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Although the phenomenon of sound transmission through partitions has been
investigated over many years, the problem of low frequency sound insulation in
buildings is still an active research area. Modal methods are widely used for the low-
frequency analysis of vibro-acoustic problems, including the problem of sound
transmission between coupled rooms. A generic modal model is developed and
implemented for better representation of the airborne sound transmission in buildings.
Subsequently, the model is validated experimentally and showed good agreement when

compared to previously published results.

This model also provided some information in terms of the variability and sensitivity of
sound insulation parameters (e.g. the Noise Reduction) to the geometry and material

properties of the systém.

The effects of the imposition of common velocity on the acoustic-structural interface
have been incorporated using a novel development of the Component Model Synthesis
Method (CMS). The formulation of the structural-acoustic problem in terms of

‘components’ is described. The results obtained via the CMS method are then compared



to those obtained using both a one-dimensional wave approach and the standard modal
analysis for a one dimensional acoustic system. Very good agreement was found
between the one-dimensional wave model and the CMS model. Finally, the CMS
approach is developed and extended to three-dimensional acoustic systems. Results are

provided for the case of an elastic partition coverage of a common interface.

In summary, improved models have been developed and implemented in order to make a
better assessment of the sound transmission between two rooms coupled by a common

structural partition.
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modal damping ratio matrix of the component
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internal loss factor for subsystem i
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Coupling Loss Factor defined in equation (4.10)
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global stiffness matrix of the system (acoustic components 7, 2).
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Figure 5.12: The Spatial variation of mean square sound pressure (in dB re 2x10° Pa)
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Figure 6.2: Normalized mean square particle velocity distribution in the x-direction with
respect to the horizontal plane y = Im at 55 Hz. The square elastic partition has
dimensions, nominal density and Young’s Modulus equal to 2m x 2m, ph= 8.06 1»<g/m2

and E = 2.12x10° N/m? respectively

Figure 6.3: Normalized mean square pressure distribution with respect to the horizontal
plane y = 1m at 120 Hz. The square elastic partition has dimensions, mass per unit area
and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m* and E = 2.12x10° N/m?

respectively
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dimensions, mass per unit area and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m*

and E = 2.12x10° N/m” respectively
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and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m* and E = 2.12x10° N/m?
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plane y = 1m at 190 Hz. The square elastic partition has dimensions, mass per unit area
and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m2 and E = 2.12x10° N/m’
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maximum in the plane.

Figure 6.7: Comparison between the CMS-1D and the CMS-3D models in terms of the
variation of spatial-average mean square sound pressure with frequency (0.1 Hz
resolution). The square elastic partition has dimensions, mass per unit area and Young’s
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of the spatially averaged mean square normal velocity of the partition (dB re 10 m/s). The

square elastic partition has dimensions, mass per unit area and Young’s Modulus equal to
2m x 2m, ph=8.06 kg/m” and E = 2.12x10° N/m” respectively.
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square elastic partition has dimensions, mass per unit area and Young’s Modulus equal to
2m x 2m, ph=78.5 kg/m* and E = 210x10° N/m? respectively
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Chapter 1

INTRODUCTION

1.1 — General background

Sound insulation requirements for buildings depend on many factors. These include
activities of people involved, e.g. listening to music, shopping, etc., and also on the
background noise, which may be considered as part of the work or home environment.
Although the frequency range of human hearing is considered to be between 20 Hz and
20,000 Hz, a source of noise operating at frequencies below 20 Hz can be perceived (if
one considers a signal that has a high sound pressure level) and also detected through the
human body [1]. Hence, there is a need to predict, quantify and understand the behaviour

of sound transmission over a wide range of frequencies.

The phenomenon of sound transmission is an important subject in noise control for
buildings. Usually, noise is communicated between rooms via many different paths. The
two methods of sound transmission in buildings are characterized as airborne and
structure-borne sound transmission. In airborne sound transmission the noise originates
and travels in the air. The noise sources may be elsewhere in the building and/or outside
the building. In structure-borne sound transmission, the sound is either generated or
transmitted by vibrating solid bodies. Subsequently, the vibration may produce radiated
noise into a receiving space. In this thesis, the phenomenon of structure-borne sound
transmission is not directly addressed. Therefore, indirect paths of transmission or as
they are often called ‘the flanking transmissions’ are not included in this work. Thus the
sound transmission will only be considered through a common partition separating two
acoustic volumes. This is the simplest of cases and is often sufficient in quantifying the

noise levels.
1.1.1 — The definition of Noise Reduction (NR) and Sound Reduction Index (SRI)

For practitioners in the field of building acoustics the quantification of the ‘sound
insulation’ is typically described in terms of some simple quantities which are relatively
easier to comprehend and use than the physical response in terms of pressure and

velocity.
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Generally, the term ‘sound insulation’ refers to the predicted or measured sound level
difference, or Noise Reduction (NR), and also the Sound Reduction Index (SRI). The
latter is the logarithmic index of the inverse of the sound transmission efficiency [2]. The
sound transmission efficiency is defined as the ratio of the transmitted sound intensity
through a partition or wall to the incident intensity on a partition or wall. For a diffuse
field, the formula or expression for the NR is given by [2]

_SRI

NR = L — L, = SRI +10log,,| 10 1 +S (1.1)

where L, and L, are the spatially averaged sound pressure levels in the source and

receiving rooms respectively, S is the area of the partition and A is the Sabine absorption

of the receiving room. Equation (1.1) is a consequence of the need for the overall system

to obey the conservation of energy principle.

By assuming that in the receiving room the power loss from its reverberant field is much
greater than the power being transmitted to the source room, the first term in the bracket
is therefore negligible in comparison with the other one. Thus, equation (1.1) can be

simplified and rewritten as
NR =L, —L, =SRI + lOloglo(—?—) (1.2)

Typically experiments are conducted to measure the Noise Reduction and equation (1.2)
can then be used to evaluate the Sound Reduction Index. The latter is primarily a
measure of the transmission properties of a partition and it is not easy to measure
acoustic intensities in many cases. For instance, at low frequencies, the limitation of a
sound intensity measuring system, i.e. the phase mismatch between the pressure
transducers and the associated signal conditioning channels, can significantly affect the

accuracy of any particular measurement.

Furthermore, well separated microphones are required to measure intensity at low
frequencies, as one needs some phase measurement which is very small and subject to
significant errors unless the instrumentation is well matched. On the other hand, at high
frequencies closely spaced microphones are required. In addition, there is a physical

limitation on their closeness and also how close one can get to partition surfaces [3].
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These two quantities are used as design parameters or guidelines, which provide
sufficient information for detailed calculations or comparison against standards or other
configurations. Essentially better sound insulation corresponds to higher values of Noise
Reduction and Sound Reduction Indexes. Also, many practitioners use such descriptors
in cases where strictly either the room volumes are small, the frequencies are low or the

absorption high and then the diffuse field assumption is strictly invalid.
1.1.2 — The main methods used to predict sound transmission

The problem of calculating analytically or numerically the sound transmission between
rooms has been the subject of investigation over many years [1-3]. The five main
approaches have been the Conventional Wave Approach [4], Modal Analysis [5],
numerical techniques such as the Finite Element Method (FEM) and the Boundary
Element Method (BEM) [6], the Wave Based Method (WBM) [7] and Statistical Energy
Analysis [8].

A brief overview of each method is presented as follows.

In the Conventional Wave Approach, infinitely extended panels are used in sound
transmission models and for simplicity a diffuse field is often assumed. The models
initially consider the transmission of sound when plane waves are incident upon a panel.
The diffuse field transmission results from the integration from all of the transmitted
power due to all of the equal amplitude acoustic plane waves in the incident acoustic

diffuse field.

For the infinite panel, boundary effects are neglected and the walls are assumed to be
homogeneous and to have no leaks. The resulting Mass Law (ML) formula, which
assumes transmission through a limp panel, has been successfully applied to many
situations where the frequencies are well below the critical frequency=I= of the panel. In
this scenario the transmission is controlled by non-resonant lower order modes of a finite
panel which couple spatially with the acoustic field at frequencies above their natural

frequencies and their response is mass-controlled.

However, the assumptions provided are unsatisfactory in a large number of real panels
whose dimensions are less than or equal to the wavelength of the incident sound wave,

especially the case at lower frequencies. In addition, the geometry of the system is not

" It is the frequency at which the speed of free bending waves in the panel equals the sound speed in air.
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taken into account and, at low frequencies or for real rooms, the assumption of an

incident diffuse field is incorrect.

Alternatively, Modal Analysis [5] allows the geometric parameters of the system to be
incorporated into the models and subsequent predictions. The frequency response of a
finite system normally has peaks and dips, due to the resonance phenomenon that
involves modal behaviour and fluid-structure spatial coupling of wall (plate) and room
modes. This approach will be developed later and the limitations/assumptions will be
identified and discussed. Typically Modal Analysis using analytical modes is restricted
to simple regular geometrical shapes otherwise it requires numerical modal techniques

discussed below.

Deterministic numerical techniques, involving for example a Finite Element (FE) model
of the room volumes and partitions [6] or a Boundary Element (BE) model for the
acoustic volumes and a FE model for the partitions, do not have the limitation on
geometry, but for computational and accuracy reasons are applicable primarily for low
frequency predictions. These approaches discretise the physical system and equations of

motion in the modal degrees of freedom are obtained.

Similarly such an approach is inefficient for simulations involving a large number of
geometric variations. The acoustic sources can be explicitly defined and the effect of
room geometry, surface absorption and partition properties incorporated. The modes of
either the uncoupled or coupled acoustic-structural system can be obtained and a modal

basis for the forced response obtained, if required.

Recently, an alternative technique, namely the Wave Based Method [7], has been
developed for the analysis of coupled vibro-acoustic problems in the mid-frequency
range. It is based on the expansion of dynamic response variables in terms of wave
functions, which are the exact solutions of the governing differential equations. These
individual solutions are combined and constrained to solve the system with more general
geometry or boundary conditions. It has been shown that the WBM model exhibits better
convergence properties than the FEM model, especially at higher frequencies, and is

more computationally efficient.

Finally, Statistical Energy Analysis (SEA) considers the power flow balance between
linear coupled systems and has been applied successfully to noise transmission in

buildings for mid to high frequencies, where there are a reasonable number of modes in a
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band and a frequency averaged band result is sufficient. The estimates of subsystem
energies are obtained on the basis of known values for the loss factors and power inputs,
with coupling loss factors either measured or calculated from known formulae. Thus, the
response of each subsystem is only described by the time, frequency and spatial averaged

energy response.

For noise transmission, the SEA limitations include assuming diffuse and reverberant
acoustic volumes, high modal overlap for reduced variability and approximations for the
geometry. Consequently, no information about the spatial distribution of the response
variables (e.g. pressure, particle velocity, etc) is available. Moreover, whilst there are no
rigid rules which restrict the choice for the subsystems, a judicious choice is vital for

successful application of the method.
1.1.3 - A review of predictive methods for the sound transmission through partitions

In most cases, it has been possible to consider a simpler configuration, namely sound
transmission between acoustic volumes separated by a partition. This has provided
insight into the physical phenomenon and a brief overview of most relevant research,
both theoretical and experimental, now follows. The majority concentrates on finite
panels to overcome the approximation and assumptions used in the Mass Law

formulation.

Dowell et al [9] analyzed the transmission of a reverberant sound field through a
rectangular baffled partition by means of a mode expansion method. According to the
formulae derived, valid for non-resonant partition transmission, the problem was well
predicted provided that the mass of the partition was significant. In general, the non-
resonant transmission was found to be the most important contribution for frequencies

below the critical frequency of a particular partition.

Below the critical frequency the spatial matching is best achieved by lower order
structural modes. The corresponding acoustic frequency that matches the structural
wavelength is higher than the structural natural frequencies. Hence the response of these
modes is controlled by mass and not stiffness or damping. Although resonant panel

modes might have greater amplitude than the forced modes, they are poorer radiators.

The effect of panel mass on forced-wave transmission is quantified by Fahy [S]. It is

seen that the greatest contribution of a particular mode to sound transmission occurs in a
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frequency range greater than its natural frequency where the frequency response is mass-
controlled. In addition, the radiation efficiency of the forced or non-resonant modes is

not only greater than that of the resonant modes but also dependent on the panel

boundary conditions.

In these conditions, Dowell et al [9] observed that the imaginary part of the fluid wave
impedance in the receiver volume was significantly greater than its real part. Therefore it
ensured that the forced vibration, or mass law contribution, dominated the transmission
factor. A detailed review of acoustic-structural coupled systems was also presented. The
theoretical model developed for arbitrary wall motions was formulated using Green’s
Theorem. From the point of view of applications, a simplified formulation was also

presented for sound pressure level predictions in terms of the acoustic and structural

parameters.

The effects of panel boundaries on sound transmission, including a comparison with an
infinite panel, were discussed in refs [10-11]. A simple two-dimensional model was used
for evaluating the sound transmission characteristics of finite panels. The analysis of the
transmission, through a baffled plate of finite width and infinite length, was conducted
rigorously. The effects of panel size were verified in regions below, above and at the
critical frequency. Estimates of averaged response over a particular frequency range
were also presented. Sound transmission for the diffuse field was hence obtained via

direct numerical integration over all angles of incidence.

More recently Osipov et al. [12] produced an analysis of sound transmission in buildings
based on a room-plate-room model that takes into account the coupling between the
flexural modes of a simply supported plate and the acoustic modes of the source and
receiving rooms. The thin plate bending wave equation of motion, which is based on the
Kirchhoff’s theory [3,13], was considered in the analysis. The equations of motion, in

terms of the modes, are essentially formulated in the same manner as Dowell [9].

Similarly, Gagliardini et al [14] used a modal basis model, which considers the fluid-
structure interaction, to predict the influence of some parameters on the Sound Reduction
Index. Nevertheless, the results are shown for a limited number of cases due to
significantly increased computational time when the dimensions of the rooms and

partition, in addition to frequency range, are varied.
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Leppington et al [15,16] presented an alternative analytical formulation for the
calculation of sound transmission through a baffled panel. The model assumed the panel
in the problem to be simply supported. These predictions, which were based on modal
analysis, have been considered an improvement on previous theories, such as the Mass
Law theory. A random field was considered as an infinite sum of uncorrelated plane-
waves impinging on the finite-panel surface. Moreover, the transmission problem was
described in terms of two distinct mechanisms. The first one is dominant at the region of
the spectrum above the critical frequency, where free bending waves interact to cause
resonance. In this frequency range the partition is a good radiator and also couples well
with the incident sound field. In fact, its radiation efficiency is always greater than or
equal to unity. For the region below the critical frequency, both free and forced bending
waves are generated. In this frequency range (below the critical frequency), the dominant
partition behaviour is that which is forced and responds at the acoustic wavenumbers. At
these frequencies the panel is less efficient in coupling to the acoustic excitation and the
transmission is governed by the mass law response of modes at frequencies above their

resonances, whose modal wavenumber description better match those in the incident

acoustic field [15].

Subsequently, Leppington [17] developed a simpler and more direct method to estimate
the transmission efficiency which accounts for the non-resonant contribution of sound
power transmission. The main assumption was to consider the random field as a diffuse
field, neglecting the presence of the boundaries. The transmission phenomenon can then
be considered as a summation of the non-resonant or forced transmission, and the

resonant transmission.

According to Fahy [18], the two main differences between the unbounded panel and a
finite baffled panel in terms of sound transmission performance are the existence of
standing waves and diffraction by the aperture in the baffle containing the panel.
Although simply supported edges will be considered in this work as has been used by
others for reason of simplicity, complex boundary conditions have also been discussed in

the literature [19-22].
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1.1.4 —Overview of experimental sound transmission investigations

The experimental investigation and quantification of sound transmission has 1ikewise
seen developments and improvements. The main concern whilst performing any noise or
vibration experimental test is to make valid and accurate measurements which represent
the real problem. For instance, the accurate determination of room responses at low
frequencies is a difficult task to be tackled. In general, laboratory measurements at these
frequencies do not produce acceptable reproducibility due to the poor diffuseness of the

acoustic field [23, 24].

Although much research have been devoted to the experimental investigation of sound
transmission through partitions at low frequencies, poor sound insulation between
dwellings has been a matter of concern for many people. As a result, experimental
studies on sound insulation in buildings at low frequencies are still being carried out
nowadays. More recent techniques have included nearfield acoustic holography [25],
which can allow mapping of the individual intensities of the sound transmitted through

partitions, windows, doors, gaps, etc. but are restricted to particular configurations.

Some of the earliest work was also conducted to validate predictions. Petyt et al [26]
employed a pure sinusoidal excitation technique for the identification of the natural
frequencies of rooms. In this procedure, the room was excited at a single frequency of
interest and the pressure response (amplitude and phase) measured using an oscilloscope.
Nevertheless, this technique is extremely time consuming and not very efficient. Since
the advent of two channel FFT analyzers, the identification of modal parameters from

measured frequency response functions has been widely used.

Various investigators, over a number of years, have conducted measurements on the
sound transmission between two rooms separated by a common wall [27, 28]. Results
presented include discussion on the influence of the measurement facilities on the results
in terms of sound insulation. In 1972, Lang [29] showed and identified that the
differences between field values of airborne sound insulation and the results of
measurements made in laboratory were due to the energy transmission via flanking

walls.

Guy et al [30], studied the effect of panel size upon the laboratory measurements; and a
correction factor was presented in order to produce closer agreement between

experiments and the classical mass law theory [14]. Craik, [31] similarly assessed the
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influence of the rooms conditions and the test partition on the performance of the whole

system.

The interesting studies in ref. [32, 33] concluded that laboratory measurements of sound
insulation at low frequencies produce not only poor reproducibility but also poor
repeatability. The concepts of reproducibility and repeatability are significant in
assessing the closeness of agreement between individual and successive results
respectively [34]. The former is defined for results obtained under different conditions,
such as operators, apparatus, laboratories and intervals between measurements. On the
other hand, repeatability is defined for results obtained for the same conditions. Some
further work [35, 36] provided alternative solutions in order to improve laboratory
conditions. The use of absorbers positioned in the corners of rooms was suggested, in

order to improve the repeatability of measurements at low frequencies.

Recently, Maluski [37, 38] has shown that all the present methods of measurements are
not appropriate in the low frequency ranges where the sound field is strongly dependent
on its modal behaviour. For instance the standard method defined in the International
Standard ISO 140 — part 3 [41], which is probably the most widely used nowadays, was
initially defined for reverberant diffuse fields. As specified in ISO 140-3, a partition to
be tested is positioned between two reverberant rooms. Subsequently, a broadband noise
source generates an approximation to a diffuse field in the source room and the spatial-
average mean square sound pressure is measured in different positions inside both
rooms. It was observed that at low frequencies certain modal patterns inside the rooms
dominate over others. Nevertheless, in ref. [38], measurements of sound pressure levels
inside rooms at low frequencies were still performed on the basis of the method

described in ISO 140-3.

Alternative techniques have been proposed for determination of the Sound Reduction
Index [39, 40]. They are based on sound intensity measurements that require signals
proportional to the instantaneous sound pressure and the corresponding instantaneous
particle velocity vector. The measurements can be made by using an intensity probe
which is a transducer system that comprises a pair of phase-matched pressure

microphones separated by a small distance.

Basically, experimental validation of theoretical models for predicting sound

transmission through partitions involves preliminary tests in order to obtain the
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acoustical and structural properties of rooms and partitions respectively. In general, the
measurement and quantification of the source volume velocity used on the tests is
essential for the validation process. Likewise, the analysis and measurement of damping

of structural elements and rooms are also fundamental.

In this thesis, sound pressure measurements based on the conventional method [41] were
made in order to compare and validate an acoustic modal model, which is
comprehensively described and presented in chapter 2 of this thesis. (Magalhaes and
Ferguson [42] having published some initial work on the modal model prior to this date).
In addition, the measure of the reverberation time (RT) was based on ISO 354 [43] and
Schroeder’s method [44]. Thus, the measured RT values were used to calculate the
modal damping of the theoretical model [45], which might introduce errors because of
the assumptions not being truly applicable. Furthermore, confidence intervals and sample

mean values [46] were calculated for the sound pressure measurements.

Alternatively, Tohyama ez al [47] used the envelope of the signal for the determination
of its decay rate. In general, the damping of enclosed fluid volumes can usually be
represented either by the loss factor or the absorption coefficient [48]. The half-value
bandwidth technique [48] is one of the most popular methods of obtaining the damping
of a particular system. For instance, the damping of a plate can directly be obtained from
the measurement of its frequency response (e.g. using a laser vibrometer [49]).
Alternatively, the damping can also be obtained from the conventional estimate of the

Reverberation Time [50].

Moreover, the test facility characteristics and environment conditions can significantly
affect the measured variables. General guidelines for analysis of experimental data and
measurement procedures can be found in ref. [51]. For instance, by measuring the Sound
Reduction Index (SRI) of a plasterboard partition, Mulholland and Lyon [52] found that
the SRI obtained could be very low at low frequencies. This phenomenon was justified
by the strong fluid-structure coupling which was related to the dimensions of the rooms

and partition.

Warnock [53] investigated the influence of the position of a specimen in different
positions in the recessed aperture between two reverberant rooms. The test, made for a
plasterboard partition, indicated that the SRI was increased when the partition was

positioned on the receiver side of the aperture. This investigation concerning the effect of
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some laboratory design and mounting conditions on SRI was also related to a previous
work presented in ref. [54]. Nevertheless, at very low frequencies, the partition -depth
does not have any significant effect on sound transmission, as one might expect, as the

acoustic wavelength is large compared to the recessed depth.
1.1.5 - Parametric studies of the variation in sound transmission and insulation

Although many researchers have considered the influence of the geometrical and other
parameters on the sound transmission phenomenon between two coupled rooms at low
frequencies, there is a limited number of published papers showing a parametric study of
the variation of the sound insulation with subsystem properties [12, 22]. In a parametric
study, numerical techniques for solving coupled equations of motion can be performed to

a high degree of precision, which is subject to the limitations of the computer [55].

Osipov et al [12] evaluated some numerical examples in order to verify the influence of
the dimensions of rooms and partitions on noise transmission. In their work, three
distinct theoretical models (infinite plate theory and modal analysis for a baffled partition
and for a room-plate-room system) were compared and validated with experimental
results. The first set of results was obtained by varying the depth of the receiving room.
The number of modes in the receiving room was then increased considerably. The
second set was then obtained by varying the width of both rooms. Thus, the number of

modes in the source and receiving rooms and partition were all altered significantly.

According to the results presented for SRI, variations of up to 15 dB occurred in one
third octave bands. Alternatively, Noise Reduction was also predicted for different panel
positions in the wall separating two adjacent rooms. In the next chapter, some numerical

results for variability are presented and compared to those obtained in ref. [12].

In general, the sound transmission between two coupled rooms at low frequencies is
primarily governed by the individual modes of the rooms [52]. Kihlman et al [56]
studied the possibility of improving sound insulation at low frequencies (50-150 Hz) by
optimizing the design of rooms and their common partition (geometrical properties and
damping). The results, which were obtained by using Modal Analysis and the Finite
Element Method, indicated that the matching of room modes on both sides of the
partition had the most significant effect on the Sound Reduction Index. In this situation,
the SRI levels are sharply decreased due to the good coupling and matching resonance

frequencies of both source and receiving rooms as would be expected.

11
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Kropp and Pietrzyk [57] developed statistical predictors for analyzing the influence of
room dimensions on the airborne sound insulation between rooms. Considering two
coupled rooms with different lengths, the first predictor was based on the ratio of the
smaller length to the greater one. The second one, which was based on the modal
approach, was developed under the assumption that each mode of the source room can
only couple with its corresponding one in the receiving room. In other words, this model
was strictly limited and is only valid for similar cross section source and receiving rooms

and the results cannot be generalized.

Recently, Magalhaes and Ferguson [42] undertook an initial study on the effects of
spatial fluid-structural coupling and non-resonant contributions on sound insulation
between two rooms. Some of the preliminary analyses showed the influence of the room
dimensions, weight of a flexible partition and its position in the common rigid wall, etc.
The results of analyses were converted to one third octave band levels to make

comparisons with other data possible.

Whilst variability investigations for acoustic-structural transmission were limited, there
are some recent variability studies on structural coupling and the importance of both
source and receiver subsystems. For example, Park er al [58] developed an empirical
model for predicting the variability in the effective Coupling Loss Factors (CLF) for
rectangular plates [8]. This empirical model has been considered and shown for
comparison with the confidence interval levels found for a fluid-structure coupled system

comprising two rooms connected by a single partition.

Finally, the problem of fluid-structure interaction for a particular system can be
formulated in terms of energy and power balance and this is made in SEA [59, 60], e.g.
considering normal surface displacement for the structural partition and velocity
potential for the enclosed volumes of fluid, which represent the response of each sub-
system involved. For instance, Craik and Smith [21] used spatial functions on this type
of problem, although some limitations were identified at low frequencies where the
model became less accurate. Hence typically SEA is used at higher frequencies where

the confidence limits are reasonable.

The use of SEA for the analysis of airborne sound transmission at low frequencies is
usually subject to some limitations, such as the small number of modes within a

particular frequency band [61]. Although the choice of the transmission path to be
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considered in the analysis is crucial [62], in practice it is not always possible to identify
which transmission mechanisms are dominant and which can be ignored. For instance,
several different models may be required depending on the details of construction and
frequency range of interest [63]. It is known that the coupling between subsystems and
losses of energy are described by the dissipation and coupling loss factors respectively.
Nevertheless, in practice they are not known or only partly known. Thus, different
experimental techniques for the determination of loss and coupling loss factors were

proposed in refs [64, 65].

To summarize, although a vast amount of research concerning acoustic-structural
coupling has already been published, little information is available on the sensitivity and
variability of the response at low frequencies. For instance, the sensitivity of the
transmission efficiency parameter (and consequently the SEA Coupling Loss Factor at
higher frequencies) to the room dimensions, panel position, material properties, etc. has
not been fully explored in an in-depth study. Similarly, there are assumptions within the
modal formulations that should be investigated. For instance, a large amount of work has
been performed in the analysis of sound transmission phenomena considering only the
solution in terms of ‘rigid-walled’ acoustic modes for the acoustic volumes. Such an

assumption is an approximation when a flexible partition is introduced.

In summary, this thesis is aimed at the implementation of mathematical models that
incorporate additional features, which can also provide a more realistic representation of
the physical problem concerning sound transmission through lightweight partitions at

low frequencies.

1.2 — Problems highlighted and the CMS method

The review of noise control in buildings has highlighted that it is still a matter of concern
since adverse conditions have contributed to less than satisfactory sound insulation
between dwellings, e.g. the use of very low-frequency sources, such as those generated
by hi-fi sets, has become a common practice. Consequently, building designs involving
wall and ceiling constructions used in dwellings no longer provide sufficient attenuation
at very low frequencies compared to the satisfactory noise reduction produced at higher
frequencies. Likewise, there is a trend for designing smaller and more practical spaces

that might not be reverberant, as typically assumed in noise prediction models available
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to consulting/design engineers. Furthermore, lightweight structural elements are
increasingly used because of their reduced cost and ease of use compared to some

traditional materials such as masonry and concrete.

Hence there is a requirement to have models that incorporate smaller rooms or very
dissimilar rooms in addition to lighter partitions in a more accurate way, especially at
low frequencies and in cases where the assumptions normally made are no longer valid.
Also to assist designers, it is useful to attempt to quantify what variability one might

expect when comparing real rooms with existing formulations, such as the Mass Law.

The literature survey in the previous section has also revealed that the boundary
condition at the interface between two coupled rooms, which is due to the velocity of the
partition, has not yet been replicated in any of the existing formulations. Therefore, the
use of a numerical method [13], namely Component Mode Synthesis Method (CMS), for
fluid-structure interaction problems involving sound transmission between coupled
rooms has been developed in this thesis in order to quantify the significance of the
kinematic compatibility and show that this model is applicable to such problems and is
not limited to structural configurations. This new approach of the method in this thesis

has required an analytical formulation for the coupled fluid and structural components.

The CMS Method has previously been developed to solve large structural dynamics
problems, which consist of several components or substructures [13]. It involves the
selection of component modes and the solution for the overall system response in terms
of a synthesis involving the modes. Typical component modes consist of normal modes
with either free or fixed boundaries plus the constraint modes. The constraint modes are
additional functions which provide ‘extra’ degrees of freedom (displacement, velocity,
etc.) for the subsystem. The combination of the component modes is used to satisfy the
differential equations of motions for the individual subsystems, and the interface

conditions between the components.

For instance, Hou [66] presented a new approach for the method by concentrating on
undamped free vibration systems, simplifying the formulation and the computation
scheme. A simple error analysis technique was adopted to ensure the success of the
method. At the component interfaces kinematic compatibility and force equilibrium
conditions were also considered. Subsequently Benfield er al [67] showed that better

accuracy is obtained using a fixed-interface coordinates method. The generalized
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coordinates of the static constraint modes are substituted by the use of components

whose displacements are defined relative to the interface.

Recently, Craig [68] published a tutorial paper in which a review of the basic procedures
used on substructure analyses, or CMS method, was presented. In addition, the
performance of some of the methods available in the literature was verified by

comparing the CMS convergence properties.

Basically, the different approaches of the method presented differ in terms of the type of
component modes selected. Considering an acoustic-structural coupling model, an
additional acoustic ‘static’ mode, or constraint mode, is added to the set of normal modes
to improve the accuracy of approximations and ensure correct convergence. It will be
shown in this thesis that this constraint mode affects the sound pressure as a result of
enforcing particle velocity compatibility between the two acoustic spaces for
transmission between two rooms, for example. Furthermore, the components of complex

systems can be analyzed separately using the CMS method [69-77].

The main limitation of the method, in the same way that existing Modal Methods are
restricted, is due to the increasing number of assumed modes for complex problems or
higher frequencies which have to be analyzed. A possible advantage may be the
introduction of variability with the choice of the subsystem geometry, etc., and a

relatively quick calculation of the response of the perturbed system.

1.3 — Main objectives

This thesis is focused on the development and validation of mathematical models that
better represent the airborne sound transmission mechanism in view of the new
requirements for design and modelling approaches. The work undertaken in this research
was twofold in that variability investigations were required and there is a need to develop
improved models that can better predict airborne sound transmission through lightweight
partitions at low frequencies. Therefore, the aims of this thesis are to present variability
investigations and the development and use of improved analytical tools, via a modal
approach and the Component Mode Synthesis (CMS) method that can better predict the

required sound transmission parameters.

The main objectives covered by the project can then be summarized as follow.
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Firstly, a modal model has been developed and implemented. It provides the
numerical tool for an investigation into the sensitivity of some geometric factors,
panel position, material properties, etc., on the noise transmission between two
coupled volumes. The modal model is then validated using experimental tests.

Comparison with other methods, published results and simulations is also made.

Subsequently, a parametric study has been conducted into the sensitivity and
variability of the coupled response using the modal model. For instance, this has
been tackled by considering the influence of physical geometry and partition

location, room absorption, internal loss factor, etc., on both NR and SRI.

The next objective was to investigate the importance of kinematic compatibility
(at the common interface between two-coupled rooms) for prediction of airborne
sound transmission. The one-dimensional implementation of the CMS method
provided the basic framework for a relatively simple system that has an exact
analytical solution for validation. In particular, the CMS approach allows one to
analyze and quantify the effects of imposing the condition of velocity continuity
at an interface of an acoustic volume with a structure. Numerical results
presented include spatial pressure and velocity distributions at different
frequencies, spatial-averaged mean square pressures and velocities. In addition,
the Sound Reduction Index (SRI) and Noise Reduction (NR) parameters have

been calculated.

The CMS method was also extended for the three-dimensional problem and
implemented numerically. A comparison between the CMS and the Modal model
was made for the three-dimensional case. Some numerical examples were used to
compare both models and identify their benefits and shortcomings. As far as the
author is aware, based on a literature review of published papers, this is an

original approach and use of the CMS method for fluid-structure interaction.

Finally, using the transmission coefficients obtained from the predictions, an
important SEA (Statistical Energy Analysis) parameter, namely Coupling Loss
Factor (CLF) was evaluated. This could better incorporate the geometric features
and both resonant and non-resonant contributions in airborne transmission.
Further limited investigation has been included which has considered predicted

variability versus parameters such as the modal density and modal overlap. The

16



Chapter 1. Introduction

consequences of the findings for SEA, using the two approaches, have been noted

for future work.
1.4 — The contribution of thesis to knowledge

The main contributions of this thesis are therefore

e Implementation of a modal model. Subsequently, results for geometric and

partition design changes are presented. Comments are provided on the variability.

e Better models for the representation of the airborne sound transmission
mechanism through partitions at low frequencies have been developed. This will
consequently provide additional information in terms of sound insulation for
designing lightweight common walls. The main originality in the modelling is the

use of CMS for the fluid-structure interaction.

e Low frequency experimental investigation of sound transmission through a

lightweight partition is presented in order to validate the modal and CMS models

implemented.

1.5 — Thesis layout

The remaining chapters of this thesis are arranged as follows.

Chapter 2 emphasizes the derivation and implementation of a mathematical modal model
to predict the sound transmission efficiency and noise reduction of a system comprising
two arbitrary rooms coupled by a single-leaf partition. The fluid-structure interaction
analysis is shown to be dependent on the spatial coupling between the acoustic and
structural modes. The main assumptions and limitations of the model are also discussed.
Simulations show the effect of geometrical coupling coefficients on the Noise Reduction
(NR). Finally, a comparison between the Modal model and other published approaches
and results, such as the Mass Law Theory and Leppington’s prediction [16], is made for

Noise Reduction and Sound Reduction Index values.

Chapter 3 presents the experimental validation for the modal model derived in chapter 2.
First, the measurement of damping for the structural partition and absorption for the
rooms is made. Second, some preliminary experimental tests are made in a single room

to verify the accuracy and applicability of measuring and predicting sound pressure
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levels in a small volume. Next, the coupled two-room modal model is experimentally
validated using the ISVR teaching laboratory. Finally, the partition normal velocity is
experimentally determined (by using a Scanning Laser Doppler Vibrometer) and the

results are compared to theoretical predictions.

In Chapter 4 a variability investigation and the corresponding results are presented. The
results obtained take into account the influence of panel positions on NR; the simulations
are then compared to classical formulations. Next, a parametric study assessing the
influence of room dimensions on NR is performed. Furthermore, the influence of the
room absorption on NR is quantified by assuming uniform absorption distribution inside
the rooms. Finally, the Coupling Loss Factor (CLF) is evaluated using power balance
and assuming that a two subsystem SEA model represents the problem. Its variability
versus the room modal density and modal overlap is presented, in order to consider and

comment upon the consequences for subsequent SEA models.

In Chapter 5 the effects of the imposition of velocity continuity on the acoustic-structural
interface are considered using an original development of the Component Mode
Synthesis Method (CMS) for this problem. The formulation and equations of the
structural-acoustic problem in terms of ‘components’ is described. The model is then
validated by comparison of numerical results including the CMS model and a one
dimensional wave approach. Moreover, the CMS model is also compared with the modal
model. Finally, conclusions are drawn based on the analysis of the results and the

extension to three-dimensional acoustic systems discussed.

In Chapter 6 the CMS method is further extended and developed for predicting sound
transmission through a partition in the three-dimensional case. The effect of velocity
continuity on the spatial pressure and velocity distributions is discussed and presented
for three-dimensional models with an elastic partition. Some results show a comparison
between the 3D CMS and the modal model. Comparison with experimental results from

chapter 3 is given and discussed.

Finally, a concise account of the main findings, and the inferences drawn from the results
of each individual chapter are reported in Chapter 7. Next the main conclusions for the
complete project are summarized. For completeness, discussion and recommendations

for future work are presented.
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Chapter 2

STRUCTURAL-ACOUSTIC COUPLING ANALYSIS - AMODAL
MODEL

2.1 — Introduction

The aims of this chapter are to provide further background description and present and
implement a modal approach, the latter assisting in providing improved understanding of
the noise transmission phenomenon in buildings. For instance, better visualization of the
spatial distribution of acoustic pressure and particle velocity for a two coupled room
model is presented using the concept of modal expansion. The theoretical background for
understanding the sound transmission mechanism is presented in section 2.2. A
preliminary formulation is presented in terms of a set of coupled modal equations for
predicting sound transmission through a cavity-backed finite plate. Finally, a complete
acoustic-structural coupled modal model (room-plate-room) is developed and
implemented in section 2.3. This model, also represented by a set of integro-differential

modal equations, is therefore a straightforward extension of the previous formulation.

A complete modal model for predicting sound transmission between two coupled rooms
is presented here whilst retaining the conventional assumption of rigid-walled acoustic
modes. With a point noise source placed in either of the rooms, the aim is to predict the
Noise Reduction (NR) and the Sound Reduction Index (SRI) of the system due to
rescnant coupling involving modal behaviour, spatial fluid-structural coupling and non-

resonant contributions.

The derivation and numerical examples presented in this chapter show how transmission
efficiency is affected by room geometry. The transmission of sound between similar or
dissimilar rooms, e.g. for the latter consider rooms attached to corridors, can equally be
predicted using the Modal approach. In addition, the simulation is evaluated for two
different panel sizes. Firstly, a whole flexible panel is considered over the common wall.
Secondly, a small flexible panel is considered, so that all other parts of the common wall
are rigid. The narrowband results of analyses were converted to one-third octave band

spectra, to make comparisons with other data possible. Finally, a general discussion,
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based on the findings of the results obtained, is presented with some observations

concerning potential improvements that can be considered.

Two different analytical models are used throughout this chapter for comparison with the
developed and implemented modal model. The first one is the Mass Law theory [4] and

the second model is Leppington’s prediction [16]. These are described in some detail in

the next section.

In summary, the main goal of this chapter is to offer insight into the physics and the
important parameters in sound transmission between acoustic spaces separated by a

flexible partition. This has applications in the field of architectural acoustics.

2.2 — Theoretical background of the sound transmission mechanism

The mechanism of sound transmission may be considered in terms of the radiated sound
field from an elastic partition, itself excited by a sound field in a source room. The
partition, modelled by a thin plate, has a response to acoustic excitation, which consists
of both free and forced bending waves. Freely travelling bending waves are generated
when the plate is excited at its natural frequencies. As a result of the plate edges, these
waves interact with each other producing the plate mode of vibration. On the other hand,
forced waves occur due to pressure fluctuations which force the plate to move in such a
way that free-bending waves are not significantly generated. The spatial distribution of

the forcing produces a response that is similar in its spatial response.

In terms of radiation efficiency, which is a non-dimensional measure of the sound power
radiated by a vibrating surface into an adjacent fluid [78], the generation of free bending
waves is more important at frequencies above the critical frequency of the panel, where
the natural modes of the partition consist of wave motion with phase velocity greater
than the speed of sound travelling in air. In this condition, sound power is radiated
efficiently [5]. Below the critical frequency, the free waves are produced but are not

significant for sound transmission.

Forced waves at the acoustic wave number are predominant when a panel vibrates at
frequencies lower than its critical frequency. They are common when a panel is excited
acoustically [15]. In addition, when a sound wave is incident upon a partition, the

response, which is frequency dependent, is also dependent on the radiation impedance of
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the modes of the partition. Thus, the air or fluid on the receiver side of the plate is

excited, and sound waves propagate away from the plate into the receiving volume.

Below the first panel resonance, there is an increase in SRI with decreasing frequency. In
this frequency range, the panel moves with the pressure fluctuation to transmit sound and
has a very small frequency response. The vibration can be reduced by stiffening the

panel hence causing an increase in the SRL
2.2.1 — Sound transmission through an infinite partition

In general, the sound transmission theory for uniform and unbounded panels has widely
been used to approximate the sound transmission loss of a bounded panel in a baffle. Of
course, some assumptions, such as the random-incidence field over the partition, as well
as a limited frequency range (in which the acoustical wavelength is smaller than the plate
size), have been considered. For instance, the normal incidence Mass Law theory is
basically derived from an idealized model of normal incidence transmission through an
unbounded partition [2]. On the other hand, the diffuse field transmission coefficient can
be obtained by considering the whole range of incident angles with equal likelihood. In
room acoustics there is an important parameter, namely the ‘Schroeder’ frequency [59],
at which the frequency or modal overlap of the room modes is large enough for the
sound field to be considered diffuse. The ‘Schroeder’ frequency or ‘large room’

frequency f; is given by [59]

T 1/2
= 2000 ~5 2.1
f. ooo( o ] (2.1)

where T, is the reverberation time and V is the room volume.

Two measures of the effectiveness of a partition in reducing sound transmission are the
transmission efficiency and the Sound Reduction Index. A transmission efficiency

parameter T is defined as the ratio of transmitted to incident acoustic power and is given

by [18]

= wtrans (22)
w

inc

where Wi is the transmitted sound power and wi,, is the sound power incident on the

source side of the partition.
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A classical index, known as Transmission Loss (TL), in some countries, or Sound

Reduction Index (SRI) is defined as [5,78]

SRI(6)=10log,,(1/2(6)) (dB) 2.3(2))

where 2(6) is the transmission efficiency for a given angle of incidence 6 measured

from the normal to the plate. This is so defined such that a positive value of the Sound

Reduction Index corresponds to a reduction of the transmitted power compared to the

incident.

For a plane wave incident on an infinite panel for frequencies below the critical

frequency this can be derived as [5]

1

2 (2.3(6))
( wmcosé ]
+ e
2p,¢,

7(0)=

where @ is the angular frequency (in radians/s), m is the panel mass per unit area(kg/mz),

P, is the air density and ¢, is the sound speed in air. The derivation of equation (2.3 (b))

was based on the assumption that the influence of the partition stiffness on sound

transmission is negligible compared with its mass.

The mass law SRI expressions for normal (SRIL,), field (SRIg) and diffuse (SRIg)

incidence are given by [18]

SRI, = 20log;o (mf) 42 (dB) for the ‘normal incidence Mass Law’ (2.4)
SRI; = 20log;o (mf) — 47 (dB) for the ‘field incidence Mass Law’ (2.5)
SRI4 = SRI;, — 10log;4(0.23 SRI,) (dB) for the diffuse incidence ‘Mass Law’ (2.6)

where f'is frequency (Hz). They are valid if wmcos6 >>2p,c, .

Equation (2.4) is the result of considering an angle of incidence & (measured from the
normal to the plate) equal to zero. Similarly, Equations (2.5) and (2.6) can be obtained by
considering 6 varying from 0° to 78° and from 0° to 90° respectively. In equation (2.4),
the characteristic impedance of the air is assumed the same on both sides of the plate.

Moreover, it is assumed that the partition loss factor is null. The SRI, increases by
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approximately 6 dB for each doubling of the frequency or the plate mass per unit area.

Furthermore, equation (2.6) is only accurate if SRI, is greater than 15 dB and the

incident field is highly diffuse [82].
2.2.2 — Sound transmission through a finite partition in a baffle

A finite-size and baffled rectangular plate is a more realistic model than the infinite one
described previously. The transmission is characterized by boundary effects, which lead
to the formation of standing-wave modes and resonance. Leppington [16] proposed a

different formula for the transmission efficiency 7,,, averaged over all incidence angles
and over a frequency band. For frequencies below the critical frequency @, of a simply-

supported rectangular panel, it is given by

» > considering @ << @, (2.7)

ZLep = ’[res +17

where @, =c2(m/D)'*, m is the partition mass per unit area and D its bending stiffness

per unit width.

The resonant 7,,, and non-resonant contributions z, are expressed by [16] as

v =@k (uz — 1 a1 Y2z — a)sin (U, )+ (2 — 1) G - 2))

(2.8)

7, =4e2(1- 1)’ {ln(ka”zb”z)+ 0.16O~U(b/a)+§:,uo'6 w2 -1)

o

(12 +1F in(u? ~1)+ Qa2 +1)oe2 ~1F n? +1)-442 -84 1, )| 2.9)

where
1

U(x)z—i—l;(x+§)ln(l+xz)—(%+§~)ln(x)—lr—{7-§—2—2~i—fgcf~—r}—({—)dt, e, is the fluid

loading parameter which is defined as ¢, = o, /(mk), u, is given by u, =k, /k and 7 is
the mechanical damping factor (or internal loss factor) for the panel; p, is the density of

air, k is the acoustic wavenumber, £, is the wavenumber of free bending waves in the

partition; g, b are the plate dimensions.
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The resonant contribution 7, is due to the modes excited at or near resonance, which

produce a large partition deflection but are inefficient in terms of sound power radiation.
The non-resonant contribution 7,  corresponds to that from the small amplitude off-
resonant modes. However, for these non-resonant modes sound energy is radiated
efficiently and their wavenumbers are smaller than the acoustic wavenumber. According
to Leppington [16], there is good agreement between the transmission values obtained
via solely the non-resonant contribution 7, and experimental tests with no need for an
ad hoc correction. As mentioned previously, it is assumed that the plate is simply-
supported. It is also assumed that the transmission efficiencies, which are defined in
equations (2.8) and (2.9), represent an average over a large number of modes and over all

incidence angles.

For instance, Figure 2.1 shows the SRI values for a finite panel (2m x 2m) with average
surface mass per unit area equal to 78.5 kg/m2 calculated using the above formulae. It is
seen that the SRI for Leppington’s resonant contribution is higher than the other values,
as expected. The frequency range shown is below the critical frequency, which for this

model equals 1.2 kHz and hence the non-resonant contribution is the appropriate term.

2.3 — Coupling between a room and a finite plate

Consider the case of a rectangular partition (panel) modelled as a flexible plate on one
face (x = x,) of a rectangular acoustic volume, which has rigid walls on all of its other
surfaces. The equation of motion for a flexible thin plate vibrating at frequency wcan be

given in rectangular Cartesian coordinates (z,y) by
DV Wz, y,0)]-@'m(r,) w(z, y,)=0 (2.10)

where D is the bending stiffness, V4 is the square of the Laplace operator, and m(r;) is
the mass per unit area of the partition and w(z,y,w) is the normal displacement of the
plate surface into the fluid. In equation (2.10) and the following equations the term in

time &' has been suppressed.

The plate is assumed to be simply-supported mounted in the (y,z) plane of the Cartesian

coordinate system. The basis function, used in the expansion for the panel deflection,
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must ensure a vanishing normal displacement on the contour of the panel. It satisfies the

simply supported boundary conditions and is given by

¢,(z,y) =sin(k, z)sin(k,,y) (2.11)

Y ST
where k, =|—— |andk, = —|.

L,. is the length of the panel, L, is the width of the panel, and r, s represent the panel

Z

mode numbers and kZZJrkiy:kbz corresponds to the in vacuo plate eigenvalues or
. L D,
corresponding natural frequencies given by w=_,[—k%, .
m

Furthermore, the infinite set of in vacuo modes, defined by equation (2.11), represents a

set of orthogonal functicns, which satisfy the following orthogonality relationships

0if p#gq;
Apl:fPZQ‘
0if p#q;
2 . _

[¢7am@) g, dSz{
N

[DV?4,v7¢,ds ={ (2.12)

where A = f m(r,) (/jj dS is the modal generalized mass, w, is the in vacuo natural
N

frequencies of the partition, D is the bending stiffness of the partition, r; is the position
vector of a point in the y-z plane, V? is the two-dimensional Laplace operator and p, g

are the mode identifiers [5].

To determine the far-field radiated sound intensity, the sound field generated by a
harmonic vibrating surface has to be evaluated. The sound field generated by a baffled
harmonic vibrating surface S at position r in the fluid is given by a particular form of
Kirchhoff-Helmholtz integral equation, which is termed the Rayleigh Integral [2]. The
key function of this problem is to obtain the pressure difference across the panel or plate

involved in the sound transmission.

The total surface pressure internal to the enclosed volume is hence the summation of the
blocked pressure and the radiated pressure. This blocked pressure is defined as the

summation of the incident field and the reflected field produced as if the plate were rigid
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(infinite mechanical impedance). The radiated pressure is the field produced as a result of
the elasticity of the plate, and subsequent motion producing sound radiation [2]. The
equation of motion of an elastic partition in the absence of sound radiation, from

equation (2.10), can be written
DV*[w(z,y,0) -0’ m(r,) W2, y,0)= Py, (2,,0) (2.13)
where py, is the blocked pressure due to the incident and reflected sound fields.

The partition response w can be expressed by series expansion in the free vibration mode

shapes as

w(2,y,0) =Y w,8, (2.14)

p=1

where P is the total number of structural modes considered. Equation (2.14) is an

expression for the partition displacement in terms of a summation of its assumed-modes.
In addition, the total blocked pressure on the partition is given by

Do =2p,(y,2,00) (2.15)

where p; (3, z, w) is the incident field amplitude of pressure.
In equation (2.13) the time term & has been suppressed.

Let p(x,y,z) be regarded as small amplitude perturbation (acoustic pressure variation)

from its equilibrium value. The wave equation, which results from the linear acoustic

equations, is given by [2]

2 1 azp_
Mran
9[—2 =0on therigid walls of theroom (2.16)
1
2
%— =-p0, -@—?} on theflexiblepartition
1

where w = the displacement of the flexible partition in the normal direction directed

outwards from the fluid volume, ¢, is the sound speed in the air and g, is the air

density.

26



Chapter 2. Structural-Acoustic Coupling Analysis — a modal model

The steady state solution is obtained through the Fourier Transform of the time domain

wave equation, yielding the Helmholtz Equation [5]

VP +k*p=0 (2.17)
where p is the steady-state sound pressure amplitude and % is the acoustic wavenumber.
If pis expressed as an expansion of eigenmodes for the room, corresponding to the

natural frequencies of a rigid boundary space, a solution to the Helmholtz Equation may

be written as

p=»B2, (2.18)

where &, is the acoustic mode shape n of a rigid-walled room and B, the corresponding

complex pressure amplitude.

The substitution of equation (2.18) into equation (2.17) yields
ViQ, +k1Q, =0 (2.19)

Likewise, a Green’s function G can be obtained satisfying the same conditions for a

point source located in the fluid

90Clr) res
on '
VG(r|r,) + K*G(r|r,) ==6(r=r,) (2.20)

G(r|r,) =Y AR,

where S; is the surface area of the rigid walls, 8(r —r,) is the three-dimensional Dirac
delta function representation of a unit volume velocity source, G(r|r,) is the solution
(Green’s function) of equation (2.20) and Q = acoustic pressure mode shape of the

room. A, is simply an amplitude term in the series expansion of G(r|r,).

The spatial form for the three-dimensional eigenfunctions €, corresponding to the

natural frequency w, of the rigid-walled rectangular space of dimensions Ly, Ly and L,

may be written as
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_ n.i.
Q, =cos nx cos LY cos| ZZ82 (2.21)
L, L, L,

This set of orthogonal modes satisfies the following relationship

0if m#n;
j QQ dv=4 "
) A, ifm=n. (2.22)

A, =[Q(x.y.2) AV
Vv

Since Q, is an eigenfunction of the room, it has a corresponding eigenvalue &, which

must satisfy

n.Jr Y (nm : n,7m :
k2=] == | 4| 2| +| =
"L L L
* y ¢/ andhence w, =k,c, (2.23)

VQ, +k2Q, =0

Therefore, using the previous relationships, equation (2.20) can be written as

YA (K +0)Q, ==8(r—r,) (2.24)

Multiplying each side of equation (2.24) by Q, (x,y,z) and integrating over the volume

of the room one has, by orthogonality, the expression

Q (x()’yoaz())
= 2500 Yoo %0/ (2.25)
& A (k2 ~k*)

Often the sound pressure response in a room for known sound sources is of interest.
Thus, adding a right-hand side term, which corresponds to the rate of change of mass

flux per unit volume, to equation (2.16), the wave equation in terms of sound pressure

then becomes [5]

2
Vip +%p=—pojw(qb+qs) (2.26)
and q, =-2(jow)s(x-x,) (2.27)
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where &(x — x, ) represents a one-dimensional Dirac delta function, g, is the vibration of

the panel surface in terms of a distribution of source volume velocity per unit volume

and g, represents the distribution of ‘external’ sources, e.g. one or more monopole

sources inside the room.

The sound pressure p(x,y,z), which can be expressed as a summation of the orthogonal

modes Q, ,is given by

Py, 2=, p, Q,(xy,2) (2.28)

n=l1

where p, is the complex pressure amplitude of mode # at frequency @ .

Alternatively, the incident field amplitude of pressure p,(y,z,w), (cited in equation

(2.15)), can then be defined in terms of the acoustic pressure modes as

n=1

1{& i
p.(3.2,0) =5(E . Qn(y,z))e Than%o (2.29)

where x, is the coordinate of the partition position in the ‘x’ direction of the acoustic

field and k,, :\/kn2 ——(nyﬂ/Ly)2 _("1277/Lz)2 . As in equation (2.15), the time
dependency ¢ has been omitted in equation (2.29) for clarity assuming everything is at

the same harmonic frequency.

By substituting equation (2.19) and (2.28) into equation (2.26), one obtains

N N
N k2 p, @,y -— Y i, Q,@y.0)=2p,C 0 wPx-x,)-p,(j0q,)
n=1 o n=l

(2.30)

Multiplying by Q, and integrating over the fluid volume, applying the orthogonality

condition (see equation (2.22)), a set of coupled differential equations for the modal

pressure is then obtained and given by

— 2 . 2
~w*p, +w}p, :[—%C—O) [Co*we, (x,y,2) HS +(£UA£"-C—"-}QH 2.31)

n N n
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where n = 1,2, .N. The ‘loading’ applied to the acoustic volume is represented by the

generalized volume velocity source strength in the fluid as

0, =[a,(x,,7,.2,)2,(5,5.2)8,(x= x,)8,(y - y,)8,(z ~ 2,)dV 2.32)

and Q,=¢,Q, (x,,y,,z,) for apoint source.

where ¢, is the one-dimensional Dirac delta function (with dimension m'l), the
coordinate (x,Yo,2,) is the source position for a point source in the volume, the subscript

n refer to the acoustic volume mode number, p, is the complex modal pressure
amplitude, ¢, is sound speed in air and § is the surface area of the partition and A, is

defined in equations (2.22). Equation (2.32) can be easily extended in the case of a

distributed source in the volume.

Substituting equation (2.14) into equation (2.31), one obtains

¢S . c?
-0'p, +w’p, = ( [j{” 2( w’w, Cnp)+] B/’;—O 0, (2.33)
p=l n

n

where the spatial structural-acoustic coupling coefficient C,, is defined by

1
= 2.34
C, SJ;Q‘ ¢,ds (2.34)

In summary, on the right-hand side of equation (2.33) the first and second terms

correspond to the sources due to the motion of the flexible panel and to discrete

monopole sources in the fluid respectively.

Substituting equations (2.14) and (2.15) into equation (2.13), multiplying by ¢, and

integrating over the partition surface at x =x, yields

DVAJ.(ZW 2,9, ]dS w’m (ZW 3,9, ]d fp(xp,z y,w)¢,dS (2.35)

g=1

Substituting equation (2.29) into equation (2.35) and using the orthogonality

relationships (2.12), one obtains

S N
—a)zwp +a)§wp :—Epn C, (2.36)

P n=1
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where the subscripts n and p refer to the acoustic volume and panel mode numbers
respectively, N indicate the total number of acoustic modes adopted in the analysis, p, is
the modal pressure amplitude, A, is the modal generalized mass defined in equation

(2.12) and C,, is geometric coupling coefficient defined in equation (2.34). Equations

(2.33) and (2.36) are coupled modal equations.

A review of velocity potential concepts may also be important if one uses an alternative
formulation in terms of velocity potential. The main advantage of using this formulation
in terms of velocity potential is that the equations become symmetric. For an inviscid-
flow (viscous effects are neglected), low-speed flows are irrotational [20,79]. This means

that if VV=0 then V =V®, i.e. the velocity components can all be expressed in terms

of a scalar function @ . Therefore,

— 0P - _aip_’ and u = o0 (237)

U, =—, u -,
Toox 7 9y ©ooz

where V is fluid velocity, uy, u,, 1, are the fluid velocity components and @ is the scalar

function termed velocity potential.

Therefore, the velocity potential function allows one to obtain all other acoustic

parameters through the relationship for the pressure
p=—p,jod (2.38)

Equations (2.33) and (2.36) can therefore be rewritten in terms of the modal acoustic

velocity potential amplitude &, and with additional viscous damping terms as [5]

¢S \& c?
‘6()2@’1 + jwﬁm@ n1+ wj@ﬂ :[ /{ jZ (jC()Wanp )——[AO an (239)
n p=l n
. —P,S <&/,
~ 0w, + jo B, +0iw, = —X)—Z(qu’ncnp) (2.40)

P n=l1

where ,5,11 and [, are the generalized modal damping coefficients for the room

(subsystem 1) and partition (subsystem 2) respectively; @ is the excitation frequency in

radian/s.
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Thus, on the left-hand side of equation (2.39) an additional term jwf, @, , in terms of

the velocity potential, is inserted in order to include viscous damping in subsystem 1.

Likewise, the term jwf ,W,1s added on the left-hand side of equation (2.40) in order to

represent the damping of the structural partition. Thus, the problem considering fluid
loading can be solved. Alternatively, the response of fluid in a single room with rigid-
walls to harmonic excitation by a point monopole source can be obtained using equation

(2.39) with the first term on the right-hand side, which contains the variable w,, set to

zero. Other types of damping models and terms can be used instead of viscous damping,

which is given in the preceding equations.

2.4 — Derivation of a modal-interaction model for a system comprising

two rooms coupled by a common partition

In the present analysis, the room-panel-room system is selected as the fundamental
model, which may represent a typical real situation in a building. The physical
mechanisms involved in the control of sound transmission in buildings can hence be

evaluated.

The analytical modal model developed and implemented here is an extension of the set
of integro-differential equations presented in section 2.3 to a system comprising two
coupled rooms and a simply supported partition. Thus, the problem involving sound

transmission between two connected rooms can be tackled.

As imentioned before, the acoustic and the structural response fields are expressed in
terms of their uncoupled normal modes by means of differential equations for each
mode. Therefore, the structural motion has been expressed as a summation over the
response of the in vacuo natural modes driven by fluid loading. The acoustic field of the
rigid-walled rectangular rooms has been determined by the summation of the acoustic
modes over the fluid volume. In fact, these acoustic modes in the source room were
excited by a generalized volume velocity source. According to Fahy [5], the correct
convergence of the modal pressure on the partition surface is obtained due to the Gibb’s
phenomenon, which is an overshoot that occurs whenever basis functions (for instance
acoustic mode shapes) are used to represent spatial distributions [78] containing

discontinuity of slope.
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Interaction analysis is considered and described when a system comprising two fluid
volumes connected by a thin plate is excited by a point monopole source placed in one of
the volumes. Therefore, the results presented were not averaged for different source

positions. Solid surfaces, which bound volumes of air V; and V; are considered.

Equations (2.39) and (2.40) were extended in order to represent the two volume case.
Therefore, on the right-hand side of equation (2.40) another coupling term is added in
order to represent the influence of room 2. Moreover, an extra set of equations of motion

representing room 2 is added to the system of equations (2.39) and (2.40).

Therefore, the response of a coupled system (comprising two rooms connected by a
common partition) to a forcing harmonic function may be represented in terms of the

uncoupled modes of both rooms and the uncoupled panel modes as

2 2 CZS 2 C2
~0’®, +joB, @+ o &, =| 22 |¥ (jow,C,, - <= |0, 2.41)
1 1 1 1 1 Anl pzl 1 /\nl 1
2 2 £,S R 2,5 |R&
~ @+ jo fw, + @hw, =] L= S (joo,C,, )+ S S(jwo,C,,) @42)
p Jm=l p Jm=l
20\ P
~0*®, +jof, @, + 0} D, = €05 Y (jow,C,,) (2.43)
n, |p=l1

where the indices nj, nz, and p refer to source room, receiver room and panel mode
numbers respectively and f is the generalized modal damping coefficient introduced for
the acoustic volumes and structural modes. The other variables were already defined in

the previous section and/or list of symbols.

In general, it is necessary to consider dissipation in the system. For the structural system,
it is common to introduce a complex Young’s modulus of elasticity, using a loss factor
from1 measured or assumed values. For fluid volumes, an average absorption coefficient
is usually considered in terms of the corresponding modal loss factor. Thus, in equations
(2.41), (2.42) and (2.43), the effect of the absorbing material is approximated by the

equivalent damping factors f,.

Neglecting the cross-modal coupling terms introduced by the absorption on the boundary

of the volume, and assuming that a single room mode is dominant, the approximation for
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the generalized modal damping for the source room ﬂn,’ receiving room A, and

partition /i, may then be given by [5]

,ﬁnl =a,1, (2.44)
ﬁnz =, 1, (245)
B,=w,n, (2.46)

where 77, and 7, are the corresponding modal loss factors for the source and receiving

rooms. 77, is the modal loss factor for the panel.

The total loss factor 77 can be expressed in terms of the reverberation time T, by [8]

In(10%)
= (2.47)
= o,

where fis frequency in Hz and T, is the reverberation time, which is the time taken for

the system energy to decay by 60 dB.

The numerical evaluation of the eigenvalues and eigenfunctions for the coupled system
was obtained using a dynamic matrix formulation for the problem (see Appendix A).
Numerical analysis was applied to the free vibration problem of the coupled room-panel-
room system in order to determine the eigenvalues and eigenvectors for the coupled
system. Subsequently, for the forced vibration problem a solution in terms of the
uncoupled modal contributions was then performed. The results, namely the acoustic
pressure and panel displacement, can be used to evaluate two measures of the noise
insulation that could be provided. Those quantities are the Sound Reduction Index and

Noise Reduction respectively.

The Sound Reduction Index (SRI) can be expressed in terms of the ratio of the incident

to the transmitted intensity [78], i.e.

SRI = 1010g10[%;—] (2.48)

where (li> and <1,> are the time-averaged incident and transmitted sound intensity

respectively.
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Considering the assumption of diffuse field condition, the SRI can be expressed in terms

of the Noise Reduction (NR) by [86]

c S
SRI = NR + IOlogm[ (2.49)

oM p
87V,
where §, is the partition surface area in m?, v, (m*) and n are the receiving room

volume and total loss factor respectively and fis frequency in Hz.

The spatially averaged sound pressure level difference, namely Noise Reduction (NR), is

given by [18]

N

lp,z, IzAnl A4
1

NR =10log,,| = (2.50)

N, 12

L}:!p’“l AnZIVZJ

ny=1

where A, /V, and A, /V, are included due to the definition of the modal pressure

amplitudes p, and p, .

NR is dependent upon the absorption in the room, whilst it is assumed that SRI is
independent of the rcom absorption and is a property of the sound transmission through

the panel.

The theoretical routines were developed according to the flowchart below:

Geometry and materials properties
Vi
Room-panel-room modal analysis
\/
Evaluate uncoupled eigenvalues
2
Evaluate geometrical coupling
v/
v Vi
Evaluate coupled eigenvalues Evaluate forced excitation
V] i
Tabulate results Evaluate SRI and NR

The transmission parameters obtained from the modal room-panel-room model, finite-

panel predictions [15,16] and a classical approach can then be compared graphically as a
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function of frequency. The values for the coupled natural frequencies can also be
considered when examining the response of the forced system, in order to identify which

subsystems either structural of acoustic are the most important contributor.

2.5 — Results

2.5.1 — General description of models

The models adopted comprised three subsystems: a source room, a common wall and a
receiving room (Figures 2.2 and 2.3). In ‘model 1’ both rooms have the same width and
height whereas in ‘model 2’ the receiving room is wider than the source room. For the
model 3 the partition height and width are 2m and 1.8m respectively. Thus, the rooms of
model 3 are slightly different from those of model 1. The source room was defined as an
acoustic volume excited by a broadband acoustic point source placed at a corner position.
Although the source position does not alter the spatial coupling coefficients between
structural and acoustic modes, it has significant influence on exciting the source room
modes. Thus, with the source located at one of the source room corners, all modes within

a specific frequency range were excited.

The results obtained from the numerical examples provide information about the
sensitivity of the modal model to parameters, such as geometrical coupling coefficients
and number of modes considered within a particular frequency band. In addition, they
also show the spatial distribution of pressure and particle velocity in the acoustic
volumes. Finally, some results for the modal model are compared to those obtained by
different formulations. The geometric dimensions used for the models are shown in

Figures 2.2a, 2.2b and 2.3.

The system properties are described as follows. For a partition made of plasterboard

material, a value of v = 0.24 and E = 2.12x10° N/m?* were assumed for the Poisson’s ratio
and Young’s modulus respectively. Also a density value of ps = 806 kg/m3 and a
thickness of 0.01 m [21] were assumed for the material. On the other hand, for a partition

made of steel, a value of v =0.24 and E = 210x10° N/m? were assumed for the Poisson’s
ratio and Young’s modulus respectively. Also a density value of ps = 7850 kg/rn3 and a

thickness of 0.01 m [21] were assumed.

The assumption of only pure bending waves propagating in the panel remains valid as

the panel thickness is much smaller than the wavelength at the highest frequency
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considered herein. When varying the other parameters, the receiving and source room
surfaces were considered as being covered by a soft material with a constant modal

frequency-average absorption coefficient.

The loss factor for the rooms was chosen as a constant value 7 =0.01 over the whole
frequency range. The corresponding T that results using this constant loss factor is

plotted in Figure 2.4.

In ref. [86] typical values for the absorption properties of a room are presented. If one
used these absorption values the corresponding loss factor values 7 would vary from
0.001 to about 0.1 for some commonly used materials in buildings. An important
approximation to note here is that the mode functions used have been chosen as the mode
shapes of a volume bounded by rigid walls and that absorption has been introduced via a
modal description, rather that involving a complex wall impedance in the model. The
latter is much more complex and is unnecessary in the present case of rooms with low

absorption; both models would produce similar results.

Moreover, the acoustic source strength applied to the source room was a volume velocity
equal to 3x10° m’/s. The source was placed at the comer of the room for all of the
simulations presented. The Noise Reduction (NR) parameters obtained from the modal
and classical approaches [14,16] were compared graphically as a function of frequency.
It was verified in ref. [16] that Leppington’s prediction approaches the values obtained

from the infinite plate theory when the non-resonant transmission is modelled.

The results are organized as follows. In section 2.5.2, normalized spatial coupling
coefficients illustrate the contributions of modes for a frequency range 0-300 Hz. In
addition, the spatial averaged mean square pressure and particle velocity distribution are

shown for the source and receiving room.

In section 2.5.3, the calculated values of the acoustic and structural natural frequencies
are presented. They are also compared with the coupled natural frequencies of the
system. Some results show the influence of the number of selected modes on the

frequency response of the model within the frequency range considered.

Finally, in section 2.5.4, the modal model results for NR are compared with results using
Leppington’s expressions [16,17] and also with the diffuse and field incidence mass law
theories [14]. The modal model is also compared with Osipov’s predictions [12] in terms

of NR.
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2.5.2 —=The coupling coefficients of the system

Tables 2.1-2.5 list the natural frequencies of the rooms and panels considered. These
show the occurrence of degenerate modes [78], which are modes that have identical
eigenvalues but different eigenfunctions. The effects of the degenerate modes are

discussed in the next subsection.

The geometrical coupling values were obtained according to equation (2.34). For a
flexible panel in the common wall, equation (2.34) shows that C,, is dependent upon
panel position and size. The coefficients were normalized by their maximum absolute
value in order to compare both models 1 and 2 (Figures 2.1 and 2.2). For a ‘whole wall’
partition, the peak value for the coupling between uniform pressure acoustic mode

(namely the bulk mode) and the fundamental mode of the panel is 4/n*.

Figures 2.5-2.8 show the contribution of particular modes to the normalized coupling
coefficients for the source and receiving rooms. For instance, Figures 2.5 and 2.6 show
the contribution of the bulk, axial, tangential and oblique modes to the coupling

coefficients C, ,, which were normalized by the same factor. It is seen that the tangential

modes (44 modes) followed by the oblique modes (31 modes) contribute most to the

panel-source room coupling. Likewise, Figures 2.7 and 2.8 show the individual

contribution of different types of modes to the coupling coefficients C, ,.It is also

evident that the most important contributors were the tangential (28 modes) and the

oblique modes (19 modes).

According to the results shown in Figures 2.9-2.12, the coupling relationship between the
uncoupled structural and acoustic mode shape functions exhibited the largest
contributions for the lower order modes. Figures 2.9 and 2.11 show the coupling
coefficients, considering the whole wall flexible, for models 1 and 2 respectively. The
coupling coefficients for the source room are similar in both models. On the other hand,
they differed significantly for the receiving room. This is mainly due to the larger
dimensions of the receiving room for model 2, which led to the increase in the number of

coupling acoustic modes.

Figures 2.10 and 2.12 show weak coupling conditions for the configuration when the
flexible partition is located in the middle of the common rigid wall. Likewise, the

coupling coefficients for the source room are identical in both models (Figures 2.9-a and
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2.12-a). However, Figures 2.10-b and 2.12-b show that they provide different values for

the panel-receiver room coupling for both models.

Some simplifications, considering ‘poor’ spatial coupling of higher order modes, have
been suggested by some authors [22]. Despite the fact that there were many ‘weak
coupling coefficients’, their summation may be significant to the total coupling and
response. Therefore, all modes below 300 Hz including non-resonant contributors were

considered in the simulations.

Tables 2.6, 2.7 and 2.8 show the coupled resonance frequencies for the models. By
comparing the Tables, it is seen that the modes with frequency at 9 Hz correspond to the
uncoupled structural modes (2,1) and (1,2) and these did not couple well to the bulk
mode (no net volume associated with these modes) and remained unaltered. On the other
hand, the (1,1) structural mode coupled well with the bulk mode and had a coupled
frequency that was increased and this then is at 11 Hz due to the stiffening effect. Tables
2.9, 2.10 and 2.11 show the calculated natural frequencies of the uncoupled subsystems

and their geometric mode-shape coupling coefficients normalized to their maximum

value.

Figures 2.13-2.18 show the dynamic behaviour of the structural-acoustic coupled
systems shown in Figures 2.2a, 2.2b and 2.3 in order to illustrate the influence of the
geometric mode shape coupling coefficients and structure mass upon the degree of
coupling between the elements. Firstly, Figures 2.13 and 2.14 show the predicted

responses of the structural-acoustic coupled system presented in Figure 2.2a for

2

partitions with mass per unit area equal to 8.1 kg/m* and 78.5 kg/m” respectively.

Secondly, Figures 2.15 and 2.16 present the frequency response results for model 2

(Figure 2.2b). Finally, Figures 2.17 and 2.18 show the results for model 3 (see Figure
2.3).

Figures 2.13-a and 2.13-b show the frequency responses in terms of sound pressure level
for the source and receiving rooms respectively. Figure 2.13-c shows the predicted
response of the structural partition in terms of its mean square normal velocity. The
results are presented for model 1 which considers the partition dimensions equal to (Zm x
2m). The source and receiving room dimensions are equal to (Sm x 2m x 2m) and (3m x

2m x 2m) respectively.

For this first model (see Figure 2.2a) the first two peaks (between 10 Hz and 20 Hz)

shown in Figures 2.13a and 2.13b are due to the strong coupling with the structural
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modes (1,1), (1,3) and (3,1). For instance, the coupled frequencies shown in Table 2.6 at
10.98 Hz, the coupled version of the (1,1) mode, and 19.04 Hz, the coupled version of
the (1,3) and (3,1) mode for the square plate, corresponding to peaks in the respoﬁse in

Figures 2.13a-c.

In Figure 2.14-a, a partition with mass per unit area equal to 78.5 kg/m2 was used in the
predictions. The sharp peak at about 12.5 Hz shows the strong structural coupling effect
near the structural natural frequency equal to 12 Hz (see Figure 2.14-c). In fact, it
corresponds to the coupled frequency 12.53 Hz shown in Table 2.5. The second peak at
about 34 Hz corresponds to the uncoupled acoustic mode (1,0,0) shown in Table 2.1.
Figure 2.14-b clearly shows a pronounced peak in the receiver room at about 12 Hz,

which is also related to the coupling effect with the first structural natural frequency (see

Table 2.3).

Figure 2.15 presents the predicted responses for model 2 considering a partition with
mass per unit area equal to 8.1 kg/mz. The first peak at about 9 Hz is due to the strong
coupling with the structural mode (1,1) which corresponds to the uncoupled resonance
frequency equal to 3.79 Hz. In other words, the coupled version of the (1,1) type
structural mode corresponds to the peak at about 9 Hz shown in Figures 2.15a-c. By
comparing Figures 2.15-c and 2.13-c, it is shown that the degree of coupling between the
structural and acoustic modes for model 1 (see Figure 2.13-c) is greater than that for
model 2 (Figure 2.15-c) as expected compared to a model composed of two similar
rooms. It can be seen that the coupled frequency at 10.98 Hz shown in Figure 2.13 is
more shifted from the in vacuo natural frequency, which corresponds to the structural

mode (1,1), than the one shown in Figure 2.15, which corresponds to the first peak in the

response.

In Figure 2.13-c, the acoustic coupling effect on the structural modes is evident. For
instance, the coupled mode at about 18 Hz in Figure 2.13-c is made up of significant
contribution of the (1,3) and (3,1) uncoupled structural modes. Similarly, the second and
third peaks shown in Figure 2.15a (at about 18.5 Hz and 24 Hz) correspond to the
coupled frequencies 18.51 Hz and 24.08 Hz shown in Table 2.4.

Likewise, Figure 2.16 shows the predicted responses for model 2 considering a
heavyweight partition with mass per unit area equal to 78.5 kg/m?. In Figure 2.16a it is

seen that the first peak at about 12.3 Hz corresponds to the coupled frequency 12.28 Hz
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shown in Table 2.5. Comparing Figures 2.15 and 2.16, it is seen the degree to which the

coupling effect reduces as the partition mass increases (i.e. similar to the Mass Law).

Figures 2.17 and 2.18 present the predicted responses of model 3 for both light and
heavyweight partitions respectively. This model considers a non-square partition with
dimensions equal to (2m x 1.8m). By comparing Figures 2.13 and 2.17 it is seen that
‘additional’ peaks occur in the response of model 3. For instance, a peak at about 24Hz
corresponds to the coupled frequency of 24.2 Hz shown in Table 2.6, as the (3,1) and
(1,3) modes have different resonance frequencies in the non-square case. However, apart
from this, the sound transmission is not significantly different from that for model 1.
Figure 2.18 shows the predicted responses considering a heavyweight partition. It is seen
that the first peak corresponds to the coupled frequency 13.9 Hz (Table 2.7), which

corresponds to the coupled version of the structural mode (1,1) (see Table 2.5).
2.5.3 =The structural and acoustic modes of the system

It is observed that the location of the resonance peaks for the harmonic forced response
coincide with the eigenvalues obtained from the coupled analysis. For room dimensions
of 5x2x2 m3, 3x2x2 m’ and 3x2x5 m3, 90, 59 and 130 uncoupled room modes were
respectively obtained for a frequency range up to 300 Hz. For panel dimensions of 2x2

m? and 1x1 m?, a total of 112 and 24 modes were considered respectively for the same

frequency range.

It is known that the total damping of a lightly damped system (e.g. highly reverberant
rooms and partitions with low internal loss factor) has little effect on shifting the
eigenfrequencies of an undamped one. However, the results show that spatial coupling
between the panel and the volumes played a significant role. This can be confirmed in
Table 2.6, which shows the natural frequency values obtained for the first modes of the
coupled system. Thus, a coupled mode of the entire room-panel-room system consists of
relative amounts of energy corresponding to the rooms’ acoustic fields and some energy
associated with the panel vibration. Hence, two types of coupled modes, namely mainly
panel-controlled and/or room-controlled modes, can exist. For instance, by comparing
Tables 2.1, 2.2 and 2.6, it is seen that most of the modes shown in Table 2.6 should be
panel-controlled modes as the first acoustic mode is at 34 Hz. Therefore, they have most

of their energy stored as vibrational energy in the panel.

The sound power transmission from a source room into a receiving room is mainly

affected by the closeness of the separate uncoupled natural frequencies of the rooms and
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panel and the degree of spatial matching between the acoustic pressure modes and
structural displacement modes. For instance, the fundamental natural frequency of a
panel with dimensions equal to 1m x 1m was lower than the lowest natural frequehcy of
the source room (34 Hz). Hence, the corresponding acoustic mode contributes an
equivalent mass effect on the panel mode (1,1). Nevertheless, the acoustic bulk mode
(0,0,0) always contributes equivalent stiffness. For example, Table 2.8 shows the
coupled frequency 15.52 Hz for model 1 with a Im x 1m partition. It is seen that it is

higher than the in vacuo natural frequency. This is due to the stiffness contribution from

the room bulk mode.

The fundamental coupled natural frequency of models 1 and 2 was about 15 Hz. It is

evident from Table 2.6 that it corresponds to a panel-controlled mode as the fundamental

uncoupled panel natural frequency was 15.15 Hz.

Figures 2.19 and 2.20 show the mean square sound pressure and particle velocity
distribution (in the x direction normal to the panel) with respect to the horizontal plane y
= Im at 120 Hz. Figure 2.19-a and 2.20-a show the surface plot for the pressure and
particle velocity respectively. It is observed that there is pressure discontinuity at the
interface coordinate x = 0 (where there is a flexible partition in the whole common wall)
as expected. On the other hand, the particle velocity just goes to zero at the interface. The
results are also not constant across the cross-section or symmetric, due to the source
location being positioned in one corner of the room (-5,0,0) and the frequency being
above the first acoustic mode with a half-wavelength across the section (85 Hz). Figures

2.19-b and 2.20-b show the corresponding contour levels.

The numerical accuracy of the modal model in terms of the number of selected modes
used in the calculation was verified in Figures 2.21, 2.22 and 2.23. Spatially averaged
mean square pressures were obtained directly from the integration of the square of the
pressure given in terms of the orthogonal room modes (see equations 2.12 and 2.28).
Figure 2.21 shows the spatial averaged mean square pressure levels predicted from the
modal model considering 265 and 90 modes for the source room respectively, which
correspond to results obtained when all modes are considered within the frequency range

0-400 Hz and 0-300 Hz respectively. It is seen that the results are almost identical.

Likewise, Figure 2.22 shows the spatial averaged sound pressure levels for the receiving

room. Although Figure 2.22-a shows slight differences of about 1-2 dB within the
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frequency range 250-300 Hz, (considering 59 and 166 modes for the receiving room)

those differences are much less significant in one-third octave bands (Figure 2.22-b).

The Noise Reduction shown in Figure 2.23 presents similar values when a total of 261
modes are considered against 606 modes. The results being presented in both narrow and
one-third octave bands. It is seen in Figure 2.23-b that an insignificant difference
between the models occurs within the frequency range considered. It can be seen that

negative values for NR occurred below the first room mode, which is 34 Hz.

2.5.4 — Comparison of NR obtained via the modal model developed and other established

models available in the literature

In this subsection, a comparison is made between the values of Noise Reduction obtained
from the modal model and the classical analytical methods. The latter namely the field
and diffuse incidence mass laws [14] and Leppington’s prediction [16]. Particularly in
this subsection, an upper frequency of 450 Hz was considered for the calculation of the

NR values.

Leppington’s prediction may be considered an improvement on previous theories. In his
formulation the transmission problem is described in terms of two distinct mechanisms,
namely resonant and non-resonant. Therefore, below coincidence, the transmission
efficiency is given by the resonant contribution averaged over a frequency band and the

non-resonant contribution.

It is seen that strongly excited structural modes result in generating low values for the
NR, which are determined by the structural-acoustic modal coupling coefficients as well

as the damping factors.

Figures 2.24, 2.25 and 2.26 show the NR values for models 1, 2 and 3 respectively.
Partitions with mass per unit area equal to 8.1 kg/m* and 78.5 kg/m? were considered.
Critical frequencies equal to 3815 Hz and 1196 Hz were obtained for the light and
heavyweight partitions respectively. The natural frequencies of the structural partitions

are listed in Tables 2.3, 2.4 and 2.5.

In Figure 2.24-a and 2.24-b it is seen that at very low frequencies (below 100 Hz),
differences of up to about 20 dB occurred between the modal model and the diffuse
incidence Mass Law. In this situation, the dimensions of the subsystems were small in

comparison with the wavelength of the sound. Thus, for this condition the motion of the
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medium in the system is analogous to that of a mechanical system having lumped

mechanical elements of mass, stiffness and damping.

The lowest NR values shown in Figures 2.24-a and 2.24-b are in the one third octave
frequency bands with centre frequencies at 8 Hz and 12.5 Hz respectively. For the
lightweight partition, this value approximately corresponds to the coupled frequency
9.02 Hz shown in Table 2.6. For the heavyweight partition (Figure 2.24-b), the lowest
NR value corresponds to the coupled frequency equal to 12.53 Hz (see Table 2.7). It is
seen that this frequency is the coupled version of the fundamental natural frequency of
the heavyweight partition, which is equal to 12.08 Hz. It is well known that if a coupled
system is excited acoustically and the acoustic volume responds predominantly as though
the structure were infinitely rigid, this system is said to be weakly coupled. Therefore,

the results confirmed the theory that ‘weak coupling’ effects occur in models with

heavyweight partitions [80].

Moreover, at very low frequency the flexible partition behaves as a rigid-body and the

resulting stiffness element is expressed by the acoustic bulk stiffness of the enclosed
fluid in the room [4, 60]. The acoustic bulk stiffness is given by k, = p,c,S:/V, ;

where S, is the room transverse area (height x width) and V, is the volume of the
acoustic room. In this case, the coupled frequency can be estimated by considering a one-
degree-of-freedom mass-spring system. This simplified model consists of a structural
mass connected to two ‘springs’ corresponding to both acoustic rooms. The natural
frequency of free vibration of this simplified model was estimated and is approximately

15.5 Hz.

For the 1/3 octave bands with centre frequencies above 100 Hz, the NR values shown in
Figure 2.24-a tend to those obtained via Leppington’s prediction. In other words, the
trend of the curve for the modal model approximates the established values, which
consider the resonant and non-resonant contributions at higher frequencies. This is
justified by the fact that the ‘Schroeder frequencies’ (see equation (2.1)) were
approximately 298 Hz and 383 Hz for the source and receiving rooms respectively.
Nevertheless, for the heavyweight partition Figure 2.24-b shows that the NR values are

closer to the diffuse field Mass Law at higher frequencies.

Figure 2.25 shows the NR values obtained for model 2 (Figure 2.2b). In Figure 2.25-a,
the variation of the modal model from the Mass Law and Leppington’s formulation at

low frequencies is less pronounced than that for model 1 shown in Figure 2.24-a. This is
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due to the fact that model 1 (Figure 2.24) has exactly coincident resonance frequencies
for the two rooms e.g. at 34, 68 and 85 Hz. In addition, there is geometric matching of
modal distribution over the common partition. On the other hand, the NR results
presented in Figure 2.25 show the effects of mismatch of modal properties of rooms
having dissimilar geometrical characteristics. As the frequency increases, the results tend

to the values calculated via the Leppington’s approach.

By comparing Figures 2.24 and 2.25, it is also evident that at higher frequencies the
effect of room shape on NR is not so significant. For instance, in the frequency band

with centre frequency at 400 Hz, a difference of less than 2 dB is found between models

1 and 2.

Finally, it is seen that in both configurations (Figures 2.24 and 2.25) the values obtained
via Leppington’s formulation approximated to those using the field incidence Mass Law
when the frequency increases. These results may be explained by the fact that the
resonant contribution, which is taken into account in Leppington’s formulae, was not
significant within the frequency range considered, where the forced non-resonant
vibration contribution is the dominant factor. Furthermore, for the heaviest partition the
diffuse field Mass Law is about 3-6 dB lower than Leppington’s or the field incidence

Mass Law values at frequencies greater than 100 Hz.

Figure 2.26 shows a comparison of the NR levels between the values obtained using the
modal model 3 and the classical methods. Similarly to the other models, it is seen that
the lowest frequency structural mode is most affected by the coupling with the rooms for
the lightweight partition. Comparing Figures 2.24 and 2.26 it can be seen that the
presence of degenerate modes for the square partition and room of model 1 does not have

a large effect on the results.

2.5.5 — Comparison of NR obtained via the modal model developed and another modal

model available in the literature

The sound pressure level difference or Noise Reduction is also predicted via the modal
model and the results in terms of frequency response are compared to those obtained by
Osipov [12]. Figures 2.27 and 2.28 show the NR levels obtained via the modal model,
Osipov’s approach and the baffled plate model [12] for different partition properties. The
simulations were based on a system comprising two rooms coupled by a single leaf
partition with dimensions 5m x 3m. The source and receiving room depths were both

equal to 3 m. It can be seen that the NR levels for Osipov’s room-plate room prediction
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and modal model followed the same trend over the whole frequency range and are
generally in very good agreement. The small difference (about 3 dB) between Osipov’s
and the actual modal model herein used might be explained by the fact that the damping

value used for the Osipov’s model was unknown.

In addition, the baffled plate model, also presented by Osipov [12], shows less
modulation in comparison with the modal model or Osipov’s room-plate room model.
Furthermore, the results obtained via the modal model and the Osipov’s room-plate-

room model also show very good agreement for all different partition densities

considered over a wide range of cases (ph =28.8kg/m* to ph =460 kg/m?).

2.6 — Conclusions

A comparison between numerical modal analysis and theoretical predictions has been
performed. A maximum frequency of 450 Hz was used for the frequency response of the
systems to a volume velocity point excitation in the source room. Above this frequency
limit the computational storage requirements for variables as well as the operational

running time on a personal computer became extremely problematic.

The effect of being selective in eliminating some modal contributions has not been
reported here [14]. This is because the results are highly sensitive to the non-resonant
modes in the frequency range considered. For instance, the non-resonant mass modes of
the partition significantly contributed to the energy transmission between rooms. This is

evident from the results, which approximates to those for the Mass Law as frequency

increases.

Although there were many ‘weak coupling coefficients’, their summation was significant
to the total coupling. Figures 2.5-2.8 show the contribution of certain modes to the fluid-
structure interaction. It depends on the degree of spatial coupling between the modes at
the common interface. Hence, all possible natural frequencies and their respective modes
were included in this analysis. The results may also help in the understanding of the
model, with the subsystems considered directly related to physical elements such as
rooms and flexible partitions. They can also provide an initial discussion for the

investigation of a SEA model, which can be useful for practical building acoustics.

Although this problem (the coupling between the panel and the acoustic fields) has been
solved in previous work by several authors, the results obtained herein can also be used

for guidance in real cases of architectural acoustic design. All the parameters, which
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affected the modal composition of the sound field in the subsystems, were fundamental
in the determination of the Sound Reduction Index. The results may also be used to
interpret measurements made in-situ at low frequencies, e.g. where the classical

definition of SRI in ISO140 for diffuse sound fields may not be appropriate or reliable.

Although the assumption of uncoupled ‘rigid-walled’ acoustic modes for the rooms [6]
has been assumed for many years, the actual boundary condition, which is due to the
velocity of the partition, cannot be replicated. The convergence problem may be rather
sensitive at low frequencies and may require a significant summation of modes to
provide accurate velocity and pressure predictions at the panel location. This is necessary

for accurate predictions of the acoustic intensity and hence Sound Reduction Index.

Existing methodologies, i.e. the Mass Law and Leppington’s formulation, similarly have
difficulty at low frequencies. For instance, the assumption of diffuse field, etc., is no
longer valid at very low frequencies, as few acoustic modes exist in the volumes.
However, it has been shown that the SRI values obtained using the Modal model

converge reasonably well to Leppington’s prediction as the frequency increases.

Although the model will be validated experimentally later in this thesis, the good
agreement between the modal model and Osipov’s published room-plate-room model for
the Noise Reduction indicated a good degree of reliability in the modal model. If one is
interested in the Noise Reduction and hence requires spatially averaged acoustic
pressures, then the methodology of using the modal method with ‘rigid-walls’ is
acceptable and provides good results. This statement can be confirmed by the fact that

the results obtained converged to the established and accepted analytical models as

frequency increases.

47



Chapter 2. Structural-Acoustic Coupling Analysis — a modal model

Tables
The natural frequencies of the first 10 room modes
Frequency range: 0 Hz-300 Hz
Room Frequency Room Frequency Room Frequency
dimension (Hz) dimension (Hz) dimension (Hz)
(5x2x2) m® (3x2x2) m* (3x2x5) m’>
Mode (I,m,n) Mode Mode (I,m,n)
(1, m,n)

0 0 O 0.00 0 0O 0.00 0 0 O 0.00
1 0 O 34.00 1 00 56.67 0 0 1 34.00
2 0 0 68.00 0 0 1 85.00 1 00 56.67
0 0 1 85.00 0 1 0 85.00 1 0 1 66.08
0 1 O 85.00 1 01 102.16 0 0 2 68.00
1 0 1 91.55 1 10 102.16 010 85.00
1 1 0 91.55 2 00 113.33 1 0 2 88.52
3 0 0 102.00 0 1 1 120.21 0 1 1 91.55
2 0 1 108.85 1 1 1 132.89 0 0 3 102.00
2 1 0 108.85 2 01 141.67 1 1 0 102.16

Table 2.1: Summary of the natural frequencies of ‘rigid-wall’ acoustic volumes used in

Models 1 and 2.
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The natural frequencies of the first 10 room modes
Frequency range: 0 Hz-300 Hz
Room Frequency Room Frequency
dimension (Hz) dimension (Hz)
(5x2x1.8) m’ (3x2x1.8) m>
Mode (I,m,n) Mode (I,m,n)
0 0 O 0.00 0 00 0.00
1 0 0 34.00 1 0 0 56.67
2 0 0 68.00 0 0 1 85.00
0 1 O 85.00 01 0 94.44
1 1 0 91.55 1 0 1 102.16
0 0 1 94.44 1 1 0 110.14
1 0 1 100.38 2 00 113.33
30 0 102.00 0 1 1 127.03
2 1 0 108.85 1 1 1 139.12
2 0 1 116.38 2 01 141.67

Table 2.2: Summary of the natural frequencies of ‘rigid-wall’ acoustic volumes used in

Model 3.
First 8 panel modes - Dimension: (1x1) m° First 8 panel modes - Dimension:(2x2) m”
Mode (p,q) Frequency Mode Frequency

(Hz) (§2X¢)) (Hz)
11 15.15 11 3.79
1 2 37.88 1 2 9.47
21 37.88 2 1 9.47
2 2 60.61 2 2 15.15
13 75.76 13 18.94
31 75.76 31 18.94
2 3 98.48 23 24.62
32 98.48 32 24.62

Table 2.3: Summary of the in vacuo natural frequencies of partitions used in the models,
assuming simply-supported boundary conditions and oh =8.1kg/m”.
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First 8 panel modes - Dimension:
(2m x1.8m) — Model 3
Mode (p,q) Frequency

(Hz)
11 4.23
21 9.91
12 11.25
2 2 16.93
31 19.38
1 3 22.94
32 26.39
2 3 28.62

Table 2.4: Summary of the in vacuo natural frequencies of partitions used in the models,
assuming simply-supported boundary conditions and ph =8.1kg/m”.

First 8 panel modes - Dimension: | First 8 panel modes - Dimension:
(2m x 2m) — Models 1 and 2 (Zm x1.8m) — Model 3
Mode (p,q) Frequency Mode (p,q) Frequency

(Hz) (Hz)
11 12.08 11 13.49
12 30.19 21 31.62
21 30.19 1 2 35.87
2 2 48.32 2 2 53.99
1 3 60.39 31 61.82
31 60.39 13 73.15
2 3 78.52 32 84.19
32 78.52 23 91.27

Table 2.5: Summary of the in vacuo natural frequencies of partition used in the models,
assuming simply-supported boundary conditions and ph =78.5kg/m”.
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The first coupled frequencies | The first coupled frequencies | The first coupled frequencies
(model 1) (model 2) (model 3)
Frequency (Hz) Frequency (Hz) Frequency (Hz)
0.00 0.00 0.00
9.02 8.92 9.54
9.02 8.98 10.86
10.98 9.04 10.95
14.72 14.64 16.64
18.57 18.45 19.36
19.04 18.51 22.79
19.04 18.51 24.22
24.26 24.08 28.43
24.26 24.08 32.44
31.98 31.58 35.66
31.98 31.58 38.13
33.86 34.07 39.06
33.86 34.07 39.54
36.03 36.56 44.85
36.03 36.56 49.46
37.87 37.44 51.28

Table 2.6: Summary of the first 10 coupled frequencies for models 1, 2 and 3 considering

the whole interface flexible (2m x 2m) for models 1 and 2 and (2m x 1.8m) for model 3; The

mass per unit area adopted was ph=8.1kg/m’ for all models.

The first coupled frequencies

The first coupled frequencies

The first coupled frequencies

(model 1) (model 2) (model 3)
Frequency (Hz) Frequency (Hz) Frequency (Hz)
0.00 0.00 0.00
12.53 12.28 13.88
30.01 30.00 31.47
30.01 30.00 34.19
34.17 33.99 35.72
34.17 34.25 53.87
48.12 48.13 56.71
56.56 56.62 61.83

Table 2.7: Summary of the first 10 coupled frequencies for models 1, 2 and 3 considering

the whole interface flexible and ph =78.5kg/m®.
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First 10 coupled frequencies (model 1) | First 10 coupled frequencies (model 2)
Frequency (Hz) Frequency (Hz)
0.00 0.00
15.52 15.03
34.46 33.99
37.32 34.64
37.32 37.32
56.97 37.34
60.25 56.79
68.01 60.25
75.45 66.14
75.81 68.01

Table 2.8: Summary of the first 10 coupled frequencies for model 1 and 2 considering a

small flexible partition (Im x 1m and ph =8.1kg/m?*) in the middle of the common rigid

wall.
Order Plate (2x2) m’ 1 2 3 4 5 6
Type LH | 4.2 | @D | 22 | L3 | GD
Source Frequency 3.79 9.47 9.47 15.15 | 18.94 | 13.94
Room (Hz)
1 (0,0,0) 0.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
2 (1,0,0) 34.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
3 (2,0,0) 68.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
4 (0,0,1) 85.00 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000 | 0.0000
5 (0,1,0) 85.00 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000
6 (1,0,1) 91.55 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000 | 0.0000
7 (1,1,0) 91.55 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000
8 (3,0,0) 102.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333

Table 2.9: Summary of the first 8 natural frequencies and normalized geometric mode shape

coupling coefficients (Cn;p) for model 1.

52




Chapter 2. Structural-Acoustic Coupling Analysis ~ a modal model

Order Plate 2x2) m” | 1 2 3 4 5 6
Type LD | @2 | @D | 22) | 4,3 | GD
Receiving Frequency 3.79 9.47 9.47 15.15 | 18.94 | 18.94
Room (Hz)
1 (0,0,0) 0.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
2 (1,0,0) 56.67 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
3 0,0,1) 85.00 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000 | 0.0000
4 0,1,0) 85.00 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000
5 (1,0,1) 102.16 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000 | 0.0000
6 (1,1,0) 102.16 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000
7 (2,0,0) 113.33 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
8 0,1,1) 120.21 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4444 | 0.0000

Table 2.10: Summary of the first 8 natural frequencies and normalized geometric mode

shape coupling coefficients (Cnyp) for model 1.

Order Plate 2x2) m” | 1 2 3 4 5 6
Type LD | (12) | @D | 22 | 13 | GD
Receiving Frequency 3.79 9.47 9.47 15.15 | 18.94 | 18.94
Room (Hz)
1 (0,0,0) 0.00 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
2 (0,0,1) 34.00 0.7792 | 0.1799 | 0.0000 | 0.0000 | 0.2221 | 0.2597
3 (1,0,0) 56.67 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.3333
4 (1,0,1) 66.08 0.7792 | 0.1799 | 0.0000 | 0.0000 | 0.2221 | 0.2597
5 0,0,2) 68.00 0.2653 | 0.5384 | 0.0000 | 0.0000 | 0.0343 | 0.0884
6 0,1,0) 85.00 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | 0.0000
7 (1,0,2) 88.52 0.2653 | 0.5384 | 0.0000 | 0.0000 | 0.0343 | 0.0834
8 0,1,1) 91.55 0.0000 | 0.0000 | 0.5195 | 0.1200 | 0.0000 | 0.0000

Table 2.11: Summary of the first 8 natural frequencies and normalized geometric mode

shape coupling coefficients (Cnyp) for model 2.
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Figures

80

SRI [dB]

Frequency (Hz)

Figure 2.1: The Sound Reduction Index (for the various Mass Law expressions) for an

infinite limp panel with nominal density equal to 78.5 kg/m®. normal incidence; ----

field incidence and ...... diffuse field incidence; res-Leppington’s resonant transmission

(see equation (2.8)); nr = Leppington’s non-resonant transmission (see equation (2.9)).
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50m
a) b)

Figure 2.2: Two rooms separated by a common wall (2m x 2m). Both rooms were of

height equal to 2 m. a) Model 1; b) Model 2
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SOURCE 50m
ROOM
RECEIVING
ROOM 3.0m
1.8m

Figure 2.3: Two rooms separated by a common wall (2m x 1.8m). Both rooms were of

height equal to 2 m — Model 3

i 1 i i
50 100 150 200 250 300 350 400
Frequency [Hz]

Figure 2.4: The corresponding Tg (s) that results using a constant loss factor 7 =0.01.
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Figure 2.5: The contribution of the bulk and axial modes of the source room to the

normalized coupling coefficients Cnlp considering a whole wall for model 1. a) bulk

mode; b) axial modes (14 modes)
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Figure 2.6: The contribution of the tangential and oblique modes of the source room to

the normalized coupling coefficients C,, considering a whole wall for model 1. a)

tangential modes (44 modes); b) oblique modes (31 modes)
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Figure 2.7: The contribution of the bulk and axial modes of the receiving room to the

normalized coupling coefficients C, , considering a whole wall for model 1. a) bulk

mode; b) axial modes (11 modes).
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Figure 2.8: The contribution of the tangential and oblique modes of the receiving room to

the normalized coupling coefficients C, , considering a whole wall for model 1. a)

tangential modes (28 modes); b) oblique modes (19 modes)
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Figure 2.9: Normalized coupling coefficients for model 1 considering a flexible panel
over the whole common interface; a) panel and source room (112 panel modes and 90

room modes); b) panel and receiving room (112 panel modes and 59 room modes);
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Figure 2.10: Normalized coupling coefficients for model 1 considering a flexible panel

(Im x 1m) in the middle of the common rigid wall (2m x 2m); a) panel and source room

(24 panel modes and 90 room modes); b) panel and receiving room (24 panel modes and

59 room modes); ¢) panel location in the middle of the common wall (cgy = g, = 0.5).
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Source room mode
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Panel mode 1

Receiving room mode
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Figure 2.11: Normalized coupling coefficients for model 2 considering a flexible panel
over the whole common interface; a) panel and source room - (112 panel modes and 90

room modes); b) panel and receiving room (112 panel modes and 130 room modes);
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Figure 2.12: Normalized coupling coefficients for model 2 considering a flexible panel
(Im x 1m) in the middle of the common rigid wall (2m x 2m); a) panel and source room
- (24 panel modes and 90 room modes); b) panel and receiving room (24 panel modes
and 130 room modes); c) panel location in the middle of the common wall (Coy = Cgz =

0.5).
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Figure 2.13: Predicted responses due to acoustic excitation of the structural-acoustic
coupled system shown in Figure 2.2(a). ph=8.1kg/m?*. a) SPL in the source room (dB
re 20 w Pa); b) SPL in the receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re
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Figure 2.14: Predicted responses due to acoustic excitation of the structural-acoustic
coupled system shown in Figure 2.2(a). The partition mass per unit area was 78.5 kg/rnz.
a) Sound pressure level in the source room (dB re 20 p Pa); b) Sound pressure level in

the receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re 10° m/s).
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coupled system shown in Figure 2.2(b). The partition mass per unit area was 8.1 kg/mz.
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the receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re 10° m/s).
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Figure 2.16: Predicted responses due to acoustic excitation of the structural-acoustic
coupled system shown in Figure 2.2(b). The partition mass per unit area was 78.5 kg/mz.
a) Sound pressure level in the source room (dB re 20 u Pa); b) Sound pressure level in

the receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re 107 m/s).
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Figure 2.17: Predicted responses due to acoustic excitation of the structural-acoustic
coupled system shown in Figure 2.3. The partition mass per unit area was 8.1 kg/m®. a)

Sound pressure level in the source room (dB re 20 p Pa); b) Sound pressure level in the

receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re 107 m/s).
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Figure 2.18: Predicted responses due to acoustic excitation of the structural-acoustic
coupled system shown in Figure 2.3. The partition mass per unit area was 78.5 kg/m?‘. a)
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receiving room (dB re 20 p Pa); ¢) Structural velocity (dB re 107 m/s).
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Figure 2.19: Normalized mean square pressure distribution (model 1) with respect to the
horizontal plane y = 1 m at 120 Hz. The partition dimensions and mass per unit area are
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Figure 2.20: Normalized mean square particle velocity distribution (model 1) in the x-
direction with respect to the horizontal plane y = 1 m at 120 Hz. The nominal partition
dimensions and mass per unit area are 2m x 2m and 8.1 kg/m2 respectively. a) surface

plot; b) Contour levels in (m/s)*/(m/s);
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Figure 2.21: Spatial averaged mean square pressure levels [dB re 2x107] in the source

room as a function of the number of modes used in the calculation for the source room

(model 1). The partition dimensions and mass per unit area are 2m X 2m and 8.1 kg/rn2
respectively. a) narrow bands; b) one third octave bands; 90 modes; ------ 265
modes.
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Figure 2.22: Spatial averaged mean square pressure levels [dB re 2x107] in the receiving
as a function of the number of modes used in the calculation for the receiving room
(model 1). The partition dimensions and mass per unit area are 2m X 2m and 8.1 kg/m2
respectively. a) narrow bands; b) one third octave bands;______59 modes; ------ 166

modes.
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Figure 2.23: Noise Reduction (NR) (model 1). The partition dimensions and mass per

unit area are 2m x 2m and 8.1 kg/m? respectively. a) narrow bands; b) one third octave

bands; total number of modes used = 261; ---—--

total number of modes used = 606.

There is negligible difference except above 200 Hz. The total number of modes consists

of both acoustic and structural modes.
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Figure 2.24: Comparison of the Noise Reduction (NR) levels between the modal model 1

(see Figure 2.2a) and the classical methods. a) ph=8.1kg/m*; b)

ph =178 1kg Im?; Modal model; *** Diffuse incidence Mass Law; +++

Field incidence Mass Law; 000 Leppington’s prediction.
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Figure 2.25: Comparison of the Noise Reduction (NR) levels between the modal model 2

(see Figure 2.2-b) and the classical methods. a) oh=8.1kg/m*; b)

ph =178 .1kg /m?; Modal model; *** Diffuse incidence Mass Law; +++

Field incidence Mass Law; 000 Leppington’s prediction.

76



Chapter 2. Structural-Acoustic Coupling Analysis —a modal model

oh=8.1 [dB]

NR

20 . : oL
10

1/3 Octave Band Centre Frequency [Hz]

-10 . : Ly

. 44‘!
10°

1/3 Octave Band Centre Frequency [Hz]

Figure 2.26: Comparison of the Noise Reduction (NR) levels between the modal model 3

(see Figure 2.3) and the classical methods. a) ph=8.1kg/m*; b)

ph =78 1kg Im?;

Modal model; *** Diffuse incidence Mass Law; +++
Field incidence Mass Law; 000 Leppington’s prediction.
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Figure 2.27: Comparison of the Noise Reduction (NR) levels. a) oh

Baffled Model [12];

3

Modal model:

ph=288kg/m*;

results obtained by Osipov [12].
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Chapter 3

EXPERIMENTAL INVESTIGATION OF ACOUSTIC
TRANSMISSION

3.1 — Introduction

The focus of this chapter is on the aspects of experimental validation of the model for
airborne sound transmission through partitions and data for validation of the predictive

models.

The content of this chapter is described as follows. Firstly, the measurement of
absorption of rooms, damping of the partition as well as the loudspeaker volume velocity
are obtained experimentally. The test procedure and results are presented in section 3.2.
In section 3.3, the acoustic behaviour of a single room is investigated by comparing
measured results with those obtained analytically. The analysis was a preliminary

exercise to the investigation of sound transmission discussed in the subsequent section.

Then, the validation of the transmission room model is presented in section 3.4. In
section 3.5 the normal velocity of the panel is determined. Hence, the comparison of the
measured result with the predicted is made. In appendix B, statistical analyses of the data
are presented in terms of sample mean value and confidence intervals [46]. These
statistical parameters are widely used in sound and vibration measurements. The
frequency range considered here is based on that for which the previous modal model
calculations were developed. Thus, the results presented apply for the frequency range 50
to 250 Hz, for the particular room dimensions and geometry. In order to avoid a signal
contaminated by the background level in the very low frequency bands, a lower limit of
the third octave with centre frequency 50 Hz was chosen. Finally, discussion and

conclusions for the experimental tests are presented in section 3.6.

3.2 — Measurement of damping for the structural partition and rooms

The damping for the structural partition and rooms were obtained by using the Impulse

Response Technique [44].
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One comparison between the theoretical model and the experimental results is the
response near resonance, which is itself mainly influenced by the damping either
assumed in the model or that which actually exists in the experiment. Significant errors
can be incurred due to poor damping estimates. For this reason, the damping for the
structural partition was obtained using two different experimental techniques. In
addition, the acoustic room absorption was obtained by measuring the reverberation time

for each room. The overview of the experiments, procedures and results are presented

below.
3.2.1 The measurement of structural damping

It is known that the total loss factor of a partition depends on the boundary condition of
the specimen. In other words, the total loss factor is equal to the sum of the internal loss
factor of the material, the coupling loss factor to the adjacent structures and the radiation
loss factor to the surrounding media [31]. Therefore, two different techniques were used
here namely on a free-free beam and on a panel in-situ. The former primarily gives an
estimate of the material loss factor by examining the decay in the response of individual
modes, normally restricted to just the fundamental bending mode. The latter is an in-situ
approach where one measures the half power bandwidth of the resonances and requires

the frequency response functions to be measured.

In the first method the duration of the response (vibration) due to impact excitation,
which is characterized by the reverberation time (RT), was measured for the calculation
of the structural damping. The reverberation time is defined as the time interval in which
the vibration energy level decays by 60 dB. The tests were performed on a free-free
beam sample taken from a plasterboard panel. Thus, these tests only measured the
material loss factor since the radiation loss factor for the present case (free-free beam) is

expected to be very low at low frequencies [5].

The measurement of the damping of the beam samples give a lower bound to damping in
realistic configurations where plasterboard is used. The values taken when the
plasterboard was tested in situ in the acoustic test rooms, with plasticine around the
edges, may be higher than practical building configurations but is used in the

simulations, which were performed to compare with the experimental results.

The supported span of the beam was 30 c¢cm in length and its cross-section of dimensions
10cm x lcm. A soft tip on the end of the hammer was used in order to provide the
maximum input energy for the frequency range of interest. The position of the supports,
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at 1/5 of the beam span in from the ends, were approximately at the nodal points of the
fundamental mode of a free-free beam (see Figure 3.1). The force excitation and

receiving points were located at opposite ends of the beam as shown in the figure.

The experimental procedure for determination of decay times is described as follows. On
impacting a free-free plasterboard beam sample by a plastic headed hammer (type B&K
8202), the analyzer was triggered and started to record the response signal at the
receiving point. At the receiving point an accelerometer was attached and connected to
the acquisition equipment (a multi-channel HP real-time analyzer type 35650), which

filtered the input signal by conveniently configuring the channel parameters.

The signal s(z) received at a receiving point is given by [44]
{
s = [ f@h@-r)dr (3.1)

where f{t) is input excitation force and h(t)is the impulse response of the system. For an

impulse at time #; one has
f(@)=Fd(z—1,), then s@)=h(r—t,) 3.2)

The Hilbert transform H of a function x(¢) is used to produce the envelope of the signal

and subsequently allows determination of the decay rate of the signal. It is given by [47]

H(x(0)= ——7-1[- f x(7) (;—_1-}-)511 =-71; x(2) {%) (3.3)

where * means convolution.

Hence, the amplitude decay curves were obtained by taking the Hilbert transform of the
received signal and then converting its absolute value to a logarithmic amplitude scale as

follows
C(1)=20log,,|H(x(r)) indB (3.4)

A second technique, known as half-value or half-power bandwidth, was used to obtain
the total loss factor of a plasterboard partition mounted in situ in the opening between the
two acoustic reverberation chambers and is sealed around its periphery with plasticine.

This does not provide a clamped edge, as it is dependent on the stiffness and adhesion
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strength of the plasticine although it does provide a reasonable constraint on the flexural
displacement but not slope. Also the values of damping found in this way are sometimes
termed structural damping, to identify that the damping is dependent on both the
damping inherent in the material and that which comes from other mechanisms including
dissipation losses at the boundary which might be significant. First, the frequency
response of the partition was obtained via a simple tap test (figure 3.2). The
measurements were carried out at different positions, which were carefully chosen in
order to avoid the difficulties associated with non-excited modes. Second, the total loss

factor was then obtained by the relationship [48]

n= (3.%5)

b
ffl

where f, is the measured resonance frequency, approximately equal to the natural
frequency for light damping, and & is the corresponding half-power point bandwidth,
which is the bandwidth where the amplitude falls to 1/ V2 of its maximum value. This
corresponds to a 3 dB reduction. The main limitation of applying equation (3.5) is that it
is only valid for small values of damping and for low modal overlap. In other words, the
frequency interval between resonance frequencies must be considerably greater than the

half-power bandwidth.

The Young’s modulus for the partition, which was used in the subsequent calculations,
was obtained experimentally from [48]
k=, ) = (3.6)
Crf.) 4
where m’ is the mass per unit length of the test beam, which value was equal to 0.683
kg/m, kI is equal to 4.73 (where [ is the length of the beam), and f, is the measured

resonance frequency (= 220 Hz) of the fundamental mode.

Therefore, the Young’s modulus for the partition calculated using equation (3.6) was

2.53x10° N/m®. This value was used in the subsequent calculations.

Figure 3.3.a presents the typical transient excitation obtained from hitting the beam using
the hammer. The test was repeated several times in order to ensure that the input signal
was free of multiple impacts. The detail of the impact is also shown using a zoomed time

window.
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The output signal response was acquired over a time duration of 1 s, which was long

enough for recording the decay (see figure 3.3.b).

Figure 3.3.c shows the frequency response function (FRF) magnitude, which is the
modulus of the ratio of the output signal spectrum to the excitation (input signal)
spectrum, assuming no noise. Assuming that the first mode of vibration was dominant,

the first resonance frequency of the beam was about fz = 220 Hz.

Figure 3.3.d shows the Hilbert transform of the response in decibels. To determine
damping, the Tgp, which is the time necessary for the vibration level to decay 60 dB, was
first obtained using the least square method [46] for fitting the best straight line to the
data. The use of a best straight line fit to calculate T¢ assumes diffuse field condition.
Nevertheless, for non-diffuse field condition, it is recommended that an ensemble-
average estimate of decay rates over a range of different excitation and receiver positions

be obtained [18].

In other words, it is clear that at low frequencies a best straight line fit is not particularly
appropriate, partly because the field is not diffuse and also few modes contribute and
hence it is not normal to use equation (3.7). Nevertheless, as values were necessary in the
model, the slopes of the lines were used to give estimates, albeit possibly very

approximate, and these have been used in the simulations.

The value obtained was Tg = 0.6s. The loss factor parameter 77, which is the ratio of

energy lost to the reversible mechanical energy during one cycle of vibration, is related

to Tgp by [48]

_ 11’1(106) (3.7)
27 fB TGO

For the free-free beam sample, the experimental value of the loss factor 77, using the

decay time technique, was hence found to be approximately 0.017.

Figure 3.4 shows the measured frequency response of a square plasterboard partition in
situ. The first three predicted natural frequencies and modes of a simply-supported
plasterboard were about 37.0 Hz, 92.5 Hz and 92.5 Hz, which correspond to the modes
(1,1), (1,2) and (2,1) respectively. The panel dimensions were 0.69m x 0.69m and the
formula for calculating the natural frequencies of a simply-supported panel is given by

equation (2.11). For a clamped square plate, the natural frequencies of the first three
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modes are 68 Hz, 139 Hz and 139 Hz. These values are obtained from formulae given in
ref. [88]. According to the measured results, the first, second and third resonance

frequencies were at approximately 41 Hz, 87 Hz and 96 Hz respectively.

This difference of within approximately 10 % between the values calculated assuming a
simply-supported panel and measured results possibly indicates that a mixed boundary
condition between free and simply-supported might have been realised experimentally
due to the plasticine and fixture. In addition, some measurement errors actually occurred

during the experimental test for measuring the total loss factor.

The loss factor obtained via the half-power point bandwidth technique was
approximately 0.049 for the first resonance peak. This value was subsequently adopted
in the theoretical modal model. It is significantly higher than the sample beam, and it is
suspected that the origin of this is most likely to be the high damping and losses at the

edges where the plasticine was situated.
3.2.2 The measurement of room absorption

The procedure used for the measurement of the absorption of the rooms was based on the
reverberation time values obtained experimentally. In room acoustics, the duration of
sound decay is usually characterized by the parameter 7gp. It is defined by the time
interval in which the sound pressure level decays by 60 dB. The amount of sound
absorbed by the reverberation room walls can then be found from equation (3.7) using f

instead of f, where fis the centre frequency for the one-third octave bands.

The experimental setup is shown in Figure 3.5. A loudspeaker which had a minimum
frequency response of 40Hz was driven by a random noise generator. This generator was
connected in series with an adjustable analogue pass-band filter (KEMO type VBF8 with
working range 0.01 Hz-100 kHz) and a decay time trigger box. The filtered noise was
amplified by a power amplifier (type TPAS0-D) directly connected to the loudspeaker.
At the receiving point, sound pressure measurements were made using a B&K 2"
microphone type 4191, connected to a B&K conditioning amplifier type 2609.
Furthermore, a multi-channel HP real-time analyzer (type 35650) was used as the

acquisition system.

The experiments were set up in an the ISVR acoustic laboratory, where two small
reverberant rooms are connected by a common aperture. In order to measure the

reverberation time of each room, the aperture was sealed by an isolating heavy stiff
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panel. The source and receiving room internal dimensions (in the x, y and z directions)
are 2.35m x 2.56m x 2.48m and 2.07m x 2.51m x 2.52m respectively. An aperture is

located in the middle of the common wall which is in the (y-z) plane.

All test procedures were based on the International Standard ISO 354 [43] and on the
method of integrated impulse response [44,47]. The reverberation time RT was measured
for source and receiving rooms that are smaller than ISO 354 requirements. A
loudspeaker, driven by a one-third octave band-pass filtered noise, excited the room until
steady state condition was reached. The noise source radiated sound into the room for
about 3 seconds before initializing the measurements. Nevertheless, a time interval of 2

seconds could be sufficient [44].

As the sound excitation was interrupted, the analyzer was triggered and started to record
the signal at a receiving point. The microphone was connected to the acquisition
equipment (HP analyzer), which filtered the input signal by conveniently configuring the
microphone channel parameters. It was necessary to ensure that the filter pass-band
range used in the noise source generator is not less than the one used in the microphone
channel [28] and that the measurements were not unduly influenced by the response time

of the filter.

Likewise in the procedure described previously, the decay curves here were obtained by
taking the Hilbert transform of the received signal and converting its absolute value to a
logarithmic amplitude scale. Previous work had shown that the decay rate of the
acquisition system, including the filter, was shorter than the decay times being measured
of the physical (acoustic) system and so would not interfere by producing artificially

long decay times.

It has been recommended [28] that the reverberation time should be taken as three times
the time necessary for the noise decay from 5 to 25 dB below the mean level. Therefore,
spurious results that do not lie within this range were rejected. An acquisition time of

two seconds was adopted.

Figures 3.6-3.9 show typical decay curve sets for the source and receiving rooms
measured over one-third octave band centre frequencies. The reverberation time RT was
then calculated from the best fitting straight line, obtained by the least-square method,
from the Hilbert transform of the transient response. Figures 3.6 and 3.7 show typical
decay curves obtained at one-third octave bands for the source room. For instance, in the
one-third octave band with centre frequency at 63 Hz, only two modes (natural
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frequencies equal to 65 Hz and 68 Hz) exist within the band. This situation is significant
because it can produce spurious results. The presence of only two modes in a band might
lead to irregular decays caused by beating between these two modes. For the one-third
octave bands with centre frequencies 80 Hz and 100 Hz, one and three modes exist
within these bands respectively. For instance, within the band with centre frequency 80

Hz the results are solely dependent on the modal characteristics of the mode (1,0,0) of

the room.

Likewise, Figures 3.8 and 3.9 present the typical decay curves obtained in one-third

octave bands for the receiving room.

According to ISO 354 [43] the recommended total number of measurements are twelve
decays for one-third octave band centre frequencies ranging between 63 Hz and 250 Hz.
As the reverberation time of a room, at very low frequencies, depends to a large extent
on the position of the source and the receiving microphone, an ensemble averaging
procedure, based on a combination of microphone positions was applied for each one-

third octave band result.

Figures 3.10 and 3.11 show the 7Ts mean values, obtained from the decay rate
measurements, for both rooms. According to equation (2.1) and considering an average
Teo equal to 1.5s and 1.0s for the source and receiving rooms, the corresponding
Schroeder frequencies are 634 Hz and 553 Hz. In addition, the upper and lower 95 %
confidence limits (defined in Appendix B) are shown in the Figures. It appears that
generally the variation in the RT lines is not too poor considering the difficulty in
repeating the measurements and the variations introduced in the subsequent data

processing and curve fitting. The reverberation time values are quoted in Table 3.4.

3.3 — Preliminary experimental test: sound field in a single room

3.3.1 -Measurement of the source volume velocity

In order to compare the measured and predicted results, the source volume velocity used
in the experimental test has to be known a priori. Thus, a loudspeaker placed in the
corner of a room was chosen. The loudspeaker position was (-211 cm, 20 cm, 20 cm)
using a (x,y,z) coordinate system. The sound source and its volume velocity was then

obtained using a laser vibrometer. It could not be assumed that the source acted as a
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simple monopole with its output directly related to the voltage supplied. Figure 3.12

shows the experimental set-up for the measurements.

The source volume velocity was obtained by measuring the instantaneous surface
velocity of the loudspeaker , which was driven with steady broadband noise, using a
Scanning Laser Doppler Velocimeter (SLDV). It consists of a scanning head and a

vibrometer controller.

The measurement was made as a beam of laser light was directed to the target point and
the Doppler-shifted wavelength of the reflected light measured automatically [49]. A
sequence of single point measurements across the surface of the loudspeaker was made

by defining the scan points to be targeted by the laser.

Figure 3.13 shows the coherence for the transfer function H;, which relates the velocity
of the speaker to the voltage fed to it. It can be seen that at frequencies less than 50 Hz
and greater than 300 Hz, the coherence function indicated poor correlation between the
input voltage and the output velocity signal. This was partly due to the size of the
loudspeaker design, making it difficult to obtain significant response at low frequencies.
Likewise, poor coherence was also observed at frequencies greater than about 350 Hz,
which might either be due to the loudspeaker response or optical difficulties in obtaining

a good laser reflection.

Figure 3.14 shows the transfer function H; in terms of its amplitude and phase.
According to the results, a peak value occurred at about 100 Hz. This was due to the

mechanical resonance of the loudspeaker.

Figure 3.15 shows the measured power spectrum of the loudspeaker vibration volume
velocity. The volume velocity of the loudspeaker was calculated by multiplying its
spatially averaged vibration velocity amplitude by its circular surface area. The result

also illustrates the increased values at about 100 Hz.

Alternatively, the source sound power could have been determined using the power
balance equations [8] involving the reverberation time measurements and average mean

square sound pressure in the room.

Figures 3.16 and 3.17 show the variation of vibration velocity amplitude over the
loudspeaker cone at 100 Hz and 200 Hz respectively. A circular grid was defined over
the loudspeaker contour. At low frequencies, a cone loudspeaker mounted in a cabinet

vibrates and radiates as a monopole source [18]. Figure 3.16 shows the non-uniform
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velocity distribution over the loudspeaker at the one-third octave band centre frequency
equal to 100 Hz. The spatial variation of the surface velocity was certainly not uniform,
due to the mechanical resonance of the loudspeaker at approximately 100 Hz. On the
other hand, Figure 3.17 shows a more uniform velocity distribution over the scanned area

in the one third octave band centred at 200 Hz.
3.3.2 — Overview of the experimental test and measurement procedures

Although the experimental validation of a single-room modal model using frequency
response measurements was difficult and time consuming, it was appropriate to consider
this simpler generally accepted case first in order to obtain an overview for the two-room

modal model used later in section 3.4.

The mean square sound pressure was measured at six different positions inside the room
using B&K '/ inch microphones (type 4165). The microphone positions in the room are
illustrated in Figure 3.18. Their coordinates inside the room are listed in table 3.1.
Although acoustic transducers (microphones and microphone pre-amplifiers) and
microphone conditioning amplifiers are calibrated during their manufacture, small
adjustments for the sensitivity factors are still necessary. Therefore, a sound level
calibrator was used to check the sensitivity of each microphone before each

measurement. After executing all measurements, another calibration procedure was

repeated.

The separating distances between microphones and microphone position and room
boundaries were less than the minimum values required by the ISO 140 standard [41]. It
is recommended that an averaging time of at least six seconds be used for measurements
made at frequencies below 500 Hz. However, a minimum value of fifteen seconds,

which is the time required for the 50 Hz centred third-octave band, was used [41].

It is known that the measurement of sound pressure at low frequencies in a room is
complicated due to a distinct spatial predominance of some modes in a specific
bandwidth driven at resonance. Thus, a spatial average value for sound pressure level in

a small room is difficult to obtain experimentally.

The sound source operated at a corner opposite to the test partition, in order to increase
the contribution of the oblique modes [50]. A generated signal equivalent to ‘white’
noise was used. The noise was filtered by using a pass band which corresponds to the

one used in the microphone channel. The mean square sound pressure was measured
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with a resolution of 0.5 Hz and the data was acquired from O Hz to about 500 Hz. In
addition the microphone conditioning amplifiers provided additional gain in order to
optimise or improve the signal to noise ratios. This ensured that the frequency range for

the analysis was covered with extra information if required.

Alternatively, forms of frequency response functions or FRFs could also have been used

in order to characterize the system dynamic behaviour [51].

3.3.3 —Results

The predicted results were obtained using a modal model based on equation (2.39)

shown in Chapter 2 without the term containing the generalized coordinate w, , which is

on the right-hand side of the equation. A total of 278 modes for the room were
considered for the prediction of the frequency response. The first three predicted natural
frequencies and modes of the room are 65 Hz, 68 Hz and 74 Hz, which correspond to the

modes (0,1,0), (0,0,1) and (1,0,0) respectively.

Figure 3.19 shows a comparison between the spatially averaged measurements of SPL in
a single room (dB re 2x10” Pa) and the background noise in the room. It is seen the
higher peaks in the background noise occurred at frequency multiples of 50 Hz (e.g. 100
Hz, 150 Hz, etc.). This phenomenon was due to the background mains interference noise
picked up by the microphone conditioning amplifiers. Nevertheless, this fact did not
invalidate the measurements, as all peak values were at least 30 dB below the measured

signal.

Figures 3.20-3.25 show comparisons between the levels of measured and predicted
sound pressure levels, for different measurement positions inside the room. The
measured source volume velocity was used as the source excitation in the modal model.
It was determined from the measurements of the voltage PSD to the loudspeaker and the
relationship between this and the volume velocity of the loudspeaker itself, determined
from the spatially averaged surface velocity. The results are presented in narrow and one

third octave bands.

For the results in narrow bands, it is seen that fair agreement between the measured and
predicted values occurred over most of the frequency range. For the results presented in

one third octave bands, a maximum difference of less than 5dB occurred in most of the

frequency bands.
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In general, the peaks and dips displayed in the results correspond to the contribution and
the interaction of the individual room modes. Although the predicted and the measured
values at the corner positions show good agreement at very low frequencies, a shift in
level between the measurements and simulations occurred as the frequency increases.
Such differences may be explained by the sensitivity of the results to the measurement

errors on estimating the actual loss factor. However, the PSDs followed similar trends

over most of frequency range.

Figure 3.26-a and 3.26-b present the variation of the SPL values (dB re 2x10” Pa) from
the mean value at positions P;-Ps for the predicted and measured values respectively.
The mean value was determined by averaging the squared pressure amplitudes. It is seen
that at 50 Hz the values diverge from the mean for both the measured and predicted
results. For frequencies ranging from 63 Hz to 100 Hz, the measured values show greater
variation in comparison with the theoretical results. However, as the frequency increases,

the variation tends to decrease for both set of results.

Finally, Figure 3.27 shows a comparison between the measured and predicted spatial
averaged mean squared sound pressure levels (dB re 2x10” Pa). The averaged values
were obtained by calculating the arithmetic mean value over all positions. Within the

usual tolerance of acoustic measurements the agreement is quite good.

3.4 — Experimental validation of the modal model - two rooms coupled

by a single-leaf partition
3.4.1 —Test facilities and equipment

The sound transmission experiments performed and reported herein were made in the
ISVR teaching laboratory. A plasterboard single leaf partition was fitted in the test
opening located in the middle of the common wall. The square partition dimensions were
0.69m x 0.69m and thickness 0.01 m respectively. The partition surface was recessed by

43 cm from the wall in the receiving room. It was flush with the source room surface.

A laser vibrometer (SLVD) was used to measure the instantaneous velocity of a
loudspeaker with a minimum frequency response of 40 Hz. The loudspeaker, driven by a
random noise generator, was connected in series with a band pass filter (type KEMO

VBF8 covering 0.01 Hz-100 kHz). In addition, a power amplifier type TPA50-D was

91



Chapter 3. Experimental Investigation of Acoustic Transmission

directly connected to the loudspeaker. The sound pressure measurements were made
using B&K free-field ¥2’” inch microphones (type 4191), connected to B&K microphone
conditioning amplifiers (type 2609). A multi-channel HP real-time analyzer (type 35650)
was used for simultaneously recording sound pressure signals filtered in both rooms.

Before each measurement, the entire arrangement was checked and calibrated using a

B&K calibrator.

A general diagram of the test facilities, including transducers and instrumentation for

noise measuring is shown in Figure 3.28.

3.4.2 — Test Procedure

The separating distances between microphones, microphone positions and room
boundaries did not agree with the values recommend in ISO 140 [41] due to the small
dimensions of the rooms. The coordinates of microphone positions are listed in Tables
3.2 and 3.3. Figure 3.29 shows the configuration of the microphones inside both rooms.

Eight and two microphone positions were selected for the source and receiving rooms

respectively.

Figures 3.30 and 3.31 show the comparison between the typical measurements of SPL
and the background noise for the source and receiving rooms respectively. Figure 3.30
shows that the noise floor level (background noise) in the source room was at least 20 dB
below the spatially averaged sound pressure level measured. On the other hand, Figure
3.31 shows that the background noise level measured in the receiving room was
relatively high in comparison with the measured signal (spatially averaged sound
pressure level). In addition, the loudspeaker system was not powerful enough in order to

generate higher sound pressure levels in the source room.

Therefore, due to the poor signal-to-noise response in the receiving room, only two
different positions were selected for the receiving room, specifically at the corners, in
order to increase the contribution from the oblique modes. As in the single room test, a
generated random signal was used. The noise was also filtered by using a pass band
which corresponds to the one used for the microphone channels. The frequency response

spectra were measured with a resolution of 0.5 Hz.

3.4.3 —Results

The measured and predicted results were estimated in narrow and one third octave bands

varying from 50 to 250 Hz. A total of 278 and 254 modes were used in the modal
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analysis for source and receiving rooms respectively. The first three predicted natural
frequencies and modes for the source room were 65 Hz, 68 Hz and 74 Hz, which
correspond to the modes (0,1,0), (0,0,1) and (1,0,0) respectively. For the receiving 4room,
the first three predicted natural frequencies and modes were 68 Hz, 68 Hz and 81 Hz,
which correspond to the modes (0,0,1), (0,1,0) and (1,0,0) respectively. For the partition,
a total of 8 modes were incorporated. As mentioned previously, the first three natural
frequencies and modes, considering a simply-supported partition, were about 37 Hz, 92
Hz and 92 Hz, which corresponded to the modes (1,1), (1,2) and (2,1) respectively. The

critical frequency for the partition was approximately 3190 Hz.

One of the most important checks for any experimental test is the one which tests the
repeatability of a set of measurements. Repeatability is defined as the closeness of
agreement between uncorrelated test results obtained under the same laboratory,
equipment set-up and methodology [34]. Although the repeatability parameter defined in
ref. [34] has not been directly calculated here, confidence intervals derivable from a set
of 10 measurements were considered for each one-third octave frequency band (see
Figures 3.32-3.34). It is seen that the confidence interval for the SPL measured in the
source and receiving room indicates that greater variations from the mean value occur in
the receiving room. This higher variance may be due to variations in temperature and/or
changes in the setup conditions in order to measure the response at different points. In
addition, lower signal levels are generally difficult to measure accurately because of the

contribution of background noise.

The sound pressure was measured using microphones in the source (at positions Pi-Pg)
and receiving rooms (at positions P”; and P”;). Figures 3.35-3.42 show a comparison
between the measured and predicted sound pressure levels (dB re 2x107 Pa) at eight

different positions in the source room.

For the narrow band results, a reasonable agreement is obtained between the curves at
very low frequencies. Although the predicted and the measured values at the corner
positions in the source room show good agreement, especially at very low frequencies, a
shift in level between the measurements and simulations occurred as the frequency
increases. In general, the curves followed similar trends over most of the frequency
range, similar to the single room model. The resonance peaks can be reasonably well
identified within the frequency range considered. On the other hand, at frequencies

greater than about 250 Hz, the resonance peaks begin to overlap.
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For instance, at position 6 (Figure 3.40) the first resonance peak is at about 68 Hz, which
corresponds to second acoustic mode (0,0,1) in the source room. The second peak is at
about 75 Hz, which corresponds to the third acoustic mode (1,0,0). At position 7 (Figure
3.41), which is in the middle of the room, the pronounced peak at 131 Hz corresponds to

the first acoustic symmetric mode (0,2,0).

In summary, for the results in one-third octaves, it is seen that between 50 Hz and 100
Hz, a variation of about 10 dB is obtained between the curves. On the other hand, above

150 Hz, a maximum difference of 5 dB is obtained for most positions.

Figures 3.43 and 3.44, which present the Power Spectrum in terms of sound pressure for
the receiving room, show poor agreement between the predicted and measured responses
for some parts of the spectrum. It appears that those discrepancies are closely related to
the structural response of the partition. The generally weak measured response of the
acoustic field in the receiving room can be explained by the fact that the antisymmetric
modes have not been sufficiently excited due to the partition position in the middle of the

separating wall, which corresponds to a pressure node of those modes.

The deviation of the predicted values from those obtained experimentally may also be
due to the poor signal-to-noise ratio values obtained. Moreover, the difficulty in
assessing the absorption and the flanking paths for the vibration transmission might have
contributed to the poor agreement between the measured and predicted response in the
receiving room. For the results in one third octave bands, it is shown that a maximum
difference of about 15 dB was found between the measured and predicted results in

frequency bands above 100 Hz.

Figures 3.45 and 3.46 present the variation of the sound pressure level values averaged
over all microphone positions for the source and receiving rooms respectively. A
reasonable agreement between the measured and predicted values can be observed over
most of the higher frequency range in the source room. Conversely, below 100 Hz,
significant variations were obtained. Comparing Figures 3.45 and 3.26, it is seen that
better agreement between measured and predicted values are evident for the single room
model (Figure 3.26). It can be explained by the fact that it is a simpler model, so that no

structural coupling or damping effects are involved into the calculations.

Figure 3.47 shows a comparison between the predicted and measured Noise Reduction.
A maximum difference of 15 dB occurs between the measured and predicted results.

Between 63 Hz and 100 Hz, a difference of less than about 2 dB is noted in one-third
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octaves. It is seen that between 100 Hz and 150 Hz a maximum difference of about 5 dB
is found. On the other hand, between 150 Hz and 250 Hz, a maximum difference of
about 9 dB is obtained. The main reason for discrepancy within the frequencyArange
considered was due to the poor signal-to-noise ratio in the receiving room, which limited

the highest levels of NR that could be observed compared to the predicted values.

3.5 — Experimental determination of the partition normal velocity

Craik [31] theoretically investigated the influence of the partition boundary conditions on
the sound transmission. It was found that the resonant transmission contribution below
the critical frequency was substantially affected by the partition boundary conditions. In
addition, the larger the panel surface area, the lower the transmission due to resonant

vibration [54].
3.5.1-Description of the test set-up

Measurements of the frequency response of the partition were made in order to compare
it with the theoretical results available from the modal model. As the partition was
excited at frequencies below its critical frequency, the response mechanism was
characterized by the propagation of forced-bending waves. In other words, the non-
resonant forced vibration dominates the sound transmission mechanism. Moreover, the
partition was acoustically excited rather than being excited by mechanical forces.
Therefore, the radiation efficiency of a partition is greater than that when mechanical
excitation is considered [5]. Thus, the mass of the partition was the most important

parameter affecting the sound transmission.

The vibration measurements of the surface velocity were made by using a Polytec
Scanning Laser Doppler Velocimeter (SLDV). The SLDV measurement set-up consisted
of a scanning head and a vibrometer controller as shown in Figure 3.48. The whole area

of the loudspeaker and partition were scanned in a relatively short time.
3.5.2 —Results

A total of 8 modes were selected for the simulation of the partition response. The
partition critical frequency was about 3190 Hz. Figure 3.49 shows the location of the
scanning points at which the partition normal velocity was measured. Figure 3.50 shows

the mean square normal velocity distribution over the partition in the one-third octave
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band with centre frequency equal to 100 Hz. According to the figure, it appears to
represent the second inoede of the partition. Figure 3.51 shows the partition normal
velocity spectral amplitude over the whole frequency band and the clear dominance of

the 80 Hz and 100 Hz contributions.

Figure 3.52 shows a comparison between the measured and predicted mean square
normal velocity levels (in dB re 10 m/s). It is seen that the resonance frequencies
obtained experimentally are slightly shifted from those obtained via theoretical
simulation at low frequencies. In addition to that, it is clear that the measured frequency
response curve shows the contribution due to the resonance frequencies of the room
modes. For instance, Figure 3.52 shows a peak at 74 Hz, mode (1,0,0) of the source
room. The degree of coupling between the partition velocity and the acoustic pressure
modes in the rooms reflects the amount of energy that can be exchanged between these
subsystems. Additionally, Figure 3.53 shows the results in one-third octave bands. It is

seen that there is gencrally good agreement between the predicted and measured

velocities.

The partition edge condition considered in the modal model was simply supported,
which allows rotation of the edges. However, the plasterboard panel used in the
experimental test was mounted in the opening using a thick layer of plasticine (£ 10 mm)
for sealing the edges at the perimeter of the partition. Thus, by analyzing the results
obtained, an effect could be due to the change of edge conditions from simply-supported
to any other condition, perhaps a mixed edge condition, as it is suspected that the

plasticine provides less constraint than the simply-supported case.

It is also known that if the edges were clamped the radiation efficiency would be higher
at frequencies below the panel critical frequency. This is equivalent to an enhancement
factor of four for the resonant contribution of the power flow [16]. The influence of the
recessed depth, which depends on the position of the test specimen in the opening, is an
important factor that has not been considered on the simulations (for the measurements
made in the ISVR teaching laboratory, this depth was equal to 40 cm). Nevertheless, in
the frequency range considered it is unlikely that the partition edges or recess has had
any significant effect on the results. Alternatively, the problem with poor signal to noise
ratio in the SLVD might have influenced the actual accuracy of the structural response

measurements.
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3.6 — Conclusions

Experimental test data has been compared with the predictions of the theoretical modal
model developed previously for assessing the sound transmission mechanism between
two rectangular rooms at low frequencies. The material properties of the partition and
sound absorption for the rooms were measured within reasonable experimental accuracy.
The values obtained were subsequently taken into account in the simulations. In addition,
preliminary sound field measurements in a single-room were made before tests on the
coupled two-room model. Good agreement between the modal model and measurements
were found for this case. Finally, the experimental investigation considered a room-plate-
room configuration, for measuring sound transmission through a plasterboard partition

and partition response at low frequency.

According to the findings, it is evident that the partition response was strongly affected
by the modal characteristics of the rooms. For instance, Figure 3.52 shows a peak at 74
Hz, which is the natural frequency corresponding to the mode (1,0,0) for the source
room. In addition, it seems that the partition edge condition, in particular the mounting of

the specimen and the test aperture, might have affected the noise reduction.

It appears that the comparison and validation of the sound transmission model has been
clearly influenced by other factors such as a poor signal-to-noise ratio for measurements
made in the receiving room, the difficulty of measuring absorption at low frequencies,
etc. According to Lang [24], when a random noise source and a real-time analyzer are
both used for sound pressure measurements, the background noise can significantly

influence the results, especially in the cases of high sound insulation.

At low frequencies (below 125 Hz), the NR values in one-third octaves show reasonable
agreement between the measured and predicted results. However, when a direct
comparison of the sets of data is made at frequencies greater than 150 Hz, differences of

up to 9 dB are found in terms of the NR results.

Therefore, despite the poor signal to noise ratio for practical purposes, the results of this
chapter have shown that the conventional theoretical model, developed in chapter 2 gives
acceptable results for further investigation of sound transmission in buildings, for

example the effect of panel size, position and room geometries.

97



Chapter 3. Experimental Investigation of Acoustic Transmission

Tables

Coordinates X (cm) | Y (cm) | Z (cm)

Mic. position 1 (P;) | -70.0 70.0 181.0

Mic. position 2 (P,) | -70.0 70.0 70.0

Mic. position 3 (P3) | -70.0 | 192.0 | 70.0

Mic. position 4 (P4) | -168.0 | 70.0 181.0

Mic. position 5 (Ps) | -168.0 | 192.0 | 70.0

Mic. position 6 (Pg) | -168.0 | 192.0 | 181.0

Table 3.1: Coordinates of the microphone positions inside the source room where the sound
pressure levels were measured — (One-room modal model). The origin of the coordinate system

(x,y,z) is defined in Figure 3.5.
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Coordinates X(cm) | Y (cm) | Z (cm)

Mic. position 1 (P;) | -70.0 70.0 70.0

Mic. position 2 (P,) | -70.0 | 186.0 | 70.0

Mic. position 3 (P3) | -70.0 186.0 | 181.0

Mic. position 4 (P4) | -168.0 | 70.0 | 181.0

Mic. position 5 (Ps) | -168.0 | 186.0 | 70.0

Mic. position 6 (Pg) | -168.0 | 186.0 | 181.0

Mic. position 7 (P7) | -115.0 | 129.0 | 125.0

Mic. position 8 (Pg) | -35.0 | 129.0 | 125.0

Table 3.2: Coordinates of the microphone positions inside the source room, where the PSDs of

sound pressure were obtained — (Two-rooms modal model)

Coordinates X(cm) | Y (cm) | Z (cm)

Mic. position 1 (P”;) | 70.0 70.0 70.0

Mic. position 2 (P”;) | 168.0 | 70.0 70.0

Table 3.3: Coordinates of the microphone positions inside the receiving room where the PSDs

of sound pressure were obtained — (Two-rooms modal model)
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1/3 octave frequency bands — (Hz) | RT; (s) | RTx(s)
63 1.6 1.1
80 29 0.9
100 1.5 0.9
125 1.4 1.1
160 1.9 0.8
200 24 1.1
250 1.9 1.1
315 24 1.6

Table 3.4: Reverberation time RT; and RT; for the source and receiving rooms respectively.

The values are quoted in 1/3 octave bands.
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Figures

b=0.1m
— ‘_%_’
L=03m [ Jh=00im
Support-1 Support-2 Sampls erossRstion
Accelerometer Test sample
' ] [ Impact hammer
— PR t 8202
21710 21710 e
HP Acquisition
type 35650

Figure 3.1: Instrumentation used to measure damping constant and the Young’s modulus

on a freely suspended beam using the decay time technique [48].
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Figure 3.2: Instrumentation used to measure the frequency response of the partition in-
situ via a simple tap test. The total loss factor is obtained by using the half-power

bandwidth technique [48].
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Figure 3.3: Measurement of structural damping for a plasterboard beam. Typical

transient excitation (a), response time history (b) and a transfer function (TF) derived

from them using Fast Fourier Transform (FFT) ratio (c). The Hilbert Transform (HT) of

the response is also presented (d).
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Figure 3.4: Frequency response of the plasterboard (in situ) due to an impact excitation.
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Figure 3.5: Instrumentation used to measure the Reverberation Time of rooms.
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Figure 3.6: Typical decay curves obtained at the one-third octave band centre frequencies
63 Hz , 80 Hz , 100 Hz, 125 Hz, 160 Hz, and 200 Hz for the source room. Hilbert

Transform (HT) of the Impulse Response is subjected to the best fitting straight line.
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Figure 3.7: Typical decay curves obtained at the one-third octave band centre frequencies

250 Hz, 315 Hz and 400 Hz for the source room. Hilbert Transform (HT) of the Impulse

Response is subjected to the best fitting straight line.
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Figure 3.8: Typical decay curves obtained at the one-third octave band centre frequencies
63 Hz, 80 Hz, 100 Hz, 125 Hz, 160 Hz, and 200 Hz for the receiving room. Hilbert

Transform (HT) of the Impulse Response is subjected to the best fitting straight line.
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Figure 3.9: Typical decay curves obtained at the centre frequencies 250 Hz, 315 Hz and

400 Hz for the receiving room. Hilbert Transform (HT) of the Impulse Response is

subjected to the best fitting straight line.
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i HP Pass band filter Random noise
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Figure 3.12: Experimental setup for the laboratory measurements of source volume

velocity, Sound Pressure Level (SPL) and acoustic transfer impedance (single-room

model).
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Figure 3.13: Coherence for the transfer function H;, which relates the velocity of the

speaker to the voltage fed to it.
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Figure 3.14: Experimentally measured transfer function Hj, which relates the velocity of

the speaker to the voltage fed to it.
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Figure 3.15: Experimentally measured vibration volume velocity of the loudspeaker.
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Figure 3.16: Variation of the velocity over the loudspeaker cone at 100 Hz frequency

band (picture obtained from the Polytec Scanning Vibrometer software 7.1).
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Figure 3.17: Variation of the vibration velocity amplitude over the loudspeaker cone at

200 Hz frequency band. (picture obtained from the Polytec Scanning Vibrometer

software 7.1).
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Figure 3.20: Comparison between measured and predicted sound pressure levels (dB re

2x107° Pa) at position 1 for the single-room model; a) narrow bands; b) one third octave

bands; measured; ----- predicted
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Figure 3.21: Comparison between measured and predicted sound pressure levels (dB re

2x107 Pa) at position 2 for the single-room model; a) narrow bands; b) one third octave

bands; measured;

predicted
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Figure 3.22: Comparison between measured and predicted sound pressure levels (dB re
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Figure 3.24: Comparison between measured and predicted sound pressure levels (dB re
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Figure 3.25: Comparison between measured and predicted sound pressure levels (dB re

2x107 Pa) at position 6 for the single-room model; a) narrow bands; b) one third octave

bands; measured; ----- predicted
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Figure 3.26: Summary of the SPL (dB re 2x10” Pa) at six different positions and the
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Figure 3.27: Comparison between measured and predicted spatial-averaged sound

pressure levels (dB re 2x107 Pa). measured; ------ predicted
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Figure 3.28: Experimental setup for the laboratory measurements of FRFs and Noise

Reduction (NR).
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Figure 3.31: Typical measurement of the SPL in the receiving room (dB re 2x107 )

compared to the measurement of the background noise in the room. Spatially

averaged measurement; ----- noise
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Figure 3.35: Comparison between measured and predicted sound pressure levels (dB re
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Figure 3.36: Comparison between measured and predicted sound pressure levels (dB re

2x10° Pa) at position 2 for the source room; a) narrow bands; b) one third octave bands;

measured; ----- predicted
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Figure 3.37: Comparison between measured and predicted sound pressure levels (dB re
2x10” Pa) at position 3 for the source room; a) narrow bands; b) one third octave bands;

measured; ----- predicted
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Figure 3.38: Comparison between measured and predicted sound pressure levels (dB re
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Figure 3.39: Comparison between measured and predicted sound pressure levels (dB re

2x107 Pa) at position 5 for the source room; a) narrow bands; b) one third octave bands;

measured; ----- predicted
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Figure 3.41: Comparison between measured and predicted sound pressure levels (dB re

2x107° Pa) at position 7 for the source room; a) narrow bands; b) one third octave bands;

measured; ----- predicted
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Figure 3.42: Comparison between measured and predicted sound pressure levels (dB re

2x107 Pa) at position 8 for the source room; a) narrow bands; b) one third octave bands;

measured; ----- predicted
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Figure 3.43: Comparison between measured and predicted sound pressure levels (dB re
2x107 Pa) at position 1 for the receiving room; a) narrow bands; b) one third octave

bands; measured; ----- predicted
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Figure 3.44: Comparison between measured and predicted sound pressure levels (dB re

2x107 Pa) at position 2 for the receiving room; a) narrow bands; b) one third octave
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Figure 3.45: Comparison between measured and predicted sound pressure levels (dB re
2x107° Pa) averaged over all positions for the source room; a) narrow bands; b) one third
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Figure 3.46: Comparison between measured and predicted sound pressure levels (dB re

2x10” Pa) averaged over all positions for the receiving room; a) narrow bands; b) one

third octave bands; measured; ----- predicted
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Figure 3.48: Experimental setup for the laboratory measurement of partition velocity.
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Chapter 4

SOUND TRANSMISSION SENSITIVITY AND VARIABILITY
USING THE MODAL MODEL

4.1 — Introduction

Whilst most predictions in building acoustics and design invariably use published and
readily available models, some attempt to quantify confidence limits that cover most
cases would be invaluable. For instance, the parameters (e.g. room dimensions, panel
position, room absorption, etc.) are shown to have a substantial effect on the Noise
Reduction (NR) and Coupling Loss Factor, the latter being a very important factor for
predicting sound transmission using Statistical Energy Analysis (SEA) [8]. These

considerations are discussed in detail in the following sections.

The main goal of this Chapter is to examine the variability of the Noise reduction
difference and CLF to some architectural parameters via a parametric study. This study is
aimed at providing not only a better understanding of the sound transmission mechanism
in itself but also to produce a useful set of data which for instance can be used by
acousticians as input data for a SEA analysis. This data might be useful for optimizing
sound insulation in buildings at low frequencies, where the modal behaviour of rooms

strongly influences the transmission.

This Chapter is organized as follows. Firstly, a parametric study of the influence of the
source and receiving room dimensions on the Noise Reduction (NR) is investigated in
section 4.2 (see Figures 4.1, 4.2 and 4.3). Next, the effects of room absorption on
transmission is considered and discussed in section 4.3. Then, the influence of different
panel positions in the common wall between rooms (see Figure 4.4) on NR is considered
in section 4.4. Finally, in section 4.5, the equivalent CLF is evaluated on the basis of

SEA assumptions and the influence of modal density and modal overlap is considered.

The results that are discussed in this Chapter were obtained via simulations using the
modal model developed in Chapter 2. The analysis is based on considering the influence

of some variations in the ‘input’ parameters, which are required in the pre-processing
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stage of a numerical experiment, and on the subsequent sound transmission mechanisms

of typical building configurations.

4.2 — The influence of room dimensions on sound transmission

In this section, the influence of the room dimensions on the NR has been considered.
Numerical experiments were made using sets of simulations, which follow a pre-
established analysis pattern. In other words, this analysis was based on the variation of a
particular geometrical parameter whilst keeping the others unaltered. Thus, the
assessment of the variability and sensitivity of transmission efficiencies to a chosen
parameter can be made. In general, there will be some inter-dependence but this is

outside of the scope of this initial investigation.

Firstly, the variation of NR with the ratio of the receiving room height to the source room
height is considered. In order to perform the simulations, usually an initial model ought
to be defined a priori. The baseline model was defined as two dissimilar rooms separated
by a common elastic partition over the whole interface. The thickness of the partition
was 0.01m. The density and Young’s Modulus of Elasticity were 806 kg/m’ and
2.12x10° N/m? respectively. The critical frequency of the partition was 3815 Hz. The
reverberation time for the source and receiving room surfaces was chosen as an averaged

value of Ty, =1.0s. In terms of damping values this represents a total loss factor equal
to n=2.2/ fT,,; where fis the corresponding centre frequency of a particular one third

octave band. A source of unit volume velocity was located at position (-Ly;, 0,0) where

Ly, is the depth of the source room.

The continuous solid and dashed lines (shown in Figures 4.1, 4.2 and 4.3) represent the
initial and modified configurations respectively. A total number of 11 iterations were
made in order to simulate the original (solid line) and modified models in each case. The
models were obtained by logarithmically varying one dimension at a time (height, width
or depth of room 2) whilst keeping the others unaltered. For the baseline model, a total
number of 48, 35 and 97 modes were used for room 1, room 2 and partition respectively.

The frequency range and volume sizes considered dictated the choice of the number of

modes used.
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Figures 4.5 (a) and (b) show the variation of the difference between the diffuse incidence
Noise Reduction NR,, (obtained from the Mass Law Theory - equation (2.6)) for an
infinite panel with frequency for distinct heights of room 2 (see Figure 4.1) aﬁd the

‘actual’ Noise Reduction NR? . . The analysis was performed in one-third octave bands

modal *

(from 20 to 250 Hz). In this frequency range, a total number of 287 modes were used for

the greatest height of room 2, i.e. L,» =18 m. The Noise Reduction values NR. ., and

NR21

modal

, were calculated for constant volume velocity source located in room 1 (where

the height was kept fixed) and room 2 respectively. The variation of the parameters with

the receiving room height is given in Table 4.1.

The ‘actual’ Noise Reduction NR! ,, was obtained by predicting the sound pressure

modal

level difference between the source and receiving rooms. The diffuse field Noise
Reduction NR,, is defined in refs. [2,18], and likewise it was obtained using equations
(1.1) and (2.6). The mean calculated normalized levels lie below 0 dB within most of the
frequency range for all room configurations. This fact was predictable at low
frequencies, where the diffuse incidence Mass Law overestimated the transmission
efficiency due to the assumption of diffuse field behaviour in the source room. Hence,
both results that are referenced to the Mass Law show convergence being achieved in the
frequency range under investigation, especially at high frequencies where the agreement

is fair.

The calculated ‘Schroeder’ frequency (see equation (2.1)) given in Table 4.1 was greater
than the highest 1/3 octave band centre frequency considered in all model configurations.
Therefore, the predicted system response in all cases was strongly influenced by

individual modes of the rooms.

At very low frequencies, a significant variation in the NR differences occurred between
the configurations. On the other hand, as the frequency increased the differences were
significantly reduced. As it is known, the influence of room dimensions on sound
transmission is generally less significant when the acoustic wavelengths are in the order
of or smaller than the room dimensions. Consequently, the pressure variation tends to

become smaller over the whole acoustic volume of both source and receiving rooms.

By comparing Figures 4.5 (a) and (b), it is seen that the variation of the height of the
receiving room had a significant effect on the sound transmission primarily at low

frequencies. On the other hand, in general the variation of the height of the source room
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(room 2) did not alter the Noise Reduction NR?!  substantially. This result is consistent

modal
with the findings on structure-borne sound transmission proposed by Craik ef al [61]. It
was hypothesized that the Coupling Loss Factor (CLF) varies with the mobility of the
receiving subsystem, not that of the source subsystem. In other words, the modal
properties of the source subsystem do not seem to have as much influence on the sound
transmission mechanism. If one examines the results above 80 Hz, where modes of both
rooms exist, then the variation in the transmission is similar and it is not so obvious that

the source subsystem can be neglected when examining the variability.

In Figure 4.5 (a), there is a significant variation of the NR differences in the frequency
range 31.5-80 Hz. It is also seen that above 80 Hz, which is also the fundamental natural
frequency of the room 2 for the baseline model, the differences between configurations
were sharply reduced. The acoustic wavelength assumed values smaller than the room
heights. In this situation, the geometry of room 2 had no influence on the interaction
between modes and therefore the system behaved like two similar rooms. Figure 4.5 (b)

shows that the highest value of the NR difference (and consequently the lowest value for
NRZ ) is in the 63 Hz band centre, which is approximately the fundamental frequency

of room 1. It is also evident that for identical rooms, which have similar resonance

frequencies and eigenfunctions, the NR difference is much higher.

Likewise, Figures 4.6 (a) and (b) show the variation of the NR differnece obtained when
considering Leppington’s approach [16]. The results are on average higher than those
using the Mass Law approach (Figures 4.5 (a) and 4.5 (b)). This indicates that the effect
of considering panel dimensions on predicting the results, as considered in ref. [16], was

significant in the low frequency ranges.

Figures 4.7 (a) and (b) show the variation of the NR difference values predicted using the
modal model to those obtained via the Mass Law whilst varying the width of room 2
from 2.0 to 20.0 m (see Table 4.3). A total number of 290 modes were selected for the
greatest width, which was equal to 20.0 m. For all cases the depths and heights of rooms

were kept constant (see Figure 4.2). Different configurations of the receiving room were

important on predicting NR!2  at frequencies below 100 Hz. Above 100 Hz, there was

moda

not much change from Figure 4.7 (a) to 4.7 (b) in terms of NR levels. A maximum

difference of 5 dB is found as frequency increases.
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Figure 4.8 presents the variation of the results using Leppington’s approach. As
mentioned above, the results (in terms of the NR differences) using Leppington’s

approach tended to be greater than those obtained via the diffuse incidence Mass Law

theory.

Figure 4.9 and 4.10 show the variation of the NR differences for different values of depth
ratio (see Table 4.4) compared to the ‘Mass Law’ and Leppington’s formula respectively.

For the greatest value for the depth, a total number of 290 modes was used in the

12
modal

calculations. It is seen that below about 80 Hz, the results for NR present differences

up to about 20 dB. Above 80 Hz, the differences are reduced to less than 10 dB. At the
higher frequencies, the acoustic wavelengths were less than the room depths. In this
situation, the geometry of the ‘corridor’, which is usually used as a mean of connecting
rooms in a real building, did not have such a strong influence on the interaction between

the modes and therefore the system behaved like two similar rooms. Furthermore, the

variation of the results in terms of the Noise Reduction NR2! = was less than about 10

dB over the whole frequency range. This fact indicates once again that the power

transmission between subsystems is most dependent on the characteristics of the receiver

for the low frequencies.

In summary, the predicted values depend on how well the modes of both subsystems are
coupled to each other. This can be justified by some examples presented in Chapter 2
where higher NR values were obtained for poor coupling between the subsystem modes
at the interface. As mentioned previously, similar room volumes yield identical natural
frequencies and mode shapes, which lead to a strong geometrical coupling in addition to
frequency matching. For instance, in Figure 4.5 poorer sound insulation is clearly

observed when L, =L, at 250 Hz. Conversely, higher sound insulation is obtained

when mismatching of modes occurs in the case of considering two geometrically

different rooms coupled together.

4.3 — The influence of room absorption on sound transmission

In this section, the influence of room absorption on sound transmission is investigated

using the same baseline model defined previously.
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Figures 4.11 and 4.12 present the variation of the NR differences for the baseline model
when the Reverberation Time of room 2 (T,) took different constant values from 1.0 s to
0.2 s over all frequencies. In Figure 4.11 (a), the normalized transmission ratio levels
increase with absorption at frequencies below 80 Hz. Variations of less than 10 dB are

found. However, there is no significant variation at higher frequencies.

At high frequencies (above the Schroeder frequency) when the reverberation time is
decreased, the modal overlap factor is increased and vice-versa. This results in a higher
probability of better coupling between individual modes and therefore lower sound
insulation. However, the first natural mode for the receiving room is at 85 Hz, so that
below 85 Hz the variation of the NR difference with frequency was mainly due to the use
of equation (2.49) in which a diffuse field condition is assumed. It relates the damping

for the receiving room to the SRI values.

The variation in the absorption of the source room did not have significant influence on
the sound insulation (see Figure 4.11 (b)). Whilst the modal damping of the source room
was increased, the modal properties of the receiving room remained practically
unaltered. Although higher absorption exists in the source room, resulting in lower sound
intensity on the partition, the proportion of this power transmitted appears to be

unaffected.

Figures 4.12 (a) and (b) show the variation of the NR difference with frequency for
different values of T, compared to Leppington’s formula. Although the plots show
similar trends compared to those presented in Figure 4.11, higher values of the NR

difference are found when frequency increases.

4.4 — The influence of panel position on sound transmission

The sensitivity of the NR relative to a flexible panel position, with the rest of the
common wall rigid, is shown in Figure 4.13 and 4.14 compared to the diffuse incidence
Mass Law [14,18] and Leppington’s prediction [16] respectively. A total number of 10
structural modes were considered for the simply-supported panel with dimensions 0.6m
x 0.8m. The thickness of the partition was 0.0/m. The density and Young’s modulus of
elasticity were 806 kg/m® and 2.12x10° N/m? respectively. The reverberation time for
both the source and receiving room were constant and equal to 1.0 s. The predicted

fundamental natural frequency for the simply supported panel was 32.9 Hz.
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The results presented in Figures 4.13 and 4.14 show similar trends over the frequency
range considered. Nevertheless, the results shown in Figure 4.14 are on average about 6
dB higher than those presented in Figure 4.13 over most of the frequency range. It might
be explained by the influence of the panel surface area on the transmission efficiency
which is taken into account in the Leppington’s formulation. The first distinct peak in the
NR difference levels was observed at about the fundamental natural frequency of the
panel. It is known that at a panel-controlled resonance, the transmission efficiency is not

dependent on the room acoustic impedance, but upon geometrical coupling factors.

At low frequencies, the spatial distribution of room modes varies mainly along
preferential directions (e.g. the x axis direction perpendicular to the panel). Below 80 Hz,
the NR difference curve (Figures 4.13 (a) and 4.14 (a)) does not exhibit distinct
differences whilst varying the panel position. This is understandable as the fundamental
frequency of room 2 is 85 Hz. When panel-controlled modes are excited below the room-
controlled modes, the Mass Law behaviour may tend to dominate the transmission.
However, for the opposite situation, when the panel-controlled resonance frequency is
higher than the room-controlled resonance frequency, non-resonant panel stiffness

behaviour may then dominate [60].

For the panel at the corner (position P,), where the tangential modes in the receiving
room were fully excited, higher values of transmission occurred. As mentioned in
Chapter 2, it is dependent on the degree of geometric coupling between the structural and
acoustic modes. When the frequency increased, oblique modes tended to be dominant in
the rooms and the difference between the panel positions became less important on the

sound insulation.

Figure 4.15 shows the contribution of a particular mode ‘n’ to the total spatially averaged
mean square pressure in the receiving room for different values of panel position on the
common wall. The results are presented in terms of the ratio of the spatially averaged
mean square pressure of mode ‘n’ to the total spatially averaged mean square pressure.
Figures 4.15a and 4.15b show the results obtained using 1/3 octave bands with centre
frequencies at 125 Hz and 200 Hz respectively. Figure 4.15a shows that the uncoupled
modes (1,0,1), (0,1,1) and (1,1,0) have the most significant contribution to the spatially
averaged mean square pressure in the receiving room in the lower of the two bands. For

instance, the greatest contribution is due to the (0,1,1) mode when the panel is at position
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P;. On the other hand, Figure 4.15b shows that for the panel at position Pg, the uncoupled

(1,2,0) mode is the main contributor in the one-third octave band centred at 200 Hz.

In summary, transmission behaviour becomes complex and dependent on panel position.
With the panel located at the centre of the common wall, only few structural modes were
excited. However, as the panel location was moved into the corner of wall, most of its
even and odd modes were excited. This occurred because of the response of a large
number of in vacuo panel modes to oblique fields excited by the point source. Similarly,
the reduction or increase of the coupling between the source room and panel, depending
upon panel location, is also replicated in the coupling between the panel and the

receiving room.

4.5 — Comparison of the transmission variability with published results

on Coupling Loss Factor variability

4.5.1 — Introduction

Generally, the sound transmission mechanism in a real building involves a great number
of different and complex transmission paths. In Statistical Energy Analysis (SEA) these
paths are classified as direct and flanking paths [62]. In this section, only the direct
transmission is considered in the implemented SEA model, so that the problem was
described as one room emitting noise and another room receiving it. Thus, in this section
a limp panel model with nominal density equal to 8.1 kg/m? is considered. The thickness

of the partition was 0.0/m. A Reverberation Time 75y =1s was considered herein.

The spatial averaged, time averaged energy for each acoustic subsystem was evaluated
from this baseline model, which consisted of two rooms coupled by a limp partition.
Later on this Chapter, one can see that it was necessary to use a limp panel model, so that
some parameters (in terms of CLF variability) defined in the literature could be used

herein for comparison.

The performance of a building can be predicted by a basic SEA technique, which is
described in refs. [8] and [63]. The power flow between SEA subsystems can be
described by the coupling between them that takes places at their boundaries. For
instance, the fraction of maximum stored energy of subsystem 1 transmitted to

subsystem 2 per cycle is 271,,, where 7,, is the Coupling Loss Factor (CLF). This is
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defined in the similar way to the definition of the loss factor # of a subsystem, namely
27tn is the fraction of the maximum stored energy which is lost or dissipated per cycle.

This can be lost through mechanical and thermal means or can take into account losses

due to other subsystems, which have not been explicitly defined.

4.5.2 — The SEA model

The aim of this section is to make an initial parametric investigation for the CLFs and
then compare their variability with theoretical upper and lower bound curves previously
presented in the literature [58]. Thus, the usefulness of SEA as a framework of analysis

can be assessed by the estimation of variance and confidence intervals.

The simplest method of estimating the CLFs is presented here for the sake of simplicity
and in order to provide results that can be compared with published data [58]. Therefore,
the main assumption here is that there are only two subsystems in the SEA model, which
correspond to the source and receiving rooms. It seems that this assumed condition is
reasonable, as the non-resonant transmission or forced transmission is the most important

contribution to the transmission mechanism.

In SEA modelling, one of the most important parameters is the modal density. It is

defined as the number of modes that lie in an increment of frequency. For instance, the
modal density for a standard room is given by [§]
dnf*V  mfS’ L

n = -+ + (41)

) c) 2¢2 8¢

o

o

where V is the room volume, S’ is the total surface area of the room and L’ is the total
perimeter of the room. Table 4.1 shows the variation of the modal density for room 2 in
the one-third octave band with centre frequency at 250 Hz. The modal density for room 1

was equal to 0.419 in the same frequency band.

According to Figure 4.16, the power balance equations for the two coupled rooms (which

are represented by the subscripts 1 and 2) and excited one at a time are then given by

[64]

P, = B}diss +P, = CU(771E11 +1,E] _H;IE;) (4.2)

Lin

0= le,diss + PZII = w(anzl + 77;1E; - 77112E11) 4.3)
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Pz%m = PZ?:ziiss + Pzzx = 60(772E22 + 77221E22 "77122E12 ) 4.4)
O:Pl,zdiss +I)l§ :w(nlE12 +n122E12 ~n§1E22) (4‘5)

where 7, is the Internal Loss Factor for each subsystem, E; is the spatial averaged, time
averaged energy in subsystem i. 7, is the Coupling Loss Factor from subsystem i to

subsystem j. @ is the angular frequency in radians per second. Py, and P;, are the time
averaged dissipated and input powers respectively. P; is the power transmitted from
subsystem i to subsystem j. The superscripts 1 and 2 indicate in which subsystem the

excitation is applied separately one at a time.

Therefore, by assuming that 77,; :775. and according to the concept of power injection
method [65], the ‘effective’ Coupling Loss Factor 7, for two conservatively coupled

subsystems 1 and 2 carn: be obtained by rearranging the equations (4.3) and (4.5) as

-1
El _ El 1
Tal L] B B e (4.6)
The spatial average time averaged energy for an acoustic subsystem i can be obtained

according to the general expression [8]

( 2>§/ @4.7)
PoCo

I

where V; is the volume of subsystem i and <ﬁf> is the spatial averaged mean square

pressure in subsystem i. This has been obtained by using the modal model derived in
Chapter 2, which was modified to calculate the coupling between the volumes by a limp

panel. The calculations were run with no dissipation in the limp panel.

Likewise, the damping Loss Factor of a particular acoustic subsystem i may be

approximated by the expression [8]

g, =28 (4.8)
wTGO,i

where T, is the Reverberation Time for subsystem i. For the SEA simulations T, was

constant and equal to 1.0 s. Equation (4.8) is a general expression for the total loss factor
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which only gives the damping loss factor for weakly coupled systems (i.e. CLFs <<
internal loss factor) as measurements for the Reverberation Time will normally include
some effect of dissipation from other subsystems connected to the volume. Therefore, a

value of Typ was set and then used to infer the damping loss factor.

Although the CLFs are only defined for finite systems, an expression for the CLF of
‘semi-infinite’ acoustic subsystems can be obtained by assuming diffuse field conditions

in both rooms. In addition, it is assumed that there is direct transmission between rooms,

where forced transmission is the most important contribution. Thus, the CLF 7, from

subsystem 1 to subsystem 2, is given approximately by [8]

c. St
<G 4.9
T 4aV, (4-9)

where 7, is the diffuse transmission efficiency obtained via Mass Law theory described

previously. V; is the volume of the source room and S is the partition area.

The Coupling Loss Factor 77, can also be obtained from 7,, by the consistency

relationship [64]
M =07y (4.10)

where n; and n, are the modal densities (see equation (4.1)) for subsystems 1 and 2

respectively.

The variability of the CLFs with the subsystem properties in SEA models have been
recently studied by Park et al [58]. A sensitivity analysis was performed using an
analytical model for two coupled plates. The Dynamic Stiffness Method was used in the
evaluation of their model. Thus, an ‘empirical model’ for the variability of CLF (o?)

was derived for two coupled finite plates according to the expression [58]

ol = 6 : (4.11)
Mcomb t Ncomb /16
2M.M
comp T 4.12)
M,+M,
2N.N
comp =2 (4.13)
N,+N,
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where 67 is the variance of the dB values; M, and Neomp are the combined modal
overlap factor and number of modes respectively. M, and M, are the modal overlap
factors for subsystems 1 and 2 respectively. They are defined as the ratio of the modal
bandwidth to the average frequency spacing between modes [8]. Similarly, N; and N, are

the mode counts for subsystem 1 and 2.

4.5.3 — Results

Results were obtained in terms of the variation of the CLF ratio with the combined
modal overlap factor M., for different room configurations. The numerical frequency
range covered was 0 to 300 Hz, although the results are only plotted at values where at
least one non bulk mode exists in either room. Firstly, the CLF ratio, in Figures 4.17-
4.21, was defined as the ratio of the ‘effective’ coupling loss factor (equation (4.6)),
obtained for a particular system configuration, to the averaged ‘effective’ CLF, which
was obtained by considering the mean value over all of the different configurations of a
particular parameter, e.g. the height ratio of the rooms. The results were calculated in sets

of one-third octave bands.

Secondly, the CLF ratio, in Figures 4.22 and 4.23, was calculated as the ratio of the
‘effective’ CLF to the one obtained using equation (4.9). Although an average result was

used for reference, it did not converge to the diffuse incidence Mass Law.

Figures 4.17-4.19 show the variation of CLF ratio with M,,,,, whilst varying the height,
width and depth ratio of the rooms. In Figure 4.17, the source room height was fixed and
equal to 1.8 m. The receiver height varied from 1.8 to 18 m. It is seen that the results lay
within the bounds for most of the M, range. At higher frequencies, the CLF ratio

values vary within the range +/- 1dB.

Likewise, Figures 4.18 and 4.19 also show that the convergence of the results rapidly
increases with the combined Modal Overlap factor. Figure 4.18 shows that at higher
Modal Overlap factors, the CLF ratio values tend to be less than +/- 0.5 dB. Similarly,

Figure 4.19 shows a fairly good convergence rate with increasing Modal Overlap.

Figure 4.20 shows the variation of CLF ratio with M., for different values of the
Reverberation Time ratio (T,/T;). The Reverberation Time of the source room was fixed

and equal to 1.0 s. However, for the receiving room it was varied from 1.0 s to 0.2 s. It
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appears that the most significant variations in terms of the CLF ratios occurred for the

case of varying the RT of the source room whilst keeping the RT of the receiving room

constant.

Figure 4.21 shows the variation of CLF ratio with Mcomp for different values of panel
position on the common rigid wall. Very small variation is observed at the lower values
of Mcomb, 1.€. at lower frequencies for the source and receiving rooms where there are
few if any acoustic modes and transmission is low. On the other hand, significant

variations occur in the range where acoustic modes exist. These variations indicate very

high spatial coupling sensitivity.

Finally, Figures 4.22 and 4.23 show the variation of CLF ratio, which is defined here as
the ratio of the actual transmission to the diffuse incidence Mass Law transmission, with
M omp Whilst varying the height and width of the rooms respectively. In Figure 4.22, the
source room height was fixed and equal to 1.8 m. The receiver height varied from 1.8 to
18 m. It is seen that the results approximately lay on the upper bound for most of the
M .mp range. However, they tend to diverge from the Mass Law results 7,, as the
combined modal overlap increases. Likewise, Figure 4.23 shows that the Mass Law

results 7,, are lower than the ‘effective’ Coupling Loss factor at low frequencies.

However, the ‘effective’ CLF tends to be lower than the 77,,, when frequency increases.

4.6 — Conclusions

Firstly, the variation of the NR differences with frequency whilst varying one of the
room dimensions has been presented in this chapter. It was shown that at very low
frequencies, the variation of the room dimensions affected the transmission substantially.
These results are similar with those of Craik [61], which showed that for transmission
between plates it is the receiving subsystem that affects the power flow. At the higher

frequencies there is an increasing contribution from the source room though.

In addition, the results in terms of convergence to the Mass Law predictions have shown
poor agreement at low frequencies. This is because of the strong modal behaviour of the
chosen subsystems, which have obviously low mode count due to their small volumes.

Nevertheless, it is seen that at higher frequencies a fairly good agreement is achieved, as

152



Chapter 4. Sound Transmission Sensitivity and Variability Using the Modal Model

the sound field tended to become more ‘diffuse’. In general, the results show a difference

of less than 3 dB in the frequency band with centre frequency at 250 Hz, for example.

Finally, numerical simulations for the investigation of the variation of CLF ratio with the
combined Modal Overiap Factor were obtained for a limp panel model. Hence, there was
no resonance contribution of the panel on the frequency response of the system. Even
though there was no stiffness term in the equation of motion of the panel, i.e. the panel

was limp, its mass term was allowed to contribute.

The sound transmission results thus had no resonant panel behaviour and the variation of
results were mainly due to the panel position and also the matching or separation of the

room natural frequencies (i.e. modal overlap).

The results were then compared to previously published envelope results given for
structure to structure coupling limits (Park ef al in reference [58]). It is seen that most of
the results, which are presented in terms of CLF ratio, fit reasonably well within the
published envelope results [58] for the frequency range investigated. Only the results due
to variation of the panel position are not in such good agreement and it is suspected that

this might be due to exireme sensitivity of the modal model to the spatial coupling terms.

The actual fluid-structure interaction problem considered herein was evaluated at very
low frequencies. In addition, small acoustic volumes were considered for the baseline
models. Consequently, small values of Modal Overlap Factors were obtained. The
envelope results presented by Park er al [58] were developed on the basis of only two
coupled subsystems, namely two coupled rectangular plates. Hence, there was no
‘intermediate’ connection between them, such as a beam. In other words, the modal
mode] formulated here was equivalent to the structure-to-structure coupling problem
published in ref. [58], as the model herein considered the contribution of a limp partition
with no modes on the transmission mechanism. No attempt has been made here to
produce alternative limits for the acoustic-structural problem, as it does not appear to be

particular easy to solve or generalize.
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Tables
Lyo/Lyr | Lyi(m) | Lya(m) | Lyg(m) | Lea(m) | Lyy=Lo | mi () | na () | fischroed | [2.5chroed
1.000 | 1.800 | 1.800 | 3.000 | 2.000 | 2.000 | 0419 | 0.290 430.3 527.0
1.259 | 1.800 | 2.266 | 3.000 | 2.000 2.000 | 0419 | 0.356 430.3 469.7
1.585 | 1.800 | 2.853 | 3.000 | 2.000 | 2.000 | 0419 | 0.438 430.3 418.6
1.995 1.800 | 3.591 | 3.000 | 2.000 | 2.000 | 0419 | 0.542 430.3 373.1
2.512 | 1.800 | 4.522 | 3.000 | 2.000 | 2.000 | 0419 | 0.673 430.3 332.5
3.162 | 1.800 | 5.692 | 3.000 | 2.000 { 2.000 | 0419 | 0.837 430.3 296.4
3.981 1.800 | 7.166 | 3.000 | 2.000 2.000 | 0419 | 1.045 430.3 264.1
5.012 | 1.800 | 9.022 | 3.000 | 2.000 2.000 | 0419 | 1.305 430.3 2354
6.309 | 1.800 | 11.356 | 3.000 | 2.000 | 2.000 | 0419 | 1.634 430.3 209.8
7.943 1.800 | 14.297 1 3.000 | 2.000 2.000 | 0.419 | 2.047 430.3 187.0
10.000 | 1.800 | 18.000 | 3.000 | 2.000 | 2.000 | 0419 | 2.567 430.3 166.6

Table 4.1: Variation of room parameters with the height ratio L,»/Ly;. Ly, Ly and L, are

room depth, height and width respectively. n (f) is the modal density in the highest 1/3

octave band with centre frequency equal to 250 Hz and fscuoea is the Schroeder

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1

and 2 represent the source and receiving rooms respectively.

fiHz) | L(Hz) | {,(Hz)
0.0 0.0 4.2
56.7 85.0 9.9
85.0 85.0 11.2
94.4 94 .4 16.9
102.2 | 1202 | 194
110.1 | 127.1 | 22.9
1133 | 127.1 | 264
127.1 | 1529 | 28.6
139.1 | 170.0 | 32.6
141.7 | 170.0 | 38.1

Table 4.2: The first ten natural frequencies of the uncoupled rigid walled rooms and

partition for the height ratio Ly»/Ly =1. ‘f* is the natural frequency of the uncoupled

rooms and partition. The subscripts 1, 2 and ‘p’ represent the source, receiving and

partition respectively.
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Lo/Ly Lzl(m) LZZ(m) Lxl(m) sz(m) LylzLyZ np (f) nz (f) fi ,Schroed f2,Schroed
1.000 | 2.000 | 2.000 | 3.000 | 2.000 1.800 | 0.419 | 0.290 | 430.3 527.0
1.259 | 2.000 | 2.518 | 3.000 | 2.000 1.800 | 0.419 | 0.357 | 430.3 469.7
1.585 | 2.000 | 3.170 | 3.000 | 2.000 1.800 | 0.419 | 0440 | 430.3 418.6
1.995 | 2.000 | 3.990 | 3.000 | 2.000 1.800 0419 | 0.546 430.3 373.1
2.512 | 2.000 | 5.024 | 3.000 | 2.000 | 1.800 | 0.419 | 0.678 | 430.3 332.5
3.162 | 2.000 | 6.324 | 3.000 | 2.000 1.800 | 0.419 | 0.845 | 430.3 296.4
3.981 2.000 | 7.962 | 3.000 | 2.000 1.800 0419 | 1.055 430.3 264.1
5.012 | 2.000 | 10.024 | 3.000 | 2.000 1.800 | 0.419 | 1.319 | 430.3 2354
6.309 | 2.000 | 12.618 | 3.000 | 2.000 1.800 0419 | 1.652 430.3 209.8
7.943 | 2.000 | 15.886 | 3.000 | 2.000 | 1.800 | 0.419 | 2.071 430.3 187.0
10.000 | 2.000 | 20.000 | 3.000 | 2.000 1.800 | 0419 | 2.598 | 430.3 166.6

Table 4.3: Variation of room parameters with the width ratio L,/L,;. Ly, Ly and L, are

room depth, height and width respectively. n (f) is the modal density in the highest 1/3

octave band with centre frequency equal to 250 Hz and fseeeq is the Schroeder

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1

and 2 represent the source and receiving rooms respectively.

Lio/Ly | La(m) | La(m) | Lyi=Lys | Ly=La | ni(f) | n2 (f) | f1schroed | f2,Schroed
1.000 | 3.000 | 3.000 1.800 2.000 | 0419 | 0.419 | 430.3 430.3
1.259 | 3.000 | 3.777 1.800 2.000 | 0419 | 0.518 | 430.3 383.5
1.585 | 3.000 | 4.755 1.800 2.000 | 0.419 | 0.644 | 430.3 341.8
1.995 | 3.000 | 5.985 1.800 2.000 | 0419 | 0.801 430.3 304.7
2.512 | 3.000 | 7.536 1.800 2.000 | 0.419 | 1.000 430.3 271.5
3.162 | 3.000 | 9.486 1.800 2.000 | 0419 | 1.250 430.3 242.0
3.981 | 3.000 | 11.943 1.800 2.000 | 0419 | 1.565 430.3 215.77
5.012 | 3.000 | 15.036| 1.800 2.000 | 0419 | 1.962 | 430.3 192.2
6.309 | 3.000 | 18.927 | 1.800 2.000 | 0419 | 2.461 430.3 171.3
7943 | 3.000 | 23.829 | 1.800 2.000 | 0419 | 3.089 | 430.3 152.7
10.000 | 3.000 | 30.000| 1.800 2.000 | 0419 | 3.881 430.3 136.1

Table 4.4: Variation of room parameters with the depth ratio Ly/Lxi. Ly, Ly and L, are
room depth, height and width respectively. n (f) is the modal density in the highest 1/3

octave band with centre frequency equal to 250 Hz and fschroea is the Schroeder

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1

and 2 represent the source and receiving rooms respectively.
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To/Ty | T | Ta | La Ly LylzLyZ LZIZLZZ nj (f) N2 (f)

1.0 1.0 (1.0 | 3.000 | 2.000 | 1.800 | 2.000 | 0.419{0.290
0.8 1.0 1 0.8 3.000 | 2.000 | 1.800 | 2.000 |0.419|0.290
0.6 1.0 0.6 | 3.000 | 2.000 | 1.800 | 2.000 | 0.419 | 0.290
0.4 1.0]0.43.000|2.000 | 1.800 | 2.000 |0.4190.290
0.2 1.0 ] 0.2 ] 3.000 | 2.000 | 1.800 2.000 |0.419]0.290

Table 4.5: Variation of room parameters with the Reverberation Time ratio (T2/T1). Ly,
L, and L, are room depth, height and width respectively. n (f) is the modal density in the
highest 1/3 octave band with centre frequency equal to 250 Hz. The subscripts 1 and 2
represent the source and receiving rooms respectively. For the source and receiving

rooms the Schroeder frequencies are 430 Hz and 527 Hz respectively.

Position | cgy Cez | Lyp | Ly
(m) | (m) | (m) | (m)

06 | 06 |06 |0.8
04 | 04 |06 |0.8
02 ] 02 |06 |0.8
0.0 | 00 |06 |08
04 | 06 |06 |0O.8
02 | 06 0.6 |0.8
00 | 06 |06 |0.8
06 | 04 |06 0.8
06 | 02 |06 0.8
06 | 0.0 |06 |08

P N=1-I N FEo Y RV PG L Y PN

Table 4.6: List of 10 different panel positions on the common wall separating source and
receiving rooms. (Cgy, Cg,) is the coordinate of the panel left-bottom corner in the y and z
directions respectively. The surface area of the elastic panel is equal to (Ly, x Lzp). The

dimensions of the rigid common wall is 1.8m x 2.0m.
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(10 different depths)
Ly
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Figure 4.3: Variation of the depth Ly, of Room 2 (see Table 4.4) A Monopole source

with volume velocity equal to 3x10”° m*/s was Jocated at the corner of the room
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Figure 4.5: Variation of the NR differences with frequency for different values of height

ratio (Ly2/Ly1) compared to the diffuse incidence Mass Law (ML). (a): NR,;, —NR,ff,da,

[dB]; (b): NR,, — NR’

modal

[dB]. The height of the room 1 (L) is fixed and equal to 1.8

m. The height of room 2 (L,») varies from 1.8 to 18.0 m; — 1.80; "~ 2.27; --- 2.85; -0-
3.59; -%-4.52; -A- 5.69; - - 7.16; -x- 9.02; -0- 11.36; -V- 14.29; - 18.00.
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7.16; -x- 9.02; -0- 11.36; -V- 14.29; ---- 18.00.
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Figure 4.9: Variation of the NR differences with frequency for different values of depth

ratio (Lxo/Lx1) compared to the diffuse incidence Mass Law (ML). (a): NR,, — NR*?

modal

[dB]; (b): NR,, — NR?. = [dB]. The depth of the room 1 (Ly;) is 3.0 m. The depth of the
ML modal P

room 2 (L,,) varies from 3.0 to 30.0 m; — 3.00; "~ 3.77; --- 4.76; -0- 5.99; -*- 7.54; -A-
9.49; - - 11.94; -x- 15.04; -0- 18.93; -V- 23.83; ---- 30.00.
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Figure 4.10: Variation of the NR differences with frequency for different values of depth

ratio (Lxo/Ly1) compared to Leppington’s formula [16]. (a): NR,,, — NRZ ., [dB]; (b):

NR,,, - NR;.,, [dB]. The depth of the room 1 (Ly) is 3.0 m. The depth of the room 2
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- 11.94; -x- 15.04; -0- 18.93; -V- 23.83; ---- 30.00.
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Figure 4.11: Variation of the NR differences with frequency for different values of

reverberation time ratio (T»/T1) compared to Mass Law (ML). (a): NR,,, — NR” . [dB];
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Figure 4.12: Variation of the NR differences with frequency for different values of

reverberation time

ratio (To/T;) compared to Leppington’s formula [16]. (a):

NR,,, - NR,. ., [dB]; (b): NR,, —NRZ . [dB re 1]. The reverberation time of room 1

(T1) is 1.0 s. The reverberation time of the room 2 (T,) varies from 1.0 to 0.2 s; — 1.0;

""" 0.8; -~- 0.6; -0- 0.4; -*- 0.2.
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Figure 4.13: Variation of the NR differences with frequency for different values of panel
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Figure 4.15: Variation of the ratio of the spatially averaged mean square pressure of
mode ‘(l,m,n)’ to the total mean square pressure (in the receiving room) with mode
number for different values of panel position on the common wall. (2):1/3 octave band
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Figure 4.16: SEA models of two rooms separated by a single-leaf partition approximated
by a two subsystem model. Therefore, only the non-resonant transmission path is
considered. a) Power is injected into subsystem 1; b) Power is injected into subsystem 2.
The subscripts ‘i j* denote the power flow from subsystem ‘i’ to subsystem ‘j° and the

superscript indicates which subsystem is under direct excitation.
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Figure 4.17: Variation of CLF ratio with the combined Modal Overlap factor Mcomp for
different values of height ratio (Ly2/L,;) compared to the average over all of the height
variations. (a): 1010g,(hy/Mam.) [AB 1€ 11; (6):101080{1%,/7h1.0.) [dB re 1]. The height of
room 1 (Ly;) is 1.8 m. The height of room 2 (L,,) varies from 1.8 to 18.0 m; — 1.80; ™~
2.27; -~ 2.85; -0- 3.59; -x- 4.52; -A- 5.69; - - 7.16; -x- 9.02; -0- 11.36; -V- 14.29; ----
18.00; +++ bounds (+20 ) for Ly, = 1.8; —bounds (£ 20 ) for Ly, = 18.0.
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Figure 4.18: Variation of CLF ratio with combined Modal Overlap factor Mcomp for

different values of width ratio (L,»/L,;) compared to the average over all of the width

variations. (2):1010g,(3/720,) [dB 1€ 1]; (0):10108,(71/71,.,) [dB re 11. The width of

room 1 (L,;) is 2.0 m. The width of the room 2 (L,,) varies from 2.0 to 20.0 m; — 2.00;
""" 2.52; - 3.17; -0- 3.99; -%- 5.02; -A- 6.32; - - 7.96; -x- 10.02; -0- 12.62; -V- 15.89; --
-- 20.00. +++ bounds (%20 ) for L,; = 2.0; — bounds (%20 ) for L, = 20.0.
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Figure 4.19: Variation of CLF ratio with the combined Modal Overlap factor Mcomy for

different values of depth ratio (Ly»/Lx;) compared to the average over all of the depth

variations. (3)3101080(7712/7712“ve) [dB re 1]; (b):1010g0(7721/ 772]m) [dB re 1]. The depth of

room 1 (Lx1) is 3.0 m. The depth of the room 2 (Ly;) varies from 3.0 to 30.0 m; — 3.00;
""" 3.77; -- 4.76; -0- 5.99; -%- 7.54; -A- 9.49; - - 11.94; -x- 15.04; -0- 18.93; -V- 23.83;
---- 30.00. +++ bounds (£ 20 ) for L,; = 3.0; — bounds (£ 20 ) for L, = 30.0.
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Figure 4.20: Variation of CLF ratio with the combined Modal Overlap factor Mcomy for

different values of reverberation time ratio (T,/T;) compared to the average over all of

the reverberation time variations. (a): 1010%()(7712/7712m) [dB re 1]; (b):1010g0<7721/172mw)

[dB re 1]. The reverberation time of the room 1 (T;) is 1.0 s. The reverberation time of
room 2 (T,) varies from 1.0 s to 0.2s; —1.0; 0.8; --- 0.6; -0- 0.4; -*- 0.2. +++ bounds
(20 ) for T, = 1.0; —bounds (£ 20 ) for T, =0.2.
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Figure 4.21: Variation of CLF ratio with the combined Modal Overlap factor Mcomy for

different values of panel position on the common wall compared to the average over all

of the panel positions. (a):lOlogo(nu/ nlz“ve) [dB re 11; (b):1010g0<7721/ nnm) [dB re 1]. The
panel positions are (see Figure 4.4): —Py; Py; - P3; -0- P4; -%- Ps; -A- Pe; - - P75 -X-

Pyg; -0- Po; -V- P1g. — upper and lower bounds (£ 20 ) obtained from equation (4.12).
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Figure 4.22: Variation of CLF ratio with the combined Modal Overlap factor Mcomp for
different values of height ratio (Ly2/Ly1) compared to the diffuse incidence Mass Law.
(2):101og(1,/7,,) [dB re 11; (b):101og,(13,/7,,) [dB re 1]. The height of room 1 (Ly;) is
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Figure 4.23: Variation of CLF ratio with combined Modal Overlap factor M¢omy for
different values of width ratio (Lp/L,;) compared to the diffuse incidence Mass Law.
(2):1010g,(11,,/7,,) [dB re 11; (b):10log,(r,,/7,,,) [dB re 1]. The width of room 1 (Ly) is
2.0 m. The width of the room 2 (L) varies from 2.0 to 20.0 m; — 2.00; =~ 2.52; -
3.17; -0- 3.99; -%- 5.02; -A- 6.32; - - 7.96; -x- 10.02; -0- 12.62; -V- 15.89; ---- 20.00.
+++ bounds (+ 206 ) for L,; = 2.0; — bounds (£ 20 ) for L,, = 20.0.
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Chapter 5

ACOUSTIC-STRUCTURAL INTERACTION ANALYSIS USING
THE COMPONENT MODE SYNTHESIS METHOD

5.1 — Introduction

The literature survey has revealed that a significant amount of work has concentrated on
analysing sound transmission using uncoupled ‘rigid-walled’ acoustic modes for the
acoustic volumes. In this case the boundary condition at the interface between acoustic
volumes, which is due to the velocity of the partition, cannot be replicated. Hence, the
aim of this chapter is to develop an alternative model for the prediction of noise
transmission in terms of the Component Mode Synthesis (CMS) method. It is developed
and applied here initially to acoustic-structural coupled volumes possessing one-
dimensional wave propagation to verify the accuracy and applicability of the approach.

The following chapter extends the work to the three-dimensional case.

The CMS method requires the user to model separate components of a problem in terms
of a summation over constraint modes and component normal modes and has previously
been applied in structural dynamics. A constraint mode is defined as the static
deformation of a subsystem when a unit displacement or velocity is applied to one
coordinate of a specific set of ‘interface’ coordinates. The number of constraint modes
considered is equal in number to the number of redundant interface degrees of freedom.
The component normal modes are eigenvectors of the component and may be classified
according to their boundary conditions either as fixed-interface modes or free-interface
modes. The number of normal modes chosen depends upon the frequency range of the

calculations and convergence requirements.

The main objective here is to analyse the effects of the imposition of common velocity
on the acoustic-structural interface via the Component Mode Synthesis Method (CMS).
This original development for the problem provides an improved analytical approach
which also shows analytically the importance of including kinematic compatibility in
structural-acoustic problems. Some background information about the method is

provided as a basis for assisting the understanding of the process. Following this, the
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formulation of the structural-acoustic problem in terms of ‘components’ is described.
The results obtained using CMS are compared to those obtained using both a one
dimensional exact wave approach explained below and standard modal analysis. Firnally,
conclusions are drawn based on the analysis of the results and the extension to three-
dimensional acoustic systems is discussed which is subsequently implemented in chapter

6.

5.2 — The One-Dimensional Wave Approach

Firstly, consider the one-dimensional acoustic system given in Figure 5.1 as it provides a
basis for comparison with the CMS and modal models. Components 1 and 2 are
respectively the source and receiver volumes separated by a limp partition of mass per
unit area m. An incoming harmonic plane sound wave with amplitude A; is incident upon
the partition from the region x < 0. As a result, a ‘reflected’ plane wave with amplitude
B, propagates in the negative x direction. Thus, the total pressure field p; inside the

source component is given by
p,=Ae ™ +Be™ 6.1

where k is the complex wavenumber of the propagating plane waves, which for light
damping is (w/c,)1—jn/2) and 7 is the loss factor. The time dependence e’ is
assumed throughout. The wave amplitudes A, and B, in equation (5.1) are the total

amplitudes of the travelling waves in the two directions incorporating all multiple

reflections from the ends.

Likewise, the acoustic pressure field transmitted through and incident upon the partition
from the region x > 0 is defined by the coefficients C, and D, respectively. Therefore, the
total pressure field p; in the receiving component may also be represented in terms of

propagating solutions as follows
p,=Ce ™ +De™ (5.2)

From equations (5.1) and (5.2), it is evident that there are four unknowns to be
determined. Thus, the appropriate boundary conditions can be expressed by the set of

equations below, where velocity continuity and force equilibrium are applied.
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i ik F _
Ae’™ + B e M = —Si’- at x=-L_ for the force acting on the source volume (5.3)

~iLe _ ) i
C.e D.e"™

. =0 i.e. rigid termination at x =1L, (5.4)
pOCO
(A, —B,)—(C,—D,)=0 i.e. velocity continuity at x =0 (5.5)
A - B,
(A, +B,)-(C, +D,):mj0{-—5—3j at x=0 (5.6)
pOCU

The last equation is Newton’s second law of motion, relating the net pressure on the limp

panel and its resulting acceleration.

In summary, equations (5.3) and (5.4) are constraint equations that impose pressure
equilibrium at the source end, x = -L,;, and zero velocity at x = L,; respectively. Equation
(5.5) relates the particle velocities at the interface (x = 0) between the acoustic volumes
(kinematic compatibility), assuming an incompressible mass. Finally, equation (5.6) is
for a force equilibrium constraint when a ‘limp panel’ of mass m per unit area separates
the acoustic volumes, relating the force on the panel and its acceleration. Equations (5.3)-
(5.6) were set up as a matrix system of equations. For any frequency there is an exact

solution for the two volumes and the pressure and particle velocity can be found

explicitly.

5.3 - The Component Mode Synthesis Method - CMS

5.3.1 - The definition for the sets of component modes

Despite the fact that any number of components can be used to form a system, only two
components are to be considered to illustrate the method. Figure 5.1 illustrates a uniform
rigid-walled duct, which will be divided into two CMS components. By choice the limp
mass was considered connected to and its effect incorporated in the first volume, but in
principle the choice of volume is arbitrary. Therefore, the first component consists of the
fluid column plus a limp mass partition, being defined for x = -L,; to x = 0. The receiving
component is defined by the fluid volume which varies from x = 0 to x = L. A sliding
rigid piston, which undergoes harmonic oscillation, is fitted to one end of the duct. The

other end of the duct (at x = L,;) is a rigid termination. It is assumed that the fluid
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displacement function £(x,t)at position x and time ¢ over the length of the duct can be

written in terms of component modes and the corresponding modal generalized

coordinates £ by the modal transformation
e=¥Y¢ (5.7

where W is the normalized modal matrix (transformation matrix) of assumed modes

defined below.

The modal matrices ¥, and ‘¥, for the source and receiving components are defined and

partitioned as follows

Y=y, v.l (5.8)

Y, =y, vl (5.9)

where y_ and y, are the constraint and the normal modes respectively. The normal

modes are taken to be those of the volumes with a fixed interface (i.e. rigid wall at the
interface). The selected normal modes were defined as shape functions satisfying the

geometric boundary conditions for each acoustic component. The normal mode ¥, and
the constraint mode y_ used in the modal matrices above are classified according to the

boundary conditions specified for each component. They are normalized and given by

v = 9, (5.10)
mll
=t (5.11)
VmC
m, = [ pSpldx and m, = [ pSgZdx (5.12)
L L

X X

where ¢, is the set of free-fixed interface normal modes which satisfy the condition of

unit velocity applied to a moving wall in the source component. For the receiving
component they are a set of fixed-fixed interface normal modes. ¢_ is the constraint
mode which satisfies zero velocity on x = -L,; and unit velocity on x = O for the source
component or unit velocity on x = 0 and zero velocity on x = L, for the receiving

component respectively. These are best visualized by inspection of Figure 5.2, which
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shows the corresponding normal and constraint modes for the two volumes. The matrices

for the generalized coordinates & and &, for the source and receiving components are

then given by
g=E, &,I (5.13)
£, = [EnZ Ecz}r (5.14)

where the coordinates &, and &, relate to the constraint and the normal modes

respectively.
5.3.2 - Constraint Equations

A constraint equation, which imposes particle velocity compatibility at the interface

(x=0), is then given by

_ agl(x,t)l _a€2(x,t), i =0 5.15
Ccr_.!.( ot ixzo ot L:oJ @ .

where S is the area of the limp partition and this equation is most general to allow the

partition to cover only part of the common interface.

It is implicit in equation (5.15) that the same reference coordinate (see Figure 5.1(a)) is
used for both component 1 and component 2. Using the Least Squares Method to
minimize the function C,, with respect to each unknown variable in equation (5.15) and
considering equation (5.7), the following linear sets of equations can be obtained in

matrix form as

a(—:ct — a(_:ct ___0 = chzo (5.16)
agcl 8862
where G=[¢, E&,' &, &, (5.17)
and R,=[R,!R,] (5.18)

where R, and R, are the sub-matrices containing the terms, i.e. the component modes

evaluated at the interface, V| _ and — ”lexzo for components 1 and 2 respectively.
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5.3.3 - System Synthesis

The equations of motion for component 1 and component 2, with the former including
the approximate dynamic effects from the limp partition in the generalized modal mass

[69], are expressed using Lagrange’s equations in terms of their generalized coordinates

£ as

(M,+M))E +CuE+KE-AR =F, (5.19)
where F = (FOS ¥, (x)) .,
and M,&,+C,,E+K,E,~AR, =0 (5.20)

where A is in general a vector of Lagrange multipliers to apply the interface constraints.

M, C4 and K are the modal mass, damping and stiffness matrices for the components

respectively; and F, is the generalized force on the acoustic component 1 [70]. F;’ is the

imposed force amplitude.

The modal mass M, of the partition is used to simulate the interface loaded modes of
component 1 [69]. The corresponding eigenproblem for the component 1 is then of the

form
[, -2 (1, +M )| £ =0 (5.21)
The set of equations for the entire system is then given by

UG +cG+xG-AR" =F, (5.22)

M +M 0 c, 0 K, 0 F,
where u= i ; 6= s X = s Fpo= .
0 M, 0 ¢, 0 K, 0
U, ¢ and y are the system modal mass, damping and stiffness matrices respectively.

F, is the column vector containing the generalized forces exerted on the fluid

components.

It can also be seen that the coordinates G defined in equation (5.17) are not linearly

independent in the set of equations (5.22), due to the constraint equations (5.16), i.e.
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there are more equations than unknowns. Alternatively, a linear modal transformation 7
can be used to solve the set of equations (5.22) in terms of generalized independent

coordinates g,, which allows for a reduction of the number of variables due to the

constraint equations available. The transformation is then given by

G =T, (5.23)
where G =[g,g, g, &,[ (5.24)
and q; = [Enl €, EL'ZY (5.25)

The matrix G is the rearranged matrix of G in terms of dependent and independent

coordinates. Equation (5.16) can be rearranged and also rewritten as
R:G =0 (5.26)
and R:=[R,!R,] (5.27)

where R, and R, are the sub-matrices containing the coefficients of the dependent (&)
and independent set of generalized coordinates respectively (i.e. &,,€,, and E,).
Accordingly, the transformation matrix is thus given by

_ {‘ Ry IRI} (5.28)
I

T

r

From equations (5.23) and (5.26) it is seen that R; 7. =0. Therefore, equations (5.22)

and (5.23) can be combined to take the form
MG:—q.—i +ch;i +Ksq, = F, (5.29)

where M,=T'uT;K,=T'xT,; C,=T'¢T;F, =T F, (5.30)

Thus, equation (5.30) defines the modal matrices in terms of the independent variables
g, and equation (5.29) is subsequently solved. In addition, for the case of a limp panel

over a common interface, only one constraint equation is defined by equation (5.16).
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5.4 — Numerical Results

The simple one-dimensional example was considered here in order to illustrate the
application of the CMS approach in structural-acoustic interaction problems. A
comparison between the CMS approach and the one-dimensional analytical wave
approach described in section 5.2 is made, in order to assess the performance of the
method for sound transmission problems. In addition, the CMS model is later compared

to the Modal model, which uses modes with uncoupled boundary conditions.

The configuration of the system used is shown in Figure 5.1. Three different models
were used in order to illustrate the method. In the first two models, a comparison
between the CMS and an analytical model is made in order to validate the CMS
approach and formulation for force excitation. Subsequently, the modal method is
compared to the CMS method in a third model which incorporates velocity excitation, as

has previously been considered in the thesis.
5.4.1 Model 1 — The acoustic components are equal in length

For the first one (Model 1), the lengths of the rectangular acoustic volumes were both
equal to 10 m (L,; =L,> =10 m). The volumes of both components were equal to 40 m’,
The thickness and cross sectional dimensions of the partition connecting both volumes
were 0.01m and 2m x 2m respectively. A constant loss factor damping equal to 7 =0.01
was used for both the normal and constraint modes. For the one-dimensional wave
approach, a complex wavenumber k was selected for the propagating plane waves [48].

The loss factor used for the wave model was also 7 =0.01.

For the source subsystem (component), 18 free-fixed normal modes and 1 constraint
mode have been used. For the receiving subsystem, 17 fixed-fixed and 1 constraint mode
have been considered. The first 11 uncoupled and coupled natural frequencies for Model
1 are shown in Table 5.1. The set of component modes is illustrated in Figure 5.2. No
velocity is involved in the bulk compression mode n=0. There are other possible
combinations of component modes, such as the free-interface normal modes plus
attachment modes [69]. However, no other combination fulfil all criteria of mode
selection, such as linear independence, low computational expense, accuracy, simplicity,
etc., but for the one that employs constraint modes and fixed-interface normal modes

[68].
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The calculations were performed using only one-dimensional wave propagation. At high
frequencies tangential modes cut-on, but these have been ignored for the purposes of
comparison with the one-dimensional wave approach. The effect of oblique modes is

discussed in Chapter 6 where a complete 3D implementation is described.

A frequency cut-off criterion was used to select the number of modes in each component.
All normal axial modes, which are plane in the cross-section and have natural
frequencies less than or equal to 300 Hz, were included. The overall system equation of

motion, given in equation (5.29), is solved at each frequency.

Figures 5.3 and 5.4 show the frequency response of each subsystem in terms of the
spatial-averaged mean square sound pressure level for a /imp partition with nominal
mass densities of ph= 8.1 kg/m” and ph= 78.5 kg/m’ respectively. For both cases, the
sound pressure levels were similar in behaviour. The CMS and one-dimensional wave
model were nearly identical over most of frequency range. The CMS model comprised
normal free-fixed velocity modes, which were excited by a plane force source located at
the rear of the source component. In addition, the peaks in the frequency response

corresponded to the resonance frequencies of the combined system, as expected.

In the receiving component, there are also insignificant differences between the CMS
and the one-dimensional wave model. Both the CMS and wave models exhibited some
peaks in the receiving volume at similar frequencies. These frequencies are related to the
modes of the fixed-fixed receiving component. However, alternate peaks, which
correspond to the resonance frequencies of the coupled system, can also be seen in the

response of the receiver volume in these cases.

Figure 5.3-a shows that at very low frequencies (below 20 Hz), a difference of less than
2 dB can be seen at the resonance peaks. It is related to different sensitivities of the

damping models used in both approaches at low frequencies.

Figures 5.5 and 5.6 show the mean square sound pressure and particle velocity
distribution along the length of the source and receiving volumes at 80 Hz and 10 Hz
respectively. The results for pressure distribution are shown in Figures 5.5a and 5.6a. It
can be seen that there is a pressure discontinuity at the interface between the components
for both approaches. The particle velocity results shown in Figures 5.5b and 5.6b (in dB)

were normalized with respect to a volume velocity O, =3x10" m?s divided by the

partition area S = 2m x 2m. The calculated fluid particle velocity is non-zero and
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continuous at the interface. For instance, this is not the case for the modal model where
the particle velocity is zero at the interface. For the receiving room the differences shown
in Figure 5.5-a and 5.5-b are due to differences in the damping models at that particular
frequency. Moreover, in Figure 5.5-a the differences close to the source (x<-9) are due to
the open end at x = -10. This implies that the dynamic component of pressure tends to
zero at this open boundary. For the results in Figure 5.6 the difference between the CMS

and the exact one-dimensional formulation is negligible and not discernible.

Figure 5.7 shows the comparison of the Noise Reduction NR [82] predicted in narrow

bands. The NR was calculated using

)
)

L

NRlelogw( ~ )m dB (5.32)
(7))

where <[7A.2> and <p‘f> are the space-averaged mean square sound pressure in the source

and receiving volumes respectively. Figure 5.7a is for the partition with mass per unit
area ph=8.1 kg/m? and Figure 5.7b is for a heavier partition with ph= 78.5 kg/mz. The
narrow band results were obtained by subtracting the energy level in narrow bands for
the source volume from the energy level in the same bands for the receiving volume. For
instance, in Figure 5.4, the CMS and one-dimensional wave approach at about 18 Hz
have a smaller peak in the receiving component but a trough in the source component.
Therefore, the subsequent NR also exhibits a dip in these cases, which coincides. The
NR values for the CMS and the 1-D wave approach were almost identical over the whole
frequency range. In general, the trend in the NR results was similar for both models. The
length in the receiving volume primarily governs the values of the resonance frequencies,

and the absorption influences the variation of the maxima in the response respectively.

Figure 5.8 shows that the one-third octave bands NR values obtained via the CMS and
wave models. The one third octave band results for NR were obtained by subtracting the
total energy level in a specific band for the source component from the total energy level
in the same band for the receiving component. The total energy in a one third octave

band was obtained by the summation of the energies in each narrow band. Figure 5.8

shows the NR results for oh =8.1kg/m* and ph=78.5kg/m?*. It is seen that the models
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produced very similar results. The differences between the two approaches were

insignificant over most of the frequency range considered.

In summary, the excitation for the CMS and the wave models was formulated in terms of
a unit imposed force on the source component boundary. A force excitation source puts
energy primarily into modes which have large in-phase velocities at the surface of
excitation. The CMS and one-dimensional wave approach predictions for the narrow and

one-third octave frequency bands considered have had very good agreement.
5.4.2 Model 2 — Dissimilar acoustic components (unequal lengths)

For the second model (Model 2), two dissimilar length components were used. The
lengths of the source and receiving volumes were equal to 12m and 7m respectively. (Ly;
= 12m and L., = 7m). The source and receiving component volumes were 72m° and
42m’® respectively. The thickness and dimensions of the partition connecting both
volumes were 0.01m and 2m x 2m respectively. Likewise as considered in the previous

model, a constant loss factor of 7 =0.01 was used for both components of model 2.

For the source subsystem (component), 21 free-fixed normal modes and 1 constraint
mode were used. For the receiving subsystem, 12 fixed-fixed and 1 constraint mode were
considered. The first 9 uncoupled and coupled natural frequencies for Model 2 are shown
in Table 5.2. Figures 5.9 and 5.10 present the frequency response of each subsystem in
terms of spatial-averaged mean square sound pressure levels for ph= 8.1 kg/m2 and
ph="78.5 kg/m* respectively. The CMS and one-dimensional wave model were similar
and almost identical for most of the frequency range with more modes existing than for

model 1.

Figures 5.11 and 5.12 show the mean square sound pressure and particle velocity
distribution along the length of both source and receiving volumes at 80 Hz and 10 Hz
respectively. The discontinuity of pressure at the interface between components is also
evident. The particle velocity results in Figure 5.12b were normalized with respect to a

volume velocity Q, =3x10” m%s divided by the panel area S. As in the results presented

previously, for the CMS and wave techniques the fluid particle velocity is non-zero and

continuous at the interface.
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Figure 5.13 shows the NR results in narrow bands. The NR values for the CMS and the
1-D wave approach presented negligible differences over all of the frequency range. In

general, the trend in the NR results was similar for both models 1 and 2.

Figure 5.14 shows the NR values in one-third octave bands. It is also seen that the
differences between the CMS and the 1-D wave approach are not distinguishable for

either partition densities used in the simulations.

Comparing these results with those of the previous section it appears that the fact of
considering a smaller receiving component for Model 2, and subsequently a component
with a lower number of modes compared to the source, has a significant effect on the
calculation of the NR when velocity continuity (at the component interface) is imposed.
Consequently, the NR values obtained for model 2 (Figure 5.14) via either the CMS or
the one-dimensional wave model were lower and different than those obtained for model

1 over most of the frequency bands.
5.4.3 Model 3 — Baseline model used for comparison with the Modal model

The excitation for the modal model presented in chapter 2 is based on a constant volume
velocity source, whereas the one for the CMS and the one-dimensional wave approach
presented previously for Model 1 and 2 were described in terms of an imposed force on
the moving boundary. The physical implications of this difference are explained as
follows. Force excitation puts energy primarily into modes having large in-phase
velocities at the plane of excitation. On the other hand, velocity sources excite modes
having large pressures at the surface (i.e. the rigid-walled modes — if they are damped).
Thus, the results obtained via the approaches are substantially different due to the
dissimilar input powers to the models, the effect of which does not divide out when the

results are considered in one-third octave bands [87].

In order to compare the CMS, one-dimensional and modal models, similar input powers
were considered here. The type of excitation used in the CMS and one-dimensional wave
approaches was modified to velocity source excitation. For the one-dimensional model,

equation (5.3) was substituted by

JKLyy —JkLyy
Ae B.e

&
IODCO

=v, at x=-L for the velocity acting on the source volume  (5.33)

where v, is the imposed velocity.
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For the CMS model, F; defined in equation (5.19) was substituted by Fls which is given

by the relationship
F? = jwp,€,8, [ W, 6(x - x,)dx = jwp,,5,%, (x,) (5.34)

where x, =—L,,, €, is the imposed normal surface velocity and S, is the cross-section

o

area of component 1.

Equation (5.34) was derived by using the momentum equation [18] which establishes the
relationship between acoustic pressure and particle fluid velocity. Alternatively, as the
source component is subjected to an external imposed velaocity, the corresponding
generalized velocity could be directly determined by using the Virtual Work Principle
[13], which is based on virtual displacements or virtual change of the system
configuration. As a result of using either approach, one has the right-hand side of
equation (5.29) expressed in terms of both generalized velocity and the acoustic pressure
mode shape of the source room evaluated at the excitation point (x = x,) instead of the

generalized force and particle velocity mode shape (equation (5.19)).

For the third model (Model 3), two dissimilar length components were used. The lengths
of the source and receiving volumes were equal to Sm and 3m respectively. (Ly; = 5Sm
and Ly, = 3m). The source and receiving component volumes were 20m® and 12m’
respectively. The thickness and dimensions of the partition connecting both volumes

were 0.01m and 2m x 2m respectively. A constant loss factor 7 =0.01 was used for both

components.

For the source subsystem (component), 8 fixed-fixed normal modes and 1 constraint
mode were used. This is different than previously used to accommodate the velocity
excitation. For the receiving subsystem, 5 fixed-fixed and 1 constraint mode were
considered instead (see Figure 5.15). Within the frequency range considered (0-300 Hz)
a total of 9 and 5 resonance frequencies were considered for the source and receiving

component respectively (see Table 5.3).

Figures 5.16 and 5.17 present the frequency response of each subsystem in terms of
spatial-averaged mean square sound pressure levels for ph= 8.1 kg/m2 in narrow and
one third octave bands respectively. Figures 5.16a and 5.16b show that the CMS and
one-dimensional wave model were similar almost identical at frequencies greater than 20

Hz. On the other hand, the modal model presented significant differences. Figure 5.16a
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shows that these differences are mainly associated with a shift in the resonance peaks. In
Figure 5.16b it is also seen that at higher frequencies there is a difference of about 2 dB
between the CMS and the modal model. Figure 5.17a and 5.17b shows that the
differences (up to about 35 dB) between the Modal and the CMS model occur mainly in

the one third band with centre frequency at 20 Hz.

At frequencies below 10 Hz, the modal and the one-dimensional wave models show a
fairly good agreement. However, it is seen that there are significant differences between
the CMS and the one-dimensional wave model. It can be explained by the fact that the
CMS model does not incorporate in the present formulation the bulk mode of the sound
pressure field. According to the CMS method implemented, a set of fixed-interface
normal and constraint modes is selected for each component in terms of velocity
modeshapes. Thus, the bulk pressure mode, which is also known as the equilibrium
mode (zero particle velocity and constant pressure), cannot be represented herein using
this type of formulation. Below 10 Hz the coupled system has no dynamic mode and can

be considered as a quasi-static problem.

Figures 5.18 and 5.19 show the frequency response of each subsystem in terms of
spatial-averaged mean square sound pressure levels for ph= 78.5 kg/m® in narrow and
one third octave band respectively. Comparing these results with those for the
lightweight partition, a better agreement is observed between the CMS and modal model,
especially at low frequencies. This shows that the numerical modal model better

represents the coupled system for the heavy partition, as expected.

Figures 5.20 and 5.21 show the mean square sound pressure and particle velocity
distribution along the length of both source and receiving components at 50 Hz and 100
Hz respectively. The discontinuity of pressure at the interface between components is
also evident. The particle velocity results in Figures 5.20b and 5.21b were normalized
with respect to a source volume velocity Q, =3x10" m%s divided by the panel area S.
As in the results presented previously, for the CMS and wave techniques the fluid

particle velocity is non-zero and continuous at the interface.

In terms of pressure distribution Figures 5.20a shows that the CMS and one dimensional
wave models present significant discrepancies in the source component (as x tends to

—L,,) at 50 Hz. Nevertheless, those differences are insignificant at 100 Hz, as there is

less influence of the bulk pressure mode which is taken into account in the modal and
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wave models. In the receiving component the pressure distribution for the CMS and one-
dimensional wave model are very similar whereas the modal model presents some

differences. Figures 5.20b and 5.21b show that at x=—L_, the particle velocity is zero

for the CMS and modal model. For the one-dimensional wave model, the particle

velocity at x =— L ; is imposed according to equation (5.33).

Figure 5.22 shows the NR results in narrow bands. The NR values for the CMS and the
1-D wave approach produced small differences over most of the frequency range. The
NR values for the CMS model were slightly different from those for the 1-D wave model
at frequencies less than 40 Hz. It can be seen that the modal model results present
significant differences at low frequencies Nevertheless, the trend in the NR results

generally was similar for all models.

Figure 5.23 shows the NR values for ph=8.1kg/m* and ph=78.5kg/m*. The results

are presented in one-third octave bands. The CMS and wave model values are very
similar. Nevertheless, at low frequencies they are slightly greater than the values
obtained using the Modal model. It is shown that at higher frequencies, a difference of
less than 2 dB is observed between the CMS and the modal approach. At frequencies
belew 40 Hz, there is a difference of up to about 10dB. On the other hand, for the heavier
partition this difference is only about 5dB. It shows the degree of sensitivity of the
results when considering the frequency response with light partitions at very low

frequencies.

Alternatively, a CMS model considering free-fixed normal modes for the source
component (as used in models 1 and 2) has been formulated in order to be compared to
Model 3, which is based on velocity excitation. The material and geometrical properties
were the same as those of Model 3. However, in order to reconcile this alternative CMS
model and the Modal model, the results were divided by the input impedance which was
calculated by finding the particle velocity at the drive point (see Figure 5.24). Figure
5.25 shows a comparison between the CMS model 3 and this alternative model which
considers force excitation. The results are nearly identical over most of the frequency
range. At very low frequencies, a difference of less than 2 dB occurs between both

models.
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5.5 — Conclusions

The purpose of this chapter was to develop an original one-dimensional acoustic:CMS
mode] to analyse and calculate sound transmission through a limp mass panel between
connected acoustic volumes. It is seen that the results for the CMS and one-dimensional

wave approaches have shown excellent agreement with the force excitation formulation

considered for Models 1 and 2.

The traditional modal method provided reasonable results for the higher mass density
partitions, and in particular at higher frequencies. For instance, the modal analysis for
Model 3, which comprises two dissimilar components, has shown good agreement with
the CMS model at higher frequencies. In addition, at frequencies below 50 Hz, the modal
model showed better agreement with the CMS model when considering the heavier
partition. Basically, this behaviour indicates the importance of considering the kinematic
effect of the partition on sound transmission when more complex systems are to be

analysed, and the benefit of the CMS approach.

It is clear that particle velocity modes have been used and that no velocity is involved in
the bulk compression mode, which is purely a static stiffness mode. Therefore, the CMS
models used in this chapter do not include the bulk mode n=0 as strictly it should if it
were possible to analyse the system in terms of displacement modes. The effect of the 0
Hz mode on the results was only significant at very low frequencies. This is confirmed
by the fact the CMS model underestimated the spatially averaged mean square sound
pressures as frequency tended to zero. Overall, the bulk mode is considerably important
when small components or very low frequency ranges are considered in models driven

by a volume velocity excitation. Thus, this is the case only for model 3 where the volume

velocity is used.

The extension of the CMS approach to three-dimensional problems in acoustics will be
discussed in the next chapter and evaluated for transmission between two acoustic spaces

separated by a flexible partition, the latter also possessing modal behaviour.

In particular, the partition may or may not cover all of the common wall and it is not
required that the components have identical cross-sections (as needed for the one-
dimensional case) or that only axial acoustic modes perpendicular to the partition exist in
the volumes. Equations (5.7)-(5.30) can therefore be generalised, the main differences

being described in Chapter 6.
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Tables
CMS model One-dimensional model

Frni-Fro2 (Hz) Fc (Hz) Fn (Hz) Fc (Hz)
11.8-8.5 3.7 8.6 3.7
27.1-255 11.1 254 11.1
43.5-42.5 18.9 425 18.9
60.2 -59.5 26.9 59.5 27.1
77.1-76.5 35.2 76.5 35.2
93.9-93.5 43.5 93.3 43.6
1109 -110.6 51.8 110.5 51.7
127.8 -127.6 60.2 127.5 60.2
144.8 - 144.7 68.6 1445 68.6
161.7 - 161.7 77.1 161.5 77.1
178.7-170.0 85.5 170.1 85.5

Table 5.1: The first 11 uncoupled (Fy) and coupled natural frequencies (Fc) for Model 1,
which is a system comprising two identical volumes separated by a limp panel, obtained

via the CMS and the one-dimensional wave models. The superficial mass density of the
limp partition was ph=8.1kg/m*. For the CMS model two different types of normal

modes, i.e. free-fixed and fixed-fixed modes, plus constraint modes were used for the

source and receiving volumes respectively.
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CMS model One-dimensional model
Fni-Fr2 (Hz) Fc (Hz) Fri-Fnz (Hz) Fc (Hz)
10.13-12.1 4.1 7.1-12.3 4.5
22.8-364 10.5 21.3-364 10.7
36.4 - 60.7 21.9 354 -60.7 21.8
50.3-85.0 26.8 49.6-85.0 26.6
64.3-109.4 36.4 63.8-109.3 36.3
78.4 -133.7 49.1 77.9-133.6 48.7
92.5-158.1 50.9 92.1-157.9 50.8
106.6 — 182.6 64.3 106.3 - 182.1 64.6
120.7 - 207.2 73.6 120.4 - 206.4 73.5

Table 5.2: The first 9 uncoupled (Fyn) and coupled natural frequencies (Fc) for Model 2,
which is a system comprising two identical volumes separated by a limp panel, obtained

via the CMS and the one-dimensional wave models. The superficial mass density of the
limp partition was ph=8.1kg/m”. For the CMS model two different types of normal

modes, i.e. free-fixed and fixed-fixed modes, plus constraint modes were used for the

source and receiving volumes respectively.
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Modal Model CMS model One-dimensional mode]

Fni-Fn2 (Hz) Fc (Hz) Fni-Fno (Hz) Fc(Hz) Frni-Fnz (Hz) Fc (Hz)

0-0 18.0 8.4-28.3 12.8 8.2-283 12.5
34.0 - 56.7 36.6 36.4 - 85.1 36.2 36.3-85.1 36.1
68.0-1133 59.0 69.3 - 142.1 589 69.0 - 142.1 58.6
102.0 -170.0 69.6 102.9 - 199.7 69.5 102.5-199.7 69.4

136.0 — 226.7 102.8 136.6 — 258.9 102.8 136.6 — 258.9 102.6

170.0 - 283.3 114.7 170.5 — ----- 114.7 170.4 — -—-- 114.7
204.0 - ----- 136.7 204.4 — —---- 136.7 2043 — —-- 136.7
238.0 — ----- 170.0 238.4 — -—--- 170.0 2384 — - 170.1
272.0 — —---- 171.4 2723 - -—-- 171.4 272.3 = —--- 171.3

Table 5.3: The uncoupled (Fn) and coupled natural frequencies (Fc) for Model 3, which is
a system comprising two dissimilar volumes separated by a limp panel, obtained via the

Modal, CMS and one-dimensional wave models. The superficial mass density of the limp
partition was ph=8.1kg/m”. For the CMS model similar types of normal modes (fixed-

fixed) plus a constraint mode were used for the source and receiving volumes.
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Figure 5.1: A piston driven acoustic tube divided into two components 1 and 2. Velocity
continuity and force equilibrium conditions are imposed on the limp partition at the

interface x = 0; F, is the force excitation.
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Figure 5.2: Set of component acoustic particle velocity modes used in Models 1 and 2 for

the source (i) and receiver (ii) respectively. For instance, ¢,, and ¢@,, represents the first
two component free-fixed interface normal modes and ¢, is the interface constraint
mode for the source room. ¢,, and ¢,, are the first two component fixed-fixed modes

and ¢, is the interface mode for the receiving room.
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Figure 5.3. Spatially averaged mean square sound pressure for the source (a) and

receiving (b) volumes (in dB re 2x10” Pa) for Model 1. Lightweight partition (ph=8.1

kg/m*) __ One-dimensional wave approach, ...CMS model.
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Figure 5.5: The Spatial variation of mean square sound pressure (in dB re 2x107 Pa)

(upper figure (a)) and particle velocity (normalized to Q,/S where Q, is the volume
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figure (b)) at 80 Hz (ph=8.1 kg/mz) — Model 1. One-dimensional wave approach,
.... CMS model.
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velocity which is equal to 3x10” m/s and S is the panel area as shown in the lower
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receiving (b) volumes (in dB re 2x107 Pa) for Model 2. Lightweight partition (ph=8.1

kg/mz) — One-dimensional wave approach, ...CMS model.
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Figure 5.11: The Spatial variation of mean square sound pressure (in dB re 2x107 Pa)
(upper figure (a)) and particle velocity (normalized to Q,/S where Q, is the volume

velocity which is equal to 3x10° m%s and S is the panel area as shown in the lower

figure (b)) at 80 Hz (ph=8.1 kg/mz) for Model 2. One-dimensional wave

approach, .... CMS model.
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(upper figure (a)) and particle velocity (normalized to Q,/S where Q, is the volume

velocity which is equal to 3x10” m?/s and S is the panel area as shown in the lower

figure (b)) at 10 Hz (poh=8.1 kg/mz) for Model 2. One-dimensional wave
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different panel mass densities (narrow bandwidth frequency) — Model 2. (a) ph= 8.1
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Figure 5.19: Spatial-averaged mean square sound pressure for source (a) and receiving

(b) volumes (in dB re 2x107 Pa) for Model 3 (one-third octaves). Heavy partition
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Figure 5.20: The Spatial variation of mean square sound pressure (in dB re 2x10” Pa)
(upper figure (a)) and particle velocity (normalized to Q,/S where Q, is the volume

velocity which is equal to 3x10” m’/s and S is the panel area as shown in the lower

figure (b)) at 50 Hz (ph=8.1 kg/mz) for Model 3. One-dimensional wave

approach, .... CMS model and ---- Modal model.
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Figure 5.21: The Spatial variation of mean square sound pressure (in dB re 2x107° Pa)
(upper figure (a)) and particle velocity (normalized to Q_ /S where Q, is the volume

velocity which is equal to 3x10° m%/s and S is the panel area as shown in the lower

figure (b)) at 100 Hz (ph=8.1 kg/mz) for Model 3. One-dimensional wave
approach, .... CMS model and ----- Modal model.
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Figure 5.22: Comparison of the Noise Reduction results, see equation (5.31), for two

different panel mass densities (narrow bandwidth frequency) — Model 3. (a) ph= 8.1
kg/m2 ,(b) ph="718.5 kg/mz; ___One-dimensional wave approach, ..... CMS model, and
---- Modal model.
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Figure 5.25: Comparison of spatial-averaged mean square sound pressure for the source
component (in dB re 2x10” Pa) between the CMS model 3 and an alternative CMS
model which considers free-fixed normal modes (force excitation). a) narrow bands; b)
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Chapter 6

THE DEVELOPMENT OF A CMS MODEL FOR THREE
DIMENSIONAL FLUID-STRUCTURE INTERACTION

6.1 — Introduction

The description, development and application of the CMS method for the one-
dimensional fluid-structure interaction problem was presented in chapter 5, which can be
used with some reservation on simple practical cases in engineering. On the other hand,
most of the problems of sound transmission in buildings demand a three-dimensional
model for better representation of the sound field distribution in acoustic spaces. In
addition, the application of the ‘limp’ mass description is not entirely appropriate in
frequency bands higher than the one which includes the fundamental resonance

frequency of the partition.

The main aim of this chapter is to extend analytically the CMS model to the three-
dimensional case (3D CMS model). This will be shown for simple room geometries, but
in principle the same procedure can be developed when the component modes are
obtained from numerical techniques, such as FE, and then applied in the described CMS
methodology. The modal behaviour of rooms and partition is implemented in two steps.
The first extension here is based on the one-dimensional model where the transverse
acoustic modes of the rooms are incorporated into the formulation. The second
extension, which is more general, considers not only the transverse acoustic modes of the

roorns but also the structural modes of the partition.

The results obtained via the Modal Model predictions are then compared to the 3D CMS
model. The 3D CMS model is tested and examined for the case of two coupled rooms
connected by a lightweight partition. As described before, the difference between the
results obtained via the experimental tests and the modal model for a lightweight
partition was found to be due not only to experimental errors and limitations in the
measurements, but also to the lack of kinematic continuity in the vicinity of the interface

between the rooms.
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In summary, the three-dimensional modal response in coupled rooms can then be

analysed by application of the CMS approach. The main contents of this chapter are

presented as follows.

Firstly, in section 6.2, a more general approach for the problem is presented. A CMS
model is developed in terms of its acoustic components, which are separated by an
elastic partition over the whole of the common wall interface. The constraint equations
enforce kinematic compatibility and geometrical details. The partition is considered in
terms of a series of independent modal components. The normal modes of a simply
supported partition are considered here. Consequently, the constraint modes are defined
in terms of geometrical coupling coefficients. Instead of using a transformation matrix
technique, as described in chapter 5, the matrix description and implementation of the
model are based here on the use of a Lagrange Multiplier technique [72]. This allows a

more general geometry and interface to be defined.

Secondly, the numerical results of the three dimensional CMS model are presented in
section 6.3 for the elastic partition case. They are compared to those obtained via the
modal model and experimental tests. The discussion of the results, including the effect of

the choice of modes and convergence, is also presented in section 6.3.

Finally, the summary of the main findings and conclusions are presented in section 6.4.

6.2 — The CMS Method for the 3D case — Matrix Formulation and

Implementation of the Model

In this general approach, the CMS is applied to the three-dimensional case of two rooms
separated by a common elastic partition. The constraint and fixed-interface normal
modes for the acoustic components are used herein. In addition, the elastic partition is
considered as a structural component, which is represented by its flexural normal modes.
As for the one dimensional case, the implementation of the CMS method for the 3D case
is also based on the selection of the sets of modes, definition of the constraint equations

and system synthesis.
6.2.1 — The definition of sets of component modes

Two rigid-walled rooms with a common elastic partition at the interface were considered

here as three distinct CMS components. The first one consists of the fluid volume, being
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defined forx =-Ly;tox=0,y=0toy=Ly; and z =0to z = L,;. The second component is
the receiving room, which is defined by a fluid volume varying from x =0 tox = L, y =
Otoy=Lyand z =0to z = L. The third CMS component is a partition p defined by its

flexural structural modes.

A constant volume velocity source, which undergoes harmonic oscillation, is placed in

one corner of the room. It is assumed that the fluid velocity function £(x,y,z,¢) can be

written in terms of generalized velocity potential i) (scalar quantity) by the modal

transformation [74]
e=(W i+, j+vi)d 6.1)

where ¥, ¥, and ¥, are matrices which consist of pre-selected orthogonal normal

modes plus constraint modes representing the fluid velocity distribution in the x, y and z

directions respectively.

The modal matrices for the source component are given by

v,o=ly, ¥ ] 6.2)
v, =¥, w ] 6.3)
v, =[¥, ¥ ] 6.4)

where the subscript c,, represents the constraint mode number; c,; and c,, are the modal
numbers for the set of modes ¥, and ¥, respectively. The subscripts n, /, and ¢
¥ z

denote the normal mode number of a particular mode in the x, y and z directions

respectively. The matrix ¥, consists of a set of fixed-fixed interface normal modes
(Y, ) plus a set of fixed-free constraint modes (¥, ) in the x direction. The matrix ¥,
is comprised of a set of fixed-fixed interface normal modes (¥, ) plus another set of
fixed-fixed modes (‘Pcyl) in the y direction, which is due to the contribution of the
constraint modes W, = to the fluid particle velocity in the y direction. Likewise, matrix
W, consists of a set of fixed-fixed interface normal modes (¥, ) plus the set of modes

¥, » which is due to the contribution of the constraint modes ‘¥, to the fluid particle

ord
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velocity in the z direction. Although the set of constraint modes ¥, contributes to the

fluid particle velocity distribution in both y and z directions, there is no need to have any
other set of constraint modes. This is justified by the fact that the interface between
components is only in the constant plane x = 0. The selected orthogonal normal and
constraint modes were defined as shape functions satisfying the geometric boundary

conditions for each acoustic component.

By application of the well-known relationship between velocity potential and particle

velocity [5], the normal modes ¥, (in the x direction) and their contributions to the fluid

particle velocity in the y and z directions ('Y, and ¥, ) can be expressed by

¥, (x,y,z,t) =—k, sin(k, x) cos(k, y) cos(k, z) for =L, £ x<0 6.5)
Y, (x,y,2,t) = -k, cos(k, x)sin(k, y) cos(k, z)for 0Sy<L (6.6)
‘P(h (x,y,2,t) = —k,]l cos(/’cnI x) cos(k,l y)sin (kq, z) for 0<z< LZ] (6.7)

where %, , k, and k, are equal to 7 x/(L,), 7 y/L, and g7 z/ L, respectively.

An additional set of constraint modes ¥'_, which satisfies zero velocity on x = -Ly; and

unit velocity on x = O over the partition area is used for the source room. The elastic
partition can either cover the whole of the common boundary (x = 0) or only part of the

common interface. For the source room component, the constraint modes ‘chl (in the x

direction) and their contributions to the fluid particle velocity in the y and z directions

(¥, and ¥, ) are then given by

¥ (x,,2,1) =(1 +-L—X—J cos(k, , y) cos(k, 2) (6.8)
x1
¥, (5,y,2.0)= {1 +-Z)—C——)k sin(k, y) cos(k, 2) (6.9)
x1 ‘ ’ .
LIICu (x,y,2,0) = 4{1 +Zx~) k.. cos(kcy1 y)sin(k, z) (6.10)
x1
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where k. ~and k. are equal to c,z/L, and c,zn/L, respectively. Equations (6.8)-

(6.10) apply over the area of the partition, even if it might only cover a partial area of the

whole interface (common wall).

According to equation (6.8), it is observed that the number of constraint modes ‘PCX] is
directly related to the number of different modal orders ¢, and/orc,. In addition, a

linear function was chosen to represent the particle velocity distribution in the x

direction, as higher order functions did not provide better convergence.

As the particle velocity of a fluid is defined by the first order derivative of its velocity
potential a sine function appears in equations (6.9) and (6.10), which represent the

constraint modes velocity contributions in the y and z directions respectively.

Additionally, it is assumed that the set of normal structural modes ¢, results from the

free flexural vibration of a simply supported rectangular thin plate (see Equations (C.2)
and (C.12)). The derivation of the dynamic properties and the equation of motion for the
structural component can be found in Appendix C. No constraint modes are necessary

for the structural component.

The modal matrices for the receiving component can be expressed as

‘sz=[‘1’nz ‘P] 6.11)
‘*’yz=[‘1’zz ‘P] (6.12)
‘?zf—[‘f’qz ‘P] (6.13)

The matrix ¥,, comprises of a set of fixed-fixed interface normal modes (¥, ) plus a
set of free-fixed constraint modes (¥, ) in the x direction. The matrix ¥, is composed
of a set of fixed-fixed interface normal modes (¥,) plus another set of fixed-fixed

modes (\chy,) in the y direction, which is due to the contribution of the constraint modes
W, to the fluid particle velocity in the y direction. In the same way, matrix Y,

comprises a set of fixed-fixed interface normal modes (¥, ) plus a set of modes Y

which is due to the contribution of the constraint modes ¥, to the fluid particle
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velocity distribution in the z direction. As for the source room, the set of free-fixed

constraint modes ‘¥, is sufficient for the formulation of the problem.

Additionally, the (x,y,z) particle velocity Cartesian components for the receiving room

are given respectively by

Y, (x,y,2,1)=-k, sin(k, x) cos(k, y) cos(k, z) for 0<x< L, (6.14)
‘*P,Z (x,y,2,1)=—k, cos(k,, x) sin(k,2 y) cos(k, z)for 0S y<L (6.15)
Y, (x,y,2,1)=-k, cos(k, x) cos(k, y)sin(k, z) for 0<z<L_ (6.16)

where £, , k, and k, areequalto nyax/L,,, LLny/L, and g,7nz/L,, respectively.

The constraint modes ¢; in the x, y, and z directions have velocity components then given

by
Y., (xy,z0)= (1 ——Ijx_) cos(kcy2 y) cos(k, ,z) (6.17)
x2
‘PC),2 (x,y,2,1) = {1 —z{_]kcﬂ sin(k(rv, y) cos(k, z) (6.18)
x2 - o
Y, (yz0)= —(1 —-Lij k., cos(k, ,y)sin(k, z) (6.19)
x2

where k. and k_ areequalto ¢,z y/L,, and ¢ ,7 z/L , respectively.

6.2.2 — Constraint Equations

Although the fluid particle velocity is considered in all directions (see equation (6.1)), for
calculating the dynamic response of the acoustic components 1 and 2 the compatibility
equations describing velocity continuity were only formulated in terms for the x direction
normal to the partition or interface. In other words, although the fluid velocity function is

equal to é=(éx,éy,éz), one only needs &, for the formulation of the constraint

equations at the interface. When the structural partition is considered as an extra modal

system, the compatibility equations are given by
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-5 3
a5 3

where £, and €, are the fluid particle displacement in the x direction for components

] as=[(e.) - Jas=o (6.20)

x=0

J as=((e,.)_ -] fas=o0 6.21)

x=0

1 and 2 respectively, w is the normal displacement of the partition ( in the x direction)
due to its flexural elastic deformation (see Appendix C) and S is the surface area of the
partition. These equations relate to the velocity continuity between the source room and
partition and receiving room and partition respectively. Thus, they are used to determine
a reduced set of generalized coordinates equal to the difference between the number of

component coordinates and the number of constraint equations.

As mentioned previously equations (6.8) to (6.10) can also be used for a partition
covering only part of the boundary. In this situation the integrals in the constraint

equations are evaluated only on the partition area.
It is implicit in equations (6.20) and (6.21) that the same reference coordinate is used for
all components. Using the Least Squares Method to minimize the functions C; and C,

and considering equation (6.1), the following matrix form can be obtained as

oC, _9C, _0C, _9C, _, 6.22)
0, Ow, 03¢, ow,
or R.G =0
where G= [, @, : W, i®, @[ and R =[RR,R,] (6.23)
0 R, ~R, 0 0
0 R -R 0 0
and R = PER,=| LR, = . (6.24)
0 07 |-R, 0 R,
0 0 -R,, 0 R,

The column vector G and the matrix R, contain the system generalized coordinates and

the geometrical coupling coefficients respectively.
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The sub-matrices R;;, R,,, R, , R,, and R,, defining the geometrical coupling are
given by
R, :J‘(qjc,} y (LPC,I )dS (6.25)
S
R, =], ) ¢,ds (6.26)
N
R, =[976,ds (6.27)
N
R, =] (¥..) 9,ds (6.28)
S
Ry =f(‘PY(‘I‘ Jis (6.29)
S

where the structural modal matrix ¢, is defined in equation (C.12) and the acoustic

modal matrices ¥, and ¥ , are defined in equations (6.2) and (6.11) respectively. S is

X

the surface area of the structural partition.

No terms exist in coupling between the normal modes of the room (¥, or ¥, ) and the
partition modes (¢, ), as the former have zero velocity at the interface (x = 0). The matrix

R,, is also a diagonal matrix due to orthogonality for the structural modes.

6.2.3 — Derivation of the General Dynamic Properties of the CMS acoustic components

In this sub-section the dynamic properties of an acoustic component driven by a volume
velocity source are derived using the direct application of Lagrange’s equations [69].
Therefore, the use of scalar quantities, which are the potential and kinetic energies, is
necessary to employ these equations. The kinetic energy 74 for an acoustic volume V;

can be expressed as [74]

T, :% p, [(&) ) (€)av (6.30)

Substituting equation (6.1) into equation (6.30), the expression for the total kinetic

energy using all of the modes employed in the formulation then becomes
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v, v, v,

T, %(5) g{f((‘l’x)T‘Px)dVl+j((‘lfy)“ffy)dvl + (e, )“PZ)dV}@) (6.31)

The potential energy of a fluid inside a volume V; is defined in terms of a velocity

potential function ® as [74]

_1 f( XICION a‘l’}w1 (632)
Jdt ot
where x = 5 is the compressibility of the fluid (6.33)

p()c()

Using the relationship between sound pressure and velocity potential [74], the potential

energy can then be expressed in terms of pressure as
1 .
V, = -2—.[(1( (p Yp)dm (6.34)
v,

By assuming that the acoustic disturbances in each component are sufficiently small, a
linear relationship between pressure and the rate of change of the displacement of the

fluid £(x,y,z,t) can be written as [74]

p= -—1~div(5) (6.35)
K
¥ _
and div(e) = o, +a 4 +8\PZ ) (6.36)
ox dy 0Oz

where k is defined in equation (6.33) and @ is the displacement potential of the fluid.

Therefore, substituting equation (6.35) and (6.36) into equation (6.34), the expression for

potential energy becomes

1 | [ 00®,) 9%, 7 oW, AP, 9P,
1 SASSTA v (@
Vy =5 (@ ){J( N ]a’V J’[ I Ja’v1 +J[ — ] }( )

(6.37)

For non-conservative systems, a dissipation function [75, 76] must be included. For an

acoustic component, it can be expressed as
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D:—;-@T)*po{f((w 20,0y, dV+f(T ) 20,0 \P, )dv, +

Vi Y

[ 20,802, )av, }c}* (6.38)
v
where ¢, is the modal damping ratio matrix for the components and @, is the modal

matrix of natural frequencies. The damping matrix can then be derived from the above
expression. It is seen that linear viscous damping was adopted for the purpose of

simplification. This is a reasonable choice for highly reverberant acoustic spaces [5].

The system equations of motion can be obtained for a damped system by using

Lagrange’s equation of motion [69] as follows

9 8{, oL +8D 0, 1i=1,2,...n (6.39)
o\ 9g, | da, 9,
where L is Lagrangian for the system of coupled components described below, D is the

damping dissipation function and ¢, are the elements of the generalized coordinate D.

In addition, it is assumed that the modes are real. Q; is the time-dependent generalized
volume velocity source strength in the case of a source within an acoustic volume or

generalized force for a general system. The Lagrangian is defined by [72]
L=T,-V,+AR,G (6.40)
where A is a Lagrange multiplier vector which enforces interface compatibility.

For instance, the dynamic properties of a separate acoustic component 1 may be

determined via Lagrange’s equations (6.39), which lead to the following equation of

motion

MPP®, + CPD, + KPP, —(R ) A =0° (6.41)

where M =p { [0, )av, + j (¥,)7W,, )V, + j (F.) ‘le)dV} (6.42)

Y Vi 14

oY) 0¥, o(%¥,)" 0¥, o(¥,)" 0¥, 6.43
_poof[ M. )dvﬁi[ ENR Y JdV ﬂ R ]aVV1 (6.43)

A
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¢’ =2m,p1[ ()TN, )av, + [ (2,07 ¢F, )av; + [ (SR I (6.44)

v, v,
13D - ja)pOQof‘Pxﬁo (x—xo V=Y,,2-2, )dx (6.45)

where 6 (x—x,,y—y,,2—2z,) is the three-dimensional Dirac delta function representing

a point volume velocity source at (,,y,,z,), and M>P, K®, and C?” are scalar
quantities representing the modal mass, stiffness and damping matrices for the fluid
volume respectively. Q;” is the column matrix of generalized volume velocity source
strength where the individual terms relate to the excitation of individual model
components. R, is the matrix defined in equation (6.23). A, is a column vector with a

number of rows equal to the total number of constraint modes in component 1 plus the

total number of constraint modes in component 2.

As a consequence of classifying the modes into two categories, namely constraint modes
and normal modes, the mass, stiffness and damping matrices are partitioned into sub-

matrices as follows

M>? z{mzwv nlNC]; K :[kNN kNC]; cP __{CNN CNCJ; (6.46)

T T T
Myc  Mcc kne  kec Cne  Ccc

The sub-matrix m,, , k,, and c,, are diagonal matrices. This is true due to the

orthogonality property of the natural component modes. The order of these matrices
depends upon the number of modes chosen for the analysis. On the other hand, the sub-

matrices m., k.- and c.. are square matrices associated with the constraint modes;
their orders are equal to the number of constraints. Finally, the rectangular matrices m,
k. and c,. are associated with the coupling between the normal and constraint modes,

as these are not generally orthogonal and cross-terms exist in the potential and kinetic

energy expressions as well as in the dissipation function.
6.2.4 —System Synthesis

The equations of motion for the source room (acoustic component 1), the structural

partition (component p) and the receiving room (acoustic component 2) are expressed in

terms of their generalized coordinates @ as
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MPD +CP D+ KPP, -RTA = 0P (6.47)
.. . T _

M, + Cw,+K,w,-R, A, =0 (6.48)

MPD,+CPD,+KP D, -RIA, =0 (6.49)

where 4, 4, and A, are column vectors of Lagrange multipliers for components 1, p

and 2 respectively. The set of equations presented above as well as the dynamic
properties of the acoustic components M2 %P and K°P and the generalized volume
velocity source strength 0P can all be derived as shown in subsection 6.2.3 using
Lagrange’s equations of motion. The dynamic properties of the structural component

(M, C, and K,,) are derived in detail in Appendix C.

The coupled set of equations for the entire system is then given by

UG +¢G + 4G —-IR. =0, (6.50)
and RG=0 (6.51)
where
A M?® 0 0 c’> o0 o0 K®X 0 0
A={A,tsu= 0 M, 0 f¢=/0 C, 0 x=l0 K, 0|
A, 0o o0 M} 0 0 C* 0 0 K°

and Q, :[ 0 O]r. The matrices 4, ¢ and y are the modal mass, damping and

1
stiffness matrices respectively. Qg is the column vector containing the generalized
‘forces’ exerted on the components. It can also be shown that the coordinates G are not

linearly independent in the set of equations (6.50), due to the constraint equations (6.51).

The matrix of generalized coordinates G cannot easily be rearranged and partitioned
into dependent and linearly independent coordinates as in the one-dimensional case.
Therefore, the transformation technique, which was described previously, has not been
adopted here. Alternatively, equations (6.50) and (6.51) may be written in the partitioned
form [73]

[(Z_w% jos) ——RCHC_}} _ {Q} (6.52)

R? o |la] |o
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The use of the Lagrange’s Multiplier technique for the present situation, whilst more
tedious than the transformation matrix technique used in the previous chapter, permits
the incorporation of the constraint equations in a systematic manner. Equation (6.52) can
be solved numerically by the application of a pseudo-inversion technique using Singular

Value Decomposition (SVD) [77].

6.3 — Numerical Results

In this section the results of some numerical simulations are presented in order to
illustrate the use of the CMS method in 3D fluid-structure interaction problems. All
results are presented for the three dimensional problem, which also includes the modal

contribution of the partition.

The spatial results are presented in terms of normalized mean square pressure and
particle velocity distribution at 55 Hz, 120 Hz and 190 Hz over certain positions (planes)
that have been specified a priori. These particular frequencies, which do not necessarily
coincide with the fundamental room modes, were arbitrarily chosen below and above the
lowest natural frequency of the receiving room, above which tangential and oblique

acoustic modes are generated in the receiving room.

Subsequently, a comparison between the CMS and the Modal model described in chapter

2 is made in terms of spatially averaged mean square sound pressure variation and Noise

Reduction (NR).

6.3.1 — A three dimensional CMS model considering an elastic partition (over the whole

common wall)

A flexible partition with dimensions and density equal to 2m x 2m and 806 kg/m’
respectively was considered over the whole common interface. The thickness, Young’s
modulus and Poisson’s ratio for the partition were 0.01m, 2.12x10”° N/m?, and 0.24
respectively. Its fundamental natural frequency is 3.8 Hz. The source and receiving room
dimensions were as before equal to 5Sm x 2m x 2m and 3m x 2m x 2m respectively. A

constant volume velocity source was placed at one corner of the source room (-5,0,0).

As mentioned above, the following results are presented in terms of the mean square
pressure and particle velocity distribution at 55 Hz, 120 Hz and 190 Hz. The mean

square values are normalized to their maximum value in the plane. The normal particle
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velocity values presented in this section were considered in the x direction normal to the
partition. The mean square pressure and particle velocity distributions were symmetric

with respect to the principal axes of both rooms.

Figure 6.1 shows the distribution of the normalized mean square sound pressure over the
horizontal plane x-z (at the room mid-plane y = 1 m) at 55 Hz. The x and z direction
correspond to the rooms’ depth and width respectively. Figures 6.1 (a) and (b) show the
variation of mean square pressure using a three dimensional surface plot mesh and
contour levels respectively. It is seen that the pressure variation over the horizontal plane
x-z of the source and receiving rooms is symmetric, in particular it is plane across the
width of the receiving room (see Figure 6.1 (b)). This can be explained by the fact that
the first tangential mode in the receiving room occurs at about 59 Hz. There is also

pressure discontinuity at x = 0.

Figures 6.2 (a) and (b) show the normalized mean square particle velocity distribution in
the x direction with respect to the horizontal mid-plane y = 1 m at a frequency equal to

55 Hz. At the partition location the particle velocity is close to zero.

Figure 6.3 shows the distribution of the normalized mean square sound pressure over the
plane x-z (at the room mid-plane y = 1 m) at 120 Hz. The x and z direction correspond to
the rooms depth and width respectively. It is seen that the pressure variation over the
horizontal x-z plane of the receiving room is symmetric across the width of the room but
not plane as tangential modes are excited at this frequency. Figures 6.4 (a) and (b) show
the normalized mean square particle velocity distribution in the x direction with respect
to the horizontal mid-plane y = 1 m at 120 Hz. It is seen that plane waves are not
generated as in the case shown in Figure 6.2. By comparing Figures 6.3 and 6.4 with
those of the modal model (Figures 2.19 and 2.20), it is seen that the CMS solution shows
a different spatial distribution of sound pressure and particle velocity, especially in the
receiving room. At this frequency, the modal model is close to a resonance and the CMS

model is at an anti-resonance.

At particular frequencies, it is usually difficult to make a comparison between the two
models in terms of mean-square pressure and/or particle velocity spatial distributions. It
may be explained by the fact that for the modal model the acoustic pressure is assumed
to be the sum of the pressure distributions in the acoustic modes of a rectangular rigid-

walled room. On the other hand, for the CMS model ‘additional’ modes (constraint
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modes) are also included in the summation and the responses at particular frequencies

are not necessarily very similar.

Figures 6.5 and 6.6 show the normalized mean square pressure distribution with respect
to the vertical plane x-z along the centre line length of the room (y = 1 m) at 140 Hz and
at 190 Hz respectively. The pressure at the end wall X = -5m, where the source was
located, assumed a maximum value. It can be seen that good agreement was found
between the modal and CMS model for the mean square pressure distributions at both
frequencies. Similarly there is good agreement for the mean square particle velocity
distribution (not shown). The results are close to particular modes of both rooms. For
instance the natural frequency at 190.1 Hz corresponds to the modes (5,0,1) and (3,0,1)
for the source and receiving rooms respectively. Nevertheless, in terms of mean square
pressure distribution the results obtained via the Modal and CMS models present some
differences for the receiving room. Figure 6.8 later shows the effect of these differences

in the absolute pressure levels at about 190 Hz.

In Figure 6.7 a comparison is made between the one dimensional CMS model, which
considers a limp partition and was presented previously in Chapter 5, and the actual
three-dimensional CMS model in terms of average mean square sound pressure. Figures
6.7a and 6.7b show the results for the source and receiving room respectively. It is seen
that the resonance peaks for the CMS-1D model tend to match those for the CMS-3D
model as frequency increases. According to the Figure, the first resonance peak for the
1D case is lower than the one for the 3D case, which considers an ‘elastic’ partition. This
is due to the effect of the partition elastic properties, which is considered in the 3D CMS

model. Some agreement can be seen near the 1D modes as expected.

Figures 6.8 (a) and (b) show a comparison between the CMS and the Modal model in
terms of mean square sound pressure for both source and receiving rooms respectively.
The results are shown in narrow frequency bands. A total of 90 modes (77 normal modes
and 13 constraint modes) were used for the source room. For the receiving room, 59

modes (46 normal modes and 13 constraint modes) were considered.

The effect of the 0 Hz mode in the Modal model has been checked by eliminating it from
the calculations (not shown). As a result, the variation of sound pressure in the source
and receiving rooms tended to zero at frequencies below their first ‘elastic’ modes, i.e. at
34 Hz and 56.7 Hz. Peaks at 34 Hz and 68 Hz can be seen in both the source and

receiving rooms. However, there are some ‘extra’ peaks in the receiving room which
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correspond to the coupled modes of the system. For example, the peak at about 19 Hz

corresponds to the coupled mode 19.3 Hz shown in Table 6.2.

Both models present slight differences in terms of their coupled resonance frequencies in
the frequency range considered although generally the agreement is very good in the
source room above 50 Hz and reasonably good in the receiver room. The first ten natural
frequencies for the coupled system consisting of the rooms and partition are listed in
Tables 6.1 and 6.2. These correspond to the eigenvalues of the unforced system
(equation (6.52) with no volume velocity source), which are obtained using an
eigenvalue solver. Due to the square cross-section of the rooms there are repeated modes
apparent in the tables due to this symmetry. The peaks shown in the room responses,
Figure 6.8 for example, can be identified in the natural frequencies calculated, some of
which are given in the tables. For instance, it is seen that the first peak for the CMS

predictions shown in Figure 6.8a is at about 8§ Hz and is seen in the modes listed in Table

6.2

Figure 6.9 shows a comparison between the models in terms of variation of spatial-
average mean square sound pressure with frequency in 1/3 octave bands. Figure 6.9(a)
presents the results for the source room. It is seen that a difference of less than 2 dB
occurs between the models for frequencies above 100 Hz. Below 100 Hz there are
differences of up to 10 dB. On the other hand, Figure 6.9(b) shows differences of up to
20 dB for frequencies below 100 Hz. This might be explained by the fact that few
acoustic ‘room’ modes are excited at frequencies below 100 Hz in the receiving room.
However, it is seen that a difference of less than 5 dB occurs in the 1/3 octave bands with

centre frequencies greater than 100 Hz.

In general the differences became less important at higher frequencies, where the
acoustic field became more diffuse and the system boundary conditions did not have as

much effect on the mean square sound pressure averaged over the acoustic volume.

Figures 6.10a and 6.10b show the Noise Reduction values in narrow and 1/3 octave
bands respectively. The variation of the NR between the CMS and Modal models in 1/3
octave bands tends to be less than about 6 dB at centre frequencies greater than 100 Hz.
In this frequency range the results show low convergence. On the other hand, there is a
fair agreement between the CMS model and Leppington’s approach as frequency

increases.
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Figures 6.11a and 6.11b show a comparison of the spatially averaged mean square
normal velocity of a lightweight partition calculated using the CMS and the Modal
models. A difference of about 20 dB between the models occurs at very low frequencies.

Nevertheless, a difference of less than 2 dB is found at frequencies greater than 100 Hz.

Figures 6.12a and 6.12b present a comparison between the CMS and Modal model in
terms of the variation of the mean square sound pressure for the source and receiving
rooms respectively. The results shown are shown in narrow band and for a heavyweight
partition. It is seen that a reasonable agreement is found between both models over most
of the frequency range and it is better than that for the lighter partition shown in Figure
6.8. The first ten natural frequencies for the rooms, partition and the coupled system are
listed in Tables 6.3 and 6.4. It is seen that there are some degenerate modes due to the

symmetry of the rooms.

Figure 6.12a shows a slight difference between the models at approximately 12 Hz.
Figure 6.12b shows that there are peaks at 85 Hz and 120 Hz in the modal model but not
in the CMS model. This might be explained by the fact that the CMS did not incorporate
‘rigid-body’ modes in the formulation. Therefore, as the compatibility equations were
only formulated in terms in the x direction normal to the partition, there was no net
volume associated with the particle velocity modes (0, 15, qz) in the receiving room.
Likewise, the one-dimension CMS model implemented in Chapter 5 did not incorporate

the zero velocity bulk mode in its formulation.

In Figures 6.13a and 6.13b the corresponding one third octave bands results are shown.
Figure 6.13a shows at frequencies greater than 100 Hz a difference of less than 1 dB is
found between both models for the source room. At frequencies below 100 Hz they show
some differences of up to approximately 6 dB. On the other hand, Figure 6.13b shows
differences of up to 15 dB in one third octave bands with centre frequencies below 160
Hz for the receiver room. Figure 6.12 shows that there are peaks at 85 Hz and 120 Hz in
the modal model but not in the CMS and that these would contribute significantly to the
third octave band level differences. Above 160 Hz the fairly good narrow band

agreement produces third octave band differences of less than 2 dB.

Figures 6.14a and 6.14b show the NR values for the heavier partition in narrow and one
third octave bands respectively. It is shown that significant differences between the
models occur at low frequencies. As the frequency increases, a fairly good agreement is

obtained between the models. Moreover, the CMS result shows fairly good agreement
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with those obtained via Leppington’s approach and with the field incidence Mass Law.
For the model considered the incidence Mass Law appears to still be underestimating the

NR at the higher frequencies being considered here.

Figures 6.15a and 6.15b show the results comparing the partition vibration according to
the CMS and the Modal model for a heavyweight partition. It is seen that at higher
frequencies the results tend to a better agreement as expected. Differences of less than 3

dB occur at frequencies greater than 100 Hz.

6.3.2 —Comparison between the results obtained experimentally and via the numerical

models.

In this subsection some results are presented for comparison between the predictions (i.e.
those obtained via the Modal and CMS models) and the measured values obtained via
experimental tests described in Chapter 3. In order to compare the results obtained in
Chapter 3 (i.e. using the Modal model and measured values) with those obtained via the
CMS-3D model, the same geometrical and material properties for the partition and
rooms were adopted herein. In addition, the same volume velocity, which was measured
from the loudspeaker for using in the Modal model calculations (see Figure 3.15), was

also considered in the CMS model.

Figures 6.16a and 6.16b show a comparison between measured and predicted sound
pressure levels in 1/3 octave bands for the source and receiving rooms respectively. The
results obtained via the Modal model and experimental tests were reproduced here from
Figures 3.45 and 3.46. They show that significant differences occur between the CMS
and Modal models at very low frequencies. On the other hand, it is seen that a difference
of less than 6 dB occurs between the CMS and the Modal model at frequencies greater
than 100 Hz. Overall, a poorer agreement is found between the measured and predicted
results for the receiving rooms at high frequencies. As mentioned in Chapter 3, the main
reason for this discrepancy was due to the poor signal-to-noise ratio of the measurements

made in the receiving room.

Figure 6.17 shows that as frequency increases, both theoretical models tend to diverge
from the measured Noise Reduction values. As explained previously, this is possibly due
to the poor signal to noise ratio measured values. The noise floor for the measurements
in the receiver room was not substantially lower than the measured sound pressure level.
Despite significant differences occuring between the CMS and the Modal model at very
low frequencies, these differences tend to be less than 3 dB at higher frequencies.
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Figure 6.18 presents a comparison between the experimental test, the CMS and Modal
models in terms of the partition normal velocity. It is seen that as frequency increases the
results seem to converge as expected. The measured damping was used in the

calculations. It is seen that at higher frequencies both the CMS and Modal models show

good agreement.

6.4 — Conclusions

The CMS approach for the one-dimensional problem has been extended in this chapter to
the more general three-dimensional case. The application described the coupling of two,
in general, dissimilar rectangular volumes separated by an elastic partition which might
form only partial coverage of a common interface with all of the rest being rigid. In
principle, apart from the choice of the component and constraint modes, which for
irregular volumes may require numerical (e.g. FE) calculations, the approach is very

general and could be implemented within existing commercial software.

For the present examples considered it has been possible to use existing analytical
expressions for the modes under certain assumptions, e.g. simply-supported edges for the
partition, and then rapid numerical calculations for the coupled systems have been
possible. As previously seen in the one-dimensional case, there is a significant change in
the detailed pressure and velocity spatial variations when correct velocity continuity i8
included but which is not so important if the spatially averaged quantities or higher
frequencies are considered. The most important findings from the simulations performed

are as follows, where comparison is made between the CMS and the original Modal

Model approach.

It was seen that the spatial distribution of sound pressure and particle velocity in the
rooms are very complex. It usually depends on several factors such as source position,
room and partition dimensions, frequency, etc. For the cases presented herein the
response in the receiving volume was directly related to the degree of coupling between

the structural and the transverse acoustic modes.

Firstly, an elastic partition was incorporated and considered as another modal
component. The results have shown a fairly good agreement between the CMS and the
Modal model in terms of spatially averaged mean square pressure. Similarly reasonably

good agreement between the models was obtained at higher frequencies. One possible
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explanation is that the modal model, which considers rigid-walled modes, is more
representative at higher frequencies where the system boundary conditions are much less
important. Nevertheless, it still cannot replicate exactly the partition velocity compared

to the CMS method.

Secondly, some experimental results obtained in Chapter 3 are compared to the
numerical models. It is seen that in contrast to the sound pressure in the receiving room,
a better agreement between the measured and predicted results, which were obtained
using the CMS and Modal models, was obtained for the source room. This is particularly
evident from inspection of the frequency response of the sound pressure in both rooms.
In Chapter 3, it was seen that the sound pressure measurements in the receiving room

were significantly affected by external factors such as poor signal to noise ratio.

In summary, the number of modes, and hence the order of the equations, increases
significantly and for practical computational and numerical reasons the CMS approach is
primarily useful for low frequency predictions. This comment is also applicable to the
existing modal methods and is a consequence of the high modal density with increasing
frequency for acoustic volumes and is a reason why statistical approaches (e.g. SEA)

have been developed.

In principle, the constraint equations could also be used for the application of further
conditions based on the impedance of the walls, for example, if one requires the
distribution of absorbing material characterized as locally reacting and quantified by a

normal impedance.

For irregular volumes then more general approximate methods, such as the numerical
FE/BEM and the Trefftz techniques [71], might be more appropriate unless the normal

modes are found numerically in advance of applying the CMS method.

The incorporation of the approach into existing software packages for acoustics would be

worth investigation in future studies.
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Tables

fiHz) | L(Hz) | f,(Hz) | F.(Hz)

0.0 0.0 3.8 0.00
34.0 56.7 9.5 9.02
68.0 85.0 9.5 9.02
85.0 85.0 15.2 | 10.98
8§5.0 | 1022 | 18.9 | 14.72
91.5 | 102.2 | 189 | 18.57
91.5 | 113.3 | 24.6 | 19.04
102.0 | 120.2 | 24.6 | 19.04
108.9 | 1329 | 322 | 24.26
108.9 | 141.7 | 322 | 24.26

Table 6.1: The first ten undamped natural frequencies of rooms and partition for the
Modal Model considering a flexible partition with dimensions 2m x 2m. Mass per unit
area and Young’s Modulus are p = 8.06 kg/m2 and E = 2.12x10° N/m? respectively. ‘f;’
and ‘fy” are the ‘eigenvalues’ corresponding to the fixed-fixed normal modes for the
source and receiving rooms respectively. ‘F’ is the coupled frequency with subscripts 1,
2, ‘p’ and ‘¢’ representing the source room, receiving room, partition and the coupled
system respectively. N.B. Note degenerate modes for the coupled models because of
symmetry in the square cross-section of the panel and volumes.

fi(Hz) | B(Hz) | f,(Hz) | Fean(Hz) | Fein(Hz)
34.0 56.7 3.8 8.1 12.8
68.0 85.0 9.5 11.2 36.2
85.0 85.0 9.5 11.2 58.9
85.0 [ 102.2 | 15.2 15.8 69.5
91.5 102.2 | 18.9 19.3 102.8
91.5 113.3 18.9 19.3 114.7
102.0 | 1202 | 24.6 24.5 136.7
108.9 |1 1329 | 24.6 24.5 170.0
108.9 | 141.7 | 32.2 34.6 171.4

34.6

37.8

Table 6.2: The first nine undamped ‘eigenvalues’ of rooms and partition for the CMS
Model considering a flexible partition with dimensions 2m x 2m. Mass per unit area and
Young’s Modulus are ph = 8.06 kg/m” and E = 2.12x10° N/m? respectively. ‘f;” and ‘f’
are the ‘eigenvalues’ corresponding to the fixed-fixed normal modes for the source and
receiving rooms. ‘F’ is the coupled frequency with subscripts 1, 2 and ‘p’ representing
the source room, receiving room and partition respectively. The subscripts ¢,3D and ¢,1D
represent the 3D and 1D CMS models respectively.

N.B. Note degenerate modes for the coupled models because of symmetry in the square
cross-section of the panel and volumes.
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fi(Hz) | f,(Hz) | {,(Hz) | F.(Hz)

0.0 0.0 12.1 0.00
34.0 56.7 30.2 | 12.53
68.0 85.0 30.2 | 30.01
85.0 85.0 48.3 | 30.01
85.0 | 102.2 | 604 | 34.17
91.5 | 102.2 | 604 | 34.17
915 | 1133 | 785 | 48.12
102.0 | 120.2 | 78.5 | 56.56
108.9 | 132.9 | 102.7 | 60.22
108.9 | 141.7 | 102.7 | 60.49

Table 6.3: The first ten natural frequencies of rooms and partition for the Modal Model
considering a flexible partition with dimensions 2m x 2m. The mass per unit area and
Young’s Modulus are ph = 78.5 kg/m* and E = 210x10° N/m? respectively. ‘f;” and ‘fy’
are the ‘eigenvalues’ corresponding to the fixed-fixed normal modes for the source and
receiving rooms respectively. ‘F’ is the coupled frequency of the undamped system. The

subscripts 1, 2, ‘p’ and ‘¢’ represent the source room, receiving room, partition and the

coupled system respectively.

fi(Hz) | 1(Hz) | f,(Hz) | F(Hz)

340 | 56.7 | 12.1 12.2
68.0 | 85.0 | 30.2 19.6
85.0 | 85.0 | 30.2 31.2
85.0 | 102.2 | 48.3 31.2
91.5 | 102.2 | 604 34.0
915 | 1133 | 604 48.1
102.0 | 120.2 | 78.5 56.7
108.9 | 132.9 | 78.5 56.7
108.9 | 141.7 | 102.7 60.2
120.2 | 141.7 | 102.7 68.3

Table 6.4: The first ten ‘eigenvalues’ of rooms and partition for the CMS Model
considering a flexible partition with dimensions 2m x 2m. The mass per unit area and
Young’s Modulus are ph = 78.5 kg/m* and E = 210x10° N/m? respectively. f;" and ‘fy’
are the ‘eigenvalues’ corresponding to the fixed-fixed normal modes for the source and
receiving rooms. ‘F.’ is the coupled frequency of the undamped system. The subscripts

1, 2 and ‘p’ represent the source room, receiving room and partition respectively.
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Figure 6.1: Normalized mean square pressure distribution with respect to the horizontal
plane y = 1m at 55 Hz. The square elastic partition has dimensions, mass per unit area

and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m2 and E = 2.12x10° N/m’

espectively. (a) Surface plot and (b) Contour levels in relative pressure to the maximum

in the plane.
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Figure 6.2: Normalized mean square particle velocity distribution in the x-direction with

respect to the horizontal plane y = 1lm at 55 Hz. The square elastic partition has

dimensions, mass per unit area and Young’s Modulus equal to 2m x 2m, ph= 8.06

kg/m? and E = 2.12x10° N/m? res ectively. (a) Surface plot and (b) Contour levels in
g P

relative pressure to the maximum in the plane.
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Figure 6.3: Normalized mean square pressure distribution with respect to the horizontal

plane y = 1m at 120 Hz. The square elastic partition has dimensions, mass per unit area

and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m” and E = 2.12x10° N/m’?

respectively. (a) Surface plot and (b) Contour levels in relative pressure to the maximum

in the plane.
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Figure 6.4: Normalized mean square particle velocity distribution in the x-direction with
respect to the horizontal plane y = Im at 120 Hz. The square elastic partition has

dimensions, mass per unit area and Young’s Modulus equal to 2m x 2m, ph= 8.00

kg/m2 and E = 2.12x10° N/m? respectively. (a) Surface plot and (b) Contour levels in

relative pressure to the maximum in the plane.
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Figure 6.6: Normalized mean square pressure distribution with respect to the horizontal
plane y = Im at 190 Hz. The square elastic partition has dimensions, mass per unit area
and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m2 and E = 2.12x10° N/m”

respectively. (a) CMS model and (b) Modal model in relative pressure levels to the

maximum in the plane.
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Figure 6.7: Comparison between the CMS-1D and the CMS-3D models in terms of the
variation of spatial-average mean square sound pressure with frequency (0.1 Hz
resolution). The square elastic partition has dimensions, mass per unit area and Young’s
Modulus equal to 2m x 2m, ph= 8.06 kg/m2 and E = 2.12x10° N/m® respectively.
(2):10l0g,(7)/ p2) [dB re 2x10°° Pa) ;(b): 10log,(p2)/p?) [dB re 2x10°° Pal. The
subscript 1 and 2 indicates source and receiving rooms respectively; — CMS-3D model;
—————— CMS-1D model.
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Figure 6.8: Comparison between the CMS and the Modal model in terms of the variation
of spatial-average mean square sound pressure with frequency (0.1 Hz resolution). The
square elastic partition has dimensions, mass per unit area and Young’s Modulus equal

to 2m x 2m, ph= 8.06 kg/m2 and E = 2.12x10° N/m? respectively.
(a):10logy((p7)/ p2) [dB re 2x10° Pa] ;(b): 10log,(p:)/p?) [dB re 2x10° Pal. The
subscript 1 and 2 indicates source and receiving rooms respectively; — CMS model; ----

Modal model.
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Figure 6.9 Comparison between the CMS and the Modal model in terms of the variation
of spatial-average mean square sound pressure with 1/3 octave bands. The square elastic

partition has dimensions, mass per unit area and Young’s Modulus equal to 2m x 2m,

ph=8.06 kg/m® and E = 2.12x10° N/m’ respectively. (a):101og(57)/ p?) [dB re 2x10°
Pa] ;(b): 101og0(<f722>/ pf) [dB re 2x10 Pa]. The subscript 1 and 2 indicates source and

receiving rooms respectively; — CMS model; ---- Modal model.
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Figure 6.10: Comparison between the CMS and the Modal model in terms of the

variation of Noise Reduction (NR). The square elastic partition has dimensions, mass per

unit area and Young’s Modulus equal to 2m x 2m, ph= 8.06 kg/m® and E = 2.12x10°
N/m’ respectively. (a):1010g0(<f)12>/<f)§>) [dB re 1] versus frequency ;(b): 10]0g0(<f)12>/<ﬁ22>)

[dB re 1] in 1/3 octave bands. The subscript 1 and 2 indicates source and receiving rooms

respectively; — CMS model; --- Modal model; *** Diffuse incidence Mass Law; +++

Field incidence Mass Law; 000 Leppington’s prediction.
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Figure 6.11: Comparison between the CMS and the Modal model in terms of the
variation of the spatially averaged mean square normal velocity of the partition (dB re
10 m/s). The square elastic partition has dimensions, mass per unit area and Young’s

Modulus equal to 2m x 2m, ph= 8.06 kg/m® and E = 2.12x10° N/m? respectively. (a) in

narrow bands; (b) in 1/3 octave bands. — CMS model; --- Modal model.
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Figure 6.12: Comparison between the CMS and the Modal model in terms of the
variation of spatial-average mean square sound pressure with frequency (0.1 Hz
resolution). The square elastic partition has dimensions, mass per unit area and Young’s

Modulus equal to 2m x 2m, ph= 78.5 kg/m2 and E = 210x10° N/m? respectively.
(a):101og,(7?)/p?) [dB 1e 2x10° Pa] :(b): 10log,(7)/p2) [dB re 2x10° Pal. The
subscript 1 and 2 indicates source and receiving rooms respectively; — CMS model; ----

Modal model.
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Figure 6.13 Comparison between the CMS and the Modal model in terms of the variation
of spatial-average mean square sound pressure with 1/3 octave bands. The square elastic

partition has dimensions, mass per unit area and Young’s Modulus equal to 2m x 2m,

ph=T78.5 kg/m2 and E = 210x10° N/m? respectively. (a): 1010g0(<pf>/p2) [dB re 2x10°
>Pa] ;(b): 1010g0(<ﬁ§>/ pf) [dB re 2x10” Pa]. The subscript 1 and 2 indicates source and

receiving rooms respectively; — CMS model; ---- Modal model.
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Figure 6.14: Comparison between the CMS and the Modal model in terms of the
variation of Noise Reduction (NR). The square elastic partition has dimensions, mass per
unit area and Young’s Modulus equal to 2m x 2m, ph= 78.5 kg/m® and E = 210x10°
N/m” respectively. (a): 1010g0(<ﬁf>/<ﬁ§>) [dB re 1] versus frequency ;(b): 1010g0(<512>/<ﬁ§>)
[dB re 1] in 1/3 octave bands. The subscript 1 and 2 indicates source and receiving rooms
respectively; — CMS model; --- Modal model; *** Diffuse incidence Mass Law; +++

Field incidence Mass Law; 000 Leppington’s prediction.
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Figure 6.15: Comparison between the CMS and the Modal model in terms of the
variation of the spatially averaged mean square normal velocity of the partition. The
square elastic partition has dimensions, mass per unit area and Young’s Modulus equal

to 2m x 2m, ph= 78.5 kg/m2 and E = 210x10° N/m? respectively. (a) in narrow bands;

(b) in 1/3 octave bands. — CMS model; --- Modal model.
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Figure 6.16: Comparison between the measured and predicted (using the CMS and
Modal models) spatial-average mean square sound pressure in 1/3 octave bands. The
square elastic partition has dimensions, mass per unit area and Young’s Modulus equal
to 0.7m x 0.7m, ph= 6.83 kg/m2 and E = 2.53x10° N/m? respectively.
(a):101og,(7?)/p?) [dB e 2x10° Pa) :(b): 10log,(p:)/p2) [dB re 2x10°° Pal. The
subscript 1 and 2 indicates source and receiving rooms respectively; — Measured; -0-

CMS model; ---- Modal model.
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Figure 6.17: Comparison between the predicted and measured Noise Reduction (NR)
values in 1/3 octave bands. The square elastic partition has dimensions, mass per unit

area and Young’s Modulus equal to 0.7m x 0.7m, ph= 6.83 kg/m2 and E = 2.53x10°
N/m? respectively. — Measured; -0-.CMS model; ---- Modal model.
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Figure 6.18: Comparison between the predicted and measured spatially averaged mean
square normal velocity of the partition in 1/3 octave bands. The square elastic partition

has dimensions, mass per unit area and Young’s Modulus equal to 0.7m x 0.7m, ph=
6.83 kg/m* and E = 2.53x10° N/m? respectively. —— Measured; -0-.CMS model; ----
Modal model.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 — Introduction

This research was undertaken as a result of the need to improve the available analytical
tools, such as Modal Analysis and classical methods, for prediction of sound transmission
through partitions at low frequencies. For instance, nowadays there is a trend to design
lighter structural elements and smaller rooms in order not only to optimize the use of space
but also to generate higher profits. In addition, the simplification of assuming ‘rigid-
walled’” modes in the calculations may not be reliable under certain conditions e.g. when
the knowledge of the spatial distribution of the sound field is of primary importance.
Furthermore there is little published work that considers noise transmission and structural
acoustic coupling at low frequencies. These problems include the effect of the room
geometry and absorption, the partition properties, geometry and its location and the effect
of non-reverberant acoustic volumes. Therefore, this work was mainly motivated by these
reasons and aimed at developing approaches and tools which could address some of the

important issues.

The development and validation of mathematical models, using Modal Analysis and the
Component Mode Synthesis (CMS) Method, were the main goals of this research. The
implementation of a general modal model, which allows for a detailed parametric study,
involved the task of expanding the set of equations presented in ref. [5] to a system
comprising two-coupled rooms. To the author’s knowledge, the development of the CMS
model described and the application of a ‘sub-structuring’ technique, which was mainly
developed for solving complex structural dynamics problems, for fluid-structure
interaction problems was novel as regards its application to sound transmission in

buildings.

258



Chapter 7. Conclusions and Recommendations

7.2 — Summary of results and conclusions of each individual chapter

In this section, a review of the most important findings is presented.

In chapter 2, the results using an existing modal model formulation have shown the
importance of the several phenomena that are directly related to the sound insulation
provided by building partitions. Firstly, the geometrical coupling coefficients had a direct
significant influence on the sound transmission between two coupled rooms. They indicate
the degree of spatial matching between structural and acoustic modes. Therefore, the
coupling terms were related to the size of the partition, its location and transverse

dimensions of the rooms.

Although the best fluid-structure matching condition cannot occur at frequencies below
the critical frequency of the panel, it has been shown that for a simply-supported elastic
partition over the whole common interface, the symmetric rigid-walled acoustic modes
(even modes) were better coupled to the symmetric (even) modes of the panel than to the
antisymmetric (odd) structural modes, which led to substantial deterioration in the sound
insulation. Secondly, the room volumes (considering similar or dissimilar rooms), were
also important for predicting the sound insulation. A large variation in the Noise
Reduction (NR) was observed and is mainly due to the low modal density in the rooms

considered.

Furthermore, it was seen that similar rooms had a pronounced effect on reducing the NR
due to the occurrence of similar modes in both source and receiving rooms, which have

identical natural frequencies [78].

By assuming light and evenly distributed damping in the rectangular cross-section rooms,
real and orthogonal cosinusoidal modes were selected for the calculations. In other words,
the modal model considered the damping effect in the rooms basically in terms of each

individual modal damping in the subsequent formulation and equations of motion.

With regard to the Mass Law and Leppington’s approaches, it has been found that these
underestimated the NR values in the very low frequency range, as the diffuse field
condition is assumed in their formulation. However, the predicted NR levels obtained via
the Modal model converged to those calculated using the Mass Law and Leppington’s
formulations at high frequencies. Overall, the modal model was capable of reproducing

reasonably well some of the results presented in the published literature.
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The main aim for Chapter 3 was to validate experimentally the Modal Model presented in
the previous chapter. Firstly, the measurement of the frequency response for the sound
pressure inside a single room and the quantification of the source volume velocity of a
conical loudspeaker provided a critical insight into the assessment of the measurement
accuracy. Secondly, the comparison and correlation of experiment and prediction was
made for a system comprising two rooms coupled by a single-leaf partition. Thirdly, the
analysis of the frequency response for the partition was made, by investigating which

peaks corresponded to either structural or acoustic modes.

The experimental results and predictions have shown a reasonably good agreement for the
single-room experimental test, within a tolerance of +/- 3dB (in one-third octaves).
Although the experimental and predicted results for the two coupled rooms models
presented significant discrepancies for the sound pressure in the receiving room, a

reasonable agreement was obtained for the source room measurements.

One of the main difficulties was to assess the acoustic model damping at low frequencies
and light absorption using a reverberation time technique, which is ideally suited for
measurements in a diffuse and reverberant field. In addition, the low signal-to-noise ratio
in the receiving room also affected the quality of the results measured. Moreover,
considering the determination of the partition normal velocity the influence of noise in the
SLDV measurements might have been significant. For instance, the problems associated
with the signal-to-noise ratio mainly depend on the target (a surface which is capable of

reflecting the laser beam adequately), type of scan and measurement frequency range [49].

Overall, the main goal of the chapter has been achieved and the modal model was
therefore reasonably well validated for the purposes of further sensitivity and variability

investigations.

The sensitivity and variability of the modal model in terms of geometric factors, panel
position, room absorption and panel damping were reported in Chapter 4. Firstly, the
results indicated a strong dependency of NR on room dimensions at low frequencies. This
may be explained by the fact that the transmitted intensity through the partition depends
on the degree of spatial matching between the partition structural modes and the acoustic

modes of the receiving room.

Nevertheless, above a certain frequency, the differences between configurations were

substantially reduced. Therefore, the room dimensions became large compared to the
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acoustic wavelength and also there were many modes in the rooms and the acoustic field
became more diffuse. Thus, the rooms became alike in terms of possessing high numbers
of modes and the NR was no longer greatly affected by variation in either room’s

dimensions. Furthermore, it is seen that the difference between the diffuse incidence Noise

Reduction NR,, and the ‘actual’ Noise Reduction NRY , = tended to zero, as expected.

modal

As mentioned previously in Chapter 1, at high frequencies the results tend to be more
dependent solely on the partition transmission properties and the absorption of the
receiving room (see also equations (1.1) and (2.49)). It is well known that at high
frequencies the NR values are mainly influenced by the variation in the receiving room
absorption, area and transmission efficiency of the partition rather than the source room
properties. On the other hand, at low frequencies there are few modes and the
interpretation of the results is considerably more difficult. Furthermore, the results
obtained have not considered any flanking transmission contribution although in practice

this also may occur.

The reverberation time T4 had a significant effect on the NR differences in the frequency
range where there were no modes. It might be explained by the fact that in this region only

the Mass Law results varied with Typ.

The influence of panel position on sound transmission was not significant in the frequency
range where there were no acoustic modes. However, there were significant variations in
certain frequency bands where the panel dimensions and wavelengths were of similar

orders of magnitude.

For the frequency range considered, the ‘empirical model’ for the variability of CLF
developed in ref. [58] was reasonably applicable for enveloping most of the numerical

results presented in Chapter 4.

Chapter 5 emphasized the significance of considering velocity continuity effects on the
prediction of sound transmission via the implementation of a one-dimensional CMS
model. An excellent agreement between the CMS and the one-dimensional analytical
model was achieved. In comparison with the CMS model, the Modal Model produced

slightly lower spatially averaged sound pressure levels at the very low frequencies.

An exception occurred at the system resonance frequencies, which corresponded to the

coupled natural frequencies of the rooms where similar values were found for both
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approaches. For the heavier partition, better agreement between the Modal and the CMS
model has been obtained. Therefore, for the results in one-third octave bands small

differences between the models were observed and noted.

Finally, the purpose of Chapter 6 was to extend the CMS model from the 1D-case to the
three-dimensional case (3D-case), where the application of the method becomes more
representative of real problems. Thus, additional particular features were necessary in the

extension. For instance, the normal and constraint modes were for the whole volume,

where the latter were of the form (1+x/Lx1)cos(cy17z y/Lyl)cos(‘czlﬂz/Lzl) in the
rectangular source volume Vi(L,xL,xL,) for example. In addition, the constraint

equations were generalized and a summation over all axial, tangential and oblique modes

taken into account.

The simulations were performed in order to compare the results obtained via the CMS and
the Modal model. In general, significant differences (up to about 10 dB) between the
models were mainly observed at very low frequencies (e.g. in the one-third octave band
with centre frequency of 40 Hz). This is due to the effect of having only one or two modes
in a particular frequency band, so that for models having different natural frequencies the
results present some differences in the corresponding band. Most results have shown that
these differences tended to be less pronounced at higher frequencies where the boundary
conditions, e.g. at the interface between rooms, appear to have less significant effect on

the spatially averaged results.

7.3 — Main outcomes for the project

The development and implementation of refined and improved mathematical models have
been presented. These were based on the modal expansion method and CMS for the
prediction of sound transmission through partitions at low frequencies and are important
contributions to the field. For example, the models can also be developed or extended by
other researchers for their own academic purposes. Likewise, it will be feasible to use the
CMS approach with a numerical technique, e.g. FEM, the latter being used to obtain the
individual component modes required to input into the CMS approach for a coupled

system.

In addition, the simulation of real problems can still be made with these models. Although

the applicability of the presented improved models, e.g. in building acoustics, is greatly
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restricted to certain conditions, such as low frequencies, small and regular components,
light damping, etc., the models may still be used in practice. For instance, the results may
be useful for predicting the Coupling Loss Factor (CLF) which is an important parameter
in SEA analysis. The procedure developed will allow such a parameter to be based on

more realistic features of the physical model.

The main conclusion of the CMS work is that at least for the 1D-case, the predictions have
shown that the CMS method can better represent the fluid particle velocity continuity at
the flexible interface between the components than the modal model. Nevertheless, the
CMS model cannot predict the spatially averaged mean square sound pressure and fluid
particle velocity correctly to zero Hz. This might be explained by the fact that the CMS

did not incorporate the bulk mode in the present formulation.

In addition, using the CMS method, which is basically "a substructure technique for
dynamic analysis, large fluid-structure interaction problems can be handled in a more
efficient way. Although the CMS model presented in this thesis is more complex and
certainly no smaller numerically than the modal model, it might be more accurate and

could be generalized.

7.4 — Discussion and recommendation for future work

Further research is needed in order to extend the applicability of the CMS model to more
general sound transmission problems in buildings, such as rooms with irregular shapes and
heavy damping, clamped partitions, etc. Thus, an alternative parametric study can be made
in terms of the variability and sensitivity of the transmission efficiency. This might be very
extensive because of the wide range and number of parameters. In principle, it would be
possible to vary, say, the room natural frequencies and predict the variations in the
coupled system response using the CMS formulation and provide relationships between
the statistical variations of the inputs and outputs in various forms. In this way, as required

for SEA, ensemble averaged results could be obtained.

In addition, when one uses the CMS and have the fixed-fixed modes in the receiver room,
be it one or three dimensional, it would be useful to include the bulk mode in the
formulation. This could be done by considering the rigid-body mode, which is a special
case of the constraint modes (e.g. using velocity potential mode shapes). In the rigid-body

mode the frequency is zero and the fluid is deformed statically and elastically but there are
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no inertial terms, i.e. like a spring. It can be defined to any set of boundary coordinates

that is just sufficient to restrain the rigid-body motion of the component [13, 68].

The transmission models can provide an enhancement for incorporation within SEA
modelling, which is an accepted tool for practical building acoustics and design but has
usual assumptions of reverberant acoustic spaces and a high enough modal overlap. The
acoustic predictions from the models presented do not require either of these conditions to

be fulfilled. Similarly the effect of partition location can be incorporated.

Alternatively, the use of the CMS model in fluid-structure interaction problems other than
sound transmission in buildings is also another interesting application of the method. For
example, the prediction of sound transmission between two enclosures containing fluids of
different characteristic impedances for underwater applications could be considered as
well as the application of constraint techniques also allowing for more complex geometric

coupling to be undertaken, if necessary.

The problem of low frequency noise reduction still remains an issue, which this project
has not been able to resolve, because basically the laws of physics for existing
configurations do not provide any possibility for further significant reduction. Alternatives
that could be considered, and for which the CMS approach might be a useful tool, are the
possibility of inhomogeneous panels, panels with mass distribution, attached tuned
neutralizers or absorbers, etc., and these could be readily simulated within the CMS
models as only the partition model formulation would require modification. Once potential
contenders for design have been identified, a complementary detailed numerical
calculation (e.g. a coupled FEM-BEM model) might be appropriate for the next stage and
the work of the CMS model might then have reached a good conclusion in assisting the

design process.

In summary, as can be seen above, there are significant opportunities for further
development and implementation of the models derived in this study and the author will

attempt to continue in the field and publish on it.
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Appendix A.

The Eigenvalue Problem — Matrix Formulation

This appendix describes the implementation of the Modal model using a matrix
formulation. Firstly, the eigenvalue problem, which was implemented in MATLAB, is
presented. Secondly, the matrix implementation for the calculation of the system frequency

response is shown.
Basically, a eigenvalue problem is described in its standard form as

[A-A1][y]=0 (A1)
where A is the dynamic matrix, / is the identity matrix and y is the response function.

The solution of the eigenvalue problem, for the fluid-structure interaction case described in

chapter 2, led to a system of a standard second order differential equations in the form

]+ [clbl+ [k y]=0 (A2)

where [M], [C] and [K] are the mass, damping and stiffness matrices respectively and [y] is

the column vector representing the generalized coordinates of the system.

Using a MATLAB code for the conversion of a second order differential equation to a
system of two first-order differential equations, the first-order system for equation (A.2)
can then immediately be obtained by [79]

J ,

yn-l — yn_l — yn (A3)

Therefore, setting y’ = [yl yz] and using equations (A.2) and (A.3), one can obtain the

following relationship

0 I
- = A (A4)
g [~M"K —M‘IC}) Y

Thus, the characteristic equation for the eigenvalue problem defined by equation (A.1) is
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det(A—Al) = 0 - 4 {=[oF (A.5)

The dynamic matrix for the modal model described in Chapter 2 was

0 I
A= (A.6)
wnl,p,nZ an,p,n2
—w? 0 0
and Op,om=| 0 - 0 (A7)

"ﬂnl Gl 0
an,p,nZ = —T'I __.ﬂp T2 (Ag)
0 _Gz “:an

where @,,, @,, and @, are the natural frequencies (in radians) for the source room,

nl»

receiving room and partition respectively. f,,, f,, and [ , are the modal damping

matrices for the source room, receiving room and partition. These variables are all defined

in the context of Chapter 2. Accordingly, the matrices Gy, G,, Ty and T, were given by

2
G5 _5C

=R G = (49)
sc sc

WLl VR ¥ (A.10)
A, A,

where ¢, and p, are the sound speed and density of air respectively, S is the partition
surface area, C, , and C, , are the spatial coupling coefficients, A, and A, are the
modal volume of the source and receiving room, and finally A, is the partition modal

surface area. These variables are also defined in the context of Chapter 2.
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Appendix B.
The accuracy of the measurements — Statistical Parameters

The most frequently used statistical parameter, which is simply the arithmetic average of n

values, is often considered by comparing measured and predicted sample mean values. The

sample mean x is defined as [46]

x =421 (B.1)

The probability distribution of data obtained from noise and vibration measurements
within a subsystem may often be assumed to be normal [64]. Thus, the statistical
calculations done in this work assume that the acquired data are normally distributed.
Hence, the measure of accuracy used in this work is the 95% confidence interval. It is

defined as the range of values for which the true mean value u is expected to lie 95% of
the time when the tests are repeated. Thus, the confidence interval for ¢ with a confidence

level of approximately 95% is given by

X1 a9 X+7 48
0.975,n—-1 < < 0.975,n-1 (B 2)

i ST

. /_Z_(f_:li (B.3)
n—

where 7,g,5,; is the value of the Studenr ¢ distribution function and s is the sample
standard deviation [64]. The parameter #,4,s,, tends to 1.96 as n— co. Thus, equation

B.2 may be written

x—51.96 x+51.96 (B.4)

e & K e
N
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Appendix C.
Derivation of the Dynamic Properties of a Elastic Panel

The kinetic energy T for a plate in flexure is defined as [69]

S

—— f —;dS (C.1)

Using the modal expansion, an approximated expression for the plate normal velocity

w(z) is given by
W@ =W, @) 6,(y,2) (C2)

where ¢,(y,z) and P represent a mode shape p and the total number of assumed-modes

for the structural partition respectively;

Substituting equation (C.2) into equation (C.1), yields

P *
¥ (o,0) [m 97 ¢, ds (C3)
where m = mass per unit area of the plate. By using the orthogonality condition [69], the

cross terms are then eliminated from the calculations. Equation (C.3) may then be

evaluated as
R ,
—_-Egjwp] [m g, 9,ds (C4)
p= s

Likewise, the potential strain energy Vs is defined as [69]

: 0, ) ., [9°0,)9%,) (90, )
p 4 P dS CS
B3 5 (5] ©

where D is the plate flexural rigidity.

hegd bl o) 5
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For non-conservative systems, a dissipation function D [75, 76] may be included. For a

flexible structural plate with viscous damping, it can be expressed as

D :%iiwp (WPW;)J.m ¢;77p ¢q s (C.6)

p=l g=1

where 77, is the modal loss factor for the plate and @, is the natural frequency which
corresponds to the mode number p. The damping matrix can then be derived from the
above expression. It is seen that linear viscous damping was adopted for the purpose of

simplification.

The dynamic properties of the plate can be obtained by substituting the kinetic and
potential energy and the dissipation function expressions into Lagrange’s equation given in
ref. [69]. Thus, the damped system of equations of motion for a mode p of a uniform plate

can then be written as

Mo, + CW, +K,w, =F, C.7)
where M, =m[¢] ,ds (C.8)
N
C,=w,m| ¢n,,ds (C9)
N
%9, ) (2%,)(2%,) (9%,
- p p J4
and K, = D!( azzp] +21)( o H 5 ]4{ 5 ) ds  (C.10)
F,=[p(y.2.1)¢,dS (C.11)
N

where the parameters M,, K,, C , and F, represent the modal mass, modal stiffness, modal

damping and generalized force on the plate respectively.

The analytical mode shape ¢, for a simply-supported rectangular plate in vacuo is exactly

described by

9,(r,s) =sin(k, )sin(k,, ) (C.12)
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r7 ST ) .
where k,y =—— and ksZ =—— are plate wavenumbers in the y and z directions

Yp Zp
respectively.

Substituting equation (C.12) into equations (C.8), (C.9) and (C.10) then leads to the

following results

mS
w n mS
C,= £ ; (C.14)
and K,=M,w, (C.15)
1
where @, =(—l—)—]2 (k;‘; +- kfz ) (C.16)
m

where @, represents the angular natural frequency of mode p(7, s).
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