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Although the phenomenon of sound transmission through partitions has been 

investigated over many years, the problem of low frequency sound insulation in 

buildings is still an active research area. Modal methods are widely used for the low-

frequency analysis of vibro-acoustic problems, including the problem of sound 

transmission between coupled rooms. A generic modal model is developed and 

implemented for better representation of the airborne sound transmission in buildings. 

Subsequently, the model is validated experimentally and showed good agreement when 

compared to previously published results. 

This model also provided some information in terms of the variability and sensitivity of 

sound insulation parameters (e.g. the Noise Reduction) to the geometry and material 

properties of the system. 

The effects of the imposition of common velocity on the acoustic-structural interface 

have been incorporated using a novel development of the Component Model Synthesis 

Method (CMS). The formulation of the structural-acoustic problem in terms of 

'components' is described. The results obtained via the CMS method are then compared 



to those obtained using both a one-dimensional wave approach and the standard modal 

analysis for a one dimensional acoustic system. Very good agreement was found 

between the one-dimensional wave model and the CMS model. Finally, the CMS 

approach is developed and extended to three-dimensional acoustic systems. Results are 

provided for the case of an elastic partition coverage of a common interface. 

In summary, improved models have been developed and implemented in order to make a 

better assessment of the sound transmission between two rooms coupled by a common 

structural partition. 
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Chapter 1. Introduction 

INTRODUCTION 

1.1 - General background 

Sound insulation requirements for buildings depend on many factors. These include 

activities of people involved, e.g. listening to music, shopping, etc., and also on the 

background noise, which may be considered as part of the work or home environment. 

Although the frequency range of human hearing is considered to be between 20 Hz and 

20,000 Hz, a source of noise operating at frequencies below 20 Hz can be perceived (if 

one considers a signal that has a high sound pressure level) and also detected through the 

human body [1]. Hence, there is a need to predict, quantify and understand the behaviour 

of sound transmission over a wide range of frequencies. 

The phenomenon of sound transmission is an important subject in noise control for 

buildings. Usually, noise is communicated between rooms via many different paths. The 

two methods of sound transmission in buildings are characterized as airborne and 

structure-bome sound transmission. In airborne sound transmission the noise originates 

and travels in the air. The noise sources may be elsewhere in the building and/or outside 

the building. In structure-bome sound transmission, the sound is either generated or 

transmitted by vibrating solid bodies. Subsequently, the vibration may produce radiated 

noise into a receiving space. In this thesis, the phenomenon of structure-bome sound 

transmission is not directly addressed. Therefore, indirect paths of transmission or as 

they are often called 'the flanking transmissions' are not included in this work. Thus the 

sound transmission will only be considered through a common partition separating two 

acoustic volumes. This is the simplest of cases and is often sufficient in quantifying the 

noise levels. 

1.1.1 - The definition of Noise Reduction (NR) and Sound Reduction Index (SRI) 

For practitioners in the field of building acoustics the quantification of the 'sound 

insulation' is typically described in terms of some simple quantities which are relatively 

easier to comprehend and use than the physical response in terms of pressure and 

velocity. 
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Generally, the term 'sound insulation' refers to the predicted or measured sound level 

difference, or Noise Reduction (NR), and also the Sound Reduction Index (SRI). The 

latter is the logarithmic index of the inverse of the sound transmission efficiency [2]. The 

sound transmission efficiency is deHned as the ratio of the transmitted sound intensity 

through a partition or wall to the incident intensity on a partition or wall. For a diffuse 

field, the formula or expression for the NR is given by [2] 

NR = L, = ^ ^ + 101og 10 
10 w + : ! 

s 
V y 

(1.1) 

where and are the spatially averaged sound pressure levels in the source and 

receiving rooms respectively, S is the area of the partition and A is the Sabine absorption 

of the receiving room. Equation (1.1) is a consequence of the need for the overall system 

to obey the conservation of energy principle. 

By assuming that in the receiving room the power loss from its reverberant field is much 

greater than the power being transmitted to the source room, the first term in the bracket 

is therefore negligible in comparison with the other one. Thus, equation (1.1) can be 

simplified and rewritten as 

NR = + lOlog.o ̂  (1.2) 

Typically experiments are conducted to measure the Noise Reduction and equation (1.2) 

can then be used to evaluate the Sound Reduction Index. The latter is primarily a 

measure of the transmission properties of a partition and it is not easy to measure 

acoustic intensities in many cases. For instance, at low frequencies, the limitation of a 

sound intensity measuring system, i.e. the phase mismatch between the pressure 

transducers and the associated signal conditioning channels, can significantly affect the 

accuracy of any particular measurement. 

Furthermore, well separated microphones are required to measure intensity at low 

frequencies, as one needs some phase measurement which is very small and subject to 

significant errors unless the instrumentation is well matched. On the other hand, at high 

frequencies closely spaced microphones are required. In addition, there is a physical 

limitation on their closeness and also how close one can get to partition surfaces [3]. 
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These two quantities are used as design parameters or guidelines, which provide 

sufficient information for detailed calculations or comparison against standards or other 

configurations. Essentially better sound insulation corresponds to higher values of Noise 

Reduction and Sound Reduction Indexes. Also, many practitioners use such descriptors 

in cases where strictly either the room volumes are small, the frequencies are low or the 

absorption high and then the diffuse field assumption is strictly invalid. 

7.7.2 - TTig mam 

The problem of calculating analytically or numerically the sound transmission between 

rooms has been the subject of investigation over many years [1-3]. The five main 

approaches have been the Conventional Wave Approach [4], Modal Analysis [5], 

numerical techniques such as the Finite Element Method (FEM) and the Boundary 

Element Method (BEM) [6], the Wave Based Method (WBM) [7] and Statistical Energy 

Analysis [8]. 

A brief overview of each method is presented as follows. 

In the Conventional Wave Approach, infinitely extended panels are used in sound 

transmission models and for simplicity a diffuse field is often assumed. The models 

initially consider the transmission of sound when plane waves are incident upon a panel. 

The diffuse field transmission results from the integration from all of the transmitted 

power due to all of the equal amplitude acoustic plane waves in the incident acoustic 

diffuse field. 

For the infinite panel, boundary effects are neglected and the walls are assumed to be 

homogeneous and to have no leaks. The resulting Mass Law (ML) formula, which 

assumes transmission through a limp panel, has been successfully applied to many 

situations where the frequencies are well below the critical frequency* of the panel. In 

this scenario the transmission is controlled by non-resonant lower order modes of a finite 

panel which couple spatially with the acoustic field at frequencies above their natural 

frequencies and their response is mass-controlled. 

However, the assumptions provided are unsatisfactory in a large number of real panels 

whose dimensions are less than or equal to the wavelength of the incident sound wave, 

especially the case at lower frequencies. In addition, the geometry of the system is not 

It is the frequency at which the speed of free bending waves in the panel equals the sound speed in air. 

3 
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taken into account and, at low frequencies or for real rooms, the assumption of an 

incident diffuse field is incorrect. 

Alternatively, Modal Analysis [5] allows the geometric parameters of the system to be 

incorporated into the models and subsequent predictions. The frequency response of a 

finite system normally has peaks and dips, due to the resonance phenomenon that 

involves modal behaviour and fluid-structure spatial coupling of wall (plate) and room 

modes. This approach will be developed later and the limitations/assumptions will be 

identified and discussed. Typically Modal Analysis using analytical modes is restricted 

to simple regular geometrical shapes otherwise it requires numerical modal techniques 

discussed below. 

Deterministic numerical techniques, involving for example a Finite Element (FE) model 

of the room volumes and partitions [6] or a Boundary Element (BE) model for the 

acoustic volumes and a EE model for the partitions, do not have the limitation on 

geometry, but for computational and accuracy reasons are applicable primarily for low 

frequency predictions. These approaches discretise the physical system and equations of 

motion in the modal degrees of freedom are obtained. 

Similarly such an approach is inefficient for simulations involving a large number of 

geometric variations. The acoustic sources can be explicitly defined and the effect of 

room geometry, surface absorption and partition properties incorporated. The modes of 

either the uncoupled or coupled acoustic-structural system can be obtained and a modal 

basis for the forced response obtained, if required. 

Recently, an alternative technique, namely the Wave Based Method [7], has been 

developed for the analysis of coupled vibro-acoustic problems in the mid-frequency 

range. It is based on the expansion of dynamic response variables in terms of wave 

functions, which are the exact solutions of the governing differential equations. These 

individual solutions are combined and constrained to solve the system with more general 

geometry or boundary conditions. It has been shown that the WBM model exhibits better 

convergence properties than the EEM model, especially at higher frequencies, and is 

more computationally efficient. 

Finally, Statistical Energy Analysis (SEA) considers the power flow balance between 

linear coupled systems and has been applied successfully to noise transmission in 

buildings for mid to high frequencies, where there are a reasonable number of modes in a 
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band and a frequency averaged band result is sufficient. The estimates of subsystem 

energies are obtained on the basis of known values for the loss factors and power inputs, 

with coupling loss factors either measured or calculated from known formulae. Thus, the 

response of each subsystem is only described by the time, frequency and spatial averaged 

energy response. 

For noise transmission, the SEA limitations include assuming diffuse and reverberant 

acoustic volumes, high modal overlap for reduced variability and approximations for the 

geometry. Consequently, no information about the spatial distribution of the response 

variables (e.g. pressure, particle velocity, etc) is available. Moreover, whilst there are no 

rigid rules which restrict the choice for the subsystems, a judicious choice is vital for 

successful application of the method. 

J.7.3 - A review q/'precficfivg rAg fArowgA 

In most cases, it has been possible to consider a simpler configuration, namely sound 

transmission between acoustic volumes separated by a partition. This has provided 

insight into the physical phenomenon and a brief overview of most relevant research, 

both theoretical and experimental, now follows. The majority concentrates on finite 

panels to overcome the approximation and assumptions used in the Mass Law 

formulation. 

Dowell et al [9] analyzed the transmission of a reverberant sound field through a 

rectangular baffled partition by means of a mode expansion method. According to the 

formulae derived, valid for non-resonant partition transmission, the problem was well 

predicted provided that the mass of the partition was significant. In general, the non-

resonant transmission was found to be the most important contribution for frequencies 

below the critical frequency of a particular partition. 

Below the critical frequency the spatial matching is best achieved by lower order 

structural modes. The corresponding acoustic frequency that matches the structural 

wavelength is higher than the structural natural frequencies. Hence the response of these 

modes is controlled by mass and not stiffness or damping. Although resonant panel 

modes might have greater amplitude than the forced modes, they are poorer radiators. 

The effect of panel mass on forced-wave transmission is quantified by Fahy [5]. It is 

seen that the greatest contribution of a particular mode to sound transmission occurs in a 
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frequency range greater than its natural frequency where the frequency response is mass-

controlled. In addition, the radiation efficiency of the forced or non-resonant modes is 

not only greater than that of the resonant modes but also dependent on the panel 

boundary conditions. 

In these conditions, Dowell et al [9] observed that the imaginary part of the fluid wave 

impedance in the receiver volume was significantly greater than its real part. Therefore it 

ensured that the forced vibration, or mass law contribution, dominated the transmission 

factor. A detailed review of acoustic-structural coupled systems was also presented. The 

theoretical model developed for arbitrary wall motions was formulated using Green's 

Theorem. From the point of view of applications, a simplified formulation was also 

presented for sound pressure level predictions in terms of the acoustic and structural 

parameters. 

The effects of panel boundaries on sound transmission, including a comparison with an 

infinite panel, were discussed in refs [10-11]. A simple two-dimensional model was used 

for evaluating the sound transmission characteristics of finite panels. The analysis of the 

transmission, through a baffled plate of finite width and infinite length, was conducted 

rigorously. The effects of panel size were verified in regions below, above and at the 

critical frequency. Estimates of averaged response over a particular frequency range 

were also presented. Sound transmission for the diffuse field was hence obtained via 

direct numerical integration over all angles of incidence. 

More recently Osipov et al. [12] produced an analysis of sound transmission in buildings 

based on a room-plate-room model that takes into account the coupling between the 

flexural modes of a simply supported plate and the acoustic modes of the source and 

receiving rooms. The thin plate bending wave equation of motion, which is based on the 

Kirchhoff's theory [3,13], was considered in the analysis. The equations of motion, in 

terms of the modes, are essentially formulated in the same manner as Dowell [9]. 

Similarly, Gagliardini et al [14] used a modal basis model, which considers the fluid-

structure interaction, to predict the influence of some parameters on the Sound Reduction 

Index. Nevertheless, the results are shown for a limited number of cases due to 

significantly increased computational time when the dimensions of the rooms and 

partition, in addition to frequency range, are varied. 
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Leppington et al [15,16] presented an alternative analytical formulation for the 

calculation of sound transmission through a baffled panel. The model assumed the panel 

in the problem to be simply supported. These predictions, which were based on modal 

analysis, have been considered an improvement on previous theories, such as the Mass 

Law theory. A random field was considered as an infinite sum of uncorrected plane-

waves impinging on the finite-panel surface. Moreover, the transmission problem was 

described in terms of two distinct mechanisms. The first one is dominant at the region of 

the spectrum above the critical frequency, where free bending waves interact to cause 

resonance. In this frequency range the partition is a good radiator and also couples well 

with the incident sound field. In fact, its radiation efficiency is always greater than or 

equal to unity. For the region below the critical frequency, both free and forced bending 

waves are generated. In this frequency range (below the critical frequency), the dominant 

partition behaviour is that which is forced and responds at the acoustic wavenumbers. At 

these frequencies the panel is less efficient in coupling to the acoustic excitation and the 

transmission is governed by the mass law response of modes at frequencies above their 

resonances, whose modal wavenumber description better match those in the incident 

acoustic field [15]. 

Subsequently, Leppington [17] developed a simpler and more direct method to estimate 

the transmission efficiency which accounts for the non-resonant contribution of sound 

power transmission. The main assumption was to consider the random field as a diffuse 

field, neglecting the presence of the boundaries. The transmission phenomenon can then 

be considered as a summation of the non-resonant or forced transmission, and the 

resonant transmission. 

According to Fahy [18], the two main differences between the unbounded panel and a 

finite baffled panel in terms of sound transmission performance are the existence of 

standing waves and diffraction by the aperture in the baffle containing the panel. 

Although simply supported edges will be considered in this work as has been used by 

others for reason of simplicity, complex boundary conditions have also been discussed in 

the literature [19-22]. 
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The experimental investigation and quantification of sound transmission has likewise 

seen developments and improvements. The main concern whilst performing any noise or 

vibration experimental test is to make valid and accurate measurements which represent 

the real problem. For instance, the accurate determination of room responses at low 

frequencies is a difOcult task to be tackled. In general, laboratory measurements at these 

frequencies do not produce acceptable reproducibility due to the poor diffuseness of the 

acoustic field [23, 24]. 

Although much research have been devoted to the experimental investigation of sound 

transmission through partitions at low frequencies, poor sound insulation between 

dwellings has been a matter of concern for many people. As a result, experimental 

studies on sound insulation in buildings at low frequencies are still being carried out 

nowadays. More recent techniques have included nearfield acoustic holography [25], 

which can allow mapping of the individual intensities of the sound transmitted through 

partitions, windows, doors, gaps, etc. but are restricted to particular configurations. 

Some of the earliest work was also conducted to validate predictions. Petyt et al [26] 

employed a pure sinusoidal excitation technique for the identification of the natural 

frequencies of rooms. In this procedure, the room was excited at a single frequency of 

interest and the pressure response (amplitude and phase) measured using an oscilloscope. 

Nevertheless, this technique is extremely time consuming and not very efficient. Since 

the advent of two channel FFT analyzers, the identification of modal parameters from 

measured frequency response functions has been widely used. 

Various investigators, over a number of years, have conducted measurements on the 

sound transmission between two rooms separated by a common wall [27, 28]. Results 

presented include discussion on the influence of the measurement facilities on the results 

in terms of sound insulation. In 1972, Lang [29] showed and identified that the 

differences between field values of airborne sound insulation and the results of 

measurements made in laboratory were due to the energy transmission via flanking 

walls. 

Guy et al [30], studied the effect of panel size upon the laboratory measurements; and a 

correction factor was presented in order to produce closer agreement between 

experiments and the classical mass law theory [14]. Craik, [31] similarly assessed the 
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influence of the rooms conditions and the test partition on the performance of the whole 

system. 

The interesting studies in ref, [32, 33] concluded that laboratory measurements of sound 

insulation at low frequencies produce not only poor reproducibility but also poor 

repeatability. The concepts of reproducibility and repeatability are significant in 

assessing the closeness of agreement between individual and successive results 

respectively [34]. The former is defined for results obtained under different conditions, 

such as operators, apparatus, laboratories and intervals between measurements. On the 

other hand, repeatability is defined for results obtained for the same conditions. Some 

further work [35, 36] provided alternative solutions in order to improve laboratory 

conditions. The use of absorbers positioned in the comers of rooms was suggested, in 

order to improve the repeatability of measurements at low frequencies. 

Recently, Maluski [37, 38] has shown that all the present methods of measurements are 

not appropriate in the low frequency ranges where the sound field is strongly dependent 

on its modal behaviour. For instance the standard method defined in the International 

Standard ISO 140 - part 3 [41], which is probably the most widely used nowadays, was 

initially defined for reverberant diffuse fields. As specified in ISO 140-3, a partition to 

be tested is positioned between two reverberant rooms. Subsequently, a broadband noise 

source generates an approximation to a diffuse field in the source room and the spatial-

average mean square sound pressure is measured in different positions inside both 

rooms. It was observed that at low frequencies certain modal patterns inside the rooms 

dominate over others. Nevertheless, in ref. [38], measurements of sound pressure levels 

inside rooms at low frequencies were still performed on the basis of the method 

described in ISO 140-3. 

Alternative techniques have been proposed for determination of the Sound Reduction 

Index [39, 40]. They are based on sound intensity measurements that require signals 

proportional to the instantaneous sound pressure and the corresponding instantaneous 

particle velocity vector. The measurements can be made by using an intensity probe 

which is a transducer system that comprises a pair of phase-matched pressure 

microphones separated by a small distance. 

Basically, experimental validation of theoretical models for predicting sound 

transmission through partitions involves preliminary tests in order to obtain the 
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acoustical and structural properties of rooms and partitions respectively. In general, the 

measurement and quantification of the source volume velocity used on the tests is 

essential for the validation process. Likewise, the analysis and measurement of damping 

of structural elements and rooms are also fundamental. 

In this thesis, sound pressure measurements based on the conventional method [41] were 

made in order to compare and validate an acoustic modal model, which is 

comprehensively described and presented in chapter 2 of this thesis. (Magalhaes and 

Ferguson [42] having published some initial work on the modal model prior to this date). 

In addition, the measure of the reverberation time (RT) was based on ISO 354 [43] and 

Schroeder's method [44]. Thus, the measured RT values were used to calculate the 

modal damping of the theoretical model [45], which might introduce errors because of 

the assumptions not being truly applicable. Furthermore, confidence intervals and sample 

mean values [46] were calculated for the sound pressure measurements. 

Alternatively, Tohyama ef aZ [47] used the envelope of the signal for the determination 

of its decay rate. In general, the damping of enclosed fluid volumes can usually be 

represented either by the loss factor or the absorption coefficient [48]. The half-value 

bandwidth technique [48] is one of the most popular methods of obtaining the damping 

of a particular system. For instance, the damping of a plate can directly be obtained from 

the measurement of its frequency response (e.g. using a laser vibrometer [49]). 

Alternatively, the damping can also be obtained from the conventional estimate of the 

Reverberation Time [50]. 

Moreover, the test facility characteristics and environment conditions can significantly 

affect the measured variables. General guidelines for analysis of experimental data and 

measurement procedures can be found in ref. [51]. For instance, by measuring the Sound 

Reduction Index (SRI) of a plasterboard partition, Mulholland and Lyon [52] found that 

the SRI obtained could be very low at low frequencies. This phenomenon was justified 

by the strong fluid-structure coupling which was related to the dimensions of the rooms 

and partition. 

Wamock [53] investigated the influence of the position of a specimen in different 

positions in the recessed aperture between two reverberant rooms. The test, made for a 

plasterboard partition, indicated that the SRI was increased when the partition was 

positioned on the receiver side of the aperture. This investigation concerning the effect of 
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some laboratory design and mounting conditions on SRI was also related to a previous 

work presented in ref. [54]. Nevertheless, at very low frequencies, the partition depth 

does not have any significant effect on sound transmission, as one might expect, as the 

acoustic wavelength is large compared to the recessed depth. 

1.1.5 - Parametric studies of the variation in sound transmission and insulation 

Although many researchers have considered the influence of the geometrical and other 

parameters on the sound transmission phenomenon between two coupled rooms at low 

frequencies, there is a limited number of published papers showing a parametric study of 

the variation of the sound insulation with subsystem properties [12, 22]. In a parametric 

study, numerical techniques for solving coupled equations of motion can be performed to 

a high degree of precision, which is subject to the limitations of the computer [55]. 

Osipov et al [12] evaluated some numerical examples in order to verify the influence of 

the dimensions of rooms and partitions on noise transmission. In their work, three 

distinct theoretical models (infinite plate theory and modal analysis for a baffled partition 

and for a room-plate-room system) were compared and validated with experimental 

results. The first set of results was obtained by varying the depth of the receiving room. 

The number of modes in the receiving room was then increased considerably. The 

second set was then obtained by varying the width of both rooms. Thus, the number of 

modes in the source and receiving rooms and partition were all altered significantly. 

According to the results presented for SRI, variations of up to 15 dB occurred in one 

third octave bands. Alternatively, Noise Reduction was also predicted for different panel 

positions in the wall separating two adjacent rooms. In the next chapter, some numerical 

results for variability are presented and compared to those obtained in ref. [12]. 

In general, the sound transmission between two coupled rooms at low frequencies is 

primarily governed by the individual modes of the rooms [52]. Kihlman et al [56] 

studied the possibility of improving sound insulation at low frequencies (50-150 Hz) by 

optimizing the design of rooms and their common partition (geometrical properties and 

damping). The results, which were obtained by using Modal Analysis and the Finite 

Element Method, indicated that the matching of room modes on both sides of the 

partition had the most significant effect on the Sound Reduction Index. In this situation, 

the SRI levels are sharply decreased due to the good coupling and matching resonance 

frequencies of both source and receiving rooms as would be expected. 

11 
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Kropp and Pietrzyk [57] developed statistical predictors for analyzing the influence of 

room dimensions on the airborne sound insulation between rooms. Considering two 

coupled rooms with different lengths, the first predictor was based on the ratio of the 

smaller length to the greater one. The second one, which was based on the modal 

approach, was developed under the assumption that each mode of the source room can 

only couple with its corresponding one in the receiving room. In other words, this model 

was strictly limited and is only valid for similar cross section source and receiving rooms 

and the results cannot be generalized. 

Recently, Magalhaes and Ferguson [42] undertook an initial study on the effects of 

spatial fluid-structural coupling and non-resonant contributions on sound insulation 

between two rooms. Some of the preliminary analyses showed the influence of the room 

dimensions, weight of a flexible partition and its position in the common rigid wall, etc. 

The results of analyses were converted to one third octave band levels to make 

comparisons with other data possible. 

Whilst variability investigations for acoustic-structural transmission were limited, there 

are some recent variability studies on structural coupling and the importance of both 

source and receiver subsystems. For example. Park et al [58] developed an empirical 

model for predicting the variability in the effective Coupling Loss Factors (CLF) for 

rectangular plates [8]. This empirical model has been considered and shown for 

comparison with the confidence interval levels found for a fluid-structure coupled system 

comprising two rooms connected by a single partition. 

Finally, the problem of fluid-structure interaction for a particular system can be 

formulated in terms of energy and power balance and this is made in SEA [59, 60], e.g. 

considering normal surface displacement for the structural partition and velocity 

potential for the enclosed volumes of fluid, which represent the response of each sub-

system involved. For instance, Craik and Smith [21] used spatial functions on this type 

of problem, although some limitations were identified at low frequencies where the 

model became less accurate. Hence typically SEA is used at higher frequencies where 

the confidence limits are reasonable. 

The use of SEA for the analysis of airborne sound transmission at low frequencies is 

usually subject to some limitations, such as the small number of modes within a 

particular frequency band [61], Although the choice of the transmission path to be 
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considered in the analysis is crucial [62], in practice it is not always possible to identify 

which transmission mechanisms are dominant and which can be ignored. For instance, 

several different models may be required depending on the details of construction and 

frequency range of interest [63]. It is known that the coupling between subsystems and 

losses of energy are described by the dissipation and coupling loss factors respectively. 

Nevertheless, in practice they are not known or only partly known. Thus, different 

experimental techniques for the determination of loss and coupling loss factors were 

proposed in refs [64, 65]. 

To summarize, although a vast amount of research concerning acoustic-structural 

coupling has already been published, little information is available on the sensitivity and 

variability of the response at low frequencies. For instance, the sensitivity of the 

transmission efficiency parameter (and consequently the SEA Coupling Loss Factor at 

higher frequencies) to the room dimensions, panel position, material properties, etc. has 

not been fully explored in an in-depth study. Similarly, there are assumptions within the 

modal formulations that should be investigated. For instance, a large amount of work has 

been performed in the analysis of sound transmission phenomena considering only the 

solution in terms of 'rigid-walled' acoustic modes for the acoustic volumes. Such an 

assumption is an approximation when a flexible partition is introduced. 

In summary, this thesis is aimed at the implementation of mathematical models that 

incorporate additional features, which can also provide a more realistic representation of 

the physical problem concerning sound transmission through lightweight partitions at 

low frequencies. 

1.2 - Problems highlighted and the CJVIS method 

The review of noise control in buildings has highlighted that it is still a matter of concern 

since adverse conditions have contributed to less than satisfactory sound insulation 

between dwellings, e.g. the use of very low-frequency sources, such as those generated 

by hi-fi sets, has become a common practice. Consequently, building designs involving 

wall and ceiling constructions used in dwellings no longer provide sufficient attenuation 

at very low frequencies compared to the satisfactory noise reduction produced at higher 

frequencies. Likewise, there is a trend for designing smaller and more practical spaces 

that might not be reverberant, as typically assumed in noise prediction models available 
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to consulting/design engineers. Furthermore, lightweight structural elements are 

increasingly used because of their reduced cost and ease of use compared to some 

traditional materials such as masonry and concrete. 

Hence there is a requirement to have models that incorporate smaller rooms or very 

dissimilar rooms in addition to lighter partitions in a more accurate way, especially at 

low frequencies and in cases where the assumptions normally made are no longer valid. 

Also to assist designers, it is useful to attempt to quantify what variability one might 

expect when comparing real rooms with existing formulations, such as the Mass Law. 

The literature survey in the previous section has also revealed that the boundary 

condition at the interface between two coupled rooms, which is due to the velocity of the 

partition, has not yet been replicated in any of the existing formulations. Therefore, the 

use of a numerical method [13], namely Component Mode Synthesis Method (CMS), for 

fluid-structure interaction problems involving sound transmission between coupled 

rooms has been developed in this thesis in order to quantify the significance of the 

kinematic compatibility and show that this model is applicable to such problems and is 

not limited to structural configurations. This new approach of the method in this thesis 

has required an analytical formulation for the coupled fluid and structural components. 

The CMS Method has previously been developed to solve large structural dynamics 

problems, which consist of several components or substructures [13]. It involves the 

selection of component modes and the solution for the overall system response in terms 

of a synthesis involving the modes. Typical component modes consist of normal modes 

with either free or fixed boundaries plus the constraint modes. The constraint modes are 

additional functions which provide 'extra' degrees of freedom (displacement, velocity, 

etc.) for the subsystem. The combination of the component modes is used to satisfy the 

differential equations of motions for the individual subsystems, and the interface 

conditions between the components. 

For instance, Hou [66] presented a new approach for the method by concentrating on 

undamped free vibration systems, simplifying the formulation and the computation 

scheme. A simple error analysis technique was adopted to ensure the success of the 

method. At the component interfaces kinematic compatibility and force equilibrium 

conditions were also considered. Subsequently Benfield et al [67] showed that better 

accuracy is obtained using a fixed-interface coordinates method. The generalized 
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coordinates of the static constraint modes are substituted by the use of components 

whose displacements are defined relative to the interface. 

Recently, Craig [68] published a tutorial paper in which a review of the basic procedures 

used on substructure analyses, or CMS method, was presented. In addition, the 

performance of some of the methods available in the literature was verified by 

comparing the CMS convergence properties. 

Basically, the different approaches of the method presented differ in terms of the type of 

component modes selected. Considering an acoustic-structural coupling model, an 

additional acoustic 'static' mode, or constraint mode, is added to the set of normal modes 

to improve the accuracy of approximations and ensure correct convergence. It will be 

shown in this thesis that this constraint mode affects the sound pressure as a result of 

enforcing particle velocity compatibility between the two acoustic spaces for 

transmission between two rooms, for example. Furthermore, the components of complex 

systems can be analyzed separately using the CMS method [69-77]. 

The main limitation of the method, in the same way that existing Modal Methods are 

restricted, is due to the increasing number of assumed modes for complex problems or 

higher frequencies which have to be analyzed. A possible advantage may be the 

introduction of variability with the choice of the subsystem geometry, etc., and a 

relatively quick calculation of the response of the perturbed system. 

1.3 - ]VIain objectives 

This thesis is focused on the development and validation of mathematical models that 

better represent the airborne sound transmission mechanism in view of the new 

requirements for design and modelling approaches. The work undertaken in this research 

was twofold in that variability investigations were required and there is a need to develop 

improved models that can better predict airborne sound transmission through lightweight 

partitions at low frequencies. Therefore, the aims of this thesis are to present variability 

investigations and the development and use of improved analytical tools, via a modal 

approach and the Component Mode Synthesis (CMS) method that can better predict the 

required sound transmission parameters. 

The main objectives covered by the project can then be summarized as follow. 
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® Firstly, a modal model has been developed and implemented. It provides the 

numerical tool for an investigation into the sensitivity of some geometric factors, 

panel position, material properties, etc., on the noise transmission between two 

coupled volumes. The modal model is then validated using experimental tests. 

Comparison with other methods, published results and simulations is also made. 

• Subsequently, a parametric study has been conducted into the sensitivity and 

variability of the coupled response using the modal model. For instance, this has 

been tackled by considering the influence of physical geometry and partition 

location, room absorption, internal loss factor, etc., on both NR and SRI. 

• The next objective was to investigate the importance of kinematic compatibility 

(at the common interface between two-coupled rooms) for prediction of airborne 

sound transmission. The one-dimensional implementation of the CMS method 

provided the basic framework for a relatively simple system that has an exact 

analytical solution for validation. In particular, the CMS approach allows one to 

analyze and quantify the effects of imposing the condition of velocity continuity 

at an interface of an acoustic volume with a structure. Numerical results 

presented include spatial pressure and velocity distributions at different 

frequencies, spatial-averaged mean square pressures and velocities. In addition, 

the Sound Reduction Index (SRI) and Noise Reduction (NR) parameters have 

been calculated. 

• The CMS method was also extended for the three-dimensional problem and 

implemented numerically. A comparison between the CMS and the Modal model 

was made for the three-dimensional case. Some numerical examples were used to 

compare both models and identify their benefits and shortcomings. As far as the 

author is aware, based on a literature review of published papers, this is an 

original approach and use of the CMS method for fluid-structure interaction. 

• Finally, using the transmission coefficients obtained from the predictions, an 

important SEA (Statistical Energy Analysis) parameter, namely Coupling Loss 

Factor (CLF) was evaluated. This could better incorporate the geometric features 

and both resonant and non-resonant contributions in airborne transmission. 

Further limited investigation has been included which has considered predicted 

variability versus parameters such as the modal density and modal overlap. The 
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consequences of the Rndings for SEA, using the two approaches, have been noted 

for future work. 

1.4 - The contribution of thesis to knowledge 

The main contributions of this thesis are therefore 

• Implementation of a modal model. Subsequently, results for geometric and 

partition design changes are presented. Comments are provided on the variability. 

• Better models for the representation of the airborne sound transmission 

mechanism through partitions at low frequencies have been developed. This will 

consequently provide additional information in terms of sound insulation for 

designing lightweight common walls. The main originality in the modelling is the 

use of CMS for the fluid-structure interaction. 

• Low frequency experimental investigation of sound transmission through a 

lightweight partition is presented in order to validate the modal and CMS models 

implemented. 

1.5 - Thesis layout 

The remaining chapters of this thesis are arranged as follows. 

Chapter 2 emphasizes the derivation and implementation of a mathematical modal model 

to predict the sound transmission efficiency and noise reduction of a system comprising 

two arbitrary rooms coupled by a single-leaf partition. The fluid-structure interaction 

analysis is shown to be dependent on the spatial coupling between the acoustic and 

structural modes. The main assumptions and limitations of the model are also discussed. 

Simulations show the effect of geometrical coupling coefficients on the Noise Reduction 

(NR). Finally, a comparison between the Modal model and other published approaches 

and results, such as the Mass Law Theory and Leppington's prediction [16], is made for 

Noise Reduction and Sound Reduction Index values. 

Chapter 3 presents the experimental validation for the modal model derived in chapter 2. 

First, the measurement of damping for the structural partition and absorption for the 

rooms is made. Second, some preliminary experimental tests are made in a single room 

to verify the accuracy and applicability of measuring and predicting sound pressure 
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levels in a small volume. Next, the coupled two-room modal model is experimentally 

validated using the ISVR teaching laboratory. Finally, the partition normal velocity is 

experimentally determined (by using a Scanning Laser Doppler Vibrometer) and the 

results are compared to theoretical predictions. 

In Chapter 4 a variability investigation and the corresponding results are presented. The 

results obtained take into account the influence of panel positions on NR; the simulations 

are then compared to classical formulations. Next, a parametric study assessing the 

influence of room dimensions on NR is performed. Furthermore, the influence of the 

room absorption on NR is quantified by assuming uniform absorption distribution inside 

the rooms. Finally, the Coupling Loss Factor (CLF) is evaluated using power balance 

and assuming that a two subsystem SEA model represents the problem. Its variability 

versus the room modal density and modal overlap is presented, in order to consider and 

comment upon the consequences for subsequent SEA models. 

In Chapter 5 the effects of the imposition of velocity continuity on the acoustic-structural 

interface are considered using an original development of the Component Mode 

Synthesis Method (CMS) for this problem. The formulation and equations of the 

structural-acoustic problem in terms of 'components' is described. The model is then 

validated by comparison of numerical results including the CMS model and a one 

dimensional wave approach. Moreover, the CMS model is also compared with the modal 

model. Finally, conclusions are drawn based on the analysis of the results and the 

extension to three-dimensional acoustic systems discussed. 

In Chapter 6 the CMS method is further extended and developed for predicting sound 

transmission through a partition in the three-dimensional case. The effect of velocity 

continuity on the spatial pressure and velocity distributions is discussed and presented 

for three-dimensional models with an elastic partition. Some results show a comparison 

between the 3D CMS and the modal model. Comparison with experimental results from 

chapter 3 is given and discussed. 

Finally, a concise account of the main findings, and the inferences drawn from the results 

of each individual chapter are reported in Chapter 7. Next the main conclusions for the 

complete project are summarized. For completeness, discussion and recommendations 

for future work are presented. 
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C A a p f g r 2 

STRUCTURAL-ACOUSTIC COUPLING ANALYSIS - A MODAL 

MODEL 

2.1 - Introduction 

The aims of this chapter are to provide further background description and present and 

implement a modal approach, the latter assisting in providing improved understanding of 

the noise transmission phenomenon in buildings. For instance, better visualization of the 

spatial distribution of acoustic pressure and particle velocity for a two coupled room 

model is presented using the concept of modal expansion. The theoretical background for 

understanding the sound transmission mechanism is presented in section 2.2. A 

preliminary formulation is presented in terms of a set of coupled modal equations for 

predicting sound transmission through a cavity-backed finite plate. Finally, a complete 

acoustic-structural coupled modal model (room-plate-room) is developed and 

implemented in section 2.3. This model, also represented by a set of integro-differential 

modal equations, is therefore a straightforward extension of the previous formulation. 

A complete modal model for predicting sound transmission between two coupled rooms 

is presented here whilst retaining the conventional assumption of rigid-walled acoustic 

modes. With a point noise source placed in either of the rooms, the aim is to predict the 

Noise Reduction (NR) and the Sound Reduction Index (SRI) of the system due to 

resonant coupling involving modal behaviour, spatial fluid-structural coupling and non-

resonant contributions. 

The derivation and numerical examples presented in this chapter show how transmission 

efficiency is affected by room geometry. The transmission of sound between similar or 

dissimilar rooms, e.g. for the latter consider rooms attached to corridors, can equally be 

predicted using the Modal approach. In addition, the simulation is evaluated for two 

different panel sizes. Firstly, a whole flexible panel is considered over the common wall. 

Secondly, a small flexible panel is considered, so that all other parts of the common wall 

are rigid. The narrowband results of analyses were converted to one-third octave band 

spectra, to make comparisons with other data possible. Finally, a general discussion. 
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based on the findings of the results obtained, is presented with some observations 

concerning potential improvements that can be considered. 

Two different analytical models are used throughout this chapter for comparison with the 

developed and implemented modal model. The first one is the Mass Law theory [4] and 

the second model is Leppington's prediction [16]. These are described in some detail in 

the next section. 

In summary, the main goal of this chapter is to offer insight into the physics and the 

important parameters in sound transmission between acoustic spaces separated by a 

flexible partition. This has applications in the field of architectural acoustics. 

2.2 - Theoretical background of the sound transmission mechanism 

The mechanism of sound transmission may be considered in terms of the radiated sound 

field from an elastic partition, itself excited by a sound field in a source room. The 

partition, modelled by a thin plate, has a response to acoustic excitation, which consists 

of both free and forced bending waves. Freely travelling bending waves are generated 

when the plate is excited at its natural frequencies. As a result of the plate edges, these 

waves interact with each other producing the plate mode of vibration. On the other hand, 

forced waves occur due to pressure fluctuations which force the plate to move in such a 

way that free-bending waves are not significantly generated. The spatial distribution of 

the forcing produces a response that is similar in its spatial response. 

In terms of radiation efficiency, which is a non-dimensional measure of the sound power 

radiated by a vibrating surface into an adjacent fluid [78], the generation of free bending 

waves is more important at frequencies above the critical frequency of the panel, where 

the natural modes of the partition consist of wave motion with phase velocity greater 

than the speed of sound travelling in air. In this condition, sound power is radiated 

efficiently [5]. Below the critical frequency, the free waves are produced but are not 

significant for sound transmission. 

Forced waves at the acoustic wave number are predominant when a panel vibrates at 

frequencies lower than its critical frequency. They are common when a panel is excited 

acoustically [15]. In addition, when a sound wave is incident upon a partition, the 

response, which is frequency dependent, is also dependent on the radiation impedance of 
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the modes of the partition. Thus, the air or fluid on the receiver side of the plate is 

excited, and sound waves propagate away from the plate into the receiving volume. 

Below the first panel resonance, there is an increase in SRI with decreasing frequency. In 

this frequency range, the panel moves with the pressure fluctuation to transmit sound and 

has a very small frequency response. The vibration can be reduced by stiffening the 

panel hence causing an increase in the SRI. 

2.2.1 - Sound transmission through an infinite partition 

In general, the sound transmission theory for uniform and unbounded panels has widely 

been used to approximate the sound transmission loss of a bounded panel in a baffle. Of 

course, some assumptions, such as the random-incidence field over the partition, as well 

as a limited frequency range (in which the acoustical wavelength is smaller than the plate 

size), have been considered. For instance, the normal incidence Mass Law theory is 

basically derived from an idealized model of normal incidence transmission through an 

unbounded partition [2]. On the other hand, the diffuse field transmission coefficient can 

be obtained by considering the whole range of incident angles with equal likelihood. In 

room acoustics there is an important parameter, namely the 'Schroeder' frequency [59], 

at which the frequency or modal overlap of the room modes is large enough for the 

sound field to be considered diffuse. The 'Schroeder' frequency or 'large room' 

frequency/,- is given by [59] 

= 2000 6̂0 
y 

(21) 

where 7^ is the reverberation time and Vis the room volume. 

Two measures of the effectiveness of a partition in reducing sound transmission are the 

transmission efficiency and the Sound Reduction Index. A transmission efficiency 

parameter T is defined as the ratio of transmitted to incident acoustic power and is given 

by [18] 

(2.2) 

where wtrans is the transmitted sound power and is the sound power incident on the 

source side of the partition. 
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A classical index, known as Transmission Loss (TL), in some countries, or Sound 

Reduction Index (SRI) is defined as [5,78] 

SRI(6 )= 10logio (1/^(6)) (dB) (2.3(a)) 

where %(6) is the transmission efficiency for a given angle of incidence 6 measured 

from the normal to the plate. This is so defined such that a positive value of the Sound 

Reduction Index corresponds to a reduction of the transmitted power compared to the 

incident. 

For a plane wave incident on an infinite panel for frequencies below the critical 

frequency this can be derived as [5] 

i e h , , ' — — (2.3(b)) 

1 + 
2/̂ 0'-0 

where ft) is the angular frequency (in radians/s), m is the panel mass per unit area(kg/m^), 

is the air density and is the sound speed in air. The derivation of equation (2.3 (b)) 

was based on the assumption that the influence of the partition stiffness on sound 

transmission is negligible compared with its mass. 

The mass law SRI expressions for normal (SRIn), field (SRIf) and diffuse (SRId) 

incidence are given by [18] 

SRIn = 201ogio (mf) -42 (dB) for the 'normal incidence Mass Law' (2.4) 

SRIf = 201ogio (mf) - 47 (dB) for the 'field incidence Mass Law' (2.5) 

SRId = SRIn - 101ogio(0.23 SRIn) (dB) for the diffuse incidence 'Mass Law' (2.6) 

where/is frequency (Hz). They are valid if comcosS » 2p^c^ . 

Equation (2.4) is the result of considering an angle of incidence 6 (measured from the 

normal to the plate) equal to zero. Similarly, Equations (2.5) and (2.6) can be obtained by 

considering 6 varying from 0° to 78° and from 0° to 90° respectively. In equation (2.4), 

the characteristic impedance of the air is assumed the same on both sides of the plate. 

Moreover, it is assumed that the partition loss factor is null. The SRL increases by 
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approximately 6 dB for each doubling of the frequency or the plate mass per unit area. 

Furthermore, equation (2.6) is only accurate if SRIn is greater than 15 dB and the 

incident field is highly diffuse [82]. 

2.2.2 - ayiMffg m a 

A finite-size and baffled rectangular plate is a more realistic model than the infinite one 

described previously. The transmission is characterized by boundary effects, which lead 

to the formation of standing-wave modes and resonance. Leppington [16] proposed a 

different formula for the transmission efficiency averaged over all incidence angles 

and over a frequency band. For frequencies below the critical frequency O)̂  of a simply-

supported rectangular panel, it is given by 

! consldedng (U « (2.7) 

where = clim!dJ'^ , m is the partition mass per unit area and D its bending stiffness 

per unit width. 

The resonant and non-resonant contributions are expressed by [16] as 

(2.8) 

W +1^ I n k ln(/ / j jj (2.9) 

where 

( % ) = — 4 - —lln(l 4- + — l l n ( % ) - f g ig the fluid 

loading parameter which is defined as 5, = /(mk), ji^ is given by fi^-k,^lk and r] is 

the mechanical damping factor (or internal loss factor) for the panel; p^ is the density of 

air, k is the acoustic wavenumber, k^ is the wavenumber of free bending waves in the 

partition; a, b are the plate dimensions. 
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The resonant contribution is due to the modes excited at or near resonance, which 

produce a large partition deflection but are inefficient in terms of sound power radiation. 

The non-resonant contribution corresponds to that from the small amplitude off-

resonant modes. However, for these non-resonant modes sound energy is radiated 

efficiently and their wavenumbers are smaller than the acoustic wavenumber. According 

to Leppington [16], there is good agreement between the transmission values obtained 

via solely the non-resonant contribution 7^ and experimental tests with no need for an 

ad hoc correction. As mentioned previously, it is assumed that the plate is simply-

supported. It is also assumed that the transmission efficiencies, which are defined in 

equations (2.8) and (2.9), represent an average over a large number of modes and over all 

incidence angles. 

For instance. Figure 2.1 shows the SRI values for a finite panel (2m x 2m) with average 

surface mass per unit area equal to 78.5 kg/m^ calculated using the above formulae. It is 

seen that the SRI for Leppington's resonant contribution is higher than the other values, 

as expected. The frequency range shown is below the critical frequency, which for this 

model equals 1.2 kHz and hence the non-resonant contribution is the appropriate term. 

2.3 - Coupling between a room and a Gnite plate 

Consider the case of a rectangular partition (panel) modelled as a flexible plate on one 

face {x - Xo) of a rectangular acoustic volume, which has rigid walls on all of its other 

surfaces. The equation of motion for a flexible thin plate vibrating at frequency a) cm be 

given in rectangular Cartesian coordinates (z,y) by 

D V'̂ [w;(z, y, G;)]-6;̂ 7M(7̂ ) y, (U)=0 (2.10) 

where D is the bending stiffness, is the square of the Laplace operator, and m(rj is 

the mass per unit area of the partition and a) is the normal displacement of the 

plate surface into the fluid. In equation (2.10) and the following equations the term in 

time e'™ has been suppressed. 

The plate is assumed to be simply-supported mounted in the (y,z) plane of the Cartesian 

coordinate system. The basis function, used in the expansion for the panel deflection. 
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must ensure a vanishing normal displacement on the contour of the panel. It satisfies the 

simply supported boundary conditions and is given by 

(Zin(z,)')=sin(^.zZ)sin(^^y) (2.11) 

where 

Lpj is the length of the panel, is the width of the panel, and r, s represent the panel 

mode numbers and = kl corresponds to the in vacuo plate eigenvalues or 

corresponding natural frequencies given hy CO = J— kl. 
V m 

Furthermore, the infinite set of in vacuo modes, defined by equation (2.11), represents a 

set of orthogonal functions, which satisfy the following orthogonality relationships 

= (2.12) 

where = j m ( r J ^ p d S is the modal generalized mass, cOp is the in vacuo natural 

frequencies of the partition, D is the bending stiffness of the partition, Vs is the position 

vector of a point in the y-z plane, is the two-dimensional Laplace operator and p, q 

are the mode identifiers [5], 

To determine the far-field radiated sound intensity, the sound field generated by a 

harmonic vibrating surface has to be evaluated. The sound field generated by a baffled 

harmonic vibrating surface S at position r in the fluid is given by a particular form of 

Kirchhoff-Helmholtz integral equation, which is termed the Rayleigh Integral [2]. The 

key function of this problem is to obtain the pressure difference across the panel or plate 

involved in the sound transmission. 

The total surface pressure internal to the enclosed volume is hence the summation of the 

AZoc/rgcf and the radiated pressure. This pre.rj'Mrg is defined as the 

summation of the incident field and the reflected field produced as if the plate were rigid 
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(infinite mechanical impedance). The radiated pressure is the field produced as a result of 

the elasticity of the plate, and subsequent motion producing sound radiation [2]. The 

equation of motion of an elastic partition in the absence of sound radiation, from 

equation (2.10), can be written 

(2.13) 

where pbt is the blocked pressure due to the incident and reflected sound fields. 

The partition response w can be expressed by series expansion in the free vibration mode 

shapes as 

p 

vv (z,(U) (2.14) 

where P is the total number of structural modes considered. Equation (2.14) is an 

expression for the partition displacement in terms of a summation of its assumed-modes. 

In addition, the total blocked pressure on the partition is given by 

= (2.15) 

where p, (y, z, w) is the incident field amplitude of pressure. 

In equation (2.13) the time term d" ' has been suppressed. 

Let p(x,y,z,t) be regarded as small amplitude perturbation (acoustic pressure variation) 

from its equilibrium value. The wave equation, which results from the linear acoustic 

equations, is given by [2] 

—— • — — — ^ 

— = 0 on the rigid walls of the room (2.16) 
ok 

= -/:^—^ on theflexiblepartition 

where w = the displacement of the flexible partition in the normal direction directed 

outwards from the fluid volume, is the sound speed in the air and is the air 

density. 
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The steady state solution is obtained through the Fourier Transform of the time domain 

wave equation, yielding the Helmholtz Equation [5] 

t2j9==() (2.1ir) 

where p is the steady-state sound pressure amplitude and k is the acoustic wavenumber. 

If p is expressed as an expansion of eigenmodes for the room, corresponding to the 

natural frequencies of a rigid boundary space, a solution to the Helmholtz Equation may 

be written as 

f = (2.18) 

where is the acoustic mode shape n of a rigid-walled room and the corresponding 

complex pressure amplitude. 

The substitution of equation (2.18) into equation (2.17) yields 

SfZca. + ==C) (2.19) 

Likewise, a Green's function G can be obtained satisfying the same conditions for a 

point source located in the fluid 

^ 5 ^ = 0 ,-eS, 
an 

V^G(r|/;) + /:^G(r|7;,) = -^(r-A;,) (2.20) 

where Sr is the surface area of the rigid walls, 5 ( r - r^ ) is the three-dimensional Dirac 

delta function representation of a unit volume velocity source, G(r | r^) is the solution 

(Green's function) of equation (2.20) and = acoustic pressure mode shape of the 

room. is simply an amplitude term in the series expansion of G{r | ). 

The spatial form for the three-dimensional eigenfunctions , corresponding to the 

natural frequency (On of the rigid-walled rectangular space of dimensions L*, Ly and Lz 

may be written as 
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= cos COS cos 
V L. , 

This set of orthogonal modes satisfies the following relationship 

I A„ if m = n. J 

(2 21) 

(2.22) 

Since is an eigenfunction of the room, it has a corresponding eigenvalue kn which 

must satisfy 

/ -N 2 2 / \ 

+ + 
L, L, 

\ * y and hence co„ =k„c. (223) 
v ' n . + =0 

Therefore, using the previous relationships, equation (2.20) can be written as 

(2.24) 

Multiplying each side of equation (2.24) by Q.^{x,y,z) and integrating over the volume 

of the room one has, by orthogonality, the expression 

4 (2.25) 

Often the sound pressure response in a room for known sound sources is of interest. 

Thus, adding a right-hand side term, which corresponds to the rate of change of mass 

flux per unit volume, to equation (2.16), the wave equation in terms of sound pressure 

then becomes [5] 

96 =-2(yVui4')<5(%-zJ and 

(2.26) 

(2.27) 
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where S(x- x^) represents a one-dimensional Dirac delta function, is the vibration of 

the panel surface in terms of a distribution of source volume velocity per unit volume 

and represents the distribution of 'external' sources, e.g. one or more monopole 

sources inside the room. 

The sound pressure p(x,y,z), which can be expressed as a summation of the orthogonal 

modes , is given by 

z) = 2 y' z) (2.28) 

where is the complex pressure amplitude of mode n at frequency co. 

Alternatively, the incident field amplitude of pressure p-(y,z,co), (cited in equation 

(2.15)), can then be defined in terms of the acoustic pressure modes as 

;),.(y,z,6;) = I 
n=l 

(2.29) 

where is the coordinate of the partition position in the 'x' direction of the acoustic 

field and As in equation (2.15), the time 

dependency e'™ has been omitted in equation (2.29) for clarity assuming everything is at 

the same harmonic frequency. 

By substituting equation (2.19) and (2.28) into equation (2.26), one obtains 

C„ n=l n=l 

(2.30) 

Multiplying by Q.̂  and integrating over the fluid volume, applying the orthogonality 

condition (see equation (2.22)), a set of coupled differential equations for the modal 

pressure is then obtained and given by 

+ 
A„ 

a (2.31) 
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where n = 1,2, .N. The 'loading' applied to the acoustic volume is represented by the 

generalized volume velocity source strength in the fluid as 

& = j 9, K , , z J (x, y, (% - (y - (z - z J dV (232) 

and (%^, , z J for a point source. 

where is the one-dimensional Dirac delta function (with dimension m'^), the 

coordinate (xoyo,Zo) is the source position for a point source in the volume, the subscript 

n refer to the acoustic volume mode number, is the complex modal pressure 

amplitude, Co is sound speed in air and S is the surface area of the partition and A„ is 

defined in equations (2.22). Equation (2.32) can be easily extended in the case of a 

distributed source in the volume. 

Substituting equation (2.14) into equation (2.31), one obtains 

A„ 
J<^ 

f=l 
a 

where the spatial structural-acoustic coupling coefficient C is defined by 

(2.33) 

(2.34) 

In summary, on the right-hand side of equation (2.33) the first and second terms 

correspond to the sources due to the motion of the flexible panel and to discrete 

monopole sources in the fluid respectively. 

Substituting equations (2.14) and (2.15) into equation (2.13), multiplying by (j)̂  and 

integrating over the partition surface at x = yields 

DV'I 
I F 1 I F 

S (̂ 9=1 
(2.35) 

Substituting equation (2.29) into equation (2.35) and using the orthogonality 

relationships (2.12), one obtains 

S ^ 

n=l 

(2.36) 
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where the subscripts n and p refer to the acoustic volume and panel mode numbers 

respectively, indicate the total number of acoustic modes adopted in the analysis, is 

the modal pressure amplitude, A is the modal generalized mass defined in equation 

(2.12) and is geometric coupling coefficient defined in equation (2.34). Equations 

(2.33) and (2.36) are coupled modal equations. 

A review of velocity potential concepts may also be important if one uses an alternative 

formulation in terms of velocity potential. The main advantage of using this formulation 

in terms of velocity potential is that the equations become symmetric. For an inviscid-

flow (viscous effects are neglected), low-speed flows are irrotational [20,79]. This means 

that if V y = 0 then V = VO, i.e. the velocity components can all be expressed in terms 

of a scalar function 0 . Therefore, 

, u - ——, and u — ——, (2.37) 
dy dz 

where V is fluid velocity, Uy_ are the fluid velocity components and 0 is the scalar 

function termed velocity potential. 

Therefore, the velocity potential function allows one to obtain all other acoustic 

parameters through the relationship for the pressure 

p = -/O„7<M0 (2.38) 

Equations (2.33) and (2.36) can therefore be rewritten in terms of the modal acoustic 

velocity potential amplitude 0 „ and with additional viscous damping terms as [5] 

r _2 \ 

p=i 
(2.39) 

where and yQ are the generalized modal damping coefficients for the room 

(subsystem 1) and partition (subsystem 2) respectively; a) is the excitation frequency in 

radian/s. 
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Thus, on the left-hand side of equation (2.39) an additional term jo) 0 , in terms of 

the velocity potential, is inserted in order to include viscous damping in subsystem 1. 

Likewise, the term jcofipW^is added on the left-hand side of equation (2.40) in order to 

represent the damping of the structural partition. Thus, the problem considering fluid 

loading can be solved. Alternatively, the response of fluid in a single room with rigid-

walls to harmonic excitation by a point monopole source can be obtained using equation 

(2.39) with the first term on the right-hand side, which contains the variable , set to 

zero. Other types of damping models and terms can be used instead of viscous damping, 

which is given in the preceding equations. 

2.4 - Derivation of a modal-interaction model for a system comprising 

two rooms coupled by a common partition 

In the present analysis, the room-panel-room system is selected as the fundamental 

model, which may represent a typical real situation in a building. The physical 

mechanisms involved in the control of sound transmission in buildings can hence be 

evaluated. 

The analytical modal model developed and implemented here is an extension of the set 

of integro-differential equations presented in section 2.3 to a system comprising two 

coupled rooms and a simply supported partition. Thus, the problem involving sound 

transmission between two connected rooms can be tackled. 

As mentioned before, the acoustic and the structural response fields are expressed in 

terms of their uncoupled normal modes by means of differential equations for each 

mode. Therefore, the structural motion has been expressed as a summation over the 

response of the in vacuo natural modes driven by fluid loading. The acoustic field of the 

rigid-walled rectangular rooms has been determined by the summation of the acoustic 

modes over the fluid volume. In fact, these acoustic modes in the source room were 

excited by a generalized volume velocity source. According to Fahy [5], the correct 

convergence of the modal pressure on the partition surface is obtained due to the Gibb's 

phenomenon, which is an overshoot that occurs whenever basis functions (for instance 

acoustic mode shapes) are used to represent spatial distributions [78] containing 

discontinuity of slope. 
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Interaction analysis is considered and described when a system comprising two fluid 

volumes connected by a thin plate is excited by a point monopole source placed in one of 

the volumes. Therefore, the results presented were not averaged for different source 

positions. Solid surfaces, which bound volumes of air Vi and V2 are considered. 

Equations (2.39) and (2.40) were extended in order to represent the two volume case. 

Therefore, on the right-hand side of equation (2.40) another coupling term is added in 

order to represent the influence of room 2. Moreover, an extra set of equations of motion 

representing room 2 is added to the system of equations (2.39) and (2.40). 

Therefore, the response of a coupled system (comprising two rooms connected by a 

common partition) to a forcing harmonic function may be represented in terms of the 

uncoupled modes of both rooms and the uncoupled panel modes as 

4 ^ 

/)=1 A„ 
a , (2.41) 

V / 

' p.s'" 

=1 

A„ P=1 
(2.43) 

where the indices n;, 1x2, and p refer to source room, receiver room and panel mode 

numbers respectively and /?is the generalized modal damping coefficient introduced for 

the acoustic volumes and structural modes. The other variables were already defined in 

the previous section and/or list of symbols. 

In general, it is necessary to consider dissipation in the system. For the structural system, 

it is common to introduce a complex Young's modulus of elasticity, using a loss factor 

from measured or assumed values. For fluid volumes, an average absorption coefficient 

is usually considered in terms of the corresponding modal loss factor. Thus, in equations 

(2.41), (2.42) and (2.43), the effect of the absorbing material is approximated by the 

equivalent damping factors Pn-

Neglecting the cross-modal coupling terms introduced by the absorption on the boundary 

of the volume, and assuming that a single room mode is dominant, the approximation for 
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the generalized modal damping for the source room ,6̂ ,̂ receiving room and 

partition may then be given by [5] 

/l, (244) 

(245) 

(2.46) 

where and are the corresponding modal loss factors for the source and receiving 

rooms, rjp is the modal loss factor for the panel. 

The total loss factor f] can be expressed in terms of the reverberation time by [8] 

(2.47) 

where/is frequency in Hz and 7^ is the reverberation time, which is the time taken for 

the system energy to decay by 60 dB. 

The numerical evaluation of the eigenvalues and eigenfunctions for the coupled system 

was obtained using a dynamic matrix formulation for the problem (see Appendix A). 

Numerical analysis was applied to the free vibration problem of the coupled room-panel-

room system in order to determine the eigenvalues and eigenvectors for the coupled 

system. Subsequently, for the forced vibration problem a solution in terms of the 

uncoupled modal contributions was then performed. The results, namely the acoustic 

pressure and panel displacement, can be used to evaluate two measures of the noise 

insulation that could be provided. Those quantities are the Sound Reduction Index and 

Noise Reduction respectively. 

The Sound Reduction Index (SRI) can be expressed in terms of the ratio of the incident 

to the transmitted intensity [78], i.e. 

SRI = 10 log 10 
(2.48) 

where (/,.) and (7,^ are the time-averaged incident and transmitted sound intensity 

respectively. 
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Considering the assumption of diffuse field condition, the SRI can be expressed in terms 

of the Noise Reduction (NR) by [86] 

Sa/ = ArR + 101og 10 
o p (2.49) 

where 5" is the partition surface area in m^, Vj (m^) and rj are the receiving room 

volume and total loss factor respectively and/ is frequency in Hz. 

The spatially averaged sound pressure level difference, namely Noise Reduction (NR), is 

given by [18] 

NR = 10 log 
10 

"1=1 
P.H 

2 
A , /^i 

Pn, 
2 
A . rv. 

(250) 

where /V, and IV^ are included due to the definition of the modal pressure 

amplitudes and . 

NR is dependent upon the absorption in the room, whilst it is assumed that SRI is 

independent of the room absorption and is a property of the sound transmission through 

the panel. 

The theoretical routines were developed according to the flowchart below; 

Tabulate results Evaluate SRI and NR 

Evaluate coupled eigenvalues Evaluate forced excitation 

Evaluate geometrical coupling 

Room-panel-room modal analysis 

Evaluate uncoupled eigenvalues 

Geometry and materials properties 

The transmission parameters obtained from the modal room-panel -room model, finite-

panel predictions [15,16] and a classical approach can then be compared graphically as a 
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function of frequency. The values for the coupled natural frequencies can also be 

considered when examining the response of the forced system, in order to identify which 

subsystems either structural of acoustic are the most important contributor. 

2.5 - Results 

2.5.1 - General description of models 

The models adopted comprised three subsystems: a source room, a common wall and a 

receiving room (Figures 2.2 and 2.3). In 'model 1' both rooms have the same width and 

height whereas in 'model 2' the receiving room is wider than the source room. For the 

model 3 the partition height and width are 2m and 1.8m respectively. Thus, the rooms of 

model 3 are slightly different from those of model 1. The source room was defined as an 

acoustic volume excited by a broadband acoustic point source placed at a comer position. 

Although the source position does not alter the spatial coupling coefficients between 

structural and acoustic modes, it has significant influence on exciting the source room 

modes. Thus, with the source located at one of the source room comers, all modes within 

a specific frequency range were excited. 

The results obtained from the numerical examples provide information about the 

sensitivity of the modal model to parameters, such as geometrical coupling coefficients 

and number of modes considered within a particular frequency band. In addition, they 

also show the spatial distribution of pressure and particle velocity in the acoustic 

volumes. Finally, some results for the modal model are compared to those obtained by 

different formulations. The geometric dimensions used for the models are shown in 

Figures 2.2a, 2.2b and 2.3. 

The system properties are described as follows. For a partition made of plasterboard 

material, a value of i) = 0.24 and E = 2.12xlO^N/m^ were assumed for the Poisson's ratio 

and Young's modulus respectively. Also a density value of Ps = 806 kg/m^ and a 

thickness of 0.01 m [21] were assumed for the material. On the other hand, for a partition 

made of steel, a value of D = 0.24 and E = 210x10^ N/m^ were assumed for the Poisson's 

ratio and Young's modulus respectively. Also a density value of Ps = 7850 kg/m^ and a 

thickness of 0.01 m [21] were assumed. 

The assumption of only pure bending waves propagating in the panel remains valid as 

the panel thickness is much smaller than the wavelength at the highest frequency 
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considered herein. When varying the other parameters, the receiving and source room 

surfaces were considered as being covered by a soft material with a constant modal 

frequency-average absorption coefficient. 

The loss factor for the rooms was chosen as a constant value 77 = 0.01 over the whole 

frequency range. The corresponding Teo that results using this constant loss factor is 

plotted in Figure 2.4. 

In ref. [86] typical values for the absorption properties of a room are presented. If one 

used these absorption values the corresponding loss factor values r] would vary from 

0.001 to about 0.1 for some commonly used materials in buildings. An important 

approximation to note here is that the mode functions used have been chosen as the mode 

shapes of a volume bounded by rigid walls and that absorption has been introduced via a 

modal description, rather that involving a complex wall impedance in the model. The 

latter is much more complex and is unnecessary in the present case of rooms with low 

absorption; both models would produce similar results. 

Moreover, the acoustic source strength applied to the source room was a volume velocity 

equal to 3x10"^ m^/s. The source was placed at the comer of the room for all of the 

simulations presented. The Noise Reduction (NR) parameters obtained from the modal 

and classical approaches [14,16] were compared graphically as a function of frequency. 

It was verified in ref. [16] that Leppington's prediction approaches the values obtained 

from the infinite plate theory when the non-resonant transmission is modelled. 

The results are organized as follows. In section 2.5.2, normalized spatial coupling 

coefficients illustrate the contributions of modes for a frequency range 0-300 Hz. In 

addition, the spatial averaged mean square pressure and particle velocity distribution are 

shown for the source and receiving room. 

In section 2.5.3, the calculated values of the acoustic and structural natural frequencies 

are presented. They are also compared with the coupled natural frequencies of the 

system. Some results show the influence of the number of selected modes on the 

frequency response of the model within the frequency range considered. 

Finally, in section 2.5.4, the modal model results for NR are compared with results using 

Leppington's expressions [16,17] and also with the diffuse and field incidence mass law 

theories [14]. The modal model is also compared with Osipov's predictions [12] in terms 

of NR. 
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2.5.2 —cowpZmg o/fAg 

Tables 2.1-2.5 list the natural frequencies of the rooms and panels considered. These 

show the occurrence of degenerate modes [78], which are modes that have identical 

eigenvalues but different eigenfunctions. The effects of the degenerate modes are 

discussed in the next subsection. 

The geometrical coupling values were obtained according to equation (2.34). For a 

flexible panel in the common wall, equation (2.34) shows that Cnp is dependent upon 

panel position and size. The coefficients were normalized by their maximum absolute 

value in order to compare both models 1 and 2 (Figures 2.1 and 2.2). For a 'whole wall' 

partition, the peak value for the coupling between uniform pressure acoustic mode 

(namely the bulk mode) and the fundamental mode of the panel is 4/7r̂ . 

Figures 2.5-2.8 show the contribution of particular modes to the normalized coupling 

coefficients for the source and receiving rooms. For instance. Figures 2.5 and 2.6 show 

the contribution of the bulk, axial, tangential and oblique modes to the coupling 

coefficients Q , which were normalized by the same factor. It is seen that the tangential 

modes (44 modes) followed by the oblique modes (31 modes) contribute most to the 

panel-source room coupling. Likewise, Figures 2.7 and 2.8 show the individual 

contribution of different types of modes to the coupling coefficients Q ^ .It is also 

evident that the most important contributors were the tangential (28 modes) and the 

oblique modes (19 modes). 

According to the results shown in Figures 2.9-2.12, the coupling relationship between the 

uncoupled structural and acoustic mode shape functions exhibited the largest 

contributions for the lower order modes. Figures 2.9 and 2.11 show the coupling 

coefficients, considering the whole wall flexible, for models 1 and 2 respectively. The 

coupling coefficients for the source room are similar in both models. On the other hand, 

they differed significantly for the receiving room. This is mainly due to the larger 

dimensions of the receiving room for model 2, which led to the increase in the number of 

coupling acoustic modes. 

Figures 2.10 and 2.12 show weak coupling conditions for the configuration when the 

flexible partition is located in the middle of the common rigid wall. Likewise, the 

coupling coefficients for the source room are identical in both models (Figures 2.9-a and 
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2.12-a). However, Figures 2.10-b and 2.12-b show that they provide different values for 

the panel-receiver room coupling for both models. 

Some simplifications, considering 'poor' spatial coupling of higher order modes, have 

been suggested by some authors [22]. Despite the fact that there were many 'weak 

coupling coefficients', their summation may be significant to the total coupling and 

response. Therefore, all modes below 300 Hz including non-resonant contributors were 

considered in the simulations. 

Tables 2.6, 2.7 and 2.8 show the coupled resonance frequencies for the models. By 

comparing the Tables, it is seen that the modes with frequency at 9 Hz correspond to the 

uncoupled structural modes (2,1) and (1,2) and these did not couple well to the bulk 

mode (no net volume associated with these modes) and remained unaltered. On the other 

hand, the (1,1) structural mode coupled well with the bulk mode and had a coupled 

frequency that was increased and this then is at 11 Hz due to the stiffening effect. Tables 

2.9, 2.10 and 2.11 show the calculated natural frequencies of the uncoupled subsystems 

and their geometric mode-shape coupling coefficients normalized to their maximum 

value. 

Figures 2.13-2.18 show the dynamic behaviour of the structural-acoustic coupled 

systems shown in Figures 2.2a, 2.2b and 2.3 in order to illustrate the influence of the 

geometric mode shape couphng coefficients and structure mass upon the degree of 

coupling between the elements. Firstly, Figures 2.13 and 2.14 show the predicted 

responses of the structural-acoustic coupled system presented in Figure 2.2a for 

partitions with mass per unit area equal to 8.1 kg/m^ and 78.5 kg/m^ respectively. 

Secondly, Figures 2.15 and 2.16 present the frequency response results for model 2 

(Figure 2.2b). Finally, Figures 2.17 and 2.18 show the results for model 3 (see Figure 

2.3). 

Figures 2.13-a and 2.13-b show the frequency responses in terms of sound pressure level 

for the source and receiving rooms respectively. Figure 2.13-c shows the predicted 

response of the structural partition in terms of its mean square normal velocity. The 

results are presented for model 1 which considers the partition dimensions equal to (2m x 

2m). The source and receiving room dimensions are equal to (5m x 2m x 2m) and (3m x 

2m X 2m) respectively. 

For this first model (see Figure 2.2a) the first two peaks (between 10 Hz and 20 Hz) 

shown in Figures 2.13a and 2.13b are due to the strong coupling with the structural 

39 



Chapter 2. Structural-Acoustic Coupling Analysis - a modal model 

modes (1,1), (1,3) and (3,1). For instance, the coupled frequencies shown in Table 2.6 at 

10.98 Hz, the coupled version of the (1,1) mode, and 19.04 Hz, the coupled version of 

the (1,3) and (3,1) mode for the square plate, corresponding to peaks in the response in 

Figures 2.13a-c. 

In Figure 2.14-a, a partition with mass per unit area equal to 78.5 kg/m^ was used in the 

predictions. The sharp peak at about 12.5 Hz shows the strong structural coupling effect 

near the structural natural frequency equal to 12 Hz (see Figure 2.14-c). In fact, it 

corresponds to the coupled frequency 12.53 Hz shown in Table 2.5. The second peak at 

about 34 Hz corresponds to the uncoupled acoustic mode (1,0,0) shown in Table 2.1. 

Figure 2.14-b clearly shows a pronounced peak in the receiver room at about 12 Hz, 

which is also related to the coupling effect with the first structural natural frequency (see 

Table 2.3). 

Figure 2.15 presents the predicted responses for model 2 considering a partition with 

mass per unit area equal to 8.1 kg/m^. The first peak at about 9 Hz is due to the strong 

coupling with the structural mode (1,1) which corresponds to the uncoupled resonance 

frequency equal to 3.79 Hz. In other words, the coupled version of the (1,1) type 

structural mode corresponds to the peak at about 9 Hz shown in Figures 2.15a-c. By 

comparing Figures 2.15-c and 2.13-c, it is shown that the degree of coupling between the 

structural and acoustic modes for model 1 (see Figure 2.13-c) is greater than that for 

model 2 (Figure 2.15-c) as expected compared to a model composed of two similar 

rooms. It can be seen that the coupled frequency at 10.98 Hz shown in Figure 2.13 is 

more shifted from the in vacuo natural frequency, which corresponds to the structural 

mode (1,1), than the one shown in Figure 2.15, which corresponds to the first peak in the 

response. 

In Figure 2.13-c, the acoustic coupling effect on the structural modes is evident. For 

instance, the coupled mode at about 18 Hz in Figure 2.13-c is made up of significant 

contribution of the (1,3) and (3,1) uncoupled structural modes. Similarly, the second and 

third peaks shown in Figure 2.15a (at about 18.5 Hz and 24 Hz) correspond to the 

coupled frequencies 18.51 Hz and 24.08 Hz shown in Table 2.4. 

Likewise, Figure 2.16 shows the predicted responses for model 2 considering a 

heavyweight partition with mass per unit area equal to 78.5 kg/m". In Figure 2.16a it is 

seen that the first peak at about 12.3 Hz corresponds to the coupled frequency 12.28 Hz 
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shown in Table 2.5. Comparing Figures 2.15 and 2.16, it is seen the degree to which the 

coupling effect reduces as the partition mass increases (i.e. similar to the Mass Law). 

Figures 2.17 and 2.18 present the predicted responses of model 3 for both light and 

heavyweight partitions respectively. This model considers a non-square partition with 

dimensions equal to (2m x 1.8m). By comparing Figures 2.13 and 2.17 it is seen that 

'additional' peaks occur in the response of model 3. For instance, a peak at about 24Hz 

corresponds to the coupled frequency of 24.2 Hz shown in Table 2.6, as the (3,1) and 

(1,3) modes have different resonance frequencies in the non-square case. However, apart 

from this, the sound transmission is not significantly different from that for model 1. 

Figure 2.18 shows the predicted responses considering a heavyweight partition. It is seen 

that the first peak corresponds to the coupled frequency 13.9 Hz (Table 2.7), which 

corresponds to the coupled version of the structural mode (1,1) (see Table 2.5). 

2. J..) -TTzg 

It is observed that the location of the resonance peaks for the harmonic forced response 

coincide with the eigenvalues obtained from the coupled analysis. For room dimensions 

of 5x2x2 m^, 3x2x2 m^ and 3x2x5 m^, 90, 59 and 130 uncoupled room modes were 

respectively obtained for a frequency range up to 300 Hz. For panel dimensions of 2x2 

m^ and 1x1 m^, a total of 112 and 24 modes were considered respectively for the same 

frequency range. 

It is known that the total damping of a lightly damped system (e.g. highly reverberant 

rooms and partitions with low internal loss factor) has little effect on shifting the 

eigenfrequencies of an undamped one. However, the results show that spatial coupling 

between the panel and the volumes played a significant role. This can be confirmed in 

Table 2.6, which shows the natural frequency values obtained for the first modes of the 

coupled system. Thus, a coupled mode of the entire room-panel-room system consists of 

relative amounts of energy corresponding to the rooms' acoustic fields and some energy 

associated with the panel vibration. Hence, two types of coupled modes, namely mainly 

panel-controlled and/or room-controlled modes, can exist. For instance, by comparing 

Tables 2.1, 2.2 and 2.6, it is seen that most of the modes shown in Table 2.6 should be 

panel-controlled modes as the first acoustic mode is at 34 Hz. Therefore, they have most 

of their energy stored as vibrational energy in the panel. 

The sound power transmission from a source room into a receiving room is mainly 

affected by the closeness of the separate uncoupled natural frequencies of the rooms and 
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panel and the degree of spatial matching between the acoustic pressure modes and 

structural displacement modes. For instance, the fundamental natural frequency of a 

panel with dimensions equal to Im x Im was lower than the lowest natural frequency of 

the source room (34 Hz). Hence, the corresponding acoustic mode contributes an 

equivalent mass effect on the panel mode (1,1). Nevertheless, the acoustic bulk mode 

(0,0,0) always contributes equivalent stiffness. For example. Table 2.8 shows the 

coupled frequency 15.52 Hz for model 1 with a Im x Im partition. It is seen that it is 

higher than the in vacuo natural frequency. This is due to the stiffness contribution from 

the room bulk mode. 

The fundamental coupled natural frequency of models 1 and 2 was about 15 Hz. It is 

evident from Table 2.6 that it corresponds to a panel-controlled mode as the fundamental 

uncoupled panel natural frequency was 15.15 Hz. 

Figures 2.19 and 2.20 show the mean square sound pressure and particle velocity 

distribution (in the x direction normal to the panel) with respect to the horizontal plane y 

= Im at 120 Hz. Figure 2.19-a and 2.20-a show the surface plot for the pressure and 

particle velocity respectively. It is observed that there is pressure discontinuity at the 

interface coordinate x = 0 (where there is a flexible partition in the whole common wall) 

as expected. On the other hand, the particle velocity just goes to zero at the interface. The 

results are also not constant across the cross-section or symmetric, due to the source 

location being positioned in one comer of the room (-5,0,0) and the frequency being 

above the first acoustic mode with a half-wavelength across the section (85 Hz). Figures 

2.19-b and 2.20-b show the corresponding contour levels. 

The numerical accuracy of the modal model in terms of the number of selected modes 

used in the calculation was verified in Figures 2.21, 2.22 and 2.23. Spatially averaged 

mean square pressures were obtained directly from the integration of the square of the 

pressure given in terms of the orthogonal room modes (see equations 2.12 and 2.28). 

Figure 2.21 shows the spatial averaged mean square pressure levels predicted from the 

modal model considering 265 and 90 modes for the source room respectively, which 

correspond to results obtained when all modes are considered within the frequency range 

0-400 Hz and 0-300 Hz respectively. It is seen that the results are almost identical. 

Likewise, Figure 2.22 shows the spatial averaged sound pressure levels for the receiving 

room. Although Figure 2.22-a shows slight differences of about 1-2 dB within the 
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frequency range 250-300 Hz, (considering 59 and 166 modes for the receiving room) 

those differences are much less significant in one-third octave bands (Figure 2.22-b). 

The Noise Reduction shown in Figure 2.23 presents similar values when a total of 261 

modes are considered against 606 modes. The results being presented in both narrow and 

one-third octave bands. It is seen in Figure 2.23-b that an insignificant difference 

between the models occurs within the frequency range considered. It can be seen that 

negative values for NR occurred below the first room mode, which is 34 Hz. 

models available in the literature 

In this subsection, a comparison is made between the values of Noise Reduction obtained 

from the modal model and the classical analytical methods. The latter namely the field 

and diffuse incidence mass laws [14] and Leppington's prediction [16]. Particularly in 

this subsection, an upper frequency of 450 Hz was considered for the calculation of the 

NR values. 

Leppington's prediction may be considered an improvement on previous theories. In his 

formulation the transmission problem is described in terms of two distinct mechanisms, 

namely resonant and non-resonant. Therefore, below coincidence, the transmission 

efficiency is given by the resonant contribution averaged over a frequency band and the 

non-resonant contribution. 

It is seen that strongly excited structural modes result in generating low values for the 

NR, which are determined by the structural-acoustic modal coupling coefficients as well 

as the damping factors. 

Figures 2.24, 2.25 and 2.26 show the NR values for models 1, 2 and 3 respectively. 

Partitions with mass per unit area equal to 8.1 kg/m^ and 78.5 kg/m^ were considered. 

Critical frequencies equal to 3815 Hz and 1196 Hz were obtained for the light and 

heavyweight partitions respectively. The natural frequencies of the structural partitions 

are listed in Tables 2.3, 2.4 and 2.5. 

In Figure 2.24-a and 2.24-b it is seen that at very low frequencies (below 100 Hz), 

differences of up to about 20 dB occurred between the modal model and the diffuse 

incidence Mass Law. In this situation, the dimensions of the subsystems were small in 

comparison with the wavelength of the sound. Thus, for this condition the motion of the 
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medium in the system is analogous to that of a mechanical system having lumped 

mechanical elements of mass, stiffness and damping. 

The lowest NR values shown in Figures 2.24-a and 2.24-b are in the one third octave 

frequency bands with centre frequencies at 8 Hz and 12.5 Hz respectively. For the 

lightweight partition, this value approximately corresponds to the coupled frequency 

9.02 Hz shown in Table 2.6. For the heavyweight partition (Figure 2.24-b), the lowest 

NR value corresponds to the coupled frequency equal to 12.53 Hz (see Table 2.7). It is 

seen that this frequency is the coupled version of the fundamental natural frequency of 

the heavyweight partition, which is equal to 12.08 Hz. It is well known that if a coupled 

system is excited acoustically and the acoustic volume responds predominantly as though 

the structure were infinitely rigid, this system is said to be weakly coupled. Therefore, 

the results confirmed the theory that 'weak coupling' effects occur in models with 

heavyweight partitions [80]. 

Moreover, at very low frequency the flexible partition behaves as a rigid-body and the 

resulting stiffness element is expressed by the acoustic bulk stiffness of the enclosed 

fluid in the room [4, 60]. The acoustic bulk stiffness is given by - PO^O^a/^a '•> 

where Sa is the room transverse area (height x width) and Va is the volume of the 

acoustic room. In this case, the coupled frequency can be estimated by considering a one-

degree-of-freedom mass-spring system. This simplified model consists of a structural 

mass connected to two 'springs' corresponding to both acoustic rooms. The natural 

frequency of free vibration of this simplified model was estimated and is approximately 

15.5 Hz. 

For the 1/3 octave bands with centre frequencies above 100 Hz, the NR values shown in 

Figure 2.24-a tend to those obtained via Leppington's prediction. In other words, the 

trend of the curve for the modal model approximates the established values, which 

consider the resonant and non-resonant contributions at higher frequencies. This is 

justified by the fact that the 'Schroeder frequencies' (see equation (2.1)) were 

approximately 298 Hz and 383 Hz for the source and receiving rooms respectively. 

Nevertheless, for the heavyweight partition Figure 2.24-b shows that the NR values are 

closer to the diffuse field Mass Law at higher frequencies. 

Figure 2.25 shows the NR values obtained for model 2 (Figure 2.2b). In Figure 2.25-a, 

the variation of the modal model from the Mass Law and Leppington's formulation at 

low frequencies is less pronounced than that for model 1 shown in Figure 2.24-a. This is 
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due to the fact that model 1 (Figure 2.24) has exactly coincident resonance frequencies 

for the two rooms e.g. at 34, 68 and 85 Hz. In addition, there is geometric matching of 

modal distribution over the common partition. On the other hand, the NR results 

presented in Figure 2.25 show the effects of mismatch of modal properties of rooms 

having dissimilar geometrical characteristics. As the frequency increases, the results tend 

to the values calculated via the Leppington's approach. 

By comparing Figures 2.24 and 2.25, it is also evident that at higher frequencies the 

effect of room shape on NR is not so significant. For instance, in the frequency band 

with centre frequency at 400 Hz, a difference of less than 2 dB is found between models 

1 and 2. 

Finally, it is seen that in both configurations (Figures 2.24 and 2.25) the values obtained 

via Leppington's formulation approximated to those using the field incidence Mass Law 

when the frequency increases. These results may be explained by the fact that the 

resonant contribution, which is taken into account in Leppington's formulae, was not 

significant within the frequency range considered, where the forced non-resonant 

vibration contribution is the dominant factor. Furthermore, for the heaviest partition the 

diffuse field Mass Law is about 3-6 dB lower than Leppington's or the field incidence 

Mass Law values at frequencies greater than 100 Hz. 

Figure 2.26 shows a comparison of the NR levels between the values obtained using the 

modal model 3 and the classical methods. Similarly to the other models, it is seen that 

the lowest frequency structural mode is most affected by the coupling with the rooms for 

the lightweight partition. Comparing Figures 2.24 and 2.26 it can be seen that the 

presence of degenerate modes for the square partition and room of model 1 does not have 

a large effect on the results. 

2.5.5 - Comparison of NR obtained via the modal model developed and another modal 

The sound pressure level difference or Noise Reduction is also predicted via the modal 

model and the results in terms of frequency response are compared to those obtained by 

Osipov [12]. Figures 2.27 and 2.28 show the NR levels obtained via the modal model, 

Osipov's approach and the baffled plate model [12] for different partition properties. The 

simulations were based on a system comprising two rooms coupled by a single leaf 

partition with dimensions 5m x 3m. The source and receiving room depths were both 

equal to 3 m. It can be seen that the NR levels for Osipov's room-plate room prediction 
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and modal model followed the same trend over the whole frequency range and are 

generally in very good agreement. The small difference (about 3 dB) between Osipov's 

and the actual modal model herein used might be explained by the fact that the damping 

value used for the Osipov's model was unknown. 

In addition, the baffled plate model, also presented by Osipov [12], shows less 

modulation in comparison with the modal model or Osipov's room-plate room model. 

Furthermore, the results obtained via the modal model and the Osipov's room-plate-

room model also show very good agreement for all different partition densities 

considered over a wide range of cases {ph = 2%.^kglm^ to ph = 460 kglrn^). 

2.6 - Conclusions 

A comparison between numerical modal analysis and theoretical predictions has been 

performed. A maximum frequency of 450 Hz was used for the frequency response of the 

systems to a volume velocity point excitation in the source room. Above this frequency 

limit the computational storage requirements for variables as well as the operational 

running time on a personal computer became extremely problematic. 

The effect of being selective in eliminating some modal contributions has not been 

reported here [14]. This is because the results are highly sensitive to the non-resonant 

modes in the frequency range considered. For instance, the non-resonant mass modes of 

the partition significantly contributed to the energy transmission between rooms. This is 

evident from the results, which approximates to those for the Mass Law as frequency 

increases. 

Although there were many 'weak coupling coefficients', their summation was significant 

to the total coupling. Figures 2.5-2.8 show the contribution of certain modes to the fluid-

structure interaction. It depends on the degree of spatial coupling between the modes at 

the common interface. Hence, all possible natural frequencies and their respective modes 

were included in this analysis. The results may also help in the understanding of the 

model, with the subsystems considered directly related to physical elements such as 

rooms and flexible partitions. They can also provide an initial discussion for the 

investigation of a SEA model, which can be useful for practical building acoustics. 

Although this problem (the coupling between the panel and the acoustic fields) has been 

solved in previous work by several authors, the results obtained herein can also be used 

for guidance in real cases of architectural acoustic design. All the parameters, which 
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affected the modal composition of the sound field in the subsystems, were fundamental 

in the determination of the Sound Reduction Index. The results may also be used to 

interpret measurements made in-situ at low frequencies, e.g. where the classical 

definition of SRI in IS0140 for diffuse sound fields may not be appropriate or reliable. 

Although the assumption of uncoupled 'rigid-walled' acoustic modes for the rooms [6] 

has been assumed for many years, the actual boundary condition, which is due to the 

velocity of the partition, cannot be replicated. The convergence problem may be rather 

sensitive at low frequencies and may require a significant summation of modes to 

provide accurate velocity and pressure predictions at the panel location. This is necessary 

for accurate predictions of the acoustic intensity and hence Sound Reduction Index. 

Existing methodologies, i.e. the Mass Law and Leppington's formulation, similarly have 

difficulty at low frequencies. For instance, the assumption of diffuse field, etc., is no 

longer valid at very low frequencies, as few acoustic modes exist in the volumes. 

However, it has been shown that the SRI values obtained using the Modal model 

converge reasonably well to Leppington's prediction as the frequency increases. 

Although the model will be validated experimentally later in this thesis, the good 

agreement between the modal model and Osipov's published room-plate-room model for 

the Noise Reduction indicated a good degree of reliability in the modal model. If one is 

interested in the Noise Reduction and hence requires spatially averaged acoustic 

pressures, then the methodology of using the modal method with 'rigid-walls' is 

acceptable and provides good results. This statement can be confirmed by the fact that 

the results obtained converged to the established and accepted analytical models as 

frequency increases. 
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The natural frequencies of the first 10 room modes 
Frequency range: 0 Hz-300 Hz 

Room 

dimension 

(5x2x2) 

Mode (l,m,n) 

Frequency 

(Hz) 

Room 

dimension 

(3x2x2) 

Mode 

(l,m,n) 

Frequency 

(Hz) 

Room 

dimension 

(3x2x5)m^ 

Mode (l,m,n) 

Frequency 

(Hz) 

0 0 0 0.00 0 0 0 0.00 0 0 0 &00 

1 0 0 34.00 1 0 0 5&67 0 0 1 3440 

2 0 0 68.00 0 0 1 8540 1 0 0 56.67 

0 0 1 85.00 0 1 0 8540 1 0 1 6648 

0 1 0 85.00 1 0 1 102.16 0 0 2 6840 

1 0 1 9L55 1 1 0 102.16 0 1 0 8540 

1 1 0 91.55 2 0 0 113.33 1 0 2 88J2 

3 0 0 102.00 0 1 1 120.21 0 1 1 9L55 

2 0 1 108.85 1 1 1 132.89 0 0 3 102.00 

2 1 0 108.85 2 0 1 141.67 1 1 0 102.16 

Table 2.1: Summary of the natural frequencies of 'rigid-wall' acoustic volumes used in 

Models 1 and 2. 
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The natural frequencies of the first 10 room modes 
Frequency range; 0 Hz-300 Hz 

Room 

dimension 

(5x2x1.8) 

A4ode(^n^n) 

Frequency 

(Hz) 

Room 

dimension 

(3x2x1.8) 

Mode (l,m,n) 

Frequency 

(Hz) 

0 0 0 0.00 0 0 0 0.00 

1 0 0 34.00 1 0 0 56.67 

2 0 0 68.00 0 0 1 85.00 

0 1 0 85.00 0 1 0 94^4 

1 1 0 91.55 1 0 1 102.16 

0 0 1 94^4 1 1 0 110.14 

1 0 1 100.38 2 0 0 113.33 

3 0 0 102.00 0 1 1 127.03 

2 1 0 108.85 1 1 1 139.12 

2 0 1 116.38 2 0 1 141.67 

Table 2.2; Summary of the natural frequencies of 'rigid-wall' acoustic volumes used in 

A4odel3. 

First 8 panel modes - Dimension: (1x1) m^ First 8 panel modes - Dimension:(2x2) 

Mode (p,q) Frequency 
(Hz) 

Mode 
C&q) 

Frequency 
(Hz) 

1 1 15J^ 1 1 3J9 

1 2 3%a8 1 2 9.47 

2 1 37.88 2 1 &47 

2 2 6&61 2 2 15J5 

1 3 75J6 1 3 18^4 

3 1 75J6 3 1 18̂ % 

2 3 9&48 2 3 24.62 

3 2 9&48 3 2 24^2 

Table 2.3: Summary of the in vacuo natural frequencies of partitions used in the models, 
assuming simply-supported boundary conditions and p}i = %.\kgl. 
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First 8 panel modes - Dimension: 
(2m xl.8m) - Model 3 

Mode (p,q) Frequency 
(Hz) 

1 1 4.23 

2 1 9.91 

1 2 11.25 

2 2 16.93 

3 1 19.38 

1 3 22.94 

3 2 26.39 

2 3 28.62 

4: Summary of the in vacuo natural frequencies of partitions used in the 
assuming simply-supported boundary conditions and ph = S . l k g / . 

First 8 panel modes - Dimension; 
(2m X 2m) - Models 1 and 2 

First 8 panel modes - Dimension: 
(2m xl.Sm) - Model 3 

Mode (p,q) Frequency 
(Hz) 

Mode (p,q) Frequency 
(Hz) 

1 1 12.08 1 1 13.49 

1 2 30.19 2 1 31.62 

2 1 30.19 1 2 35.87 

2 2 48.32 2 2 53.99 

1 3 60.39 3 1 61.82 

3 1 60.39 1 3 73.15 

2 3 78.52 3 2 84.19 

3 2 78.52 2 3 91.27 

Table 2.5: Summary of the in vacuo natural frequencies of partition used in the models, 
assuming simply-supported boundary conditions and ph = 18.5kg /m^. 
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The first coupled frequencies The first coupled frequencies The first coupled frequencies 

(model 1) (model 2) (model 3) 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 

0.00 0.00 0.00 
9.02 8.92 &54 
9.02 &98 lOj^ 
10.98 9.04 10^5 
14J2 14.64 16.64 
18^7 1&45 1936 
19.04 1&51 2279 
19.04 18^1 2422 
24,26 24.08 28.43 
24.26 2408 3244 
31.98 3L58 35.66 
31.98 3L58 38^3 
31^6 34IM 39.06 
3186 34.07 39^4 
361% 3&56 4485 
36.03 3&56 4946 
37.87 3744 5L28 

Table 2.6: Summary of the first 10 coupled frequencies for models 1, 2 and 3 considering 

the whole interface flexible (2m x 2m) for models 1 and 2 and (2m x 1.8m) for model 3; The 

mass per unit area adopted was ph = 8.1% Im^ for all models. 

The first coupled frequencies The first coupled frequencies The first coupled frequencies 

(model 1) (model 2) (model 3) 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 

0.00 0.00 0.00 
12.53 1228 13jW 
30.01 30.00 3147 
30.01 30.00 34^9 
34J7 33.99 35J2 
34^7 34J5 53j^ 
4&12 4&13 5&71 
56.56 56.62 6L83 

Table 2.7; Summary of the first 10 coupled frequencies for models 1, 2 and 3 considering 

the whole interface flexible and ph = l'S>.5kgI. 
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First 10 coupled frequencies (model 1) First 10 coupled frequencies (model 2) 

Frequency (Hz) Frequency (Hz) 

0.00 aoo 
15̂ 2 15.03 
34.46 33.99 
3732 34,64 
3732 37J2 
56.97 37J4 
6025 5&79 
6&01 60J5 
75^6 66.14 
75jU 6&01 

Table 2.8: Summary of the first 10 coupled frequencies for model 1 and 2 considering a 

small flexible partition (Im x Im and ph = %.lkg Im^)m the middle of the common rigid 

wall. 

Order Plate (2x2) m^ 1 2 3 4 5 6 

Type (1,1) (1,2) (2JJ (2,2) (L3) (3,1) 

Source 

Room 

Frequency 

(Hz) 

3J9 9.47 9.47 15J^ 18.94 18.94 

1 (0,0,0) 0.00 1.0000 0.0000 0.0000 0.0000 (13333 (13333 

2 (1,0,0) 34.00 1.0000 0.0000 0.0000 OXWOO (13333 (13333 

3 (2,0,0) 68.00 1.0000 0.0000 0.0000 OIWOO (13333 (13333 

4 (0,0,1) 85.00 OXMOO 0.6667 0.0000 0.0000 0.0000 0.0000 

5 (0,1,0) 85.00 0.0000 0.0000 0.6667 0.0000 (10000 0.0000 

6 (1,0,1) 9L55 OIWOO (16667 0.0000 0.0000 OXWOO 0.0000 

7 (1,1,0) 9L55 OXMOO 0.0000 0.6667 0.0000 0.0000 0.0000 

8 (3,0,0) 102.00 1.0000 0.0000 0.0000 0.0000 (13333 (13333 

Table 2.9: Summary of the first 8 natural frequencies and normalized geometric mode shape 

coupling coefficients (Cnip) for model 1. 
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Order Plate (2x2) m^ 1 2 3 4 5 6 

Type (1,1) (1,2) (2,1) (2,2) CU3) (3,1) 

Receiving 

Room 

Frequency 

(Hz) 

3J9 &47 9.47 15J^ 1&94 18.94 

1 (0,0,0) 0.00 1.0000 0.0000 0.0000 0.0000 0.3333 a3333 

2 (1,0,0) 56.67 1.0000 (10000 0.0000 0.0000 (13333 (13333 

3 (0,0,1) 85IW OIWOO 0.6667 0.0000 0.0000 0.0000 0.0000 

4 (0,1,0) 85IW 0.0000 0.0000 0.6667 0.0000 OXWOO 0.0000 

5 (1,0,1) 10216 oxwoo 0.6667 0.0000 OXMOO OIWOO 0.0000 

6 (1,1,0) 10216 0.0000 0.0000 0.6667 0.0000 OXWOO 110000 

7 (2,0,0) 11333 1.0000 0.0000 0.0000 0.0000 113333 03333 

8 (0,1,1) 12&21 OXMOO O.OOOO 0.0000 OXMOO 0.4444 0.0000 

Table 2.10: Summary of the first 8 natural frequencies and normalized geometric mode 

shape coupling coefficients (Cn2p) for model 1. 

Order Plate (2x2) 1 2 3 4 5 6 

Type (1,1) (1,2) (2J) (2,2) (L3) (3,1) 

Receiving 

Room 

Frequency 

(Hz) 

3J9 &47 9.47 15J^ 18.94 1&94 

1 (0,0,0) 0.00 1.0000 0.0000 0.0000 0.0000 0.3333 (13333 

2 (0,0,1) 34IW 0J792 0J^99 0.0000 0.0000 0.2221 (12597 

3 (1,0,0) 56.67 IIWOO 0.0000 0.0000 (10000 03333 03333 

4 (1,0,1) 66.08 0.7792 0JJ99 0.0000 OXWOO (12221 0.2597 

5 (0,0,2) 6&00 0.2653 (15384 0.0000 0.0000 (10343 (10884 

6 (0,1,0) 85IW OXMOO 0.0000 0.6667 0.0000 OXMOO 0.0000 

7 (1,0,2) 88.52 (12653 (15384 0.0000 0.0000 (10343 (10884 

8 (0,1,1) 9L55 0.0000 0.0000 0.5195 OĴ WO (10000 0.0000 

Table 2.11: Summary of the first 8 natural frequencies and normalized geometric mode 

shape coupling coefficients (Cn2p) for model 2. 
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10' 
Frequency (Hz) 

Figure 2.1; The Sound Reduction Index (for the various Mass Law expressions) for an 

infinite limp panel with nominal density equal to 78.5 kg/m^. normal incidence; — 

field incidence and diffuse field incidence; res-Leppington's resonant transmission 

(see equation (2.8)); nr = Leppington's non-resonant transmission (see equation (2.9)). 
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a) b) 

Figure 2.2; Two rooms separated by a common wall (2m x 2m). Both rooms were of 

height equal to 2 m. a) Model 1; b) Model 2 
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SOURCE 
ROOM 

RECEIVING 
ROOM 

A '5.0 m 

)( 

3.0 m 

V 

Figure 2.3: Two rooms separated by a common wall (2m x 1.8m). Both rooms were of 

height equal to 2 m - Model 3 

200 250 
Frequency [Hz] 

Figure 2.4: The corresponding Tgo (s) that results using a constant loss factor rj = 0.01. 
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Figure 2.5: The contribution of the bulk and axial modes of the source room to the 

normalized coupling coefficients ^ considering a whole wall for model 1. a) bulk 

mode; b) axial modes (14 modes) 
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Figure 2.6: The contribution of the tangential and oblique modes of the source room to 

the normalized coupling coefficients C considering a whole wall for model 1. a) 

tangential modes (44 modes); b) oblique modes (31 modes) 
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Figure 2.7: The contribution of the bulk and axial modes of the receiving room to the 

normalized coupling coefficients considering a whole wall for model 1. a) bulk 

mode; b) axial modes (11 modes). 
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Figure 2.8: The contribution of the tangential and oblique modes of the receiving room to 

the normalized coupling coefficients considering a whole wall for model 1. a) 

tangential modes (28 modes); b) oblique modes (19 modes) 
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Figure 2.9: Normalized coupling coefficients for model 1 considering a flexible panel 

over the whole common interface; a) panel and source room (112 panel modes and 90 

room modes); b) panel and receiving room (112 panel modes and 59 room modes); 
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Figure 2.10; Normalized coupling coefficients for model 1 considering a flexible panel 

(Im X Im) in the middle of the common rigid wall (2m x 2m); a) panel and source room 

(24 panel modes and 90 room modes); b) panel and receiving room (24 panel modes and 

59 room modes); c) panel location in the middle of the common wall (Cgy = Cgz = 0.5). 
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Figure 2.11: Normalized coupling coefficients for model 2 considering a flexible panel 

over the whole common interface; a) panel and source room - (112 panel modes and 90 

room modes); b) panel and receiving room (112 panel modes and 130 room modes); 
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Figure 2.12: Normalized coupling coefficients for model 2 considering a flexible panel 

(Im X Im) in the middle of the common rigid wall (2m x 2m); a) panel and source room 

- (24 panel modes and 90 room modes); b) panel and receiving room (24 panel modes 

and 130 room modes); c) panel location in the middle of the common wall (Cgy = Cgz = 

0.5). 
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Figure 2.13: Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.2(a). ph = 2,.lkg / . a) SPL in the source room (dB 

re 20 ji Pa); b) SPL in the receiving room (dB re 20 |i Pa); c) Structural velocity (dB re 

10"̂  m/s). 
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Figure 2.14; Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.2(a). The partition mass per unit area was 78.5 kg/m^. 

a) Sound pressure level in the source room (dB re 20 [x Pa); b) Sound pressure level in 

the receiving room (dB re 20 pi Pa); c) Structural velocity (dB re 10"̂  m/s). 
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Figure 2.15; Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.2(b). The partition mass per unit area was 8.1 kg/m^. 

a) Sound pressure level in the source room (dB re 20 p, Pa); b) Sound pressure level in 

the receiving room (dB re 20 }x Pa); c) Structural velocity (dB re 10"̂  m/s). 
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Figure 2.16: Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.2(b). The partition mass per unit area was 78.5 kg/m^. 

a) Sound pressure level in the source room (dB re 20 (x Pa); b) Sound pressure level in 

the receiving room (dB re 20 |i Pa); c) Structural velocity (dB re 10"̂  m/s). 

67 



Chapter 2. Structural-Acoustic Coupling Analysis - a modal model 

c 
i. 

I 

1 ; : : : . 

0 10 M M W) 50 
Frequency (Hz) 

M 70 w w 

M M M W W W M 
Frequency (Hz) 

J • : 

1 

: • •" : y - — 

M M % w w M 70 w 
Frequency [Hz) 

Figure 2.17: Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.3. The partition mass per unit area was 8.1 kg/m^. a) 

Sound pressure level in the source room (dB re 20 p, Pa); b) Sound pressure level in the 

receiving room (dB re 20 ji. Pa); c) Structural velocity (dB re 10'^ m/s). 
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Figure 2.18: Predicted responses due to acoustic excitation of the structural-acoustic 

coupled system shown in Figure 2.3. The partition mass per unit area was 78.5 kg/m^'. a) 

Sound pressure level in the source room (dB re 20 )J, Pa); b) Sound pressure level in the 

receiving room (dB re 20 pi Pa); c) Structural velocity (dB re 10^ m/s). 
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Figure 2.19: Normalized mean square pressure distribution (model 1) with respect to the 

horizontal plane y = 1 m at 120 Hz. The partition dimensions and mass per unit area are 

2m x2m and 8.1 kg/m^ respectively, a) surface plot; b) Contour levels in (Pa /̂Pa )̂; 
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Figure 2.20: Normalized mean square particle velocity distribution (model 1) in the x-

direction with respect to the horizontal plane y = 1 m at 120 Hz. The nominal partition 

dimensions and mass per unit area are 2m x 2m and 8.1 kg/m^ respectively, a) surface 

plot; b) Contour levels in (m/s)^/(m/s)^; 
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Figure 2.21: Spatial averaged mean square pressure levels [dB re 2x10"^] in the source 

room as a function of the number of modes used in the calculation for the source room 

(model 1). The partition dimensions and mass per unit area are 2m x 2m and 8.1 kg/m^ 

respectively, a) narrow bands; b) one third octave bands; 90 modes; 265 

modes. 
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Figure 2.22; Spatial averaged mean square pressure levels [dB re 2x10"^] in the receiving 

as a function of the number of modes used in the calculation for the receiving room 

(model 1). The partition dimensions and mass per unit area are 2m x 2m and 8.1 kg/m^ 

respectively, a) narrow bands; b) one third octave bands: 59 modes; 166 

modes. 
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Figure 2.23; Noise Reduction (NR) (model 1). The partition dimensions and mass per 

unit area are 2m x 2m and 8.1 kg/m^ respectively, a) narrow bands; b) one third octave 

bands; total number of modes used = 261; total number of modes used = 606. 

There is negligible difference except above 200 Hz. The total number of modes consists 

of both acoustic and structural modes. 
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Figure 2.24: Comparison of the Noise Reduction (NR) levels between the modal model 1 

(see Figure 2.2a) and the classical methods. a) ph = ?>.lkg hn^ \ b) 

ph = 1^ .1 kg / 7M ̂  ; Modal model; *** Diffuse incidence Mass Law; +++ 

Field incidence Mass Law; 000 Leppington's prediction. 
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Figure 2.25: Comparison of the Noise Reduction (NR) levels between the modal model 2 

(see Figure 2.2-b) and the classical methods. a) ph = 8.1kg/m^\ b) 

p h = 18 A kg / m ^ ; Modal model; *** Diffuse incidence Mass Law; +++ 

Field incidence Mass Law; 000 Leppington's prediction. 
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Figure 2.26: Comparison of the Noise Reduction (NR) levels between the modal model 3 

(see Figure 2.3) and the classical methods. a) ph-^.lkg I b) 

p h = IS .1 kg / m ^ Modal model; *** Diffuse incidence Mass Law; +++ 

Field incidence Mass Law; 000 Leppington's prediction. 
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Figure 2.27: Comparison of the Noise Reduction (NR) levels, a) p/z = 49.8 m ; b) 

= 28.8 tg / ; Modal modelt Baffled Model [12]; 

results obtained by Osipov [12]. 
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Figure 2.28: Comparison of the Noise Reduction (NR) levels, a) ph - 460% I ; b) 

ph = 240 kg I \ Modal model; Baffled Model [12]; 

results obtained by Osipov [12]. 
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EXPERIMENTAL INVESTIGATION OF ACOUSTIC 

TRANSMISSION 

3.1 - Introduction 

The focus of this chapter is on the aspects of experimental validation of the model for 

airborne sound transmission through partitions and data for validation of the predictive 

models. 

The content of this chapter is described as follows. Firstly, the measurement of 

absorption of rooms, damping of the partition as well as the loudspeaker volume velocity 

are obtained experimentally. The test procedure and results are presented in section 3.2. 

In section 3.3, the acoustic behaviour of a single room is investigated by comparing 

measured results with those obtained analytically. The analysis was a preliminary 

exercise to the investigation of sound transmission discussed in the subsequent section. 

Then, the validation of the transmission room model is presented in section 3.4. In 

section 3.5 the normal velocity of the panel is determined. Hence, the comparison of the 

measured result with the predicted is made. In appendix B, statistical analyses of the data 

are presented in terms of sample mean value and confidence intervals [46]. These 

statistical parameters are widely used in sound and vibration measurements. The 

frequency range considered here is based on that for which the previous modal model 

calculations were developed. Thus, the results presented apply for the frequency range 50 

to 250 Hz, for the particular room dimensions and geometry. In order to avoid a signal 

contaminated by the background level in the very low frequency bands, a lower limit of 

the third octave with centre frequency 50 Hz was chosen. Finally, discussion and 

conclusions for the experimental tests are presented in section 3.6. 

3.2 - Measurement of damping for the structural partition and rooms 

The damping for the structural partition and rooms were obtained by using the Impulse 

Response Technique [44]. 
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One comparison between the theoretical model and the experimental results is the 

response near resonance, which is itself mainly influenced by the damping either 

assumed in the model or that which actually exists in the experiment. Significant errors 

can be incurred due to poor damping estimates. For this reason, the damping for the 

structural partition was obtained using two different experimental techniques. In 

addition, the acoustic room absorption was obtained by measuring the reverberation time 

for each room. The overview of the experiments, procedures and results are presented 

below. 

It is known that the total loss factor of a partition depends on the boundary condition of 

the specimen. In other words, the total loss factor is equal to the sum of the internal loss 

factor of the material, the coupling loss factor to the adjacent structures and the radiation 

loss factor to the surrounding media [31]. Therefore, two different techniques were used 

here namely on a free-free beam and on a panel in-situ. The former primarily gives an 

estimate of the material loss factor by examining the decay in the response of individual 

modes, normally restricted to just the fundamental bending mode. The latter is an in-situ 

approach where one measures the half power bandwidth of the resonances and requires 

the frequency response functions to be measured. 

In the first method the duration of the response (vibration) due to impact excitation, 

which is characterized by the reverberation time (RT), was measured for the calculation 

of the structural damping. The reverberation time is defined as the time interval in which 

the vibration energy level decays by 60 dB. The tests were performed on a free-free 

beam sample taken from a plasterboard panel. Thus, these tests only measured the 

material loss factor since the radiation loss factor for the present case (free-free beam) is 

expected to be very low at low frequencies [5]. 

The measurement of the damping of the beam samples give a lower bound to damping in 

realistic configurations where plasterboard is used. The values taken when the 

plasterboard was tested in situ in the acoustic test rooms, with plasticine around the 

edges, may be higher than practical building configurations but is used in the 

simulations, which were performed to compare with the experimental results. 

The supported span of the beam was 30 cm in length and its cross-section of dimensions 

lOcrn X 1cm. A soft tip on the end of the hammer was used in order to provide the 

maximum input energy for the frequency range of interest. The position of the supports, 
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at 1/5 of the beam span in from the ends, were approximately at the nodal points of the 

fundamental mode of a free-free beam (see Figure 3.1). The force excitation and 

receiving points were located at opposite ends of the beam as shown in the figure. 

The experimental procedure for determination of decay times is described as follows. On 

impacting a free-free plasterboard beam sample by a plastic headed hammer (type B&K 

8202), the analyzer was triggered and started to record the response signal at the 

receiving point. At the receiving point an accelerometer was attached and connected to 

the acquisition equipment (a multi-channel HP real-time analyzer type 35650), which 

filtered the input signal by conveniently configuring the channel parameters. 

The signal s(t) received at a receiving point is given by [44] 

t 

(3 1) 

where/frj is input excitation force and A(f)is the impulse response of the system. For an 

impulse at time ?,• one has 

/(%) = f;,^(%-fj,then ^(f) = / z ( f - f j (3.2) 

The Hilbert transform H of & function x{t) is used to produce the envelope of the signal 

and subsequently allows determination of the decay rate of the signal. It is given by [47] 

f ;^(r) 
71 •' 

jc/r = ) * 
,J~Tj 71 

7 (3.3) 

where * means convolution. 

Hence, the amplitude decay curves were obtained by taking the Hilbert transform of the 

received signal and then converting its absolute value to a logarithmic amplitude scale as 

follows 

C(f) = 201ogi(,|f/(x(f)]| indB (3.4) 

A second technique, known as half-value or half-power bandwidth, was used to obtain 

the total loss factor of a plasterboard partition mounted in situ in the opening between the 

two acoustic reverberation chambers and is sealed around its periphery with plasticine. 

This does not provide a clamped edge, as it is dependent on the stiffness and adhesion 
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Strength of the plasticine although it does provide a reasonable constraint on the flexural 

displacement but not slope. Also the values of damping found in this way are sometimes 

termed structural damping, to identify that the damping is dependent on both the 

damping inherent in the material and that which comes from other mechanisms including 

dissipation losses at the boundary which might be significant. First, the frequency 

response of the partition was obtained via a simple tap test (figure 3.2). The 

measurements were carried out at different positions, which were carefully chosen in 

order to avoid the difficulties associated with non-excited modes. Second, the total loss 

factor was then obtained by the relationship [48] 

C^5) 

where fn is the measured resonance frequency, approximately equal to the natural 

frequency for light damping, and b is the corresponding half-power point bandwidth, 

which is the bandwidth where the amplitude falls to 1 /sf l of its maximum value. This 

corresponds to a 3 dB reduction. The main limitation of applying equation (3.5) is that it 

is only valid for small values of damping and for low modal overlap. In other words, the 

frequency interval between resonance frequencies must be considerably greater than the 

half-power bandwidth. 

The Young's modulus for the partition, which was used in the subsequent calculations, 

was obtained experimentally from [48] 

where ni is the mass per unit length of the test beam, which value was equal to 0.683 

kg/m, kl is equal to 4.73 (where I is the length of the beam), and is the measured 

resonance frequency (= 220 Hz) of the fundamental mode. 

Therefore, the Young's modulus for the partition calculated using equation (3.6) was 

2.53x10^ N/m^. This value was used in the subsequent calculations. 

Figure 3.3.a presents the typical transient excitation obtained from hitting the beam using 

the hammer. The test was repeated several times in order to ensure that the input signal 

was free of multiple impacts. The detail of the impact is also shown using a zoomed time 

window. 
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The output signal response was acquired over a time duration of 1 5, which was long 

enough for recording the decay (see figure 3.3.6). 

Figure 3.3.c shows the frequency response function (FRF) magnitude, which is the 

modulus of the ratio of the output signal spectrum to the excitation (input signal) 

spectrum, assuming no noise. Assuming that the first mode of vibration was dominant, 

the first resonance frequency of the beam was about fn = 220 Hz. 

Figure 3.3.d shows the Hilbert transform of the response in decibels. To determine 

damping, the Teo, which is the time necessary for the vibration level to decay 60 dB, was 

first obtained using the least square method [46] for fitting the best straight line to the 

data. The use of a best straight line fit to calculate Tso assumes diffuse field condition. 

Nevertheless, for non-diffuse field condition, it is recommended that an ensemble-

average estimate of decay rates over a range of different excitation and receiver positions 

be obtained [18]. 

In other words, it is clear that at low frequencies a best straight line fit is not particularly 

appropriate, partly because the field is not diffuse and also few modes contribute and 

hence it is not normal to use equation (3.7). Nevertheless, as values were necessary in the 

model, the slopes of the lines were used to give estimates, albeit possibly very 

approximate, and these have been used in the simulations. 

The value obtained was Teo = 0.6s. The loss factor parameter r], which is the ratio of 

energy lost to the reversible mechanical energy during one cycle of vibration, is related 

to 71̂ 0 by [48] 

ln(10") 

For the free-free beam sample, the experimental value of the loss factor r], using the 

decay time technique, was hence found to be approximately 0.017. 

Figure 3.4 shows the measured frequency response of a square plasterboard partition in 

situ. The first three predicted natural frequencies and modes of a simply-supported 

plasterboard were about 37.0 Hz, 92.5 Hz and 92.5 Hz, which correspond to the modes 

(1,1), (1,2) and (2,1) respectively. The panel dimensions were 0.69m x 0.69m and the 

formula for calculating the natural frequencies of a simply-supported panel is given by 

equation (2.11). For a clamped square plate, the natural frequencies of the first three 
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modes are 68 Hz, 139 Hz and 139 Hz. These values are obtained from formulae given in 

ref. [88]. According to the measured results, the first, second and third resonance 

frequencies were at approximately 41 Hz, 87 Hz and 96 Hz respectively. 

This difference of within approximately 10 % between the values calculated assuming a 

simply-supported panel and measured results possibly indicates that a mixed boundary 

condition between free and simply-supported might have been realised experimentally 

due to the plasticine and fixture. In addition, some measurement errors actually occurred 

during the experimental test for measuring the total loss factor. 

The loss factor obtained via the half-power point bandwidth technique was 

approximately 0.049 for the first resonance peak. This value was subsequently adopted 

in the theoretical modal model. It is significantly higher than the sample beam, and it is 

suspected that the origin of this is most likely to be the high damping and losses at the 

edges where the plasticine was situated. 

J. 2.2 TTzg /MgoLywrgmgnr o/room 

The procedure used for the measurement of the absorption of the rooms was based on the 

reverberation time values obtained experimentally. In room acoustics, the duration of 

sound decay is usually characterized by the parameter Tqo- It is defined by the time 

interval in which the sound pressure level decays by 60 dB. The amount of sound 

absorbed by the reverberation room walls can then be found from equation (3.7) using/ 

instead of /^ where/is the centre frequency for the one-third octave bands. 

The experimental setup is shown in Figure 3.5. A loudspeaker which had a minimum 

frequency response of AQHz was driven by a random noise generator. This generator was 

connected in series with an adjustable analogue pass-band filter (KEMO type VBF8 with 

working range 0.01 Hz-100 kHz) and a decay time trigger box. The filtered noise was 

amplified by a power amplifier (type TPA50-D) directly connected to the loudspeaker. 

At the receiving point, sound pressure measurements were made using a B&K V2" 

microphone type 4191, connected to a B&K conditioning amplifier type 2609. 

Furthermore, a multi-channel HP real-time analyzer (type 35650) was used as the 

acquisition system. 

The experiments were set up in an the ISVR acoustic laboratory, where two small 

reverberant rooms are connected by a common aperture. In order to measure the 

reverberation time of each room, the aperture was sealed by an isolating heavy stiff 
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panel. The source and receiving room internal dimensions (in the x, y and z directions) 

are 2.35m x 2.56m x 2.48m and 2.07m x 2.51m x 2.52m respectively. An aperture is 

located in the middle of the common wall which is in the (y-z) plane. 

All test procedures were based on the International Standard ISO 354 [43] and on the 

method of integrated impulse response [44,47]. The reverberation time RT was measured 

for source and receiving rooms that are smaller than ISO 354 requirements. A 

loudspeaker, driven by a one-third octave band-pass filtered noise, excited the room until 

steady state condition was reached. The noise source radiated sound into the room for 

about 3 seconds before initializing the measurements. Nevertheless, a time interval of 2 

seconds could be sufficient [44]. 

As the sound excitation was interrupted, the analyzer was triggered and started to record 

the signal at a receiving point. The microphone was connected to the acquisition 

equipment (HP analyzer), which filtered the input signal by conveniently configuring the 

microphone channel parameters. It was necessary to ensure that the filter pass-band 

range used in the noise source generator is not less than the one used in the microphone 

channel [28] and that the measurements were not unduly influenced by the response time 

of the filter. 

Likewise in the procedure described previously, the decay curves here were obtained by 

taking the Hilbert transform of the received signal and converting its absolute value to a 

logarithmic amplitude scale. Previous work had shown that the decay rate of the 

acquisition system, including the filter, was shorter than the decay times being measured 

of the physical (acoustic) system and so would not interfere by producing artificially 

long decay times. 

It has been recommended [28] that the reverberation time should be taken as three times 

the time necessary for the noise decay from 5 to 25 dB below the mean level. Therefore, 

spurious results that do not lie within this range were rejected. An acquisition time of 

two seconds was adopted. 

Figures 3.6-3.9 show typical decay curve sets for the source and receiving rooms 

measured over one-third octave band centre frequencies. The reverberation time RT was 

then calculated from the best fitting straight line, obtained by the least-square method, 

from the Hilbert transform of the transient response. Figures 3.6 and 3.7 show typical 

decay curves obtained at one-third octave bands for the source room. For instance, in the 

one-third octave band with centre frequency at 63 Hz, only two modes (natural 
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frequencies equal to 65 Hz and 68 Hz) exist within the band. This situation is significant 

because it can produce spurious results. The presence of only two modes in a band might 

lead to irregular decays caused by beating between these two modes. For the one-third 

octave bands with centre frequencies 80 Hz and 100 Hz, one and three modes exist 

within these bands respectively. For instance, within the band with centre frequency 80 

Hz the results are solely dependent on the modal characteristics of the mode (1,0,0) of 

the room. 

Likewise, Figures 3.8 and 3.9 present the typical decay curves obtained in one-third 

octave bands for the receiving room. 

According to ISO 354 [43] the recommended total number of measurements are twelve 

decays for one-third octave band centre frequencies ranging between 63 Hz and 250 Hz. 

As the reverberation time of a room, at very low frequencies, depends to a large extent 

on the position of the source and the receiving microphone, an ensemble averaging 

procedure, based on a combination of microphone positions was applied for each one-

third octave band result. 

Figures 3.10 and 3.11 show the T̂ o mean values, obtained from the decay rate 

measurements, for both rooms. According to equation (2.1) and considering an average 

Tgo equal to 1.5s and 1.0s for the source and receiving rooms, the corresponding 

Schroeder frequencies are 634 Hz and 553 Hz. In addition, the upper and lower 95 % 

confidence limits (defined in Appendix B) are shown in the Figures. It appears that 

generally the variation in the RT lines is not too poor considering the difficulty in 

repeating the measurements and the variations introduced in the subsequent data 

processing and curve fitting. The reverberation time values are quoted in Table 3.4. 

3.3 - Preliminary experimental test: sound Geld in a single room 

3.3.1 -Measurement of the source volume velocity 

In order to compare the measured and predicted results, the source volume velocity used 

in the experimental test has to be known a priori. Thus, a loudspeaker placed in the 

comer of a room was chosen. The loudspeaker position was (-211 cm, 20 cm, 20 cm) 

using a (x,y,z) coordinate system. The sound source and its volume velocity was then 

obtained using a laser vibrometer. It could not be assumed that the source acted as a 
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simple monopole with its output directly related to the voltage supplied. Figure 3.12 

shows the experimental set-up for the measurements. 

The source volume velocity was obtained by measuring the instantaneous surface 

velocity of the loudspeaker , which was driven with steady broadband noise, using a 

Scanning Laser Doppler Velocimeter (SLDV). It consists of a scanning head and a 

vibrometer controller. 

The measurement was made as a beam of laser light was directed to the target point and 

the Doppler-shifted wavelength of the reflected light measured automatically [49]. A 

sequence of single point measurements across the surface of the loudspeaker was made 

by defining the scan points to be targeted by the laser. 

Figure 3.13 shows the coherence for the transfer function Hi, which relates the velocity 

of the speaker to the voltage fed to it. It can be seen that at frequencies less than 50 Hz 

and greater than 300 Hz, the coherence function indicated poor correlation between the 

input voltage and the output velocity signal. This was partly due to the size of the 

loudspeaker design, making it difficult to obtain significant response at low frequencies. 

Likewise, poor coherence was also observed at frequencies greater than about 350 Hz, 

which might either be due to the loudspeaker response or optical difficulties in obtaining 

a good laser reflection. 

Figure 3.14 shows the transfer function Hi in terms of its amplitude and phase. 

According to the results, a peak value occurred at about 100 Hz. This was due to the 

mechanical resonance of the loudspeaker. 

Figure 3.15 shows the measured power spectrum of the loudspeaker vibration volume 

velocity. The volume velocity of the loudspeaker was calculated by multiplying its 

spatially averaged vibration velocity amplitude by its circular surface area. The result 

also illustrates the increased values at about 100 Hz. 

Alternatively, the source sound power could have been determined using the power 

balance equations [8] involving the reverberation time measurements and average mean 

square sound pressure in the room. 

Figures 3.16 and 3.17 show the variation of vibration velocity amplitude over the 

loudspeaker cone at 100 Hz and 200 Hz respectively. A circular grid was defined over 

the loudspeaker contour. At low frequencies, a cone loudspeaker mounted in a cabinet 

vibrates and radiates as a monopole source [18]. Figure 3.16 shows the non-uniform 
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velocity distribution over the loudspeaker at the one-third octave band centre frequency 

equal to 100 Hz. The spatial variation of the surface velocity was certainly not uniform, 

due to the mechanical resonance of the loudspeaker at approximately 100 Hz. On the 

other hand, Figure 3.17 shows a more uniform velocity distribution over the scanned area 

in the one third octave band centred at 200 Hz. 

J. J. 2 - Ovg/Tzgw gApgn/Mg/zfaZ fgj'f 

Although the experimental validation of a single-room modal model using frequency 

response measurements was difficult and time consuming, it was appropriate to consider 

this simpler generally accepted case first in order to obtain an overview for the two-room 

modal model used later in section 3.4. 

The mean square sound pressure was measured at six different positions inside the room 

using B&K V2 inch microphones (type 4165). The microphone positions in the room are 

illustrated in Figure 3.18. Their coordinates inside the room are listed in table 3.1. 

Although acoustic transducers (microphones and microphone pre-amplifiers) and 

microphone conditioning amplifiers are calibrated during their manufacture, small 

adjustments for the sensitivity factors are still necessary. Therefore, a sound level 

calibrator was used to check the sensitivity of each microphone before each 

measurement. After executing all measurements, another calibration procedure was 

repeated. 

The separating distances between microphones and microphone position and room 

boundaries were less than the minimum values required by the ISO 140 standard [41]. It 

is recommended that an averaging time of at least six seconds be used for measurements 

made at frequencies below 500 Hz. However, a minimum value of fifteen seconds, 

which is the time required for the 50 Hz centred third-octave band, was used [41]. 

It is known that the measurement of sound pressure at low frequencies in a room is 

complicated due to a distinct spatial predominance of some modes in a specific 

bandwidth driven at resonance. Thus, a spatial average value for sound pressure level in 

a small room is difficult to obtain experimentally. 

The sound source operated at a comer opposite to the test partition, in order to increase 

the contribution of the oblique modes [50]. A generated signal equivalent to 'white' 

noise was used. The noise was filtered by using a pass band which corresponds to the 

one used in the microphone channel. The mean square sound pressure was measured 
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with a resolution of 0.5 Hz and the data was acquired from 0 Hz to about 500 Hz. In 

addition the microphone conditioning amplifiers provided additional gain in order to 

optimise or improve the signal to noise ratios. This ensured that the frequency range for 

the analysis was covered with extra information if required. 

Alternatively, forms of frequency response functions or FRFs could also have been used 

in order to characterize the system dynamic behaviour [51]. 

3.3.3 -Results 

The predicted results were obtained using a modal model based on equation (2.39) 

shown in Chapter 2 without the term containing the generalized coordinate w , which is 

on the right-hand side of the equation. A total of 278 modes for the room were 

considered for the prediction of the frequency response. The first three predicted natural 

frequencies and modes of the room are 65 Hz, 68 Hz and 74 Hz, which correspond to the 

modes (0,1,0), (0,0,1) and (1,0,0) respectively. 

Figure 3.19 shows a comparison between the spatially averaged measurements of SPL in 

a single room (dB re 2x10^ Pa) and the background noise in the room. It is seen the 

higher peaks in the background noise occurred at frequency multiples of 50 Hz (e.g. 100 

Hz, 150 Hz, etc.). This phenomenon was due to the background mains interference noise 

picked up by the microphone conditioning amplifiers. Nevertheless, this fact did not 

invalidate the measurements, as all peak values were at least 30 dB below the measured 

signal. 

Figures 3.20-3.25 show comparisons between the levels of measured and predicted 

sound pressure levels, for different measurement positions inside the room. The 

measured source volume velocity was used as the source excitation in the modal model. 

It was determined from the measurements of the voltage PSD to the loudspeaker and the 

relationship between this and the volume velocity of the loudspeaker itself, determined 

from the spatially averaged surface velocity. The results are presented in narrow and one 

third octave bands. 

For the results in narrow bands, it is seen that fair agreement between the measured and 

predicted values occurred over most of the frequency range. For the results presented in 

one third octave bands, a maximum difference of less than 5dB occurred in most of the 

frequency bands. 
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In general, the peaks and dips displayed in the results correspond to the contribution and 

the interaction of the individual room modes. Although the predicted and the measured 

values at the comer positions show good agreement at very low frequencies, a shift in 

level between the measurements and simulations occurred as the frequency increases. 

Such differences may be explained by the sensitivity of the results to the measurement 

errors on estimating the actual loss factor. However, the PSDs followed similar trends 

over most of frequency range. 

Figure 3.26-a and 3.26-b present the variation of the SPL values (dB re 2x10'^ Pa) from 

the mean value at positions Pi-Pe for the predicted and measured values respectively. 

The mean value was determined by averaging the squared pressure amplitudes. It is seen 

that at 50 Hz the values diverge from the mean for both the measured and predicted 

results. For frequencies ranging from 63 Hz to 100 Hz, the measured values show greater 

variation in comparison with the theoretical results. However, as the frequency increases, 

the variation tends to decrease for both set of results. 

Finally, Figure 3.27 shows a comparison between the measured and predicted spatial 

averaged mean squared sound pressure levels (dB re 2x10'^ Pa). The averaged values 

were obtained by calculating the arithmetic mean value over all positions. Within the 

usual tolerance of acoustic measurements the agreement is quite good. 

3.4 - Experimental validation of the modal model - two rooms coupled 

by a single-leaf partition 

3.4.1 -Test facilities and equipment 

The sound transmission experiments performed and reported herein were made in the 

ISVR teaching laboratory. A plasterboard single leaf partition was fitted in the test 

opening located in the middle of the common wall. The square partition dimensions were 

0.69m X 0.69m and thickness 0.01 m respectively. The partition surface was recessed by 

43 cm from the wall in the receiving room. It was flush with the source room surface. 

A laser vibrometer (SLVD) was used to measure the instantaneous velocity of a 

loudspeaker with a minimum frequency response of 40 Hz. The loudspeaker, driven by a 

random noise generator, was connected in series with a band pass filter (type KEMO 

VBF8 covering 0.01 Hz-100 kHz). In addition, a power amplifier type TPA50-D was 
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directly connected to the loudspeaker. The sound pressure measurements were made 

using B&K free-field 1/2" inch microphones (type 4191), connected to B&K microphone 

conditioning amplifiers (type 2609). A multi-channel HP real-time analyzer (type 35650) 

was used for simultaneously recording sound pressure signals filtered in both rooms. 

Before each measurement, the entire arrangement was checked and calibrated using a 

B&K calibrator. 

A general diagram of the test facilities, including transducers and instrumentation for 

noise measuring is shown in Figure 3.28. 

The separating distances between microphones, microphone positions and room 

boundaries did not agree with the values recommend in ISO 140 [41] due to the small 

dimensions of the rooms. The coordinates of microphone positions are listed in Tables 

3.2 and 3.3. Figure 3.29 shows the configuration of the microphones inside both rooms. 

Eight and two microphone positions were selected for the source and receiving rooms 

respectively. 

Figures 3.30 and 3.31 show the comparison between the typical measurements of SPL 

and the background noise for the source and receiving rooms respectively. Figure 3.30 

shows that the noise floor level (background noise) in the source room was at least 20 dB 

below the spatially averaged sound pressure level measured. On the other hand. Figure 

3.31 shows that the background noise level measured in the receiving room was 

relatively high in comparison with the measured signal (spatially averaged sound 

pressure level). In addition, the loudspeaker system was not powerful enough in order to 

generate higher sound pressure levels in the source room. 

Therefore, due to the poor signal-to-noise response in the receiving room, only two 

different positions were selected for the receiving room, specifically at the comers, in 

order to increase the contribution from the oblique modes. As in the single room test, a 

generated random signal was used. The noise was also filtered by using a pass band 

which corresponds to the one used for the microphone channels. The frequency response 

spectra were measured with a resolution of 0.5 Hz. 

3.4.3 -Results 

The measured and predicted results were estimated in narrow and one third octave bands 

varying from 50 to 250 Hz. A total of 278 and 254 modes were used in the modal 
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analysis for source and receiving rooms respectively. The first three predicted natural 

frequencies and modes for the source room were 65 Hz, 68 Hz and 74 Hz, which 

correspond to the modes (0,1,0), (0,0,1) and (1,0,0) respectively. For the receiving room, 

the first three predicted natural frequencies and modes were 68 Hz, 68 Hz and 81 Hz, 

which correspond to the modes (0,0,1), (0,1,0) and (1,0,0) respectively. For the partition, 

a total of 8 modes were incorporated. As mentioned previously, the first three natural 

frequencies and modes, considering a simply-supported partition, were about 37 Hz, 92 

Hz and 92 Hz, which corresponded to the modes (1,1), (1,2) and (2,1) respectively. The 

critical frequency for the partition was approximately 3190 Hz. 

One of the most important checks for any experimental test is the one which tests the 

repeatability of a set of measurements. Repeatability is defined as the closeness of 

agreement between uncorrected test results obtained under the same laboratory, 

equipment set-up and methodology [34]. Although the repeatability parameter defined in 

ref. [34] has not been directly calculated here, confidence intervals derivable from a set 

of 10 measurements were considered for each one-third octave frequency band (see 

Figures 3.32-3.34). It is seen that the confidence interval for the SPL measured in the 

source and receiving room indicates that greater variations from the mean value occur in 

the receiving room. This higher variance may be due to variations in temperature and/or 

changes in the setup conditions in order to measure the response at different points. In 

addition, lower signal levels are generally difficult to measure accurately because of the 

contribution of background noise. 

The sound pressure was measured using microphones in the source (at positions Pi-Pg) 

and receiving rooms (at positions P", and P'l). Figures 3.35-3.42 show a comparison 

between the measured and predicted sound pressure levels (dB re 2x10^ Pa) at eight 

different positions in the source room. 

For the narrow band results, a reasonable agreement is obtained between the curves at 

very low frequencies. Although the predicted and the measured values at the comer 

positions in the source room show good agreement, especially at very low frequencies, a 

shift in level between the measurements and simulations occurred as the frequency 

increases. In general, the curves followed similar trends over most of the frequency 

range, similar to the single room model. The resonance peaks can be reasonably well 

identified within the frequency range considered. On the other hand, at frequencies 

greater than about 250 Hz, the resonance peaks begin to overlap. 
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For instance, at position 6 (Figure 3.40) the first resonance peak is at about 68 Hz, which 

corresponds to second acoustic mode (0,0,1) in the source room. The second peak is at 

about 75 Hz, which corresponds to the third acoustic mode (1,0,0). At position 7 (Figure 

3.41), which is in the middle of the room, the pronounced peak at 131 Hz corresponds to 

the first acoustic symmetric mode (0,2,0). 

In summary, for the results in one-third octaves, it is seen that between 50 Hz and 100 

Hz, a variation of about 10 dB is obtained between the curves. On the other hand, above 

150 Hz, a maximum difference of 5 dB is obtained for most positions. 

Figures 3.43 and 3.44, which present the Power Spectrum in terms of sound pressure for 

the receiving room, show poor agreement between the predicted and measured responses 

for some parts of the spectrum. It appears that those discrepancies are closely related to 

the structural response of the partition. The generally weak measured response of the 

acoustic field in the receiving room can be explained by the fact that the antisymmetric 

modes have not been sufficiently excited due to the partition position in the middle of the 

separating wall, which corresponds to a pressure node of those modes. 

The deviation of the predicted values from those obtained experimentally may also be 

due to the poor signal-to-noise ratio values obtained. Moreover, the difficulty in 

assessing the absorption and the flanking paths for the vibration transmission might have 

contributed to the poor agreement between the measured and predicted response in the 

receiving room. For the results in one third octave bands, it is shown that a maximum 

difference of about 15 dB was found between the measured and predicted results in 

frequency bands above 100 Hz. 

Figures 3.45 and 3.46 present the variation of the sound pressure level values averaged 

over all microphone positions for the source and receiving rooms respectively. A 

reasonable agreement between the measured and predicted values can be observed over 

most of the higher frequency range in the source room. Conversely, below 100 Hz, 

significant variations were obtained. Comparing Figures 3.45 and 3.26, it is seen that 

better agreement between measured and predicted values are evident for the single room 

model (Figure 3.26). It can be explained by the fact that it is a simpler model, so that no 

structural coupling or damping effects are involved into the calculations. 

Figure 3.47 shows a comparison between the predicted and measured Noise Reduction. 

A maximum difference of 15 dB occurs between the measured and predicted results. 

Between 63 Hz and 100 Hz, a difference of less than about 2 dB is noted in one-third 
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octaves. It is seen that between 100 Hz and 150 Hz a maximum difference of about 5 dB 

is found. On the other hand, between 150 Hz and 250 Hz, a maximum difference of 

about 9 dB is obtained. The main reason for discrepancy within the frequency range 

considered was due to the poor signal-to-noise ratio in the receiving room, which limited 

the highest levels of NR that could be observed compared to the predicted values. 

3.5 - Experimental determination of the partition normal velocity 

Craik [31] theoretically investigated the influence of the partition boundary conditions on 

the sound transmission. It was found that the resonant transmission contribution below 

the critical frequency was substantially affected by the partition boundary conditions. In 

addition, the larger the panel surface area, the lower the transmission due to resonant 

vibration [54]. 

3.5.1-Description of the test set-up 

Measurements of the frequency response of the partition were made in order to compare 

it with the theoretical results available from the modal model. As the partition was 

excited at frequencies below its critical frequency, the response mechanism was 

characterized by the propagation of forced-bending waves. In other words, the non-

resonant forced vibration dominates the sound transmission mechanism. Moreover, the 

partition was acoustically excited rather than being excited by mechanical forces. 

Therefore, the radiation efficiency of a partition is greater than that when mechanical 

excitation is considered [5]. Thus, the mass of the partition was the most important 

parameter affecting the sound transmission. 

The vibration measurements of the surface velocity were made by using a Polytec 

Scanning Laser Doppler Velocimeter (SLDV). The SLDV measurement set-up consisted 

of a scanning head and a vibrometer controller as shown in Figure 3.48. The whole area 

of the loudspeaker and partition were scanned in a relatively short time. 

3.5.2 -Results 

A total of 8 modes were selected for the simulation of the partition response. The 

partition critical frequency was about 3190 Hz. Figure 3.49 shows the location of the 

scanning points at which the partition normal velocity was measured. Figure 3.50 shows 

the mean square normal velocity distribution over the partition in the one-third octave 
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band with centre frequency equal to 100 Hz. According to the figure, it appears to 

represent the second mode of the partition. Figure 3.51 shows the partition normal 

velocity spectral amplitude over the whole frequency band and the clear dominance of 

the 80 Hz and 100 Hz contributions. 

Figure 3.52 shows a comparison between the measured and predicted mean square 

normal velocity levels (in dB re 10"̂  m/s). It is seen that the resonance frequencies 

obtained experimentally are slightly shifted from those obtained via theoretical 

simulation at low frequencies. In addition to that, it is clear that the measured frequency 

response curve shows the contribution due to the resonance frequencies of the room 

modes. For instance, Figure 3.52 shows a peak at 74 Hz, mode (1,0,0) of the source 

room. The degree of coupling between the partition velocity and the acoustic pressure 

modes in the rooms reflects the amount of energy that can be exchanged between these 

subsystems. Additionally, Figure 3.53 shows the results in one-third octave bands. It is 

seen that there is generally good agreement between the predicted and measured 

velocities. 

The partition edge condition considered in the modal model was simply supported, 

which allows rotation of the edges. However, the plasterboard panel used in the 

experimental test was mounted in the opening using a thick layer of plasticine (± 10 mm) 

for sealing the edges at the perimeter of the partition. Thus, by analyzing the results 

obtained, an effect could be due to the change of edge conditions from simply-supported 

to any other condition, perhaps a mixed edge condition, as it is suspected that the 

plasticine provides less constraint than the simply-supported case. 

It is also known that if the edges were clamped the radiation efficiency would be higher 

at frequencies below the panel critical frequency. This is equivalent to an enhancement 

factor of four for the resonant contribution of the power flow [16]. The influence of the 

recessed depth, which depends on the position of the test specimen in the opening, is an 

important factor that has not been considered on the simulations (for the measurements 

made in the ISVR teaching laboratory, this depth was equal to 40 cm). Nevertheless, in 

the frequency range considered it is unlikely that the partition edges or recess has had 

any significant effect on the results. Alternatively, the problem with poor signal to noise 

ratio in the SLVD might have influenced the actual accuracy of the structural response 

measurements. 
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3.6 - Conclusions 

Experimental test data has been compared with the predictions of the theoretical modal 

model developed previously for assessing the sound transmission mechanism between 

two rectangular rooms at low frequencies. The material properties of the partition and 

sound absorption for the rooms were measured within reasonable experimental accuracy. 

The values obtained were subsequently taken into account in the simulations. In addition, 

preliminary sound field measurements in a single-room were made before tests on the 

coupled two-room model. Good agreement between the modal model and measurements 

were found for this case. Finally, the experimental investigation considered a room-plate-

room configuration, for measuring sound transmission through a plasterboard partition 

and partition response at low frequency. 

According to the findings, it is evident that the partition response was strongly affected 

by the modal characteristics of the rooms. For instance. Figure 3.52 shows a peak at 74 

Hz, which is the natural frequency corresponding to the mode (1,0,0) for the source 

room. In addition, it seems that the partition edge condition, in particular the mounting of 

the specimen and the test aperture, might have affected the noise reduction. 

It appears that the comparison and validation of the sound transmission model has been 

clearly influenced by other factors such as a poor signal-to-noise ratio for measurements 

made in the receiving room, the difficulty of measuring absorption at low frequencies, 

etc. According to Lang [24], when a random noise source and a real-time analyzer are 

both used for sound pressure measurements, the background noise can significantly 

influence the results, especially in the cases of high sound insulation. 

At low frequencies (below 125 Hz), the NR values in one-third octaves show reasonable 

agreement between the measured and predicted results. However, when a direct 

comparison of the sets of data is made at frequencies greater than 150 Hz, differences of 

up to 9 dB are found in terms of the NR results. 

Therefore, despite the poor signal to noise ratio for practical purposes, the results of this 

chapter have shown that the conventional theoretical model, developed in chapter 2 gives 

acceptable results for further investigation of sound transmission in buildings, for 

example the effect of panel size, position and room geometries. 
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Coordinates X (cm) Y (cm) Z (cm) 

Mic. position 1 (Pi) -70.0 7&0 18L0 

Mic. position 2 (P2) -70X) 70.0 70.0 

Mic. position 3 (P3) -70.0 192X) 70X) 

Mic. position 4 (P4) -168.0 7&0 18L0 

Mic. position 5 (P5) -168.0 1920 70.0 

Mic. position 6 (Pg) -168.0 1920 18L0 

Table 3.1; Coordinates of the microphone positions inside the source room where the sound 

pressure levels were measured - (One-room modal model). The origin of the coordinate system 

(x,y,z) is defined in Figure 3.5. 
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Coordinates X (cm) Y(cm) Z (cm) 

Mic. position 1 (Pi) -70.0 7 a o 70.0 

Mic. position 2 (P2) -70.0 18&0 7 0 a 

Mic. position 3 (P3) -70X) 18&0 181.0 

Mic. position 4 (P4) -168.0 700 18L0 

Mic. position 5 (P5) -168.0 186X) 70.0 

Mic. position 6 (Pe) -168.0 186X3 181.0 

Mic. position 7 (P?) -115.0 12&0 125.0 

Mic. position 8 (Pg) -35.0 12&0 125.0 

Table 3.2: Coordinates of the microphone positions inside the source room, where the PSDs of 

sound pressure were obtained - (Two-rooms modal model) 

Coordinates X (cm) Y (cm) Z (cm) 

Mic. position 1 (P"i) 700 70.0 70.0 

Mic. position 2 (?"%) 16&0 7&0 70X) 

Table 3.3: Coordinates of the microphone positions inside the receiving room where the PSDs 

of sound pressure were obtained - (Two-rooms modal model) 
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1/3 octave frequency bands - (Hz) RT, (s) RTiCs) 

63 1.6 1.1 

80 2.9 0.9 

100 1.5 0.9 

125 1.4 1.1 

160 1.9 0.8 

200 2.4 1.1 

250 1.9 1.1 

315 2.4 1.6 

Table 3.4: Reverberation time RTi and RT2 for the source and receiving rooms respectively. 

The values are quoted in 1/3 octave bands. 
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Figures 
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Figure 3.1: Instrumentation used to measure damping constant and the Young's modulus 

on a freely suspended beam using the decay time technique [48]. 
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Figure 3.2: Instrumentation used to measure the frequency response of the partition in-

situ via a simple tap test. The total loss factor is obtained by using the half-power 

bandwidth technique [48]. 
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Figure 3.3; Measurement of structural damping for a plasterboard beam. Typical 

transient excitation (a), response time history (b) and a transfer function (TF) derived 

from them using Fast Fourier Transform (FFT) ratio (c). The Hilbert Transform (HT) of 

the response is also presented (d). 
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Figure 3.4: Frequency response of the plasterboard (in situ) due to an impact excitation. 
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Figure 3.5: Instrumentation used to measure the Reverberation Time of rooms. 
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Figure 3.6; Typical decay curves obtained at the one-third octave band centre frequencies 

63 Hz , 80 Hz , 100 Hz, 125 Hz, 160 Hz, and 200 Hz for the source room. Hilbert 

Transform (HT) of the Impulse Response is subjected to the best fitting straight line. 
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Figure 3.7: Typical decay curves obtained at the one-third octave band centre frequencies 

250 Hz, 315 Hz and 400 Hz for the source room. Hilbert Transform (HT) of the Impulse 

Response is subjected to the best fitting straight line. 
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Figure 3.8: Typical decay curves obtained at the one-third octave band centre frequencies 

63 Hz, 80 Hz, 100 Hz, 125 Hz, 160 Hz, and 200 Hz for the receiving room. Hilbert 

Transform (HT) of the Impulse Response is subjected to the best fitting straight line. 
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Figure 3.9: Typical decay curves obtained at the centre frequencies 250 Hz, 315 Hz and 

400 Hz for the receiving room. Hilbert Transform (HT) of the Impulse Response is 

subjected to the best fitting straight line. 
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Figure 3.10: Reverberation Time data obtained from the decay rate measurements in the 

source room; Mean value; Upper and Lower 95% confidence limits. 

1/3 octave band centre frequency [Hz] 

Figure 3.11: Reverberation Time data obtained from the decay rate measurements in the 

receiving room; Mean value; Upper and Lower 95% confidence limits. 
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Figure 3.12: Experimental setup for the laboratory measurements of source volume 

velocity, Sound Pressure Level (SPL) and acoustic transfer impedance (single-room 

model). 
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Figure 3.13: Coherence for the transfer function Hi, which relates the velocity of the 

speaker to the voltage fed to it. 
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Figure 3.14: Experimentally measured transfer function Hi, which relates the velocity of 

the speaker to the voltage fed to it. 
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Figure 3.15: Experimentally measured vibration volume velocity of the loudspeaker. 
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Figure 3.16; Variation of the velocity over the loudspeaker cone at 100 Hz frequency 

band (picture obtained from the Polytec Scanning Vibrometer software 7.1). 

Domain FFT 

Signal 

Vib Velocity 

Magnitude 

jim/s 

0 100 200 300 

X 

Figure 3.17: Variation of the vibration velocity amplitude over the loudspeaker cone at 

200 Hz frequency band, (picture obtained from the Polytec Scanning Vibrometer 

software 7.1). 
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Figure 3.18 Microphone positions in the room 
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Figure 3.19 Typical measurements of the SPL in a single room (dB re 2x10"^) compared 

to the measurement of the background noise in the room. Spatially averaged 

measurement; noise 
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Figure 3.20: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 1 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.21; Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 2 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.22: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 3 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.23: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 4 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.24: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 5 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.25: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 6 for the single-room model; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.26: Summary of the SPL (dB re 2x10"^ Pa) at six different positions and the 

mean value averaged over all positions; a) predicted results; b) measured results; — Pi ; 

+++ P2 ; P3 ; 000 P4 ; P5 ; -o- Pe ; The solid line in graph (a) and (b) represents 

the spatially averaged pressure taken from the predicted and measured values 

respectively. 
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Figure 3.27: Comparison between measured and predicted spatial-averaged sound 

pressure levels (dB re 2x10"^ Pa). measured; predicted 
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Figure 3.28: Experimental setup for the laboratory measurements of FRFs and Noise 

Reduction (NR). 
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Figure 3.29 Microphone positions in the source and receiving room 
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Figure 3.30: Typical measurement of the SPL in the source room (dB re 2x10"^ ) 

compared to the measurement of the background noise in the room. Spatially 

averaged measurement; noise 
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Figure 3.31: Typical measurement of the SPL in the receiving room (dB re 2x10" ) 

compared to the measurement of the background noise in the room. Spatially 

averaged measurement; noise 
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Figure 3.32: Confidence interval for SPL measured at different positions in the source 

room 
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Figure 3.33: Confidence interval for SPL measured at different positions in the source 

room 
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Figure 3.34: Confidence interval for SPL measured at position 1 and position 2 in the 

receiving room. 
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Figure 3.35; Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 1 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.36: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 2 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.37: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 3 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 

126 



Chapter 3. Experimental Investigation of Acoustic Transmission 

60 80 100 120 140 160 180 200 220 240 260 280 
Frequency [Hz] 

a) 

Frequency [Hz] 
250 

b) 

Figure 3.38: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 4 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.39: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 5 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.40: Comparison between measured and predicted sound pressure levels (dB re 

2x10^ Pa) at position 6 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.41: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 7 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.42: Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) at position 8 for the source room; a) narrow bands; b) one third octave bands; 

measured; predicted 
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Figure 3.43: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 1 for the receiving room; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.44; Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) at position 2 for the receiving room; a) narrow bands; b) one third octave 

bands; measured; predicted 
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Figure 3.45; Comparison between measured and predicted sound pressure levels (dB re 

2x10"^ Pa) averaged over all positions for the source room; a) narrow bands; b) one third 

octave bands; measured; predicted 
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Figure 3.46: Comparison between measured and predicted sound pressure levels (dB re 

2x10'^ Pa) averaged over all positions for the receiving room; a) narrow bands; b) one 

third octave bands; measured; predicted 
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Figure 3.47; Comparison between measured and predicted NR levels; a) narrow bands; 

b) one third octave bands; measured; predicted 
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Figure 3.48: Experimental setup for the laboratory measurement of partition velocity. 

Figure 3.49: Definition of the scanning points over the partition 
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Figure 3.50: Mean square normal velocity distribution over the partition at the frequency 

band equal to 100 Hz 
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Figure 3.51: Partition normal velocity amplitude over the frequency band 0-280 Hz. 
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Figure 3.52: Mean square normal velocity of the test partition [dB re 10"̂  m/s] in narrow 

frequency bands. 
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Figure 3.53: Mean square normal velocity of the test partition [dB re 10" m/s] in one-

third octave bands. 

measured; predicted 
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SOUND TRANSMISSION SENSITIVITY AND VARIABILITY 

( J S I N ( ; T n H a C A i ( ) E U l L ] V K ) I ) E I . 

4.1 - Introduction 

Whilst most predictions in building acoustics and design invariably use published and 

readily available models, some attempt to quantify confidence limits that cover most 

cases would be invaluable. For instance, the parameters (e.g. room dimensions, panel 

position, room absorption, etc.) are shown to have a substantial effect on the Noise 

Reduction (NR) and Coupling Loss Factor, the latter being a very important factor for 

predicting sound transmission using Statistical Energy Analysis (SEA) [8]. These 

considerations are discussed in detail in the following sections. 

The main goal of this Chapter is to examine the variability of the Noise reduction 

difference and CLF to some architectural parameters via a parametric study. This study is 

aimed at providing not only a better understanding of the sound transmission mechanism 

in itself but also to produce a useful set of data which for instance can be used by 

acousticians as input data for a SEA analysis. This data might be useful for optimizing 

sound insulation in buildings at low frequencies, where the modal behaviour of rooms 

strongly influences the transmission. 

This Chapter is organized as follows. Firstly, a parametric study of the influence of the 

source and receiving room dimensions on the Noise Reduction (NR) is investigated in 

section 4.2 (see Figures 4.1, 4.2 and 4.3). Next, the effects of room absorption on 

transmission is considered and discussed in section 4.3. Then, the influence of different 

panel positions in the common wall between rooms (see Figure 4.4) on NR is considered 

in section 4.4. Finally, in section 4.5, the equivalent CLF is evaluated on the basis of 

SEA assumptions and the influence of modal density and modal overlap is considered. 

The results that are discussed in this Chapter were obtained via simulations using the 

modal model developed in Chapter 2. The analysis is based on considering the influence 

of some variations in the 'input' parameters, which are required in the pre-processing 
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Stage of a numerical experiment, and on the subsequent sound transmission mechanisms 

of typical building configurations. 

4.2 - The influence of room dimensions on somid transmission 

In this section, the influence of the room dimensions on the NR has been considered. 

Numerical experiments were made using sets of simulations, which follow a pre-

established analysis pattern. In other words, this analysis was based on the variation of a 

particular geometrical parameter whilst keeping the others unaltered. Thus, the 

assessment of the variability and sensitivity of transmission efficiencies to a chosen 

parameter can be made. In general, there will be some inter-dependence but this is 

outside of the scope of this initial investigation. 

Firstly, the variation of NR with the ratio of the receiving room height to the source room 

height is considered. In order to perform the simulations, usually an initial model ought 

to be defined a priori. The baseline model was defined as two dissimilar rooms separated 

by a common elastic partition over the whole interface. The thickness of the partition 

was 0.01m. The density and Young's Modulus of Elasticity were 806 kg/m^ and 

2.12x10^ N/m^ respectively. The critical frequency of the partition was 3815 Hz. The 

reverberation time for the source and receiving room surfaces was chosen as an averaged 

value of Tgo =1.0^ . In terms of damping values this represents a total loss factor equal 

io rj- 2.2//Tgo; where/ is the corresponding centre frequency of a particular one third 

octave band. A source of unit volume velocity was located at position (-Lxi, 0,0) where 

Lx, is the depth of the source room. 

The continuous solid and dashed lines (shown in Figures 4.1, 4.2 and 4.3) represent the 

initial and modified configurations respectively. A total number of 11 iterations were 

made in order to simulate the original (solid line) and modified models in each case. The 

models were obtained by logarithmically varying one dimension at a time (height, width 

or depth of room 2) whilst keeping the others unaltered. For the baseline model, a total 

number of 48, 35 and 97 modes were used for room 1, room 2 and partition respectively. 

The frequency range and volume sizes considered dictated the choice of the number of 

modes used. 
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Figures 4.5 (a) and (b) show the variation of the difference between the diffuse incidence 

Noise Reduction (obtained from the Mass Law Theory - equation (2.6)) for an 

infinite panel with frequency for distinct heights of room 2 (see Figure 4.1) and the 

'actual' Noise Reduction . The analysis was performed in one-third octave bands 

(from 20 to 250 Hz). In this frequency range, a total number of 287 modes were used for 

the greatest height of room 2, i.e. Lyz =18 m. The Noise Reduction values ^^d 

^̂ modai were calculated for constant volume velocity source located in room 1 (where 

the height was kept fixed) and room 2 respectively. The variation of the parameters with 

the receiving room height is given in Table 4.1. 

The 'actual' Noise Reduction was obtained by predicting the sound pressure 

level difference between the source and receiving rooms. The diffuse field Noise 

Reduction is defined in refs. [2,18], and likewise it was obtained using equations 

(1.1) and (2.6). The mean calculated normalized levels lie below 0 dB within most of the 

frequency range for all room configurations. This fact was predictable at low 

frequencies, where the diffuse incidence Mass Law overestimated the transmission 

efficiency due to the assumption of diffuse field behaviour in the source room. Hence, 

both results that are referenced to the Mass Law show convergence being achieved in the 

frequency range under investigation, especially at high frequencies where the agreement 

is fair. 

The calculated 'Schroeder' frequency (see equation (2.1)) given in Table 4.1 was greater 

than the highest 1/3 octave band centre frequency considered in all model configurations. 

Therefore, the predicted system response in all cases was strongly influenced by 

individual modes of the rooms. 

At very low frequencies, a significant variation in the NR differences occurred between 

the configurations. On the other hand, as the frequency increased the differences were 

significantly reduced. As it is known, the influence of room dimensions on sound 

transmission is generally less significant when the acoustic wavelengths are in the order 

of or smaller than the room dimensions. Consequently, the pressure variation tends to 

become smaller over the whole acoustic volume of both source and receiving rooms. 

By comparing Figures 4.5 (a) and (b), it is seen that the variation of the height of the 

receiving room had a significant effect on the sound transmission primarily at low 

frequencies. On the other hand, in general the variation of the height of the source room 
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(room 2) did not alter the Noise Reduction substantially. This result is consistent 

with the Ondings on structure-borne sound transmission proposed by Craik gf aZ [61]. It 

was hypothesized that the Coupling Loss Factor (CLF) varies with the mobility of the 

receiving subsystem, not that of the source subsystem. In other words, the modal 

properties of the source subsystem do not seem to have as much influence on the sound 

transmission mechanism. If one examines the results above 80 Hz, where modes of both 

rooms exist, then the variation in the transmission is similar and it is not so obvious that 

the source subsystem can be neglected when examining the variability. 

In Figure 4.5 (a), there is a significant variation of the NR differences in the frequency 

range 31.5-80 Hz. It is also seen that above 80 Hz, which is also the fundamental natural 

frequency of the room 2 for the baseline model, the differences between configurations 

were sharply reduced. The acoustic wavelength assumed values smaller than the room 

heights. In this situation, the geometry of room 2 had no influence on the interaction 

between modes and therefore the system behaved like two similar rooms. Figure 4.5 (b) 

shows that the highest value of the NR difference (and consequently the lowest value for 

A%2dai) is in the 63 Hz band centre, which is approximately the fundamental frequency 

of room 1. It is also evident that for identical rooms, which have similar resonance 

frequencies and eigenfunctions, the NR difference is much higher. 

Likewise, Figures 4.6 (a) and (b) show the variation of the NR diffemece obtained when 

considering Leppington's approach [16]. The results are on average higher than those 

using the Mass Law approach (Figures 4.5 (a) and 4.5 (b)). This indicates that the effect 

of considering panel dimensions on predicting the results, as considered in ref. [16], was 

significant in the low frequency ranges. 

Figures 4.7 (a) and (b) show the variation of the NR difference values predicted using the 

modal model to those obtained via the Mass Law whilst varying the width of room 2 

from 2.0 to 20.0 m (see Table 4.3). A total number of 290 modes were selected for the 

greatest width, which was equal to 20.0 m. For all cases the depths and heights of rooms 

were kept constant (see Figure 4.2). Different configurations of the receiving room were 

important on predicting frequencies below 100 Hz. Above 100 Hz, there was 

not much change from Figure 4.7 (a) to 4.7 (b) in terms of NR levels. A maximum 

difference of 5 dB is found as frequency increases. 
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Figure 4.8 presents the variation of the results using Leppington's approach. As 

mentioned above, the results (in terms of the NR differences) using Leppington's 

approach tended to be greater than those obtained via the diffuse incidence Mass Law 

theory. 

Figure 4.9 and 4.10 show the variation of the NR differences for different values of depth 

ratio (see Table 4.4) compared to the 'Mass Law' and Leppington's formula respectively. 

For the greatest value for the depth, a total number of 290 modes was used in the 

calculations. It is seen that below about 80 Hz, the results for A^^dai present differences 

up to about 20 dB. Above 80 Hz, the differences are reduced to less than 10 dB. At the 

higher frequencies, the acoustic wavelengths were less than the room depths. In this 

situation, the geometry of the 'corridor', which is usually used as a mean of connecting 

rooms in a real building, did not have such a strong influence on the interaction between 

the modes and therefore the system behaved like two similar rooms. Furthermore, the 

variation of the results in terms of the Noise Reduction was less than about 10 

dB over the whole frequency range. This fact indicates once again that the power 

transmission between subsystems is most dependent on the characteristics of the receiver 

for the low frequencies. 

In summary, the predicted values depend on how well the modes of both subsystems are 

coupled to each other. This can be justified by some examples presented in Chapter 2 

where higher NR values were obtained for poor coupling between the subsystem modes 

at the interface. As mentioned previously, similar room volumes yield identical natural 

frequencies and mode shapes, which lead to a strong geometrical coupling in addition to 

frequency matching. For instance, in Figure 4.5 poorer sound insulation is clearly 

observed when 250 Hz. Conversely, higher sound insulation is obtained 

when mismatching of modes occurs in the case of considering two geometrically 

different rooms coupled together. 

4.3 - The influence of room absorption on sound transmission 

In this section, the influence of room absorption on sound transmission is investigated 

using the same baseline model defined previously. 
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Figures 4.11 and 4.12 present the variation of the NR differences for the baseline model 

when the Reverberation Time of room 2 (Ta) took different constant values from 1.0 s to 

0.2 s over all frequencies. In Figure 4.11 (a), the normalized transmission ratio levels 

increase with absorption at frequencies below 80 Hz. Variations of less than 10 dB are 

found. However, there is no significant variation at higher frequencies. 

At high frequencies (above the Schroeder frequency) when the reverberation time is 

decreased, the modal overlap factor is increased and vice-versa. This results in a higher 

probability of better coupling between individual modes and therefore lower sound 

insulation. However, the first natural mode for the receiving room is at 85 Hz, so that 

below 85 Hz the variation of the NR difference with frequency was mainly due to the use 

of equation (2.49) in which a diffuse field condition is assumed. It relates the damping 

for the receiving room to the SRI values. 

The variation in the absorption of the source room did not have significant influence on 

the sound insulation (see Figure 4.11 (b)). Whilst the modal damping of the source room 

was increased, the modal properties of the receiving room remained practically 

unaltered. Although higher absorption exists in the source room, resulting in lower sound 

intensity on the partition, the proportion of this power transmitted appears to be 

unaffected. 

Figures 4.12 (a) and (b) show the variation of the NR difference with frequency for 

different values of Ti compared to Leppington's formula. Although the plots show 

similar trends compared to those presented in Figure 4.11, higher values of the NR 

difference are found when frequency increases. 

4.4 - The influence of panel position on sound transmission 

The sensitivity of the NR relative to a flexible panel position, with the rest of the 

common wall rigid, is shown in Figure 4.13 and 4.14 compared to the diffuse incidence 

Mass Law [14,18] and Leppington's prediction [16] respectively. A total number of 10 

structural modes were considered for the simply-supported panel with dimensions 0.6m 

X 0.8m. The thickness of the partition was 0.01m. The density and Young's modulus of 

elasticity were 806 kg/m^ and 2.12x10^ N/m^ respectively. The reverberation time for 

both the source and receiving room were constant and equal to 1.0 s. The predicted 

fundamental natural frequency for the simply supported panel was 32.9 Hz. 
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The results presented in Figures 4.13 and 4.14 show similar trends over the frequency 

range considered. Nevertheless, the results shown in Figure 4.14 are on average about 6 

dB higher than those presented in Figure 4.13 over most of the frequency range. It might 

be explained by the influence of the panel surface area on the transmission efficiency 

which is taken into account in the Leppington's formulation. The first distinct peak in the 

NR difference levels was observed at about the fundamental natural frequency of the 

panel. It is known that at a panel-controlled resonance, the transmission efficiency is not 

dependent on the room acoustic impedance, but upon geometrical coupling factors. 

At low frequencies, the spatial distribution of room modes varies mainly along 

preferential directions (e.g. the % axis direction perpendicular to the panel). Below 80 Hz, 

the NR difference curve (Figures 4.13 (a) and 4.14 (a)) does not exhibit distinct 

differences whilst varying the panel position. This is understandable as the fundamental 

frequency of room 2 is 85 Hz. When panel-controlled modes are excited below the room-

controlled modes, the Mass Law behaviour may tend to dominate the transmission. 

However, for the opposite situation, when the panel-controlled resonance frequency is 

higher than the room-controlled resonance frequency, non-resonant panel stiffness 

behaviour may then dominate [60]. 

For the panel at the comer (position P4), where the tangential modes in the receiving 

room were fully excited, higher values of transmission occurred. As mentioned in 

Chapter 2, it is dependent on the degree of geometric coupling between the structural and 

acoustic modes. When the frequency increased, oblique modes tended to be dominant in 

the rooms and the difference between the panel positions became less important on the 

sound insulation. 

Figure 4.15 shows the contribution of a particular mode 'n' to the total spatially averaged 

mean square pressure in the receiving room for different values of panel position on the 

common wall. The results are presented in terms of the ratio of the spatially averaged 

mean square pressure of mode 'n' to the total spatially averaged mean square pressure. 

Figures 4.15a and 4.15b show the results obtained using 1/3 octave bands with centre 

frequencies at 125 Hz and 200 Hz respectively. Figure 4.15a shows that the uncoupled 

modes (1,0,1), (0,1,1) and (1,1,0) have the most significant contribution to the spatially 

averaged mean square pressure in the receiving room in the lower of the two bands. For 

instance, the greatest contribution is due to the (0,1,1) mode when the panel is at position 
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Pi. On the other hand, Figure 4.15b shows that for the panel at position Pg, the uncoupled 

(1,2,0) mode is the main contributor in the one-third octave band centred at 200 Hz. 

In summary, transmission behaviour becomes complex and dependent on panel position. 

With the panel located at the centre of the common wall, only few structural modes were 

excited. However, as the panel location was moved into the comer of wall, most of its 

even and odd modes were excited. This occurred because of the response of a large 

number of in vacuo panel modes to oblique fields excited by the point source. Similarly, 

the reduction or increase of the coupling between the source room and panel, depending 

upon panel location, is also replicated in the coupling between the panel and the 

receiving room. 

4.5 - Comparison of the transmission variability with published results 

on Coupling Loss Factor variability 

4.5.1 - Introduction 

Generally, the sound transmission mechanism in a real building involves a great number 

of different and complex transmission paths. In Statistical Energy Analysis (SEA) these 

paths are classified as direct and flanking paths [62]. In this section, only the direct 

transmission is considered in the implemented SEA model, so that the problem was 

described as one room emitting noise and another room receiving it. Thus, in this section 

a limp panel model with nominal density equal to 8.1 kg/m^ is considered. The thickness 

of the partition was 0.01m. A Reverberation Time = ls was considered herein. 

The spatial averaged, time averaged energy for each acoustic subsystem was evaluated 

from this baseline model, which consisted of two rooms coupled by a limp partition. 

Later on this Chapter, one can see that it was necessary to use a limp panel model, so that 

some parameters (in terms of CLF variability) defined in the literature could be used 

herein for comparison. 

The performance of a building can be predicted by a basic SEA technique, which is 

described in refs. [8] and [63]. The power flow between SEA subsystems can be 

described by the coupling between them that takes places at their boundaries. For 

instance, the fraction of maximum stored energy of subsystem 1 transmitted to 

subsystem 2 per cycle is 27rT]̂ 2, where is the Coupling Loss Factor (CLF). This is 
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defined in the similar way to the definition of the loss factor ^ of a subsystem, namely 

is the fraction of the maximum stored energy which is lost or dissipated per cycle. 

This can be lost through mechanical and thermal means or can take into account losses 

due to other subsystems, which have not been explicitly defined. 

4.5.2 - The SEA model 

The aim of this section is to make an initial parametric investigation for the CLFs and 

then compare their variability with theoretical upper and lower bound curves previously 

presented in the literature [58]. Thus, the usefulness of SEA as a framework of analysis 

can be assessed by the estimation of variance and confidence intervals. 

The simplest method of estimating the CLFs is presented here for the sake of simplicity 

and in order to provide results that can be compared with published data [58]. Therefore, 

the main assumption here is that there are only two subsystems in the SEA model, which 

correspond to the source and receiving rooms. It seems that this assumed condition is 

reasonable, as the non-resonant transmission or forced transmission is the most important 

contribution to the transmission mechanism. 

In SEA modelling, one of the most important parameters is the modal density. It is 

defined as the number of modes that lie in an increment of frequency. For instance, the 

modal density for a standard room is given by [8] 

where V is the room volume, S' is the total surface area of the room and L' is the total 

perimeter of the room. Table 4.1 shows the variation of the modal density for room 2 in 

the one-third octave band with centre frequency at 250 Hz. The modal density for room 1 

was equal to 0.419 in the same frequency band. 

According to Figure 4.16, the power balance equations for the two coupled rooms (which 

are represented by the subscripts 1 and 2) and excited one at a time are then given by 

[64] 

P L = P L . + P n = o i ( r , , E l + n u E ] - l l \ , E ' ^ (4.2) 

0 = P L . + Pi, = + l \ A ) (4.3) 
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Pl. = + nl-.El - riaE') (4-4) 

0 = -fSL + Pi = llkEl + niiEl-r,lEl) (4.5) 

where is the Internal Loss Factor for each subsystem, is the spatial averaged, time 

averaged energy in subsystem i. rj.j is the Coupling Loss Factor from subsystem i to 

subsystem j. co is the angular frequency in radians per second. Pdiss and are the time 

averaged dissipated and input powers respectively. Py is the power transmitted from 

subsystem i to subsystem j. The superscripts 1 and 2 indicate in which subsystem the 

excitation is applied separately one at a time. 

Therefore, by assuming that and according to the concept of power injection 

method [65], the 'effective' Coupling Loss Factor ?]y for two conservatively coupled 

subsystems 1 and 2 can be obtained by rearranging the equations (4.3) and (4.5) as 

r 4 = -
7721 I (U 

" " ^ 1 (4.6) 
69771 E l j 

The spatial average time averaged energy for an acoustic subsystem i can be obtained 

according to the general expression [8] 

/ —2 
E,. 

p ; % 

V J 

(4.7) 

where % is the volume of subsystem i and (^pfj is the spatial averaged mean square 

pressure in subsystem i. This has been obtained by using the modal model derived in 

Chapter 2, which was modified to calculate the coupling between the volumes by a limp 

panel. The calculations were run with no dissipation in the limp panel. 

Likewise, the damping Loss Factor of a particular acoustic subsystem i may be 

approximated by the expression [8] 

7 7 , = ^ (4.8) 

where 7^ . is the Reverberation Time for subsystem i. For the SEA simulations 7^ ,. was 

constant and equal to 1.0 s. Equation (4.8) is a general expression for the total loss factor 
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which only gives the damping loss factor for weakly coupled systems (i.e. CLFs « 

internal loss factor) as measurements for the Reverberation Time will normally include 

some effect of dissipation from other subsystems connected to the volume. Therefore, a 

value of T̂ o was set and then used to infer the damping loss factor. 

Although the CLFs are only defined for finite systems, an expression for the CLF of 

'semi-infinite' acoustic subsystems can be obtained by assuming diffuse field conditions 

in both rooms. In addition, it is assumed that there is direct transmission between rooms, 

where forced transmission is the most important contribution. Thus, the CLF &om 

subsystem 1 to subsystem 2, is given approximately by [8] 

where is the diffuse transmission efficiency obtained via Mass Law theory described 

previously. Vi is the volume of the source room and S is the partition area. 

The Coupling Loss Factor can also be obtained from r}̂ 2 by the consistency 

relationship [64] 

fii == »2)721 (4 !()) 

where nj and «2 are the modal densities (see equation (4.1)) for subsystems 1 and 2 

respectively. 

The variability of the CLFs with the subsystem properties in SEA models have been 

recently studied by Park et al [58]. A sensitivity analysis was performed using an 

analytical model for two coupled plates. The Dynamic Stiffness Method was used in the 

evaluation of their model. Thus, an 'empirical model' for the variability of CLF (o^) 

was derived for two coupled finite plates according to the expression [58] 

cr̂  = (4.11) 

2M,M, 

M; +M2 
0*12) 

AT, + / / ; 
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where is the variance of the dB values; Mgonzt and are the combined modal 

overlap factor and number of modes respectively. and are the modal overlap 

factors for subsystems 1 and 2 respectively. They are defined as the ratio of the modal 

bandwidth to the average frequency spacing between modes [8]. Similarly, N] and are 

the mode counts for subsystem 1 and 2. 

4.5.3 ~ Results 

Results were obtained in terms of the variation of the CLF ratio with the combined 

modal overlap factor Mcomb for different room configurations. The numerical frequency 

range covered was 0 to 300 Hz, although the results are only plotted at values where at 

least one non bulk mode exists in either room. Firstly, the CLF ratio, in Figures 4.17-

4.21, was defined as the ratio of the 'effective' coupling loss factor (equation (4.6)), 

obtained for a particular system configuration, to the averaged 'effective' CLF, which 

was obtained by considering the mean value over all of the different configurations of a 

particular parameter, e.g. the height ratio of the rooms. The results were calculated in sets 

of one-third octave bands. 

Secondly, the CLF ratio, in Figures 4.22 and 4.23, was calculated as the ratio of the 

'effective' CLF to the one obtained using equation (4.9). Although an average result was 

used for reference, it did not converge to the diffuse incidence Mass Law. 

Figures 4.17-4.19 show the variation of CLF ratio with Mc„mb whilst varying the height, 

width and depth ratio of the rooms. In Figure 4.17, the source room height was fixed and 

equal to 1.8 m. The receiver height varied from 1.8 to 18 m. It is seen that the results lay 

within the bounds for most of the Mcomb range. At higher frequencies, the CLF ratio 

values vary within the range +/- IdB. 

Likewise, Figures 4.18 and 4.19 also show that the convergence of the results rapidly 

increases with the combined Modal Overlap factor. Figure 4.18 shows that at higher 

Modal Overlap factors, the CLF ratio values tend to be less than +/- 0.5 dB. Similarly, 

Figure 4.19 shows a fairly good convergence rate with increasing Modal Overlap. 

Figure 4.20 shows the variation of CLF ratio with Mcow, for different values of the 

Reverberation Time ratio (T2/T1). The Reverberation Time of the source room was fixed 

and equal to 1.0 s. However, for the receiving room it was varied from 1.0 s to 0.2 s. It 
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appears that the most significant variations in terms of the CLF ratios occurred for the 

case of varying the RT of the source room whilst keeping the RT of the receiving room 

constant. 

Figure 4.21 shows the variation of CLF ratio with Mcomb for different values of panel 

position on the common rigid wall. Very small variation is observed at the lower values 

of Mcomb, i.e. at lower frequencies for the source and receiving rooms where there are 

few if any acoustic modes and transmission is low. On the other hand, significant 

variations occur in the range where acoustic modes exist. These variations indicate very 

high spatial coupling sensitivity. 

Finally, Figures 4.22 and 4.23 show the variation of CLF ratio, which is defined here as 

the ratio of the actual transmission to the diffuse incidence Mass Law transmission, with 

whilst varying the height and width of the rooms respectively. In Figure 4.22, the 

source room height was fixed and equal to 1.8 m. The receiver height varied from 1.8 to 

18 m. It is seen that the results approximately lay on the upper bound for most of the 

McoHzt range. However, they tend to diverge from the Mass I^w results as the 

combined modal overlap increases. Likewise, Figure 4.23 shows that the Mass Law 

results are lower than the 'effective' Coupling Loss factor at low frequencies. 

However, the 'effective' CLF tends to be lower than the when frequency increases. 

4.6 - Conclusions 

Firstly, the variation of the NR differences with frequency whilst varying one of the 

room dimensions has been presented in this chapter. It was shown that at very low 

frequencies, the variation of the room dimensions affected the transmission substantially. 

These results are similar with those of Craik [61], which showed that for transmission 

between plates it is the receiving subsystem that affects the power flow. At the higher 

frequencies there is an increasing contribution from the source room though. 

In addition, the results in terms of convergence to the Mass Law predictions have shown 

poor agreement at low frequencies. This is because of the strong modal behaviour of the 

chosen subsystems, which have obviously low mode count due to their small volumes. 

Nevertheless, it is seen that at higher frequencies a fairly good agreement is achieved, as 
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the sound field tended to become more 'diffuse'. In general, the results show a difference 

of less than 3 dB in the frequency band with centre frequency at 250 Hz, for example. 

Finally, numerical simulations for the investigation of the variation of CLF ratio with the 

combined Modal Overlap Factor were obtained for a limp panel model. Hence, there was 

no resonance contribution of the panel on the frequency response of the system. Even 

though there was no stiffness term in the equation of motion of the panel, i.e. the panel 

was limp, its mass term was allowed to contribute. 

The sound transmission results thus had no resonant panel behaviour and the variation of 

results were mainly due to the panel position and also the matching or separation of the 

room natural frequencies (i.e. modal overlap). 

The results were then compared to previously published envelope results given for 

structure to structure coupling limits (Park et al in reference [58]). It is seen that most of 

the results, which are presented in terms of CLF ratio, fit reasonably well within the 

published envelope results [58] for the frequency range investigated. Only the results due 

to variation of the panel position are not in such good agreement and it is suspected that 

this might be due to extreme sensitivity of the modal model to the spatial coupling terms. 

The actual fluid-structure interaction problem considered herein was evaluated at very 

low frequencies. In addition, small acoustic volumes were considered for the baseline 

models. Consequently, small values of Modal Overlap Factors were obtained. The 

envelope results presented by Park et al [58] were developed on the basis of only two 

coupled subsystems, namely two coupled rectangular plates. Hence, there was no 

'intermediate' connection between them, such as a beam. In other words, the modal 

model formulated here was equivalent to the structure-to-structure coupling problem 

published in ref. [58], as the model herein considered the contribution of a limp partition 

with no modes on the transmission mechanism. No attempt has been made here to 

produce alternative limits for the acoustic-structural problem, as it does not appear to be 

particular easy to solve or generalize. 
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Lyl/Lyl L y i ( m ) Ly2(m) L x i ( m ) Lx2(m) L z l — L z 2 niOD niCO f 1 .Schroed fz.Schroed 

1.000 L800 L800 3imo 2.000 2.000 &419 0.290 430.3 527X) 
L259 L800 2.266 3IW0 2.000 2.000 &419 0.356 430.3 469.7 
1.585 L800 :L853 3.000 2.000 2.000 &419 0^38 4303 41&6 
1.995 1.800 3.591 3.000 2100 2.000 &419 0.542 430.3 3711 
2512 L800 4.522 3.000 2.000 2.000 0.419 0.673 430.3 33Z5 
3 J ^ 2 L800 5.692 3.000 2.000 2.000 0.419 0.837 430.3 296^ 
3.981 1.800 7 J 6 6 3.000 2000 2.000 0.419 1.045 4303 264.1 
5.012 L800 9.022 3.000 2.000 2.000 0.419 L305 4303 235^ 
6309 L800 1L356 3.000 2.000 2.000 0.419 1.634 4303 209^ 
7.943 L800 14.297 3.000 2.000 2.000 0.419 2.047 4303 187X) 
10.000 L800 18.000 3.000 2.000 2.000 0.419 2.567 4303 166.6 

Table 4.1; Variation of room parameters with the height ratio Lyz/Lyi. L*, Ly and Lz are 

room depth, height and width respectively, n (f) is the modal density in the highest 1/3 

octave band with centre frequency equal to 250 Hz and fschroed is the Schroeder 

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1 

and 2 represent the source and receiving rooms respectively. 

f2(Hz) fp(Hz) 

0.0 0.0 4.2 
5&7 85.0 9.9 
85.0 85.0 1L2 
9 4 4 94.4 16.9 
1022 120/2 19.4 
l l & l 1271 2 2 9 
1133 1271 2 6 4 
12%1 152/) 2&6 
13&1 170X) 326 
14L7 170X) 3&1 

Table 4.2: The first ten natural frequencies of the uncoupled rigid walled rooms and 

partition for the height ratio Lyi/Lyi =1. ' f is the natural frequency of the uncoupled 

rooms and partition. The subscripts 1, 2 and 'p' represent the source, receiving and 

partition respectively. 
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L z 2 / L Z 1 Lzi(m) L z z f m ) Lxi(m) L x 2 ( m ) L y l - L y 2 n i O D n z C O f 1 .Schroed fz.Schroed 

1.000 2.000 2.000 3.000 2.000 L800 &419 0.290 43&3 52%0 
L259 2.000 2.518 3.000 2.000 L800 &419 &357 4 3 0 3 4 6 9 ^ 
L585 2.000 3 J ^ 0 3.000 2.000 L800 &419 0 4 4 0 4 3 0 3 41&6 
1.995 2.000 3.990 3.000 2.000 L800 0.419 0.546 4 3 0 3 3 7 1 1 
2 5 1 2 2XW0 5.024 3.000 2.000 I j W O 0.419 &678 4 3 0 3 33Z5 
3T62 2.000 &324 3.000 2.000 L800 &419 0.845 4 3 0 3 29&4 
3.981 2.000 7.962 3.000 2.000 L800 0.419 1.055 4 3 0 3 2 6 ^ 1 
5.012 2.000 10.024 3 i m o 2.000 1.800 0.419 L319 4 3 0 3 2 3 5 4 
&309 2.000 12.618 3.000 2.000 L800 0.419 L652 4 3 0 3 20&8 
7.943 2.000 1 5 j a 6 3IW0 2.000 L800 0.419 2.071 4 3 0 3 187X) 
10.000 2.000 20.000 3.000 2.000 L800 0.419 2.598 4 3 0 3 1 6 6 . 6 

Table 4.3: Variation of room parameters with the width ratio Lzi/Lzi- Lx, Ly and Lz are 

room depth, height and width respectively, n (f) is the modal density in the highest 1/3 

octave band with centre frequency equal to 250 Hz and fschroed is the Schroeder 

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1 

and 2 represent the source and receiving rooms respectively. 

L x z / L x i Lxi(m) Lx2(m) Lyl—Ly2 L z l — L z 2 ni(f) n2C0 f 1 .Schroed fz.Schroed 

1.000 3 ^ 0 0 3.000 1.800 2.000 0.419 0 .419 430.3 430.3 
L259 1 0 0 0 1 7 7 7 1.800 2.000 0.419 0 .518 4 3 0 3 383.5 
L585 3.000 4 J 5 5 L800 2.000 0.419 0.644 4 3 0 3 341.8 
L995 1 0 0 0 5.985 1.800 2.000 0.419 0 .801 4 3 0 3 3 0 4 J 
:1512 3.000 7.536 1.800 2.000 0.419 1.000 4 3 0 3 27L5 
3 J ^ 2 3.000 9.486 1.800 2.000 0.419 L 2 5 0 4 3 0 3 242.0 
3.981 3.000 11.943 1.800 2.000 0.419 1.565 4 3 0 3 2 1 5 J 
5.012 3XW0 15.036 L800 ZOOO 0.419 1.962 4 3 0 3 192.2 
6 3 0 9 3.000 18.927 1.800 2.000 0.419 2 .461 4 3 0 3 171.3 
7.943 3.000 21829 L800 2.000 0 4 1 9 3.089 4 3 0 3 152.7 
10.000 3.000 30.000 L800 2.000 0.419 3 .881 4 3 0 3 136.1 

Table 4.4: Variation of room parameters with the depth ratio Lxi/Lxi- Lx> Ly and Lz are 

room depth, height and width respectively, n (f) is the modal density in the highest 1/3 

octave band with centre frequency equal to 250 Hz and fschroed is the Schroeder 

frequency (Hz) above which the acoustic field is assumed to be diffuse. The subscripts 1 

and 2 represent the source and receiving rooms respectively. 
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Tz/Ti Ti T2 Lxi LX2 Lyl—Ly2 Lzl—Lz2 

1.0 1.0 1.0 3.000 2.000 L800 2 000 &419 &290 
0.8 1.0 0.8 3.000 2.000 1.800 ZOOO 0.419 0.290 
0.6 1.0 0.6 3.000 2xmo IjWO 2000 (].419 a290 
0.4 1.0 0.4 3imo 2.000 1.800 2.000 (1419 &290 
0.2 1.0 0.2 3.000 2.000 IjWO 1000 &419 &290 

Table 4.5: Variation of room parameters with the Reverberation Time ratio (T2/T1). L*, 

Ly and Lz are room depth, height and width respectively, n (f) is the modal density in the 

highest 1/3 octave band with centre frequency equal to 250 Hz. The subscripts 1 and 2 

represent the source and receiving rooms respectively. For the source and receiving 

rooms the Schroeder frequencies are 430 Hz and 527 Hz respectively. 

Position Cgy Cgz Lyp Lzp 

(m) (m) (m) (m) 

1 0.6 0.6 0.6 0 .8 
2 0.4 0.4 0.6 0 .8 
3 0.2 0.2 0.6 0 .8 

4 0.0 0.0 0.6 0 .8 
5 0.4 0.6 0.6 0 .8 
6 0.2 0.6 0.6 0 .8 
7 0.0 0.6 0.6 0 .8 
8 0.6 0.4 0.6 0 .8 
9 0.6 0.2 0.6 0 .8 
10 0.6 0.0 0.6 0 .8 

Table 4.6: List of 10 different panel positions on the common wall separating source and 

receiving rooms. (Cgy, Cgz) is the coordinate of the panel left-bottom comer in the y and z 

directions respectively. The surface area of the elastic panel is equal to (Lyp x Lzp). The 

dimensions of the rigid common wall is 1.8m x 2.0m. 
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1.8 m 

Point source v 

Receiving 
room 

Source room 

2.0 m 3.0 m 

(10 different depths) 

3.0 m 

Figure 4.3: Variation of the depth of Room 2 (see Table 4.4) A Monopole source 

with volume velocity equal to 3x10^ m^/s was located at the comer of the room 

L. •yp 

(CgZ jCgy) 

L 

Panel 

Lzp 

Common rigid wall 

Panel 

(CgZjCgy) Lzp 

Common rigid-wall 

(0.0) 

Figure 4.4: Variation of panel positions on the common wall; The coordinates Cgy and Cg 

for each panel position are defined in Table 4.6 
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1/3 Octave Band Centre Frequency [Hz] 

a) 

1/3 Octave Band Centre Frequency [Hz] 

b) 

Figure 4.5; Variation of the NR differences with frequency for different values of height 

ratio (Lyz/Lyi) compared to the diffuse incidence Mass Law (ML), (a): 

[dB]; (b); NR^^ ~ [dB]. The height of the room 1 (Lyi) is fixed and equal to 1.8 

m. The height of room 2 (Lyj) varies from 1.8 to 18.0 m; — 1.80; 2.27; — 2.85; -o-

3.59; 4.52; -A- 5.69; - - 7.16; -x- 9.02; -0-11.36; -V-14.29; — 18.00. 
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1/3 Octave Band Centre Frequency [Hz] 

a) 

1/3 Octave Band Centre Frequency [Hz] 

b) 

Figure 4.6: Variation of the NR differences with frequency for different values of height 

ratio (Lyz/Lyi) compared to Leppington's formula [16]. (a); [dB]; (b): 

ML [dB]. The height of room 1 (Lyi) is 1.8 m. The height of the room 2 (Lyz) 

varies from 1.8 to 18.0 m; — 1.80; 2.27; — 2.85; -o- 3.59; 4.52; -A- 5.69; 

7.16; -X- 9.02; -0- 11.36; -V-14.29; — 18.00. 
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1 0 ' 10' 
1/3 Octave Band Cenlfe Frequency [Hzl 

a) 

20 

10 

0 

-40 
10 

1/3 Octave Band Centre Frequency [Hz] 

b) 

Figure 4.7: Variation of the NR differences with frequency for different values of width 

ratio (Lzi/Lzi) compared to the diffuse incidence Mass Law (ML), (a): ~NRmodai 

[dB]; (b): NR ,̂̂  ~ ^^Zdai WB]. The width of room 1 (Lzi) is 2.0 m. The width of the 

room 2 (L^z) vanes from 2.0 to 20.0 m; — 2.00; 2.52; — 3.17; -o- 3.99; 5.02; -A-

6.32; - - 7.96; -x-10.02; -0- 12.62; -V-15.89; — 20.00. 
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20 

10 

- 1 0 

-30 

-40 

1/3 Octave Band Centre Frequency [Hz] 

a) 

10 
1/3 Octave Barxj Centre Frequency [Hz] 

b) 

Figure 4.8: Variation of the NR differences with frequency for different values of width 

ratio (Lz2/Lzi) compared to Leppington's formula [16]. (a); [dB]; (b): 

Lep [dB]. The width of the room 1 (Lzi) is 2.0 m. The width of the room 2 

(Lz2) varies from 2.0 to 20.0 m; — 2.00; 2.52; — 3.17; -o- 3.99; 5.02; -A- 6.32; 

- 7.96; -X-10.02; -0-12.62; -V-15.89; — 20.00. 
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1/3 Octave Band Centre Frequency [Hz] 

a) 

1/3 Octave Band Centre Frequency (Hz] 

b) 

Figure 4.9; Variation of the NR differences with frequency for different values of depth 

12 ratio (Lxi/Lxi) compared to the diffuse incidence Mass Law (ML), (a); ~ 

[dB]; (b): [dB]. The depth of the room 1 (Lxi) is 3.0 m. The depth of the 

room 2 (Lzi) varies from 3.0 to 30.0 m; — 3.00; 3.77; — 4.76; -o- 5.99; 7.54; -A-

9.49; - - 1L94; -x-15.04; -0-18.93; -V- 23.83; — 30.00. 
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1/3 Octave Band Centre Frequency [Hz) 

a) 

1/3 Octave Band Cwitre Frequency [Hz] 

b) 

Figure 4.10: Variation of the NR differences with frequency for different values of depth 

ratio ( L x 2 / L x i ) compared to Leppington's formula [16]. (a): NR -
Lep modal 

[dB]; (b): 

^^Lep ~^^modai [^B]. The depth of the room 1 (Lxi) is 3.0 m. The depth of the room 2 

(Lz2) varies from 3.0 to 30.0 m; — 3.00; 3.77; — 4.76; -o- 5.99; 

- 11.94; -X-15.04; -0-18.93; -V- 23.83; — 30.00. 

7.54; -A- 9.49; 
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1/3 Octave Band Centre Frequency [Hz] 
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b) 

Figure 4.11: Variation of the NR differences with frequency for different values of 

reverberation time ratio (T2/T1) compared to Mass Law (ML), (a): WB]; 

(b): JVR Lep 
21 [dB]. The reverberation time of room 1 (Ti) is 1.0 s. The 

reverberation time of room 2 (T2) varies from 1.0 to 0.2 s; — 1.0; 

- * - 0 . 2 . 

0.8; — 0.6; -o- 0.4; 
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1/3 Octave Band Centre Frequency [Hz] 

a) 

1/3 Octave Band Centre Frequency [Hz] 

b) 

Figure 4.12; Variation of the NR differences with frequency for different values of 

reverberation time ratio (T2/T1) compared to Leppington's formula [16]. (a): 

12 [dB]; (b): ~^Knodai [dB re 1]. The reverberation time of room 1 

(Ti) is 1.0 s. The reverberation time of the room 2 (T2) varies from 1.0 to 0.2 s; — 1.0; 

0.8; — 0.6; -o- 0.4; 0.2. 

166 



Chapter 4. Sound Transmission Sensitivity and Variability Using the Modal Model 

c - 1 0 

1/3 Octave Band Centre Frequency [Hz] 

a) 

c - 1 0 

1/3 Octave BE&nd Centre Frequency [Hz] 

b) 

Figure 4.13; Variation of the NR differences with frequency for different values of panel 

positions on the common wall compared to the diffuse incidence Mass Law (ML), (a): 

[dB]; (b): - TVRfL, [dB]. The panel positions (see Figure 4.4) are 

; — P i ; P2; — P3; -o- P4; P5; - - Pe; -x- P?; -0- Pg; -V- P9. 
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c-10 

1/3 Octave Band Centre Frequwicy [Hzj 

a) 

C-10 

1/3 Octave Band Centre Frequency [Hz] 

b) 

Figure 4.14: Variation of the NR differences with frequency for different values of panel 

positions on the common wall compared to Leppington's formula, (a): NR - nr'^ 
Lep modal 

[dB]; (b): - ^̂ modai [^B], The panel positions (see Figure 4.4) are ; — Pi; Pz; 

- P3; -o- P4; P5; - - Pe; - X - P?; -0- Pg; -V- Pg. 
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Figure 4.15; Variation of the ratio of the spatially averaged mean square pressure of 

mode '(l,m,n)' to the total mean square pressure (in the receiving room) with mode 

number for different values of panel position on the common wall, (a); 1/3 octave band 

with centre at 125 Hz; (b);l/3 octave band with centre at 200 Hz. The panel positions 

(see Figure 4.4) are ; Pi; - O - P 2 ; - + - P3; -o- P4; P5; -A- Pe; - - P?; -x- Pg; -0- P9; -V-

Pio. The corresponding mode numbers are; 1-(0,0,1); 2-(l,0,0); 3-(0,l,0); 4-(l,0,l); 5-

(0,1,1); 6-(l,l,0); 7-(l , l , l ) ; 8-(0,0,2); 9-(2,0,0); 10-(0,2,0); 11-(1,0,2); 12-(2,0,1); 13-

(0,1,2); 14-(2,1,0); 15-(0,2,1); 16-(1,2,0); 17-(1,1,2); 18-(2,1,1); 19-(1,2,1); 20-(2,0,2). 
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Figure 4.16: SEA models of two rooms separated by a single-leaf partition approximated 

by a two subsystem model. Therefore, only the non-resonant transmission path is 

considered, a) Power is injected into subsystem 1; b) Power is injected into subsystem 2. 

The subscripts 'i j ' denote the power flow from subsystem 'i ' to subsystem 'j' and the 

superscript indicates which subsystem is under direct excitation. 
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a) 

b) 

Figure 4.17: Variation of CLF ratio with the combined Modal Overlap factor Mcomb for 

different values of height ratio (Lyz/Lyi) compared to the average over all of the height 

variations. (a):101ogo(7%2/;;,̂ J [dB re 1]; (b):101ogo(%/%wvj [dB re 1]. The height of 

room 1 (Lyi) is 1.8 m. The height of room 2 (Ly2) varies from 1.8 to 18.0 m; — 1.80; 

2.27; — 2.85; -o- 3.59; 4.52; -A- 5.69; - - 7.16; -x- 9.02; -0- 11.36; -V- 14.29; — 

18.00; +++ bounds (±2o ) for Ly2 = 1.8; — bounds (±2o ) for Lyz = 18.0. 
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a) 

b) 

Figure 4.18; Variation of CLF ratio with combined Modal Overlap factor Mcomb for 

different values of width ratio (Lzi/Lzi) compared to the average over all of the width 

variations. (a):101ogo(7%2/;7^ ĵ [dB re 1]; (b):101ogo(%/%wj [dB re 1]. The width of 

room 1 (Lzi) is 2.0 m. The width of the room 2 (L^i) varies from 2.0 to 20.0 m; — 2.00; 

2.52; — 3.17; -o- 3.99; 5.02; -A- 6.32; - - 7.96; -x- 10.02; -0- 12.62; -V- 15.89; -

— 20.00. +++ bounds (±2o ) for Lz2= 2.0; — bounds (±2o ) for Lz2 = 20.0. 
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Figure 4.19: Variation of CLF ratio with the combined Modal Overlap factor Mcomb for 

different values of depth ratio (Lxi/Lxi) compared to the average over all of the depth 

variations. (a):10]ogo(;%2/?%^j [dB re 1]; (b):101ogQ(%/%wvJ re 1]. The depth of 

room 1 (Lxi) is 3.0 m. The depth of the room 2 (L^z) varies from 3.0 to 30.0 m; — 3.00; 

3.77; — 4.76; -o- 5.99; 7.54; -A- 9.49; - - 11.94; -x- 15.04; -0- 18.93; -V- 23.83; 

— 30.00. +++ bounds ( ± 2 a ) for Lx2 = 3.0; — bounds {±2o ) for Lx2= 30.0. 
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a) 

b) 

Figure 4.20: Variation of CLF ratio with the combined Modal Overlap factor Mcomb for 

different values of reverberation time ratio (T2/T1) compared to the average over all of 

the reverberation time variations, (a): 101ogQ(7%2/?)!|̂ j [dB re 1]; (b):101og(,(%/%^^j 

[dB re 1]. The reverberation time of the room 1 (Ti) is 1.0 s. The reverberation time of 

room 2 (T2) varies from 1.0 s to 0.2s; — 1.0; 0.8; — 0.6; -o- 0.4; 0.2. +++ bounds 

(±2o ) for T2 = 1.0; — bounds (±2o ) for T2 = 0.2. 
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a) 

b) 

Figure 4.21; Variation of CLF ratio with the combined Modal Overlap factor Mcomb for 

different values of panel position on the common wall compared to the average over all 

of the panel positions. (a):101ogo(%//7i J [dB re 1]; 1]. The 

panel positions are (see Figure 4.4); — P i ; Pz; — P3; -o- F4; P5; -A- Pe; - - P?; -x-

Pg; -0- P9; -V- Pio- — upper and lower bounds (±2(7 ) obtained from equation (4.12). 
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m 10 

a) 

m 10 

b) 

Figure 4.22: Variation of CLF ratio with the combined Modal Overlap factor Mcomb for 

different values of height ratio (Ly2/Lyi) compared to the diffuse incidence Mass Law. 

(a):10IogQ(7%2/%fJ [dB re 1]; [dB re 1]. The height of room 1 (Lyi) is 

1.8 m. The height of room 2 (Lyi) varies from 1.8 to 18.0 m; — 1.80; 2.27; — 2.85; -

o- 3.59; 4.52; -A- 5.69; - - 7.16; -x- 9.02; -0- 1L36; -V- 14.29; — 18.00; +++ 

bounds (±2o) forLyi = 1.8; — bounds (±2o ) for Lyz = 18.0. 
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Figure 4.23: Variation of CLF ratio with combined Modal Overlap factor Mcomb for 

different values of width ratio (Lzz/Lz,) compared to the diffuse incidence Mass Law. 

(a):101ogQ(7%2/%fJ [dB re 1]; (b):101ogo(%/%^J [dB re 1]. The width of room 1 (Lzi) is 

2.0 m. The width of the room 2 (L^z) varies from 2.0 to 20.0 m; — 2.00; 2.52; — 

3.17; -o- 3.99; 5.02; -A- 6.32; - - 7.96; -x- 10.02; -0- 12.62; -V- 15.89; — 20.00. 

+++ bounds (±2o) for Lz2 = 2.0; — bounds ( ± 2 o ) for L ẑ = 20.0. 
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Chapter 5 

ACOUSTIC-STRUCTURAL INTERACTION ANALYSIS USING 

THE COMPONENT MODE SYNTHESIS METHOD 

5.1 - Introduction 

The literature survey has revealed that a significant amount of work has concentrated on 

analysing sound transmission using uncoupled 'rigid-walled' acoustic modes for the 

acoustic volumes. In this case the boundary condition at the interface between acoustic 

volumes, which is due to the velocity of the partition, cannot be replicated. Hence, the 

aim of this chapter is to develop an alternative model for the prediction of noise 

transmission in terms of the Component Mode Synthesis (CMS) method. It is developed 

and applied here initially to acoustic-structural coupled volumes possessing one-

dimensional wave propagation to verify the accuracy and applicability of the approach. 

The following chapter extends the work to the three-dimensional case. 

The CMS method requires the user to model separate components of a problem in terms 

of a summation over constraint modes and component normal modes and has previously 

been applied in structural dynamics. A constraint mode is defined as the static 

deformation of a subsystem when a unit displacement or velocity is applied to one 

coordinate of a specific set of 'interface' coordinates. The number of constraint modes 

considered is equal in number to the number of redundant interface degrees of freedom. 

The component normal modes are eigenvectors of the component and may be classified 

according to their boundary conditions either as fixed-interface modes or free-interface 

modes. The number of normal modes chosen depends upon the frequency range of the 

calculations and convergence requirements. 

The main objective here is to analyse the effects of the imposition of common velocity 

on the acoustic-structural interface via the Component Mode Synthesis Method (CMS). 

This original development for the problem provides an improved analytical approach 

which also shows analytically the importance of including kinematic compatibility in 

structural-acoustic problems. Some background information about the method is 

provided as a basis for assisting the understanding of the process. Following this, the 
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formulation of the structural-acoustic problem in terms of 'components' is described. 

The results obtained using CMS are compared to those obtained using both a one 

dimensional exact wave approach explained below and standard modal analysis. Finally, 

conclusions are drawn based on the analysis of the results and the extension to three-

dimensional acoustic systems is discussed which is subsequently implemented in chapter 

6. 

5.2 - The One-Dimensional Wave Approach 

Firstly, consider the one-dimensional acoustic system given in Figure 5.1 as it provides a 

basis for comparison with the CMS and modal models. Components 1 and 2 are 

respectively the source and receiver volumes separated by a limp partition of mass per 

unit area m. An incoming harmonic plane sound wave with amplitude is incident upon 

the partition from the region x < 0. As a result, a 'reflected' plane wave with amplitude 

Bs propagates in the negative % direction. Thus, the total pressure field p\ inside the 

source component is given by 

+ (5.1) 

where k is the complex wavenumber of the propagating plane waves, which for light 

damping is {a)lc^){l-jrjH) and t] is the loss factor. The time dependence e-"^ is 

assumed throughout. The wave amplitudes and in equation (5.1) are the total 

amplitudes of the travelling waves in the two directions incorporating all multiple 

reflections from the ends. 

Likewise, the acoustic pressure field transmitted through and incident upon the partition 

from the region x > 0 is defined by the coefficients Cr and Dr respectively. Therefore, the 

total pressure field p2 in the receiving component may also be represented in terms of 

propagating solutions as follows 

(5.2) 

From equations (5.1) and (5.2), it is evident that there are four unknowns to be 

determined. Thus, the appropriate boundary conditions can be expressed by the set of 

equations below, where velocity continuity and force equilibrium are applied. 
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^ at X = for the force acting on the source volume (5.3) 

C _£) 
— = 0 i.e. rigid termination at x = L̂ 2 (5.4) 

Po^o 

(Â  - BJ - (C^ - D J = 0 i.e. velocity continuity at x = 0 (5.5) 

(Â  4- B J - (C^ + D J = a tx = 0 (5.6) 

The last equation is Newton's second law of motion, relating the net pressure on the limp 

panel and its resulting acceleration. 

In summary, equations (5.3) and (5.4) are constraint equations that impose pressure 

equilibrium at the source end, x = -L^;, and zero velocity at x = Lx2 respectively. Equation 

(5.5) relates the particle velocities at the interface (x = 0) between the acoustic volumes 

(kinematic compatibility), assuming an incompressible mass. Finally, equation (5.6) is 

for a force equilibrium constraint when a 'limp panel' of mass m per unit area separates 

the acoustic volumes, relating the force on the panel and its acceleration. Equations (5.3)-

(5.6) were set up as a matrix system of equations. For any frequency there is an exact 

solution for the two volumes and the pressure and particle velocity can be found 

explicitly. 

5.3 - The Component Mode Synthesis Method - CMS 

5.3.1 - The definition for the sets of component modes 

Despite the fact that any number of components can be used to form a system, only two 

components are to be considered to illustrate the method. Figure 5.1 illustrates a uniform 

rigid-walled duct, which will be divided into two CMS components. By choice the limp 

mass was considered connected to and its effect incorporated in the first volume, but in 

principle the choice of volume is arbitrary. Therefore, the first component consists of the 

fluid column plus a limp mass partition, being defined for x = -L^i to x = 0. The receiving 

component is defined by the fluid volume which varies from x = 0 to x = Lxi- A sliding 

rigid piston, which undergoes harmonic oscillation, is fitted to one end of the duct. The 

other end of the duct (at x = Lxi) is a rigid termination. It is assumed that the fluid 
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displacement function f(x,r)at position x and time t over the length of the duct can be 

written in terms of component modes and the corresponding modal generalized 

coordinates e by the modal transformation 

g ==tl'6: (5.7) 

where T is the normalized modal matrix (transformation matrix) of assumed modes 

defined below. 

The modal matrices T, and for Ae source and receiving components are defined and 

partitioned as follows 

V A (5-8) 

= WA (5.9) 

where yj^ and yj^ are the constraint and the normal modes respectively. The normal 

modes are taken to be those of the volumes with a fixed interface (i.e. rigid wall at the 

interface). The selected normal modes were defined as shape functions satisfying the 

geometric boundary conditions for each acoustic component. The normal mode and 

the constraint mode used in the modal matrices above are classified according to the 

boundary conditions specified for each component. They are normalized and given by 

==-lF̂ =̂: C5.1()) 

yy, =--r^= (5.11) 

rn̂  == zmd nn̂  == j[/),S(&cCLK (5.12) 

where is the set of free-fixed interface normal modes which satisfy the condition of 

unit velocity applied to a moving wall in the source component. For the receiving 

component they are a set of fixed-fixed interface normal modes, (j)̂  is the constraint 

mode which satisfies zero velocity on x = -Lxi and unit velocity on x = 0 for the source 

component or unit velocity on x = 0 and zero velocity on x = Lx2 for the receiving 

component respectively. These are best visualized by inspection of Figure 5.2, which 
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shows the corresponding normal and constraint modes for the two volumes. The matrices 

for the generalized coordinates 6̂  and for the jowrcg and rece/vrng components are 

then given by 

?, = [£., f , J (5.13) 

(5.14) 

where the coordinates and £„ relate to the constraint and the normal modes 

respectively. 

5.3.2 - Constraint Equations 

A constraint equation, which imposes particle velocity compatibility at the interface 

(x=0), is then given by 

Q, 
dt x=0 dt 

\ 2 

^ ^ = 0 (5.15) 

where S is the area of the limp partition and this equation is most general to allow the 

partition to cover only part of the common interface. 

It is implicit in equation (5.15) that the same reference coordinate (see Figure 5.1(a)) is 

used for both component 1 and component 2. Using the Least Squares Method to 

minimize the function Cct with respect to each unknown variable in equation (5.15) and 

considering equation (5.7), the following linear sets of equations can be obtained in 

matrix form as 

^ = ^ = 0 => (5.16) 

where G = (5.17) 

and R, = | R , ! R j (5.18) 

where and /?2 ^ 6 the sub-matrices containing the terms, i.e. the component modes 

evaluated at the interface, Y, and - for components 1 and 2 respectively. 
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J.J.J -

The equations of motion for component 1 and component 2, with the former including 

the approximate dynamic effects from the limp partition in the generalized modal mass 

[69], are expressed using Lagrange's equations in terms of their generalized coordinates 

E as 

(5.19) 

where 
x=-L,i 

and =0 (5.20) 

where 2. is in general a vector of Lagrange multipliers to apply the interface constraints. 

M, Cd, and K are the modal mass, damping and stiffness matrices for the components 

respectively; and F, is the generalized force on the acoustic component 1 [70]. F / is the 

imposed force amplitude. 

The modal mass Mp of the partition is used to simulate the interface loaded modes of 

component 1 [69]. The corresponding eigenproblem for the component 1 is then of the 

form 

£,=0 

The set of equations for the entire system is then given by 

(5.21) 

(5.22) 

where 
0 

0 ' 0 ' 'K, 0 ' 
; ? = ; z = 

'K, 
; ? = 

0 Qj 
; z = 

0 ^2 . 

1̂ 1 
I 0 

fj., g and x are the system modal mass, damping and stiffness matrices respectively. 

F j is the column vector containing the generalized forces exerted on the fluid 

components. 

It can also be seen that the coordinates G defined in equation (5.17) are not linearly 

independent in the set of equations (5.22), due to the constraint equations (5.16), i.e. 
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there are more equations than unknowns. Alternatively, a linear modal transformation 

can be used to solve the set of equations (5.22) in terms of generalized independent 

coordinates q., which allows for a reduction of the number of variables due to the 

constraint equations available. The transformation is then given by 

=7:i& C5.:23) 

where G ' = [ e , , : e „ c. , £ , J (5.24) 

and q ,= lc„ (5.25) 

The matrix G' is the rearranged matrix of G in terms of dependent and independent 

coordinates. Equation (5.16) can be rearranged and also rewritten as 

a ; G ' = o (5^6) 

and C)27) 

where and R- are the sub-matrices containing the coefficients of the dependent (f^,) 

and independent set of generalized coordinates respectively (i.e. 6^,, and 

Accordingly, the transformation matrix is thus given by 

Tr 
a;'*, 

(5.28) 

From equations (5.23) and (5.26) it is seen that R'̂ T^ = 0 . Therefore, equations (5.22) 

and (5.23) can be combined to take the form 

(5 29) 

whe:re JkfG = Z;?;, 7;,- JCc = Z;,- C,, = JF, = jT/fr (530) 

Thus, equation (5.30) defines the modal matrices in terms of the independent variables 

and equation (5.29) is subsequently solved. In addition, for the case of a limp panel 

over a common interface, only one constraint equation is defined by equation (5.16). 
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5.4 - Numerical Results 

The simple one-dimensional example was considered here in order to illustrate the 

application of the CMS approach in structural-acoustic interaction problems. A 

comparison between the CMS approach and the one-dimensional analytical wave 

approach described in section 5.2 is made, in order to assess the performance of the 

method for sound transmission problems. In addition, the CMS model is later compared 

to the Modal model, which uses modes with uncoupled boundary conditions. 

The configuration of the system used is shown in Figure 5.1. Three different models 

were used in order to illustrate the method. In the first two models, a comparison 

between the CMS and an analytical model is made in order to validate the CMS 

approach and formulation for force excitation. Subsequently, the modal method is 

compared to the CMS method in a third model which incorporates velocity excitation, as 

has previously been considered in the thesis. 

For the first one (Model 1), the lengths of the rectangular acoustic volumes were both 

equal to 10 m (L /̂ =Lx2 =10 m). The volumes of both components were equal to 40 m^. 

The thickness and cross sectional dimensions of the partition connecting both volumes 

were 0.01m and 2m x 2m respectively. A constant loss factor damping equal to 7] =0.01 

was used for both the normal and constraint modes. For the one-dimensional wave 

approach, a complex wavenumber k was selected for the propagating plane waves [48]. 

The loss factor used for the wave model was also r] = 0.01. 

For the source subsystem (component), 18 free-fixed normal modes and 1 constraint 

mode have been used. For the receiving subsystem, 11 fixed-fixed and 1 constraint mode 

have been considered. The first 11 uncoupled and coupled natural frequencies for Model 

1 are shown in Table 5.1. The set of component modes is illustrated in Figure 5.2. No 

velocity is involved in the bulk compression mode n=0. There are other possible 

combinations of component modes, such as the free-interface normal modes plus 

attachment modes [69]. However, no other combination fulfil all criteria of mode 

selection, such as linear independence, low computational expense, accuracy, simplicity, 

etc., but for the one that employs constraint modes and fixed-interface normal modes 

[68]. 
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The calculations were performed using only one-dimensional wave propagation. At high 

frequencies tangential modes cut-on, but these have been ignored for the purposes of 

comparison with the one-dimensional wave approach. The effect of oblique modes is 

discussed in Chapter 6 where a complete 3D implementation is described. 

A frequency cut-off criterion was used to select the number of modes in each component. 

All normal axial modes, which are plane in the cross-section and have natural 

frequencies less than or equal to 300 Hz, were included. The overall system equation of 

motion, given in equation (5.29), is solved at each frequency. 

Figures 5.3 and 5.4 show the frequency response of each subsystem in terms of the 

spatial-averaged mean square sound pressure level for a limp partition with nominal 

mass densities of ph = 8.1 kg/m^ and ph = 78.5 k g W respectively. For both cases, the 

sound pressure levels were similar in behaviour. The CMS and one-dimensional wave 

model were nearly identical over most of frequency range. The CMS model comprised 

normal free-fixed velocity modes, which were excited by a plane force source located at 

the rear of the source component. In addition, the peaks in the frequency response 

corresponded to the resonance frequencies of the combined system, as expected. 

In the receiving component, there are also insignificant differences between the CMS 

and the one-dimensional wave model. Both the CMS and wave models exhibited some 

peaks in the receiving volume at similar frequencies. These frequencies are related to the 

modes of the fixed-fixed receiving component. However, alternate peaks, which 

correspond to the resonance frequencies of the coupled system, can also be seen in the 

response of the receiver volume in these cases. 

Figure 5.3-a shows that at very low frequencies (below 20 Hz), a difference of less than 

2 dB can be seen at the resonance peaks. It is related to different sensitivities of the 

damping models used in both approaches at low frequencies. 

Figures 5.5 and 5.6 show the mean square sound pressure and particle velocity 

distribution along the length of the source and receiving volumes at 80 Hz and 10 Hz 

respectively. The results for pressure distribution are shown in Figures 5.5a and 5.6a. It 

can be seen that there is a pressure discontinuity at the interface between the components 

for both approaches. The particle velocity results shown in Figures 5.5b and 5.6b (in dB) 

were normalized with respect to a volume velocity =3x10'^ mVs divided by the 

partition area S = 2m x 2m. The calculated fluid particle velocity is non-zero and 
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continuous at the interface. For instance, this is not the case for the modal model where 

the particle velocity is zero at the interface. For the receiving room the differences shown 

in Figure 5.5-a and 5.5-b are due to differences in the damping models at that particular 

frequency. Moreover, in Figure 5.5-a the differences close to the source (x<-9) are due to 

the open end at x = -10. This implies that the dynamic component of pressure tends to 

zero at this open boundary. For the results in Figure 5.6 the difference between the CMS 

and the exact one-dimensional formulation is negligible and not discernible. 

Figure 5.7 shows the comparison of the Noise Reduction NR [82] predicted in narrow 

bands. The NR was calculated using 

NR = lOlog^o in cUB (5.32:) 

where and ^re the space-averaged mean square sound pressure in the source 

and receiving volumes respectively. Figure 5.7a is for the partition with mass per unit 

area p/z=8.1 kg/m^ and Figure 5.7b is for a heavier partition withp/t= 78.5 kg/m^. The 

narrow band results were obtained by subtracting the energy level in narrow bands for 

the source volume from the energy level in the same bands for the receiving volume. For 

instance, in Figure 5.4, the CMS and one-dimensional wave approach at about 18 Hz 

have a smaller peak in the receiving component but a trough in the source component. 

Therefore, the subsequent NR also exhibits a dip in these cases, which coincides. The 

NR values for the CMS and the 1-D wave approach were almost identical over the whole 

frequency range. In general, the trend in the NR results was similar for both models. The 

length in the receiving volume primarily governs the values of the resonance frequencies, 

and the absorption influences the variation of the maxima in the response respectively. 

Figure 5.8 shows that the one-third octave bands NR values obtained via the CMS and 

wave models. The one third octave band results for NR were obtained by subtracting the 

total energy level in a specific band for the source component from the total energy level 

in the same band for the receiving component. The total energy in a one third octave 

band was obtained by the summation of the energies in each narrow band. Figure 5.8 

shows the NR results for ph = %.lkglm^ and ph = 18.5kg/m^. It is seen that the models 
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produced very similar results. The differences between the two approaches were 

insignificant over most of the frequency range considered. 

In summary, the excitation for the CMS and the wave models was formulated in terms of 

a unit imposed force on the source component boundary. A force excitation source puts 

energy primarily into modes which have large in-phase velocities at the surface of 

excitation. The CMS and one-dimensional wave approach predictions for the narrow and 

one-third octave frequency bands considered have had very good agreement. 

5.4.2 Model 2 - Dissimilar acoustic components (unequal lengths) 

For the second model (Model 2), two dissimilar length components were used. The 

lengths of the source and receiving volumes were equal to 12m and 7m respectively. {Lxi 

= 12m and Lx2 = 7m). The source and receiving component volumes were 72m^ and 

42m^ respectively. The thickness and dimensions of the partition connecting both 

volumes were 0.01m and 2m x 2m respectively. Likewise as considered in the previous 

model, a constant loss factor of r] = 0.01 was used for both components of model 2. 

For the subsystem (component), 21 normal modes and 1 constraint 

mode were used. For the receiving subsystem, 12 fixed-fixed and 1 constraint mode were 

considered. The first 9 uncoupled and coupled natural frequencies for Model 2 are shown 

in Table 5.2. Figures 5.9 and 5.10 present the frequency response of each subsystem in 

terms of spatial-averaged mean square sound pressure levels for ph= 8.1 kg/m^ and 

78.5 kg/m^ respectively. The CMS and one-dimensional wave model were similar 

and almost identical for most of the frequency range with more modes existing than for 

model 1. 

Figures 5.11 and 5.12 show the mean square sound pressure and particle velocity 

distribution along the length of both source and receiving volumes at 80 Hz and 10 Hz 

respectively. The discontinuity of pressure at the interface between components is also 

evident. The particle velocity results in Figure 5.12b were normalized with respect to a 

volume velocity =3x10'^ mVs divided by the panel area S. As in the results presented 

previously, for the CMS and wave techniques the fluid particle velocity is non-zero and 

continuous at the interface. 
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Figure 5.13 shows the NR results in narrow bands. The NR values for the CMS and the 

1-D wave approach presented negligible differences over all of the frequency range. In 

general, the trend in the NR results was similar for both models 1 and 2. 

Figure 5.14 shows the NR values in one-third octave bands. It is also seen that the 

differences between the CMS and the 1-D wave approach are not distinguishable for 

either partition densities used in the simulations. 

Comparing these results with those of the previous section it appears that the fact of 

considering a smaller receiving component for Model 2, and subsequently a component 

with a lower number of modes compared to the source, has a significant effect on the 

calculation of the NR when velocity continuity (at the component interface) is imposed. 

Consequently, the NR values obtained for model 2 (Figure 5.14) via either the CMS or 

the one-dimensional wave model were lower and different than those obtained for model 

1 over most of the frequency bands. 

5.4.3 Model 3 - Baseline model used for comparison with the Modal model 

The excitation for the modal model presented in chapter 2 is based on a constant volume 

velocity source, whereas the one for the CMS and the one-dimensional wave approach 

presented previously for Model 1 and 2 were described in terms of an imposed force on 

the moving boundary. The physical implications of this difference are explained as 

follows. Force excitation puts energy primarily into modes having large in-phase 

velocities at the plane of excitation. On the other hand, velocity sources excite modes 

having large pressures at the surface (i.e. the rigid-walled modes - if they are damped). 

Thus, the results obtained via the approaches are substantially different due to the 

dissimilar input powers to the models, the effect of which does not divide out when the 

results are considered in one-third octave bands [87]. 

In order to compare the CMS, one-dimensional and modal models, similar input powers 

were considered here. The type of excitation used in the CMS and one-dimensional wave 

approaches was modified to velocity source excitation. For the one-dimensional model, 

equation (5.3) was substituted by 

—̂  = Vg at X = -L^j for the velocity acting on the source volume (5.33) 

where is the imposed velocity. 
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For the CMS model, defined in equation (5.19) was substituted by F / which is given 

by the relationship 

f / = = (5.34) 

where , 5̂  is the imposed normal surface velocity and is the cross-section 

area of component 1. 

Equation (5.34) was derived by using the momentum equation [18] which establishes the 

relationship between acoustic pressure and particle fluid velocity. Alternatively, as the 

source component is subjected to an external imposed velocity, the corresponding 

generalized velocity could be directly determined by using the Virtual Work Principle 

[13], which is based on virtual displacements or virtual change of the system 

configuration. As a result of using either approach, one has the right-hand side of 

equation (5.29) expressed in terms of both generalized velocity and the acoustic pressure 

mode shape of the source room evaluated at the excitation point (% = Zo) instead of the 

generalized force and particle velocity mode shape (equation (5.19)). 

For the third model (Model 3), two dissimilar length components were used. The lengths 

of the source and receiving volumes were equal to 5m and 3m respectively. (L /̂ = 5m 

and Lx2 = 3m). The source and receiving component volumes were 20m^ and 12m^ 

respectively. The thickness and dimensions of the partition connecting both volumes 

were 0.01m and 2m x 2m respectively. A constant loss factor rj = 0.01 was used for both 

components. 

For the source subsystem (component), 8 fixed-fixed normal modes and 1 constraint 

mode were used. This is different than previously used to accommodate the velocity 

excitation. For the receiving subsystem, 5 fixed-fixed and 1 constraint mode were 

considered instead (see Figure 5.15). Within the frequency range considered (0-300 Hz) 

a total of 9 and 5 resonance frequencies were considered for the source and receiving 

component respectively (see Table 5.3). 

Figures 5.16 and 5.17 present the frequency response of each subsystem in terms of 

spatial-averaged mean square sound pressure levels for ph= 8.1 kg/m^ in narrow and 

one third octave bands respectively. Figures 5.16a and 5.16b show that the CMS and 

one-dimensional wave model were similar almost identical at frequencies greater than 20 

Hz. On the other hand, the modal model presented significant differences. Figure 5.16a 
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shows that these differences are mainly associated with a shift in the resonance peaks. In 

Figure 5.16b it is also seen that at higher frequencies there is a difference of about 2 dB 

between the CMS and the modal model. Figure 5.17a and 5.17b shows that the 

differences (up to about 35 dB) between the Modal and the CMS model occur mainly in 

the one third band with centre frequency at 20 Hz. 

At frequencies below 10 Hz, the modal and the one-dimensional wave models show a 

fairly good agreement. However, it is seen that there are significant differences between 

the CMS and the one-dimensional wave model. It can be explained by the fact that the 

CMS model does not incorporate in the present formulation the bulk mode of the sound 

pressure field. According to the CMS method implemented, a set of fixed-interface 

normal and constraint modes is selected for each component in terms of velocity 

modeshapes. Thus, the bulk pressure mode, which is also known as the equilibrium 

mode (zero particle velocity and constant pressure), cannot be represented herein using 

this type of formulation. Below 10 Hz the coupled system has no dynamic mode and can 

be considered as a quasi-static problem. 

Figures 5.18 and 5.19 show the frequency response of each subsystem in terms of 

spatial-averaged mean square sound pressure levels for ph= 78.5 kg/m^ in narrow and 

one third octave band respectively. Comparing these results with those for the 

lightweight partition, a better agreement is observed between the CMS and modal model, 

especially at low frequencies. This shows that the numerical modal model better 

represents the coupled system for the heavy partition, as expected. 

Figures 5.20 and 5.21 show the mean square sound pressure and particle velocity 

distribution along the length of both source and receiving components at 50 Hz and 100 

Hz respectively. The discontinuity of pressure at the interface between components is 

also evident. The particle velocity results in Figures 5.20b and 5.21b were normalized 

with respect to a source volume velocity =3x10'^ m^/s divided by the panel area S. 

As in the results presented previously, for the CMS and wave techniques the fluid 

particle velocity is non-zero and continuous at the interface. 

In terms of pressure distribution Figures 5.20a shows that the CMS and one dimensional 

wave models present significant discrepancies in the source component (as x tends to 

-L^i) at 50 Hz. Nevertheless, those differences are insignificant at 100 Hz, as there is 

less influence of the bulk pressure mode which is taken into account in the modal and 
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wave models. In the receiving component the pressure distribution for the CMS and one-

dimensional wave model are very similar whereas the modal model presents some 

differences. Figures 5.20b and 5.21b show that at x=-L^^ the particle velocity is zero 

for the CMS and modal model. For the one-dimensional wave model, the particle 

velocity at x=-L^i is imposed according to equation (5.33). 

Figure 5.22 shows the NR results in narrow bands. The NR values for the CMS and the 

1-D wave approach produced small differences over most of the frequency range. The 

NR values for the CMS model were slightly different from those for the 1-D wave model 

at frequencies less than 40 Hz. It can be seen that the modal model results present 

significant differences at low frequencies Nevertheless, the trend in the NR results 

generally was similar for all models. 

Figure 5.23 shows the NR values for = and pA = 78.5A:g/m^. The results 

are presented in one-third octave bands. The CMS and wave model values are very 

similar. Nevertheless, at low frequencies they are slightly greater than the values 

obtained using the Modal model. It is shown that at higher frequencies, a difference of 

less than 2 dB is observed between the CMS and the modal approach. At frequencies 

below 40 Hz, there is a difference of up to about lOdB. On the other hand, for the heavier 

partition this difference is only about 5dB. It shows the degree of sensitivity of the 

results when considering the frequency response with light partitions at very low 

frequencies. 

Alternatively, a CMS model considering free-fixed normal modes for the source 

component (as used in models 1 and 2) has been formulated in order to be compared to 

Model 3, which is based on velocity excitation. The material and geometrical properties 

were the same as those of Model 3. However, in order to reconcile this alternative CMS 

model and the Modal model, the results were divided by the input impedance which was 

calculated by finding the particle velocity at the drive point (see Figure 5.24). Figure 

5.25 shows a comparison between the CMS model 3 and this alternative model which 

considers force excitation. The results are nearly identical over most of the frequency 

range. At very low frequencies, a difference of less than 2 dB occurs between both 

models. 
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5.5 - Conclusions 

The purpose of this chapter was to develop an original one-dimensional acoustic CMS 

model to analyse and calculate sound transmission through a limp mass panel between 

connected acoustic volumes. It is seen that the results for the CMS and one-dimensional 

wave approaches have shown excellent agreement with the force excitation formulation 

considered for Models 1 and 2. 

The traditional modal method provided reasonable results for the higher mass density 

partitions, and in particular at higher frequencies. For instance, the modal analysis for 

Model 3, which comprises two dissimilar components, has shown good agreement with 

the CMS model at higher frequencies. In addition, at frequencies below 50 Hz, the modal 

model showed better agreement with the CMS model when considering the heavier 

partition. Basically, this behaviour indicates the importance of considering the kinematic 

effect of the partition on sound transmission when more complex systems are to be 

analysed, and the beneOt of the CMS approach. 

It is clear that particle velocity modes have been used and that no velocity is involved in 

the bulk compression mode, which is purely a static stiffness mode. Therefore, the CMS 

models used in this chapter do not include the bulk mode n=0 as strictly it should if it 

were possible to analyse the system in terms of displacement modes. The effect of the 0 

Hz mode on the results was only significant at very low frequencies. This is confirmed 

by the fact the CMS model underestimated the spatially averaged mean square sound 

pressures as frequency tended to zero. Overall, the bulk mode is considerably important 

when small components or very low frequency ranges are considered in models driven 

by a volume velocity excitation. Thus, this is the case only for model 3 where the volume 

velocity is used. 

The extension of the CMS approach to three-dimensional problems in acoustics will be 

discussed in the next chapter and evaluated for transmission between two acoustic spaces 

separated by a flexible partition, the latter also possessing modal behaviour. 

In particular, the partition may or may not cover all of the common wall and it is not 

required that the components have identical cross-sections (as needed for the one-

dimensional case) or that only axial acoustic modes perpendicular to the partition exist in 

the volumes. Equations (5.7)-(5.30) can therefore be generalised, the main differences 

being described in Chapter 6. 
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Tables 

CMS model One-dimensional model 

PNI-PNI (Hz) Fc(Hz) FN (Hz) Fc(Hz) 

11.8-8.5 3.7 8.6 3.7 

27.1-25.5 11.1 254 11.1 

43.5-42.5 1&9 425 1&9 

60.2-59.5 2&9 5&5 2%1 

77.1-76.5 35^ 7&5 35^ 

93.9-93.5 415 933 416 

110.9-110.6 5L8 11&5 5L7 

12%8-127^ 6&2 12%5 6&2 

14L8-144^ 6&6 144^ 68.6 

161.7-161.7 7%1 16L5 7%1 

178.7-170.0 8 5 j 17&1 8 5 j 

Table 5.1: The first 11 uncoupled (FN) and coupled natural frequencies (Fc) for Model 1, 

which is a system comprising two identical volumes separated by a limp panel, obtained 

via the CMS and the one-dimensional wave models. The superficial mass density of the 

limp partition was yO/z = 8.1kg/m^. For the CMS model two different types of normal 

modes, i.e. free-fixed and fixed-fixed modes, plus constraint modes were used for the 

source and receiving volumes respectively. 
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CMS model One-dimensional model 

FN1-FN2 (Hz) F c ( H z ) Fni-FN2 (HZ) F c ( H z ) 

10.13-12.1 4.1 7 . 1 - 1 2 . 3 4.5 

22.8 - 36.4 lOJ 2 1 . 3 - 3 6 . 4 lOJ 

36.4 - 60.7 2L9 35.4 - 60.7 2L8 

50.3 - 85.0 26.8 49.6 - 85.0 2&6 

64.3 - 109.4 36.4 63.8 - 109.3 363 

78.4-133.7 4&1 77 .9 -133 .6 4&7 

92 .5 - 158.1 5GL9 92 .1 -157 .9 5^8 

106.6-182.6 64J 106.3- 182.1 64.6 

120.7 - 207.2 716 120.4-206.4 73 j 

Table 5.2: The first 9 uncoupled (FN) and coupled natural frequencies (Fc) for Model 2, 

which is a system comprising two identical volumes separated by a limp panel, obtained 

via the CMS and the one-dimensional wave models. The superficial mass density of the 

limp partition was p/z = 8.1kg/m^. For the CMS model two different types of normal 

modes, i.e. free-fixed and fixed-fixed modes, plus constraint modes were used for the 

source and receiving volumes respectively. 
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Modal Model CMS model One-dimensional model 

FNl-FN2(Hz) Fc(Hz) Fni-FN2 (HZ) Fc(Hz) Fni-FN2(HZ) Fc(Hz) 

0 - 0 l&O 8.4-28.3 12L8 8 .2-28.3 12.5 

34.0 - 56.7 36.6 36.4-85 .1 36.2 36 .3-85 .1 3&1 

6 8 . 0 - 113.3 594 69.3-142.1 5&9 69.0-142.1 5&6 

102.0 - 170.0 69X5 102.9 - 199.7 6&5 102.5 - 199.7 694 

136.0-226.7 1028 136.6-258.9 10Z8 136.6-258.9 10Z6 

170.0-283.3 114J 170.5 - — 114/7 170.4 ----- 114J 

2&L0 - — 136J 204/1 136/7 204.3 - — 136J 

238.0 - — 17&0 238.4 - — 170X) 238^ 170T 

272.0 - — 171.4 2723 - — 17L4 2723 - — 17L3 

Table 5.3: The uncoupled (FN) and coupled natural frequencies (Fc) for Model 3, which is 

a system comprising two dissimilar volumes separated by a limp panel, obtained via the 

Modal, CMS and one-dimensional wave models. The superficial mass density of the limp 

partition was p/z = 8.1kg/m^. For the CMS model similar types of normal modes (fixed-

fixed) plus a constraint mode were used for the source and receiving volumes. 
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Figure 5.1: A piston driven acoustic tube divided into two components 1 and 2. Velocity 

continuity and force equilibrium conditions are imposed on the limp partition at the 

interface x = 0; Fo is the force excitation. 
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Figure 5.2: Set of component acoustic particle velocity modes used in Models 1 and 2 for 

the source (i) and receiver (ii) respectively. For instance, and represents the first 

two component free-fixed interface normal modes and is the interface constraint 

mode for the source room, and are the first two component fixed-fixed modes 

and ^̂ 2 is the interface mode for the receiving room. 
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Figure 5.3. Spatially averaged mean square sound pressure for the source (a) and 

receiving (b) volumes (in dB re 2x10^ Pa) for Model 1. Lightweight partition (/3/i=8.1 

kg/m^) One-dimensional wave approach, .. .CMS model. 
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Figure 5.4: Spatial-averaged mean square sound pressure for source (a) and receiving (b) 

volumes (in dB re 2x10^ Pa) - Model 1. Heavy partition (pA=78.5 kg/m^) One-

dimensional wave approach, ...CMS model. 
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Figure 5.5: The Spatial variation of mean square sound pressure (in dB re 2x10^ Pa) 

(upper figure (a)) and particle velocity (normalized to 2„ /S where is the volume 

velocity which is equal to 3x10^ mVs and S is the panel area as shown in the lower 

Hgure (b)) at 80 Hz (/) A =8.1 kg/m^) - Model 1. One-dimensional wave approach, 

.... CMS model. 
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Figure 5.6; The Spatial variation of mean square sound pressure (in dB re 2x10"^ Pa) 

(upper figure (a)) and particle velocity (normalized to Q^/S where is the volume 

velocity which is equal to 3x10^ m^/s and S is the panel area as shown in the lower 

figure (b)) at 10 Hz {ph=S.l kg/m^) for Model 1. One-dimensional wave 

approach, .... CMS model. 
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Figure 5.7. Comparison of the Noise Reduction results, see equation (5.31), for two 

different panel mass densities (narrow bandwidth frequency) for Model 1. (a) p / i= 8.1 

kg/m^ , (b) p h = 78.5 kg/m^; One-dimensional wave approach, ...CMS model. 
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Figure 5.8. Comparison of the Noise Reduction (see equation (5.31)) for two different 

panel mass densities (1/3 octave bands) for Model 1. One-dimensional wave 

approach, ...CMS model. 
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Figure 5.9. Spatially averaged mean square sound pressure for the source (a) and 

receiving (b) volumes (in dB re 2x10"^ Pa) for Model 2. Lightweight partition (/pA=8.1 

kg/m^) One-dimensional wave approach, .. .CMS model. 
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Figure 5.10: Spatial-averaged mean square sound pressure for source (a) and receiving 

(b) volumes (in dB re 2x10"^ Pa) for Model 2. Heavy partition (/]/i=78.5 kg/m^) 

One-dimensional wave approach, ...CMS model. 
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Figure 5.11: The Spatial variation of mean square sound pressure (in dB re 2x10^ Pa) 

(upper figure (a)) and particle velocity (normalized to Q^/S where is the volume 

velocity which is equal to 3x10'^ m^/s and S is the panel area as shown in the lower 

figure (b)) at 80 Hz (/?/z=8.1 kg/m^) for Model 2. One-dimensional wave 

approach, .... CMS model. 
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Figure 5.12: The Spatial variation of mean square sound pressure (in dB re 2x10"^ Pa) 

(upper figure (a)) and particle velocity (normalized to g^/S where is the volume 

velocity which is equal to 3x10"^ m^/s and S is the panel area as shown in the lower 

figure (b)) at 10 Hz (ph=8.1 kg/m^) for Model 2. One-dimensional wave 

approach, .... CMS model. 
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Figure 5.13: Comparison of the Noise Reduction results, see equation (5.31), for two 

different panel mass densities (narrow bandwidth frequency) - Model 2. (a) p / i= 8.1 

kg/m^, (b) ph= 78.5 kg/m^; One-dimensional wave approach, ...CMS model. 
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Figure 5.14: Comparison of the Noise Reduction for two different panel mass densities 

(in 1/3 octave bands) - Model 2. One-dimensional wave approach, ...CMS model. 
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Figure 5.15: Set of component acoustic particle velocity modes used in Model 3 for the 

source (i) and receiver (ii) respectively. For instance, and represents the first two 

component fixed-fixed interface normal modes and is the interface constraint mode 

for the source room. ^̂22 the first two component Gxed-fixed modes and ^̂ 2 

is the interface mode for the receiving room. 
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Figure 5.16. Spatially averaged mean square sound pressure for the source (a) and 

" .r.-5-r.sr ] Lightwcight partition (/]A=8.1 receiving (b) volumes (in dB re 2x10"^ Pa) for Model 3. Lightweight partition iph = 

kg/m^) One-dimensional wave approach, .. .CMS model and Modal model. 
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Figure 5.17. Spatially averaged mean square sound pressure for the source (a) and 

receiving (b) volumes (in dB re 2x10'^ Pa) for Model 3 (one-third octaves). Lightweight 

partition ( p /i=8.1 kg/m^) One-dimensional wave approach, .. .CMS model and 

Modal model. 
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Figure 5.18: Spatial-averaged mean square sound pressure for source (a) and receiving 

(b) volumes (in dB re 2x10^ Pa) for Model 3. Heavy partition {ph-12,.5 kg/m^) 

One-dimensional wave approach, .. .CMS model and Modal model. 
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Figure 5.19: Spatial-averaged mean square sound pressure for source (a) and receiving 

(b) volumes (in dB re 2x10'^ Pa) for Model 3 (one-third octaves). Heavy partition 

(ph=78.5 kg/m^) One-dimensional wave approach, . . .CMS model and Modal 

model. 
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Figure 5.20: The Spatial variation of mean square sound pressure (in dB re 2x10^ Pa) 

(upper figure (a)) and particle velocity (normalized to Q^IS where is the volume 

velocity which is equal to 3x10^ m^/s and S is the panel area as shown in the lower 

figure (b)) at 50 Hz (yO/z=8.1 kg/m^) for Model 3. One-dimensional wave 

approach, .... CMS model and — Modal model. 
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Figure 5.21: The Spatial variation of mean square sound pressure (in dB re 2x10"^ Pa) 

(upper figure (a)) and particle velocity (normalized to g^/S where is the volume 

velocity which is equal to 3x10^ m^/s and S is the panel area as shown in the lower 

figure (b)) at 100 Hz {ph=%.l kg/m^) for Model 3. One-dimensional wave 

approach, .... CMS model and Modal model. 
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Figure 5.22: Comparison of the Noise Reduction results, see equation (5.31), for two 

different panel mass densities (narrow bandwidth frequency) - Model 3. (a) ph= 8.1 

kg/m^, (b) ph= 78.5 kg/m^; One-dimensional wave approach, CMS model, and 
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Figure 5.25: Comparison of spatial-averaged mean square sound pressure for the source 

component (in dB re 2x10^ Pa) between the CMS model 3 and an alternative CMS 

model which considers free-fixed normal modes (force excitation), a) narrow bands; b) 
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DIMENSIONAL FLUID-STRUCTURE INTERACTION 

6.1 - Introduction 

The description, development and application of the CMS method for the one-

dimensional fluid-structure interaction problem was presented in chapter 5, which can be 

used with some reservation on simple practical cases in engineering. On the other hand, 

most of the problems of sound transmission in buildings demand a three-dimensional 

model for better representation of the sound field distribution in acoustic spaces. In 

addition, the application of the 'limp' mass description is not entirely appropriate in 

frequency bands higher than the one which includes the fundamental resonance 

frequency of the partition. 

The main aim of this chapter is to extend analytically the CMS model to the three-

dimensional case (3D CMS model). This will be shown for simple room geometries, but 

in principle the same procedure can be developed when the component modes are 

obtained from numerical techniques, such as FE, and then applied in the described CMS 

methodology. The modal behaviour of rooms and partition is implemented in two steps. 

The first extension here is based on the one-dimensional model where the transverse 

acoustic modes of the rooms are incorporated into the formulation. The second 

extension, which is more general, considers not only the transverse acoustic modes of the 

rooms but also the structural modes of the partition. 

The results obtained via the Modal Model predictions are then compared to the 3D CMS 

model. The 3D CMS model is tested and examined for the case of two coupled rooms 

connected by a lightweight partition. As described before, the difference between the 

results obtained via the experimental tests and the modal model for a lightweight 

partition was found to be due not only to experimental errors and limitations in the 

measurements, but also to the lack of kinematic continuity in the vicinity of the interface 

between the rooms. 
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In summary, the three-dimensional modal response in coupled rooms can then be 

analysed by application of the CMS approach. The main contents of this chapter are 

presented as follows. 

Firstly, in section 6.2, a more general approach for the problem is presented. A CMS 

model is developed in terms of its acoustic components, which are separated by an 

elastic partition over the whole of the common wall interface. The constraint equations 

enforce kinematic compatibility and geometrical details. The partition is considered in 

terms of a series of independent modal components. The normal modes of a simply 

supported partition are considered here. Consequently, the constraint modes are defined 

in terms of geometrical coupling coefficients. Instead of using a transformation matrix 

technique, as described in chapter 5, the matrix description and implementation of the 

model are based here on the use of a Lagrange Multiplier technique [72]. This allows a 

more general geometry and interface to be defined. 

Secondly, the numerical results of the three dimensional CMS model are presented in 

section 6.3 for the elastic partition case. They are compared to those obtained via the 

modal model and experimental tests. The discussion of the results, including the effect of 

the choice of modes and convergence, is also presented in section 6.3. 

Finally, the summary of the main findings and conclusions are presented in section 6.4. 

6.2 - The CMS Method for the 3D case - Matrix Formulation and 

Implementation of the Model 

In this general approach, the CMS is applied to the three-dimensional case of two rooms 

separated by a common elastic partition. The constraint and fixed-interface normal 

modes for the acoustic components are used herein. In addition, the elastic partition is 

considered as a structural component, which is represented by its flexural normal modes. 

As for the one dimensional case, the implementation of the CMS method for the 3D case 

is also based on the selection of the sets of modes, definition of the constraint equations 

and system synthesis. 

6.2.1 - The definition of sets of component modes 

Two rigid-walled rooms with a common elastic partition at the interface were considered 

here as three distinct CMS components. The first one consists of the fluid volume, being 
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defined for x = -Lxi to x = 0, y = 0 to j = Lyi and z = 0 to z = L^i. The second component is 

the receiving room, which is defined by a fluid volume varying from x =0 to x = Lx2, y = 

Otoy = Ly2 and z = 0 to z = L^. The third CMS component is a partition p defined by its 

flexural structural modes. 

A constant volume velocity source, which undergoes harmonic oscillation, is placed in 

one comer of the room. It is assumed that the fluid velocity function £(x,y,z,t) can be 

written in terms of generalized velocity potential 0 (scalar quantity) by the modal 

transformation [74] 

g== os i) 

where and are matrices which consist of pre-selected orthogonal normal 

modes plus constraint modes representing the fluid velocity distribution in the x, y and z 

directions respectively. 

The modal matrices for the source component are given by 

"F., = k , ] (6.2) 

= k (6 3) 

(6.4) 

where the subscript represents the constraint mode number; c , and c^j are the modal 

numbers for the set of modes and ^ respectively. The subscripts n, I, and q 

denote the normal mode number of a particular mode in the x, y and z directions 

respectively. The matrix consists of a set of fixed-fixed interface normal modes 

) plus a set of fixed-free constraint modes ( T ) in the x direction. The matrix 

is comprised of a set of fixed-fixed interface normal modes (T, ) plus another set of 

fixed-fixed modes ( ) in the y direction, which is due to the contribution of the 

constraint modes ^ to the fluid particle velocity in the y direction. Likewise, matrix 

consists of a set of fixed-fixed interface normal modes (4^ ) plus the set of modes 

, which is due to the contribution of the constraint modes to the fluid particle 
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velocity in the z direction. Although the set of constraint modes Y contributes to the 

fluid particle velocity distribution in both y and z directions, there is no need to have any 

other set of constraint modes. This is justified by the fact that the interface between 

components is only in the constant plane x = 0. The selected orthogonal normal and 

constraint modes were defined as shape functions satisfying the geometric boundary 

conditions for each acoustic component. 

By application of the well-known relationship between velocity potential and particle 

velocity [5], the normal modes V (in the x direction) and their contributions to the fluid 

particle velocity in the y and z directions ( Y, and ) can be expressed by 

(%, y, z,f) = sin(A:̂  x) cos%_ y) cos(A:̂ ^ z) for - < x < 0 (6.5) 

(%,y,z,r) = -A;; cos(A;̂ %)sin(A;; y) cos(^ z)for 0 < y < Z , 
yi 

(6.6) 

y, z, 0 = cos(^ z) cos(^, y) sin (^ z) for 0 < z < (6.7) 

where and are equal to Z,;z y/Z,yt and respectively. 

An additional set of constraint modes , which satisfies zero velocity on x = -Lx\ and 

unit velocity on x = 0 over the partition area is used for the source room. The elastic 

partition can either cover the whole of the common boundary (x = 0) or only part of the 

common interface. For the source room component, the constraint modes Y (in the x 

direction) and their contributions to the fluid particle velocity in the y and z directions 

( T and ) are then given by 

r \ 
1 + — cos(^^ _y) cos(A^ z) (6.8) 

1 + — 
L. 

sin(^,^,y) cos(^, _z) (6.9) 

(6.10) 

222 



Chapter 6. The Development of a CMS Model for Three Dimensional Fluid-Structure Interaction 

where A: and are equal to and respectively. Equations (6.8)-

(6.10) apply over the area of the partition, even if it might only cover a partial area of the 

whole interface (common wall). 

According to equation (6.8), it is observed that the number of constraint modes _ is 

directly related to the number of different modal orders c^j and/orc^,. In addition, a 

linear function was chosen to represent the particle velocity distribution in the x 

direction, as higher order functions did not provide better convergence. 

As the particle velocity of a fluid is defined by the first order derivative of its velocity 

potential a sine function appears in equations (6.9) and (6.10), which represent the 

constraint modes velocity contributions in the } and z directions respectively. 

Additionally, it is assumed that the set of normal structural modes ^ results from the 

free flexural vibration of a simply supported rectangular thin plate (see Equations (C.2) 

and (C.12)). The derivation of the dynamic properties and the equation of motion for the 

structural component can be found in Appendix C. No constraint modes are necessary 

for the structural component. 

The modal matrices for the receiving component can be expressed as 

- k (Gil) 

= h f . J (6-12) 

= ' i ' j (6-13) 

The matrix comprises of a set of fixed-fixed interface normal modes ( ) plus a 

set of free-fixed constraint modes ( Y ) in the x direction. The matrix is composed 

of a set of fixed-fixed interface normal modes (T,^) plus another set of fixed-fixed 

modes ( ) in the y direction, which is due to the contribution of the constraint modes 

^ to the fluid particle velocity in the y direction. In the same way, matrix 

comprises a set of fixed-fixed interface normal modes ( T ) plus a set of modes , 

which is due to the contribution of the constraint modes ^ to the fluid particle 
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velocity distribution in the z direction. As for the source room, the set of free-fixed 

constraint modes is sufficient for the formulation of the problem. 

Additionally, the (x,y,z) particle velocity Cartesian components for the receiving room 

are given respectively by 

(%, y, z,r) = cos(̂ ,̂  y) cos(A: z) for 0 < % < Z. (6.14) 

(%,y,Z,f) = -A;, cos(/:^^x)sin(^;^y) cos(^^^z)for 0 < y < Z, (6.15) 

Y (%, y, z, f) = -A: cos(A:̂ ^ x) cos(A;;̂  y) sin (A: z) for 0 < z < A (6.16) 

where and are equal to g^^z/Z^z respectively. 

The constraint modes C2 in the x, y, and z directions have velocity components then given 

by 

f \ 
1 - ^ cos(A; y) cos(/: z) 

(;[:,)',z,f) = 

(%.)',z,f) = -
r \ 

1—— 

sin(A:̂ ^̂ );) cos(A;̂ ^z) 

cos(^ )')sin(^^ z) 

(6.17) 

(6.18) 

(6.19) 

where ^ and are equal to and respectively. 

6.2.2 — Constraint Equations 

Although the fluid particle velocity is considered in all directions (see equation (6.1)), for 

calculating the dynamic response of the acoustic components 1 and 2 the compatibility 

equations describing velocity continuity were only formulated in terms for the x direction 

normal to the partition or interface. In other words, although the fluid velocity function is 

equal to 6 =(5^,6^,6^), one only needs 6̂  for the formulation of the constraint 

equations at the interface. When the structural partition is considered as an extra modal 

system, the compatibility equations are given by 
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\2 

dt 
y\x=o .T=0 s 

(6.20) 

^2 = j 
^ dw^ 

[ l 3 ' J A - 0 s 
(6 21) 

where £^i and ^ ^re the fluid particle displacement in the x direction for components 

1 and 2 respectively, w is the normal displacement of the partition ( i n the % direction) 

due to its flexural elastic deformation (see Appendix C) and S is the surface area of the 

partition. These equations relate to the velocity continuity between the source room and 

partition and receiving room and partition respectively. Thus, they are used to determine 

a reduced set of generalized coordinates equal to the difference between the number of 

component coordinates and the number of constraint equations. 

As mentioned previously equations (6.8) to (6.10) can also be used for a partition 

covering only part of the boundary. In this situation the integrals in the constraint 

equations are evaluated only on the partition area. 

It is implicit in equations (6.20) and (6.21) that the same reference coordinate is used for 

all components. Using the Least Squares Method to minimize the functions C, and C2, 

and considering equation (6.1), the following matrix form can be obtained as 

a q ac , a c , 

d£ x,2 
dw. 

(6.22) 

or R M = 0 

where G = (6.23) 

"0 Ru^ "0 0 ' 

and 
0 

0 
K 
0 

0 

0 

0 
< 

0 0 _ 0 •̂ 22 _ 

(6.24) 

The column vector G and the matrix R^ contain the system generalized coordinates and 

the geometrical coupling coefficients respectively. 
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The sub-matrices 7(22 defining the geometrical coupling are 

given by 

R u = I K y { f . . . } l S (6.25) 
S 

(6-26) 
s 

K ^ = j K t ' I S (6.27) 
s 

^2, =/('?,„ (6.28) 
5 

(6-29) 
S 

where the structural modal matrix ^ is defined in equation (C.12) and the acoustic 

modal matrices and defined in equations (6.2) and (6.11) respectively. S is 

the surface area of the structural partition. 

No terms exist in coupling between the normal modes of the room ( ^ or ) and the 

partition modes (0^), as the former have zero velocity at the interface (x = 0). The matrix 

is also a diagonal matrix due to orthogonality for the structural modes. 

6.2.3 - Derivation of the Gen eral Dynamic Properties of the CMS acoustic components 

In this sub-section the dynamic properties of an acoustic component driven by a volume 

velocity source are derived using the direct application of Lagrange's equations [69]. 

Therefore, the use of scalar quantities, which are the potential and kinetic energies, is 

necessary to employ these equations. The kinetic energy Ta for an acoustic volume Vi 

can be expressed as [74] 

P.KarJ (t)dV (6.30) 

Substituting equation (6.1) into equation (6.30), the expression for the total kinetic 

energy using all of the modes employed in the formulation then becomes 
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r , p. / ( ( T , ) " % )dV, + J ( ( T , )dV, + J(cp, )dV ( $ ) ( 6 . 3 1 ) 
% % y, J 

The potential energy of a fluid inside a volume Vi is defined in terms of a velocity 

potential function 0 as [74] 

I f f 
2;i • ' • — 1 7 

(6.32) 

where K = — ^ is the compressibility of the fluid 
PiPo 

(&33) 

Using the relationship between sound pressure and velocity potential [74], the potential 

energy can then be expressed in terms of pressure as 

v.=i|(f(p'TpK (6.34) 

By assuming that the acoustic disturbances in each component are sufficiently small, a 

linear relationship between pressure and the rate of change of the displacement of the 

fluid 6(%,)',z,f) can be written as [74] 

p = — ĉ zv(e) 
K 

(6.35) 

and (f(v(c) = 
9% By 

0 (6.36) 

where k is defined in equation (6.33) and 0 is the displacement potential of the fluid. 

Therefore, substituting equation (6.35) and (6.36) into equation (6.34), the expression for 

potential energy becomes 

T \ 

9x 9% 
rfV,+| 

J n 

aCF,)" B'F, 
^ 8)' 

rfV.+J 
9z 

(0) 

(6.37) 

For non-conservative systems, a dissipation function [75, 76] must be included. For an 

acoustic component, it can be expressed as 
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/((T,)' )dV, + j((T, )dV, + 

0 (638) 

where the modal damping ratio matrix for the components and cô  is the modal 

matrix of natural frequencies. The damping matrix can then be derived from the above 

expression. It is seen that linear viscous damping was adopted for the purpose of 

simplification. This is a reasonable choice for highly reverberant acoustic spaces [5]. 

The system equations of motion can be obtained for a damped system by using 

Lagrange's equation of motion [69] as follows 

2 
dt 

= 6 , 
% 

i = 1, 2 , . . . 7 7 (6.39) 

where L is Lagrangian for the system of coupled components described below, D is the 

damping dissipation function and q̂  are the elements of the generalized coordinate 0 . 

In addition, it is assumed that the modes are real. Qi is the time-dependent generalized 

volume velocity source strength in the case of a source within an acoustic volume or 

generalized force for a general system. The Lagrangian is defined by [72] 

(6.40) 

where A is a Lagrange multiplier vector which enforces interface compatibility. 

For instance, the dynamic properties of a separate acoustic component 1 may be 

determined via Lagrange's equations (6.39), which lead to the following equation of 

motion 

\30 (6.41) 

where (6.42) 

3% a% 

aw,, 
dV,+J 

J "1 
By a); 

dV,+j (H/, (6.43) 
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; + j" k , ) ' fvv'Fy, K + j" X (6.44) 

J (% - , z - z (6.45) 

where , y - , z - z^) is the three-dimensional Dirac delta function representing 

a point volume velocity source at and are scalar 

quantities representing the modal mass, stiffness and damping matrices for the fluid 

volume respectively. is the column matrix of generalized volume velocity source 

strength where the individual terms relate to the excitation of individual model 

components. is the matrix defined in equation (6.23). is a column vector with a 

number of rows equal to the total number of constraint modes in component 1 plus the 

total number of constraint modes in component 2. 

As a consequence of classifying the modes into two categories, namely constraint modes 

and normal modes, the mass, stiffness and damping matrices are partitioned into sub-

matrices as follows 

M 3 D 

^NC ĈC 
T 

AfC ĈC 
' 1̂ .T 

'/VC 'CC 
(6.46) 

The sub-matrix and are diagonal matrices. This is true due to the 

orthogonality property of the natural component modes. The order of these matrices 

depends upon the number of modes chosen for the analysis. On the other hand, the sub-

matrices ^od are square matrices associated with the constraint modes; 

their orders are equal to the number of constraints. Finally, the rectangular matrices > 

and are associated with the coupling between the normal and constraint modes, 

as these are not generally orthogonal and cross-terms exist in the potential and kinetic 

energy expressions as well as in the dissipation function. 

6.2.4 -System Synthesis 

The equations of motion for the source room (acoustic component 1), the structural 

partition (component p) and the receiving room (acoustic component 2) are expressed in 

terms of their generalized coordinates 0 as 
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(6.47) 

+ c r $ 2 + ; i : r $2 -^2 4 = 0 

(6.48) 

(6.49) 

where /Ij, and are column vectors of Lagrange multipliers for components 1, p 

and 2 respectively. The set of equations presented above as well as the dynamic 

properties of the acoustic components Cf^, and and the generalized volume 

velocity source strength can all be derived as shown in subsection 6.2.3 using 

Lagrange's equations of motion. The dynamic properties of the structural component 

{Mp, Cp and Kp) are derived in detail in Appendix C. 

The coupled set of equations for the entire system is then given by 

jj.G +gG + xG - AR^ = 

and R^G = 0 

where 

(6.50) 

(6.51) 

'K 0 0 0 0 0 0 

A — • K 0 0 ; g = 0 0 ;% = 0 0 

A . 0 0 0 0 ^3D L,2 0 0 

and 0 0jf . The matrices /u , g and % are the modal mass, damping and 

stiffness matrices respectively. Qs is the column vector containing the generalized 

'forces' exerted on the components. It can also be shown that the coordinates G are not 

linearly independent in the set of equations (6.50), due to the constraint equations (6.51). 

The matrix of generalized coordinates G cannot easily be rearranged and partitioned 

into dependent and linearly independent coordinates as in the one-dimensional case. 

Therefore, the transformation technique, which was described previously, has not been 

adopted here. Alternatively, equations (6.50) and (6.51) may be written in the partitioned 

form [73] 

0 

G 

A I 0 
(6.52) 
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The use of the Lagrange's Multiplier technique for the present situation, whilst more 

tedious than the transformation matrix technique used in the previous chapter, permits 

the incorporation of the constraint equations in a systematic manner. Equation (6.52) can 

be solved numerically by the appHcation of a pseudo-inversion technique using Singular 

Value Decomposition (SVD) [77]. 

6.3 - Numerical Results 

In this section the results of some numerical simulations are presented in order to 

illustrate the use of the CMS method in 3D fluid-structure interaction problems. All 

results are presented for the three dimensional problem, which also includes the modal 

contribution of the partition. 

The spatial results are presented in terms of normalized mean square pressure and 

particle velocity distribution at 55 Hz, 120 Hz and 190 Hz over certain positions (planes) 

that have been specified a priori. These particular frequencies, which do not necessarily 

coincide with the fundamental room modes, were arbitrarily chosen below and above the 

lowest natural frequency of the receiving room, above which tangential and oblique 

acoustic modes are generated in the receiving room. 

Subsequently, a comparison between the CMS and the Modal model described in chapter 

2 is made in terms of spatially averaged mean square sound pressure variation and Noise 

Reduction (NR). 

6.3.1 - A three dimensional CMS model considering an elastic partition (over the whole 

common wall) 

A flexible partition with dimensions and density equal to 2m x 2m and 806 kg/m^ 

respectively was considered over the whole common interface. The thickness. Young's 

modulus and Poisson's ratio for the partition were 0.01m, 2.12x10'^ N/m^, and 0.24 

respectively. Its fundamental natural frequency is 3.8 Hz. The source and receiving room 

dimensions were as before equal to 5m x 2m x 2m and 3m x 2m x 2m respectively. A 

constant volume velocity source was placed at one comer of the source room (-5,0,0). 

As mentioned above, the following results are presented in terms of the mean square 

pressure and particle velocity distribution at 55 Hz, 120 Hz and 190 Hz. The mean 

square values are normalized to their maximum value in the plane. The normal particle 
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velocity values presented in this section were considered in the % direction normal to the 

partition. The mean square pressure and particle velocity distributions were symmetric 

with respect to the principal axes of both rooms. 

Figure 6.1 shows the distribution of the normalized mean square sound pressure over the 

horizontal plane %-z (at the room mid-plane y = 1 m) at 55 Hz. The % and z direction 

correspond to the rooms' depth and width respectively. Figures 6.1 (a) and (b) show the 

variation of mean square pressure using a three dimensional surface plot mesh and 

contour levels respectively. It is seen that the pressure variation over the horizontal plane 

x-z of the source and receiving rooms is symmetric, in particular it is plane across the 

width of the receiving room (see Figure 6.1 (b)). This can be explained by the fact that 

the first tangential mode in the receiving room occurs at about 59 Hz. There is also 

pressure discontinuity at x = 0. 

Figures 6.2 (a) and (b) show the normalized mean square particle velocity distribution in 

the X direction with respect to the horizontal mid-plane y = 1 m at a frequency equal to 

55 Hz. At the partition location the particle velocity is close to zero. 

Figure 6.3 shows the distribution of the normalized mean square sound pressure over the 

plane x-z (at the room mid-plane y = 1 m) at 120 Hz. The x and z direction correspond to 

the rooms depth and width respectively. It is seen that the pressure variation over the 

horizontal x-z plane of the receiving room is symmetric across the width of the room but 

not plane as tangential modes are excited at this frequency. Figures 6.4 (a) and (b) show 

the normalized mean square particle velocity distribution in the x direction with respect 

to the horizontal mid-plane y = 1 m at 120 Hz. It is seen that plane waves are not 

generated as in the case shown in Figure 6.2. By comparing Figures 6.3 and 6.4 with 

those of the modal model (Figures 2.19 and 2.20), it is seen that the CMS solution shows 

a different spatial distribution of sound pressure and particle velocity, especially in the 

receiving room. At this frequency, the modal model is close to a resonance and the CMS 

model is at an anti-resonance. 

At particular frequencies, it is usually difficult to make a comparison between the two 

models in terms of mean-square pressure and/or particle velocity spatial distributions. It 

may be explained by the fact that for the modal model the acoustic pressure is assumed 

to be the sum of the pressure distributions in the acoustic modes of a rectangular rigid-

walled room. On the other hand, for the CMS model 'additional' modes (constraint 
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modes) are also included in the summation and the responses at particular frequencies 

are not necessarily very similar. 

Figures 6.5 and 6.6 show the normalized mean square pressure distribution with respect 

to the vertical plane x-z along the centre line length of the room (y = 1 m) at 140 Hz and 

at 190 Hz respectively. The pressure at the end wall x = -5m, where the source was 

located, assumed a maximum value. It can be seen that good agreement was found 

between the modal and CMS model for the mean square pressure distributions at both 

frequencies. Similarly there is good agreement for the mean square particle velocity 

distribution (not shown). The results are close to particular modes of both rooms. For 

instance the natural frequency at 190.1 Hz corresponds to the modes (5,0,1) and (3,0,1) 

for the source and receiving rooms respectively. Nevertheless, in terms of mean square 

pressure distribution the results obtained via the Modal and CMS models present some 

differences for the receiving room. Figure 6.8 later shows the effect of these differences 

in the absolute pressure levels at about 190 Hz. 

In Figure 6.7 a comparison is made between the one dimensional CMS model, which 

considers a limp partition and was presented previously in Chapter 5, and the actual 

three-dimensional CMS model in terms of average mean square sound pressure. Figures 

6.7a and 6.7b show the results for the source and receiving room respectively. It is seen 

that the resonance peaks for the CMS-ID model tend to match those for the CMS-3D 

model as frequency increases. According to the Figure, the first resonance peak for the 

ID case is lower than the one for the 3D case, which considers an 'elastic' partition. This 

is due to the effect of the partition elastic properties, which is considered in the 3D CMS 

model. Some agreement can be seen near the ID modes as expected. 

Figures 6.8 (a) and (b) show a comparison between the CMS and the Modal model in 

terms of mean square sound pressure for both source and receiving rooms respectively. 

The results are shown in narrow frequency bands. A total of 90 modes (77 normal modes 

and 13 constraint modes) were used for the source room. For the receiving room, 59 

modes (46 normal modes and 13 constraint modes) were considered. 

The effect of the 0 Hz mode in the Modal model has been checked by eliminating it from 

the calculations (not shown). As a result, the variation of sound pressure in the source 

and receiving rooms tended to zero at frequencies below their first 'elastic' modes, i.e. at 

34 Hz and 56.7 Hz. Peaks at 34 Hz and 68 Hz can be seen in both the source and 

receiving rooms. However, there are some 'extra' peaks in the receiving room which 
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correspond to the coupled modes of the system. For example, the peak at about 19 Hz 

corresponds to the coupled mode 19.3 Hz shown in Table 6.2. 

Both models present slight differences in terms of their coupled resonance frequencies in 

the frequency range considered although generally the agreement is very good in the 

source room above 50 Hz and reasonably good in the receiver room. The first ten natural 

frequencies for the coupled system consisting of the rooms and partition are listed in 

Tables 6.1 and 6.2. These correspond to the eigenvalues of the unforced system 

(equation (6.52) with no volume velocity source), which are obtained using an 

eigenvalue solver. Due to the square cross-section of the rooms there are repeated modes 

apparent in the tables due to this symmetry. The peaks shown in the room responses. 

Figure 6.8 for example, can be identified in the natural frequencies calculated, some of 

which are given in the tables. For instance, it is seen that the first peak for the CMS 

predictions shown in Figure 6.8a is at about 8 Hz and is seen in the modes listed in Table 

6.2 

Figure 6.9 shows a comparison between the models in terms of variation of spatial-

average mean square sound pressure with frequency in 1/3 octave bands. Figure 6.9(a) 

presents the results for the source room. It is seen that a difference of less than 2 dB 

occurs between the models for frequencies above 100 Hz. Below 100 Hz there are 

differences of up to 10 dB. On the other hand, Figure 6.9(b) shows differences of up to 

20 dB for frequencies below 100 Hz. This might be explained by the fact that few 

acoustic 'room' modes are excited at frequencies below 100 Hz in the receiving room. 

However, it is seen that a difference of less than 5 dB occurs in the 1/3 octave bands with 

centre frequencies greater than 100 Hz. 

In general the differences became less important at higher frequencies, where the 

acoustic field became more diffuse and the system boundary conditions did not have as 

much effect on the mean square sound pressure averaged over the acoustic volume. 

Figures 6.10a and 6.10b show the Noise Reduction values in narrow and 1/3 octave 

bands respectively. The variation of the NR between the CMS and Modal models in 1/3 

octave bands tends to be less than about 6 dB at centre frequencies greater than 100 Hz. 

In this frequency range the results show low convergence. On the other hand, there is a 

fair agreement between the CMS model and Leppington's approach as frequency 

increases. 
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Figures 6.11a and 6.11b show a comparison of the spatially averaged mean square 

normal velocity of a lightweight partition calculated using the CMS and the Modal 

models. A difference of about 20 dB between the models occurs at very low frequencies. 

Nevertheless, a difference of less than 2 dB is found at frequencies greater than 100 Hz. 

Figures 6.12a and 6.12b present a comparison between the CMS and Modal model in 

terms of the variation of the mean square sound pressure for the source and receiving 

rooms respectively. The results shown are shown in narrow band and for a heavyweight 

partition. It is seen that a reasonable agreement is found between both models over most 

of the frequency range and it is better than that for the lighter partition shown in Figure 

6.8. The first ten natural frequencies for the rooms, partition and the coupled system are 

listed in Tables 6.3 and 6.4. It is seen that there are some degenerate modes due to the 

symmetry of the rooms. 

Figure 6.12a shows a slight difference between the models at approximately 12 Hz. 

Figure 6.12b shows that there are peaks at 85 Hz and 120 Hz in the modal model but not 

in the CMS model. This might be explained by the fact that the CMS did not incorporate 

'rigid-body' modes in the formulation. Therefore, as the compatibility equations were 

only formulated in terms in the x direction normal to the partition, there was no net 

volume associated with the particle velocity modes (0, h , qz) in the receiving room. 

Likewise, the one-dimension CMS model implemented in Chapter 5 did not incorporate 

the zero velocity bulk mode in its formulation. 

In Figures 6.13a and 6.13b the corresponding one third octave bands results are shown. 

Figure 6.13a shows at frequencies greater than 100 Hz a difference of less than 1 dB is 

found between both models for the source room. At frequencies below 100 Hz they show 

some differences of up to approximately 6 dB. On the other hand. Figure 6.13b shows 

differences of up to 15 dB in one third octave bands with centre frequencies below 160 

Hz for the receiver room. Figure 6.12 shows that there are peaks at 85 Hz and 120 Hz in 

the modal model but not in the CMS and that these would contribute significantly to the 

third octave band level differences. Above 160 Hz the fairly good narrow band 

agreement produces third octave band differences of less than 2 dB. 

Figures 6.14a and 6.14b show the NR values for the heavier partition in narrow and one 

third octave bands respectively. It is shown that significant differences between the 

models occur at low frequencies. As the frequency increases, a fairly good agreement is 

obtained between the models. Moreover, the CMS result shows fairly good agreement 
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with those obtained via Leppington's approach and with the field incidence Mass Law. 

For the model considered the incidence Mass Law appears to still be underestimating the 

NR at the higher frequencies being considered here. 

Figures 6.15a and 6.15b show the results comparing the partition vibration according to 

the CMS and the Modal model for a heavyweight partition. It is seen that at higher 

frequencies the results tend to a better agreement as expected. Differences of less than 3 

dB occur at frequencies greater than 100 Hz. 

6.3.2 -Comparison between the results obtained experimentally and via the numerical 

In this subsection some results are presented for comparison between the predictions (i.e. 

those obtained via the Modal and CMS models) and the measured values obtained via 

experimental tests described in Chapter 3. In order to compare the results obtained in 

Chapter 3 (i.e. using the Modal model and measured values) with those obtained via the 

CMS-3D model, the same geometrical and material properties for the partition and 

rooms were adopted herein. In addition, the same volume velocity, which was measured 

from the loudspeaker for using in the Modal model calculations (see Figure 3.15), was 

also considered in the CMS model. 

Figures 6.16a and 6.16b show a comparison between measured and predicted sound 

pressure levels in 1/3 octave bands for the source and receiving rooms respectively. The 

results obtained via the Modal model and experimental tests were reproduced here from 

Figures 3.45 and 3.46. They show that significant differences occur between the CMS 

and Modal models at very low frequencies. On the other hand, it is seen that a difference 

of less than 6 dB occurs between the CMS and the Modal model at frequencies greater 

than 100 Hz. Overall, a poorer agreement is found between the measured and predicted 

results for the receiving rooms at high frequencies. As mentioned in Chapter 3, the main 

reason for this discrepancy was due to the poor signal-to-noise ratio of the measurements 

made in the receiving room. 

Figure 6.17 shows that as frequency increases, both theoretical models tend to diverge 

from the measured Noise Reduction values. As explained previously, this is possibly due 

to the poor signal to noise ratio measured values. The noise floor for the measurements 

in the receiver room was not substantially lower than the measured sound pressure level. 

Despite significant differences occuring between the CMS and the Modal model at very 

low frequencies, these differences tend to be less than 3 dB at higher frequencies. 
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Figure 6.18 presents a comparison between the experimental test, the CMS and Modal 

models in terms of the partition normal velocity. It is seen that as frequency increases the 

results seem to converge as expected. The measured damping was used in the 

calculations. It is seen that at higher frequencies both the CMS and Modal models show 

good agreement. 

6.4 - Conclusions 

The CMS approach for the one-dimensional problem has been extended in this chapter to 

the more general three-dimensional case. The application described the coupling of two, 

in general, dissimilar rectangular volumes separated by an elastic partition which might 

form only partial coverage of a common interface with all of the rest being rigid. In 

principle, apart from the choice of the component and constraint modes, which for 

irregular volumes may require numerical (e.g. FE) calculations, the approach is very 

general and could be implemented within existing commercial software. 

For the present examples considered it has been possible to use existing analytical 

expressions for the modes under certain assumptions, e.g. simply-supported edges for the 

partition, and then rapid numerical calculations for the coupled systems have been 

possible. As previously seen in the one-dimensional case, there is a significant change in 

the detailed pressure and velocity spatial variations when correct velocity continuity is 

included but which is not so important if the spatially averaged quantities or higher 

frequencies are considered. The most important findings from the simulations performed 

are as follows, where comparison is made between the CMS and the original Modal 

Model approach. 

It was seen that the spatial distribution of sound pressure and particle velocity in the 

rooms are very complex. It usually depends on several factors such as source position, 

room and partition dimensions, frequency, etc. For the cases presented herein the 

response in the receiving volume was directly related to the degree of coupling between 

the structural and the transverse acoustic modes. 

Firstly, an elastic partition was incorporated and considered as another modal 

component. The results have shown a fairly good agreement between the CMS and the 

Modal model in terms of spatially averaged mean square pressure. Similarly reasonably 

good agreement between the models was obtained at higher frequencies. One possible 
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explanation is that the modal model, which considers rigid-walled modes, is more 

representative at higher frequencies where the system boundary conditions are much less 

important. Nevertheless, it still cannot replicate exactly the partition velocity compared 

to the CMS method. 

Secondly, some experimental results obtained in Chapter 3 are compared to the 

numerical models. It is seen that in contrast to the sound pressure in the receiving room, 

a better agreement between the measured and predicted results, which were obtained 

using the CMS and Modal models, was obtained for the source room. This is particularly 

evident from inspection of the frequency response of the sound pressure in both rooms. 

In Chapter 3, it was seen that the sound pressure measurements in the receiving room 

were significantly affected by external factors such as poor signal to noise ratio. 

In summary, the number of modes, and hence the order of the equations, increases 

significantly and for practical computational and numerical reasons the CMS approach is 

primarily useful for low frequency predictions. This comment is also applicable to the 

existing modal methods and is a consequence of the high modal density with increasing 

frequency for acoustic volumes and is a reason why statistical approaches (e.g. SEA) 

have been developed. 

In principle, the constraint equations could also be used for the application of further 

conditions based on the impedance of the walls, for example, if one requires the 

distribution of absorbing material characterized as locally reacting and quantified by a 

normal impedance. 

For irregular volumes then more general approximate methods, such as the numerical 

FE/BEM and the Trefftz techniques [71], might be more appropriate unless the normal 

modes are found numerically in advance of applying the CMS method. 

The incorporation of the approach into existing software packages for acoustics would be 

worth investigation in future studies. 

238 



Chapter 6. The Development of a CMS Model for Three Dimensional Fluid-Structure Interaction 

Tables 

fi(Hz) &(Hz) ^(Hz) Fc(Hz) 

0.0 0.0 3.8 0.00 
34.0 5&7 9.5 &02 
6&0 85^ 9.5 9.02 
&10 &10 L12 10.98 
85^ 1022 1&9 14.72 
9L5 1022 1&9 1&57 
9L5 1133 24^ 19.04 
102X) 120.2 24^ 19.04 
10&9 132.9 32/2 24.26 
10&9 141.7 32/2 2426 

Table 6.1; The first ten undamped natural frequencies of rooms and partition for the 
Modal Model considering a flexible partition with dimensions 2m x 2m. Mass per unit 
area and Young's Modulus are ph = 8.06 k g W and E = 2.12x10^ n W respectively, ' f f 
and ' f i ' are the 'eigenvalues' corresponding to the fixed-fixed normal modes for the 
source and receiving rooms respectively. 'F' is the coupled frequency with subscripts 1, 
2, 'p' and 'c' representing the source room, receiving room, partition and the coupled 
system respectively. N.B. Note degenerate modes for the coupled models because of 
symmetry in the square cross-section of the panel and volumes. 

fi(Hz) %(Hz) fp(Hz) Fc.3D(Hz) Fc.iD(Hz) 

34.0 5&7 3.8 8.1 12.8 
6&0 85^ 9.5 1L2 36.2 
&10 85X) 9.5 1L2 58.9 
&10 102.2 15^ L18 69/5 
9L5 102.2 1&9 19J 102.8 
9L5 113.3 1&9 19J 114.7 
102X) 120.2 246 245 136.7 
108.9 132.9 246 245 170.0 
108.9 141.7 322 34.6 171.4 

34.6 
37^ 

Table 6.2: The first nine undamped 'eigenvalues' of rooms and partition for the CMS 
Model considering a flexible partition with dimensions 2m x 2m. Mass per unit area and 
Young's Modulus are = 8.06 kg/m^ and E = 2.12x10^ N/m^ respectively, 'fi' and 'fi' 
are the 'eigenvalues' corresponding to the fixed-fixed normal modes for the source and 
receiving rooms. 'F' is the coupled frequency with subscripts 1, 2 and 'p ' representing 
the source room, receiving room and partition respectively. The subscripts c,3D and c,lD 
represent the 3D and ID CMS models respectively. 
N.B. Note degenerate modes for the coupled models because of symmetry in the square 
cross-section of the panel and volumes. 
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fi(Hz) fzCHz) fp(Hz) Fc(Hz) 

0.0 0.0 12^ 0.00 
34.0 5&7 3&2 12.53 
6&0 854 30.2 30.01 
854 85.0 4 8 3 30.01 
854 102.2 60.4 34.17 
9L5 102/2 6 0 4 34.17 
9L5 113.3 7&5 48.12 
102X) 120U2 7&5 56.56 
10&9 132/) 102.7 60.22 
10&9 141.7 10Z7 60.49 

Table 6.3: The first ten natural frequencies of rooms and partition for the Modal Model 

considering a flexible partition with dimensions 2m x 2m. The mass per unit area and 

Young's Modulus are ph = 78.5 kg/m^ and E = 210x10^ N/m^ respectively, 'fi ' and 'fz' 

are the 'eigenvalues' corresponding to the fixed-fixed normal modes for the source and 

receiving rooms respectively. 'F' is the coupled frequency of the undamped system. The 

subscripts 1, 2, 'p' and 'c' represent the source room, receiving room, partition and the 

coupled system respectively. 

fi(Hz) f2(Hz) fp(Hz) Fc(Hz) 

344 5&7 1 2 . 1 12.2 
684 854 30L2 1&6 
854 854 30.2 3L2 
854 102.2 4 8 3 3L2 
9L5 102.2 6 0 4 34.0 
9L5 113.3 60.4 4&1 
1024 120.2 7&5 5&7 
10&9 132.9 7&5 5&7 
108.9 141.7 102.7 6&2 
12&2 141.7 102.7 6 8 3 

Table 6.4: The first ten 'eigenvalues' of rooms and partition for the CMS Model 

considering a flexible partition with dimensions 2m x 2m. The mass per unit area and 

Young's Modulus are pA = 78.5 kg/m^ and E = 210x10^ N/m^ respectively, ' f / and 'f2' 

are the 'eigenvalues' corresponding to the fixed-fixed normal modes for the source and 

receiving rooms. 'Fc' is the coupled frequency of the undamped system. The subscripts 

1, 2 and 'p' represent the source room, receiving room and partition respectively. 
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Figures 

width [mj 0 _ 5 
depth Cm] 

a) 

- 2 - 1 

depth [m] 

b) 

Figure 6.1: Normalized mean square pressure distribution with respect to the horizontal 

plane y = Im at 55 Hz. The square elastic partition has dimensions, mass per unit area 

and Young's Modulus equal to 2m x 2m, ph= 8.06 kg/m^ and E = 2.12x10^ N/m^ 

respectively, (a) Surface plot and (b) Contour levels in relative pressure to the maximum 

in the plane. 
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Figure 6.2: Normalized mean square particle velocity distribution in the x-direction with 

respect to the horizontal plane y = Im at 55 Hz. The square elastic partition has 

dimensions, mass per unit area and Young's Modulus equal to 2m x 2m, ph= 8.06 

kg/m^ and E = 2.12x10^ N/m^ respectively, (a) Surface plot and (b) Contour levels in 

relative pressure to the maximum in the plane. 
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width [m] depth [m] 

a) 

depth [m] 

b) 

Figure 6.3: Normalized mean square pressure distribution with respect to the horizontal 

plane y = Im at 120 Hz. The square elastic partition has dimensions, mass per unit area 

and Young's Modulus equal to 2m x 2m, pli= 8.06 kg/m^ and E = 2.12x10^ N/m^ 

respectively, (a) Surface plot and (b) Contour levels in relative pressure to the maximum 

in the plane. 
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Figure 6.4: Normalized mean square particle velocity distribution in the x-direction with 

respect to the horizontal plane y = Im at 120 Hz. The square elastic partition has 

dimensions, mass per unit area and Young's Modulus equal to 2m x 2m, ph = 8.06 

kg/m^ and E = 2.12x10^ N/m^ respectively, (a) Surface plot and (b) Contour levels in 

relative pressure to the maximum in the plane. 
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Figure 6.6: Normalized mean square pressure distribution with respect to the horizontal 

plane y = Im at 190 Hz. The square elastic partition has dimensions, mass per unit area 

and Young's Modulus equal to 2m x 2m, ph= 8.06 kg/m^ and E = 2.12x10^ N/m^ 

respectively, (a) CMS model and (b) Modal model in relative pressure levels to the 

maximum in the plane. 
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Figure 6.7; Comparison between the CMS-ID and the CMS-3D models in terms of the 
variation of spatial-average mean square sound pressure with frequency (0.1 Hz 
resolution). The square elastic partition has dimensions, mass per unit area and Young's 
Modulus equal to 2m x 2m, ph= 8.06 kg/m^ and E = 2.12x10^ N/m^ respectively. 

re 2x10'^ Pa] ;(b): 101ogo([p^)/p^) [dB re 2x10'^ Pa]. The 

subscript 1 and 2 indicates source and receiving rooms respectively; — CMS-3D model; 
CMS-ID model. 
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Figure 6.8: Comparison between the CMS and the Modal model in terms of the variation 

of spatial-average mean square sound pressure with frequency (0.1 Hz resolution). The 

square elastic partition has dimensions, mass per unit area and Young's Modulus equal 

to 2m X 2m, /3A= 8.06 kg/m^ and E = 2.12x10^ N/m^ respectively. 

(a):101ogo(p;')/;?^)[dB re 2x10'^ Pa] ;(b): 101ogo(g)/p^) [dB re 2x10'^ Pa]. The 

subscript 1 and 2 indicates source and receiving rooms respectively; — CMS model; — 

Modal model. 
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Figure 6.9 Comparison between the CMS and the Modal model in terms of the variation 

of spatial-average mean square sound pressure with 1/3 octave bands. The square elastic 

partition has dimensions, mass per unit area and Young's Modulus equal to 2m x 2m, 

yoA= 8.06 kg/m^ and E = 2.12x10^ N/m^ respectively. (a):101ogQ||p^j/pg)[dB re 2x10^ 

Pa] ;(b); I [ d B re 2x10'^ Pa], The subscript 1 and 2 indicates source and 

receiving rooms respectively; — CMS model; — Modal model. 
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Figure 6.10; Comparison between the CMS and the Modal model in terms of the 

variation of Noise Reduction (NR). The square elastic partition has dimensions, mass per 

unit area and Young's Modulus equal to 2m x 2m, ph = 8.06 kg/m^ and E = 2.12x10^ 

N/m^ respectively. (a):101ogQ^p^j/^p2))[dB re 1] versus frequency ;(b): lOlogo^p^j/̂ Pz 

[dB re 1] in 1/3 octave bands. The subscript 1 and 2 indicates source and receiving rooms 

respectively; — CMS model; — Modal model; *** Diffuse incidence Mass Law; +++ 

Field incidence Mass Law; 000 Leppington's prediction. 
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Figure 6.11: Comparison between the CMS and the Modal model in terms of the 

variation of the spatially averaged mean square normal velocity of the partition (dB re 

10'^ m/s). The square elastic partition has dimensions, mass per unit area and Young's 

Modulus equal to 2m x 2m, ph= 8.06 kg/m^ and E = 2.12x10^ N/m^ respectively, (a) in 

narrow bands; (b) in 1/3 octave bands. — CMS model; — Modal model. 

251 



Chapter 6. The Development of a CMS Model for Three Dimensional Fluid-Structure Interaction 

70 

60 

X 50 

I " 

30 

g 20 

10 

0 

- 1 0 

- 2 0 

! 

v-d 

- \jV 
1 

yj/M v-d 

- \jV 
1 

50 1M 
Frequency [Hz] 

a) 

90 

80 

70 

60 

50 

40 

' 30 

20 

10 

0 

- 1 0 

- 2 0 

/I 
1 : 
1, 

1 'l ,1 l| .,. S i . 
\ j M i l ' ! ' 

M ' 1 
i r t f e 1 W"! if 1 j k 

M n 

1 K'* 
k Ik 

\ ' i / 
j j U ( 

W r 
V l\ 

50 
Frequency [Hz] 

b) 

Figure 6.12: Comparison between the CMS and the Modal model in terms of the 

variation of spatial-average mean square sound pressure with frequency (0.1 Hz 

resolution). The square elastic partition has dimensions, mass per unit area and Young's 

Modulus equal to 2m x 2m, ph= 78.5 kg/m^ and E = 210x10^ N/m^ respectively. 

(a):101ogo(A')/Po)[dB re 2x10" Pa] ;(b): 101ogo(p^)/p^) [dB re 2x10'" Pa]. The 

subscript 1 and 2 indicates source and receiving rooms respectively; — CMS model; — 

Modal model. 
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Figure 6.13 Comparison between the CMS and the Modal model in terms of the variation 

of spatial-average mean square sound pressure with 1/3 octave bands. The square elastic 

partition has dimensions, mass per unit area and Young's Modulus equal to 2m x 2m, 

ph = 78.5 kg/m^ and E = 210x10^ N/m^ respectively, (a); 101ogo|pfj/p^) [dB re 2x10' 

^Pa] ;(b): I p f j [dB re 2x10"^ Pa]. The subscript 1 and 2 indicates source and 

receiving rooms respectively; — CMS model; — Modal model. 
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Figure 6.14: Comparison between the CMS and the Modal model in terms of the 

variation of Noise Reduction (NR). The square elastic partition has dimensions, mass per 

unit area and Young's Modulus equal to 2m x 2m, ph = 78.5 kg/m^ and E = 210x10^ 

N/m^ respectively. 1] versus frequency ;(b): 

[dB re 1] in 1/3 octave bands. The subscript 1 and 2 indicates source and receiving rooms 

respectively; — CMS model; — Modal model; *** Diffuse incidence Mass Law; +++ 

Field incidence Mass Law; 000 Leppington's prediction. 
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Figure 6.15: Comparison between the CMS and the Modal model in terms of the 

variation of the spatially averaged mean square normal velocity of the partition. The 

square elastic partition has dimensions, mass per unit area and Young's Modulus equal 

to 2m X 2m, ph = 78.5 kg/m^ and E = 210x10^ N/m^ respectively, (a) in narrow bands; 

(b) in 1/3 octave bands. — CMS model; — Modal model. 
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Figure 6.16: Comparison between the measured and predicted (using the CMS and 

Modal models) spatial-average mean square sound pressure in 1/3 octave bands. The 

square elastic partition has dimensions, mass per unit area and Young's Modulus equal 

to 0.7m X 0.7m, ph= 6.83 kg/m^ and E = 2.53x10^ N/m^ respectively. 

(a):101og(,(p,')/p^)[dB re 2x10'" Pa] ;(b): lOlogo^g)/;,^) [dB re 2x10'^ Pa]. The 

subscript 1 and 2 indicates source and receiving rooms respectively; Measured; -0-

CMS model; — Modal model. 
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Figure 6.17: Comparison between the predicted and measured Noise Reduction (NR) 

values in 1/3 octave bands. The square elastic partition has dimensions, mass per unit 

area and Young's Modulus equal to 0.7m x 0.7m, ph = 6.83 kg/m^ and E = 2.53x10^ 

N/m^ respectively. Measured; -O-.CMS model; — Modal model. 
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Figure 6.18; Comparison between the predicted and measured spatially averaged mean 

square normal velocity of the partition in 1/3 octave bands. The square elastic partition 

has dimensions, mass per unit area and Young's Modulus equal to 0.7m x 0.7m, ph = 

6.83 kg/m^ and E = 2.53x10^ N/m^ respectively. Measured; -O-.CMS model; — 

Modal model. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 - Introduction 

This research was undertaken as a result of the need to improve the available analytical 

tools, such as Modal Analysis and classical methods, for prediction of sound transmission 

through partitions at low frequencies. For instance, nowadays there is a trend to design 

lighter structural elements and smaller rooms in order not only to optimize the use of space 

but also to generate higher profits. In addition, the simplification of assuming 'rigid-

wailed' modes in the calculations may not be reliable under certain conditions e.g. when 

the knowledge of the spatial distribution of the sound field is of primary importance. 

Furthermore there is little published work that considers noise transmission and structural 

acoustic coupling at low frequencies. These problems include the effect of the room 

geometry and absorption, the partition properties, geometry and its location and the effect 

of non-reverberant acoustic volumes. Therefore, this work was mainly motivated by these 

reasons and aimed at developing approaches and tools which could address some of the 

important issues. 

The development and validation of mathematical models, using Modal Analysis and the 

Component Mode Synthesis (CMS) Method, were the main goals of this research. The 

implementation of a general modal model, which allows for a detailed parametric study, 

involved the task of expanding the set of equations presented in ref. [5] to a system 

comprising two-coupled rooms. To the author's knowledge, the development of the CMS 

model described and the application of a 'sub-structuring' technique, which was mainly 

developed for solving complex structural dynamics problems, for fluid-structure 

interaction problems was novel as regards its application to sound transmission in 

buildings. 
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7.2 - Summary of results and conclusions of each individual chapter 

In this section, a review of the most important findings is presented. 

In chapter 2, the results using an existing modal model formulation have shown the 

importance of the several phenomena that are directly related to the sound insulation 

provided by building partitions. Firstly, the geometrical coupling coefficients had a direct 

significant influence on the sound transmission between two coupled rooms. They indicate 

the degree of spatial matching between structural and acoustic modes. Therefore, the 

coupling terms were related to the size of the partition, its location and transverse 

dimensions of the rooms. 

Although the best fluid-structure matching condition cannot occur at frequencies below 

the critical frequency of the panel, it has been shown that for a simply-supported elastic 

partition over the whole common interface, the symmetric rigid-walled acoustic modes 

(even modes) were better coupled to the symmetric (even) modes of the panel than to the 

antisymmetric (odd) structural modes, which led to substantial deterioration in the sound 

insulation. Secondly, the room volumes (considering similar or dissimilar rooms), were 

also important for predicting the sound insulation. A large variation in the Noise 

Reduction (NR) was observed and is mainly due to the low modal density in the rooms 

considered. 

Furthermore, it was seen that similar rooms had a pronounced effect on reducing the NR 

due to the occurrence of similar modes in both source and receiving rooms, which have 

identical natural frequencies [78]. 

By assuming light and evenly distributed damping in the rectangular cross-section rooms, 

real and orthogonal cosinusoidal modes were selected for the calculations. In other words, 

the modal model considered the damping effect in the rooms basically in terms of each 

individual modal damping in the subsequent formulation and equations of motion. 

With regard to the Mass Law and Leppington's approaches, it has been found that these 

underestimated the NR values in the very low frequency range, as the diffuse field 

condition is assumed in their formulation. However, the predicted NR levels obtained via 

the Modal model converged to those calculated using the Mass Law and Leppington's 

formulations at high frequencies. Overall, the modal model was capable of reproducing 

reasonably well some of the results presented in the published literature. 
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The main aim for Chapter 3 was to validate experimentally the Modal Model presented in 

the previous chapter. Firstly, the measurement of the frequency response for the sound 

pressure inside a single room and the quantification of the source volume velocity of a 

conical loudspeaker provided a critical insight into the assessment of the measurement 

accuracy. Secondly, the comparison and correlation of experiment and prediction was 

made for a system comprising two rooms coupled by a single-leaf partition. Thirdly, the 

analysis of the frequency response for the partition was made, by investigating which 

peaks corresponded to either structural or acoustic modes. 

The experimental results and predictions have shown a reasonably good agreement for the 

single-room experimental test, within a tolerance of +/- 3dB (in one-third octaves). 

Although the experimental and predicted results for the two coupled rooms models 

presented significant discrepancies for the sound pressure in the receiving room, a 

reasonable agreement was obtained for the source room measurements. 

One of the main difficulties was to assess the acoustic model damping at low frequencies 

and light absorption using a reverberation time technique, which is ideally suited for 

measurements in a diffuse and reverberant field. In addition, the low signal-to-noise ratio 

in the receiving room also affected the quality of the results measured. Moreover, 

considering the determination of the partition normal velocity the influence of noise in the 

SLDV measurements might have been significant. For instance, the problems associated 

with the signal-to-noise ratio mainly depend on the target (a surface which is capable of 

reflecting the laser beam adequately), type of scan and measurement frequency range [49]. 

Overall, the main goal of the chapter has been achieved and the modal model was 

therefore reasonably well validated for the purposes of further sensitivity and variability 

investigations. 

The sensitivity and variability of the modal model in terms of geometric factors, panel 

position, room absorption and panel damping were reported in Chapter 4. Firstly, the 

results indicated a strong dependency of NR on room dimensions at low frequencies. This 

may be explained by the fact that the transmitted intensity through the partition depends 

on the degree of spatial matching between the partition structural modes and the acoustic 

modes of the receiving room. 

Nevertheless, above a certain frequency, the differences between configurations were 

substantially reduced. Therefore, the room dimensions became large compared to the 
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acoustic wavelength and also there were many modes in the rooms and the acoustic field 

became more diffuse. Thus, the rooms became alike in terms of possessing high numbers 

of modes and the NR was no longer greatly affected by variation in either room's 

dimensions. Furthermore, it is seen that the difference between the diffuse incidence Noise 

Reduction the 'actual' Noise Reduction tended to zero, as expected. 

As mentioned previously in Chapter 1, at high frequencies the results tend to be more 

dependent solely on the partition transmission properties and the absorption of the 

receiving room (see also equations (1.1) and (2.49)). It is well known that at high 

frequencies the NR values are mainly influenced by the variation in the receiving room 

absorption, area and transmission efficiency of the partition rather than the source room 

properties. On the other hand, at low frequencies there are few modes and the 

interpretation of the results is considerably more difficult. Furthermore, the results 

obtained have not considered any flanking transmission contribution although in practice 

this also may occur. 

The reverberation time Tgo had a signiRcant effect on the NR differences in the frequency 

range where there were no modes. It might be explained by the fact that in this region only 

the Mass Law results varied with 7^. 

The influence of panel position on sound transmission was not significant in the frequency 

range where there were no acoustic modes. However, there were significant variations in 

certain frequency bands where the panel dimensions and wavelengths were of similar 

orders of magnitude. 

For the frequency range considered, the 'empirical model' for the variability of CLF 

developed in ref. [58] was reasonably applicable for enveloping most of the numerical 

results presented in Chapter 4. 

Chapter 5 emphasized the significance of considering velocity continuity effects on the 

prediction of sound transmission via the implementation of a one-dimensional CMS 

model. An excellent agreement between the CMS and the one-dimensional analytical 

model was achieved. In comparison with the CMS model, the Modal Model produced 

slightly lower spatially averaged sound pressure levels at the very low frequencies. 

An exception occurred at the system resonance frequencies, which corresponded to the 

coupled natural frequencies of the rooms where similar values were found for both 
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approaches. For the heavier partition, better agreement between the Modal and the CMS 

model has been obtained. Therefore, for the results in one-third octave bands small 

differences between the models were observed and noted. 

Finally, the purpose of Chapter 6 was to extend the CMS model from the ID-case to the 

three-dimensional case (3D-case), where the application of the method becomes more 

representative of real problems. Thus, additional particular features were necessary in the 

extension. For instance, the normal and constraint modes were for the whole volume, 

where the latter were of the form (l + %/Z,_^;)cos(:yi;zy/I, ;)cos(c^i;zz/Z,;i) in the 

rectangular source volume Vi (L^j x L^j x L^j) for example. In addition, the constraint 

equations were generalized and a summation over all axial, tangential and obhque modes 

taken into account. 

The simulations were performed in order to compare the results obtained via the CMS and 

the Modal model. In general, significant differences (up to about 10 dB) between the 

models were mainly observed at very low frequencies (e.g. in the one-third octave band 

with centre frequency of 40 Hz). This is due to the effect of having only one or two modes 

in a particular frequency band, so that for models having different natural frequencies the 

results present some differences in the corresponding band. Most results have shown that 

these differences tended to be less pronounced at higher frequencies where the boundary 

conditions, e.g. at the interface between rooms, appear to have less significant effect on 

the spatially averaged results. 

7.3 - Main outcomes for the project 

The development and implementation of refined and improved mathematical models have 

been presented. These were based on the modal expansion method and CMS for the 

prediction of sound transmission through partitions at low frequencies and are important 

contributions to the field. For example, the models can also be developed or extended by 

other researchers for their own academic purposes. Likewise, it will be feasible to use the 

CMS approach with a numerical technique, e.g. FEM, the latter being used to obtain the 

individual component modes required to input into the CMS approach for a coupled 

system. 

In addition, the simulation of real problems can still be made with these models. Although 

the applicability of the presented improved models, e.g. in building acoustics, is greatly 
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restricted to certain conditions, such as low frequencies, small and regular components, 

light damping, etc., the models may still be used in practice. For instance, the results may 

be useful for predicting the Coupling Loss Factor (CLF) which is an important parameter 

in SEA analysis. The procedure developed will allow such a parameter to be based on 

more realistic features of the physical model. 

The main conclusion of the CMS work is that at least for the ID-case, the predictions have 

shown that the CMS method can better represent the fluid particle velocity continuity at 

the flexible interface between the components than the modal model. Nevertheless, the 

CMS model cannot predict the spatially averaged mean square sound pressure and fluid 

particle velocity correctly to zero Hz. This might be explained by the fact that the CMS 

did not incorporate the bulk mode in the present formulation. 

In addition, using the CMS method, which is basically a substructure technique for 

dynamic analysis, large fluid-structure interaction problems can be handled in a more 

efficient way. Although the CMS model presented in this thesis is more complex and 

certainly no smaller numerically than the modal model, it might be more accurate and 

could be generalized. 

7.4 - Discussion and recommendation for future work 

Further research is needed in order to extend the applicability of the CMS model to more 

general sound transmission problems in buildings, such as rooms with irregular shapes and 

heavy damping, clamped partitions, etc. Thus, an alternative parametric study can be made 

in terms of the variability and sensitivity of the transmission efficiency. This might be very 

extensive because of the wide range and number of parameters. In principle, it would be 

possible to vary, say, the room natural frequencies and predict the variations in the 

coupled system response using the CMS formulation and provide relationships between 

the statistical variations of the inputs and outputs in various forms. In this way, as required 

for SEA, ensemble averaged results could be obtained. 

In addition, when one uses the CMS and have the fixed-fixed modes in the receiver room, 

be it one or three dimensional, it would be useful to include the bulk mode in the 

formulation. This could be done by considering the rigid-body mode, which is a special 

case of the constraint modes (e.g. using velocity potential mode shapes). In the rigid-body 

mode the frequency is zero and the fluid is deformed statically and elastically but there are 
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no inertia] terms, i.e. like a spring. It can be defined to any set of boundary coordinates 

that is just sufficient to restrain the rigid-body motion of the component [13, 68]. 

The transmission models can provide an enhancement for incorporation within SEA 

modelling, which is an accepted tool for practical building acoustics and design but has 

usual assumptions of reverberant acoustic spaces and a high enough modal overlap. The 

acoustic predictions from the models presented do not require either of these conditions to 

be fulfilled. Similarly the effect of partition location can be incorporated. 

Alternatively, the use of the CMS model in fluid-structure interaction problems other than 

sound transmission in buildings is also another interesting application of the method. For 

example, the prediction of sound transmission between two enclosures containing fluids of 

different characteristic impedances for underwater applications could be considered as 

well as the application of constraint techniques also allowing for more complex geometric 

coupling to be undertaken, if necessary. 

The problem of low frequency noise reduction still remains an issue, which this project 

has not been able to resolve, because basically the laws of physics for existing 

configurations do not provide any possibility for further significant reduction. Alternatives 

that could be considered, and for which the CMS approach might be a useful tool, are the 

possibility of inhomogeneous panels, panels with mass distribution, attached tuned 

neutralizers or absorbers, etc., and these could be readily simulated within the CMS 

models as only the partition model formulation would require modification. Once potential 

contenders for design have been identified, a complementary detailed numerical 

calculation (e.g. a coupled FEM-BEM model) might be appropriate for the next stage and 

the work of the CMS model might then have reached a good conclusion in assisting the 

design process. 

In summary, as can be seen above, there are significant opportunities for further 

development and implementation of the models derived in this study and the author will 

attempt to continue in the field and pubhsh on it. 
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Appendix A. 

The Eigenvalue Problem - Matrix Formulation 

This appendix describes the implementation of the Modal model using a matrix 

formulation. Firstly, the eigenvalue problem, which was implemented in MATLAB, is 

presented. Secondly, the matrix implementation for the calculation of the system frequency 

response is shown. 

Basically, a eigenvalue problem is described in its standard form as 

0 (A.1) 

where A is the dynamic matrix, I is the identity matrix and y is the response function. 

The solution of the eigenvalue problem, for the fluid-structure interaction case described in 

chapter 2, led to a system of a standard second order differential equations in the form 

CA.2) 

where [M], [C] and [K\ are the mass, damping and stiffness matrices respectively and [y] is 

the column vector representing the generalized coordinates of the system. 

Using a MATLAB code for the conversion of a second order differential equation to a 

system of two first-order differential equations, the first-order system for equation (A.2) 

can then immediately be obtained by [79] 

(A.3) 

Therefore, setting = [y, using equations (A.2) and (A.3), one can obtain the 

following relationship 

} = 
0 I 

); = A y (A.4) 

Thus, the characteristic equation for the eigenvalue problem defined by equation (A.l) is 

2 7 4 



det(A-A/) 

0 0 

0 : 

0 - /L 

[ /J 

[ ~ M - ' K ] - [ M - ' C ] -

VI, 0 0 

0 : 

0 • • • A 

M (A.5) 

The dynamic matrix for the modal model described in Chapter 2 was 

0 / 
A: 

^nl,p,n2 ^nl,p,n2 
04 6) 

and CO. n\,p,n2 

•'nl,p,n2 

0 0 

0 0 

0 0 

G, 0 

-T, T2 

C&7) 

0 -^2 

OA 8) 

where &nd cô  are the natural frequencies (in radians) for the source room, 

receiving room and partition respectively. are the modal damping 

matrices for the source room, receiving room and partition. These variables are all defined 

in the context of Chapter 2. Accordingly, the matrices Gi, G2, Ti and Tj were given by 

A_ ' ^ A_ 
0 \ 4 ) 

T,= 
A, ' -̂ 2 A, 

(A. 10) 

where Co and are the sound speed and density of air respectively, S is the partition 

surface area, Q ^ and ^ are the spatial coupling coefficients, Â ^ and Â ^ are the 

modal volume of the source and receiving room, and finally A^ is the partition modal 

surface area. These variables are also defined in the context of Chapter 2. 

275 



Appendix B. 

The accuracy of the measurements - Statistical Parameters 

The most frequently used statistical parameter, which is simply the arithmetic average of n 

values, is often considered by comparing measured and predicted sample mean values. The 

sample mean x is defined as [46] 

(=1 (B.l) 

The probability distribution of data obtained from noise and vibration measurements 

within a subsystem may often be assumed to be normal [64]. Thus, the statistical 

calculations done in this work assume that the acquired data are normally distributed. 

Hence, the measure of accuracy used in this work is the 95% confidence interval. It is 

defined as the range of values for which the true mean value pi is expected to lie 95% of 

the time when the tests are repeated. Thus, the confidence interval for fi with a confidence 

level of approximately 95% is given by 

^ ^ ^ ^'^h.915,n-l ^ 2) 

^ = (B.3) 
Y M-1 

where ?0 975 «-i is the value of the Student t distribution function and s is the sample 

standard deviation [64]. The parameter ?o.975,n-i tends to 1.96 as Thus, equation 

B.2 may be written 

x-j^l.96 x + :yl.96 
- < / / < — (B.4) 
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Appendix C. 

Derivation of the Dynamic Properties of a Elastic Panel 

The kinetic energy Ts for a plate in flexure is defined as [69] 

(Cl) 

Using the modal expansion, an approximated expression for the plate normal velocity 

w;(f) is given by 

w 
p=i 

(C.2) 

where 0piy,z) and P represent a mode shape p and the total number of assumed-modes 

for the structural partition respectively; 

Substituting equation (C.2) into equation (C.l), yields 

^ p=l (7=1 

(C.3) 

where m = mass per unit area of the plate. By using the orthogonality condition [69], the 

cross terms are then eliminated from the calculations. Equation (C.3) may then be 

evaluated as 

1 ^ 
r, I'n'Pl'Pp'IS 

/)=1 S 

(C.4) 

Likewise, the potential strain energy Vs is defined as [69] 

1 ' ' 

w I D 
dz' 

+ 2u 
a / 

+ 

V A y 
a / 

V y 

(C.5) 

where D is the plate flexural rigidity. 
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For non-conservative systems, a dissipation function D [75, 76] may be included. For a 

flexible structural plate with viscous damping, it can be expressed as 

(C.6) 
p=l <7=1 

where is the modal loss factor for the plate and cô  is the natural frequency which 

corresponds to the mode number p. The damping matrix can then be derived from the 

above expression. It is seen that linear viscous damping was adopted for the purpose of 

simplification. 

The dynamic properties of the plate can be obtained by substituting the kinetic and 

potential energy and the dissipation function expressions into Lagrange's equation given in 

ref. [69]. Thus, the damped system of equations of motion for a mode p of a uniform plate 

can then be written as 

where 

(C7) 

(C.8) 

(C.9) 

and 
s 9z 

V J 

+ 2u 

V y 
97' 

+ 6^ (C.IO) 

(C.11) 

where the parameters Mp, Kp, C and Fp represent the modal mass, modal stiffness, modal 

damping and generalized force on the plate respectively. 

The analytical mode shape for a simply-supported rectangular plate in vacuo is exactly 

described by 

(7-,^)=sin(A )sin(^ ) (C.12) 
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where = - ^ and 2ate wavenumbers in the y and z directions 
' ^ y r ^ Z T 

respectively. 

Substituting equation (C.12) into equations (C.8), (C.9) and (C.IO) then leads to the 

following results 

(C.13) 
4 

and (C.15) 

where 6/ (C.16) 

where co represents the angular natural frequency of mode p{r, s). 
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