.

The Mid Severn Estuary is an area of major nature conservation interest and contains three sites of
special scientific interest (SSSI), a special protection area (SPA), a Ramsar site (a wetland of
international importance), and a possible special area of conservation (SAC) under the EU Wildlife

and Habitats Directive (Dargie, 1999).

The monitoring, management and protection of these fragile habitats may be realised via detailed
and periodically updated maps that delineate the marshland from the upland and identify major
vegetation species or communities and their distribution within the saltmarsh. The maps could be
most rapidly and effectively produced using remotely sensed imagery, especially for a wide area of
interest. Ground survey does not offer a practical solution because of the difficulties in gaining

access to and manoeuvring in this potentially hazardous environment and locating oneself in the

field.

Vegetation Classes

Table 3.1 presents the scientific and common names of some frequent saltmarsh plants found in the
intertidal zone around the British Isles. These vascular plants are terrestrial in origin, but can

withstand periodical water logging in a saline environment (also called ‘halophytes’).

Saltmarsh surfaces are very complex and heterogeneous. Individual plant species rarely form
homogeneous communities, and usually mix with other plant species at a scale of centimetres to
metres. As a consequence, airborne imagery with a spatial resolution of about 3 m may not be able
to resolve individual plant species, but may distinguish between different plant communities

extending between tens to hundreds of metres.

79



Table 3.1: Scientific and common names of some ordinary saltmarsh plants within the UK.

ScientificName  Common Name
Ameria maritima Thrift, sea pink
Aster tripolium Sea aster

Elymus pycnanthus Sea couch-grass
Festuca rubra Red fescue

Glaux maritima Sea milkwort, black saltwort
Halimione portulacoides Sea purslane
Juncus gerardi Mud rush
Leontodon autumnalis Autumn Hawkbit
Limonium vulgare Sea lavender
Phragmites australis Reed

Plantago maritima Sea plantain
Puccinellia maritima Sea meadow grass
Puccinellia distans Alkali-grass
Salicornia sp. Glasswort

Spartina anglica Cord-grass
Spergularia marina Salt sandspurry
Sueda maritima Sea blite

Triglochin maritima Sea arrow grass
Zostera spp. Eel grass

Table 3.2: Height levels averaged over several years (after Long and Mason, 1983).

Height level Description

MHWS Mean levels of High Water of Spring tides (*)
MHW Mean levels of High Water of all tides
MHWN Mean levels of High Water of Neap tides (*)
MLW Mean levels of Low Water of all tides

(*) Spring tides are the largest tides and occur when Sun, Moon and Earth are aligned 1.5 days after new and

full moons. Neap tides represent the minimum high water level between two consecutive spring tides.

According to Long and Mason (1983), three broad salt marsh zones, arranged in belts parallel to the

shoreline, may be recognised according to their relative periods of seawater immersion and

exposure to air:

Low marsh: also referred to as ‘pioneer zone’, this zone falls typically within the MHWN and
MHW height levels (see table 3.2). It consists of significant bare areas with few species, mainly
cord-grasses (Spartina anglica in the study area) and algae. Its lower limit can be defined
unambiguously as the seaward margin of vascular plant communities, excluding those
composed of sea-grasses or other permanently submerged species.

Mid marsh: this zone occurs between levels MHW and MHWS (see table 3.2) and is dominated
by saltmarsh grasses such as Puccinellia maritima (as in this study area) or mixed communities
including Ameria maritima and Plantago maritima.

High marsh: this zone may be defined as the area above the MHWS level (see table 3.2) and
resembles terrestrial vegetation in being predominantly composed of higher plants

(angiosperms) which are also found in inland vegetation. Generally a great diversity in species
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composition can be found in northern Europe. In the study area, high marsh is dominated by the

Festuca rubra species.

In addition to this spatial variability, saltmarsh vegetation is subjected to a number of environmental

and inherent factors, which may cause variations in the canopy’s spectral signature:

Apart from controlling solil salinity and the degree of water logging, tides carry sediments into
marshes making tidal waters turbid. As a result, remote sensing of saltmarshes should be
carried out at low tides, in order o be able to ‘see’ low and mid marsh vegetation in the optical
spectrum. As the tide recedes, sediment may be deposited on the foliage of the plants and may
remain there for longer in the absence of rain (Budd and Milton, 1982). In addition, plants may
be covered with a thin salt water film much of the time. Strong tidal water flows may also have a
physical impact on the canopy geometry, for example, grasses may be flattened.

Depending on its speed and direction, wind has been found to cause spectral signal variation for
certain plants. For example for cereal crops, radiance fluctuated 10-20% more in the 450-650
nm than in the 650-750 nm range (Rao et al., 1979). Wind is particularly present on coastal
saltmarsh areas, and may flatten grasses especially in the high marsh region.

Grazing of domestic stock (such as cattle, sheep, geese, ducks) and wild animals (e.g. rabbits or
hares) on high saltmarshes is a major factor controlling the diversity in flora and vegetation
between sites (Adam, 1993).

Canopy reflectance is also dependent on the plant phenology, i.e. the timing of flowering and
seed release. The latter is different from plant to plant and there may be some time throughout
the year when the spectral discrimination between saltmarsh species or communities is best.
Hardisky ef al. (1983) and Drake (1976) examined seasonal changes in the reflectance of some
salt marsh communities and found that spectral discrimination of canopy characteristics was
effective during the majority of the growing season, and that reflectance could be used for the
detection of seasonal changes in community green biomass during this period.

Finally, the viewing and illumination geometry between Sun, target and sensor may affect the
spectral signal of the saltmarsh vegetation canopy. Bartlett et al. (1986) showed that changing
the zenith angle of observation produces significant variability in measured red and infrared
canopy reflectance for salt-marsh cord grass. Directional sun angle effects were found to cause
significant changes in nadir-sensed reflectance from leafless canopies of salt marsh vegetation,

while they have little effect on reflectance from broadleaf canopies (Gross ef al.,1988).

In situ data

Dargie (1999) conducted a survey of vegetation of saltmarsh habitats in the Severn Estuary between

July and mid-October 1988, using National Vegetation Classification (NVC) methods and

description. The study area is part of this survey and figures 3.2 to 3.4 show the corresponding

survey maps in detail. The NVC code for the saltmarsh communities is presented in table 3.3.
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Figure 3.2: Dargie's vegetation map (Dargie, 1999) for the west part of the Mid Severn Estuary
study area. The NVC codes for the saltmarsh communities are described in table 3.3.
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study area. The NVC codes for the saltmarsh communities are described in table 3.3.

Figure 3.4: Dargie's vegetation map (Dargie, 1999) for the east part of the Mid Severn Estuary



Table 3.3: Description of the National Vegetation Classification (NVC) saltmarsh categories.

NVC code Saltmarsh Type Comment
SM6 Spartina anglica saltmarsh only lightly grazed by stock
SM10 Transitional low saltmarsh with Pioneer
Puccineliia maritima, annual Salicornia Marsh
and Svaeda maritime
SM12 Aster tripolium (rayed)
SM13a Puccinellia maritima saltmarsh,
P. maritima sub-community
SM13b Puccinellia maritima saltmarsh, Glaux Middle at well-drained locations,
maritima sub-community Marsh often in grazed marshes
SM13f Puccinellia maritima saltmarsh, probably former SM6
Spartina anglica sub-community converted to mid-marsh by
stock grazing
SM16 Festuca rubra saitmarsh
SM16a Festuca rubra saltmarsh, Puccinellia lowest levels for SM16
maritima sub-community types, above or in mosaics
with SM13b vegetation
SM16b Festuca rubra saltmarsh, Juncus High Marsh | J. gerardi abundant in
gerardi sub-community poorly drained patches of
ground
SM16c¢c Festuca rubra saltmarsh, Glaux
maritima sub-community
SM16e Festuca rubra saltmarsh, Leontodon
autumnalis sub-community
SM23 Spergularia marina - Puccinellia High Marsh | Disturbances, e.g. by stock
distans saltmarsh (disturbed) | trampling or re-alignment of
seawall
SM24 Elymus pycnanthus saltmarsh characteristic of the drift
Strandline | line, esp. on ungrazed
marshes, 100% cover
S4 Phragmites australis, P. australis sub- | Transitions | Freshwater seepage at the
community to swamp | rear of saltmarsh, species-
poor
BM Bare mud Pioneer saltmarsh or
product of poaching
BR Exposed hard seawall (stone gabion, mostly sterile habitats with
boulder riprap, concrete) Non-NVC | little plant growth
BSH Bare shingle categories | Mostly a sea defence
measure to retard erosion
SpP Saltpan(s) uncommon upon saltmarsh
in the Severn Estuary
ST Strandline debris mainly wood and plastic

Airborne hyperspectral imagery

CASI! image data were collected in October 1997 by the Environment Agency (EA) over the Mid

Severn Estuary study area. Details of the data acquisition are presented in table 3.4. The EA

corrected the data for geometric distortions associated with the attitude of the aircraft platform (roll

and pitch). A false colour image is displayed in figure 3.5. The 72 bands with their associated centre

wavelengths and bandwidths are listed in table A.1 in the appendix.

&5




According to the EA (K. Brown, 2002, personal communication) the data had been calibrated to
spectral radiance to minimise detector responsivity variations. Nonetheless, some bands in the blue
(bands 1 to 9) and NIR (bands 70 to 72) suffer from severe along-track striping, which is typical for
pushbroom scanners due to the different response sensitivities of each detector. Besides, bands 1

to 13 and 70 to 72 show some across-track striping. Destriping algorithms exist on most image
processing systems (e.g. ENVI®) or can be found in papers such as Hutsinpiller (1988). However,
destriping is a cosmetic procedure which may have an unknown effect on the data. As a result,
destriping algorithms were not applied to the data and bands 1 to 9 and 70 to 72 were excluded from
further processing. The spectral calibration accuracy was evaluated by detecting the oxygen
absorption feature at 762 nm, which is present in all radiance spectra. The feature fell onto band 48

(761.4 - 770.2 nm) suggesting a satisfactory wavelength calibration.

The southern image edge was affected by Sun glint during data acquisition. The mudflats acted as
specular reflectors due to their flatness and the presence of a water film. The middle part of the

image swath containing saltmarsh vegetation was not influenced by it.

Ideally, in situ data are collected at the time of image acquisition to allow for accurate class definition
and mapping. In this case, the data were acquired about a year after image recording. Any changes
in class composition may have been mainly introduced by grazing of stock and wild animals, and
river diggings. However, a comparison between the imagery and the in situ map does not suggest
any major changes in the spatial distribution and identity of the classes. Severe differences between

image and map would lead to a potentially faulty class definition, classification result and feature

selection.

Table 3.4: Characteristics of the CASI image acquisition over Mid Severn Estuary, UK.

Acquisition parameter CASI imagery

Date of acquisition 28 October 1997

Time of acquisition (hrs GMT) 12:03 -12:07 p.m.

Type of aircraft twin engine Cessna 402
Altitude (m) (above ground) 1220

Ground speed (knots) 105

Number of scan lines 1252

Direction of flightline South-West to North-East (60°)
Sensor mode Enhanced Spectral Mode
Spatial resolution {m) 4

Number of spectral bands 72

Specitral resolution (nm) 84-88

Spectral range (nm) 408 — 854

Data format (bit) 12

View angle (°) Nadir

Field of view (°) 77.3

Swath width (km) 1.54 (405 out of 512 pixels)
Solar elevation angle (°) 25.19

Solar azimuth angle (°) -2.17

Status of the atmosphere Clear blue sky
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Figure 3.5: Geometrically corrected false colour composite of CASI data using bands 53 (R),
33 (G) and 20 (B) overlaid with a zoom area. © UK Environment Agency, 1997.

3.2.2 New Forest, Hampshire, UK

The study area is situated in the New Forest, Hampshire, UK, near the village of Stoney Cross,
northwest of the town of Lyndhurst (see figure 3.1). It is dominated by enclosed forest areas and

semi-natural heathland vegetation and includes the northern section of the Highland Water

catchment.
Land category

The New Forest in Hampshire, UK, comprises the largest area of semi-natural vegetation of its kind
in lowland Britain and consists of a unique combination of habitats once widespread in Western
Europe: heathland, mire and pasture woodland (Westerhoff, 1992). The ecosystem comprises
almost 20,000 ha of unenclosed forest, of which 15,000 ha represent lowland heath, mires, and
acidic grassland, creating a multitude of complex transitional plant communities (Westerhoff, 1992).
In addition to the open forest, the New Forest contains enclosed areas of conifer plantations and

pasture woodland.
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The New Forest is an area of international importance to nature conservation and biological science,

protected by several European and national directives (JNCC, 2002; Westerhoff, 1992):

= National park status (1994),

= SSSI under the Wildlife and Countryside Act (1981),

= SAC designated under the EC Habitats and Species Directive for the protection of habitats and
(non-bird) species,

= All wetlands protected by the International Convention on Wetlands of International Importance
especially as Waterfowl Habitat (the Ramsar Convention),

= SPA due to the number of rare birds present.

Vegetation mapping and monitoring for this important and extensive area of Southern England is

best achieved by remote sensing. Two of the reasons to monitor the New Forest at present are:

= the potential threat to vegetation communities (such as the valley mire and wet heath) from
climate change due to increasing water tables, and

= the reintroduction of heathland on some plantation woodland areas in the next 20 years under

the current management plan.

Vegetation classes

Table 3.5 presents the scientific and common names of some frequent plant species found in the

study area.

Semi-natural land tends to be very heterogeneous, and mixing between plant species occurs at a

scale of centimetres to metres. Airborne imagery with a spatial resolution of about 3 m may not

resolve individual piant species. Westerhoff (1992) defined the following categories to classify open

forest vegetation types of the New Forest from aerial photographs:

= Dry heath (DH): Dry heath is found mainly on permeable humus-iron podsols deposited on well-
drained slopes and high ground. Calluna vulgaris is dominant, while Erica cinerea is consistently
present. Molinea caerulea may be locally present, but Erica fetralix is always absent. Some
Ulex europaeus and Pferidium aquilinum may be present.

= Humid heath (HH): Humid heath is the intermediate stage between dry heath and wet heath
and is characteristic of slowly permeable and seasonally waterlogged ferric or humic-gley
podsols in gravels, loams and clays. It is the most widespread heathland plant community in the
New Forest. Calluna vulgaris and Erica tetralix are present and either may be dominant. Molinea
caerulea may be abundant. Where Calluna vulgaris, Erica tetralix and Molinea caerulea are co-

dominant the classic 'triple heath' is apparent. Erica cinerea, Ulex europaeus and Pteridium

aquilinum may be locally present.
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Table 3.5: Scientific and common names of common plant species of the open plant
communities within the New Forest, UK (Westerhoff, 1992).

Agrostis sp. Bent

Alnus glutinosa Alder

Bellis perennis Daisy

Betula sp. Birch

Calluna vulgaris Heather
Crataegus sp. Hawthorn

Drosera sp. Sundew

Erica cinerea Bell heather

Erica tetralix Cross-leaved heath
Eriophorium sp. Cotton grass
Fagus sylvatica Beech

Festuca rubra Red fescue
Galium saxatile Heath bedstraw
llex aquifolium Holly

Juncus squarrosus Heath rush

Lolium perenne Perennial rye-grass
Molinea caerulea Purple moor grass
Myrica gale Bog myrtle

Pinus sylvestris Scot's pine
Potentilla erecta Tormentil
Pteridium aquilinum Bracken

Quercus sp. Oak

Salix sp. Willow

Sphagnum sp. Sphagnum moss
Tricophorum cespitosum Deer grass
Trifolium repens White clover

Ulex europaeus Gorse

Wet heath (WH): Wet Heath is dominated by an overstorey of Erica tetralix and Molinea
caerulea tussocks most usually with a Sphagnum moss understorey. Juncus squarrosus,
Tricophorum cespitosum and Myrica gale are also common.

Valley mire (VM): Valley mire can be found in valleys with impeded drainage and downslope of
hillside seepage steps at the junction between permeable and impermeable soils. Sphagnum
sp. is dominant, and Calluna vulgaris and Tricophorum cespitosum are always absent. Molinea
caerulea is often abundant together with some rare species including Drosera sp. and
Eriophorium sp.

Carr (C): Carr are residual alluvial forests, grading into bog woodland (JNCC, 2002). Carr
habitat is characterised by Alnus glutinosa and Salix sp. This woodland often has a rich
understorey and supports a number of rare epiphytes.

Broadleaved Woodland and Scrub (BWS): This semi-natural woodland community comprises
Quercus sp., Fagus sylvatica, llex aquifolium, Betula sp. and Crataegus sp.

Bracken (B): Pteridium aquilinum is dominant, usually with an ericaceous understorey.

Bracken/Gorse (BG): Mixed class comprising Pteridium aquilinum and Ulex europaeus
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= Gorse (G): Ulex europaeus is dominant, often forming a closed canopy. Pteridium aquilinum
may be present.

= Acid grassland (AG): Grassland dominated by Agrostis sp., Molinea caerulea, Potentilla erecta
and Galium saxatile. Pteridium aquilinum and Ulex europaeus may be present.

= Scot's Pine (SP): Area where Pinus sylvestris forms a closed canopy.

= Lawn (L): Neutral grassland dominated by Agrostis sp., Festuca rubra, Lolium perenne,
Trifolium repens and many rosette-forming herbs.

= Reseeded grassland (RSG): Grasses such as Agrostis sp., Bellis perennis and a rich

assemblage of prostrate herbs.

In situ data

Between 1986 and 1988 an extensive vegetation survey was carried out on behalf of English Nature
by Clarke and Westerhoff across the unenclosed regions of the New Forest (Westerhoff, 1992).

Vegetation class boundaries were mapped according to the defined categories above onto 1:10,560
scale Ordnance Survey maps of the area. At a later date, the maps were distributed in digital format.

Figure 3.6 presents the survey data for the New Forest study area.

Airborne hyperspectral imagery

During the BNSC/NERC SHAC-2000 campaign, hyperspectral high-resolution HyMap image data
were acquired over the New Forest study area on 19 June 2000. Details of the data acquisition are

presented in table 3.6.

No simultaneous ground measurements were taken, impeding atmospheric image correction.
Atmospheric water vapour is assumed to be uniformly distributed across the site, since the area is

small and presents no extremes in topography or large water bodies.

The data were calibrated from radiance to reflectance by the survey operators (HyVISTA Corp. Pty.
Ltd.) with HyCorr, a modified version of the Atmospheric Removal (ATREM) algorithm (Gao ef al.,
1993) and the Empirical Flat Field Optimal Reflectance Transformation (EFFORT) program
(personal communication with Anthony Dennis, Infoterra, 2001). ATREM uses radiative transfer
modelling to calculate apparent reflectance, while EFFORT improves the resulting accuracy by using

band statistics to remove calibration and atmospheric correction errors.

Geometric correction, based on aircraft ephemeris data, was performed with the ENVI® plug-in
provided with the data. As the resulting image was still displaced from British national grid, it was
registered to the digital ground data map (see above) via a simple linear transformation. A

georectified false colour composite image can be seen in figure 3.7.
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Figure 3.6: Part of Clarke and Westerhoff's vegetation map (Westerhoff, 1992) for the New
Forest study area. The categories are explained in section 3.2.2.
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Visual inspection of all 126 bands revealed 9 noisy bands (1, 2, 63, 64, 65, 95, 124, 125, 126), which
have been excluded from further processing. The enclosed woodland area present on the imagery

was masked out by manual on-screen digitising.

The image data were acquired fourteen years after in situ data collection. Within this period,
changes in class distributions and compositions may have been caused by the grazing of wild
animals and any human induced modifications, such as tree plantations or the reintroduction of
heathland. However, the in sifu map and the hyperspectral imagery do not exhibit any major
differences in the spatial patterns and the identity of the given classes. This was confirmed by K.
Anderson (2000, personal communication), who conducted extensive field measurements in the
study area at the time of image acquisition. The in situ map was therefore used in conjunction with

the delineation of classes within the hyperspectral image.

Table 3.6: Characteristics of the HyMAP image acquisition over New Forest, UK.

Acquisition parameter HyMAP imagery
Date of acquisition 19 June 2000
Time of acquisition (hrs UTC) 11:56 a.m.

Type of aircraft Dornjer 228
Altitude (m) (above ground) 1500

Ground Speed (knots) 122

Number of scan lines 2038

Direction of flightline North to South (180°)
Spatial resolution (m) 3

Number of spectral bands 126

Spectral resolution (nm) 11-22

Spectral range (nm) 430 ~ 2500

Data format (bit) 8

View angle (°) Nadir

Field of view (°) 61.3 (512 pixels)
Swath width (km) 1.8

Solar elevation angle (°) 62.44

Solar azimuth angle (%) 595

Status of the atmosphere Low level cloud
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Figure 3.7: Geometrically corrected false colour composite of HyMAP data using bands 107
(R), 22 (G) and 7 (B). © UK Natural Environment Research Council, 2000.
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3.3 Dimensionality Reduction for Classification

Section 3.3.1 describes the final data application, the maximum likelihocod classification procedure.
In addition, guidelines for class definition and training are outlined. Subsequently, some of
dimensionality reduction methods reviewed in chapter 2 and applied in this study are presented in

section 3.3.2.

3.3.1 Classification, Class Definition and Training

Classification

Generally, the aim of the data analyst is to transform raw image data into valuable information, such
as thematic maps of object classes of interest. For the latter example, the most common image
transformation is classification, the process of assigning class membership labels to each picture
element (pixel). This procedure is based on a classifier, which relies on the class discriminative
information content of the image data. In this project we limit ourselves to spectral or 'point’

classifiers, where each pixel is considered as point observation and classified on the basis of its

spectral information alone.

Within this group of classifiers, one may distinguish between supervised and unsupervised
approaches, dependent on whether or not the analyst makes use of readily locatable training data
(in situ data) for class characterisation. In addition, a distinction between statistical and non-
statistical methods can be made, depending on whether or not a particular class statistical

distribution is assumed (commonly the Gaussian distribution).

Some of the most commaon supervised speciral classifiers in remote sensing are:

= Parallelepiped classifier (also multivariate level slicing): a non-parametric supervised method,
partitioning the feature space into multi-dimensional boxes around the spectral clusters on the
basis of the class maximum and minimum data values. The pixel is assigned to the class in the
box of which it falls. Some pixels may lie outside all defined parallelepipeds and will not be
classified.

= Minimum distance classifier: a statistical supervised method, which calculates class means
from training data and assigns a pixel to the class with the nearest mean. Results are not
optimal, if the class covariance matrices are not equal.

= Gaussian maximum likelihood classifier (MLC): a statistical supervised classifier, most
commonly used in remote sensing. The Gaussian model is assumed for the class probability
density function (pdf), which is calculated from the training data. The pixel is assigned to the
most probable class according to the maximum value of the posterior class pdf. The normality

assumption can only be justified with sufficient training samples being available to adequately
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describe the classes of interest. In practice, the classes tend to have Gaussian distributions, and
the classifier is relatively tolerant of deviations from normality (Swain, 1986). The classifier also
allows for the incorporation of class prior probabilities, so that a minimum risk strategy can be
adopted.

= Spectral angle mapper (SAM): a statistical supervised classifier using the angular separation
measure (see table 2.1 in section 2.2.2) to calculate the average angle between a reference and
a sample spectrum, which indicates spectral similarity between the two. The spectra are treated
as vectors in high dimensionality space.

= Linear spectral unmixing (LSU): a sub-pixel (‘fuzzy') supervised classification technigue, which
models the spectral reflectance of a pixel as the linear sum of cover proportions of known class
spectral signatures and estimates class proportions via multiple linear regression. This classifier
accounts for the 'mixed pixel' phenomenon occurring when two or more objects from different

classes share the same pixel area.

In this chapter, the MLC was chosen for supervised classification, as it is the most commonly used

classifier of all classification methods mentioned above.

Class definition and training

In general, two notions of 'classes' need to be distinguished: informational classes, i.e. the
categories of interest to the data user, and speciral classes, which reflect groups of pixels that are
uniform with respect to their values in each spectral band (Campbell, 1996). A direct link needs to be
established between the spectral and informational classes to derive information from the data that

is valuable to the data user. Ideally, a spectral class corresponds uniquely to an informational class.

If the informational classes have not been defined yet, the user should choose classes according to
the following criteria (Wiersma and Landgrebe, 1980):

1) each class should be real and of interest to the user,

2) for each class sufficient training samples should be available in the imagery,

3) the class list should be exhaustive, so that all major classes on the image are accounted for,

4) each class should correspond to one or more spectral classes, as the latter can be mapped with

high accuracy.

With respect to point 2), the question arises of how many training samples are sufficient for a certain
application task. According to Hughes phenomenon (see section 1.1), the ratio of the number of
training pixels to the number of spectral bands needs to be sufficiently high to ensure reliable
estimates of class statistics. Labovitz (1986) recommended a ratio value of at least 2. Webb (1999)
suggested the value to be at least around 5 to 10. Hsieh and Landgrebe (1998) chose a value of

around 15, while Mather (1999) recommended a value of at least 10 to 30.
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In the context of the application of MLC, a training sample needs {o be relatively pure, i.e. its
corresponding GIFQV has to contain only the objects belonging to the sampled class. If a class does
not provide any pure fraining samples (i.e. the class cannot be resolved with the imagery's spatial
resolution), or if the class does not provide a sufficient number of training pixels (see above), it may

either be ignored or merged with other sub-classes to a larger category.

Regarding point 4), informational classes need to be spectrally distinct from each other in terms of
features available, in order to assure high classification accuracy. The spectral classes of a data set
represent separated clusters in high dimensional space and may be identified with clustering
algorithms such as ISODATA (Iterative Self-Organising Data Analysis, Duda and Hart, 1973). The
analyst may match them to informational classes using available ground data. This may help to
identify spectrally separate informational classes, especially in cases where the classes are
heterogeneously distributed over the entire scene and it is difficult to assign a certain pixel to a

particular informational class.

Generally, class separability can be quantified with two-class heuristic or probabilistic distance
measures (defined in section 2.2.2) and statistical tests (Labovitz, 1986; Penaloza and Welch,
1996). In this study, the general spectral separability between the defined classes was measured
with an ENVI® (version 3.5) separability index that makes use of the transformed divergence
measure. The index may take values between 0 and 2.0, with values greater than 1.9 indicating
good separability. Classes may be removed from the class list, if they are not significantly different

from all classes previously included.

When selecting training data, care should be taken to choose training pixels that are truly
representative of the corresponding class population. Statistical estimates of population parameters
are only adequate if the fraining data are random samples of the class population (Labovitz, 1986).
By definition, a random sample must consist of individual pixels that are identically and

independently distributed (Hogg and Craig, 1978).

Labovitz and Masuoka (1984) discovered spatial autocorrelation between adjacent pixels. Therefore,
Labovitz (1986) recommended the use of more widely spaced training samples to produce a more
robust estimate of training statistics for the purposes of signature extension. This may resultin a
classifier that is 20 to 25 % more accurate than a classifier with contiguous pixels in the training set
(Labovitz, 1986). Craig (1979) suggested a sampling grid spacing of 10 instead of 1. Campbell
(1996) advises the use of a larger number (at least 5 to 10) of small training areas per class instead

of a few large ones.

Some sample pixels within the training data may not be representative with respect to their parent
class. The inclusion of such outliers (aberrant, hybrid or mixed pixels) can seriously distort the

sample statistics and hence the performance of the classifier (Mather, 1987). They can be removed
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by an algorithm, which measures the distance of a sample pixel from the Gaussian curve of the

parent class, and removes it if the distance is found to be large (Campbell, 1980).

Moreover, it is important to confirm the adequacy of the Gaussian model for each class population.
This may be checked visually by displaying single band frequency histograms for the class training
data and comparing its shape to a Gaussian curve. In addition, measures such as skewness or
kurtosis may be calculated to quantify any deviations of the population from a normal curve.
Skewness is a measure of the deviation of the distribution from symmetry and has a value of zero
for the Gaussian distribution (see equation 2.6). Kurtosis measures the peakedness of the
distribution and has a value of zero for the normal distribution (see equation 2.7). If the statistical
model is found to be non-representative (for example for a bimodal frequency distribution), the class
under investigation may be redefined or re-trained to fit a normal population, or a non-statistical

algorithm may be employed for classification.

It is often difficult to judge whether other studies have adhered to the above training rules, as some
authors do not explicitly describe the training sample selection process. For example, in studies that
use hyperspecitral data for image classification it is often not reported how many training samples
per class were selected (for example, Thomson ef al,, 1998b, Alberotanza et al., 1999, Held et a/.,
2003). However, the latter is important for judging the validity of class statistics and the associated
classification result. A detailed description of the training selection process would be of benefit for

the comparison of different classification studies.
Classification Methodology and Accuracy Assessment

After having defined the classes of interest according to the guidelines outlined above, the two data
sets were initially classified with a maximum likelihood classification (MLC). This classification was
performed on the entire band set to obtain an indication of the expected approximate level of
accuracy and running time of the procedure for each data set. The classification performance was

assessed with the overall classification accuracy estimate (see equation 2.11, section 2.2.2).

For the given class and data sets, the contingency table was created with the ‘leave-one-out’ cross-
validation method rather than the ‘holdout’ estimate. The latter method splits the data into two
mutually exclusive sets, a training set for classifier design and a test set for accuracy estimation.
However, it makes inefficient use of the data by using only part of the data to train the classifier and
gives a pessimistically biased error estimate (Devijver and Kittler, 1982). The ‘Leave-one-out’ cross-
validation method uses n-1 out of n samples in the design of the classifier and tests on the
remaining sample. This is repeated for all n subsets of size n-1 (Webb, 1999). Although this method
is positively biased as the same samples are used in both the training and testing stages, the
estimate uses all available in situ data for classifier design. This is particularly advantageous for

hyperspectral data, as training samples are usually scarce, and a sufficient number of training pixels
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are needed to calculate accurate class statistics. That is, if training samples are scarce, using the

leave-one-out method may reduce the distorting effect of Hughes phenomenon on the accuracy

estimate.

To isolate the effects of the various dimensionality reduction methods on the classification accuracy
estimate, the same classification and accuracy assessment parameters (such as training data, MLC
classification method, ‘leave-one-out’ cross-validation method) were applied to different band
subsets. As only relative accuracy comparisons were undertaken for the same classification task
and absolute accuracy estimates were not required, the positive bias of the ‘leave-one-out’ accuracy
estimate was not of importance for this study. Throughout the thesis, differences between accuracy

estimates were tested for significance at a 5% significance level using the z-statistic (see equation

2.41).

The results of the initial classification are shown in figures 3.8 and 3.9. The overall classification
performance was estimated to 94.8% for the River Severn and 99.1% for the New Forest data set.
The classification procedure was carried out with Multispec© software (version 2.5) running under
Windows NT on a 600 MHz Intel Pentium Il processor with 128 MB RAM. The River Severn data set

took about 3 minutes of processing, while the New Forest classification result was completed after

22 minutes.

Figure 3.8: Masked River Severn Maximum Likelihood Classification result for all bands and
the defined class set (Bare Rock, white; Pioneer Marsh, bright green; Mid Marsh, green; High
Marsh, dark green; Bare Mud, brown).
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Figure 3.9: Masked New Forest Maximum Likelihood Classification result for all bands and
the defined class set (Lake, blue; Asphalt, white; Bracken, yellow; Dry Heath, orange;
Grassland, brightest green; Humid Heath, bright green; Wet Heath, green; Valley Mire, dark
green).
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3.3.2 Dimensionality Reduction

Hyperspectral imagery offers narrow spectral bands for the exploitation of minor differences in the
spectral response between individual classes of interest, and thus, promises high classification
accuracy. However, as stated in section 2.1, dimensionality reduction of hyperspectral data may
improve greatly the overall classification performance. With less, but more information-bearing
features, the redundancy in the hyperspectral data set, as well as the complexity of the resulting
classifier, will be substantially reduced. In addition, the statistical estimates of the class population

parameters will be more accurate for a limited amount of available training samples.

Figures 3.10 and 3.11 illustrate the data redundancy for the two data sets available via the band
correlation matrix using the coefficient of determination (the colour white represents a value of 1,
black one of 0). For both matrices, the auto-correlation value for the first band is located in the top
left corner of the figure. The correlation matrix displays a high correlation value for bands of similar

value, and a small correlation value for bands of dissimilar value.

Figure 3.10: Correlation matrix of the 60 Figure 3.11: Correlation matrix of the 117
bands of the CASI River Severn data (12 bands of the HyMAP New Forest data (9
bands have been masked out). bands have been masked out).

Both the CASI and HyMAP imagery are dominated by vegetation, which is reflected in the
correlation matrices. In the VIS (CASI bands 10 to 39, HyMAP bands 3 to 15), reflectance values of
a typical vegetation spectrum (e.g. see figure 4.1) are at a similar magnitude due to the blue and red
absorption features resulting in high correlation between bands. The green reflectance peak gives
slightly higher reflectance values and is therefore less correlated to neighbouring VIS bands. It
shows as a darker stripe (CASI bands 18 to 21, HyMAP bands 7 to 10) in the VIS range of the
correlation matrix. The red edge (CASI bands 40 to 44, HyMAP bands 16 to 18) forms the transition
to the NIR (CASI bands 45 to 69, HyMAP bands 19 to 60), which represents the region of maximum
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vegetation reflectance. Bands on the NIR plateau have similar vegetation reflectance values and are
highly correlated with each other. As HyMAP imagery measures up to the SWIR wavelengths, it
shows a slight decrease in correlation at longer NIR wavelengths (bands 34 to 60). The latter is
connected to the drop in reflectance values partly caused by the water vapour absorption features at
942 and 1135 nm. HYMAP’s two SWIR detectors measure between and beyond the two water
vapour absorption features at 1379 and 1865 nm (SWIR-1 bands 66 to 94 from 1440 fo 1812 nm,
SWIR-2 bands 96 to 123 from 1960 to 2448 nm). As typical vegetation reflectance values are of
similar magnitude within each SWIR region, bands are highly correlated within the two regions. As
the vegetation reflectance values in the SWIR-2 are close to the ones in the VIS, an increased

correlation is found between bands of these two regions.

Feature selection for classification

The main objective of feature selection for classification is to select a band subset of given size that
maximises the classification accuracy, estimated with measures derived from the classification error
matrix. Theoretically, a classifier may be designed on each possible feature subset and the subset
resulting in the highest classification accuracy is chosen. However, it can be shown that a single
classification accuracy estimation for the New Forest data set takes over 1.5 minutes of running time
(using 3768 testing samples for 8 classes without class statistics calculation). Multiplied with the
large number of combinations to test (see figure 2.2), the procedure becomes computationally

infeasible (using a 600 MHz Intel Pentium Il processor with 128 MB RAM).

A computationally cheaper alternative is to approximate the misclassification error by the overlap
between class distributions, which may be quantified with heuristic or probabilistic distance
measures. This method does not consider each testing image pixel, but only the data class
statistics. In this pilot study, supervised probabilistic distance measures for the multi-class case will
be investigated, that is the Bhattacharyya and Transformed Divergence distance measures sorted
by minimum and average class distance. The latter assume a normal class distribution and use first-
and second-order statistics {o separate between the classes. Therefore, they are more suited than

their heuristic counterparts as pre-processors for an MLC.

Nevertheless, using an exhaustive search method to examine all possible band subsets represents
still a computational problem. For the New Forest data set with 121 bands, the search through all
possible combinations of 6 bands would take over 22 days of processing with Multispec®©® (version
2.5 available from http://dynamo.ecn.purdue.edu/~biehl/MultiSpec) running on a 600 MHz Intel
Pentium Il processor with 128 MB RAM (see table 3.7).

Optimal and sub-optimal search algorithms (section 2.2.3) have been introduced to ease the

computational load and have been shown to be effective for high-dimensional data sets. In this pilot

study, the sub-optimal sequential forward selection (SFS) search procedure is used. The latter
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method first selects the best band out of all bands, and then uses this band in the search for the best
group of two bands. That is, for a data set of 121 bands, 121 possibilities exist for the search of one

best band, 121 plus 120 combinations exist for the best subset of two bands, etc.

Table 3.7: Number of possible subset combinations and time needed for computational
search for both exhaustive and sub-optimal feature selection algorithms (for Multispec®
software version 2.5 under Windows NT on a 600 MHz Intel Pentium Il processor, 128 MB

RAM).
Number of Number of Search time for | Number of Search time
selected combinations for | exhaustive FS combinations for | for sub-optimal
features exhaustive FS algorithm sub-optimal SFS SFS algorithm
algorithm algorithm

1 121 0.06 s 121 0.06 s

2 7,260 3.63s 241 0.12s

3 287,980 24m 360 0.18s

4 8,495,410 1.2h 478 0.24s

5 198,792,594 1.15d 595 0.30 s

6 3,843,323,484 22.2d 711 0.35s

In addition, the Projection Pursuit Feature Selection (PPFS) by Jimenez and Landgrebe (1999) (see
section 2.3.3), which uses the Bhattacharyya class distance measure, was explored with the data
sets. The processing of all feature selection techniques was performed with the Multispec©

Windows version 2.5 and Macintosh version 3.0 (the latter was used for PPFS).

Feature extraction

Feature extraction methods transform the original high-dimensional measurement space into a new
lower-dimensional feature space by optimising a certain criterion for the purpose of data
compression. In this thesis only linear transformations were considered, which include unsupervised
and supervised methods. Unsupervised methods, such as PCA or MNF, use a criterion that does
not consider class statistics (e.g. data variance or SNR). In contrast, supervised methods, such as

DAFE, DBFE and PP, use criteria that aim to discriminate between the classes under investigation.

in this pilot study, PCA, MNF, DAFE, DBFE and PP techniques were applied to the hyperspectral
data sets introduced earlier. PP was also used as a pre-processing algorithm for following feature
extraction with DAFE and DBFE. The performances of the feature extraction techniques were
evaluated with the overall classification accuracy measured with the leave-one-cut method, and

compared with each other.

The processing of all feature extraction techniques was performed with the Multispec©® Windows
version 2.5 and Macintosh version 3.0 (the latter was used for PP), except for MNF, which was run

with ENVI© version 3.5.
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Intrinsic dimensionality (ID) estimation

iD estimates depend entirely upon the criteria to be optimised in the feature extraction process. For
example, PCA maximises image variance, whereas MNF aims to optimise the image SNR.
Therefore, discrepancy in 1D estimates from different feature extraction methods is expected. The
validity of the estimates, however, relies on how the user defines information to be captured by the
features. For example, information in an unsupervised sense may be described by data variance,

while in a supervised sense by the potential to discriminate between the defined classes.

Two notions of dimensionality have been introduced in chapter 2: intrinsic dimensionality (ID),
defined as the minimum number of features required to represent most of the data variance, and
intrinsic discriminant dimensionality (IDD), described as the number of significantly reduced
dimensions that still result in satisfactory classification accuracy. The IDD measure may theoretically
not exceed M —1 if features are statistically independent, where M represents the number of

classes defined by the user (see section 2.4).

The results of the eigenanalysis-based unsupervised feature extraction methods PCA and MNF may
be used to approximate the ID of the data sets, as the minimum number of features for data
representation may be attained best via statistically independent features. In contrast, the
eigenvalues of the supervised feature exiraction methods DAFE and DBFE may be used to derive
|IDD estimates, as both methods transform the data info a minimum number of features that
discriminate best between the given classes. The ID and IDD estimates may coincide, but as the
best class-discriminating axes may not form an orthogonal basis, the IDD is expected to have a

larger value than the ID.

Heuristic methods such as the scree plot (Catell-Vogelmann), 95% proportion of the total variance,
Kaiser's criterion (1/ N , where N is the number of original dimensions) and the broken-stick

method were directly applied to the resultant eigenvalues of the above feature extraction methods.

In addition, the ID was evaluated by testing the significance of the difference in classification
performance between a feature subset and all the remaining subsets of higher dimensionality. The
classification accuracy was measured with the overall accuracy measure. To perform the
significance test, the asymptotic sample variance of accuracy measure was calculated via equation
2.43. The z-statistic was evaluated for each pair made up of the actual feature and one of the
remaining features. The rank of the feature achieving an absolute z-value below 1.96 with each one

of the remaining features approximates the ID.
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3.4 Results and Discussion

3.41 Mid Severn Estuary, UK

Training sites

The hyperspectral imagery of the River Severn Estuary demonstrates an expected high spatial and
spectral variability within the plant communities outlined by Dargie's 1998 vegetation map {Dargie,
1999). This suggests that the National Vegetation Classification (NVC) plant categories used by
Dargie to describe the make-up of individual communities are not appropriate for mapping with 3 m
airborne imagery. Individual plant species are heterogeneously distributed over the entire community
and it is impossible for the analyst to assign any particular pixel or region to any one of them. All
areas other than saltmarsh were masked out with the exception of some bare mud regions, as it also

appears throughout the marsh.

An unsupervised classification was performed with ISODATA under ENVI® version 3.5 to discover
the true number of spectral classes of the image data. After several attempts with different
parameters the algorithm found five major spectral classes roughly coinciding with the three broad
saltmarsh zones (pioneer marsh, mid marsh and high marsh, after Long and Mason, 1983) and
some bare rock and bare mud areas, which dominate parts of the scene. This class list was

considered exhaustive, since all other 'uninteresting’ class areas were masked out from the imagery.

In order to achieve a sufficiently high ratio of number of training pixels to number of bands (around

10 to 15), 600 to 900 training samples per class were necessary for 60 spectral bands to produce

reliable class statistics.

The samples were chosen to be truly representative of the corresponding class population and were
distributed across the entire scene. Class transitional areas were exempt from training sites. In order
to achieve a high number of training samples, a wide sample spacing was not applied. Due to the
inherent heterogeneity of the scene, the neighbouring training pixels were assumed to be

independent.

Table 3.8 lists the classes defined for the Severn Estuary area, together with the number of samples
and fields designed for each class. Class separability was tested and quantified with the divergence
measure (using ENVI®). All pairwise distances were sufficiently large to separate between the

defined classes (value greater than 2.0).
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Table 3.8: Informational classes, their number of samples and fields defined for the River
Severn study area.

CLASSES NAMES | ABBREVIATION | NUMBER OF SAMPLES | NUMBER OF FIELDS
Bare Mud BM 2567 17
Bare Rock BR 1027 102
High Marsh HM 1011 8
Mid Marsh MM 1149 7
Pioneer Marsh PM 2124 7

To ensure that the Gaussian model was appropriate as underlying statistical model for each class
population, frequency histograms were created for four representative channels (21, 33, 45 and 57)
and overlaid with their corresponding Gaussian curve. In addition, skewness or kurtosis values were
calculated to quantify any deviations of the population from the normal curve.r Table B.1 in the
appendix shows that the Gaussian curve was found to be representative for all classes. A perfect fit
of the normal curve to the data is not expected and very unlikely to occur for all bands. Deviations
generally happened in form of very peaked or skewed distributions. A severe bimodal frequency
distribution was not observed. Figure B.1 and B.2 in the appendix display the corresponding
skewness and kurtosis values, respectively. It may be observed that the fit of the normal curve to the

class population data varies between bands chosen.
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Figure 3.12: Mean spectral radiance curves of the class training areas defined over the River
Severn data set. The mean curve is plotted with + 1 standard deviation as grey error bar.
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Figure 3.12 displays the class mean radiance vaiues for the selected training areas along with the
corresponding standard deviation plotted as grey vertical error bar. The mean spectral curves may
be used to differentiate between the classes. Although the Mid and Pioneer Marsh curves are nearly
identical in the VIS, as are the High Marsh and Bare Rock mean curves in the NIR, good separability
between the mean values exists in the NIR and VIS, respectively. The standard deviation values are
high as expected, due to the large spatial and spectral variability within each category. The Bare
Rock class mean is very similar to the High Marsh curve in the NIR, as the Bare Rock class
represents a spectral mixture of rock and vegetation classes. Pure Bare Rock samples in sufficient

" numbers were impossible to locate due to the large sensor GIFOV and the heterogeneity of the
surface. The strong downward peak in band 48 (761.4 - 770.2 nm) represents the oxygen absorption

feature at 762 nm, confirming the adequacy of the spectral calibration of the CASI sensor.

Feature selection

Figures 3.13 to 3.16 display the nine best feature sets selected with the SFS search method using
the minimum and average Bhattacharyya Distance, the minimum and average Transformed
Divergence. Since the SFS selects bands sequentially in a bottom-up manner, a feature set always
includes all feature sets of smaller dimensionality. For this reason, only the band numbers and their
frequency of appearance in the 9 sets are shown in figures 3.13 to 3.16. The band with the highest
frequency appears in all 9 band sets. The band number is displayed next to the frequency column. A
clover leaf spectrum is overlaid as wavelength reference. Wavelengths not available for feature

selection are indicated by grey horizontal bars along the wavelength axis.

In contrast, PPFS does not select bands sequentially, but divides the available wavelength range
into @ number of sectors, which total the number of features to be selected. The band maximising
the Bhattacharyya distance in each sector is part of the final band set. Therefore, the band sets are
not necessarily nested, and figure 3.17 presents the wavelength locations of each band for each

feature set. The exact band numbers for PPFS can be obtained from table B.2 in the appendix.

All feature selection methods applied showed similar results in terms of how often a certain
wavelength region was selected. Practically no bands were chosen from the blue wavelength range
which is partly due to the fact that most of these bands were excluded from processing due to
insufficient SNR characteristics. Green wavelengths are equally under-represented. The majority of
selected bands stem from the red, the red edge and NIR wavelengths, where the red and red-edge
bands are related to chlorophyll content and the red-edge and NIR bands to canopy structure. As
the defined salt-marsh vegetation classes may be distinguished from each other and from Bare
Rock and Mud classes mainly by their canopy structure and chlorophyll content, the feature
selection result was believed to be sensible. Nesting of bands occurred with all methods, suggesting

that the intrinsic discriminant dimensionality for the River Severn data set is less than 9.
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Surprisingly, the differences between band sets derived from the multi-class forms (minimum or
average) of a distance measure seem to be larger than the ones derived from different distance
measures (Bhattacharyya or Transformed Divergence) with the same multi-class form. This

indicates that some thought may be given to the general class separability status of the data set

when deciding the subset ordering.

The individual performances of the different feature selection algorithms on the ML.C were evaluated
with the overall MLC accuracy of their chosen band sets, which is plotted against the subset
dimension in figure 3.18. In summary, all of the feature selection approaches performed well on the
data set, with the average Bhattacharyya distance being distinctively less accurate than the rest of
the methods for subsets of dimensionality smaller than six. The Projection Pursuit feature selection,
which also uses the Bhattacharyya distance, may be considered as the second worst method,
deviating from the average accuracy level for subsets with more than 3 bands. These differences
may be explained by the unsaturated nature of the Bhattacharyya distance when compared to the
saturated and therefore superior Transformed Divergence measure. The accuracies from different
algorithms can be shown to be significantly different (5% level) from each other for the same
dimension, with the exception of statistically insignificant differences in accuracy between the
minimum Bhattacharyya and minimum Transformed Divergence methods for the first four

dimensions.

The general level of optimality of the selected feature sets was compromised for computational
feasibility by choosing sub-optimal search algorithms (SFS, PPFS) and class distance measures.
Sub-optimal search strategies only yield optimal results when applied to statistically independent
features. In addition, an incorrect Gaussian model assumption for the class statistics of some of the

bands may have distorted their potential for class discrimination.

Feature extraction

Figures 3.19 to 3.21 present the scree plots resulting from the PCA, MNF, DAFE, PPDA (PP pre-
processing and DAFE combined), DBFE and PPDB (PP pre-processing and DBFE combined).

The image noise covariance matrix of the River Severn CAS| imagery was needed as input for the
MNF, and since no dark data were available, it was estimated with the ‘shift difference’ technique
(ENVI® version 3.5) from a selected image area. The latter method computes for each pixel the
differences to its right and above neighbour, and assigns the average of both differences to the
pixel. For the average difference value to represent image noise and not scene variability, the image

pixels shouid be chosen from a relatively homogenous area. An area of intertidal mud was selected

here for this purpose.
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The PCA and MNF percentage eigenvalues are displayed in figure 3.19, and it may be evidenced
that the PCA clearly outperforms the MNF with respect to generating highly informative features.
Although the MNF may be applicable to the River Severn data due to the existence of unequal noise
variances in the bands of the data set, the estimation of the noise covariance matrix was realised
from image data rather than from dark data. The author believes that the poor MNF performance
may be primarily attributed to an incorrectly estimated noise covariance matrix, even though great

care was taken in the selection of a homogeneous area for evaluation.
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The percentage eigenvalues generated by DAFE and PPDA are very similar (see figure 3.20),
suggesting that the Projection Pursuit pre-processing did not substantially contribute to the creation
of highly informative DAFE features. In contrast, the DBFE and PPDB scree plots in figure 3.21
clearly demonstrate the improvement of the DBFE method with a prior Projection Pursuit pre-
processing stage. DBFE features are created directly from class samples and a large number of
samples are needed for a good performance of the algorithm. However, this number decreases for

feature spaces that have already been transformed into a class-discriminatory space, for example

with Projection Pursuit.

The performances of the feature extraction techniques were evaluated with the overall classification
accuracy measured by the leave-one-out method, and are presented in figure 3.22. DAFE produced
the most class-discriminatory features as evidenced by its significantly superior classification
accuracy. The Projection Pursuit pre-processing for DAFE reduced the classification ability of its
features only slightly. PP and DBFE features performed well, but were both outperformed by PPDB
features, which favours the general use of PP pre-processing for DBFE. The PCA features were
inferior to the ones created by most supervised methods, but the first four features produced by
MNF noticeably achieved the worst classification result. The latter undoubtedly suggests that class-

discriminatory information was not distributed along the orthogonal axes of maximum data variance.

Intrinsic dimensionality estimation

The unsupervised PCA and MNF were used to approximate the non-discriminant dimensionality,
while the supervised methods DAFE, PPDA, DBFE, PPDB were chosen to determine the number of

significantly discriminant features, which, in theory, cannot exceed 4 for the defined class set.

Figures 3.23 to 3.25 display the resulis of three heuristic ID estimation methods: 95% proportion of
the total variance, Kaiser's criterion (1/N, here 1/60) and the broken-stick method. The Catell-
Vogelmann estimate was read directly from the scree plots in figures 3.19 to 3.21. Tables B.3to B.8
in the appendix list the results of the z-stafistic for each feature extraction method. The latter was
used té test the significance of the difference in overall classification accuracy between a feature

and each one of the remaining features of lower rank.

All ID estimates are summarised in figure 3.26. Generally, for the unsupervised methods, the
heuristic methods gave lower ID estimates (1 to 6) than for the supervised methods (3 to 8). This
may suggest that the first few features of the PCA and MNF do not contain all class discriminative
information. This is further evidenced by the relatively high ID vaiue for the PCA and MNF derived
from the statistical test of the classification result: nine PCA features and 8 MNF features were found
to hold significant information for class discrimination. Two of the MNF based ID estimates are

relatively high (6 from Kaiser, 53 from 95% total variance), implying that the MNF did not perform
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well with the noise covariance estimate used. Theoretically, the IDD has a maximum value of 4, and

DAFE and PPDA reflect this value by consistently producing exactly the same number of features.
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Their ID estimates range from 3 to 4. In contrast, the DBFE based methods exceed this theoretical

limit in all cases (ID values from 5 to 8). This may reflect the inadequacy of the DBFE technique for
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ID estimation when only a limited amount of training samples is available. Using the PP in a pre-

processing stage shifted the ID estimates down by only one (ID values from 4 to 7).

As described in section 2.4.3, no ideal technique for ID estimation exists and the reader is referred
to section 2.4.1 and 2.4.2 for a discussion of the deficiencies of individual methods. As a
consequence, no single best [D and IDD estimate will be provided as final result, instead ID and IDD
ranges. The ID may take values between 1 and 3 inclusive for the River Severn data, while its
discriminant counterpart may fall between 3 and 4 for the class statistics defined on the River
Severn data. MNF, DBFE and PPDB results were ignored for the final ranges as the author believed

them to be not suitable for ID/IDD estimation for this data set.

3.4.2 New Forest, Hampshire, UK
Training sites

The New Forest study area consists of heterogeneous heathland areas, where individual plant
species mix consistently at a scale of centimetres to metres. Using 3 m airborne imagery to classify
different species the assignment of a pixel to a particular species is almost impossible, as it is to find
pure fraining pixels on the ground. For this reason, vegetation classes were defined according to
Clarke and Westerhoff's vegetation map of the area (Westerhoff, 1992)(see section 3.2.2), here

used as jn situ map.

To guide training site selection, the spectral classes of the data set were identified with the
ISODATA clustering algorithm implemented under ENVI® version 3.5. The spectral classes matched
surprisingly well some of the Clarke and Westerhoff's class categories. In one case, two spectral
classes were merged to create an informational class. However, other categories were
underrepresented in the scene and were omitted from the class table. To achieve a sufficiently high
ratio of number of training pixels to number of bands (around 5 to 10; Webb, 1999), 585 to 1170

pure fraining samples per class had to be available to generate representative class statistics.

Altogether, eight categories were chosen as the dominant land cover classes for the study area:
Grassland, Asphalt, Lake, Bracken, Dry Heath, Humid Heath, Wet Heath and Valley Mire. The
enclosed woodland area was masked out manually, as it was not of interest in the mapping of semi-
natural vegetation and was found to be spectrally similar to heathland shrubs in an unsupervised
classification. Training samples were carefully selected on the basis of both the imagery and the
unsupervised classification result, avoiding boundary pixels and using no sample spacing. Table 3.9
presents the classes defined for the New Forest area, together with the number of samples and
fields designed for each class. All class pairs gave an ENVI© separability index value of 2.0,

indicating that the defined classes are pairwise highly separable.
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Table 3.9: Informational classes, their number of samples and fields defined for the New
Forest study area.

CLASSES NAMES | ABBREVIATION | NUMBER OF SAMPLES | NUMBER OF FIELDS
Grassland G 1315 6
Asphalt A 641 19
Lake L 816 3
Bracken B 989 8
Valley Mire VM 1391 12
Dry Heath DH 667 16
Humid Heath HH 2484 10
Wet Heath WH 1098 10

Table B.9 in the appendix displays the frequency histograms of each class population for four bands
representative of the visible (band 10), near infrared (band 40) and short-wave infrared (bands 80
and 100). All class distributions were generally well represented by the superimposed normal curve,
suggesting that the Gaussian model was appropriate as underlying statistical model. No critical
bimodal frequency distributions were observed, and some deviations from the normal curve
occurred for some bands in skewed or very peaked distributions, for example for the Asphalt and

Lake class (see also the skewness and kurtosis values in figures B.3 and B.4, respectively, in the

appendix).
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Figure 3.27: Mean spectral radiance curves of the class training areas defined over the New
Forest data set. The mean curve is plotted with + 1 standard deviation as grey error bar.
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Figure 3.27 shows the class mean reflectance spectrum with grey error bars of one standard
deviation. In general, the figure suggests a high spectral separation between all classes, due to well
spaced mean spectra and relatively small standard deviations, especially in the near infrared and
short wave infrared regions. No data were available for the spectral regions between the HYMAP

detectors, indicated by missing error bars in figure 3.27.

Feature selection

Figures 3.28 to 3.31 display the frequencies of appearance of a feature in best 9 band sets selected
with the SFS search method using the minimum and average Bhattacharyya Distance, and the
minimum and average Transformed Divergence. The frequency of appearance may be interpreted
as the band's importance with respect to discrimination ability between the given classes. The
wavelength locations of the bands from the best nine PPFS subsets are plotted in figure 3.32 (for the
exact band numbers see table B.10 in the appendix). For figures 3.28 to 3.32, wavelengths not

available for feature selection are indicated by grey horizontal bars along the wavelength axis.

Although different multi-class forms and criteria produced different results in all cases, bands from all
wavelength regions (VIS, NIR, SWIR), with exception of the blue region, were selected by each one
of the individual feature selection methods. The resulting features seem to sample the entire spectral
region fairly uniformly, with a higher sample density in the NIR wavelength region. The most frequent
bands came to fall consistently into either the NIR or SWIR, especially near water vapour absorption
features, and are sensitive to canopy structure and moisture content. This is consistent with the fact

that most of the defined heathland vegetation classes differ more in their structure and water content

than in their chlorophyil content.

Figure 3.33 shows the overall MLC accuracy of the nine best feature sets selected with the five
methods (SFS with minimum/average Bhattacharyya Distance/Transformed Divergence, PPFS). To
sum up, all feature selection approaches performed well on the data set, with the Transformed
Divergence measures being superior to all other criteria. The average Bhattacharyya distance
method produced the worst feature subset. The Projection Pursuit and the minimum Bhattacharyya
feature selection gave the second worst single feature. As with the River Severn data sef, the worse
performance of the Bhattacharyya-based methods may be explained by the unsaturated nature of
the distance measure. For the same dimension, accuracies from different algorithms were found to
be significantly different (5% level) from each other, except when they were equal, e.g. for the four

last dimensions for the average Bhattacharyya and average Transformed Divergence methods.

Feature extraction

Figures 3.34 to 3.36 present the eigenvalue plots of the following transformations: PCA, MNF,
DAFE, PPDA (PP pre-processing and DAFE combined), DBFE and PPDB (PP pre-processing and
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DBFE combined). The image noise covariance matrix of the New Forest HyMAP imagery was

directly estimated from dark image data. The latter was used for the MNF transformation. The PCA

and MNF percentage eigenvalues are displayed in figure 3.34. Both methods perform with simitar

high efficiency. Projection Pursuit pre-processing for DAFE increased the effectiveness of the

features with respect to data representation (figure 3.35), while it seemed to substantially damage

the ability of the DBFE to create highly informative features (figure 3.36).
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The overall MLC accuracy levels of the subsets created by the above feature extraction techniques
were evaluated and are presented in figure 3.37. Surprisingly, PCA and MNF produced the most
class-discriminatory features as evidenced by their superior classification accuracies. This suggests
that class-discriminatory information was distributed along the axes of maximum data variance for
the New Forest data set. Projection Pursuit feature extraction follows suit at third place, giving a
nearly constant and high accuracy level for nine out of ten of its feature subsets. DBFE features
perform worst, but their accuracy is improved with PP pre-processing. PP pre-processing for DAFE
increases the accuracy of its first two features, but worsens the performance of its larger subsets.
This result implies that PP pre-processing is beneficial for creating class-discriminatory DBFE

features, but should be avoided when creating DAFE features for MLC.

For the first four dimensions, most FE methods produce feature sets that are significantly different in
accuracy from each other. An exception to this are the PCA and MNF methods, which give features
sets that, from the third dimension onwards, are statistically insignificant from each other in terms of
MLC accuracy. From the fifth dimension onwards, most methods produce feature sets that do not

significantly differ in the accuracy levels they achieve.
Intrinsic dimensionality estimation

The results of the PCA and MNF eigenanalysis were used to estimate the non-discriminant
dimensionality, while those of the DAFE, PPDA, DBFE, PPDB methods were chosen to determine

the number of significantly class-discriminant features, which, theoretically, cannot exceed 7 for the

defined class set.

Figures 3.38 to 3.40 present the results of the 95% proportion of the total variance, Kaiser's criterion
(1/N, here 1/117) and the broken-stick method. The Catell-Vogeimann estimate was determined
directly from the scree plots in figures 3.34 to 3.36. Tables B.11 to B.16 in the appendix list the z-
statistic for each feature extraction method, which was used to test the significance of the difference

in overall classification accuracy between a feature and each one of the remaining features of lower

rank.

All ID estimates are summarised in figure 3.41. Generally, the heuristic methods resulted in a
relatively low ID (1 to 2) of the unsupervised methods and higher IDD estimate (3 to 7) of the
supervised methods. The statistical IDD estimate for the PCA was two, suggesting that the first two
PCA features contained all class discriminative information and that the spectral classes could be
separated along the axes of maximum data variance. The heuristic and statistical IDD estimates of
the DAFE methods give a minimum of three (PPDA, 95% total variance or broken-stick), while those
of the DBFE methods reach as low as four (DBFE, broken-stick). With the classification accuracy of
the PCA features being superior to the ones of all supervised features, the ID and IDD were

estimated to be 1 and 2, respectively.
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This result may reflect the necessity to judge the extracted features used for IDD estimation
according their classification performance. For certain data sets, some supervised feature extraction
methods may spread out the class-discriminatory information onto many features instead of a few,

distorting the resulting IDD estimate.
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3.5 Summary

In this pilot study, some of the dimensionality reduction methods presented in chapter 2 were
compared with respect to their classification performance and their ability to produce features that
bear most class-discriminatory information. The two study areas of the thesis, the River Severn
Estuary and the New Forest, both UK, were introduced in detail, as well as their available airborne
and in situ data sets. General guidelines for class definition were described. Class training was

performed using the result of ISODATA clustering and the vegetation map of the study areas.

Feature selection (FS) with the minimum and average multi-class forms of the Bhattacharyya and
Transformed Divergence distance measures was performed to select the best spectral bands for
class discrimination. The sub-optimal sequential forward selection search procedure was employed
to make the selection process computationally feasible. In addition, the Projection Pursuit Feature

Selection (PPFS) was applied, which uses the Bhattacharyya class distance measure.

The results of the FS methods were compared in terms of overall classification accuracy derived
from the feature subsets and estimated with the leave-one-out cross-validation method. For both
study areas all feature selection methods performed well, with the bands selected by Transformed
Divergence distance measure achieving significantly higher accuracy than the ones chosen with the
Bhattacharyya-based methods (including PPFS). The unsaturated nature of the Bhattacharyya
distance measure, i.e. its misrepresentation of the classification accuracy, may explain this result.
Also for both study areas, bands in all wavelength ranges except in the ‘blue’ were equally important

for discriminating between the classes.

The classification performance of the unsupervised feature extraction techniques, Principal
Components Analysis (PCA) and Minimum Noise Fraction (MNF), and that of the supervised
methods, Discriminant Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction
(DBFE) and Projection Pursuit (PP) was estimated for the data sets of both study areas.

Additionally, a PP pre-processing stage was evaluated for both DAFE and DBFE, referred to as
PPDA and PPDB, respectively.

For both data sets, DAFE features were consistently superior to the ones generated from the
supervised PPDA, DBFE and PPDB method. Although pre-processing with PP improved the MLC
performance of the DBFE features in both cases, it had a harmful effect on the one of the DAFE
features. The generally worse accuracy of the DBFE features may be due to the fact, that not
sufficient training samples were available for a good performance of the algorithm. However, the
necessary sample number decreases for feature spaces that have already been transformed into a

class-discriminatory space with Projection Pursuit, allowing for a higher DBFE feature performance.
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PP features represented well the class-discriminant structure of the River Severn data set (60
bands), and outperformed all other supervised feature sets for the New Forest data set (117 bands).
In the latter case, PP’s success may be explained by the fact that PP does not perform the
parameter estimation at full dimensionality, but at a linearly projected lower dimensional subspace,
where the assumption of the Gaussian normal distribution is more justified. It may be possible that
the training samples were not sufficient o adequately define the parameters of the assumed

Gaussian class distribution for the 117 bands of the New Forest data set.

The unsupervised PCA and MNF produced highly class-discriminatory features for the New Forest
data, but not so for the River Severn data set. This suggests that, only for the New Forest data set,
class-discriminatory information was distributed along the axes of maximum data variance. The
inferior performance of the MNF for the River Severn data set was attributed to a poor estimation of

the noise covariance matrix from image data (rather than dark data as for the New Forest data set).

The results of the PCA and MNF eigenanalysis were used to estimate the infrinsic dimensionality
(ID), the minimum number of features to represent the data variance. Those of the DAFE, PPDA,
DBFE, PPDB methods were chosen to determine the intrinsic discriminant dimensionality (IDD), i.e.
the minimum number of significant class-discriminating features. Heuristic and statistical
dimensionality estimation methods were applied, including the 95% proportion of the total variance,

Kaiser's criterion (1/N), Catell-Vogelmann, broken-stick and MLC accuracy hypothesis testing.

Generally, the PCA was preferred to the MNF as basis for estimating the 1D, since, by definition, the
data variance, and not the image SNR, was defined as the information to be represented by the ID
features. The resulting ID estimated with the above methods for the New Forest data setf ranged
between one and two, and between one and three for the River Severn data set. Exceptionally, the
PCA could also be used for determining the IDD of the New Forest data set, as its features
performed superior to all those derived from the supervised methods. The IDD for this data set was
evaluated as two. DAFE achieved the highest MLC accuracy on the River Severn data set and
estimated its IDD to fall between three and four. These relatively low ID and IDD results for both
data sets are in accordance of the findings of other authors (e.g. Milton, 1999, Curran et al., 1998),
that the intrinsic dimensionality is of low order for imaging spectrometer data of vegetated scenes in

the Visible and Near Infrared (VNIR).

In short, the results of this pilot study showed that
1) the Transformed Divergence performed superior to the Bhattacharyya distance as surrogate

measure for the MLC accuracy,

2) various feature selection and extraction methods resulted in different feature subsets that all
gave sufficiently high classification accuracy, and

3) various heuristic and statistical IDD estimation methods gave a range of solutions, rather than a

single common estimate.
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From the experience with the given two data sets, the author recommends to principally base the
DD estimation on DAFE, but to check whether principal components achieve higher classification
accuracy with less features than DAFE, as class-discrimination may be possible along the axis of

maximum variance.

The second point from the above list implies that a multitude of acceptable feature subsets are
possible for a given class- and data set. At this point it is important to recognise that the feature
subsets of the above dimensionality reduction methods cannot be generalised (Dutra and Huber,
1999) and that they are specific to

= the feature selection or extraction algorithm employed,

= the data set,

= the class definition and training performed by the user,

= the data or class model assumptions, and

= the final data application.

That is, no universal best feature or band set exists, questioning the pre-defined or ‘established’
band sets of some of the imaging spectrometers introduced in chapter 1. The remainder of this study
investigated whether the ‘established’ band sets could be used for vegetation mapping in semi-
natural environments and whether hyperspectral data was indeed necessary to achieve high

accuracy for the same classification task.

Band selection algorithms were developed in the following two chapters as a tool for answering the
above guestions. The algorithm extends the capability of feature selection algorithms presented
above by considering bandwidih and SNR issues, and allows the creation of optimal band sets for a

given data set and application task.
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4 Supervised Band Selection for Classification

4.1 Introduction

Although high specitral resolution sensor capability is desirable as it allows the exploitation of
characteristic narrow absorption or emission features of target classes of interest, imaging
spectrometer data are often redundant and have a large volume that is difficult to store and process
efficiently. In addition, a lack of sufficient fraining samples for high dimensional data will result in
poor classification results (Hughes, 1968). Therefore, dimensionality reduction techniques (see

chapters 2 and 3) are commonly applied at processing level after data acquisition.

However, hyperspectral capability also creates problems at sensor level. The huge data volume to
record, store and transmit often forces the sensor designers and operators to make compromises.
High spectral resolution capabilities result in a reduced SNR, which is often compensated by coarser
spatial resolution, which may not be in the interest of the user. As for the CASI-2, a trade-off exists
between maximal swath width and high spectral resolution due to data recording rate limits of the

removable hard drive subsystem (see chapter 1).

Regarding these drawbacks of hyperspectral data collection, one might ask whether the full band set
needs to be acquired in order to achieve a highly accurate classification result, and whether such
fine spectral resolution generally leads to an improved classification performance. In short, what
bands and bandwidth can be chosen for data acquisition without losing the full class-discriminating

power of the hyperspectral band set?

The latter question has already become reality for sensor system designers and users of imaging
spectrometers with data recording limits such as the CASI-2. In the |atter case, if the data users
decide to acquire a full-swath image in the CASI-2's spatial mode, they can choose up to 19 out of
288 non-overlapping bands of arbitrary width (see chapter 1). Some users select ‘established’ band
sets recommended by the instrument operators and the literature, or simulate common satellite
sensor bands. However, these ‘default’ band sets may not be optimal for a specific classification

task at hand involving particular scene data acquired at a certain point in time.

This chapter focuses on band selection for imaging spectrometers with Maximum Likelihood
classification as final data application. A new feature selection based method is presented for
supervised band selection, which uses both class means and variances to discriminate between
user-specified classes and introduces the bandwidth as a variable into the band selection process.
The method provides a set of most class-discriminating bands of different widths for a specific data

scene and class definition. The new band selection technique is applied to the CASI and HyMAP



data sets introduced in chapter 3 and results are evaluated and discussed. In chapter 6, a new data

set is introduced in as a further test of this new algorithm.

Although an extensive feature selection review is presented in chapter 2, the author believed it was
necessary to introduce, in an additional review, what factors needed to be accounted for when
selecting bands for a sensor as opposed to features for a processing algorithm. The review also
describes some other independently developed band selection methods and points out the

shortcomings of these approaches.

4.2 Band Selection Review

In general, sensor band selection for remote sensing of target reflectance should take the following

factors into account:

1) target reflectance properties,

2) solar spectrum, atmospheric absorption and scattering,

3) sensor characteristics (e.g. spatial and spectral resolution, point-spread function PSF,
wavelength range, instrumental noise, SNR), and

4) data application (e.g. for classification, regression model).

421 Target Reflectance Properties

Usually, the data users have some knowledge about the target classes under investigation. As a first
step they may examine their physical reflectance properties and search for specific spectral features
(e.g. absorption features or reflectance peaks) unigue to each target class. Absorption features in
particular may be used to distinguish between different surface types and conditions, as they may
evidence the presence or lack of certain primary chemical components unique to a specific surface
type or condition. For example, the absorption features of vegetation include those of
photosynthetically active leaf pigments such as chlorophyll, bound and unbound water, cellulose,
lignin, starch and proteins (see for example Kumar et al., 2001). In addition to absorption features,

structural properties of the canopy, such as leaf thickness and number of stacked leaves, influence

the spectral properties of vegetation.
Sensor bands and bandwidths may then be chosen according to individual spectral features of the
target classes in order to extract target-specific information from the band measurements (Thomson

et al., 1998a). A typical set of spectral bands to sample a vegetation spectrum includes:

= a blue band centred on the absorption peak of chlorophyll at around 443 nm,
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= agreen band centred on the vegetation reflectance peak (chlorophyll absorption minimum) at
around 555 nm, '

= ared band centred on the absorption peak of chlorophyll at around 665 nm,

= a NIR band corresponding to a region of maximum vegetation reflectance between 750 and
1350 nm, typically centred at 865 nm and primarily related to the structural property of the
canopy and the percentage of soil covered by vegetation,

= a SWIR band centred at around 1650 nm, where reflectance is related to water content of the

canopy components and to its structure.
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Figure 4.1: The six VNIR channels of Landsat ETM+ overlaid over
a clover leaf spectrum.

Most of these bands are included in the band sets of satellite sensors designed for vegetation
mapping, such as low to medium spatial resolution multispectral sensors (e.g. Landsat TM/ ETM+
see figure 4.1, AATSR, ALI, ASTER, AVNIR), high spectral resolution sensors (e.g. MISR, MERIS,
MODIS) and commercial high spatial resolution sensors (e.g. IKONOS, SPOT HRVIR, Orbview-3,
Quickbird). The reader is referred to tables 1.1 and 1.2 for a list of airborne and spaceborne VNIR
sensors, respectively, which have been in operation since 2002. The tables inciude Internet

hyperlinks to most of the instruments and their calibration.

Price (1990, 1994a, 1997, 1998) showed another way of selecting bands to represent target spectra.
He calculated spectral basis functions to approximate successively the narrow-band target spectra
and selected few broad-band spectral intervals to determine the coefficients of these basis functions.
However, the chosen bands have no physical significance and the validity of the basis functions is
restricted to spectra that can be represented by the original target spectra the basis functions were
derived from. In addition, the data dimensionality is reduced only at sensor level, not at processing
level and the method is conceptually complex and difficult to implement. For these reasons, Price’s

method is not pursued any further in this study.
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Some common target reflectance curves (such as water, leaf or mineral spectra) can be found in the
literature. Hunt (1977, 1979) and Hunt and Ashley (1979) described spectral curves of minerals and
rocks for the VNIR wavelength range (see also Hutsinpiller, 1988). A compiled list of absorption
features of vegetation compounds can be found in Kumar et al. (2001). Curran (1994) presented a
list of wavelength regions of interest for different fields of imaging spectrometer data applications,

including geological, agquatic, ecological, and atmospheric studies.

If the target spectra are unknown to the user, or the targets represent complex mixtures of different
elements, the user may acquire spectral data of the target classes from laboratory or field
measurements or from training sets of known ground surface in imaging spectrometer data. For
example; Dekker et al. (1992) reconstructed the spectral signature of specific lakes using field

spectral measurements.

The target spectra may be searched for class-characteristic absorption features simply via visual
inspection or by using techniques developed to detect them. For this task it is advisable to transform
the spectral measurements to reflectance, and therefore remove solar irradiance and atmospheric

effects, in order not to distort or hide class absorption features.
Absorption Feature Enhancement

Absorption features of a target spectrum may be enhanced by calibrating radiance data to

reflectance. Reflectance calibration is performed by removing the effects of both the atmosphere
and the solar curve. For ground or laboratory spectral measurements a preferably simultaneous
irradiance measurement at target location is needed, while for aircraft-based measurements, the

atmosphere between the target and the sensor has also to be accounted for.

A widely accepted method for reflectance calibration is to measure atmospheric conditions during
the flight overpass with specialised on-site sensors and then use a detailed atmospheric radiative
transfer model (RTM) to convert at-sensor radiance to surface reflectance. Examples of RTMs are
=  LOWTRAN 7 {Low Resolution Atmospheric Radiance and Transmittance; Kneizys et al.,
1989),
= 65 (Second Simulation of the Satellite Signal in the Solar Spectrum; Vermote ef al., 1997),
= MODTRAN 3 (The Moderate Resolution Atmospheric Radiance and Transmittance Model;
Anderson et al., 1995),
= ACORN - Atmospheric CORrection Now (Analytical Imaging and Geophysics LLC, 2003).

Though accurate, such models require a well-calibrated sensor and in situ measurements or
assumed values of atmospheric variables (such as water vapour or aerosol content) at the time of
data acquisition, which may be difficult to obtain. Consequently, some RTMs have been simplified to

minimise the number of atmospheric inputs. Teillet and Fedosejevs (1995) proposed an approach in
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which aerosol optical depth was derived from the RTM using a dark target in the image itself, while
Gao and Goetz (1990) retrieved water vapour amounts from water vapour image bands (ATREM,

ATmosphere REMoval program; Gao et al., 1992).

Other reflectance calibration methods have been created to avoid atmospheric in sifu measurements
altogether. Some authors proposed that an empirical linear relationship between at-sensor radiance
(or DN) and reflectance based on within-image targets of known reflectance could be used for
reflectance calibration (‘Empirical Line’, EL, method; Raoberts ef al., 1985; Smith and Milton, 1999).
The method relies on field or laboratory reflectance data of at least two spatially and spectrally
uniform calibration targets, preferably one dark and one bright target, for which both image radiance
and ground reflectance data are available. Spectral Mixture Modelling may also be employed for
reflectance calibration using a reference spectral library (Farrand et al., 1994). Clark ef al. (1993,
1995) introduced a hybrid approach that first applies an RTM to correct for path radiance and solar
spectral response, and then eliminates residual artefacts with the empirical iine method using in situ
measurements of one or more calibration targets. The U.S. Geological Survey has termed the latter

method ‘radiative-transfer-ground-calibration’ (RTGC).

Other methods that do not require any in situ measurements at all include:

- ‘Internal average relative reflectance’ (IARR) method (Kruse, 1988),
Flat-Field correction method (Roberts ef al., 1986; Hutsinpiller, 1988),
Residual method (Marsh and McKeon, 1983; Green and Craig, 1985), and

Dark-object subtraction.

The IARR is the ratio between the pixel spectrum and average spectrum of all scene pixels. Usually,
the data are normalised by scaling the sum of the DN values in each pixel to a constant value

(‘equal-area’ or ‘equal-energy’ normalisation).

The ‘Flat Field’ method depends on the existence of large spectrally flat and uniform areas in the
image, the average radiance spectrum of which is divided into each pixel spectrum to calculate
apparent reflectance. The method assumes that solar and atmospheric effects aione cause the
shape and features of this average spectrum. If the latter assumption does not hold, target features

will show up less intense in the residual spectral plot (‘feature fading’).

Marsh and McKeon (1983) created residuals by subtracting the average spectrum for the entire
scene from individual pixel spectra. The residual method assumes that the average scene signal
contains irradiance and atmospheric absorption features, but no target spectral features. Before
creating residuals, all pixel spectra are scaled to a constant value in a reference channel relatively
free of target absorption features to account for illumination variations between radiance spectra.
Green and Craig (1985) calculated logarithmic residuals for specific pixel-channel combinations by

dividing raw data values by their geometric mean over all bands and their geometric mean over all
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pixels. The logarithm is applied to replace the geometric means by arithmetic ones. Hutsinpiller
(1988) advised to use the flat-field log residual technique, using average values from specirally flat

scene segments, when absorption feature fading occurs.

Comparisons between some of these reflectance calibration methods were performed by Roberts ef
al. (1986), Conel et al. (1987), Crowley (1990), Farrand ef al. (1994), Dwyer et al. (1995), Ferrier
(1995), Ben-Dor and Levin (2000) and Perry et al. (2000). Generally, the RTMs performed most
accurately, closely followed by the empirical line method, which produces usually more accurate
reflectance results than the other normalisation procedures that use no additional information. The
U.S. Geological Survey found that the hybrid RTGC method gave the best results as it corrects for
the artefacts introduced by imperfect RTMs (Clark et al., 2002).

Apart from reflectance calibration methods, techniques have been developed especially to enhance
absorption features. Clark and Roush (1984) suggested calculating a continuum over each pixel
spectrum by fitting a second-order polynomial as upper convex hull to selected channels without
known absorption features. Dividing each pixel spectrum by its corresponding continuum spectrum

may then reveal all absorption features, including atmospheric ones (‘continuum correction’ or ‘hull-

quotient’).

Crowley et al. (1989) proposed the calculation of ‘Relative Absorption Band-Depth’ (RBD) images to
discern particular diagnostic absorption features known to occur for a specific scene. The method
does not require the data to be calibrated to reflectance (only to radiance) nor to be normalised.
Several pre-defined channels near an absorption feature shoulder are summed and then divided by
the sum of several pre-selected channels near the feature minimum. RBD corresponds to a local
continuum correction reducing any radiance variations related to topographic slope and albedo
differences. Nevertheless, the choice of channels used to define an absorption band is crucial for the

success of the method, and indicative scene absorption features have to be known in advance.

If absorption features of particular target materials are known to exist in certain wavelength regions
of the spectrum, Curran et al. (1998) suggested the use of PCA within those regions for the
enhancement of very narrow absorption bands. The absorption bands discriminate best between the
target materials and background and account for the greatest amount of variance in these regions
(Feldman and Taranik, 1988; Hutsinpiller, 1988), which is reflected in high eigenvector loadings of

the first PC feature(s) (see also section 2.3.5).
Absorption Feature Detection

All absorption feature detection methods presented in the following paragraphs require reflectance

data as input, or at least data normalised with respect to illumination or topographic effects.
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1) Waveform analysis

Marsh and McKeon (1983) performed a waveform analysis outlined by Collins et al. (1981), which is
based on a best fit of Chebyshev polynomials to the spectral curve. Absorption features are reflected
in the variations of the polynomial coefficients. The authors plotted the ratios of two coefficients

against wavelength to discriminate between different target materials.

2) Absorption feature depth

Another way to discover absorption features is to calculate the depth of potential spectral features
and threshold it. However, this requires the definition of two absorption feature parameters, namely
absorption wavelength position and depth. In general, the wavelength position of an absorption
feature may be defined as the wavelength of maximum absorption, i.e. the wavelength of minimum
reflectance value in each absorption feature. The absorption depth is the distance of the spectrum at
the absorption feature position from a reference line characterising the absorption-free background
signal. The latter reference line was chosen differently by several authors. For example, Kruse
(1988) used the continuum defined by Clark and Roush (1984) to derive an absorption depth
measure, while Okada and lwashita (1992) made use of the upper convex hull as reference
described by Green and Craig (1985). Rubin (1993) defined the band depth as the deviation from
the spectrum average. The existence of an absorption channel may then be declared whenever the
absorption depth exceeds a certain threshold. The threshold value is dependent on the data and the

techniques applied and needs to be chosen give meaningful absorption features.

3) Derivative analysis

Generally, the derivative of a spectrum is its rate of change with respect to wavelength. A derivative
spectrum may be used to emphasise changes, such as spectral absorption features, and suppress
the mean level. With increasing order of differentiation, the more low frequency background signals
will be suppressed, but simultaneously, the more high frequency noise will dominate the derivative
spectrum. The latter results in an SNR decrease, which may hide absorption peaks instead of
exposing them. In order to be able to perform repeated differentiation with experimental data,

random noise needs to be reduced by some smoothing technique beforehand (Sonka et al., 1993).

Demetriades-Shah et al. (1990) gave a general introduction to the use of derivative spectra in
remote sensing, while Tsai and Philpot (1998) presented a detailed review about numerical

derivative calculation methods and smoothing algorithms.

A spectral absorption feature may be considered as a valley contained between two edges. The

edge positions of the spectral feature occur where the slope of the spectral curve has a local

128



extremum, i.e. where its first derivative is maximum (or minimum), or equivalently, its second

derivative equals zero. The points of extreme slope are referred to as points of inflection.

Holden and LeDrew (1998, 1999) made use of the first- and second order derivatives to manually
select bands ideal for remote identification of healthy and non-healthy corals using in situ
spectroradiometer data. They plotted corresponding derivative spectra of the classes involved in one
graph, and used opposing strong peaks of the first derivative, as well as opposite signs of the

second derivative as indicators for potential class-discriminatory bands.

Piech and Piech (1987, 1989) used a Gaussian filter to smooth the spectral curve and computed the
second derivative (‘Laplacian’ operator) of the smoothed curve (‘Laplacian of a Gaussian’). This
process was repeated for progressively increasing filter widths (standard deviation values of the
Gaussian filter). The wavelength positions of the resulting points of inflection were then plotted
against their corresponding filter width values, resulting in a ‘scale space image’ (Witkin, 1983).
Since the number of zero crossings does not grow with increasing smoothing scale, the plot of
inflection points within the scale space image results in a ‘fingerprint’. The latter is then used to
locate the points of inflection of a spectral curve and to rank the spectral features according to the

estimated relative area contained between their inflection points.

Butler and Hopkins (1970) showed that second and higher order derivatives can be used {o
determine the peak positions of contributing absorption bands. Huguenin and Jones (1986)
suggested three criteria to be met simultaneously for the detection of component absorption
features:

= the 2™ derivative must be negative,

= the 4" derivative must be positive, and

= the 5" derivative must equal zero.

Data normalisation is not necessary for the latter technique, since higher order derivatives are
relatively insensitive to variations in illumination intensity (whether caused by sun angle, cloud cover

or topography) and spectral variations of sunlight and skylight (Tsai and Philpot, 1998).

Absorption Feature Identification

After the detection of absorption features, the analyst may be interested in associating them

individually with the classes of interest.

if sufficient ground knowledge is available, for example in form of detailed maps of the distribution of
classes on the ground, an image display of a detected absorption band may highlight the spatial
distribution of the target material the absorption feature belongs to. Alternatively, the ratio or

difference of an absorption band and an adjacent absorption-free background channel may be used
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to display the relative absorption depth (e.g. Marsh and McKeon, 1983; Feldman and Taranik,
1988). Up to three absorption features (or differences or ratios) may be compressed into a single

colour-composite image (Kruse, 1988) in case multiple features belong to the same target class.

If reference spectra of potential target classes are available in a spectral library (from previous
imaging spectrometer, laboratory or field data) image absorption spectra may be directly compared

to the ones in the library. This may be realised visually by the analyst, or automatically via several

matching technigues.

Since full spectral matching is not efficient with respect to the high spectral redundancy in imaging
spectrometer data, codes may be used as simple representation of a pixel spectrum, allowing for

fast automatic library searching and matching (Richards and Jia, 1999).

Mazer et al. (1988) introduced the binary encoding technique, which encodes a spectrum by setting
each channel to 1 or 0, depending on whether its value falls above or below a pre-defined threshold.
Usually, the threshold is chosen as the mean value of the spectrum. Each image spectrum
corresponds to an integer value, which is compared to the ones of the library spectra via a bit-wise
exclusive OR operator (‘Hamming distance’ measure). The number of bit-matches needed for
identification may be adjusted to allow for target spectral variability and noise. However, the method

does not consider the absorption depth, and therefore the significance of the spectral features.

Spectral feature fitting (SFF, Crowleyy et al., 1989) is an alternative spectral matching technique,
which fits in a least-squares sense continuum-removed image spectra to continuum-removed
reference spectra. The identity of two spectra is measured by the root mean square error (RMSE) of
the fit. If all image spectra are compared to one reference spectrum, the RSME image may then
reveal the pixels very similar to the selected target class. The SFF technique requires both library

and image spectra to be calibrated to reflectance.

If a reflectance calibration is not feasible, the spectral derivative ratio technique (Philpot, 1991) may
be applied to compare image radiance spectra to library reflectance data. The method is based on

the fact, that for target-specific wavelength ranges, the order of any-order derivative of the at-sensor
radiance data at two wavelengths approximately equals the ratio of the same-order derivative of the

spectral reflectance.

In summary, sensor bands may be placed over certain target-specific reflectance features in order {o
derive information about the target class of interest. If the target class is known and consists a single
substance (e.g. minerals), spectral features may be found in the literature. If the target class is
unknown or consists of a complex mixture of material components (e.g. vegetation canopy) or has
no published reflectance curve, laboratory, field or image measurements may then be used to detect

class-specific spectral features. In this case, the measurements should be calibrated to reflectance
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first, or at least normalised, to compensate for the effects of both the atmosphere and the solar
irradiance. This will enhance the target speciral features. The features may then be exiracted via
curve fitting methods or derivative analysis of the spectral curve. If the target is unknown, known

material classes may be associated with the spectral features via display or matching techniques.

4.2.2 Solar Spectrum, Atmospheric Absorption and Scattering

In this thesis, the author limited himself to the optical solar-reflective wavelength range (0.3 to 2.5
um) with the Sun as the only source of illumination. Figure 4.2 shows the extraterrestrial solar
spectrum (Wehrli, 1885), which has an irradiance peak in the visible wavelength region (around 450

nm) and falls off rapidly, providing only little signal for the short-wave infrared wavelength region.

Atmospheric absorption and scattering processes lessen the energy of the reflected upwelling solar
signal measured by the sensor. Unlike for ground measurements, the atmospheric effect is
significant for aircraft-based measurements (Richards and Jia, 1999), and together with the nature of
the solar spectrum, it needs to be taken into account for band selection in order to achieve an
adequate image SNR. The convolution of the solar irradiance spectrum with the atmospheric
transmission and the target reflectance represents the amount of signal that may be received by a
sensor from the target surface. Usually, a sensor is configured to achieve a sufficiently high image

SNR for all bands (see section 4.2.3).
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However, some bands with high levels of atmospheric scattering and absorption may be excluded
prior to the band selection procedure. Wavelengths below 450 nm are substantially influenced by
atmospheric scattering and absorption (Jensen, 2000). The total tfransmittance through a standard
midlatitude summer atmosphere was approximated with the 'Second Simulation of the Satellite
Signal in the Solar Spectrum’, or '6S' code (Vermote et al., 1997) and is displayed in figure 4.3.

The troughs in figure 4.3 represent absorption features of the main perturbing atmospheric gases in
the solar-reflective region, that is, water vapour, ozone, oxygen and carbon dioxide. The wavelength
centres of the major absorption bands are given in table 4.1. From these, water vapour bands clearly

dominate the solar-reflective region from 0.7 um onwards with respect to absorption depth and

width.

Table 4.1: Absorption centre wavelengths of atmospheric gases for the
solar-reflective wavelength range (Smith, 1985; Goetz ef al., 1995).

Atmospheric gas | Symbol | Absorption centre wavelengths
(pm)

Ozone O3 0.32 - 0.36 and 0.44 - 0.74 (series
of bands)

Molecular oxygen 0O, 0.5384, 0.7621, 1.07,1.27

Water vapour H,O a few weak bands in the visible,
0.72, 0.81,0.942, 1.135, 1.379,
1.865

Carbon dioxide CO, 0.78 - 1.24 (a series of weak
bands), 1.4, 1.6, 2.0

Table 4.2; Estimated absorption width of the major water vapour bands in the solar-reflective
wavelength region.

Absorption centre Band starting Band ending Absorption

wavelength wavelength wavelength width
(nm) (nm) (nm) (nm)
720 715 722.5 7.5
810 810 825 15
942 927.5 967.5 40
1135 1097.5 1170 72.5
1379 1340 1500 160
1865 1767.5 1992.5 225

Table 4.2 gives the widths of the water vapour bands as estimated from the data in figure 4.3. The
width of an absorption feature was defined here by the difference between the wavelength of the
starting and ending point. The starting point of the feature corresponds to the wavelength from
where transmission begins to fall continuously until maximum absorption is reached. The ending

point of the feature equals to the wavelength where approximately 100% transmission of the
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atmosphere is reached again. Aiternatives to the definition of absorption width are the full width at
half maximum absorption depth (Kruse ef al., 1990), and the area of absorption between the hull
quotient and unity divided by half of the absorption depth (Okada and lwashita, 1992). However, the
fatter two descriptions require the determination of the absorption depth. All three definitions include

subjective judgement of the analyst.

For terrestrial mapping purposes, so-called 'atmospheric windows' may be defined, which are
wavelength regions where atmospheric gases only slightly absorb radiation. Wavebands outside a
window are excluded from data collection or processing to avoid classification degradation from
'noisy' bands (Schowengerdt, 1997). According to the widths of major absorption bands (see figure
4.3 and table 4.2) atmospheric windows may be identified as the following wavelength intervals: 0.3

t0 0.92 um, 0.97to 1.1 um, 1.17 10 1.34 ym, 1.5t0 1.77 pmand 2.0 to 2.4 ym.

Experiments were performed with the 6S radiative transfer model to see whether the atmospheric
windows inferred above remained unchanged for different amounts of water vapour (1.0 — 4.0 g/cm?)
in a US 1962 standard atmosphere. In addition, the effects of increasing solar zenith angle (up to
60°) and of different aircraft heights (0.8 — 1.6 km) for a midlatitude summer atmosphere were
investigated. Figures C.1 to C.6 in appendix C show that the position and width of the absorption
features stayed the same, while their absorption depths varied only slightly for the different

scenarios. Consequently, the atmospheric windows as defined above were confirmed and accepted

by the author.

The aerosol absorption effect was not considered here, since aerosols modify the solar spectrum
over a large number of contiguous wavebands (Curran, 1994) and with less effect than certain
atmospheric gases. Yet, bands may be selected to estimate atmospheric parameters (aerosol, water
vapour or oxygen concentration) for atmospheric correction. CHRIS (mode 3) uses the Cimel CE
318™ sun photometer channels at 440, 670, 870 and 1020 nm to retrieve aerosol estimates (J.
Settle, 2003, personal communication). The traditional blue (443 nm) and NIR (865 nm) bands of
most satellite sensors designed for vegetation mapping (see section 4.2.1) may be employed to
estimate the size distribution of aerosol particulates (for example, see ESA, 2002b). MODIS
provides four channels centred at 905, 936, 940 and 1375 nm for atmospheric water vapour
estimation, while Polder-2 offers two channels with centres at 763 and 910 nm to approximate

oxygen and water vapour contents, respectively.
Very narrow atmospheric absorption features, e.g. the oxygen absorption band at 762 nm, may be

used for the in-flight spectral calibration of hyperspectral sensors. A possible wavelength shift may

be detected that arises mainly from temperature effects during aircraft operations.
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4.2.3 Sensor Characteristics

The image SNR for every sensor band is a necessary component to consider for band selection as it
measures the quality of each band with respect to noise. A high SNR is valuable for detecting minor
but potentially important differences between class spectra and therefore securing high accuracy
and reliability of the classification result. The image SNR depends on sensor-independent factors
{e.g. solar irradiance, solar zenith angle, target reflectance, atmospheric state) and sensor-
dependent ones (e.g. CCD response, sensor view angle and configuration parameters during data
acquisition). Radiometric, spatial and spectral sensor characteristics are investigated in the following

paragraphs with respect to their potential for increasing the sensor SNR.

Generally, the radiometric resolution is chosen by the system designers, and cannot be changed by
the user of the system (e.g. for the CASI-2 1:4096 or 12 bit). A high SNR is normally assured by
selecting the quantisation interval at least twice as large as the detector noise standard deviation

(Schowengerdt, 1997).

A large GIFOV provides more signal to the sensor than a smaller one, increasing the resulting SNR.
The size of a GIFOV of a pushbroom sensor, such as the CASI-2, is mainly dependent on the
aircraft altitude, but also on the aircraft speed and integration time in along-track direction (ITRES,
2001). Consequently, a larger SNR may be achieved by flying higher, increasing the integration time
or decreasing the aircraft speed. However, the quest for a high SNR needs to be compromised with
feasible values for the latter parameters, and with the user’s need for a specific swath width and

GIFOV size to provide pure and sufficient training samples for his classification task (see section

3.3.1).

With respect to the spectral domain, a higher instrument SNR may be achieved by coarsening the
spectral resolution, i.e. increasing the bandwidths. Some imaging spectrometers (such as the CASI-

2) are programmable, allowing on-board summation of spectral channels. It can be shown that when

the signals of C adjacent channels are being added together, the SNR of the resulting channel will

increase by about \/E if signal and noise conditions are identical for all channels being summed.
Apart from increasing the SNR, choosing a wider bandwidth tackies both data redundancy and

banding noise, i.e. detector response changes from scan to scan.

However, the selection of a certain bandwidth should be keyed to the data application at hand. The
precise location and width of a band may be chosen to optimally discriminate between user-defined
classes. For example, GERIS bands were selected to provide maximum SNR while retaining
sufficient spectral resolution to identify key minerals. The bandwidths reflected the widths of the
corresponding mineral absorption features (Kruse et al., 1990). In addition, care must be taken that
all bands in the set obtain at least a certain percentage of the maximum achievabie signal level

(20% according to T. Wittebrood (ITRES), 2003, personal communication) to obtain an acceptable
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SNR. For the CASI-2, aperture and integration time are usually adjusted by the instrument operator
during data acquisition to produce a maximum achievable signal level of 80% to 90% for the band

with the highest response.

Apart from the image SNR, the sensor’s data recording rate and storage capacity limits need to be
taken into account for band selection. For example, for the CASI-2, swath width may be traded
against spectral resolution and number of bands in order to respect the data recording rate limits of
the removable hard drive subsystem (see section 3.2.4). Similar applies for example to the CHRIS

satellite sensor. That is, the more channels are chosen for recording, the fewer spatial pixels may be

recorded.

4.2.4 Data Application

Some application techniques need certain wavebands in order to be applicable, while others may
benefit from a band set that was specifically designed for them, resulting in a more accurate and
reliable end product. In this section, the author shows examples of band requirements for the
following land cover mapping techniques: vegetation indices, the red-edge index, and land cover

classification.
Vegetation Indices

Vegetation indices (VIs) have been developed for vegetation detection and generally depend on the
red-edge feature of the vegetation spectrum (sharp reflectance increase between 690 and 720 nm).
Most broadband Vs are based on two bands sampling the bottom (reflectance minimum) and the
top (reflectance maximum) of the red edge using the established red (665 nm) and NIR (865 nm)

satellite sensor bands (see 4.2.1).

Table 4.3 presents the most common vegetation indices found in the literature and their input bands
required. Some VIs in this table include also a blue band to correct for atmospheric effects (e.g.
ARVI, TOAVI, EVY). The increased availability of hyperspeciral data has led to the creation of
narrow-band indices, such as the PRI using bands centred at 531 and 570 nm. Other examples
include the DGVI which uses all sensor bands between 626 and 795 nm, or those which employ all
sensor bands available (e.g. PCVI, GVI, TBVI, or OMBVI).
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Table 4.3: List of most common vegetation indices with references and input band
requirements.

Acronym Name Reference Input Bands
RVI Ratio VI Jordan, 1969
DVI Difference VI Lillesand and Kiefer, 1987
WDV Weighted Difference VI Clevers, 1988
NDVI Normalised Difference VI Tucker, 1979
IPVI Infrared Percentage VI Crippen, 1990
PVI Perpendicular VI Richardson and Wiegand, Red, NIR
1977 (e.g. TM 3, 4)
SAVI Soil-Adjusted VI Huete, 1988
MSAVI, Modified SAVI Qi et al., 1994
MSAVI2 Rondeaux et al., 1996
Lyon ef al., 1998
TSAVI Transformed SAVI Baret et al., 1989
RSVI Red-edge Vegetation Stress Index | Merfon, 1998
GEMI Global Environment Monitoring Pinty and Verstraete, 1992
Index
PRI Photochemical Reflectance Index | Gamon et al., 1997 531 and 570 nm
MIVI Middle Infrared based VI Thenkabail et al., 1995 Red, MIR
(e.0. TM 3, 5)
ARV Atmospherically Resistant V! Kaufman and Tanré, 1992
TOAVI Top-Of-Atmosphere VI ESA, 2002a Blue, Red, NIR
(e.g. TM 1, 3, 4)
EVi Enhanced Vi Huete et al., 2002
PCVI Principal Component V! Jensen, 1986 All bands
GVI Green VI Jackson, 1983 (e.g. TM
Crist and Cicone, 1984 1,2,3,4,5,7)
DGVI First/second Derivative VI Elvidge and Chen, 1995 All bands from
626 to 795 nm
TBVI Two-Band VI Thenkabail ef al., 2002 All bands
OMBVI Optimum Multiple-Band VI

Red-edge index

The red-edge index is commonly defined as the point of maximum slope of the red-edge feature and

has been shown to be mainly related to biophysical canopy parameters such as the leaf-area index
(LAl or leaf chlorophyll content (Clevers and Bliker, 1991). A high and fine sampling of the red-edge
between 670 to 780 nm is necessary for an accurate index determination with derivative-based
methods (Horler et al., 1983; Demetriades-Shah et af., 1990) or curve-fitting techniques (Bonham-

Carter, 1988; Clevers and Biiker, 1991). For more sparsely sampled data, Dawson and Curran

(1998) suggested a three-point Lagrangian interpolation technique for available red-edge bands,

while Guyot and Baret (1988) proposed the use of reflectance bands centred at 670, 700, 740 and

780 nm to approximate the red edge via linear interpolation.
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L.and cover classification

In contrast to vegetation or red-edge indices, classification is intended to map various land cover
classes, and not simply vegetation and non-vegetation. Complex interactions between multiple
target class spectra may occur, excluding the instant selection of class-specific spectral features.
For example, some classes may represent different types of the same material and share most of
the physically-based spectral features. As a consequence, in the absence of clear class-diagnostic
spectral features, an empirical band selection procedure aimed to maximise the final classification
accuracy may be advisable. Mather (1999, page 33) specified the three band set parameters to be
optimised in such a procedure: “The position in the spectrum, width and number of spectral bands

will determine the degree to which individual targets (vegetation species, crop or rock types) can be

discriminated”.

Generally one may distinguish between band selection methods for classification that are based on
test statistics, eigenanalysis and distance measures. In all methods, the classification accuracy of a

band set is approximated by measures of class separability.
1) Band selection based on test statistics

Some authors have used test statistics to see whether class spectra are significantly different within
certain wavelength regions. Thomson et al. (1998a) made use of the Student’s ¢ statistic as band
index of dissimilarity between the reflectance responses of several intertidal surface types. The
entire VNIR spectral range under investigation was found to be useful for class discrimination after
considering the ¢ spectra of all class pairs. Leckie et al. (1988) employed the ¢ - and Mann-Whitney
hypothesis tests to find bands that significantly separate between different levels of defoliation
caused by the spruce budworm (1 and 5% significance level). However, a hypothesis test cannot
prioritise between bands found to be significant and, consequently, cannot indicate how weil each

band set performed. In addition, the above test statistics do not exploit the differences of second-

order statistics.

In contrast, Kamp et al. (1997) calculated the absolute difference between the double standard
deviations (20) of the class spectra of interest, which account individually for 95% of all sample
spectra belonging to one class. An absolute difference of greater than zero indicates that the classes
can be discriminated to 95% on the basis of their second-order statistics alone. For the multiclass
case, all spectral regions derived from the two-class differences are condensed. Obviously, the

selected band set may be used only with classification methods based on second-order statistics,

such as MLC.

Nevertheless, the test statistics presented above are single-band measures and do not allow for the

quantification of class separation performance of a specified band set.
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2) Band selection based on eigenanalysis

Section 2.3.5 presented methods of band selection using the results of eigenanalysis. In the context
of supervised band selection, the supervised DA criteria and the unsupervised PCA may be

employed to exiract features that discriminate most between the predefined classes.

The two approaches based on eigenvector loadings, discriminant power (Tu et al., 1998) and
MSPCA (Csillag et al., 1993), are preferred to the methods using eigenvector axis crossings, as they

incorporate the contribution of each band towards the eigenvector.
3) Band selection based on distance measures

Some authors have employed feature selection methods (section 2.2) for band selection. Both
supervised heuristic and probabilistic distance measures were used as surrogates for MLC
accuracy. Richter and Lehmann (1989) guided the selection of the MOMS-02 spectral bands by
identifying high difference regions between the mean (field) spectra of seven common surface types.
They used the Euclidean distance measure to quantify the separability between the given classes.
Mausel ef al. (1990) used the Transformed Divergence, Jeffries-Matusita, Bhattacharyya Distance
and the Divergence measures for band selection for MLC of agricultural area. In addition a PCA was
performed on all channels, with the highest eigenvector loadings (over 50%) indicating the bands
most likely to discriminate between classes of interest. However, the band selection approaches

discussed so far do not account for a bandwidth increase within the algorithm.

Petrie et al. (1998) introduced a band selection algorithm that incorporates a band expansion

routine. First, the best available band in terms of maximum divergence is found. Second, the best
band is enlarged by adding neighbouring bands as long as the divergence measure increases. In a
forward feature selection manner, the latter two steps are repeated until a desired number of bands
plus two has been reached or all bands have been assigned. Finally, the worst two bands in terms of
divergence are discarded. The proposed band selection algorithm is mainly based on a single-band
measure with the band set performance only being considered when the worst two bands are
deleted. In addition, the band expansion routine was not specified in great detail by the authors; For
example, rules about the direction of band merger were not described. Furthermore, bands were first

selected and then expanded, assuming that the expanded best band will equal to the best expanded

band.

Similarly, Withagen et al. (2001) used a forward feature selection algorithm together with the
Mahalanobis distance as criterion function. In contrast to Petrie et al. (1998), the authors chose and
broadened the best available band on the basis of the band set performance. A band expansion
constraint is that the resulting band needs to be centred on the original narrow band. The merged

band is calculated as the simple average of the intensity values of the bands involved. The authors
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assumed that the expanded best band will equal to the best expanded band. Although the band
selection procedure was class- and data-specific, the resulting band set was recommended to be

generally optimal for the detection of military vehicles and land mines in a natural background.

In the following section, an empirical band selection algorithm similar to one proposed by Withagen
et al. (2001) was developed to define optimum band set parameters (band number, location and
width) with respect to the accuracy of the actual classification task at hand. But unlike the
approaches of Petrie et al. (1998) and Withagen et al. (2001), the method uses a saturated distance
measure instead of a non-saturated one as a more representative surrogate of the MLC accuracy. In
addition, band expansion was designed to take place before, not after, individual bands are
selected. This is because an increase in width changes the statistics of a band. What is more, a new
band number determination routine is employed to give estimates of intrinsic dimensionality. And
finally, SNR issues are taken into account, which prevents the method from choosing bands that

result in an unacceptable signal level.

The new method recognises the need for band selection to be data-, class- and application-specific.
For the method to take also the sensor’s spatial and spectral characteristics into account, an
example employment is described for operational use with the CASI-2, It is based on the sensor’s
capability to be programmed in spatial and spectral modes. The algorithm to be presented is

computationally efficient, allows pre-specified bands to be incorporated into or omitted from the final

band set.

4.3 Supervised Band Selection Algorithm

The aim of this section is to find a feature selection method from the ones presented in section 2.2
that is best suited to band selection for MLC and to extend its capacity to bandwidth increase and
band number determination. Feature selection is the process of selecting a band subset out of the
original band set, using a criterion to rank features and a technique to search for the optimal band

subset in a systematic way.

The design phase of the algorithm is presented in the following paragraphs and considers the
reliability, discriminability and computational cost of the algorithm. While the reliability assures that
the algorithm is based on accurate assumptions, the discriminability guarantees that the algorithm

routine chosen results in a band set with the highest class-discriminatory power.
Computational feasibility and speed are important factors in the design phase, as the aim is to

provide a band selection procedure that is computationally efficient. All algorithms were programmed

in IDL {version 5.5 Win 32 x86) within the ENVI (version 3.5) processing environment and were run
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in Windows NT on a 1 GHz Intel Pentium Ill processor with 256 MB RAM. Any quantifications of

computational speed made in this section refer to these specifications.

The two hyperspectral data sets used to evaluate the band selection algorithm were introduced in
the pilot study (chapter 3) as the New Forest (HyMAP) and the River Severn (CASI) data sets.

4.3.1 Algorithm Input and Output

The band selection algorithm presented in this chapter requires hyperspectral image data recorded
over the scene or parts of it that include all the informative classes of interest to the user. As
described in section 4.2, band selection should also take characteristics of the Sun, the atmosphere
and the sensor info account. These data attributes would be considered if hyperspectral data were
acquired under the same or similar conditions as the target data to be flown. Otherwise these

conditions need to be simulated (see section 6.6).

A programmable imaging spectrometer such as the CASI-2 would aliow using the same sensor for
hyperspectral and final data recording. With the CASI-2’s enhanced spectral mode (see chapter 1),
288 bands may be obtained at the cost of a reduced swath width, while the spatial mode records the
full image swath with a reduced set of up to 19 bands. A practical way for data collection would be to
acquire first an image with a reduced FOV in hyperspectral mode over a representative part of the
scene, which is then input into the band selection algorithm. The hyperspectral image should
represent all target classes of interest with enough training samples to achieve adequate class
statistics for the given number of bands. After that, the CASI-2 is programmed in the selected band
set to record the full-swath multispectral data over the same scene. Both the hyperspectral and
multispectral data acquisitions are to be performed with identical spatial resolution to ensure that
similar class and data statistics result. The time between the two image flights should be minimised
to guarantee that target class spectral characteristics and atmospheric and illumination conditions
have not changed. For the remainder of this chapter, this image acquisition technique was assumed

by the author.

Apart from the hyperspectral image, the band selection algorithm expects regions of interest (ROls),
depicting class training areas defined by the analyst (supervised version), and their statistics (the
class mean vectors and covariance matrices) as input. The algorithm expects that all noisy and

faulty bands were removed from the original data set by the analyst.
The algorithm outputs a list of the resulting band set parameters for each band, including the sensor

channels to merge for a particular band, the (new) band centre and full-width-half-maximum

(FWHM). If the number of bands in the set was fixed by the user, the algorithm may result in a
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smaller band set if this target was not feasible, or may recommend a smaller number of bands

according to the results of the band number determination procedure.

4.3.2 Choice of Criterion Function

The optimal feature selection criterion is the application accuracy, in this case the MLC overall
accuracy. As stated in section 3.3.1, the ‘leave-one-out’ cross-validation method is best suited to
generating the contingency table for feature selection with hyperspectral data, as it makes maximum
use of the in situ data for defining the class statistics. As it constructs a classifier for each class
training sample, the calculation speed is a function of the number of training samples. As the latter
number ought to be relatively high for hyperspectral data sets to circumvent the Hughes
phenomenon, the MLC accuracy estimate using the ‘leave-one-out’ method may become

computationally very expensive.

As a consequence, a surrogate measure for the MLC accuracy estimate is needed and possible
candidates include the supervised distance measures reviewed in section 2.2.2, or the discriminant
power measure determined from eigenanalysis via DAFE and presented in section 2.3.5 (equation
2.38). All of these measures take first- and/or second-order class statistics into account. As the
performance of the supervised feature selection criteria depends strongly on the accuracy of the
class statistics, the most appropriate‘criterion was selected on a purely theoretical basis.

In order to represent correctly the accuracy estimate of the probabilistic ML classifier, a probabilistic
distance measure, which also makes use of the class covariance matrix (see section 2.2.2), should
be preferred to a heuristic one, only employing the class mean vector. In addition, saturated
measures are more likely to be justified than unsaturated ones for this algorithm, as the entire

distance range will be evaluated.

Regarding the multi-class form of the distance measure, the ‘maximum average’ was favoured to the
‘maximum minimum’ type, as the latter may introduce a bias by focussing only on the class pair
hardest to separate. Thus, from a theoretical point-of-view, either the Transformed Divergence or the

Jeffries-Matusita distance measure should be employed as feature selection criterion.

An experimental analysis was performed on the two data sets available for this study (New Forest
and River Severn) to approve the theoretical choice of criterion. The value for some of the surrogate
measures from section 2.2.2 was calculated for both multiple-band (table 2.2) and single-band
versions (table 4.4) and linearly regressed against the corresponding MLC overall accuracy

estimated with the leave-one-out method.
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Table 4.4: Probabilistic distance measures for one band and normally distributed classes «,

and o, , using the class mean and variance values m and 52 , respectively. The equations
were derived from their corresponding counterparts in table 2.2.
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Tables C.1 and C.2 in the appendix show the regression results and the correlation coefficient for
single-band and multiple-band surrogate measures, respectively, for both the New Forest and River
Severn data sets. For the multiple-band measures, only two-band combinations with the best and
the worst bands from the single-band results were evaluated in order to cover most of the value
range of the MLC accuracy estimate. The regressions show that both the Jeffries-Matusita distance
and Transformed Divergence measure were most correlated to the MLC accuracy estimate

regarding all other distance measures (see table 4.5) and therefore confirm the theoretical choice.
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Table 4.5: Correlation coefficient between the single-/multiple-band distance measures and
the MLC overall accuracy estimated with the leave-one-out method for the New Forest and
River Severn data set.

Single-Band Multiple-Band Single-Band Multiple-Band

New Forest New Forest River Severn River Severn
Bhattacharyya 0.562 0.711 0.961 0.566
Jeffries- 0.889 0.971 0.981 0.858
Matusita
Divergence 0.415 0.175 0.944 0.563
Transformed 0.876 0.978 0.977 0.907
Divergence
Mahalanobis 0.418 0.183 0.951 0.554
Euclidean 0.832 0.639 0.451 0.418
City-Block 0.832 0.704 0.451 0.168
Chebyschev 0.832 0.867 0.451 0.572
Canberra 0.272 0.523 0.702 0.193
Discriminant 0.331 - 0.341 -
Power (DAFE)

In addition, the same experimental analysis was performed for the discriminant power (DP, single-
band) measure derived from the DAFE feature extraction method. The result showed a very poor
correlation between the DP measure and MLC accuracy for both data sets. As multiple-band

measures were needed, the DP measure was not considered any further.

According to these theoretical and experimental results, the author chose the Transformed
Divergence multi-class distance measure as surrogate measure for the MLC accuracy estimate, as it
performs slightly better than the Jeffries-Matusita distance for the (more frequent) muitiple-band

case.

4.3.3 Choice of Search Method

The optimal search method is an exhaustive one. However, when the final band set is to include, for
example, 19 bands (the maximum band set size for the CASI-2 spatial mode), the number of
possible band set combinations amounts to more than 3.46 x 10" and 2.04 x 10" combinations for
the New Forest and the River Severn data set, respectively (see equation 2.25). The computation
time of an exhaustive search with the MLC accuracy estimate (leave-one-out method using all
samples) as criterion would total about 4.3 x 10" years for the New Forest data, while using the
Transformed Divergence as criterion function would still need more than 1.2 x 10" years of

computation time. Both cases are computationally impossible tasks (see also table 3.6 in chapter 3).
The Branch-and-bound algorithm is classified as an optimal method under the assumption that the

criterion function always increases monotonically with addition of new features fo the set. However,

the Transformed Divergence function may drop with increasing number of bands for hyperspectral
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data sets, when the ratio of the number of training pixels to the number of spectral bands is not high
enough to ensure reliable class statistics (Hughes phenomenon). Consequently, this method was

not pursued any further.

Among the sub-optimal search methods, the ‘best individual’ method only delivers acceptable results
when the bands within the original set are uncorrelated, which is an unusual case for hyperspectral

data and therefore not applicable.

The ‘sequential forward selection’ (SFS, ‘bottom-up’) procedure results in less computational effort
than its backward (‘top-down’) counterpart for most band selection tasks, as the number of features
to be selected for the final set (e.g. less than 20 for CASI-2 spatial mode) is much smaller than the
number of original bands in the hyperspectral data set (e.g. up to 288 bands for the CASI-2 spectral
mode). As the SFS successively adds features to the set, the bands may be removed in reverse
order, allowing for flexibility in the dimensionality of the final band set. Table 3.6 in chapter 3 gives

an exampie of the computation time invoived with the SFS algorithm.

The ‘Max-Min’ search method focuses on the optimization of the minimum criterion function vatue
that the new feature achieves with each of the pre-selected features individually. While the
computational cost is reduced as only a two-dimensional evaluation of the criterion is needed, the

performance of the overall set, and therefore the redundancy within the set, is neglected.

Suboptimal search methods such as beam search, genetic algorithms, and simulated annealing
were not considered for band selection. Although they search the entire feature space by randomly
altering some of the bands within the set to escape locally optimal solutions, they do not select
features in order, and therefore do not allow the reduction of the dimensionality of final band set. The
latter three methods are also more costly to implement.

According to these theoretical resuits, the author chose the SFS as the search algorithm for feature

selection based band selection.

4.3.4 Bandwidth Increase

As mentioned earlier, a bandwidth increase of sensor bands is beneficial

= to reduce the amount of data to record and allow for more spatial pixels (wider swath width),
= {o suppress instrumental spectral noise increasing the signal-to-noise ratio,

= to decrease the integration time and thus refine along-track spatial resolution, and

= to reduce the effect of the spectral overlap among adjacent pixels on the fotal band signal.

The aim of this subroutine is to merge two neighbouring bands that are redundant with respect to

class discrimination. Physically, the increase in bandwidth is performed as a simple sum of the
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signals (or values) of two or more bands. This simulates the CASI-2 on-board and in-memory
summation of individual bands before data recording. In case two neighbouring bands are to be
merged, the class statistics for the resulting band need to be recalculated for criterion function the
merger is based on. Since a computation based on the fraining data itself is very costly, the following

formulae based on simple additions and multiplications are applied.

The mean of a new band merged from bands x and y is calculated using equation 4.1.

m,,, =m, +m, (4.1)

The variance of the new band may be computed as (Weisstein, 2003):
2 2 2 4.2
Sy =S, +s8, +2s (4.2)

The covariance between the new band, merged from bands x and y, and another band within the

set, for example z, can be computed as (Weisstein, 2003):

s =5, +S,, (4.3)

x+y,z

If the band z was itself a band merged from bands s and ¢ equation 4.3 could be expanded using

the symmetry property of the covariance:

s =g +8 =5 (4.4)

X+Y,8+ X, 5+t V.5+t S+E,x

+ 5 =8 ~+St,x+5s,y+5f7y

s+t,y 5,X

If in equation 4.3 another band w was merged with band x + y the new band covariance could be

computed as follows:

— 4.5
S, =8, TS, S, (4.5)

S(x+y)+w,z = Sx+y,z W,Z

The centre wavelength and the FWHM of the merged band are calculated with equations 4.6 and

4.7.

Aarrow T Pend
}’new . [startrow endrow (46)
2
FWHM ...+ FWHM 4.7
FWHM I A’endrow ~ Aorron startrow endrow (4.7)
2
where A, FWHM Centre wavelength and FWHM of the new merged band

Asarion LWHM Centre wavelength and FWHM of the start row of the merger
Anirows FWHM Centre wavelength and FWHM of the end row of the merger

endrow ? endrow

The criterion function for bandwidth increase may be based on the increase in classification
performance of either the single band or the entire set after band merger, using the classification
accuracy measure or a surrogate, such as the Transformed Divergence. Petrie et al. (1998) and

Csillag et al. (1993) employed the single-band measures as the basis for merging adjacent bands,

145



while Warner et al. (1999) and Withagen et al. (2001) took the set performance into account. Here,
the percentage increase in Transformed Divergence for the entire band set was preferred as
criterion function to the corresponding individual band criterion. The ultimate aim of the band
selection process is to apply the selected band set in its entirety for MLLC, rather than extracting

individual bands from it for single-band use.

The bandwidth increase and ranking routines are applied alternately in the procedure to guarantee
that maximum band expansion is possible at any given set dimension. In contrast to the band
selection procedures of Petrie et al. (1998) and Withagen et al. (2001), bandwidth increase in this
algorithm takes place before a new centre band location is found. Bandwidth increase alters the
performance of the band set, and all bands are expanded independently and compared first, before
the best expanded band is chosen. In addition, adjacent narrow bands chosen for the final band set
should not be merged by default, as they may, for example, exploit the top and bottom of a narrow

spectral feature.

With respect to the direction of band broadening, both mergers of a band with its left and right
neighbours are compared in terms of overall set performance, and the merger leading to the better
performance is carried out. The process is repeated until both left and right mergers decrease the
overall set accuracy. This procedure assumes that a band expansion in a direction of performance

decrease will lead to added deterioration in the discrimination ability of the set.

The user is presented with three algorithm options:
1) to force all bands to be merged with an equal number of neighbours, where the number is
determined by the user,
2) to force all bands to be merged with an equal number of neighbours, where the number is
determined by the algorithm,
3) to allow bands to be merged with an unequal number of neighbours, where the number is

determined by the algorithm.

Option 1 and 2 allow the user to choose equal bandwidths and even to fix the bandwidth in option 1
setting in order to gain further control over the resulting band set. For example, an equal bandwidth
across all bands may be useful if further data are to be acquired in CASI-2’s enhanced spectral

mode (see chapter 1).

In option 3 bands are allowed to expand independently, allowing for the most optimal band set to
emerge. However, to ensure that all bands in the set obtain a sufficiently high signal level (at least
about 20%, see section 4.2.3), a constraint to algorithm 3 was introduced. A band may not be
increased further in width if the smallest of all band means in the set becomes a user-defined
percentage (lower limit 20%) smaller than its mean. If an expanded band does not achieve a

sufficiently high signal level, it is not considered for the final band set. This percentage constraint
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does not apply to the first band as it may not be compared with subsequently selected bands. If the
signal level of the first band is too high and the user-defined number of bands cannot be reached, its

width is reduced by one row in an iterative fashion until the desired number of bands may be

obtained for the set.

4.3.,5 Band Number Determination

In general, classification accuracy is a saturating function of the number of input bands, and beyond
a certain threshold the increase in the number of bands does not produce any significant
improvement in classification accuracy. This section aims to determine this threshold, i.e. the

optimum band number.

Clearly, the upper limit of the number of bands is dictated by the sensor type and its operational
mode. For example, for the acquisition of a CASI-2 image data in spatial mode, a maximum of 19
out of 288 bands may be selected. With respect to the maximum achievable classification accuracy,
two cases may then be distinguished. The best 19-band subset may result in significantly less
classification accuracy than the complete band set does, and all 19 bands will be required to achieve
the best possible result. Or, the accuracy values achieved with the 19-band and the full band set
may not differ significantly from each other, as additional dimensions may not add any extra

discriminatory power to the band set.

In the latter case, the question may be asked whether even 19 bands are indeed necessary to
achieve the maximum classification accuracy of the full band set, or whether fewer bands may
produce results of similar accuracy. This section aims to provide an answer to this problem, which is
of particular importance when dealing with highly redundant imaging spectrometry data. Hughes
phenomenon may occur and the optimum classification accuracy may be obtained with much less

than 19 bands.

In chapters 2 and 3, intrinsic dimensionality (ID) estimation methods were discussed and applied,
respectively. As the classification was chosen as final data application, only methods for the
determination of the supervised ID (the intrinsic discriminant dimensionality, IDD) are considered
here. In section 2.4, the IDD was defined as the minimum number of features needed to obtain the

same classification accuracy as could be obtained in the original feature space.

As original bands, and not transformed features, are to be selected by the algorithm, IDD methods
based on eigenanalysis are less appropriate. Consequently, the aim is to find an upper bound to the
real IDD estimate which may be defined as the minimum number of bands needed to obtain the
same classification accuracy as could be obtained in the original feature space. The constraint that

the IDD estimate should not exceed the maximum number of linearly independent features (that is,
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M —1,where M is the number of classes, see section 2.4), is not valid for band selection, as

bands are in general highly correlated features.

All other non-eigenanalysis-based IDD methods were investigated if they could be used to
determine the optimal band number. The statistical methods that test whether the difference
between the classification accuracy of subsequent band subsets is significant or not, require
knowledge of the distribution of the classification accuracy measure (see section 2.4.2). However, in
this band selection algorithm, the classification accuracy was approximated by the Transformed
Divergence measure, the statistical distribution of which is unknown. The latter may be estimated
under high computational cost via density estimation methods, such as Monte Carlo simulations,
assuming a normal and symmetric distribution (Bressan and Vitria, 2002). The latter was not
attempted in this study due to computational reasons, as for each band set dimension, a density

estimation needed to be performed.

The band number determination technigue should satisfy the following needs of the band selection

algorithm:

= o find the optimal band set dimension which achieves maximum classification accuracy,

= {o consider Hughes phenomenon, and
= 1o allow for statistically dependent bands and a sub-optimal best band set.

The latter requirement reflects the correlated nature of the bands and the sub-optimality of the

search procedure in the feature selection process.

Inspired by the heuristic ID approximation method ‘Proportion of total variance’ (section 2.4.1), the
author defined the ‘proportion of maximum achievable Transformed Divergence’, PMATD, which is
calculated by dividing the TD value of a band subset by the maximum achievable TD value of the
entire band set. The PMATD is based on the linear relationship between the TD and the MLC
accuracy, that is, the PMATD approximates the proportion of maximum achievable MLC accuracy
(PMAMA). Then, the optimal number of bands equals to the dimension of the smallest band set,

which achieves a certain PMATD, for example 95% or 99%.

Assuming that the TD measure is monotonically increasing with growing number of bands, the
maximum achievable TD value is reached using all bands of the set. However, Hughes
phenomenon may occur and the maximum achievable TD value may be reached by a band subset
of much smaller dimension. Therefore, the algorithm compares the TD values of the best subsets of
smaller dimension than the ‘allowable’ number of dimensions (e.g. 19 bands for the CASI-2 spatial
mode, or user-defined) with the TD performance of the full set, and the highest value is chosen as

the maximum achievable TD value.
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If any subset of dimension smaller than or equal to the maximum allowable number of bands (19 for
CASI-2 spatial mode) does not achieve 95% or 99% of the maximum TD value, the maximum

allowable number will be chosen as the optimal band number.

This subroutine gives inaccurate proportions if the maximum achievable TD value occurs for a
dimension between the ‘allowable’ and the total number of bands. However, for most hyperspectral
data sets saturation occurs at a low number of dimensions, and choosing the ‘allowable’ number of
bands high enough (e.g. between 10 and 20) may circumvent this problem. In addition, supplying an
adequate number of training samples (see section 3.3.1) may prevent the event of Hughes

phenomenon altogether.

An advantage of this routine is that it is application-oriented, using an approximation of the
proportion of maximum achievable MLC accuracy. It is not based on absolute values of TD, as the
latter depend on the data and the definition of training sites and classes. The error of this technique
is controlled, as a certain percentage of TD, and therefore classification accuracy, will be

guaranteed, if the number of maximum allowable features is high enough and all assumptions made

earlier apply.

4.3.6 Algorithm Implementation

A computer program SBS (Supervised Band Selection) has been written using this algorithm and is
described in appendix G. A flowchart of the algorithm is presented in figure 4.4, which is based on

the routines described above.

The algorithm has been written in IDL (version 5.5 Win 32 x86) and ENVI (version 3.5), and reads
the image file, the class ROls, and class statistics. The user has the option to select certain bands to
be either used in the final band set or excluded from it (e.g. noisy bands, bands outside atmospheric

windows, absorption bands, bands from a specific wavelength range).

In general, the SBS program is computationally highly efficient. The total execution time amounts fo
about 40 seconds if 19 optimal bands are to be selected from the 117 bands of the New Forest data
set. The computation time mainly depends on the number of classes and output bands specified by
the user. If an output image was to be created from the optimal band set, the running time would be
significantly increased. The latter is dependent on the size of the data set, but also on the number
and width of the output bands. Creating an output image of the first three optimal bands of the New
Forest data set in the above example adds 25 seconds to the total computation time (5 bands to

read).
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Figure 4.4: Data flowchart of the SBS (Supervised Band Selection) program

with algorithm options displayed on the right side.
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4.4 Algorithm Evaluation

This section aims to assess the value of the proposed algorithm and its results qualitatively and

quantitatively with respect to its reliability, consistency, and effectiveness.

4.41 Qualitative Evaluation

The first six ‘optimal’ SBS bands derived for the New Forest and the River Severn data sets and
their corresponding class scheme are listed in table 4.6 and plotted against a vegetation spectrum in
figures 4.5 and 4.6, respectively. The band sets were selected with the constraint that the minimum

signal mean was equal to at least 30% of the maximum band mean.

For the New Forest band set, the best six bands chosen by the algorithm stem from the NIR and
SWIR wavelength range. The first band is located on the NIR plateau, and corresponds to the
traditional vegetation band centred on 865 nm. Bands 3 and 6 are two adjacent bands positioned at
the upper end of the red-edge feature. The latter three bands are sensitive to the structure of the
vegetation canopy and the percentage soil covered. Bands 2 and 4 are centred on 1580 nm and
2110 nm, respectively, and are narrow-band equivalents to Landsat ETM+ bands 5 (1550 - 1750
nm) and 7 (2090 - 2350 nm), which are both sensitive to vegetation maisture content. Band 5,
placed at 1330 nm between the two water absorption features at 1135 and 1379 nm, is sensitive to
canopy structure and water content. As most of the image consists of vegetation classes (grassland,
bracken, vailey mire, dry, humid and wet heath) that differ more in their canopy structure and

moisture content than in their chlorophyli content, the band selection result is accepted as a sensible

choice.

For the River Severn band set, the biue CASI bands were excluded from band selection as they
were perceived as noisy (see section 3.2.1). The first band chosen by the aigorithm is a relatively
broad band situated on the green slope near the red chlorophyli absorption peak. The wavelength
region around the red band is generally known to potentially differentiate between different
vegetation types. The second best band is found on the NIR plateau, which is sensitive to canopy
structure and helps to delineate the land-water interface. The third and fourth band sample the
bottom and top end of the red-edge feature and are both responsive to chlorophyll variations in the
canopy. Band 5 and 6 further sample the green slope and the high NIR response of vegetation,
respectively. Salt-marshes are highly complex mixtures of different intertidal vegetation types (here
high, mid, and pioneer marsh classes), bare rock and mud. The salt-marsh vegetation classes are
distinguishable from each other and the Bare Rock and Mud classes principally by their canopy

structure and chiorophyll content, which is reflected in the choice of the bands.
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Table 4.6: First 6 optimal bands selected by the SBS algorithm for the New Forest and River
Severn data set with respect to their corresponding classification task (see table 3.9 and 3.8).

New Forest River Severn
Band Band Band Band Band Band Band Band Band
number | centre width start end centre width start end
[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]
1 867.4 31.25 851.775 | 883.025 639.9 31.5 624.15 | 655.65
2 1583.5 16.2 1575.4 1591.6 910.9 8.8 906.5 915.3
3 738.1 15.7 730.25 745.95 704.7 8.8 700.3 709.1
4 2109.75 38.15 | 2090.675 | 2128.825 | 758.2 8.8 753.8 762.6
5 1330.2 299 1315.25 | 1345.15 | 594.45 16.1 586.4 602.5
6 760.95 30.4 745.75 776.15 796.4 8.8 792 800.8
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Figure 4.5: First six bands selected by SBS for the New Forest classification task (see table
3.9 and 4.6). Wavelengths not available for band selection are indicated by grey bars.
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Figure 4.6: First six bands selected by SBS for the River Severn classification task (see table
3.8 and 4.6). Wavelengths not available for band selection are indicated by grey bars.
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When generating colour composites from the best band triplet, six RGB combinations are possible,
and the question arises which RGB colour should be assigned to which bands. The eye can
discriminate colour best in the yellow, the combination of red and green light (‘hue discrimination
curve’; Gregory, 1977). Therefore, the two most informative bands could be assigned to the red and
green channels, the third most informative band to the blue channel. Sheffield (1985) and Drury
(1993) both agreed with this allocation. Sheffield (1985) recommended further to assign the band
with maximum information to the green channel, as the eye was more sensitive to green than to red.
in contrast, Drury (1993) advised the most informative band to be displayed in red, but does not

provide a reason for this recommendation.

Apart from the pure physiology of the human eye, the psychology and sense of aesthetics of an
individual also have an influence on how much information is read from a colour image, and whether
it pleases the eye or not. The latter effects can easily be underestimated, and the author believed
that a colour composite should be chosen to associate familiar objects with their natural colours. For
this reason, the RGB colour assignment for the New Forest best band triplet was chosen to display
grass in a greenish colour (figure 4.7), while that of the River Severn data set was chosen {o show

the bare mud class in blue (the latter class is regularly inundated by water; figure 4.9).

Both figures 4.7 and 4.9 show a high contrast in colour between the different vegetation classes
involved. For the New Forest data and the given RGB band combination, the asphalt road and the
lake appear black in colour, whereas bracken occupies the cyan and dry heath the crimson colour.
Wet and humid heath and valley mire may be distinguished from different tones ranging from salmon
red to dark green (see also classified image in figure 3.5). Regarding the River Severn colour
composite of the optimal three bands, pioneer, mid and high marsh vegetation is coloured in bright
orange - red, red — blue, and yellow, respectively. Bare rock appears white in the image and bare
mud biue (see classified image in figure 3.4). Figures 4.8 and 4.10 display the resulting map of the
New Forest and River Severn classification task, respectively, using the six bands selected by the

SBS algorithm (see table 4.6).
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Figure 4.7: Masked HyMAP New Forest data displayed using the first three optimal bands

band 3).

B=

band 1,

G=

band 2,

output by the SBS algorithm (see table 4.6, R
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Figure 4.8: New Forest Maximum Likelihood Classification result using the first six bands
selected by the SBS algorithm (see table 4.6; Lake, blue; Asphalt, white; Bracken, yellow; Dry
Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, green;
Valley Mire, dark green).
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Figure 4.9: Masked CASI River Severn data displayed using the first three optimal bands
output by the SBS algorithm (see table 4.6, R = band 2, G = band 3, B = band 1).

Figure 4.10: River Severn Maximum Likelihood Classification result using the first six bands
selected by the SBS algorithm (see table 4.6; Bare Rock, white; Pioneer Marsh, bright green;
Mid Marsh, green; High Marsh, dark green; Bare Mud, brown).
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4.4.2 Reliability

The reliability of the band selection algorithm was judged by questioning the appropriateness or

accuracy of its assumptions and routines.

= The band selection method assumes that image data recorded in multiple flight-lines over
the same scene with the same image acquisition parameters will result in similar image
pixels. In general, this assumption is appropriate as long as the H-resolution case applies
(and all other parameters remain the same). This is true most of the time when using high
spatial resolution airborne data for classification purposes.

= The method further assumes that the separation between the spectra of user-defined
classes remains the same between the hyperspectral and multispectral image acquisitions.
To ensure the suitability of this assumption, the time lag between the two data recordings
needs to be minimised.

= The band selection algorithm assumes the class samples to be normally distributed. The
user of the algorithm is advised to test the normality of the class data during the class
definition and training process (see section 3.3.1).

= The band location, width and number estimation routines are all based on the linear
relationship between the Transformed Divergence (TD) and the MLC accuracy. The
accuracy of these subroutines then depends partly on the appropriateness of this
relationship. For the given data sets, the multiple-band TD was shown to be highly
correlated to MLC accuracy, more than any other distance measure (see table 4.5).
Generally this assumption is valid as the TD was derived directly from an upper bound to the
error probability (Fu, 1982).

= The sub-optimal SFS search procedure was employed for the band location determination,
where the sub-optimality of the results is computationally impossible to quantify for the given
data sets and classification schemes (see above). However, the SFS procedure is optimal
for uncorrelated features. That is, for a correlated set of hyperspectral bands, the first few
relatively uncorrelated bands chosen by the SFS are more likely to be optimal than the
highly redundant remainder of the selected band set.

= The band number determination routine assumes that the maximum achievable MLC
accuracy is not produced by a band set of dimension between the allowable and the total
number of bands. The error of this assumption may only be quantified by performing an
extensive search with the MLC accuracy measure as criterion function, which is impossible
to perform due to the immense computational cost involved. The inappropriateness of the
assumption may be reduced by choosing a higher numbfar of training samples or allowable

bands (see above). -
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4.4.3 Consistency

The algorithm is consistent in that it is repeatable, assuming no two TD estimates are equal for the
band location and number determination, and band broadening sub-routines. However, the ordering
of bands within the band location determination subroutine depends on the bands already selected
for the set. That is, the output band set may only be reduced by repeatedly discarding the feature
added last to it. Removing the first band from the ‘optimal’ set destroys the validity of the order of

subsequent bands.

4.44 Effectiveness

Sub-optimality of the algorithm

The sub-optimality of the band selection algorithm was quantified in terms of MLC accuracy by
deriving the best sets of cne, two and three bands with an exhaustive search using the MLC
accuracy measure and the SBS band selection algorithm (no bandwidth increase). Only band sets
up fo three dimensions were selected for the exhaustive search to be computationally feasible.

Figures 4.11 and 4.12 display the MLC accuracy of the best band sets for the New Forest and River

Severn data set, respectively.

MLE accuracy (%)

MLC accuracy (%)

75 L 70
1 2 3 1 2 3

Number of bands Number of bands

Figure 4.11: MLC accuracy of optimal band Figure 4.12: MLC accuracy of optimal band
sets derived using an exhaustive search with  sets derived using an exhaustive search with
MLC accuracy (MLC-EXH) and the SBS MLC accuracy (MLC-EXH) and the SBS
algorithm for the New Forest data set. algorithm for the River Severn data set.
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From figure 4.11 it can be seen that the band subsets selected with the SBS algorithm for the New
Forest data set results in a maximum 4% loss in accuracy. For the River Severn data set, this
accuracy loss reaches a maximum of 6%. The percentage difference for the New Forest data set is
statistically insignificant, mainly due to the fact that the number of testing samples were reduced
from 9400 to 130 to make the method computationally feasible. However, the largest percentage

loss is significant for the River Severn data set, where 780 testing pixels were used for accuracy

estimation.
Comparison of ‘optimal’ SBS band set to ‘established’ band sets

The ‘optimal’ band set output by the SBS algorithm (‘unegual bandwidth’ option) was evaluated
regarding the established 'vegetation’ and ‘coastal’ band sets used in current satellite and airborne
sensors. As for some of the latter band sets no band ordering was available, the comparison was
only performed for the full band sets. This was necessary, as otherwise ambiguity would have been
introduced. In general, water vapour and oxygen absorption bands as well as specific bands for
aerosol determination were excluded from the comparison as these serve principally the purpose of
atmospheric correction. An exact sensor band simulation was generally not possible, as the bands
of the given hyperspectral data were sometimes equal or larger in width, or did not cover the entire

spectral range of some of the bands to be simulated.

Table C.3 presents the satellite and airborne band sets used for comparison and their simulation
with the available HyMAP and CASI data. The band sets to be simulated include the vegetation
bands from CHRIS (mode 3), Landsat ETM+, MERIS, MISR and MODIS, as well as vegetation
bands specifically designed for the NERC CASI-2 sensor (NERC ARSF, 2002) and the Environment
Agency (EA) CASI-2 (K. Brown, 2002, personal communication). In addition, ‘coastal’ band sets
such as the one designed for the EA CASI-2 (K. Brown, 2002, personal communication) and the
BIOTA band set, designed to discriminate between intertidal and marine suspended sediments,
chiorophyll and plant tissue of intertidal vegetation communities (Thomson et al., 1998a), are
compared to the band set recommended by the algorithm with respect to their classification

performance for the River Severn CASI data.

Figures 4.13 and 4.14 show the MLC accuracy of different simulated satellite and airborne sensor
band sets in comparison with the SBS band set for the New Forest and the River Severn data,
respectively. For the New Forest data set, the SBS band set performed superior to any of the
simulated band sets in corresponding dimensions. The differences in classification accuracy
between the SBS subset and the comparable band sets were significant in all cases and range from
1.7% for MISR to 0.15% for MODIS. The largest difference occurred for a small band set dimension.
For the River Severn data set, the latter pattern was repeated. However, the SBS band set appears
to have superior performance only for dimension three and four, with a maximum difference in

classification accuracy of 4.6% for the MODIS band set. Above ten bands the available band sets
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performed similar or better than the SBS band set. For example, the classification accuracy of the

EA coastal band set was about 0.7% higher than that of the SBS set.
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Figure 4.13: MLC accuracy of the SBS band Figure 4.14: MLC accuracy of the SBS band

set compared with the one of satellite and set compared with the one of satellite and

airborne band sets for the New Forest data airborne band sets for the River Severn data
set. set.

Band number evaluation

Regarding the evaluation of the band number criterion (the proportion of maximum achievable
Transformed Divergence, PMATD), the validity of the proportion of maximum achievable MLC
accuracy (PMAMA) as IDD estimation measure had to be tested. The PMATD is an approximation
of the PMAMA. Table 4.7 displays the PMAMA and the PMATD for the first five bands of the New

Forest and River Severn data set.

For the SBS algorithm, the optimal number of bands was defined as the dimensioh of the smallest
band set that achieves a PMATD of at least 95%. If 95% is chosen as the threshold for the PMAMA,
the optimal band number can be determined as 2 and 3 for the New Forest and River Severn data
set, respectively (see table 4.7). These values coincide wiih the lower values of the estimated IDD
ranges in chapter 3. The corresponding PMATD criterion gives an IDD estimate of 2 and 4 for the
New Forest and River Severn data set, respectively, using the 95% threshold. The estimate is exact
for the New Forest data set, but overestimates the lowest IDD value of the River Severn data set by

one. However, the latter still falls in the IDD range estimated in chapter 3.
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Table 4.7: Proportion of maximum achievable Transformed Divergence (PMATD) and ML.C
accuracy (PMAMA) for the first five dimensions of the SBS band set selected for the New
Forest and River Severn data sets.

Band New Forest River Severn
number PMAMA PMATD PMAMA PMATD
1 79.18245 80.74730 79.72142 82.39539
2 08.74942 08.96224 90.71178 90.75644
3 98.99402 99.44225 96.51071 03.44345
4 09.43002 09.68375 96.66257 96.40755
5 99.48319 99.80777 97.22867 07.24103

4.5 Summary

Hyperspectral imagery offers many narrow spectral bands to exploit subtle spectral differences
between target classes of interest, potentially increasing application accuracy (in this chapter the
author focussed on classification as the application task). However, reduced classification accuracy
could result from high-dimensional imagery if an insufficient number of training samples were
available. What is more, hyperspectral data are often redundant and large in volume that is difficult

to record, store, transmit or process efficiently.

Band selection is a way of reducing data dimensionalily at sensor level and is necessary for sensor
design studies and the use of imaging spectrometers that are limited in the amount of data they can
record (e.g. the CASI-2). This chapter focuses on band selection for imaging spectrometers with

Maximum Likelihood classification as the final data application.

A supervised band selection (SBS) algorithm is proposed that aims to optimise band configuration
parameters with respect to the accuracy of the classification task at hand. It is based on
conventional feature selection methods that select the most class-discriminant bands on the basis of
the user-defined class definition and the given data set. By doing so, the routine automatically
reduces the high correlation between spectrometer bands and maximises the signal, that is, the
class-discriminant information. In addition, it introduces the bandwidth and band number as
variables into the feature selection process. The technique assumes the class samples to be
normally distributed, and a linear relationship between the MLC accuracy and its surrogate, the

Transformed Divergence (TD).

The SBS procedure is similar to the band selection approaches developed independently by Petrie
et al. (1998) and Withagen et al. (2001). But contrary to the latter approaches, SBS utilises a
saturated criterion function as opposed to a non-saturated one, which has a stronger linear
relationship with the MLC application accuracy. In addition, band expansion takes place before, not

after, band location determination. This is because bandwidth increase will alter the performance of
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the band set. SBS introduced also a band expansion constraint based on the band SNR to assure
that all bands achieve a sufficient signal level. What is more, a band number determination
procedure was added to SBS to give an estimate of the intrinsic discriminant dimensionality of the

data set.

The algorithm requires hyperspectral data of the target scene and a user-defined class set. The
hyperspectral data should be acquired under similar conditions (sensor, scene, illumination) as the
target data, or conditions need to be simulated. To take sensor characteristics (e.g. spatial and
spectral resolution, point-spread function, instrumental noise) as well as the scene of interest into
account, the programmable imaging spectrometer CASI-2 may be used for the collection of both the
hyperspectral and multispectral data. However, a trade-off exists between number of spatial pixels
and that of spectral channels that can be recorded. A reduced-swath hyperspectral CASI-2 image
over a representative part of the scene may be acquired first, on which band selection is performed.
A full-swath multispectral CASI-2 image may then be recorded over the same scene using the
selected band set. The approach assumes the iH-resolution case, which is generally appiicable to
remote sensing for classification, and requires the time gap between hyperspectral and multispectral

acquisitions o be minimised to avoid changes in the class spectral responses and illumination

conditions.

The band selection algorithm was implemented in an efficient DL™ (version 5.5 Win 32 x86) and
ENVI™ (version 3.5) program called SBS (Supervised Band Selection), that can be run within
ENVI™. The program options include to either force the bands to be of equal width (can be used for
creating a band set for CASI-2's enhanced spectral mode) or letting the bands expand freely to
achieve the highest criterion performance (optimal band set). In addition, specific bands or classes

may be included in the evaluation or excluded from it.

The algorithm was evaluated by applying it to hyperspectral data from the CASI and HyMAP
sensors. The resulting optimal band configurations were found o be physically meaningful with
respect to the classes under investigation. The sub-optimality of the feature selection part of the
algorithm was quantified by performing an exhaustive search using the ML.C accuracy measure and
comparing the ‘exhaustive’ and SBS band set in terms of MLC accuracy. For the first three
dimensions, the use of the SBS band set resulted in a maximum loss in accuracy of 4% and 6% for
the New Forest and River Severn data set, respectively. This sub-optimality of the algorithm is the

cost to pay for its computational feasibility and efficiency.

Furthermore, the MLC accuracy of the SBS band set was compared with the one of established
‘vegetation’ and ‘coastal’ band sets used in current satellite and airborne sensors and simulated with
the given data sets. For both data sets, the SBS set performed superior to the traditional band sets
at least for the first few dimensions. This may be explained by the fact that traditional band sets do

not necessarily discriminate between the user-defined classes but sampie the most important
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spectral features of a general material class. The SBS band set for the CASI data set
underperformed slightly for higher dimensions, exposing the sub-optimality of the algorithm. The
algorithm therefore seems to be more applicable for deriving band subsets of small dimension for
the given data sets. In other words, it achieves the aim of identifying the most computationaily-

efficient solution to the problem of each specific classification task.

The band number criterion, that is, the proportion of maximum achievable Transformed Divergence
PMATD with a 95% threshold, was shown to be an effective measure of the intrinsic discriminant
dimensionality (IDD) of the given data sets. The PMATD coincided with the lower value of the IDD
range estimated for the New Forest data set in chapter 3, while it overestimated the lower IDD value

of the River Severn data set by one, but falling still within the estimated IDD range.

Being a supervised method, SBS depends on accurate class definition. As the latter is an elaborate
and often non-trivial task, the SBS cannot be employed in-flight between data acquisitions. To be
able to perform band selection in-flight, an unsupervised band selection routine was developed, and

this is described in the following chapter.
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5 Unsupervised Band Selection for Classification

514 Introduction

This chapter focuses on the development of an automatic unsupervised band selection procedure
with MLC as final data application. The ideal output is a band set optimised in band number, width
and location with respect to the MLC accuracy. Generally, an unsupervised algorithm does not
require any class information, and may rely entirely on band statistics. That is, statistics are no
longer calculated for homogeneous class areas, but for entire band images, which may be
inhomogeneous. In order to ensure the validity of the band statistics for a given data set, univariate

assumptions need to be verified for eabh band within the set (see section 5.2).

The MLC accuracy may no longer be approximated via muitiple-band class distance measures as in
the supervised SBS algorithm described in chapter 4, but indirectly via band image quality measures
instead. Section 5.3 discusses the use of unsupervised feature selection criteria (see section 2.2.2)
as possible measures of image quality with respect to MLC as application task. The latter single-
band measures do not account for the redundancy between hyperspectral bands, and section 5.4

presents possible measures of redundancy.

A correlation-based band selection algorithm, UBS, is then described in section 5.5, which
addresses both image quality and redundancy problems mentioned above. The latter requires band
variables to be normally distributed, which may not be the case for each data set. As an alternative
to UBS, CSBS, an unsupervised version of the SBS aigorithm, is presented in section 5.6, which
uses a clustering procedure to define the classes within the scene. Both algorithms were
programmed in IDL™ (version 5.5 Win 32 x86) within the ENVI™ (version 3.5) processing
environment and were run in Windows NT on a 1 GHz Intel Pentium Il processor with 256 MB RAM.

Any quantifications of computational speed made in this chapter refer to these specifications, if not

otherwise stated.

One objective of this chapter was to create an algorithm that can be used in-flight for the CASI-2
imaging spectrometer, where the data collection followed the procedure described in section 4.3.1.
Therefore, computational efficiency and speed needed to be considered in the design phase of the

band selection programs to allow for their real-time and in-flight executions.

The two hyperspectral data sets introduced in the pilot study (chapter 3) as the New Forest and the

River Severn data sets were used to evaluate the band selection algorithms (section 5.7). In section

5.8, a concluding summary is presented.
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5.2 Testing Univariate Assumptions

Most measurement processes are assumed to sample a random variable, i.e. a variable with an
uncertain outcome (Hoel, 1984). In addition, data are assumed to come from a single process that
can be represented by a single distribution with both a fixed location and a fixed variation. Most
classical methods assume a normal data distribution. The validity of conclusions drawn from any
scientific method is intrinsically linked to the validity of the latter univariate assumptions, and may be

tested via graphical and quantitative technigues.

5.2.1 Graphical Techniques

Graphical techniques for testing univariate assumptions include:
1) the run sequence plot,
2) thelag plot, and
3) the histogram.

The run sequence plot displays the sequence of data points (and rows) for the entire image. A flat
and non-drifting graph suggests the presence of a fixed location, while a constant vertical spread
over all samples implies a fixed variation of the underlying distribution. A drifting location and

variation result in a poor and biased single estimate of central tendency and spread, respectively.

The lag plot with lag equals one shows direct neighbouring values plotted against each other (here
only horizontal and vertical neighbours). It tests the spatial correlation of neighbouring data pixels.
The plot shows no structure for random data. If non-randomness is detected, all of the usual

parameter estimates and their uncertainties may become meaningless and statistical {ests invalid.

The histogram is a widely used frequency plot for data value intervals of the same width (bins), used
to summarise the distribution of a univariate data set. lt shows the centre, spread and the skewness
of data, as well as the presence of outliers and multiple modes. lts shape may help to decide
whether the data follow a certain type of distribution. In this study, the author was interested in
assessing the normality of the underlying data. The corresponding normal probability density
function was plotted over the histogram fo illustrate any similarities in shape. Non-normality can
manifest itself in a double peak (measurements are being drawn from two or more distributions), in
long tails (indicating outliers in the process), in a flat pattern or a pattern with two peaks at either end

(process is not in control or not properly specified).
The histogram is sensitive to the number, width and placement of bins, and any change in the latter

parameters may indicate a different result as to whether the data are normaily distributed or not. An

optimal choice of bin width does not exist, as this depends on the data distribution. Most reasonable
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choices should produce similar but not identical results. DataplotTM, a public-domain multi-platform
software system for statistical analysis, calculates the bin width by multiplying the sample standard

deviation with a factor of 0.3 (Fillibben and Heckert, 2002).

5.2.2 Quantitative Techniques

Quantitative tests for normat distributional adequacy include the Kolmogorov-Smirnov test, the
Anderson-Darling test, and the Chi-Square Test of Independence. While the former tests are both
limited to continuous distributions, the latter test of independence can be applied to any univariate
distribution. Remotely-sensed data have a discrete distribution, as only integer values are possible

as a result of data quantisation.

The Chi-square ( y 2 ) test of independence is applied to nominal (binned) data and compares

observed with expected (normal) frequencies. The ¥ ? statistic is calculated with equation 5.1. is

distribution is well known and tabulated.

v (0, -E,)
2 i i
Where ¥ 2 Chi-squared test statistic
0, Observed frequency for bin i
E, Expected frequency for bin
b Number of non-empty (> 5) bins

For y ? {0 be valid for discrete distributions, the expected frequencies need to be at least 5 for each

bin, otherwise bins need to be combined to achieve this minimum frequency. The null hypothesis Hy
of the test assumes that the observed and expected frequencies are independent. The alternative
hypothesis is that a relationship exists between the data. The level of significance « is commonly

set to 1% or 5%, so that one has one or five chances in 100 of making a type | error. The critical

value xisdf is the upper alpha percentile point of the chi-squared distribution with df degrees of
freedom. df equals b —1 minus the number of estimated parameters (2 for a normal distribution).

The decision rule is: Reject Hg if ¥ < )502‘7de, otherwise accept Hy. For a large number of samples

(df > 30), the y ? distribution approximates the normal distribution closely (Hinton, 1995). The y ?

test of independence is sensitive to the choice of bins.

In addition to the quantitative methods described above, a correlation coefficient may be computed

between the histogram data and a theoretical normal distribution. The correlation coefficient » can
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be compared to a table of critical values 7, ,, to provide a formal test of the null hypothesis Hy that

the data do not come from a normal distribution, with N being the number of data pairs. The
decision rule is: Reject Hy if >, ,, otherwise accept Ho. This test is a lower one-tailed test, as

perfect normality implies the maximum correlation value of 1 and the interest in this test lies in
rejecting normality for correlation values that are too low. The table of critical values may be found in

NIST/SEMATECH (2003). This test of normality is also susceptible to the selection of bins.

Most methods in pattern recognition and statistics require that the data variables follow a normal
distribution, or one that is derived from the normal distribution (such as the t, F, or ¥ 2 distribution).

If the variables are found not to be normally distributed, ‘non-parametric’ methods, equivalently
referred to as ‘parameter-free’ or ‘distribution-free’ methods, can be used. These techniques require
few assumptions about the underlying populations from which the data are obtained, in particular

forgoing the traditional normality assumption.

5.2.3 Application to Remotely-Sensed Data

Sensor bands may be considered as random variables belonging to a single normal distribution,
when measured over pixels belonging to the same homogeneous class. However, for the
unsupervised band selection program to be described in section 5.5, the knowledge of certain class
areas is not available, and pixels of the entire scene are now considered as measurements of one
band. However, a remotely-sensed image scene hardly ever consists of one single homogeneous
class, but of several distinct classes. That is, data arise from multiple distributions rather than a
single one, resulting in several data clusters in feature space. The assumption of a single underlying
distribution for a band measured over an entire image scene may only hold if most of the scene was
made up of the same material. That is, if an algorithm uses band statistics, such as band mean and

variance, the normality assumption needs to be verified for each image band.

The above graphical technigues were applied to some bands of the New Forest and River Severn

imagery, and results are displayed for some of the bands in appendix D.

The run sequence plots for the bands of the New Forest data (see table D.1) clearly expose a
strongly drifting location and variation for the data. Bands 18 to 60 show a less pronounced change,
but the variations in location and spread are still significant. The run sequence plots for the bands of
the River Severn data (see table D.2) start with a relatively fixed mean and spread for the first few

bands. However, the differences of location and variation increase for the remainder of the bands.

The lag plot for the bands of the New Forest and River Severn data are presented in tables D.3 and

D .4, respectively. The lag plots of the New Forest data clearly show the data points distributed along
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the identity line, revealing a strong spatial correlation between neighbouring pixels. The shape
transforms slowly from a ‘spinning top’ (band 1) to a diagonal ellipse (band 19), and maintains the
elliptical shape until it transforms back to a ‘spinning top’ (band 88). In contrast, the lag plots of the
River Severn data maintain an elliptical shape surrounded by a cloud of data points that even
transforms into a near-circular shape for bands 31 to 34, suggesting a smaller spatial autocorrelation
than for the New Forest data. For MLC-type data application tasks that use remotely-sensed
imagery, usually high spatial autocorrelation is required in order to obtain the desired H-resolution

case. Data points should therefore fall close to the identity line.

The histogram of the New Forest bands (table D.5) show mostly a single centre with a relatively
symmetrical spread, suggesting that the data have a single underlying distribution. A long tail to
large DN (digital number) values indicates the presence of outliers. The histograms are generally too
peaked and skewed to fit the normal probability distribution function, however a relatively good fit
may be observed for bands 19 to 30. Table D.6 displays the histograms of some of the bands of the
River Severn imagery, which clearly exhibit a bimodai distribution for some bands. For bands 34 to
38, the second peak is hidden, but re-emerges slightly for the remaining bands. The single-peaked
histograms fail to match the corresponding normal curve due to their strong peakedness and

skewness.

The results of the chi-squared test and the significance test of the correlation coefficient are shown
for the New Forest and River Severn data in tables D.7 and D.8. Only a few bands of the New
Forest data were shown to be approximately normally distributed by the significance test of the
correlation coefficient (for bands 19 to 26 and 29 to 31, the independence hypothesis was rejected
at a significance level of 1%, for bands 17 and 32 at a significance level of 5%). The chi-squared test

did not suggest a normal distribution of any of the bands of the two data sets.

5.3 Image Quality Measures

Clearly, the definition of ‘image quality’ is dependent of the application of the image data. For MLC
as data application, a band image may be considered of higher quality if it conveys more
discriminant information about the classes of interest than a noisy image does. As classes of interest

are unknown in the unsupervised case, information need to be quantified in a class-independent

way.

Some unsupervised measures equate image variance with information, assuming that the noise
within the data is small relative to the signal (Richards and Jia, 1999). In short, the higher the scene
variance, the more class discrimination is possible. These measures include the band variance itself,
the discriminant power measure determined from eigenanalysis via PCA (section 2.3.5, equation

2.38), the Priority Number criterion and the coefficient of variation (section 2.2.2).
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However, if the noise proportion becomes larger with respect to the signal, the variance image
statistic also measures noise. Then, a noisy scene image with low class discriminatory power may

equally result in a high scene variance.

The signal-to-noise ratio (SNR) is one of the most common measures of image quality (Green ef al.,
1988) and may be defined as ratio between signal and noise (see section 2.2.2). The information of
interest to the user is inherent in the signal and may be estimated with the image band mean to be
representative for the entire image scene. Different methods for image noise estimation exist and
are presented in section 2.3.2. In general, the author preferred noise estimates derived from dark

data to those from scene-based data.

SNR differences between bands may be due to solar, atmospheric and instrumental influences on
the radiance signal, as well as the scene reflectance. One might assume that the SNR and MLC
accuracy are positively correlated, as an image high in noise {and low in SNR) would lead to a lower
MLC accuracy and vice versa. However, if SNR increase is achieved, for example, via band
expansion, the MLC accuracy may suffer, as broader bands may discriminate less between the

given classes. That is, only a very loose relationship exists between the SNR and MLC accuracy.

Spatial autocorrelation, e.g. calculated using Geary’s c-metric (Geary, 1954; see section 2.3.2), may
also be used as image quality measure. The higher correlated neighbouring pixels are, the less

noise may be present in the image.

In an experimental analysis, the appropriateness of the above image quality measures as relative
estimates for the MLC accuracy was tested. Table 5.1 shows the correlation coefficient between the
MLC accuracy estimated with the ‘leave-one-out’ method (see section 3.3.1) and the unsupervised
criterion functions for the New Forest and River Severn data and class sets. Their corresponding
scatter plots may be found in tables F.1 and F.2 in the appendix. Regarding the band SNR, the
standard deviation of a homogeneous area was used as noise estimate for the River Severn data,

as dark current data were only available for the New Forest data set.

Table 5.1: Correlation coefficient between unsupervised criterion functions and the MLC
overall accuracy estimated with the leave-one-out method for the New Forest and River
Severn data set.

New Forest River Severn
Variance 0.824 -0.766
Discriminant power {PCA) 0.767 -0.734
Priority number criterion 0.779 -0.780
Band SNR 0.732 -0.844
Coefficient of variation -0.799 -0.168
Geary’s ¢ metric -0.353 -0.084
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The variance-based criterion functions, including band variance, discriminant power and priority
number criterion, as well as the band SNR showed a relatively high correlation with MLC accuracy
estimation for both data sets. However, in case of the New Forest data set, this relation was positive,
while it was negative for the River Severn data set. This suggests that all these measures are not
reliable estimates for ML classification accuracy, being able to represent either information or noise,
depending on the quality and heterogeneity of the data set. In this case, the River Severn data set

was on the whole much more heterogeneous than the New Forest one.

Both the band coefficient of variation (here defined as the ratio between band standard deviation
and mean) and Geary’s ¢ metric are, as measures of image noise, negatively correlated to the MLC
accuracy, which is reflected in the correlation coefficient for both data sets. However, for both

criteria, the correlation to MLC accuracy is very low for at least one of the two data sets.

As a result from the experiment, none of the unsupervised image quality measures under
investigation represents a consistent estimator of MLC accuracy. However, if a choice was to be
made, the author would prefer the SNR as quality measure as it is computationally cheap and scales
the signal component with the noise component. The latter is important, as a band with a small noise
estimate may only be considered ‘information-bearing’ if the signal of the band is relatively high. The
dark current standard deviation should be preferred to the homogeneous-area standard deviaticn as
detector noise estimate. It is more accurate and particularly important for imaging spectrometers
using separate detectors for different wavelength ranges (such as HyMAP), as the noise originating

from different detectors may vary.

Figures 5.1 and 5.2 display the result of the SNR value calculation for the New Forest and River
Severn data set, respectively. In both cases, the signal for each band was estimated with the image
band mean. For the New Forest image, the noise covariance matrix was derived directly from
HyMAP’s dark current measurements. As dark data were not available for the River Severn CASI
image, the noise covariance matrix was derived with the ‘shift difference’ technique from a spatially
and spectrally homogeneous Bare Mud region within the image (see section 3.4.1). To note is that
the calculated SNR of the New Forest imagery (figure 5.1) does not represent realistic values, as the

dark data were not scaled to the same unit as the band mean, that is, reflectance.

It may be noticed that in both cases the SNR curve resembled roughly the mean spectrum, a
vegetation spectrum. However, in both cases the NIR plateau includes a fall of SNR suggesting a
noise increase between detectors (HyMAP data) or at the end of a detector (CASI imagery). In

addition, it may be seen from figure 5.1 that the HyMAP sensor noise is higher in the SWIR region
than in the VIS or NIR.
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Figure 5.1: Band Signal-to Noise Ratio (solid  Figure 5.2: Band Signal-to Noise Ratio (solid

line) and mean (dashed line) for the New line) and mean (dashed line) for the River
Forest data set with the noise estimated from Severn data set with the noise estimated
dark current data. from a bare mud image region.

Image quality estimates including the band SNR are single-band measures only and do not explain

the redundancy between hyperspectral bands. The next section introduces potential measures of

band redundancy.

5.4 Redundancy Measures

The algorithm in section 5.5 is designed to find a set of bands that are least redundant with each
other for a given scene. In the context of MLC, a band in a band set may be called redundant if it
does not convey any more information for class discrimination than the rest of the bands in the set

do. That is, redundant bands within a band set do not contribute to a significant increase in the band

set classification accuracy.

For the unsupervised algorithm in section 5.5, an unsupervised measure is needed to estimate the
redundancy between bands with respect to the MLC accuracy. Chang ef al. (1999) used the
divergence to measure the overlap between band distributions in order to eliminate redundant
bands. If the distance measure was below an empirically chosen threshold, the bands were
assumed to be highly redundant and were removed. However, the divergence only quantifies the
‘shape’ difference between two band histograms, not the redundancy of the bands. Two bands with

identical distributions may result from highly non-redundant band images that have a different spatial

distribution of DN values.
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5.41 Correlation

In general, correlation is used to describe a relationship between two variables j and /. To
measure the strength and the direction of a linear correlation, the Pearson (or product-moment)

correlation coefficient, Yy (or r), introduced in sections 2.1, 2.2.2 and 3.3.2 may be calculated.

Equation 2.4 illustrates that » corresponds to the covariance of standardised variables, where the
covariance is a measure of how much the deviations of two variables match. » ranges from -1

(perfect negative correlation) over 0 (lack of correlation) to 1 (perfect positive correlation). If only the

strength of a relationship is of interest, the coefficient of determination, 72, is reported, which

corresponds to the proportion of common variation in the two variables.

The calculation of » assumes

= data to be measured on an interval or ratio scale,

= variables to be normally distributed,

= measurement errors {o be small,

= the underlying relationship between variables to be linear, and

= the relationship between the two variables to remain constant at all points (homoscedasticity).

Examining the scatter plot of the two variables may check both the homoscedasticity and linearity
assumptions. Points should be evenly spread around the regression line. Any outliers or isolated
points and clusters can strongly influence the strength of the correlation. Unfortunately, a widely
accepted method to remove outliers does not exist. Attempts to deal with nonlinear relationships
include the removal of nonlinearity by some logarithmic or square root data transformation, or the

use of a less sensitive nonparametric correlation coefficient (see section 5.4.2).

The reliability or significance of a correlation, i.e. the likelihood of achieving the same correlation if
another sample from the same population was drawn, may be tested with significance tests.
Generally, the stronger the correlation, the more reliable it is. In addition, the significance of a
correlation is a function of the sample size. A small correlation can only be proven to be significant in
large samples, whereas a strong one may be found significant even in a small sample size. For
example, in a coin tossing experiment with 10 samples, a heads to tails frequency ratio of 49:51 is
harder to prove than a ratio of 0:100. That is, if the sample size is small, the probability of a random
deviation (noise) is high, while it decreases with increasing sample size. A highly significant

correlation does not automatically imply that the correlation is strong.

Significance tests in general aim to check whether a relation of a given magnitude or larger from a
sample of given size is likely or not. They usually assume no such relation between the variables in
the population (null hypothesis), and quantify the probability of this hypothesis. If this probability is

very small, conventionally below 5% or 1% (significance level ), the null hypothesis can be
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rejected with 95% or 99% confidence, respectively. The significance level is the probability of

making a type | error, i.e. rejecting the null hypothesis although it is true.

To test the significance of a correlation, first the null hypothesis ‘No correlation exists between the

variables’ is stated (‘test for zero correlation’). It can be shown that, assuming a zero population

correlation, the distribution of the sample correlation coefficient Y based on N pairs of

observations follows a distribution, which is related to the Student’s ¢ -distribution with N —2

degrees of freedom for small N according to equation 5.2 (Owen, 1962).

N-2 (5.2)

1—72

r=r

For large N , the sampling distribution of vy is approximately normal, but bounded at -1 and 1. Any

value of r may be transformed to a standard variable according to equation 5.3 assuming zero

population correlation (Edwards, 1984):

VA—

I3

—-—\/jv;}- [In(l+7)-1n(l - )] (5.3)

With the knowledge of the distribution of the test statistic under the assumption of zero correlation, a
critical value 7, (or z,, for large N ) at a chosen significance level a may be calculated for the

statistic. Standard tables of critical values exist for the - and z -distributions for certain significance
levels and a certain range of degrees of freedom. If a table was calculated for two-tailed tests,

corresponding values for one-tailed tests may be found in the column for twice the significance level.

The following decision rules for rejecting the null hypothesis (for small NV ) are possible, depending
on whether a one-tailed or two-tailed test for zero correlation has been chosen:

= One-sided upper-tail test with alternative hypothesis ‘Variables are positively correlated”:
Reject null hypothesis, if £ > 17, .

= One-sided lower-tail test with alternative hypothesis ‘Variables are negatively correlated’:
Reject null hypothesis, if £ <~z .

= Two-sided test with alternative hypothesis ‘Variables are correlated’:

Reject null hypothesis, if lz‘J 2t ;.

Forlarge N ,use z, and z, instead of # and ¢, , respectively. If the null hypothesis is rejected, a

significant correlation is said to exist between the variables for the given experiment at the chosen
level of significance. in other words, the correlation is big enough to reject the possibility that it arose
by chance. One-tailed tests are statistically more powerful than two-tailed ones, as they decrease

the probability of making a type Il error, i.e. accepting the null hypothesis although it is not true.
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The matrices of the coefficient of determination for the River Severn and New Forest data sets are

displayed in figures 3.10 and 3.11, respectively, and discussed in section 3.3.2. As for both data

sets, NV islarge (379,169 and 43,720 samples for the New Forest and the River Severn data set,

respectively), the large sample approximation of the critical value z_, may be applied. For a two-

sided test and a significance level of 1% (5%), z,,, equals to 2.576 (1.960). Figures 5.3 and 5.4

show the significance of the correlation coefficients at a significance level of 1% in form of a binary

image for the New Forest and River Severn data sets, respectively. The significant correlation

coefficients are marked white and the insignificant ones black. For both data sets, the majority of all

correlations between bands is statistically significant.

117

117

Figure 5.3: Significance (1%) of the

correlation coefficients for the New Forest
data set (significant = white, insignificant =

5.4.2

black; axes = band number).

60

1 60

Figure 5.4: Significance (1%) of the
correlation coefficients for the River Severn
data set (significant = white, insignificant =

black; axes = band number).

Nonparametric Correlation Measures

If the measured samples are not normally distributed, the calculation of the correlation as indicator of

a relationship between two variables may be misleading. Nonparametric equivalents to the Pearson

correlation coefficient include Spearman’s and Kendall's rank correlation coefficient, which are only

based on the ranks of the data. The former is described further as an example. The Spearman rank

correlation coefficient, 7y, is defined by equation 5.4 (Owen, 1962).
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Where 2 Spearman’s rank correlation coefficient

d. Difference between the ranks of the i th pair of item

I

N Number of pairs of items

The distribution for r; assuming a zero population correlation is known and critical values 7 , are

tabulated (Owen, 1962, table A.31). The same decision rules apply as for the Pearson correlation

coefficient replacing ¢ and 7, with ¢ and rg ,, respectively. For large NV, the standardised form of

rg, r;, may be calculated (with equation 5.5), which has an asymptotic z -distribution if N tends to
infinity and the null hypothesis is true.

ry =rsVN -1 (5.5)

For the large-sample approximation, the same decision rules apply as for the Pearson correlation

coefficient, replacing ¢ and r_, with r; and z_, respectively.

Although 7, requires the variable only to be measured on an ordinal scale and forgoes the normality

assumption of the variables, it is generally considered statistically less efficient and powerful as its

parametric counterpart, that is, it may not detect a correlation when that correlation actually exists.

Normal distribution based tests may still be used with non-normally distributed variables for large
sample sizes, as the consequences of violating the normality assumption have been shown to be
less severe than previously thought (Statsoft, Inc., 2002). However, the user has to be aware that

some conclusions may not be valid.

5.4.3 Multiple Correlation

The algorithm in this chapter is designed to find a set of bands that are least redundant with each

other and with any combination of other bands within the set. The multiple correlation coefficient

R, ,, may be used as a measure of redundancy of a new band ¥ with the entire band set (bands 1
and 2). R, , takes values between 0 and 1, and its square form, the coefficient of determination
for multiple correlation, R;u, represents the variability of band ¥ that is explained by bands 1 and

2 . Usually, Rfu is computed directly via regression using original data. However, for large data

sets, such as hyperspectral image data with a high number of bands (about 100 or more), each
containing 100,000 samples or more, computer memory problems for standard regression software

packages (such as ENVITM) may occur. Therefore, the author sought an alternative and more

efficient way of calculating R;n from the band correlation matrix alone.
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If all bands were mutually uncorrelated, the variability of ¥ explained by both bands 1 and 2, R;n,

may be computed by the simple sum of the variability of ¥ explained by band 1, ryzl, and that
explained by band 2, ryzz (see equation 5.6). This is because the contribution of band 1 to the

value of R;lz is unique and independent of the contribution of band 2 (Edwards, 1984). The

generalisation of equation 5.6 to any number of mutually orthogonal bands, %, is shown in equation
5.7.
2 2 2
Ry, =1y + 1y, (5.6)
2 2 2 2 2
Ryjpsq =0y +1py 1y 41y (5.7)
However, hyperspectral image bands are usually highly correlated, and the above formulae result in
an incorrect estimate of the coefficient of multiple determination. In order to correct equation 5.6 for
correlated bands, the variability in r},zz that is explained by band 1 needs to be removed. This is

achieved by first calculating the correlation of bands ¥ and 2 having removed the effects of band

1, that is, the partial correlation coefficient r,,, (equation 5.8; Hinton, 1995). Equation 5.9 gives the

formula to partial out the effects of more than one band (here bands 1 and 2 ) on the correlation of

Y and 3.

Vo = Pyt 1
Y2 vifa1 (5.8)

__Tyaa TTyaalsn (5.9)

p
Y312
2 2
\/1—ry2.1 \/1_r32.1

But ry,, does no longer apply to the entire variability of ¥ , but to the one that remains after the

variability of ¥ explained by band 1 has been removed, that is to (1 -7} ). The correct formula for

R}, when bands 1 and 2 are correlated is given in equation 5.10 (Hinton, 1995).

2 2 2 2 5.10
Rxlz_rm"'ryz»l(l_’m) ( )

2 2 2 2
Ry1s =Ry py +7y31 (I_RY,IZ) (5.11)
Similarly, the coefficient of multiple determination may be computed for any number of bands in a
recursive fashion. An example is given in equation 5.11 for R;m . Using formulae 5.6 to 5.11, the

multiple correlation coefficient may be determined entirely on the basis of the band correlation

matrix.

The significance of a mulitiple correlation may be tested with the I -test (equation 5.12), with

degrees of freedom (k, N —k —1), where N is the number of samples and k£ the number of

independent variables (number of bands already in the set). The [ -statistic (or variance ratio)
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divides the estimated variance of the ‘explained variability’ by the one of the ‘unexplained variability’
(Hinton, 1995).

Rk
(1-R* /(N -k-1)

(5.12)

The [ -distributions are known and critical values £, for a certain significance level a (usually 1
and 5%) and any combination of degrees of freedom (even up to infinity) are tabulated. The null
hypothesis assumes no systematic difference between the variances of ‘explained’ and ‘unexplained
variability’ (F = 1), i.e. no significant multiple correlation. The decision rule for rejecting the null

hypothesis is given as follows:
= One-sided upper-tail test with alternative hypothesis ‘Multiple correlation is significant’:

Reject null hypothesis, if /72> F), .

From equation 5.12 and the latter decision rule, a lower limit of R? for its significance at a given

level may be calculated for the given data sets (sample number N ) and the number of bands

already in the set (k) (see table 5.2).

Table 5.2: Lower limits of the coefficient of multiple determination R? for statistical
significance at a level of 1% and 5% for the New Forest and River Severn data sets. & is the
number of bands already in the band set when the new band is added.

k New Forest River Severn
1% 5% 1% 5%

2 0.002485 0.001628 0.021096 0.013736
3 0.003004 0.002081 0.025929 0.017854
4 0.003466 0.002468 0.030368 0.021696
5 0.004051 0.002996 0.03453 0.02534
6 0.004463 0.00335 0.038495 0.028842
7 0.00485 0.00368 0.042229 0.032138
8 0.005221 0.004001 0.045944 0.035461
9 0.005765 0.004512 0.049579 0.038721
10 0.006111 0.004817 0.053124 0.041928
11 0.006449 0.005114 0.056518 0.044965
12 0.006985 0.005617 0.059956 0.048082
13 0.007314 0.005905 0.06335 0.051173
14 0.007627 0.006185 0.066698 0.054236
15 0.008155 0.006696 0.069904 0.05713
16 0.008468 0.006968 0.073181 0.06014
17 0.008773 0.007232 0.076432 0.063132

From table 5.2 it may be seen that in order to become insignificant R? values have to reach below
0.01 and 0.1 in magnitude for the New Forest and River Severn data set, respectively, and a

maximum of 19 output bands.
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5.5 Correlation-Based Algorithm

Both the problem of redundancy and image quality stand at the heart of this algorithm (see sections
5.3 and 5.4). Selecting bands entirely on the basis of a high SNR value may result in a band set of
high image quality but also of high redundancy. For hyperspectral remote sensing data, the author
perceived redundancy as the greater dilemma, as sensor noise from current airborne sensors is
usually very low (e.g. high SNRs for CASI-2 and HyMAP sensors of up to 500:1 in the solar

reflective range, see table 1.3) and the few noisy bands usually at the edges of detectors may be

singled out by the analyst.

5.5.1 Decorrelation

The first main aim of this algorithm is to produce an approximately decorrelated set of bands where
the bands are ranked according to increasing correlation. The first two bands are the least

correlated, and added bands become more redundant with respect to the band set with increasing

band number.

Decorrelation of a set of redundant features may be defined as the process of transforming original
features to a reduced set of mutually statistically independent features that explain the majority of
the variance in the data set. Generally, decorrelation is performed with PCA, as during this
transformation the covariance matrix (and the correlation matrix) wiil be diagonalised, and therefore
resulting features orthogonalised. However, PCA produces new features that usually do not relate to
the original sensor bands on a one-to-one basis, but are linear combinations of all original bands,
destroying the integrity of the data. That is, without modifications PCA cannot be employed directly

for decorrelating a band set, when original bands should result.

Some authors use PCA results indirectly to select least correlated bands. Thomson et al. (1998a)
used the eigenvector loadings of a PC feature as indicator of the domination of bands in the linear
combination to eliminate highly redundant bands. Higher order PCs may be ignored as they provide
little significant information for separating different classes in an image (Richards and Jia, 1999).
This procedure is similar to calculating the discriminant power measure from PC features (section
2.3.5). However, this methodology involves subjective judgement of the user about the level of noise
within a certain band, that is, when to ignore a PC and when not. Whether or not to include certain

bands within an eigenvector is also not clear.

Gruninger et al. (2001) presented a sequential unsupervised band selection method, which aims to
eliminate redundant bands using a modified Gram-Schmidt procedure. First, the brightest band is
chosen and removed from the remaining bands via convex projection. As each band mean

represents a vector in feature space, the latter projection practically subtracts the longest vector
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from all other vectors. Then, the second band is selected as the brightest, i.e. the longest, remaining
vector and is in turn removed from all other vectors not yet in the band set. This process is repeated
for all bands. When terminated, highly correlated neighbouring bands may be merged using a
correlation threshold. However, this procedure relies on the vector length as a measure of
redundancy between the removed vector and the remaining vectors. This may be misleading as
vectors (bands) may be of different length (brightness). As a result, a brighter but more correlated

band may be chosen over a darker but less correlated one.

Some decorrelating band selection procedures were created mainly to produce most informative
colour composites. Chavez et al. (1982) developed the Optimal index Factor (OIF) measure, which
ratios the sum of the standard deviations of all three bands with the sum of the absolute correlation
coefficients between any two of the three bands. All possible band combinations need to be
investigated before the one with a maximum OIF is chosen. Sheffield (1985) selected the band
triplet which maximised the volume of the ellipsoid defined by the 3 by 3 covariance submatrix. The
volume may be calculated by the determinant of the covariance submatrix. This method discourages
the selection of highly correlated bands, as in such cases one eigenvalue will be close to zero giving
a small ellipsoid volume. Crippen (1987) advised to use the band correlation matrix instead of the
covariance matrix in the latter method to eliminate band scaling effects on the result. Both of the
methods described above are applicable to higher dimensional output band sets. However,
Chavez’s method exploits only pairwise and not multiple correlations, and uses variance as measure
of information. Sheffield’s method relies on the calculation of the determinant of a matrix, involving

higher computational cost for higher-dimensional matrices.

In this thesis, the author chose the coefficient of multiple determination, RZ, to decorrelate the band
set. The latter reflects the percentage variance of a new band that is explained by the bands aiready
within the set, i.e. by any possible linear combination of them. Then, a band set is decorrelated by

first choosing the bands with the least correlation between them. Any additional band to be included

into the set needs to have the least R* with respect to the bands already in the ‘decorrelated’ set.
As sensor bands are by nature statistically dependent features, this decorrelation process will not

result in an orthogonal band set, but in a set of approximately least redundant bands.

For the decorrelation result to be appropriate, noisy bands need to be either excluded from the

process or smoothed with some spatial filter beforehand. Noise can result in a low correlation

coefficient.
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5.5.2 Bandwidth Increase

The second aim of this algorithm is to increase the width of individual bands within the set in order to
both improve the band image quality (and hopefully the application accuracy) and allow for finer

spatial resolution or a larger swath width (as for the CASI-2) in the sensor configuration.

However, there is a general trade-off between bandwidth increase and achieving minimum band
correlation in the set. The author demonstrated in a mathematical proof in appendix E that once the
least correlated bands have been chosen within a set, any increase in width of one of the bands will
result in a higher correlation coefficient. Consequently, the user should have the option to either fix
the bandwidth to a certain number of neighbouring bands to be summed, or let the algorithm expand

the bands freely without a bandwidth constraint.

As mentioned earlier in section 4.3.4, the merger of adjacent bands may improve the image quality
(here the SNR) and possibly the MLLC performance of the band set. However, broader bands may
discriminate less between the given classes. The SNR is therefore not the ideal criterion to be used
for ML.C accuracy increase with band expansion, but it has been chosen from other image quality

measures due to the reasons described in section 5.3.

The width of a band may then be increased as follows. The adjacent band leading to a better SNR
performance of the band is merged. If an expansion into a certain direction drops the SNR, the
bandwidth is no longer increased in this direction. A drop in SNR may occur when a band is merged
to another one with a smaller SNR. This process is repeated until both left and right band mergers
decrease the SNR of the expanded band. The actual merger of bands involves simply summing their
DN values (see section 4.3.4), and the signal and noise statistics are updated according to
equations 4.1 to 4.5. By summing the DN signals between neighbouring bands, the bandpass is

automatically taken care of.

If the user lets the algorithm to broaden bands freely in order to maximise the band SNR, the same
constraint to the ‘unequal bandwidth’ option for the supervised band selection algorithm needs to be
applied (see section 4.3.4). This is to ensure that all bands in the set obtain at least a certain

percentage (20%) of the maximum achievable signal level.

5.5.3 Band Number Determination

This section aims to determine the optimal band number for the final set. As in the supervised case,
the question may be asked whether the user- or sensor-defined output band number is actually

necessary to achieve the same MLC accuracy as with the full band set, or whether fewer bands may

produce similar results.
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For the algorithm described here, class information is not available to produce an estimate for the
intrinsic discriminant dimensionality (IDD). In addition, intrinsic dimensionality (ID) estimation
methods are not applicable, as original bands are to be selected by the algorithm, and not linearly
independent features. In the following paragraph, a measure is described which represents an upper

limit to the ID estimate.

In the algorithm described above, the band with the minimum coefficient of (multiple) determination
regarding previously selected bands is chosen as next member of the set. It is the band among ali
remaining bands with the highest percentage variance that is not explained by the bahds already
within the set. If this unexplained variance decreases below 5% or 1% for the actual band (above an
R? value of 95% or 99%, respectively), the addition of the actual or any further band can be

regarded as an insignificant contribution of variance to the set. The optimum band number then

equals to the size of the band set including the last band that does not exceed the given R’

threshold (e.g. 95% or 99%).

5.5.4 Algorithm Implementation

As increasing the width of a band changes its correlation with any other band, band expansion has

to precede any decorrelation procedure. Hence, the following unsupervised band selection approach

is proposed.

1) Bandwidth increase of all bands in turn: First, the bandwidth of all bands is increased
independently under the constraints that the SNR is improved by the band merger, and that only

spectrally adjacent bands may be merged.
2) Selection of the first band(s): Second, according to the user’s choice the band with the highest

SNR or the band pair with the least coefficient of determination is chosen as the first band(s) in

the final set.
3) Bandwidth increase of available bands in turn: Third, the bandwidth of ail remaining bands is

increased under the same constraints as in 1).
4) Select additional band: Fourth, the band with the least coefficient of (multiple) determination with

respect to already selected bands is added to the set.
5) Repetition of step 3) and 4) until the user-specified number of final bands is reached.

A list of selected bands resuits, showing least correlated bands on top of the list, and the most

redundant ones at the bottom.

The user may limit the input data by excluding certain bands from the algorithm either via direct
selection or rejecting any bands outside the atmospheric windows determined in section 4.2.2. In

addition, the user has the option to influence parts of the algorithm. In point 2, the selection of the
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first band (pair) may be based on the highest SNR band value or the least coefficient of
determination. The user may also guide the band expansion process (points 1 and 3) by introducing
an ‘equal bandwidth’ constraint, which forces the bands in the set to be merged with an equal
number of neighbours. What is more, the number of bands o be merged may be fixed to a certain
value. In case of an ‘unequal bandwidth’ setting, bands are aliowed to expand independently. Here

the user has the option to set the maximum bandwidth to a specific value.

If a high number of output bands is chosen, together with a large maximum bandwidth, the number
of available bands may be reduced quickly as wide bands may be selected for the first bands of the
set. If no rows are left {o fill the remaining places of the set, the algorithm iterates reducing the width

of the first band by one row (if possible).

The algorithm options described above are illustrated in figure G.5 and may be used to trade
between the influences of decorrelation and noise reduction on the final band set.

The algorithm was extended to include user-specified bands in the final band set (for example
certain material absorption features), defined either by row number or wavelength interval. The

algorithm then chooses the remaining bands with respect to these pre-selected bands and the user-

specified algorithm options.

A computer program UBS (Unsupervised Band Selection) was written in IDL™ (version 5.5 Win 32
x86) and ENVI™ (version 3.5) using this algorithm and is described in Appendix section G.2. A

flowchart of the algorithm is presented in figure 5.5, which is based on the routine described above.

Altogether, the UBS program is computationally highly efficient. The total execution time amounts to
about 8 seconds if 19 optimal bands are to be selected from the 117 bands of the New Forest data
set. The computation time mainly depends on the number of output bands specified by the user. If
an output image was to be created from the optimal band set, the running time would be significantly
increased. The latter is dependent on the size of the data set, but also on the number and width of
the output bands. Reading and writing an output image of one of the bands of the New Forest data

set adds about 5 seconds to the total computation time.

The UBS algorithm assumes that the band variables are normally distributed. However, as shown in
section 5.2.3, this assumption is inappropriate for most of the New Forest and River Severn bands.
To circumvent the normality assumption, an alternative unsupervised band selection method may be

employed which is introduced in the next section.

182



USER OPTIONS
START

INPUT DATA FILES
INPUT USER OPTIONS
¥
SPECIFICATION OFBANDS | | . ATMOSPHERIC BANDS
TO INCLUDE OR EXCLUDE USER-SPECIFIED BANDS

SPECIFIED
OuUTPUT
BANDS?

YES

v

CORRELATION BANDWIDTH

COMPUTATION FOR ENLARGEMENT OF ALL  [---vvomnfonnnenes
SPECIFIED BANDS BANDS

UNEQUAL BANDWIDTH
EQUAL BANDWIDTH

v

SELECTION OF BEST LEAST CORRELATED PAIR

BAND (PAIR) LEAST NOISY BAND

A ™y

BANDWIDTH
ENLARGEMENT OF ALL
AVAILABLE BANDS

\ 4

SELECTION OF LEAST
CORRELATED BAND

l NUMBER OF OUTPUT
e BANDS

DESIRED
NUMBER OF
BANDS?

BAND NUMBER
DETERMINATION

OUTPUT TEXT FILE
OUTPUT DATA FILES  }-----rmrrfomnooe” OUTPUT IMAGE FILE

END

Figure 5.5: Flowchart of the UBS (Unsupervised Band Selection) program
with algorithm options displayed on the right side.
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5.6 Clustering-Based SBS (CSBS)

The supervised band selection algorithm presented in section 4.3 may be applied in an
unsupervised way by using a clustering algorithm to define spectral classes from which class
statistics may be computed. As described in section 3.3.1, informational classes may be chosen by
the user to correspond to one or more spectral classes increasing the accuracy of the classification

task. Two commonly used clustering algorithms are the K-Means and ISODATA (lterative Self-

Organising Data Analysis) procedures.

K-Means clustering assigns pixels iteratively to K clusters on a nearest-to-cenire basis and updates
the cluster centres because of this assignment at each iteration. The initial cluster centres are
usually positioned randomly in feature space. For the K-Means program version available under
ENVI™ (version 3.5), the user needs to supply the number of clusters and iterations. In addition, a
pixel change threshold may be supplied that terminates the iterative process when the number of
pixels in each cluster changes by less than the specified threshold. Other parameters include the
maximum standard deviation and maximum distance error, which allow pixels to be classified only

when they fall within the given limit. If the latter are not specified, all pixels are allocated to nearest

clusters.

Many variants of the K-means algorithm exist to improve its efficiency, especially regarding the
validity of the generated clusters. For example, the ISODATA algorithm allows new clusters to be
created and existing ones to be merged or deleted between iterations, considering more feature
space partitions than the basic K-Means. However, this improvement comes at the cost of needing
to specify additional parameters. For the ISODATA algorithm available under ENVI™ (version 3.5), a
minimum and maximum number of clusters have to be supplied apart from the maximum number of
iterations and the pixel change threshold (see above). In addition, the minimum number of pixels
needed to form a cluster (for cluster deletion), as well as the maximum class standard deviation (for
cluster spilitting), and the minimum distance between class means and maximum number of merge

pairs (for cluster merger) must be defined.

The setting of the parameters of both the K-Means and the ISODATA algorithms is a non-trivial task,

and no universal guidelines exist to the author’s knowledge.

The optimal number of classes or clusters to choose for clustering depends entirely on the data and
the class scheme defined by the user. However, the latter is unknown for unsupervised band
selection. One approach would be to choose a relatively high number of classes in order to account
for as many material subclasses as possible. The final user-defined informational classes may then
consist of combinations of these basic subclasses. For adequate data representation, Jia and
Richards (2002) used a cluster number of around 20 or higher in their experiments. However, with

respect to the supervised band selection algorithm developed in chapter 4, bands are chosen so as
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to differentiate between all given input subclasses, that is, also between those that form a larger
information class. This may be counterproductive and unwanted by the user, as bands should
discriminate only between information classes. From this point of view, the class number chosen

should allow only for the most dominant material classes to be distinguished.

The number of iterations can be set high enough to ensure the generation of natural clusters, i.e.
when practically no pixel re-assignments occur between subsequent iterations. Pixel change
thresholds may be applied to stop the iterative process if the number of pixel re-allocations between

iterations becomes insignificant (e.g. at about 5%).

The ISODATA algorithm allows for the deletion of clusters that do not contain a minimum number of
pixels. This may be useful to control the number of pixels per cluster, which should be no less than
10 to 15 times the number of spectral bands in order to guarantee acceptable class statistics (see
section 3.3.1). On the other hand, ISODATA further requires distance measures to be provided in
data-specific units of DN for cluster merger and splitting, as well as the maximum number of merge
pairs. These class- and data-dependent parameters are difficult to optimise without user interaction.
For the unsupervised band selection method described in this section, a clustering procedure is
required that works with a minimum amount of user interaction, i.e. a minimum number of
parameters, and that is efficient with respect to computation time and MLC accuracy. Although the
ISODATA has the advantage over the K-Means to allow for creating more representative clusters via
cluster merging, deleting and splitting, more class- and data-specific algorithm thresholds have to be
supplied. For that reason, the author chose the K-Means algorithm for the determination of class

statistics being aware that the feature space partitioning may not be an optimal one.

To quantify the effect of number of iterations for the K-Means procedure on the accuracy of the
resulting clusters in representing the feature space structure, the MLC accuracy was calculated for
both the New Forest and River Severn data sets using all bands and the various cluster sets as
class definitions. Figure 5.6 and 5.8 display the MLC accuracy as a function of number of clusters for
a varying number of iterations. They show a general improvement of MLC accuracy with increasing
number of iterations (for the New Forest data set only for a small cluster number). In addition, it may
also be seen that for an increasing number of clusters, the classification performance tends to
decrease steadily. This may be explained by the fact that the separation of a large number of small

and overlapping clusters will be less accurate than the partition of the dominant clusters in feature

space.

To see the effect of varying class number for the K-Means algorithm on the MLC accuracy of the
given classification tasks, different band sets were generated with the SBS algorithm on the basis of
the clustering results. The New Forest and River Severn scenes were then classified using these
band sets and their class definitions from chapter 3. In figures 5.7 and 5.9, MLC accuracy is plotted

against the number of bands for different class numbers used during clustering with one iteration
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cycle. In figure 5.7 (New Forest data), the MLC accuracy seemed to be noticeably increased for low
band numbers when using a larger class number. But this difference becomes less pronounced as
the number of output bands increases. For the River Severn data set (figure 5.9), this did not seem

the case, as nearly all band sets performed equally well for different cluster numbers.
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From a computational point-of-view, the execution time of the clustering algorithm in combination
with the class statistics and SBS computation should be minimised in order to be suitable for in-flight
application. This implies that user interaction has to be either reduced to a minimum or completely
eliminated. Regarding the parameter settings for the clustering algorithms, the data analyst may not
be able to determine the optimal configuration in a multiple-run trial-and-error procedure by visual
inspection of the classified output image. Consequently, default parameter settings need to be

provided that are efficient in both computation time and accuracy of the MLC task at hand.

A computer program was written in IDL™ (version 5.5 Win 32 x86) and ENVI™ (version 3.5) that
creates clusters using the K-Means clustering routine in ENVI™ and calculates their statistics (see
details of use in Appendix G.5). The program classifies the entire image into a pre-specified number
of clusters, and samples classes randomly over the entire image until a sufficient number of samples

(10 times the number of spectral bands to be used) are found to calculate representative class

statistics.

The execution time of the clustering part of the program may be decreased considerably by resizing
the original imagery by a factor so as to have just enough sample pixels per class for adequate class
statistics. The factor may be computed as the square root of the ratio between the number of
samples needed and the total number of image samples, where the number of samples needed may
be estimated as the product of the number of classes, the number of bands times 10, and a security
factor of 2. That is, for example for the New Forest data set, the number of samples needed may
amount to 20 (chosen class number) times 117 (band number) times 10 times 2 (security factor),
which is equal to 46800. The total number of samples of the New Forest imagery is the product of
the number of rows (1280) times the number of columns (512), or 655360, assuming no masking.
The resize factor then equals to 0.3. The sub-sampling is performed using the nearest-neighbour
method in ENVI™. This resizing routine is acceptable when the H-resolution case applies for the
given classes and when at least 1 over the resize factor number of adjacent samples (8 for the
example above) are available for each class in row or column direction. It also assumes that classes

are equal in size and uniformly distributed over the entire imagery.

It can be shown that the execution times of the clustering and the cluster statistics calculations
depend exponentially on both the number of clusters and the number of iterations. As, for both data
sets examined here, the increase in cluster number or number of iterations did not improve
considerably the class data representation by the resulting clusters, a low cluster number of 2 to &
(corresponding to the number of dominant material classes in the scene) coupled with one iteration
cycle were chosen as the recommended settings for the clustering routine. For the New Forest data
set, choosing five clusters achieved high class discrimination ability also for small band numbers,

while still giving a computation time less than a minute (with resized New Forest imagery, factor 0.3).

The histograms for the resulting clusters for some of the bands of the River Severn and New Forest

data set are displayed in table F.3 and F .4, respectively. Two clusters were generated for the River
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Severn and five for the New Forest data set (one iteration cycle each). Table F.3 shows that some
bi-modality appeared for the first cluster in some bands of the River Severn data. The histograms of
the clusters generated for the New Forest data generally seem to fit the normal curve better than

those of the River Severn clusters.

5.7 Algorithm Evaluation

This section aims to assess the value of the proposed unsupervised algorithms and its results 1)
guantitatively with respect to its reliability, consistency, and effectiveness, 2) qualitatively, and 3) in

terms of its usefulness for real-time in-flight applications.

5.7.1 Reliability

The reliability of the UBS and CSBS band selection algorithms was judged by questioning the
appropriateness or accuracy of its assumptions and routines.

Both the UBS and CSBS algorithms share the same image acquisition method as described in
section 4.3.1 for the SBS method, and therefore equally assume the H-resolution case, as the image
data recorded in repeated acquisitions for the same scene should result in similar pixels. In addition

the scene is assumed not to change between acquisitions, which may be realised by reducing the

time gap to a minimum.

For a successful application of the UBS algorithm, which is based on the correlation coefficient, data
need to meet the following criteria:
= The sensor bands follow a normal distribution. Generally, the assumption of a single
distribution for a remotely-sensed band image is hard to achieve unless the image is
depicting a single material type only. For example, in case of the New Forest data set,
vegetation was the dominant target class, and the normality assumption was shown to be
more appropriate than for the River Severn data set, which consisted of two spectraily
different materials, vegetation and water-covered mud (see section 5.2). Users should
therefore aim to collect data from one material type only, e.g. vegetation, soil or water.
= Band correlations are significant, that is, enough image samples are provided. This is
usually the case for high-resolution remotely-sensed images from current airborne imaging
spectrometers such as HyMAP or CASI-2.
= |f bands are dependent on each other, then only in a linear fashion. The correlation
coefficient is a measure of linear dependency only and fails to quantify, for example,
quadratic relationships. As detectors of sensors such as HyMAP or CASI-2 typically respond
linearly to the incoming signal, the nature of the relationship between bands depends

entirely on the incoming spectral radiance signal. If an image scene contains mainly target
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materials with smooth spectral curves and relatively low standard deviation, other than linear
dependencies among bands are highly unlikely.

=  The data set does not include very noisy bands. Noisy bands need to be either excluded
from the band selection procedure or smoothed with some spatial filter beforehand. This is
because noisy bands can result in a low correlation coefficient with other bands and may

therefore be chosen as optimal bands in the decorrelation process.

For the clustering-based CSBS algorithm, the same assumptions and comments apply as for the
SBS algorithm (see section 4.4.2). In addition, it is assumed that the parameter settings that were
shown to be effective for the New Forest and River Severn data set are also valid for other data

sets. Further tests with other data sets and classification schemes need to be performed fo verify

this result.

5.7.2 Consistency

The UBS algorithm is repeatable, assuming no two correlations are equal in the band location and
number determination, and band broadening sub-routines. The ordering of bands within the band
location determination subroutine depends on the bands already selected for the set. Removing one

of the first selected bands puts an end to the validity of the order of subsequent bands.

The clustering part of the unsupervised version of the SBS algorithm may result in different cluster
distributions according to the parameters (number of clusters and iterations) chosen by the user. If
default parameter settings were to be chosen repeatedly, the outcomes might still differ from each

other, as the initial cluster means were randomly selected by the K-Means procedure.

5.7.3 Effectiveness

Sub-optimality of the algorithm

The sub-optimality of the unsupervised band selection algorithms UBS and CSBS was estimated by
comparing the MLC accuracy of their band sets with that of a band set derived from an exhaustive
search with the MLC accuracy measure as criterion function. The comparison was limited to the first
three dimensions for the exhaustive search to be still computationally feasible. As the UBS offers the
possibility to start the set with the least correlated or least noisy band (pair) (see section 5.5.4), the
selected sets from both options were considered. Bands were not increased in width for both the
UBS and CSBS methods to be comparable to those of the exhaustive procedure. Figures 5.10 and

5.11 present the MLC accuracy of the different band sets for the New Forest and River Severn data

set, respectively.
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For the New Forest data set (figure 5.10), the band subset selected with the UBS LC (least
correlated band pair first) algorithm results in a 50% loss in accuracy for the first dimension, while
the corresponding loss is limited to around 23% for both the UBS LN (least noisy band first) and the
CSBS band set. For two set dimensions, the UBS LN bands give a 15% accuracy loss, while the
UBS LC and CSBS bands are with about 6% accuracy loss not statistically different from the

exhaustive band set. In the third dimension, all. three methods produce band sets of similar

insignificant accuracy loss (around 3.6%).

For the River Severn data set (see figure 5.11), the UBS LC band set clearly outperforms the sets of
both the UBS LN and CSBS in the first and third dimension, where its accuracy loss is insignificant

at around 7% and 2%, respectively. In the second dimension, all band sets gave a similar, but

significant accuracy loss of around 6.5%.

MLC accuracy (%)
MLC accuracy (%)

i
1 2 3

L 50
1 2 3

Number of bands Number of bands

Figure 5.10: MLC accuracy of optimal band Figure 5.11: MLC accuracy of optimal band
sets derived using an exhaustive search with  sets derived using an exhaustive search with

MLC accuracy (ML.C-EXH), the UBS (start MLC accuracy (MLC-EXH), the UBS (start

with least correlated, LC, and noisy, LN, with least correlated, L.C, and noisy, LN,

bands), and CSBS algorithm for the New bands) and CSBS algorithm for the River
Forest data. Severn data.

The results from these two data sets demonstrate that the UBS LC method gives optimal band
selection results, except for the first dimension regarding the New Forest data set. This may be
explained by the fact that UBS LC selects the least correlated band pair first, and not the single best
band. For the first band, both the UBS LN and CSBS methods result in acceptable accuracies for
the New Forest data set, but fail to do so for the River Severn data set. The suboptimal performance

of the UBS LN in the latter case may be explained by the use of a less accurate noise estimation

method.
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Comparison of ‘optimal’ UBS and CSBS band sets with ‘established’ band sets

The performance of the ‘optimal’ band sets output by the UBS (‘unequal bandwidth - maximum
bandwidth 4 rows) and CSBS (unequal bandwidth) algorithms were compared with the one of
different simulated ‘vegetation’ and ‘coastal’ band sets from current satellite and airborne sensors
(for details see section 4.4.4). The maximum bandwidth value was chosen lower for the UBS than
for the CSBS algorithm, as in contrast to the MLC criterion based CSBS, the expansion of bands
increases the SNR criterion of the UBS in most cases, resulting in very wide bands. Figures 5.12

and 5.13 display the band set performances for the New Forest and the River Severn class and data

sets, respectively.
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Figure 5.12: MLC accuracy of the ‘optimal’ Figure 5.13: MLC accuracy of the optimal
UBS (start with least correlated, LC, and UBS (start with least correlated, LC, and
noisy, LN, bands) and CSBS band sets noisy, LN, bands) and SBS band sets
compared with the one of satellite and compared with the one of satellite and

airborne band sets for the New Forest data. airborne band sets for the River Severn data.

For the New Forest data set, the UBS and CSBS band sets achieved higher MLC accuracy than any
of the simulated band sets for corresponding dimensions. However, only for the UBS LC band set,
most differences in classification accuracy can be shown to be statistically significant (with the
exception of the ETM+ and MODIS band set) and to range from 1.3% for MISR to 0.6% for the
NERC vegetation band set. Both the UBS LN and CSBS band set gave a 1.5% significantly higher
accuracy than the MISR band set.

For the River Severn data set, the UBS and CSBS band sets resulted in higher MLC accuracy than

the ‘established’ band sets for small band set dimensions (3 to 4), but in similar or less accuracy for
larger band set dimensions (11 to 14). For the UBS band sets, the differences in accuracy for only
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small dimensions are significant (3 to 4), ranging from 5.4% for MODIS to 2.6% for ETM+. For the
CSBS band set, most differences in accuracy were significant (except for EA vegetation, MERIS and
MISR), including its underperformance with respect to the CHRIS, NERC Vegetation, EA Coastal

and BIOTA band sets (maximum difference 2.2%).

Band number evaluation

The optimal band number was estimated for the UBS algorithm as the number of bands already in
the set which achieve an explained variance or coefficient of (multiple) determination of higher than
95% for the actual band to be added to the set. It represents an upper limit to the intrinsic
dimensionality (ID) of the data set, which was estimated to range between one and two, and one

and three for the New Forest and River Severn data set, respectively (see section 3.5).

Table 5.3 displays the coefficient of (multiple) determination for the first 5 selected bands (least
correlated bands first, LC, and least noisy band first, LN, UBS options). Using a 95% threshoid on
the coefficient of determination, the optimal band number may be obtained for the New Forest data
set as 4 and 3 for the LC and LN options, respectively, while for the River Severn data set it may be
determined as 3 for both algorithm options. This result overestimates the upper derived ID limit of
the New Forest data set by one and two, but gives an exact reflection of the upper estimated ID
value of the River Severn data set. That is, the band measure could be used as an upper limit

estimate to the ID of the given data sets.

Table 5.3: Coefficient of determination for the first five bands of the UBS (LC and LN) set, and
the PMATD for the CSBS set for the New Forest and River Severn data sets.

Coefficient of determination (%) PMATD (%)
Band UBS LC UBS LN CSBS
number New River New River New River
Forest Severn Forest Severn Forest Severn
1 0 0 0 0 80.13538 96.77774
2 0.000023 0.000005 18.363762 0.000121 88.36081 08.43816
3 67.20255 92.72588 72.390701 91.415230 92.81153 99.99999
4 91.32729 06.33556 97.102341 08.054764 94.02414 100
5 97.83753 97.93714 97.651962 98.270760 96.44305 100

The definition of the optimal number of bands for the CSBS algorithm is identical to the one of the

SBS algorithm, that is, the dimension of the smallest set of bands that achieves a PMATD of at least
95%. The PMATD values of the first five CSBS bands are displayed for the New Forest and River
Severn data sets in table 5.3, and an IDD estimate of 5 and 1, respectively, can be read from the
table. These estimates cannot be compared directly with the IDD approximations made in chapter 3,
as the IDD is intrinsically dependent on the defined class set and the extracted clusters do not
correspond in number and spectral characteristics to the user defined classes. The IDD estimate is

therefore only valid for the actual set of classes being used for PMATD estimation.
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5.7.4 Qualitative Evaluation

The first six bands of the optimal band sets derived with the UBS algorithm for the New Forest and
the River Severn data sets are listed in table 5.4 and plotted against a vegetation spectrum in figures
5.14 and 5.15, respectively. Only the band set derived from the least-correlated-first option was

investigated as an example of the correlation-based algorithm.

For the New Forest UBS band set, the best three bands chosen by the algorithm stem from the
visible, NIR and SWIR wavelength ranges. The first band is located on the NIR plateau including
parts of the 942 nm water absorption feature. The second band is positioned right next to the 1865
nm water absorption feature. According to Kumar ef al. (2001) increased water leaf content also
decreases reflectance in wavelength regions adjacent to water absorption features. That is, both first
and second band are sensitive to canopy moisture content. Band 3 is centred on the peak of the
green reflectance feature, responding to the amount of chlorophyll within the vegetation canopy. So
does band 5, a relatively broad band placed over the entire red-edge feature. Band 4, a narrow-band
equivalent to the Landsat ETM+ band 5 (1550 — 1750 nm), and band 6, a narrow band positioned at
1330 nm between the two water absorption features at 1135 and 1379 nm, are both sensitive to
canopy structure and water content. Most of the image classes (grassland, bracken, valiey mire, dry,

humid and wet heath) differ mainly in their canopy structure and moisture content. This is reflected in

the UBS selected bands.

With regard to the River Severn data set, the first band chosen by the UBS algorithm is centred on
the green reflectance peak, responding to the chlorophyll amount in the canopy. The second best
band is located on the NIR plateau, which is sensitive to canopy structure and helps to delineate the
land-water interface. Band 3 is positioned in the middle of the red-edge feature, while band 5 lies on
the bottom of it. Both bands respond to chlorophyll variations in the canopy and help to differentiate
between different vegetation types. Band 4 is located on the NIR plateau adjacent to the 942 water
absorption feature, and responds to both canopy structure and water content. Band 6 is situated
over the blue vegetation absorption feature, potentially used for delineating water and vegetation
surfaces. The main salt-marsh classes in the River Severn data set include high, mid, and pioneer
marsh classes, bare rock and mud. The vegetation classes may be differentiated from each other
and the Bare Rock and Mud classes mainly by their structure and chlorophyll content, which is

mirrored in the selection of the first six bands.

Figures 5.16 and 5.18 display colour composites of the first three bands chosen for the New Forest
and River Severn data set, respectively. Both images show a high contrast in colour between the
different vegetation classes involved. For the New Forest data and the given RGB band
combination, the asphalt road stands out as a purple colour, whereas bracken occupies the light
green and dry heath the pink-red colour. Wet and humid heath and valley mire may be distinguished

from different tones of green (see classified image in figure 3.5). Regarding the River Severn colour
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Table 5.4: First 6 optimal bands selected by the UBS algorithm (least correlated first —
unequal bandwidth option with maximum 4 rows width) for the New Forest and River Severn

data set.
New Forest River Severn

Band Band Band Band Band Band Band Band Band

number | centre width start end centre width start end

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]
1 930.1 3435 | 912.925 | 947.275 556.8 31.2 541.2 572.4
2 2017.7 77.35 | 1979.025 | 2056.375 807.9 31.8 792 823.8
3 546.45 61.6 515.65 577.25 | 708.55 31.7 692.7 724.4
4 1672.7 40.55 | 1652.425 | 1692.975 914.7 31.5| 898.95| 930.45
5 699.9 61.4 669.2 730.6 685.6 16.4 677.4 693.8
6 1330.2 299 | 1315.25 1345.15 | 489.55 30.9 474 1 505
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Figure 5.14: First six bands selected by UBS for the New Forest data set (see table 5.4).
Wavelengths not available for band selection are indicated by grey bars.
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Figure 5.15: First six bands selected by UBS for the River Severn data set (see table 5.4).
Wavelengths not available for band selection are indicated by grey bars.
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Figure 5.16: Masked HyMAP New Forest data displayed using the first three optimal bands
output by the UBS algorithm (see table 5.4, R = band 2, G = band 1, B = band 3).
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Figure 5.17: New Forest Maximum Likelihood Classification result using the first six bands
selected by the UBS algorithm (see table 5.4; Lake, blue; Asphalt, white; Bracken, yellow; Dry
Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, green;
Valley Mire, dark green).
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Figure 5.18: Masked CASI River Severn data displayed using the first three optimal bands
output by the UBS algorithm (see table 5.4, R = band 2, G = band 3, B = band 1).

Figure 5.19: River Severn Maximum Likelihood Classification result using the first six bands
selected by the UBS algorithm (see table 5.4; Bare Rock, white; Pioneer Marsh, bright green,;
Mid Marsh, green; High Marsh, dark green; Bare Mud, brown).
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composite of the optimal three bands, pioneer, mid and high marsh vegetation is coloured in bright
orange - red, red — blue, and yellow, respectively. Bare rock appears white in the image and bare
mud blue (see classified image in figure 3.4). Figures 5.17 and 5.19 display the resulting map of the

New Forest and River Severn classification task, respectively, using the six bands selected by the

UBS algorithm (see table 5.4).

The band sets listed in table 5.5 have been generated by the CSBS algorithm for the New Forest
and River Severn data sets. They are plotted against a vegetation spectrum in figures 5.20 and 5.21
for the two data sets. For the New Forest data set, the CSBS band set reflects more the variations in
canopy structure and water content (bands 1 to 3, 5 and 6) than in the chlorophyll content (band 4),
similarly to the band set selected by UBS. For the River Severn data set, the CSBS gives a band set
similar to the UBS result, with bands potentially exploiting variations in canopy chlorophyll (bands 1
and 4 to 6) and canopy structure (bands 2, 3). The corresponding classification maps for the River
Severn and New Forest data sets, derived by using the six bands selected by the CSBS algorithm

(see table 5.5), are shown in figures 5.22 and 5.23, respectively.

Table 5.5: First 6 optimal bands selected by the CSBS algorithm (1 iteration, unequal
bandwidth) for the New Forest (5 clusters) and River Severn (2 clusters) data set.

New Forest River Severn

Band Band Band Band Band Band Band Band Band

number | centre width start end centre width start end
[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]
1 1196.1 18.1 | 1187.05| 1205.15 742.9 115.8 685 800.8
2 2136.7 20.4 2126.5 2146.9 807.9 16.4 799.7 816.1
3 844 .4 15.8 836.5 852.3 888.1 8.8 883.7 892.5
4 700.1 30.95 | 684.625| 715575 | 482.15 16.1 474 1 490.2
5 2172.2 19.6 2162.4 2182 497 16 489 505
6 1517.2 16.2 1509.1 1525.3 | 511.85 16.1 503.8 519.9
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Figure 5.20: First six bands selected by CSBS for the New Forest data set (see table 5.5).
Wavelengths not available for band selection are indicated by grey bars.
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Figure 5.21: First six bands selected by CSBS for the River Severn data set (see table 5.5).
Wavelengths not available for band selection are indicated by grey bars.

Figure 5.22: River Severn Maximum Likelihood Classification result using the first six bands
selected by the CSBS algorithm (see table 5.5; Bare Rock, white; Pioneer Marsh, bright
green; Mid Marsh, green; High Marsh, dark green; Bare Mud, brown).
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Figure 5.23: New Forest Maximum Likelihood Classification result using the first six bands
selected by the CSBS algorithm (see table 5.5; Lake, blue; Asphalt, white; Bracken, yellow;
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, green;
Valley Mire, dark green).
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5.7.5 In-flight Application

The unsupervised band selection methods presented in this chapter were specifically designed for a
real-time in-flight execution between the acquisitions of successive flight-lines. As the aircraft may
only need 3 to 5 minutes to turn around before re-starting to scan the scene in reverse flight
direction (F. Tadina, NERC ARSF, 2003, personal communication), the speed of the algorithm is
crucial. The following paragraphs aim to give an overview of the execution time involved in

performing band selection with UBS.

In contrast to the supervised SBS algorithm presented in chapter 4, UBS does not depend on a
time-consuming identification of the scene classes on the imagery. However, as the UBS routine is
implemented in ENVI™, the raw binary image has io be transformed into an ENVIT™ supported file
format. The program for radiometric correction of CASI-2 raw data, Radcorr (Version 2.2 for RedHat
Linux 6.2), generates files in the ENVI™ supported pix-format. The program, which is provided by
the instrument manufacturer, ITRES Research Ltd., also corrects the image data for dark current,
scattered light, frame shift smear and electronic offset, and then transforms the data DN values into
spectral radiance (ITRES, 2001). The computation time amounted to about 16 seconds for a typical
CASI-2 15-band full-swath image of 1,500 lines using a 266 MHz AMD-K6 processor with 64 MB
RAM. Linearly extrapolating this execution time to a data set of equal number of lines but with 288
bands and a smaller swath width 101 pixels (see chapter 1), a value of about 61 seconds would
result. Using a higher speed computer, for example, with a 2 GHz processing speed, the duration of

the program run could be reduced to about 8 seconds.

The Radcorr routine may also be used to extract about 50 lines of dark data from the raw image file
by spatially subsetting the image from line 50 to line 100. That is, dark data will then be calibrated to

specitral radiance as well. This process should take less than 5 seconds with a 2 GHz processor.

After the image has been radiometrically corrected, image data statistics need to be calculated with
the Datastats program (see section G.4) as these are input into the UBS algorithm. The execution
time of the program was calculated for the New Forest data set and extrapolated to 288 bands. To
achieve a computation time of under a minute, the number of samples in the image should be
smaller than 60,000 samples. A typical image of 1,500 lines by 101 columns would give 151,500

samples which equals to 3.5 minutes.

To reduce the computation time, a quicker processor could be employed (here 1 GHz Intel Pentium
Il processor with 256 MB RAM) or the image may be sub-sampled by the ‘Resize’ function in
ENVI™. The resizing process involves the application of a factor to both the number of lines and
columns to reduce the number of samples. In the above example, each image dimension needs to
be multiplied by a factor of 0.6 to achieve 60,000 samples. As mentioned in section 5.6, resizing

may be applied when the H-resolution case applies for most image classes, that is, no significant
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information loss occurs during the resizing process. The latter takes about 15 seconds for an output

image with 60,000 samples (2 GHz processor).

Figures 5.24 and 5.25 display the amount of image samples of a 288-band data set against the

execution time needed for the Datastats and the Resizing ENVI™ routines, respectively.
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Figure 5.24: Estimate of amount of image Figure 5.25; Estimate of amount of output
samples against the execution time of the image samples against the execution time of
Datastats routine (see section G.4) for a 288- the Resizing ENVI™ routine for a 288-band
band data set and a 1 GHz processor. data set and a 1 GHz processor.

The execution time of the UBS program only depends on the number of image bands and the
parameter settings. For an output set of 15 bands, the maximum allowable bandwidth should be
chosen relatively low (e.g. 4 to 5 rows), in order to avoid an iteration of the routine (no more bands
are available to fill the remaining places as first bands are too broad) and therefore an increase in
the overall running time. The execution time was extrapolated to 7 seconds for a 2 GHz processor
using a 288-band image and the following UBS parameter settings: unequal bandwidth, least
correlated first, output 10 bands, maximum bandwidth 4 rows, 30% minimum signal level, no pre-

specified bands or output image.

In summary, for the UBS method, the net execution time amounts to 8 (radiometric correction) plus 5
(dark data) plus 15 (resizing) plus 30 (data statistics) plus 7 (UBS) equals fo 65 seconds using a 2
GHz processor and a 288-band image with 1500 lines and 101 columns. This leaves the instrument
operator 2 to 4 minutes to switch between routines and program the CASI-2 with respect to the

selected band set.

[n contrast to the UBS method, the CSBS method requires the clustering and the calculation of

cluster statistics on top of the possible sub-sampling, data statistics computation, and SBS band
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selection routine. CSBS would take about two minutes longer than the UBS method for an image of
60,000 samples and 288 bands using 5 clusters and 1 iteration as parameters for the clustering
procedure (2 GHz processor). CSBS is therefore less applicable for in-flight use with the given time

constraints and computer processing speeds.

5.8 Summary

The purpose of this chapter was to develop an unsupervised band selection routine that optimises
band configuration parameters with respect to the accuracy of the classification task and that could
be used in-flight for the acquisition of CASI-2 multispectral data. For the in-flight procedure, it was -
assumed that a reduced-swath hyperspectral CASI-2 image would be acquired over a
representative part of the scene as algorithm input. Then, the CASI-2 would be programmed with the
selected band set, and a full-swath multispectral image would be collected. The hyperspectral data
to be acquired should include all target areas of interest to a similar proportion as they appear in the

final multispectral imagery.

An unsupervised band selection (UBS) algorithm was developed, which is based on the assumption
that the most class-informative band set consists of bands that are least redundant, that is, least
correlated. It incorporates the increase of bands in width as long as the SNR as measure of image
quality improves, the relative band signal levels are above a user-specified threshold, and the
bandwidth is below a user-defined upper limit. The algorithm was implemented in an IDL™ (version
5.5 Win 32 x86) and ENVI™ (version 3.5) program that can be run in ENVI™. Computational
efficiency of the routine was especially considered to allow the routine to be used in-flight. The
program options include either to force the bands to be of equal width or to let the bands expand to
achieve maximum possible SNR (optimal band set). An algorithm option was included that allowed
to start the band set with the band of highest SNR (UBS LN), instead of the least correlated band

pair (UBS LC). UBS also allows specific bands to be included in the selection process or excluded

from it.

Similar to PCA, UBS aims to decorrelate the band set. But instead of transforming the data into new
orthogonal features, UBS picks the bands that are most different from each other. That is, UBS aims
to explain the overall variance with as few original bands as possible, while PCA aims to represent
data variance with as few orthogonal features as possible. UBS has the disadvantage of being
based on a sub-optimal sequential search procedure, while PCA is not. However, for band selection,
UBS has four major advantages over PCA. First, UBS requires less computational effort than PCA.
Second, it preserves data integrity, as its selected bands are directly physically interpretable. Third,
it does not try and fit an orthogonal basis to the overall data variance, which may conceal unique

band information that is small in variance. And fourth, it allows for a band expansion routine similar
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to the one in the SBS method, but purely based on the band SNR. UBS provides an upper bound to

the intrinsic dimensionality of the data set.

The use of correlation measures in the UBS routine requires each band to be normally distributed.
However, the latter assumption was shown to be inappropriate for most of the New Forest and River
Severn bands. CSBS, an unsupervised version of the application-specific SBS algorithm discussed
in chapter 4, was introduced that uses clustering to define the classes within the scene,
circumventing the normality assumption of band variables. A computer program was written in ioL™
(version 5.5 Win 32 x86) and ENVI™ (version 3.5) that creates clusters using the K-Means
clustering routine in ENVI™ and calculates their statistics. Regarding the parameter settings of the
K-Means clustering routine, changes in the parameters had only little effect on the discrimination

ability of the resulting band set for the given data and class sets.

The UBS and CSBS algorithms were evaluated by applying them to the hyperspectral data
introduced in chapter 3. The sub-optimality of the algorithms was quantified by comparing the MLC
accuracy of the derived band sets with that of a band set obtained from an exhaustive search using
the MLC accuracy measure as criterion. For all three set dimensions, the UBS LC band set
performed consistently well with a maximum accuracy loss of 7% (with one exception). UBS LC is
more applicable to band sets of at least two dimensions, as the least correlated band pair is chosen
at the start of the algorithm. The sub-optimality of the UBS LN and CSBS band sets was generally
greater than that of the UBS LC band set for the two data sets.

In comparison to ‘established’ vegetation and coastal band sets, the UBS and CSBS band sets
performed superior for the first six dimensions for the given data sets. For higher dimensions (11 to
14), the ‘established’ band sets gave a similar MLC accuracy than the selected band sets. That is,
the unsupervised band selection methods were very effective for low-dimensional output band sets.
The resulting optimal band configurations were also found to be physically meaningful with respect

to the classes under investigation.

The band number criterion used in the UBS algorithms was shown to be an effective upper bound to
intrinsic dimensionality (ID) of the given data sets. It equals to the number of bands already in the
set which achieve a coefficient of determination of higher than 95% with the least correlated of the
remaining bands. The CSBS IDD estimate is based on the same principles as the SBS IDD estimate

and was not evaluated here.

The UBS and CSBS algorithm may both be applied operationally and in-flight to select a band set for
multispectral image acquisition, although the UBS was shown to be computationally more efficient.
To decide which of the band selection methods to choose, a comparison between all band selection

methods introduced so far is presented in the following chapter.
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6 Discussion

This discussion
= compares the band selection algorithms described in chapter 4 and 5 with respect to their band

set performance, underlying assumptions, consistency, effectiveness and computational
efficiency (section 6.1),

= investigates the effectiveness of band selection (section 6.2),

= tests the benefit of narrow band data for the classification tasks introduced in chapter 3 (section
6.3),

= introduces a new data set to test the SBS algorithm and the benefit of hyperspectral data for the
given classification task (section 6.4),

= examines whether the band selection methods developed in this thesis could be applied to other
hyperspectral remote sensing applications (section 6.5),

= discusses data simulation as an option for cases where the hyperspectral input data to the
algorithm could not be acquired with the target sensor, such as for sensor design studies
(section 6.6), and

= investigates the need for calibration of data to radiance or apparent reflectance in the context of

band selection (section 6.7).

A concluding summary is presented in section 6.8.

6.1 Comparison of the Band Selection Algorithms Developed

for this Thesis

The MLC accuracies of the band sets resulting from the SBS, UBS LC (least correlated band pair
first), UBS LN (least noisy band first) and the CSBS algorithms were compared with each other for
the New Forest and River Severn data set. All algorithms employed the ‘unequal bandwidth’ option
to potentially achieve an optimal band set. The UBS algorithm had the maximum bandwidth value
set to 4 rows to be merged. CSBS clustering was performed with 5 and 2 clusters for the New Forest

and River Severn data set, and one iteration cycle.

Regarding the New Forest data (see figure 6.1), all four algorithms performed equally well for at
least two bands with insignificant differences of below 0.4%. Significant differences occurred only for
the single best bands, where the SBS band achieved 78.5% MLC accuracy, the UBS LC band
76.3%, the UBS LN band 61.4% and the CSBS band 61.3%. Similar results were obtained for the
River Severn data set, as shown in figure 6.2. Differences between the SBS and UBS algorithms
were insignificant (below 1.2%) for band sets with at least two bands. The CSBS band set gave a

significant accuracy difference (maximum 3.6%) with respect to the band sets of other algorithms for
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the first three dimensions. It achieved less accuracy than other band sets for set dimensions one
and three. The order of the first bands in terms of accuracy is equivalent to that of the New Forest
data set: First the SBS band (75.6%), followed by the UBS LC band (71.8%), the UBS LN band
(57.2%) and the CSBS band (47.6%). That is, the SBS, UBS and CSBS band sets achieved
comparable MLC accuracy (at least for two bands in the set), indicating that all four algorithms may

be equally applied for the given data and class set for band selection.
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Figure 6.1: MLC accuracy of band sets output Figure 6.2;: ML.C accuracy of band sets output
by the SBS, UBS LL.C, UBS LN and CSBS by the SBS, UBS L.C, UBS LN and CSBS
algorithms for the New Forest data set. algorithms for the River Severn data set.

Apart from their band set performance, the algorithms may be compared with respect to their

underlying assumptions, consistency, effectiveness and computational efficiency.

Both the SBS and CSBS assume the class training samples to be normally distributed. For the SBS,
the accurateness of this assumption lies in the hand of the analyst, and it depends on the clustering
parameters for the CSBS algorithm. In contrast, the justification of the assumption of normally
distributed bands in the UBS algorithm relies on the data itself, which may only be changed by
elaborate data masking. Although some of these normality assumptions were not completely met for
the test data and class sets used in this thesis, all methods were shown to be robust to deviations

from normality by giving a band set that achieves high accuracy for the given classification task.

The assumption of the SBS and CSBS, that the Transformed Divergence (TD) measure and the
MLC accuracy are linearly dependent for the given data and class set, may be generally met,
because the TD was derived as an upper bound to the MLC error probability. The UBS assumption
that bands depend only in a linear fashion onto each other generally holds for remotely sensed data

of Earth surface targets.
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The sub-optimality of the different algorithms was quantified in terms of accuracy loss of their band
sets with respect to the optimal band set for up to three set dimensions (see sections 4.4.4 and
5.7.3). For the SBS band set, this accuracy loss amounted {o a maximum of 6% for the given data
sets. The UBS and CSBS band sets resulted on average in the same amount of accuracy loss (6%)
for two and three bands in the set, but with deviations of up to 15%. For the single best band,
however, UBS and CSBS bands were up to 50% less accurate. That is, for the given data sets, SBS

resulted in more optimal bands, especially in the search for the single best bands.

Regarding the consistency of the algorithms, both the SBS and UBS versions are repeatable, while
the CSBS may result in different band sets with changing initialisation and clustering parameter
settings. This is a major drawback for the CSBS algorithm, especially as it is unclear what settings

are to be chosen in each case. This makes the algorithm less suitable for band selection than the

SBS algorithm.

A major disadvantage of the UBS algorithm is that it cannot be used to find the optimal maximum
bandwidth for MLC. This is due to the loose relationship between its bandwidth criterion, the SNR,
and the MLC accuracy. The algorithm typically expands some of the output bands to the maximum
allowable bandwidth defined by the user. In contrast, the latter limit has little effect on the choice of
optimal maximum bandwidth within the SBS or CSBS algorithms. That is, UBS can be used for

bandwidth selection for MLC, if a reasonable maximum bandwidth limit is specified.

Another shortcoming of the UBS algorithm is that it is dependent on sensor noise to be estimated in
order to calculate the SNR for band expansion. Although dark data are routinely collected with most

image sensors at the present time, they are not normally delivered to end users (A. Wilson, 2003,

personal communication).

With regard to the band number determination, all algorithms delivered upper bound estimates to the
D or IDD for the given data sets that were consistent with those found using traditional estimation
methods. However, for all methods, the users have to decide whether they employ a 95% or 89%

threshold to derive the band number eéﬁmate.

The UBS and CSBS algorithms were shown to be computationally more efficient than the SBS
algorithm, and therefore more applicable to real-time in-flight execution between the acquisitions of

hyperspectral and multispectral image data using the current computer processing speeds.
Furthermore, the UBS, SBS and CSBS can all be potentially used for applications other than MLC

(see section 6.4). However, the UBS has the advantage over the SBS and CSBS that it can be
applied without modifying the algorithm.
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The choice of band selection algorithm depends very much on the requests of the data user. The
SBS, UBS and CSBS algorithms presented in this chapter all incorporate benefits and costs, and the

user has to decide if the benefits of a method outweigh its costs for a given application. But if a band

selection method was to be sought for a supervised MLC, the SBS method would be the preferred

one. Table 6.1 presents a summary of the above comparison between the methods.

Table 6.1: Comparison of the SBS, UBS and CSBS algorithms.

SBS

UBS

CSBS

Assumptions

- Normal class
distributions

- Linear relationship
between TD and
MLC accuracy

- Normal band
distributions

- Only linear
dependencies
between bands

- Normal cluster
distributions

- Linear relationship
between TD and
MLC accuracy

applications

Sub-optimality Low High for single bands, low for at least two
bands in the set
Consistency High High Low
Optimal maximum Yes No Yes
bandwidth estimation
Sensor noise estimation No Yes, for bandwidth No
necessary? increase
Optimal band number IDD estimate Upper bound IDD estimate
estimation estimate to ID
In-flight use No Yes Yes
Generalisation to other Yes, but with Yes Yes, but with
hyperspectral modification modification

6.2

Effectiveness of Band Selection

From figures 6.1 and 6.2 it may be seen that the band sets chosen by the SBS, UBS and CSBS

algorithms achieved similar accuracy after a certain number of set dimensions, although the chosen
bands differed in placement and width between methods. At this point, one may ask at which
dimension it becomes irrelevant which band is added to the set, as its addition will not significantly

change the classification accuracy of the set. That is, when does band selection become ineffective?

To find the limit of the effectiveness of band selection for the given data and class sets, the SBS

band set was compared with sets of randomly and equally spaced bands with respect to the
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achieved classification accuracy. The uniformly spaced band sets were created separately for each
dimension to have maximum equal spacing between bands and minimum spacing towards the
edges of the original band set. Table C.4 lists randomly and uniformly spaced band sets used in this
evaluation and their performance is displayed in figures 6.3 and 6.4 for the New Forest and River
Severn, respectively. For the uniformly-spaced band sets, only the accuracy of the entire set was

calculated, and sets of all possible dimensions within the optimal set were generated.

The SBS band set achieves significantly higher accuracy than the random or equally spaced band
sets for the first three dimensions for the New Forest data set. Above four dimensions, the band sets
reach similar accuracy levels with mostly insignificant differences of less than 1% from the SBS set.
The River Severn data set gives a comparable result, with discrepancies between SBS and random
or equally spaced band set performances of less than 3.2% above the fourth dimension. However, in

the latter case, differences in accuracy are significant between the SBS and equally and randomly

spaced band sets for most dimensions.

These results imply that, for the given class and data sets, band selection is principally effective only
for the first few bands of the selected set, corresponding to the intrinsic discriminant dimensions of
the data sets. The latter dimensions equate to 3 and 4 for the New Forest and River Severn data
sets, respectively. However, as for the River Severn band set, the SBS selected bands also perform

significantly better for higher dimensions, suggesting that they should be preferred to any equally or

randomly spaced band set.
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6.3 Testing the Benefit of Narrow Band Data

In sections 4.4.4 and 5.7.3, broad band sensors such as the ETM+ (bandwidths from 60 to 260 nm)
were shown to result in an equally high MLC accuracy than the narrow band sets selected with the
corresponding band selection algorithms. The question may then be asked whether or not narrow

bands actually achieve a significantly higher MLC accuracy than broad bands for a given

classification task.

To answer this question, the ‘equal and fixed width’ SBS algorithm option was chosen to produce
sets of bands of increasing width, with a (minimum) upper bandwidth of 370 and 220 nm for the New
Forest and River Severn data set, respectively. As discussed in section 6.1, the UBS method cannot
be employed for bandwidth determination, while the CSBS algorithm is less suitable than the SBS

method for this task due to its dependency on clustering parameters.

Figure 6.5 and 6.6 display the accuracy of the sets of expanded bands for each set dimension for
the New Forest and River Severn data set, respectively. For the New Forest data set, the SBS
algorithm produces consistently optimal band sets that achieve an MLC accuracy that lies, for at
least two dimensions, within insignificant 0.5% of the accuracy of the narrow-bandwidth set. In

contrast, the expanded band sets for the River Severn data set are within 5.1% significantly different

in accuracy from the narrow-band set for at least three dimensions.
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Figure 6.6: Accuracy of SBS band sets for
increasing bandwidth for the River Severn
data set. The width was fixed to 1, 5, 9, 13, 17,
21, 25 and 29 rows to be merged. The number
in the legend is the corresponding minimum
width (in nm) of the bands in each set.

Figure 6.5: Accuracy of SBS band sets for
increasing bandwidth for the New Forest data
set. The width was fixed to 1, 5, 9, 13, 17, 21,
25 and 29 rows to be merged. The number in
the legend is the corresponding minimum
width (in nm) of the bands in each set.
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With increasing bandwidths, fewer bands are available for the final set. This may resuit in sub-
optimal set accuracy if the number of bands falls below the IDD estimate of the data set. The IDD for
the New Forest and River Severn data set was estimated to 2 and 3, respectively (see section 3.5).
As, for the New Forest data set, the accuracy difference to the narrow band set was insignificant for
all expanded band sets at the IDD dimension, two bands of 370 nm in width may be employed to
achieve a similar classification accuracy as two bands of 15 nm in width. That is, narrow band data
are not of significance for the New Forest classification task. However, they are of advantage for the
River Severn classification task, as they give a significantly higher accuracy than expanded band

sets do at the IDD dimension of 3.

The classes for the New Forest data set reflect partly vegetated areas of different hydrological
conditions (dry, humid and wet heath), and muitispectral data were shown to be sufficient to
distinguish between them. However, the author’s interest was also to examine whether
hyperspectral data was of advantage for the spectral differentiation between vegetation classes from
areas of mostly the same hydrological regime, e.g. a bog surface. In the next section, a new data set

of a bog surface is introduced for this purpose. The new data set was also used to further test the

SBS algorithm developed in chapter 4.

6.4 Tregaron Bog Case Study

This case study aims to see what band set is the most optimal in separating bog condition classes,
and whether hyperspectral resolution data have a significant advantage over multispectral data for
this classification task. Section 6.4.1 introduces the study area, the hyperspectral data and the
classes of interest. The method is described in section 6.4.2, while the results and conclusions of the

experiment are presented in section 6.4.3.

6.4.1 Study Area, Data Set and Class Definition

Study area

Cors Caron, also known as Tregaron Bog, is located north of Tregaron village in the Teifi valley in
Ceredigion, west Wales (see figure 6.7). It is an extensive lowland raised bog complex of 816 ha,
consisting of three hydrologically independent peat domes. All three domes suffer from marginal
peat cutting at different scales, but their central part is still structurally intact. The least disturbed bog
is the largest one on the western side of the Teifi river. Cors Caron became a National Nature
Reserve in 1955 and a Ramsar site in 1993. It supports a range of rare plant species (e.g. the bog

moss Sphagnum pulchrum) and rare animals (e.g. the rosy marsh moth; Milton et al., 2003).
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Figure 6.7: False colour CASI-2 image of the Tregaron bog (R = band 40, G = band 22, B =
band 14). © UK Natural Environment Research Council, 2001.
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Data set

Airborne hyperspectral CASI-2 image data were collected in October 2001 by NERC ARSF over the
western dome of the Tregaron bog. Details of the data acquisition are presented in table 6.2. The
data were radiometrically corrected to spectral radiance. The 48 bands with their associated centre
wavelengths and bandwidths are listed in table A.5. Some bands in the biue (bands 1 to 9) and NIR
(bands 47 to 48) suffer from severe striping and were excluded from further processing. The data
were not geometrically corrected as this was not necessary for the actual application task. A false

colour image is displayed in figure 6.7.

Table 6.2: Characteristics of the CASI-2 image acquisition over the Tregaron bog.

Acquisition parameter CASI-2 imagery

Date of acquisition 12 October 2001

Time of acquisition (hrs GMT) 10:49 - 10:53 a.m.

Type of aircraft Dornier 228

Altitude (km) (above ground) 1.47

Ground speed (knots) 125

Number of scan lines 6731

Sensor mode Enhanced Spectral Mode
Spatial resolution (m) 2.9

Number of spectral bands 48

Spectral resolution (nm) 11.4-11.8

Spectral range (nm) 409 — 945

Data format (bit) 16

View angle (°) Nadir

Field of view (°) 53.2

Swath width (km) 1.5 (511 pixels)

Status of the atmosphere Hazy with clear sky above

Class definition

Between August and September 2002 a field survey was carried out on behalf of English Nature by
J. Schulz (Milton et al., 2003). An in situ map of surface condition classes was created (see figure
6.8) according to the categories defined in Mitton ef al. (2003). The airborne imagery available only
depicts the western dome of the Tregaron bog, and the corresponding surface condition classes are

described in table 6.3.

As the defined bog condition classes appeared very homogeneous in the CASI-2 imagery, enough
samples were available to randomly select training and testing pixels for each class. Regarding the
number of training pixels, a conservative value of 30 was used for the ratio of the number of training

pixels to the number of spectral bands (i.e. 1110 training pixels for each class).
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Figure 6.8: J. Schulz’s map of surface condition classes for the Tregaron bog (Milton et al.,
2003). The classes used are explained in table 6.3.
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Table 6.3: Surface condition classes used for the classification of the Tregaron bog
(after Milton et al., 2003).

R

Class Description

P1/2 Primary (near-) natural or degraded raised bog with a substantial
cover of colourful Sphagna and the ability to accumulate peat. If
degraded, then by factors other than drainage (e.g. burning or
grazing).

P1/2 Molinia dominated | As P1/2, but chiefly covered by Molinia caerulea.

P1/2 Calluna dominated | As P1/2, but dominated by Calluna.

83 Molinia dominated Secondary re-vegetated degraded bog. Dry peat cuttings (non-peat
forming). Dominated by Molinia caerulea.

S3 partly reed As §3 above, but partly covered with reed.

Carr Wooded areas on cut-over peat (willow carr).

Standing Water Bodies of standing water formed behind dams around the crowns of

the bogs (dams were built to prevent surface runoff).

6.4.2 Method

The supervised SBS algorithm was chosen for the band selection task at hand, as specific bog
condition classes were given. The assumptions of the SBS method, that is, the normal distribution of
the defined classes and the linear relationship between the Transformed Divergence and the MLC
accuracy, needed to be tested. In addition, the sub-optimality of the method was quantified in terms
of MLC accuracy by comparing the SBS band sets {up to three dimensions, no bandwidth increase)
with the sets of corresponding dimension derived using an exhaustive search with the MLC accuracy
as criterion. As sufficient training and testing pixels were available, the holdout method was used to

estimate the overall MLC accuracy (see section 2.2.2).

The SBS band set was derived using the following algorithm options: unequal bandwidth, maximum
bandwidth of 20 spectral rows and minimum band mean of at least 30% of the maximum band mean
in the set. The SBS band number criterion was tested by comparing it to ID and IDD estimates of the
data set. The latter were both based on the PCA, where the total PC variance was used {o
determine the ID, and the scree plot method (see section 2.4.1) was applied to the MLC accuracy of
sets of consecutive PCA features to give an estimate for the IDD. The effectiveness of the SBS band

selection result was quantified by the difference in accuracy between the SBS set and equally and

randomly spaced band sets.

Finally, it was tested whether hyperspectral data have an extra benefit over multispectral data in
discriminating between the bog condition classes for the given data set. Sets of bands of increasing
width were generated with the SBS ‘equal and fixed width’ algorithm option, which were compared in

terms of MLC accuracy with the SBS set having no expanded bands.
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6.4.3 Results and Conclusion
Testing the assumptions and sub-optimality of the SBS algorithm

The main assumptions of the SBS method are:
o normally distributed class training data, and

e alinear relationship between the TD measure and the MLC accuracy.

The histograms of the 7 classes were calculated for evenly spaced bands (13, 23, 33 and 43), and it
could be shown that for most bands and classes, the normal curve fitted the histogram relatively
well. Regarding the second assumption, a significant correlation coefficient of 0.99 was estimated
between the TD and MLC accuracy for the given sample points (see figure 6.9). These resuits

indicate that the SBS method is applicable to given class and data set, as both assumptions are

met.

The comparison of the MLC accuracy of the SBS band sets with the set derived from the exhaustive
search method revealed an (insignificant) accuracy loss of less than 2.8% for the first three set
dimensions (see figure 6.10). That is, the sub-optimality of the SBS algorithm is relatively small and

consistent for the first three band set dimensions.
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Figure 6.9: Scatter plots of the Transformed Figure 6.10: MLC accuracy of optimal band

Divergence measure against MLC overall sets derived using an exhaustive search with
accuracy estimated with the holdout method MLC accuracy (MLC-EXH) and SBS algorithm
for the Tregaron data set. The regression line for the Tregaron data set.

is displayed (correlation coefficient r = 0.99).
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The SBS band set

Table 6.4 displays the first six bands selected by the SBS ‘unequal bandwidth’ option, which are
overlaid onto a leaf spectrum in figure 6.11. The first band is centred on the NIR plateau, which is
sensitive to canopy structure and which may be used to delineate carr and the standing water
surfaces from the bog surface. Bands 2 and 4 in the VIS are relatively broad bands located over the
red absorption feature and the green reflectance peak, respectively. Both bands are related to the
broad spectral absorption by chlorophyll and respond to chlorophyll amount in the canopy.
Therefore, they may help to differentiate between different plant species, such as Sphagnum,

Molinia, Calluna and reed. The same is true for bands 3, 5, and 6, which sample the red edge

feature.

Table 6.4: First 6 optimal bands selected by the SBS algorithm (unequal bandwidth,
maximum bandwidth of 20 spectral rows, minimum band mean of at least 30% of the
maximum band mean) for the Tregaron data set.

Tregaron
Band Band Band Band Band
number | centre width start end
[nm] [nm] [nm] [nm]
1 881.718 23.213 | 870.1115 | 893.3245
2 675.031 46.129 | 651.9665 | 698.0955
3 715.173 11.768 | 709.289 721.057
4 566.729 | 102.451 | 515.5035 | 617.9545
5 755.38 23.269 | 743.7455 | 767.0145
6 732.4 23.26 720.77 744.03
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Figure 6.11: First six bands selected by SBS for the Tregaron classification task (see table 6.3
and 6.4). Wavelengths not available for band selection are indicated by grey bars.
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Estimated optimal band number

The ID of the data set was estimated to 3 as nearly 99% of the variance is explained by the first
three PCs. This can be seen from the cumulative PC eigenvalues listed together with the MLC
accuracy of the first ten PCs in table 6.5. The scree plot method was then applied to the MLC
accuracy of successive PCs to give an IDD estimate of 5. The same result is achieved when using a

99% threshold value on the PMATD criterion (see table 6.5).

Table 6.5: PMATD band number criterion for the first 10 SBS bands, and cumulative
eigenvalue and MLC accuracy for the first 10 PCs of the Tregaron data set.

Band/ PMATD Cumulative PC MLC accuracy
PC eigenvalue (%) of PC (%)
1 81.45 93.42 72.03
2 89.79 97.91 78.33
3 97.19 98.97 85.80
4 08.79 99.37 91.97
5 99.59 99.50 93.94
6 99.85 99.57 94.38
7 99.996 99.62 94.21
8 99.30 99.66 94.48
9 99.81 99.70 94.62
10 100 99.72 94.83

The optimal band number estimate of 5 is also reflected in figure 6.12, where the SBS band set is
compared in terms of MLC accuracy with equally and randomly spaced band sets. SBS band
selection seems to be especially effective for the first five dimensions, where differences to the
randomly and equally spaced band sets are as high as 12%. From 6 to 10 dimensions, the
differences get reduced to below 3%, but remain statistically significant in most cases. Although the
PC features give a higher MLC accuracy than the SBS band set from 5 dimension onwards (see
figure 6.12), PCs do not have a physical meaning attached to them and do not consider a possible

expansion of bands.

In summary, the optimal band number criterion was confirmed using a threshold value of 99% rather
than 95%. The users are advised to judge in each case which threshold they apply. Using the 99%
threshold will result in @ more accurate end result but at the cost of a potentially much greater

number of features.

Benefit of hyperspectral data for the classification task

The widths of the best six SBS bands vary from 11 to 103 nm (see table 6.4). The fact that the broad
bands were picked out around the red and green wavelengths may suggest that an aerial

photograph may probably be sufficient for differentiating between the given bog condition classes.

An experiment was conducted o see whether hyperspectral data have an additional advantage over
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multispectral data for the given classification task. Sets of bands of equal width were created for
increasing bandwidths (12 to 194 nm) using the SBS ‘equal and fixed width’ algorithm option. Figure
6.13 shows the MLC accuracy estimated for the given sets. Only sets up to 57 nm in bandwidth
could be considered as they provide enough bands to reach the optimal band number of 5
dimensions. As the bands of 57 nm gave an MLC accuracy which was insignificantly smaller (below
1%) than that of the 12 nm bands, the author concluded that five carefully placed multispectral

bands of about 57 nm could be used to achieve the same accuracy for this classification task than

five bands of around 12 nm.
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Figure 6.12; MLC accuracy of the SBS band

set compared with the one of randomly and

uniformly spaced band sets for the Tregaron
data set.

6.5 Generalisation of the Use of Band Selection Methods

In this section, the band selection methods SBS and UBS presented in chapters 4 and 5,
respectively, are scrutinised whether they can be used with other hyperspectral data applications,
such as regression, linear spectral unmixing and spectral angle mapper. Likely changes of the
algorithms to adapt to the different techniques are investigated. Furthermore, the employment of the

two methods for other scene, atmospheric and illumination conditions, and for other imaging

spectrometers is discussed.
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6.5.1 Use with other Hyperspectral Applications

Other Hard Classification Methods

Classification methods such as minimum distance, k-nearest neighbour or the parallelepiped
classifier would also benefit from a reduced band set that discriminates most between the given
classes. However, in contrast fo the probabilistic Maximum Likelihood classification, the methods
mentioned above usually rely only on first-order class statistics and typically measure class distance
in the Euclidean space. If SBS was to be employed for supervised band selection for these methods,
the criterion function used in the SBS algorithm, the Transformed Divergence, would need to be
replaced by the Euclidean distance measure. The unsupervised UBS algorithm has the advantage
over the SBS method that it was not constructed to optimise a particular criterion function, but simply

to decorrelate the band set. It is therefore applicable to any of the above classification methods.

Regression

Regression has been widely used in remote sensing, mainly to relate physical earth surface

variables to remotely sensed measurements. [n general, multiple regression allows determining
whether values of a (dependent) variable x are related to values of ¢ independent variables i,
(ie [l, c]). For a simple regression, ¢ equals one. Equation 6.1 shows the linear form of a muttiple

regression model with matrix notation. Generally, the independent variables are selected by the
analyst and are assumed to be without error. For each of their values, 7 observations of the

dependent variable x are obtained. The aim is to invert the model and find regression coefficients
f; with the least squares method that result in the highest correlation (r2 or R’ see section 5.4)

between the observed and modelled values of x, i.e., in minimal prediction errors ¢, (or residuals).

The latter are assumed to be independent and normally distributed random variables with zero mean

and constant variance.

xj:fO+Zf;'/’Li,j+ej ,ie[l,c],je[l,n]
=1

(6.1)
x=Mf +e
where X, Value of the dependent variable in observation j
fi Regression coefficient for independent variable ¢
K Value of the independent variable i in observation
c Number of independent variables
n Number of observations
X = (%, %, ,x,) Observation vector, dimension (7 ,1)

. - , .
£ =0, firn f) Vector of coefficients, dimension (¢ ,1)

Matrix of independent variables, dimension (72, ¢)

MZ(LM:P«;»“',HC)

220



1= (1,1’,,,’1)7 Unit vector, dimension here (#,1)

e Error for observation j of the fit of independent variables

e=(e,e,, en)T Vector of random errors, dimension (#,1)

A band selection method for regression may aim to select a band set, which minimises the absolute
error of the regression result. The root-mean-square-error (RMSE) calculated between the modelled
and known inversion result for a given validation data set, is an absolute error measure for any type
of model inversion (Settle and Drake, 1993; Townshend ef al., 2000). For example, Weiss et al.
(2000) inverted the SAIL radiative transfer model to estimate canopy biophysical variables from
remotely sensed reflectance data. For each canopy variable, they selected a band set that gave the

best estimation performance in terms of minimum absolute RMSE.

The absolute RMSE includes the model! fit as well as the data dependent generalisation error of the
model, that is, the model’s performance with respect to unseen data. For supervised band selection,

however, the main interest fies in the fit of a certain band (subset) to the model, which is captured in

a goodness-of-fit measure such as the coefficient of determination (#” or R*) between the

observed and modelled values of the dependent variable.

An example for band selection for simple regression models is Leckie ef al. (1988), who aimed to
find airborne scanner bands which can be used to assess defoliation caused by the spruce
budworm. They performed linear and quadratic regressions to relate band reflectance data and
damage symptom quantities, and the bands with a high and significant correlation coefficient (0.1%
and 1% significance level) were considered as highly suitable for the task. Another example is
Thenkabail et al. (2002), who selected optimal sensor bands for characterising biophysical variables
of agricultural crops and yield. They related in situ measurements of these variables directly to
vegetation indices (and not bands) calculated from both narrow and broad wavebands using field

spectroradiometer and Landsat-5 TM reflectance data, respectively. The best vegetation indices

were the ones that gave the highest r? for the exponential regression model, and the best bands

were selected as the ones used in the three best vegetation index models.

The latter two examples represent single-band selections, which do not consider the suitability of the
entire band subset for the regression model. Hyperspectral bands of a remotely sensed data set are
usually correlated, so the best band subset does not necessarily consist of the best individual bands.
Feature selection search techniques (see section 2.2.3) may be applied to find the best band subset
at any given dimension. As an exhaustive search may quickly become computationally infeasible, a
sub-optimal method such as the sequential forward or backward selection may be employed. To
note is that the minimum number of bands required for obtaining a regression solution equals to

¢ +1, and in case of the forward selection, an exhaustive search needs to be performed for the

band set dimension ¢ +1 before further bands may be added via forward selection search. The
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backward elimination method may in total be computationally less expensive than the modified

forward selection search. It performs a regression on all bands and deletes the band iteratively that

contributes least to the coefficient of determination R* when entered last.

Nevertheless, band selection methods using the coefficient of determination as criterion function
require a regression calculation for each criterion value and therefore come at a high computational
cost. Unfortunately, a surrogate for a goodness-of-fit measure entirely based on the given values of

the independent variables does not exist.

One of the assumptions in regression is that the independent variables are linearly independent, i.e.,

they have no perfect correlation between them. In case variables were collinear, the regression

model could not be inverted. That is, for the linear example in equation 6.1, the matrix M (or

MTM) becomes singular and its inverse does not exist. Although near collinearity between
independent variables allows for model inversion, it results in a very large standard error of their
regression coefficients (Edwards, 1984). That is, the coefficients become unstable and may vary
substantially depending on which other independent variables are included. Consequently, an
accurate regression solution relies on the independence of the model variables, and a supervised
band selection routine may be designed fo eliminate those bands from the set that result in an
increased variable correlation. The correlation between the variable vectors for each band may be
measured via the angle between them. That ig, the SBS algorithm framework could be applied to
band selection for regression if the criterion function was replaced by an angle measure between
variable vectors. As the latter is not a single-band measure, the band pair resulting in the largest

angle between the given variables is selected first.

The unsupervised UBS algorithm decorrelates the observations. This may be of advantage for
regression, as collinear observations prevent regression model inversion and near-collinear ones
result in increased variances of the estimated coefficients. The regression model assumes

observations to be independent and vary randomly around the regression line.

As a result, both the modified SBS and the UBS algorithm may be applied for band selection for
regression. However, in both cases, the procedure would not select bands the model fits best, but
those that potentially reduce the standard error of the regression coefficients. In both cases, the
band number determination procedure is not applicable, as for regression the number of
independent random observations should be considerably larger than the number of variables to

reduce the prediction variance (Miller, 1990).
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Linear Spectral Unmixing

Linear spectral unmixing (LSU, e.g. Horwitz ef al., 1971) is an estimation method which inverts the
linear spectral mixture model (LSMM). The latter formulates the radiance captured by each
instantaneous field of view (IFOV) as a linear sum of the individual material radiances (‘spectral
endmembers’, EMs) received from the scene model elements. The weight coefficients of the sum
correspond to the area proportions of the EMs within the ground-projected instantaneous field of
view (GIFOV). The LSMM corresponds to regression equation 6.1, where the EMs represent the
independent variables, the sensor radiance (or reflectance) the dependent variable and the area
proportions the regression coefficients. The constant regression coefficient may stand for effects not
explained by the EMs (Nielsen, 1999). Sometimes the column of ones in M is replaced by a
column of zeros to represent the 'total shade' EM with 0 % reflectance in all bands (Tompkins ef al.,
1997), but more often than not the constant coefficient is removed from the equation. The regression
equation may be constrained by forcing the coefficient values to sum to one or restricting them fo be

greater than zero.

With respect to band selection, Lévesque ef al. (1998) investigated the effects of varying bandwidth
and band number on (constrained) spectral unmixing results for a 68-band CASI data acquired over
a mine tailings site with five EM spectra. The absolute mean difference (AMD) between the all-bands
unmixing result and the band-expansion resuits increased for growing bandwidths, while the AMD
for band reduction was below 2 and 9%, when using only 8 and 4 uniformly-spaced bands,
respectively. This illustrated that broadband sensors may be limited in their ability to separate
spectrally between EM, and that using the minimum number instead of all observations may result in

comparable results (AMD below 10%).

Chang ef al. (1899) described a supervised band selection method for linear spectral unmixing with
a regression model that separates between target and background EMs. In this method, pixels are
first projected into the subspace orthogonal to the background (orthogonal subspace projection,
OSP, Harsanyi and Chang, 1994). Second, target signals are separated from noise maximising the
SNR matrix via a matched filter, which is equivalent to solving a generalised eigenvalue problem.
From the eigenvalues and —vectors, the discriminant power (see section 2.3.5) of each band is
calculated to prioritise the bands. That is, bands are ranked according to their ability to transmit only
the part of the target EM signal that is orthogonal to the background EMs. A similar approach was
presented by Karlholm and Renhorn (2002), who projected the signal onto the subspace orthogonal
to the background, and then estimated the SNR by decomposing the projected signal into
orthogonal components in a target and noise subspace. The bands were selected that transmit the
undistorted part of the target signal orthogonal to background. However, the latter two examples

represent single-band selections, which do not take the band subset performance into account.
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Regarding subset selection for LSU and the suitability of the SBS and UBS algorithms, the same
comments apply as for regression (see above). These results are also valid for extensions of LSU,
such as OSP, constrained energy minimisation (Farrand and Harsanyi, 1997) and support vector

machines (Brown et al., 1999).

Spectral Angle Mapper

The spectral angle mapper (SAM, e.g. Mather, 1999) allows the mapping of the spectral similarity of
each image spectrum to a given reference spectrum. The similarity is measured by the angle
between an image pixel vector and the reference pixel vector, which is invariant to the lengths of the
vectors, and therefore to illumination effects. The SBS algorithm is applicable if the criterion function
is replaced by an angle measure (see table 2.1), which has to be minimised to achieve high class
separation. In addition, the algorithm needs to be modified and start by selecting the band pair
resulting in the largest angle between the given classes, as the criterion is not a single-band
measure. The UBS can be employed as it reduces the redundancy between bands and therefore the

need to estimate vector similarity for equivalent bands.

6.5.2 Use with other Scene, Atmospheric and lllumination Conditions

The band selection methods described in chapter 4 and 5 assume that the scene, atmospheric and
illumination conditions do not change significantly between the hyperspectral image flight and the
following multispectral image flight. The multispectral band configuration corresponds to the output
of the band selection algorithm which uses the hyperspectral image as input. If, however, significant
changes in atmospheric and illumination conditions occur between data acquisitions, hyperspectral
data measured for the target conditions need to be either simulated or calibrated to reflectance (see

section 6.6).

6.5.3 Use with other Imaging Spectrometers

The band selection methods are generally directly applicable {o all programmable imaging
spectrometers that measure a continuous spectrum for each pixel and possess an on-board channel
summation capability. Examples include the CASI-2, the Airborne Imaging Spectrometer (AISA) and
the Reflective Optics System Imaging Spectrometer 03 (ROSIS-03). If bands were to be selected for
a sensor different to the one with which the hyperspectral input data were acquired, the
hyperspectral data set would need to be modified to simulate measurements of the target sensor.

Data simulation is described in the next section.
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6.6 Data Simulation

The selection of a band set for future multispectral airborne or satellite sensors or unavailable
programmable imaging spectrometers may also be accomplished via the SBS and UBS band
selection methods presented in chapters 4 and 5, respectively. The latter algorithms require high
spectral resolution sensor data as input, but as these may not be available for the given target

sensors, they need to be simulated with data from other hyperspectral imaging or non-imaging

SEensors.

For correct data simulation, sensor characteristics as well as atmospheric and ililumination conditions
need to be taken into account for both the target and the simulating sensor. In this section, the
author focused exclusively on sensor attributes such as spectral, spatial and signal response.
Transforming the available hyperspectral data into radiance will correct for dark current noise and
calibrating them to apparent reflectance reduces atmospheric and illumination effects. That is,
simulating data in reflectance units eliminates the need to consider prevailing atmospheric and
illumination conditions. If at-sensor radiance was the desired output unit of the simulation, a radiative
transfer model could be used (e.g. Isaacs and Vogelmann, 1988; Kerekes and Landgrebe, 1989;
Fischer and Fell, 1999). For both target and simulating sensor, nadir viewing was assumed,
reducing the effects of oblique viewing on the band selection result. For the use of orbital, platform,
or attitude models the reader is referred to O'Neill and Dowman (1993) and Schowengerdt (1997).

6.6.1 Sensor Spectral Response

Two cases of band selection for different sensors may be distinguished:
1) band selection for a non-existing sensor (e.g. in sensor design studies), and

2) band selection for an existing but unavailable programmable imaging spectrometer.

In both cases, it is essential that the entire wavelength range of the target sensor is covered by the
hyperspectral data set used. In the first case, data simulation will not be necessary as none of the
target sensor bands are specified. Nonetheless, the finer the spectral resolution of the base data set,

the more optimal the bands will be selected with respect to their width and placement.

In the second case, the spectral resolution of the base data needs to be finer than the finest
resolution of the target sensor in order to allow for an accurate band simulation. A target sensor
band may be simulated by the simple average of all narrow bands that fall within its spectral
response. For example, Thenkabail et al. (2000) simulated spaceborne sensor bands from field

spectrometer data by averaging the narrow band data for the corresponding band ranges.
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If the target sensor’s spectral response function (also referred to as bandpass or fransmittance
function) was known a more accurate band simulation would result. The simulated band response
would then be calculated as the spectrally weighted average of the narrow band responses over the
spectral bandpass. For example, Wetzel (1995) simulated spectral bands of two shortwave-infrared
AVHRR channels with hyperspectral AVIRIS data by using a spectral transmittance function similar

to the existing AVHRR shortwave channel transmittance.

However, for some imaging spectrometers, such as the CASI-2, the spectral response function is
not available (Riedmann, 2003). Normally, it is considered to be Gaussian in shape but with varying

bandwidth across the spectral range (Schowengerdt, 1997).

6.6.2 Sensor Spatial Response

When simulating the spectral response of a sensor, it is important that the size of the simulating
sensor’'s GIFOV matches the one of the target sensor, so that both sensors capture the same scale
of scene variation. if this was not the case one sensor would measure small-scale scene variation,
the other large-scale variation, leading to fundamentally different sensor responses. That is, the
simulating sensor’s GIFOV measurements need to be regularised to the GIFOV size of the target
sensor, if the GIFOVs were different. This implies that the spatial resolution of the simulating sensor
needs to be equal or finer than the resolution of the target sensor, as it is more difficult to scale
down, i.e. simulate smali-scale from large-scale variation. In addition, the base data set should cover

the entire spatial extent of the scene of interest.

Generally, two types of simulating sensor may be distinguished:
1) imaging sensor (e.g. an airborne imaging spectrometer), and

2) non-imaging sensor (e.g. a field spectroradiometer).

The following paragraphs discuss data simulation using data from these two types of sensors.

Simulation with Data from Imaging Sensors

An imaging sensor may simulate the spatial response of another one flown or orbiting at higher
altitude. Up-scaling of image data may be performed in two consecutive steps:
1) discrete convolution (filtering), and

2) resampling.
Convolution filters are moving windows that operate on a relatively small neighbourhood of the

windows centre pixel. A linear convolution filter is a weighted sum of the pixels within the moving

window. The moving window needs to be at least the size of the target sensor's GIFOV. The image

226



coordinate of the output value is the same as the one of the current centre pixel of the window. The
window is moved over every possible image pixel position, biurring the image according to the
nature of the filter function. To note is that the sampling between pixels during the convolution
remains constant. In the second step, the image is resampled to the desired sampling intervai.
Usually the spacing between pixels is chosen to equal the GIFOV size of the target sensor.
Resampling is achieved by interpolating new pixel values between the convoluted pixels using

nearest neighbour, bilinear, or cubic interpolation.

In this context, the convolution filter corresponds to the point-spread function (PSF) of the target
sensor, which describes the spatial response of the sensor due to its optics, image motion, detector
and electronics (Schowengerdt, 1997). The PSF represents the spatial irradiance of a point source
on the detector in the sensor focal plane. The modulation transfer function (MTF) is the equivalent of
the PSF in the spatial frequency domain. To be precise, the MTF equals to the magnitude of the

Fourier transform of the PSF (Bretschneider, 2002).

If the PSF of the target sensor is unknown, an idealised square wave response is often assumed
and the centre pixel value is calculated as the average of all pixels within the moving window. In this
case, the GIFOV of the target sensor generally equals multiple times the pixel size of the simulating
sensor. For example, Woodcock and Strahler (1987) degraded Landsat Thematic Mapper data
using this simple averaging technique. Marceau ef al. (1994) degraded Multi-detector Electro-optical
Imaging Scanner (MEIS) Il airborne imagery and then resampled to four progressively coarser
spatial resolutions (5, 10, 20, and 30 m). Wetzel (1995) simulated the spatial response of two
AVHRR channels with 20 m AVIRIS image data by averaging 55 by 55 pixels to give the AVHRR

footprint of 1.1km. The blurred image was successively down-sampled by the same window size.

If the PSF or MTF of the target sensor is given, a more realistic sensor response may be estimated.
For example, Schowengerdt (1997) simulated Landsat Thematic Mapper data by scanning an aerial
photograph with a 2-meter GIFOV, blurring the image with the known PSF and subsampling the
filtered image from 2 to 30 m pixel spacing. If the PSF or MTF of the simulating sensor is also
known, it may be equally accounted for. Justice et al. (1989) simulated lower resolution data from
Landsat MSS imagery using both the original MTF and the target MTF. The target MTF was based
on the original one, but using different settings for ground-projected sensor biur and target detector

dimension. The final spatial filter for image degradation was then created as the ratio between the

target MTF and the original MTF.
Simulation with Data from Non-Imaging Sensors
In the literature, field spectrometer data have been used for the selection of airborne and sateliite

sensor bands, e.g. Thomson et al. (1998a) and Dekker et al. (1992), respectively. However, in the

latter examples, the authors did not scale-up field measurements at ground to match the
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hypothetical measurements to be made with the target sensor at much coarser spatial resolution. In
general, the larger GIFOV of the target sensor spatially averages small-scale class variation

measured with the field spectrometer.

To simulate the large-scale class variation seen by the target sensor, field spectral measurements
need to be sampled and averaged over an area of the size of the target GIFOV. A carefully designed
sampling strategy is needed to define both sampling scheme and intensity. With respect to the
sampling scheme, systematic sampling has been shown to be more efficient than random sampling
(Atkinson, 1997), as it ensures a uniform coverage across the pixel area. A square grid is therefore

recommended.

The sampling interval depends on the GIFOV size of the two sensors and the spatial homogeneity of
the surface under investigation. Two cases may be distinguished: oversampling and undersampling.
In the former case, the GIFOV of the spectroradiometer is larger than the ground sampling interval,
while it is smaller in the latter case. Ideally, the pixel area would be siightly oversampled {o ensure a
continuous surface coverage. However, as the rescurces and time available to any given field work
project are generally scarce, the sampling effort could be considerably reduced by increasing the
GIFOV of the spectrometer for a better approximation of the GIFOV of the target sensor (preferably
an increase in height above ground, as a larger FOV averages bidirectional effects). Undersampling
is possible for surfaces that are homogeneous at sub-pixel scale. To quantify large-scale class
variation, pixels from other scene locations need to be sampled in a similar way. An example of
undersampling is given by Thenkabail et al. (2000). They simulated 30 m Landsat TM bands of
agricultural crops (cotton, potato, soybeans, corn and sunflower) with data from a field spectrometer
with a GIFOV-diameter of 38 cm. Spectral measurements were taken every 10 m along transacts of

30 to 100 m in length.

In general, high-resolution airborne imaging data should be preferred to non-imaging field
spectrometer data for the simulation of hyperspectral airborne or spaceborne imagery. The amount
of fieldwork needed to adequately sample class areas may be substantial, especially for
heterogeneous surfaces with many classes. In addition, extrapolation from non-image to image data
represents a weak approximation of the real data. The SBS and UBS algorithms were developed for

image data only, but can be programmed to accommodate field spectral data stored in ENVI

spectral library format (.spl).

6.6.3 Sensor Signal Characteristics
Theoretically, the radiometric resolution of the simulating sensor needs to be equal to or finer than

the one of the target sensor for an accurate data simulation. However, due to advances in senor

technology, the new generation of sensors possess very high radiometric resolution equal to or
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beyond 12-bit (CASI-2 or Hyperion 12 bit; HyMAP 16 bit). Differences between a 12-bit and 16-bit
version of the same image seem negligible, as the signal will be still sufficiently quantised with 12-

bit. Obviously, 16-bit data differ significantly from 6-bit data (e.g. Landsat MSS sensor).

Apart from the radiometric resolution, the noise characteristics of the target sensor need to be taken
into consideration. If hyperspectral airborne or spaceborne data are simulated from higher spatial
and spectral resolution data, the averaging during the degradation process reduces the noise levels
of the original data to an unrealistically low level. Justice et al. (1989) reported an 80% decrease in
sensor noise due to digital filtering. In addition, high-resolution data from field measurements or low-
altitude airborne acquisitions generally possess a higher SNR than comparable data collected at

higher altitudes from airborne or spaceborne sensors.

Noise levels of the target sensor bands may be restored to approximately realistic levels by adding
Gaussian random noise of zero mean and one noise standard deviation. The noise standard
deviation may be derived from dark current measurements of the target sensor. As the simulated
data are most practically measured in apparent reflectance, the noise standard deviation needs to
be scaled from the target sensor’s DN value to reflectance. The scaling factor may be calculated as
the ratio between the maximum possible response values of reflectance (100%) and that of the

sensor's DN value (4095 DN for CASI-2).

In this section, data simulation was based on data calibrated to apparent reflectance units in order to
circumvent atmospheric and illumination modelling. The next section discusses the need for data

calibration to radiance or apparent reflectance in the context of band selection.

6.7 The Need for Calibration

During the period 1999 to 2002 the author was responsible for the laboratory calibration of the
NERC ARSF CASI-2 imaging spectrometer and the procedure adopted for this has been published
by Riedmann and Rollin (2000) and Riedmann (2003). Section 4.2.1 gave a short overview of
common reflectance calibration methods. In this section, the benefits of both radiance and
reflectance calibration are considered for remote sensing, and the relevance of data calibration for

band selection will be discussed.

Radiometric or sensor calibration aims to transform the sensor response (in DN) to Systéme
International (S) units (at-sensor spectral radiance, pWCm'er'1nm'1) to make the measurements

independent of the instrument. It is especially important for

= the comparison of data acquired with different sensors (for across- or multi-sensor products)
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= the comparison of data acquired at different times as the sensor response may drift over time
(for multi-temporal products such as image mosaics or land cover change)

= quantitative techniques that depend on inter-band relationships (such as band ratios), as
detectors within a sensor may respond differently to a spectrally uniform signal,

= the use of radiance data for physical models (e.g. radiative transfer models).

However, at-sensor radiance is also a function of atmospheric conditions, solar illumination, sensor-
sun viewing-illumination geometry, topographic slope and aspect. Accurate multi-sensor and multi-

temporal data products should account for these factors, too.

Reflectance or scene calibration eliminates the influence of the atmosphere and illumination on the

data signal by converting it from at-sensor radiance to units of surface reflectance. As surface

reflectance is independent of the sensor, the reasons for radiometric calibration are also valid for

reflectance calibration. In addition, reflectance calibration is vital for

= the comparison of data to other reflectance data, e.g. acquired in the laboratory or in the field,

= quantitative techniques that exploit spectral features of the reflectance curve, e.g. precise
absorption band-depth measurements or absorption feature detection, and

= the use of reflectance data for physical models.

The effects of sensor viewing and solar illumination geometry, as well as topography, on remote

sensing data are significant but will not be addressed here. The reader is referred to Mather (1999)

for a discussion of correction methods.

With regards to the band selection algorithms developed in this thesis, neither radiance nor
reflectance calibration are strictly necessary if it can be assumed that the sensor response and
atmospheric and illumination conditions will remain constant between the hyperspectral and
multispectral data acquisitions. However, if significant changes in sensor response or atmospheric
and illumination conditions occurred between the two acquisitions, for example, due to a large time
lag or multispectral data being collected with a different sensor, reflectance calibration would be
beneficial to guarantee optimal band selection. Obviously, if the application requires radiance or

reflectance data as input, band selection should be performed on calibrated data.

The author believes that, in principle, surface reflectance calibration should be part of any data pre-
processing routine, if the interest of the analyst lies in surface properties, for example as for land
cover classification. However, so far, different sensor and scene calibration procedures of different
accuracy have been applied across the remote sensing research community. To make data as
comparable as possible calibration methods need to be standardised. Validation of data for Earth
observation services (ValDEOS) is a UK initiative that aims to integrate the existing capability for

data calibration and validation across Europe in a network of excellence. It plans to develop a
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uniform approach towards validation and calibration under which nationally funded programmes are

likely to align (see BNSC/NPL on-line e-survey; NPL, 2003).

6.8 Summary

When applied to the given real data sets, the SBS, UBS and CSBS algorithms achieved similar ML.C
accuracies, indicating that all four algorithms may be equally applied for the given data and class set
for band selection. However, the SBS resulted in more optimal bands, especially in the search for
the single best bands. SBS is the preferred band selection method for a supervised MLC, as UBS
cannot determine the optimal maximum bandwidth and depends on the availability of dark image
data for band expansion. CSBS has the drawback of producing inconsistent results depending on
the initialisation and parameter settings of the clustering routine. However, the ultimate choice of
method is very much dependent on the requests of the data user, and the UBS method may be

chosen simply because it may be applied in-flight.

When applied to the given data sets, band selection is principally effective only for the first few
bands of the selected set. The number of effective bands corresponds to the intrinsic discriminant
dimensions of the data sets. In addition, a band expansion experiment on the given data sets
showed that for two out of three data sets hyperspectral data were found not to be of significance for
the corresponding classification tasks. That is, multispectral data with less and broader bands would

achieve similar accuracy as the full hyperspectral data set.

With respect to other hyperspectral data applications, UBS may be used without modification for all
cases examined. In contrast, SBS can only be employed to other hard classification methods if the
criterion function used reflects the complexity of the classifier. For example, the Euclidean distance
measure should be employed when classifying with the Minimum Distance method. For regression,
linear spectral unmixing or spectral angle mapper, the SBS criterion function needs to be replaced

by the spectral angle between variable or class vectors.

SBS and UBS may be employed with any other programmable imaging spectrometers such as AISA
or ROSIS-03. If band selection was carried out for a sensor different to the one with which the
hyperspectral input data were acquired, for example for sensor design studies, the hyperspectral
data of the target sensor would need to be simulated. If the spectral response of target sensor was
known, data of spectral resolution finer than the one of the target sensor should be used for
simulation. Likewise, the spatial resolution of the simulating sensor needs to be equal or finer than
the resolution of the target sensor. If the spatial sensor response was simulated with data from an
imaging sensor, data would first need to be convoluted with the PSF of the sensor and then
resampled. If non-imaging data from field spectrometers was used for spatial data simulation, the

GIFOV of the target sensor would need to be sampled systematically in a square grid with the

231



sampling interval depending on the GIFOV size of the fwo sensors and the spatial uniformity of the
target classes. The closer the GIFOVs are in size, and the more homogeneous the classes, the less
sampling is needed. In addition to the spatial and spectral response, the target sensor noise has to
be considered as well for data simulation. Noise levels may be derived from the target sensor’s dark

current and added as Gaussian noise with zero mean and one standard deviation.

If it cannot be assumed that the sensor response and atmospheric and illumination conditions will
remain constant between hyperspectral and multispectral data acquisitions, data should be
calibrated to radiance and apparent reflectance, respectively, to guarantee optimal band selection.
This is also valid if the data application requires calibrated data as input. With respect to data
simulation, calibrating hyperspectral data to apparent reflectance allows to circumvent modelling of

the existing atmospheric and illumination conditions at the target sensor.
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7 Summary and Conclusion

7.1 Rationale and Objectives

During the last twenty years advances in sensor technology have produced a new generation of
airborne and satellite sensors that can acquire data in many narrow bands. With hyperspectral data
from these sensors, an improved discrimination of ground targets may be possible. However, this

increased capacity comes at a substantial cost:

= First, some sensors, such as the CASI-2 or CHRIS, are limited in the amount of data they can
record. In order to acquire a large number of bands, the amount of spatiai pixels (i.e. the swath
width) needs to be reduced.

= Second, very fine bands give a low signal-to-noise ratio, unless coarser spatial resolution is
used. For example, the first spaceborne imaging spectrometer, Hyperion, records a continuous
spectrum with 10 nm wide bands, but offers a spatial resolution of 30 m. The latter is relatively

coarse compared to a possible 1 m resolution of the lkonos satellite sensor (see table 1.2).

The question may then be asked whether hyperspectral data are of benefit for a given application

task. In other words:

Is it possible fo reduce the number of hyperspectral bands and broaden their width, while achieving

the same or higher application accuracy as with the original hyperspectral data set?

This study aimed to answer this guestion by developing band selection methodologies using
hyperspectral data from airborne and satellite sensors as input. So far, band sets for airborne and
spaceborne sensors have been designed mainly on the basis of established band sets of other
sensors. Alternatively, they have been chosen using featuré selection or exiraction methods. But the

latter methods are unable to provide an answer to the above question.

7.2 Innovative Methods

To answer the above guestion, all band selection methods developed in this thesis introduce both
bandwidth and band number as variables into the band selection process. That is, band location,
width and number are optimised with respect to the accuracy of the application task at hand.
Maximum Likelihood classification was chosen as application in the design of the algorithms, but the

use of the band selection methods with respect to other applications was discussed.
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The supervised band selection (SBS) procedure is based on conventional feature selection
techniques using user-specified classes. However, it outperforms other published feature selection-
based methods in the choice of criterion function and algorithm structure. Both the band expansion

and band number determination procedures are based on the criterion function.

For the case that in sifu data or classification schemes are unavailable, an unsupervised band
selection (UBS) method was designed, which aims to find the least redundant bands within the band
set on the basis of the correlation coefficient. While the optimal number determination method uses
also the correlation coefficient, the expansion procedure is based on the band signal-to-noise ratio.
Unlike PCA, UBS decorrelates the band set without data transformation, preserving the physical
meaning of the bands. The clustering-based SBS (CSBS) algorithm is an alternative to UBS, which

uses clustering to define the classes needed as input for the SBS.

All algorithms were implemented in computationally efficient iDL™ (version 5.5 Win 32 x86) and

ENVI™ (version 3.5) programs that can be run in ENVI™. Besides for band selection, they may also

be used for

= feature selection processing,

=  determining the best three bands for colour composites to visually discriminate between the
given classes or display maximum information,

= visualising discriminant or uncorrelated spaces (e.g. for endmember derivation),

= ordering a given band set according to information content or discrimination ability, and

= adding least redundant or most discriminative bands to a pre-defined band set.

7.3 Method Evaluation

The band selection approaches developed were evaluated with two real data sets from saltmarsh
areas in the Mid Severn Estuary and heathland areas in the New Forest, UK. The SBS was further
tested on a data set from the Tregaron bog, UK. All algorithms gave physically meaningful band
sets, which achieved similar or higher MLC accuracies than vegetation and coastal band sets from
current airborne and satellite sensors. The sub-optimality of the SBS band set was found to be no
more than 6% for sets with maximum three bands, while the UBS band set achieved a maximum
accuracy loss of 7% for two and three-dimensional band sets. The CSBS set was found to be less
optimal. The band number criteria were shown to be effective estimates of the intrinsic
dimensionality of the data sets. However, some subjectivity is still present in the latter criteria

regarding the threshold being used (95% or 99%).
Generally, SBS is the preferred band selection method for supervised MLC as data application. Only

SBS may be used to test whether narrow band data have a significant advantage over broad band
data for the given classification tasks at hand. UBS uses the SNR for band expansion, which is not
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related to MLC accuracy and depends on the availability of dark image data. Furthermore, UBS (as
PCA) requires each band to be normally distributed, which is only justified if the scene is made up of
a single material type. CSBS has the drawback of producing inconsistent results depending on the
initialisation and parameter settings of the clustering routine. If no classes are available, UBS should

be preferred to CSBS due to the inconsistency and sub-optimality of the latter.

7.4 Results

A band expansion experiment was performed with the SBS algorithm to test whether hyperspectral

data gave a significantly higher MLC accuracy than multispectral data for three classification tasks:

heathland vegetation in the New Forest, salt marsh vegetation on the River Severn and bog

condition classes on the Tregaron bog.

= As for the New Forest classification task, two carefully placed bands of 370 nm seem to be
achieving at least 95% of the classification accuracy that 117 15 nm-wide bands reach.

= Regarding the Tregaron classification task, five bands of 57 nm seem to result in at least 99% of
the accuracy of 37 12 nm-wide bands.

= With respect to the River Severn classification task, three bands seem to achieve at least 95%
of the classification accuracy of 60 bands. However, narrow bands were found to give a

significantly higher accuracy than broader bands.

That is, for all three classification tasks, the number of bands to acquire could be reduced
dramatically, enabling an increase in swath width. For two out of three tasks, coarsening the spectral

sensor resolution may be justified e.g. in favour of a refinement in the sensor’s spatial resolution.

7.5 Use of Methods

Band selection is specific to the characteristics of 1) the scene, 2) the sun, 3) the atmosphere, 4) the
sensor, and 5) the final data application. To find a band set that is valid for the target data

acquisition, all dependencies have to be considered.

According to whether target sensor is programmable or not, the band selection methods may be
applied in two different ways. Using programmable airborne sensors, such as the CASI-2, AISA or
ROSIS-03, the first four atiributes may be taken into account by using hyperspectral data of a
representative part of the scene acquired with the sensor of interest under similar solar and
atmospheric conditions. Application-specific band selection may then be performed on the
hyperspectral data, and multispectral data may be collected subsequently using the optimised band

set. The approach requires the time gap between hyperspectral and multispectral acquisitions to be
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minimised to avoid changes in the class spectral responses, atmospheric and illumination
conditions. Both the UBS and CSBS may be readily employed in-flight. The SBS is inappropriate for
in-flight application as it depends on a user-defined class set. Reflectance calibration of the

hyperspectral data set may be necessary, if atmospheric and illumination conditions changed

between acquisitions.

For non-programmable airborne or satellite sensors, a more generic band set may be soUght for a
given classification scheme (e.g; land cover mapping), which needs to be optimised {o a large
number of scenes. On the search of such a band set, long-term temporal changes in the scene,
sensor, atmosphere, illumination need to be taken into account. As hyperspectral data of the target
sensor are often not available, in particular for sensor design studies, they need to be simulated in
units of apparent reflectance to consider changes in the sensor and atmospheric and illumination
conditions. With respect to the validity of the band set regarding short-term atmospheric and
illumination changes, a sensitivity analysis may be performed that systematically varies atmospheric
or iliumination parameter settings for a given scene. The SBS wouid be the most suitable band

selection method for this case.

7.6 Conclusion

The author believes that current data acquisition is inefficient in that spectrally redundant data are
collected with most imaging spectrometers, often using narrow band data where this is not
necessary. A more efficient data acquisition with respect to the number of bands collected would
allow obtaining supplementary data, e.g. additional bands for other data applications, or more spatial
pixels for an increased swath width or angular data. If narrow bands were found to result in similar

accuracy as broad bands, the spatial resolution of the sensor could be refined.

This research project has demonstrated the potential of three innovative band selection methods for
imaging airborne and satellite sensors. They may be used as tools o optimise a sensor band set
regarding the number, width and location of bands, and therefore, increase the efficiency of data
acquisition. Coupled with algorithms to optimise other acquisition parameters, e.g. spatial resolution,

they lead the way towards an intelligent Remote Sensing expert system for data acquisition.
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Table A.1: Environment Agency (EA) CASI band specifications (October 1997, enhanced
spectral mode) (Source: EA, 1997).

Band |Centre Wavelength (nm) |FWHM (nm) {Band start |Band End |Region
1 412.4 8.4 408.2 416.6|VIS
2 419.7 8.4 415.5 423.9\VIS
3 427 8.4 422.8 431.2)VIS
4 434.3 8.4 430.1 438.5|VIS
5 441.6 8.4 437.4 445.8VIS
6 449 8.6 4447 453.3|VIS
7 456.3 8.6 452 460.6VIS
8 483.7 8.6 459.4 468|VIS
9 A71.1 8.6 466.8 475.4 VIS

10 478.4 8.6 4741 482.7|\VIS
11 485.9 8.6 481.6 490.2/VIS
12 T 493.3 8.6 489 497 8\VIS
13 500.7 8.6 496.4 505|VIS
14 508.1 8.6 503.8 512.4\VIS
15 515.6 . 86 511.3 519.9\VIS
16 5231 8.6 518.8 527.4\ViS
17 530.5 8.6 526.2 534.8VIS
18 538 8.6 533.7 542 .3|VIS
19 545.5 8.6 541.2 549.8|VIS
20 553 8.6 548.7 557.3|VIS
21 560.5 8.6 556.2 564.8/VIS
22 568.1 8.6 563.8 572.4|VIS
/ 23 575.6 8.6 571.3 579.9|VIS
24 583.1 8.6 578.8 587.4\VIS
25 590.7 8.6 586.4 595|VIS
26 598.2 8.6 593.9 602.5\VIS
27 605.8 8.6 601.5 610.1|VIS
28 613.4 8.6 609.1 617.7\VIS
29 621 8.6 616.7 625.3|VIS
30 628.5 8.6 624.2 632.8/VIS
31 636.1 8.6 631.8 640.4\VIS
32 643.7 8.8 639.3 648.1VIS
33 651.3 8.8 646.9 655.7|VIS
34 658.9 8.8 654.5 663.3|VIS
35 666.6 8.8 662.2 671\VIS
36 674.2 8.8 669.8 678.6|VIS
37 681.8 8.8 677.4 686.2/VIS
38 689.4 8.8 685 693.8|VIS
39 697.1 8.8 692.7 701.5/VIS
40 704.7 8.8 700.3 709.1|VIS
41 712.3 8.8 707.9 716.7\VIS
42 720 8.8 715.6 724.4\VIS
43 727.6 8.8 723.2 732\VIS
44 735.3 8.8 730.9 739.7\VIS
45 742.9 8.8 738.5 747.3|VIS
46 750.5 8.8 746.1 754 .9VIS
47 758.2 8.8 753.8 762.6/VNIR
48 765.8 8.8 761.4 770.2|NIR
49 773.5 8.8 769.1 777 9INIR
50 781.1 8.8 776.7 785.5/NIR
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Table A.1 continued.

Band |Centre Wavelength (nm) [FWHM (nm) {Band start |Band End |Region
51 788.8 8.8 784 .4 793.2|NIR
52 796.4 8.8 792 800.8|NIR
53 804.1 8.8 799.7 808.5|NIR
54 811.7 8.8 807.3 816.1/NIR
55 819.4 8.8 815 823.8|NIR
56 827 8.8 822.6 831.4/|NIR
57 834.7 8.8 830.3 839.1|NIR
58 842.3 8.8 837.9 846.7/NIR
59 850 8.8 845.6 854.4|NIR
60 857.6 8.8 853.2 862|NIR
61 865.2 8.8 860.8 869.6|NIR
62 872.9 8.8 868.5 877.3|NIR
63 880.5 8.8 876.1 884.9/NIR
64 888.1 8.8 883.7 892.5|NIR
65 895.7 8.8 891.3 900.1|NIR
66 903.3 8.8 898.9 907.7|NIR
67 910.9 8.8 906.5 915.3|NIR
68 918.5 8.6 914.2 922.8/NIR
69 926.1 8.6 921.8 930.4|NIR
70 933.7 8.6 929.4 938|NIR
71 941.3 8.6 937 945 6|NIR
72 948.9 8.6 944 .6 953.2|NIR

Table A.2: HyMAP band specifications (June 2000) (Source: HyVISTA Corp. Pty. Ltd., 2000).

Band |Centre Wavelength (nm) {FWHM (nm) |Band start |Band End |Region
1 437 15 429.5 444 5\VIS
2 448.9 11.2 443.3 454 5\ VIS
3 461.3 15.8 453.4 469.2/\VIS
4 477.3 15.5 469.55 485.05|VIS
5 492.3 15.5 484.55 500.05\VIS
6 507.4 15.8 499.5 515.3}VIS
7 523.4 15.6 515.6 531.2\VIS
8 538.8 15.9 530.85 546.75|VIS
9 554.2 15.3 546.55 561.85 VIS

10 569.5 15.4 561.8 577.2\VIS
11 584.7 15.4 577 592.4\VIS
12 600.1 15.5 592.35 607.85|VIS
13 615.7 15.7 607.85 623.55|VIS
14 631.3 15.6 623.5 639.1|VIS
15 646.6 15.3 638.95 654.25\VIS
16 661.7 15.1 654.15 669.25|VIS
17 676.9 15.5 669.15 684.65/VIS
18 692.4 15.8 684.5 700.3 VIS
19 707.8 15.3 700.15 715.45\VIS
20 722.9 15.3 715.25 730.55VIS
21 738.1 15.7 730.25 745.95\VIS
22 753.4 15.3 745.75 761.05\VIS
23 768.5 15.3 760.85 776.15VIS
24 783.5 15.3 775.85 791.15|NIR
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Table A.2 continued.

Band |Centre Wavelength (nm) [FWHM (nm) |Band start {Band End |Region
25 798.8 15.7 790.95 806.65/NIR
26 814.1 15.5 806.35 821.85NIR
27 829.2 15.5 821.45 836.95|NIR
28 844.4 15.8 836.5 852.3/NIR
29 859.8 16.2 851.7 867.9|NIR
30 875 15.9 867.05 882.95/NIR
31 8726 18.1 863.55 881.65|NIR
32 890.3 20 880.3 900.3|NIR
33 905.6 19 896.1 915.1|NIR
34 922.2 18.8 912.8 931.6|NIR
35 938 18.3 928.85 947.15|NIR
36 953.6 18.5 944.35 962.85|NIR
37 969.3 18.5 960.05 978.55|NIR
38 084.8 18.7 975.45 994.15/NIR
39 1000.9 18.7 991.55| 1010.25/NIR
40 1016.5 18.8 1007.1 1025.9/NIR
41 1032 18.9] 1022.55] 1041.45NIR
42 1047.5 18.8 1038.1 1056.9{NIR
43 1063 18.3] 1053.85| 1072.15|NIR
44 1078 18.6 1068.7 1087.3|NIR
45 1093.1 18.5] 1083.85] 1102.35NIR
46 1108 18.3] 1098.85| 1117.15|NIR
47 1122.9 18.7] 1113.55/ 1132.25|NIR
48 1137.6 18 1128.6 1146.6NIR
49 1152.2 18.1] 1143.15] 1161.25|NIR
50 1166.7 17.9) 1157.75] 1175.65NIR
51 1181.4 18.3] 1172.25| 1190.55|NIR
52 1196.1 18.1| 1187.05| 1205.15NIR
53 1210.3 17.4 1201.6 1219|NIR
54 1224.5 17.5] 1215.75| 1233.25|NIR
55 1238.7 17.9) 1229.75, 1247 65|NIR
56 1253.2 17.7) 1244.35| 1262.05|NIR
57 1267.3 17.3] 1258.65{ 1275.95NIR
58 1281.4 17.1, 1272.85, 1289.95NIR
59 1295.4 17.3] 1286.75| 1304.05NIR
60 1309.4 18.1] 1300.35 1318.45|NIR
61 1323.6 16.5; 1315.35] 1331.85NIR
62 1336.8 16.9| 1328.35, 1345.25NIR
63 1406.4 17.2 1397.8 1415|NIR
64 1420.6 15.9] 1412.65] 1428.55NIR
65 1434 .4 16.4 1426.2 1442.6/NIR
66 1448.5 16.5 1440.25| 1456.75NIR
67 1462.6 16.1) 1454.55| 1470.65|NIR
68 1476.6 16.2 1468.5 1484.7|NIR
69 1490.3 16.5! 1482.05| 1498.55/|NIR
70 1503.9 16.2 1495.8 1512|NiR
71 1517.2 16.2 1509.1 1525.3]SWIR
72 1530.7 16.2 1522.6 1538.8|SWIR
73 1544 .1 16.6 1535.8 1552.4|SWIR
74 1557.6 16.5] 1549.35| 1565.85SWIR
75 1570.6 16.1] 1562.55/ 1578.65SWIR
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Table A.2 continued.

Band |Centre Wavelength (nm) |[FWHM (nm) |Band start |Band End |Region
76 1583.5 16.2 15754 1591.6/:SWIR
77 1596.5 16.6 1588.2 1604.8/SWIR
78 1609.5 16.2 1601.4 1617.6/SWIR
79 1622.3 15.9] 1614.35] 1630.25SWIR
80 1635.1 16.1) 1627.05] 1643.15/SWIR
81 1647.8 16.11 1639.75] 1655.85;SWIR
82 1660.3 15.8 1652.4 1668.2/SWIR
83 1672.7 15.5/ 1664.95] 1680.45/SWIR
84 1685.1 15.7| 1677.25| 1692.95SWIR
85 1697.5 15.6 1689.7 1705.3|SWIR
86 1709.9 15.3] 1702.25] 1717.55|SWIR
87 17221 149, 1714.65] 1729.55|SWIR
88 17341 1511 17286.55] 1741.65SWIR
89 1746.5 15 1739 1754|SWIR
90 1758.4 145 1751.15] 1765.65SWIR
91 1770.3 14.2 1763.2 1777.4 SWIR
92 1782.2 14.4 1775 1789.4|SWIR
93 1794 14.4 1786.8 1801.2|SWIR
94 1805.7 13.6 1798.9 1812.5|SWIR
95 1951.6 20.9] 1941.15, 1962.05/SWIR
96 1970.7 211 1960.15/ 1981.25/SWIR
97 1989.5 21 1979 2000|SWIR
98 2008.2 20.7) 1997.85 2018.55/SWIR
99 20271 20.9| 2016.65; 2037.55/SWIR

100 2045.9 20.9] 2035.45] 2056.35SWIR
101 2064.5 20.7, 2054.15| 2074.85SWIR
102 2082.7 20.4 2072.5 2092.9/ SWIR
103 2100.8 20.2 2090.7 2110.9|SWIR
104 2118.7 20.3; 2108.55| 2128.85/SWIR
105 2136.7 20.4 2126.5 2146.9|SWIR
106 2154.7 20.3) 214455, 2164.85/SWIR
107 2172.2 19.6 2162.4 2182|SWIR
108 2189.2 19 2179.7 2198.7|SWIR
109 2206.6 20.7) 2196.25, 2216.95/SWIR
110 2224 .8 18.8 2215.4 2234.2|SWIR
111 22417 19.2 2232.1 2251.3]SWIR
112 2259.4 19.4 2249.7 2269.1|SWIR
113 2276.6 18.2 2267.5 2285.7|SWIR
114 2293.5 18 2284.5 2302.5/SWIR
115 2310 17.8 2301.1 2318.9|SWIR
116 2326.3 17.8 2317.4 2335.2|SWIR
117 2342.8 17.9] 2333.85, 2351.75/SWIR
118 2359.7 18 2350.7 2368.7/SWIR
119 2375.8 17.7) 2366.95] 2384.65SWIR
120 2391.8 17.4 2383.1 2400.5|SWIR
121 2407.6 17.3] 2398.95 2416.25/SWIR
122 2423.6 16.5] 241535 2431.85SWIR
123 2439.3 16.3] 2431.15) 2447 45SWIR
124 2455 16.8 2446.6 2463.4|SWIR
125 2470.5 17 2462 2479|SWIR
126 2485.9 16.5| 2477.65] 2494.15SWIR
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Table A.3: NERC CASI-2 band specifications for the Tregaron bog overflight in enhanced
spectral mode (12 October 2001) (Source: NERC, 2001).

Band |Centre Wavelength (nm) [FWHM (nm) |Band start |Band End |Region
1 409.56 11.41 403.85 415.26|VIS
2 420.63 11.44 414.91 426.35|VIS
3 431.72 11.46 426.00 437.45\VIS
4 442.85 11.48 437.11 448.58|VIS
5 453.99 11.50 448.24 459.74/VIS
6 465.16 11.52 459.40 470.92|VIS
7 476.35 11.54 470.58 482.12/VIS
8 487.57 11.55 481.79 493.34|VIS
9 498.80 11.57 493.02 504.59|VIS

10 510.06 11.59 504.26 515.85|VIS
11 521.33 11.60 515.53 527.13|VIS
12 532.62 11.62 526.81 538.43|VIS
13 543.94 11.63 538.12 549.75|VIS
14 555.26 11.65 549.44 561.09|VIS
15 566.61 11.66 560.78 572.44|VIS
16 577.97 11.67 572.13 583.80/VIS
17 589.34 11.68 583.50 505.18|VIS
18 600.73 11.70 594.88 606.58|VIS
19 612.13 11.71 606.28 617.98|VIS
20 623.54 11.72 617.68 620.40|VIS
21 634.96 11.72 629.10 640.83|VIS
22 646.40 11.73 640.53 652.26|VIS
23 657.84 11.74 651.97 663.71VIS
24 669.29 11.75 663.42 675.17|VIS
25 680.75 11.75 674.88 686.63|VIS
26 692.22 11.76 686.34 698.10|VIS
27 703.69 11.76 697.81 709.58|VIS
28 715.17 11.77 709.29 721.06|VIS
29 726.66 11.77 720.77 732.54|VIS
30 738.14 11.77 732.26 744.03|VIS
31 749.63 11.78 743.75 755.52|VIS
32 761.13 11.78 755.24 767.02!NIR
33 772.62 11.78 766.73 778.51|NIR
34 784.11 11.78 778.22 790.00{NIR
35 795.61 11.78 789.72 801.50|NIR
36 807.10 11.78 801.21 812.99|NIR
37 818.59 11.77 812.70 824.48|NIR
38 830.08 11.77 824.19 835.97|NIR
39 841.56 11.77 835.68 847 45|NIR
40 853.04 11.76 847.16 858.93|NIR
41 864.52 11.76 858.64 870.40|NIR
42 875.99 11.75 870.11 881.86|NIR
43 887.45 11.75 881.57 893.32|NIR
44 898.90 11.74 893.03 904.77|NIR
45 910.35 11.73 904.48 916.21|NIR
46 921.78 11.73 915.92 927.65|NIR
47 933.21 11.72 927.35 939.07/NIR
48 944.62 11.71 938.77 950.48|NIR
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Table B.1: Frequency histograms for the classes defined over the Mid Severn Estuary study
area, calculated for bands 21, 33, 45 and 57. The normal curve is overlaid.
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Table B.1 continued.

Classes

Band 21,45

Band 33, 57
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Table B.1 continued.

Figure B.1: Skewness calculated for all

classes of the Mid Severn Estuary study area

for bands 21, 33, 45 and 57.
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Figure B.2: Kurtosis calculated for all
classes of the Mid Severn Estuary study
area for bands 21, 33, 45 and 57.



Table B.2: CASI bands selected with the Projection Pursuit Feature Selection (PPFS)

algorithm for the classes of the Mid Severn Estuary study area.

Feature Selected Bands
set
1 26
2 39} 67
3 33| 40| 55
4 32|42 47, 63
5 32|42, 47| 48/ 63
6 16| 26| 42| 47, 48 63
7 16| 27| 39) 42| 47| 48| 63
8 16| 23| 32| 39| 40| 44| 47| 63
9 16| 27| 39| 40/ 42| 44| 47| 55| 63
10 11/ 16| 23] 27, 39| 40| 42| 46| 47| 63
11 16| 26| 24| 36| 39! 40| 42, 44| 47| 48| 63

Table B.3: Z-statistic for testing the significance between PCA features with respect to the
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9 10
2| 50.29
3| 56.03] 5.50
4 5559/ 507, 0.43
5/ 58.53] 7.93| 2.44, 287
6/ 58.99, 8.39] 2.90, 3.33]0.46
7/ 59.23] 8.62] 3.13] 3.56) 0.69] 0.23
8! 59.46, 8.85] 3.37, 3.80} 0.93] 0.47, 0.23
9| 60.65| 10.02, 4.55, 4.98/ 2.111.65 1.42| 1.19
10/ 61.37, 10.74| 5.28, 5.71 2.84, 2.38, 2.15/1.92| 0.73
11| 61.62] 10.98| 5.53] 5.95| 3.09| 2.63| 2.40, 2.16| 0.98 0.25
12| 61.37,10.74) 5.28) 5.71| 2.84| 2.38] 2.15] 1.92| 0.73] 0.00

significance level (1.96) are printed in bold.

Table B.4: Z-statistic for testing the significance between MNF features with respect to the
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

Feature 1 2 3 4 5 6 7 8 9 10
2| 39.47
3! 58.27117.15
4| 62.15) 20.66, 3.54
5/ 65.35/ 23.54| 6.48] 2.94
6/ 67.73 25.70| 8.69| 5.17) 2.23
7| 68.46) 26.37| 9.38] 5.86| 2.92| 0.69
8171.48,29.11,12.23 8.73/ 5.81| 3.59| 2.90
9| 72.26| 29.82, 12.97, 9.48) 6.56| 4.35/ 3.66, 0.76
10| 72.26) 29.82| 12.97| 9.48] 6.56, 4.35| 3.66| 0.76| 0.00
11, 72.52| 30.06| 13.22| 9.73| 6.82| 4.60| 3.91| 1.02| 0.26/ 0.26
12| 72.26| 29.82| 12.97, 9.48| 6.56| 4.35| 3.66| 0.76, 0.00] 0.00
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Table B.5: Z-statistic for testing the significance between DAFE features with respect to the
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

significance level (1.96) are printed in bold.

Feature 1 2 3
2| 21.65
312212 0.50
4 2431, 2.81 232

Table B.6: Z-statistic for testing the significance between PPDA features with respect to the
overali MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

significance level (1.96) are printed in bold.

Feature 1 2 3
2| 25.82
3|/ 26.27, 0.48
4] 28.601 295, 247

Table B.7: Z-statistic for testing the significance between DBFE features with respect to the
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9 10
2/ 13.82
3| 32.47| 18.69
4) 32,47, 18.69, 0.00
5/ 35.15 21.42] 2.83] 2.83
6/ 35.38 21.65| 3.07, 3.07,0.25
7139.201 25568 7.22| 7.22/ 441|417
8! 41.73| 28.19| 10.07, 10.07| 7.29; 7.05| 2.91
9 41.99| 28.46| 10.37| 10.37, 7.59| 7.35| 3.21, 0.31
10{ 42.78| 29.28/ 11.28/ 11.28| 8.52| 8.28/ 4.15| 1.25| 0.94
11, 41.99| 28.46| 10.37| 10.37| 7.59| 7.35/ 3.21] 0.31| 0.00, 0.94
12, 41.47, 27.92) 9.77) 9.77, 6.99| 6.75| 2.60| 0.30| 0.61} 1.56

significance level (1.96) are printed in bold.

Table B.8: Z-statistic for testing the significance between PPDB features with respect to the
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5%

Feature 1 2 3 4 5 6 7 8 9 10
2, 32.71
3, 37.27 474
43982 7.45 273
5/ 40.29y 797, 3.25 0.52
6/ 40.53| 8.23] 3.51| 0.78) 0.26
7/ 41.01) 8.75] 4.04] 1.32] 0.80 0.53
81 41.75 9.55| 4.85 2.13|1.61 1.35|0.81
91 42,49/ 10.37) 5.68] 2.96 2.44| 2.18| 1.65| 0.84
10f 41.75| 9.55; 4.85/ 2.13)1.61| 1.35 0.81| 0.00| 0.84
11} 41.26, 9.02| 4.31) 1.58| 1.06| 0.80| 0.27| 0.55| 1.38| 0.55
12| 41.01) 8.75| 4.04| 1.32 0.80| 0.53 0.00| 0.81 1.65| 0.81
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Table B.9: Frequency histograms for the classes defined over the New Forest study area,
calculated for bands 10, 40, 80 and 100. The normal curve is overlaid.
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Table B.9 continued.
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Table B.9 continued.
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Table B.9 continued.

Classes
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Band 40, 100
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Figure B.3: Skewness calculated for all

Classes

classes of the New Forest study area for
bands 10, 40, 80 and 100.
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Figure B.4: Kurtosis calculated for all
classes of the New Forest study area for
bands 10, 40, 80 and 100.

Table B.10: HyMAP bands selected with the Projection Pursuit Feature Selection (PPFS)
algorithm for the classes of the New Forest study area.

Feature Selected Bands
set
1 87
2 26|71
3 18,3362
4 141194661
5 1412028 46|61
6 11121126146 59|87
7 9 14|20/28/46 59|87
8 1112012813842 /59/87 100
9 9 115/21124142 50|59| 87 |100
10 9 115/19/21/28142 56| 75 | 87 {100

Table B.11: Z-statistic for testing the significance between PCA features with respect to the
overall MLC accuracy for the New Forest study area. Values below the critical 5%
significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9 10
2| 55.97
3/ 55.97 0.00
4/ 55.64| 0.54) 0.54
515498 157, 1.57 1.03
6| 56.30| 0.56) 0.56/ 1.09 2.12
7/ 55.97] 0.00{ 0.00] 0.54 1.57) 0.56
8 56.300 0.56/ 0.56, 1.09 2.12 0.00) 0.56
9 56.30) 0.56, 0.56, 1.09| 2.12 0.00| 0.56! 0.00
10 55.97| 0.00) 0.00 0.54| 1.57| 0.56, 0.00] 0.56, 0.56
11 56.64| 1.13] 1.13) 1.67| 2.69) 0.57| 1.13]| 0.57, 0.57| 1.13
12 56.64) 1.13] 1.13| 1.67| 2.69, 0.57|1.13| 0.57| 0.57| 1.13

253



Table B.12: Z-statistic for testing the significance between MNF features with respect to the
overall ML.C accuracy for the New Forest study area. Values below the critical 5%
significance level {1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9 10
2| 54.49
3| 57.43] 4.71
4|/ 56.76/ 3.56| 1.17
5 56.10, 2.48; 2.26| 1.09
6| 56.76, 3.56; 1.17| 0.00| 1.09
7/ 56.76/ 3.56, 1.17| 0.00] 1.09] 0.00
8/ 56.43] 3.01| 1.72/ 0.56 0.54 0.56 0.56
9 56.43/ 3.01/ 1.72/ 0.56| 0.54, 0.56| 0.56| 0.00
10, 57.09, 4.13; 0.59| 0.57| 1.67| 0.57| 0.57| 1.13/1.13
11, 57.43] 4.71] 0.00, 1.17| 2.26/ 1.17 1.17, 1.72, 1.72| 0.59
12| 57.76| 5.31] 0.62] 1.78| 2.87/ 1.78 1.78} 2.33| 2.33} 1.21

Table B.13: Z-statistic for testing the significance between DAFE features with respect to the
overall MLC accuracy for the New Forest study area. Values below the critical 5%
significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6
2|/ 3208
3 47.77| 15.47
4/ 51.16] 19.25) 4.01
5| 53.84| 22.32) 7.40| 3.43
6 56.66| 25.66| 11.23| 7.36| 3.99
7/ 57.63| 26.83/ 12.63| 8.82] 5.49| 1.53

Table B.14: Z-statistic for testing the significance between PPDA features with respect to the
overall MLC accuracy for the New Forest study area. Values below the critical 5%
significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6
2| 40.04
3/40.81; 0.83
4/ 4564, 6.24| 542
5/48.82| 10.00/ 9.19; 3.83
6| 53.46| 15.91, 15.13| 10.01 6.30
71 54.11116.78] 16.02| 10.94, 7.27| 1.00
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Table B.15: Z-statistic for testing the significance between DBFE features with respect to the
overall MLC accuracy for the New Forest study area. Values below the critical 5%
significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9 10
2 2268
3| 46.36| 23.06
4| 63.75 40.14/ 17.84
5| 68.19| 44.59| 22.78| 5.42
6/ 70.06| 46.47| 24.94| 7.90| 2.54
71 71.99] 48.43| 27.21| 10.63| 5.38| 2.87
8| 72.32) 48.76| 27.60| 11.11} 5.89| 3.39| 0.52
9| 73.31/ 49.78| 28.81| 12.61| 7.49| 5.03] 2.19, 1.67
10| 73.31) 49.78] 28.81| 12.61| 7.49| 5.03] 2.19] 1.67| 0.00
11| 73.65| 50.12) 29.21| 13.13| 8.05| 5.60, 2.78| 2.26| 0.59 0.59
12| 73.65| 50.12| 29.21| 13.13| 8.05| 5.60, 2.78| 2.26| 0.59| 0.59

Table B.16: Z-statistic for testing the significance between PPDB features with respect to the
overall MLC accuracy for the New Forest study area. Values below the critical 5%
significance level (1.96) are printed in bold.

Feature 1 2 3 4 5 6 7 8 9
2| 29.79
3| 52.55| 22.66
4| 64.83| 35,59, 14.54
5/ 65.47| 36.29| 15.39| 0.96

6! 66.77| 37.71|17.18] 3.01] 2.06
7

8

9

0

67.43| 38.44| 18.11] 4.13/ 3.18/1.13
68.09) 39.18/ 19.07| 5.31)4.37| 2.33; 1.21
67.43) 38.44) 18.11] 4.13| 3.18] 1.13] 0.00; 1.21
67.76) 38.81| 18.59| 4.71| 3.77| 1.72] 0.59| 0.62| 0.59

1
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APPENDIX C

SUPERVISED BAND SELECTION - SUPPLEMENTARY DATA
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Figure C.2: Atmospheric transmission for 1.0

to 2.0 ym wavelength range modelled with 6S

for different water vapour contents (g/cm?) in
a US 1962 standard atmosphere.
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Figure C.1: Atmospheric transmission for 0.7
to 1.0 ym wavelength range modelled with 6S
for different water vapour contents (g/cm?) in
a US 1962 standard atmosphere.
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Table C.1: Scatter plots of single-band distance measures against MLC overall performance
estimated with the leave-one-out method for the New Forest and River Severn data set. The

regression line is displayed and the correlation coefficient r given.

Bhattacharyya

Divergence

Mahalanobis

800

500 -

400 —

300

~ =

7

~
<
o0 o
1

o

Pt &

-
, [o}
X
P
o

QpE0Y

o

o Uoéb
I I

I 1 1 I

40

45

50 55 60 65 70 75 80

MLC overall accuracy (%)

Bhattacharyya — New Forest — r=0.56178

210 T T T T T
o
4
1510 o B
o o
o o
£}
D%b o
? e
110 &5 = A
8 ° 5
o 5
> o 2 /’// ° o
oo
o o8~ o e
-5
B e o cg
5000 | AR, &
-
-y [
e ésg o
3 .
& o Qo Ggp O
0 10 L 1 1 1 L L
4 45 50 55 60 65 70 75 80

MLC overall accuracy (%)

Divergence — New Forest — r=0.41462

3.510 T T T L = . T T
8
310° - o &8 1
5 o
e o
[
2510 - Q’a B o B
3 o
<L & 5
210 0 o _ fﬁ’
8 o e
[} i o]
5 L
1.510° |- ® oo -
Qe o o
g ﬁggc )
£ o
110° P &1
T e ® o
o rf &
of
5000 | 4
c%a o
& o® @ oG ©
0 10 ! L 1 1 L !
40 45 50 55 60 65 70 75 80

MLC overall accuracy (%)

Mahalanobis Distance — New Forest —

=0.41835

Jefirles-Malusita

38

36

34

32

30

28

26

50 55 60 65 70 78 80

MLC overall accuracy (%)

Jeffries-Matusita - New Forest — r=0.88941

Transformed Divergence

4

5510

510

4

4510

3510°

T T T T T T T
////
[ o g
omgy © ° /! o
[s] P
P
/
< o
L &D/@ g
Ay
o0, - S
o 0
= Qgeo -
~
.
O
%o ©Og4
o
o
[e]
1 1 i 1 L 1 1
40 45 50 55 60 65 70 75 80

MLC overall accuracy (%)

Transformed Divergence — New Forest —

Euclidean

Euclidean Distance - New Forest — r=0.83178

r=0.8765

8
Ly 0 4
ra (o} )

40

p
/
000 0
o
e /0 o %3
0 1 1 L 1 L L !

45

50 55 60 65 70 75 80

MLC overall accuracy (%)

258




Table C.1 continued.
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Table C.1 continued.
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Table C.2: Scatter plots of multiple-band distance measures against MLC overall
performance estimated with the leave-one-out method for the New Forest and River Severn
data set. The regression line is displayed and the correlation coefficient r given.
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Table C.2 continued.
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Table C.2 continued.
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Table C.3: Band sets from current airborne and satellite sensors and their simulation with
HyMAP (New Forest) and CASI (River Severn) bands sets available (data sets introduced in
chapter 3). Bands excluded or not available are marked by an X.

Sensor Band Centre Width HyMAP | HyMAP CASI CASI |
[nm] [nm] Centre Width Centre Width
[nm] [nm] [nm] [pm]
| CHRIS 1 442.4 8.8 X X X X
(mode 3) 2 490.2 9.2 492.3 15.5 489.6 16
3 529.9 8.6 523.4. 15.6 530.5 8.6
4 551.25 9.7 554.2 15.3 553 8.6
5 569.85 7.1 569.5 15.4 568.1 8.6
6 631.3 9.4 631.3 15.6 632.3 16.2
7 661.05 10.5 661.7 15.1 658.9 8.8
8 671.75 10.9 X X X X
9 697.2 5.8 692.4 15.8 697.1 8.8
10 703.2 6 X X 704.7 8.8
11 709.3 6.2 707.8 15.3 712.3 8.8
12 741.6 6.8 738.1 15.7 742.9 8.8
13 748.45 6.9 753.4 15.3 750.5 8.8
14 780.85 15.1 783.5 15.3 777.3 16.4
15 872.2 18.2 X X X X
16 895.45 9.5 890.3 20 895.7 8.8
17 905 9.6 X X X X
18 1018.5 33 X X X X
ETM+ 1 485 70 484.35 61.9 497 45.8
2 570 80 569.45 77 568.15 83.9
3 660 60 654.1 61.15 662.75 62
4 840 120 836.9 124.45 838.4 123.4
5 1650 200 1652.05 | 204.65 X X
7 2220 260 22218 | 261.05 X X
MERIS 1 412.5 10 X X X X
2 442 5 10 X X X X
3 490 10 492.3 15.5 489.6 16
4 510 10 507.4 15.8 508.1 8.6
5 560 10 554.2 15.3 560.5 8.6
6 620 10 615.7 15.7 621 8.6
7 665 10 661.7 15.1 666.6 8.8
8 681.25 7.5 676.9 15.5 681.8 8.8
9 705 10 707.8 15.3 704.7 8.8
10 753.75 7.5 753.4 15.3 754.35 16.5
11 760 25 X X X X
12 765 5 X X X X
13 775 12.5 776 30.3 777.3 16.4
14 865 10 872.6 18.1 865.2 8.8
15 890 10 890.3 20 888.1 8.8
16 900 10 X X X X
MISR 1 446.4 41.9 461.3 15.8 X X
2 557.5 28.6 561.85 30.65 556.8 31.2
3 671.7 21.9 669.3 30.5 674.2 24
4 866.4 39.7 867.4 31.25 865.25 39.3
MODIS 1 645 50 646.5 45.75 643.8 54.3
2 858.5 35 859.7 46.45 857.6 39.4
3 469 20 469.3 31.65 478.4 8.6
4 555 20 554.2 15.3 553 23.6
5 1240 20 1245.95 32.3 X X
6 1640 24 1641.45 28.8 X X
7 2130 50 2136.7 56.3 X X
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Table C.3 continued.

[ NERC 1 450 20 461.3 15.8 X X
VEG 2 490 20 492.3 15.5 489.6 16
3 552 10 554.2 15.3 553 8.6
4 608 10 607.9 31.2 605.8 8.6
5 647 10 646.6 15.3 6437 8.8
6 670 10 661.7 15.1 670.4 16.4
7 700 10 692.4 15.8 700.9 16.4
8 710 10 707.8 15.3 712.3 8.8
9 740 10 738.1 15.7 742.9 8.8
10 750 7 753.4 15.3 750.5 8.8
11 762 5 X X X X
12 780 10 783.5 15.3 781.1 8.8
13 820 10 X X X X
14 865 10 859.8 16.2 865.2 8.8
15 942 10 X X X X
EA VEG 1 4459 13.2 X X X X
2 469.9 13.4 461.3 15.8 X X
3 490.3 13.4 492.3 15.5 489.6 16
4 550.1 13.4 554.2 15.3 549.25 16.1
5 670.9 13.6 661.7 15.1 670.4 16.4
6 683.3 8 676.9 15.5 681.8 8.8
7 700.4 11.8 692.4 15.8 700.9 16.4
8 710.9 9.3 707.8 15.3 7123 8.8
9 721.4 11.8 722.9 15.3 720 8.8
10 751 13.6 753.4 15.3 750.5 8.8
11 763.4 8 X X X X
12 780.6 11.8 783.5 15.3 781.1 8.8
13 860.1 13.8 859.8 16.2 861.4 16.4
14 880.2 23.2 881.45 36.75 880.5 24
EA 1 4431 22.4 X X X X
COAST 2 489.4 22.6 X X 485.85 235
3 510.8 20.8 X X 508.15 23.5
4 554.8 22.8 X X 553 23.6
5 599 13.6 X X 602 16.2
6 625.4 13.6 X X 624.75 16.1
7 662.4 7.8 X X 658.9 8.8
8 672.8 13.6 X X 670.4 16.4
9 683.3 8 X X 681.8 8.8
10 691.8 9.8 X X 689.4 8.8
11 702.3 8 X X 704.7 8.8
12 711.8 11.8 X X 712.3 8.8
13 751 13.6 X X 750.5 8.8
14 857.2 27.2 X X 857.6 24
15 881.2 21.4 X X 880.5 24
BIOTA 1 442 5 15 X X X X
2 490 10 X X 493.3 8.6
3 540 10 X X 538 8.6
4 552 10 X X 553 8.6
5 608 10 X X 605.8 8.6
6 652 10 X X 651.3 8.8
7 670 10 X X 666.6 8.8
8 682.5 5 X X 681.8 8.8
9 710 10 X X 712.3 8.8
10 749.5 5 X X 750.5 8.8
11 761.5 5 X X X X
12 780 10 X X 781.1 8.8
13 820 10 X X 819.4 8.8
14 880 20 X X 880.5 24
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Table C.4: Randomly and uniformly spaced band sets for the HyMAP (New Forest) and CASI
(River Severn) data set introduced in chapter 4. The band number refers to the index of
available bands (117 and 60 for HyMAP and CASI, respectively), not to the original detector

number shown in table A.1.

CASI sensor bands

Set HyMAP sensor bands
Dimension
RANDOMLY SPACED

15 106, 77, 71, 52, 14, 92, 32, 51, 94, 22, 37, 36, 40, 10, 45, 9, 14, 21,57, 39,7, 48, 58,

96, 56, 34, 12 16,53, 4
UNIFORMLY SPACED

15 3, 11,19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 2,6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46,
99, 107, 115 50, 54, 58

14 7, 15,23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 4,8, 12, 18, 20, 24, 28, 32, 36, 40, 44, 48,
103, 111 52,56

13 5,14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, | 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46
113 50, 54

12 4,14,24,34, 44, 54, 64, 74, 84, 94, 104, 114 | 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58

11 4,15, 26, 37, 48, 59, 70, 81, 92, 103, 114 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55

10 7,19, 31,43, 55,67, 79, 91, 103, 115 3,9, 15, 21,27, 33, 39, 45, 51,57

9 3,17,31,45,59, 73, 87, 101, 115 2,9, 186, 23, 30, 37, 44, 51, 58

8 3,19, 35,51,67, 83,99, 115 2,10, 18, 26, 34, 42,50, 58

7 2,21,40,59,78,97, 116 3,12, 21, 30, 39, 48, 57

6 1,24,47,70,93, 116 3, 14, 25, 36, 47, 58

5 3, 31,59, 87,115 2,16, 30, 44, 58

4 2,40,78,116 2,21, 40,59

3 1, 59, 117 1,30, 59

2 1, 117 1,60

1 58 30
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APPENDIX D

TESTING UNIVARIATE ASSUMPTIONS
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Table D.1: Run sequence plot of some bands for the New Forest imagery. Pixels were plotted
in sequence of an image row.
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Table D.2: Run sequence plot of some bands for the River Severn imagery. Pixels were
plotted in sequence of an image row.
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Table D.3: Lag plot of some bands for the New Forest imagery.
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Table D.4: Lag plot of some bands for the River Severn imagery.
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Table D.5: Histogram of some bands for the New Forest imagery with the normal density
function overlaid. Bands 20 to 80 binsize 30, others binsize 20.
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Table D.6: Histogram of some bands for the River Severn imagery
with the normal density function overlaid.
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Table D.7: Results of the Chi-square test of independence and the correlation coefficient
significance for all bands of the New Forest imagery. Bands that are tested normal receive a
‘Y’ in the corresponding test column.

Band X ? df %52%5# X ? Test r N Faop Foon T} s
50, est | Test
5% | 1%
1| 2685989 | 37| 52.19231 0.828321 | 190 | 0.9897 | 0.9927
2 | 2644475 34 | 48.60237 0.843645 | 168 | 0.9879 | 0.9915
3| 2750468 34 | 48.60237 0.847191 | 162 | 0.9879 | 0.9915
4 3224491 37 | 52.19231 0.86866 | 163 | 0.9879 | 0.9915
51 2852819 | 44 | 60.48087 0.923616 | 173 | 0.9887 | 0.9919
6| 1708802 52 | 69.83216 0.94362 | 190 | 0.9897 | 0.9927
7| 1898597 | 58 | 76.77777 0.94165 | 200 | 0.9903 ] 0.993
8 | 3423520 | 61 | 80.23212 0.917279 | 207 | 0.9903 | 0.993
9! 1981171 61 | 80.23212 0.893576 | 206 | 0.9803 | 0.993
10 | 3144534, 62 | 81.38103 0.880732 | 206 | 0.9903 | 0.993
11 | 2962499 | 63 | 82.52869 0.873948 | 207 | 0.9903 | 0.993
12 | 3354611 64 | 83.67525 0.871187 | 206 | 0.9903 | 0.993
13| 3516447 | 64 | 83.67525 0.861876 | 206 | 0.9903 | 0.993
14 1 3979343 | 63 | 82.52869 0.851852 | 201 | 0.9903 | 0.993
15| 3153688 | 61 | 80.23212 0.857947 | 192 | 0.9897 | 0.9927
16 | 1922378 | 64 | 83.67525 0.935533 | 173 | 0.9887 | 0.9919
17 | 787887.3 89 112.022 0.989527 | 183 | 0.9891 1 0.9923 | Y
18 | 14326.12 | 137 | 165.3161 0.98914 | 197 | 0.9897 | 0.9927
19 1 11348.88 | 187 | 219.9059 0.994775 {216 | 0.9907 { 09933 | Y Y
20 | 9963.368 | 144 173.004 0.994925 | 155 | 0.9871 | 0.9909 | Y Y
211 13002.25 | 151 | 180.6755 0.994008 | 162 | 0.9879 | 09915 | Y Y
22 | 13355.16 | 153 | 182.8647 0.992827 | 164 | 09879 09915 | Y Y
23 | 12724.68 | 154 | 183.9587 0.994803 | 163 | 0.9879 | 0.9915 | Y Y
24 | 15647.93 | 156 | 186.1459 0.994722 | 164 | 0.9879 | 09915 | Y Y
25 | 26837.94 | 158 | 188.3317 0.994215 | 166 | 0.9879 | 099156 | Y Y
26 | 32499.55 | 169 | 189.4243 0.90403 | 167 | 09879 |1 09915 Y Y
27 | 427126 | 161 | 191.6084 0.985835 | 169 | 0.9879 | 0.9915
28 | 55626.13 | 162 192.7 0.984447 | 170 | 0.9887 | 0.9919
20| 43663.6 | 161 | 191.6084 0.993998 | 160 , 0.9879 | 09915 | Y Y
30 | 47118.07 | 164 194.883 0.993882 | 174 | 0.9887 | 09919 | Y Y
31 | 61277.87 | 166 | 197.0636 0.992742 | 184 | 0.9891 1 09923 | Y Y
32 | 70804.59 | 168 | 199.2443 0.991905 | 187 | 0.9891 | 09923 | Y
33 | 94670.28 | 167 | 198.1539 0.988572 | 197 | 0.9897 | 0.9927
34 | 193092.5 | 165 | 195.9735 0.983869 | 214 | 0.9907 | 0.9933
35| 202942.4 | 165 | 195.9735 0.981901 | 215 | 0.9907 | 0.9933
36 | 227307.8 | 168 | 199.2443 0.981792 | 217 | 0.9907 | 0.9933
37 | 227206.8 | 171 | 202.5128 0.983277 | 220 0.991 | 0.9936
38 | 2139416 | 175 | 206.8667 0.984877 | 226 0.991 | 0.9936
39 | 206630.2 | 179 | 211.2171 0.984937 | 229 0.991 | 0.9936
40 | 229234.9 | 181 | 213.3907 0.986571 | 237 | 0.9914 | 0.9939
41 1 2117809 | 185 | 217.735 0.986313 | 248 | 0.9917 | 0.9941
42 | 241179.3 | 186 | 218.8204 0.985054 | 247 | 0.8917 | 0.9941
43 | 258272.8 | 185 217.735 0.983352 | 243 | 0.9917 | 0.9941
44 272712 | 185 | 217.735 0.979235 | 248 | 0.9917 | 0.9941
45 | 294975.9 | 180 | 212.3041 0.97105 | 248 | 0.9917 | 0.9941
46 | 207487.2 | 176 | 207.9546 0.959548 | 262 | 0.9924 | 0.9945
47 | 341718.2 | 169 | 200.334 0.943158 | 270 | 0.9926 | 0.9947
48 | 338009.5 | 166 | 197.0636 0.942332 | 270 | 0.8926 | 0.9847 |
49 | 306793.8 | 165 | 195.9735 0.940475 | 256 | 0.9921 | 0.9943
50 | 317038.4 | 164 194.883 0.939146 | 260 | 0.9924 | 0.9945
51 | 330993.3 | 163 | 193.7914 0.938731 | 259 | 0.9921 | 0.9943
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Table D.7 continued.

52 | 335642.3 | 164 | 194.883 0.939026 | 257 | 0.9921 | 0.9943
53 336281 | 165 | 195.9735 0.93931 | 254 | 0.9921 | 0.9943
54 | 375318.6 | 164 | 194.883 0.939894 | 257 | 0.9921 | 0.9943
55 | 368709.6 | 165 | 195.9735 0.939564 | 257 | 0.9921 | 0.9943
56 | 406736.7 | 162 192.7 0.936341 | 255 | 0.9921 | 0.9943
57 | 375566.8 | 160 | 190.5163 0.932151 | 254 | 0.9921 | 0.9943
58 | 366459.8 | 156 | 186.1459 0.928928 | 252 | 0.9921 | 0.9943
59 | 348618.2 | 151 | 180.6755 0.927204 | 239 | 0.9914 | 0.9939
60 | 334315.6 | 146 | 175.1974 0.927355 | 244 | 0.9917 | 0.9941
61 816814 | 106 | 131.0314 0.977097 | 313 | 0.9936 | 0.9954
62 | 851467.3 | 101 | 125.4585 0.977169 | 283 | 0.9929 | 0.9949
63 | 750741.6 | 101 | 1254585 0.98119 | 279 | 0.9926 | 0.9947
64 602108 | 101 | 125.4585 0.983095 | 283 | 0.9929 | 0.9949
65 | 512463.8 | 103 | 127.6893 0.084662 | 275 | 0.9926 | 0.9947
66 | 413800.3 | 105 | 120.9178 0.984756 | 265 | 0.9924 | 0.9945
67 | 296859.4 | 107 | 132.1444 0.983588 | 263 | 0.9924 | 0.9945
68 | 236510.4 | 110 135.48 0.980451 | 260 | 0.9924 | 0.9945
69 | 204619.6 | 113 | 138.8114 0.977211 | 257 | 0.9921 | 0.9943
0 | 146092.6 | 115 | 141.0287 0.573023 | 253 | 0.9921 | 0.9843
711 117770.9 | 117 | 143.2461 0.970774 | 256 | 0.9921 | 0.9943
72 1 110505.1 | 120 | 146.5674 0.967377 | 257 | 0.9921 | 0.9943
73| 116997.5 | 122 | 148.7792 0.962877 | 261 | 0.9924 | 0.9945
74 | 111054.5 | 123 | 149.8844 0.960315 | 255 | 0.9921 | 0.9943
75 | 128289.9 | 124 | 150.9894 0.957529 | 254 | 0.9921 | 0.9943
76 | 119078.4 | 126 | 153.198 0.959037 | 254 | 0.9921 | 0.9943
77 1 131919.7 | 126 | 153.198 0.95965 | 253 | 0.9921 | 0.9943
78 | 1277394 | 126 | 153.198 0.957962 | 252 | 0.9921 | 0.9943
79 | 124697.3 | 125 | 152.0938 0.958497 | 257 | 0.9921 | 0.9943
80 | 121224.1 | 124 | 150.9894 0.957068 | 252 | 0.9921 | 0.9943
81| 118217.8 | 124 | 150.9894 0.957001 | 260 | 0.9924 | 0.9945
82 | 113880.9 | 122 | 148.7792 0.959196 | 256 | 0.9921 | 0.9943
83 | 102525.2 | 120 | 146.5674 0.961157 | 261 | 0.9924 | 0.9945
84 | 102326.8 | 118 | 144.3536 0.96496 | 257 | 0.9921 | 0.9943
85 | 104394.3 | 116 | 142.1382 0.967015 | 256 | 0.9921 | 0.9943
86 115654 | 114 | 139.9207 0.969785 | 249 | 0.9917 | 0.9941
| 87 ]116903.3 | 113 | 138.8114 0.973321 | 254 | 0.9921 | 0.9943
88 | 118059.1 | 115 | 141.0297 0.975285 | 252 | 0.9921 | 0.9943
89 | 95838.63 | 122 | 148.7792 0.971323 | 278 | 0.9926 | 0.9947
90 | 1454759 | 109 | 134.3687 0.926594 | 429 | 0.9951 | 0.9965
91| 1419165 | 108 | 133.2568 0.938037 | 381 | 0.9947 | 0.9961
92 | 1926034 | 111 | 136.5912 0.938469 | 378 | 0.9945 | 0.996
93 | 1320124 | 113 | 138.8114 0.952057 | 401 | 0.9949 | 0.9963
94 | 1317003 | 113 | 138.8114 0.954007 | 374 | 0.9945 | 0.996
95 | 2231611 | 117 | 143.2461 0.953261 | 396 | 0.9948 | 0.9962
96 | 1525364 | 119 | 145.4608 0.956593 | 404 | 0.9949 | 0.9963
97 | 2254609 | 122 | 148.7792 0.961835 | 412 | 0.995 | 0.9964
08 | 2156259 | 125 | 152.0938 0.965696 | 413 | 0.995 )| 0.9964 ]
99 | 1287918 | 126 | 153.198 0.969848 | 414 | 0.995 | 0.9964
100 | 1081821 | 127 | 154.3015 | 0.974177 | 411 0.995 | 0.9964
101 | 888410.6 | 127 | 154.3015 0.979143 | 403 | 0.9949 | 0.9963
102 | 655780.4 | 129 | 156.5078 0.983158 | 400 | 0.9949 | 0.9963
103 | 477414.4 | 128 | 155.4046 0.984236 | 409 | 0.9949 | 0.9963
104 | 432058.7 | 126 | 153.198 0.982985 | 400 | 0.9949 | 0.9963
105 | 662228.1 | 123 | 149.8844 0.982596 | 399 | 0.9948 | 0.9962
106 | 992472.3 | 119 | 145.4608 0.974699 | 398 | 0.9948 | 0.9962
107 | 983773.3 | 114 | 139.9207 0.96746 | 398 | 0.9948 | 0.9962
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Table D.7 continued.

108 | 1501190 | 111 | 136.5912 0.963958 | 389 | 0.9947 | 0.9961
109 | 1370825 | 107 | 132.1444 0.963242 | 400 | 0.9949 | 0.9963
110 | 2046046 | 103 | 127.6893 0.964275 | 386 | 0.9947 | 0.9961
111 | 1708786 | 100 | 124.342 0.962271 | 378 | 0.9945 | 0.996
112 | 1387989 | 97 | 120.9898 0.956849 | 377 | 0.9945 | 0.996
113 | 1440751 | 92 | 115.3898 0.958351 | 353 | 0.9942 | 0.9958
114 | 1905514 | 91| 114.2679 0.953606 | 363 | 0.9944 | 0.9959
115 ] 1371047 | 84 | 106.3949 0.942887 | 328 | 0.9937 | 0.9955
116 | 1596817 | 83 | 105.2672 0.926044 | 351 | 0.9942 | 0.9958
117 | 1940270 | 75 | 96.21669 0.913432 | 318 | 0.9936 | 0.9954 ]

Table D.8: Results of the Chi-square test of independence and the correlation coefficient
significance for all bands of the River Severn imagery. Bands that are tested normal receive a
‘Y’ in the corresponding ‘Test’ column.

Band X ? af X 52%:@" X ZoTest d N Fso Flosw T:es ¢ T}(;s ¢
5% 5% | 1%

1] 25745.97 | 187 | 219.9059 0.657105 | 271 | 0.9926 | 0.9947

2 | 2643438 | 182 | 214.4769 0.651317 | 263 | 0.9924 | 0.9945

3| 3286563 | 195 | 228.5799 0.614998 | 287 | 0.9929 | 0.9949

4| 36362.29 | 192 | 225.3289 0.589005 | 280 | 0.9929 | 0.9949

5| 37097.46 | 194 | 227.4966 0.593531 | 294 | 0.9931 | 0.9951

6 | 38120.86 | 186 | 218.8204 0.597599 | 280 | 0.9929 | 0.9949

7| 34670.22 | 185 217.735 0.622309 | 287 | 0.9929 | 0.9949

8| 3232718 | 189 | 222.0759 0.650476 | 296 | 0.9931 | 0.9951

92099472 | 197 | 230.7463 0.675591 | 310 | 0.9936 | 0.9954
10 | 30200.94 | 205 | 239.4034 0.679487 | 320 | 0.9937 | 0.9955
11 | 30596.37 | 214 | 240.1278 0.677585 | 340 | 0.9941 | 0.9957
12 | 33362.68 | 216 | 251.2863 0.652726 | 343 | 0.9941 | 0.9957
13 | 37589.38 | 226 | 262.0704 0.623333 | 356 | 0.9942 | 0.9958
14 | 4213455 | 236 | 272.8355 0.592986 | 369 | 0.9944 | 0.9959
15 | 4395566 | 252 | 290.0283 0.583253 | 397 | 0.9948 | 0.9962
16 | 45233.77 | 253 | 291.1018 0.579389 | 403 | 0.9949 | 0.9963
17 45162.3 | 260 | 298.6103 0.580565 | 417 0.995 | 0.9964
18 449748 | 263 | 301.8268 0.584151 | 431 | 0.9953 | 0.9966
19 | 45771.46 | 260 | 298.6103 0.579957 | 424 | 0.9951 | 0.9965
20 | 45955.73 | 265 | 303.9698 0.580431 | 436 | 0.9953 | 0.9966
21 | 45768.54 | 257 | 295.3927 0.583787 | 423 | 0.9951 | 0.9965
22 | 45821.81 | 268 307.184 0.585992 \ 446 | 0.9854 | 0.9966
23 | 4790296 | 275 | 314.6792 0.574316 | 455 | 0.9954 | 0.9967
24 | 49319.24 | 276 | 315.7484 0.567542 | 460 | 0.9955 | 0.9968
25 | 50241.66 | 265 | 303.9698 0.566643 | 449 | 0.9954 | 0.9966
26 | 50145.38 | 278 | 317.8887 0.572444 | 488 | 0.9957 | 0.9969
27 | 50153.73 | 276 | 315.7484 0.57606 | 492 | 0.9958 | 0.9969
28 | 5022311 | 277 | 316.8181 0.578705 | 498 | 0.9958 | 0.9969
29 | 47193.51 | 232 | 268.5312 0.60157 | 422 | 0.9951 | 0.9965
30 | 35719.64 | 264 | 302.8982 0.683972 | 488 | 0.9957 | 0.9969
31| 3525254 | 271 | 310.3962 0.802536 | 497 | 0.9958 | 0.9969
32 | 58854.63 | 287 327.512 0.803959 | 497 | 0.9958 | 0.9969
33 | 73466.04 | 289 | 329.6488 0.768421 | 445 | 0.9954 | 0.9966
34 91360.2 | 330 | 373.3634 0.648499 | 544 | 0.9961 | 0.9972
35 | 84804.27 | 395 | 442.3406 0.645151 | 685 | 0.9969 | 0.9977
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Table D.8 continued.

36 | 87534.04 | 429 | 478.291 0.664524 | 757 | 0.9972 | 0.998
37 | 80842.16 | 445 | 495.1805 0.676309 | 794 | 0.9973 | 0.998
38 | 7759145 | 3563 | 397.8122 0.695696 | 618 | 0.9965 | 0.9975
39 | 83096.08 | 268 | 307.184 0.688495 | 460 | 0.9955 | 0.9968
40 | 77848.88 | 446 | 496.2353 0.6853 | 774 | 0.9972 | 0.998
41 | 75850.64 | 450 | 500.4561 0.686709 | 776 | 0.9973 | 0.998
42 | 72577.86 | 443 | 493.0694 0.686652 | 755 | 0.9972 | 0.998
43 | 72999.6 | 433 | 482.5141 0.680918 | 729 | 0.9971 | 0.9979
44 | 71435.68 | 431 | 480.4034 0.685753 | 715 | 0.997 | 0.9978
45 | 70597.85 | 412 | 460.325 0.682476 | 672 | 0.9968 | 0.9977
46 | 65801.63 | 373 | 419.0344 0.681708 | 597 | 0.9964 | 0.9974
47 | 64353.43 | 387 | 433.8703 0.673963 | 605 | 0.9965 | 0.9975
48 | 69795.97 | 403 | 450.8068 0.672091 | 620 | 0.9965 | 0.9975
49 | 62889.7 | 413 | 461.383 0.679534 | 630 | 0.9967 | 0.9976
50 | 59953.13 | 400 | 447.6326 0.680637 | 603 | 0.9965 | 0.9975
51 ] 60684.27 | 393 | 440.2236 0.676683 | 594 | 0.9964 | 0.9974
52 | 57643.12 | 387 | 433.8703 0.681928 | 579 | 0.9964 | 0.9974
53 | 54928.68 | 394 | 441.2827 0.682458 | 590 | 0.9964 | 0.9974
5 53439 | 380 | 437.048 0.686423 | 574 | 0.9963 | 0.8973
55 | 51872.64 | 384 | 430.6916 0.688824 | 567 | 0.9963 | 0.9973
56 | 48203.35 | 339 | 382.9361 0.690238 | 497 | 0.9958 | 0.9969
57 | 45828.28 | 319 | 361.8525 0.694968 | 461 | 0.9955 | 0.9968
58 | 44520.63 | 306 | 346.7295 0.706789 | 441 | 0.9954 | 0.9966
50 | 42373.58 | 321 | 363.7822 0.70996 | 462 | 0.9955 | 0.9968
60 | 37642.58 | 205 | 336.057 0.734216 | 422 | 0.9951 | 0.9965
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E. Mathematical Proof

This appendix demonstrates a mathematical proof that shows that once the least correlated band

pair has been chosen of a set, any increase in the width of one of the bands will result in a higher
correlation coefficient. Given are three bands X , Y and Z of identical length. The null hypothesis
is then defined as follows:

Ho: If ’”)?,z < ryz’z then rjﬂﬁz > r)‘?’z
, where 7, is the Pearson correlation coefficient between bands X and ¥ ,and X +7Y the sum

of vectors X and Y . That is, if the correlation between bands X and Z is smaller than the one
between bands ¥ and Z , the merger (or sum) of band X and Y would result in a higher

correlation with band Z than band X would do on its own.

The proof was performed with the correlation coefficient r instead of the coefficient of determination

r? , and therefore two cases need to be distinguished:

1) Hypothesis 1: If 0 <ry , <7y, then ry , >ry,

2) Hypothesis 2: If r, , <7y, <0 then 7y, , <71y,

Proof of Hypothesis 1 (7, , >0)

The condition in the hypothesis (equation E.2) may be re-written using equation 2.4:

0<ry, <ry, (E.1)
_Sxz _ Syz
Fxz ™ < =Tlyz (E.2)
SxSz  SySz
Sy
Sxz T <Syz (E.3)
Sx

where Covariance between vectors X and ¥

Syy
Sy Standard deviation of vector X
The hypothesis inequality that has to be proven (equation E.4) may be expanded on both sides

resulting in equation E.6.

E.4
Txaviz 2 Txz (E4)
_ Sxwyz  SxzTSyz _ Sxz
Pxivz = = > =Txz (E.5)
Sx:ySz SxirSz SxSz
Sy, +S8 K

xz tSyz X.z
> (E.6)

Sx.y Sx
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The covariance sy , on the left side of equation E.6 may be bounded using the hypothesis condition
E.3:

Sy
Syz1tSxz

Sxz 1Sy S Sx (E.7)

Sxiy Sx.y

if the hypothesis inequality is true under its condition (E.7), inequality E.7 should be bounded to the
right by the right side of inequality £.6:

s
SX’Z(l-F—LJ
Syz 1t S8yz S Sy S Sxz (E.8)

Sx.y Sxsy Sy
The middle and the right ratio of inequality £.8 may be expressed as:

S, +S8
x TSy
Sx.z >Syz
Sxiy

(E.9)

As according to the hypothesis condition, 7 , , and therefore s, , , is positive, inequality E.Q can

be rewritten as

Sy T8y > Sx.y (E.10)
, squared as the standard deviations are always positive, expanded and rewritten:
(SX +SY)2 > Sy E
sy 5y +2s,5, >S)2(+S)2,+2SX’Y (E.12)
SySy >Syy (E.13)
1> ey (E.14)

The latter inequality E.14 is always true except for when r, , equals to 1. Hypothesis 1 is therefore

proven if bands if bands X and Y are not linearly dependent, which is mostly the case for remotely

sensed data.

Proof of Hypothesis 2 (7, , <0)

The condition in the hypothesis (equation E.15) may be re-written using equation 2.4:

Fyz <Fyz < 0 (E.15)
_ Sxz Syz
Fyg=—""2 =ty z (E.16)
SySz  SySz
Sy
Syz 7> Syz (E17)

Sx
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The hypothesis inequality that has to be proven (equation E.18) may be expanded on both sides

resulting in equation E.20.

Tyivz <'xz (E.18)
_ Sywwz  Sxz7VSyz  Sxz
Txivz = = < =Txz (E.19)
SxsvSz Sx+vSz SxSz
SyztSyz Syz
< (E.20)
Sxey Sx
The covariance sy , on the left side of equation E.20 may be bounded using the hypothesis
condition E£.17:
Sy
Sxz ¥ Sxz
s +.5 ’ Y
xz Sz X (E.21)
Sxsy Sx+y

If the hypothesis inequality is true under its condition (E.21), inequality E.21 should be bounded to
the right by the right side of inequality E.20:

. sy
Syl I+—
Ky +8 ’ s S E.22
X.Z Y.Z < X < X.Z ( )

Syiy Sy.y Sy

The middle and the right ratio of inequality E.22 may be expressed as:

S, +S
x TSy
Sx.z <Syz
Sxsy

(E.23)

As according to the hypothesis condition, Fyz s and therefore Syz 18 negative, inequality E.23 can

be rewritten as

Sy +S, > Sy (E.24)

, resulting in inequality E.25 after similar transformations between E.11 and E.14:

1 > rX’Y (EZS)

The latter inequality E.25 is always true except for when r, , equals to 1. Hypothesis 2 is therefore

proven if bands X and Y are not linearly dependent, which is mostly the case for remotely sensed

data.

As both hypothesis 1 and 2 have been proven, the null hypothesis has been proven.
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Table F.1: Scatter plots of image quality measures against MLC overall performance
estimated with the leave-one-out method for the New Forest data set. The regression line is
displayed and the correlation coefficient r given.
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Table F.2: Scatter plots of image quality measures against MLC overall performance
estimated with the leave-one-out method for the River Severn data set. The regression line is
displayed and the correlation coefficient r given.
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Table F.3: Frequency histograms for the 2 clusters formed with the K-Means algorithm for the
River Severn data set for bands 21, 33, 45 and 57. The normal curve is overlaid.
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Table F.4: Frequency histograms for the 5 clusters formed with the K-Means algorithm for the
New Forest data set for bands 10, 40, 80 and 100. The normal curve is overlaid.
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Table F.4 continued.
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APPENDIX G

DESCRIPTION OF THE MAIN PROGRAMS DEVELOPED
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G. Description of the Main Programs Developed

All algorithms were written in IDL™ (Version 5.5 Win 32) using ENVI™ (Version 3.5) sub-routines. In
order to run the programs, at least the runtime licence of ENVI™ is required. The programs were

implemented under the Windows™ NT operating system but may theoretically run under any ENvI™

compatible operating system.

The programs can be obtained from the author in binary, already compiled format (with a .sav
extension), which protects them from accidental modifications. They were developed in a user-
friendly environment, using buttons and pull-down menus, avoiding direct keyboard inputs by the

user where possible. The programs were written to be computationally efficient and to handle large

image data sets.
G.1 Description of the Program SBS (Supervised Band Selection)

Overview
A computer program called SBS (Supervised Band Selection) was developed to estimate an optimal

band set for Maximum Likelihood classification (MLC) as application procedure. It uses
hyperspectral airborne or satellite data collected over a representative part of the scene and the
class definition by the user to estimate an optimal band set of user-specified dimension. Optimality
refers to the achievable MLC accuracy. This section contains a description of the SBS computer

program only. For the theory background, the reader is referred to chapter 4 of this thesis.

Input Data Description

Hyperspeciral CASI-2 image

The hyperspectral image data may be provided in any ENVI™ supported format. However, the
centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands shouid be included in

the image header file.

Class Region Of Interest (ROI) file
All the information classes of interest need to defined over the hyperspectral image in form of an

ENVI™ Region of Interest (ROI) file. For class definition theory, the reader is referred to section

4.31.

Class statistics file
The SBS program expects the class statistics to be pre-calculated by an ENVI™ routine ,
CLASSTATS (section G.3), written by the author. The latter program gives the class statistics (mean

vector and covariance matrix for each class) in a format that is recognised by the program.
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Data statistics file (optional)

The data statistics file is calculated with the ENVI™ routine DATASTATS (see section G.4) and only
needs to be supplied when the unequal bandwidth algorithm option is chosen or bands have been
pre-specified by the user. The file provides the band means to the algorithm, with which signal level

comparisons are carried out.

Output Data Description

Output text file

The output text file provides a summary of all files used in the program (full pathnames), the options
selected by the user and the resulting recommended band set, describing the starting and ending
image row of the new band, its centre wavelength and FWHM (if the corresponding wavelength and
FWHM of the image data were supplied), as well as the corresponding band set performance of the
criterion measure. The latter value is compared with the performance of the entire band set, and the
number of dimensions is displayed for the set that achieves at least 95% or 99% of this value first.

The bands are listed in order of importance, with the first band being the most discriminant one.

Output image file (optional)
The user has the option to create an output image reflecting the band selection results. If the option
is selected, an output image file is saved under the given name and cpened in ENVI™s ‘Available

Bands List’, from where it can be displayed.

Algorithm choice

The user has the choice between three different algorithms inside the SBS program, which is
displayed’ in figure G.1. First, a choice is made as to whether the width of the final bands (i.e. the
number of rows to be merged for each band) is set equal for all bands or not. Second, for the ‘equal
bandwidth’ case, the user can set the bandwidth to a specific value or leave it up to the program to

decide on the optimum bandwidth.

SBS
USER OPTIONS

|

EQUAL UNEQUAL
BANDWIDTH BANDWIDTH

FIXED NON-FIXED
BANDWIDTH BANDWIDTH

Figure G.1: Algorithm choices for the SBS (Supervised Band Selection) program.
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Running the program

Definition of input and output filenames

First

1

1

User

the user is asked to specify the filenames of
the hyperspectral image file,
the class ROl file,
the class statistics file, and

the output text file.

Options

Second, the user is presented with an interactive menu of different choices (see figure G.2).

Supervised Band Selection

(c) Michael Riedmann, 2003

Barids to include in the evaluation Classes to include in the evaluation

¥ [11Band 1 510.056 rm adi B = [11P12 A
W [Z]Band 2 521.331nm W [21F1/2 Molnea dominated

W [3Band 2 532524nm ¥ [3] 52 Molinea dominated

W [4]Band 4 543535mm W [4] 53 partly reed

W [5]Band5 555.263rm v 5 Car

W [BlBand & HBEEED7nm 3 W [6] Standing water 3
Mumber of tems selected: 13? ® Number of tems selected: ¥l

1 ” ; ‘ Add Range 4 Select Al I Clear ‘ l 1 Add R;ngej Select Al § Cleagr ?
Exclude atmospheric bands? Mo Tetal number of output bands ﬁ
Enter specific bands? Mo I Class separability measure Transformed Divergence ]
Exual bandiwidkhe? No ] Create output image ¥ Mo

OK_| Cancel |

Figure G.2: ENVI™ widget allowing the user to choose between the given SBS program

options.

The user is given the option to
exclude specific bands from the evaluation (for example bands that are perceived as noisy),

exclude atmospheric bands (default setting: 0.92-0.97, 1.1-1.17, 1.34-1.5, 1.77-2, and

greater than 2.4 um),

decide whether or not specific bands (maximum 19) should be included in the final band set

(for example mineral absorption bands), and if so whether they should be entered by

wavelength or row number (note that for the former, the centre wavelength value of each

band needs to be specified in the image header file),
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- set equal widths for all bands (if this option is not selected rows may be merged under the
constraint that the row merger improves the MLC accuracy of the band set),

- exclude specific classes from the evaluation (for example background classes),

- specify the maximum number of output bands (i.e. the dimension of the final band set; the
default value is set to 10),

- create an output image (note that this part may increase the running time of the program

considerably for large data sets).

&) Supervised Band Selection

Set number of 1ows to be merged? Mo l

‘Ente{ specific kands by row numbsr [T to 117). See list on the nght for wavelength in!er\:'afs.l

; Fow 1. 453 400 - 489 450 nm -
Band 1. Start IGWE:] -End IGWD Fow 2 469400 - 485 450 nm j
Row 3 484 400 - 500 450 rim |

Band2 Startrow[0  |End raw Fowd  499500- 515550 nm

Row& 515500 - 531.550 nm

Band 2. Start oy -Endme! S‘?‘W?’ gﬁgg%ggﬁ%gm
oW T .300 - 562 350 nm

o : Row & 561 600 - 577 £50 nm
Band 4 Start mw,i__] -End mel Rowd 576800 - 592 850 nm
RPow 10: 592 200 - 608 250 nm

Band 5 Start IGWEI- End meI Row 11-  BO7.800 - B23.850 nm
Row12: 623400 - 639 450 nim !

Band 6 Start me- End IGWE __j ‘_| =
0K l Cancel I

Figure G.3: ENVI™ widget for the option-dependent definition of further parameters.

Option-dependent definition of further parameters
Thirdly, depending on which set of options has been specified, the user may be asked to

- set the number of rows to be merged if the ‘equal bandwidths’ option was selected (if no
fixed bandwidth is selected, the program is allowed to expand bands where possible but
returns a set of bands of equal width; this option does not apply to user-specified bands; see
figure G.3),

- set the maximum number of rows to be merged if the ‘equal bandwidths’ option was not
selected (the default value is set to 16 rows),

- set the minimum relative band response if the ‘equal bandwidths’ option was not selected
(the default value is set to 10% higher as the lower limit given by ITRES Research Ltd.),

- enter specific bands either by row number or wavelength, according to the option chosen
before (a list of the available rows and their wavelength interval is displayed for information;
specified bands should not overlap, and entered values should fall within the allowed range;
if no values are specified the algorithm ignores this option; see figure G.3),

- specify the filename of the data statistics file (if unequal bandwidth option was selected or

bands have been pre-specified), and
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- give the name of the data statistics and output image files.

Program run
Finally the program executes displaying its current status within a status window in the middle of the

screen. After program completion, a message window indicating successful program performance

appears (figure G.4).

§Supewied Band Selection Hepor

File:
1Successful opsration

Figure G.4: ENVI™ widget report about successful program operation.

G.2 Description of the Program UBS (Unsupervised Band Selection)

Overview
A computer program called UBS (Unsupervised Band Selection) was developed to estimate a band

set optimal in band number, width and location. It uses hyperspectral data from airborne and
spaceborne sensors collected over a representative part of the scene. Bands are considered optimal
when they are least correlated amongst each other and have a high Signal-to-Noise Ratio (SNR).
This section contains a description of the UBS computer program only. For the theory background,

the reader is referred to chapter 5 of this thesis.

Input Data Description

'yperspectral image file
The hyperspectral image data may be provided in any ENVI™ supported format. However, the
centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in

the image header file to allow for the consideration of atmospheric windows and the proper

expansion of bands.

Data statistics file
The UBS program expects the data statistics to be pre-calculated by the ENVI™ routine

DATASTATS, written by the author. The latter program gives the data statistics (band mean vector

and covariance matrix) in a format that is recognised by the UBS program (see section G.4).

Dark image file (optional)
Dark current image data may be used to estimate the noise statistics for the SNR calculation. For
most sensors, a dark image is collected routinely as part of both the data collection process and the

instrument calibration. The dark current allows approximating instrument-induced noise only.
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Region of interest for SNR calculation (optional)
if dark current image data is not available for the data set, the SNR may be estimated from an
ENVI™ Region of Interest (ROY) file defined by the user over a spatially and spectrally

homogeneous area of the hyperspectral image.

Output Data Description

Output text file

The output text file provides a summary of all files used in the program (full pathnames), the options
selected by the user (if different from default) and the resulting recommended band set, describing
the starting and ending image row of the new band, its centre wavelength and FWHM (if
corresponding wavelength and FWHM of image data were supplied), as well as the corresponding

band coefficient of multiple determination.

Output image file (optional)

The user has the option to create an output image reflecting the band selection results. If the option
TM;s

is selected, an output image file is saved under the given name and opened in ENVI ™'s ‘Available
Bands List’, from where it can be displayed.
UBS
USER OPTIONS
EQUAL UNEQUAL
BANDWIDTH BANDWIDTH
l =
LEAST CORRELATED LEAST NOISY LEAST CORRELATED LEAST NOISY
BANDS FIRST BAND FIRST H BANDS FIRST BAND FIRST |

| | | |
FIXED NON-FIXED FIXED NON-FIXED
BANDWIDTH BANDWIDTH

BANDWIDTH BANDWIDTH
Figure G.5: Algorithm choices for the UBS (Unsupervised Band Selection) program.

Algorithm choice

The user has the choice of six different algorithms inside the UBS program. First, a choice is made
as to whether the width of the final bands (i.e. the number of rows to be merged for each band) is set
equal to all bands or not. Second, the option is given to start the final band set with either the least
correlated pair of bands or the least noisy band. Third, for the ‘equal bandwidth’ case, the user can
set the bandwidth {o a specific value or leave it up to the program to decide on the optimum
bandwidth. This choice of algorithms is displayed in figure G.5. Note that no noise estimation is
required for the first algorithm, i.e. when all bands are chosen to be of a specified width and the set

is to start with the least correlated band pair.
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Running the program

Definition of input and output filenames

First the user is asked to specify the filenames of
- the hyperspectral image file,
- the data statistics file, and

- the output text file

&1 Unsupervised Band Selection (c) Michael Riedmann, 2003 [

Bands to include in the evaluation Exclude atmospheric bands?  ho
¥ [11Band 1 510.056nm ~ i
Enter specific bands? ! ‘
¥ [2Band2 521.331rm - e bl
¥ @]Band3 532624nm Total number of autput bands |10
V4 id 4 543.535nr
¥ #]Band 4 543.9350m Equal bandwidthe ¥ Ma }
¥ [BlBand5 555.263nm .
W [6Band & 566.607nm Start band set with least correlated bands. 1
T = - |
Mumber of tems selected: jB? Moise estimation from dark data. l
B ‘ A { i
?—_ | #dd Range ] Select Al % Clear 1| Create autput image? Mo |

OK ? Cancel ‘

Figure G.6: ENVI™ widget allowing the user to choose between the given UBS program

options.

User Options

Second, the user is presented with an interactive menu of different choices (see figure G.6). The

user is given the option to

exclude specific bands from the evaluation (for example bands that are perceived as noisy),
exclude atmospheric bands (default setting: 0.92-0.97, 1.1-1.17, 1.34-1.5, 1.77-2, and

greater than 2.4 um),
decide whether of not specific bands (maximum 6) should be included in the final band set

(for example mineral absorption bands), and if so whether they should be entered by

wavelength or row number (note that for the former, the centre wavelength value of each

band needs to be specified in the image header file),
specify the maximum number of output bands (i.e. the dimension of the final band set; the

default value is set to 10),
set equal widths for all bands (if this option is not selected rows may be merged under the

constraint that the row merger improves the band SNR),
select the option to start the band set with the least noisy band or the least correlated band

pair,

296



- choose 1o estimate the noise statistics from a dark image file or an ROl file defined over a
spatially and spectrally homogeneous image area, and
- create an output image (note that this part may increase the running time of the program

considerably if a for large data sets).

Option-dependent definition of further parameters
Thirdly, depending on which set of options has been specified, the user may be asked to

- set the number of rows to be merged if the ‘equal bandwidths’ option was selected (if no
fixed bandwidth is selected, the program is allowed to expand bands where possible but
returns a set of bands of equal width; this option does not apply to user-specified bands;
similar to figure G.3),

- set the maximum number of rows to be merged if the ‘equal bandwidths’ option was not
selected (the default value is set to 2 rows),

- set the minimum relative band response if the ‘equal bandwidths’ option was not selected
(the default value is set to 30%, 10% higher as the lower limit given by ITRES Research
Ltd.),

- enter specific bands either by row number or wavelength, according to the option chosen
before (a list of the available rows and their wavelength interval is displayed for information;
specified bands should not overlap, and entered values should fall within the allowed range;
if no values are specified the algorithm ignores this option; similar to figure G.3),

- specify the dark image file or the ROl file for SNR estimation, and

- give the name of the output image file.

Program run
Finally the program executes displaying its current status within a status window in the middle of the

screen. After program completion, a message window indicating successful program performance

appears (similar to figures G.4).

G.3 Description of the Program CLASSTATS

Overview
A computer program called CLASSTATS was developed to calculate the mean vector and
covariance matrix of each class defined within an ENVI™ Region of Interest (ROI) file. It assumes

the ROl file to be specified over available hyperspectral data collected over a representative part of

the scene.

Input Data Description

Hyperspectral image file
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The hyperspectral image data may be provided in any ENVI™ supported format. However, the
centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in
the image header file to allow for the consideration of atmospheric windows and the proper

expansion of bands.

Class RO file
All the information classes of interest need to defined over the hyperspectral image in form of an

ENVI™ Region of Interest (ROI) file. For class definition theory, the reader is referred to section

4.3.1.

Output Data Description

Output text file
The output text file provides a summary of the computed statistics (mean, variance, skewness,

kurtosis, covariance matrix) for each class (ROI), together with all files used in the program (full

pathnames). The output format is recognisable by the SBS program (see section G.1).

Running the program

First the user is asked to specify the filenames of
- the hyperspectral image file,
- the class ROl file, and

- the output text file.

Then, the program executes displaying its current status within a status window in the middle of the
screen. After program completion, a message window appears indicating successful program

performance (similar to figure G.4).

G.4 Description of the Program DATASTATS

Overview
A computer program called DATASTATS was developed to calculate the band mean vector and

covariance matrix for the available hyperspectral data collected over a representative part of the

scene.

Input Data Description

Image file

The hyperspectral image data may be provided in any ENVI™ supported format. However, the
centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in

the image header file to allow for the consideration of atmospheric windows and the proper

expansion of bands.
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Mask file
The ENVI™ image file selection dialog allows for the specification of a mask band. It is important to

define the mask file if existent, as otherwise false data statistics will result. Note that a mask band is
necessary if the flight lines do not fill the entire image display window. That is, all non-image areas

need to be masked out.

Output Data Description

Output text file
The output text file provides a summary of the computed statistics (band covariance and correlation

matrix, eigenvalues and eigenvector matrix, as well as the band mean vector) for the data set. The

output format is recognisabie by the SBS and UBS program (see sections G.1 and G.2).

Running the program
First the user is asked to specify the filenames of
- the image file together with a binary mask band (if existent), and

- the output text file.

Then, the program executes displaying its current status within a status window in the middie of the
screen. After program completion, a message window appears indicating successful program

performance (similar to figure G.4).

G.5 Description of the Program CLASSTATSCLUSTER

Overview
The computer program CLASSTATSCILUSTER calculates the mean vector and covariance matrix of

each class, defined by the ENVI™ K-Means clustering routine.

Input Data Description
Hyperspectral image file
The hyperspectral image data may be provided in any ENVI™ supported format.

Mask file
The ENVI™ image file selection dialog allows for the specification of a mask band. Note that a mask

band is necessary if the flight lines do not fill the entire image display window. That is, all non-image

areas need to be masked out.

Output Data Description
Output class RO file
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All the information classes of interest will be defined over the hyperspectral image in form of an

ENVI™ Region of Interest (ROI) file.

Output text file
The output text file provides a summary of the computed statistics (mean, variance, skewness,

kurtosis, covariance matrix) for each class (ROI), together with all files used in the program (full

pathnames). The output format is recognisable by the SBS program (see section G.1).

Running the program

First, the user is asked to specify the filenames of
- the hyperspectral image file,
- the output class ROI file, and

- the output text file.

Second, the following parameters need to be provided for the K-Means clustering procedure:

- the number of output classes, that is the number of clusters (2-10) to be defined, and

- the number of iterations (1-4).

Then, the clustering program executes displaying its current status within a status window in the
middle of the screen. An image of the clustering map is automatically opened in ENVI™s ‘Available
Bands List’, from where it can be displayed. The statistics of each class are then successively
calculated. After program completion, a message window appears indicating successful program

performance (similar to figure G.4).

G.6 Description of the program DATASTATSROI

Overview
This program is similar to the DATASTATS program described in section G.4, but allows the data

statistics to be calculated from an ENVI™ Region of Interest (ROI) rather than from the entire image.

input Data Description

Image file
The hyperspectral image data may be provided in any ENVI™ supported format.

RO file
The ENVI™ Region of Interest (ROI) file should be defined over the image area from which data

statistics are to be calculated. Non-image pixels shouid not be included.
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Output Data Description

Output text file
The output text file provides a summary of the computed statistics (band covariance and correlation

matrix, eigenvalues and eigenvector matrix, as well as the band mean vector) for the data set. The

output format is recognisable by the SBS and UBS program (see sections G.1 and G.2).

Running the program

First the user is asked to specify the filenames of
- the image file,
- the ROl file, and

- the output text file.

Then, the program executes displaying its current status within a status window in the middle of the
screen. After program completion, a message window appears indicating successful program

performance (similar to figure G.4).
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Glossary

Variables and constants are listed in order of their appearance in the thesis. Once defined, they are

not defined a second time unless their meaning has changed.

Chapter 2

skewness ;
kurtosis ;

PN,

Number of bands

Band indices

Pixel measurement in band j

Pixel vector

Number of classes

Class indices
Class k&

Class-conditional density function for pixel vector x

A priori probability of class &

Sample mean of band |

Sample mean vector

Number of pixel measurements

Pixel index

Pixel measurement { for band j
Sample variance for band j

Sample covariance for bands jand /
Sample covariance matrix

Sample correlation coefficient for bands jand [/
Coefficient of variation for band /
Skewness for band |

Kurtosis for band

Priority number for band |

Relative mean ratio for band J

Relative variance ratio for band j

Number of test samples classified as class i while belonging to class f

Overall accuracy
Total number of pixels in the error matrix
KHAT statistics

Chance agreement

302



s

SR,

joo

(k,O), dko

Marginal total of row i of the error matrix

Marginal total of column i of the error matrix

Tau statistics

Prior probability

A priori number of pixels belonging to class i cut of N pixels
Number of candidate bands for feature selection

Measure of distance between classes (or pixels)®, and w,
Order of Minkowski distance

Positive definite matrix

Angle between two class vectors

Chernoff parameter ranging from 0 to 1

Saturation value for the Transformed Divergence

Range value for the Transformed Divergence

Multi-class distance measure

Cost of deciding x € o, , when inreality X € @,
Within-class scatter matrix

Between-class scatter matrix

Number of possible subset combinations

Feature subset

Number of features added to the set in the generalised form of SFS

Number of features deducted from the set in the generalised form of SBS

Pixel measurement in feature j

Transformed feature vector
Mapping function

Linear mapping coefficients

Transformation matrix with elements «

Eigenvalue for feature [

Diagonal matrix of weight coefficients

Common factor vector

Matrix of factor locadings

Specific or unique factor vector

Distance value between pixels k£ and o in transformed feature space
Objective function

L.oading factor matrix

Column of the loading factor matrix

Discriminant power of band J

Eigenvalue of the /th component under the broken-stick model

Chi-square test statistic
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[]
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]
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z Z test-statistic

C, Accuracy estimate of feature subset i

Si Asymptotic sample variance

. Number of samples misclassified by A but not by B
o Number of samples misclassified by B but not by A
Chapter 3

N Number of original dimensions

Chapter 4

C Number of channels

FWHM FWHM

Chapter 5
¢ Student’s statistic
N Number of observations
ro Spearman rank correlation coefficient
d, Difference between the ranks of the i th pair of item
re Standardised form of
R Multiple correlation coefficient
R? Coefficient of multiple determination
Y Band index
F statistic
k Number of independent variables
Chapter 6
x; Value of the dependent variable in observation j
fl Regression coefficient for independent variable i
iy Value of the independent variable i in observation j
c Number of independent variables
7 Number of observations

L T
X = (X, X, ", X,

f:(foaﬁa"'afc)T
M=(1,p,,1,, 1)
1=(1,1,-~,1)T

€

€= (81’827”-5817)T

Observation vector, dimension (7 ,1)

Vector of coefficients, dimension (¢ ,1)

Matrix of independent variables, dimension (n,¢)

Unit vector, dimension here (n,1)

Error for observation j of the fit of independent variables

Vector of random errors, dimension (71,1)
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