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Hyperspectral data offer refined spectral discrimination of ground targets, but come at a substantial 
cost. For some sensors, the number of spatial pixels (swath width) needs to be reduced to acquire a 
large number of bands. In addition, coarser spatial resolution is required to achieve enough signal 
from narrow bands. This study aimed to investigate whether it was possible to reduce the number of 
bands and broaden their widths, while achieving the same or higher application accuracy as with 
hyperspectral data. 

Three innovative band selection methods were developed as tools for this investigation. They were 
designed primarily for Maximum Likelihood Classification (IVILC) applications, but their use with 
respect to other applications was discussed. All algorithms aimed to optimise the band location, 
width and number with respect to the MLC accuracy for the given classification task. The supervised 
band selection (SBS) algorithm is based on conventional feature selection techniques, while the 
unsupervised band selection (UBS) method aims to decorrelate the band set. The unsupervised 
clustering-based SBS (CSBS) algorithm uses the SBS, but with classes being defined by clustering. 

The three approaches were evaluated on real data sets. All algorithms gave physically meaningful 
band sets, which achieved similar or higher MLC accuracies than band sets of current airborne and 
satellite sensors. The sub-optimality of the SBS bands was found to be least (7%) for sets with 
maximum three bands. The band number criteria were shown to be effective estimates of the 
intrinsic data dimensionality, although some subjectivity remains. Only SBS may be used to test 
whether narrow band data have a significant advantage over broad band data. UBS depends on 
dark image data for band expansion and requires each band to be normally distributed, which is only 
justified if the scene is made up of a single material type. CSBS has the drawback of producing 
inconsistent results depending on the initialisation and parameter settings of the clustering routine. 

The methods can be applied with programmable sensors in a repeat-pass fashion: Band selection 
may be performed on hyperspectral data acquired over a representative part of the scene. Then, 
multispectral data may be collected over the same scene with the optimised band set under similar 
solar and atmospheric conditions. Both UBS and CSBS may be employed in-flight. For non-
programmable sensors, a more generic band set is sought for a given classification scheme, which 
needs to be optimised to a large number of scenes. 

The author believes that current data acquisition is inefficient in that spectrally redundant data are 
collected with most imaging spectrometers, often using narrow band data where this is not 
necessary. Application of the above band selection methods to real data sets showed that for all 
three classification tasks, the number of bands to acquire could be reduced dramatically with a 
maximum loss of 5% in MLC accuracy, and for two out of the three tasks, coarsening the spectral 
sensor resolution may be justified. This would allow collecting supplementary data and refining the 
sensor's spatial resolution. Coupled with algorithms to optimise other acquisition parameters, the 
band selection methods developed in this thesis lead the way towards an intelligent remote sensing 
expert system for data acquisition. 
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Table 2.2. Common pairwise probabilistic distance measures for normally distributed classes 45 

and cOg using their mean vectors m and covariance matrices S . 

Table 3.1: Scientific and common names of some ordinary saltmarsh plants within the UK. 80 
Table 3.2: Height levels averaged over several years (after Long and Mason, 1983). 80 
Table 3.3: Description of the National Vegetation Classification (NVC) saltmarsh categories. 85 
Table 3.4: Characteristics of the CASI image acquisition over Mid Severn Estuary, UK. 86 
Table 3.5: Scientific and common names of common plant species of the open plant 89 
communities within the New Forest, UK (Westerhoff, 1992). 
Table 3.6: Characteristics of the HyMAP image acquisition over New Forest, UK. 92 
Table 3.7: Number of possible subset combinations and time needed for computational 102 
search for both exhaustive and sub-optimal feature selection algorithms (for Multispec© 
software version 2.5 under Windows NT on a 600 MHz Intel Pentium III processor, 128 MB 
RAM). 
Table 3.8: Informational classes, their number of samples and fields defined for the River 105 
Severn study area. 
Table 3.9: Informational classes, their number of samples and fields defined for the New 113 
Forest study area. 

Table 4.1: Absorption centre wavelengths of atmospheric gases for the solar-reflective 132 
wavelength range (Smith, 1985; Goetz et a/., 1995). 
Table 4.2: Estimated absorption width of the major water vapour bands in the solar-reflective 132 
wavelength region. 
Table 4.3: List of most common vegetation indices with references and input band 136 
requirements. 

Table 4.4: Probabilistic distance measures for one band and normally distributed classes 

and (Dg. using the class mean and variance values m and , respectively. The equations 

were derived from their corresponding counterparts in table 2.2. 
Table 4.5: Correlation coefficient between the single-/multiple-band distance measures and 143 
the MLC overall accuracy estimated with the leave-one-out method for the New Forest and 
River Severn data set. 
Table 4.6: First 6 optimal bands selected by the SBS algorithm for the New Forest and River 152 
Severn data set with respect to their corresponding classification task (see table 3.9 and 3.8). 
Table 4.7: Proportion of maximum achievable Transformed Divergence (PMATD) and MLC 161 
accuracy (PMAMA) for the first five dimensions of the SBS band set selected for the New 
Forest and River Severn data sets. 

Table 5.1: Correlation coefficient between unsupervised criterion functions and the MLC 169 
overall accuracy estimated with the leave-one-out method for the New Forest and River 
Severn data set. 

Table 5.2: Lower limits of the coefficient of multiple determination for statistical 
significance at a level of 1 % and 5% for the New Forest and River Severn data sets, k is the 
number of bands already in the band set when the new band is added. 
Table 5.3: Coefficient of (multiple) determination of the first five bands to be added to the 192 
optimal band set for the New Forest and River Severn data sets (least correlated and least 
noisy bands first UBS options). 

8 



Table 5.4: First 6 optimal bands selected by the UBS algorithm (least correlated first - 194 
unequal bandwidth option with maximum 4 rows width) for the New Forest and River Severn 
data set. 
Table 5.5; First 6 optimal bands selected by the CSBS algorithm (1 iteration, unequal 198 
bandwidth) for the New Forest (5 clusters) and River Severn (2 clusters) data set. 

Table 6.1: Comparison of the SBS, UBS and CSBS algorithms. 208 
Table 6.2: Characteristics of the CAS 1-2 image acquisition over the Tregaron bog. 213 
Table 6.3: Surface condition classes used for the classification of the Tregaron bog 215 
(after Milton et al., 2003). 
Table 6.4: First 6 optimal bands selected by the SBS algorithm (unequal bandwidth, 217 
maximum bandwidth of 20 spectral rows, minimum band mean of at least 30% of the 
maximum band mean) for the Tregaron data set. 
Table 6.5: PMATD band number criterion for the first 10 SBS bands, and cumulative 218 
eigenvalue and MLC accuracy for the first 10 PCs of the Tregaron data set. 

Table A.1: Environment Agency (EA) CASI band specifications (October 1997, enhanced 238 
spectral mode) (Source: EA, 1997). 
Table A.2: HyMAP band specifications (June 2000) (Source: HyVISTA Corp. Pty. Ltd., 239 
2oooy 
Table A.3: NERC CAS I-2 band specifications for the Tregaron bog overflight in enhanced 242 
spectral mode (12 October 2001) (Source: NERC, 2001). 

Table B.1: Frequency histograms for the classes defined over the Mid Severn Estuary study 244 
area, calculated for bands 21, 33, 45 and 57. The normal curve is overlaid. 
Table B.2: CASI bands selected with the Projection Pursuit Feature Selection (PPFS) 247 
algorithm for the classes of the Mid Severn Estuary study area. 
Table B.3: Z-statistic for testing the significance between PCA features with respect to the 247 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.4: Z-statistic for testing the significance between MNF features with respect to the 247 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.5: Z-statistic for testing the significance between DAFE features with respect to the 248 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.6: Z-statistic for testing the significance between PPDA features with respect to the 248 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.7: Z-statistic for testing the significance between DBFE features with respect to the 248 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.8: Z-statistic for testing the significance between PPDB features with respect to the 248 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.9: Frequency histograms for the classes defined over the New Forest study area, 249 
calculated for bands 10, 40, 80 and 100. The normal curve is overlaid. 
Table B.10: HyMAP bands selected with the Projection Pursuit Feature Selection (PPFS) 253 
algorithm for the classes of the New Forest study area. 
Table B.11: Z-statistic for testing the significance between PCA features with respect to the 253 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.12: Z-statistic for testing the significance between MNF features with respect to the 254 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.13: Z-statistic for testing the significance between DAFE features with respect to the 254 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.14: Z-statistic for testing the significance between PPDA features with respect to the 254 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 



Table B.15: Z-statistic for testing the significance between DBFE features with respect to the 255 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 
Table B.16: Z-statistic for testing the significance between PPDB features with respect to the 255 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 
significance level (1.96) are printed in bold. 

Table C.1: Scatter plots of single-band distance measures against MLC overall performance 258 
estimated with the leave-one-out method for the New Forest and River Severn data set. The 
regression line is displayed and the correlation coefficient r given. 
Table C.2: Scatter plots of multiple-band distance measures against MLC overall 261 
performance estimated with the leave-one-out method for the New Forest and River Severn 
data set. The regression line is displayed and the correlation coefficient r given. 
Table C.3: Band sets from current airborne and satellite sensors and their simulation with 264 
HyMAP (New Forest) and CASI (River Severn) bands sets available (data sets introduced in 
chapter 4). Bands excluded or not available are marked by an X. 
Table 0.4: Randomly and uniformly spaced band sets for the HyMAP (New Forest) and 266 
CASI (River Severn) data set introduced in chapter 4. The band number refers to the index of 
available bands (117 and 60 for HyMAP and CASI, respectively), not to the original detector 
number shown in table A.1. 

Table D.1: Run sequence plot of all bands for the New Forest imagery. Pixels were plotted in 268 
sequence of an image row. 
Table D.2: Run sequence plot of all bands for the River Severn imagery. Pixels were plotted 269 
in sequence of an image row. 
Table D.3: Lag plot of all bands for the New Forest imagery. 270 
Table D.4: Lag plot of all bands for the River Severn imagery. 271 
Table D.5; Histogram of all bands for the New Forest imagery with the normal density 272 
function overlaid. Bands 20 to 80 binsize 30, others binsize 20. 
Table D.6: Histogram of all bands for the River Severn imagery with the normal density 273 
function overlaid. 
Table D.7: Results of the Chi-square test of independence and the correlation coefficient 274 
significance for all bands of the New Forest imagery. Bands that are tested normal receive a 
'Y' in the corresponding test column. 
Table D.8: Results of the Chi-square test of independence and the correlation coefficient 276 
significance for all bands of the River Severn imagery. Bands that are tested normal receive 
a Y' in the corresponding Test' column. 

Table F.1: Scatter plots of image quality measures against MLC overall performance 283 
estimated with the leave-one-out method for the New Forest data set. The regression line is 
displayed and the correlation coefficient r given. 
Table F.2: Scatter plots of image quality measures against MLC overall performance 284 
estimated with the leave-one-out method for the River Severn data set. The regression line is 
displayed and the correlation coefficient r given. 
Table F.3: Frequency histograms for the 2 clusters formed with the K-Means algorithm for 285 
the River Severn data set for bands 21, 33, 45 and 57. The normal curve is overlaid. 
Table F.4: Frequency histograms for the 5 clusters formed with the K-Means algorithm for 286 
the New Forest data set for bands 10, 40, 80 and 100. The normal curve is overlaid. 

10 



LIST OF FIGURES 

Figure 1.1: Imaging spectrometry data acquisition (source: http://www.apex-esa.orq). 21 
Figure 1.2: Data flow diagram illustrating the course of action (solid line) and the link of each 33 
data transformation to a chapter of the thesis (dashed line). 

Figure 2.1: Number of possible subset combinations A(N,20). 51 
Figure 2.2: Number of possible subset combinations A(120,D). 51 

Figure 3.1: Ordnance Survey maps of the Mid Severn Estuary (above) and the New Forest 78 
in Hampshire (all maps © Crown copyright). 
Figure 3.2: Dargie's vegetation map (Dargie, 1999) for the west part of the Mid Severn 82 
Estuary study area. The NVC codes for the saltmarsh communities are described in table B1. 
Figure 3.3: Dargie's vegetation map (Dargie, 1999) for the middle part of the Mid Severn 83 
Estuary study area. The NVC codes for the saltmarsh communities are described in table B1, 
Figure 3.4: Dargie's vegetation map (Dargie, 1999) for the east part of the Mid Severn 84 
Estuary study area. The NVC codes for the saltmarsh communities are described in table B1. 
Figure 3.5: Geometrically corrected false colour composite of CAS! data using bands 53 (R), 87 
33 (G) and 20 (8). © UK Environment Agency, 1997. 
Figure 3.6: Part of Clarke and WesterhofTs vegetation map (Westerhoff, 1992) for the New 91 
Forest study area. The categories are explained in section 3.2.2. 
Figure 3.7: Geometrically corrected false colour composite of HyMAP data using bands 107 93 
(R), 22 (G) and 7 (B). © UK Natural Environment Research Council, 2000. 
Rgure 3.8: Masked River Severn Maximum Likelihood Classification result for all bands and 98 
the defined class set (Bare Rock, white; Pioneer Marsh, bright green; Mid Marsh, green; High 
Marsh, dark green; Bare Mud, brown). 
Figure 3.9: Masked New Forest Maximum Likelihood Classification result for all bands and 99 
the defined class set (Lake, blue; Asphalt, white; Bracken, yellow; Dry Heath, orange; 
Grassland, brightest green; Humid Heath, bright green; Wet Heath, green; Valley Mire, dark 
green). 
Figure 3.10: Correlation matrix of the 60 bands of the CASI River Severn data (12 bands 100 
have been masked out). 
Figure 3.11: Correlation matrix of the 117 bands of the HyMAP New Forest data (9 bands 100 
have been masked out). 
Figure 3.12: Mean spectral radiance curves of the class training areas defined over the River 105 
Severn data set. The mean curve is plotted with ± 1 standard deviation as grey error bar. 
Figure 3.13: 9 best bands for the River Severn data selected via minimum Bhattacharyya 107 
distance and SFS. The height of the bars indicates the frequency of appearance of a band in 
the 9 subsets. 
Figure 3.14: 9 best bands for the River Severn data selected via average Bhattacharyya 107 
distance and SFS. The height of the bars indicates the frequency of appearance of a band in 
the 9 subsets. 
Figure 3.15: 9 best bands for the River Severn data selected via minimum Transformed 107 
Divergence and SFS. The height of the bars indicates the frequency of appearance of a band 
in the 9 subsets. 
Figure 3.16: 9 best bands for the River Severn data selected via average Transformed 107 
Divergence and SFS. The height of the bars indicates the frequency of appearance of a band 
in the 9 subsets. 
Figure 3.17: Best subsets with up to 9 bands for the River Severn data selected via 107 
Projection Pursuit Feature Selection. 
Figure 3.18: Overall MLC accuracy (leave-one-out method) as a function of number of bands 107 
chosen via the above feature selection techniques. 
Figure 3.19: Eigenvalue (%) of the first 10 features extracted from the River Severn data via 109 
PCAandMNF. 
Figure 3.20: Eigenvalue (%) of the 4 features extracted from the River Severn data via DAFE 109 
and PPDA. 
Figure 3.21: Eigenvalue (%) of the first 10 features extracted from the River Severn data via 109 
DBFEandPPDB. 
Figure 3.22. Overall MLC accuracy (leave-one-out method) as a function of number of 109 
features created via the above feature extraction techniques. 

11 

http://www.apex-esa.orq


Figure 3.23: Cumulative eigenvalues (%) of the features extracted by DAFE, DBFE, PCA, 111 
IVINF, PPDA, PPDB. The 95% mark is overlaid. 
Figure 3.24: Eigenvalues (%) of the features extracted by DAFE, DBFE, PCA. MNF, PPDA 111 
and PPDB. Kaiser's 1/60 mark is overlaid. 
Figure 3.25: Eigenvalues (%) of the features extracted by DAFE. DBFE, PCA, IVINF, PPDA 111 
and PPDB. Broken Stick values are overlaid. 
Figure 3.26: Summary of intrinsic dimensionality values for the River Severn data set 111 
estimated by Catell-Vogelmann, 95% total variance. Kaiser (1/N), Broken Stick and 
Classification Accuracy for the feature extraction methods PCA, MNF, DAFE, PPDA, DBFE 
and PPDB. 
Figure 3.27: Mean spectral radiance curves of the class training areas defined over the New 113 
Forest data set. The mean curve is plotted with ± 1 standard deviation as grey error bar. 
Figure 3.28: 9 best bands for the New Forest data selected via minimum Bhattacharyya 115 
distance and SFS. The height of the bars indicates the frequency of appearance of a band in 
the 9 subsets. 
Figure 3.29: 9 best bands for the New Forest data selected via average Bhattacharyya 115 
distance and SFS. The height of the bars indicates the frequency of appearance of a band in 
the 9 subsets. 
Figure 3.30: 9 best bands for the New Forest data selected via minimum Transformed 115 
Divergence and SFS. The height of the bars indicates the frequency of appearance of a band 
in the 9 subsets. 
Figure 3.31: 9 best bands for the New Forest data selected via average Transformed 115 
Divergence and SFS. The height of the bars indicates the frequency of appearance of a band 
in the 9 subsets. 
Figure 3.32: Best subsets with up to 9 bands for the New Forest data selected via Projection 115 
Pursuit Feature Selection. 
Figure 3.33. Overall MLC accuracy (leave-one-out method) as a function of number of bands 115 
chosen via the above feature selection techniques. 
Figure 3.34: Eigenvalue (%) of the first 8 features extracted from the New Forest data via 116 
PCAandMNF. 
Figure 3.35: Eigenvalue (%) of the 7 features extracted from the New Forest data via DAFE 116 
and PPDA. 
Figure 3.36: Eigenvalue (%) of the first 10 features extracted from the New Forest data via 116 
DBFE and PPDB. 
Figure 3.37: Overall MLC accuracy (leave-one-out method) as a function of number of 116 
features created via the above feature extraction techniques. 
Figure 3.38: Cumulative eigenvalues (%) of the features extracted by DAFE, DBFE, PCA, 118 
MNF, PPDA, PPDB. The 95% mark is overlaid. 
Figure 3.39: Eigenvalues (%) of the features extracted by DAFE, DBFE, PCA, MNF. PPDA 118 
and PPDB. Kaiser's 1/117 mark is overlaid. 
Figure 3.40: Eigenvalues (%) of the features extracted by DAFE, DBFE, PCA, MNF, PPDA 118 
and PPDB. Broken Stick values are overlaid. 
Figure 3.41: Summary of intrinsic dimensionality values for the New Forest data set 118 
estimated by Catell-Vogelmann, 95% total variance. Kaiser (1/N), Broken Stick and 
Classification Accuracy for the feature extraction methods PCA, MNF, DAFE, PPDA, DBFE 
and PPDB. 

Figure 4.1: The six VNIR channels of Landsat ETM+ overlaid over a clover leaf spectrum. 124 
Figure 4.2: Extraterrestrial solar irradiance spectrum (Wehrli, 1985). 131 
Figure 4.3: Total transmittance of the standard midlatitude summer atmosphere computed 131 
with the 6S code (Sun at zenith. 1.2 km aircraft altitude, no aerosols). 
Figure 4.4: Data flowchart of the SBS (Supervised Band Selection) program with algorithm 150 
options displayed on the right side. 
Figure 4.5: First six bands selected by SBS for the New Forest classification task (see table 152 
3.9 and 4.6). Wavelengths not available for band selection are indicated by grey bars. 
Figure 4.6: First six bands selected by SBS for the River Severn classification task (see table 152 
3.8 and 4.6). Wavelengths not available for band selection are indicated by grey bars. 
Figure 4.7: Masked HyMAP New Forest data displayed using the first three optimal bands 154 
output by the SBS algorithm (see table 4.6, R = band 2, G = band 1 , 8 = band 3). 

12 



Figure 4.8: New Forest Maximum Likelihood Classification result using the first six bands 155 
selected by the SBS algorithm (see table 4.6; Lake, blue; Asphalt, white; Bracken, yellow; 
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, 
green; Valley Mire, dark green). 
Figure 4.9: Masked CASI River Severn data displayed using the first three optimal bands 156 
output by the SBS algorithm (see table 4.6, R = band 2, G = band 3 , 8 = band 1). 
Figure 4.10: River Severn Maximum Likelihood Classification result using the first six bands 156 
selected by the SBS algorithm (see table 4.6; Bare Rock, white; Pioneer Marsh, bright green; 
Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
Figure 4.11: MLC accuracy of optimal band sets derived using an exhaustive search with 158 
MLC accuracy (MLC-EXH) and the SBS algorithm for the New Forest data set. 
Figure 4.12: MLC accuracy of optimal band sets derived using an exhaustive search with 158 
MLC accuracy (MLC-EXH) and the SBS algorithm for the River Severn data set. 
Figure 4.13: MLC accuracy of the SBS band set compared with the one of satellite and 160 
airborne band sets for the New Forest data set. 
Figure 4.14: MLC accuracy of the SBS band set compared with the one of satellite and 160 
airborne band sets for the River Severn data set. 

Figure 5.1: Band Signal-to Noise Ratio (solid line) and mean (dashed line) for the New 171 
Forest data set with the noise estimated from dark current data. 
Figure 5.2: Band Signal-to Noise Ratio (solid line) and mean (dashed line) for the River 171 
Severn data set with the noise estimated from a bare mud image region. 
Figure 5.3: Significance (1 %) of the correlation coefficients for the New Forest data set 174 
(significant = white, insignificant = black; axes = band number). 
Figure 5.4: Significance (1 %) of the correlation coefficients for the River Severn data set 174 
(significant = white, insignificant = black; axes = band number). 
Figure 5.5: Flowchart of the UBS (Unsupervised Band Selection) program with algorithm 183 
options displayed on the right side. 
Figure 5.6: MLC accuracy plotted against the number of clusters for varying number of 186 
iterations (1 to 4) for the New Forest data set. 
Figure 5.7: MLC accuracy plotted against the number of bands selected by the clustering- 186 
based SBS algorithm for varying number of clusters (2 to 6), one iteration cycle and the New 
Forest class and data set. 
Figure 5.8: MLC accuracy plotted against the number of clusters for varying number of 186 
iterations (1 to 4) for the River Severn data set. 
Figure 5.9: MLC accuracy plotted against the number of bands selected by the clustering- 186 
based SBS algorithm for varying number of clusters (2 to 6), one iteration cycle and the River 
Severn class and data set. 
Figure 5.10: MLC accuracy of optimal band sets derived using an exhaustive search with 190 
MLC accuracy (MLC-EXH), the UBS (start with least correlated, LC. and noisy, LN, bands), 
and CSBS algorithm for the New Forest data. 
Figure 5.11: MLC accuracy of optimal band sets derived using an exhaustive search with 190 
MLC accuracy (MLC-EXH), the UBS (start with least correlated, LC, and noisy, LN, bands) 
and CSBS algorithm for the River Severn data. 
Figure 5.12: MLC accuracy of the 'optimal' UBS (start with least correlated, LC, and noisy, 191 
LN, bands) and CSBS band sets compared with the one of satellite and airborne band sets 
for the New Forest data. 
Figure 5.13: MLC accuracy of the optimal UBS (start with least correlated, LC, and noisy, 191 
LN, bands) and SBS band sets compared with the one of satellite and airborne band sets for 
the River Severn data. 
Figure 5.14: First six bands selected by UBS for the New Forest data set (see table 5.4). 194 
Wavelengths not available for band selection are indicated by grey bars. 
Figure 5.15: First six bands selected by UBS for the River Severn data set (see table 5.4). 194 
Wavelengths not available for band selection are indicated by grey bars. 
Figure 5.16: Masked HyMAP New Forest data displayed using the first three optimal bands 195 
output by the UBS algorithm (see table 5.4, R = band 2, G = band 1, B = band 3). 
Figure 5.17: New Forest Maximum Likelihood Classification result using the first six bands 196 
selected by the UBS algorithm (see table 5.4; Lake, blue; Asphalt, white; Bracken, yellow; 
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, 
green; Valley Mire, dark green). 
Figure 5.18: Masked CASI River Severn data displayed using the first three optimal bands 197 
output by the UBS algorithm (see table 5.4, R = band 2, G = band 3, B = band 1). 
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Figure 5.19: River Severn Maximum Lil<elihood Classification result using the first six bands 197 
selected by the UBS algorithm (see table 5.4; Bare Rock, white; Pioneer Marsh, bright green; 
Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
Figure 5.20; First six bands selected by CSBS for the New Forest data set (see table 5.5). 198 
Wavelengths not available for band selection are indicated by grey bars. 
Figure 5.21: First six bands selected by CSBS for the River Severn data set (see table 5.5). 199 
Wavelengths not available for band selection are indicated by grey bars. 
Figure 5.22: River Severn Maximum Likelihood Classification result using the first six bands 199 
selected by the CSBS algorithm (see table 5.5; Bare Rock, white; Pioneer Marsh, bright 
green; Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
Figure 5.23: New Forest Maximum Likelihood Classification result using the first six bands 200 
selected by the CSBS algorithm (see table 5.5; Lake, blue; Asphalt, white; Bracken, yellow; 
Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, 
green; Valley Mire, dark green). 
Figure 5.24: Estimate of amount of image samples against the execution time of the 202 
Datastats routine (see section G.4) for a 288-band data set and a 1 GHz processor. 
Figure 5.25: Estimate of amount of output image samples against the execution time of the 202 
Resizing ENVI™ routine for a 288-band data set and a 1 GHz processor. 

Figure 6.1: MLC accuracy of band sets output by the SBS, UBS LC, UBS LN and CSBS 206 
algorithms for the New Forest data set. 
Figure 6.2: MLC accuracy of band sets output by the SBS, UBS LC, UBS LN and CSBS 206 
algorithms for the River Severn data set. 
Figure 6.3: MLC accuracy of the SBS band set compared with the one of randomly and 209 
uniformly spaced band sets for the New Forest data set. 
Figure 6.4: MLC accuracy of the SBS band set compared with the one of randomly and 209 
uniformly spaced band sets for the River Severn data set. 
Figure 6.5: Accuracy of SBS band sets for increasing bandwidth for the New Forest data set. 210 
The width was fixed to 1, 5, 9, 13, 17,21, 25 and 29 rows to be merged. The number in the 
legend is the corresponding minimum width (in nm) of the bands in each set. 
Figure 6.6: Accuracy of SBS band sets for increasing bandwidth for the River Severn data 210 
set. The width was fixed to 1, 5, 9, 13, 17, 21, 25 and 29 rows to be merged. The number in 
the legend is the corresponding minimum width (in nm) of the bands in each set. 
Figure 6.7: False colour CAS I-2 image of the Tregaron bog (R = band 40, G = band 22, B = 212 
band 14). © UK Natural Environment Research Council, 2001. 
Figure 6.8: J. Schulz's map of surface condition classes for the Tregaron bog (Milton et al., 214 
2003). The classes used are explained in table 6.3. 
Figure 6.9: Scatter plots of the Transformed Divergence measure against MLC overall 216 
accuracy estimated with the holdout method for the Tregaron data set. The regression line is 
displayed (correlation coefficient r = 0.99). 
Figure 6.10: MLC accuracy of optimal band sets derived using an exhaustive search with 216 
MLC accuracy (MLC-EXH) and SBS algorithm for the Tregaron data set. 
Figure 6.11: Rrst six bands selected by SBS for the Tregaron classification task (see table 217 
6.3 and 6.4). Wavelengths not available for band selection are indicated by grey bars. 
Figure 6.12: MLC accuracy of the SBS band set compared with the one of randomly and 219 
uniformly spaced band sets for the Tregaron data set. 
Figure 6.13: Accuracy of SBS band sets for increasing bandwidth for the Tregaron data set. 219 
The width was fixed to 1, 3, 5, 7, 9, 11, 13, 15 and 17 rows to be merged. The number in the 
legend corresponds to the minimum width (in nm) of the bands in each set. 

Figure B.1: Skewness calculated for all classes of the Mid Severn Estuary study area for 246 
bands 21, 33, 45 and 57. 
Figure B.2: Kurtosis calculated for all classes of the Mid Severn Estuary study area for 246 
bands 21, 33, 45 and 57. 
Figure B.3: Skewness calculated for all classes of the New Forest study area for bands 10, 253 
40, and 100. 
Figure B.4: Kurtosis calculated for all classes of the New Forest study area for bands 10, 40, 253 
80and1M. 

Figure 0.1: Atmospheric transmission for 0.7 to 1.0 pm wavelength range modelled with 6S 257 
for different water vapour contents (g/cm^) in a US 1962 standard atmosphere. 
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Figure C.2: Atmospheric transmission for 1.0 to 2.0 pm wavelength range modelled with 6S 257 
for different water vapour contents (g/cm^) in a US 1962 standard atmosphere. 
Figure C.3: Atmospheric transmission for 0.7 to 1.0 pm wavelength range modelled with 6S 257 
for different solar zenith angles (°) in a midlatitude summer atmosphere. 
Figure C.4: Atmospheric transmission for 1.0 to 2.0 pm wavelength range modelled with 6S 257 
for different solar zenith angles (°) in a midlatitude summer atmosphere. 
Figure C.5: Atmospheric transmission for 0.7 to 1.0 pm wavelength range modelled with 6S 257 
for different aircraft heights (km) in a midlatitude summer atmosphere. 
Figure C.6: Atmospheric transmission for 1.0 to 2.0 pm wavelength range modelled with 6S 257 
for different aircraft heights (km) in a midlatitude summer atmosphere. 

Figure G.1: Algorithm choices for the SBS (Supervised Band Selection) program. 291 
Figure G.2: ENVI™ widget allowing the user to choose between the given SBS program 292 
options. 
Figure G.3: ENVI™ widget for the option-dependent definition of further parameters. 293 
Figure G.4: ENVI™ widget report about successful program operation. 294 
Figure G.5: Algorithm choices for the UBS (Unsupervised Band Selection) program. 295 
Figure G.6: ENVI™ widget allowing the user to choose between the given UBS program 296 
options. 

15 



ACKNOWLEDGEIVIENTS 

I am greatly indebted to my supervisor Prof. Edward Milton, for his unerring support, guidance and 

inspiration at all times during my work on this thesis. Ted' gave me the opportunity to work part-time 

in the NERC Equipment Pool for Field Spectroscopy (EPFS), which allowed me to receive a full 

grant as a European student. At this point, I would like to thank the University of Southampton, 

which funded the main part of my research. 

I am also grateful to Prof. Peter Atkinson and Dr. Jonathan Forster for checking on statistics and 

formulae, and for all the constructive comments they made. I am also thankful to NERC for 

supplying the HyMAP and CAS I-2 data acquired over the New Forest and the Tregaron bog, 

respectively. In addition, I thank the Environment Agency for supplying the CASI data acquired over 

the River Severn. 

I also would like to thank Karen Anderson for her assistance during field work, and her advice for the 

New Forest training site selection. Also a great thank you to Eloise Peters for her assistance during 

field work, to Jenny Schuiz for her advice in the training site selection for the Tregaron site, and to 

Bill Damon for his technical support. 

I am also grateful to the following people for their general assistance at the School of Geography, 

University of Southampton: Dr. Charles Kerr, Dr. Jim Milne, Sally Kelday, Dr. Liz Rollin, John Hurst, 

Tim Aspen, Andy Vowles, Roz Campbell, and Prof. David Martin. Thanks, too, to Use Steyl, Jana 

Fried, Matthew Wilson, Dr. Sally Priest, Reno Choi, Nicholas Odoni, Marie Cribb and all other 

members of the Graduate School, School of Geography. University of Southampton. 

Finally, thanks to my parents, family and friends for their continuous support. 

16 



ABBREVIATIONS 

ACORN Atmospheric Correction Now 

AISA Airborne Imaging Spectrometer 

AMD Absolute mean difference 

ANN Artificial neural network 

ARSF NERC Airborne Remote Sensing Facility 

ARVI Atmospherically resistant VI 

ATREM Atmosphere Removal Program 

AVHRR Advanced Very High Resolution Radiometer 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

BNSC British National Space Centre 

CA Canonical analysis 

CASI / CASI-2 Itres Instruments Compact Airborne Spectrographic Imager 

CCD Charge-coupled device 

C H R ^ Compact High Resolution Imaging Spectrometer 

CSBS Clustering-based SBS 

DA/DAFE Discriminant analysis (feature extraction) 

DBFE Decision boundary feature extraction 

DN Digital number 

DP Discriminant power 

EA Environment Agency 

EL Empirical line 

EM Endmember 

EPFS NERC Equipment Pool For Field Spectroscopy 

EVI Enhanced VI 

FA Factor analysis 

FOV Field-of-view 

FWHM Full-width-half-maximum 

GA Genetic algorithm 

GBNS Geophysical Environmental Research Imaging Spectrometer 

GIFOV Ground-projected IFOV 

GMES Global Monitoring of Environment and Security 

GVI Green VI 

HyMAP Hyperspectral Mapper 

lARR Internal average relative reflectance 

ICA Independent component analysis 

ID Intrinsic dimensionality 

IDD Intrinsic discriminant dimensionality 

^ O V Instantaneous FOV 

ISODATA Iterative Self-Organising Data Analysis 



KL Karhunen-Loeve 

LAI Leaf-area index 

LC Least correlated band pair first (UBS algorithm option) 

LN Least noisy band first (UBS algorithm option) 

LOWTRAN Low Resolution Atmospheric Radiance And Transmittance 

LSMM Linear spectral mixture model 

LSU Linear spectral unmixing 

MAF Minimum/maximum autocorrelation factors 

MDS Multidimensional scaling 

MEIS Multi-detector Electro-optical Imaging Scanner 

MLC Maximum likelihood classifier / classification 

MNF Maximum noise fraction 

MODTRAN Moderate resolution atmospheric radiance and transmittance model 

MSPCA Modified stepwise RCA 

MTF Modulation transfer function 

NERC Natural Environment Research Council, UK 

NIR Near infrared 

NFL National Physical Laboratory 

OIF Optimal index factor 

OMBVI Optimum multiple-band VI 

OSP Orthogonal subspace projection 

PC Principal component 

PCA Principal components analysis 

PCVI Principal component VI 

PI Projection index 

pixel Picture element 

PMAMA Proportion of maximum achievable MLC accuracy 

PMATD Proportion of maximum achievable Transformed Divergence 

PN Priority number 

PP Projection pursuit 

PPDA PP pre-processing and DAFE combined 

PPDB PP pre-processing and DBFE combined 

PPFS Projection pursuit feature selection 

PSF Point spread function 

RBD Relative absorption band-depth 

RGB Red-green-blue 

RMSE Root mean square error 

ROI Region of interest 

ROSIS Reflective Optics System Imaging Spectrometer 

RTGC Radiative transfer ground calibration 

RTM Radiative transfer model 
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SA Simulated annealing 

SAC Special area of conservation 

SAM Spectral angle mapper 

SBaRS Sequential backward floating selection 

SBaS Sequential backward selection 

SBS Supervised band selection algorithm 

SFF Spectral feature fitting 

SFFS Sequential forward floating search 

SFS Sequential forward selection 

SI Systeme International 

SNR Signal-to-noise ratio 

SPA Special protection area 

SSSI Site of special scientific interest 

SWIR Short-wave infrared 

TBVI Two-band VI 

TD Transformed divergence 

TOAVI Top-of-atmosphere VI 

UBS Unsupervised band selection algorithm 

ValDEOS Validation of data for Earth observation services 

VI Vegetation index 

VIS Visible 
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1 Introduction 

In this research project, new band selection methods for imaging spectrometers were developed and 

evaluated. In this introductory chapter, the rationale behind the research is explained, followed by a 

statement of the specific research objectives. The chapter closes with a description of the structure 

of the thesis. 

1.1 Rationale 

Remote sensing denotes the process of measuring physical characteristics of distant objects. In a 

typical remote sensing system, electromagnetic energy reflected and emitted from remote objects on 

the Earth's surface is recorded at different wavelengths by a sensor onboard an aircraft or satellite. 

From these measurements information may be inferred to identify or characterise these objects, for 

example, in terms of their physical or chemical properties. 

In this thesis, the author will limit himself to optical solar-reflective passive remote sensing with the 

Sun as illumination source and the Earth's surface as target. The optical solar-reflective wavelength 

range includes the visible (VIS, 0.38 - 0.76 pm), the near infrared (NIR, 0.76 -1.5 pm) and the short-

wavelength infrared (SWIR, 1 . 5 - 3 pm) (Chen, 1997). 

Remotely sensed radiation is, after atmospheric correction, a function of the location, time, 

wavelength and viewing geometry of a given resolution element (Verstraete and Pinty, 1992). In this 

thesis, the analysis was based exclusively on extracting information from detectable changes in the 

wavelength parameter of the measured radiance. 

Until recently, many subtle changes in radiation with wavelength were not detectable with remote 

sensing (Curran, 1994). Available sensors sampled the spectrum with broad bands of around 0.1 -

0.2 pm in width (e.g. Landsat MSS, TM and SPOT), while most terrestrial materials are 

characterised by narrow absorption features typically 0.02 - 0.04 pm in width (Hunt, 1980). 

Imaging Spectrometry 

In the last decades, advances in sensor technology have produced a new generation of airborne 

and satellite sensors, called imaging spectrometers. Imaging spectrometers record a continuous 

radiance spectrum for each image pixel via numerous contiguous and narrow bands (see figure 1.1). 

Their spectral resolution is approximating closely the one in spectroscopy, typically 0.01 to 0.02 pm. 

That is, in contrast to broadband sensors, imaging spectrometers allow the detection of narrow 
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material-specific absorption features, resulting in increased mapping capacities. In addition, imaging 

spectrometer data enable the extraction of reflectance spectra at a pixel scale, which are directly 

comparable to reflectance spectra gathered in the field or laboratory. For a historical review of 

imaging spectrometry, the reader is referred to Kruse et al. (1990) and Van der Meer et al. (2001). 

Each Pi>el is composed of 
a unique, contigous spetrum 
for the identification of 
surface materials 

Flig ht Lin e 

Scan Direction 

Con tigo us Reg istenng 
of Ad^oent Sbectral 
Bands 

X Flight 
Direction 

atial 
Pixe s 

S{3ectrai 
Bands 

Wavelength 

Figure 1.1; Imaging spectrometry data acquisit ion 
(source: http://www.apex-esa.org). 

As with non-imaging spectrometers, the incoming radiation is usually dispersed by optical elements 

such as prisms, diffraction gratings, or in a special case, interferometers onto a detection device 

(usually a charge-coupled device, CCD, array). The spatial extent of the image is acquired using 

across-track scanning techniques (e.g. pushbroom, whiskbroom) and their inherent movement 

along-track. 

In contrast to field and laboratory spectrometers which are usually employed on the ground, imaging 

spectrometers are typically airborne or spaceborne. That is, their data have a lower signal-to-noise 
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ratio (SNR) due to the distant radiation sources and the limited available dwell time of the sensor 

over the target. Since their field of view (FOV) is typically in the order of several meters for airborne 

sensors, the measurement sample within it is most likely to be heterogeneous. Being remotely-

sensed image data, imaging spectrometer data may also be affected by varying topography, viewing 

geometry and atmospheric noise (Curran, 1994; Tsai and Philpot, 1998). In addition, depending on 

the sensor design, the bandwidth may vary over the spectrum. 

Different names have been created to describe this new area of remote sensing: imaging 

spectrometry ('measuring'), imaging spectroscopy ('seeing') and hyperspectral remote sensing 

('many bands') (Van der Meer and De Jong, 2001). Usually, an imaging spectrometer is calibrated to 

perform absolute measurements in one of the internationally recognised Systeme International (SI) 

base units, such as spectral radiance. It should then be referred to as 'imaging spectroradiometer' 

(see definition of'spectroradiometer' in Wyatt, 1978). 

A calibration to spectral radiance units is especially important when comparing measurements 

between different instruments or from different acquisition times (Mather, 1999). In addition, some 

radiative transfer models need physical quantities such as upwelling radiance as input variables to 

calculate an atmospheric correction that relates apparent at-sensor radiance to the radiance of the 

ground feature (Slater, 1984). 

Imaging Spectrometers 

After the commercialisation of airborne imaging spectrometers in the early 1980s, numerous 

instrument types have been developed. A good compilation of airborne imaging spectrometers can 

be found in Curran (1994) and Van der Meer et al. (2001). Table 1.1 and 1.2 list some of the 

airborne and spaceborne VNIR sensors that have been operated or planned since 2002. 

Table 1.3 shows specifications of two airborne imaging spectrometer systems, the CAS 1-2 and the 

HyMAP, the data of which will be used in this thesis. Unlike the HyMAP sensor, the CAS I-2 is 

programmable with respect to band location, width and number. Due to data recording rate limits of 

the CAS 1-2 hard drive subsystem, a trade-off exists between a maximal swath width and high 

spectral resolution. The full swath width (512 imaging pixels) is recorded in CASI-2's spatial mode, 

however at the cost of a reduced number of maximum 19 spectral bands (ITRES, 2001). In contrast, 

all 288 bands may be recorded in CASI-2's enhanced spectral mode, but with a much narrower 

swath (101 imaging pixels). For a more detailed summary see Riedmann (2003). 

While airborne imaging spectrometers have a very fine spatial resolution (up to 1 m, e.g. CASI-2), 

their spaceborne counterparts possess coarser spatial resolution (typically 30 - 500 m), but similar 

spectral resolution. Table 1.4 presents some examples of currently orbiting spaceborne imaging 

spectrometers. 
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Table 1.1: Airborne VNIR Sensors operating in year 2002 and beyond. Hyperlinks were last verified on 10/10/2002. 

LU 

Acronym Name Manufacturer Operator Instrument/Calibration Hyperlink 

AAHIS-3 Advanced Airborne Hyperspectral 
Imaging System 

STI Government Systems http://www.sti-aovernmentcom/ODtical Imaoina Svstems/AAHIS.html 

AirMISR Airborne Multi-angle Imaging 
Spectro-Radiometer 

JPL NASA httBi//www-misr.jpi.nasa.aov/mission/air.html 
Calibration 
htto://www-misr.iol.nasa.aov/mission/valwork/mivcalres.html 

AISA Airborne Imaging Spectrometer for 
Applications 

Specim Ltd. Specim Ltd. CaliGeo post-processing software 
http://www.specim.fi/produGts-aisa.html 
Calibration technique (CARSTAD) 
http_://carstad.gsfc.nasa.aov/topics/erim99web.html 

AMSS Airborne Multispectral Scanner SpecTerra Systems Pty 
Ltd (sTs) 

htto://www.sDecterra.com.au/amss frame.html AMSS Airborne Multispectral Scanner SpecTerra Systems Pty 
Ltd (sTs) 

APEX Airborne PRISM Experiment ESA httpV/www.apex-esa.org/ 
System > Scanner Specifications > System Recommendations 

ASAS Advanced Solid State Array 
Spectroradiometer 

NASA NASA http://asas.asfc.nasa.aov/ 

AVIRIS Airborne Visible/Infrared Imaging 
Spectrometer 

NASA, JPL NASA, Ames http://aviris.ipl.nasa.aov/ 
AVIRIS calibration (JPL publication) 
httD://Dooo.ipl.nasa.aov/docs/aviris87/l-VANE1 .PDF 
http://Dooo.ipl.nasa.aov/docs/workshops/90 docs/1 .PDF 
http://www.optics.arizona.edu/rsg/ 

CAESAR CCD Airborne Experimental 
Scanner for Applications in Remote 
Sensing 

NLR NLR htto://www.itc.nl/~bakker/info/rs-data/olatform.html 

CASI-2 Compact Airborne Spectrographic 
imager 

Itres Research Ltd. NERC ARSF, 
EA 

http://www.itres.com 
For calibration see chapter 3 of this thesis 

DAIS 7915 Digital Airborne Imaging 
Spectrometer 

GER Corp. D L R / J R C httD://www.op.dlr.de/DAIS/ 
Calibration 

http://www.oD.dlr.de/dais/dais-cal.htm 
EPS-H Environmental Probe System GER Corp. httD://viww .aer.com/epshman.html 

Calibration 
httD://www.aer.com/eDshman.html#SYScal 

HRIS High Resolution Imaging 
Spectrometer 

E S A / D S S httD://www.aisdevelopment.net/aars/acrs/1999/ts10/ts10210pf.htm 

HYDICE Hyperspectral Digital Imagery 
Collection Experiment 

Naval Research 
Laboratory 

ERIM httD://rsd-www.nrl.navv.mil/hvdice/ 
Calibration 
httD://www.oDtics.arizona.edu/rsa/ 

HYMAP Hyperspectral Mapper Integrated Spectronlcs HyVista Corp. http://www.intspec.com 
http://www.hvvista.com/hvmap.html 
Calibration: 
http://www.aiqllc.com/pdf/EARSEL98 HyMap.pdf 

ISM Imaging Spectroscopic Mapper IAS and DESPA (Paris 
Observatory) 

httD://www.lpi.usra.edu/science/kirklandA/Vorkshop1/ERARD2.PDF 

httD ://www.ias .fr/cd D/1 SM/welcome .html 

http://www.sti-aovernmentcom/ODtical
http://www.specim.fi/produGts-aisa.html
http://www.sDecterra.com.au/amss
http://www.apex-esa.org/
http://asas.asfc.nasa.aov/
http://aviris.ipl.nasa.aov/
http://Dooo.ipl.nasa.aov/docs/workshops/90
http://www.optics.arizona.edu/rsg/
http://www.itc.nl/~bakker/info/rs-data/olatform.html
http://www.itres.com
http://www.op.dlr.de/DAIS/
http://www.oD.dlr.de/dais/dais-cal.htm
http://www.aer.com/eDshman.html%23SYScal
http://www.aisdevelopment.net/aars/acrs/1999/ts10/ts10210pf.htm
http://www.nrl.navv.mil/hvdice/
http://www.oDtics.arizona.edu/rsa/
http://www.intspec.com
http://www.hvvista.com/hvmap.html
http://www.aiqllc.com/pdf/EARSEL98
http://www.lpi.usra.edu/science/kirklandA/Vorkshop1/ERARD2.PDF
http://www.ias


Table 1.1 continued. 

MAIS Modular Airborne Imaging 
Spectrometer 

Shanghai Institute of 
Technical Physics 

MAMS Multispectral Atmospheric Mapping 
Sensor 

Daedalus Enterprise Inc. NASA. MSFC http://asapdata.arc.nasa.aov/dscrptns.htm 

M A S / A M S MODIS Airborne Simulator Daedalus Enterprise Inc. NASA, 
GSFC 

http://mas.arc.nasa.aov/ 
Calibration 
httD'V/www.optics.arizona.edu/rso/ 

MASTER MODIS/ASTER Airborne Simulator Daedalus Enterprise Inc. NASA, 
JPL 

http://mastenfl/eb.|Dl.nasa.aov/ 
Calibration: 
httD://www .oDtics.arizona.edu/rsa/ 

MEiS-l l Multispectral Electro-optical Imaging 
Sensor 

CCRS Innotech 

MISI Modular Imaging Spectrometer 
instrument 

Rochester Institute of 
Technology (RIT) 

httD://wvvw2.rit.edu/fic/Dub205c0.isp 
Calibration: 
http://www.cis.rit.edu/research/dirs/annualreport 98/research/vis cal/ 

MIVIS Multispectral Infrared and Visible 
Imaging Spectrometer 

SenSyTech Inc. CNR, Rome httD;//www.sensytech.com/lmaaina/MlVIS.html 
Calibration: 
http://ltpwww._gsfc.nasa.gov/ISSSR-95/mivisair.htm 

PHILLS Portable Hyperspectral Imager for 
Low -Light Spectroscopy 

Naval Research 
Laboratory 

http://rsd-www.nrl.navv.mil/7212/Dhills.htm 
Calibration: 

PROBE-1 Earth Search Sciences Inc. httD://www.earthsearch.com/technoloav/frame about probe1.html 
ROSIS Reflective Optics System Imaging 

Spectrometer 
DLR. GKSS, MSB DLR httD://wvw.0D.dlr.de/ne-oe/fo/rosis/home.html 

TRWIS-III TRW Imaging Spectrometer TRW Inc. ,http://www.trw.com/marl<etplace/main/OJ 151,39 1541 415 564 578*5*57 TRWIS-III TRW Imaging Spectrometer TRW Inc. 

8*578.00.html 
VIFIS Variable Interference Filter Imaging 

Spectrometer 
Univ. of Dundee http://www.somis.dundee.ac.Uk/staffDrofiles/e/R SE15RA001/ 

WIS Wedge Imaging Spectrometer Hughes Santa Barbara 
Research Center 

NASA SSC 

4:̂  

http://asapdata.arc.nasa.aov/dscrptns.htm
http://mas.arc.nasa.aov/
http://www.optics.arizona.edu/rso/
http://mastenfl/eb.%7cDl.nasa.aov/
http://www.cis.rit.edu/research/dirs/annualreport
http://www.sensytech.com/lmaaina/MlVIS.html
http://rsd-www.nrl.navv.mil/7212/Dhills.htm
http://www.earthsearch.com/technoloav/frame
http://www.trw.com/marl%3cetplace/main/OJ
http://www.somis.dundee.ac.Uk/staffDrofiles/e/R


Table 1.2: Satellite VNIR Sensors operating in year 2002 and beyond. Hyperlinks were last verified on 10/10/2002. 

A c r o n y m N a m e A g e n c y P l a t f o r m L a u n c h I n s t r u m e n t / C a l i b r a t i o n H y p e r l i n k 

AATSR Advanced Along Track 
Scanning Radiometer 

ESA E N V ^ A T 03/2002 httoV/envisat.esa.lnt/instruments/aakr/ 
on-board visible calibration system 
hllB;6\yww^.teac.uk/physics/research/eos/aatsr/pheapr 6.html 
httD://envisat.esa.int/calval/cr/12092002/AATSR/ 

ALI Advanced Land Imager NASA E O ^ 11/2000 http://eo1 ._qsfc.nasa.qov/Technoloay/ALIhome1 .htm 
Calibration 
httD://eo1.usas.aov/doGuments/ALI/SPlE 07-99c10.Ddf 

AMODIS Advanced Moderate-
Resolution Imaging 
Spectroradiometer 

NASA E0S-AM2 2004? httpV/Dao.qsfc.nasa.oov/asfc/service/aallerv/fact sheets/earthsci/fs-96f07)-13 htm AMODIS Advanced Moderate-
Resolution Imaging 
Spectroradiometer 

NASA E0S-AM2 2004? 

ARIES Australian Resource 
Information and 
Environment Satellite 

Australia ARIES-1,2,3 2002? http://www.auspace.com.au/Droiects/arles.htm 
Calibration 

httD://www.sdl.usu.edu/conferences/smaNsat/Droceedinas/11/tech03.pdf 

ASTER Advanced Spaceborne 
Thermal Emission and 
Reflection Radiometer 

NASA E O S A M ^ 
(TERRA) 

1999 http://asterweb.jpl.nasa.gov 

h#B.V/^psoj;sfc.nasa.Qov/eos homepaqe/for scientists/atbd/vlewlnstrument.php?instr 
ument=ASTER 
Calibration 
http://www.optics.arizona.edu/rsq/ 

ATSR Along Track Scanning 
Radiometer 

ESA E R S ^ 
E R & 2 

1991 
1995 

AVHRR Advanced Very High 
Resolution Radiometer 

NASA NOWVJ 
NOAA-K 
N O A ^ ^ 
NOAA-M 
NOAA-N 

1994 
05/1998 
2000 
2002 
2003? 

httpV/fe rmi.ihuapl.edu/avhrr/index.html 
http://www.itc.nl/~bakker/noaa.html 
httpV/www.aqrecon.canberra.edu.au/Products/Satellite imaqerv/NOAA/NOAA.htm 

AVHRR Advanced Very High 
Resolution Radiometer 

NASA NOWVJ 
NOAA-K 
N O A ^ ^ 
NOAA-M 
NOAA-N 

1994 
05/1998 
2000 
2002 
2003? 

Calibration 
http ://www.optics .arizona .ed u/rsg/ 

httpV/www.ccrs.nrcan.oc.ca/ccrs/rd/ana/calval/calhome e.html 
http://www.Dciqeomatics.com/cqi-bin/pcihlD/AVHRRAD 

A V H R R / 
H N S 

Advanced Very High 
Resolution Radiometer 

NOWVN 2004/ 
2008? 

http://www.itc.nl/~bakker/noaa.html 

AVNIR-2 Advanced Visible and 
Near Infrared 
Radiometer type 2 

NASDA 
(Japan) 

ALOS 2004? http:i /wyw,eorc.nasda.ap.ip/ALOS/about/2avnir2.htm 
.http://www.eoc.nasda.ao.iD/quide/satellite/sendata/avnir e.html 
Calibration 
h#V/www.eorc.nasda.gpJp/ALOS/da/2examDle.htm 

CCD High Resolution CCD 
Camera 

CAST / INPE CBERS-1 
CBERS-2 

1999 
2003? 

httD://www.dqi.inDe.br/html/enq/cbers.htm 
httD://www.inDe.br/Droaramas/cbers/enolish/satelite.html 
Calibration 
http://www.aisdeveloDment.net/aars/acrs/1999/ts7/ts7201.shtml 

C H N S Compact High 
Resolution Imaging 
Spectrometer 

ESA PROBA 10/2001 www.rsacl.co.uk/chris 
Calibration 
httD://wvw.cossa.csiro.au/reDorts/Drata/chris meetina.html 

CIS Chinese Imaging 
Spectrometer 

China N/A N/A Shanghai Institute of Technical Physics, Shanghai 

http://eo1
http://www.auspace.com.au/Droiects/arles.htm
http://www.sdl.usu.edu/conferences/smaNsat/Droceedinas/11/tech03.pdf
http://asterweb.jpl.nasa.gov
http://www.optics.arizona.edu/rsq/
http://www.itc.nl/~bakker/noaa.html
http://www.aqrecon.canberra.edu.au/Products/Satellite
http://www.optics
http://www.ccrs.nrcan.oc.ca/ccrs/rd/ana/calval/calhome
http://www.Dciqeomatics.com/cqi-bin/pcihlD/AVHRRAD
http://www.itc.nl/~bakker/noaa.html
http://www.eoc.nasda.ao.iD/quide/satellite/sendata/avnir
http://www.eorc.nasda.gpJp/ALOS/da/2examDle.htm
http://www.dqi.inDe.br/html/enq/cbers.htm
http://www.inDe.br/Droaramas/cbers/enolish/satelite.html
http://www.aisdeveloDment.net/aars/acrs/1999/ts7/ts7201.shtml
http://www.rsacl.co.uk/chris


Table 1.2 continued. 

COIS/PIC Coastal Ocean 
Imaging Spectrometer / 
Panchromatic Imaging 
Camera 

US NEMO 2002 http://www.nrl.navv.mil/ 
http://www.tec.armv.mil/tio/nemo.htm 
Calibration 
httD://rsd-www.nrl.navv.mil/7212/Ddf/20020225 OE.odf 

DAVID ISA, DLR DAVID 2002? http://beta.most.aov.il/sela dir/DAVID.html 
www.ohb-system.de 

ER0S-A1 
ER0S-B1 

Earth Remote Sensing 
Observation Satellite 

ImageSat Int. EROS-A 
EROS-B 

12/2000 
2003? 

http://www.imaaesatintl.eom/aboutus/satellites/satellites.shtml# 

ETM+ Enhanced Thematic 
Mapper Plus 

NASA LANDSAT-7 1999 httpV/landsaLqsfc.nasa.qov/ 
Calibration: 
http:// l tpwww.asfc.nasa.aov/lAS/handbook/handbook htmls/chapter8/chapter8.html 
http://www.QDtics.arizona.edu/rsq/ 

FTHSI Fourier Transform 
Hyperspectral Imager 

US Air Force 
Phillips Lab 

Mighty Sat II 05/1999 http://www.vs.afrl.af.mil/TechProas/MiahtvSatll/FTHSi.html 
httD://www.vs.afrl.af.mil/factsheets/msat2.html 

GLI Global Imager Japan ADEOS-2 2002? httD://adeos2.ha.nasda.ao.iD/shosai ali e.htm 
Calibration 
http://sharaku.eorc.nasda.ao.ip/GLI/meet/2001/40.pdf 

HIRS/3 High Resolution 
Infrared Radiation 
Sounder 

NOAA NOAA-K 
NOAA-L 
NOAA-M 
NOAA-N 

05/1998 
2000 
2002 
2003? 

http://www.eumetsat.de/en/index.html?area=left4.html&bodv=/en/area4/aapp/hirs 3.htm 
l&a=420&b=1&c=400&d=400&e=0 

HIRS/3 High Resolution 
Infrared Radiation 
Sounder 

NOAA NOAA-K 
NOAA-L 
NOAA-M 
NOAA-N 

05/1998 
2000 
2002 
2003? 

httpV/margottB.univ-parisI .fr/cgms/en/ap10-09.htm 
Calibration 
httpV/wwvy2.ncdc.noaa.qov/docs/klm/html/c3/sec3-2.htm 

HRV 

HRVIR 

HRG 

High Resolution Visible 
Sensor 
High Resolution Visible 
and Infrared sensor 
High Resolution 
Geometric Sensor 

Spot Image, 
ONES 

SPOT-2 

SPOT-4 

SPOT-5 

01/1990 

03/1998 

05/2002 

http://www .spotimage .fr/ 
Calibration 
httpy/www.optics.arizona.edu/rsg/ 
httD://veaetation.cnes.fr/vatprep/vat2000/henrv.Ddf 

HYPERION NASA EO-1 11/2000 httD://eo1.asfc.nasa.aov/Technoloav/Hvperion,html 
Calibration: 
http://www.trw.eom/extrmk/1..,00.html?ExternalTRW=/imaaes/hvperion cal.pdf 

HYPERION NASA EO-1 11/2000 

http://www.ece.arizona.edu/~dial/base f i les/NewPaae/eol .html 
httD://www.eoc.csiro.au/hswww/HvDerion.htm 

IR-MSS Infrared Muitispectral 
Scanner 

CAST / tNPE CBERS-1 
CBERS-2 

1999 
2003? 

http://www.dgi.inpe.br/html/eng/cbers.htm 
httD://www.inpe.br/proaramas/cbers/enalish/satelite.html 
Calibration 
http://www.qisdevelopment.net/aars/acrs/1999/ps2/ps20034pf.htm 

IKONOS Space 
Imaging 

IKONOS 09/1999 http://www.spaceimaaina.com/products/ikonos/index.htm 
Calibration 
http://www.spaceimaaina.eom/aboutus/satell ites/IKONOS/spectral.htm 
httD://www.aeosvstems.de/atcor/sensors/IKONOS.html 

KVR-1000 
TK-350 

2 m resolution 
10 m resolution 
pan. Cameras 

Russia SPIN-2 02/1998 http://www.tec.armv.mil/t io/SPIN2.htm 

o\ 

http://www.nrl.navv.mil/
http://www.tec.armv.mil/tio/nemo.htm
http://www.nrl.navv.mil/7212/Ddf/20020225
http://beta.most.aov.il/sela
http://www.ohb-system.de
http://www.imaaesatintl.eom/aboutus/satellites/satellites.shtml%23
http://ltpwww.asfc.nasa.aov/lAS/handbook/handbook
http://www.QDtics.arizona.edu/rsq/
http://www.vs.afrl.af.mil/TechProas/MiahtvSatll/FTHSi.html
http://www.vs.afrl.af.mil/factsheets/msat2.html
http://sharaku.eorc.nasda.ao.ip/GLI/meet/2001/40.pdf
http://www
http://www.optics.arizona.edu/rsg/
http://www.ece.arizona.edu/~dial/base
http://www.eoc.csiro.au/hswww/HvDerion.htm
http://www.dgi.inpe.br/html/eng/cbers.htm
http://www.inpe.br/proaramas/cbers/enalish/satelite.html
http://www.qisdevelopment.net/aars/acrs/1999/ps2/ps20034pf.htm
http://www.spaceimaaina.com/products/ikonos/index.htm
http://www.spaceimaaina.eom/aboutus/satellites/IKONOS/spectral.htm
http://www.aeosvstems.de/atcor/sensors/IKONOS.html
http://www.tec.armv.mil/tio/SPIN2.htm


Table 1.2 continued. 

LAC Linear etaion imaging 
spectrometer array 
(LEISA) Atmospheric 
Corrector 

NASA EO-1 11/2000 http://eo1 .asfc.nasa.qov/ovetview/RTR/Sec-17-AC.I 
http://eo1.usas.qov/instru/leisa.asp 
Calibration 
httDV/ldcm.usqs.oov/eo-lforum/Validation Reoorts/LAC.odf 

LISS-I 
LISS-II 
LISS-III 
LISS-IV 

Linear Self-Scanning 
Sensor 

India IRS-1B 
IRS-1C 
IRS-1D 
IRS-PG 

08/1991 
12/1995 
09/1997 
2002? 

http://www.euromap.de/ 
Calibration 
http://www.euromap.de/ 

M5 Multispectral 5m 
resolution 

DigitalGlobe™ N/A 2006? http://www.di5.italglobe.com 

M10 Multispectral 10 m 
resolution 

Resource21 Resource21 2004? http://www.resource21.com/default.htm 

MERIS Medium Resolution 
Imaging Spectrometer 

ESA ENVISAT 03/2002 http://envisat.esa.int/instruments/mens/ 
Calibration 
httpy/envisat.esa.int/calval/cr/10092002/MERIS/ 

MISR Multi-Angle Imaging 
Spectroradiometer 

NASA EOS AM-I 
(TERRA) 

12/1999 httD://vwvw-misr.jpl.nasa.qov 
Calibration 
http://www-misr.jpl.nasa.aov/mlssion/calib.html 

MMRS Mulltspectral Medium 
Resolution Scanner 

CONAE 
Argentina 

SAC-C 11/2000 httpV/www.qsfc.nasa.aov/asfc/service/oallerv/fact sheets/soacesci/sac-c.htm 

MODIS Moderate- Resolution 
Imaging 
Spectroradiometer 

NASA EOS AM-1 
(TERRA) 
EOS PM-1 
(AQUA) 

12/1999 

05/2002 

http://modis.gsfc.nasa.gov 
Calibration 
httpV/www.optics.artzona.edu/rgg/ 

MOS Modular Optoelectronic 
Scanner 

DLR IRS-P3 03/1996 http://www.ba.dlr.de/NE-WS/ws5/mos home.html 
Calibration 
http://www.ba.dlr.de/NE-WS/ws5/index mos.html 

MSU-SK / 
MSU-E 

Medium-resolution / 
high-resolution 
multispectral scanner 

Russia RESURS-
01 -3 
01 -4 

10/1994 
07/1998 

http://sputnik.infospace.ru/resurs/enal/resurs.htm 
http://ceos.cnes.fr:8100/cdrom-00b2/ceos1/satellit/scanex/resurs/resurs o.htm 
httDV/www.scanex.ru/stations/resurs.htm#ISUSK 

OCI Ocean Colour Imager Taiwan ROCSAT-1 12/1998 httD://www.nsDO.aov.tw/e50/menu0504.html 

httD://rocsat1,oci.ntou.edu.tw/en/oci/index.htm 
OCM Ocean Colour Monitor India IRS-P4 

/ Oceansat 
1999 http://www.isro.org/irsp4.hlm 

http://202.54.32.164/test/docu/irsp4/c231.html 
OCTS Ocean Color and 

Temperature Scanner 
08/1996-
06/1997 

http://www.eorc.nasda.go.jp/ADEOS/Prolect/Octs.html 

Orb View Orbimage Orbview-3 2003? htto;//www.Drbimaae.com/corD/orbimaae svstem/ov3/ 
Calibration 
httD://www.0Dtics.arizona.edu/rsa/ 

OSIVII Ocean Scanning Multi-
spectral Imager 

Korea KOMPSAT-1 12/1999 http://kompsat.kan.re.kr/enalish/index.aso 
(Site Map > OSMI) 

PAN India IRS-1C 
IRS-1D 
IRS-P5 

1995 
09/1997 
2003? 

httD'.//wvwv.euromap.de/doc 000.htm 
Calibration 
http://www.ioi.uni-hannover.de/html/oublikationen/1998/iacobsen/iac 98 callb i rs lc.odf 

http://eo1
http://eo1.usas.qov/instru/leisa.asp
http://www.euromap.de/
http://www.euromap.de/
http://www.di5.italglobe.com
http://www.resource21.com/default.htm
http://envisat.esa.int/instruments/mens/
http://www-misr.jpl.nasa.aov/mlssion/calib.html
http://www.qsfc.nasa.aov/asfc/service/oallerv/fact
http://modis.gsfc.nasa.gov
http://www.optics.artzona.edu/rgg/
http://www.ba.dlr.de/NE-WS/ws5/mos
http://www.ba.dlr.de/NE-WS/ws5/index
http://sputnik.infospace.ru/resurs/enal/resurs.htm
http://ceos.cnes.fr:8100/cdrom-00b2/ceos1/satellit/scanex/resurs/resurs
http://www.scanex.ru/stations/resurs.htm%23ISUSK
http://www.nsDO.aov.tw/e50/menu0504.html
http://www.isro.org/irsp4.hlm
http://202.54.32.164/test/docu/irsp4/c231.html
http://www.eorc.nasda.go.jp/ADEOS/Prolect/Octs.html
http://www.Drbimaae.com/corD/orbimaae
http://www.0Dtics.arizona.edu/rsa/
http://kompsat.kan.re.kr/enalish/index.aso
http://www.ioi.uni-hannover.de/html/oublikationen/1998/iacobsen/iac


Table 1.2 continued. 

POLDER-2 Polarization and 
Directionality of the 
Earth's Reflectance 

CNES 
NASDA 

ADEOS-2 2002? http://adeos2.hq.nasda.ao.ip/shosai colder e.htm 
htlp://ceos.cnes.fr;8100/cdrom-00b2/ceos1/satell it/polder/index.htm 
Calibration 
httD://smsc.cnes,fr/POLDER/A calibration.htm 

PRISM Panchromatic Remote-
sensing Instrument for 
Stereo Mapping 

NASDA 
(Japan) 

ALOS 2004 http://www.eorc.nasda.ao.iD/ALOS/about/orism.htm 
Calibration 
httD://www.eorc.nasda.ao.iD/ALOS/da/2examDle.htm 

Quickbird DigitalGlobe™ Quickbird 10/2001 httD://www.dialta lalobe.com/Droducts/auickbird.shtml 
SeaWiFS Sea-viewing Wide 

Field-of-view Sensor 
Orbimage OrbView-2 

/ SeaStar 
08/1997 http://seawifs.asfc.nasa.aov/SEAWIFS.html 

Calibration 
http V/www .ojitics .arizona .edu/rsg/ 
http://www.seaspace.com/service/support/TeraScan Docs/doc/manl/seawifscal.html 

Sciamachy scann ing Imaging 
Absorption 
SpectroMeter for 
Atmospheric 
CHartographY 

ESA ENVISAT 03/2002 http://envisat.esa.int/instruments/sciamachv/ 
Calibration 
httpy/envisat.esa.int/calval/cr/11092002/SCIAMACHY/ 

TM Thematic Mapper NASA LANDSAT-5 01/1984 http://aeo.arc.nasa.aov/sae/landsat/landsat.html 
Calibration 
http://www.nal,usda.qov/tt ic/tektran/dala/000007/14/0000071413.html 
http://www.ccrs.nrcan.gc.ca/ccrs/rd/ana/calval/effort e.html 
http://www.bsrsi.msu.edu/trfic/data Dortal/Landsat7doc/landsatch8.html 

UVISI 
(SPIM) 

Ultraviolet and Visible 
Imagers and 
Spectrographic Imager 

US MSX 04/1996 http://spider.ipac.caltech.edu/staff/mmm/msx-related/td1702/hefernan.pdf 
Calibration 
httD://simbios.asfc.nasa.aov/lnfo/sensor table.html 

VEGETATION-1 
VEGETATI0N.2 

Spot! mage, 
CNES 

SPOT-4 
SPOT-5 

03/1998 
05/2002 

http://www.spotimage.fr/home/s_ystem/introsat/payload/vegetati/welcome.htm 
Calibration 
httD V/veaetation .ones .fr/vatoreo/vqt2000/henrv .odf 

VIRS Visible Infrared 
Scanner 

NASA TRMM 11/1997 http://trmm.asfc.nasa.aov/overview dir/virs.html 
Calibration 

httDV/trmm.Qsfc.nasa.aov/1b01 .html 
VIRSR Visible and Infra-red 

Scanning Radiometer 
NOAA NOAA-0 2005? http://www.ccrs.nrcan.qc.ca/ccrs/data/satsens/sats/noaa e.html#noaao 

WAOSS Wide Angle 
Optoelectronic Stereo 
Scanner 

DLR BIRD 1999 http://www.ba.dlr.de/ne/ws/Droiects/waoss/waoss.html 
Calibration 
http://www.ba.dlr.de/NE-WS/ws3/cq/ws-dt-cq.html 

WiFS 

AWiFS 

Wide Field Sensor India IRS-1C 
IRS-1D 
IRS-2A 
IRS-P6 

1995 
09/1997 
2000 
2002? 

httpV/www.euro map.de/ 
Calibration 
http://www.euromap.de/ 

WFl Wide Field Imager C A S T / INPE CBERS-1 
CBERS-2 

1999 
2003? 

http://msowww.anu.edu.au/observing/wfi/intro.shtml 
http://wwfw.inpe.br/proaramas/cbers/enalish/satelite.html 
Calibration 
http://www.cresda.com.cn/en/products 01 .htm 

00 

http://adeos2.hq.nasda.ao.ip/shosai
http://www.eorc.nasda.ao.iD/ALOS/about/orism.htm
http://www.eorc.nasda.ao.iD/ALOS/da/2examDle.htm
http://www.dialta
http://seawifs.asfc.nasa.aov/SEAWIFS.html
http://www.seaspace.com/service/support/TeraScan
http://envisat.esa.int/instruments/sciamachv/
http://aeo.arc.nasa.aov/sae/landsat/landsat.html
http://www.ccrs.nrcan.gc.ca/ccrs/rd/ana/calval/effort
http://www.bsrsi.msu.edu/trfic/data
http://spider.ipac.caltech.edu/staff/mmm/msx-related/td1702/hefernan.pdf
http://www.spotimage.fr/home/s_ystem/introsat/payload/vegetati/welcome.htm
http://trmm.asfc.nasa.aov/overview
http://www.ccrs.nrcan.qc.ca/ccrs/data/satsens/sats/noaa
http://www.ba.dlr.de/ne/ws/Droiects/waoss/waoss.html
http://www.ba.dlr.de/NE-WS/ws3/cq/ws-dt-cq.html
http://www.euro
http://www.euromap.de/
http://msowww.anu.edu.au/observing/wfi/intro.shtml
http://wwfw.inpe.br/proaramas/cbers/enalish/satelite.html
http://www.cresda.com.cn/en/products


Table 1.3: Specifications of the airborne imaging spectrometers CASI-2 and HylMAP(*). 

CASI-2 HyMAP 

Full name Compact Airborne Spectrographic 
Imager 

Hyperspectral Mapper 

Manufacturer ITRES Research Ltd., Canada Integrated Spectronics Pty. Ltd., 
Australia 

Operator Natural Environment Research 
Council Airborne Remote Sensing 
Facility (NERC ARSF), UK 

HyVISTA Corp. Pty. Ltd., 
Australia 

Type Pushbroom Whiskbroom 
Spectral range and 
coverage 

545 nm between 400 and 1000 
nm, continuous 

450 - 2500 nm, continuous 
except gaps at 1400 & 1900 nm 

Number of bands 288 (maximum) 126 
Bandwidth 2.2 - 7.8 nm 11 - 22 nm 
Programmable wavebands Yes No 
Number of spatial pixels 512 (maximum) 512 
IFOV(**) across-track 1,8 mrad 2.0 mrad 
FOV 54.4 ° (customised lens) 61.3 ° 
GIFOV(***) 1 - 7 m 3 - 10 m 
Signal-to-noise ratio 420:1 peak in laboratory with 

integrating sphere 
500:1 peak outside, 30° Sun 
angle, 50% reflective standard 

On-board calibration No Yes (spectral and radiometric) 

(*) Only the details of the solar reflective HyMAP sensor are shown in this table. 
(**) Instantaneous FOV 
(***) Ground-projected instantaneous FOV 
(Source: httD:/A/vww.itres.com/. httD://www.hwista.com/. verified last on 22/09/2003) 

Table 1.4: Characteristics of the spaceborne imaging spectrometers ASTER, CHRIS, 
Hyperion, MERIS, MODIS and MOS for the VNIR and SWIR wavelength regions. 

ASTER(*) CHRIS Hyperion MERIS MODIS(*) MOS 

Sponsor NASA ESA NASA ESA NASA DLR 
Platform Terra PROBA EO-1 Envisat Aqua IRS-P3 
Launch Dec 1999 Oct 2001 Nov 2000 Mar 2002 IVlay 2002 Mar 1996 
Type pushbroom pushbroom pushbroom pushbroom whiskbroom pushbroom 
Spectral 
range 

0 .5-2 .5 pm 0.4 -1 .0 pm 0.4-2 .5 pm 0.4 -1 .0 pm 0.4 - 2.2 pm 0.4 -1.0 pm 

No. of 
bands 

3 (VNIR) 
6 (SWIR) 

19 or 62 220 15 20 18 

Spectral 
resolution 

40 - 100 nm 1 .3 -11 nm 10 nm 3.7 - 20 nm 10-50 nm 1.4, 10, 100 
nm 

Spectral 
coverage 

discrete discrete continuous discrete discrete discrete 

GIFOV 15 m, VNIR 
30 m, SWIR 

25 or 50 m 30 m 300 m or 
1.2 km 

250,500 m 
or 1 km 

500 m 

Swath width 60 km 19 km 7.5 km 1150 km 2330 km 200 km 

(*) Only the details of the solar reflective ASTER and MODIS sensors (VNIR. SWIR) are shown in 
this table. 
(Source: httD://asterweb.iDl.nasa.aov/. httD://wwM/.rsacl.co.uk/chris/. httD://modis.osfc.nasa.aov. 
httD://eo1.asfc.nasa.aov/Technoloav/HvDerion.html. httD://envisat.esa.int/instruments/mens. 
httD://www.ba.dlr.de/NE-WS/ws5/mos home.html. verified last on 22/09/2003) 
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In the remote sensing community, some spaceborne sensors are referred to as imaging 

spectrometers simply because of their narrow bands, ignoring the fact that they do not sample the 

spectrum continuously (see table 1.4). Until now, Hyperion seems to represent the only true 

spaceborne imaging spectrometer recording data contiguously in the VNIR and SWIR wavelength 

regions with very fine bands. 

The Benefits and Costs of Hyperspectral Data 

The benefits of hyperspectral data are widely acknowledged: relevant narrow spectral absorption 

and emission features may be detected within the image spectra, allowing an improved identification 

and discrimination of ground targets, and characterisation of their related physical or chemical 

properties. Many rocks and minerals, and some plant species have been remotely identified and 

mapped on the basis of imaging spectrometer data (Vane and Goetz, 1988; Kruse, 1988). 

Though very beneficial, hyperspectral capability does not come without cost: 

1) Data handling cost: Both increased storage space and transmission time are necessary to 

cope with greater data volumes. Conventional data compression techniques may be applied, but 

not without loss (Chen and Landgrebe, 1989). 

2) SNR reduction: The imaging spectrometer distributes the incoming radiation from a given area 

per unit time to a large number of spectral bands achieving a lower band SNR than broad band 

sensors, even with the aperture wide open. Then, the spatial resolution has to be degraded or 

the sensor residence time increased to reach an acceptable signal level (Price, 1994a), which is 

often not possible due to uncompromising data requirements or dwell time limitations. 

3) Data redundancy: Imaging spectrometer data are highly correlated between adjacent bands, 

due to the closely located and overlapping spectral sampling intervals, and the typically 

gradually changing nature of the reflectance of most terrestrial materials with wavelength 

(Curran et a!., 1998). That is, high-dimensional feature spaces will be mainly empty with the 

significant information-bearing structure existing in a lower dimensional space (Landgrebe, 

2oooy 
4) Data processing cost: Some data processing methods encounter difficulties when confronted 

with the high dimensionality of the data set. Standard matrix-based methods including matrix 

inversions, such as Principal Component Analysis (PCA), may be computationally unstable 

since being subject to round-off and truncation errors in the higher order terms (Price, 1990, 

1994a). For other methods, such as Artificial Neural Networks (ANN), high dimensional inputs 

require a large number of parameters to train, resulting in long training times and low 

generalisation capabilities (Benediktsson and Sveinsson, 1997; Kavzoglu and Mather, 2000). 

5) Sampling cost: Given a limited number of training samples, the overall application performance 

initially improves as new features are added, but at a certain point inclusion of further features 

will result in performance degradation. This phenomenon referred to as 'curse of dimensionality'. 
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'peaking phenomenon' or 'Hughes phenomenon', was discovered by Hughes (1968) (Kittler, 

1986). That is, the number of training samples needed to characterise classes accurately 

increases with dimensionality, and since ground samples are often limited, this may cause a 

problem. 

6) Data visualisation cost: The feature space cannot be visualised in its entirety as for two- or 

three-dimensional data. 

The last four costs from the above list can be eliminated via data reduction methods at processing 

level after data acquisition. For example, feature selection or extraction algorithms may be employed 

to reduce the data to the most information bearing features. Features are defined here as input 

dimensions into a processing algorithm and may represent image bands or transforms of those 

bands. 

However, a solution for the first two problems can only exist 'at sensor level', i.e. a smaller amount of 

data has to be acquired. Some airborne and spaceborne sensors are designed to record only a 

reduced number of discrete wavebands specific to certain research field applications, such as land 

cover classification, atmospheric water vapour retrieval, etc. For a list of typical vegetation and 

coastal band sets of some imaging spectrometers, the reader is referred to table C.3 in the 

appendix. A band is defined in this context as a wavelength interval in the electromagnetic (EM) 

spectrum that may correspond to the bandpass of a channel or channel assemblages. A channel is 

a physical CCD detector element that records signals of specific wavelengths of the EM spectrum. 

However, these pre-determined band sets may not be optimal for a specific application task chosen 

by the data user. For instance, a user may want to classify different vegetation species, but the 

sensor's default 'vegetation' band set may only offer bands which discriminate vegetation classes 

from non-vegetation classes, and not between different vegetation species. 

Application-specific band selection has the potential of practically overcoming all of the problems 

associated with hyperspectral data. However, until now, only few researchers have exploited this 

idea, many of them guided by traditional band sets from earlier sensors. 

1.2 Research Objectives 

The main objectives of this research project were 

" to develop and evaluate supervised and unsupervised band selection approaches for 

imaging sensors with respect to the Maximum Likelihood classification (MLC) as data 

application, and 
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to generate computationally efficient ENVI™ programs to be used mainly with hyperspectral 

data from airborne and satellite sensors. 

Subsidiary research objectives were 

• to review dimensionality reduction methods for hyperspectral data, such as feature selection 

and feature extraction, 

® to apply some of the reviewed dimensionality reduction methods to real hyperspectral image 

data and evaluate their effectiveness with respect to classification accuracy, 

• to estimate the intrinsic dimensionality of hyperspectral data sets, 

= to compare the classification accuracy of the band sets defined by the band selection 

methods developed in this thesis with the one generated using the default band 

configurations of common airborne and satellite sensors, 

" to test the effectiveness of band selection and the benefit of hyperspectral data for the given 

classification tasks, 

^ to generalise the band selection methods to other applications such as other hard 

classification methods, regression, linear spectral unmixing or spectral angle mapper, and 

= to discuss data simulation in cases where hyperspectral input data could not be acquired 

with the target sensor (e.g. for sensor design studies). 

1.3 Thesis Outline 

The outline of the thesis is illustrated in a data flow diagram in figure 1.2. Initially, in chapter 1, the 

reader is introduced to the concepts of remote sensing and imaging spectrometry, and the rationale 

and outline of the thesis are exposed. Chapter 2 provides a review of dimensionality reduction 

methods, some of which are applied to real data sets in chapter 3 with Maximum Likelihood 

classification (MLC) as application. The study areas and data resources are fully described in the 

latter chapter. A supervised band selection algorithm for MLC is described in chapter 4, and 

unsupervised strategies are presented in chapter 5. Both chapters 4 and 5 include a distinct analysis 

of the proposed methodology, its evaluation with respect to real hyperspectral data sets, and the 

comparison of derived band sets to commonly used band sets of airborne and satellite sensors. 

Some issues of discussion are raised in chapter 6, including the comparison between methods, their 

generalisation to other applications, and the investigation whether or not hyperspectral data are of 

additional benefit for the given application task. Finally, based on the research findings, a concluding 

summary is given in chapter 7. 
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Imaging Spectrometer 
Chapter 1 

Laboratory Calibration 

Data Collection with Optimal 
Band Set 

Hyperspectral Data Collection 

Chapter 2 

Band Selection Method 

Supervised / Unsupervised J\ Dimensionality 
Reduction 

Chapter 5 Chapter 4 

Chapter 3 

Chapter 6 Maximum Likelihood 
Classification 

Other Applications - -

End Product 

Figure 1.2: Data flow diagram illustrating the course of action (solid line) and the link of each 
data transformation to a chapter of the thesis (dashed line). 
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2 Dimensionality Reduction 

2.1 Introduction 

As explained in chapter 1, a reduction of hyperspectral data measurements at processing level is 

beneficial for the following reasons: 

1) to reduce the overall cost of storage and processing (easier subsequent analysis and less 

computation time), 

2) to improve application performance by discarding irrelevant, redundant, non-discriminatory and 

noisy bands, 

3) to increase the stability of data processing algorithms and decrease their complexity (number of 

parameters) to avoid poor generalisation performance (Webb, 1999), 

4) to gain a stable representation of classes for a limited number of training samples, and 

5) to explore the underlying structure by obtaining a graphical representation (Webb, 1999). 

Mathematical tools for reducing the data dimensionality are called ordination methods or geometrical 

methods in multivariate analysis (Webb, 1999), while in pattern recognition they are referred to as 

feature selection and feature extraction. In this thesis, the pattern recognition terminology is 

adopted. The word feature in this context refers to both sensor bands and any transforms of them. 

Features are arranged in vector form for each pixel. The number of vector elements determines the 

dimensionality of the feature space. 

Feature selection is the process of selecting a subset of measurements out of the original set of 

measurements. A feature selection algorithm needs a criterion according to which it will select 

features, and a technique to search for the optimal feature subset in a systematic way. Section 2.2 

introduces common unsupervised and supervised criterion functions (section 2.2.2) and the main 

optimal and suboptimal search algorithms (section 2.2.3) used for feature selection. 

In contrast to feature selection, feature extraction methods transform the original high-dimensional 

measurement space into a new lower-dimensional feature space by optimising a certain criterion. 

The underlying type of transformation has to be determined, for example a linear or non-linear 

transformation. In this thesis, only linear transformations were considered, since they have the 

advantage of being simple, well defined, analytically tractable and computationally feasible (Kittler, 

1986). Section 2.3 presents some unsupervised and supervised feature extraction techniques found 

in the literature. Non-linear frequency-based transformations, such as the discrete Fourier or wavelet 

transform, are not discussed in this thesis. 
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The methods presented in this chapter are aimed to select or extract features at the processing level 

after data acquisition. For a band selection review, the reader is referred to chapter 5. 

Dimensionality reduction methods assume redundancy to be present in the data and that the main 

features can be described in terms of a tendency for the point cloud to concentrate into clusters 

(Jones and Sibson, 1987). The number of these features is commonly referred to as intrinsic 

dimensionality for representation. In contrast, the intrinsic dimensionality for classification (or intrinsic 

discriminant dimensionality) is the number of significantly reduced dimensions that still result in 

satisfactory classification accuracy. Section 2.4 presents both heuristic and statistical methods, 

which use the outcome of mainly feature extraction methods to determine the intrinsic dimensionality 

for either representation or classification. 

Concept and notation 

For the discussion of this chapter, the following concept and notation will be used. A statistical basis 

is assumed for both feature selection and feature extraction methods to explain the variability of the 

feature representation. A remotely sensed measurement set is understood to be generated by a 

state of nature, with one individual measurement representing one realisation of a continuous 

random variable defined over elements of the sensor sample space (Devijver and Kittler, 1982), The 

underlying model of the measurement process is a probability density function, which associates 

with each sample value the probability that this value will be assumed, and is usually approximated 

by a Gaussian function. This statistical framework will describe the extraneous (e.g. instrument 

noise) and intrinsic (e.g. pattern noise) variability of measurements, and may be applied to the entire 

data set or to specific measurements of user-defined classes. 

The original pixel measurement for N bands is denoted by % ., j = , or in vector form by 

X, that is, X = [xj ... . Each pixel vector x is supposed to belong to one of M possible 

classes co^^, k = 1,2,..., M . The pixel measurement is assumed to be generated by a random 

process with a model characterised by class-conditional density functions p(x | and a priori 

class probabilities ) . 

To analyse and summarise the data, descriptive measures will be used. As a measure of central 

tendency, indicating the centre of a density function, the (arithmetic) sample mean is used 

(equation 2.1). It may be combined with the means of all other bands in the sample mean vector 

1 
7M. = — 

n 
(2-1) 
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where Sample mean for band / 

X.. Pixel measurement i for band / 

n Number of pixel measurements 

For band / , the dispersion or scatter of the density function around its centre m. is estimated by 

the sample variance , defined by equation 2.2. The sample standard deviation Sjj is the square 

root of the sample variance. 

n 1 ,-^1 

where ^2 Sample variance for band / 

Often, the sample variances of all bands are combined with the sample covariances s 

between the bands (equation 2.3) to form the symmetric N x N sample covariance matrix S. To 

avoid the singularity of S , the number of samples n needs to be larger than the dimension N 

(Fukunaga, 1982). Kalayeh and Landgrebe (1983) suggest n being five times N to achieve a good 

estimate of S. 

1 ^ 

1 f=i 
(2.3) 

where Sample covariance for bands /and / 

The sample correlation coefficient e [ - l , l ] ) is defined for bands / and / by equation 2.4 

and may be used to form a symmetric N x N sample correlation matrix R for all bands. The 

square of the correlation coefficient r j is termed the coefficient of determination ( r j e [0,l ]) and 

represents the proportion of the total variance of pixel values in band / which is due to the linear 

relationship between values of bands / and / . 

a 
= - ^ (2.4) 

where Sample correlation coefficient of pixel values for bands / and / 

To compare the variation in several sets of data, the sample variance may be an inappropriate 

measure, since it quantifies absolute variation and is therefore dependent on the measurement 

scale. The coefficient of variation is defined as a measure of relative variation (in %): 
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CVy = 100 (2.5) 
7M . 

where cv, Coefficient of variation for band / (in %) 

Furttier measures may be calculated to explain the shape of the probability density function. The 

skewness describes the deviation of the class density from symmetry (see equation 2.6), while the 

kurtosis quantifies its peakedness (equation 2.7). Both measures have a zero value for a normal 

probability density function (Press etal., 1992). 

(2.6) 

n S 
Z=1 

(2.7) 

Where skewness. Skewness for band / 

. Kurtosis for band / 

2.2 Feature Selection 

2.2.1 Introduction 

Feature selection techniques choose a subset of bands of given size out of all image bands that 

contains the highest possible amount of information. They are based on the assumption that not all 

bands carry the same amount of information, which is particularly justified for hyperspectral data 

sets where adjacent bands are typically highly correlated (Tu et al., 1998). Information is considered 

as any extracted data useful to the analyst. 

A feature selection algorithm needs a criterion, which quantifies the amount of information of each 

band subset under investigation. One may distinguish between unsupervised (class-independent) 

and supervised (class-dependent) criterion functions, depending on whether or not class information 

is used within the criteria. Section 2.2.2 reviews common criterion functions used in feature 

selection. In addition, band subsets need to be searched for in a systematic manner via search 

algorithms. Section 2.2.3 presents common optimal and sub-optimal search algorithms. 

Siedlecki and Sklansky (1988) perceive feature selection as 'an extremely difficult task', since it is 

charged with both theoretical and computational problems. The user has to trade-off between the 

37 



optimality of the resulting feature subset and the computational efficiency of the feature selection 

algorithm. This review focuses on feature selection techniques based on statistical pattern 

recognition techniques alone, excluding those techniques related to artificial neural networks (such 

as node pruning). 

2.2.2 Criterion Functions 

This section presents common supervised and unsupervised criterion functions that make use of 

class statistics or not, respectively. 

Unsupervised criterion functions 

Unsupervised criterion functions do not require a priori knowledge of class spectra. They may be 

used in data exploration techniques for classification. 

1) Variance and standard deviation 

Variance and standard deviation have been widely employed to measure information content in the 

context of feature selection for image visualisation. Examples are Chavez et al. (1982), Sheffield 

(1985), and Beauchemin and Fung (2001). 

2) Coefficient of variation 

The coefficient of variation (equation 2.5) is the sample standard deviation divided by the sample 

mean of the same data set. It is independent of the units of measurements and often used as a 

measure of noise (i.e. random noise in this context). Shaban and Dikshit (2001) used the multi-class 

average coefficient of variation as a criterion to select textural and spectral features for the 

classification of urban area. The measure has been found to decrease with increasing classification 

accuracy. 

3) Priority number (PN) criterion 

Lin and Chang (2001) introduced a criterion for band selection that is based on the relative mean 

ratio (band mean divided by the smallest mean of all bands) and the relative variance ratio 

(analogue to relative mean ratio): 

jP/f = 7 i 7 \ (2.8) 
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fM, 
jRVkO?, == r ; (2.9) 

minf/M j 
j -' 

= _ : _ L 2 \ (2.1 ()) 
m m 

Where p;\r Priority Number (PN) for band / 
J 

r ankQ Number assigned by priority in decreasing order 

RMR, Relative mean ratio for band /' 
J 

RVR. Relative variance ratio for band / 
J 

mini 
J 

Q Minimum over all bands / 

The higher the value of the PN criterion for band / , the more important the band is considered. As 

equivalent measure to be maximised, Lin and Chang (2001) propose the simple product of RMR. 

and 

4) Band correlation coefficient 

The correlation coefficient (equation 2.4) measures the strength of the linear association between 

two variables, here tw/o sensor bands. It is not affected by changes in the unit of measurement of 

either or both variables. For the textural and spectral classification of urban areas, Shaban and 

Dikshit (2001) selected textural features which had a low correlation coefficient with the spectral 

bands and between themselves. Chavez et al. (1982), Sheffield (1985) and Beauchemin and Fung 

(2001) employed the correlation matrix in their feature selection criteria for image visualisation to 

achieve a low pairwise correlation between the selected features. Ebert (1987) uses the correlation 

coefficient in combination with the divergence measure to select features for cloud detection and 

classification. 

5) Image signal-to-noise ratio (SNR) 

The signal-to-noise ratio (SNR) may be defined as the ratio between signal and noise. The signal 

carries the information of interest to the user, while noise represents unwanted variations added or 

multiplied to the signal. As the definitions of signal and noise change with application, no single 

definition of SNR exists (Schowengerdt, 1997). For imaging spectrometry, the image signal may be 

described by the average measured at-sensor radiance or reflectance. Image noise is introduced by 

the atmosphere, the sensor and the platform (Smith and Curran, 1999). While its systematic 

components can be measured and removed, its random contributions may vary from image to image 

and may be estimated from the methods outlined in section 2.3.2. Lin and Chang (2001) chose the 

image SNR as a feature selection criterion to be maximised. 
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6) Spatial autocorrelation of ratioed bands 

Warner et al. (1999) aimed to exclude noisy bands from the maximum likelihood classification of 

different plant communities. They assumed an H-resolution image scene (Strahler et al., 1986) for 

the classes of interest and based their technique on the idea that under this assumption class 

information is spatially autocorrelated, while noise is not. 

Spatial autocorrelation is quantified by local variance relative to the overall variance in the scene. 

Both local and global variations are similar for random noise (small spatial autocorrelation), while the 

local variation is much smaller than global variance for large homogeneous objects in the image 

scene (high spatial autocorrelation) (Warner and Shank, 1997). 

Warner et al. (1999) chose the spatial autocorrelation of the ratio of a pair of bands as unsupervised 

feature selection criterion, which is maximised when the bands are not noisy. A band ratio is 

evaluated rather than a single band in order to suppress radiance changes due to variations in 

illumination across the scene. The pair of bands resulting in the highest spatial autocorrelation 

includes the optimal two bands. The next best feature then gives the highest spatial autocorrelation 

when ratioed with each one of the previously chosen features. 

The authors concluded that the incorporation of spatial analysis in the feature selection process 

might reduce noisy bands being chosen that might otherwise decrease classification accuracy 

significantly. However, in cases where within-class variances are larger than between-class 

variances the criterion is not applicable. 

Supervised criterion functions 

All criteria presented in this section require information about the classes under investigation, which 

is usually gained from training and/or test pixels of the image to be classified. In classification, the 

analyst may be interested in an accurate or reliable classification result. The main objective of 

feature selection for classification is then to select a band subset of given size that maximises the 

classification accuracy. The classification accuracy may be estimated with measures derived from 

the classification error matrix, which represent the criterion functions to be optimised. 

A surrogate method is to measure the overlap between class distributions for different features, 

since highly separated classes in feature space result in a small misclassification error. Penaloza 

and Welch (1996) quantified the class overlap by calculating the histograms for each feature and 

class pair. However, this procedure needs to store all samples in all dimensions and is very 

expensive to compute for high-dimensional data sets. 
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A computationally less costly way to quantify class overlap is to define a distance measure (also 

referred to as separability or dissimilarity measure) that estimates the separability between the class 

probability distributions under investigation. One may distinguish between criteria derived from 

heuristic reasoning (heuristic distance measures), and those based on information theory and 

statistics (probabilistic distance measures) (Fu, 1982). 

In the following paragraphs, classification accuracy estimates are investigated, as well as heuristic 

and probabilistic distance measures for both the two-class and multi-class case. Probabilistic 

dependence and entropy measures are not considered here because of the difficulties in estimating 

their relatively complex expressions. 

1) Classification accuracy estimates 

The classification accuracy may be estimated by statistics derived from the error matrix (or 

confusion matrix or contingency table). Many accuracy measures exist (Foody, 2002), including the 

overall accuracy (or percentage agreement), the normalised accuracy, the TAU coefficient, and the 

KHAT estimate (KAPPA analysis). 

The error matrix is made up of M x M elements, where each element n-j refers the number of test 

samples that have been classified as class i although they belong to class / . The main diagonal 

elements represent the pixels that have been correctly classified. The error matrix is usually 

constructed on the basis of a test set that is independent of the training set used to form the 

classifier ('Holdout estimate', Webb, 1999). In case of low availability of training samples, a cross-

validation method ('leave-one-out') can be employed, which is approximately unbiased (Webb, 

1999). The latter method uses all samples except one as training samples and tests the classifier on 

the remaining test sample. This procedure is repeated for all samples being individually used as test 

samples. The 're-substitution' method employs all samples for both training and testing sets and is 

generally considered as biased. It will therefore be neglected in this study. 

The overall accuracy is the sum of the total number of correctly classified pixels (sum of main 

diagonal matrix elements) divided by the total number of pixels in the error matrix: 

1 M 

Where Overall accuracy 

Total number of pixels in the error matrix 

Number of correctly classified pixels for class i 
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The normalised accuracy is the analogue criterion to of a normalised or standardised error 

matrix obtained by forcing each row and column to sum to one via an iterative proportional fitting 

procedure (Bishop eta!., 1975 in Congalton, 1991). Standardisation makes error matrices directly 

comparable to other matrices since their differences in sample sizes are removed. Since the 

normalised accuracy indirectly contains information about off-diagonal matrix elements, it is said to 

be a better representation of the classification accuracy than the overall accuracy (Congalton, 1991). 

However, Pq and the normalised accuracy do not consider the proportion of agreement between the 

training and test data set that is due to chance alone and therefore tend to overestimate 

classification accuracy (Ma and Redmond, 1995). The KAPPA analysis, defined by Cohen (1960), 

aims to account for the proportion of agreement between the training and test data set that is due to 

chance alone. It may be performed with the KHAT statistic, a maximum likelihood estimate of 

KAPPA. KHAT directly incorporates off-diagonal error matrix elements in form of the marginal row 

and column totals: 

c = (2.12) 
1 

2 M 

(2.13) 

Where ^ KHAT statistics 
Chance agreement 

n. Marginal total of row i of the error matrix 

Marginal total of column i of the error matrix 

Nevertheless, KHAT assumes a multinomial sampling model, i.e. it requires pixel sampling with 

replacement, which is not applied in practice (Thomas and Allcock, 1984). This can, however, be 

ignored for a large number of samples. Foody (1992) showed that k overestimates the chance 

agreement P^ without modifications. The TAU coefficient includes a pr/ori probabilities apart from 

the marginal distributions of the reference data (Klecka, 1980): 

P - P 
T = - - ^ (2.14) 

1 M 

(2 15) 

Where T Tau statistics 
p Prior probability 

R 

A priori number of pixels belonging to class i out of N pixels; equals 

NIM for equal a priori class probabilities 1/M 
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IVIa and Redmond (1995) introduced a variation of tiie Tau statistics, T, , wliicli measures the 

improvement of a classification over a random class assignment of pixels. The measure is 

calculated by replacing P ,̂ with 1 / M in equation 2.14, and gives, according to Ma and Redmond 

(1995), an accurate measure of classification accuracy. 

2) Two-class heuristic distance measures 

Heuristic distance measures have been defined on the basis of the experience that with decreasing 

distance between class distributions, the ability to separate between them lessens. Some popular 

distance measures are presented in table 2.1. Note that all pairwise criterion functions are not 

calculated for individual bands, but over all D candidate bands using the class mean vectors m . 

Table 2.1: Common heuristic distance measures to quantify the average pairwise separability 

between classes (o^ and cô  using their mean vectors m . 

Distance measure Mathematical form 

Euclidean 
distance 

City-block 
distance 

(Manhattan, box-
car, absolute value) 

a 

y=i 

Chebyshev 
distance 

(maximum value) 
Minkowski 

distance of order 
t 

= - / M . J 
Quadratic distance D D . 

dq O) = Z Z t - Miy..) 
/=] V=1 

where Q is a positive definite matrix 
Canberra distance 

Nonlinear distance 

Angular 
separation 

D 

= ^ 

V 
(Source: Webb, 1999) 
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The city-block metric is cheaper to compute than the Euclidean distance, while the Chebyshev 

distance is the cheapest to calculate out of the three measures. The Minkowski distance is a more 

general form of the city-block distance ( f = 1 ) and the Euclidean distance {t =2). The higher t is 

chosen, the more emphasis is placed onto larger distances, leading towards the Chebyshev 

distance for Mending towards infinity (Webb, 1999). The quadratic distance is similar to the 

Mahalanobis distance between two distributions (see below), and allows the simplification of the 

multiclass distance criterion (see below). The Canberra distance may be applied to variables with 

non-negative values. If both class means are zero, its ratio is taken zero. The angular separation 

measures the angle between the class mean vectors in feature space and may be applied when 

only the relative magnitudes are important (Webb, 1999). For example, Price (1994b) used the 

Euclidean distance measure and the angular separation measure to quantify within-class variability. 

Kittler (1975, in Kittler, 1986) gives guidelines for the selection of the constant and threshold of the 

nonlinear distance, which is likely to reflect class separability most reliably. 

The heuristic measures presented so far exploit only the differences in class mean vectors. Kamp ef 

a/. (1997) used additionally the differences of the standard deviations of two class spectra to define 

spectral intervals where the discrimination between the given classes was possible. 

The advantage of the above heuristic distance measures is that they do not involve the estimation of 

probability density functions and are therefore attractive for computational reasons and when the 

statistical model of the problem is not known. However, heuristic measures usually have no explicit 

relation to the classification accuracy: the extrapolation 'the larger the distance, the higher the 

classification accuracy' cannot be made. For example, let two class distributions be already perfectly 

(100%) separated and classified at small inter-class distance. While the distance between the 

distributions may be artificially increased, their separability and classification accuracy may not. 

3) Two-class probabilistic distance measures 

Probabilistic feature selection criteria are based on mathematical statistics and information theory, 

and require the estimation of the probability density functions of the classes under investigation. As 

stated earlier, the optimum criterion is the classification accuracy, i.e. the probability of error of the 

classifier. A direct calculation of the probability of error is often impractical partially due to the lack of 

general analytical expressions which are simple enough to be treated (Fukunaga, 1972). 

Fukunaga (1972) describes the desirable characteristics of an alternative probability measure, which 

can be readily computed: it should 

1) have a monotonic relationship with the probability of error, or with its lower or upper bounds, 

2) be positive for unequal classes and zero for the same classes, 

3) be monotonic, and 

4) be additive for independent features. 
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A number of probability distance measures have been proposed in the pattern recognition literature 

which are indirectly related to the probability of error. These relatively complex measures are derived 

analytically from upper bounds to the error probability (Fu, 1982). They can be simplified under the 

assumption that the classes are normally distributed, and they are maximum when the classes are 

disjoint, i.e. the probability of error is small. 

Table 2.2. Common pairwise probabilistic distance measures for normally distributed classes 

CO J. and using their mean vectors m and covariance matrices S . 

Distance 
measure 

Parametric Form 

Chernoff 

d , ( ^ , o) = 0.5^(1 - y [( l - r ' (m^ - m J + 

+ 0.5 In 
If 

where 5 e [0,l] 

"I / 

Bhattacharyya d,(S:,o) = 0.25(m, - m , f [S, + S , ] " ' ( m , - m , ) + 0.51n 
| S . + S , | ' 

2 < s . i i s . i r 

Jeffries-
Matusita djm (A,o) = 

Divergence dX^ ,o ) = 0.5(m^ - m j + 0 . 5 t r a c e ( s ; \ +S; 'S^ - 2 l ) 

, where I Identity matrix 

trace( ) Trace of a matrix 

dw(^ ,o ) = a 

Transformed 
Divergence 

1 — e * 

d^(A:,o) = a 1 - e 

dd (t,< 

a , 6 selected saturation and range values, e.g. 2000 and 8, respectively 
(Card and Angelici, 1983) 

Mahalanobis 
dL(A:,o) = (m^ - m j for S , = S , = S 

Patrick-
Fischer 

dpf(A:,o) = (2;r) 2 S , r ° ' ' + | 2 S „ r ° " - 2 | S , , + S „ -0 5 0.5(m.-m;t)'[s*+sj '(m.-™*) 

(Sources: Webb, 1999; Kittler, 1986; Swain and Davis, 1978) 
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The most commonly used parametric probabilistic distance measures for normal class distributions 

are summarised in table 2.2. Recursive equations exist for these distance measures which allow a 

more rapid computation as one feature is removed or added to the subset (Goodenough et a/., 

1978y 

The Mahalanobis distance may be interpreted as the square of the distance between two class 

means expressed in terms of variances. It is identical to the quadratic distance (see table 2.1) with 

Q being the sum of the inverse class covariance matrices. However, it does not account for the 

differences between the class covariance matrices, which may provide further class discriminatory 

information, especially for hyperspectral data. 

The Divergence measure combines the Mahalanobis distance with a term that exploits the 

differences between the class covariance matrices. But, both the Mahalanobis and the Divergence 

criterion suffer from the same unsaturating behaviour as the heuristic distance measures: they 

continue to increase for growing class mean distances, even after the classes are fully (100%) 

separated (Thomas et al., 1987). 

The Transformed Divergence takes the unsaturating nature of the Divergence measure into account 

and transforms it into a saturating function with a saturation value a and range value b . Different 

functions are proposed in Swain and Davis (1978), two of which are shown in table 2.2. Generally, 

the Transformed Divergence is regarded as superior to the Divergence measure. 

The Jeffries-Matusita distance is the saturated form of the Bhattacharyya distance. It is 

computationally less efficient than the Transformed Divergence measure, since one additional matrix 

inversion has to be performed per class pair. 

The analytical derivation of the above probabilistic class distance measures can be found in Swain 

and Davis (1978), Kittler (1986) or Thomas et al. (1987). 

However, the classes may not be normally distributed for the given features and above distance 

measures may prove to be ineffective. In this case, Shaban and Dikshit (2001) used the skewness 

and kurtosis moment measures (equations 2.6 and 2.7) as criteria to select textural and spectral 

features for the classification of urban areas. They found that the absolute and averaged multi-class 

form of these measures were inverse proportional to the classification accuracy (KHAT coefficient). 

4) Multi-class distance measures 

The most common multi-class form of any of the above two-class distance measures is calculated 

as the sum of all pairwise distances ('maximum average', equation 2.16). In the case of probabilistic 

distance measures, the two-class distance value may be multiplied first by its corresponding class a 
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pr/or/probabilities before being summed (equation 2.17). The use of the prior probability is 

important, especially when one or two classes are spatially dominant (Borak and Strahler, 1999). 

However, the latter criterion will not maintain a close relationship with the probability of error (Kittler, 

1986) and may give sub-optimal results. 

(2/16) 
t= Io=&+l 

(2.17) 
t = l o = t + l 

An alternative strategy is to select the feature subset that maximises the minimum distance value 

calculated from all class pairs. It will ensure that the selected feature set discriminates best between 

the pair of classes which is hardest to separate ('maximum minimum') (Swain and Davis, 1978). 

Bruzzone et al. (1995) introduced an alternative to the weighted average multi-class form of the 

Jeffries-Matusita distance measure, which is equivalent to the Bhattacharyya bound (equation 2.18), 

but cannot be proved to always perform better than the weighted average criterion for the Jeffries-

Matusita distance. However, it gives more importance to classes with low a priori probabilities. 

M M 

(imjm = (g ,, g. 
&=lo=t+ I 

Bruzzone and Serpico (2000) proposed a criterion for multiclass cases that is related to the upper 

bound to the Bayes error probability and assumes Gaussian class distribution and equal class 

covariance matrices. The criterion was found to give greater weight to classes with low a priori 

probabilities as compared to the weighted average criterion. Its main drawback is that it does not 

use the class covariance matrices to measure the separability between classes. 

Bruzzone (2000) presented an extension to the average weighted multi-class distance measure for 

the Bayes classifier for minimum cost, taking into account the cost associated with each confused 

class pair (equation 2.19). The latter was developed in the context of producing a land cover map to 

assess the risks of natural disasters, where it was critical not to confuse classes with highly different 

risks. A high cost corresponds to a situation in which the confusion of two classes is very critical. 

dmc = Z - c * . J P K ) P ( m J d ( A : , o ) (2.19) 
* = l o = t + l 

Where Cost of deciding x e , when in reality 
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Alternative heuristic multi-class criterion functions are based on sample based estimates of the 

within-class (S^ ) and between-class (Sy) scatter matrices, which are defined as follows 

(Fukunaga, 1972): 

S , (2.20) 
k=l 

Sb - m o X ™ * (2.21) 
k=\ 

M 

(2.22) 
t = l 

The prior probability of class co^, P(m^), can be approximated by the ratio of the number class 

training samples to the total number of training samples (Webb, 1999). 

Several class separability measures have been derived from these scatter matrices, which aim to 

minimise the within-class spread and maximise the between-class spread simultaneously 

(Fukunaga, 1972). For example, a possible criterion is given by Liu and Jernigan (1990): 

- I S L + S j ,̂2 23) 

|Sw| 

Where | . j Determinant of a matrix 

Penaloza and Welch (1996) defined d as separability measure: 

d p = t r a c e ( s ; ' s j 

However, the latter type of measures based on scatter matrices presents the same disadvantage as 

other heuristic distance measures: they do not exhibit a saturating effect for large distance values. 

Moreover, within-class covariance matrices are not estimated reliably with a limited number of 

training samples (Jla and Richards, 1999). For more details, the reader is referred to Devijver and 

Kittler(1982). 

San Miguei-Ayanz and Biging (1996) avoided using multi-class measures by considering only a 

class pair at each stage of a progressive multiple-stage feature selection and maximum likelihood 

classification approach. The procedure allows classifying each class pair on an individually selected 

best feature subset. Jia and Richards (1998) extended this binary method by allowing the classifier 

to adapt to the amount of training samples available for each class. The method chooses the 

maximum-likelihood classifier if sufficient training samples are available for the two classes, and the 

Euclidean distance classifier if not. Although increasing the computational cost, the multiple-stage 
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m e t h o d g a v e a n i m p r o v e d c lass i f i ca t i on p e r f o r m a n c e c o m p a r e d to t h e s i n g l e - l a y e r c lass i f i ca t ion 

(San Miguel-Ayanz and Biging, 1996; Jia and Richards, 1998). 

Choice of criterion function 

Unless class samples are not available, feature selection for classification should be based on 

supervised criteria to approximate best the classification accuracy. 

With respect to the classification accuracy estimates presented above, there are no clearcut rules as 

to when each measure should be used (Congalton, 1991). The feature selection process employing 

these measures then consists of a series of classifications using different band combinations, with 

the band subsets being ranked according to their resulting mapping accuracy. The advantage of this 

approach is that the ultimate accuracy of the actual classifier is directly optimised instead of a non-

specific distance measure used for its approximation. However, since all classification accuracy 

estimates require the construction of the classifier to be used, the feature selection procedure may 

involve high computational cost. Despite this, some authors used this method for feature selection, 

e.g. Penaloza and Welch (1996). 

The choice of a supervised distance measure should be guided by its ability to represent the 

probability of error accurately. Generally, probabilistic measures may outperform non-probabilistic 

measures, since, apart from the class mean vectors, they make use of the class covariance 

matrices, describing the entire shape of the class distribution. Landgrebe (1999, 2000) claimed that 

second-order statistics were more relevant than first order statistics in discriminating among classes 

for high dimensional data. Kittler (1986) stressed that first-order information could be entirely wiped 

out by large class variances and covariances. However, in cases where the execution speed of the 

feature selection algorithm is important, heuristic distance measures may be the preferred to the 

more accurate probabilistic measures. 

Generally, the chosen feature selection criteria should reflect the complexity of the classification 

approach used. If, for example, a minimum-distance classifier is used for classification, the same 

heuristic distance measure should be applied also for feature selection. 

If a probabilistic classifier is used, saturated probabilistic measures (such as the Transformed 

Divergence and the Jeffries-Matusita) are usually considered superior to their unsaturated 

counterparts (Divergence and Bhattacharyya) for representing error probability in most parts of the 

separability range. However, in some parts where the saturating function does not approximate well 

the behaviour of the error probability, they are inferior to the unsaturated measures. Thomas et al. 

(1987) suggested the following approach for choosing which measure to use: 
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1) If relatively homogeneous classes are used together with a reduced number of bands, the 

Divergence measure should be chosen. 

2) If relatively homogeneous classes are used together with all bands, the Transformed Divergence 

measure should be chosen. 

3) If less truly homogeneous classes are used together with a reduced number of bands, the 

Bhattacharyya Distance measure should be chosen. 

4) If less truly homogeneous classes are used together with all bands, the Jeffries-Matusita 

Distance measure should be chosen. 

Some researchers made experimental comparisons to evaluate the performance of different criteria 

for a specific data set. Typically, a classification accuracy estimate was used as performance 

measure, obtained by the feature subsets selected by the different criterion functions as input to the 

chosen classifier. Examples are Goodenough ef a/.(1978), San Miguel-Ayanz and Biging (1996), 

Mausel et a/.(1990), Kavzoglu and Mather (2000), Bruzzone and Serpico (2000). However, to isolate 

the effects of the various criterion functions on the classification accuracy estimate, an optimal 

search algorithm should be used for feature selection, together with a cross-validation method for 

accuracy estimation to minimise the effect of the generalisation error (Bruzzone and Serpico, 2000). 

Chen (1973) pointed out that incorrect assumptions on class distribution or the limited number of 

available training samples might result in erroneous conclusions. He claimed that only a theoretical 

comparison could provide unique results. 

To summarise, rigid recommendations as to which measures should be used cannot be made 

because of the choice being very much problem-specific and dependent on the classifier to be used. 

Clearly, classification accuracy estimates are the preferred choice, but may result in a 

computationally unfeasible task. In cases where the data are not normally distributed, Webb (1999) 

recommended, from a computational point of view, to use a measure that simplifies for normal 

distributions. However, the effect of non-normality is not known (Mather, 1999). 

2.2.3 Search Algorithms 

In feature selection, the search algorithm generates and compares possible feature subset solutions 

utilising the criterion function as a measure of the effectiveness of the feature subsets under 

consideration. The most effective feature subset optimises the criterion and is the result of the 

search algorithm. Commonly used selection methods employ either optimal or sub-optimal search 

algorithms. 
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Optimal search algorithms 

Optimal methods consider all feature subsets resulting in a globally optimal solution. They include 

exhaustive search methods and accelerated search methods (Branch-and-Bound methods). 

The exhaustive search method evaluates the criterion function for each candidate feature subset 

individually. To select D features out of a possible set of N features ( D < # ) , the number A of 

possible subset combinations (without repetition) equals: 

_ An 

j " (2 25) 

Figure 2.1: Number of possible subset 
combinations A(N,20). 

Figure 2.2: Number of possible subset 
combinations A(120,D). 

Figures 2.1 and 2.2 illustrate A as a function of increasing D and N , respectively. It can be seen 

from these figures that A increases exponentially with increasing dimension N, and that A is 

excessive even for moderate values of D and N . That is, for a hyperspectral data set with around 

a hundred bands, the exhaustive search method would represent unacceptable computational cost 

and could very quickly cease to be computationally feasible, considering the computation effort 

involved in estimating the criterion function alone. 

Consequently, an exhaustive search may be applied only to a data set of small dimensionality # , 

or to a very small subset dimension D . In the following paragraphs alternative search procedures 

are presented that find optimal and sub-optimal feature combinations at reduced computational cost. 

The Branch-and-Bound algorithm (Narendra and Fukunaga, 1977) relies on the feature selection 

criterion being monotonic. The monotonicity property of a criterion implies that for a nested feature 

set , related as c c .A!",... c , the criterion function satisfies 

51 



(%2 ) - ( ^ ( ^3 } - - ) (Kittler, 1986). In other words, the criterion value of a feature 

subset is smaller than or equal to the criterion value calculated on the entire feature set. The 

procedure is a top-down search method, starting with the entire N -dimensional data set and 

constructing a tree structure by deleting features successively. First, the criterion value of the entire 

feature set is computed as an upper bound d{x^). Second, the optimal (#-1)-dimensional 

subset is found from possible subsets, giving a lower bound d [ X t o d[x^). All other 

non-optimal subsets with smaller criterion values than d{x^_^) are eliminated, since the deletion of 

any additional features of one of these subsets will result in a further decrease of its criterion value 

(according to the monotonicity criterion). In such a way, the subset is reduced consecutively until the 

desired feature subset size D is reached (Kittler, 1986). 

The algorithm considers all feature subsets by either implicitly rejecting or explicitly evaluating them, 

and ensures that the globally optimal feature subset will be found (Goodenough et a/., 1978). 

Sub-optimal search algorithms 

In contrast to optimal methods, sub-optimal search algorithms do not evaluate all possible feature 

combinations. They can be grouped into deterministic methods that produce the same subset on a 

given problem every time, and stochastic methods that include a random element and may produce 

different subsets every run. 

The deterministic methods typically construct the final feature subset incrementally by including 

('bottom-up') or excluding ('top-down') features from preceding subsets. Bottom-up methods start 

with an empty set, while top-down strategies begin with the full feature set. Since the best subset of 

features is not necessarily made up of the features of preceding subsets (due to the correlation 

between features), the search result will not be the optimal one. The two stochastic methods 

presented here are Monte Carlo optimisation methods for combinatorial problems: genetic 

algorithms and simulated annealing. They use random elements to search the feature space for the 

sub-optimal subset. 

1) Best individual 

The 'best individual' method evaluates each feature of the original set individually with respect to the 

feature selection criterion. It is the simplest method, and may give some good results if the features 

in the original set are uncorrelated (Webb, 1999). 
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2) Sequential forward selection (SFS) 

The SFS algorithm is a bottom-up method, which starts with an empty set. First, the best individual 

feature is selected. Then, at each subsequent stage, the feature from the remaining original set, that 

achieves the maximum criterion value in combination with all features already selected, is added to 

the preceding subset, until the desired subset dimension is reached or the best improvement makes 

the feature subset worse. Penaioza and Welch (1996) presented a fast version of the SFS, which 

deletes any features from the available original set if their performance together with the previously 

selected features they are added to, is worse than the performance of the already chosen features 

themselves. The generalised form of the SFS algorithm adds at each stage L features (Z > 1) from 

the remaining feature set to the selected subset. All possible sets of size L are evaluated, and the 

set that maximises the criterion value in combination with the already selected subset, is included 

into the final subset. The sequential forward floating search (SFFS) algorithm is a modification of the 

generalised form, which allows L to 'float', i.e. L may change at different stages of the search. An 

example for floating search methods is given by Pudil et al. (1994). 

The SFS results in a sub-optimal feature set, because selected features that were made redundant 

by additional ones, cannot be removed from the subset by the algorithm (Kittler, 1986). However, 

Zongker and Jain (1996, in Webb, 1999) found that the floating search method gave near optimal 

results close to the ones generated by the much slower Brach-and-Bound method. 

3) Sequential backward selection (SBaS) 

The SBaS is the top-down analogy to the SFS, starting from the complete feature set and deleting 

one feature at a time until the desired number of features remain. The feature selected for 

elimination is the one that results in the lowest reduction in the value of the criterion function. The 

fast version of the SBaS is similar to the one of the SFS (see above, Penaioza and Welch, 1996). 

The generalised form of the SBaS reduces the current feature set by R features at a time, and is 

the counterpart of the generalised form of the SFS, The sequential backward floating selection 

(SBaFS) algorithm is the counterpart to the SFFS, enabling R to vary during the search process. 

The SBaS is a sub-optimal search algorithm, since it does not allow discarded features to be 

reconsidered (Kittler, 1986). Computationally, the SBaS is more costly than the SFS, because the 

criterion function is evaluated over larger feature subsets. Zongker and Jain (1996, in Webb, 1999) 

claim that the floating selection method results were near optimal. 

4) Plus L - Take Away R 

The 'Plus L - Take Away R ' search algorithm combines the generalised forms of the SFS and 

SBaS methods to remove partially the problem of nesting of the feature set. Due to the correlation 
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between features, the best feature subset at a given stage does not necessarily include the selected 

features from a previous stage. After adding the L best features with the SFS, the worst R features 

are eliminated with the SBaS, etc. The net change in subset size equals to L- R. The method is of 

type bottom-up for L> R , and top-down for L < R . 

5) Max-Min Feature Selection 

The 'Max-Min Feature Selection' search algorithm is similar to the SFS method. But instead of 

adding the best available feature that maximises the criterion function in combination with all pre-

selected features, it chooses the next available feature that maximises the minimum criterion 

function value that the new feature achieves with each of the pre-selected features individually. This 

ensures that the new feature adds significant information to all already selected features. The 

advantage of this search technique is that feature selection is performed on the individual and 

pairwise merit of features only, i.e. the criterion function needs to be evaluated in feature spaces of 

maximum two dimensions (Kittler, 1986). 

6) Beam Search 

The Beam Search technique (Siedlecki and Sklansky, 1988) is an extended version of the artificial 

intelligence best-first technique. The algorithm starts with the full feature set and creates a queue (of 

a maximal number) of best subsets with one feature less than the original set according to 

decreasing values of the criterion function. Next, some subsets of a few dimensions smaller than the 

current subset are drawn at random and evaluated with the criterion function. If one of the latter 

subsets has a higher criterion value than the first subset in the queue, then the best subset is 

chosen from the queue, which includes the subset from the lower level. Otherwise, the first subset 

from the queue will be chosen as the current subset. This process is repeated until a subset of given 

dimension is reached. The algorithm may be seen as a generalisation of the sequential feature 

selection algorithms. 

7) Genetic Algorithm (GA) 

GA (Holland, 1975) is a stochastic search technique, which helps to choose which candidate 

solutions should be tested at each stage of the search. The GA concept is inspired by the 

mechanics of evolution and will be explained here in the context of feature selection. 

An initially (e.g. randomly or heuristically) selected collection of feature subsets of the desired 

dimension D ('population of chromosomes') will be filtered according to the feature selection 

criterion function ('fitness function'). The eliminated feature subsets will be replaced by new possible 

subsets ('offspring'), generated via 'crossover' and 'mutation'. Crossover randomly exchanges 

feature groups ('genetic material') between two subsets chosen by the fitness function 
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('chromosome parents'). In contrast, mutation randomly replaces a feature by another one chosen 

out of all possible features. The latter will ensure that the GA will not be limited by local maxima (Tso 

and Mather, 2001). A binary encoding technique may be used to represent a feature subset by a 

binary string. For example, a feature may have its fixed place within a sequence of features, and 

have a value of 1 or 0, depending on whether the feature belongs to the candidate subset or not, 

respectively. The GA may be iterated until the feature selection criterion converges. 

An advantage of the GA is that multiple points in search space are used to start the search for the 

global maximum (rather than just one starting point). Additionally, the transition from one generation 

to the next is based on probabilistic rules, rather than on deterministic ones (Goldberg, 1989 in Tso 

and Mather, 2001). However, many decisions need to be made on the implementation of each step 

in the algorithm (e.g. initial populations, mutation rate, convergence limit of criterion function or 

number of iterations), and these might prove to be sub-optimal for complex problems (Priigel-

Bennett and Shapiro, 1994). 

For more details on GAs the reader is referred to Holland (1975), Mitchell (1996), Tso and Mather 

(2001), and Siedlecki and Sklansky (1988). 

8) Simulated Annealing (SA) 

As genetic algorithms, SA can be employed for combinatorial optimisation problems, where a 

criterion function is to be optimised over a discrete and large configuration space. 

SA has its roots in thermodynamics, specifically in the processes of freezing liquids or cooling 

metals. If a liquid is cooled slowly enough, the freely moving atoms are often able to line themselves 

up to create a pure crystal, which represents the state of minimum energy for this system. This 

process of slowly cooling a system allowing ample time for the redistribution of the atoms is termed 

annealing and was introduced to numerical methods by Metropolis et al. (1953). Kirkpatrick et al. 

(1983) applied the same idea to search for solutions of other problems (simulated annealing). 

The system starts at an initial configuration, which is updated repeatedly until the system is frozen. 

The selection of trial moves reachable from the current configuration can be random or informed 

(e.g. by downhill simplex method). If the trial move improves the search, it is always accepted. But if 

it makes it worse, it might be still accepted according to a probability given by a Boltzman factor in 

the change in the criterion function. This allows the algorithm to escape sub-optimal combinations 

and to continue searching for a better solution. The cooling rate has to be designed to be 

computationally efficient and to allow the system to find a good solution, i.e. neither too slow nor too 

fast. It can be determined empirically by running successively slower rates until the solution stops 

improving. For more details, the reader is directed to Press etal. (1992) and Siedlecki and Sklansky 

(1988). 
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Choice of search algorithm 

If the features are statistically independent, sub-optimal strategies will yield optimal results. 

However, if the features are correlated with each other, sub-optimal search methods will result in 

sub-optimal feature subsets, whose departure from optimality is not bounded (Van Campenhout, 

1980). This implies that the optimal feature subset will not consist of the optimal subsets of smaller 

dimension. 

The degree of correlation is known to be high in hyperspectral remote sensing bands, and optimal 

methods that consider all possible feature subset combinations are the only protection against the 

bias of nesting. But sub-optimal search algorithms still may be preferred to optimal methods 

because of their computational efficiency, or the inappropriateness of the assumptions made by 

optimal methods (e.g. monotonicity criterion of the Branch-and-Bound algorithm). 

The Monte Carlo optimisation methods (genetic algorithms and simulated annealing) were found to 

be extremely well suited for large-scale feature selection problems (Siedlecki and Sklansky, 1988). 

Kavzoglu and Mather (2000) compared the results of the SFS with the ones of the GA using a range 

of criterion functions. They found that the features selected by the GA algorithm performed better 

than those selected by the SFS. 

Labovitz (1986) compared the result of the exhaustive search with the subset chosen by the sub-

optimal SFS. An average decrease of 7-10% in classification accuracy was found when using the 

sub-optimal method instead of the optimal one. Labovitz (1986) predicted that this difference in 

classification accuracy would be more dramatic with hyperspectral data, where many more bands 

allow for a higher number of band combinations (less likelihood that the optimal band subset will be 

selected by chance) and the bands are typically highly correlated. 

It is generally recognised that no perfect search algorithm exists and Press et at. (1992) 

recommended the use of more than one method in comparative fashion. 

2.3 Feature Extraction 

2.3.1 Introduction 

Generally, feature extraction methods aim to map all of the original measurements into more 

informative new features for the purpose of data compression. The resulting feature vector 

y = ... results from a transformation F of the original measurement vector 

= [xj ... , optimised by a criterion function: 
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y = F(x ) (2.26) 

where x Original pixel vector 
y Transformed feature vector 
F Mapping function 

All supervised and unsupervised criterion functions used for feature selection (section 2.2.2) may be 

readily applied as criterion functions for feature extraction. 

The natural form of the optimal mapping function F will be unknown. In this thesis, only linear 

transformations will be considered, since they have the advantage of being simple, well defined, 

analytically tractable and computationally feasible (Kittler, 1986). The problem of finding the optimal 

mapping function is then reduced to obtaining the coefficients a ., of the linear function so as to 

maximise or minimise the criterion function; 

y = A ' x (2 " ) 

y j " " j . A (2,28) 

where ^ ^ Linear mapping coefficients 

A Transformation matrix (N,N) with elements , 

The mapping coefficients may be found analytically for simple criteria by expressing the parameters 

of the criterion function in the mapped feature space via the transformation matrix, constructing the 

first derivative of the criterion and using numerical methods (Kittler, 1986). For more complex 

criteria, common multidimensional optimisation techniques for continuous functions can be drawn 

upon that require criterion function evaluations only, for example, the downhill simplex method, 

direction-set (Powell's) methods, GA and SA (Fukunaga, 1972). 

The transformation scheme is closely linked with the criterion used (Kittler, 1986). In cases where 

important features are highly non-linear functions of original measurements, a suitable non-linear 

mapping function has to be found. However, a general theory to generate mapping functions 

systematically and to find the optimum one is not available and the selection of features becomes 

very much problem orientated (Fukunaga, 1972). In these cases, multi-layer neural networks may be 

used to perform non-linear feature extraction (Bishop, 1995). 

Feature extraction methods may be used to generate and select features, and to determine the 

intrinsic dimensionality of a data set according to some criterion. The following sections investigate 

common unsupervised and supervised feature extraction methods used in pattern recognition and 

remote sensing. 
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2.3.2 Unsupervised Feature Extraction 

When the classes of interest are unknown or poorly defined, the information content in the data may 

be measured via descriptive statistics, such as the data variance, correlation coefficient, etc. (see 

sections 2.1 and 2.2.2). In this section, frequently used feature extraction techniques using 

unsupervised criterion functions are presented. 

Principal components analysis (PCA) 

PCA (Pearson, 1901) is an unsupervised feature extraction technique to reduce the number of 

features to a smaller number of uncorrelated indices called principal components (PCs). This is 

achieved by diagonalising the global data covariance matrix via eigenanalysis: 

Sa, = A^a, (2.29) 

where a Eigenvector of covariance matrix S 

Ay Eigenvalue of covariance matrix S 

The PCs are linear combinations of the original bands. The eigenvectors a, form the columns of the 

transformation matrix A (equation 2.27). Geometrically, PCA can be seen as a rotation of the axes 

of the original coordinate system to a new set of orthogonal axes, the eigenvectors. The information 

can then be presented in component images, which are projections of the data onto the 

eigenvectors. 

The eigenvector coefficients, or loadings, can be plotted as an eigenfunction of the original features. 

Given some knowledge of the ground scene, the shapes of these curves may be interpreted to some 

degree. Generally, the magnitude of the eigenvector loadings indicates the relative importance of 

their corresponding original features in representing the newly transformed 'optimal' feature 

(Wiersma and Landgrebe, 1980). 

The eigenvalues A, of the PCs correspond to their ability to account for the data variance and are 

ordered by decreasing amount of variance. When the noise variance can be assumed to be the 

same in all bands, the amount of data variance captured in a PC can be interpreted as a measure of 

its information content (Manly, 1994). 

Since PCA is based on the data covariance matrix S , a scale-dependent bias may be introduced in 

subsequent analysis. A standardised form of the PCA may be achieved by using the data correlation 

matrix instead of the covariance matrix for eigen-decomposition, or simply by transforming the 

original data first to zero mean and unit variance. 
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other variants include the independent component analysis (ICA)(Karhunen ef a/., 1997), which 

does not apply the orthogonal constraint to the axes transformation, and the common PCA (Flury, 

1988), which generalises to several populations within the data, assuming identical principal 

components for all groups, but different variances. Nirala and Venkatachalam (2000) examined PCA 

versions, which maximise the data covariances or the covariance-to-variance ratios instead of the 

data variances. 

Jia and Richards (1999) proposed a segmented PCA method, in which the complete band set is 

ordered and partitioned into subgroups of highly correlated bands that are transformed individually 

with PCA. The most informative PCs of all subgroups are regrouped and compressed further via 

PCA, until the required data reduction ratio is achieved for classification or storage purposes. The 

method is based on the idea that PCA works most efficiently on highly correlated features. 

Wiersma and Landgrebe (1980) suggested the use of a diagonal weight matrix W in equation 2.29, 

specifying a weight factor for each original band to mask out noisy spectral bands: 

S W a , = A,a, (230) 

where W Diagonal matrix of weight coefficients 

Maximum noise fraction (MNF) 

Green et al. (1988) introduced the MNF transformation, or noise adjusted PCA, which chooses the 

new components in order to maximise the image SNR as indicator for image quality. Instead of the 

covariance matrix, the noise covariance matrix is diagonalised to minimise the noise effects on the 

signal sources. The MNF was designed for data that have unequal noise variances in different 

bands, such as imaging spectrometer data, where different levels of noise may be present in 

different regions of the optical spectrum (e.g. non-uniform detector noise). Being dependent on only 

the SNR, the transformation is invariant under scale changes to any band. 

The image noise covariance matrix may be estimated with the sensor noise covariance matrix 

derived from dark reference measurements during a laboratory or in-flight sensor calibration (e.g. 

Lee et al., 1990; Smith and Curran, 1999). Dark current images are at present also routinely 

collected before or after data acquisition for most airborne sensors. However, these data are 

generally not made available to the end user. Although accurate, instrument noise estimates do not 

account for atmospheric noise contributions (i.e. absorption and scattering). The latter may be partly 

avoided by choosing bands from well within atmospheric windows only. 

Random image noise may also be quantified over spatially and spectrally homogeneous image 

areas, by subtracting from the current pixel neighbouring pixels, the local mean or median (Nielsen, 

59 



1994), or by calculating the local standard deviation (e.g. Fujimoto et a!., 1989). Other approaches to 

noise estimation using the principle of homogeneous image areas include 

" dividing the image into homogeneous blocks and using the mean block standard deviation 

as noise estimate of the entire image (Gao, 1993), 

" deriving residuals from a linear regression which models the pixel's response as a function 

of its responses from adjacent wavebands and one adjacent pixel (Roger and Arnold, 1996), 

" deriving residuals in a simultaneous autoregressive model or from a fitted quadratic surface 

in a neighbourhood (Nielsen, 1994), 

" using image training pixels to infer a maximum-likelihood estimate of the noise covariance 

matrix (Settle and Drake, 1993), 

= using the square root of the nugget variance as noise estimate (Curran and Dungan, 1989), 

" using the spatial correlation between adjacent pixels (minimum/maximum autocorrelation 

factors, MAP; Switzerand Green, 1984; Green eta!., 1988) 

• using the ratio of local variance to global variance (Warner and Shank, 1997; Warner et al., 

1999), where the local variance is estimated as the sum of the squared difference between 

data values of neighbouring pixels over the entire scene (Geary's c metric; Geary, 1954). 

The homogeneous image areas may be defined with the analyst's scene knowledge as an area of 

one object class, or with a clustering algorithm. The accuracy of the noise estimate then depends on 

1) the homogeneity of the defined regions, 2) their signal level (low-signal regions contain less noise 

than high-signal ones), and 3) them being representative of the entire image. 

However, if the image areas under investigation include some spatial variation, the image noise will 

be over-estimated. Boardman and Goetz (1991) developed a method, which estimates this scene 

variation by extrapolating the noise standard deviation for an infinite number of homogeneous pixels. 

The method assumes that the instrument and atmospheric noise will be averaged out for an 

increasing number of pixels used. 

Some of the 'homogeneous area'-based methods mentioned above were reviewed and compared 

by Smith and Curran (1999) for image SNR estimation, and the authors concluded that different 

methods achieved different SNR results. Image noise may therefore best be estimated by sensor 

noise alone, i.e., using dark reference measurements. 

Projection pursuit (PP) 

PP is the term used to describe a method of numerical optimisation of a criterion (projection index or 

PI) for finding the most 'interesting' low-dimensional projections of a high-dimensional data cloud 

(only linear and orthogonal transformations are considered here). Friedman and Tukey (1974) first 

successfully implemented the technique, whose basic strategy is to project the data first with an 

initial transformation matrix A,, into lower-dimensional feature space, in which Aq is recomputed 
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by optimising tlie PI. Tlie metliod is repeated, until tlie transformation matrix does not change any 

more. 

So far, many authors have chosen unsupervised projection indices that quantify the difference 

between the Gaussian and the estimated probability distribution of a projection, since they believed 

to detect spectral classes via 'anomalous', i.e. multimodal and skewed distributions. For example, 

Ifarraguerri and Chang (2000) used the information divergence as Pi, while Chiang and Chang 

(1999, in Ifarraguerri and Chang, 2000) based their PI on skewness and kurtosis statistics. 

PCA may be interpreted as a special case of the PP methods using the proportion of the total 

variance accounted for by the projected data as projection index (Jones and Gibson, 1987). 

Bachmann and Donato (2000) compared the performance of the unsupervised PP method, using 

the product of trimmed variance and compactness function as projection index, with PCA for 

separating land cover classes. They found that PCA works best for separating broad class clusters, 

but performs worse than PP for classifying narrower sub-clusters. 

Ifarraguerri and Chang (2000) preprocessed their data by applying PCA and scaling the PC with 

their corresponding eigenvalue (sphering). They chose a suboptimal optimisation technique by 

taking every pixel spectrum as possible projection vector. However, the optimal projection may not 

be found along a given data point. Using the information divergence as PI, they compared the 

resulting PPs with the PCs, which showed that the PPs tend to correspond better to spectral objects 

than PCs. 

Factor analysis (FA) 

FA aims to represent a set of features in terms of a smaller underlying set of variables called factors. 

The factor analysis model may be formulated as follows (Harman, 1976): 

x = A ^ + £ (2-31) 

where ^ Common factor vector 

A Matrix of factor loadings 
£ Specific or unique factor vector 

This approach differs from the general feature extraction methodology presented here in that the 

pixel measurements x are expressed as a linear combination of the unobserved factors ^ and £ , 

which are chosen to account for the correlation between the measurements. In contrast to PCA, FA 

is based on a statistical model, requires a large number of assumptions, and has no unique solution 

due to the many different methods of obtaining the factor loadings A . Factor analysis is a widely 

criticised method, mainly due to the subjectivity of the decisions involved (Webb, 1999) and will not 

be pursued any further here. For a detailed review, the reader is referred to Mather (1976) or Webb 

(1992). 
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2.3.3 Supervised Feature Extraction 

If feature extraction is applied for classification processing, the classification accuracy has to be 

considered as the primary criterion function in the extraction process. All supervised criterion 

functions employed for feature selection (section 2.2.2) may be applied as surrogates for 

classification accuracy estimates. 

Karhunen-Loeve (KL) expansion 

The KL transformation is in one of its most basic forms identical to PCA, but includes variants that 

use supervised criteria. The eigenanalysis may be performed on the within-class covariance matrix 

(equation 2.15) as opposed to the global covariance matrix S in the case of PCA. The 

transformation matrix A is formed by the eigenvectors resulting from eigen-decomposition (as for 

PCA, section 2.3.2). The ordering of the new uncorrelated features may be carried out on the basis 

of the eigenvalues alone or in combination with a measure of discriminability. Webb (1999) gives a 

detailed review about the KL variants proposed by Chien and Fu (1967), Devijver and Kittler (1982) 

and Kittler and Young (1973). 

Linear discriminant analysis (DA) I canonical analysis (OA) 

In the context of feature extraction, linear DA is understood as a method of finding a transformation 

that maximises between-class separability and minimises within-class variability. It is based on 

Fischer's two-class criterion, which may be generalised to the multiclass situation by using the 

sample based estimates of within-class and between-class scatter matrices, and Sy (equations 

2.15-2.17)(Webb, 1999): 

dp = (2.32) 

Generally, the columns of the transformation matrix A are chosen to maximise equation 2.32. 

Canonical analysis is identical to linear discriminant analysis expect of being constraint by 

transforming into the identity matrix 1 , giving orthogonal and uncorrelated features in the 

transformed space (Chen and Landgrebe, 1989). It leads to the following eigenvector equation: 

S ; ' S ^ a . ( 2 3 3 ) 

However, the matrix is not symmetric, but can be reduced to a symmetric eigenvector 

problem using Cholesky decomposition (Press et al., 1992). 
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Foley and Sammon (1975) proposed an alternative approach to find orthogonal transformed axes 

progressively: the first vector a, is to maximise equation 2.32. The second vector is chosen to 

maximise equation 2.32 subject to the orthogonality constraint = 0, etc. Merembeck and 

Turner (1980) proposed a directed form of DA, which allows to account for user-specified contrasts 

defining underlying relationships among categories known a priori to exist within the data. This 

technique can only be used for adequate sample sizes. 

CA produces a transformed feature space of dimension M - 1 , where M is the number of classes. 

The method is only appropriate for classes with different mean vectors, since it does not exploit 

differences between class covariance matrices (Hsieh and Landgrebe, 1998). Additionally, a class 

mean vector that is very different from the mean vectors of the other classes will dominate the 

calculation of the between-class scatter matrix. Moreover, the method requires a sufficiently large 

amount of training samples to estimate the within-class covariance matrix, and does not have a 

direct relationship to the probability of classification error. 

On the other hand, CA is simple, popular, fast and easy to implement (Hsieh and Landgrebe, 1998), 

and, in contrast to PCA, it does not demand any correlation between the bands (Csillag et a!., 1993). 

Decision boundary feature extraction (DBFE) 

Lee and Landgrebe (1993) introduced DBFE, a feature extraction method based on decision 

boundaries. The method classifies the training sample data directly with the Bayes' decision rule for 

minimum error to locate decision boundaries between the classes. Lee and Landgrebe (1993) called 

the normal vectors to the decision boundaries 'discriminantly informative' features and creates a 

'decision boundary feature matrix' with them. The eigenvectors of the latter matrix represent the 

columns of the transformation matrix A , which results in the desired new feature vectors with the 

eigenvalues being directly related to the usefulness of the corresponding features for discriminating 

between the given classes. 

DBFE has the advantage of not making assumptions about the underlying probability distribution of 

the training classes. In addition, its performance does not get worse when the differences in mean or 

covariance are small. However, the procedure suffers from Hughes phenomenon (section 1.1) and 

requires a large number of training samples for good performance, at least the number of 

dimensions plus one to avoid singularity. DBFE is suboptimal for more than two classes and very 

time-consuming (Hsieh and Landgrebe, 1998; Tadjudin and Landgrebe, 1998). 
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Projection pursuit (PP) 

The PP method has been introduced earlier in section 2.3.2. in this paragraph, only the supervised 

PP variants are presented, i.e. with 'interestingness' defined as ability to differentiate between 

classes and the PI based on class statistics. All of the supervised feature selection criteria (section 

2.2.2) may be promptly used for PP. 

Petraskos et al. (1999) used the 'maximum minimum' multiclass version of the Mahaianobis, 

Bhattacharyya and Jeffries-Matusita distance as Pis to find the best PP features for three-

dimensional visualisation of the classes under investigation. 

Jimenez and Landgrebe (1999) proposed a sequential version of the PP where the original feature 

space is partitioned into groups of adjacent bands that are projected individually in turn to maximise 

the minimum Bhattacharyya distance among classes, while keeping the other transformation vectors 

constant and orthogonal to each other. The iteration stops when the initial (or updated) 

transformation matrix Aq no longer changes significantly. 

The grouping of bands is based on a hybrid binary decision-tree technique. The latter method keeps 

dividing the groups of bands symmetrically into two halves (top-down approach), as long as the 

improvement of the PI relative to the previous separation exceeds a predefined threshold value. If no 

more improvement can be achieved, the corresponding bottom-up method is applied, where 

adjacent groups of bands are merged when increasing the PI significantly with respect to the 

previous grouping, etc. 

This sequential method ensures that the extracted features relate to certain parts of the spectrum 

and can therefore be interpreted by the user. But only the best feature out of one group is chosen 

and any additional dimensions are neglected. In addition, the final feature set is not optimal in a 

global sense. 

Jimenez and Landgrebe (1999) also suggested a feature selection procedure based on the above 

grouping method by choosing the best band out of each group for maximising the PI. Nevertheless, 

the bands are only selected best from adjacent features, but not globally from the entire band set. 

Generally, PP has the advantage of estimating the class statistics more accurately in the projected 

low- rather than in the original high-dimensional space for limited training samples, especially true 

for hyperspectral data sets. In addition, Jimenez and Landgrebe (1999) point out that the 

assumption of a normal distribution of class data, mostly used in projection indices, is more justified 

in a subspace emerging from a linear projection of a higher dimensional space, as the 

dimensionality tends to infinity. 
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Multidimensional scaling (MDS) 

MDS refers to a variety of feature extraction techniques that use supervised two-class distance 

measures as criterion functions (Webb, 1999). Only linear (metric) scaling techniques are 

investigated in this paragraph. MDS for feature extraction is termed MDS by transformation. 

MDS by transformation aims to minimise the discrepancy between the criterion function value , 

measured in the original feature space between pixels k and o , and the distance value 

between pixels k and o in the new feature space to be found. An objective function O can be 

formulated as a function of this discrepancy, which is to be minimised with respect to the 

transformation parameters. Many forms exist for the objective function O . An example is given in 

equations (2.34 - 2.36) (Webb, 1999): 

D ^ = | A % - A % | (2.35) 

(2.36) 

where j Supervised class distance (or separability) measure, measured in original 
feature space 

n Distance measure, measured in transformed feature space 

O Objective or stress function 

If corresponds exactly to the Euclidean distance measure (as above), the classical form of MDS 

results, which gives an identical transformation as PGA. Usually standard gradient methods are 

used for optimisation (Webb, 1999). The main problem for the application of MDS to remote sensing 

data is that all n image pixels need to be fed into the optimisation algorithm (2.36) and the storage 

of an (« , n ) matrix may be problematic for large n . 

2.3.4 Choice of Feature Extraction Technique 

If no ground data are available, unsupervised feature extraction techniques may help to reduce the 

dimensionality of the data set. From the unsupervised methods presented above, the author 

recommends the PCA, mainly due to its simplicity and ease of implementation. If the features are 

measured in different scales, the standardised version of the PCA should be applied. However, this 

is unlikely for optical remote sensing data. The MNF is advised only when the detectors of the 

sensor are known to produce different noise variances and dark reference measurements are 

available. However, techniques for the estimation of the noise covariance matrix are not available for 

including structured noise such as edge effects or image striping. The latter should be dealt with via 

common image enhancement techniques. Unsupervised PP does not seem to offer any particular 
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benefit in comparison to PCA, and is more difficult to implement. Factor analysis is generally 

considered as an ambiguous and subjective method, not recommended for dimensionality reduction. 

In feature extraction for classification, the new features should be chosen so as to discriminate best 

between the user-defined classes (Kittler, 1986). Since unsupervised methods are not based on 

class statistics, they may produce features that are not optimal with respect to class separability by 

merging different classes or neglecting some. For example, in the case of PCA, some valuable 

information for class discrimination may be contained in eigenvectors of low eigenvalues, generally 

considered as noisy and removed from the feature set. 

If some class objects are small relative to the size of the image scene, they will contribute only a 

small amount to the overall variance. These small objects will not be captured by PCA unless their 

spectra are nearly orthogonal to the background spectra (Ifarraguerri and Chang, 2000). in addition, 

Jones and Sibson (1987) observed that the information related to the segmentation of different 

objects and background types does not generally align itself with the main PC axes. 

Consequently, if ground data are available, they should be used in conjunction with supervised 

feature extraction methods. PCA may be used as no more than a suboptimal comparison, since 

classes can sometimes be distributed in the direction of maximum scatter for remotely sensed data 

(Richards and Jia, 1999). 

Hsieh and Landgrebe (1998) stressed the use of both first and second order statistics for feature 

extraction to adequately discriminate between the classes. The KL expansion uses only the within-

class covariance matrix as compared to CA, which also employs the between-class scatter matrix. 

However, both KL and CA have no relationship to the probability of error. In addition, a reliable 

estimation of the class covariance matrix requires a large number of training samples for 

hyperspectral data sets (Hughes phenomenon), which are not always available. 

DBFE directly estimates the decision boundaries from the training samples without any assumptions 

about class distributions. Benediktsson and Sveinsson (1997) showed empirically that DBFE 

produced features giving lower classification variance than both PCA and CA. However, the method 

is considered as slow and requires many training samples, which are normally limited in availability. 

In addition, it is considered as suboptimal for more than two classes. 

PP offers a framework to incorporate any separability measure with direct relation to the probability 

of error using both first- and second-order statistics. Since PP estimates the statistics at lower 

dimensional space, less training samples are necessary for reliable estimates. Nonetheless, the 

implementation of the PI optimisation including an orthogonality constraint may prove very difficult 

(Siedlecki ef a/., 1988). 
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The structure offered by MDS is convenient insofar as it allows the use of any suitable separability 

measure. However, it is only optimal for the entire image scene if all image pixels feed into the 

optimisation procedure, which may cause problems for large images with respect to computer 

storage. 

As a consequence, the author recommends DBFE as supervised feature extraction method if 

sufficient training samples are available to the user, if this is not the case, PP should be considered 

as second choice in conjunction with a separability measure with a strong relation to the probability 

of misclassification employing first- and second-order statistics. 

2.3.5 Feature Extraction for Band Selection 

Some authors perform band selection not directly via feature selection, but indirectly via 

eigenanalysis-based feature extraction. In this case, not the transformed features, but the results of 

the eigen-decomposition, i.e. the eigenvectors and eigenvalues, are of interest to the user. Both 

unsupervised and supervised feature extraction criteria can be used for the eigenanalysis, such as 

variance, image signal-to-noise ratio or DA criteria. 

Eigenvector loadings 

One technique is founded on the ranking of the original bands according to the loadings of the 

eigenvector(s) with extreme eigenvalue(s) indicating their contribution (or importance) to the 

resulting feature. For example, if the most informative bands are to be chosen and information 

content is to be represented by data variance, an eigenanalysis may be performed on the data 

covariance matrix (PCA). The bands contributing most to the eigenvectors with the highest 

eigenvalues may be selected, where the contribution of each band is indicated by the loadings of 

this eigenvector. 

However, the analysis of the eigenvectors loadings may be very subjective, since it is unclear how 

many eigenvectors and bands need to be considered (Mausel ef a/., 1990). The following two 

approaches tackle this problem. 

Tu et al. (1998) created a{N , N ) loading factor matrix F , the columns of which can be calculated 

by multiplying the normalised eigenvectors by the square root of their corresponding eigenvalues 

a, 
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Where f/ Column of the loading factor matrix, f , = [ / j , 

IIII Euclidean vector norm 

To prioritise the original bands, they defined a measure for each band / , the discriminant power 

p j , which is the sum of the squared loading factors / J over all N eigenvectors: 

N 

= ] > ] jf/Y (2X38) 
/=1 

Where p Discriminant power of band / 

The larger value of p , the more significance is implied for the corresponding band. On the other 

hand, the discriminant power measure does not consider the spectral correlation between the 

prioritised bands (Chang ef a/., 1999). 

Csillag et al. (1993) proposed a top-down band selection method based on both PCA and DA. First, 

the dimension of the band set is reduced iteratively. In each step, a PCA is performed on the data, 

and the band that contributes most to the eigenvector with the smallest eigenvalue will be 

considered noisiest and will be discarded. This step is repeated until a stopping criterion is reached, 

such as the desired number of bands or the minimum classification accuracy (also referred to as 

modified stepwise PCA, IVISPCA). Second, DA is performed on the reduced set of PC features using 

a predefined classification scheme. For each discriminant feature, the bands are assigned a rank (1 

to number of bands) in order of importance to the feature. The overall grade of a band is calculated 

by multiplying its rank in all discriminant features by the eigenvalue of the corresponding feature and 

summing the latter products for all features. Both variance and class separation measures are 

integrated in this approach. However, bands are discarded only on the basis of their data variance. 

Eigenvector axis crossings 

In pattern recognition, the axis crossing information of the eigenvector loadings has been shown to 

hold a substantial proportion of the information contained in the transformed feature (Chen and 

Landgrebe, 1989). 

Chen and Landgrebe (1989) produced hard limited eigenvectors by converting their values into their 

signed form, i.e. +1, -1 or 0 for positive, negative or zero values, respectively. That is, the 

transformed features result from summing, subtracting and omitting the original features. The 

authors suggested the transformation to be carried out on-board the sensor in order to reduce the 

number of features to be transmitted. However, the procedure does not reduce the actual number of 

bands to be collected. 
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The summation of adjacent bands may be interpreted as the grouping of narrow bands to broad 

bands, the edges of which are defined by the axis crossings. It is unclear whether the optimal 

feature set should be defined on the basis of the broad bands of the first eigenvector alone, or if the 

bands of other eigenvectors should be considered as well. 

Henderson et al. (1989) averaged the first few eigenvectors, and defined the band edges as the 

features where a transition in sign occurred. He determined the number of eigenvectors to be 

averaged by choosing the mean-square error of the representation to be 0.4% in order to limit the 

error's effect on the image SNR. But, averaging the eigenvectors as suggested does not consider 

the relative importance of the eigenvectors and may alter the original locations of the axis crossing, 

resulting in suboptimal bands. 

Other examples based on one of the methods presented in this section include Spanner et al. (1984, 

PCA eigenvector loadings), Wu and Linders (2000, MSPCA), Chang et al. (1999) and Pu and Gong 

(2000, discriminant power). 

2.4 Intrinsic Dimensionality Estimation 

In pattern recognition, the term intrinsic dimensionality (for representation) refers to the minimum 

number of features required to capture the structure within the data (Webb, 1999). The geometric 

interpretation is that the whole data lie on a topological hypersurface of dimension equal to the 

intrinsic dimensionality (Fukunaga, 1982). In remote sensing, the data structure is usually 

represented by the data variance, and the intrinsic dimensionality is understood as the minimum 

number of features needed to account for most of the image variance. Eigenanalysis-based 

unsupervised feature extraction methods (such as PCA or MNF) are typically employed to create 

uncorrelated features, whose eigenvalues represent their contribution to the overall variance (in the 

case of PCA). 

In contrast, Lee and Landgrebe (1993) defined the intrinsic discriminant dimensions (for 

classification) "as the smallest dimensional subspace wherein the same classification accuracy can 

be obtained as could be obtained in the original space". In this case, the dimensionality is dependent 

on the number of classes M . The optimum features of the Bayes classifier are the M class 

posterior probabilities, and since they all sum to one, only M - 1 dimensions are linearly 

independent (Fukunaga, 1982). Thus, the intrinsic dimensionality for classification cannot exceed 

M - 1 . 

Supervised feature extraction methods using eigenanalysis (such as DBFE, CA or KL expansion) 

may be employed to derive the intrinsic discriminant dimensionality. Alternatively, the best subsets 

of uncorrelated features of dimensions 1 to Af - 1 , derived via feature selection or feature 
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extraction, may be classified directly. Hypotliesis tests may tlien be performed to see whether 

differences between the performances of two feature subsets (with one subset having one more 

feature than the other) are significant or not. 

Many heuristic and statistical methods exist for estimating the intrinsic (discriminant) dimensionality 

of a data set, but only the most common and practical are presented in the following sections. The 

problem of the estimation of the intrinsic dimensionality corresponds to finding the number of 

significant features or eigenvalues. 

2.4.1 Heuristic Methods 

The heuristic methods presented here use criteria that are all based on eigenanalysis. 

Eigenimage analysis 

The eigenimages, i.e. the two-dimensional display of the projection of the image data points onto the 

eigenvectors, can be analysed with respect to the spatial information content they carry. This 

requires an extreme familiarity of the analyst with the ground to identify possible spatial patterns of 

the prevalent classes. The method is very subjective and depends entirely on the knowledge of the 

analyst. 

Scree plot 

The term scree plot refers to a graph where the values of consecutive eigenvalues are plotted 

against the rank order. It visualises the importance of each eigenvalue with respect to the others and 

its contribution to the variance. The latter might be emphasised with a graph printing the cumulative 

percentage of variance accounted for by the eigenvalues as a function of rank order. 

Cattell and Vogelmann (1977) suggested dividing the plot into a horizontal line of small eigenvalues 

representing random variation, and relatively large eigenvalues that clearly leave that line. They 

estimated the intrinsic dimensionality as the number of the line-departing eigenvalues plus one. 

However, frequently the plot does not present any obvious break points, and the identification of the 

horizontal line becomes completely subjective. 

Proportion of the total variance 

Many researchers chose the intrinsic dimensionality as the number of the first eigenvalues that 

represent together a certain proportion of the total variance, usually around 90% to 95% (Biwas et 

ai, 1981). Nonetheless, the proportion threshold is set completely arbitrarily, and the suggestion of a 
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fixed value cannot be vital due to strong data dependence of the threshold value (Ferre, 1995). 

Henderson et al. (1989) considered the maximal noise level of a remote sensing system (around 

2%) to guide their choice of threshold value. 

Kaiser's criteria 

The Kaiser-Guttman criterion (Guttman, 1954) estimates the intrinsic dimensionality as the number 

of eigenvalues that are greater than the average eigenvalue. Other methods compare the 

eigenvalues directly with an arbitrary value, e.g. l / # , where N is the number of original 

dimensions (Kaiser, 1960). In all cases, the value threshold eigenvalue is very subjective and cannot 

be justified (Ferre, 1995). 

Broken-stick method 

Horn (1965) suggested a modification to the scree plot for more objective dimensionality estimation 

by creating various matrices of random data with all the new uncorrelated features. The eigenvalues 

of these 'random' matrices are calculated, averaged and plotted on the original scree plot. The point 

where the two lines cross represents the threshold for significant eigenvalues. 

Frontier (1976) provides a model for the distribution of eigenvalues, if the total data variance is 

dispersed randomly amongst all components: the broken-stick distribution. The eigenvalues 

distributed under the broken-stick model can be calculated as follows; 

' - S i ( 2 , 3 9 , 

Where Eigenvalue of the / th component under the broken-stick model 

Eigenvalues are regarded as significant if their value is larger than that of the eigenvalues generated 

by the broken-stick model. However, the method does not account for cases where multiple 

intersection points exist between the scree plot and the broken-stick distribution. In addition, Ferre 

(1995) argues that it cannot be justified why the given data should be compared with a given fixed 

distribution. 

2.4.2 Statistical Methods 

Statistical methods require the knowledge of the distribution of the statistics under consideration to 

perform hypothesis or significance tests, such as whether eigenvalues are significantly different or 

whether the classification performance of a feature subsets differs significantly from that of another 

subset. They may help to determine significant features and thus the intrinsic data dimensionality. 
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Bartlett's test for sphericity 

Bartlett's test for sphericity is based on ttie idea that some of the eigenvalues bearing random noise 

are equal, and the test aims to investigate whether each sequential eigenvalue, A,, differs 

significantly from the remaining eigenvalues. The test statistic for A, given in equation 2.40 is 

% ̂  distributed with 0.5(jV^ - Z - — Z + 2) degrees of freedom (Jackson, 1993). 

^ - (» - Z) ̂  A , (2.40) 
./+! AT — Z y=/+ l 

Where ^ 2 Test statistic to test hypothesis that A, differs significantly from the 

remaining eigenvalues 

The intrinsic dimensionality is chosen as the value of / for which the eigenvalue A, was tested to be 

different from following eigenvalues for the last time. 

Other statistics have been proposed, including tests whether the first or second eigenvalues are 

equal to the remaining set of eigenvalues (Bartlett's test of equality and Lawley's test, 

respectively)(Jackson, 1993). Nevertheless, these tests for sphericity are made up of nested and 

dependent hypothesis tests, which may result in an unknown overall level of significance (Ferre, 

1995). 

Bootstrap eigenvalue-eigenvector 

To sample the distribution of the eigenvectors and eigenvalues, bootstrap techniques may be 

employed which generate sets of bootstrap observations and provide nonparametric approximations 

of the eigenvalues and eigenvectors (Webb, 1999). Jackson (1993) bootstrapped the PCA 100 times 

and calculated average eigenvalues and eigenvectors with 95% confidence limits. Where the 

confidence intervals between pairs of successive eigenvalues did not overlap, the eigenvalues were 

assumed to be significant. In addition, only eigenvectors with two or more coefficients differing 

significantly from zero were regarded as informative. 

Classification accuracy 

The intrinsic discriminant dimensionality of a data set can be estimated by testing the significance of 

the difference in classification performance between a feature subset and all the remaining subsets 

of higher dimensionality. Successively, subsets of different size are tested with increasing 

dimensionality, until the difference in performance between the current subset and the remaining 

subsets is no longer significant. Then, the number of features in the current subset represents the 
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intrinsic discriminant dimensionality. The subset performances may be quantified by a measure of 

classification accuracy (see section 2.2.2). 

In practical terms, a statistical test of the null hypothesis Two feature subsets have the same 

classification accuracy estimate' will be performed on the assumption of independent random 

samples. Given the classification accuracy estimates of the two feature subsets, the sample 

variances of the accuracy measures will be needed to test the significance between the accuracy 

estimates via the z-statistic: 

Where z z-statistic 

C. Accuracy estimate of feature subset i , / e { l ,2} 

(C.) Sample variance of C. 

The z-statistic is generally used to test the difference between the means of two random variables, 

which are estimated on the basis of known variances and a large number of independent random 

samples (Miller and Freund, 1965). 

If one wishes to test the null hypotheses (equality of the population means) at the 5% (1 %) 

significance level, the critical values are -1.96 (-2.58) and 1.96 (2.58). In other words, if the statistic 

gives a value between these critical values, the null hypothesis cannot be rejected and the observed 

difference between the sample means can well be attributed to chance. The critical value for a one-

sided test is 1.645 (2.33). 

The variances of the accuracy estimates from section 2.2.2 are presented hereafter. Pg (equation 

2.11) follows a discrete binomial probability distribution and, according to the Central Limit Theorem, 

the discrete binomial distribution converges to the continuous normal distribution for the sample size 

tending towards infinity (Bishop et al., 1975 in Congalton, 1991). If the total population has both 

a finite mean and standard deviation for large , then the large sample (or asymptotic) variance 

may be described as follows (Thomas and Allcock, 1984): 

= (2.42) 

Where 0 i^o ) Asymptotic sample variance of Pg 

Thus, for hypothesis testing on Pg, one can use the normal distribution, given that a large number 

of test samples are available to build the error matrix (greater than 100, Ma and Redmond, 1995). If 
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the distribution of the ^ statistic is asymptotically normally distributed, so are the KHAT and TAU 

statistics. It can then be shown that 

Where s^(t^) Asymptotic sample variance of 

( k ) Asymptotic sample variance of k 

(Ma and Redmond, 1995; Cohen, 1960). 

Shaban and Dikshit (2001) used the z-statistic to test the equality of the classification results of two 

feature subsets measured by the KHAT statistic. Dutra and Huber (1999) applied the statistic to 

quantify classification accuracy and tested the statistical significance of the difference between error 

matrices obtained from different classifiers. 

WlcNemar's test 

McNemars's test (e.g. Dietterich, 1998) involves a statistic to test the classification error of two 

feature subsets, A and B. The criterion is not based on the error matrix but on the number of 

samples that were classified incorrectly exclusively by one of the two feature subsets (see equation 

2.45). A table including all misclassified samples from one subset needs to be stored and compared 

with the classification results of the other subset. 

^ 2 _ (i"o] ( 2 . 4 5 ) 

^01 ^10 

Where ^ ^ Number of samples misclassified by A but not by B 
"̂ 01 

^10 
Number of samples misclassified by B but not by A 

The statistic is approximately distributed with one degree of freedom. The null hypothesis, that 

the feature subsets have the same accuracy, can be rejected on a significance level of 95% if 

% ^ | > 3 . 8 4 1 4 5 9 . 

Separabil ity measures 

Instead of classification accuracy measures, class separability criteria from section 2.2.2 may also 

be employed to approximate classification performance, as long as their distribution is known. For 
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example, Penaloza and Welch (1996) used the separability measured (equation 2.19), which 

follows the F-distribution, as an indicator for class discrimination. They tested the class 

discrimination ability of a reduced feature subset with respect to the one of the original feature set. 

2.4.3 Choice of Methods 

There is no 'ideal' solution to the problem of intrinsic dimensionality determination. The most 

important deficiencies have already been highlighted for each method. But how can the users be 

guided to pick out the method which suites their problem best? 

First of all, the users have to decide whether they would like to determine the intrinsic data 

dimensionality or its supervised discriminant form. 

If they decide themselves for the former, they have a range of heuristic and statistical eigenanalysis-

based methods to choose from (all above methods except classification accuracy, classification 

error, or separability measures). Jackson (1993) and Ferre (1995) performed comparative studies of 

the most of the unsupervised methods presented above on simulated data of known dimensionality. 

From the methods Jackson (1993) compared (scree plot, proportion of the total variance. Kaiser's 

criteria, bocken-stick, Bartlett's test, bootstrap eigenvalue-eigenvector), the broken-stick model and 

the bootstrapped eigenvalues-eigenvector gave the most consistent results. 

Ferre (1995) advised methods, where failure of the method can be controlled (e.g. percentage of 

total variance, Kaiser's methods). For example, the scree plot after Cattell and Vogelmann (1977) 

relies completely on the scale of the display and the perception of a straight line, and may lead to 

uncontrolled failure. 

Although statistical tests are less subjective than heuristic methods, caution has to be taken with 

respect to the overall level of significance of the procedure. They should be considered as 

approximate heuristic tests rather than rigorously correct statistical tests. If the distribution of some 

statistic is not known, it has to be resampled with the bootstrap technique or similar methods (Monte 

Carlo methods, or infinitesimal Jack-Knife approaches), which may require considerable 

computational time and be therefore limited in its practical use. 

If the users intend to approximate the instrinsic discriminant dimensionality, they can choose from all 

of the methods presented above. The ones based on classification accuracy measures may be 

interpreted as the most direct and objective ones. All statistics depending on the error matrix require 

the matrix to be constructed from a large number of samples, so that the statistic's asymptotic 

variance can be estimated with confidence. The leave-one-out cross-validation method is 
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recommended for the error matrix estimation, since it makes most use of the available samples and 

gives an almost unbiased estimate. In addition, for intrinsic dimensionality estimation, the user is not 

interested in the best approximation of absolute classification accuracy (i.e. the generalisation error), 

but in the relative loss of classification accuracy when applying dimensionality reduction methods. 

Linearly extracted features used for intrinsic (discriminant) dimensionality estimation are prone to 

both noise and surface convolutions, which tend to enlarge the dimensionality estimate (Fukunaga, 

1982). It is recommended to remove any noise from the data before the dimensionality is estimated. 

Still, the effect of surface convolutions may only be tackled with non-linear transformations. For 

example, a curved line in feature space has only one intrinsic dimension, which could be revealed 

via non-linear transformations. In contrast, linear feature extraction will always produce more than 

one significant feature. For intrinsic dimensionality determination using nonlinear mapping 

algorithms, see Fukunaga (1972) or Fukunaga (1982). 

2.5 Summary 

Chapter 2 introduced common feature selection and extraction techniques, and highlighted their 

advantages and disadvantages. Dimensionality reduction is not an easy task and relies heavily on 

the type of classifier to be used and the available data set. The user has to trade-off between 

computational efficiency and optimality of the result when choosing the dimensionality reduction 

algorithm. Therefore, a universally best feature subset does not exist. 

Feature extraction methods should be preferred to feature selection techniques when the user is 

interested in a set of most informative and uncorrelated features, as the latter can be found only by 

transfoms of the original features (Benediktsson and Sveinsson, 1997). However, the transformed 

features may not have a physical significance and may not be interpreted easily. Moreover, they rely 

on all sensor output bands, that is, the complexity of the data acquisition system will not be reduced. 

That is, with respect to band selection, feature selection techniques are more applicable than feature 

extraction methods. 

This chapter also presented techniques to estimate the intrinsic dimensionality of a data set on the 

basis of feature selection or extraction methodologies for both the supervised and unsupervised 

case. Again, it is difficult to give precise rules for the selection of a particular method or its reliability 

for a given data set and application. Practically, lower and upper value limits for the intrinsic 

dimensionality may be calculated by deriving multiple estimates from different techniques. 

In the next chapter, some of the dimensionality reduction methods presented in this chapter were 

applied to real hyperspectral data sets acquired with the HyMAP and CAS 1-2 sensors, mainly with 

the intention to derive an optimal sensor band set for the given classification schemes. 
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3 Pilot Study 

3.1 Introduction 

This pilot study aimed to familiarise the author with the study areas and data sets available, to define 

classes and to explore some of the dimensionality reduction methods reviewed in chapter 2, for 

classification as application task. The objective was to see whether any major differences result from 

different dimensionality reduction and intrinsic dimensionality estimation techniques for the given 

class and data sets. 

Section 3.2 introduces the two study areas used for subsequent analysis: the Mid Severn Estuary 

and the New Forest, Hampshire (both in the UK, figure 3.1). Both the intertidal and the heathland 

area represent semi-natural environments that exhibit only subtle spectral variation between some of 

their classes and are spatially complex. One of the aims of chapter 4 was to investigate whether the 

'established' vegetation band sets (see chapter 4) would also be applicable to map these types of 

environments. 

In this chapter, the land category of each study area is presented and specific details are given 

about the data sets acquired: remotely sensed imagery (with CAS I and HyMAP) and in situ 

reference data. All data pre-processing is described. The general methodology for this pilot study is 

outlined in section 3.3, including guidelines for class definition and class training (section 3.3.1), and 

a plan of dimensionality reduction experiments with some of the methods reviewed in chapter 2 

(section 3.3.2). The selected land cover classes are portrayed in section 3.4 for both study areas, 

and the results of the dimensionality reduction experiments are presented and discussed. Finally, 

some general conclusions are drawn in a closing summary. 

3.2 Study Areas and Data 

3.2.1 Mid Severn Estuary, UK 

The study area consists of a 5.5 km long coastline north of the IVlid Severn Estuary, UK, between 

Summerleaze and the Severn M4 motorway crossing (see figure 3.1). It is dominated by saltmarsh 

vegetation and includes the sites Magor Pill, Collister Pill and West Pill. 
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Figure 3.1: Ordnance Survey maps of the IVlid Severn Estuary (above) and the New Forest in 
Hampshire (all maps © Crown copyright). 
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Land category 

Coastal saltmarshes are marshland areas vegetated by herbs, grasses or low shrubs and bordering 

saline water bodies by which they are regularly inundated due to tidal action. Saltmarshes are highly 

productive and sensitive ecosystems acting as a buffer zone between the sea and the upland. 

Usually they are protected areas of conservation as they 

• support a great diversity of life forms, 

° provide a nursery habitat for fish and invertebrates, 

• offer major breeding, nesting and migration staging areas for waterfowl and shorebirds, 

" protect shorelines from erosion and flooding, as the water is slowed as it passes through 

shallow, plant-filled areas, facilitating the sediments to deposit and stabilise and water to be 

stored, and 

' act as filters and help to neutralise and detoxify substances in tlie water. 

The Mid Severn Estuary is an area of major nature conservation interest and contains three sites of 

special scientific interest (SSSI), a special protection area (SPA), a Ramsar site (a wetland of 

international importance), and a possible special area of conservation (SAC) under the EU Wildlife 

and Habitats Directive (Dargie, 1999). 

The monitoring, management and protection of these fragile habitats may be realised via detailed 

and periodically updated maps that delineate the marshland from the upland and identify major 

vegetation species or communities and their distribution within the saltmarsh. The maps could be 

most rapidly and effectively produced using remotely sensed imagery, especially for a wide area of 

interest. Ground survey does not offer a practical solution because of the difficulties in gaining 

access to and manoeuvring in tiiis potentially iiazardous environment and locating oneself in the 

field. 

Vegetation Classes 

Table 3.1 presents the scientific and common names of some frequent saltmarsh plants found in the 

intertidal zone around the British Isles. These vascular plants are terrestrial in origin, but can 

withstand periodical water logging in a saline environment (also called 'halophytes')-

Saltmarsh surfaces are very complex and heterogeneous. Individual plant species rarely form 

homogeneous communities, and usually mix with other plant species at a scale of centimetres to 

metres. As a consequence, airborne imagery with a spatial resolution of about 3 m may not be able 

to resolve individual plant species, but may distinguish between different plant communities 

extending between tens to hundreds of metres. 
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Table 3.1: Scientific and common names of some ordinary saitmarsi i plants within the UK. 

Ameria maritima Thrift, sea pink 
Aster tripolium Sea aster 
Elymus pycnanthus Sea couch-grass 
Festuca rubra Red fescue 
Glaux maritima Sea milkwort, black saltwort 
Halimione portulacoides Sea purslane 
Juncus gerardi Mud rush 
Leontodon autumnalis Autumn Hawkbit 
Limonium vulgare Sea lavender 
Phragmites australis Reed 
Plantago maritima Sea plantain 
Puccinellia maritima Sea meadow grass 
Puccinellia distans Alkali-grass 
Salicornia sp. Glasswort 
Spartina anglica Cord-grass 
Spergularia marina Salt sandspurry 
Sueda maritima Sea blite 
Triglochin maritima Sea arrow grass 
Zostera spp. Eel grass 

Table 3.2: Height levels averaged over several years (after Long and Mason, 1983). 

Height level Description 
MHWS Mean levels of High Water of Spring tides (*) 
MHW Mean levels of High Water of all tides 
MHWN Mean levels of High Water of Neap tides (*) 
MLW Mean levels of Low Water of all tides 

(*) Spring tides are ttie largest tides and occur whien Sun, Moon and Earth are aligned 1.5 days after new and 
full moons. Neap tides represent the minimum high water level between two consecutive spring tides. 

According to Long and Mason (1983), three broad salt marsh zones, arranged in belts parallel to the 

shoreline, may be recognised according to their relative periods of seawater immersion and 

exposure to air: 

• Low marsh: also referred to as 'pioneer zone', this zone falls typically within the MHWN and 

MHW height levels (see table 3.2). It consists of significant bare areas with few species, mainly 

cord-grasses {Spartina anglica in the study area) and algae. Its lower limit can be defined 

unambiguously as the seaward margin of vascular plant communities, excluding those 

composed of sea-grasses or other permanently submerged species. 

• Mid marsh: this zone occurs between levels MHW and MHWS (see table 3.2) and is dominated 

by saltmarsh grasses such as Puccinellia maritima (as in this study area) or mixed communities 

including Ameria maritima and Plantago maritima. 

• High marsh; this zone may be defined as the area above the MHWS level (see table 3.2) and 

resembles terrestrial vegetation in being predominantly composed of higher plants 

(angiosperms) which are also found in inland vegetation. Generally a great diversity in species 
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composition can be found in northern Europe. In the study area, high marsh is dominated by the 

Fesfuca rubra species. 

In addition to this spatial variability, saltmarsh vegetation is subjected to a number of environmental 

and inherent factors, which may cause variations in the canopy's spectral signature; 

• Apart from controlling soil salinity and the degree of water logging, tides carry sediments into 

marshes making tidal waters turbid. As a result, remote sensing of saltmarshes should be 

carried out at low tides, in order to be able to 'see' low and mid marsh vegetation in the optical 

spectrum. As the tide recedes, sediment may be deposited on the foliage of the plants and may 

remain there for longer in the absence of rain (Budd and Milton, 1982). In addition, plants may 

be covered with a thin salt water film much of the time. Strong tidal water flows may also have a 

physical impact on the canopy geometry, for example, grasses may be flattened. 

" Depending on its speed and direction, wind has been found to cause spectral signal variation for 

certain plants. For example for cereal crops, radiance fluctuated 10-20% more in the 450-650 

nm than in the 650-750 nm range (Rao eta!., 1979). Wind is particularly present on coastal 

saltmarsh areas, and may flatten grasses especially in the high marsh region. 

• Grazing of domestic stock (such as cattle, sheep, geese, ducks) and wild animals (e.g. rabbits or 

hares) on high saltmarshes is a major factor controlling the diversity in flora and vegetation 

between sites (Adam, 1993). 

° Canopy reflectance is also dependent on the plant phenology, i.e. the timing of flowering and 

seed release. The latter is different from plant to plant and there may be some time throughout 

the year when the spectral discrimination between saltmarsh species or communities is best. 

Hardisky etal. (1983) and Drake (1976) examined seasonal changes in the reflectance of some 

salt marsh communities and found that spectral discrimination of canopy characteristics was 

effective during the majority of the growing season, and that reflectance could be used for the 

detection of seasonal changes in community green biomass during this period. 

• Finally, the viewing and illumination geometry between Sun, target and sensor may affect the 

spectral signal of the saltmarsh vegetation canopy. Bartlett ef a/. (1986) showed that changing 

the zenith angle of observation produces significant variability in measured red and infrared 

canopy reflectance for salt-marsh cord grass. Directional sun angle effects were found to cause 

significant changes in nadir-sensed reflectance from leafless canopies of salt marsh vegetation, 

while they have little effect on reflectance from broadleaf canopies (Gross ef a/.,1988). 

In situ data 

Dargie (1999) conducted a survey of vegetation of saltmarsh habitats in the Severn Estuary between 

July and mid-October 1998, using National Vegetation Classification (NVC) methods and 

description. The study area is part of this survey and figures 3.2 to 3.4 show the corresponding 

survey maps in detail. The NVC code for the saltmarsh communities is presented in table 3.3. 
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Figure 3.2: Dargie's vegetation map (Dargie, 1999) for the west part of the IVlid Severn Estuary 
study area. The NVC codes for the saltmarsh communit ies are described in table 3.3. 
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Figure 3.3: Dargie's vegetation map (Dargie, 1999) for the middle part of the Mid Severn 
Estuary study area. The NVC codes for the saltmarsh communit ies are described in table 3.3. 
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Figure 3.4: Dargie's vegetation map (Dargie, 1999) for tiie east part of ti ie IVlid Severn Estuary 
study area. The NVC codes for the saltmarsh communit ies are described in table 3.3. 
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Table 3.3: Description of the National Vegetation Classification (NVC) saltmarsh categories. 

NVC code Saltmarsh Type Comment 

SM6 Spartina anglica saltmarsh only lightly grazed by stock 
SM10 Transitional low saltmarsh with 

Puccinellia maritima, annual Salicornia 
and Suaeda maritime 

Pioneer 
Marsh 

SM12 Aster tripoiium (rayed) 
SM13a Puccinellia maritima saltmarsh, 

P. maritima sub-community 
SM13b Puccinellia maritima saltmarsh, Glaux 

maritima sub-community 
Middle 
Marsh 

at well-drained locations, 
often in grazed marshes 

SIVI13f Puccinellia maritima saltmarsh, 
Spartina anglica sub-community 

probably former SM6 
converted to mid-marsh by 
stock grazing 

SM16 Fesfuca /"ubra saltmarsh 
SMI 6a Festuca rubra saltmarsh, Puccinellia 

maritima sub-community 
lowest levels for SM16 
types, above or in mosaics 
with SM13b vegetation 

SMI 6b Fesfuca /"ubra saltmarsh, Vuncus 
gerard/ sub-community 

High Marsh J. gerard/abundant in 
poorly drained patches of 
ground 

SM16C Fesfuca rubra saltmarsh, G/aux 
maritima sub-community 

SM16e Fesfuca rubra saltmarsh, Leonfodon 
autumnal is sub-community 

SM23 Spergularia marina - Puccinellia 
distans saltmarsh 

High Marsh 
(disturbed) 

Disturbances, e.g. by stock 
trampling or re-alignment of 
seawall 

SM24 E/ymus pycnanfhus saltmarsh 
Strandline 

characteristic of the drift 
line, esp. on ungrazed 
marshes, 100% cover 

S4 Phragmites australis, P. australis sub-
community 

Transitions 
to swamp 

Freshwater seepage at the 
rear of saltmarsh, species-
poor 

BM Bare mud Pioneer saltmarsh or 
product of poaching 

BR Exposed hard seawall (stone gabion, 
boulder riprap, concrete) Non-NVC 

mostly sterile habitats with 
little plant growth 

BSH Bare shingle categories Mostly a sea defence 
measure to retard erosion 

SP Saltpan(s) uncommon upon saltmarsh 
in the Severn Estuary 

ST Strandline debris mainly wood and plastic 

Airborne hyperspectral imagery 

CAS! image data were collected in October 1997 by the Environment Agency (EA) over the Mid 

Severn Estuary study area. Details of the data acquisition are presented in table 3.4. The EA 

corrected the data for geometric distortions associated with the attitude of the aircraft platform (roll 

and pitch). A false colour image is displayed in figure 3.5. The 72 bands with their associated centre 

wavelengths and bandwidths are listed in table A.I in the appendix. 
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According to the EA (K. Brown, 2002, personal communication) the data had been calibrated to 

spectral radiance to minimise detector responsivity variations. Nonetheless, some bands in the blue 

(bands 1 to 9) and NIR (bands 70 to 72) suffer from severe along-track striping, which is typical for 

pushbroom scanners due to the different response sensitivities of each detector. Besides, bands 1 

to 13 and 70 to 72 show some across-track striping. Destriping algorithms exist on most image 

processing systems (e.g. ENVI©) or can be found in papers such as Hutsinpiller (1988). However, 

destriping is a cosmetic procedure which may have an unknown effect on the data. As a result, 

destriping algorithms were not applied to the data and bands 1 to 9 and 70 to 72 were excluded from 

further processing. The spectral calibration accuracy was evaluated by detecting the oxygen 

absorption feature at 762 nm, which is present in all radiance spectra. The feature fell onto band 48 

(761.4 - 770.2 nm) suggesting a satisfactory wavelength calibration. 

The southern image edge was affected by Sun glint during data acquisition. The mudflats acted as 

specular reflectors due to their flatness and the presence of a water film. The middle part of the 

image swath containing saltmarsh vegetation was not influenced by it. 

Ideally, /n s/fu data are collected at the time of image acquisition to allow for accurate class definition 

and mapping. In this case, the data were acquired about a year after image recording. Any changes 

in class composition may have been mainly introduced by grazing of stock and wild animals, and 

river diggings. However, a comparison between the imagery and the /n s/Yu map does not suggest 

any major changes in the spatial distribution and identity of the classes. Severe differences between 

image and map would lead to a potentially faulty class definition, classification result and feature 

selection. 

Table 3.4: Characteristics of the CASl image acquisition over Mid Severn Estuary, UK. 

Acquisit ion parameter CASl imagery 
Date of acquisition 28 October 1997 
Time of acquisition (hrs GMT) 12:03 -12:07 p.m. 
Type of aircraft twin engine Cessna 402 
Altitude (m) (above ground) 1220 
Ground speed (knots) 105 
Number of scan lines 1252 
Direction of flightline South-West to North-East (60°) 
Sensor mode Enhanced Spectral Mode 
Spatial resolution (m) 4 
Number of spectral bands 72 
Spectral resolution (nm) 8.4-8.8 
Spectral range (nm) 408 - 954 
Data format (bit) 12 
View angle (°) Nadir 
Field of view (°) 77.3 
Swath width (km) 1.54 (405 out of 512 pixels) 
Solar elevation angle (") 25.19 
Solar azimuth angle (°) -2.17 
Status of the atmosphere Clear blue sky 



Figure 3.5: Geometrically corrected false colour composite of CAS I data using bands 53 (R), 
33 (G) and 20 (B) overlaid with a zoom area. © UK Environment Agency, 1997. 

3.2.2 New Forest, Hampshire, UK 

The study area is situated in the New Forest, Hampshire, UK, near the village of Stoney Cross, 

northwest of the town of Lyndhurst (see figure 3.1). It is dominated by enclosed forest areas and 

semi-natural heathland vegetation and includes the northern section of the Highland Water 

catchment. 

Land category 

The New Forest in Hampshire, UK, comprises the largest area of semi-natural vegetation of its kind 

in lowland Britain and consists of a unique combination of habitats once widespread in Western 

Europe: heathland, mire and pasture woodland (Westerhoff, 1992). The ecosystem comprises 

almost 20,000 ha of unenclosed forest, of which 15,000 ha represent lowland heath, mires, and 

acidic grassland, creating a multitude of complex transitional plant communities (Westerhoff, 1992). 

In addition to the open forest, the New Forest contains enclosed areas of conifer plantations and 

pasture woodland. 
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The New Forest is an area of international importance to nature conservation and biological science, 

protected by several European and national directives (JNCC, 2002; Westerhoff, 1992): 

° National park status (1994), 

• SSSI under the Wildlife and Countryside Act (1981), 

® SAC designated under the EC Habitats and Species Directive for the protection of habitats and 

(non-bird) species, 

' All wetlands protected by the International Convention on Wetlands of International Importance 

especially as Waterfowl Habitat (the Ramsar Convention), 

• SPA due to the number of rare birds present. 

Vegetation mapping and monitoring for this important and extensive area of Southern England is 

best achieved by remote sensing. Two of the reasons to monitor the New Forest at present are: 

' the potential threat to vegetation communities (such as the valley mire and wet heath) from 

climate change due to increasing water tables, and 

• the reintroduction of heathland on some plantation woodland areas in the next 20 years under 

the current management plan. 

Vegetation classes 

Table 3.5 presents the scientific and common names of some frequent plant species found in the 

study area. 

Semi-natural land tends to be very heterogeneous, and mixing between plant species occurs at a 

scale of centimetres to metres. Airborne imagery with a spatial resolution of about 3 m may not 

resolve individual plant species. Westerhoff (1992) defined the following categories to classify open 

forest vegetation types of the New Forest from aerial photographs: 

•• Dry heath (DH): Dry heath is found mainly on permeable humus-iron podsols deposited on well-

drained slopes and high ground. Calluna vulgaris is dominant, while Erica cinerea is consistently 

present. Molinea caerulea may be locally present, but Erica tetralix is always absent. Some 

Ulex europaeus and Pteridium aquilinum may be present. 

" Humid heath (HH): Humid heath is the intermediate stage between dry heath and wet heath 

and is characteristic of slowly permeable and seasonally waterlogged ferric or humic-gley 

podsols in gravels, loams and clays. It is the most widespread heathland plant community in the 

New Forest. Calluna vulgaris and Erica tetralix are present and either may be dominant. Molinea 

caerulea may be abundant. Where Calluna vulgaris, Erica tetralix and Molinea caerulea are co-

dominant the classic 'triple heath' is apparent. Er/ca c/nerea, L//ex europaeus and Pfer/cf/um 

agu/V/num may be locally present. 



Table 3.5: Scientific and common names of common plant species of the open plant 
communities within the New Forest, UK (Westerhoff, 1992). 

Agrostis sp. Bent 
AInus glutinosa Alder 
Bellis perennis Daisy 
Betula sp. Birch 
Calluna vulgaris Heather 
Crataegus sp. Hawthorn 
Drosera sp. Sundew 
Erica cinerea Bell heather 
Erica tetralix Cross-leaved heath 
Eriophorium sp. Cotton grass 
Fagus sylvatica Beech 
Festuca rubra Red fescue 
Galium saxatile Heath bedstraw 
Ilex aquifolium Holly 
Juncus squarrosus Heath rush 
Lolium perenne Perennial rye-grass 
Molinea caerulea Purple moor grass 
Myrica gale Bog myrtle 
Pinus sylvestris Scot's pine 
Potentilia erecta Tormentii 
Pteridium aquilinum Bracken 
Quercus sp. Oak 
Salix sp. Willow 
Sphagnum sp. Sphagnum moss 
Tricophorum cespitosum Deer grass 
Trifollum repens White clover 
Ulex europaeus Gorse 

Wet heath (WH); Wet Heath is dominated by an overstorey of Erica tetralix and Molinea 

caerulea tussocks most usually with a Sphagnum moss understorey. Juncus squarrosus, 

Tricophorum cespitosum and Myrica gale are also common. 

Valley mire (VIM): Valley mire can be found in valleys with impeded drainage and downslope of 

hillside seepage steps at the junction between permeable and impermeable soils. Sphagnum 

sp. is dominant, and Calluna vulgaris and Tricophorum cespitosum are always absent. Molinea 

caerulea is often abundant together with some rare species including Drosera sp. and 

Eriophorium sp. 

Carr (C): Carr are residual alluvial forests, grading into bog woodland (JNCC, 2002). Carr 

habitat is characterised by AInus glutinosa and Salix sp. This woodland often has a rich 

understorey and supports a number of rare epiphytes. 

Broadleaved Woodland and Scrub (BWS): This semi-natural woodland community comprises 

Quercus sp., Fagus sylvatica, Ilex aquifolium, Betula sp. and Crataegus sp. 

Bracken (B): Pteridium aquilinum is dominant, usually with an ericaceous understorey. 

Bracken/Gorse (BG): Mixed class comprising Pteridium aquilinum and Ulex europaeus 
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' Gorse (G): L//ex europaeus is dominant, often forming a closed canopy. Pfer/d/um aquAnum 

may be present. 

" Acid grassland (AG): Grassland dominated by Agrostis sp., Molinea caerulea, Potentilla erecta 

and Galium saxatile. Pteridium aquilinum and Ulex europaeus may be present. 

° Scot's Pine (SP): Area where Pinus sylvestris forms a closed canopy. 

« Lawn (L): Neutral grassland dominated by Agrostis sp., Festuca rubra, Lolium perenne, 

Trifolium repens and many rosette-forming herbs. 

• Reseeded grassland (RSG): Grasses such as Agrostis sp., Bellis perennis and a rich 

assemblage of prostrate herbs. 

In situ data 

Between 1986 and 1988 an extensive vegetation survey was carried out on behalf of English Nature 

by Clarke and Westerhoff across the unenclosed regions of the New Forest (Westerhoff, 1992). 

Vegetation class boundaries were mapped according to the defined categories above onto 1:10,560 

scale Ordnance Survey maps of the area. At a later date, the maps were distributed in digital format. 

Figure 3.6 presents the survey data for the New Forest study area. 

Airborne hyperspectral imagery 

During the BNSC/NERC SHAC-2000 campaign, hyperspectral high-resolution HyMap image data 

were acquired over the New Forest study area on 19 June 2000. Details of the data acquisition are 

presented in table 3.6. 

No simultaneous ground measurements were taken, impeding atmospheric image correction. 

Atmospheric water vapour is assumed to be uniformly distributed across the site, since the area is 

small and presents no extremes in topography or large water bodies. 

The data were calibrated from radiance to reflectance by the survey operators (HyVISTA Corp. Pty. 

Ltd.) with HyCorr, a modified version of the Atmospheric Removal (ATREIVI) algorithm (Gao efa/., 

1993) and the Empirical Flat Field Optimal Reflectance Transformation (EFFORT) program 

(personal communication with Anthony Dennis, Infoterra, 2001). ATREIVI uses radiative transfer 

modelling to calculate apparent reflectance, while EFFORT improves the resulting accuracy by using 

band statistics to remove calibration and atmospheric correction errors. 

Geometric correction, based on aircraft ephemeris data, was performed with the ENVI© plug-in 

provided with the data. As the resulting image was still displaced from British national grid, it was 

registered to the digital ground data map (see above) via a simple linear transformation. A 

georectified false colour composite image can be seen in figure 3.7. 

90 



^ ( ( i / f I WH. 

\ ^ BW8 ^BS ^ 
\l. n X>- \^ rk 

1 ^ ) 

vw^\ 
/̂BWS 

/iws)) ( ^ 

\ L o y Y 
\pv*<l / //L DHB 

YVM^/ 

DHBQ^ 

Figure 3.6: Part of Clarke and Westerhoffs vegetation map (Westerhoff, 1992) for the New 
Forest study area. The categories are explained in section 3.2.2. 
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Visual inspection of all 126 bands revealed 9 noisy bands (1, 2, 63, 64, 65, 95, 124, 125, 126), which 

have been excluded from further processing. The enclosed woodland area present on the imagery 

was masked out by manual on-screen digitising. 

The image data were acquired fourteen years after in situ data collection. Within this period, 

changes in class distributions and compositions may have been caused by the grazing of wild 

animals and any human induced modifications, such as tree plantations or the reintroduction of 

heathland. However, the /n s/Yu map and the hyperspectral imagery do not exhibit any major 

differences in the spatial patterns and the identity of the given classes. This was confirmed by K. 

Anderson (2000, personal communication), who conducted extensive field measurements in the 

study area at the time of image acquisition. The in situ map was therefore used in conjunction with 

the delineation of classes within the hyperspectral image. 

Table 3.6: Characteristics of the HyMAP image acquisit ion over New Forest, UK. 

Acquisit ion parameter HyMAP imagery 
Date of acquisition 19 June 2000 
Time of acquisition (hrs UTC) 11:56 a.m. 
Type of aircraft Dornler 228 
Altitude (m) (above ground) 1500 
Ground Speed (knots) 122 
Number of scan lines 2038 
Direction of flightline North to South (180°) 
Spatial resolution (m) 3 
Number of spectral bands 126 
Spectral resolution (nm) 1 1 - 2 2 
Spectral range (nm) 430 - 2500 
Data format (bit) 8 
View angle (°) Nadir 
Field of view (°) 61.3 (512 pixels) 
Swath width (km) 1.8 
Solar elevation angle (°) 62.44 
Solar azimuth angle (°) 5.95 
Status of the atmosphere Low level cloud 
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Figure 3.7: Geometrically corrected false colour composite of HyMAP data using bands 107 
(R), 22 (G) and 7 (B). © UK Natural Environment Research Council, 2000. 

93 



3.3 Dimensionality Reduction for Classification 

Section 3.3.1 describes the final data application, the maximum likelihood classification procedure. 

In addition, guidelines for class definition and training are outlined. Subsequently, some of 

dimensionality reduction methods reviewed in chapter 2 and applied in this study are presented in 

section 3.3.2. 

3.3.1 Classification, Class Definition and Training 

Classification 

Generally, the aim of the data analyst is to transform raw image data into valuable information, such 

as thematic maps of object classes of interest. For the latter example, the most common image 

transformation is classification, the process of assigning class membership labels to each picture 

element (pixel). This procedure is based on a classifier, which relies on the class discriminative 

information content of the image data. In this project we limit ourselves to spectral or 'point' 

classifiers, where each pixel is considered as point observation and classified on the basis of its 

spectral information alone. 

Within this group of classifiers, one may distinguish between supervised and unsupervised 

approaches, dependent on whether or not the analyst makes use of readily locatable training data 

(in situ data) for class characterisation. In addition, a distinction between statistical and non-

statistical methods can be made, depending on whether or not a particular class statistical 

distribution is assumed (commonly the Gaussian distribution). 

Some of the most common supervised spectral classifiers in remote sensing are: 

« Parallelepiped classifier (also multivariate level slicing): a non-parametric supervised method, 

partitioning the feature space into multi-dimensional boxes around the spectral clusters on the 

basis of the class maximum and minimum data values. The pixel is assigned to the class in the 

box of which it falls. Some pixels may lie outside all defined parallelepipeds and will not be 

classified. 

' Minimum distance classifier: a statistical supervised method, which calculates class means 

from training data and assigns a pixel to the class with the nearest mean. Results are not 

optimal, if the class covariance matrices are not equal. 

• Gaussian maximum likelihood classifier (MLC): a statistical supervised classifier, most 

commonly used in remote sensing. The Gaussian model is assumed for the class probability 

density function (pdf), which is calculated from the training data. The pixel is assigned to the 

most probable class according to the maximum value of the posterior class pdf. The normality 

assumption can only be justified with sufficient training samples being available to adequately 
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describe the classes of interest. In practice, the classes tend to have Gaussian distn'butions, and 

the classifier is relatively tolerant of deviations from normality (Swain, 1986). The classifier also 

allov/s for the incorporation of class prior probabilities, so that a minimum risk strategy can be 

adopted. 

• Spectral angle mapper (SAM): a statistical supervised classifier using the angular separation 

measure (see table 2.1 in section 2.2.2) to calculate the average angle between a reference and 

a sample spectrum, which indicates spectral similarity between the two. The spectra are treated 

as vectors in high dimensionality space. 

• Linear spectral unmixing (LSU): a sub-pixel ('fuzzy') supervised classification technique, which 

models the spectral reflectance of a pixel as the linear sum of cover proportions of known class 

spectral signatures and estimates class proportions via multiple linear regression. This classifier 

accounts for the 'mixed pixel' phenomenon occurring when two or more objects from different 

classes share the same pixel area. 

In this chapter, the MLC was chosen for supervised classification, as it is the most commonly used 

classifier of all classification methods mentioned above. 

Class definition and training 

In general, two notions of 'classes' need to be distinguished: informational classes, i.e. the 

categories of interest to the data user, and spectral classes, which reflect groups of pixels that are 

uniform with respect to their values in each spectral band (Campbell, 1996). A direct link needs to be 

established between the spectral and informational classes to derive information from the data that 

is valuable to the data user. Ideally, a spectral class corresponds uniquely to an informational class. 

If the informational classes have not been defined yet, the user should choose classes according to 

the following criteria (Wiersma and Landgrebe, 1980): 

1) each class should be real and of interest to the user, 

2) for each class sufficient training samples should be available in the imagery, 

3) the class list should be exhaustive, so that all major classes on the image are accounted for, 

4) each class should correspond to one or more spectral classes, as the latter can be mapped with 

high accuracy. 

With respect to point 2), the question arises of how many training samples are sufficient for a certain 

application task. According to Hughes phenomenon (see section 1.1), the ratio of the number of 

training pixels to the number of spectral bands needs to be sufficiently high to ensure reliable 

estimates of class statistics. Labovitz (1986) recommended a ratio value of at least 2. Webb (1999) 

suggested the value to be at least around 5 to 10. Hsieh and Landgrebe (1998) chose a value of 

around 15, while Mather (1999) recommended a value of at least 10 to 30. 
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In the context of the application of MLC, a training sample needs to be relatively pure, i.e. its 

corresponding GIFOV has to contain only the objects belonging to the sampled class. If a class does 

not provide any pure training samples (i.e. the class cannot be resolved with the imagery's spatial 

resolution), or if the class does not provide a sufficient number of training pixels (see above), it may 

either be ignored or merged with other sub-classes to a larger category. 

Regarding point 4), informational classes need to be spectrally distinct from each other in terms of 

features available, in order to assure high classification accuracy. The spectral classes of a data set 

represent separated clusters in high dimensional space and may be identified with clustering 

algorithms such as ISODATA (Iterative Self-Organising Data Analysis, Duda and Hart, 1973). The 

analyst may match them to informational classes using available ground data. This may help to 

identify spectrally separate informational classes, especially in cases where the classes are 

heterogeneously distributed over the entire scene and it is difficult to assign a certain pixel to a 

particular informational class. 

Generally, class separability can be quantified with two-class heuristic or probabilistic distance 

measures (defined in section 2.2.2) and statistical tests (Labovitz, 1986; Penaloza and Welch, 

1996). In this study, the general spectral separability between the defined classes was measured 

with an ENVI© (version 3.5) separability index that makes use of the transformed divergence 

measure. The index may take values between 0 and 2.0, with values greater than 1.9 indicating 

good separability. Classes may be removed from the class list, if they are not significantly different 

from all classes previously included. 

When selecting training data, care should be taken to choose training pixels that are truly 

representative of the corresponding class population. Statistical estimates of population parameters 

are only adequate if the training data are random samples of the class population (Labovitz, 1986). 

By definition, a random sample must consist of individual pixels that are identically and 

independently distributed (Hogg and Craig, 1978). 

Labovitz and IVIasuoka (1984) discovered spatial autocorrelation between adjacent pixels. Therefore, 

Labovitz (1986) recommended the use of more widely spaced training samples to produce a more 

robust estimate of training statistics for the purposes of signature extension. This may result in a 

classifier that is 20 to 25 % more accurate than a classifier with contiguous pixels in the training set 

(Labovitz, 1986). Craig (1979) suggested a sampling grid spacing of 10 instead of 1. Campbell 

(1996) advises the use of a larger number (at least 5 to 10) of small training areas per class instead 

of a few large ones. 

Some sample pixels within the training data may not be representative with respect to their parent 

class. The inclusion of such outliers (aberrant, hybrid or mixed pixels) can seriously distort the 

sample statistics and hence the performance of the classifier (Mather, 1987). They can be removed 
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by an algorithm, which measures the distance of a sample pixel from the Gaussian curve of the 

parent class, and removes it if the distance is found to be large (Campbell, 1980). 

Moreover, it is important to confirm the adequacy of the Gaussian model for each class population. 

This may be checked visually by displaying single band frequency histograms for the class training 

data and comparing its shape to a Gaussian curve. In addition, measures such as skewness or 

kurtosis may be calculated to quantify any deviations of the population from a normal curve. 

Skewness is a measure of the deviation of the distribution from symmetry and has a value of zero 

for the Gaussian distribution (see equation 2.6). Kurtosis measures the peakedness of the 

distribution and has a value of zero for the normal distribution (see equation 2.7). If the statistical 

model is found to be non-representative (for example for a bimodal frequency distribution), the class 

under investigation may be redefined or re-trained to fit a normal population, or a non-statistical 

algorithm may be employed for classification. 

It is often difficult to judge whether other studies have adhered to the above training rules, as some 

authors do not explicitly describe the training sample selection process. For example, in studies that 

use hyperspectral data for image classification it is often not reported how many training samples 

per class were selected (for example, Thomson efa/., 1998b, Alberotanza efa/., 1999, Held efa/., 

2003). However, the latter is important forjudging the validity of class statistics and the associated 

classification result. A detailed description of the training selection process would be of benefit for 

the comparison of different classification studies. 

Classification Methodology and Accuracy Assessment 

After having defined the classes of interest according to the guidelines outlined above, the two data 

sets were initially classified with a maximum likelihood classification (IVILC). This classification was 

performed on the entire band set to obtain an indication of the expected approximate level of 

accuracy and running time of the procedure for each data set. The classification performance was 

assessed with the overall classification accuracy estimate (see equation 2.11, section 2.2.2). 

For the given class and data sets, the contingency table was created with the 'leave-one-out' cross-

validation method rather than the 'holdout' estimate. The latter method splits the data into two 

mutually exclusive sets, a training set for classifier design and a test set for accuracy estimation. 

However, it makes inefficient use of the data by using only part of the data to train the classifier and 

gives a pessimistically biased error estimate (Devijver and Kittler, 1982). The 'Leave-one-out' cross-

validation method uses n-1 out of n samples in the design of the classifier and tests on the 

remaining sample. This is repeated for all n subsets of size n-1 (Webb, 1999). Although this method 

is positively biased as the same samples are used in both the training and testing stages, the 

estimate uses all available /n s;Yu data for classifier design. This is particularly advantageous for 

hyperspectral data, as training samples are usually scarce, and a sufficient number of training pixels 
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are needed to calculate accurate class statistics. That is, if training samples are scarce, using the 

leave-one-out method may reduce the distorting effect of Hughes phenomenon on the accuracy 

estimate. 

To isolate the effects of the various dimensionality reduction methods on the classification accuracy 

estimate, the same classification and accuracy assessment parameters (such as training data, MLC 

classification method, 'leave-one-out' cross-validation method) were applied to different band 

subsets. As only relative accuracy comparisons were undertaken for the same classification task 

and absolute accuracy estimates were not required, the positive bias of the 'leave-one-out' accuracy 

estimate was not of importance for this study. Throughout the thesis, differences between accuracy 

estimates were tested for significance at a 5% significance level using the z-statistic (see equation 

2.41). 

The results of the initial classification are shown in figures 3.8 and 3.9. The overall classification 

performance was estimated to 94.8% for the River Severn and 99.1 % for the New Forest data set. 

The classification procedure was carried out with Multispec© software (version 2.5) running under 

Windows NT on a 600 MHz Intel Pentium III processor with 128 MB RAM. The River Severn data set 

took about 3 minutes of processing, while the New Forest classification result was completed after 

22 minutes. 

Figure 3.8: Masked River Severn Maximum Likelihood Classification result for all bands and 
the defined class set (Bare Rock, white; Pioneer Marsh, bright green; Mid Marsh, green; High 

Marsh, dark green; Bare Mud, brown). 
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Figure 3.9: IVIasked New Forest Maximum Likelihood Classification result for all bands and 
the defined class set (Lake, blue; Asphalt, white; Bracken, yellow; Dry Heath, orange; 

Grassland, brightest green; Humid Heath, bright green; Wet Heath, green; Valley Mire, dark 
green). 
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3.3.2 Dimensionality Reduction 

Hyperspectral imagery offers narrow spectral bands for the exploitation of minor differences in the 

spectral response between individual classes of interest, and thus, promises high classification 

accuracy. However, as stated in section 2.1, dimensionality reduction of hyperspectral data may 

improve greatly the overall classification performance. With less, but more information-bearing 

features, the redundancy in the hyperspectral data set, as well as the complexity of the resulting 

classifier, will be substantially reduced. In addition, the statistical estimates of the class population 

parameters will be more accurate for a limited amount of available training samples. 

Figures 3.10 and 3.11 illustrate the data redundancy for the two data sets available via the band 

correlation matrix using the coefficient of determination (the colour white represents a value of 1, 

black one of 0). For both matrices, the auto-correlation value for the first band is located in the top 

left corner of the figure. The correlation matrix displays a high correlation value for bands of similar 

value, and a small correlation value for bands of dissimilar value. 

Figure 3.10: Correlation matrix of the 60 
bands of the CAS! River Severn data (12 

bands have been masked out). 

Figure 3.11: Correlation matrix of the 117 
bands of the HyMAP New Forest data (9 

bands have been masked out). 

Both the CASI and HyMAP imagery are dominated by vegetation, which is reflected in the 

correlation matrices, in the VIS (CASI bands 10 to 39, HyMAP bands 3 to 15), reflectance values of 

a typical vegetation spectrum (e.g. see figure 4.1) are at a similar magnitude due to the blue and red 

absorption features resulting in high correlation between bands. The green reflectance peak gives 

slightly higher reflectance values and is therefore less correlated to neighbouring VIS bands. It 

shows as a darker stripe (CASI bands 18 to 21, HyMAP bands 7 to 10) in the VIS range of the 

correlation matrix. The red edge (CASI bands 40 to 44, HyMAP bands 16 to 18) forms the transition 

to the NIR (CASI bands 45 to 69, HyMAP bands 19 to 60), which represents the region of maximum 
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vegetation reflectance. Bands on the NIR plateau have similar vegetation reflectance values and are 

highly correlated with each other. As HyMAP imagery measures up to the SWIR wavelengths, it 

shows a slight decrease in correlation at longer NIR wavelengths (bands 34 to 60). The latter is 

connected to the drop in reflectance values partly caused by the water vapour absorption features at 

942 and 1135 nm. HyMAP's two SWIR detectors measure between and beyond the two water 

vapour absorption features at 1379 and 1865 nm (SWIR-1 bands 66 to 94 from 1440 to 1812 nm, 

SWiR-2 bands 96 to 123 from 1960 to 2448 nm). As typical vegetation reflectance values are of 

similar magnitude within each SWIR region, bands are highly correlated within the two regions. As 

the vegetation reflectance values in the SWIR-2 are close to the ones in the VIS, an increased 

correlation is found between bands of these two regions. 

Feature selection for classification 

The main objective of feature selection for classification is to select a band subset of given size that 

maximises the classification accuracy, estimated with measures derived from the classification error 

matrix. Theoretically, a classifier may be designed on each possible feature subset and the subset 

resulting in the highest classification accuracy is chosen. However, it can be shown that a single 

classification accuracy estimation for the New Forest data set takes over 1.5 minutes of running time 

(using 3768 testing samples for 8 classes without class statistics calculation). Multiplied with the 

large number of combinations to test (see figure 2.2), the procedure becomes computationally 

infeasible (using a 600 MHz Intel Pentium III processor with 128 IVIB RAM). 

A computationally cheaper alternative is to approximate the misclassification error by the overlap 

between class distributions, which may be quantified with heuristic or probabilistic distance 

measures. This method does not consider each testing image pixel, but only the data class 

statistics. In this pilot study, supervised probabilistic distance measures for the multi-class case will 

be investigated, that is the Bhattacharyya and Transformed Divergence distance measures sorted 

by minimum and average class distance. The latter assume a normal class distribution and use first-

and second-order statistics to separate between the classes. Therefore, they are more suited than 

their heuristic counterparts as pre-processors for an MLC. 

Nevertheless, using an exhaustive search method to examine all possible band subsets represents 

still a computational problem. For the New Forest data set with 121 bands, the search through all 

possible combinations of 6 bands would take over 22 days of processing with Multispec© (version 

2.5 available from http://dynamo.ecn.purdue.edu/-biehl/IVIultiSpec) running on a 600 MHz Intel 

Pentium III processor with 128 MB RAM (see table 3.7). 

Optimal and sub-optimal search algorithms (section 2.2.3) have been introduced to ease the 

computational load and have been shown to be effective for high-dimensional data sets. In this pilot 

study, the sub-optimal sequential forward selection (SFS) search procedure is used. The latter 
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method first selects tlie best band out of all bands, and then uses this band in the search for the best 

group of two bands. That is, for a data set of 121 bands, 121 possibilities exist for the search of one 

best band, 121 plus 120 combinations exist for the best subset of two bands, etc. 

Table 3.7: Number of possible subset combinations and t ime needed for computational 
search for both exhaustive and sub-optimal feature selection algorithms (for Multispec© 
software version 2.5 under Windows NT on a 600 MHz Intel Pentium III processor, 128 MB 

RAM). 

Number of Number of Search time for Number of Search time 
selected combinations for exhaustive PS combinations for for sub-optimal 
features exhaustive PS 

algorithm 
algorithm sub-optimal SPS 

algorithm 
SPS algorithm 

1 121 0.06 s 121 0.06 s 
2 7,260 3.63 s 241 0.12 s 
3 287,980 2.4 m 360 0.18 s 
4 8,495,410 1.2 h 478 0.24 s 
5 198,792,594 1.15d 595 0.30 s 
6 3,843,323,484 22.2 d 711 0.35 s 

In addition, the Projection Pursuit Feature Selection (PPFS) by Jimenez and Landgrebe (1999) (see 

section 2.3.3), which uses the Bhattacharyya class distance measure, was explored with the data 

sets. The processing of all feature selection techniques was performed with the Multispec© 

Windows version 2.5 and Macintosh version 3.0 (the latter was used for PPFS). 

Feature extraction 

Feature extraction methods transform the original high-dimensional measurement space into a new 

lower-dimensional feature space by optimising a certain criterion for the purpose of data 

compression. In this thesis only linear transformations were considered, which include unsupervised 

and supervised methods. Unsupervised methods, such as PCA or MNP, use a criterion that does 

not consider class statistics (e.g. data variance or SNR). In contrast, supervised methods, such as 

DAFE, DBFE and PP, use criteria that aim to discriminate between the classes under investigation. 

In this pilot study, PCA, MNF, DAFE, DBFE and PP techniques were applied to the hyperspectral 

data sets introduced earlier. PP was also used as a pre-processing algorithm for following feature 

extraction with DAFE and DBFE. The performances of the feature extraction techniques were 

evaluated with the overall classification accuracy measured with the leave-one-out method, and 

compared with each other. 

The processing of all feature extraction techniques was performed with the Multispec© Windows 

version 2.5 and Macintosh version 3.0 (the latter was used for PP), except for MNP, which was run 

with ENVI© version 3.5. 
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Intrinsic dimensionality (ID) estimation 

ID estimates depend entirely upon the criteria to be optimised in the feature extraction process. For 

example, PCA maximises image variance, whereas IVINF aims to optimise the image SNR. 

Therefore, discrepancy in ID estimates from different feature extraction methods is expected. The 

validity of the estimates, however, relies on how the user defines information to be captured by the 

features. For example, information in an unsupervised sense may be described by data variance, 

while in a supervised sense by the potential to discriminate between the defined classes. 

Two notions of dimensionality have been introduced in chapter 2: intrinsic dimensionality (ID), 

defined as the minimum number of features required to represent most of the data variance, and 

intrinsic d/scr/m/nanf dimensionality (IDD), described as the number of significantly reduced 

dimensions that still result in satisfactory classification accuracy. The IDD measure may theoretically 

not exceed M - 1 if features are statistically independent, where M represents the number of 

classes defined by the user (see section 2.4). 

The results of the eigenanalysis-based unsupervised feature extraction methods PCA and MNF may 

be used to approximate the ID of the data sets, as the minimum number of features for data 

representation may be attained best via statistically independent features. In contrast, the 

eigenvalues of the supervised feature extraction methods DAFE and DBFE may be used to derive 

IDD estimates, as both methods transform the data into a minimum number of features that 

discriminate best between the given classes. The ID and IDD estimates may coincide, but as the 

best class-discriminating axes may not form an orthogonal basis, the IDD is expected to have a 

larger value than the ID. 

Heuristic methods such as the scree plot (Catell-Vogelmann), 95% proportion of the total variance. 

Kaiser's criterion ( l / # , where # is the number of original dimensions) and the broken-stick 

method were directly applied to the resultant eigenvalues of the above feature extraction methods. 

In addition, the ID was evaluated by testing the significance of the difference in classification 

performance between a feature subset and all the remaining subsets of higher dimensionality. The 

classification accuracy was measured with the overall accuracy measure. To perform the 

significance test, the asymptotic sample variance of accuracy measure was calculated via equation 

2.43. The z-statistic was evaluated for each pair made up of the actual feature and one of the 

remaining features. The rank of the feature achieving an absolute z-value below 1.96 with each one 

of the remaining features approximates the ID. 
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3.4 Results and Discussion 

3.4.1 Mid Severn Estuary, UK 

Training sites 

The hyperspectral imagery of the River Severn Estuary demonstrates an expected high spatial and 

spectral variability within the plant communities outlined by Dargie's 1998 vegetation map (Dargie, 

1999). This suggests that the National Vegetation Classification (NVC) plant categories used by 

Dargie to describe the make-up of individual communities are not appropriate for mapping w/ith 3 nn 

airborne imagery, individual plant species are heterogeneously distributed over the entire community 

and it is impossible for the analyst to assign any particular pixel or region to any one of them. All 

areas other than saltmarsh were masked out with the exception of some bare mud regions, as it also 

appears throughout the marsh. 

An unsupervised classification was performed with I SOD ATA under ENVI© version 3.5 to discover 

the true number of spectral classes of the image data. After several attempts with different 

parameters the algorithm found five major spectral classes roughly coinciding with the three broad 

saltmarsh zones (pioneer marsh, mid marsh and high marsh, after Long and k/lason, 1983) and 

some bare rock and bare mud areas, which dominate parts of the scene. This class list was 

considered exhaustive, since all other 'uninteresting' class areas were masked out from the imagery. 

In order to achieve a sufficiently high ratio of number of training pixels to number of bands (around 

10 to 15), 600 to 900 training samples per class were necessary for 60 spectral bands to produce 

reliable class statistics. 

The samples were chosen to be truly representative of the corresponding class population and were 

distributed across the entire scene. Class transitional areas were exempt from training sites. In order 

to achieve a high number of training samples, a wide sample spacing was not applied. Due to the 

inherent heterogeneity of the scene, the neighbouring training pixels were assumed to be 

independent. 

Table 3.8 lists the classes defined for the Severn Estuary area, together with the number of samples 

and fields designed for each class. Class separability was tested and quantified with the divergence 

measure (using ENVI©). All pairwise distances were sufficiently large to separate between the 

defined classes (value greater than 2.0). 
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Table 3.8: Informational classes, their number of samples and fields defined for the River 
Severn study area. 

CLASSES NAMES ABBREVIATION NUMBER OF SAMPLES NUMBER OF FIELDS 
Bare Mud BM 2567 17 
Bare Rock BR 1027 102 
High Marsh HM 1011 8 
Mid Marsh MM 1149 7 

Pioneer Marsh PM 2124 7 

To ensure that the Gaussian model was appropriate as underlying statistical model for each class 

population, frequency histograms were created for four representative channels (21, 33, 45 and 57) 

and overlaid with their corresponding Gaussian curve. In addition, skewness or kurtosis values were 

calculated to quantify any deviations of the population from the normal curve. Table B.1 in the 

appendix shows that the Gaussian curve was found to be representative for all classes. A perfect fit 

of the normal curve to the data is not expected and very unlikely to occur for all bands. Deviations 

generally happened in form of very peaked or skewed distributions. A severe bimodal frequency 

distribution was not observed. Figure B.1 and B.2 in the appendix display the corresponding 

skewness and kurtosis values, respectively. It may be observed that the fit of the normal curve to the 

class population data varies between bands chosen. 
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Figure 3.12: Mean spectral radiance curves of the class training areas defined over the River 
Severn data set. The mean curve is plotted with ± 1 standard deviation as grey error bar. 
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Figure 3.12 displays the class mean radiance values for the selected training areas along with the 

corresponding standard deviation plotted as grey vertical error bar. The mean spectral curves may 

be used to differentiate between the classes. Although the Mid and Pioneer Marsh curves are nearly 

identical in the VIS, as are the High Marsh and Bare Rock mean curves in the NIR, good separability 

between the mean values exists in the NIR and VIS, respectively. The standard deviation values are 

high as expected, due to the large spatial and spectra! variability within each category. The Bare 

Rock class mean is very similar to the High Marsh curve in the NIR, as the Bare Rock class 

represents a spectral mixture of rock and vegetation classes. Pure Bare Rock samples in sufficient 

numbers were impossible to locate due to the large sensor GIFOV and the heterogeneity of the 

surface. The strong downward peak in band 48 (761.4 - 770.2 nm) represents the oxygen absorption 

feature at 762 nm, confirming the adequacy of the spectral calibration of the CAS I sensor. 

Feature selection 

Figures 3.13 to 3.16 display the nine best feature sets selected with the SFS search method using 

the minimum and average Bhattacharyya Distance, the minimum and average Transformed 

Divergence. Since the SFS selects bands sequentially in a bottom-up manner, a feature set always 

includes all feature sets of smaller dimensionality. For this reason, only the band numbers and their 

frequency of appearance in the 9 sets are shown in figures 3.13 to 3.16. The band with the highest 

frequency appears in all 9 band sets. The band number is displayed next to the frequency column. A 

clover leaf spectrum is overlaid as wavelength reference. Wavelengths not available for feature 

selection are indicated by grey horizontal bars along the wavelength axis. 

In contrast, PPFS does not select bands sequentially, but divides the available wavelength range 

into a number of sectors, which total the number of features to be selected. The band maximising 

the Bhattacharyya distance in each sector is part of the final band set. Therefore, the band sets are 

not necessarily nested, and figure 3.17 presents the wavelength locations of each band for each 

feature set. The exact band numbers for PPFS can be obtained from table B.2 in the appendix. 

All feature selection methods applied showed similar results in terms of how often a certain 

wavelength region was selected. Practically no bands were chosen from the blue wavelength range 

which is partly due to the fact that most of these bands were excluded from processing due to 

insufficient SNR characteristics. Green wavelengths are equally under-represented. The majority of 

selected bands stem from the red, the red edge and NIR wavelengths, where the red and red-edge 

bands are related to chlorophyll content and the red-edge and NIR bands to canopy structure. As 

the defined salt-marsh vegetation classes may be distinguished from each other and from Bare 

Rock and Mud classes mainly by their canopy structure and chlorophyll content, the feature 

selection result was believed to be sensible. Nesting of bands occurred with all methods, suggesting 

that the intrinsic discriminant dimensionality for the River Severn data set is less than 9. 
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Figure 3.13: 9 best bands for the River 
Severn data selected via minimum 

Bhattacharyya distance and SFS. The height 
of the bars indicates the frequency of 

appearance of a band in the 9 subsets. 

Figure 3.14: 9 best bands for the River 
Severn data selected via average 

Bhattacharyya distance and SFS. The height 
of the bars indicates the frequency of 

appearance of a band in the 9 subsets. 

i 
^2 4* ^ 7% n3 8R 

67 

I" 

67 

f 
- -

Figure 3.15; 9 best bands for the River 
Severn data selected via minimum 

Transformed Divergence and SFS. The height 
of the bars indicates the frequency of 

appearance of a band in the 9 subsets. 

Figure 3.16: 9 best bands for the River 
Severn data selected via average 

Transformed Divergence and SFS. The height 
of the bars indicates the frequency of 

appearance of a band in the 9 subsets. 
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Figure 3.17: Best subsets with up to 9 bands 
for the River Severn data selected via 
Projection Pursuit Feature Selection. 
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Figure 3.18: Overall MLC accuracy (leave-
one-out method) as a function of number of 

bands chosen via the above techniques. 
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Surprisingly, the differences between band sets derived from tlie multi-class forms (minimum or 

average) of a distance measure seem to be larger than the ones derived from different distance 

measures (Bhattacharyya or Transformed Divergence) with the same multi-class form. This 

indicates that some thought may be given to the general class separability status of the data set 

when deciding the subset ordering. 

The individual performances of the different feature selection algorithms on the MLC were evaluated 

with the overall IVILC accuracy of their chosen band sets, which is plotted against the subset 

dimension in figure 3,18. In summary, all of the feature selection approaches performed well on the 

data set, with the average Bhattacharyya distance being distinctively less accurate than the rest of 

the methods for subsets of dimensionality smaller than six. The Projection Pursuit feature selection, 

which also uses the Bhattacharyya distance, may be considered as the second worst method, 

deviating from the average accuracy level for subsets with more than 3 bands. These differences 

may be explained by the unsaturated nature of the Bhattacharyya distance when compared to the 

saturated and therefore superior Transformed Divergence measure. The accuracies from different 

algorithms can be shown to be significantly different (5% level) from each other for the same 

dimension, with the exception of statistically insignificant differences in accuracy between the 

minimum Bhattacharyya and minimum Transformed Divergence methods for the first four 

dimensions. 

The general level of optimality of the selected feature sets was compromised for computational 

feasibility by choosing sub-optimal search algorithms (SFS, PPFS) and class distance measures. 

Sub-optimal search strategies only yield optimal results when applied to statistically independent 

features. In addition, an incorrect Gaussian model assumption for the class statistics of some of the 

bands may have distorted their potential for class discrimination. 

Feature extraction 

Figures 3.19 to 3.21 present the scree plots resulting from the PCA, MNF, DAFE, PPDA (PP pre-

processing and DAFE combined), DBFE and PPDB (PP pre-processing and DBFE combined). 

The image noise covariance matrix of the River Severn CASI imagery was needed as input for the 

MNF, and since no dark data were available, it was estimated with the 'shift difference' technique 

(ENVI© version 3,5) from a selected image area. The latter method computes for each pixel the 

differences to its right and above neighbour, and assigns the average of both differences to the 

pixel. For the average difference value to represent image noise and not scene variability, the image 

pixels should be chosen from a relatively homogenous area. An area of intertidal mud was selected 

here for this purpose. 
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The PCA and MNF percentage eigenvalues are displayed in figure 3.19, and it may be evidenced 

that the PCA clearly outperforms the f\/INF with respect to generating highly informative features. 

Although the MNF may be applicable to the River Severn data due to the existence of unequal noise 

variances in the bands of the data set, the estimation of the noise covariance matrix was realised 

from image data rather than from dark data. The author believes that the poor MNF performance 

may be primarily attributed to an incorrectly estimated noise covariance matrix, even though great 

care was taken in the selection of a homogeneous area for evaluation. 
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Figure 3.19: Eigenvalue (%) of the first 10 
features extracted from the River Severn data 

via PCA and MNF. 
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Figure 3.20: Eigenvalue {%) of the 4 features 
extracted f rom the River Severn data via 

DAFE and PPDA. 
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Figure 3.21: Eigenvalue (%) of the first 10 
features extracted from the River Severn data 

wa DBFE and PPDB. 
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Figure 3.22. Overall MLC accuracy (leave-
one-out method) as a function of number of 

features created via the above feature 
extract ion techniques. 

109 



The percentage eigenvalues generated by DAFE and PPDA are very similar (see figure 3.20), 

suggesting that the Projection Pursuit pre-processing did not substantially contribute to the creation 

of highly informative DAFE features. In contrast, the DBFE and PPDB scree plots in figure 3.21 

clearly demonstrate the improvement of the DBFE method with a prior Projection Pursuit pre-

processing stage. DBFE features are created directly from class samples and a large number of 

samples are needed for a good performance of the algorithm. However, this number decreases for 

feature spaces that have already been transformed into a class-discriminatory space, for example 

with Projection Pursuit. 

The performances of the feature extraction techniques were evaluated with the overall classification 

accuracy measured by the leave-one-out method, and are presented in figure 3.22. DAFE produced 

the most class-discriminatory features as evidenced by its significantly superior classification 

accuracy. The Projection Pursuit pre-processing for DAFE reduced the classification ability of its 

features only slightly. PP and DBFE features performed well, but were both outperformed by PPDB 

features, which favours the general use of PP pre-processing for DBFE. The PCA features were 

inferior to the ones created by most supervised methods, but the first four features produced by 

IVINF noticeably achieved the worst classification result. The latter undoubtedly suggests that class-

discriminatory information was not distributed along the orthogonal axes of maximum data variance. 

Intrinsic dimensionality estimation 

The unsupervised PCA and MNF were used to approximate the non-discriminant dimensionality, 

while the supervised methods DAFE, PPDA, DBFE, PPDB were chosen to determine the number of 

significantly discriminant features, which, in theory, cannot exceed 4 for the defined class set. 

Figures 3.23 to 3.25 display the results of three heuristic ID estimation methods: 95% proportion of 

the total variance. Kaiser's criterion (1/N, here 1/60) and the broken-stick method. The Catell-

Vogelmann estimate was read directly from the scree plots in figures 3.19 to 3.21. Tables B.3 to B.8 

in the appendix list the results of the z-statistic for each feature extraction method. The latter was 

used to test the significance of the difference in overall classification accuracy between a feature 

and each one of the remaining features of lower rank. 

All ID estimates are summarised in figure 3.26. Generally, for the unsupervised methods, the 

heuristic methods gave lower ID estimates (1 to 6) than for the supervised methods (3 to 8). This 

may suggest that the first few features of the PCA and MNF do not contain all class discriminative 

information. This is further evidenced by the relatively high ID value for the PCA and MNF derived 

from the statistical test of the classification result: nine PCA features and 8 MNF features were found 

to hold significant information for class discrimination. Two of the MNF based ID estimates are 

relatively high (6 from Kaiser, 53 from 95% total variance), implying that the MNF did not perform 

110 



well with the noise covariance estimate used. Theoretically, the IDD has a maximum value of 4, and 

DAFE and PPDA reflect this value by consistently producing exactly the same number of features. 
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Figure 3.23: Cumulative eigenvalues (%) of 
the features extracted by DAFE, DBFE, PCA, 
MNF, PPDA, PPDB. The 95% mark is overlaid. 
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Figure 3.24: Eigenvalues (%) of the features 
extracted by DAFE, DBFE, PCA, MNF, PPDA 

and PPDB. Kaiser's 1/60 mark is overlaid. 
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Figure 3.25: Eigenvalues (%) of the features 
extracted by DAFE, DBFE, PCA, MNF, PPDA 
and PPDB. Broken Stick values are overlaid. 

Figure 3.26: Summary of intrinsic 
dimensionality values for the River Severn 

data set estimated by Catell-Vogelmann, 95% 
total variance, Kaiser (1/N), Broken Stick and 

Classification Accuracy for the feature 
extraction methods PCA, MNF, DAFE, PPDA, 

DBFE and PPDB. 

Their ID estimates range from 3 to 4. In contrast, the DBFE based methods exceed this theoretical 

limit in all cases (ID values from 5 to 8). This may reflect the inadequacy of the DBFE technique for 
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ID estimation when only a limited amount of training samples is available. Using the PP in a pre-

processing stage shifted the ID estimates down by only one (ID values from 4 to 7). 

As described in section 2.4.3, no ideal technique for ID estimation exists and the reader is referred 

to section 2.4.1 and 2.4.2 for a discussion of the deficiencies of individual methods. As a 

consequence, no single best ID and IDD estimate will be provided as final result, instead ID and IDD 

ranges. The ID may take values between 1 and 3 inclusive for the River Severn data, while its 

discriminant counterpart may fall between 3 and 4 for the class statistics defined on the River 

Severn data. MNF, DBFE and PPDB results were ignored for the final ranges as the author believed 

them to be not suitable for ID/IDD estimation for this data set. 

3.4.2 New Forest, Hampshire, UK 

Training sites 

The New Forest study area consists of heterogeneous heathland areas, where individual plant 

species mix consistently at a scale of centimetres to metres. Using 3 m airborne imagery to classify 

different species the assignment of a pixel to a particular species is almost impossible, as it is to find 

pure training pixels on the ground. For this reason, vegetation classes were defined according to 

Clarke and Westerhoffs vegetation map of the area (Westerhoff, 1992)(see section 3.2.2), here 

used as in situ map. 

To guide training site selection, the spectral classes of the data set were identified with the 

ISODATA clustering algorithm implemented under ENVI© version 3.5. The spectral classes matched 

surprisingly well some of the Clarke and Westerhoffs class categories. In one case, two spectral 

classes were merged to create an informational class. However, other categories were 

underrepresented in the scene and were omitted from the class table. To achieve a sufficiently high 

ratio of number of training pixels to number of bands (around 5 to 10; Webb, 1999), 585 to 1170 

pure training samples per class had to be available to generate representative class statistics. 

Altogether, eight categories were chosen as the dominant land cover classes for the study area: 

Grassland, Asphalt, Lake, Bracken, Dry Heath, Humid Heath, Wet Heath and Valley Mire. The 

enclosed woodland area was masked out manually, as it was not of interest in the mapping of semi-

natural vegetation and was found to be spectrally similar to heathland shrubs in an unsupervised 

classification. Training samples were carefully selected on the basis of both the imagery and the 

unsupervised classification result, avoiding boundary pixels and using no sample spacing. Table 3.9 

presents the classes defined for the New Forest area, together with the number of samples and 

fields designed for each class. All class pairs gave an ENVI© separability index value of 2.0, 

indicating that the defined classes are pairwise highly separable. 
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Table 3.9: Informational classes, their number of samples and fields defined for the New 
Forest study area. 

CLASSES NAMES ABBREVIATION NUMBER OF SAMPLES NUMBER OF FIELDS 
Grassland G 1315 6 

Asphalt A 641 19 
Lake L 816 3 

Bracken B 989 8 
Valley Mire VM 1391 12 
Dry Heath DH 667 16 

Humid Heath HH 2484 10 
Wet Heath WH 1098 10 

Table B.9 in the appendix displays the frequency histograms of each class population for four bands 

representative of the visible (band 10), near infrared (band 40) and short-wave infrared (bands 80 

and 100). All class distributions were generally well represented by the superimposed normal curve, 

suggesting that the Gaussian model was appropriate as underlying statistical model. No critical 

bimodal frequency distributions were observed, and some deviations from the normal curve 

occurred for some bands in skewed or very peaked distributions, for example for the Asphalt and 

Lake class (see also the skewness and kurtosis values in figures B.3 and B.4, respectively, in the 

appendix). 
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Figure 3.27; Mean spectral radiance curves of the class training areas defined over the New 
Forest data set. The mean curve is plotted with ± 1 standard deviation as grey error bar. 
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Figure 3.27 shows the class mean reflectance spectrum with grey error bars of one standard 

deviation, in general, the figure suggests a high spectral separation between all classes, due to well 

spaced mean spectra and relatively small standard deviations, especially in the near infrared and 

short wave infrared regions. No data were available for the spectral regions between the HyMAP 

detectors, indicated by missing error bars in figure 3.27. 

Feature selection 

Figures 3.28 to 3.31 display the frequencies of appearance of a feature in best 9 band sets selected 

with the SFS search method using the minimum and average Bhattacharyya Distance, and the 

minimum and average Transformed Divergence. The frequency of appearance may be interpreted 

as the band's importance with respect to discrimination ability between the given classes. The 

wavelength locations of the bands from the best nine PPFS subsets are plotted in figure 3.32 (for the 

exact band numbers see table B.10 in the appendix). For figures 3.28 to 3.32, wavelengths not 

available for feature selection are indicated by grey horizontal bars along the wavelength axis. 

Although different multi-class forms and criteria produced different results in all cases, bands from all 

wavelength regions (VIS, NIR, SWIR), with exception of the blue region, were selected by each one 

of the individual feature selection methods. The resulting features seem to sample the entire spectral 

region fairly uniformly, with a higher sample density in the NIR wavelength region. The most frequent 

bands came to fall consistently into either the NIR or SWIR, especially near water vapour absorption 

features, and are sensitive to canopy structure and moisture content. This is consistent with the fact 

that most of the defined heathland vegetation classes differ more in their structure and water content 

than in their chlorophyll content. 

Figure 3.33 shows the overall MLC accuracy of the nine best feature sets selected with the five 

methods (SFS with minimum/average Bhattacharyya Distance/Transformed Divergence, PPFS). To 

sum up, all feature selection approaches performed well on the data set, with the Transformed 

Divergence measures being superior to all other criteria. The average Bhattacharyya distance 

method produced the worst feature subset. The Projection Pursuit and the minimum Bhattacharyya 

feature selection gave the second worst single feature. As with the River Severn data set, the worse 

performance of the Bhattacharyya-based methods may be explained by the unsaturated nature of 

the distance measure. For the same dimension, accuracies from different algorithms were found to 

be significantly different (5% level) from each other, except when they were equal, e.g. for the four 

last dimensions for the average Bhattacharyya and average Transformed Divergence methods. 

Feature extraction 

Figures 3.34 to 3.36 present the eigenvalue plots of the following transformations: PCA, IVINF, 

DAFE, PPDA (PP pre-processing and DAFE combined), DBFE and PPDB (PP pre-processing and 
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Figure 3.28: 9 best bands for the New Forest 
data selected via minimum Bhattacharyya 
distance and SFS. The height of the bars 

indicates the frequency of appearance of a 
band in the 9 subsets. 
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Figure 3.29: 9 best bands for the New Forest 
data selected via average Bhattacharyya 
distance and SFS. The height of the bars 

indicates the frequency of appearance of a 
band in the 9 subsets. 
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Figure 3.30: 9 best bands for the New Forest 
data selected via minimum Transformed 

Divergence and SFS. The height of the bars 
indicates the frequency of appearance of a 

band in the 9 subsets. 
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Figure 3.31: 9 best bands for the New Forest 
data selected via average Transformed 

Divergence and SFS. The height of the bars 
indicates the frequency of appearance of a 

band in the 9 subsets. 
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Figure 3.32: Best subsets with up to 9 bands 
for the New Forest data selected via 
Projection Pursuit Feature Selection. 
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Figure 3.33. Overall MLC accuracy (leave-
one-out method) as a function of number of 

bands chosen via the above techniques. 
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DBFE combined). The image noise covariance matrix of the New Forest HyMAP imagery was 

directly estimated from dark image data. The latter was used for the MNF transformation. The PCA 

and MNF percentage eigenvalues are displayed in figure 3.34. Both methods perform with similar 

high efficiency. Projection Pursuit pre-processing for DAFE increased the effectiveness of the 

features with respect to data representation (figure 3.35), while it seemed to substantially damage 

the ability of the DBFE to create highly informative features (figure 3.36). 
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Figure 3.34: Eigenvalue (%) of the first 8 
features extracted from the New Forest data 

via PCA and MNF. 

Figure 3.35: Eigenvalue (%) of the 7 features 
extracted f rom the New Forest data via DAFE 

and PPDA. 
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Figure 3.36: Eigenvalue (%) of the first 10 
features extracted from the New Forest data 

via DBFE and PPDB. 
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Figure 3.37: Overall MLC accuracy (leave-
one-out method) as a function of number of 

features created via the above feature 
extract ion techniques. 
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The overall MLC accuracy levels of the subsets created by the above feature extraction techniques 

were evaluated and are presented in figure 3.37. Surprisingly, PCA and MNF produced the most 

class-discriminatory features as evidenced by their superior classification accuracies. This suggests 

that class-discriminatory information was distributed along the axes of maximum data variance for 

the New Forest data set. Projection Pursuit feature extraction follows suit at third place, giving a 

nearly constant and high accuracy level for nine out of ten of its feature subsets. DBFE features 

perform worst, but their accuracy is improved with PP pre-processing. PP pre-processing for DAFE 

increases the accuracy of its first two features, but worsens the performance of its larger subsets. 

This result implies that PP pre-processing is beneficial for creating class-discriminatory DBFE 

features, but should be avoided when creating DAFE features for MLC. 

For the first four dimensions, most FE methods produce feature sets that are significantly different in 

accuracy from each other. An exception to this are the PCA and MNF methods, which give features 

sets that, from the third dimension onwards, are statistically insignificant from each other in terms of 

MLC accuracy. From the fifth dimension onwards, most methods produce feature sets that do not 

significantly differ in the accuracy levels they achieve. 

Intrinsic dimensionality estimation 

The results of the PCA and MNF eigenanalysis were used to estimate the non-discriminant 

dimensionality, while those of the DAFE, PPDA, DBFE, PPDB methods were chosen to determine 

the number of significantly class-discriminant features, which, theoretically, cannot exceed 7 for the 

defined class set. 

Figures 3.38 to 3.40 present the results of the 95% proportion of the total variance. Kaiser's criterion 

(1/N, here 1/117) and the broken-stick method. The Catell-Vogelmann estimate was determined 

directly from the scree plots in figures 3.34 to 3.36. Tables B.11 to B.16 in the appendix list the z-

statistic for each feature extraction method, which was used to test the significance of the difference 

in overall classification accuracy between a feature and each one of the remaining features of lower 

rank. 

All ID estimates are summarised in figure 3.41. Generally, the heuristic methods resulted in a 

relatively low ID (1 to 2) of the unsupervised methods and higher IDD estimate (3 to 7) of the 

supervised methods. The statistical IDD estimate for the PCA was two, suggesting that the first two 

PCA features contained all class discriminative information and that the spectral classes could be 

separated along the axes of maximum data variance. The heuristic and statistical IDD estimates of 

the DAFE methods give a minimum of three (PPDA, 95% total variance or broken-stick), while those 

of the DBFE methods reach as low as four (DBFE, broken-stick). With the classification accuracy of 

the PCA features being superior to the ones of all supervised features, the ID and IDD were 

estimated to be 1 and 2, respectively. 
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This result may reflect the necessity to judge the extracted features used for IDD estimation 

according their classification performance. For certain data sets, some supervised feature extraction 

methods may spread out the class-discriminatory information onto many features instead of a few, 

distorting the resulting IDD estimate. 
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Figure 3.38: Cumulative eigenvalues (%) of 
the features extracted by DAFE, DBFE, PCA, 
MNF, PPDA, PPDB. The 95% mark is overlaid. 
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Figure 3.39: Eigenvalues (%) of the features 
extracted by DAFE, DBFE, PCA, MNF, PPDA 
and PPDB. Kaiser's 1/117 mark is overlaid. 
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Figure 3.40: Eigenvalues (%) of the features 
extracted by DAFE, DBFE, PCA, MNF, PPDA 
and PPDB. Broken Stick values are overlaid. 

Figure 3.41: Summary of intrinsic 
dimensionality values for the New Forest 

data set estimated by Catell-Vogeimann, 95% 
total variance. Kaiser (1/N), Broken Stick and 

Classification Accuracy for the feature 
extraction methods PCA, MNF, DAFE, PPDA, 

DBFE and PPDB. 
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3.5 Summary 

In this pilot study, some of the dimensionality reduction methods presented in chapter 2 were 

compared with respect to their classification performance and their ability to produce features that 

bear most class-discriminatory information. The two study areas of the thesis, the River Severn 

Estuary and the New Forest, both UK, were introduced in detail, as well as their available airborne 

and in situ data sets. General guidelines for class definition were described. Class training was 

performed using the result of ISODATA clustering and the vegetation map of the study areas. 

Feature selection (FS) with the minimum and average multi-class forms of the Bhattacharyya and 

Transformed Divergence distance measures was performed to select the best spectral bands for 

class discrimination. The sub-optimal sequential forward selection search procedure was employed 

to make the selection process computationally feasible. In addition, the Projection Pursuit Feature 

Selection (PPFS) was applied, which uses the Bhattacharyya class distance measure. 

The results of the FS methods were compared in terms of overall classification accuracy derived 

from the feature subsets and estimated with the leave-one-out cross-validation method. For both 

study areas all feature selection methods performed well, with the bands selected by Transformed 

Divergence distance measure achieving significantly higher accuracy than the ones chosen with the 

Bhattacharyya-based methods (including PPFS). The unsaturated nature of the Bhattacharyya 

distance measure, i.e. its misrepresentation of the classification accuracy, may explain this result. 

Also for both study areas, bands in all wavelength ranges except in the 'blue' were equally important 

for discriminating between the classes. 

The classification performance of the unsupervised feature extraction techniques. Principal 

Components Analysis (PCA) and Minimum Noise Fraction (MNF), and that of the supervised 

methods. Discriminant Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction 

(DBFE) and Projection Pursuit (PP) was estimated for the data sets of both study areas. 

Additionally, a PP pre-processing stage was evaluated for both DAFE and DBFE, referred to as 

PPDA and PPDB, respectively. 

For both data sets, DAFE features were consistently superior to the ones generated from the 

supervised PPDA, DBFE and PPDB method. Although pre-processing with PP improved the MLC 

performance of the DBFE features in both cases, it had a harmful effect on the one of the DAFE 

features. The generally worse accuracy of the DBFE features may be due to the fact, that not 

sufficient training samples were available for a good performance of the algorithm. However, the 

necessary sample number decreases for feature spaces that have already been transformed into a 

class-discriminatory space with Projection Pursuit, allowing for a higher DBFE feature performance. 
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PP features represented well the class-discriminant structure of the River Severn data set (60 

bands), and outperformed all other supervised feature sets for the New Forest data set (117 bands). 

In the latter case, PR's success may be explained by the fact that PP does not perform the 

parameter estimation at full dimensionality, but at a linearly projected lower dimensional subspace, 

where the assumption of the Gaussian normal distribution is more justified. It may be possible that 

the training samples were not sufficient to adequately define the parameters of the assumed 

Gaussian class distribution for the 117 bands of the New Forest data set. 

The unsupervised PCA and MNF produced highly class-discriminatory features for the New Forest 

data, but not so for the River Severn data set. This suggests that, only for the New Forest data set, 

class-discriminatory information was distributed along the axes of maximum data variance. The 

inferior performance of the MNF for the River Severn data set was attributed to a poor estimation of 

the noise covariance matrix from image data (rather than dark data as for the New Forest data set). 

The results of the PCA and MNF eigenanalysis were used to estimate the intrinsic dimensionality 

(ID), the minimum number of features to represent the data variance. Those of the DAFE, PPDA, 

DBFE, PPDB methods were chosen to determine the intrinsic discriminant dimensionality (IDD), i.e. 

the minimum number of significant class-discriminating features. Heuristic and statistical 

dimensionality estimation methods were applied, including the 95% proportion of the total variance, 

Kaiser's criterion (1/N), Cateil-Vogelmann, broken-stick and MLC accuracy hypothesis testing. 

Generally, the PCA was preferred to the MNF as basis for estimating the ID, since, by definition, the 

data variance, and not the image SNR, was defined as the information to be represented by the ID 

features. The resulting ID estimated with the above methods for the New Forest data set ranged 

between one and two, and between one and three for the River Severn data set. Exceptionally, the 

PCA could also be used for determining the IDD of the New Forest data set, as its features 

performed superior to all those derived from the supervised methods. The IDD for this data set was 

evaluated as two. DAFE achieved the highest MLC accuracy on the River Severn data set and 

estimated its IDD to fall between three and four. These relatively low ID and IDD results for both 

data sets are in accordance of the findings of other authors (e.g. IVIilton, 1999, Curran ef a/., 1998), 

that the intrinsic dimensionality is of low order for imaging spectrometer data of vegetated scenes in 

the Visible and Near Infrared (VNIR). 

In short, the results of this pilot study showed that 

1) the Transformed Divergence performed superior to the Bhattacharyya distance as surrogate 

measure for the MLC accuracy, 

2) various feature selection and extraction methods resulted in different feature subsets that all 

gave sufficiently high classification accuracy, and 

3) various heuristic and statistical IDD estimation methods gave a range of solutions, rather than a 

single common estimate. 
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From the experience with the given two data sets, the author recommends to principally base the 

IDD estimation on DAFE, but to check whether principal components achieve higher classification 

accuracy with less features than DAFE, as class-discrimination may be possible along the axis of 

maximum variance. 

The second point from the above list implies that a multitude of acceptable feature subsets are 

possible for a given class- and data set. At this point it is important to recognise that the feature 

subsets of the above dimensionality reduction methods cannot be generalised (Dutra and Huber, 

1999) and that they are specific to 

® the feature selection or extraction algorithm employed, 

• the data set, 

• the class definition and training performed by the user, 

« the data or class model assumptions, and 

" the final data application. 

That is, no universal best feature or band set exists, questioning the pre-defined or 'established' 

band sets of some of the imaging spectrometers introduced in chapter 1. The remainder of this study 

investigated whether the 'established' band sets could be used for vegetation mapping in semi-

natural environments and whether hyperspectral data was indeed necessary to achieve high 

accuracy for the same classification task. 

Band selection algorithms were developed in the following two chapters as a tool for answering the 

above questions. The algorithm extends the capability of feature selection algorithms presented 

above by considering bandwidth and SNR issues, and allows the creation of optimal band sets for a 

given data set and application task. 
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4 Supervised Band Selection for Classification 

4.1 Introduction 

Although high spectral resolution sensor capability is desirable as it allows the exploitation of 

characteristic narrow absorption or emission features of target classes of interest, imaging 

spectrometer data are often redundant and have a large volume that is difficult to store and process 

efficiently. In addition, a lack of sufficient training samples for high dimensional data will result in 

poor classification results (Hughes, 1968). Therefore, dimensionality reduction techniques (see 

chapters 2 and 3) are commonly applied at processing level after data acquisition. 

However, hyperspectral capability also creates problems at sensor level. The huge data volume to 

record, store and transmit often forces the sensor designers and operators to make compromises. 

High spectral resolution capabilities result in a reduced SNR, which is often compensated by coarser 

spatial resolution, which may not be in the interest of the user. As for the CAS 1-2, a trade-off exists 

between maximal swath width and high spectral resolution due to data recording rate limits of the 

removable hard drive subsystem (see chapter 1). 

Regarding these drawbacks of hyperspectral data collection, one might ask whether the full band set 

needs to be acquired in order to achieve a highly accurate classification result, and whether such 

fine spectral resolution generally leads to an improved classification performance. In short, what 

bands and bandwidth can be chosen for data acquisition without losing the full class-discriminating 

power of the hyperspectral band set? 

The latter question has already become reality for sensor system designers and users of imaging 

spectrometers with data recording limits such as the CASI-2. In the latter case, if the data users 

decide to acquire a full-swath image in the CASI-2's spatial mode, they can choose up to 19 out of 

288 non-overlapping bands of arbitrary width (see chapter 1). Some users select 'established' band 

sets recommended by the instrument operators and the literature, or simulate common satellite 

sensor bands. However, these 'default' band sets may not be optimal for a specific classification 

task at hand involving particular scene data acquired at a certain point in time. 

This chapter focuses on band selection for imaging spectrometers with Maximum Likelihood 

classification as final data application. A new feature selection based method is presented for 

supervised band selection, which uses both class means and variances to discriminate between 

user-specified classes and introduces the bandwidth as a variable into the band selection process. 

The method provides a set of most class-discriminating bands of different widths for a specific data 

scene and class definition. The new band selection technique is applied to the CASI and HyMAP 
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data sets introduced in chapter 3 and results are evaluated and discussed. In chapter 6, a new data 

set is introduced in as a further test of this new algorithm. 

Although an extensive feature selection review is presented in chapter 2, the author believed it was 

necessary to introduce, in an additional review, what factors needed to be accounted for when 

selecting bands for a sensor as opposed to features for a processing algorithm. The review also 

describes some other independently developed band selection methods and points out the 

shortcomings of these approaches. 

4.2 Band Selection Review 

In general, sensor band selection for remote sensing of target reflectance should take the following 

factors into account: 

1) target reflectance properties, 

2) solar spectrum, atmospheric absorption and scattering, 

3) sensor characteristics (e.g. spatial and spectral resolution, point-spread function PSF, 

wavelength range, instrumental noise, SNR), and 

4) data application (e.g. for classification, regression model). 

4.2.1 Target Reflectance Properties 

Usually, the data users have some knowledge about the target classes under investigation. As a first 

step they may examine their physical reflectance properties and search for specific spectral features 

(e.g. absorption features or reflectance peaks) unique to each target class. Absorption features in 

particular may be used to distinguish between different surface types and conditions, as they may 

evidence the presence or lack of certain primary chemical components unique to a specific surface 

type or condition. For example, the absorption features of vegetation include those of 

photosynthetically active leaf pigments such as chlorophyll, bound and unbound water, cellulose, 

lignin, starch and proteins (see for example Kumar et a/., 2001). In addition to absorption features, 

structural properties of the canopy, such as leaf thickness and number of stacked leaves, influence 

the spectral properties of vegetation. 

Sensor bands and bandwidths may then be chosen according to individual spectral features of the 

target classes in order to extract target-specific information from the band measurements (Thomson 

et al., 1998a). A typical set of spectral bands to sample a vegetation spectrum includes: 

" a blue band centred on the absorption peak of chlorophyll at around 443 nm, 
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= a green band centred on the vegetation reflectance peak (chlorophyll absorption minimum) at 

around 555 nm, 

" a red band centred on the absorption peak of chlorophyll at around 665 nm, 

" a NIR band corresponding to a region of maximum vegetation reflectance between 750 and 

1350 nm, typically centred at 865 nm and primarily related to the structural property of the 

canopy and the percentage of soil covered by vegetation, 

• a SWIR band centred at around 1650 nm, where reflectance is related to water content of the 

canopy components and to its structure. 
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Figure 4.1: The six VNIR channels of Landsat ETM+ overlaid over 
a clover leaf spectrum. 

Most of these bands are included in the band sets of satellite sensors designed for vegetation 

mapping, such as low to medium spatial resolution multispectral sensors (e.g. Landsat TM / ETM+ 

see figure 4.1, AATSR, ALI, ASTER, A VNIR), high spectral resolution sensors (e.g. MISR, MERIS, 

MODIS) and commercial high spatial resolution sensors (e.g. IKONOS, SPOT HRVIR, Orbview-3, 

Quickbird). The reader is referred to tables 1.1 and 1.2 for a list of airborne and spaceborne VNIR 

sensors, respectively, which have been in operation since 2002. The tables include Internet 

hyperlinks to most of the instruments and their calibration. 

Price (1990, 1994a, 1997, 1998) showed another way of selecting bands to represent target spectra. 

He calculated spectral basis functions to approximate successively the narrow-band target spectra 

and selected few broad-band spectral intervals to determine the coefficients of these basis functions. 

However, the chosen bands have no physical significance and the validity of the basis functions is 

restricted to spectra that can be represented by the original target spectra the basis functions were 

derived from. In addition, the data dimensionality is reduced only at sensor level, not at processing 

level and the method is conceptually complex and difficult to implement. For these reasons, Price's 

method is not pursued any further in this study. 
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Some common target reflectance curves (such as water, leaf or mineral spectra) can be found in the 

literature. Hunt (1977, 1979) and Hunt and Ashley (1979) described spectral curves of minerals and 

rocks for the VNIR wavelength range (see also Hutsinpiller, 1988). A compiled list of absorption 

features of vegetation compounds can be found in Kumar et al. (2001). Curran (1994) presented a 

list of wavelength regions of interest for different fields of imaging spectrometer data applications, 

including geological, aquatic, ecological, and atmospheric studies. 

If the target spectra are unknown to the user, or the targets represent complex mixtures of different 

elements, the user may acquire spectral data of the target classes from laboratory or field 

measurements or from training sets of known ground surface in imaging spectrometer data. For 

example, Dekker et al. (1992) reconstructed the spectral signature of specific lakes using field 

spectral measurements. 

The target spectra may be searched for class-characteristic absorption features simply via visual 

inspection or by using techniques developed to detect them. For this task it is advisable to transform 

the spectral measurements to reflectance, and therefore remove solar irradiance and atmospheric 

effects, in order not to distort or hide class absorption features. 

Absorption Feature Enhancement 

Absorption features of a target spectrum may be enhanced by calibrating radiance data to 

reflectance. Reflectance calibration is performed by removing the effects of both the atmosphere 

and the solar curve. For ground or laboratory spectral measurements a preferably simultaneous 

irradiance measurement at target location is needed, while for aircraft-based measurements, the 

atmosphere between the target and the sensor has also to be accounted for. 

A widely accepted method for reflectance calibration is to measure atmospheric conditions during 

the flight overpass with specialised on-site sensors and then use a detailed atmospheric radiative 

transfer model (RTM) to convert at-sensor radiance to surface reflectance. Examples of RTMs are 

® LOWTRAN 7 (Low Resolution Atmospheric Radiance and Transmittance; Kneizys et al., 

1989X 

• 68 (Second Simulation of the Satellite Signal in the Solar Spectrum; Vermote et al., 1997), 

• MODTRAN 3 (The Moderate Resolution Atmospheric Radiance and Transmittance Model; 

Anderson et al., 1995), 

= ACORN - Atmospheric CORrection Now (Analytical Imaging and Geophysics LLC, 2003). 

Though accurate, such models require a well-calibrated sensor and in situ measurements or 

assumed values of atmospheric variables (such as water vapour or aerosol content) at the time of 

data acquisition, which may be difficult to obtain. Consequently, some RTMs have been simplified to 

minimise the number of atmospheric inputs. Teillet and Fedosejevs (1995) proposed an approach in 
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which aerosol optical depth was derived from the RTM using a dark target in the image itself, while 

Gao and Goetz (1990) retrieved water vapour amounts from water vapour image bands (ATREM, 

ATmosphere REMoval program; Gao etal., 1992). 

Other reflectance calibration methods have been created to avoid atmospheric in situ measurements 

altogether. Some authors proposed that an empirical linear relationship between at-sensor radiance 

(or DN) and reflectance based on within-image targets of known reflectance could be used for 

reflectance calibration ('Empirical Line', EL, method; Roberts et a/., 1985; Smith and Milton, 1999). 

The method relies on field or laboratory reflectance data of at least two spatially and spectrally 

uniform calibration targets, preferably one dark and one bright target, for which both image radiance 

and ground reflectance data are available. Spectral Mixture Modelling may also be employed for 

reflectance calibration using a reference spectral library (Farrand et a!., 1994). Clark et ai. (1993, 

1995) introduced a hybrid approach that first applies an RTM to correct for path radiance and solar 

spectral response, and then eliminates residual artefacts with the empirical line method using in situ 

measurements of one or more calibration targets. The U.S. Geological Survey has termed the latter 

method 'radiative-transfer-ground-calibration' (RTGC). 

Other methods that do not require any in situ measurements at all include; 

'Internal average relative reflectance' (lARR) method (Kruse, 1988), 

Flat-Field correction method (Roberts etal., 1986; Hutsinpiller, 1988), 

Residual method (Marsh and McKeon, 1983; Green and Craig, 1985), and 

Dark-object subtraction. 

The lARR is the ratio between the pixel spectrum and average spectrum of all scene pixels. Usually, 

the data are normalised by scaling the sum of the DN values in each pixel to a constant value 

('equal-area' or 'equal-energy' normalisation). 

The 'Flat Field' method depends on the existence of large spectrally flat and uniform areas in the 

image, the average radiance spectrum of which is divided into each pixel spectrum to calculate 

apparent reflectance. The method assumes that solar and atmospheric effects alone cause the 

shape and features of this average spectrum. If the latter assumption does not hold, target features 

will show up less intense in the residual spectral plot ('feature fading'). 

Marsh and McKeon (1983) created residuals by subtracting the average spectrum for the entire 

scene from individual pixel spectra. The residual method assumes that the average scene signal 

contains irradiance and atmospheric absorption features, but no target spectral features. Before 

creating residuals, all pixel spectra are scaled to a constant value in a reference channel relatively 

free of target absorption features to account for illumination variations between radiance spectra. 

Green and Craig (1985) calculated logarithmic residuals for specific pixel-channel combinations by 

dividing raw data values by their geometric mean over all bands and their geometric mean over all 
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pixels. The logarithm is applied to replace the geometric means by arithmetic ones. Hutsinpiller 

(1988) advised to use the flat-field log residual technique, using average values from spectrally flat 

scene segments, when absorption feature fading occurs. 

Comparisons between some of these reflectance calibration methods were performed by Roberts et 

al. (1986), Conel etal. (1987), Crowley (1990), Farrand et al. (1994), Dwyerefa/. (1995), Ferrier 

(1995), Ben-Dor and Levin (2000) and Perry etal. (2000). Generally, the RTMs performed most 

accurately, closely followed by the empirical line method, which produces usually more accurate 

reflectance results than the other normalisation procedures that use no additional Information. The 

U.S. Geological Survey found that the hybrid RTGC method gave the best results as it corrects for 

the artefacts introduced by imperfect RTMs (Clark et al., 2002). 

Apart from reflectance calibration methods, techniques have been developed especially to enhance 

absorption features. Clark and Roush (1984) suggested calculating a continuum over each pixel 

spectrum by fitting a second-order polynomial as upper convex hull to selected channels without 

known absorption features. Dividing each pixel spectrum by its corresponding continuum spectrum 

may then reveal all absorption features, including atmospheric ones ('continuum correction' or 'hull-

quotient'). 

Crowley et al. (1989) proposed the calculation of 'Relative Absorption Band-Depth' (RBD) images to 

discern particular diagnostic absorption features known to occur for a specific scene. The method 

does not require the data to be calibrated to reflectance (only to radiance) nor to be normalised. 

Several pre-defined channels near an absorption feature shoulder are summed and then divided by 

the sum of several pre-selected channels near the feature minimum. RBD corresponds to a local 

continuum correction reducing any radiance variations related to topographic slope and albedo 

differences. Nevertheless, the choice of channels used to define an absorption band is crucial for the 

success of the method, and indicative scene absorption features have to be known in advance. 

If absorption features of particular target materials are known to exist in certain wavelength regions 

of the spectrum, Curran et al. (1998) suggested the use of PCA within those regions for the 

enhancement of very narrow absorption bands. The absorption bands discriminate best between the 

target materials and background and account for the greatest amount of variance in these regions 

(Feldman and Taranik, 1988; Hutsinpiller, 1988), which is reflected in high eigenvector loadings of 

the first PC feature(s) (see also section 2.3.5). 

Absorption Feature Detection 

All absorption feature detection methods presented in the following paragraphs require reflectance 

data as input, or at least data normalised with respect to illumination or topographic effects. 
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1) Waveform analysis 

Marsh and McKeon (1983) performed a waveform analysis outlined by Collins et al. (1981), which is 

based on a best fit of Chebyshev polynomials to the spectral curve. Absorption features are reflected 

in the variations of the polynomial coefficients. The authors plotted the ratios of two coefficients 

against wavelength to discriminate between different target materials. 

2) Absorption feature depth 

Another way to discover absorption features is to calculate the depth of potential spectral features 

and threshold it. However, this requires the definition of two absorption feature parameters, namely 

absorption wavelength position and depth. In general, the wavelength position of an absorption 

feature may be defined as the wavelength of maximum absorption, i.e. the wavelength of minimum 

reflectance value in each absorption feature. The absorption depth is the distance of the spectrum at 

the absorption feature position from a reference line characterising the absorption-free background 

signal. The latter reference line was chosen differently by several authors. For example, Kruse 

(1988) used the continuum defined by Clark and Roush (1984) to derive an absorption depth 

measure, while Okada and Iwashita (1992) made use of the upper convex hull as reference 

described by Green and Craig (1985). Rubin (1993) defined the band depth as the deviation from 

the spectrum average. The existence of an absorption channel may then be declared whenever the 

absorption depth exceeds a certain threshold. The threshold value is dependent on the data and the 

techniques applied and needs to be chosen give meaningful absorption features. 

3) Derivative analysis 

Generally, the derivative of a spectrum is its rate of change with respect to wavelength. A derivative 

spectrum may be used to emphasise changes, such as spectral absorption features, and suppress 

the mean level. With increasing order of differentiation, the more low frequency background signals 

will be suppressed, but simultaneously, the more high frequency noise will dominate the derivative 

spectrum. The latter results in an SNR decrease, which may hide absorption peaks instead of 

exposing them. In order to be able to perform repeated differentiation with experimental data, 

random noise needs to be reduced by some smoothing technique beforehand (Sonka et al., 1993). 

Demetriades-Shah et al. (1990) gave a general introduction to the use of derivative spectra in 

remote sensing, while Tsai and Philpot (1998) presented a detailed review about numerical 

derivative calculation methods and smoothing algorithms. 

A spectral absorption feature may be considered as a valley contained between two edges. The 

edge positions of the spectral feature occur where the slope of the spectral curve has a local 

128 



extremum, i.e. where its first derivative is maximum (or minimum), or equivalently, its second 

derivative equals zero. The points of extreme slope are referred to as points of inflection. 

Holden and LeDrew (1998, 1999) made use of the first- and second order derivatives to manually 

select bands ideal for remote identification of healthy and non-healthy corals using in situ 

spectroradiometer data. They plotted corresponding derivative spectra of the classes involved in one 

graph, and used opposing strong peaks of the first derivative, as well as opposite signs of the 

second derivative as indicators for potential class-discriminatory bands. 

Piech and Piech (1987, 1989) used a Gaussian filter to smooth the spectral curve and computed the 

second derivative ('Laplacian' operator) of the smoothed curve ('Laplacian of a Gaussian'). This 

process was repeated for progressively increasing filter widths (standard deviation values of the 

Gaussian filter). The wavelength positions of the resulting points of inflection were then plotted 

against their corresponding filter width values, resulting in a 'scale space image' (Witkin, 1983). 

Since the number of zero crossings does not grow with increasing smoothing scale, the plot of 

inflection points within the scale space image results in a 'fingerprint'. The latter is then used to 

locate the points of inflection of a spectral curve and to rank the spectral features according to the 

estimated relative area contained between their inflection points. 

Butler and Hopkins (1970) showed that second and higher order derivatives can be used to 

determine the peak positions of contributing absorption bands. Huguenin and Jones (1986) 

suggested three criteria to be met simultaneously for the detection of component absorption 

features: 

® the 2""̂  derivative must be negative, 

• the 4'^ derivative must be positive, and 

" the 5^ derivative must equal zero. 

Data normalisation is not necessary for the latter technique, since higher order derivatives are 

relatively insensitive to variations in illumination intensity (whether caused by sun angle, cloud cover 

or topography) and spectral variations of sunlight and skylight (Tsai and Philpot, 1998). 

Absorption Feature Identification 

After the detection of absorption features, the analyst may be interested in associating them 

individually with the classes of interest. 

If sufficient ground knowledge is available, for example in form of detailed maps of the distribution of 

classes on the ground, an image display of a detected absorption band may highlight the spatial 

distribution of the target material the absorption feature belongs to. Alternatively, the ratio or 

difference of an absorption band and an adjacent absorption-free background channel may be used 
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to display the relative absorption depth (e.g. Marsh and McKeon, 1983; Feldman and Taranik, 

1988). Up to three absorption features (or differences or ratios) may be compressed into a single 

colour-composite image (Kruse, 1988) in case multiple features belong to the same target class. 

If reference spectra of potential target classes are available in a spectral library (from previous 

imaging spectrometer, laboratory or field data) image absorption spectra may be directly compared 

to the ones in the library. This may be realised visually by the analyst, or automatically via several 

matching techniques. 

Since full spectral matching is not efficient with respect to the high spectral redundancy in imaging 

spectrometer data, codes may be used as simple representation of a pixel spectrum, allowing for 

fast automatic library searching and matching (Richards and Jia, 1999). 

Mazer et al. (1988) introduced the binary encoding technique, which encodes a spectrum by setting 

each channel to 1 or 0, depending on whether its value falls above or below a pre-defined threshold. 

Usually, the threshold is chosen as the mean value of the spectrum. Each image spectrum 

corresponds to an integer value, which is compared to the ones of the library spectra via a bit-wise 

exclusive OR operator ('Hamming distance' measure). The number of bit-matches needed for 

identification may be adjusted to allow for target spectral variability and noise. However, the method 

does not consider the absorption depth, and therefore the significance of the spectral features. 

Spectral feature fitting (SFF, Crowley et al., 1989) is an alternative spectral matching technique, 

which fits in a least-squares sense continuum-removed image spectra to continuum-removed 

reference spectra. The identity of two spectra is measured by the root mean square error (RMSE) of 

the fit. If all image spectra are compared to one reference spectrum, the RSME image may then 

reveal the pixels very similar to the selected target class. The SFF technique requires both library 

and image spectra to be calibrated to reflectance. 

If a reflectance calibration is not feasible, the spectral derivative ratio technique (Philpot, 1991) may 

be applied to compare image radiance spectra to library reflectance data. The method is based on 

the fact, that for target-specific wavelength ranges, the order of any-order derivative of the at-sensor 

radiance data at two wavelengths approximately equals the ratio of the same-order derivative of the 

spectral reflectance. 

In summary, sensor bands may be placed over certain target-specific reflectance features in order to 

derive information about the target class of interest. If the target class is known and consists a single 

substance (e.g. minerals), spectral features may be found in the literature. If the target class is 

unknown or consists of a complex mixture of material components (e.g. vegetation canopy) or has 

no published reflectance curve, laboratory, field or image measurements may then be used to detect 

class-specific spectral features. In this case, the measurements should be calibrated to reflectance 
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first, or at least normalised, to compensate for the effects of both the atmosphere and the solar 

irradiance. This will enhance the target spectral features. The features may then be extracted via 

curve fitting methods or derivative analysis of the spectral curve. If the target is unknown, known 

material classes may be associated with the spectral features via display or matching techniques. 

4.2.2 Solar Spectrum, Atmospheric Absorption and Scattering 

In this thesis, the author limited himself to the optical solar-reflective wavelength range (0.3 to 2.5 

|jm) with the Sun as the only source of illumination. Figure 4.2 shows the extraterrestrial solar 

spectrum (Wehrli, 1985), which has an irradiance peak in the visible wavelength region (around 450 

nm) and falls off rapidly, providing only little signal for the short-wave infrared wavelength region. 

Atmospheric absorption and scattering processes lessen the energy of the reflected upwelling solar 

signal measured by the sensor. Unlike for ground measurements, the atmospheric effect is 

significant for aircraft-based measurements (Richards and Jia, 1999), and together with the nature of 

the solar spectrum, it needs to be taken into account for band selection in order to achieve an 

adequate image SNR. The convolution of the solar irradiance spectrum with the atmospheric 

transmission and the target reflectance represents the amount of signal that may be received by a 

sensor from the target surface. Usually, a sensor is configured to achieve a sufficiently high image 

SNR for all bands (see section 4.2.3). 
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Figure 4.2: Extraterrestrial solar irradiance 
spectrum (Wehrli, 1985). 
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Figure 4.3: Total transmittance of the 
standard midlati tude summer atmosphere 
computed wi th the 6S code (Sun at zenith, 

1.2 km aircraft altitude, no aerosols). 
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However, some bands with high levels of atmospheric scattering and absorption may be excluded 

prior to the band selection procedure. Wavelengths below 450 nm are substantially influenced by 

atmospheric scattering and absorption (Jensen, 2000). The total transmittance through a standard 

midlatitude summer atmosphere was approximated with the 'Second Simulation of the Satellite 

Signal in the Solar Spectrum', or '6S' code (Vermote et a/., 1997) and is displayed in figure 4.3. 

The troughs in figure 4.3 represent absorption features of the main perturbing atmospheric gases in 

the solar-reflective region, that is, water vapour, ozone, oxygen and carbon dioxide. The wavelength 

centres of the major absorption bands are given in table 4.1. From these, water vapour bands clearly 

dominate the solar-reflective region from 0.7 pm onwards with respect to absorption depth and 

width. 

Table 4.1: Absorption centre wavelengths of atmospheric gases for the 
solar-reflective wavelength range (Smith, 1985; Goetz etal., 1995). 

Atmospheric gas Symbol Absorption centre wavelengths 
(pm) 

Ozone O3 0.32 - 0.36 and 0.44 - 0.74 (series 
of bands) 

Molecular oxygen O2 0.5384, 0.7621, 1.07, 1.27 
Water vapour H2O a few weak bands in the visible, 

0.72, 0.81, 0.942, 1.135, 1.379, 
1^65 

Carbon dioxide CO2 0.78 - 1.24 (a series of weak 
bands), 1.4, 1.6, 2.0 

Table 4.2; Estimated absorption width of the major water vapour bands in the solar-reflective 
wavelength region. 

Absorption centre 
wavelength 

(nm) 

Band starting 
wavelength 

(nm) 

Band ending 
wavelength 

(nm) 

Absorption 
width 
(nm) 

720 715 722 5 7.5 
810 810 825 15 
942 92A5 967 5 40 
1135 1097.5 1170 725 
1379 1340 1500 160 
1865 1767.5 1992.5 225 

Table 4.2 gives the widths of the water vapour bands as estimated from the data in figure 4.3. The 

width of an absorption feature was defined here by the difference between the wavelength of the 

starting and ending point. The starting point of the feature corresponds to the wavelength from 

where transmission begins to fall continuously until maximum absorption is reached. The ending 

point of the feature equals to the wavelength where approximately 100% transmission of the 
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atmosphere is reached again. Alternatives to the definition of absorption width are the full width at 

half maximum absorption depth (Kruse et ai. 1990), and the area of absorption between the hull 

quotient and unity divided by half of the absorption depth (Okada and Iwashita, 1992). However, the 

latter two descriptions require the determination of the absorption depth. All three definitions include 

subjective judgement of the analyst. 

For terrestrial mapping purposes, so-called 'atmospheric windows' may be defined, which are 

wavelength regions where atmospheric gases only slightly absorb radiation. Wavebands outside a 

window are excluded from data collection or processing to avoid classification degradation from 

'noisy' bands (Schowengerdt, 1997). According to the widths of major absorption bands (see figure 

4.3 and table 4.2) atmospheric windows may be identified as the following wavelength intervals: 0.3 

to 0.92 |jm, 0.97 to 1.1 pm, 1.17 to 1.34 pm, 1.5 to 1.77 pm and 2.0 to 2.4 pm. 

Experiments were performed with the 6S radiative transfer model to see whether the atmospheric 

windows inferred above remained unchanged for different amounts of water vapour (1.0 - 4.0 g/cm^) 

in a US 1962 standard atmosphere. In addition, the effects of increasing solar zenith angle (up to 

60°) and of different aircraft heights (0.8 - 1.6 km) for a midlatitude summer atmosphere were 

investigated. Figures C.I to C.6 in appendix C show that the position and width of the absorption 

features stayed the same, while their absorption depths varied only slightly for the different 

scenarios. Consequently, the atmospheric windows as defined above were confirmed and accepted 

by the author. 

The aerosol absorption effect was not considered here, since aerosols modify the solar spectrum 

over a large number of contiguous wavebands (Curran, 1994) and with less effect than certain 

atmospheric gases. Yet, bands may be selected to estimate atmospheric parameters (aerosol, water 

vapour or oxygen concentration) for atmospheric correction. CHRIS (mode 3) uses the Cimel CE 

318™ sun photometer channels at 440, 670, 870 and 1020 nm to retrieve aerosol estimates (J. 

Settle, 2003, personal communication). The traditional blue (443 nm) and NIR (865 nm) bands of 

most satellite sensors designed for vegetation mapping (see section 4.2.1) may be employed to 

estimate the size distribution of aerosol particulates (for example, see ESA, 2002b). MODIS 

provides four channels centred at 905, 936, 940 and 1375 nm for atmospheric water vapour 

estimation, while Polder-2 offers two channels with centres at 763 and 910 nm to approximate 

oxygen and water vapour contents, respectively. 

Very narrow atmospheric absorption features, e.g. the oxygen absorption band at 762 nm, may be 

used for the in-flight spectral calibration of hyperspectral sensors. A possible wavelength shift may 

be detected that arises mainly from temperature effects during aircraft operations. 
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4.2.3 Sensor Characteristics 

The image SNR for every sensor band is a necessary component to consider for band selection as it 

measures the quality of each band with respect to noise. A high SNR is valuable for detecting minor 

but potentially important differences between class spectra and therefore securing high accuracy 

and reliability of the classification result. The image SNR depends on sensor-Independent factors 

(e.g. solar irradiance, solar zenith angle, target reflectance, atmospheric state) and sensor-

dependent ones (e.g. CCD response, sensor view angle and configuration parameters during data 

acquisition). Radiometric, spatial and spectral sensor characteristics are investigated in the following 

paragraphs with respect to their potential for increasing the sensor SNR. 

Generally, the radiometric resolution is chosen by the system designers, and cannot be changed by 

the user of the system (e.g. for the CASI-2 1:4096 or 12 bit). A high SNR is normally assured by 

selecting the quantisation interval at least twice as large as the detector noise standard deviation 

(Schowengerdt, 1997). 

A large GIFOV provides more signal to the sensor than a smaller one, increasing the resulting SNR. 

The size of a GIFOV of a pushbroom sensor, such as the CASI-2, is mainly dependent on the 

aircraft altitude, but also on the aircraft speed and integration time in along-track direction (ITRES, 

2001). Consequently, a larger SNR may be achieved by flying higher, increasing the integration time 

or decreasing the aircraft speed. However, the quest for a high SNR needs to be compromised with 

feasible values for the latter parameters, and with the user's need for a specific swath width and 

GIFOV size to provide pure and sufficient training samples for his classification task (see section 

3.3.1). 

With respect to the spectral domain, a higher instrument SNR may be achieved by coarsening the 

spectral resolution, i.e. increasing the bandwidths. Some imaging spectrometers (such as the CASI-

2) are programmable, allowing on-board summation of spectral channels. It can be shown that when 

the signals of C adjacent channels are being added together, the SNR of the resulting channel will 

increase by about V c if signal and noise conditions are identical for all channels being summed. 

Apart from increasing the SNR, choosing a wider bandwidth tackles both data redundancy and 

banding noise, i.e. detector response changes from scan to scan. 

However, the selection of a certain bandwidth should be keyed to the data application at hand. The 

precise location and width of a band may be chosen to optimally discriminate between user-defined 

classes. For example, GERIS bands were selected to provide maximum SNR while retaining 

sufficient spectral resolution to identify key minerals. The bandwidths reflected the widths of the 

corresponding mineral absorption features (Kruse et al., 1990). In addition, care must be taken that 

all bands in the set obtain at least a certain percentage of the maximum achievable signal level 

(20% according to T. Wittebrood (ITRES), 2003, personal communication) to obtain an acceptable 
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SNR. For the CAS 1-2, aperture and integration time are usually adjusted by the instrument operator 

during data acquisition to produce a maximum achievable signal level of 80% to 90% for the band 

with the highest response. 

Apart from the image SNR, the sensor's data recording rate and storage capacity limits need to be 

taken into account for band selection. For example, for the CASI-2, swath width may be traded 

against spectral resolution and number of bands in order to respect the data recording rate limits of 

the removable hard drive subsystem (see section 3.2.4). Similar applies for example to the CHRIS 

satellite sensor. That is, the more channels are chosen for recording, the fewer spatial pixels may be 

recorded. 

4.2.4 Data Application 

Some application techniques need certain wavebands in order to be applicable, while others may 

benefit from a band set that was specifically designed for them, resulting in a more accurate and 

reliable end product. In this section, the author shows examples of band requirements for the 

following land cover mapping techniques: vegetation indices, the red-edge index, and land cover 

classification. 

Vegetation Indices 

Vegetation indices (Vis) have been developed for vegetation detection and generally depend on the 

red-edge feature of the vegetation spectrum (sharp reflectance increase between 690 and 720 nm). 

Most broadband Vis are based on two bands sampling the bottom (reflectance minimum) and the 

top (reflectance maximum) of the red edge using the established red (665 nm) and NIR (865 nm) 

satellite sensor bands (see 4.2.1). 

Table 4.3 presents the most common vegetation indices found in the literature and their input bands 

required. Some Vis in this table include also a blue band to correct for atmospheric effects (e.g. 

ARVi, TO AVI, EVI). The increased availability of hyperspectral data has led to the creation of 

narrow-band indices, such as the PRI using bands centred at 531 and 570 nm. Other examples 

include the DGVI which uses all sensor bands between 626 and 795 nm, or those which employ all 

sensor bands available (e.g. PCVI, GVI, TBVI, or OMBVI). 
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Table 4.3: List of most common vegetation indices with references and input band 
requirements. 

Acronym Name Reference input Bands 

RVI Ratio VI Jordan, 1969 
DVI Difference VI Lillesand and Kiefer, 1987 
WDVI Weighted Difference VI Clevers, 1988 
NDVI Normalised Difference VI Tucker, 1979 
IPVI Infrared Percentage VI Crippen, 1990 

Red, NIR 
(e.g. TM 3, 4) 

PVI Perpendicular VI Richardson and Wiegand, 
1977 

Red, NIR 
(e.g. TM 3, 4) 

SAVI Soil-Adjusted VI Huete, 1988 
MSAVI, 
MSAV^ 

Modified SAVI Qi efa/., 1994 
Rondeaux et al., 1996 
Lyon et al., 1998 

TSAVI Transformed SAVI Baret et al., 1989 
RSVI Red-edge Vegetation Stress Index Merton, 1998 
GEMI Global Environment Monitoring 

Index 
Pinty and Verstraete, 1992 

PRI Photochemical Reflectance Index Gamon et al., 1997 531 and 570 nm 
Ml VI Middle Infrared based VI Thenkabail et al., 1995 Red, MIR 

(e.g. TM 3, 5) 
ARVI Atmospherically Resistant VI Kaufman and Tanre, 1992 
TOAVI Top-Of-Atmosphere VI ESA, 2002a Blue, Red, NIR 

(e.g. TM 1,3. 4) 
EVI Enhanced VI Huete et al., 2002 
PCVI Principal Component VI Jensen, 1986 All bands 
GVI Green VI Jackson, 1983 

Crist and Cicone, 1984 
(e.g. TM 

1,2,3,4,5,7) 
DGVI First/second Derivative VI Elvidge and Chen, 1995 All bands from 

626 to 795 nm 
TBVI Two-Band VI Thenkabail et al., 2002 All bands 
OMBVI Optimum Multiple-Band VI 

Red-edge index 

The red-edge index is commonly defined as the point of maximum slope of the red-edge feature and 

has been shown to be mainly related to biophysical canopy parameters such as the leaf-area index 

(LAI) or leaf chlorophyll content (Clevers and Buker, 1991). A high and fine sampling of the red-edge 

between 670 to 780 nm is necessary for an accurate index determination with derivative-based 

methods (Horler et al., 1983; Demetriades-Shah et a/., 1990) or curve-fitting techniques (Bonham-

Carter, 1988; Clevers and Buker, 1991). For more sparsely sampled data, Dawson and Curran 

(1998) suggested a three-point Lagrangian interpolation technique for available red-edge bands, 

while Guyot and Baret (1988) proposed the use of reflectance bands centred at 670, 700, 740 and 

780 nm to approximate the red edge via linear interpolation. 
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Land cover classification 

In contrast to vegetation or red-edge indices, classification is intended to map various land cover 

classes, and not simply vegetation and non-vegetation. Complex interactions between multiple 

target class spectra may occur, excluding the instant selection of class-specific spectral features. 

For example, some classes may represent different types of the same material and share most of 

the physically-based spectral features. As a consequence, in the absence of clear class-diagnostic 

spectral features, an empirical band selection procedure aimed to maximise the final classification 

accuracy may be advisable. Mather (1999, page 33) specified the three band set parameters to be 

optimised in such a procedure; "The position in the spectrum, width and number of spectral bands 

will determine the degree to which individual targets (vegetation species, crop or rock types) can be 

discriminated". 

Generally one may distinguish between band selection methods for classification that are based on 

test statistics, eigenanalysis and distance measures. In all methods, the classification accuracy of a 

band set is approximated by measures of class separability. 

1) Band selection based on test statistics 

Some authors have used test statistics to see whether class spectra are significantly different within 

certain wavelength regions. Thomson et al. (1998a) made use of the Student's t statistic as band 

index of dissimilarity between the reflectance responses of several intertidal surface types. The 

entire VNIR spectral range under investigation was found to be useful for class discrimination after 

considering the t spectra of all class pairs. Leckie et al. (1988) employed the t - and Mann-Whitney 

hypothesis tests to find bands that significantly separate between different levels of defoliation 

caused by the spruce budworm (1 and 5% significance level). However, a hypothesis test cannot 

prioritise between bands found to be significant and, consequently, cannot indicate how well each 

band set performed. In addition, the above test statistics do not exploit the differences of second-

order statistics. 

In contrast, Kamp et al. (1997) calculated the absolute difference between the double standard 

deviations (2a) of the class spectra of interest, which account individually for 95% of all sample 

spectra belonging to one class. An absolute difference of greater than zero indicates that the classes 

can be discriminated to 95% on the basis of their second-order statistics alone. For the multiclass 

case, all spectral regions derived from the two-class differences are condensed. Obviously, the 

selected band set may be used only with classification methods based on second-order statistics, 

such as MLC. 

Nevertheless, the test statistics presented above are single-band measures and do not allow for the 

quantification of class separation performance of a specified band set. 
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2) Band selection based on eigenanalysis 

Section 2.3.5 presented methods of band selection using the results of eigenanalysis. In the context 

of supervised band selection, the supervised DA criteria and the unsupervised PCA may be 

employed to extract features that discriminate most between the predefined classes. 

The two approaches based on eigenvector loadings, discriminant power (Tu eta!., 1998) and 

MSPCA (Csillag et a/., 1993), are preferred to the methods using eigenvector axis crossings, as they 

incorporate the contribution of each band towards the eigenvector. 

3) Band selection based on distance measures 

Some authors have employed feature selection methods (section 2.2) for band selection. Both 

supervised heuristic and probabilistic distance measures were used as surrogates for MLC 

accuracy. Richter and Lehmann (1989) guided the selection of the MOMS-02 spectral bands by 

identifying high difference regions between the mean (field) spectra of seven common surface types. 

They used the Euclidean distance measure to quantify the separability between the given classes. 

Mausel et al. (1990) used the Transformed Divergence, Jeffries-Matusita, Bhattacharyya Distance 

and the Divergence measures for band selection for MLC of agricultural area. In addition a PCA was 

performed on all channels, with the highest eigenvector loadings (over 50%) indicating the bands 

most likely to discriminate between classes of interest. However, the band selection approaches 

discussed so far do not account for a bandwidth increase within the algorithm. 

Petrie et al. (1998) introduced a band selection algorithm that incorporates a band expansion 

routine. First, the best available band in terms of maximum divergence is found. Second, the best 

band is enlarged by adding neighbouring bands as long as the divergence measure increases. In a 

forward feature selection manner, the latter two steps are repeated until a desired number of bands 

plus two has been reached or all bands have been assigned. Finally, the worst two bands in terms of 

divergence are discarded. The proposed band selection algorithm is mainly based on a single-band 

measure with the band set performance only being considered when the worst two bands are 

deleted. In addition, the band expansion routine was not specified in great detail by the authors. For 

example, rules about the direction of band merger were not described. Furthermore, bands were first 

selected and then expanded, assuming that the expanded best band will equal to the best expanded 

band. 

Similarly, Withagen et al. (2001) used a forward feature selection algorithm together with the 

Mahalanobis distance as criterion function. In contrast to Petrie et al. (1998), the authors chose and 

broadened the best available band on the basis of the band set performance. A band expansion 

constraint is that the resulting band needs to be centred on the original narrow band. The merged 

band is calculated as the simple average of the intensity values of the bands involved. The authors 
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assumed that the expanded best band will equal to the best expanded band. Although the band 

selection procedure was class- and data-specific, the resulting band set was recommended to be 

generally optimal for the detection of military vehicles and land mines in a natural background. 

In the following section, an empirical band selection algorithm similar to one proposed by Withagen 

et al. (2001) was developed to define optimum band set parameters (band number, location and 

width) with respect to the accuracy of the actual classification task at hand. But unlike the 

approaches of Petrie et al. (1998) and Withagen et al. (2001), the method uses a saturated distance 

measure instead of a non-saturated one as a more representative surrogate of the MLC accuracy. In 

addition, band expansion was designed to take place before, not after, individual bands are 

selected. This is because an increase in width changes the statistics of a band. What is more, a new 

band number determination routine is employed to give estimates of intrinsic dimensionality. And 

finally, SNR issues are taken into account, which prevents the method from choosing bands that 

result in an unacceptable signal level. 

The new method recognises the need for band selection to be data-, class- and application-specific. 

For the method to take also the sensor's spatial and spectral characteristics into account, an 

example employment is described for operational use with the CASI-2. It is based on the sensor's 

capability to be programmed in spatial and spectral modes. The algorithm to be presented is 

computationally efficient, allows pre-specified bands to be incorporated into or omitted from the final 

band set. 

4.3 Supervised Band Selection Algorithm 

The aim of this section is to find a feature selection method from the ones presented in section 2.2 

that is best suited to band selection for MLC and to extend its capacity to bandwidth increase and 

band number determination. Feature selection is the process of selecting a band subset out of the 

original band set, using a criterion to rank features and a technique to search for the optimal band 

subset in a systematic way. 

The design phase of the algorithm is presented in the following paragraphs and considers the 

reliability, discriminability and computational cost of the algorithm. While the reliability assures that 

the algorithm is based on accurate assumptions, the discriminability guarantees that the algorithm 

routine chosen results in a band set with the highest class-discriminatory power. 

Computational feasibility and speed are important factors in the design phase, as the aim is to 

provide a band selection procedure that is computationally efficient. All algorithms were programmed 

in IDL (version 5.5 Win 32 x86) within the ENVI (version 3.5) processing environment and were run 
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in Windows NT on a 1 GHz Intel Pentium III processor with 256 MB RAM. Any quantifications of 

computational speed made in this section refer to these specifications. 

The two hyperspectral data sets used to evaluate the band selection algorithm were introduced in 

the pilot study (chapter 3) as the New Forest (HyMAP) and the River Severn (CASI) data sets. 

4.3.1 Algorithm Input and Output 

The band selection algorithm presented in this chapter requires hyperspectral image data recorded 

over the scene or parts of it that include all the informative classes of interest to the user. As 

described in section 4.2, band selection should also take characteristics of the Sun, the atmosphere 

and the sensor into account. These data attributes would be considered if hyperspectral data were 

acquired under the same or similar conditions as the target data to be flown. Otherwise these 

conditions need to be simulated (see section 6.6). 

A programmable imaging spectrometer such as the CASl-2 would allow using the same sensor for 

hyperspectral and final data recording. With the CASI-2's enhanced spectral mode (see chapter 1), 

288 bands may be obtained at the cost of a reduced swath width, while the spatial mode records the 

full image swath with a reduced set of up to 19 bands. A practical way for data collection would be to 

acquire first an image with a reduced FOV in hyperspectral mode over a representative part of the 

scene, which is then input into the band selection algorithm. The hyperspectral image should 

represent all target classes of interest with enough training samples to achieve adequate class 

statistics for the given number of bands. After that, the CASi-2 is programmed in the selected band 

set to record the full-swath multispectral data over the same scene. Both the hyperspectral and 

multispectral data acquisitions are to be performed with identical spatial resolution to ensure that 

similar class and data statistics result. The time between the two image flights should be minimised 

to guarantee that target class spectral characteristics and atmospheric and illumination conditions 

have not changed. For the remainder of this chapter, this image acquisition technique was assumed 

by the author. 

Apart from the hyperspectral image, the band selection algorithm expects regions of interest (ROIs), 

depicting class training areas defined by the analyst (supervised version), and their statistics (the 

class mean vectors and covariance matrices) as input. The algorithm expects that all noisy and 

faulty bands were removed from the original data set by the analyst. 

The algorithm outputs a list of the resulting band set parameters for each band, including the sensor 

channels to merge for a particular band, the (new) band centre and full-width-half-maximum 

(FWHM). If the number of bands in the set was fixed by the user, the algorithm may result in a 
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smaller band set if this target was not feasible, or may recommend a smaller number of bands 

according to the results of the band number determination procedure. 

4.3.2 Choice of Criterion Function 

The optimal feature selection criterion is the application accuracy, in this case the MLC overall 

accuracy. As stated in section 3.3.1, the 'leave-one-out' cross-validation method is best suited to 

generating the contingency table for feature selection with hyperspectral data, as it makes maximum 

use of the in situ data for defining the class statistics. As it constructs a classifier for each class 

training sample, the calculation speed is a function of the number of training samples. As the latter 

number ought to be relatively high for hyperspectral data sets to circumvent the Hughes 

phenomenon, the MLC accuracy estimate using the 'leave-one-out' method may become 

computationally very expensive. 

As a consequence, a surrogate measure for the MLC accuracy estimate is needed and possible 

candidates include the supervised distance measures reviewed in section 2.2.2, or the discriminant 

power measure determined from eigenanalysis via DAFE and presented in section 2.3.5 (equation 

2.38). All of these measures take first- and/or second-order class statistics into account. As the 

performance of the supervised feature selection criteria depends strongly on the accuracy of the 

class statistics, the most appropriate criterion was selected on a purely theoretical basis. 

In order to represent correctly the accuracy estimate of the probabilistic ML classifier, a probabilistic 

distance measure, which also makes use of the class covariance matrix (see section 2.2.2), should 

be preferred to a heuristic one, only employing the class mean vector. In addition, saturated 

measures are more likely to be justified than unsaturated ones for this algorithm, as the entire 

distance range will be evaluated. 

Regarding the multi-class form of the distance measure, the 'maximum average' was favoured to the 

'maximum minimum' type, as the latter may introduce a bias by focussing only on the class pair 

hardest to separate. Thus, from a theoretical point-of-view, either the Transformed Divergence or the 

Jeffries-Matusita distance measure should be employed as feature selection criterion. 

An experimental analysis was performed on the two data sets available for this study (New Forest 

and River Severn) to approve the theoretical choice of criterion. The value for some of the surrogate 

measures from section 2.2.2 was calculated for both multiple-band (table 2.2) and single-band 

versions (table 4.4) and linearly regressed against the corresponding MLC overall accuracy 

estimated with the leave-one-out method. 
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Table 4.4: Probabilistic distance measures for one band and normally distributed classes 

and a)„, using the class mean and variance values m and , respectively. The equations 

were derived from their corresponding counterparts in table 2.2. 

Measure Parametric Form 
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Tables C.1 and C.2 in the appendix show the regression results and the correlation coefficient for 

single-band and multiple-band surrogate measures, respectively, for both the New Forest and River 

Severn data sets. For the multiple-band measures, only two-band combinations with the best and 

the worst bands from the single-band results were evaluated in order to cover most of the value 

range of the MLC accuracy estimate. The regressions show that both the Jeffries-Matusita distance 

and Transformed Divergence measure were most correlated to the MLC accuracy estimate 

regarding all other distance measures (see table 4.5) and therefore confirm the theoretical choice. 
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Table 4.5: Correlation coefficient between the single-/multiple-band distance measures and 
the MLC overall accuracy estimated with the leave-one-out method for the New Forest and 

River Severn data set. 

Single-Band 
New Forest 

Multiple-Band 
New Forest 

Single-Band 
River Severn 

Multiple-Band 
River Severn 

Bhattacharyya 0.562 0.711 0.961 0.566 
Jeffries-
Matusita 

0.889 0.971 0.981 0.858 

Divergence 0.415 0.175 0.944 0^;63 
Transformed 
Divergence 

0.876 0.978 0 977 0.907 

Mahalanobis 0.418 0U83 0.951 0.554 
Euclidean 0.832 0.639 0.451 0.418 
City-Block 0.832 0.704 0451 &168 
Chebyschev 0.832 0 867 0.451 0 572 
Canberra 0.272 &523 (1702 &193 
Discriminant 
Power (DAFE) 

0.331 - OcWI -

In addition, the same experimental analysis was performed for the discriminant power (DP, single-

band) measure derived from the DAFE feature extraction method. The result showed a very poor 

correlation between the DP measure and MLC accuracy for both data sets. As multiple-band 

measures were needed, the DP measure was not considered any further. 

According to these theoretical and experimental results, the author chose the Transformed 

Divergence multi-class distance measure as surrogate measure for the MLC accuracy estimate, as it 

performs slightly better than the Jeffries-IVIatusita distance for the (more frequent) multiple-band 

case. 

4.3.3 Choice of Search Method 

The optimal search method is an exhaustive one. However, when the final band set is to include, for 

example, 19 bands (the maximum band set size for the CAS 1-2 spatial mode), the number of 

possible band set combinations amounts to more than 3.46 x 10^̂  and 2.04 x 10̂ ® combinations for 

the New Forest and the River Severn data set, respectively (see equation 2.25). The computation 

time of an exhaustive search with the MLC accuracy estimate (leave-one-out method using all 

samples) as criterion would total about 4.3 x 10̂ ® years for the New Forest data, while using the 

Transformed Divergence as criterion function would still need more than 1.2 x 10^* years of 

computation time. Both cases are computationally impossible tasks (see also table 3.6 in chapter 3). 

The Branch-and-bound algorithm is classified as an optimal method under the assumption that the 

criterion function always increases monotonically with addition of new features to the set. However, 

the Transformed Divergence function may drop with increasing number of bands for hyperspectral 
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data sets, when the ratio of the number of training pixels to the number of spectral bands is not high 

enough to ensure reliable class statistics (Hughes phenomenon). Consequently, this method was 

not pursued any further. 

Among the sub-optimal search methods, the 'best individual' method only delivers acceptable results 

when the bands within the original set are uncorrelated, which is an unusual case for hyperspectral 

data and therefore not applicable. 

The 'sequential forward selection' (SFS, 'bottom-up') procedure results in less computational effort 

than its backward ('top-down') counterpart for most band selection tasks, as the number of features 

to be selected for the final set (e.g. less than 20 for CAS 1-2 spatial mode) is much smaller than the 

number of original bands in the hyperspectral data set (e.g. up to 288 bands for the CAS 1-2 spectral 

mode). As the SFS successively adds features to the set, the bands may be removed in reverse 

order, allowing for flexibility in the dimensionality of the final band set. Table 3.6 in chapter 3 gives 

an example of the computation time involved with the SFS algorithm. 

The 'Max-Min' search method focuses on the optimization of the minimum criterion function value 

that the new feature achieves with each of the pre-selected features individually. While the 

computational cost is reduced as only a two-dimensional evaluation of the criterion is needed, the 

performance of the overall set, and therefore the redundancy within the set, is neglected. 

Suboptimal search methods such as beam search, genetic algorithms, and simulated annealing 

were not considered for band selection. Although they search the entire feature space by randomly 

altering some of the bands within the set to escape locally optimal solutions, they do not select 

features in order, and therefore do not allow the reduction of the dimensionality of final band set. The 

latter three methods are also more costly to implement. 

According to these theoretical results, the author chose the SFS as the search algorithm for feature 

selection based band selection. 

4.3.4 Bandwidth Increase 

As mentioned earlier, a bandwidth increase of sensor bands is beneficial 

" to reduce the amount of data to record and allow for more spatial pixels (wider swath width), 

= to suppress instrumental spectral noise increasing the signal-to-noise ratio, 

® to decrease the integration time and thus refine along-track spatial resolution, and 

= to reduce the effect of the spectral overlap among adjacent pixels on the total band signal. 

The aim of this subroutine is to merge two neighbouring bands that are redundant with respect to 

class discrimination. Physically, the increase in bandwidth is performed as a simple sum of the 
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signals (or values) of two or more bands. This simulates the CAS 1-2 on-board and in-memory 

summation of individual bands before data recording. In case two neighbouring bands are to be 

merged, the class statistics for the resulting band need to be recalculated for criterion function the 

merger is based on. Since a computation based on the training data itself is very costly, the following 

formulae based on simple additions and multiplications are applied. 

The mean of a new band merged from bands x and y is calculated using equation 4.1, 

The variance of the new band may be computed as (Weisstein, 2003); 

f l u , 

The covariance between the new band, merged from bands x and y , and another band within the 

set, for example z, can be computed as (Weisstein, 2003): 

If the band z was itself a band merged from bands 6" and t equation 4.3 could be expanded using 

the symmetry property of the covariance; 

If in equation 4.3 another band w was merged with band x + y the new band covariance could be 

computed as follows; 

+ ^ , . z + -^w,z 

The centre wavelength and the FWHM of the merged band are calculated with equations 4.6 and 

4.7. 

A + ^ 
1 _ startrow endrow , . 

^ ( 4 . D ) 

- A - A I t * ? ) 

where x FWHM Centre wavelength and FWHM of the new merged band 

X FWHM Centre wavelength and FWHM of the start row of the merger 

A FWHM Centre wavelength and FWHM of the end row of the merger 
endrow' endrow 

The criterion function for bandwidth increase may be based on the increase in classification 

performance of either the single band or the entire set after band merger, using the classification 

accuracy measure or a surrogate, such as the Transformed Divergence. Petrie et al. (1998) and 

Csillag et al. (1993) employed the single-band measures as the basis for merging adjacent bands. 
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while Warner et a/. (1999) and Withagen et al. (2001) took the set performance into account. Here, 

the percentage Increase in Transformed Divergence for the entire band set was preferred as 

criterion function to the corresponding individual band criterion. The ultimate aim of the band 

selection process is to apply the selected band set in its entirety for MLC, rather than extracting 

individual bands from it for single-band use. 

The bandwidth increase and ranking routines are applied alternately in the procedure to guarantee 

that maximum band expansion is possible at any given set dimension. In contrast to the band 

selection procedures of Petrie et al. (1998) and Withagen et al. (2001), bandwidth increase in this 

algorithm takes place before a new centre band location is found. Bandwidth increase alters the 

performance of the band set, and all bands are expanded independently and compared first, before 

the best expanded band is chosen, in addition, adjacent narrow bands chosen for the final band set 

should not be merged by default, as they may, for example, exploit the top and bottom of a narrow 

spectral feature. 

With respect to the direction of band broadening, both mergers of a band with its left and right 

neighbours are compared in terms of overall set performance, and the merger leading to the better 

performance is carried out. The process is repeated until both left and right mergers decrease the 

overall set accuracy. This procedure assumes that a band expansion in a direction of performance 

decrease will lead to added deterioration in the discrimination ability of the set. 

The user is presented with three algorithm options: 

1) to force all bands to be merged with an equal number of neighbours, where the number is 

determined by the user, 

2) to force all bands to be merged with an equal number of neighbours, where the number is 

determined by the algorithm, 

3) to allow bands to be merged with an unequal number of neighbours, where the number is 

determined by the algorithm. 

Option 1 and 2 allow the user to choose equal bandwidths and even to fix the bandwidth in option 1 

setting in order to gain further control over the resulting band set. For example, an equal bandwidth 

across all bands may be useful if further data are to be acquired in CASI-2's enhanced spectral 

mode (see chapter 1). 

In option 3 bands are allowed to expand independently, allowing for the most optimal band set to 

emerge. However, to ensure that all bands in the set obtain a sufficiently high signal level (at least 

about 20%, see section 4.2.3), a constraint to algorithm 3 was introduced. A band may not be 

increased further in width if the smallest of all band means in the set becomes a user-defined 

percentage (lower limit 20%) smaller than its mean. If an expanded band does not achieve a 

sufficiently high signal level, it is not considered for the final band set. This percentage constraint 
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does not apply to the first band as it may not be compared with subsequently selected bands. If the 

signal level of the first band is too high and the user-defined number of bands cannot be reached, its 

width is reduced by one row in an iterative fashion until the desired number of bands may be 

obtained for the set. 

4.3.5 Band Number Determination 

In general, classification accuracy is a saturating function of the number of input bands, and beyond 

a certain threshold the increase in the number of bands does not produce any significant 

improvement in classification accuracy. This section aims to determine this threshold, i.e. the 

optimum band number. 

Clearly, the upper limit of the number of bands is dictated by the sensor type and its operational 

mode. For example, for the acquisition of a CASI-2 image data in spatial mode, a maximum of 19 

out of 288 bands may be selected. With respect to the maximum achievable classification accuracy, 

two cases may then be distinguished. The best 19-band subset may result in significantly less 

classification accuracy than the complete band set does, and all 19 bands will be required to achieve 

the best possible result. Or, the accuracy values achieved with the 19-band and the full band set 

may not differ significantly from each other, as additional dimensions may not add any extra 

discriminatory power to the band set. 

In the latter case, the question may be asked whether even 19 bands are indeed necessary to 

achieve the maximum classification accuracy of the full band set, or whether fewer bands may 

produce results of similar accuracy. This section aims to provide an answer to this problem, which is 

of particular importance when dealing with highly redundant imaging spectrometry data. Hughes 

phenomenon may occur and the optimum classification accuracy may be obtained with much less 

than 19 bands. 

In chapters 2 and 3, intrinsic dimensionality (ID) estimation methods were discussed and applied, 

respectively. As the classification was chosen as final data application, only methods for the 

determination of the supervised ID (the intrinsic discriminant dimensionality, IDD) are considered 

here. In section 2.4, the IDD was defined as the minimum number of features needed to obtain the 

same classification accuracy as could be obtained in the original feature space. 

As original bands, and not transformed features, are to be selected by the algorithm, IDD methods 

based on eigenanalysis are less appropriate. Consequently, the aim is to find an upper bound to the 

real IDD estimate which may be defined as the minimum number of bands needed to obtain the 

same classification accuracy as could be obtained in the original feature space. The constraint that 

the IDD estimate should not exceed the maximum number of linearly independent features (that is. 

147 



M ~l, where M is the number of classes, see section 2.4), is not valid for band selection, as 

bands are in general highly correlated features. 

All other non-eigenanalysis-based IDD methods were investigated if they could be used to 

determine the optimal band number. The statistical methods that test whether the difference 

between the classification accuracy of subsequent band subsets is significant or not, require 

knowledge of the distribution of the classification accuracy measure (see section 2.4.2). However, in 

this band selection algorithm, the classification accuracy was approximated by the Transformed 

Divergence measure, the statistical distribution of which is unknown. The latter may be estimated 

under high computational cost via density estimation methods, such as Monte Carlo simulations, 

assuming a normal and symmetric distribution (Bressan and Vitria, 2002). The latter was not 

attempted in this study due to computational reasons, as for each band set dimension, a density 

estimation needed to be performed. 

The band number determination technique should satisfy the following needs of the band selection 

algorithm: 

• to find the optimal band set dimension which achieves maximum classification accuracy, 

= to consider Hughes phenomenon, and 

= to allow for statistically dependent bands and a sub-optimal best band set. 

The latter requirement reflects the correlated nature of the bands and the sub-optimality of the 

search procedure in the feature selection process. 

Inspired by the heuristic ID approximation method 'Proportion of total variance' (section 2.4.1), the 

author defined the 'proportion of maximum achievable Transformed Divergence', PMATD, which is 

calculated by dividing the TD value of a band subset by the maximum achievable TD value of the 

entire band set. The PMATD is based on the linear relationship between the TD and the MLC 

accuracy, that is, the PMATD approximates the proportion of maximum achievable MLC accuracy 

(PMAMA). Then, the optimal number of bands equals to the dimension of the smallest band set, 

which achieves a certain PMATD, for example 95% or 99%. 

Assuming that the TD measure is monotonically increasing with growing number of bands, the 

maximum achievable TD value is reached using all bands of the set. However, Hughes 

phenomenon may occur and the maximum achievable TD value may be reached by a band subset 

of much smaller dimension. Therefore, the algorithm compares the TD values of the best subsets of 

smaller dimension than the 'allowable' number of dimensions (e.g. 19 bands for the CAS I-2 spatial 

mode, or user-defined) with the TD performance of the full set, and the highest value is chosen as 

the maximum achievable TD value. 
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If any subset of dimension smaller than or equal to the maximum allowable number of bands (19 for 

CAS 1-2 spatial mode) does not achieve 95% or 99% of the maximum TD value, the maximum 

allowable number will be chosen as the optimal band number. 

This subroutine gives inaccurate proportions if the maximum achievable TD value occurs for a 

dimension between the 'allowable' and the total number of bands. However, for most hyperspectral 

data sets saturation occurs at a low number of dimensions, and choosing the 'allowable' number of 

bands high enough (e.g. between 10 and 20) may circumvent this problem. In addition, supplying an 

adequate number of training samples (see section 3.3.1) may prevent the event of Hughes 

phenomenon altogether. 

An advantage of this routine is that it is application-oriented, using an approximation of the 

proportion of maximum achievable MLC accuracy. It is not based on absolute values of TD, as the 

latter depend on the data and the definition of training sites and classes. The error of this technique 

is controlled, as a certain percentage of TD, and therefore classification accuracy, will be 

guaranteed, if the number of maximum allowable features is high enough and all assumptions made 

earlier apply. 

4.3.6 Algorithm Implementation 

A computer program SBS (Supervised Band Selection) has been written using this algorithm and is 

described in appendix G. A flowchart of the algorithm is presented in figure 4.4, which is based on 

the routines described above. 

The algorithm has been written in IDL (version 5.5 Win 32 x86) and ENVI (version 3.5), and reads 

the image file, the class ROIs, and class statistics. The user has the option to select certain bands to 

be either used in the final band set or excluded from it (e.g. noisy bands, bands outside atmospheric 

windows, absorption bands, bands from a specific wavelength range). 

In general, the SBS program is computationally highly efficient. The total execution time amounts to 

about 40 seconds if 19 optimal bands are to be selected from the 117 bands of the New Forest data 

set. The computation time mainly depends on the number of classes and output bands specified by 

the user. If an output image was to be created from the optimal band set, the running time would be 

significantly increased. The latter is dependent on the size of the data set, but also on the number 

and width of the output bands. Creating an output image of the first three optimal bands of the New 

Forest data set in the above example adds 25 seconds to the total computation time (5 bands to 

read). 
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Figure 4.4; Data flowchart of the SBS {Supervised Band Selection) program 
with algorithm options displayed on the right side. 
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4.4 Algorithm Evaluation 

This section aims to assess the value of the proposed algorithm and its results qualitatively and 

quantitatively with respect to its reliability, consistency, and effectiveness. 

4.4.1 Qualitative Evaluation 

The first six 'optimal' SBS bands derived for the New Forest and the River Severn data sets and 

their corresponding class scheme are listed in table 4.6 and plotted against a vegetation spectrum in 

figures 4.5 and 4.6, respectively. The band sets were selected with the constraint that the minimum 

signal mean was equal to at least 30% of the maximum band mean. 

For the New Forest band set, the best six bands chosen by the algorithm stem from the NIR and 

SWIR wavelength range. The first band is located on the NIR plateau, and corresponds to the 

traditional vegetation band centred on 865 nm. Bands 3 and 6 are two adjacent bands positioned at 

the upper end of the red-edge feature. The latter three bands are sensitive to the structure of the 

vegetation canopy and the percentage soil covered. Bands 2 and 4 are centred on 1580 nm and 

2110 nm, respectively, and are narrow-band equivalents to Landsat ETM+ bands 5 (1550 - 1750 

nm) and 7 (2090 - 2350 nm), which are both sensitive to vegetation moisture content. Band 5, 

placed at 1330 nm between the two water absorption features at 1135 and 1379 nm, is sensitive to 

canopy structure and water content. As most of the image consists of vegetation classes (grassland, 

bracken, valley mire, dry, humid and wet heath) that differ more in their canopy structure and 

moisture content than in their chlorophyll content, the band selection result is accepted as a sensible 

choice. 

For the River Severn band set, the blue CASI bands were excluded from band selection as they 

were perceived as noisy (see section 3.2.1). The first band chosen by the algorithm is a relatively 

broad band situated on the green slope near the red chlorophyll absorption peak. The wavelength 

region around the red band is generally known to potentially differentiate between different 

vegetation types. The second best band is found on the NIR plateau, which is sensitive to canopy 

structure and helps to delineate the land-water interface. The third and fourth band sample the 

bottom and top end of the red-edge feature and are both responsive to chlorophyll variations in the 

canopy. Band 5 and 6 further sample the green slope and the high NIR response of vegetation, 

respectively. Salt-marshes are highly complex mixtures of different intertidal vegetation types (here 

high, mid, and pioneer marsh classes), bare rock and mud. The salt-marsh vegetation classes are 

distinguishable from each other and the Bare Rock and Mud classes principally by their canopy 

structure and chlorophyll content, which is reflected in the choice of the bands. 
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Table 4.6; First 6 optimal bands selected by the SBS algorithm for the New Forest and River 
Severn data set with respect to their corresponding classification task (see table 3.9 and 3.8). 

New Forest River Severn 
Band Band Band Band Band Band Band Band Band 

number centre width start end centre width start end 
[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nml 

1 867.4 31.25 851.775 883.025 639.9 31.5 624.15 655.65 
2 1583.5 16.2 1575.4 1591.6 910.9 8.8 906.5 915.3 
3 738.1 15.7 730.25 745.95 704.7 8.8 700.3 709.1 
4 2109.75 38.15 2090.675 2128.825 758.2 8.8 753.8 762.6 
5 1330.2 29.9 1315.25 1345.15 594.45 16.1 586.4 602.5 
6 760,95 30.4 745.75 776.15 796.4 8.8 792 800.8 
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Figure 4.5: First six bands selected by SBS for the New Forest classification task (see table 
3.9 and 4.6). Wavelengths not available for band selection are indicated by grey bars. 
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Figure 4.6: First six bands selected by SBS for the River Severn classification task (see table 
3.8 and 4.6). Wavelengths not available for band selection are indicated by grey bars. 
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When generating colour composites from the best band triplet, six RGB combinations are possible, 

and the question arises which RGB colour should be assigned to which bands. The eye can 

discriminate colour best in the yellow, the combination of red and green light ('hue discrimination 

curve'; Gregory, 1977). Therefore, the two most informative bands could be assigned to the red and 

green channels, the third most informative band to the blue channel. Sheffield (1985) and Drury 

(1993) both agreed with this allocation. Sheffield (1985) recommended further to assign the band 

with maximum information to the green channel, as the eye was more sensitive to green than to red. 

In contrast, Drury (1993) advised the most informative band to be displayed in red, but does not 

provide a reason for this recommendation. 

Apart from the pure physiology of the human eye, the psychology and sense of aesthetics of an 

individual also have an influence on how much information is read from a colour image, and whether 

it pleases the eye or not. The latter effects can easily be underestimated, and the author believed 

that a colour composite should be chosen to associate familiar objects with their natural colours. For 

this reason, the RGB colour assignment for the New Forest best band triplet was chosen to display 

grass in a greenish colour (figure 4.7), while that of the River Severn data set was chosen to show 

the bare mud class in blue (the latter class is regularly inundated by water; figure 4.9). 

Both figures 4.7 and 4.9 show a high contrast in colour between the different vegetation classes 

involved. For the New Forest data and the given RGB band combination, the asphalt road and the 

lake appear black in colour, whereas bracken occupies the cyan and dry heath the crimson colour. 

Wet and humid heath and valley mire may be distinguished from different tones ranging from salmon 

red to dark green (see also classified image in figure 3.5). Regarding the River Severn colour 

composite of the optimal three bands, pioneer, mid and high marsh vegetation is coloured in bright 

orange - red, red - blue, and yellow, respectively. Bare rock appears white in the image and bare 

mud blue (see classified image in figure 3.4). Figures 4.8 and 4,10 display the resulting map of the 

New Forest and River Severn classification task, respectively, using the six bands selected by the 

SBS algorithm (see table 4.6). 
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Figure 4.7: Masl<ed HylVlAP New Forest data displayed using the f irst three optimal bands 
output by the SBS algorithm (see table 4.6, R = band 2, G = band 1 , 8 = band 3). 
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Figure 4.8: New Forest IVIaximum Likelihood Classification result using the first six bands 
selected by the SBS algorithm (see table 4.6; Lake, blue; Asphalt , white; Bracken, yellow; Dry 

Heath, orange; Grassland, brightest green; Humid Heath, br ight green; Wet Heath, green; 
Valley Mire, dark green). 
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Figure 4.9: IVIaslted CAS! River Severn data displayed using the first three optimal bands 
output by the SBS algorithm (see table 4.6, R = band 2, G = band 3, B = band 1). 

Figure 4.10: River Severn Maximum Likelihood Classification result using the f irst six bands 
selected by the SBS algorithm (see table 4.6; Bare Rock, whi te; Pioneer Marsh, bright green; 

Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
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4.4.2 Reliability 

The reliability of the band selection algorithm was judged by questioning the appropriateness or 

accuracy of its assumptions and routines. 

" The band selection method assumes that image data recorded in multiple flight-lines over 

the same scene with the same image acquisition parameters will result in similar image 

pixels. In general, this assumption is appropriate as long as the H-resolution case applies 

(and all other parameters remain the same). This is true most of the time when using high 

spatial resolution airborne data for classification purposes. 

" The method further assumes that the separation between the spectra of user-defined 

classes remains the same between the hyperspectral and multispectral image acquisitions. 

To ensure the suitability of this assumption, the time lag between the two data recordings 

needs to be minimised. 

" The band selection algorithm assumes the class samples to be normally distributed. The 

user of the algorithm is advised to test the normality of the class data during the class 

definition and training process (see section 3.3.1). 

• The band location, width and number estimation routines are all based on the linear 

relationship between the Transformed Divergence (TD) and the MLC accuracy. The 

accuracy of these subroutines then depends partly on the appropriateness of this 

relationship. For the given data sets, the multiple-band TD was shown to be highly 

correlated to MLC accuracy, more than any other distance measure (see table 4.5). 

Generally this assumption is valid as the TD was derived directly from an upper bound to the 

error probability (Fu, 1982). 

• The sub-optimal SFS search procedure was employed for the band location determination, 

where the sub-optimality of the results is computationally impossible to quantify for the given 

data sets and classification schemes (see above). However, the SFS procedure is optimal 

for uncorrelated features. That is, for a correlated set of hyperspectral bands, the first few 

relatively uncorrelated bands chosen by the SFS are more likely to be optimal than the 

highly redundant remainder of the selected band set. 

• The band number determination routine assumes that the maximum achievable MLC 

accuracy is not produced by a band set of dimension between the allowable and the total 

number of bands. The error of this assumption may only be quantified by performing an 

extensive search with the MLC accuracy measure as criterion function, which is impossible 

to perform due to the immense computational cost involved. The inappropriateness of the 

assumption may be reduced by choosing a higher number of training samples or allowable 
y 

bands (see above). 
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4.4.3 Consistency 

The algorithm is consistent in that it is repeatable, assuming no two TD estimates are equal for the 

band location and number determination, and band broadening sub-routines. However, the ordering 

of bands within the band location determination subroutine depends on the bands already selected 

for the set. That is, the output band set may only be reduced by repeatedly discarding the feature 

added last to it. Removing the first band from the 'optimal' set destroys the validity of the order of 

subsequent bands. 

4.4.4 Effectiveness 

Sub-optimality of the algorithm 

The sub-optimality of the band selection algorithm was quantified in terms of MLC accuracy by 

deriving the best sets of one, two and three bands with an exhaustive search using the MLC 

accuracy measure and the SBS band selection algorithm (no bandwidth increase). Only band sets 

up to three dimensions were selected for the exhaustive search to be computationally feasible. 

Figures 4.11 and 4.12 display the MLC accuracy of the best band sets for the New Forest and River 

Severn data set, respectively. 

ILC-LXH 

Nimnber of b a n d s Number of barxls 

Figure 4.11: MLC accuracy of optimal band Figure 4.12: MLC accuracy of optimal band 
sets derived using an exhaustive search with sets derived using an exhaustive search with 

MLC accuracy (MLC-EXH) and the SBS MLC accuracy (MLC-EXH) and the SBS 
algorithm for the New Forest data set. algorithm fo r the River Severn data set. 
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From figure 4.11 it can be seen that the band subsets selected with the SBS algorithm for the New 

Forest data set results in a maximum 4% loss in accuracy. For the River Severn data set, this 

accuracy loss reaches a maximum of 6%. The percentage difference for the New Forest data set is 

statistically insignificant, mainly due to the fact that the number of testing samples were reduced 

from 9400 to 130 to make the method computationally feasible. However, the largest percentage 

loss is significant for the River Severn data set, where 780 testing pixels were used for accuracy 

estimation. 

Comparison of 'optimal' SBS band set to 'established' band sets 

The 'optimal' band set output by the SBS algorithm ('unequal bandwidth' option) was evaluated 

regarding the established 'vegetation' and 'coastal' band sets used in current satellite and airborne 

sensors. As for some of the latter band sets no band ordering was available, the comparison was 

only performed for the full band sets. This was necessary, as otherwise ambiguity would have been 

introduced. In general, water vapour and oxygen absorption bands as well as specific bands for 

aerosol determination were excluded from the comparison as these serve principally the purpose of 

atmospheric correction. An exact sensor band simulation was generally not possible, as the bands 

of the given hyperspectral data were sometimes equal or larger in width, or did not cover the entire 

spectral range of some of the bands to be simulated. 

Table C.3 presents the satellite and airborne band sets used for comparison and their simulation 

with the available HyMAP and CAS! data. The band sets to be simulated include the vegetation 

bands from CHRIS (mode 3), Landsat ETM+, MERIS, MISR and MODIS, as well as vegetation 

bands specifically designed for the NERC CAS 1-2 sensor (NERC ARSF, 2002) and the Environment 

Agency (EA) CAS I-2 (K. Brown, 2002, personal communication). In addition, 'coastal' band sets 

such as the one designed for the EA CAS 1-2 (K. Brown, 2002, personal communication) and the 

BIOTA band set, designed to discriminate between intertidal and marine suspended sediments, 

chlorophyll and plant tissue of intertidal vegetation communities (Thomson et al., 1998a), are 

compared to the band set recommended by the algorithm with respect to their classification 

performance for the River Severn CASI data. 

Figures 4.13 and 4.14 show the MLC accuracy of different simulated satellite and airborne sensor 

band sets in comparison with the SBS band set for the New Forest and the River Severn data, 

respectively. For the New Forest data set, the SBS band set performed superior to any of the 

simulated band sets in corresponding dimensions. The differences in classification accuracy 

between the SBS subset and the comparable band sets were significant in all cases and range from 

1.7% for MISR to 0.15% for MODIS. The largest difference occurred for a small band set dimension. 

For the River Severn data set, the latter pattern was repeated. However, the SBS band set appears 

to have superior performance only for dimension three and four, with a maximum difference in 

classification accuracy of 4.6% for the MODIS band set. Above ten bands the available band sets 
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performed similar or better than the SBS band set. For example, the classification accuracy of the 

EA coastal band set was about 0.7% higher than that of the SBS set. 

5B 
* 

X ETM+ 
MER^ 

O MGR 
d MOD IS 
a NERCVEG 

6 8 10 12 M 

Band Set Dimension 

Figure 4.13: MLC accuracy of the SBS band 
set compared with the one of satellite and 
airborne band sets for the New Forest data 

set. 
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Figure 4.14: MLC accuracy of the SBS band 
set compared with the one of satellite and 

airborne band sets for the River Severn data 
set. 

Band number evaluation 

Regarding the evaluation of the band number criterion (the proportion of maximum achievable 

Transformed Divergence, PMATD), the validity of the proportion of maximum achievable MLC 

accuracy (PMAMA) as IDD estimation measure had to be tested. The PMATD is an approximation 

of the PMAMA. Table 4.7 displays the PMAMA and the PMATD for the first five bands of the New 

Forest and River Severn data set. 

For the SBS algorithm, the optimal number of bands was defined as the dimension of the smallest 

band set that achieves a PMATD of at least 95%. If 95% is chosen as the threshold for the PMAMA, 

the optimal band number can be determined as 2 and 3 for the New Forest and River Severn data 

set, respectively (see table 4.7). These values coincide with the lower values of the estimated IDD 

ranges in chapter 3. The corresponding PMATD criterion gives an IDD estimate of 2 and 4 for the 

New Forest and River Severn data set. respectively, using the 95% threshold. The estimate is exact 

for the New Forest data set, but overestimates the lowest IDD value of the River Severn data set by 

one. However, the latter still falls in the IDD range estimated in chapter 3. 
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Table 4.7: Proportion of maximum achievable Transformed Divergence (PMATD) and MLC 
accuracy (PMAMA) for the first five dimensions of the SBS band set selected for the New 

Forest and River Severn data sets. 

Band 
number 

New Forest River Severn Band 
number PMAMA PMATD PMAMA PMATD 

1 7&18245 89.74730 79.72142 82.39539 
2 98.74942 98.96224 90.71178 90.75644 
3 98.99402 99.44225 96.51071 93.44345 
4 99.43002 99.68375 96.66257 96.40755 
5 99.48319 99.80777 97.22867 97.24103 

4.5 Summary 

Hyperspectral imagery offers many narrow spectral bands to exploit subtle spectral differences 

between target classes of interest, potentially increasing application accuracy (in this chapter the 

author focussed on classification as the application task). However, reduced classification accuracy 

could result from high-dimensional imagery if an insufficient number of training samples were 

available. What is more, hyperspectral data are often redundant and large in volume that is difficult 

to record, store, transmit or process efficiently. 

Band selection is a way of reducing data dimensionality at sensor level and is necessary for sensor 

design studies and the use of imaging spectrometers that are limited in the amount of data they can 

record (e.g. the CASI-2). This chapter focuses on band selection for imaging spectrometers with 

Maximum Likelihood classification as the final data application. 

A supervised band selection (SBS) algorithm is proposed that aims to optimise band configuration 

parameters with respect to the accuracy of the classification task at hand. It is based on 

conventional feature selection methods that select the most class-discriminant bands on the basis of 

the user-defined class definition and the given data set. By doing so, the routine automatically 

reduces the high correlation between spectrometer bands and maximises the signal, that is, the 

class-discriminant information. In addition, it introduces the bandwidth and band number as 

variables into the feature selection process. The technique assumes the class samples to be 

normally distributed, and a linear relationship between the MLC accuracy and its surrogate, the 

Transformed Divergence (TD). 

The SBS procedure is similar to the band selection approaches developed independently by Petrie 

et al. (1998) and Withagen et al. (2001). But contrary to the latter approaches, SBS utilises a 

saturated criterion function as opposed to a non-saturated one, which has a stronger linear 

relationship with the MLC application accuracy. In addition, band expansion takes place before, not 

after, band location determination. This is because bandwidth increase will alter the performance of 
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the band set. SBS introduced also a band expansion constraint based on the band SNR to assure 

that all bands achieve a sufficient signal level. What is more, a band number determination 

procedure was added to SBS to give an estimate of the intrinsic discriminant dimensionality of the 

data set. 

The algorithm requires hyperspectral data of the target scene and a user-defined class set. The 

hyperspectral data should be acquired under similar conditions (sensor, scene, illumination) as the 

target data, or conditions need to be simulated. To take sensor characteristics (e.g. spatial and 

spectral resolution, point-spread function, instrumental noise) as well as the scene of interest into 

account, the programmable imaging spectrometer CAS I-2 may be used for the collection of both the 

hyperspectral and multispectral data. However, a trade-off exists between number of spatial pixels 

and that of spectral channels that can be recorded. A reduced-swath hyperspectral CAS I-2 image 

over a representative part of the scene may be acquired first, on which band selection is performed. 

A full-swath multispectral CAS I-2 image may then be recorded over the same scene using the 

selected band set. The approach assumes the H-resolution case, which Is generally applicable to 

remote sensing for classification, and requires the time gap between hyperspectral and multispectral 

acquisitions to be minimised to avoid changes in the class spectral responses and illumination 

conditions. 

The band selection algorithm was implemented in an efficient IDL™ (version 5.5 Win 32 x86) and 

ENVI™ (version 3.5) program called SBS (Supervised Band Selection), that can be run within 

ENVI™. The program options include to either force the bands to be of equal width (can be used for 

creating a band set for CASI-2's enhanced spectral mode) or letting the bands expand freely to 

achieve the highest criterion performance (optimal band set). In addition, specific bands or classes 

may be included in the evaluation or excluded from it. 

The algorithm was evaluated by applying it to hyperspectral data from the CASI and HyMAP 

sensors. The resulting optimal band configurations were found to be physically meaningful with 

respect to the classes under investigation. The sub-optimality of the feature selection part of the 

algorithm was quantified by performing an exhaustive search using the MLC accuracy measure and 

comparing the 'exhaustive' and SBS band set in terms of MLC accuracy. For the first three 

dimensions, the use of the SBS band set resulted in a maximum loss in accuracy of 4% and 6% for 

the New Forest and River Severn data set, respectively. This sub-optimality of the algorithm is the 

cost to pay for its computational feasibility and efficiency. 

Furthermore, the MLC accuracy of the SBS band set was compared with the one of established 

'vegetation' and 'coastal' band sets used in current satellite and airborne sensors and simulated with 

the given data sets. For both data sets, the SBS set performed superior to the traditional band sets 

at least for the first few dimensions. This may be explained by the fact that traditional band sets do 

not necessarily discriminate between the user-defined classes but sample the most important 
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spectral features of a general material class. The SBS band set for the CASI data set 

underperformed slightly for higher dimensions, exposing the sub-optimality of the algorithm. The 

algorithm therefore seems to be more applicable for deriving band subsets of small dimension for 

the given data sets, in other words, it achieves the aim of identifying the most computationally-

efficient solution to the problem of each specific classification task. 

The band number criterion, that is, the proportion of maximum achievable Transformed Divergence 

PIVIATD with a 95% threshold, was shown to be an effective measure of the intrinsic discriminant 

dimensionality (IDD) of the given data sets. The PMATD coincided with the lower value of the IDD 

range estimated for the New Forest data set in chapter 3, while it overestimated the lower IDD value 

of the River Severn data set by one, but falling still within the estimated IDD range. 

Being a supervised method, SBS depends on accurate class definition. As the latter is an elaborate 

and often non-trivial task, the SBS cannot be employed in-flight between data acquisitions. To be 

able to perform band selection in-flight, an unsupervised band selection routine was developed, and 

this is described in the following chapter. 
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5 Unsupervised Band Selection for Classification 

5.1 Introduction 

This chapter focuses on the development of an automatic unsupervised band selection procedure 

wKh MLC as final data application. The ideal output is a band set optimised in band number, width 

and location with respect to the MLC accuracy. Generally, an unsupervised algorithm does not 

require any class information, and may rely entirely on band statistics. That is, statistics are no 

longer calculated for homogeneous class areas, but for entire band images, which may be 

inhomogeneous. In order to ensure the validity of the band statistics for a given data set, univariate 

assumptions need to be verified for each band within the set (see section 5.2). 

The MLC accuracy may no longer be approximated via multiple-band class distance measures as in 

the supervised SBS algorithm described in chapter 4, but indirectly via band image quality measures 

instead. Section 5.3 discusses the use of unsupervised feature selection criteria (see section 2.2.2) 

as possible measures of image quality with respect to MLC as application task. The latter single-

band measures do not account for the redundancy between hyperspectral bands, and section 5.4 

presents possible measures of redundancy. 

A correlation-based band selection algorithm, UBS, is then described in section 5.5, which 

addresses both image quality and redundancy problems mentioned above. The latter requires band 

variables to be normally distributed, which may not be the case for each data set. As an alternative 

to UBS, CSBS, an unsupervised version of the SBS algorithm, is presented in section 5.6, which 

uses a clustering procedure to define the classes within the scene. Both algorithms were 

programmed in IDL™ (version 5.5 Win 32 x86) within the ENVI™ (version 3.5) processing 

environment and were run in Windows NT on a 1 GHz Intel Pentium III processor with 256 MB RAM. 

Any quantifications of computational speed made in this chapter refer to these specifications, if not 

otherwise stated. 

One objective of this chapter was to create an algorithm that can be used in-flight for the CAS 1-2 

imaging spectrometer, where the data collection followed the procedure described in section 4.3.1. 

Therefore, computational efficiency and speed needed to be considered in the design phase of the 

band selection programs to allow for their real-time and in-flight executions. 

The two hypers pectral data sets introduced in the pilot study (chapter 3) as the New Forest and the 

River Severn data sets were used to evaluate the band selection algorithms (section 5.7). In section 

5.8, a concluding summary is presented. 
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5.2 Testing Univariate Assumptions 

Most measurement processes are assumed to sample a random variable, i.e. a variable w/ith an 

uncertain outcome (Hoel, 1984). In addition, data are assumed to come from a single process that 

can be represented by a single distribution with both a fixed location and a fixed variation. Most 

classical methods assume a normal data distribution. The validity of conclusions drawn from any 

scientific method is intrinsically linked to the validity of the latter univariate assumptions, and may be 

tested via graphical and quantitative techniques. 

5.2.1 Graphical Techniques 

Graphical techniques for testing univariate assumptions include: 

1) the run sequence plot, 

2) the lag plot, and 

3) the histogram. 

The run sequence plot displays the sequence of data points (and rows) for the entire image. A flat 

and non-drifting graph suggests the presence of a fixed location, while a constant vertical spread 

over all samples implies a fixed variation of the underlying distribution. A drifting location and 

variation result in a poor and biased single estimate of central tendency and spread, respectively. 

The lag plot with lag equals one shows direct neighbouring values plotted against each other (here 

only horizontal and vertical neighbours). It tests the spatial correlation of neighbouring data pixels. 

The plot shows no structure for random data. If non-randomness is detected, all of the usual 

parameter estimates and their uncertainties may become meaningless and statistical tests invalid. 

The histogram is a widely used frequency plot for data value intervals of the same width (bins), used 

to summarise the distribution of a univariate data set. It shows the centre, spread and the skewness 

of data, as well as the presence of outliers and multiple modes. Its shape may help to decide 

whether the data follow a certain type of distribution. In this study, the author was interested in 

assessing the normality of the underlying data. The corresponding normal probability density 

function was plotted over the histogram to illustrate any similarities in shape. Non-normality can 

manifest itself in a double peak (measurements are being drawn from two or more distributions), in 

long tails (indicating outliers in the process), in a flat pattern or a pattern with two peaks at either end 

(process is not in control or not properly specified). 

The histogram is sensitive to the number, width and placement of bins, and any change in the latter 

parameters may indicate a different result as to whether the data are normally distributed or not. An 

optimal choice of bin width does not exist, as this depends on the data distribution. Most reasonable 
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choices should produce similar but not identical results. Dataplot™, a public-domain multi-platform 

software system for statistical analysis, calculates the bin width by multiplying the sample standard 

deviation with a factor of 0.3 (Filliben and Heckert, 2002). 

5.2.2 Quantitative Techniques 

Quantitative tests for normal distributional adequacy include the Kolmogorov-Smirnov test, the 

Anderson-Darling test, and the Chi-Square Test of Independence. While the former tests are both 

limited to continuous distributions, the latter test of independence can be applied to any univariate 

distribution. Remotely-sensed data have a discrete distribution, as only integer values are possible 

as a result of data quantisation. 

The Chi-square (% ^) test of independence is applied to nominal (binned) data and compares 

observed with expected (normal) frequencies. The % ^ statistic is calculated with equation 5.1. Its 

distribution is well known and tabulated. 

Where ^ 2 Chi-squared test statistic 

O. Observed frequency for bin i 

^ Expected frequency for bin z 

6 Number of non-empty (> 5) bins 

For % ^ to be valid for discrete distributions, the expected frequencies need to be at least 5 for each 

bin, otherwise bins need to be combined to achieve this minimum frequency. The null hypothesis Ho 

of the test assumes that the observed and expected frequencies are independent. The alternative 

hypothesis is that a relationship exists between the data. The level of significance a is commonly 

set to 1% or 5%, so that one has one or five chances in 100 of making a type I error. The critical 

value xl.df is the upper alpha percentile point of the chi-squared distribution with df degrees of 

freedom, df equals 6 — 1 minus the number of estimated parameters (2 for a normal distribution). 

The decision rule is: Reject Ho if % ^ ^ , otherwise accept Ho- For a large number of samples 

> 30), the % ̂  distribution approximates the normal distribution closely (Hinton, 1995). The % ^ 

test of independence is sensitive to the choice of bins. 

In addition to the quantitative methods described above, a correlation coefficient may be computed 

between the histogram data and a theoretical normal distribution. The correlation coefficient r can 
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be compared to a table of critical values to provide a formal test of the null hypothesis Ho that 

the data do not come from a normal distribution, with N being the number of data pairs. The 

decision rule is: Reject Ho if r > r ^ ĵ  , otherwise accept Hq. This test is a lower one-tailed test, as 

perfect normality implies the maximum correlation value of 1 and the interest in this test lies in 

rejecting normality for correlation values that are too low. The table of critical values may be found in 

NIST/SEMATECH (2003). This test of normality is also susceptible to the selection of bins. 

Most methods in pattern recognition and statistics require that the data variables follow a normal 

distribution, or one that is derived from the normal distribution (such as the t, F, or % ̂  distribution). 

If the variables are found not to be normally distributed, 'non-parametric' methods, equivalently 

referred to as 'parameter-free' or 'distribution-free' methods, can be used. These techniques require 

few assumptions about the underlying populations from which the data are obtained, in particular 

forgoing the traditional normality assumption. 

5.2.3 Application to Remotely-Sensed Data 

Sensor bands may be considered as random variables belonging to a single normal distribution, 

when measured over pixels belonging to the same homogeneous class. However, for the 

unsupervised band selection program to be described in section 5.5, the knowledge of certain class 

areas is not available, and pixels of the entire scene are now considered as measurements of one 

band. However, a remotely-sensed image scene hardly ever consists of one single homogeneous 

class, but of several distinct classes. That is, data arise from multiple distributions rather than a 

single one, resulting in several data clusters in feature space. The assumption of a single underlying 

distribution for a band measured over an entire image scene may only hold if most of the scene was 

made up of the same material. That is, if an algorithm uses band statistics, such as band mean and 

variance, the normality assumption needs to be verified for each image band. 

The above graphical techniques were applied to some bands of the New Forest and River Severn 

imagery, and results are displayed for some of the bands in appendix D. 

The run sequence plots for the bands of the New Forest data (see table D.1) clearly expose a 

strongly drifting location and variation for the data. Bands 18 to 60 show a less pronounced change, 

but the variations in location and spread are still significant. The run sequence plots for the bands of 

the River Severn data (see table D.2) start with a relatively fixed mean and spread for the first few 

bands. However, the differences of location and variation increase for the remainder of the bands. 

The lag plot for the bands of the New Forest and River Severn data are presented in tables D.3 and 

D.4, respectively. The lag plots of the New Forest data clearly show the data points distributed along 
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the identity line, revealing a strong spatial correlation between neighbouring pixels. The shape 

transforms slowly from a 'spinning top' (band 1) to a diagonal ellipse (band 19). and maintains the 

elliptical shape until it transforms back to a 'spinning top' (band 88). In contrast, the lag plots of the 

River Severn data maintain an elliptical shape surrounded by a cloud of data points that even 

transforms into a near-circular shape for bands 31 to 34, suggesting a smaller spatial autocorrelation 

than for the New Forest data. For MLC-type data application tasks that use remotely-sensed 

imagery, usually high spatial autocorrelation is required in order to obtain the desired H-resolution 

case. Data points should therefore fall close to the identity line. 

The histogram of the New Forest bands (table D.5) show mostly a single centre with a relatively 

symmetrical spread, suggesting that the data have a single underlying distribution. A long tail to 

large DN (digital number) values indicates the presence of outliers. The histograms are generally too 

peaked and skewed to fit the normal probability distribution function, however a relatively good fit 

may be observed for bands 19 to 30. Table D.6 displays the histograms of some of the bands of the 

River Severn imagery, which clearly exhibit a bimodal distribution for some bands. For bands 34 to 

38, the second peak is hidden, but re-emerges slightly for the remaining bands. The single-peaked 

histograms fail to match the corresponding normal curve due to their strong peakedness and 

skewness. 

The results of the chi-squared test and the significance test of the correlation coefficient are shown 

for the New Forest and River Severn data in tables D.7 and D.8. Only a few bands of the New 

Forest data were shown to be approximately normally distributed by the significance test of the 

correlation coefficient (for bands 19 to 26 and 29 to 31, the independence hypothesis was rejected 

at a significance level of 1%, for bands 17 and 32 at a significance level of 5%). The chi-squared test 

did not suggest a normal distribution of any of the bands of the two data sets. 

5.3 Image Quality Measures 

Clearly, the definition of 'image quality' is dependent of the application of the image data. For MLC 

as data application, a band image may be considered of higher quality if it conveys more 

discriminant information about the classes of interest than a noisy image does. As classes of interest 

are unknown in the unsupervised case, information need to be quantified in a class-independent 

way. 

Some unsupervised measures equate image variance with information, assuming that the noise 

within the data is small relative to the signal (Richards and Jia, 1999). In short, the higher the scene 

variance, the more class discrimination is possible. These measures include the band variance itself, 

the discriminant power measure determined from eigenanalysis via PCA (section 2.3.5, equation 

2.38), the Priority Number criterion and the coefficient of variation (section 2.2.2). 
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However, if the noise proportion becomes larger with respect to the signal, the variance image 

statistic also measures noise. Then, a noisy scene image with low class discriminatory power may 

equally result in a high scene variance. 

The signal-to-noise ratio (SNR) is one of the most common measures of image quality (Green et a/., 

1988) and may be defined as ratio between signal and noise (see section 2.2.2). The information of 

interest to the user is inherent in the signal and may be estimated with the image band mean to be 

representative for the entire image scene. Different methods for image noise estimation exist and 

are presented in section 2.3.2. In general, the author preferred noise estimates derived from dark 

data to those from scene-based data. 

SNR differences between bands may be due to solar, atmospheric and instrumental influences on 

the radiance signal, as well as the scene reflectance. One might assume that the SNR and MLC 

accuracy are positively correlated, as an image high in noise (and low in SNR) would lead to a lower 

MLC accuracy and vice versa. However, if SNR increase is achieved, for example, via band 

expansion, the MLC accuracy may suffer, as broader bands may discriminate less between the 

given classes. That is, only a very loose relationship exists between the SNR and MLC accuracy. 

Spatial autocorrelation, e.g. calculated using Geary's c-metric (Geary, 1954; see section 2.3.2), may 

also be used as image quality measure. The higher correlated neighbouring pixels are, the less 

noise may be present in the image. 

In an experimental analysis, the appropriateness of the above image quality measures as relative 

estimates for the MLC accuracy was tested. Table 5.1 shows the correlation coefficient between the 

MLC accuracy estimated with the 'leave-one-out' method (see section 3.3.1) and the unsupervised 

criterion functions for the New Forest and River Severn data and class sets. Their corresponding 

scatter plots may be found in tables F.1 and F.2 in the appendix. Regarding the band SNR, the 

standard deviation of a homogeneous area was used as noise estimate for the River Severn data, 

as dark current data were only available for the New Forest data set. 

Table 5.1; Correlation coefficient between unsupervised cr i ter ion functions and the MLC 
overall accuracy estimated with the leave-one-out method for the New Forest and River 

Severn data set. 

New Forest River Severn 

Variance 0.824 -0.766 
Discriminant power (PCA) 0J67 -0.734 
Priority number criterion 0 779 41780 
Band SNR 0732 -0.844 
Coefficient of variation -0.799 41168 
Geary's c metric 41353 41084 
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The variance-based criterion functions, including band variance, discriminant power and priority 

number criterion, as well as the band SNR showed a relatively high correlation with MLC accuracy 

estimation for both data sets. However, in case of the New Forest data set, this relation was positive, 

while it was negative for the River Severn data set. This suggests that all these measures are not 

reliable estimates for ML classification accuracy, being able to represent either information or noise, 

depending on the quality and heterogeneity of the data set. In this case, the River Severn data set 

was on the whole much more heterogeneous than the New Forest one. 

Both the band coefficient of variation (here defined as the ratio between band standard deviation 

and mean) and Geary's c metric are, as measures of image noise, negatively correlated to the MLC 

accuracy, which is reflected in the correlation coefficient for both data sets. However, for both 

criteria, the correlation to MLC accuracy is very low for at least one of the two data sets. 

As a result from the experiment, none of the unsupervised image quality measures under 

investigation represents a consistent estimator of MLC accuracy. However, if a choice was to be 

made, the author would prefer the SNR as quality measure as it is computationally cheap and scales 

the signal component with the noise component. The latter is important, as a band with a small noise 

estimate may only be considered 'information-bearing' if the signal of the band is relatively high. The 

dark current standard deviation should be preferred to the homogeneous-area standard deviation as 

detector noise estimate. It is more accurate and particularly important for imaging spectrometers 

using separate detectors for different wavelength ranges (such as HyMAP), as the noise originating 

from different detectors may vary. 

Figures 5.1 and 5.2 display the result of the SNR value calculation for the New Forest and River 

Severn data set, respectively. In both cases, the signal for each band was estimated with the image 

band mean. For the New Forest image, the noise covariance matrix was derived directly from 

HyMAP's dark current measurements. As dark data were not available for the River Severn CAS! 

image, the noise covariance matrix was derived with the 'shift difference' technique from a spatially 

and spectrally homogeneous Bare Mud region within the image (see section 3.4.1). To note is that 

the calculated SNR of the New Forest imagery (figure 5.1) does not represent realistic values, as the 

dark data were not scaled to the same unit as the band mean, that is, reflectance. 

It may be noticed that in both cases the SNR curve resembled roughly the mean spectrum, a 

vegetation spectrum. However, in both cases the NIR plateau includes a fall of SNR suggesting a 

noise increase between detectors (HyMAP data) or at the end of a detector (CASI imagery). In 

addition, it may be seen from figure 5.1 that the HyMAP sensor noise is higher in the SWIR region 

than in the VIS or NIR. 
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Figure 5.1: Band Signal-to Noise Ratio (solid 
line) and mean (dashed line) for the New 

Forest data set with the noise estimated from 
dark current data. 
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Figure 5.2: Band Signal-to Noise Ratio (solid 
line) and mean (dashed line) for the River 
Severn data set with the noise estimated 

from a bare mud image region. 

Image quality estimates including the band SNR are single-band measures only and do not explain 

the redundancy between hyperspectral bands. The next section introduces potential measures of 

band redundancy. 

5.4 Redundancy Measures 

The algorithm in section 5.5 is designed to find a set of bands that are least redundant with each 

other for a given scene. In the context of MLC, a band in a band set may be called redundant if it 

does not convey any more information for class discrimination than the rest of the bands in the set 

do. That is, redundant bands within a band set do not contribute to a significant increase in the band 

set classification accuracy. 

For the unsupervised algorithm in section 5.5, an unsupervised measure is needed to estimate the 

redundancy between bands with respect to the MLC accuracy. Chang et al. (1999) used the 

divergence to measure the overlap between band distributions in order to eliminate redundant 

bands. If the distance measure was below an empirically chosen threshold, the bands were 

assumed to be highly redundant and were removed. However, the divergence only quantifies the 

'shape' difference between two band histograms, not the redundancy of the bands. Two bands with 

identical distributions may result from highly non-redundant band images that have a different spatial 

distribution of DN values. 
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5.4.1 Correlation 

In general, correlation is used to describe a relationship between two variables / and / . To 

measure the strength and the direction of a linear correlation, the Pearson (or product-moment) 

correlation coefficient, (or r ), introduced in sections 2.1, 2.2.2 and 3.3.2 may be calculated. 

Equation 2.4 illustrates that r corresponds to the covariance of standardised variables, where the 

covariance is a measure of how much the deviations of two variables match, r ranges from -1 

(perfect negative correlation) over 0 (lack of correlation) to 1 (perfect positive correlation). If only the 

strength of a relationship is of interest, the coefficient of determination, , is reported, which 

corresponds to the proportion of common variation in the two variables. 

The calculation of r assumes 

• data to be measured on an interval or ratio scale, 

® variables to be normally distributed, 

' measurement errors to be small, 

" the underlying relationship between variables to be linear, and 

• the relationship between the two variables to remain constant at all points (homoscedasticity). 

Examining the scatter plot of the two variables may check both the homoscedasticity and linearity 

assumptions. Points should be evenly spread around the regression line. Any outliers or isolated 

points and clusters can strongly influence the strength of the correlation. Unfortunately, a widely 

accepted method to remove outliers does not exist. Attempts to deal with nonlinear relationships 

include the removal of nonlinearity by some logarithmic or square root data transformation, or the 

use of a less sensitive nonparametric correlation coefficient (see section 5.4.2). 

The reliability or significance of a correlation, i.e. the likelihood of achieving the same correlation if 

another sample from the same population was drawn, may be tested with significance tests. 

Generally, the stronger the correlation, the more reliable it is. In addition, the significance of a 

correlation is a function of the sample size. A small correlation can only be proven to be significant in 

large samples, whereas a strong one may be found significant even in a small sample size. For 

example, in a coin tossing experiment with 10 samples, a heads to tails frequency ratio of 49:51 is 

harder to prove than a ratio of 0:100. That is, if the sample size is small, the probability of a random 

deviation (noise) is high, while it decreases with increasing sample size. A highly significant 

correlation does not automatically imply that the correlation is strong. 

Significance tests in general aim to check whether a relation of a given magnitude or larger from a 

sample of given size is likely or not. They usually assume no such relation between the variables in 

the population (null hypothesis), and quantify the probability of this hypothesis. If this probability is 

very small, conventionally below 5% or 1% (significance level a ), the null hypothesis can be 
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rejected with 95% or 99% (xinfidence, respectively. The significance level is the probability of 

making a type I error, i.e. rejecting the null hypothesis although it is true. 

To test the significance of a correlation, first the null hypothesis 'No correlation exists between the 

variables' is stated ('test for zero correlation'). It can be shown that, assuming a zero population 

correlation, the distribution of the sample correlation coefficient r based on N pairs of 

observations follows a distribution, which is related to the Student's ^-distribution with N -2 

degrees of freedom for small N according to equation 5.2 (Owen, 1962). 

For large N , the sampling distribution of is approximately normal, but bounded at -1 and 1. Any 

value of r may be transformed to a standard variable according to equation 5.3 assuming zero 

population correlation (Edwards, 1984): 

V A ^ - 3 
z , . = 

2 
[ln(l + r ) - I n ( l - r ) ] (5.3) 

With the knowledge of the distribution of the test statistic under the assumption of zero correlation, a 

critical value (or for large # ) at a chosen significance level a may be calculated for the 

statistic. Standard tables of critical values exist for the t - and z -distributions for certain significance 

levels and a certain range of degrees of freedom. If a table was calculated for two-tailed tests, 

corresponding values for one-tailed tests may be found in the column for twice the significance level. 

The following decision rules for rejecting the null hypothesis (for small N ) are possible, depending 

on whether a one-tailed or two-tailed test for zero correlation has been chosen: 

" One-sided upper-tail test with alternative hypothesis 'Variables are positively correlated': 

Reject null hypothesis, if ^ . 

® One-sided lower-tail test with alternative hypothesis 'Variables are negatively correlated': 

Reject null hypothesis, if / < - t ^ . 

= Two-sided test with alternative hypothesis 'Variables are correlated': 

Reject null hypothesis, if |r| > -

For large # , use and instead of ^ and , respectively. If the null hypothesis is rejected, a 

significant correlation is said to exist between the variables for the given experiment at the chosen 

level of significance. In other words, the correlation is big enough to reject the possibility that it arose 

by chance. One-tailed tests are statistically more powerful than two-tailed ones, as they decrease 

the probability of making a type II error, i.e. accepting the null hypothesis although it is not true. 
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The matrices of the coefficient of determination for the River Severn and New Forest data sets are 

displayed in figures 3.10 and 3.11, respectively, and discussed in section 3.3.2. As for both data 

sets, N is large (379,169 and 43,720 samples for the New Forest and the River Severn data set, 

respectively), the large sample approximation of the critical value may be applied. For a two-

sided test and a significance level of 1 % (5%), equals to 2.576 (1.960). Figures 5.3 and 5.4 

show the significance of the correlation coefficients at a significance level of 1% in form of a binary 

image for the New Forest and River Severn data sets, respectively. The significant correlation 

coefficients are marked white and the insignificant ones black. For both data sets, the majority of all 

correlations between bands is statistically significant. 
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Figure 5.3: Significance (1%) of the 
correlation coefficients for the New Forest 
data set (significant = white, Insignificant = 

black; axes = band number). 

Figure 5.4; Significance (1%) of the 
correlation coeff icients for the River Severn 
data set (significant = white, insignificant = 

black; axes = band number). 

5.4.2 Nonparametric Correlation IMeasures 

If the measured samples are not normally distributed, the calculation of the correlation as indicator of 

a relationship between two variables may be misleading. Nonparametric equivalents to the Pearson 

correlation coefficient include Spearman's and Kendall's rank correlation coefficient, which are only 

based on the ranks of the data. The former is described further as an example. The Spearman rank 

correlation coefficient, , is defined by equation 5.4 (Owen, 1962). 

' i = 1 - !=1 

A / ' 

(5.4) 
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Where ^ Spearman's rank correlation coefficient 

d. Difference between the ranks of the i th pair of item 

iV Number of pairs of items 

The distribution for assuming a zero population correlation is known and critical values ^ are 

tabulated (Owen, 1962, table A.31). The same decision rules apply as for the Pearson correlation 

coefficient replacing ^ and with and ^ , respectively. For large # , the standardised form of 

, may be calculated (with equation 5.5), which has an asymptotic z -distribution if N tends to 

infinity and the null hypothesis is true. 

r j ( 5 . 5 ) 

For the large-sample approximation, the same decision rules apply as for the Pearson correlation 

coefficient, replacing ( and with r j and , respectively. 

Although requires the variable only to be measured on an ordinal scale and forgoes the normality 

assumption of the variables, it is generally considered statistically less efficient and powerful as its 

parametric counterpart, that is, it may not detect a correlation when that correlation actually exists. 

Normal distribution based tests may still be used with non-normally distributed variables for large 

sample sizes, as the consequences of violating the normality assumption have been shown to be 

less severe than previously thought (Statsoft, Inc., 2002). However, the user has to be aware that 

some conclusions may not be valid. 

5.4.3 Multiple Correlation 

The algorithm in this chapter is designed to find a set of bands that are least redundant with each 

other and with any combination of other bands within the set. The multiple correlation coefficient 

Ry ,2 may be used as a measure of redundancy of a new band Y with the entire band set (bands 1 

and 2 ). Ry takes values between 0 and 1, and its square form, the coefficient of determination 

for multiple correlation, R^ , represents the variability of band Y that is explained by bands 1 and 

2 . Usually, R^ ,2 is computed directly via regression using original data. However, for large data 

sets, such as hyperspectral image data with a high number of bands (about 100 or more), each 

containing 100,000 samples or more, computer memory problems for standard regression software 

packages (such as ENVI™) may occur. Therefore, the author sought an alternative and more 

efficient way of calculating *he band correlation matrix alone. 
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If all bands were mutually uncorrelated, the variability of 7 explained by both bands 1 and 2 , ,2 -

may be computed by the simple sum of the variability of 7 explained by band 1, , and that 

explained by band 2 , r / j (see equation 5.6). This is because the contribution of band 1 to the 

value of j2 is unique and independent of the contribution of band 2 (Edwards, 1984). The 

generalisation of equation 5.6 to any number of mutually orthogonal bands, k , is shown in equation 

5.7. 

Rin-'i+r}, (5-6) 

^ ^Y2 + '73 '"Vi (5.7) 

However, hyperspectral image bands are usually highly correlated, and the above formulae result in 

an incorrect estimate of the coefficient of multiple determination. In order to correct equation 5.6 for 

correlated bands, the variability in that is explained by band 1 needs to be removed. This is 

achieved by first calculating the correlation of bands Y and 2 having removed the effects of band 

1, that is, the partial correlation coefficient Tyj i (equation 5.8; Hinton, 1995). Equation 5.9 gives the 

formula to partial out the effects of more than one band (here bands 1 and 2 ) on the correlation of 

Y a n d S . 

_ (5.9) 
' y i n -

1 " ^y2.i " ^2.1 

But ry2,i does no longer apply to the entire variability of Y , but to the one that remains after the 

variability of Y explained by band 1 has been removed, that is to ( 1 — ). The correct formula for 

,2 when bands 1 and 2 are correlated is given in equation 5.10 (Hinton, 1995). 

+ ^2 .1 ) ( 5 1 0 ) 

^y.i23 " ^ y . i 2 ^ ) 

Similarly, the coefficient of multiple determination may be computed for any number of bands in a 

recursive fashion. An example is given in equation 5.11 for i?y • Using formulae 5.6 to 5.11, the 

multiple correlation coefficient may be determined entirely on the basis of the band correlation 

matrix. 

The significance of a multiple correlation may be tested with the F -test (equation 5.12), with 

degrees of freedom ^ - 1 ) , where N is the number of samples and k the number of 

independent variables (number of bands already in the set). The F -statistic (or variance ratio) 
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divides the estimated variance of the 'explained variability' by the one of the 'unexplained variability' 

(Hinton, 1995). 

J ? " / A : 
F (5.12) 

The F -distributions are [<nown and critical values F^ for a certain significance level a (usually 1 

and 5%) and any combination of degrees of freedom (even up to infinity) are tabulated. The null 

hypothesis assumes no systematic difference between the variances of 'explained' and 'unexplained 

variability' ( f = 1), i.e. no significant multiple correlation. The decision rule for rejecting the null 

hypothesis is given as follows: 

" One-sided upper-tail test with alternative hypothesis 'Multiple correlation is significant': 

Reject null hypothesis, if F > . 

From equation 5.12 and the latter decision rule, a lower limit of for its significance at a given 

level may be calculated for the given data sets (sample number N ) and the number of bands 

already in the set ( ^ ) (see table 5.2). 

Table 5.2: Lower l imi ts of the coef f ic ient of mul t ip le de te rm ina t i on fo r stat is t ical 

s ign i f i cance at a level of 1% and 5% fo r the New Forest and R i v e r Severn data sets, k is t h e 

number o f bands already in the band set when the n e w band is added. 

k New Forest R i ve r Severn k 
1% 5% 1% 5% 

2 0.002485 0.001628 0.021096 0.013736 
3 0.003004 0.002081 0.025929 0.017854 
4 0.003466 0.002468 0.030368 0.021696 
5 0.004051 0.002996 0.03453 0.02534 
6 0.004463 0.00335 0.038495 0.028842 
7 0.00485 0.00368 0.042229 0.032138 
8 0.005221 0.004001 0.045944 0.035461 
9 0.005765 0.004512 0.049579 0.038721 

10 0.006111 0.004817 0.053124 0.041928 
11 0.006449 0.005114 0.056518 0.044965 
12 0.006985 0.005617 0.059956 0.048082 
13 0.007314 0.005905 0.06335 0.051173 
14 0.007627 0.006185 0.066698 0.054236 
15 0.008155 0.006696 0.069904 0.05713 
16 0.008468 0.006968 0.073181 0.06014 
17 0.008773 0.007232 0.076432 0.063132 

From table 5.2 it may be seen that in order to become insignificant R values have to reach below 

0.01 and 0.1 in magnitude for the New Forest and River Severn data set, respectively, and a 

maximum of 19 output bands. 
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5.5 Correlation-Based Algorithm 

Both the problem of redundancy and Image quality stand at the heart of this algorithm (see sections 

5.3 and 5.4). Selecting bands entirely on the basis of a high SNR value may result in a band set of 

high image quality but also of high redundancy. For hyperspectral remote sensing data, the author 

perceived redundancy as the greater dilemma, as sensor noise from current airborne sensors is 

usually very low (e.g. high SNRs for CAS 1-2 and HyMAP sensors of up to 500:1 in the solar 

reflective range, see table 1.3) and the few noisy bands usually at the edges of detectors may be 

singled out by the analyst. 

5.5.1 Decorrelation 

The first main aim of this algorithm is to produce an approximately decorrelated set of bands where 

the bands are ranked according to increasing correlation. The first two bands are the least 

correlated, and added bands become more redundant with respect to the band set with increasing 

band number. 

Decorrelation of a set of redundant features may be defined as the process of transforming original 

features to a reduced set of mutually statistically independent features that explain the majority of 

the variance in the data set. Generally, decorrelation is performed with PCA, as during this 

transformation the covariance matrix (and the correlation matrix) will be diagonalised, and therefore 

resulting features orthogonalised. However, PCA produces new features that usually do not relate to 

the original sensor bands on a one-to-one basis, but are linear combinations of all original bands, 

destroying the integrity of the data. That is. without modifications PCA cannot be employed directly 

for decorrelating a band set, when original bands should result. 

Some authors use PCA results indirectly to select least correlated bands. Thomson et al. (1998a) 

used the eigenvector loadings of a PC feature as indicator of the domination of bands in the linear 

combination to eliminate highly redundant bands. Higher order PCs may be ignored as they provide 

little significant information for separating different classes in an image (Richards and Jia, 1999). 

This procedure is similar to calculating the discriminant power measure from PC features (section 

2.3.5). However, this methodology involves subjective judgement of the user about the level of noise 

within a certain band, that is, when to ignore a PC and when not. Whether or not to include certain 

bands within an eigenvector is also not clear. 

Gruninger et al. (2001) presented a sequential unsupervised band selection method, which aims to 

eliminate redundant bands using a modified Gram-Schmidt procedure. First, the brightest band is 

chosen and removed from the remaining bands via convex projection. As each band mean 

represents a vector in feature space, the latter projection practically subtracts the longest vector 
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from all other vectors. Then, the second band is selected as the brightest, i.e. the longest, remaining 

vector and is in turn removed from all other vectors not yet in the band set. This process is repeated 

for all bands. When terminated, highly correlated neighbouring bands may be merged using a 

correlation threshold. However, this procedure relies on the vector length as a measure of 

redundancy between the removed vector and the remaining vectors. This may be misleading as 

vectors (bands) may be of different length (brightness). As a result, a brighter but more correlated 

band may be chosen over a darker but less correlated one. 

Some decorrelating band selection procedures were created mainly to produce most informative 

colour composites. Chavez et al. (1982) developed the Optimal Index Factor (OIF) measure, which 

ratios the sum of the standard deviations of all three bands with the sum of the absolute correlation 

coefficients between any two of the three bands. All possible band combinations need to be 

investigated before the one with a maximum OIF is chosen. Sheffield (1985) selected the band 

triplet which maximised the volume of the ellipsoid defined by the 3 by 3 covariance submatrix. The 

volume may be calculated by the determinant of the covariance submatrix. This method discourages 

the selection of highly correlated bands, as in such cases one eigenvalue will be close to zero giving 

a small ellipsoid volume. Crippen (1987) advised to use the band correlation matrix instead of the 

covariance matrix in the latter method to eliminate band scaling effects on the result. Both of the 

methods described above are applicable to higher dimensional output band sets. However, 

Chavez's method exploits only pairwise and not multiple correlations, and uses variance as measure 

of information. Sheffield's method relies on the calculation of the determinant of a matrix, involving 

higher computational cost for higher-dimensional matrices. 

In this thesis, the author chose the coefficient of multiple determination, , to decorrelate the band 

set. The latter reflects the percentage variance of a new band that is explained by the bands already 

within the set, i.e. by any possible linear combination of them. Then, a band set is decorrelated by 

first choosing the bands with the least correlation between them. Any additional band to be included 

into the set needs to have the least with respect to the bands already in the 'decorrelated' set. 

As sensor bands are by nature statistically dependent features, this decorrelation process will not 

result in an orthogonal band set, but in a set of approximately least redundant bands. 

For the decorrelation result to be appropriate, noisy bands need to be either excluded from the 

process or smoothed with some spatial filter beforehand. Noise can result in a low correlation 

coefficient. 
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5.5.2 Bandwidth Increase 

The second aim of this algorithm is to increase the width of individual bands within the set in order to 

both improve the band image quality (and hopefully the application accuracy) and allow for finer 

spatial resolution or a larger swath width (as for the CASI-2) in the sensor configuration. 

However, there is a general trade-off between bandwidth increase and achieving minimum band 

correlation in the set. The author demonstrated in a mathematical proof in appendix E that once the 

least correlated bands have been chosen within a set, any increase in width of one of the bands will 

result in a higher correlation coefficient. Consequently, the user should have the option to either f ix 

the bandwidth to a certain number of neighbouring bands to be summed, or let the algorithm expand 

the bands freely without a bandwidth constraint. 

As mentioned earlier in section 4.3.4, the merger of adjacent bands may improve the image quality 

(here the SNR) and possibly the IVILC performance of the band set. However, broader bands may 

discriminate less between the given classes. The SNR is therefore not the ideal criterion to be used 

for MLC accuracy increase with band expansion, but it has been chosen from other image quality 

measures due to the reasons described in section 5.3. 

The width of a band may then be increased as follows. The adjacent band leading to a better SNR 

performance of the band is merged. If an expansion into a certain direction drops the SNR, the 

bandwidth is no longer increased in this direction. A drop in SNR may occur when a band is merged 

to another one with a smaller SNR. This process is repeated until both left and right band mergers 

decrease the SNR of the expanded band. The actual merger of bands involves simply summing their 

DN values (see section 4.3.4), and the signal and noise statistics are updated according to 

equations 4.1 to 4.5. By summing the DN signals between neighbouring bands, the bandpass is 

automatically taken care of. 

If the user lets the algorithm to broaden bands freely in order to maximise the band SNR, the same 

constraint to the 'unequal bandwidth' option for the supervised band selection algorithm needs to be 

applied (see section 4.3.4). This is to ensure that all bands in the set obtain at least a certain 

percentage (20%) of the maximum achievable signal level. 

5.5.3 Band Number Determination 

This section aims to determine the optimal band number for the final set. As in the supervised case, 

the question may be asked whether the user- or sensor-defined output band number is actually 

necessary to achieve the same IVILC accuracy as with the full band set, or whether fewer bands may 

produce similar results. 
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For the algorithm described here, class information is not available to produce an estimate for the 

intrinsic discriminant dimensionality (IDD). In addition, intrinsic dimensionality (ID) estimation 

methods are not applicable, as original bands are to be selected by the algorithm, and not linearly 

independent features. In the following paragraph, a measure is descr ibed which represents an upper 

limit to the ID estimate. 

In the algorithm described above, the band with the minimum coeff icient of (multiple) determination 

regarding previously selected bands is chosen as next member of the set. It is the band among all 

remaining bands with the highest percentage variance that is not explained by the bands already 

within the set. If this unexplained variance decreases below 5% or 1 % for the actual band (above an 

value of 95% or 99%, respectively), the addition of the actual or any further band can be 

regarded as an insignificant contribution of variance to the set. The opt imum band number then 

equals to the size of the band set including the last band that does not exceed the given 

threshold (e.g. 95% or 99%). 

5.5.4 Algorithm Implementation 

As increasing the width of a band changes its correlation with any other band, band expansion has 

to precede any decorrelation procedure. Hence, the following unsupervised band selection approach 

is proposed. 

1) Bandwidth increase of all bands in turn: First, the bandwidth of all bands is increased 

independently under the constraints that the SNR is improved by the band merger, and that only 

spectrally adjacent bands may be merged. 

2) Selection of the first band(s): Second, according to the user's choice the band with the highest 

SNR or the band pair with the least coefficient of determination is chosen as the first band(s) in 

the final set. 

3) Bandwidth increase of available bands in turn: Third, the bandwidth of all remaining bands is 

increased under the same constraints as in 1). 

4) Select additional band: Fourth, the band with the least coefficient of (multiple) determination with 

respect to already selected bands is added to the set. 

5) Repetition of step 3) and 4) until the user-specified number of f inal bands is reached. 

A list of selected bands results, showing least correlated bands on top of the list, and the most 

redundant ones at the bottom. 

The user may limit the input data by excluding certain bands from the algorithm either via direct 

selection or rejecting any bands outside the atmospheric windows determined in section 4.2.2. In 

addition, the user has the option to influence parts of the algorithm. In point 2, the selection of the 
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first band (pair) may be based on ttie highest SNR band value or the least coefficient of 

determination. The user may also guide the band expansion process (points 1 and 3) by introducing 

an 'equal bandwidth' constraint, which forces the bands in the set to be merged with an equal 

number of neighbours. What is more, the number of bands to be merged may be fixed to a certain 

value. In case of an 'unequal bandwidth' setting, bands are allowed to expand independently. Here 

the user has the option to set the maximum bandwidth to a specific value. 

If a high number of output bands is chosen, together with a large maximum bandwidth, the number 

of available bands may be reduced quickly as wide bands may be selected for the first bands of the 

set. If no rows are left to fill the remaining places of the set, the algorithm iterates reducing the width 

of the first band by one row (if possible). 

The algorithm options described above are illustrated in figure G.5 and may be used to trade 

between the influences of decorrelation and noise reduction on the final band set. 

The algorithm was extended to include user-specified bands in the final band set (for example 

certain material absorption features), defined either by row number or wavelength interval. The 

algorithm then chooses the remaining bands with respect to these pre-selected bands and the user-

specified algorithm options. 

A computer program UBS (Unsupervised Band Selection) was written in IDL™ (version 5.5 Win 32 

x86) and ENVI™ (version 3.5) using this algorithm and is described in Appendix section G.2. A 

flowchart of the algorithm is presented in figure 5.5, which is based on the routine described above. 

Altogether, the UBS program is computationally highly efficient. The total execution time amounts to 

about 8 seconds if 19 optimal bands are to be selected from the 117 bands of the New Forest data 

set. The computation time mainly depends on the number of output bands specified by the user. If 

an output image was to be created from the optimal band set, the running time would be significantly 

increased. The latter is dependent on the size of the data set, but also on the number and width of 

the output bands. Reading and writing an output image of one of the bands of the New Forest data 

set adds about 5 seconds to the total computation time. 

The UBS algorithm assumes that the band variables are normally distributed. However, as shown in 

section 5.2.3, this assumption is inappropriate for most of the New Forest and River Severn bands. 

To circumvent the normality assumption, an alternative unsupervised band selection method may be 

employed which is introduced in the next section. 
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5.6 Clustering-Based SBS (CSBS) 

The supervised band selection algorithm presented in section 4.3 may be applied in an 

unsupervised way by using a clustering algorithm to define spectral classes from which class 

statistics may be computed. As described in section 3.3.1, informational classes may be chosen by 

the user to correspond to one or more spectral classes increasing the accuracy of the classification 

task. Two commonly used clustering algorithms are the K-Means and ISODATA (Iterative Self-

Organising Data Analysis) procedures. 

K-Means clustering assigns pixels iteratively to K clusters on a nearest-to-centre basis and updates 

the cluster centres because of this assignment at each iteration. The initial cluster centres are 

usually positioned randomly in feature space. For the K-Means program version available under 

ENVI™ (version 3.5), the user needs to supply the number of clusters and iterations. In addition, a 

pixel change threshold may be supplied that terminates the iterative process when the number of 

pixels in each cluster changes by less than the specified threshold. Other parameters include the 

maximum standard deviation and maximum distance error, which al low pixels to be classified only 

when they fall within the given limit. If the latter are not specified, all pixels are allocated to nearest 

clusters. 

Many variants of the K-means algorithm exist to improve its efficiency, especially regarding the 

validity of the generated clusters. For example, the ISODATA algorithm allows new clusters to be 

created and existing ones to be merged or deleted between iterations, considering more feature 

space partitions than the basic K-Means. However, this improvement comes at the cost of needing 

to specify additional parameters. For the ISODATA algorithm available under ENVI™ (version 3.5), a 

minimum and maximum number of clusters have to be supplied apart from the maximum number of 

iterations and the pixel change threshold (see above). In addition, the minimum number of pixels 

needed to form a cluster (for cluster deletion), as well as the maximum class standard deviation (for 

cluster splitting), and the minimum distance between class means and maximum number of merge 

pairs (for cluster merger) must be defined. 

The setting of the parameters of both the K-Means and the ISODATA algorithms is a non-trivial task, 

and no universal guidelines exist to the author's knowledge. 

The optimal number of classes or clusters to choose for clustering depends entirely on the data and 

the class scheme defined by the user. However, the latter is unknown for unsupervised band 

selection. One approach would be to choose a relatively high number of classes in order to account 

for as many material subclasses as possible. The final user-defined informational classes may then 

consist of combinations of these basic subclasses. For adequate data representation, Jia and 

Richards (2002) used a cluster number of around 20 or higher in their experiments. However, with 

respect to the supervised band selection algorithm developed in chapter 4, bands are chosen so as 
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to difTerentiate between all given input subclasses, that is, also between those that form a larger 

information class. This may be counterproductive and unwanted by the user, as bands should 

discriminate only between information classes. From this point of v iew, the class number chosen 

should allow only for the most dominant material classes to be distinguished. 

The number of iterations can be set high enough to ensure the generat ion of natural clusters, i.e. 

when practically no pixel re-assignments occur between subsequent iterations. Pixel change 

thresholds may be applied to stop the iterative process if the number of pixel re-allocations between 

iterations becomes insignificant (e.g. at about 5%). 

The ISODATA algorithm allows for the deletion of clusters that do not contain a minimum number of 

pixels. This may be useful to control the number of pixels per cluster, which should be no less than 

10 to 15 times the number of spectral bands in order to guarantee acceptable class statistics (see 

section 3.3.1). On the other hand, ISODATA further requires distance measures to be provided in 

data-specific units of DN for cluster merger and splitting, as well as the maximum number of merge 

pairs. These class- and data-dependent parameters are difficult to optimise without user interaction. 

For the unsupervised band selection method described in this section, a clustering procedure is 

required that works with a minimum amount of user interaction, i.e. a minimum number of 

parameters, and that is efficient with respect to computation time and MLC accuracy. Although the 

ISODATA has the advantage over the K-Means to allow for creating more representative clusters via 

cluster merging, deleting and splitting, more class- and data-specific algorithm thresholds have to be 

supplied. For that reason, the author chose the K-Means algorithm for the determination of class 

statistics being aware that the feature space partitioning may not be an optimal one. 

To quantify the effect of number of iterations for the K-Means procedure on the accuracy of the 

resulting clusters in representing the feature space structure, the MLC accuracy was calculated for 

both the New Forest and River Severn data sets using all bands and the various cluster sets as 

class definitions. Figure 5.6 and 5.8 display the MLC accuracy as a function of number of clusters for 

a varying number of iterations. They show a general improvement of MLC accuracy with increasing 

number of iterations (for the New Forest data set only for a small cluster number). In addition, it may 

also be seen that for an increasing number of clusters, the classification performance tends to 

decrease steadily. This may be explained by the fact that the separation of a large number of small 

and overlapping clusters will be less accurate than the partition of the dominant clusters in feature 

space. 

To see the effect of varying class number for the K-Means algorithm on the MLC accuracy of the 

given classification tasks, different band sets were generated with the SBS algorithm on the basis of 

the clustering results. The New Forest and River Severn scenes were then classified using these 

band sets and their class definitions from chapter 3. In figures 5.7 and 5.9, MLC accuracy is plotted 

against the number of bands for different class numbers used dur ing clustering with one iteration 
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cycle. In figure 5.7 (New Forest data), the IVILC accuracy seemed to be noticeably increased for l ow 

band numbers when using a larger class number. But this difference becomes less pronounced a s 

the number of output bands increases. For the River Severn data set (figure 5.9), this did not seem 

the case, as nearly all band sets performed equally well for different cluster numbers. 

Nimiber of d u s t e r s Number of bands 

Figure 5.6: IVILC accuracy p lo t ted against the 
number of c lus ters fo r vary ing number of 

i terat ions (1 to 4) fo r the New Forest data set. 

F igure 5.7: IVILC accuracy p lot ted against t h e 
number of b a n d s se lected by the c lus te r ing -
based SBS a l go r i t hm fo r vary ing number o f 
c lus ters (2 t o 6), one i terat ion cyc le and t h e 

New Fores t c lass and data set. 

Number of d u s t e r s Number of bands 

Figure 5.8: MLC accuracy p lot ted against the 
number o f c lus ters fo r vary ing number of 

i terat ions (1 to 4) f o r the River Severn data 
set. 

F igure 5.9: M L C accuracy p lo t ted against t he 
number o f b a n d s se lec ted by the c lus te r ing-
based SBS a l g o r i t h m fo r va ry ing number o f 
c lus ters (2 t o 6), one i terat ion cyc le and the 

River Seve rn c lass and data set. 
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From a computational point-of-view, the execution time of the clustering algorithm in combination 

with the class statistics and SBS computation should be minimised in order to be suitable for in-flight 

application. This implies that user interaction has to be either reduced to a minimum or completely 

eliminated. Regarding the parameter settings for the clustering algorithms, the data analyst may not 

be able to determine the optimal configuration in a multiple-run trial-and-error procedure by visual 

inspection of the classified output image. Consequently, default parameter settings need to be 

provided that are efficient in both computation time and accuracy of the MLC task at hand. 

A computer program was written in IDL™ (version 5.5 Win 32 x86) and ENVI™ (version 3.5) that 

creates clusters using the K-Means clustering routine in ENVI™ and calculates their statistics (see 

details of use in Appendix G.5). The program classifies the entire image into a pre-specified number 

of clusters, and samples classes randomly over the entire image until a sufficient number of samples 

(10 times the number of spectral bands to be used) are found to calculate representative class 

statistics. 

The execution time of the clustering part of the program may be decreased considerably by resizing 

the original imagery by a factor so as to have just enough sample pixels per class for adequate class 

statistics. The factor may be computed as the square root of the ratio between the number of 

samples needed and the total number of image samples, where the number of samples needed may 

be estimated as the product of the number of classes, the number of bands times 10, and a security 

factor of 2. That is, for example for the New Forest data set, the number of samples needed may 

amount to 20 (chosen class number) times 117 (band number) t imes 10 times 2 (security factor), 

which is equal to 46800. The total number of samples of the New Forest imagery is the product of 

the number of rows (1280) times the number of columns (512), or 655360, assuming no masking. 

The resize factor then equals to 0.3, The sub-sampling is performed using the nearest-neighbour 

method in ENVI™. This resizing routine is acceptable when the H-resolution case applies for the 

given classes and when at least 1 over the resize factor number of adjacent samples (8 for the 

example above) are available for each class in row or column direction. It also assumes that classes 

are equal in size and uniformly distributed over the entire imagery. 

It can be shown that the execution times of the clustering and the cluster statistics calculations 

depend exponentially on both the number of clusters and the number of iterations. As, for both data 

sets examined here, the increase in cluster number or number of iterations did not improve 

considerably the class data representation by the resulting clusters, a low cluster number of 2 to 5 

(corresponding to the number of dominant material classes in the scene) coupled with one iteration 

cycle were chosen as the recommended settings for the clustering routine. For the New Forest data 

set, choosing five clusters achieved high class discrimination ability also for small band numbers, 

while still giving a computation time less than a minute (with resized New Forest imagery, factor 0.3). 

The histograms for the resulting clusters for some of the bands of the River Severn and New Forest 

data set are displayed in table F.3 and FA, respectively. Two clusters were generated for the River 
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Severn and five for the New Forest data set (one iteration cycle each) . Table F.3 shows that some 

bi-modality appeared for the first cluster in some bands of the River Severn data. The histograms o f 

the clusters generated for the New Forest data generally seem to fit the normal curve better than 

those of the River Severn clusters. 

5.7 Algorithm Evaluation 

This section aims to assess the value of the proposed unsupervised algorithms and its results 1) 

quantitatively with respect to its reliability, consistency, and effectiveness, 2) qualitatively, and 3) in 

terms of its usefulness for real-time in-flight applications. 

5.7.1 Reliability 

The reliability of the UBS and CSBS band selection algorithms was judged by questioning the 

appropriateness or accuracy of its assumptions and routines. 

Both the UBS and CSBS algorithms share the same image acquisit ion method as described in 

section 4.3.1 for the SBS method, and therefore equally assume the H-resolution case, as the image 

data recorded in repeated acquisitions for the same scene should result in similar pixels. In addition 

the scene is assumed not to change between acquisitions, which may be realised by reducing the 

time gap to a minimum. 

For a successful application of the UBS algorithm, which is based on the correlation coefficient, data 

need to meet the following criteria: 

= The sensor bands follow a normal distribution. Generally, the assumption of a single 

distribution for a remotely-sensed band image is hard to achieve unless the image is 

depicting a single material type only. For example, in case of the New Forest data set, 

vegetation was the dominant target class, and the normality assumption was shown to be 

more appropriate than for the River Severn data set, which consisted of two spectrally 

different materials, vegetation and water-covered mud (see section 5.2). Users should 

therefore aim to collect data from one material type only, e.g. vegetation, soil or water. 

" Band correlations are significant, that is, enough image samples are provided. This is 

usually the case for high-resolution remotely-sensed images from current airborne imaging 

spectrometers such as HyMAP or CASI-2. 

" If bands are dependent on each other, then only in a linear fashion. The correlation 

coefficient is a measure of linear dependency only and fails to quantify, for example, 

quadratic relationships. As detectors of sensors such as HyMAP or CASI-2 typically respond 

linearly to the incoming signal, the nature of the relationship between bands depends 

entirely on the incoming spectral radiance signal. If an image scene contains mainly target 
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materials with smooth spectral curves and relatively low standard deviation, other than l inear 

dependencies among bands are highly unlikely. 

" The data set does not include very noisy bands. Noisy bands need to be either excluded 

from the band selection procedure or smoothed with some spatial filter beforehand. This is 

because noisy bands can result in a low correlation coeff icient with other bands and may 

therefore be chosen as optimal bands in the decorrelation process. 

For the clustering-based CSBS algorithm, the same assumptions a n d comments apply as for the 

SBS algorithm (see section 4.4.2). In addition, it is assumed that the parameter settings that were 

shown to be effective for the New Forest and River Severn data set are also valid for other data 

sets. Further tests with other data sets and classification schemes need to be performed to verify 

this result. 

5.7.2 Consistency 

The UBS algorithm is repeatable, assuming no two correlations are equal in the band location and 

number determination, and band broadening sub-routines. The order ing of bands within the band 

location determination subroutine depends on the bands already selected for the set. Removing one 

of the first selected bands puts an end to the validity of the order of subsequent bands. 

The clustering part of the unsupervised version of the SBS algorithm may result in different cluster 

distributions according to the parameters (number of clusters and iterations) chosen by the user. If 

default parameter settings were to be chosen repeatedly, the outcomes might still differ from each 

other, as the initial cluster means were randomly selected by the K-Means procedure. 

5.7.3 Effectiveness 

Sub-op t ima l i t y o f the a lgor i thm 

The sub-optimality of the unsupervised band selection algorithms U B S and CSBS was estimated by 

comparing the MLC accuracy of their band sets with that of a band set derived from an exhaustive 

search with the MLC accuracy measure as criterion function. The compar ison was limited to the first 

three dimensions for the exhaustive search to be still computationally feasible. As the UBS offers the 

possibility to start the set with the least correlated or least noisy band (pair) (see section 5.5.4), the 

selected sets from both options were considered. Bands were not increased in width for both the 

UBS and CSBS methods to be comparable to those of the exhaustive procedure. Figures 5.10 and 

5.11 present the MLC accuracy of the different band sets for the New Forest and River Severn data 

set, respectively. 
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For the New Forest data set (figure 5.10), the band subset selected with the UBS LC (least 

correlated band pair first) algorithm results in a 50% loss in accuracy for the first dimension, while 

the corresponding loss is limited to around 23% for both the UBS LN (least noisy band first) and t h e 

CSBS band set. For two set dimensions, the UBS LN bands give a 15% accuracy loss, while the 

UBS LC and CSBS bands are with about 6% accuracy loss not statistically different from the 

exhaustive band set. In the third dimension, all three methods produce band sets of similar 

insignificant accuracy loss (around 3.6%). 

For the River Severn data set (see figure 5.11), the UBS LC band set clearly outperforms the sets of 

both the UBS LN and CSBS in the first and third dimension, where its accuracy loss is insignificant 

at around 7% and 2%, respectively. In the second dimension, all band sets gave a similar, but 

significant accuracy loss of around 6.5%. 

UBS-LC 
UBS-LN 
CSBS 

VLC-EX 
UBS-LC 
JBS-LN 
CSBS 

Number of b a n d s Number of b a n d s 

Figure 5.10: MLC accuracy of op t ima l band 
sets der ived us ing an exhaust ive search w i th 

MLC accuracy (MLC-EXH), the UBS (start 
w i th least corre lated, LC, and noisy, LN, 
bands), and CSBS a lgo r i t hm fo r the New 

Forest data. 

F igure 5.11: MLC accuracy of opt imal band 
sets der ived u s i n g an exhaust ive search w i t h 

MLC accu racy (MLC-EXH), the UBS (start 
w i th least cor re la ted, LC, and noisy, LN, 
bands) and CSBS a lgor i thm fo r the River 

Severn data. 

The results from these two data sets demonstrate that the UBS LC method gives optimal band 

selection results, except for the first dimension regarding the New Forest data set. This may be 

explained by the fact that UBS LC selects the least correlated band pair first, and not the single best 

band. For the first band, both the UBS LN and CSBS methods result in acceptable accuracies for 

the New Forest data set, but fail to do so for the River Severn data set. The suboptimal performance 

of the UBS LN in the latter case may be explained by the use of a less accurate noise estimation 

method. 
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Comparison of 'optimal' UBS and CSBS band sets with 'established' band sets 

The performance of the 'optimal' band sets output by the UBS ('unequal bandwidth - maximum 

bandwidth 4 rows) and CSBS (unequal bandwidth) algorithms were compared with the one of 

different simulated 'vegetation' and 'coastal' band sets from current satellite and airborne sensors 

(for details see section 4.4.4). The maximum bandwidth value was chosen lower for the UBS than 

for the CSBS algorithm, as in contrast to the MLC criterion based CSBS, the expansion of bands 

increases the SNR criterion of the UBS in most cases, resulting in very wide bands. Figures 5.12 

and 5.13 display the band set performances for the New Forest and the River Severn class and data 

sets, respectively. 

6 BB 
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N E R C V E G 

Band Set Dimension 

Figure 5.12: MLC accuracy of the 'optimal' 
UBS (start with least correlated, LC, and 
noisy, LN, bands) and CSBS band sets 
compared with the one of satellite and 

airborne band sets for the New Forest data. 
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Figure 5.13: MLC accuracy of the optimal 
UBS (start with least correlated, LC, and 

noisy, LN, bands) and SBS band sets 
compared with the one of satellite and 

airborne band sets for the River Severn data. 

For the New Forest data set, the UBS and CSBS band sets achieved higher MLC accuracy than any 

of the simulated band sets for corresponding dimensions. However, only for the UBS LC band set, 

most differences in classification accuracy can be shown to be statistically significant (with the 

exception of the ETM+ and MODIS band set) and to range from 1.3% for MISR to 0.6% for the 

NERC vegetation band set. Both the UBS LN and CSBS band set gave a 1.5% significantly higher 

accuracy than the MISR band set. 

For the River Severn data set, the UBS and CSBS band sets resulted in higher MLC accuracy than 

the 'established' band sets for small band set dimensions (3 to 4), but in similar or less accuracy for 

larger band set dimensions (11 to 14). For the UBS band sets, the differences in accuracy for only 
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small dimensions are significant (3 to 4), ranging from 5.4% for IVIODIS to 2.6% for ETM+. For the 

CSBS band set, most differences in accuracy were significant (except for EA vegetation, MERIS and 

MISR), including its underperformance with respect to the CHRIS, NERC Vegetation, EA Coastal 

and BIOTA band sets (maximum difference 2.2%). 

Band number evaluat ion 

The optimal band number was estimated for the UBS algorithm as the number of bands already in 

the set which achieve an explained variance or coefficient of (multiple) determination of higher than 

95% for the actual band to be added to the set. It represents an upper limit to the intrinsic 

dimensionality (ID) of the data set, which was estimated to range between one and two, and one 

and three for the New Forest and River Severn data set, respectively (see section 3.5). 

Table 5.3 displays the coefficient of (multiple) determination for the first 5 selected bands (least 

correlated bands first, LC, and least noisy band first, LN, UBS options). Using a 95% threshold on 

the coefficient of determination, the optimal band number may be obtained for the New Forest data 

set as 4 and 3 for the LC and LN options, respectively, while for the River Severn data set it may be 

determined as 3 for both algorithm options. This result overestimates the upper derived ID limit of 

the New Forest data set by one and two, but gives an exact reflection of the upper estimated ID 

value of the River Severn data set. That is, the band measure could be used as an upper limit 

estimate to the ID of the given data sets. 

Table 5.3: Coef f ic ient of de terminat ion fo r the f i rs t f i ve bands o f t h e UBS (LC and LN) set, a n d 
the PMATD fo r the CSBS set fo r t he New Forest and R ive r Severn data sets. 

Coef f ic ient of de te rmina t ion (%) PMATD (%) 
Band UBS LC UBS LN CSBS 

number New River New River New River 
Forest Severn Forest Severn Forest Severn 

1 0 0 0 0 80.13538 96.77774 
2 0.000023 0.000005 18.363762 0.000121 88.36081 98.43816 
3 67.20255 92.72588 72.390701 91 415230 92.81153 99.99999 
4 91.32729 96.33556 97M02341 98.054764 94.02414 100 
5 97.83753 97.93714 97.651962 (# .270760 96.44305 100 

The definition of the optimal number of bands for the CSBS algorithm is identical to the one of the 

SBS algorithm, that is, the dimension of the smallest set of bands that achieves a PMATD of at least 

95%. The PMATD values of the first five CSBS bands are displayed for the New Forest and River 

Severn data sets in table 5.3, and an IDD estimate of 5 and 1, respectively, can be read from the 

table. These estimates cannot be compared directly with the IDD approximations made in chapter 3, 

as the IDD is intrinsically dependent on the defined class set and the extracted clusters do not 

correspond in number and spectral characteristics to the user defined classes. The IDD estimate is 

therefore only valid for the actual set of classes being used for PMATD estimation. 
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5.7.4 Qualitative Evaluation 

The first six bands of the optimal band sets derived with the UBS algorithm for the New Forest and 

the River Severn data sets are listed in table 5.4 and plotted against a vegetation spectrum in figures 

5.14 and 5.15, respectively. Only the band set derived from the least-correlated-first option was 

investigated as an example of the correlation-based algorithm. 

For the New Forest UBS band set, the best three bands chosen by the algorithm stem from the 

visible, NIR and SWIR wavelength ranges. The first band is located on the NIR plateau including 

parts of the 942 nm water absorption feature. The second band is positioned right next to the 1865 

nm water absorption feature. According to Kumar et al. (2001) increased water leaf content also 

decreases reflectance in wavelength regions adjacent to water absorption features. That is, both first 

and second band are sensitive to canopy moisture content. Band 3 is centred on the peak of the 

green reflectance feature, responding to the amount of chlorophyll within the vegetation canopy. So 

does band 5, a relatively broad band placed over the entire red-edge feature. Band 4, a narrow-band 

equivalent to the Landsat ETM+ band 5 (1550 - 1750 nm), and band 6, a narrow band positioned at 

1330 nm between the two water absorption features at 1135 and 1379 nm, are both sensitive to 

canopy structure and water content. Most of the image classes (grassland, bracken, valley mire, dry, 

humid and wet heath) differ mainly in their canopy structure and moisture content. This is reflected in 

the UBS selected bands. 

With regard to the River Severn data set, the first band chosen by the UBS algorithm is centred on 

the green reflectance peak, responding to the chlorophyll amount in the canopy. The second best 

band is located on the NIR plateau, which is sensitive to canopy structure and helps to delineate the 

land-water interface. Band 3 is positioned in the middle of the red-edge feature, while band 5 lies on 

the bottom of it. Both bands respond to chlorophyll variations in the canopy and help to differentiate 

between different vegetation types. Band 4 is located on the NIR plateau adjacent to the 942 water 

absorption feature, and responds to both canopy structure and water content. Band 6 is situated 

over the blue vegetation absorption feature, potentially used for delineating water and vegetation 

surfaces. The main salt-marsh classes in the River Severn data set include high, mid. and pioneer 

marsh classes, bare rock and mud. The vegetation classes may be differentiated from each other 

and the Bare Rock and Mud classes mainly by their structure and chlorophyll content, which is 

mirrored in the selection of the first six bands. 

Figures 5.16 and 5.18 display colour composites of the first three bands chosen for the New Forest 

and River Severn data set, respectively. Both images show a high contrast in colour between the 

different vegetation classes involved. For the New Forest data and the given RGB band 

combination, the asphalt road stands out as a purple colour, whereas bracken occupies the light 

green and dry heath the pink-red colour. Wet and humid heath and valley mire may be distinguished 

from different tones of green (see classified image in figure 3.5). Regarding the River Severn colour 
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Table 5.4: First 6 op t ima l bands se lected by the UBS a l go r i t hm (least corre lated f i r s t -
unequa l bandw id th op t ion w i th m a x i m u m 4 rows w id th ) f o r t h e New Forest and River Severn 

data set . 

New Forest River Severn 

Band Band Band Band Band Band Band Band Band 
number centre w id th s tar t end cent re w i d t h start end 

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm] 
1 930.1 34.35 912.925 947.275 556.8 3 1 ^ 541.2 572.4 
2 2017.7 77.35 1979.025 2056.375 807.9 31.8 792 823 8 
3 546.45 61.6 515.65 577.25 708.55 3 1 7 692 7 724.4 
4 1672.7 40.55 1652.425 1692.975 914.7 31.5 898.95 930.45 
5 699.9 61.4 669.2 730.6 685.6 16.4 677.4 6 9 3 ^ 
6 1330.2 29.9 1315.25 1345.15 489.55 30.9 474.1 505 
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Figure 5.14: First s i x bands se lec ted by UBS fo r t he New Fores t data set (see tab le 5.4). 
Wave leng ths no t ava i lab le fo r band se lec t ion are i nd i ca ted by grey bars. 
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Figure 5.15: First s ix bands se lected by UBS fo r t he River S e v e r n data set (see tab le 5.4). 
Wave leng ths not ava i lab le fo r band se lec t ion are i n d i c a t e d by g rey bars. 
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Figure 5.16: IVIasked HylVlAP New Forest data displayed using the first three optimal bands 
output by the UBS algorithm (see table 5.4, R = band 2, G = band 1 , 8 = band 3). 
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Figure 5.17: New Forest iVIaximum Likelihood Classification result using the first six bands 
selected by the UBS algorithm (see table 5.4; Lake, blue; Asphalt, white; Bracken, yellow; Dry 

Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, green; 
Valley Mire, dark green). 
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Figure 5.18: (Masked CAS I River Severn data displayed using the first three optimal bands 
output by the UBS algorithm (see table 5.4, R = band 2, G = band 3, B = band 1). 

Figure 5.19: River Severn Maximum Likelihood Classification result using the first six bands 
selected by the UBS algorithm (see table 5.4; Bare Rock, white; Pioneer Marsh, bright green; 

Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
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composite of the optimal three bands, pioneer, mid and high marsh vegetation is coloured in bright 

orange - red, red - blue, and yellow, respectively. Bare rock appears white in the image and bare 

mud blue (see classified image in figure 3.4). Figures 5.17 and 5.19 display the resulting map of the 

New Forest and River Severn classification task, respectively, using the six bands selected by the 

UBS algorithm (see table 5.4). 

The band sets listed in table 5.5 have been generated by the CSBS algorithm for the New Forest 

and River Severn data sets. They are plotted against a vegetation spectrum in figures 5.20 and 5.21 

for the two data sets. For the New Forest data set, the CSBS band set reflects more the variations in 

canopy structure and water content (bands 1 to 3, 5 and 6) than in the chlorophyll content (band 4), 

similarly to the band set selected by UBS. For the River Severn data set, the CSBS gives a band set 

similar to the UBS result, with bands potentially exploiting variations in canopy chlorophyll (bands 1 

and 4 to 6) and canopy structure (bands 2, 3). The corresponding classification maps for the River 

Severn and New Forest data sets, derived by using the six bands selected by the CSBS algorithm 

(see table 5.5), are shown in figures 5.22 and 5.23, respectively. 

Table 5.5: First 6 optimal bands selected by the CSBS algorithm (1 iteration, unequal 
bandwidth) for the New Forest (5 clusters) and River Severn (2 clusters) data set. 

New Forest River Severn 

Band Band Band Band Band Band Band Band Band 
number centre width start end centre width start end 

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm] 
1 1196.1 18.1 1187.05 1205.15 7 4 2 ^ 115.8 685 800.8 
2 2136.7 20.4 2126.5 2146.9 807.9 16.4 799.7 816.1 
3 844.4 15.8 836.5 852.3 888.1 8.8 883.7 892.5 
4 700.1 30.95 684.625 715.575 482.15 16.1 474.1 490.2 
5 2172.2 19.6 2162.4 2182 497 16 489 505 
6 1517.2 16.2 1509.1 1525.3 511.85 16.1 503.8 519.9 
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Figure 5.20; First six bands selected by CSBS for the New Forest data set (see table 5.5). 
Wavelengths not available for band selection are indicated by grey bars. 

198 



4 5 6 

6 0 0 BOO 

Wavelength [nm] 
1000 

Figure 5.21: First six bands selected by CSBS for the River Severn data set (see table 5.5). 
Wavelengths not available for band selection are indicated by grey bars. 

Figure 5.22: River Severn Maximum Likelihood Classification result using the first six bands 
selected by the CSBS algorithm (see table 5.5; Bare Rock, white; Pioneer Marsh, bright 

green; Mid Marsh, green; High Marsh, dark green; Bare Mud, brown). 
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Figure 5.23: New Forest Maximum Likelihood Classification result using the first six bands 
selected by the CSBS algorithm (see table 5.5; Lake, blue; Asphalt, white; Bracken, yellow; 

Dry Heath, orange; Grassland, brightest green; Humid Heath, bright green; Wet Heath, green; 
Valley Mire, dark green). 
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5.7.5 In-flight Application 

The unsupervised band selection methods presented in this chapter were specifically designed for a 

real-time in-flight execution between the acquisitions of successive flight-lines. As the aircraft may 

only need 3 to 5 minutes to turn around before re-starting to scan the scene in reverse flight 

direction (F. Tadina, NERC ARSF, 2003, personal communication), the speed of the algorithm is 

crucial. The following paragraphs aim to give an overview of the execution time involved in 

performing band selection with UBS. 

In contrast to the supervised SBS algorithm presented in chapter 4, UBS does not depend on a 

time-consuming identification of the scene classes on the imagery. However, as the UBS routine is 

implemented in ENVI™, the raw binary image has to be transformed into an ENVI™ supported file 

format. The program for radiometric correction of CAS 1-2 raw data, Radcorr (Version 2.2 for Red Hat 

Linux 6.2), generates files in the ENVI™ supported pix-format. The program, which is provided by 

the instrument manufacturer, ITRES Research Ltd., also corrects the image data for dark current, 

scattered light, frame shift smear and electronic offset, and then transforms the data DN values into 

spectral radiance (ITRES, 2001). The computation time amounted to about 16 seconds for a typical 

CAS 1-2 15-band full-swath image of 1,500 lines using a 266 MHz AMD-K6 processor with 64 MB 

RAM. Linearly extrapolating this execution time to a data set of equal number of lines but with 288 

bands and a smaller swath width 101 pixels (see chapter 1), a value of about 61 seconds would 

result. Using a higher speed computer, for example, with a 2 GHz processing speed, the duration of 

the program run could be reduced to about 8 seconds. 

The Radcorr routine may also be used to extract about 50 lines of dark data from the raw image file 

by spatially subsetting the image from line 50 to line 100. That is, dark data will then be calibrated to 

spectral radiance as well. This process should take less than 5 seconds with a 2 GHz processor. 

After the image has been radiometrically corrected, image data statistics need to be calculated with 

the Datastats program (see section G.4) as these are input into the UBS algorithm. The execution 

time of the program was calculated for the New Forest data set and extrapolated to 288 bands. To 

achieve a computation time of under a minute, the number of samples in the image should be 

smaller than 60,000 samples. A typical image of 1,500 lines by 101 columns would give 151,500 

samples which equals to 3.5 minutes. 

To reduce the computation time, a quicker processor could be employed (here 1 GHz Intel Pentium 

III processor with 256 MB RAM) or the image may be sub-sampled by the 'Resize' function in 

ENVI™. The resizing process involves the application of a factor to both the number of lines and 

columns to reduce the number of samples. In the above example, each image dimension needs to 

be multiplied by a factor of 0.6 to achieve 60,000 samples. As mentioned in section 5.6, resizing 

may be applied when the H-resolution case applies for most image classes, that is, no significant 
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information loss occurs during the resizing process. The latter tal<es about 15 seconds for an output 

image with 60,000 samples (2 GHz processor). 

Figures 5.24 and 5.25 display the amount of image samples of a 288-band data set against the 

execution time needed for the Datastats and the Resizing ENVI™ routines, respectively. 

Time [sec] 

Figure 5.24: Est imate o f amoun t of image 
samples against the execu t ion t ime of the 

Datastats rout ine (see sec t ion G.4) for a 288-
band data set and a 1 GHz processor . 

F igure 5.25: Est imate of amoun t of o u t p u t 
image s a m p l e s against the execut ion t ime o f 
the Res iz ing ENVI™ rout ine fo r a 288-band 

data s e t and a 1 GHz processor . 

The execution time of the UBS program only depends on the number of image bands and the 

parameter settings. For an output set of 15 bands, the maximum al lowable bandwidth should be 

chosen relatively low (e.g. 4 to 5 rows), in order to avoid an iteration of the routine (no more bands 

are available to fill the remaining places as first bands are too broad) and therefore an increase in 

the overall running time. The execution time was extrapolated to 7 seconds for a 2 GHz processor 

using a 288-band image and the following UBS parameter settings: unequal bandwidth, least 

correlated first, output 10 bands, maximum bandwidth 4 rows, 30% minimum signal level, no pre-

specified bands or output image. 

In summary, for the UBS method, the net execution time amounts to 8 (radiometric correction) plus 5 

(dark data) plus 15 (resizing) plus 30 (data statistics) plus 7 (UBS) equals to 65 seconds using a 2 

GHz processor and a 288-band image with 1500 lines and 101 columns. This leaves the instrument 

operator 2 to 4 minutes to switch between routines and program the CAS I-2 with respect to the 

selected band set. 

In contrast to the UBS method, the CSBS method requires the clustering and the calculation of 

cluster statistics on top of the possible sub-sampling, data statistics computation, and SBS band 
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selection routine. CSBS would take about two minutes longer than the UBS method for an Image of 

60,000 samples and 288 bands using 5 clusters and 1 iteration as parameters for the clustering 

procedure (2 GHz processor). CSBS is therefore less applicable for in-flight use with the given t ime 

constraints and computer processing speeds. 

f ) . 8 I S » i i r n m 2 i r ) r 

The purpose of this chapter was to develop an unsupervised band selection routine that optimises 

band configuration parameters with respect to the accuracy of the classification task and that could 

be used in-flight for the acquisition of CASI-2 multispectral data. For the in-flight procedure, it was 

assumed that a reduced-swath hyperspectral CASI-2 image would be acquired over a 

representative part of the scene as algorithm input. Then, the CASI-2 would be programmed with the 

selected band set, and a full-swath multispectral image would be collected. The hyperspectral data 

to be acquired should include all target areas of interest to a similar proportion as they appear in the 

final multispectral imagery. 

An unsupervised band selection (UBS) algorithm was developed, which is based on the assumption 

that the most class-informative band set consists of bands that are least redundant, that is, least 

correlated. It incorporates the increase of bands in width as long as the SNR as measure of image 

quality improves, the relative band signal levels are above a user-specified threshold, and the 

bandwidth is below a user-defined upper limit. The algorithm was implemented in an IDL™ (version 

5.5 Win 32 x86) and ENVI™ (version 3.5) program that can be run in ENVI™. Computational 

efficiency of the routine was especially considered to allow the routine to be used in-flight. The 

program options include either to force the bands to be of equal w id th or to let the bands expand to 

achieve maximum possible SNR (optimal band set). An algorithm option was included that allowed 

to start the band set with the band of highest SNR (UBS LN), instead of the least correlated band 

pair (UBS LC). UBS also allows specific bands to be included in the selection process or excluded 

from it. 

Similar to PCA, UBS aims to decorrelate the band set. But instead of transforming the data into new 

orthogonal features, UBS picks the bands that are most different f rom each other. That is, UBS aims 

to explain the overall variance with as few original bands as possible, while PCA aims to represent 

data variance with as few orthogonal features as possible. UBS has the disadvantage of being 

based on a sub-optimal sequential search procedure, while PCA is not. However, for band selection, 

UBS has four major advantages over PCA. First, UBS requires less computational effort than PCA. 

Second, it preserves data integrity, as its selected bands are directly physically interpretable. Third, 

it does not try and fit an orthogonal basis to the overall data variance, which may conceal unique 

band information that is small in variance. And fourth, it allows for a band expansion routine similar 
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to the one in the SBS method, but purely based on the band SNR. UBS provides an upper bound to 

the intrinsic dimensionality of the data set. 

The use of correlation measures in the UBS routine requires each band to be normally distributed. 

However, the latter assumption was shown to be inappropriate for most of the New Forest and River 

Severn bands. CSBS, an unsupervised version of the application-specific SBS algorithm discussed 

in chapter 4, was introduced that uses clustering to define the classes within the scene, 

circumventing the normality assumption of band variables. A computer program was written in IDL™ 

(version 5.5 Win 32 x86) and ENVI™ (version 3.5) that creates clusters using the K-Means 

clustering routine in ENVI™ and calculates their statistics. Regarding the parameter settings of the 

K-Means clustering routine, changes in the parameters had only little effect on the discrimination 

ability of the resulting band set for the given data and class sets. 

The UBS and CSBS algorithms were evaluated by applying them to the hyperspectral data 

introduced in chapter 3. The sub-optimality of the algorithms was quantif ied by comparing the MLC 

accuracy of the derived band sets with that of a band set obtained f rom an exhaustive search using 

the MLC accuracy measure as criterion. For all three set dimensions, the UBS LC band set 

performed consistently well with a maximum accuracy loss of 7% (with one exception). UBS LC is 

more applicable to band sets of at least two dimensions, as the least correlated band pair is chosen 

at the start of the algorithm. The sub-optimality of the UBS LN and CSBS band sets was generally 

greater than that of the UBS LC band set for the two data sets. 

In comparison to 'established' vegetation and coastal band sets, the UBS and CSBS band sets 

performed superior for the first six dimensions for the given data sets. For higher dimensions (11 to 

14), the 'established' band sets gave a similar MLC accuracy than the selected band sets. That is, 

the unsupervised band selection methods were very effective for low-dimensional output band sets. 

The resulting optimal band configurations were also found to be physically meaningful with respect 

to the classes under investigation. 

The band number criterion used in the UBS algorithms was shown to be an effective upper bound to 

intrinsic dimensionality (ID) of the given data sets. It equals to the number of bands already in the 

set which achieve a coefficient of determination of higher than 95% with the least correlated of the 

remaining bands. The CSBS IDD estimate is based on the same principles as the SBS IDD estimate 

and was not evaluated here. 

The UBS and CSBS algorithm may both be applied operationally and in-flight to select a band set for 

multispectral image acquisition, although the UBS was shown to be computationally more efficient. 

To decide which of the band selection methods to choose, a comparison between all band selection 

methods introduced so far is presented in the following chapter. 
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6 Discussion 

This discussion 

" compares the band selection algorithms described in chapter 4 and 5 with respect to their band 

set performance, underlying assumptions, consistency, effectiveness and computational 

efficiency (section 6.1), 

" investigates the effectiveness of band selection (section 6.2), 

" tests the benefit of narrow band data for the classification tasks introduced in chapter 3 (section 

6.3), 

• introduces a new data set to test the SBS algorithm and the benefit of hyperspectral data for the 

given classification task (section 6.4), 

' examines whether the band selection methods developed in this thesis could be applied to other 

hyperspectral remote sensing applications (section 6.5), 

' discusses data simulation as an option for cases where the hyperspectral input data to the 

algorithm could not be acquired with the target sensor, such as for sensor design studies 

(section 6.6), and 

' investigates the need for calibration of data to radiance or apparent reflectance in the context of 

band selection (section 6.7). 

A concluding summary is presented in section 6.8. 

6.1 Comparison of the Band Selection Algorithms Developed 

for this Thesis 

The MLC accuracies of the band sets resulting from the SBS, UBS LC (least correlated band pair 

first), UBS LN (least noisy band first) and the CSBS algorithms were compared with each other for 

the New Forest and River Severn data set. All algorithms employed the 'unequal bandwidth' option 

to potentially achieve an optimal band set. The UBS algorithm had the maximum bandwidth value 

set to 4 rows to be merged. CSBS clustering was performed with 5 and 2 clusters for the New Forest 

and River Severn data set, and one iteration cycle. 

Regarding the New Forest data (see figure 6.1), all four algorithms performed equally well for at 

least two bands with insignificant differences of below 0.4%. Significant differences occurred only for 

the single best bands, where the SBS band achieved 78.5% MLC accuracy, the UBS LC band 

76.3%, the UBS LN band 61.4% and the CSBS band 61.3%. Similar results were obtained for the 

River Severn data set, as shown in figure 6.2. Differences between the SBS and UBS algorithms 

were insignificant (below 1.2%) for band sets with at least two bands. The CSBS band set gave a 

significant accuracy difference (maximum 3.6%) with respect to the band sets of other algorithms for 
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the first three dimensions. It achieved less accuracy than other band sets for set dimensions one 

and three. The order of the first bands in terms of accuracy is equivalent to that of the New Forest 

data set: First the SBS band (75.6%), followed by the UBS LC band (71.8%), the UBS LN band 

(57.2%) and the CSBS band (47.6%). That is, the SBS, UBS and CSBS band sets achieved 

comparable MLC accuracy (at least for two bands in the set), indicating that all four algorithms may 

be equally applied for the given data and class set for band selection. 

-SBS 
- UBS LC 
-UBSLN 
-CSBS 

SBS 
UBSLC 
UBS LN 
CSBS 

Band Set Dimension Band S ^ Dimenaon 

Figure 6.1: MLC accuracy of band sets output Figure 6.2: MLC accuracy of band sets output 
by the SBS, UBS LC, UBS LN and CSBS by the SBS, UBS LC, UBS LN and CSBS 
algorithms for the New Forest data set. a lgor i thms fo r the River Severn data set. 

Apart from their band set performance, the algorithms may be compared with respect to their 

underlying assumptions, consistency, effectiveness and computational efficiency. 

Both the SBS and CSBS assume the class training samples to be normally distributed. For the SBS, 

the accurateness of this assumption lies in the hand of the analyst, and it depends on the clustering 

parameters for the CSBS algorithm. In contrast, the justification of the assumption of normally 

distributed bands in the UBS algorithm relies on the data itself, which may only be changed by 

elaborate data masking. Although some of these normality assumptions were not completely met for 

the test data and class sets used in this thesis, all methods were shown to be robust to deviations 

from normality by giving a band set that achieves high accuracy for the given classification task. 

The assumption of the SBS and CSBS, that the Transformed Divergence (TD) measure and the 

IVILC accuracy are linearly dependent for the given data and class set, may be generally met, 

because the TD was derived as an upper bound to the MLC error probability. The UBS assumption 

that bands depend only in a linear fashion onto each other generally holds for remotely sensed data 

of Earth surface targets. 
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The sub-optimality of the different algorithms was quantified in terms of accuracy loss of their band 

sets with respect to the optimal band set for up to three set dimensions (see sections 4.4.4 and 

5.7.3). For the SBS band set, this accuracy loss amounted to a maximum of 6% for the given data 

sets. The UBS and CSBS band sets resulted on average in the same amount of accuracy loss (6%) 

for two and three bands in the set, but with deviations of up to 15%. For the single best band, 

however, UBS and CSBS bands were up to 50% less accurate. That is, for the given data sets, SBS 

resulted in more optimal bands, especially in the search for the single best bands. 

Regarding the consistency of the algorithms, both the SBS and UBS versions are repeatable, while 

the CSBS may result in different band sets with changing initialisation and clustering parameter 

settings. This is a major drawback for the CSBS algorithm, especially as it is unclear what settings 

are to be chosen in each case. This makes the algorithm less suitable for band selection than the 

SBS algorithm. 

A major disadvantage of the UBS algorithm is that it cannot be used to find the optimal maximum 

bandwidth for MLC. This is due to the loose relationship between its bandwidth criterion, the SNR, 

and the MLC accuracy. The algorithm typically expands some of the output bands to the maximum 

allowable bandwidth defined by the user. In contrast, the latter limit has little effect on the choice of 

optimal maximum bandwidth within the SBS or CSBS algorithms. That is, UBS can be used for 

bandwidth selection for MLC, if a reasonable maximum bandwidth limit is specified. 

Another shortcoming of the UBS algorithm is that it is dependent on sensor noise to be estimated in 

order to calculate the SNR for band expansion. Although dark data are routinely collected with most 

image sensors at the present time, they are not normally delivered to end users (A. Wilson, 2003, 

personal communication). 

With regard to the band number determination, all algorithms delivered upper bound estimates to the 

ID or IDD for the given data sets that were consistent with those found using traditional estimation 

methods. However, for all methods, the users have to decide whether they employ a 95% or 99% 

threshold to derive the band number estimate. 

The UBS and CSBS algorithms were shown to be computationally more efficient than the SBS 

algorithm, and therefore more applicable to real-time in-flight execution between the acquisitions of 

hyperspectral and multispectral image data using the current computer processing speeds. 

Furthermore, the UBS, SBS and CSBS can all be potentially used for applications other than l\/1LC 

(see section 6.4). However, the UBS has the advantage over the SBS and CSBS that it can be 

applied without modifying the algorithm. 
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The choice of band selection algorithm depends very much on the requests of the data user. The 

SBS, UBS and CSBS algorithms presented in this chapter all incorporate benefits and costs, and the 

user has to decide if the benefits of a method outweigh its costs for a given application. But if a band 

selection method was to be sought for a supervised MLC, the SBS method would be the preferred 

one. Table 6.1 presents a summary of the above comparison between the methods. 

Table 6.1: Compar ison of the SBS, UBS and CSBS algorithms. 

SBS UBS CSBS 

Assumpt ions - Normal class 
distributions 
- Linear relationship 
between TD and 
MLC accuracy 

- Normal band 
distributions 
- Only linear 
dependencies 
between bands 

- Normal cluster 
distributions 
- Linear relationship 
between TD and 
MLC accuracy 

Sub-opt imal i ty Low High for single bands, low for at least two 
bands in the set 

Consistency High High Low 

Optimal maximum 
bandwidth est imation 

Yes No Yes 

Sensor noise est imation 
necessary? 

No Yes, for bandwidth 
increase 

No 

Optimal band number 
est imation 

IDD estimate Upper bound 
estimate to ID 

IDD estimate 

In-fl ight use No Yes Yes 

General isation to other 
hyperspectral 
appl icat ions 

Yes, but with 
modification 

Yes Yes, but with 
modification 

6.2 Effectiveness of Band Selection 

From figures 6.1 and 6.2 it may be seen that the band sets chosen by the SBS, UBS and CSBS 

algorithms achieved similar accuracy after a certain number of set dimensions, although the chosen 

bands differed in placement and width between methods. At this point, one may ask at which 

dimension it becomes irrelevant which band is added to the set, as its addition will not significantly 

change the classification accuracy of the set. That is, when does band selection become ineffective? 

To find the limit of the effectiveness of band selection for the given data and class sets, the SBS 

band set was compared with sets of randomly and equally spaced bands with respect to the 

208 



achieved classification accuracy. The uniformly spaced band sets were created separately for each 

dimension to have maximum equal spacing between bands and minimum spacing towards the 

edges of the original band set. Table C.4 lists randomly and uniformly spaced band sets used in this 

evaluation and their performance is displayed in figures 6.3 and 6.4 for the New Forest and River 

Severn, respectively. For the uniformly-spaced band sets, only the accuracy of the entire set was 

calculated, and sets of all possible dimensions within the optimal set were generated. 

The SBS band set achieves significantly higher accuracy than the random or equally spaced band 

sets for the first three dimensions for the New Forest data set. Above four dimensions, the band sets 

reach similar accuracy levels with mostly insignificant differences of less than 1% from the SBS set. 

The River Severn data set gives a comparable result, with discrepancies between SBS and random 

or equally spaced band set performances of less than 3.2% above the fourth dimension. However, in 

the latter case, differences in accuracy are significant between the SBS and equally and randomly 

spaced band sets for most dimensions. 

These results imply that, for the given class and data sets, band selection is principally effective only 

for the first few bands of the selected set, corresponding to the intrinsic discriminant dimensions of 

the data sets. The latter dimensions equate to 3 and 4 for the New Forest and River Severn data 

sets, respectively. However, as for the River Severn band set, the SBS selected bands also perform 

significantly better for higher dimensions, suggesting that they should be preferred to any equally or 

randomly spaced band set. 

as 
Randomly Spaced 
Equally Spaced 

4 6 8 10 

Band S ^ Dimension 

Randomly Spaced 
Equally Spaced 

Band Set Dimension 

Figure 6.3; MLC accuracy of the SBS band 
set compared wi th the one of randomly and 

uni formly spaced band sets for the New 
Forest data set. 

Figure 6.4: MLC accuracy of the SBS band 
set compared w i th the one of randomly and 

uni formly spaced band sets for the River 
Severn data set. 
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6.3 Testing the Benefit of Narrow Band Data 

In sections 4.4.4 and 5.7.3, broad band sensors such as the ETM+ (bandwidths from 60 to 260 nm) 

were shown to result in an equally high MLC accuracy than the narrow band sets selected with the 

corresponding band selection algorithms. The question may then be asked whether or not narrow 

bands actually achieve a significantly higher MLC accuracy than broad bands for a given 

classification task. 

To answer this question, the 'equal and fixed width' SBS algorithm option was chosen to produce 

sets of bands of increasing width, with a (minimum) upper bandwidth of 370 and 220 nm for the New 

Forest and River Severn data set, respectively. As discussed in section 6.1, the UBS method cannot 

be employed for bandwidth determination, while the CSBS algorithm is less suitable than the SBS 

method for this task due to its dependency on clustering parameters. 

Figure 6.5 and 6.6 display the accuracy of the sets of expanded bands for each set dimension for 

the New Forest and River Severn data set, respectively. For the New Forest data set, the SBS 

algorithm produces consistently optimal band sets that achieve an ^/1LC accuracy that lies, for at 

least two dimensions, within insignificant 0.5% of the accuracy of the narrow-bandwidth set. In 

contrast, the expanded band sets for the River Severn data set are within 5.1% significantly different 

in accuracy from the narrow-band set for at least three dimensions. 

Band Set Dimension Band Set Dimension 

Figure 6.5: Accuracy of SBS band sets for 
increasing bandwidth for the New Forest data 
set. The w id th was f ixed to 1, 5, 9, 13, 17, 21, 
25 and 29 rows to be merged. The number in 

the legend is the cor responding min imum 
wid th (in nm) of the bands in each set. 

Figure 6.6: A c c u r a c y of SBS band sets for 
increasing bandw id th for the River Severn 

data set. The w i d t h was f ixed to 1, 5, 9, 13, 17, 
21, 25 and 29 r o w s to be merged. The number 
in the legend is the cor respond ing min imum 

wid th (in nm) of the bands in each set. 
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With increasing bandwidths, fewer bands are available for the final set. This may result in sub-

optimal set accuracy if the number of bands falls below the IDD estimate of the data set. The IDD for 

the New Forest and River Severn data set was estimated to 2 and 3, respectively (see section 3.5). 

As, for the New Forest data set, the accuracy difference to the narrow band set was insignificant for 

all expanded band sets at the IDD dimension, two bands of 370 nm in width may be employed to 

achieve a similar classification accuracy as two bands of 15 nm in width. That is, narrow band data 

are not of significance for the New Forest classification task. However, they are of advantage for the 

River Severn classification task, as they give a significantly higher accuracy than expanded band 

sets do at the IDD dimension of 3. 

The classes for the New Forest data set reflect partly vegetated areas of different hydrological 

conditions (dry, humid and wet heath), and multispectrai data were shown to be sufficient to 

distinguish between them. However, the author's interest was also to examine whether 

hyperspectral data was of advantage for the spectral differentiation between vegetation classes from 

areas of mostly the same hydrological regime, e.g. a bog surface. In the next section, a new data set 

of a bog surface is introduced for this purpose. The new data set was also used to further test the 

BBS algorithm developed in chapter 4. 

6.4 Tregaron Bog Case Study 

This case study aims to see what band set is the most optimal in separating bog condition classes, 

and whether hyperspectral resolution data have a significant advantage over multispectrai data for 

this classification task. Section 6.4.1 introduces the study area, the hyperspectral data and the 

classes of interest. The method is described in section 6.4.2, while the results and conclusions of the 

experiment are presented in section 6.4.3. 

6.4.1 Study Area, Data Set and Class Definition 

s tudy area 

Cors Caron, also known as Tregaron Bog, is located north of Tregaron village in the Teifi valley in 

Ceredigion, west Wales (see figure 6.7). It is an extensive lowland raised bog complex of 816 ha, 

consisting of three hydrologically independent peat domes. All three domes suffer from marginal 

peat cutting at different scales, but their central part is still structurally intact. The least disturbed bog 

is the largest one on the western side of the Teifi river. Cors Caron became a National Nature 

Reserve in 1955 and a Ramsar site in 1993. It supports a range of rare plant species (e.g. the bog 

moss Sphagnum pulchrum) and rare animals (e.g. the rosy marsh moth; Milton et a/., 2003). 
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Figure 6.7: False colour CAS I-2 image of the Tregaron bog (R = band 40, G = band 22, B 
band 14). © UK Natural Environment Research Council, 2001. 
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Data set 

Airborne hyperspectral CASI-2 image data were collected in October 2001 by NERC ARSF over the 

western dome of the Tregaron bog. Details of the data acquisition are presented in table 6.2. The 

data were radiometrically corrected to spectral radiance. The 48 bands with their associated centre 

wavelengths and bandwidths are listed in table A,5. Some bands in the blue (bands 1 to 9) and NIR 

(bands 47 to 48) suffer from severe striping and were excluded f rom further processing. The data 

were not geometrically corrected as this was not necessary for the actual application task. A false 

colour image is displayed in figure 6.7. 

Table 6.2: Characterist ics of the CASI-2 image acqu is i t ion over the Tregaron bog. 

Acquis i t ion parameter CASI-2 imagery 
Date of acquisition 12 October 2001 
Time of acquisition (hrs GMT) 10 :49-10 :53 a.m. 
Type of aircraft Dornier 228 
Altitude (km) (above ground) 1.47 
Ground speed (knots) 125 
Number of scan lines 6731 
Sensor mode Enhanced Spectral Mode 
Spatial resolution (m) 2.9 
Number of spectral bands 48 
Spectral resolution (nm) 11 .4 -11 .8 
Spectral range (nm) 409 - 945 
Data format (bit) 16 
View angle (°) Nadir 
Field of view (°) 53.2 
Swath width (km) 1.5 (511 pixels) 
Status of the atmosphere Hazy with clear sky above 

Class def ini t ion 

Between August and September 2002 a field survey was carried out on behalf of English Nature by 

J. Schuiz (Milton eta!., 2003). An in situ map of surface condition classes was created (see figure 

6.8) according to the categories defined in Milton ef a/. (2003). The airborne imagery available only 

depicts the western dome of the Tregaron bog, and the corresponding surface condition classes are 

described in table 6.3. 

As the defined bog condition classes appeared very homogeneous in the CASI-2 imagery, enough 

samples were available to randomly select training and testing pixels for each class. Regarding the 

number of training pixels, a conservative value of 30 was used for the ratio of the number of training 

pixels to the number of spectral bands (i.e. 1110 training pixels for each class). 
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Figure 6.8: J. Scliuiz's map of surface condition classes for the Tregaron bog (Milton et al., 
2003). The classes used are explained in table 6.3. 
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Table 6.3: Surface condi t ion classes used for the c lass i f icat ion of the Tregaron bog 
(after Milton et al., 2003). 

Class Descr ip t ion 
P1/2 Primary (near-) natural or degraded raised bog with a substantial 

cover of colourful Sphagna and the ability to accumulate peat. If 
degraded, then by factors other than drainage (e.g. burning or 
grazing). 

PI /2 Molinia dominated As P1/2, but chiefly covered by Molinia caerulea. 
P1/2 Calluna dominated As P1/2, but dominated by Caliuna. 
S3 M o W a dominated Secondary re-vegetated degraded bog. Dry peat cuttings (non-peat 

forming). Dominated by Molinia caerulea. 
S3 partly reed As S3 above, but partly covered with reed. 
Carr Wooded areas on cut-over peat (willow carr). 
Standing Water Bodies of standing water formed behind dams around the crowns of 

the bogs (dams were built to prevent surface runoff). 

6.4.2 Method 

The supervised SBS algorithm was chosen for the band selection task at hand, as specific bog 

condition classes were given. The assumptions of the SBS method, that is, the normal distribution of 

the defined classes and the linear relationship between the Transformed Divergence and the MLC 

accuracy, needed to be tested. In addition, the sub-optimality of the method was quantified in terms 

of MLC accuracy by comparing the SBS band sets (up to three dimensions, no bandwidth increase) 

with the sets of corresponding dimension derived using an exhaustive search with the MLC accuracy 

as criterion. As sufficient training and testing pixels were available, the holdout method was used to 

estimate the overall MLC accuracy (see section 2.2.2). 

The SBS band set was derived using the following algorithm options: unequal bandwidth, maximum 

bandwidth of 20 spectral rows and minimum band mean of at least 30% of the maximum band mean 

in the set. The SBS band number criterion was tested by comparing it to ID and IDD estimates of the 

data set. The latter were both based on the PGA, where the total PC variance was used to 

determine the ID, and the scree plot method (see section 2.4.1) was applied to the MLC accuracy of 

sets of consecutive PCA features to give an estimate for the IDD. The effectiveness of the SBS band 

selection result was quantified by the difference in accuracy between the SBS set and equally and 

randomly spaced band sets. 

Finally, it was tested whether hyperspectral data have an extra benefit over multispectral data in 

discriminating between the bog condition classes for the given data set. Sets of bands of increasing 

width were generated with the SBS 'equal and fixed width' algorithm option, which were compared in 

terms of MLC accuracy with the SBS set having no expanded bands. 

215 



6.4.3 Results and Conclusion 

Test ing the assumpt ions and sub-opt imai i ty of the SBS a lgo r i thm 

The main assumptions of the SBS method are: 

# normally distributed class training data, and 

« a linear relationship between the TD measure and the !V1LC accuracy. 

The histograms of the 7 classes were calculated for evenly spaced bands (13, 23, 33 and 43), and it 

could be shown that for most bands and classes, the normal curve fitted the histogram relatively 

well. Regarding the second assumption, a significant correlation coefficient of 0.99 was estimated 

between the TD and IVILC accuracy for the given sample points (see figure 6.9). These results 

indicate that the SBS method is applicable to given class and data set, as both assumptions are 

met. 

The comparison of the MLC accuracy of the SBS band sets with the set derived from the exhaustive 

search method revealed an (insignificant) accuracy loss of less than 2.8% for the first three set 

dimensions (see figure 6.10). That is, the sub-optimality of the SBS algorithm is relatively small and 

consistent for the first three band set dimensions. 

410' 

3.5 10^ 

2.5 10^ 

MLC accuracy (%) 

1.5 2 2.5 

Number of bands 

Figure 6.9: Scatter p lots of the Transformed Figure 6.10; MLC accuracy of opt imal band 
Divergence measure against MLC overall sets der ived us ing an exhaust ive search wi th 

accuracy est imated w i th the holdout method MLC accuracy (MLC-EXH) and SBS algor i thm 
for the Tregaron data set. The regression line for the Tregaron data set. 
is d isplayed (correlat ion coeff ic ient r = 0.99). 
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The SBS band set 

Table 6.4 displays the first six bands selected by the SBS 'unequal bandwidth' option, which are 

overlaid onto a leaf spectrum in figure 6.11. The first band is centred on the NIR plateau, which is 

sensitive to canopy structure and which may be used to delineate carr and the standing water 

surfaces from the bog surface. Bands 2 and 4 in the VIS are relatively broad bands located over the 

red absorption feature and the green reflectance peak, respectively. Both bands are related to the 

broad spectral absorption by chlorophyll and respond to chlorophyll amount in the canopy. 

Therefore, they may help to differentiate between different plant species, such as Sphagnum, 

Molinia, Calluna and reed. The same is true for bands 3, 5, and 6, which sample the red edge 

feature. 

Table 6.4: First 6 opt imal bands selected by the SBS a lgo r i t hm (unequal bandwidth, 
max imum bandwidth of 20 spectral rows, min imum band mean of at least 30% of the 

maximum band mean) for the Tregaron data set. 

Tregaron 

Band Band Band Band Band 
number centre width start end 

[nm] [nm] [nm] [nm] 
1 881.718 23.213 870.1115 893.3245 
2 675.031 46.129 651.9665 698.0955 
3 715.173 11.768 709.289 721.057 
4 566.729 102.451 515.5035 617.9545 
5 755.38 23.269 743.7455 767.0145 
6 732.4 23.26 720.77 744.03 
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Figure 6.11: First s ix bands selected by SBS for the Tregaron c lass i f ica t ion task (see table 6.3 
and 6.4). Wavelengths not available for band select ion are indicated by grey bars. 
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Estimated opt imal band number 

The ID of the data set was estimated to 3 as nearly 99% of the variance is explained by the first 

three PCs. This can be seen from the cumulative PC eigenvalues listed together with the MLC 

accuracy of the first ten PCs in table 6.5. The scree plot method was then applied to the MLC 

accuracy of successive PCs to give an IDD estimate of 5. The same result is achieved when using a 

99% threshold value on the PMATD criterion (see table 6.5). 

Table 6.5: PMATD band number cr i ter ion for the f i rst 10 SBS bands, and cumulat ive 
eigenvalue and MLC accuracy for the f i rst 10 PCs o f the Tregaron data set. 

Band / PMATD Cumulative PC MLC accuracy 
PC eigenvalue (%) of PC (%) 
1 81.45 93.42 72.03 
2 89.79 97.91 78.33 
3 97.19 98.97 85.80 
4 98.79 99.37 91.97 
5 99.59 99.50 93.94 
6 99.85 99.57 94.38 
7 99.996 99.62 94.21 
8 99.30 99.66 94.48 
9 99.81 99.70 94.62 
10 100 99.72 94.83 

The optimal band number estimate of 5 is also reflected in figure 6.12, where the SBS band set is 

compared in terms of MLC accuracy with equally and randomly spaced band sets. SBS band 

selection seems to be especially effective for the first five dimensions, where differences to the 

randomly and equally spaced band sets are as high as 12%. From 6 to 10 dimensions, the 

differences get reduced to below 3%, but remain statistically significant in most cases. Although the 

PC features give a higher MLC accuracy than the SBS band set from 5 dimension onwards (see 

figure 6.12), PCs do not have a physical meaning attached to them and do not consider a possible 

expansion of bands. 

In summary, the optimal band number criterion was confirmed using a threshold value of 99% rather 

than 95%. The users are advised to judge in each case which threshold they apply. Using the 99% 

threshold will result in a more accurate end result but at the cost of a potentially much greater 

number of features. 

Benefit of hyperspectral data for the classi f icat ion task 

The widths of the best six SBS bands vary from 11 to 103 nm (see table 6.4). The fact that the broad 

bands were picked out around the red and green wavelengths may suggest that an aerial 

photograph may probably be sufficient for differentiating between the given bog condition classes. 

An experiment was conducted to see whether hyperspectral data have an additional advantage over 

218 



multispectral data for the given classification task. Sets of bands of equal width were created for 

increasing bandwidths (12 to 194 nm) using the SBS 'equal and f ixed width' algorithm option. Figure 

6.13 shows the MLC accuracy estimated for the given sets. Only sets up to 57 nm in bandwidth 

could be considered as they provide enough bands to reach the optimal band number of 5 

dimensions. As the bands of 57 nm gave an MLC accuracy which was insignificantly smaller (below 

1%) than that of the 12 nm bands, the author concluded that five carefully placed multispectral 

bands of about 57 nm could be used to achieve the same accuracy for this classification task than 

five bands of around 12 nm. 

#— SB: 
PCA 
Randomly S p a c e d 
Equally S p a c e d 

Band Set Dimension 

Figure 6.12: MLC accuracy of the SBS band 
set compared wi th the one of randomly and 
uni formly spaced band sets for the Tregaron 

data set. 

Band Set Dimension 

Figure 6.13: A c c u r a c y of SBS band sets fo r 
increasing bandw id th for the Tregaron data 

set. The w id th w a s f ixed to 1, 3, 5, 7, 9, 11, 13, 
15 and 17 rows to be merged. The number in 

the legend co r responds to the min imum 
width (in nm) o f the bands in each set. 

6.5 Generalisation of the Use of Band Selection Methods 

In this section, the band selection methods SBS and UBS presented in chapters 4 and 5, 

respectively, are scrutinised whether they can be used with other hyperspectral data applications, 

such as regression, linear spectral unmixing and spectral angle mapper. Likely changes of the 

algorithms to adapt to the different techniques are investigated. Furthermore, the employment of the 

two methods for other scene, atmospheric and illumination conditions, and for other imaging 

spectrometers is discussed. 
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6.5.1 Use with other Hyperspectral Applications 

o the r Hard Classi f icat ion Methods 

Classification methods such as minimum distance, k-nearest neighbour or the parallelepiped 

classifier would also benefit from a reduced band set that discriminates most between the given 

classes. However, in contrast to the probabilistic Maximum Likelihood classification, the methods 

mentioned above usually rely only on first-order class statistics and typically measure class distance 

in the Euclidean space. If SBS was to be employed for supervised band selection for these methods, 

the criterion function used in the SBS algorithm, the Transformed Divergence, would need to be 

replaced by the Euclidean distance measure. The unsupervised UBS algorithm has the advantage 

over the SBS method that it was not constructed to optimise a particular criterion function, but simply 

to decorrelate the band set. It is therefore applicable to any of the above classification methods. 

Regression 

Regression has been widely used in remote sensing, mainly to relate physical earth surface 

variables to remotely sensed measurements. In general, multiple regression allows determining 

whether values of a (dependent) variable x: are related to values of c independent variables 

(z e [ l , c]) . For a simple regression, c equals one. Equation 6.1 shows the linear form of a multiple 

regression model with matrix notation. Generally, the independent variables are selected by the 

analyst and are assumed to be without error. For each of their values, n observations of the 

dependent variable % are obtained. The aim is to invert the model and find regression coefficients 

y j with the least squares method that result in the highest correlation or see section 5.4) 

between the observed and modelled values of x , i.e., in minimal prediction errors g. (or residuals). 

The latter are assumed to be independent and normally distributed random variables with zero mean 

and constant variance. 

X , = / o + z , z e [ l , c ] , ; e [ l , 
!=1 

X = Mf + e 

where Value of the dependent variable in observation / 

y; Regression coefficient for independent variable z 

Valueof the independentvar iab lez in observation / 

c Number of independent variables 

M Number of observations 

. . . ^7' Observation vector, dimension ( » , 1 ) 

f Vector of coefficients, dimension ( c ,1 ) 

^ ^ ) Matrix of independent variables, dimension ( » , c ) 
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1 = (11 " , 1 ) ^ Unitvector, dimension here (M,1) 

g. Error for observation / of t l ie fit of independent variables 

g _ (g Vector of random errors, dimension (M,1) 

A band selection method for regression may aim to select a band set, which minimises the absolute 

error of the regression result. The root-mean-square-error (RMSE) calculated between the modelled 

and l<nown inversion result for a given validation data set, is an absolute error measure for any type 

of model inversion (Settle and Drake, 1993; Townshend et a/., 2000). For example, Weiss et al. 

(2000) inverted the SAIL radiative transfer model to estimate canopy biophysical variables from 

remotely sensed reflectance data. For each canopy variable, they selected a band set that gave the 

best estimation performance in terms of minimum absolute RMSE. 

The absolute RMSE includes the model fit as well as the data dependent generalisation error of the 

model, that is, the model's performance with respect to unseen data. For supervised band selection, 

however, the main interest lies in the fit of a certain band (subset) to the model, which is captured in 

a goodness-of-fit measure such as the coefficient of determination ( f ^ or ) between the 

observed and modelled values of the dependent variable. 

An example for band selection for simple regression models is Lecltie ef a/. (1988), who aimed to 

find airborne scanner bands which can be used to assess defoliation caused by the spruce 

budworm. They performed linear and quadratic regressions to relate band reflectance data and 

damage symptom quantities, and the bands with a high and significant correlation coefficient (0.1% 

and 1% significance level) were considered as highly suitable for the task. Another example is 

Thenkabail et al. (2002), who selected optimal sensor bands for characterising biophysical variables 

of agricultural crops and yield. They related in situ measurements of these variables directly to 

vegetation indices (and not bands) calculated from both narrow and broad wavebands using field 

spectroradiometer and Landsat-5 TM reflectance data, respectively. The best vegetation indices 

were the ones that gave the highest for the exponential regression model, and the best bands 

were selected as the ones used in the three best vegetation index models. 

The latter two examples represent single-band selections, which do not consider the suitability of the 

entire band subset for the regression model. Hyperspectral bands of a remotely sensed data set are 

usually correlated, so the best band subset does not necessarily consist of the best individual bands. 

Feature selection search techniques (see section 2.2,3) may be applied to find the best band subset 

at any given dimension. As an exhaustive search may quickly become computationally infeasible, a 

sub-optimal method such as the sequential forward or backward selection may be employed. To 

note is that the minimum number of bands required for obtaining a regression solution equals to 

c -I-1, and in case of the forward selection, an exhaustive search needs to be performed for the 

band set dimension c 4-1 before further bands may be added via forward selection search. The 
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backward elimination method may in total be computationally less expensive than the modified 

forward selection search. It performs a regression on all bands and deletes the band iteratively that 

contributes least to the coefficient of determination when entered last. 

Nevertheless, band selection methods using the coefficient of determination as criterion function 

require a regression calculation for each criterion value and therefore come at a high computational 

cost. Unfortunately, a surrogate for a goodness-of-fit measure entirely based on the given values of 

the independent variables does not exist. 

One of the assumptions in regression is that the independent variables are linearly independent, i.e. 

they have no perfect correlation between them. In case variables were colllnear, the regression 

model could not be inverted. That is, for the linear example in equation 6.1, the matrix M (or 

M ^ M ) becomes singular and its inverse does not exist. Although near collinearity between 

independent variables allows for model inversion, it results in a very large standard error of their 

regression coefficients (Edwards, 1984). That is, the coefficients become unstable and may vary 

substantially depending on which other independent variables are included. Consequently, an 

accurate regression solution relies on the independence of the model variables, and a supervised 

band selection routine may be designed to eliminate those bands from the set that result in an 

increased variable correlation. The correlation between the variable vectors for each band may be 

measured via the angle between them. That is, the SBS algorithm framework could be applied to 

band selection for regression if the criterion function was replaced by an angle measure between 

variable vectors. As the latter is not a single-band measure, the band pair resulting in the largest 

angle between the given variables is selected first. 

The unsupervised UBS algorithm decorrelates the observations. This may be of advantage for 

regression, as coliinear observations prevent regression model inversion and near-collinear ones 

result in increased variances of the estimated coefficients. The regression model assumes 

observations to be independent and vary randomly around the regression line. 

As a result, both the modified SBS and the UBS algorithm may be applied for band selection for 

regression. However, in both cases, the procedure would not select bands the model fits best, but 

those that potentially reduce the standard error of the regression coefficients. In both cases, the 

band number determination procedure is not applicable, as for regression the number of 

independent random observations should be considerably larger than the number of variables to 

reduce the prediction variance (Miller, 1990). 
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Linear Spectral Unmix ing 

Linear spectral unmixing (LSU, e.g. Horwitz et al., 1971) is an estimation method which inverts the 

linear spectral mixture model (LSMM). The latter formulates the radiance captured by each 

instantaneous field of view (IFOV) as a linear sum of the individual material radiances ('spectral 

endmembers', EMs) received from the scene model elements. The weight coefficients of the sum 

correspond to the area proportions of the ElVIs within the ground-projected instantaneous field of 

view (GIFOV). The LSMIVI corresponds to regression equation 6.1, where the ElVIs represent the 

independent variables, the sensor radiance (or reflectance) the dependent variable and the area 

proportions the regression coefficients. The constant regression coefficient may stand for effects not 

explained by the ElVIs (Nielsen, 1999). Sometimes the column of ones in M is replaced by a 

column of zeros to represent the 'total shade' EM with 0 % reflectance In all bands (Tompkins ef a/., 

1997), but more often than not the constant coefficient Is removed from the equation. The regression 

equation may be constrained by forcing the coefficient values to sum to one or restricting them to be 

greater than zero. 

With respect to band selection, Levesque et al. (1998) investigated the effects of varying bandwidth 

and band number on (constrained) spectral unmixing results for a 68-band CAS I data acquired over 

a mine tailings site with five EM spectra. The absolute mean difference (AMD) between the all-bands 

unmixing result and the band-expansion results increased for growing bandwidths, while the AMD 

for band reduction was below 2 and 9%, when using only 8 and 4 uniformly-spaced bands, 

respectively. This illustrated that broadband sensors may be limited in their ability to separate 

spectrally between EM, and that using the minimum number instead of all observations may result in 

comparable results (AMD below 10%). 

Chang et al. (1999) described a supervised band selection method for linear spectral unmixing with 

a regression model that separates between target and background EMs. In this method, pixels are 

first projected into the subspace orthogonal to the background (orthogonal subspace projection, 

OSP, Harsanyi and Chang, 1994). Second, target signals are separated from noise maximising the 

SNR matrix via a matched filter, which is equivalent to solving a generalised eigenvalue problem. 

From the eigenvalues and -vectors, the discriminant power (see section 2.3.5) of each band is 

calculated to prioritise the bands. That is, bands are ranked according to their ability to transmit only 

the part of the target EM signal that is orthogonal to the background EMs. A similar approach was 

presented by Karlholm and Renhorn (2002), who projected the signal onto the subspace orthogonal 

to the background, and then estimated the SNR by decomposing the projected signal into 

orthogonal components in a target and noise subspace. The bands were selected that transmit the 

undistorted part of the target signal orthogonal to background. However, the latter two examples 

represent single-band selections, which do not take the band subset performance into account. 
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Regarding subset selection for LSU and tlie suitability of the SBS and UBS algorithms, the same 

comments apply as for regression (see above). These results are also valid for extensions of LSU, 

such as OSP, constrained energy minimisation (Farrand and Harsanyi, 1997) and support vector 

machines (Brown ef a/., 1999). 

Spectral Angle Mapper 

The spectral angle mapper (SAIVI, e.g. Mather, 1999) allows the mapping of the spectral similarity of 

each image spectrum to a given reference spectrum. The similarity is measured by the angle 

between an image pixel vector and the reference pixel vector, which is invariant to the lengths of the 

vectors, and therefore to illumination effects. The SBS algorithm is applicable if the criterion function 

is replaced by an angle measure (see table 2.1), which has to be minimised to achieve high class 

separation. In addition, the algorithm needs to be modified and start by selecting the band pair 

resulting in the largest angle between the given classes, as the criterion is not a single-band 

measure. The UBS can be employed as it reduces the redundancy between bands and therefore the 

need to estimate vector similarity for equivalent bands. 

6.5.2 Use with other Scene, Atmospheric and Illumination Conditions 

The band selection methods described in chapter 4 and 5 assume that the scene, atmospheric and 

illumination conditions do not change significantly between the hyperspectral image flight and the 

following multispectral image flight. The multispectral band configuration corresponds to the output 

of the band selection algorithm which uses the hyperspectral image as input. If, however, significant 

changes in atmospheric and illumination conditions occur between data acquisitions, hyperspectral 

data measured for the target conditions need to be either simulated or calibrated to reflectance (see 

section 6.6). 

6.5.3 Use with other Imaging Spectrometers 

The band selection methods are generally directly applicable to all programmable imaging 

spectrometers that measure a continuous spectrum for each pixel and possess an on-board channel 

summation capability. Examples include the CASI-2, the Airborne Imaging Spectrometer (AISA) and 

the Reflective Optics System Imaging Spectrometer 03 (ROSIS-03). If bands were to be selected for 

a sensor different to the one with which the hyperspectral input data were acquired, the 

hyperspectral data set would need to be modified to simulate measurements of the target sensor. 

Data simulation is described in the next section. 
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6.6 Data Simulation 

The selection of a band set for future multispectral airborne or satellite sensors or unavailable 

programmable imaging spectrometers may also be accomplished via the SBS and UBS band 

selection methods presented in chapters 4 and 5, respectively. The latter algorithms require high 

spectral resolution sensor data as input, but as these may not be available for the given target 

sensors, they need to be simulated with data from other hyperspectral imaging or non-imaging 

sensors. 

For correct data simulation, sensor characteristics as well as atmospheric and illumination conditions 

need to be taken into account for both the target and the simulating sensor. In this section, the 

author focused exclusively on sensor attributes such as spectral, spatial and signal response. 

Transforming the available hyperspectral data into radiance will correct for dark current noise and 

calibrating them to apparent reflectance reduces atmospheric and illumination effects. That is, 

simulating data in reflectance units eliminates the need to consider prevailing atmospheric and 

illumination conditions. If at-sensor radiance was the desired output unit of the simulation, a radiative 

transfer model could be used (e.g. Isaacs and Vogelmann, 1988; Kerekes and Landgrebe, 1989; 

Fischer and Fell, 1999), For both target and simulating sensor, nadir viewing was assumed, 

reducing the effects of oblique viewing on the band selection result. For the use of orbital, platform, 

or attitude models the reader is referred to O'Neill and Dowman (1993) and Schowengerdt (1997). 

6.6.1 Sensor Spectral Response 

Two cases of band selection for different sensors may be distinguished: 

1) band selection for a non-existing sensor (e.g. in sensor design studies), and 

2) band selection for an existing but unavailable programmable imaging spectrometer. 

In both cases, it is essential that the entire wavelength range of the target sensor is covered by the 

hyperspectral data set used. In the first case, data simulation will not be necessary as none of the 

target sensor bands are specified. Nonetheless, the finer the spectral resolution of the base data set, 

the more optimal the bands will be selected with respect to their width and placement. 

In the second case, the spectral resolution of the base data needs to be finer than the finest 

resolution of the target sensor in order to allow for an accurate band simulation. A target sensor 

band may be simulated by the simple average of all narrow bands that fall within its spectral 

response. For example, Thenkabail ef a/. (2000) simulated spaceborne sensor bands from field 

spectrometer data by averaging the narrow band data for the corresponding band ranges. 
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If the target sensor's spectral response function (also referred to as bandpass or transmittance 

function) was known a more accurate band simulation would result. The simulated band response 

would then be calculated as the spectrally weighted average of the narrow band responses over the 

spectral bandpass. For example, Wetzel (1995) simulated spectral bands of two shortwave-infrared 

AVHRR channels with hyperspectral AVIRIS data by using a spectral transmittance function similar 

to the existing AVHRR shortwave channel transmittance. 

However, for some imaging spectrometers, such as the CASI-2, the spectral response function is 

not available (Riedmann, 2003). Normally, it is considered to be Gaussian in shape but with varying 

bandwidth across the spectral range (Schowengerdt, 1997). 

6.6.2 Sensor Spatial Response 

When simulating the spectral response of a sensor, it is important that the size of the simulating 

sensor's GIFOV matches the one of the target sensor, so that both sensors capture the same scale 

of scene variation. If this was not the case one sensor would measure small-scale scene variation, 

the other large-scale variation, leading to fundamentally different sensor responses. That is, the 

simulating sensor's GIFOV measurements need to be regularised to the GIFOV size of the target 

sensor, if the GIFOVs were different. This implies that the spatial resolution of the simulating sensor 

needs to be equal or finer than the resolution of the target sensor, as it is more difficult to scale 

down, i.e. simulate small-scale from large-scale variation. In addition, the base data set should cover 

the entire spatial extent of the scene of interest. 

Generally, two types of simulating sensor may be distinguished: 

1) imaging sensor (e.g. an airborne imaging spectrometer), and 

2) non-imaging sensor (e.g. a field spectroradiometer). 

The following paragraphs discuss data simulation using data from these two types of sensors. 

Simulat ion wi th Data f rom imaging Sensors 

An imaging sensor may simulate the spatial response of another one flown or orbiting at higher 

altitude. Up-scaling of image data may be performed in two consecutive steps: 

1) discrete convolution (filtering), and 

2) resampling. 

Convolution filters are moving windows that operate on a relatively small neighbourhood of the 

windows centre pixel. A linear convolution filter is a weighted sum of the pixels within the moving 

window. The moving window needs to be at least the size of the target sensor's GIFOV. The image 
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coordinate of the output value is the same as the one of the current centre pixel of the window. The 

window is moved over every possible image pixel position, blurring the image according to the 

nature of the filter function. To note is that the sampling between pixels during the convolution 

remains constant. In the second step, the image is resampled to the desired sampling interval. 

Usually the spacing between pixels is chosen to equal the GIFOV size of the target sensor. 

Resampling is achieved by interpolating new pixel values between the convoluted pixels using 

nearest neighbour, bilinear, or cubic interpolation. 

In this context, the convolution filter corresponds to the point-spread function (PSF) of the target 

sensor, which describes the spatial response of the sensor due to its optics, image motion, detector 

and electronics (Schowengerdt, 1997). The PSF represents the spatial irradiance of a point source 

on the detector in the sensor focal plane. The modulation transfer function (MTF) is the equivalent of 

the PSF in the spatial frequency domain. To be precise, the MTF equals to the magnitude of the 

Fourier transform of the PSF (Bretschneider, 2002). 

If the PSF of the target sensor is unknown, an idealised square wave response is often assumed 

and the centre pixel value is calculated as the average of all pixels within the moving window. In this 

case, the GIFOV of the target sensor generally equals multiple times the pixel size of the simulating 

sensor. For example, Woodcock and Strahler (1987) degraded Landsat Thematic ^/lapper data 

using this simple averaging technique. Marceau ef a/. (1994) degraded Multi-detector Electro-optical 

Imaging Scanner (MEIS) II airborne imagery and then resampled to four progressively coarser 

spatial resolutions (5, 10, 20, and 30 m). Wetzel (1995) simulated the spatial response of two 

AVHRR channels with 20 m AVIRIS image data by averaging 55 by 55 pixels to give the AVHRR 

footprint of 1.1 km. The blurred image was successively down-sampled by the same window size. 

If the PSF or MTF of the target sensor is given, a more realistic sensor response may be estimated. 

For example, Schowengerdt (1997) simulated Landsat Thematic Mapper data by scanning an aerial 

photograph with a 2-meter GIFOV, blurring the image with the known PSF and subsampling the 

filtered image from 2 to 30 m pixel spacing. If the PSF or MTF of the simulating sensor is also 

known, it may be equally accounted for. Justice ef a/. (1989) simulated lower resolution data from 

Landsat MSS imagery using both the original MTF and the target MTF. The target MTF was based 

on the original one, but using different settings for ground-projected sensor blur and target detector 

dimension. The final spatial filter for image degradation was then created as the ratio between the 

target IVITF and the original MTF. 

Simulation with Data from Non imaging Sensors 

In the literature, field spectrometer data have been used for the selection of airborne and satellite 

sensor bands, e.g. Thomson ef a/. (1998a) and Dekker ef a/. (1992), respectively. However, in the 

latter examples, the authors did not scale-up field measurements at ground to match the 
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hypothetical measurements to be made with the target sensor at much coarser spatial resolution. In 

general, the larger GIFOV of the target sensor spatially averages small-scale class variation 

measured with the field spectrometer. 

To simulate the large-scale class variation seen by the target sensor, field spectral measurements 

need to be sampled and averaged over an area of the size of the target GIFOV. A carefully designed 

sampling strategy is needed to define both sampling scheme and intensity. With respect to the 

sampling scheme, systematic sampling has been shown to be more efficient than random sampling 

(Atkinson, 1997), as it ensures a uniform coverage across the pixel area. A square grid is therefore 

recommended. 

The sampling interval depends on the GIFOV size of the two sensors and the spatial homogeneity of 

the surface under investigation. Two cases may be distinguished: oversampling and undersampling. 

In the former case, the GIFOV of the spectroradiometer is larger than the ground sampling interval, 

while it is smaller in the latter case. Ideally, the pixel area would be slightly oversampled to ensure a 

continuous surface coverage. However, as the resources and time available to any given field work 

project are generally scarce, the sampling effort could be considerably reduced by increasing the 

GIFOV of the spectrometer for a better approximation of the GIFOV of the target sensor (preferably 

an increase in height above ground, as a larger FOV averages bidirectional effects). Undersampling 

is possible for surfaces that are homogeneous at sub-pixel scale. To quantify large-scale class 

variation, pixels from other scene locations need to be sampled in a similar way. An example of 

undersampling is given by Thenkabail ef a/. (2000). They simulated 30 m Landsat TIVI bands of 

agricultural crops (cotton, potato, soybeans, corn and sunflower) with data from a field spectrometer 

with a GIFOV-diameter of 38 cm. Spectral measurements were taken every 10 m along transacts of 

30 to 100 m in length. 

In general, high-resolution airborne imaging data should be preferred to non-imaging field 

spectrometer data for the simulation of hyperspectral airborne or spaceborne imagery. The amount 

of fieldwork needed to adequately sample class areas may be substantial, especially for 

heterogeneous surfaces with many classes. In addition, extrapolation from non-image to image data 

represents a weak approximation of the real data. The SBS and UBS algorithms were developed for 

image data only, but can be programmed to accommodate field spectral data stored in ENVI 

spectral library format ( spl). 

6.6.3 Sensor Signal Characteristics 

Theoretically, the radiometric resolution of the simulating sensor needs to be equal to or finer than 

the one of the target sensor for an accurate data simulation. However, due to advances in senor 

technology, the new generation of sensors possess very high radiometric resolution equal to or 
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beyond 12-bit (CASI-2 or Hyperion 12 bit; HyMAP 16 bit). Differences between a 12-bit and 16-bit 

version of tine same image seem negligible, as the signal will be still sufficiently quantised with 12-

bit. Obviously, 16-bit data differ significantly from 6-bit data (e.g. Landsat MSS sensor). 

Apart from the radiometric resolution, the noise characteristics of the target sensor need to be taken 

into consideration. If hyperspectral airborne or spaceborne data are simulated from higher spatial 

and spectral resolution data, the averaging during the degradation process reduces the noise levels 

of the original data to an unrealistically low level. Justice et al. (1989) reported an 80% decrease in 

sensor noise due to digital filtering. In addition, high-resolution data from field measurements or low-

altitude airborne acquisitions generally possess a higher SNR than comparable data collected at 

higher altitudes from airborne or spaceborne sensors. 

Noise levels of the target sensor bands may be restored to approximately realistic levels by adding 

Gaussian random noise of zero mean and one noise standard deviation. The noise standard 

deviation may be derived from dark current measurements of the target sensor. As the simulated 

data are most practically measured in apparent reflectance, the noise standard deviation needs to 

be scaled from the target sensor's DN value to reflectance. The scaling factor may be calculated as 

the ratio between the maximum possible response values of reflectance (100%) and that of the 

sensor's DN value (4095 DN for CASI-2). 

In this section, data simulation was based on data calibrated to apparent reflectance units in order to 

circumvent atmospheric and illumination modelling. The next section discusses the need for data 

calibration to radiance or apparent reflectance in the context of band selection. 

6.7 The Need for Calibration 

During the period 1999 to 2002 the author was responsible for the laboratory calibration of the 

NERC ARSF CASI-2 imaging spectrometer and the procedure adopted for this has been published 

by Riedmann and Rollin (2000) and Riedmann (2003). Section 4.2.1 gave a short overview of 

common reflectance calibration methods. In this section, the benefits of both radiance and 

reflectance calibration are considered for remote sensing, and the relevance of data calibration for 

band selection will be discussed. 

Radiometric or sensor calibration aims to transform the sensor response (in DN) to Systeme 

International (SI) units (at-sensor spectral radiance, pWcm'^sr'^nm'^) to make the measurements 

independent of the instrument. It is especially important for 

' the comparison of data acquired with different sensors (for across- or multi-sensor products) 
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" the comparison of data acquired at different times as tlie sensor response may drift over time 

(for multi-temporal products such as image mosaics or land cover change) 

' quantitative techniques that depend on inter-band relationships (such as band ratios), as 

detectors within a sensor may respond differently to a spectrally uniform signal, 

" the use of radiance data for physical models (e.g. radiative transfer models). 

However, at-sensor radiance is also a function of atmospheric conditions, solar illumination, sensor-

sun viewing-illumination geometry, topographic slope and aspect. Accurate multi-sensor and multi-

temporal data products should account for these factors, too. 

Reflectance or scene calibration eliminates the influence of the atmosphere and illumination on the 

data signal by converting it from at-sensor radiance to units of surface reflectance. As surface 

reflectance is independent of the sensor, the reasons for radiometric calibration are also valid for 

reflectance calibration. In addition, reflectance calibration is vital for 

" the comparison of data to other reflectance data, e.g. acquired in the laboratory or in the field, 

" quantitative techniques that exploit spectral features of the reflectance curve, e.g. precise 

absorption band-depth measurements or absorption feature detection, and 

" the use of reflectance data for physical models. 

The effects of sensor viewing and solar illumination geometry, as well as topography, on remote 

sensing data are significant but will not be addressed here. The reader is referred to IVIather (1999) 

for a discussion of correction methods. 

With regards to the band selection algorithms developed in this thesis, neither radiance nor 

reflectance calibration are strictly necessary if it can be assumed that the sensor response and 

atmospheric and illumination conditions will remain constant between the hyperspectral and 

multispectral data acquisitions. However, if significant changes in sensor response or atmospheric 

and illumination conditions occurred between the two acquisitions, for example, due to a large time 

lag or multispectral data being collected with a different sensor, reflectance calibration would be 

beneficial to guarantee optimal band selection. Obviously, if the application requires radiance or 

reflectance data as input, band selection should be performed on calibrated data. 

The author believes that, in principle, surface reflectance calibration should be part of any data pre-

processing routine, if the interest of the analyst lies in surface properties, for example as for land 

cover classification. However, so far, different sensor and scene calibration procedures of different 

accuracy have been applied across the remote sensing research community. To make data as 

comparable as possible calibration methods need to be standardised. Validation of data for Earth 

observation services (ValDEOS) is a UK initiative that aims to integrate the existing capability for 

data calibration and validation across Europe in a network of excellence. It plans to develop a 
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uniform approach towards validation and calibration under which nationally funded programmes are 

likely to align (see BNSC/NPL on-line e-survey; NPL, 2003). 

6.8 Summary 

When applied to the given real data sets, the SBS, UBS and CSBS algorithms achieved similar IVILC 

accuracies, indicating that all four algorithms may be equally applied for the given data and class set 

for band selection. However, the SBS resulted in more optimal bands, especially in the search for 

the single best bands. SBS is the preferred band selection method for a supervised IVILC, as UBS 

cannot determine the optimal maximum bandwidth and depends on the availability of dark image 

data for band expansion. CSBS has the drawback of producing inconsistent results depending on 

the initialisation and parameter settings of the clustering routine. However, the ultimate choice of 

method is very much dependent on the requests of the data user, and the UBS method may be 

chosen simply because it may be applied in-flight. 

When applied to the given data sets, band selection is principally effective only for the first few 

bands of the selected set. The number of effective bands corresponds to the intrinsic discriminant 

dimensions of the data sets. In addition, a band expansion experiment on the given data sets 

showed that for two out of three data sets hyperspectral data were found not to be of significance for 

the corresponding classification tasks. That is, multispectral data with less and broader bands would 

achieve similar accuracy as the full hyperspectral data set. 

With respect to other hyperspectral data applications, UBS may be used without modification for all 

cases examined. In contrast, SBS can only be employed to other hard classification methods if the 

criterion function used reflects the complexity of the classifier. For example, the Euclidean distance 

measure should be employed when classifying with the Minimum Distance method. For regression, 

linear spectral unmixing or spectral angle mapper, the SBS criterion function needs to be replaced 

by the spectral angle between variable or class vectors. 

SBS and UBS may be employed with any other programmable imaging spectrometers such as AISA 

or ROSlS-03, If band selection was carried out for a sensor different to the one with which the 

hyperspectral input data were acquired, for example for sensor design studies, the hyperspectral 

data of the target sensor would need to be simulated. If the spectral response of target sensor was 

known, data of spectral resolution finer than the one of the target sensor should be used for 

simulation. Likewise, the spatial resolution of the simulating sensor needs to be equal or finer than 

the resolution of the target sensor. If the spatial sensor response was simulated with data from an 

imaging sensor, data would first need to be convoluted with the PSF of the sensor and then 

resampled. If non-imaging data from field spectrometers was used for spatial data simulation, the 

GIFOV of the target sensor would need to be sampled systematically in a square grid with the 
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sampling interval depending on the GIFOV size of the two sensors and the spatial uniformity of the 

target classes. The closer the GIFOVs are in size, and the more homogeneous the classes, the less 

sampling is needed. In addition to the spatial and spectral response, the target sensor noise has to 

be considered as well for data simulation. Noise levels may be derived from the target sensor's dark 

current and added as Gaussian noise with zero mean and one standard deviation. 

If it cannot be assumed that the sensor response and atmospheric and illumination conditions will 

remain constant between hyperspectral and multispectral data acquisitions, data should be 

calibrated to radiance and apparent reflectance, respectively, to guarantee optimal band selection. 

This is also valid if the data application requires calibrated data as input. With respect to data 

simulation, calibrating hyperspectral data to apparent reflectance allows to circumvent modelling of 

the existing atmospheric and illumination conditions at the target sensor. 
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7 Summary and Conclusion 

7.1 Rationale and Objectives 

During the last twenty years advances in sensor technology have produced a new generation of 

airborne and satellite sensors that can acquire data in many narrow bands. With hyperspectral data 

from these sensors, an improved discrimination of ground targets may be possible. However, this 

increased capacity comes at a substantial cost: 

" First, some sensors, such as the CASI-2 or CHRIS, are limited in the amount of data they can 

record. In order to acquire a large number of bands, the amount of spatial pixels (i.e. the swath 

width) needs to be reduced. 

• Second, very fine bands give a low signal-to-noise ratio, unless coarser spatial resolution is 

used. For example, the first spaceborne imaging spectrometer, Hyperion, records a continuous 

spectrum with 10 nm wide bands, but offers a spatial resolution of 30 m. The latter is relatively 

coarse compared to a possible 1 m resolution of the Ikonos satellite sensor (see table 1.2). 

The question may then be asked whether hyperspectral data are of benefit for a given application 

task, in other words: 

Is it possible to reduce the number of hyperspectral bands and broaden their width, while achieving 

the same or higher application accuracy as with the original hyperspectral data set? 

This study aimed to answer this question by developing band selection methodologies using 

hyperspectral data from airborne and satellite sensors as input. So far, band sets for airborne and 

spaceborne sensors have been designed mainly on the basis of established band sets of other 

sensors. Alternatively, they have been chosen using feature selection or extraction methods. But the 

latter methods are unable to provide an answer to the above question. 

7.2 Innovative Methods 

To answer the above question, all band selection methods developed in this thesis introduce both 

bandwidth and band number as variables into the band selection process. That is, band location, 

width and number are optimised with respect to the accuracy of the application task at hand. 

Maximum Likelihood classification was chosen as application in the design of the algorithms, but the 

use of the band selection methods with respect to other applications was discussed. 
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The supervised band selection (SBS) procedure is based on conventional feature selection 

techniques using user-specified classes. However, it outperforms other published feature selection-

based methods in the choice of criterion function and algorithm structure. Both the band expansion 

and band number determination procedures are based on the criterion function. 

For the case that in situ data or classification schemes are unavailable, an unsupervised band 

selection (UBS) method was designed, which aims to find the least redundant bands within the band 

set on the basis of the correlation coefficient. While the optimal number determination method uses 

also the correlation coefficient, the expansion procedure is based on the band signal-to-noise ratio. 

Unlike PCA, UBS decorrelates the band set without data transformation, preserving the physical 

meaning of the bands. The clustering-based SBS (CSBS) algorithm is an alternative to UBS, which 

uses clustering to define the classes needed as input for the SBS. 

All algorithms were implemented in computationally efficient IDL™ (version 5.5 Win 32 x86) and 

ENVI™ (version 3.5) programs that can be run in ENVI™. Besides for band selection, they may also 

be used for 

® feature selection processing, 

• determining the best three bands for colour composites to visually discriminate between the 

given classes or display maximum information, 

• visualising discriminant or uncorrelated spaces (e.g. for endmember derivation), 

" ordering a given band set according to information content or discrimination ability, and 

- adding least redundant or most discriminative bands to a pre-defined band set. 

7.3 Method Evaluation 

The band selection approaches developed were evaluated with two real data sets from saltmarsh 

areas in the Mid Severn Estuary and heathland areas in the New Forest, UK. The SBS was further 

tested on a data set from the Tregaron bog, UK. All algorithms gave physically meaningful band 

sets, which achieved similar or higher MLC accuracies than vegetation and coastal band sets from 

current airborne and satellite sensors. The sub-optimality of the SBS band set was found to be no 

more than 6% for sets with maximum three bands, while the UBS band set achieved a maximum 

accuracy loss of 7% for two and three-dimensional band sets. The CSBS set was found to be less 

optimal. The band number criteria were shown to be effective estimates of the intrinsic 

dimensionality of the data sets. However, some subjectivity is still present in the latter criteria 

regarding the threshold being used (95% or 99%). 

Generally, SBS is the preferred band selection method for supervised MLC as data application. Only 

SBS may be used to test whether narrow band data have a significant advantage over broad band 

data for the given classification tasks at hand. UBS uses the SNR for band expansion, which is not 
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related to MLC accuracy and depends on the availability of dark image data. Furthermore, UBS (as 

PCA) requires each band to be normally distributed, which is only justified if the scene is made up of 

a single material type. CSBS has the drawback of producing inconsistent results depending on the 

initialisation and parameter settings of the clustering routine. If no classes are available, UBS should 

be preferred to CSBS due to the inconsistency and sub-optimality of the latter. 

7.4 Results 

A band expansion experiment was performed with the SBS algorithm to test whether hyperspectral 

data gave a significantly higher MLC accuracy than multispectral data for three classification tasks: 

heathland vegetation in the New Forest, salt marsh vegetation on the River Severn and bog 

condition classes on the Tregaron bog. 

= As for the New Forest classification task, two carefully placed bands of 370 nm seem to be 

achieving at least 95% of the classification accuracy that 117 15 nm-wide bands reach. 

= Regarding the Tregaron classification task, five bands of 57 nm seem to result in at least 99% of 

the accuracy of 37 12 nm-wide bands. 

" With respect to the River Severn classification task, three bands seem to achieve at least 95% 

of the classification accuracy of 60 bands. However, narrow bands were found to give a 

significantly higher accuracy than broader bands. 

That is, for all three classification tasks, the number of bands to acquire could be reduced 

dramatically, enabling an increase in swath width. For two out of three tasks, coarsening the spectral 

sensor resolution may be justified e.g. in favour of a refinement in the sensor's spatial resolution. 

7.5 Use of Methods 

Band selection is specific to the characteristics of 1) the scene, 2) the sun, 3) the atmosphere, 4) the 

sensor, and 5) the final data application. To find a band set that is valid for the target data 

acquisition, all dependencies have to be considered. 

According to whether target sensor is programmable or not, the band selection methods may be 

applied in two different ways. Using programmable airborne sensors, such as the CASI-2, AISA or 

ROSIS-03, the first four attributes may be taken into account by using hyperspectral data of a 

representative part of the scene acquired with the sensor of interest under similar solar and 

atmospheric conditions. Application-specific band selection may then be performed on the 

hyperspectral data, and multispectral data may be collected subsequently using the optimised band 

set. The approach requires the time gap between hyperspectral and multispectral acquisitions to be 
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minimised to avoid changes in the class spectral responses, atmospheric and illumination 

conditions. Both the UBS and CSBS may be readily employed in-flight. The SBS is inappropriate for 

in-flight application as it depends on a user-defined class set. Reflectance calibration of the 

hyperspectral data set may be necessary, if atmospheric and illumination conditions changed 

between acquisitions. 

For non-programmable airborne or satellite sensors, a more generic band set may be sought for a 

given classification scheme (e.g. land cover mapping), which needs to be optimised to a large 

number of scenes. On the search of such a band set, long-term temporal changes in the scene, 

sensor, atmosphere, illumination need to be taken into account. As hyperspectral data of the target 

sensor are often not available, in particular for sensor design studies, they need to be simulated in 

units of apparent reflectance to consider changes in the sensor and atmospheric and illumination 

conditions. With respect to the validity of the band set regarding short-term atmospheric and 

illumination changes, a sensitivity analysis may be performed that systematically varies atmospheric 

or illumination parameter settings for a given scene. The SBS would be the most suitable band 

selection method for this case. 

7.6 Conclusion 

The author believes that current data acquisition is inefficient in that spectrally redundant data are 

collected with most imaging spectrometers, often using narrow band data where this is not 

necessary. A more efficient data acquisition with respect to the number of bands collected would 

allow obtaining supplementary data, e.g. additional bands for other data applications, or more spatial 

pixels for an increased swath width or angular data. If narrow bands were found to result in similar 

accuracy as broad bands, the spatial resolution of the sensor could be refined. 

This research project has demonstrated the potential of three innovative band selection methods for 

imaging airborne and satellite sensors. They may be used as tools to optimise a sensor band set 

regarding the number, width and location of bands, and therefore, increase the efficiency of data 

acquisition. Coupled with algorithms to optimise other acquisition parameters, e.g. spatial resolution, 

they lead the way towards an intelligent Remote Sensing expert system for data acquisition. 
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Table A.1: Env i ronment A g e n c y (EA) CASI band spec i f i ca t ions (October 1997, enhanced 
spec t ra l mode) (Source: EA, 1997). 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 

1 412.4 8.4 408X: 416.6 VIS 
2 419.7 8.4 415.5 42&G VIS 
2 427 8.4 422.8 4 3 t 2 VIS 

4 4 3 4 ^ 8.4 4 3 & 1 438.5 VIS 
c 441.G 8.4 437.4 4W5.8 VIS 
6 449 8.6 444.7 45&3 VIS 
7 456.3 8.6 452 460.6 VIS 

8 463/^ 8.6 459/4 468 VIS 
9 4 7 ^ 1 8.6 466 8 475.4 VIS 

10 478.4 8.6 474M 482.7 VIS 
11 485^) 8.6 481.6 490.2 VIS 

12 493.3 8.6 489 4^17^ VIS 
13 (#0 .7 8.6 496.4 505 VIS 

14 5 0 8 J 8.6 503.8 512.4 VIS 

15 515.6 8 6 5 1 ^ 3 519.9 VIS 
16 523.1 8.6 518 8 527.4 VIS 
17 530.5 8.6 5 2 & 2 534.8 VIS 
18 538 8.6 533 7 542.3 VIS 

19 54&5 8.6 5 4 1 ^ 54&8 VIS 

20 553 8.6 548.7 557.3 VIS 

21 560J5 8.6 556.2 564.8 VIS 

22 5 6 8 J 8.6 563.8 5 7 2 4 VIS 

23 57&6 8.6 5 7 1 ^ 579.9 VIS 

24 5 8 3 ^ 8.6 578 8 5&A4 VIS 

25 590/7 8.6 586.4 595 VIS 

26 59&2 8.6 5 9 & 9 602.5 VIS 

27 60&8 8.6 6 0 1 ^ 610^ VIS 

28 6 1 & 4 8.6 609M 61A7 VIS 

29 621 8.6 616 7 62&3 VIS 

30 628.5 8.6 624^2 6 3 2 8 VIS 

31 6 3 6 ^ 8.6 6 3 1 8 640.4 VIS 

32 64&7 8.8 639X3 6 4 8 J VIS 

33 6 5 ^ 3 8.8 646^) 655.7 VIS 

34 658^) 8.8 654 5 663.3 VIS 

35 666 6 8.8 662^2 671 VIS 

36 6 7 ^ 2 8.8 669 8 678 6 VIS 

37 681 8.8 6 r A 4 686 2 VIS 

38 6 8 9 ^ 8.8 685 693^; VIS 

39 69A1 8.8 692 7 701^) VIS 

40 704V 8.8 7 0 0 ^ 709J VIS 

41 712.3 8.8 707\9 716 7 VIS 

42 720 8.8 715J3 7 2 4 ^ VIS 

43 7 2 7 ^ 8.8 723 2 732 VIS 

44 73&3 8.8 730^3 739V VIS 

45 7 4 2 ^ 8.8 738 5 7 4 7 ^ VIS 

46 750.5 8.8 746M 7&L9 VIS 

47 75&2 8.8 753U3 7 6 2 ^ VNIR 

48 765 8 8.8 761 /1 7 7 0 ^ NIR 

49 7 7 3 ^ 8.8 769 1 777 9 NIR 

50 7&L1 8.8 776/7 785L5 NIR 
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Table A.1 con t inued. 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 

51 788J3 8.8 784.4 79&2 NIR 

52 796 4 8.8 792 800.8 NIR 

53 8 0 4 ^ 8.8 7 9 & 7 80&5 NIR 

54 8 f L 7 8.8 807 3 81&1 NIR 

55 819.4 8.8 815 8 2 1 8 NIR 

56 827 8.8 822 6 8 3 ^ 4 NIR 

57 8&L7 8.8 830.3 83&1 NIR 

58 8 4 Z 3 8.8 837.9 84&7 NIR 

59 850 8.8 8 4 & 6 8 5 ^ 4 NIR 

60 8&A6 8.8 8 5 ^ 2 862 NIR 

61 865 2 8.8 860.8 86&6 NIR 

62 872 9 8.8 868.5 87A3 NIR 

63 880.5 8.8 8 7 & 1 884.9 NIR 

64 88&1 8.8 8 8 & 7 8 9 2 5 NIR 

65 ( # 5 7 8.8 8 9 ^ 3 90&1 NIR 

66 903.3 8.8 898.9 907.7 NIR 

67 910.9 8.8 9 0 & 5 91&3 NIR 

68 918^) 8.6 914.2 922.8 NIR 

69 92&1 8.6 921.8 93&4 NIR 

70 93&7 8.6 929.4 938 NIR 

71 9 4 ^ 3 8.6 937 945 NIR 

72 CW&9 8.6 944^) 953^! NIR 

Table A.2: HyMAP band spec i f i ca t ions (June 2000) (Source: HyVISTA Corp. Pty. Ltd., 2000). 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 

1 437 15 429J5 444.5 VIS 

2 448.9 1 1 ^ 4 4 & 3 4&L5 VIS 

3 4&L3 1 5 a 4 5 & 4 VIS 

4 477X3 1&5 4 6 & 5 5 /W&05 VIS 

5 492.3 1&5 484.55 500.05 VIS 

6 507.4 15.8 499.5 515.3 VIS 

7 523/4 1 & 6 515.6 5 3 ^ 2 VIS 

8 538J3 15.9 530.85 54&75 VIS 

9 5&L2 1 & 3 54&55 6161.85 VIS 

10 569X5 1 & 4 5 & L 8 577.2 VIS 

11 584.7 1 & 4 577 5 9 2 4 VIS 

12 60&1 1&5 5 9 2 3 5 607.85 VIS 

13 6 1 5 7 1 5 J 60A85 6 2 1 5 5 VIS 

14 6 3 t 3 1 & 6 6 2 1 5 63&1 VIS 

15 646.6 1 & 3 6 3 & 9 5 6 5 4 ^ 5 VIS 

16 6 6 ^ 7 1 5 J 6&L15 66&25 VIS 

17 6#&9 1&5 669.15 684.65 VIS 

18 692.4 1&8 e&LS 700.3 VIS 

19 : m 7 ^ 15.3 700.15 71&45 VIS 

20 7^2 9 15 3 715.25 730.55 VIS 

21 73&1 1&7 730.25 745.95 VIS 

22 7 ^ & 4 15.3 74&75 761.05 VIS 

23 768.5 1 & 3 760.85 776.15 VIS 

24 783.5 15.3 775 85 791.15 NIR 
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Table A.2 continued. 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 

25 798J3 1&7 7 9 & 9 5 (W&65 NIR 
26 814.1 1 5 ^ 806.35 eGI.85 NIR 
27 829 2 15.5 8 2 ^ 4 5 836.95 NIR 
28 844.4 1&8 8 3 & 5 8 5 2 3 NIR 

29 859J3 16^1 8 5 1 7 867.9 NIR 

30 875 1&9 867 05 882 95 NIR 
31 872X3 18M 8 6 & 5 5 881.65 NIR 

32 890X3 20 880.3 900.3 NIR 
33 (#5.6 19 896 1 9 1 5 / NIR 
34 922X2 1&8 9 1 Z 8 931.6 NIR 
35 938 1&3 928 8 5 947M5 NIR 
36 953 6 1&5 944.35 962.85 NIR 
37 969 3 1 8 ^ 960.05 97&55 NIR 
38 984J3 1&7 975.45 994M5 NIR 
39 1000.9 18.7 9 9 ^ 5 5 1010.25 NIR 
40 1016.5 1&8 1 0 0 7 J 102&9 NIR 

41 1032 1&9 1022.55 1041.45 NIR 
42 1047.5 1&8 1038M 1056.9 NIR 
43 1063 1&3 1053.85 1072.15 NIR 
44 1078 1&6 1 0 6 & 7 108A3 NIR 
45 1093M 1&5 1083.85 1102.35 NIR 
46 1108 1&3 1098.85 1 1 1 7 / 5 NIR 
47 1 1 2 ^ 9 1 8 7 1113.55 113Z25 NIR 

48 113A6 18 1128.6 114&6 NIR 
49 1152.2 18M 1143.15 116125 NIR 

50 116&7 1A9 1157.75 117&65 NIR 

51 1181.4 1&3 1 1 7 Z 2 5 119&55 NIR 
52 1196^ 18^ 1187.05 1 2 0 5 / 5 NIR 
53 1210.3 17.4 1 2 0 1 ^ 1219 NIR 
54 1 2 2 ^ 5 1A5 1215.75 1233 25 NIR 

55 123&7 1 7 ^ 1229.75 1 2 4 7 ^ 5 NIR 
56 1253.2 1 7 7 1 2 4 ^ 3 5 1262 05 NIR 

57 1267.3 1 7 ^ 1258.65 1275.95 NIR 
58 12&L4 17.1 1272 85 128&95 NIR 
59 1295.4 1A3 1286.75 1 3 0 4 ^ 5 NIR 
60 1309.4 18J 1300.35 131&45 NIR 

61 1323.6 1&5 1315.35 1331.85 NIR 
62 133&8 1 6 9 1328.35 1345.25 NIR 
63 1406.4 1A2 1397.8 1415 NIR 

64 1420.6 1&9 1412.65 142&55 NIR 
65 14&L4 1&4 1426.2 1 4 4 2 ^ NIR 

66 1448.5 16.5 1440.25 1456.75 NIR 
67 1462.6 16J 1454 ^ 5 1470.65 NIR 
68 147&6 1 6 2 1468.5 1484.7 NIR 
69 1490.3 1&5 1482.05 1498.55 NIR 

70 1503.9 1&2 1495.8 1512 NIR 
71 1517.2 1&2 1 5 0 9 / 1525.3 SWIR 

72 1530.7 1 6 2 1522.6 1538.8 SMWR 
73 1544.1 1&6 1535.8 1552.4 SVWR 
74 1557.6 1&5 1549.35 1565.85 SVWR 
75 1570.6 1 6 / 1562.55 1578.65 SWIR 
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Table A.2 continued. 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 
76 1583.6 16.2 1575.^ 159^6 SWIR 
77 1596.; i6.e 1 5 8 8 ^ 1604^ SWIR 
7E 1609.: 16.5 1 6 0 1 J 1617.6 SWIR 
7£ 1622.2 15.C 1614.36 1630^5 SWIR 

8C 1635M 16M 1627.05 1643M5 SWIR 
81 1647.8 1&1 1639.75 1655^^ SWHR 
82 1660.2 1&8 1652/4 1668 2 SWIR 
82 1672.7 15.5 1664.95 1680.45 SWIR 

84 168&1 15.7 1677.25 1692.95 SWIR 
85 1697.5 1 5 ^ 1689V 1705.3 SWIR 

86 1709.9 1 5 ^ 1702.25 1717.55 SWIR 
87 17221 1 4 ^ 1714.65 1729.55 SWIR 
88 1734.1 15M 1726.55 1741.65 SWIR 

89 1746.5 15 1739 1754 SWIR 

90 1758.4 1 4 ^ 1751.15 1765.65 SWIR 

91 1770.3 1 4 ^ 1763L2 1777.4 SWIR 

92 1782.2 14.4 1775 1789.4 SWIR 

93 1794 1 4 ^ 1786.8 1 8 0 1 ^ SWIR 

94 1805.7 1&6 179&9 1812.5 SWIR 

95 1951 2 0 9 1941.15 1962.05 SWIR 

96 1970V 21M 1960.15 1981.25 SWIR 

97 1989.5 21 1979 20M) SWIR 

98 2008^2 2 0 7 1997.85 201&55 SWIR 

99 2027M 2&9 2016.65 2037.55 SWIR 

100 2045^) 2 & 9 2035.45 2056.35 SWIR 

101 2064 5 2 0 J 2054.15 2074.85 SWIR 

102 2082 7 2 & 4 2072.5 2092.9 SWIR 

103 2100.8 2 & 2 2090.7 2110.9 SWIR 

104 2118.7 2 & 3 2108.55 2128.85 SWIR 

105 2136.7 2 & 4 21%&5 2146.9 SWIR 
106 2 1 5 4 7 2 & 3 2144.55 2164.85 SWIR 

107 2172.2 1&6 2162.4 2182 SWIR 

108 2189.2 19 2179.7 2 1 9 8 7 SWIR 

109 2206.6 2 & 7 2196.25 2216.95 SWIR 

110 2224.8 1 8 8 2215.4 2 2 3 4 2 SWIR 

111 2241.7 1&2 2232.1 2251^) SWIR 

112 2259.4 1&4 2249.7 226&1 SWIR 

113 2276.6 1 8 2 2267 5 2 2 8 5 7 SWIR 

114 2293.5 18 2284^; 2 3 0 2 ^ SWIR 

115 2310 1 7 8 2301M 2 3 1 8 ^ SWIR 

116 2326.3 17.8 2 3 1 7 ^ 2335 2 SWIR 

117 2342.8 17.9 2333.85 2351.75 SWIR 

118 2359.7 18 2 3 5 0 7 2 3 6 8 7 SWIR 

119 237&8 17.7 2366.95 2384.65 SWIR 

120 2391.8 1 A 4 2383 1 2 4 0 0 ^ SWIR 

121 2407.6 1 7 ^ 2398.95 2416.25 SWIR 

122 2 4 2 ^ 6 1&5 2415.35 2431.85 SWIR 

123 2439.3 16.3 2431M5 2447.45 SWIR 
124 2455 16.8 2446.6 2463.4 SWIR 

125 2 4 7 0 ^ 17 2462 2479 SWIR 

126 2485.9 16.5 2477.65 249415 SWIR 
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Table A.3: NERC CASI-2 band specif icat ions for the Tregaron bog overfl ight in enhanced 
spectral mode (12 October 2001) (Source: NERC, 2001). 

Band Centre Wavelength (nm) FWHM (nm) Band start Band End Region 
1 409.56 1141 403.85 415.26 VIS 

420.6C 11.44 414.91 426.35 VIS 
2 431 11.46 426.0C 437.45 VIS 

4/12.85 11.4S 437M1 44&58 VIS 
£ 453.9c 11.5C 448.24 459.74 VIS 
e 4 6 & i e 11.52 459.40 47&92 VIS 
7 476.35 11.54 470.58 48212 VIS 
8 48A57 11.55 481.79 493 34 VIS 
9 498.80 11.57 4^3.02 5&L59 VIS 

10 510.06 11.59 504.26 515.85 VIS 
11 521.33 11.60 515.53 527M3 VIS 
12 532.62 11.62 526 81 538.43 VIS 
13 543.94 11.63 538.12 54975 VIS 
14 555.26 11.65 549.44 561.09 VIS 
15 566.61 11.66 560.78 572.44 VIS 
16 577.97 11.67 57Z13 583.80 VIS 
17 589.34 11.68 58&50 595.18 VIS 
18 600.73 11.70 594.88 606.58 VIS 
19 61213 1171 606.28 617.98 VIS 
20 623.54 1172 617.68 629.40 VIS 
21 634.96 11J2 6%9J0 64&83 VIS 
22 GW6.40 11.73 640.53 652 26 VIS 
23 657.84 11.74 651.97 663.71 VIS 
24 66&29 11.75 6 6 3 4 2 675.17 VIS 
25 680.75 11.75 674.88 686.63 VIS 
26 692.22 11J6 686.34 698.10 VIS 
27 703.69 1176 697.81 709.58 VIS 
28 715.17 1177 70&29 721.06 VIS 
29 7^5 66 11.77 720.77 732.54 VIS 
30 73&14 1177 732.26 744.03 VIS 
31 749.63 11.78 743.75 755.52 VIS 
32 761.13 1178 75&24 767.02 NIR 
33 772.62 1178 76673 778.51 NIR 
34 784.11 11.78 778.22 790.00 NIR 
35 795.61 1178 789.72 801.50 NIR 
36 80A10 1178 801.21 812.99 NIR 
37 818 59 11.77 812.70 824.48 NIR 
38 830.08 1177 8 2 4 J 9 835.97 NIR 
39 841.56 11.77 835.68 847.45 NIR 
40 853.04 1176 84A16 858.93 NIR 
41 864.52 1176 858.64 870.40 NIR 
42 875 99 1175 870.11 881.86 NIR 
43 887.45 1175 8&L57 893.32 NIR 
44 898.90 1174 893.03 904.77 NIR 
45 91&35 1173 904 48 916.21 NIR 
46 921.78 1173 915.92 927.65 NIR 
47 933.21 1172 927.35 939.07 NIR 
48 944.62 11.711 938.77 950.48 NIR 

242 



APPENDIX B 

PILOT STUDY - SUPPLEMENTARY D A T A 

243 



Table B.1: Frequency histograms for the classes defined over the Mid Severn Estuary s tudy 
area, calculated for bands 21, 33, 45 and 57. The normal curve is overlaid. 
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Bare Mud 
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Table B.1 continued. 

Classes Band 21,45 Band 33, 57 
Pioneer 
Marsh 

PM21 PM33 

PM45 

PM45 

PM57 

SM. Dav"541.07 

W#mn * 2872 j 
Bld.D#vm601.3C 
Mean = 2741.5 

. 

— a — 3 
— 0 — 4 

3 
5 
7 \ \ 

\ // 
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/ / 
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>A 

13 

57 

>A 

13 

57 

\\ \\ 
\\ 

HM 

C l a s s e s 

Figure B.1: Skewness calculated for all Figure B.2: Kurtosis calculated for all 
classes of the Mid Severn Estuary study area classes of the Mid Severn Estuary study 

for bands 21, 33, 45 and 57. area for bands 21, 33, 45 and 57. 
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Table B.2: CASI bands selected with the Projection Pursuit Feature Selection (PPFS) 
algorithm for the classes of the Mid Severn Estuary study area. 

Feature 
set 

Selected Bands 

1 26 
2 39 67 
3 33 40 55 
4 32 42 47 63 
5 32 42 47 48 63 
6 16 26 42 47 48 63 
7 16 27 39 42 47 48 63 
8 16 23 32 39 40 44 47 63 
9 16 27 39 40 42 44 47 55 63 

10 11 16 23 27 39 40 42 46 47 63 
11 16 26 24 36 39 40 42 44 47 48 63 

Table 8.3: Z-statistic for testing the significance between PCA features with respect to the 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 5&29 
3 56.03 5.50 
4 55.59 5.07 0.43 
5 5&53 7.93 2.44 287 
6 58.99 8 39 2.90 3 33 0.46 
7 5&23 862 3M3 3.56 0.69 0.23 
8 5&46 885 3.37 380 0.93 0.47 0.23 
9 6065 10.02 4.55 4.98 2.11 1.65 1.42 1.19 

10 6137 10J4 5.28 571 2.84 2.38 2.15 1.92 0.73 
11 61^2 1098 5.53 5.95 3.09 2.63 2.40 2M6 0.98 0.25 
12 61^7 10J4 5.28 571 2.84 2 38 2 ^ 5 1.92 0.73 0.00 

Table B.4: Z-statistic for testing the significance between MNF features with respect to the 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 3&47 
3 5&27 17^5 
4 6215 2&66 3.54 
5 65.35 2&54 6.48 2 94 
6 67 73 25J0 8 69 5 J 7 223 
7 68.46 2&37 9.38 586 2 92 0.69 
8 71.48 29 11 12.23 8 73 5.81 3.59 2.90 
9 7226 2982 12.97 948 6.56 4.35 3 66 0.76 

10 7226 2982 12.97 948 6.56 4.35 3 66 0.76 0.00 
11 72.52 30 06 13.22 9 73 6.82 4.60 3.91 1.02 0.26 0.26 
12 7226 2982 12.97 9.48 6.56 4.35 3.66 0.76 0.00 0.00 
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Table B.5: Z-statistic for testing the significance between DAFE features with respect to t h e 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 
2 21^5 
3 2212 0.50 
4 24.31 2.81 2 3 2 

Table B.6: Z-statistic for testing the significance between PPDA features with respect to the 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 
2 2&82 
3 2&27 0.48 
4 2&60 2.95 2 ^ 7 

Table B.7: Z-statistic for testing the significance between DBFE features with respect to the 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 13.82 
3 3247 18.69 
4 3247 18.69 0.00 
5 3&.15 2142 283 2 83 
6 35 38 21^5 3.07 307 0.25 
7 3&20 ̂ 25.56 7 ^ 2 7.22 4 jM 4 ^ 7 
8 41J3 2&19 10.07 10.07 729 7.05 2.91 
9 41^9 2&46 10 37 10.37 7.59 7.35 3.21 0.31 

10 42 78 29 28 11.28 11.28 8.52 8 28 4.15 1.25 0.94 
11 41.99 2&46 10.37 10 37 7.59 7.35 3.21 0.31 0.00 0.94 
12 41.47 2792 &77 9 J 7 699 6.75 2.60 0.30 0.61 1.56 

Table B.8: Z-statistic for testing the significance between PPDB features with respect to the 
overall MLC accuracy for the Mid Severn Estuary study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 3271 
3 37.27 4V4 
4 3982 7.45 2 73 
5 4029 797 325 0.52 
6 40.53 823 3.51 0.78 0.26 
7 41.01 &75 4.04 1.32 0.80 0.53 
8 41.75 9.55 4 ^ 5 2M3 1.61 1.35 0.81 
9 4249 10.37 5.68 2.96 2.44 2J8 1.65 0.84 

10 41^5 9.55 4 ^ 5 2M3 1.61 1.35 0.81 0.00 0.84 
11 4126 &02 4.31 1.58 1.06 0.80 0.27 0.55 1.38 0.55 
12 41.01 8.75 4.04 0.80 0.53 0.00 0.81 1.65 0.81 
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Table B.9: Frequency histograms for the classes defined over the New Forest study area, 
calculated for bands 10, 40, 80 and 100. The normal curve is overlaid. 

Classes Band 10,80 Band 40, 100 
Asphalt A10 

A40 

Ski D#v" 11Z46 
Mean = 686.8 

ad. D#v« 280.54 
Mwn" 1832.5 
N«M3XK) 

ABO 
A100 

SW. D e v " 178.81 

Mean - 1284.3 
SW. D#v m 1 2 7 ^ 

M#mn " 1034.2 

w w \ w w 

Bracken BIO 
B40 

Sid. Dev = 35.40 
SU. D e v - 333.13 

Mean = 4810.8 

I N = 888.00 

B80 
B100 

SW. D e v 154.26 

M e m « 2300.8 
SW. Dev " 128.81 
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DH HH WH VM L 

Cbsses 

Figure B.3: Skewness calculated for all 
classes of the New Forest study area for 

bands 10, 40, 80 and 100. 

DH HH WH M L 

Figure B.4: Kurtosis calculated for all 
classes of the New Forest study area for 

bands 10, 40, 80 and 100. 

Table B.10: HyMAP bands selected with the Projection Pursuit Feature Selection (PPFS) 
algorithm for the classes of the New Forest s tudy area. 

Feature 
set 

Selected Bands 

1 87 
2 26 71 
3 18 33 62 
4 14 19 46 61 
5 14 20 28 46 61 
6 11 21 26 46 59 87 
7 9 14 20 28 46 59 87 
8 11 20 28 38 42 59 87 100 
9 9 15 21 24 42 50 59 87 100 
10 9 15 19 21 28 42 56 75 87 100 

Table B.11: Z-statistic for testing the significance between PCA features with respect to the 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 5&97 
3 5&97 0.00 
4 55.64 0.54 0.54 
5 54^9 1.57 1.57 1.03 
6 5&30 0.56 0.56 1.09 2M2 
7 5&97 0.00 0.00 0.54 1.57 0.56 
8 5&30 0.56 0.56 1.09 2U2 0.00 0.56 
9 5630 0.56 0.56 1.09 2 12 0.00 0.56 0.00 

10 5&97 0.00 0.00 0.54 1.57 0.56 0.00 0.56 0.56 
11 5&64 1.13 1.13 1.67 269 0.57 1.13 0.57 0.57 1.13 
12 56.64 1M3 1.13 1.67 2.69 0.57 1.13 0.57 0.57 1.13 
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Table B.12: Z-statistic for testing the significance between MNF features with respect to the 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 54^9 
3 57.43 4J1 
4 5&76 3 56 1.17 
5 56.10 248 2.26 1.09 
6 5&76 3.56 1.17 0.00 1.09 
7 56 76 3.56 1.17 0.00 1.09 0.00 
8 5&43 3 01 1.72 0.56 0.54 0.56 0.56 
9 56.43 3.01 1.72 0.56 0.54 0.56 0.56 0.00 

10 57.09 4.13 0.59 0.57 1.67 0.57 0.57 1.13 1.13 
11 5A43 4.71 0.00 1.17 2 j G 1.17 1.17 1.72 1.72 0.59 
12 57 J 6 5.31 0.62 1.78 2 ^ 7 1.78 1.78 2.33 2.33 1.21 

Table B.13: Z-statistic for testing the significance between DAFE features with respect to the 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 
2 3298 
3 4777 15.47 
4 51.16 1925 4.01 
5 5&84 22 32 7.40 343 
6 56.66 2&66 11.23 736 3 99 
7 57.63 2683 12.63 882 5.49 1.53 

Table B.14: Z-statistic for testing the significance between PPDA features with respect to the 
overall MLC accuracy for the New Forest study area. Values below the critical 5% 

significance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 
2 4&04 
3 4&81 0.83 
4 4&64 6 ^ 4 5 j ^ 
5 4882 10.00 9J9 383 
6 53.46 1&91 15.13 10.01 6.30 
7 54,11 16.78 16.02 10.94 7 27 1.00 
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Table B.15: Z-statistic for testing the signi f icance between DBFE features with respect to the 
overall MLC accuracy for the New Forest study area. Values below the crit ical 5% 

signif icance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 10 
2 2268 
3 46.36 2&06 
4 6&75 40.14 1784 
5 6&19 44.59 22 78 5.42 
6 70.06 4&47 2 4 ^ 4 790 2.54 
7 7 1 ^ 9 4&43 27.21 10.63 5.38 2 ^ 7 
8 72.32 4&76 2 7 ^ 0 11JM 5.89 3.39 0.52 
9 7&31 4978 28.81 12.61 7 ^ 4 503 2 J 9 1.67 

10 73.31 4978 28 81 12.61 7.49 5.03 2 J 9 1.67 0.00 
11 7&65 5&12 29.21 13M3 8.05 5.60 2.78 2.26 0.59 0.59 
12 7&65 5 0 / 2 29.21 13M3 805 560 2 78 226 0.59 0.59 

Table B.16: Z-statistic for test ing the signi f icance between PPDB features wi th respect to the 
overall MLC accuracy for the New Forest study area. Values below the crit ical 5% 

signif icance level (1.96) are printed in bold. 

Feature 1 2 3 4 5 6 7 8 9 
2 29 79 
3 5255 2266 
4 64.83 3&59 14.54 
5 6547 3&29 15.39 0.96 
6 6677 37 71 17^8 3.01 2.06 
7 6A43 3&44 18.11 4M3 3M8 1.13 
8 68.09 3&18 19.07 5.31 4.37 2 3 3 1 2 1 
9 67 43 3&44 18/M 4 13 3U8 1.13 0.00 1.21 

10 67.76 38 81 18.59 4.71 3 77 1.72 0.59 0.62 0.59 

255 



APPENDIX C 

SUPERVISED BAND SELECTION - SUPPLEMENTARY DATA 
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E oa 

oa & K oa a * i 

Figure C.1: Atmospheric transmission for 0.7 
to 1.0 / /m wavelength range modelled with 6S 
for different water vapour contents (g/cm^) in 

a US 1962 standard atmosphere. 

Figure C.2: Atmospher ic transmission for 1.0 
to 2.0 //m wavelength range modelled with 6S 
for different water vapour contents (g/cm^) in 

a US 1962 standard atmosphere. 

Figure C.3: Atmospheric transmission for 0.7 
to 1.0 //m wavelength range modelled with 6S 

for different solar zenith angles (") in a 
midlatitude summer atmosphere. 

Figure C.4: Atmospher ic transmission for 1.0 
to 2.0 f jm wavelength range modelled with 68 

for different solar zenith angles (°) in a 
midlati tude summer atmosphere. 

Figure C.5: Atmospheric transmission for 0.7 
to 1.0 fjxn wavelength range modelled with 6S 

for different aircraft heights (km) in a 
midlatitude summer atmosphere. 

Wavelength (pm) 

Figure C.6: Atmospher ic transmission for 1.0 
to 2.0 //m wavelength range modelled with 6S 

for different aircraft heights (km) in a 
midlatitude summer atmosphere. 
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Table C.1; Scatter plots of single-band distance measures against MLC overall performance 
estimated wi th the leave-one-out method for the New Forest and River Severn data set. The 

regression line is d isplayed and the correlation coeff ic ient r given. 
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Table C.1 continued. 
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Table C.1 continued. 
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Table C.2: Scatter plots of mult iple-band distance measures against MLC overall 
performance estimated wi th the leave-one-out method for t he New Forest and River Severn 

data set. The regression line is displayed and the corre lat ion coefficient r given. 
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Table C.2 continued. 
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Table C.2 continued. 
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Table C.3; Band sets from current airborne and satellite sensors and their simulation w i th 
HyMAP (New Forest) and CASI (River Severn) bands sets available (data sets introduced in 

chapter 3). Bands excluded or not available are marked by an X. 

Sensor Band Centre Width HyMAP HyMAP CASI CASI 
[nm] [nm] Centre Width Centre Width 

[nm] [nm] [nm] [nm] 

CHRIS 1 442.4 8.8 X X X X 
(mode 3) 2 490.2 9.2 4 9 2 ^ 1 5 ^ 48&6 16 

3 52&9 8.6 52&4 1 5 ^ 53&5 B.6 
4 551.25 9.7 5542 1 5 ^ 553 8.6 
5 569.85 7.1 56&5 15.4 56&1 8.6 
6 6 3 ^ 3 9.4 63^3 1 5 ^ 6 3 2 3 162 
7 661.05 1&5 6 6 1 7 1 5 J 65&9 8.8 
8 671.75 1&9 X X X X 
9 69A2 5.8 6 9 2 4 1 5 ^ 69A1 8.8 
10 703.2 6 X X 7 0 4 7 8.8 
11 70&3 6.2 707a 15.3 7 1 2 3 8.8 

12 7 4 1 ^ 6.8 73&1 1 5 7 742.9 8.8 
13 6.9 75&4 1 5 ^ 75&5 8.8 
14 780.85 15.1 78&5 1 5 ^ 7 7 7 ^ 1&4 
15 872.2 1&2 X X X X 
16 895.45 9.5 89&3 20 8 9 5 7 8.8 

17 905 9.6 X X X X 
18 1018.5 33 X X X X 

ETM+ 1 485 70 484.35 6 1 ^ 497 4&8 

2 570 80 56&45 77 56&15 8 3 ^ 
3 660 60 654M 61M5 662.75 62 
4 840 120 83&9 124.45 83&4 12&4 

5 1650 200 165205 204.65 X X 
7 2220 260 222ia 261.05 X X 

MERIS 1 412.5 10 X X X X 
2 4 4 Z 5 10 X X X X 
3 490 10 4 9 2 3 15.5 489.6 16 
4 510 10 5 0 7 ^ 15.8 508J 8.6 
5 560 10 5 5 4 2 15.3 56&5 8.6 
6 620 10 615.7 15.7 621 8.6 

7 665 10 6 6 1 7 15M 666.6 8.8 

8 681^5 7.5 676.9 15.5 6 8 i a 8.8 

9 705 10 707^ 15.3 704.7 8.8 
10 75375 7.5 753.4 1 5 ^ 754.35 1&5 

11 760 2.5 X X X X 
12 765 5 X X X X 
13 775 1 Z 5 776 3 0 ^ 777.3 1&4 

14 865 10 872.6 18M 8 6 5 2 8.8 

15 890 10 890.3 20 888M 8.8 

16 900 10 X X X X 
MISR 1 /W&4 4 1 ^ 4 6 1 ^ 15.8 X X 

2 557.5 2&6 561.85 30.65 556.8 3 1 2 

3 6rL7 2 1 ^ 669.3 30.5 674.2 24 

4 866.4 3 9 7 867.4 3 1 2 5 865.25 3&3 

MODIS 1 645 50 646.5 4 5 7 5 EW&B 5 4 ^ 
2 858.5 35 859.7 46.45 857.6 3&4 

3 469 20 469.3 31.65 478.4 8.6 
4 555 20 554.2 15.3 553 2 1 6 

5 1240 20 1245.95 32.3 X X 
6 1640 24 1641.45 28.8 X X 
7 2130 50 21367 56.3 X X 
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Table C.3 cont inued. 

NERC 1 450 20 461.3 15.8 X X 
VEG 2 490 20 492.3 15.5 489.6 16 

3 552 10 554.2 15.3 553 8.6 
4 608 10 607.9 31.2 605.8 8.6 
5 647 10 646.6 15.3 643.7 8.8 
6 670 10 661.7 15.1 670.4 16.4 
7 700 10 692.4 15.8 700.9 16.4 
8 710 10 707.8 15.3 712.3 8.8 
9 740 10 738.1 15.7 742.9 8.8 
10 750 7 753.4 15.3 750.5 8.8 

11 762 5 X X X X 
12 780 10 783.5 15.3 781.1 8.8 
13 820 10 X X X X 
14 865 10 859.8 16.2 865.2 8.8 
15 942 10 X X X X 

EA VEG 1 445.9 13.2 X X X X 
2 469.9 13.4 461.3 15.8 X X 
3 490.3 13.4 492.3 15.5 489.6 16 
4 550.1 13.4 554.2 15.3 549.25 16.1 

5 670.9 13.6 661.7 15.1 670.4 16.4 
6 683.3 8 676.9 15.5 681.8 8.8 

7 700.4 11.8 692.4 15.8 700.9 16.4 

8 710.9 9.8 707.8 15.3 712.3 8.8 
9 721.4 11.8 722.9 15.3 720 8.8 
10 751 13.6 753.4 15.3 750.5 8.8 
11 763.4 8 X X X X 
12 780.6 11.8 783.5 15.3 781.1 8.8 
13 860.1 13.8 859.8 16.2 861.4 16.4 
14 880.2 23.2 881.45 36.75 880.5 24 

EA 1 443.1 22.4 X X X X 
COAST 2 489.4 22.6 X X 485.85 23.5 

3 510.8 20.8 X X 508.15 23.5 

4 554.8 22.8 X X 553 23.6 
5 599 13.6 X X 602 16.2 

6 625.4 13.6 X X 624.75 16.1 

7 662.4 7.8 X X 658.9 8.8 
8 672.8 13.6 X X 670.4 16.4 
9 683.3 8 X X 681.8 8.8 

10 691.8 9.8 X X 689.4 8.8 

11 702.3 8 X X 704.7 8.8 
12 711.8 11.8 X X 712.3 8.8 
13 751 13.6 X X 750.5 8.8 

14 857.2 27.2 X X 857.6 24 
15 881.2 21.4 X X 880.5 24 

BIOTA 1 442.5 15 X X X X 
2 490 10 X X 493.3 8.6 
3 540 10 X X 538 8.6 
4 552 10 X X 553 8.6 

5 608 10 X X 605.8 8.6 

6 652 10 X X 651.3 8.8 

7 670 10 X X 666.6 8.8 
8 682.5 5 X X 681.8 8.8 

9 710 10 X X 712.3 8.8 

10 749.5 5 X X 750.5 8.8 

11 761.5 5 X X X X 
12 780 10 X X 781.1 8.8 
13 820 10 X X 819.4 8.8 

14 880 20 X X 880.5 24 
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Table C.4; Randomly and uniformly spaced band sets for the HyMAP (New Forest) and CASI 
(River Severn) data set introduced in chapter 4. The band number refers to the index of 

available bands (117 and 60 for HyMAP and CASI, respectively), not to the original detector 
number shown in table A.1. 

Set 
Dimension 

HyMAP sensor bands CASI sensor bands 

RANDOMLY SPACED 

15 106, 77, 71. 52, 14, 92, 32, 51, 94, 22, 37, 
96, 56, 34, 12 

36, 40, 10, 45, 9, 14, 21, 57, 39, 7, 48, 58, 
16, 53, 4 

UNIFORMLY SPACED 

15 3 ,11 ,19 , 27, 35, 43, 51. 59, 67, 75, 83, 91, 
99, 107, 115 

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 
50, 54, 58 

14 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 
103,111 

4. 8, 12, 16. 20, 24, 28, 32, 36, 40. 44, 48, 
52 ,56 

13 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 
113 

6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 
50, 54 

12 4, 14, 24, 34. 44, 54, 64, 74, 84, 94, 104, 114 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58 
11 4, 15. 26. 37, 48, 59, 70 ,81 ,92 , 103, 114 5, 10. 15, 20, 25, 30, 35, 40, 45, 50, 55 
10 7, 19, 31, 43, 55, 67, 79, 91, 103, 115 3. 9, 15, 21,27, 33, 39, 4 5 , 5 1 , 5 7 
9 3, 17 ,31,45, 59,73, 87, 101, 115 2 ,9 , 16, 23, 30,37, 44, 51 ,58 
8 3, 19, 35 ,51 ,67 , 83,99, 115 2, 10, 1 8 , 2 6 , 3 4 , 4 2 , 5 0 , 5 8 
7 2 , 2 1 , 4 0 , 5 9 , 78, 97, 116 3, 1 2 , 2 1 , 3 0 , 39,48, 57 
6 1.24, 47, 70. 93, 116 3 , 1 4 , 2 5 , 3 6 , 4 7 , 5 8 
5 3, 31,59. 87, 115 2 ,16 , 30 ,44 , 58 
4 2 , 4 0 , 7 8 , 116 2 , 2 1 , 4 0 , 59 
3 1, 59, 117 1,30, 59 
2 1, 117 1,60 
1 58 30 
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Table D.1: Run sequence plot of some bands for the New Forest imagery. Pixels were plotted 
in sequence of an image row. 

8 IxlO'̂g Alio "5 3x10 "̂6 too "̂6 
Sample 

'Miiy 
Zfio'-s 

"O axlO'-B &10~5 
Sample 

Band 1 - 461 nm Band 10 - 600 nm Band 20 - 753 nm 

MO-B -MO'B 
Sample 

1x10-6 2x10 " 5 3/10 ~ 6 4xT0'^5 

Sample 
''o 2K10'̂5 aciCB 4X10"̂$ 

Sample 

Band 30 - 890 nm Band 40 - 1048 nm Band 50 - 1196 nm 

0̂ 2x10"* a(io"6 
Sample °0 W6 2*10*6 3K10~6 4x10-5 0̂ uio'̂ s aoo'̂e axwa wo'̂ s 

Sample 

Band 60 - 1337 nm Band 70 - 1571 nm Band 80 - 1698 nm 

0 IXŴ B 3K10~5 4x10'̂ e 
Sample 

'̂o uMO'̂g Aoo'̂B axwe wo'̂ s 
SmmpJe 

> i | | | l L | J i 
ijcwe Aio-yi acwB 4Kio~6 

Sampl# 

Band 90 - 1971 nm Band 100 - 2155 nm Band 110 - 2326 nm 
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Table D.2: Run sequence plot of some bands for the River Severn imagery. Pixels were 
plotted in sequence of an image row. 

D 1X10"̂4 &IW4 4x10̂̂4 
S a m p l e 

0 1x10-^4 2KlO'"4 aKlO'^4 4KlO'^4 & 1 0 * 4 
S a m p l e Q 1x10̂*4 &10'"4 3x10-4 4KlO''4 5x70'" 

S a m p l e 

Band 1 - 478 nm Band 5 - 508 nm Band 10 - 546 nm 

0 IMO'̂4 610̂4 3X10̂4 4xW4 *KlO"̂4 
S a m p l e 

0 WO'^4 anO'^4 3*10-4 4xlO'^4 & 1 0 - 4 

S a m p l e 
" 0 1%10'~4 &10'^4 3*10 -4 4x10 -4 

S a m p l e 

Band 15 - 583 nm Band 20 - 621 nm Band 25 - 659 nm 

0 1X10^4 2 ( 1 » - 4 3x10-4 4X10^^4 6 x 1 0 - 4 
S a m p l e 

^0 1X70-4 2 ( 1 0 - 4 aKlO'*^ 4x10 -4 6x10 -4 

Sanv̂ e 1x10 ' '4 2 x 1 0 - 4 3 x 1 0 - 4 W O ' ^ 4 M O -
S a m p l e 

Band 30 - 697 nm Band 35 - 735 nm Band 40 - 774 nm 

0 1x10-4 & W - 4 3X10^4 4x10-4 M O - 4 
S a m p l e 

Q 1X10-4 2 0 0 - 4 3 x 1 0 - 4 4x10 ' '4 a ( 1 0 - 4 
S a m p l e 

0 1X10-4 2 x 1 0 - 4 3 x 1 0 - 4 4x10-^4 K i n ' ^ 4 
S a m p l e 

Band 4 5 - 8 1 2 nm Band 50 - 850 nm Band 55 - 888 nm 
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Table D.3: Lag plot of some bands for the New Forest imagery. 

D 1000 2000 3000 MOO aooo 3000 4000 5000 
Yl 

TOOO 2000 aooo 4000 3000 
Yl 

Band 1 - 461 nm Band 10 - 600 nm Band 20 - 753 nm 

" o 1000 2000 3000 4000 5000 0000 7000 
Yl 2000 4000 eooo #000 10000 

Yl 
BOOO 4000 6000 

Yl 

Band 30 - 890 nm Band 40 - 1048 nm Band 50 - 1196 nm 

" o aooo 4000 eooo 
Yl 

0000 10000 
2000 4000 0000 

Yl 
0 2000 4000 eooo eooo loooo 

Yl 

Band 60 - 1337 nm Band 70 - 1571 nm Band 80 - 1698 nm 

0 aooo 4000 «ooo 
Yl 

SOOQ 10000 
0 aooo 4000 0000 oooo oooo 

Yl 
" o 2000 4000 0000 

Yl 

Band 90 - 1971 nm Band 100 - 2155 nm Band 110 - 2326 nm 
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Table D.4: Lag plot of some bands for the River Severn imagery. 

+ 200 + 200 
> 

^ 000 aooo @oo6 4C00 
Yl 

^ 1000 aooo 3000 w o o 
Yl 

0 1000 aoQO 4000 3000 
Yi 

Band 1 - 478 nm Band 5 - 508 nm Band 10 - 546 nm 

m m 

.•'•V 6" ' 

if > 

Yl 
nmo 2000 3000 4000 5008 

Yl 
aooo aooo 4000 sixm 

Yl 

Band 15 - 583 nm Band 20 - 621 nm Band 25 - 659 nm 

BOQO 

+ 3COO + 4000 

2000 

> 

000 3000 3000 4000 6000 BOOQ 
Yl 

° 0 
2000 4000 6000 9000 

Yl 4 aooo 4000 aooo moo 10000 
Yl 

Band 30 - 697 nm Band 35 - 735 nm Band 40 - 774 nm 

« « = r 

m m a m m m 

Yl 
2000 4000 8000 0000 

Yl °o- aooo 4000 6000 0000 

Yi 

Band 4 5 - 8 1 2 nm Band 50 - 850 nm Band 55 - 888 nm 
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Table D.5: Histogram of some bands for the New Forest imagery with the normal density 
function overlaid. Bands 20 to 80 binsize 30, others binsize 20. 

^ 10 # * # 50 
Bin 

Band 1 - 461 nm Band 10 - 600 nm Band 20 - 753 nm 

/i 
0 * ^ 100 200 

Bin 

Band 30 - 890 nm Band 40 - 1048 nm Band 50 - 1196 nm 

ZjQxIO-S 

m ^ 

3 B.O*W 

2,AnO"3 

Band 60 - 1337 nm Band 70 - 1571 nm Band 80 - 1698 nm 

m w w 
Bin 

1.0*10-̂ 4 h. 

8A10-3 | W 
8̂ k10"*3 

4.0x103 

ZOxlÔS j ' \ 

Band 90 - 1971 nm Band 100 - 2155 nm Band 110-2326 nm 
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Table D.6: Histogram of some bands for the River Severn imagery 
with the normal density function overlaid. 

' ' V 
100 200 

300 OO 

Band 1 - 478 nm Band 5 - 508 rnn 

^ ^ 300 W 

Bin 
^ W 300 W W 

Bin 

Band 10 - 546 nm 

m 
"o 100 aoo aoo w 500 

Bin 

Band 15 - 583 nm Band 20 - 621 nm Band 25 - 659 nm 

W x m 300 4 % 500 

Bin 
200 400 BOO 000 

y 
20C 400 

Bin eoo MO 

Band 30 - 697 nm Band 35 - 735 nm Band 40 - 774 nm 

200 408 aoo BOO 0 MO 400 BOO KO Bin 

A , 

Band 45 - 812 nm Band 50 - 850 nm Band 55 - 888 nm 
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Table D.7: Results of the Chi-square test of independence and the correlation coeff icient 
signif icance for all bands of the New Forest imagery. Bands that are tested normal receive a 

'Y' in the corresponding test co lumn. 

Band df z ' T m t 

5% 

r r 
Test 
5% 

r 
Test 
1 % 

1 2695989 37 52.19231 0.828321 190 0.9897 &9927 

2 2644475 34 48.60237 0.843645 168 0.9879 0 9915 

3 2750468 34 48.60237 0.847191 162 0.9879 &9915 

4 3224491 37 52.19231 0.86866 163 0.9879 &9915 

5 2852819 44 60.48087 0.923616 173 0.9887 0.9919 

6 1708802 52 69.83216 0.94362 190 0CW97 0 9927 

7 1898597 58 76.77777 0.94165 200 0.9903 0.993 

8 3423520 61 80.23212 0.917279 207 0.9903 0 9 9 3 

9 1981171 61 80.23212 0.893576 206 0.9903 0 9 9 3 

10 3144534 62 81.38103 0.880732 206 0 9903 0 9 9 3 

11 2962499 63 82.52869 0.873948 207 0.9903 0.993 

12 3354611 64 83.67525 0.871187 206 0.9903 0.993 

13 3516447 64 83.67525 0.861876 206 0.9903 0 993 

14 3979343 63 82.52869 0.851852 201 0 ^ 8 0 3 0 983 

15 3153688 61 80.23212 0.857947 192 &9897 0.9927 

16 1922378 64 83.67525 0.935533 173 0 9887 0.9919 

17 787887.3 89 112.022 0.989527 183 0.9891 &9923 Y 

18 14326.12 137 165.3161 0.98914 197 0.9897 &9927 

19 11348.88 187 219.9059 0.994775 216 &9907 0.9933 Y Y 

20 9963.368 144 173.004 0.994925 155 0.9871 0.9909 Y Y 

21 13002.25 151 180.6755 0.994098 162 0.9879 0.9915 Y Y 

22 13355.16 153 182.8647 0.992827 164 0.9879 0.9915 Y Y 

23 12724.68 154 183.9587 0.994803 163 0.9879 0.9915 Y Y 

24 15647.93 156 186.1459 0.994722 164 0.9879 0^W15 Y Y 

25 26837.94 158 188.3317 0.994215 166 0.9879 0.9915 Y Y 

26 32499.55 159 189.4243 0.99403 167 0.9879 0.9915 Y Y 

27 42712.6 161 191.6084 0.985835 169 0.9879 CLSWIS 

28 55626.13 162 192.7 0.984447 170 0.9887 0.9919 

29 43663.6 161 191.6084 0.993998 169 0 ( M 7 9 0^W15 Y Y 

30 47118.07 164 194.883 0.993882 174 0.9887 0.9919 Y Y 

31 61277.87 166 197.0636 0.992742 184 0.9891 0.9923 Y Y 

32 70804.59 168 199.2443 0.991905 187 0.9891 0.9923 Y 

33 94670.28 167 198.1539 0.988572 197 0.9897 0.9927 

34 193092.5 165 195.9735 0.983869 214 0UMO7 0.9933 

35 202942.4 165 195.9735 0.981901 215 0.9907 0.9933 

36 227307.8 168 199.2443 0.981792 217 0.9907 0.9933 

37 227206.8 171 202.5128 0.983277 220 &991 0 9936 

38 213941.6 175 206.8667 0.984877 226 0.991 0.9936 

39 20663&2 179 211.2171 0.984937 229 0.991 0.9936 

40 229234.9 181 213.3907 &986571 237 0.9914 0.9939 

41 2 1 1 7 8 0 ^ 185 217735 0.986313 248 0.9917 0.9941 

42 2 4 1 1 7 9 ^ 186 218.8204 0.985054 247 0.9917 0.9941 

43 258272 8 185 217.735 0 983352 243 0.9917 0.9941 

44 272712 185 217.735 0.979235 248 0.9917 0.9941 

45 2 9 4 9 7 5 ^ 180 212.3041 (197105 248 0.9917 0.9941 

46 2 9 7 4 8 7 ^ 176 207.9546 0.959548 262 0.9924 0.9945 

47 341718.2 169 200.334 0.943158 270 0.9926 0.9947 

48 3 3 8 9 0 9 ^ 166 197.0636 0.942332 270 0.9926 0.9947 

49 306793 8 165 195.9735 0.940475 256 0.9921 0.9943 

50 3 1 7 0 3 8 ^ 164 194.883 0.939146 260 0.9924 0.9945 

51 330993^ 163 193.7914 0.938731 259 0.9921 0 9943 
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Table D.7 continued. 

52 335642.3 164 194.883 0.939026 257 0.9921 0.9943 

53 336281 165 195.9735 0.93931 254 0.9921 0.9943 

54 375318.6 164 194.883 0.939894 257 0.9921 &9943 

55 368709.6 165 195.9735 0.939564 257 0.9921 0.9943 

56 406736.7 162 192.7 0.936341 255 0.9921 0.9943 

57 375566.8 160 190.5163 0.932151 254 0.9921 0.9943 

58 366459.8 156 186.1459 0.928928 252 0.9921 0.9943 

59 348618.2 151 180.6755 0.927204 239 0.9914 0.9939 

60 334315.6 146 175.1974 0.927355 244 0.9917 0.9941 

61 816814 106 131.0314 0.977097 313 0.9936 0.9954 

62 851467.3 101 125.4585 0.977169 283 0.9929 0.9949 

63 750741.6 101 125.4585 &98119 279 0.9926 0.9947 

64 602108 101 125.4585 0.983095 283 0.9929 0.9949 

65 512463.8 103 127.6893 0.984662 275 0.9926 0.9947 

66 413800.3 105 129.9178 0.984756 265 0.9924 0.9945 

67 296859.4 107 132.1444 0.983588 263 0.9924 0.9945 

68 236510.4 110 135 48 0.980451 260 0.9924 0.9945 

69 204619.6 113 138.8114 0.977211 257 0.9921 0.9943 

70 146092.6 115 141.0297 0.973023 253 0.9921 0.9943 

71 117770.9 117 143.2461 0.970774 256 09W21 0.9943 

72 110505J 120 146.5674 0.967377 257 0.9921 0.9943 

73 116997.5 122 148.7792 0.962877 261 0.9924 0.9945 

74 111054.5 123 149.8844 0.960315 255 0^91921 0.9943 

75 128289.9 124 150.9894 0.957529 254 0L(#21 0.9943 

76 119078.4 126 153.198 0.959037 254 0.9921 0.9943 

77 131919.7 126 153.198 0.95965 253 0.9921 0.9943 

78 127739.4 126 153.198 0.957962 252 0 ( # 2 1 0.9943 

79 124697.3 125 152.0938 0.958497 257 0 0^21 0.9943 

80 121224.1 124 150.9894 0.957068 252 0.9921 0.9943 

81 118217.8 124 150.9894 0.957001 260 0.9924 0.9945 

82 113880.9 122 148.7792 0.959196 256 0.9921 0.9943 

83 102525.2 120 146.5674 0.961157 261 0.9924 0.9945 

84 102326.8 118 144.3536 0.96496 257 0^61921 0.9943 

85 104394.3 116 142.1382 0.967015 256 0^W21 0.9943 

86 115654 114 139.9207 0.969785 249 0.9917 0.9941 

87 116903.3 113 138.8114 0.973321 254 0.9921 0.9943 

88 118059.1 115 141.0297 0.975285 252 0^M21 0.9943 

89 95838.63 122 148.7792 0.971323 278 0.9926 0.9947 

90 1454759 109 134.3687 0.926594 429 Oc#51 0.9965 

91 1419165 108 133.2568 0.938037 381 0(M47 0.9961 

92 1926034 111 136.5912 0.938469 378 0.9945 0.996 

93 1320124 113 138.8114 0.952057 401 0.9949 0.9963 

94 1317003 113 138.8114 0.954097 374 0^W45 0S#6 

95 2231611 117 143.2461 0.953261 396 0.9948 0.9962 

96 1525364 119 145.4608 0.956593 404 0.9949 0.9963 

97 2254609 122 148.7792 0.961835 412 0.995 0.9964 

98 2156259 125 152.0938 0.965696 413 0L9G5 0^864 

99 1287918 126 153.198 0.969848 414 0 995 0 .99M 

100 1081821 127 154.3015 0.974177 411 0.995 0.9964 

101 888410.6 127 154.3015 (1979143 403 0.9949 0.9963 

102 65578&4 129 156.5078 0.983158 400 0.9949 0.9963 

103 477414^ 128 155.4046 0.984236 409 0.9949 0.9963 

104 432058V 126 15&198 0 982985 400 0.9949 0.9963 

105 66222&1 123 149.8844 0 982596 399 0.9948 0.9962 

106 992472.3 119 145.4608 0.974699 398 0.9948 0.9962 

107 983773^ 114 139.9207 0 96746 398 0.9948 0.9962 
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Table D.7 continued. 

108 1501190 111 136.5912 0 .963958 389 0 .9947 0.9961 
109 1370825 107 132 .1444 0 .963242 400 0 .9949 0.9963 
110 2046046 103 127.6893 0 .964275 386 0 .9947 0.9961 
111 1708786 100 124.342 0 .962271 378 0 .9945 0 996 
112 1387989 97 120.9898 0 .956849 377 0 .9945 0.996 
113 1440751 92 115 .3898 0 .958351 353 0 .9942 0.9958 
114 1905514 91 114.2679 0 .953606 363 0 . 9 & M 0.9959 
115 1371047 84 106.3949 0 .942887 328 0 .9937 0.9955 
116 1596817 83 105 .2672 0 .926044 351 0 .9942 0.9958 
117 1940270 75 96 .21669 0 .913432 318 0^W36 0.9954 

Table D.8: Results of the Chi-square test of independence and the correlation coefficient 
signif icance for all bands of the River Severn imagery. Bands that are tested normal receive a 

Y' in the corresponding 'Test' co lumn. 

Band df ^Test 

5 % 

r N r 
rest 
5 % 

r 
Test 
1 % 

1 25745 .97 187 219 9 0 5 9 0 .657105 271 0 .9926 0 .9947 
2 26434 .38 182 214 .4769 0 .651317 263 0 .9924 0 .9945 
3 32865 .63 195 228 .5799 0 .614998 287 0 .9929 0 .9949 
4 36362 .29 192 225 .3289 0 .589005 280 0 .9929 0 .9949 
5 37097 .46 194 227 .4966 0 .593531 294 0 .9931 0.9951 
6 38120 .86 186 218 .8204 0 .597599 280 0 .9929 0 .9949 
7 34670 .22 185 217 .735 0 .622309 287 0 .9929 0 .9949 
8 32327 .18 189 222 .0759 0 .650476 296 0 .9931 0.9951 
9 29994 .72 197 230 .7463 0 .675591 310 0 .9936 0 .9954 

10 30200 .94 205 239 .4034 0 .679487 320 0 .9937 0 .9955 
11 30596 .37 2 1 4 249 .1278 0 .677585 340 0 .9941 0.9957 
12 33362 .68 216 251 .2863 0 .652726 343 0 .9941 0 .9957 
13 37589 .38 226 262 .0704 0 .623333 356 0 .9942 0 .9958 
14 42134 .55 236 272 .8355 0 .592986 369 0 .9944 0 9 9 M 
15 43955 .66 252 290 .0283 0 .583253 397 0 .9948 0 .9962 
16 45233 .77 253 291 .1018 0 .579389 403 0 .9949 0 .9963 
17 45162 .3 260 298 .6103 0 .580565 4 1 7 0 .995 0 .9964 
18 44974 .8 263 301 .8268 0 .584151 431 0^W53 0 .9966 
19 45771 .46 2 6 0 298 .6103 0 .579957 424 0 .9951 0^W65 
20 45955 .73 265 303 .9698 0 .580431 436 0 .9953 0 .9966 
21 45768 .54 257 295 .3927 0 .583787 423 0 ^ # 5 1 0 9 9 6 5 
22 45821 .81 268 307 .184 0 .585992 446 0 .9954 0 9966 
23 47902 .96 275 314 .6792 0 .574316 455 0 . 9 9 M 0 9 9 6 7 
24 49319 .24 276 3 1 & 7 4 8 4 0 .567542 460 0 .9955 0 .9968 
25 50241 .66 265 303 .9698 0 .566643 4 4 9 0 .9954 0 .9966 
26 50145 .38 278 317 .8887 0 .572444 488 0 .9957 0 9 9 6 9 
27 50153 .73 276 315 .7484 0 57606 4 9 2 0 .9958 0 .9969 
28 50223 11 2 7 7 316.8181 0 .578705 498 0 9 9 5 8 0 .9969 
29 47193 .51 2 3 2 268 .5312 0 6 0 1 5 7 422 & 9 9 5 1 0 9 9 6 5 
30 35719 .64 264 302 .8982 0 .693972 488 0 .9957 0 .9969 
31 35252 .54 271 310 .3962 0 .802536 497 0 .9958 0 .9969 
32 58854 .63 287 327 .512 0 .803959 497 0 .9958 0 .9969 
33 73466 .04 2 8 9 329 .6488 0 .768421 445 0 .9954 0 . 9 9 6 6 
34 91360 .2 330 373 .3634 0 .648499 544 0 .9961 0 .9972 
35 84804 .27 395 442 .3406 0 .645151 685 0 .9969 0 . 9 9 7 7 
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Table D.8 continued. 

36 87534.04 429 478.291 0.664524 757 0.9972 0.998 
37 80842.16 445 49&1805 0.676309 794 0.9973 0CW8 
38 77591.45 353 397.8122 0.695696 618 0.9965 0.9975 
39 83096.08 268 307.184 0.688495 460 &9955 0.9968 
40 77848.88 446 496.2353 0.6853 774 0.9972 0.998 
41 75850.64 450 500.4561 0.686709 776 0.9973 0.998 
42 72577.86 443 493.0694 0.686652 755 0.9972 0.998 
43 72999.6 433 482.5141 0.680918 729 0.9971 0.9979 
44 71435.68 431 480.4034 0.685753 715 0.997 0 . 9 9 ^ 
45 70597.85 412 460.325 0.682476 672 0.9968 &9977 
46 65801.63 373 419.0344 0.681708 597 0.9964 0.9974 
47 64353.43 387 433.8703 0.673963 605 0.9965 0.9975 
48 69795.97 403 450.8068 0.672091 620 0.9965 0.9975 
49 62889.7 413 461.383 0.679534 630 0.9967 0.9976 
50 59953.13 400 447.6326 0.680637 603 0.9965 0.9975 
51 60684.27 393 440.2236 0.676683 594 0.9964 0.9974 
52 57643.12 387 433.8703 0.681928 579 0.9964 0.9974 
53 54928.68 394 441.2827 0.682458 590 0.9964 0.9974 
54 53439 390 437.048 0.686423 574 0.9963 0.9973 
55 51872.64 384 430.6916 0.688824 567 0.9963 0.9973 
56 48203.35 339 382.9361 0.690238 497 0 9958 0 9969 
57 45828.28 319 361.6525 0.694968 461 0.9955 119968 
58 44520.63 305 346.7295 &706789 441 0.9954 0.9966 
59 42373.58 321 363.7822 0V0996 462 0.9955 0.9968 
60 37642.58 295 33&057 0J34216 422 0.9951 0.9965 
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E. Mathematical Proof 

This appendix demonstrates a mathematical proof that shows that once the least correlated band 

pair has been chosen of a set, any increase in the width of one of the bands will result in a higher 

correlation coefficient. Given are three bands X , Y and Z of identical length. The null hypothesis 

is then defined as follows: 

Ho- If 2 ^+y.z ^ 

, where is the Pearson correlation coefficient between bands X and Y , and X + Y the sum 

of vectors X and Y . That is, if the correlation between bands X and Z is smaller than the one 

between bands Y and Z , the merger (or sum) of band X and Y would result in a higher 

correlation with band Z than band ^ would do on its own. 

The proof was performed with the correlation coefficient r instead of the coefficient of determination 

, and therefore two cases need to be distinguished: 

1) Hypothesis 1: If 0 < ^ 2 > ^ 

2) Hypothesis 2: If fy ^ ^ % < 0 then r^+y 2 < r;r.z 

Proof of Hypothesis 1 ( z > ^ ) 

The condition in the hypothesis (equation E.2) may be re-written using equation 2.4: 

0 < r ^ 2 < ^ y . z 

'^jr.z ^ -^y.z 

'̂ AT.z '^y.z (E.3) 

where ^ Covariance between vectors X and Y 

Standard deviation of vector X 

The hypothesis inequality that has to be proven (equation E.4) may be expanded on both sides 

resulting in equation E.G. 

^;^+y,z > /';r,z 

'^,r+y,z '^j'.z '^'^y.z ^ '̂ A'.z 
^;r+y.z = = > = ^x,z (E.5) 

'^jr+y'^z '^A'+y^z -̂ A^^z 

'̂ A'.z + '^y.z _ -̂ yT.z 

'̂ AT+y 
(E.6) 
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The covariance ^y ^ on the left side of equation E.6 may be bounded using the hypothesis condition 

E.3: 

S Y 

( E J l 

If the hypothesis inequality is true under its condition (E.7), inequality E.7 should be bounded to the 

right by the right side of inequality E.6: 

/ \ 

J y ? 1+-^^ 

> ^ ^ > 
'̂ %+y '^j'+y 

The middle and the right ratio of inequality E.8 may be expressed as; 

(E.9) 

As according to the hypothesis condition, ^ . and therefore ^ , is positive, inequality E.9 can 

be rewritten as 

j: + j'y > j'jT+y (E.10) 

, squared as the standard deviations are always positive, expanded and rewritten: 

S^ + j'y + 2.S^Sy ^ SX "I" "t" 26'^ y (E.12) 

(E^3 ) 

(E14) 

The latter inequality E.14 is always true except for when y equals to 1. Hypothesis 1 is therefore 

proven if bands if bands X and J are not linearly dependent, which is mostly the case for remotely 

sensed data. 

Proof of Hypothesis 2 { r ^ ^ < 0 ) 

The condition in the hypothesis (equation E.15) may be re-written using equation 2.4: 

r „ < r „ < 0 <E-15) 

= y - ] : - > (E.i 6) 

(E.17) 
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The hypothesis inequality that has to be proven (equation E.18) may be expanded on both sides 

resulting in equation E.20. 

(E18) 

_ + '^y.z _ 

c " c c c c (E19) 

< (E.20) 

The covariance Sy ^ on the left side of equation E.20 may be bounded using the hypothesis 

condition E.I7: 

^ ( E . 2 1 ) 

If the hypothesis inequality is true under its condition (E.21), inequality E.21 should be bounded to 

the right by the right side of inequality E.20: 

5, 

The middle and the right ratio of inequality E.22 may be expressed as: 

6" y 4-
^x.z ^ ^x.z (E-23) 

As according to the hypothesis condition, ^ , and therefore ^ , is negative, inequality E.23 can 

be rewritten as 

-^A'+'^y^-^jT+y 

, resulting in inequality E.25 after similar transformations between E.11 and E.14: 

1 > r , , , (2.25) 

The latter inequality E.25 is always true except for when y equals to 1. Hypothesis 2 is therefore 

proven if bands X and Y are not linearly dependent, which is mostly the case for remotely sensed 

data. 

As both hypothesis 1 and 2 have been proven, the null hypothesis has been proven. 
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Table F.1: Scatter plots of image quality measures against MLC overall performance 
estimated with the leave-one-out method for the New Forest data set. The regression line is 

displayed and the correlation coefficient r given. 

-
o ° s 

° / 

o ° 

0 0 p 

0 , % 

-

MLC overall accuracy 

/ 

I Oo, 
M 0 ^ o a O f M 5 ^ o a 

WLC o w a l accufmey 

Variance - r=0.82364 Discriminant Power PCA - r=0.76679 

L . 

0 4 0 ^ o a o a s M O M 0 7 ^ 5 M 

MLC overall accuracy 

/ • 

^ o a 0 ^ o a 0 ^ o j M 

MLC overall accuracy 

Priority number criterion - r=0.77901 Band SNR - r=0.73215 

04 0 ^ oa oas 04 0 ^ 07 0 ^ oa 

MLC overall accuracy 

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 

MLC overaB accuracy 

Coefficient of variation - r=-0.79911 Geary's c metric - r=-0.35318 
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Table F.2: Scatter plots of image quality measures against MLC overall performance 
estimated with the leave-one-out method for the River Severn data set. The regression l ine is 

displayed and the correlation coefficient r given. 
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MLC overall accuracy 
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O o 
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Priority number criterion - r=-0.77982 
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MLC overall accuracy 
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Table F.3: Frequency histograms for the 2 clusters formed w i th the K-Wleans algorithm for the 
River Severn data set for bands 21, 33, 45 and 57. The normal curve is overlaid. 

Classes Band 21,45 Band 33, 57 
Cluster 1 C1 B21 C 1 B M 

M#mm " 1805 0 

Std. Dev= 162.71 

C1 B45 C1 B57 

L D M - 2 9 1 . 8 7 

Cluster 2 C2 B21 

W W W W W . 

C2 B33 

C2 845 C2 B57 

W W A W W W 
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Table F.4: Frequency histograms for the 5 clusters formed w i th the K-Means algorithm for the 
New Forest data set for bands 10, 40, 80 and 100. The normal curve is overlaid. 

Classes 
Cluster 1 

Band 10,80 

C1 810 

C 1 _ B 1 0 

Bid. D#v- 138.68 

Mean = 453.0 

\ 

Band 40, 100 

C1_B40 

,LA SW Dev-513.18 

^ Mwo - 3197.6 

N - n n m 

C1_B80 

C 1 _ B 8 0 

C1_B100 

C 1 _ 8 1 0 0 

SW. Dw-258 .81 

Mean = 873.1 

X 

Cluster 2 C2_B10 

k 
C 2 _ B 1 0 

C2_B40 

100' 

lUmk^ 
C ? _ B 4 0 

Std. Oev= 307.39 

% 

C2_B80 

UkL 
C2_B80 

C2 8100 

,IAJ 
% 
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G. Description of the IVIain Programs Developed 

All algorithms were written in IDL™ (Version 5.5 Win 32) using ENVI™ (Version 3.5) sub-routines. In 

order to run the programs, at least the runtime licence of ENVI™ is required. The programs were 

implemented under the Windows™ NT operating system but may theoretically run under any ENVI™ 

compatible operating system. 

The programs can be obtained from the author in binary, already compiled format (with a .sav 

extension), which protects them from accidental modifications. They were developed in a user-

friendly environment, using buttons and pull-down menus, avoiding direct keyboard inputs by the 

user where possible. The programs were written to be computationally efficient and to handle large 

image data sets. 

G.1 Description of the Program SBS (Supervised Band Selection) 

Overview 

A computer program called SBS (Supervised Band Selection) was developed to estimate an optimal 

band set for Maximum Likelihood classification (MLC) as application procedure. It uses 

hyperspectral airborne or satellite data collected over a representative part of the scene and the 

class definition by the user to estimate an optimal band set of user-specified dimension. Optimality 

refers to the achievable MLC accuracy. This section contains a description of the SBS computer 

program only. For the theory background, the reader is referred to chapter 4 of this thesis. 

Input Data Description 

Hyperspectral CAS 1-2 image 

The hyperspectral image data may be provided in any ENVI™ supported format. However, the 

centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in 

the image header file. 

Class Region Of Interest (ROI) file 

All the information classes of interest need to defined over the hyperspectral image in form of an 

ENVI™ Region of Interest (ROI) file. For class definition theory, the reader is referred to section 

4.3.1. 

C/ass sfaf/sf/cs /7/e 

The SBS program expects the class statistics to be pre-calculated by an ENVI™ routine 

CLASSTATS (section G.3), written by the author. The latter program gives the class statistics (mean 

vector and covariance matrix for each class) in a format that is recognised by tlie program. 

290 



Data statistics file (optional) 

The data statistics file is calculated with the ENVI™ routine DAT A S T ATS (see section G.4) and only 

needs to be supplied when the unequal bandwidth algorithm option is chosen or bands have been 

pre-specified by the user. The file provides the band means to the algorithm, with which signal level 

comparisons are carried out. 

Ou tpu t Data Descr ip t ion 

Output text file 

The output text file provides a summary of all files used in the program (full pathnames), the options 

selected by the user and the resulting recommended band set, describing the starting and ending 

image row of the new band, its centre wavelength and FWHM (if the corresponding wavelength and 

FWHM of the image data were supplied), as well as the corresponding band set performance of the 

criterion measure. The latter value is compared with the performance of the entire band set. and the 

number of dimensions is displayed for the set that achieves at least 95% or 99% of this value first. 

The bands are listed in order of importance, with the first band being the most discriminant one. 

Output image file (optional) 

The user has the option to create an output image reflecting the band selection results. If the option 

is selected, an output image file is saved under the given name and opened in ENVI™'s 'Available 

Bands List', from where it can be displayed. 

A l g o r i t h m cho i ce 

The user has the choice between three different algorithms inside the SBS program, which is 

displayed in figure G,1. First, a choice is made as to whether the width of the final bands (i.e. the 

number of rows to be merged for each band) is set equal for all bands or not. Second, for the 'equal 

bandwidth' case, the user can set the bandwidth to a specific value or leave it up to the program to 

decide on the optimum bandwidth. 

FIXBO 
BANDWIDTH 

NON-FIXED 
BANDWIDTH 

EQUAL 
BANDWIDTH 

UNEQUAL 
BANDWIDTH 

SBS 
USER OPTIONS 

Figure G.1: A l go r i t hm cho ices fo r the SBS (Superv ised B a n d Select ion) p rogram. 
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Running the program 

Definition of input and output filenames 

First the user is asked to specify the filenames of 

the hyperspectral image file, 

the class ROI file, 

the class statistics file, and 

the output text file. 

User Options 

Second, the user is presented with an interactive menu of different choices (see figure G.2). 

Hands to include in the evaluation 

V f l l B a n d l nm 

y p! Band 2 521.331 nm 

V RBand] SSZGZdnm 

</ {4I;Banel4 543.335 nm 

V f5; Band 5 555.263 nm 

y fSj Band fi 5GG.€ZTnm 

Number of items selected 137 

Add Range | Select ,AII Oear ! 

OsaMS to mdude in the evalustion 

P [ i :P l /2 

P? [21 PI/2 Mohnea dominated 

jy {3% 53 MoWea dominated 

!? p-I S3 partli'reed 

1^ iKCarr 

fw' [€? Standing %'ater 

Number of ftems selected: j7 
>1:1,1-1 ' »1lll|- • II 11-11 111! i J 

j j Add Range j Select .All j Qear 

Exdude aUjiostjIiaic bantk? Mb 

Equal band^idths" No 

No 

Total number of output bands |13 

•ass separability' measure Transformed Oî /ergence I 

No 

OK Lancel 

Figure G.2: ENVI™ widget al lowing the user to choose between the given SBS program 
options. 

The user is given the option to 

exclude specific bands from the evaluation (for example bands that are perceived as noisy), 

exclude atmospheric bands (default setting; 0.92-0.97, 1.1-1.17, 1.34-1.5, 1.77-2, and 

greater than 2.4 pm), 

decide whether or not specific bands (maximum 19) should be included in the final band set 

(for example mineral absorption bands), and if so whether they should be entered by 

wavelength or row number (note that for the former, the centre wavelength value of each 

band needs to be specified in the image header file), 
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set equal widths for all bands (if this option is not selected rows may be merged under the 

constraint that the row merger improves the MLC accuracy of the band set), 

exclude specific classes from the evaluation (for example background classes), 

specify the maximum number of output bands (i.e. the dimension of the final band set; the 

default value is set to 10), 

create an output image (note that this part may increase the running time of the program 

considerably for large data sets). 

|l Supervised Band Selection 

Set number of rows to be merged? 

Enter speclic bands by row number (1 to 117). See list on the right for »'\iaveleng)h rnlerva!: 

Band 1: Start row 

Band 2: Start tow 

Band 3: Start row 

B and 4. Start tow 

Band 5: Start row 

Band 6: Start row 

0 

0 

0 

0 

0 

0 

End row 

End row: 

- End row 

- End row 

- End row 

- End row 

0 

0 

1: 453.'KB- 489 490 m, 
2 463 400 485.450 nm z) 

Row 3: 484 400 -500.450 rim 
Row 4. 499 . am- 515.550 nm 
Row 5: 515.50. 531.550 nm 
How 6 530.900 • 546 950 nm 
fitwj 7. 546.3%). 
Row 8 9G1 a a - 577 650 nm 
Aow 9 576 800 • 592B50,Tm 
Row 10: 532 .m - 606.250 nm 

607 800 -623.GS0nm 
Row 12: 623.4m - 6-39.450 nm 

J 

OK Cancel 

Figure G.3: ENVI™ widget for the option-dependent def ini t ion of furtlier parameters. 

Option-dependent definition of further parameters 

Thirdly, depending on which set of options has been specified, the user may be asked to 

set the number of rows to be merged if the 'equal bandwidths' option was selected (if no 

fixed bandwidth is selected, the program is allowed to expand bands where possible but 

returns a set of bands of equal width; this option does not apply to user-specified bands; see 

figure G.3), 

set the maximum number of rows to be merged if the 'equal bandwidths' option was not 

selected (the default value is set to 16 rows), 

set the minimum relative band response if the 'equal bandwidths' option was not selected 

(the default value is set to 10% higher as the lower limit given by ITRES Research Ltd.), 

enter specific bands either by row number or wavelength, according to the option chosen 

before (a list of the available rows and their wavelength interval is displayed for information; 

specified bands should not overlap, and entered values should fall within the allowed range; 

if no values are specified the algorithm ignores this option; see figure G.3), 

specify the filename of the data statistics file (if unequal bandwidth option was selected or 

bands have been pre-specified), and 
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give tine name of the data statistics and output image files. 

Program run 

Finally the program executes displaying its current status within a status window in the middle of the 

screen. After program completion, a message window indicating successful program performance 

appears (figure G.4). 

Fik 

II Supervised Band Selection Report 

S i i c c e s s f u 1 o p e r a t i o m 

Figure G.4: ENVI™ widget report about successfu l program operation. 

G.2 Description of the Program UBS (Unsupervised Band Selection) 

Overview 

A computer program called UBS (Unsupervised Band Selection) was developed to estimate a band 

set optimal in band number, width and location. It uses hyperspectraI data from airborne and 

spaceborne sensors collected over a representative part of the scene. Bands are considered optimal 

when they are least correlated amongst each other and have a high Signal-to-Noise Ratio (SNR). 

This section contains a description of the UBS computer program only. For the theory background, 

the reader is referred to chapter 5 of this thesis. 

Input Data Description 

iyperspectral image file 

The hyperspectral image data may be provided in any ENVI™ supported format. However, the 

centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in 

the image header file to allow for the consideration of atmospheric windows and the proper 

expansion of bands. 

Data statistics file 

The UBS program expects the data statistics to be pre-calculated by the ENVI™ routine 

DATASTATS, written by the author. The latter program gives the data statistics (band mean vector 

and covariance matrix) in a format that is recognised by the UBS program (see section G.4). 

Dark image file (optional) 

Dark current image data may be used to estimate the noise statistics for the SNR calculation. For 

most sensors, a dark image is collected routinely as part of both the data collection process and the 

instrument calibration. The dark current allows approximating instrument-induced noise only. 

294 



Reg/on of/nferesf /br S/VR ca/cu/af/on Copf/ona^ 

If dark current image data is not available for the data set, the SNR may be estimated from an 

ENVI™ Region of Interest (ROI) file defined by the user over a spatially and spectrally 

homogeneous area of the hyperspectral image. 

Output Data Description 

fexf /y/e 

The output text file provides a summary of all files used in the program (full pathnames), the options 

selected by the user (if different from default) and the resulting recommended band set, describing 

the starting and ending image row of the new band, its centre wavelength and FWHM (if 

corresponding wavelength and FWHM of image data were supplied), as well as the corresponding 

band coefficient of multiple determination. 

/mage ^/e 

The user has the option to create an output image reflecting the band selection results. If the option 

is selected, an output image file is saved under the given name and opened in ENVI™'s 'Available 

Bands List', from where it can be displayed. 

EQUAL 
BANDWIDTH 

LEAST CORRELATED 
BANDS FIRST 

FIXED 
B4ND WIDTH 

NON-FD(ED 
BANDWIDTH 

UBS 
USER OPTIONS 

FIXED 
BANDWIDTH 

Lf̂B)UAL 
BANDWIDTH 

LEAST NOISY LEAST CORRELATED LEAST NOISY 
BAND FIRST BANDS FIRST BAND FIRST 

NON-FIXED 
BANDWIDTH 

Figure G.5: Algorithm choices for the UBS (Unsupervised Band Selection) program. 

Algorithm choice 

The user has the choice of six different algorithms inside the UBS program. First, a choice is made 

as to whether the width of the final bands (i.e. the number of rows to be merged for each band) is set 

equal to all bands or not. Second, the option is given to start the final band set with either the least 

correlated pair of bands or the least noisy band. Third, for the 'equal bandwidth' case, the user can 

set the bandwidth to a specific value or leave it up to the program to decide on the optimum 

bandwidth. This choice of algorithms is displayed in figure G.5. Note that no noise estimation is 

required for the first algorithm, i.e. when all bands are chosen to be of a specified width and the set 

is to start with the least correlated band pair. 
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Running the program 

Definition of input and output fiienames 

First tine user is asked to specify the filenames of 

the hyperspectral image file, 

the data statistics file, and 

the output text file 

&clude atiTiOSpheric bands? No 

Biter bands? 

i! nwiherof oulput bands 

Equal band'ffldths? 

least correlated bands-

dark data. NoKKbriBtlonfmm 

Creak output mage? No 

OK 

Unsupervised Band Selection (c) Riedmann, 2©03 

Number of terns seieded: 37 

5<3.S35nm 

T5I Band 5 555.2G3nm 

(3: Band 3 532.G2<nm 

r i B a n d l SlO.CSGnm 

R Band 2 521.331 nm 

; to include in the evaUaBon 

yd Range j Select .All j Qear j 

/nm 

Figure G.6: ENVI™ widget al lowing the user to choose between the given UBS program 
options. 

User Options 

Second, the user is presented with an interactive menu of different choices (see figure G.6). The 

user is given the option to 

exclude specific bands from the evaluation (for example bands that are perceived as noisy), 

exclude atmospheric bands (default setting: 0.92-0.97, 1.1-1.17, 1.34-1.5, 1.77-2, and 

greater than 2.4 pm), 

decide whether of not specific bands (maximum 6) should be included in the final band set 

(for example mineral absorption bands), and if so whether they should be entered by 

wavelength or row number (note that for the former, the centre wavelength value of each 

band needs to be specified in the image header file), 

specify the maximum number of output bands (i.e. the dimension of the final band set; the 

default value is set to 10), 

set equal widths for all bands (if this option is not selected rows may be merged under the 

constraint that the row merger improves the band SNR), 

select the option to start the band set with the least noisy band or the least correlated band 

pair, 
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choose to estimate the noise statistics from a dark image file or an ROI file defined over a 

spatially and spectrally homogeneous image area, and 

create an output Image (note that this part may increase the running time of the program 

considerably if a for large data sets). 

Option-dependent definition of further parameters 

Thirdly, depending on which set of options has been specified, the user may be asked to 

set the number of rows to be merged if the 'equal bandwidths' option was selected (if no 

fixed bandwidth is selected, the program is allowed to expand bands where possible but 

returns a set of bands of equal width; this option does not apply to user-specified bands; 

similar to figure G.3), 

set the maximum number of rows to be merged if the 'equal bandwidths' option was not 

selected (the default value is set to 2 rows), 

set the minimum relative band response if the 'equal bandwidths' option was not selected 

(the default value is set to 30%, 10% higher as the lower limit given by ITRES Research 

Ltd.), 

enter specific bands either by row number or wavelength, according to the option chosen 

before (a list of the available rows and their wavelength interval is displayed for information; 

specified bands should not overlap, and entered values should fall within the allowed range; 

if no values are specified the algorithm ignores this option; similar to figure G.3), 

specify the dark image file or the ROI file for SNR estimation, and 

give the name of the output image file. 

Program run 

Finally the program executes displaying its current status within a status window in the middle of the 

screen. After program completion, a message window indicating successful program performance 

appears (similar to figures G.4). 

G.3 Descript ion of the Program CLASSTATS 

Overview 

A computer program called CLASSTATS was developed to calculate the mean vector and 

covariance matrix of each class defined within an ENVI™ Region of Interest (ROI) file. It assumes 

the ROI file to be specified over available hyperspectral data collected over a representative part of 

the scene. 

Input Data Description 

Hyperspectral image file 
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The hyperspectral image data may be provided in any ENVI™ supported format. However, the 

centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in 

the image header file to allow for the consideration of atmospheric windows and the proper 

expansion of bands. 

Class ROI file 

All the information classes of interest need to defined over the hyperspectral image in form of an 

ENVI™ Region of Interest (ROI) file. For class definition theory, the reader is referred to section 

4.3.1. 

Output Data Description 

fexf /y/e 

The output text file provides a summary of the computed statistics (mean, variance, skewness, 

kurtosis, covariance matrix) for each class (ROI), together with all files used in the program (full 

pathnames). The output format is recognisable by the SBS program (see section G.1). 

Running the program 

First the user is asked to specify the filenames of 

the hyperspectral image file, 

the class ROI file, and 

the output text file. 

Then, the program executes displaying its current status within a status window in the middle of the 

screen. After program completion, a message window appears indicating successful program 

performance (similar to figure G.4). 

G.4 Description of the Program DATASTATS 

Overview 

A computer program called DATASTATS was developed to calculate the band mean vector and 

covariance matrix for the available hyperspectral data collected over a representative part of the 

scene. 

Input Data Description 

Image file 

The hyperspectral image data may be provided in any ENVI™ supported format. However, the 

centre wavelength and width (Full-Width-Half-Maximum, FWHM) of the bands should be included in 

the image header file to allow for the consideration of atmospheric windows and the proper 

expansion of bands. 
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Mask file 

The ENVI™ image file selection dialog allows for the specification of a mask band. It is important to 

define the mask file if existent, as otherwise false data statistics will result. Note that a mask band is 

necessary if the flight lines do not fill the entire image display window. That is, all non-image areas 

need to be masked out. 

Output Data Description 

Oufpuf fexf /y/e 

The output text file provides a summary of the computed statistics (band covariance and correlation 

matrix, eigenvalues and eigenvector matrix, as well as the band mean vector) for the data set. The 

output format is recognisable by the SBS and UBS program (see sections G.1 and G.2). 

Running the program 

First the user is asked to specify the filenames of 

the image file together with a binary mask band (if existent), and 

the output text file. 

Then, the program executes displaying its current status within a status window in the middle of the 

screen. After program completion, a message window appears indicating successful program 

performance (similar to figure G.4). 

G.5 Descript ion of the Program CLASSTATSCLUSTER 

Overview 

The computer program CLASSTATSCLUSTER calculates the mean vector and covariance matrix of 

each class, defined by the ENVI™ K-^/leans clustering routine. 

Input Data Description 

Hyperspectral image file 

The hyperspectral image data may be provided in any ENVI™ supported format. 

Mask file 

The ENVI™ image file selection dialog allows for the specification of a mask band. Note that a mask 

band is necessary if the flight lines do not fill the entire image display window. That is, all non-image 

areas need to be masked out. 

Output Data Description 

Output class ROI file 
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All the information classes of interest will be defined over the hyperspectral image in form of an 

ENVi™ Region of Interest (ROI) file. 

Oufpuf fexf ^/e 

The output text file provides a summary of the computed statistics (mean, variance, skewness, 

kurtosis, covariance matrix) for each class (ROI), together with all files used in the program (full 

pathnames). The output format is recognisable by the SBS program (see section G.I). 

Running the program 

First, the user is asked to specify the filenames of 

the hyperspectral image file, 

the output class ROI file, and 

the output text file. 

Second, the following parameters need to be provided for the K-Means clustering procedure: 

the number of output classes, that is the number of clusters (2-10) to be defined, and 

the number of iterations (1-4). 

Then, the clustering program executes displaying its current status within a status window in the 

middle of the screen. An image of the clustering map is automatically opened in ENVI™'s 'Available 

Bands List', from where it can be displayed. The statistics of each class are then successively 

calculated. After program completion, a message window appears indicating successful program 

performance (similar to figure G.4). 

G.6 Description of the program DATASTATSROI 

Overview 

This program is similar to the DATASTATS program described in section G.4, but allows the data 

statistics to be calculated from an ENVI™ Region of Interest (ROI) rather than from the entire image. 

Input Data Description 

Image file 

The hyperspectral image data may be provided in any ENVI™ supported format. 

RO/ m/e 

The ENVI™ Region of Interest (ROI) file should be defined over the image area from which data 

statistics are to be calculated. Non-image pixels should not be included. 
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Output Data Description 

Output text file 

The output text file provides a summary of the computed statistics (band covariance and correlation 

matrix, eigenvalues and eigenvector matrix, as well as the band mean vector) for the data set. The 

output format is recognisable by the SBS and UBS program (see sections G.1 and G.2). 

Running the program 

First the user is asked to specify the filenames of 

the image file, 

the ROI file, and 

the output text file. 

Then, the program executes displaying its current status within a status window in the middle of the 

screen. After program completion, a message window appears indicating successful program 

performance (similar to figure G.4). 
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Variables and constants are listed in order of their appearance in the thesis. Once defined, they are 

not defined a second time unless their meaning has changed. 

Chapter 2 

/ , / 

X-, 

X 

A:, o 

(5; 

/My 

m 

n 

i 

X, 

' jl 

c v . 

Po 

& 

Number of bands 

Band indices 

Pixel measurement in band / 

Pixel vector 

Number of classes 

Class indices 

Class A 

Class-conditional density function for pixel vector x 

pr/or/ probability of class A: 

Sample mean of band / 

Sample mean vector 

Number of pixel measurements 

Pixel index 

Pixel measurement ; for band / 

Sample variance for band / 

Sample covariance for bands / and / 

Sample covariance matrix 

Sample correlation coefficient for bands / and / 

Coefficient of variation for band / 

Skewness for band / 

Kurtosis for band / 

Priority number for band / 

Relative mean ratio for band / 

Relative variance ratio for band / 

Number of test samples classified as class z while belonging to class / 

Overall accuracy 

Total number of pixels in the error matrix 

KHAT statistics 

Chance agreement 

[-] 
[-] 

[DN] 

[DN] 

[-] 

[-] 

[-] 

[-] 

[-] 

[DN] 

[DN] 

[-] 

[DN] 

[DN^] 

[DN^] 

[DN^] 

[-] 

[-] 

[-] 

H 
[-] 

[-] 

[-] 

[-1 
[-] 
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Marginal total of row z of the error matrix [-] 

M IVIarginaltotalofcolumnz of the error matrix [-] 

T Tau statistics [-] 

Prior probability [-] 

A priori number of pixels belonging to class z out of pixels H 

B Number of candidate bands for feature selection [-] 

d(A:,o), Measure of distance between classes (or pixels) and 

t Order of Minkowski distance [-] 

Q Positive definite matrix [-] 

a Angle between two class vectors [rad] 

^ Chernoff parameter ranging from 0 to 1 [-] 

a Saturation value for the Transformed Divergence [-] 

h Range value for the Transformed Divergence [-] 

H Multi-class distance measure [DN] 
m 

Cost of deciding x e , when in reality x e m H c 

J 

2i c Within-class scatter matrix [DN 

§ Between-class scatter matrix [DN^] 

A Number of possible subset combinations [-] 

Feature subset [DN] 

£ Number of features added to the set in the generalised form of SFS [-] 

Number of features deducted from the set in the generalised form of SBS [-] 

y . Pixel measurement in feature / [DN] 

y Transformed feature vector [DN] 

F Mapping function [-] 

g ^ Linear mapping coefficients [-] 

A Transformation matrix with elements a ., H 

Ay Eigenvalue for feature I H 

W Diagonal matrix of weight coefficients [-] 

^ Common factor vector [DN] 

A Matrix of factor loadings [-] 

E Specific or unique factor vector [DN] 

Distance value between pixels A: and o in transformed feature space [DN] 

O Objective function [-] 

F Loading factor matrix [-] 

f Column of the loading factor matrix [-] 

Discriminant power of band / [-] 

Eigenvalue o f theZth component under the broken-stick model [ ] 

Chi-square test statistic [-] 
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z 

C, 

"10 

Z test-statistic 

Accuracy estimate of feature subset / 

Asymptotic sample variance 

Number of samples misclassified by A but not by B 

Number of samples misclassified by B but not by A 

[-] 

[-] 

[-] 

[-] 

Chapter 3 

N Number of original dimensions [-] 

Chapter 4 

C Number of channels 

FWHM 

[-] 
[nm] 

Chapter 5 

t 

N 

h 

4 

R 

y 

F 

k 

Student's statistic 

Number of observations 

Spearman rank correlation coefficient 

Difference between the ranks of the i th pair of item 

Standardised form of 

Multiple correlation coefficient 

Coefficient of multiple determination 

Band index 

F statistic 

Number of independent variables 

[-] 
[-] 
[-] 

[-] 

[-] 

[-] 

[-] 

[-] 
[-] 

Chapter 6 

f, 

c 

n 

f = ( y o , 

1 = ( U , - , 1 / 

e = (61,62, 

Value of the dependent variable in observation / 

Regression coefficient for independent variable i 

Value of the independent variable z in observation / 

Number of independent variables 

Number of observations 

Observation vector, dimension (« ,1) 

Vector of coefficients, dimension (c,1) 

Matrix of independent variables, dimension {n ,c) 

Unit vector, dimension here (n ,1) 

Error for observation / of the fit of independent variables 

Vector of random errors, dimension (n ,1) 

[-] 

[-] 

[-] 

[-] 

[-] 
[-] 

H 

H 
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