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Malaysia’s shoreline is dynamic and constantly changing. Increased coastal population,
rapid urbanization, oil and gas production, tourism development, large rainfall throughout
the year and various economic activities have created numerous environmental and
ecological problems in Malaysia's coastal areas. Malaysia's severe coastal erosion caused
by a variety of natural and human-made processes has been a subject of major national
concern. As the boundary between land and water surfaces the shoreline is one of the
most basic and common features represented on maps. It can, however, be difficult to
map accurately, particularly if the coast is dynamic. Remote sensing has been used widely
to map the shoreline and offers the potential to update maps frequently. The shoreline
could be mapped accurately from fine spatial resolution satellite sensor imagery. Utilizing
fine spatial resolution satellite sensor imagery a shoreline prediction with an RMSE of
1.80 m was achieved. But this is an impractical approach for use over large areas.
Alternative approaches using coarse spatial resolution satellite sensor imagery were
examined.

A pilot study was conducted to examine the potential of these methods on a linear
stretch of shoreline. Using a simulated 20 m spatial resolution imagery, a conventional
hard classification yielded a shoreline prediction with an RMSE of 6.48 m. To increase
the positional accuracy, methods of fitting a shoreline boundary at a sub-pixel scale were
examined. Initially a soft classification was applied to predict the class composition of
image pixels which were located geographically using sub-pixel mapping techniques.
Several sup-pixel mapping methods were applied; contouring, wavelet interpolation and
two-point histogram. In the pilot study, the two-point histogram method obtained the
most accurate prediction with an RMSE of 2.25 m followed by wavelet interpolation and
contouring with an RMSE of 2.82 m and 3.20 m, respectively. This work was extended
by analysing effects of shoreline orientation on the prediction. Using a 16 m spatial
resolution imagery as a basis for analysis the accuracy of the shoreline prediction varied
with orientation. For example, result from the two-point histogram method varied from
the RMSE from 1.20 m to 2.08 depending on the shoreline orientation.

To further increase the accuracy of the shoreline prediction, the method was
revised by using localised training statistics in the derivation of the soft classification.
Using the two-point histogram method, the use of the revised approach yielded shoreline
prediction with RMSE ranging from 0.97 to 1.10 m. The result indicates that the accuracy
of the shoreline prediction was positively related to the accuracy of the soft classification.
This approach of shoreline mapping satisfied the requirement for mapping at a 1: 1,500
scale.
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Chapter 1: Introduction

1 Introduction

Coastal zones are the transition area between the terrestrial and marine environment.
They provide various services and have become an important region of human
activities. The large extent of human activities at these areas have caused various
environmental problems. These problems include beach erosion, resource depletion,
environmental degradation, and destruction of natural habitats (Cicin-Sain and Robert,
1998; Adams and Minor, 2002; Byrnes et al., 2003; Bowman and Pranzini, 2003).
Malaysia, being largely surrounded by sea, is not immune to these problems and to

attempt to reduce them has made the management of coastal areas a priority.

Coastal erosion has been a major concern and during 1984-1985, the Malaysian
government launched the National Coastal Erosion Study to quantify the effect of
coastal erosion to the Malaysian shoreline. According to this, out of 4,800 km of the
shoreline in Malaysia about 1,400 km were subjected to critical erosion. The severity
of shoreline erosion was defined by several factors including its geomorphological
properties and land use (Stanley consultants Inc. et al., 1985). To help coastal
managers make informed and responsible decisions, accurate shoreline maps are

required.

To monitor shoreline changes, the Malaysian government has allocated a large
amount of funds to survey coastal areas using conventional methods such as aerial
photography and ground surveys. Due to the large extent of the Malaysian shoreline
and limited resources the shoreline has only been mapped every 5 years. Aerial

photography and ground survey techniques are expensive and require trained staff and
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expensive equipment (Bohnestiehl, 2001). The time required for the post-processing of
aerial photographs and ground surveys are also long resulting in outdated maps when
completed (Zuzek et al., 2003; McKenna et al., 2003). Due to the time requirement
needed to produce these maps aerial photography and ground surveys techniques are
inadequate to efficiently monitor dynamic areas such as coastal areas. Therefore, there
is a need to develop new techniques of shoreline mapping that are capable of

producing shoreline maps quickly and cost effectively.

Remote sensing satellite sensor imagery has been used widely to monitor
coastal areas and offer the potential of updating maps frequently (Clark, 1983;
Balopoulos et al., 1986; Dekker et al., 1992; Elraey et al., 1995; Cendrero and Fischer,
1997; LaValle and Lakhan, 2000; Lemmens, 2001; Stauble, 2003). Early research in
the application of satellite sensor images for shoreline mapping relied on coarse spatial
resolution satellite sensor images (Blodget and Taylor, 1990; Dwivedi, 1997; Frihy et
al., 1998; Byrnes et al., 2003). Despite the coarse spatial resolution, satellite sensor
imagery has assisted in understanding small cartographic scale coastal erosion in areas
such as the Nile Delta (Blodget ef al., 1991; El Asmar, 2002). To observe more local
scale changes, finer spatial resolution satellite sensor imagery are required. The new
generation of fine spatial resolution sensors such as 1 m spatial resolution IKONOS
panchromatic imagery provide the capability to resolve small changes (Li e al., 2001).
But to process fine spatial resolutioﬁ satellite sensor imagery requires, among other
things, computers with large hard disk capacity and processing power limiting the
application of fine spatial resolution imagery to mapping small areas. Fine spatial
resolution satellite sensor images are often inappropriate and expensive, particularly
when mapping the shoreline of a whole country such as Malaysia. For practical

reasons, therefore, mapping large stretches of shoreline can rarely make use of very
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fine spatial resolution data. Approaches to map the small shoreline changes from

coarse spatial resolution sensor data are required.

Mapping from satellite sensor imagery is commonly achieved through hard
classification methods, where pixels are classified on the basis of their spectral
similarity to a certain pre-defined class. However, this technique is unsuitable when
using coarse spatial resolution imagery to monitor small (< 5 m) shoreline changes
because the hard allocation process assigns a pixel to only one class thus forcing the
shoreline boundary to lie between pixels (Richards, 1993; Mather and Tso, 2001). In
reality, the shoreline should be positioned within pixels as pixels may have a mixed

class composition (Foody, 1998).

Mixed pixels result when the area represented by a pixel contains two or more
classes, which is common in coarse spatial resolution imagery. For these mixed pixels,
soft-classifiers have been developed to allow a pixel to have multiple and partial class
membership (Foody, 2002a). The conventional output of a soft classification is a set of
fraction images which indicate the relative coverage of the class in the area represented
by each pixel (Kanellopoulos ef al., 1992; Foody and Cox, 1994). These approaches,
however, do not provide any indication of where the class proportions are located
spatially within a pixel. But knowing these fraction values opens the possibility of
positioning the shoreline within a pixel or at a sub-pixel scale. Several methods have
been proposed to address mapping at a sub-pixel scale (Atkinson, 1997; Gavin and
Jennison, 1997; Atkinson et al., 1997; Tatem et al., 2001; Aplin and Atkinson, 2001;
Tatem et al., 2003)

This thesis introduces techniques for accurately mapping the shoreline from

satellite sensor imagery. For short stretches of shoreline (< 10 km) a method of

mapping the shoreline using fine spatial resolution satellite sensor imagery was
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evaluated. The method used topographic and bathymetric data generated from fine
spatial resolution satellite sensor imagery to construct a 3-D terrain model of the
coastal area. A shoreline was later delineated from this 3-D terrain by positioning the
water level at a selected tide elevation by using the intersection of land and water as
the shoreline position (Li ef al., 2001; Ruggiero et al., 2003). But to map large areas,
this method was impractical. Therefore this thesis evaluates techniques of mapping the
shoreline from coarse spatial resolution satellite sensor image. Initially, a soft
classification was applied to a coarse spatial resolution imagery producing an imagery
of fraction values representing the thematic composition of image pixels. After
assessing the accuracy of the soft classification, methods of mapping at a finer scale
than the pixel’s spatial resolution or sub-pixel/super-resolution mapping techniques
were applied to the imagery to predict the actual shoreline position. In this way, the

shoreline was mapped at a sub-pixel resolution.

The ability to map the shoreline accurately from satellite sensor imagery
enables the continual monitoring of the shoreline at regular intervals. With this

capability it is hoped coastal managers would be able to ensure better management of

coastal areas.
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2 Background

2.1 Introduction

Malaysia, located in Southeast Asia consists of two geographical regions: Peninsular

Malaysia, which is part of mainland Asia, and the states of Sabah and Sarawak on the

island of Borneo. A map of Malaysia is shown in Figure 2.1. The eastern coast of

Peninsular Malaysia and the western coast of Sabah and Sarawak are characterized by

sandy beaches with clay-composed soils and mudflats. Mangrove forest are found

along the west coast of Peninsular Malaysia and are generally associated with mudflats

and clay swamps (Harakunarak, 2000).
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Figure 2.1: Map of Malaysia.
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2.1.1 Environmental impact of coastal zone development

Increased coastal population, rapid urbanization, oil and gas production, tourism
development, severe rainfalls throughout the year, and various economic activities
have created numerous environmental and ecological problems in Malaysia's coastal
areas. These problems include beach erosion, resource depletion, environmental
degradation, and destruction of natural habitats (Cicin-Sain and Robert, 1998).
Malaysia's severe coastal erosion caused by a variety of natural and human-made
processes has been a subject of major national concern. During 1984-1985, the
Malaysian government launched the National Coastal Erosion Study. According to this
study completed in 1986, out of 4,800 km of shoreline in Malaysia about 1,400 km (47
sites) was subjected to critical erosion. This has since increased to 2,327 km totalling

74 sites in 2000 (Saw, 2000). An example is the Seberang Takir area illustrated by

Figure 2.2.

Figure 2.2: Image shows destruction to properties at a critical erosion site in Seberang

Takir, Terengganu, Malaysia
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2.1.2 Measures taken by Malaysian government to reduce coastal erosion.

2.1.2.1 Short and long term measures.

In accordance with the National Environmental policy, the Malaysian government has
since 1987 adopted a two-pronged strategy (short-term and long-term) to control
coastal erosion. The short-term strategy is construction-focused and reactive in nature.
This involves measures that require structural solutions such as the construction of
revetments, breakwaters, sea walls and beach nourishment to protect existing facilities
and properties in coastal areas (Ministry of Agriculture, 1997). These measures are
illustrated by Figure 2.2 and Figure 2.3. The long-term strategy involves monitoring
and management of coastal development by taking into account its consequences
towards coastal erosion. This was achieved through an integrated and coordinated

development plan and strategy.

Figure 2.3: Among measures to address coastal erosion are to build a concrete seawall

(Kuala Terengganu).
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Figure 2.4: Rock sea walls were build to address coastal erosion in Kuala Terenganu.

2.1.2.2 Establishment of government institutions

Following the recommendations of the coastal erosion study, two important
institutions related to coastal zone management were established in 1987: the Coastal
Engineering Technical Centre (CETC) and the National Coastal Erosion Control
Council (NCECC) (Cicin-Sain and Robert, 1998). The CETC is presently known as
the Coastal Engineering Division (CED), under the Department of Irrigation and
Drainage (DID) in the Ministry of Agriculture. The DID's CED is responsible for
implementing coastal erosion control, engineering works for critical erosion areas,
providing technical support to the NCECC, providing technical advisory services to

other government agencies, and collecting coastal engineering data.
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2.1.2.3 Financial allocation for coastal programs

Under the CED, an erosion control program was implemented in 1987 with a budget
allocation of £ 1.78 million' to protect the 47 critical erosion sites. This allocation was
further increased to £ 22.6 million ' in the Sixth Malaysian Plan (1991-1995) reflecting
the growing concern of the Malaysian government towards coastal erosion. In the
Seventh Malaysian Plan (1996-2000) a similar budget of £ 21.66 million "was
allocated. With the coastal zone being subjected to increasing development, DID as the
implementing agency has put forth a budget allocation of £ 113.83 million "for the
Eighth Malaysian Plan (2001-2005). This amount would be used to continue previous
programs, upgrade and restore coastal structures and implement new projects such as

restoration and nourishment of tourist beaches (Saw, 2000).

2.1.2.4 Regulatory measures

Among the regulatory measures instituted by the Malaysian Government are the
General Administrative Circular No. 5 of 1987 issued by the Prime Minister's
Department, the Environmental Quality Act 1974, Environment Quality (Prescribed
Activities) (Environmental Impact Assessment) Order 1987, and the Natural Resources
and Environment Ordinance (Sarawak) 1949 (As Amended 1994). Circular No. 5 of
1987 requires all proposed development projects in the coastal zone to be referred to
the CED of the DID for comments. The Environmental Impact Assessment (EIA)
Order 1987 sets out a list of development activities, which require mandatory

submission of EIA reports for prior approval of the Department of Environment

" Based on exchange rate of £ 1 pound sterling. = RM 5.29 Ringgit Malaysia (1** July 2001)
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(DOE). The CED reviews and comments on EIA submissions for the DOE in relation

to projects that affect the coastline (Ministry of Agriculture, 1997).

2.2 Shoreline mapping

Among the major tasks of the CED is the collection of coastal engineering data. These
data include hydro-graphic profiles, wind information, wave dynamics and shoreline
maps. Shoreline maps are important, as maps are a record of the coastal position at a
certain moment of time. In 1998, DID established a memorandum of understanding
with the Malaysian Centre for Remote Sensing (MACRES) to apply remote sensing
and related technologies to its operation. One of the areas identified for this purpose

was the production of satellite sensor based shoreline maps.

2.2.1 Definition of shoreline

The shoreline can be defined as the intersection of the land with the water surface at a
selected tidal elevation level (Camfield and Morang, 1996; Parker, 2003). In Malaysia
the tidal elevation chosen for shoreline maps is the mean high water springs (MHWS).
MHWS is the average height of the high waters of the spring tides. Tide levels occur
as a result of the moon’s gravitational force based on a semi-monthly cycle (new or
full moon). The spring range of tide is the average range occurring at the time of
spring tides and is most conveniently computed from the harmonic constants (Ministry

of Agriculture, 1997).

10



Chapter 2: Background

2.3 Conventional method of shoreline mapping

2.3.1 Line survey

Line survey is performed by taking regular measurements of the beach surface level
relative to a reference datum along a line normal to the local shoreline. These
measurements are repeated at regular intervals along the shoreline. Levelling and
triangulation are later applied to obtain accurate values. Levelling is the operation of
determining differences in elevation by measuring vertical distance directly on a
graduated rod with the use of a levelling instrument such as transit or theodolite
(Morton et al., 1993; Simons and Hollingham, 2001; Gibsob and Dorothy, 2003;
Langley et al., 2003). To obtain accurate elevation, use of benchmarks is very
important. Benchmarks are permanent objects of known elevation located where there
is least likelihood of disturbance (Gibsob and Dorothy, 2003). By relating

measurements to the benchmarks sub-metre positional accuracy are possible.

To obtain horizontal accuracy, the triangulation method is applied. Basically,
triangulation consists of the measurement of the angles of a series of triangles. The
principle of triangulation is based on simple trigonometry. If the distance along one
side of a triangle and the angles at each end of the side are accurately measured, the
other two sides adjacent to the remaining angle can be computed. Normally, all of the
angles of every triangle are measured to minimize error and to furnish data for use in
computing the precision of the measurements (Ruggiero er al., 2003). Depending on
the scale and accuracy requirement of the shoreline maps a large number of ground
control points (GCPs) and line surveys may be needed. These line surveys are later
interpolated to produce a 3-Dimensional model of the area. Shoreline position is then

determined based on a selected tide elevation (Anon, 1984). Using conventional

11
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surveying instruments, it is possible to achieve a fine precision; however the overall
usefulness depends on the spatial density requirement of point measurements (Simons
and Hollingham, 2001). Despite the possibility of increased accuracy, line surveying is

a labour intensive and time-consuming process.

2.3.2 Photogrammetry

The conventional method of generating shoreline maps from aerial photography is
through photogrammetry (Cromwell ef al., 1991; Shoshany and Degani, 1992; Cetin et
al., 1999; Adams and Minor, 2002; Norcross et al., 2002; Friedman et al., 2002;
Leatherman, 2003; Fletcher et al., 2003; Honeycutt and Krantz, 2003).
Photogrammetry has been used in Malaysia since the 1950s and has provided shoreline
maps up to 1: 10,000 scale. Aerial photographs are acquired with a 60% overlap along
a strip, which allows coverage to be viewed in stereo. These stereo images allow
precise photogrammetric measurements to be made in order to locate features
accurately. In photogrammetry, acquisition date and time are crucial as water level and
therefore, shoreline position can show great variation (Lane ef al., 2000). Ideally
photographs need to be collected during a selected tide elevation. By capturing a scene
at two different vantage points an object with height will appear to have moved
relative to the background. This effect is called stereoscopic parallax. This is a normal
characteristic of aerial photography and is the basis of 3-D stereoscopic viewing. The
difference in parallax in various objects of interest are analysed using a stereo plotter
or digital photogrammetry application to remove photographic distortions and
determine height. The shoreline is later extracted from the orthophoto produced. The
planimetric accuracy obtained through orthophotos provides accurate shoreline maps.

But the photogrammetic procedures involving data acquisition and processing are

12
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costly and time consuming (Anon, 1993; Jensen, 2000). Due to this restriction DID

have been able to map Malaysia’s shoreline only every five years.

2.4 Potential of satellite remote sensing in coastal studies.

With the launch of satellite remote sensing systems a wide range of applications in
coastal studies have been realised and several advantages have been discovered.
Among the major advantages of remote sensing are that it provides the ability to
monitor large areas without physically being there. Remote and inaccessible areas can
be monitored from space. Remote sensing through passive sensors also provide the
ability to unobtrusively monitor the environment with better general availability and a

large ground coverage (Chevrel et al., 1981; Jensen, 2000).

Under controlled conditions remote sensing can provide biogeophysical data
such as, location X, Y, elevation or depth Z, biomass, temperature, efc. However
unlike conventional methods, remote sensing data are collected systematically over a
large geographical area rather than a single point observation. This systematic data
collection can remove the sampling bias introduced in some in situ investigations
(Jensen, 2000). Digital satellite sensor data are also easily manipulated through digital
image analysis procedures to extract relevant features (Richards, 1993; Mather and

Tso, 2001).

Remote sensing sensors cover a large spectral region that commonly ranges
from the 0.3 pm to Im. Covering a large spectral region, more geographical

information can be extracted. Figure 2.5 depicts the electromagnetic spectrum used by

common remote Sensing S€nsors.

13
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Figure 2.5: Spectrum range of common remote sensing systems (Jensen, 1996).

Research in shoreline mapping has been conducted using a variety of sensors
such as Landsat Thematic Mapper (TM), Landsat Multi Spectral scanner (MSS) and
SPOT HRYV (Blodget and Taylor, 1990; Dwivedi, 1997; Cetin et al., 1999; Dewidar
and Frihy, 2003). Until recently the spatial resolution of these satellite sensors have
been too coarse for shoreline mapping. But newer satellite sensors providing finer
spatial resolution has increased remote sensing capability in shoreline mapping (L4,
1998; Malthus and Mumby, 2003). Table 2.1 summarizes commonly used remote

sensing satellites and their sensors.

2.5 Electromagnetic interaction in remote sensing

When energy is recorded by a passive remote sensing sensor it undergoes fundamental
interaction with different mediums. These mediums include the atmosphere and
Earth’s surface (water or land). To properly interpret remote sensing data an
understanding of each interaction undergone by electromagnetic energy need to be

understood.

As electromagnetic energy from the Sun propagates through the Earths

atmosphere it encounters a difference in density when coming across air or water.

14
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These differences will cause the electromagnetic energy to move at different speed and
refracts. Refraction refers to the bending of light or energy when passing through one
medium to the other. Another effect of atmosphere is the scattering of energy by
atmospheric particles. Scattering differs from refraction as the direction of scattering is
unpredictable. The effects of scattering depends on the relative size of wavelength of
the incident energy, the diameter of gases, water vapor, water, and dust with which the
energy interacts. Essentially there are three types of scattering: Raleigh, Mie and non-

selective scattering.

Another interaction that occurs in the atmosphere is absorption. Absorption is
the process by which energy is absorbed and converted into another form of energy.
Absorption occurs at several range of wavelengths or frequency corresponding to
various atmospheric gasses such as carbon dioxide, ozone, oxygen, water vapor and
nitrous oxide. Absorption occurs when incident energy of the same frequency as the
resonance frequency of an atom or molecule is absorbed, producing an excited state. If
instead of reradiating a photon of the same wavelength, the energy is transformed into
heat motion and is subsequently reradiated at a longer wavelength, absorption occurs
(Jensen, 2000). When the energy from the Sun bounces of an object such as clouds
and terrestrial Earth this process is called reflectance. When radiation is reflected from
an object the incident radiation, the reflected radiation, and a vertical to a surface from
the angle of incidence and reflection are measured all lie in the same plane. The angle
of incidence and the angle of reflection are also approximately equal (Jensen 2001).
Depending on the reflecting surface, reflectance occurs in many different ways and

sometimes is diffused.
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Table 2.1: Remote sensing satellites characteristics.

Number of Bands / Pixel size (m)

Platform Owner | Launch Date I({g;;z;t Sensor S(;(v;t)h TOtg(lrE)O R PAN VIS NIR SWIR MWIR LWIR Bits/ pixel
(~0.4 - (~0.4 - (~07- | (~15- | (~3- |(~8-15um)
0.8um) Tum) 1.5um) 3um) 8pum)

ERS-1 ESA Jul-91 3 ASTR/IRR 500 500 1/1000 171000 2 /1000

ERS-2 ESA Apr-95 3 ASTR-2 500 500 2 /1000 1/1000 171000 171000 2 /1000
IKONOS USA Oct-99 1.5-3 13 13 1/1 3/4 1/4 11

. 24 LISS-1 148 148 3/73 1/73
IRS-1B India Aug-91 24 11SS2 131 131 37365 17365

24 LISS-3 142 142 2/23.5 1/23.5 1/705 7
IRS-1C India Dec-95 24 PAN 70 800 1/58 7
5 WiES 804 804 1/188 1/188 7
24 LISS-3 142 142 2/235 1/23.5 1/70.5 7
IRS-1D India Sep-97 24 PAN 70 800 1/5.8 7
5 WiFS 804 804 1/188 1/188 7
IRS-P2 India Oct-94 24 LISS-2 131 131 3/36.5 1/36.5 7
IRS-P3 India Mar-96 MOS 200 200 87520 9/520 1/520 16
5 WiFS 770 770 1/188 1/188 1/188 7
IRS-P4 India May-99 2 0CS 1420 1420 5/250 37250 12
JERS-1 Japan Feb-92 44 OPS 75 75 2/20 1/20 4/20 8
16 MSS 185 185 2/78 2778 8
Landsat 4 USA Jul-82 16 ™ 185 185 3730 1730 2730 17120 8
16 MSS 185 185 2/78 2778 8
Landsat 5 USA Mar-84 16 ™ 185 185 3730 1730 2730 17120 8
Landsat 7 USA Apr-99 16 ETM+ 185 185 1/15 3/30 1/30 2/30 1/60 8
26 HRV 60 850 2/20 1/20 8
SPOT-2 France Jan-90 T Pan %0 %50 7710 3
26 HRVIR 60 850 2/20 1720 1/20 8
SPOT-4 France Mar-98 26 Pan 60 850 1/10 8
1 Vegetation 2,200 2,200 1/1150 3/1150 1/1150 1/1150 10
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2.5.1 Water penetration of electromagnetic energy.

When conducting remote sensing studies on water bodies one of the most important

characteristics which needs to be determined is the wavelength with the least amount

of absorption and scattering of light in the water column. Bakuta e al., (1995)

determined that these characteristics are found in the blue wavelength region from

approximately 400-400nm, with the minimum located at approximately 460-480nm.

Table 2.2 shows the optical properties of pure water.

Table 2.2: Optical Properties of Pure water (derived from various sources from Bukata

et. al.,1995)

Wavelength (nm) | Absorption (m™) | Scattering (m™) | Total Attenuation (m™)
250 0.19 0.032 0.220
300 0.040 0.015 0.0550
320 0.020 0.012 0.320
350 0.012 0.0082 0.0202
400 0.006 0.0048 0.0108
420 0.005 0.0040 0.0090
440 0.004 0.0032 0.0072
460 0.002 0.0027 0.0047
480 0.003 0.0022 0.0052
500 0.006 0.0019 0.0079
520 0.014 0.0016 0.0156
540 0.029 0.0014 0.0304
560 0.039 0.0012 0.0402
580 0.074 0.0011 0.0751
600 0.200 0.00093 0.2009
620 0.240 0.0082 0.2408
640 0.270 0.00072 0.2707
660 0.310 0.0064 0.3106
680 0.380 0.00056 0.3806
700 0.600 0.0005 0.6005
740 2.250 0.0004 2.2504
760 2.560 0.00035 2.5604
800 2.020 0.00029 2.0203
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Figure 2.6: Components of radiance recorded by remote sensing over water (Source:

Bukata et. al., 1995)

For the best penetration, water bodies need to be free from organic and
inorganic substance as these would cause scattering and absorption thus obscuring
bottom topography. When conducting bathymetry studies using remote sensing data it
is important to understand the interaction encountered by the energy or radiance
recorded by the sensor. Figure 2.6 depicts the interaction between down-welling light
with the atmosphere and aquatic media. Down welling solar and sky irradiance are
labelled E sn and E &y respectively. Radiance recorded by a remote sensing sensor can

compromise of four main components (Bukata et al., 1995):

L,: radiance that never reaches the air-water interface thus returning to

the atmosphere.

L, radiance that reaches but does not penetrate the air-water interface.

It, therefore, represents a reflection from the water surface.
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L, : radiance that penetrates the air-water interface and re-emerges
from the water without reaching the bottom topography. It, therefore,

represents a return from the volume of water.

Ly radiance that penetrates the air-water interface and re-emerges
from the water reaching the bottom topography. It, therefore, represents

a return from the bed of water body.

These interactions need to be carefully studied in order to extract bathymetry
data. To obtain bathymetry it is important to be able to extract L, from all other
radiance component. It has been determined that the total radiance observed by the

sensor can be represented as the sum of the four radiance above:
L =Lg+ L+ L+ Ly X

Thus the basic starting point for extracting bathymetry information can be

achieved by obtaining L;. This can be represented by: -

Ly=L—(La+L+1L,) -

2.5.2 Obtaining elevation information.

The ability to measure height (elevation) using remote sensing sensor have evolve
from the use of stereo aerial photographs. Similar concepts of photogrammetry have
been applied to remote sensing imagery for this purpose. To understand the process of
obtaining elevation from stereo satellite sensor images it is important to understand the
fundamental principle of stereoscopy. Stereoscopy is the science of perceiving depth
using two eyes (or view point). When both eyes are focused on a certain point, the
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optical axes of the eye converge on that point forming a parallactic angle (®)
(Baltsavias, 1999). This angle will increase when the object is nearer and vice versa.
By associating the responding parallactic angle with distance the depth of different
objects could be differentiated. If both objects were exactly the same distance away,
then the parallactic angle will be the same thus appear to be the same distance away.
Figure 2.7 illustrates the concept of parallactic angles and its association with the
perception of depth in various objects. When an object A is viewed from two points L
and R it will produce a parallactic angle @4 similarly angle @y, will be produced when
an object B is viewed. By associating these angles with a known distance Dy, distance

D5 could be determined.

Eye Base
4 b .

interpupitiary distance

Figure 2.7: Parralactic angles and its association with the perception of depth in

various objects (Jensen, 1996)
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By applying the same concept to remote sensing imagery elevation of different
objects are distinguishable. Stereo parallax is introduced to remotely sensed images
when the same object is viewed from two different vantage points along a flight line.
These overlapping satellite sensor images can be analysed to produce digital elevation
models (Brokelbank and Tam, 1991; Giles and Franklin, 1996; Baldwin ef al., 1998;
Vassilopoulou ef al., 2002). To extract elevation information from a satellite
stereoscopic pair, a mathematical relationship needs to be developed to describe the
geometric relationship between stereo satellite sensor images to object spaces. Other
factors have to also be considered such as type of sensor and sensor motion during

acquisition.

2.6 Remote sensing application in shoreline monitoring and

bathymetry

Satellite sensors have been used for coastal studies in a variety of applications. A
summary of satellite systems currently available are displayed in Table 2.1. Among the
major satellite sensor used in coastal application are the Landsat MSS, Landsat TM
and SPOT HRV. The Landsat series of satellites have carried a variety of sensors,
among them are the MSS and TM. The MSS and TM sensors provides user with 79

m and 30 m spatial resolution satellite images respectively.

By pioneering the linear array push-broom technology the Centre National
d'Etudes Spatiales (CNES) were able to provide satellite sensor images at 10 metres
(PAN) and 20m (Multi spectral) for the SPOT HRV sensor. This provides increased
spatial resolution over the Landsat series. The Linear Array Push-broom system
acquires imagery with no mechanical scanning. Breaking tradition (in relation to

Landsat sensors) the push-broom system allows accurate detection of spectral radiant
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flux from the Earth. At 10 m and 20 m spatial resolution, SPOT HRV imagery
provides increased capability in resolving objects than Landsat TM. since than, newer
satellite sensors such as IRS-1D panchromatic, Landsat ETM+ and IKONOS have
been operational providing spatial resolution up to 5.8 m, 15 m and 1 m respectively.
On December 6 2000, Space Imaging was awarded a license by the National
Aeronautical and Space Administration (NASA) to operate a commercial remote
sensing satellite capable of providing 0.5 m (panchromatic) and 2 m (multi-spectral)
spatial resolution imagery. This new satellite is schedule for launch in 2004 (Space

Imaging, 2001).

This review will examine how previous researchers have approached shoreline

mapping and bathymetry from remotely sensed data.

2.6.1 Application of remote sensing in shoreline mapping

Researchers have used remotely sensed imagery to monitor the shoreline as an
alternative to aerial photography and ground surveying (Bhat and Subrahmanya, 1993;
Fanos, 1995; Chen and Rau, 1998; Pajak and Leatherman, 2002; Byrnes ef al., 2003,
Shaghude et al., 2003; Frihy and Dewidar, 2003; Frihy ef al., 2003; Dewidar and
Frihy, 2003). Early research in the application of satellite sensor images for shoreline
mapping relied on coarse spatial resolution satellite sensor images. The Landsat series
of satellites have supplied satellite sensor imagery continuously since 1972 (Gibson,
2000). Landsat 1 through 3 were equipped with the MSS sensor providing a spatial
resolution of 79 m. EL-Raey (1999) evaluated Landsat MSS data from 1978, 1983,
1990 to detect erosion and accretion patterns along Damietta-Port Said shoreline,

Egypt. Due to the coarse spatial resolution of Landsat MSS it could only be applied for
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regional and small scale mapping exercises. Precise aerial photogrammetry were still
required in areas where critical measurements were need (Blodget and Taylor, 1990).
In 1982 the Earth Observation Satellite Company (EOSAT) launched Landsat 4, its
first satellite carrying the TM sensor. Landsat TM collects multi-spectral imagery that
had finer spatial, temporal, spectral, and radiometric resolution than Landsat MSS
(Jensen, 2000). With these capabilities the Landsat TM sensor was capable of deriving
various geomorphologic features and efficiently monitor human activities such as land

reclamation, building and aquaculture (Blodget er al., 1991).

Initial studies in shoreline mapping have focused on methods to differentiate
between land and water bodies. Basic remote sensing image analysis was applied to
satellite sensor imagery for this purpose. Image processing systems are capable of
analysing digital multi-band satellite sensor imagery in various ways to extract
relevant information (Richards, 1993). Among methods applied to obtain coastal
information are image differencing, image ratioing, principal component analysis
(PCA), and change vector analysis (CVA) (Ceballos and Bottino, 1997; El Raey ef al.,
1999). Image differencing is the process of subtracting values between 2 co-registered
images of different dates. Its primary usage is for change detection. Another widely
used technique is image ratioing. Image ratioing is an enhancement technique
accomplished by dividing digital number (DN) values of one spectral band by
corresponding DN of another band. One reason for this is to resolve differences in
scene illumination due to cloud or topographic shadow. Ratio images also bring out

spectral variation in different target materials.

Spectrally adjacent bands in a multi-spectral remotely sensed image are often
highly correlated. The correlation among the bands of a multi-spectral image implies

that there is redundancy in the data. The PCA technique aims to remove this
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redundancy. PCA is related to another statistical technique called factor analysis and

can be used to transform a set of image bands such that the new bands (called principal
components) are uncorrelated with one another and are ordered in terms of the amount
of image variation they explain. The components are thus a statistical abstraction of the

variability inherent in the original band set.

False colour composite of various bands provide more detail and information in
comparison with single band imagery. Frihy ef al. 1998 used bands 4, 5, 3 of the
Landsat TM to represent red, green, blue in a false colour composite to study coastal
changes. This composition provided details and accurate visualization of land use or
land cover (Frihy et al., 1998). Satellite sensor images either colour composition or a
single band can also be classified to separate different features and reduce redundancy
(Richards, 1993). Frihy et al., (1998) utilised unsupervised classification and applied
clustering and minimum distance rule to Landsat TM and Landsat MSS images to

detect shoreline.

Other approaches in satellite sensor imagery analysis have also been explored
to increase positional accuracy. Among the method includes using sub-pixel methods
to analyse coarse spatial resolution satellite sensor imagery, which includes
interpolation and sub-pixel classification techniques (Mather and Tso, 2001). Several
researchers have addressed this sub-pixel classification problem and developed
methods to estimate class proportions within a pixel (Kanellopoulos ef al., 1992;
Foody and Cox, 1994; Zhang and Foody, 1998). These approaches, however, do not
provide any indication of where the class proportions are located within a pixel. To
address this issue several approaches have been developed. Foody (1998) evaluated a
fuzzy sharpening approach to predict boundaries with sub-pixel geometric accuracy.

Atkinson (1997) proposed a sub-pixel mapping approach, which divides pixels into
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sub-pixels and allocates the different class proportion into these sub-pixels. Gavin and
Jennison (1997) adopted a Bayesian approach and incorporated prior knowledge about
a reference image in a stochastic model that attaches higher probability to images with
shorter total edge length. Mertens et. al. (2003) applied genetic algorithms combined
with the assumption of spatial dependences to assign a location for each sub-pixel.
Aplin and Atkinson (2001) segmented pixels using vector boundaries to achieve a sub-
pixel land cover mapping, while Tatem ez al. (2001; 2003) introduced a Hopfield

neural network optimisation algorithm to obtain a sharpened image.

Methods of image interpolation includes kriging and Thiessen interpolation
(Doucette and Beard, 2000). Another method of image interpolation is the usage of
wavelet transforms, wavelets are mathematical functions that cut up data into different
frequency components and then study each component with a resolution matched to its

scale (Donoho, 1992).

In mapping the shoreline most early researchers took a 2 dimensional approach
concentrating only in differences in position (X, Y). Elevation and variations in sea
water height were neglected (Frihy and Dewidar 1998, El Raey, El Din ef al., 1999).
These approaches resulted in positional error in the shoreline up to 10 m. But as spatial
resolution of Landsat MSS and TM sensors were 79 m and 30 m respectively, the
positional error of the shoreline due to variation to sea water height were acceptable.
To predict the shoreline position the spectral characteristics of coastal areas were
analysed statistically and used to train classification algorithm. This algorithm was

then used to analyse the whole image and classify land and water bodies.
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2.6.2 Three-dimensional approach to shoreline mapping.

2.6.2.1 Satellite stereo images for deriving DEM of coastal areas

Tidal variation plays a significant role in estimating shoreline change over a long
period of time as tidal elevation between different acquisition dates are rarely the same
(Chen and Rau, 1998). As it is unlikely any satellite sensor data acquisition could be
programmed to place during a specific tidal elevation, shoreline derived from these

images need to be corrected. To do so a 3-D model of the inter-tidal zone is necessary.

Photogrammetry has been the main method of producing DEM (Hancock and
Willgoose, 2001; Judge and Overton, 2001). The evolution of photogrammetry can be
categorized into 4 main development cycles that are plane table photogrammetry
(1850-1900), analogue photogrammetry (1900-1960), analytical photogrammetry
(1960-present) and softcopy photogrammetry (late 1980°s- present) (Bohnestiehl,
2001). With the availability of digital sensor data input from airborne and satellite
platforms, softcopy photogrammetry has become a significant process for generating
DEM. The availability of satellite sensors with stereo capabilities such as SPOT HRYV,
RADARSAT SAR and IKONOS sensor has been a major step in mapping science as it
is possible to map large areas with very few images. On the other hand,
photogrammetry requires a large number of photographs, which need to be processed

individually.

With its stereo imaging capability and 10 m (PAN) spatial resolution, SPOT
HRYV provides the ability to incorporate elevation and tidal variation in modelling or
detecting shoreline position (Chen and Rau, 1998). At this 10 m spatial resolution tidal
elevation effects are more prominent thus changes in tidal height during acquisition

can be modelled to increase positional accuracy of the shoreline position.
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The SPOT HRYV sensors are capable of acquiring cross-track stereoscopic pair
images on successive days. Around the equator the ratio between the observation base
(distance between the two satellite positions) and satellite height is approximate 0.75.
This base to height ratio has been found to be sufficient for topographic mapping up to
1: 50,000 scale (Jensen, 2000). When detecting shoreline, a DEM of the area has to be
established. The DEM, tidal height information and shoreline position during satellite
sensor image acquisition will be used to correct the shoreline to a selected tidal
elevation. Ideally DEM of the inter-tidal zone need to be established from SPOT HRV
images taken during the lowest possible tide elevation. Only then can the shoreline
position can be corrected to other tidal elevation (i.e Mean Low water Spring (ML WS)
and Mean high water spring (MHWS)). By acquiring and processing satellite images
from several dates, changes between each shoreline position can be accurately

determine as they have been normalise to a common tidal elevation (Chen and Rau,

1998).

2.6.2.2 Water line method for creating DEM of coastal areas

Another approach to establish a DEM of the tidal zone is the water line method. The
waterline is defined as the position of land water boundary at the time of satellite data
acquisition also known as an instantaneous shoreline. The method regards the sea as an
altimeter, the height of which is determined using a hydrodynamic tidal model (Lohani
and Mason, 1999). In this method satellite sensor images are acquired during different
stages of tide elevation and processed to delineate the position of the shoreline. The
geometrically corrected shorelines would then be assigned elevation values determined
by a hydrodynamic model. A model commonly used is the simplified harmonic
method (SHM). These shorelines were then interpolated to produce a DEM of the area.
An advantage of this method over generation of DEM using stereoscopic satellite
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sensor imagery is that it is sensor independent. Chen (1998) applied this method to
SPOT HRYV images to study shoreline change for tideland areas in Taiwan. Similar
research was conducted in Sumatra utilizing SPOT HRV and ERS sensor data (Leow
et al., 2000). This method has also been used with Airborne Thematic Mapper data
(Lohani and Mason, 1999). One major disadvantage of this method is it requires
several images at different tide elevation and this is not easily available. Acquisition of
the satellite sensor images also needs to be temporally close to ensure elevation of tidal

areas has not changed

2.6.3 Application of remote sensing in bathymetry studies

Several methods can be used to derive data of bathymetry. These include conventional

sounding techniques and application of remotely sensed data.

2.6.3.1 Sounding techniques for obtaining bathymetry

Sounding techniques can generally be divided into 4 categories, which are single beam
echo sounding, Multi-beam forming sonar, multi-beam interferometric sonar and side
scan sonar (Atanu and Saxena, 1999). Deriving bathymetry data for shallow water
areas by conventional shipboard sounding techniques can be slow, hazardous and
expensive especially for large areas (Lyzenga, 1985). As a result development in the

application of remote sensing techniques to solve this problem has been explored.

2.6.3.2 Application of remote sensing for bathymetry

The use of passive remote sensing data was first demonstrated in the late 1960. The
blue region of the electromagnetic spectrum (0.45-0.52 pm) provides minimum
absorption thus maximum penetration of water. In this region water is penetrable up to

30 m depending on the water quality (Bierwirth et al., 1993; Jensen, 2000).

28



Chapter 2: Background

Essentially the water depth calculation technique depends on finding a relationship
between water depth and the reflected radiance of a wavelength band. Bathymetry can
be obtained indirectly from its relationship to the electromagnetic radiation reflected
from the water medium. The interaction between downwelling light with the

atmosphere and aquatic media has been explained previously.

2.6.3.3 Difficulties in using remotely sensed data in water research.
When measuring detailed information from remotely sensed measurements in water
there are three main problems. First the atmospheric path between the object and the
sensor affects the characteristics of the radiation signal received by the sensor. The
amount of energy transmitted into the sea versus that reflected off the surface also
depends on the sea surface state, wind speed and Sun angle, which create inconsistent
light interactions at the air-sea interface. Shallow water substrates also create difficulty
in separating the water column signal from that of the substrate. These problems are
addressed to some degree using a simple radiative transfer model for optically shallow
water in the general form (Philpot, 1989):

Lq=Lyexp(-gz) + Ly 2-3

Where :
L, = radiance observed at remote detector (mwcm-2 },L-] sr—l)
L = radiance term which is sensitive to bottom reflectance (mwcm-2 u-l sr-])
g = effective attenuation coefficient of water (m™)
z = Depth of water column (m)

L,, = remotely observed radiance over optically deep water (mwem-? p-' sr-")
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Under ideal conditions both depth and effective attenuation coefficient of water
over several bottom types can be obtained from passive satellite sensor imagery
(Philpot, 1989). These conditions apply that the water quality and atmospheric
conditions are similar throughout the imagery. Thus, the simplest method of extracting
water depth information from multi-spectral sensor data is to invert equation 2-3 for a
single wavelength (Lyzenga, 1978). As these conditions are not easily met, researchers
have expanded equation 2-3 to take the atmospheric and water conditions into account.
An expansion to the first method assumes that a pair of wavelength bands can be found
such that the ratio of the bottom reflectance in the two bands is the same in the
imagery. If these assumptions are correct an equation can be derived so that the depths
calculated are not affected by changes in bottom composition (Lyzenga, 1978). Several
other methods have also been proposed to deal with less than ideal conditions such as
changes in water type and variables atmospheric conditions. These methods are based
on three case scenarios that are 1) variable depth, all other parameters constant 2)
Variable depth, and bottom reflectance, 3) Variable depth, bottom type and water type

(Philpot, 1989).

2.6.4 Modelling Shoreline data and GIS analysis

Geographical Information Systems (GIS) have become an important tool in resource
management. Factors affecting shoreline position such as wave dynamics,
geomorphology, littoral transport and sand supply can be incorporated into a GIS for
analysis. Incorporating historical shoreline maps, recession rate data and time series
data into a GIS, shoreline position and its movement can be predicted (Li ef al., 2001).

To predict shoreline movement and beach loss as a function of time several approaches
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have been efcplf)red. Among the most commonly used is the End Point Rate (EPR). It
is an AMWtechnique where no knowledge of sand transport system is required.
Instead, the cumulative effect of all underlying process is assumed to be captured in
the position history (Li et al., 2001). Prediction of erosion hazard areas can also be
preformed using predicted shoreline model and relevant GIS layers. The integration of

modelling capability in GIS has been determined to be an integral part of shoreline

modelling.

2.7 Limitations of remote sensing

Although many researchers have explored the potential of remote sensing in coastal
application numerous limitations still exist. One of the primary limitations of remote
sensing is the spatial resolution (Malthus and Mumby, 2003). The spatial resolutions of
SPOT HRYV and Landsat TM have not been sufficient for shoreline mapping. Currently
the finest spatial resolution available commercially is 1 m (IKONOS satellite sensor),
this would increase the capability of remote sensing to match the use of aerial
photograph for shoreline mapping (Clark ef al., 1997, Mumby and Edwards, 2002;

Malthus and Mumby, 2003).

Another limitation is the availability of data. Passive remote sensing sensors
are very susceptible to atmospheric conditions such as cloud cover, haze and rain. As
Landsat and SPOT satellites only have a revisit time of 16 and 26 days respectively,
selection of cloud free days for data acquisition would be limited. Due to problems
with these atmospheric conditions several researchers have also explored the use of
radar or active sensors in shoreline mapping. But success has been limited and results

were not as good as using passive sensors (Lyzenga and Tanis , 1981).
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Radiometric resolution determines the amount of tonal variation a sensor can
capture. Most satellite sensors collect data in 8 bit providing a total of 256 tonal
variations. Although this radiometric resolution might be sufficient in medium scale
application, a finer radiometric resolution is required in order to discriminate between
features in small-scale mapping (small areas). With finer radiometric resolution
continuous tone satellite sensor images are produced making it easier to detect

different types of features.

2.8 Potential of IKONOS for shoreline mapping

2.8.1 IKONOS sensor system

Space Imaging Corporation launched the IKONOS satellite from Vandenburg Air
Force Base, California, USA on the 24th September 1999 (Space Imaging, 1999).
IKONOS was built with an agile, body-scanning configuration allowing for short
revisit times and flexibility in data collection. A rigid satellite platform was built to
reduce the vibration of platform and to contribute to the integrity of the line-of-sight
determination (Lillesand and Kiefer, 2000). The system is based on a new optical
system: a push-broom camera with a 10 m focal length, which has been folded into
two through the use of a mirror. The IKONOS push broom sensor includes a
panchromatic band (450-900 nm) at a nominal spatial resolution of 1 m, and a four-
band multi-spectral with a spatial resolution of 4 m (Jensen, 2000). Image data are
quantised to a radiometric resolution of 11-bits/pixel (0-2,047), thus providing an
increment by a factor of 8 in the range of grey levels to represent target brightness,
when compared to 8- bits/pixel systems (Space Imaging, 1999). This enhanced

radiometric resolution can increase target discrimination and classification ability,
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particularly for low light conditions that are typical of underwater environments (Jill

2001).

The entire satellite is able to pivot in orbit to collect cross-track imagery
covering a distance of 725 km at either side of the ground track. Due to the satellite’s
680 km altitude, imagery will maintain at least a 1 m ground sample distance (GSD)
for 350 km to either side of nadir, or a 700 km swath of at least one-metre imagery
(Space Imaging, 1999). The system is designed to carry three GPS antennas and three
digital star trackers to maintain precisely camera station’s position and attitude. The
satellite is rotating around the Earth in a Sun synchronous polar orbit, which allows it
to traverse the planet every 98 minutes, crossing the equator at the same time (10.30

am) in every orbit (Zhou and Li, 2000).

2.8.2 Geometric accuracy of IKONOS sensor imagery

2.8.2.1 Mapping standards

Geometric accuracy is very importance if satellite sensor imagery is to be used to
produce topographic map for shoreline monitoring. According to the United States
National Map Accuracy Standards, horizontal accuracy for maps on publication scales
larger than 1: 20,000, not more than 10 percent of the points tested shall be in error by
more than 1/30 inch (0.8466667 cm), measured on the publication scale; for maps on
publication scales of 1: 20,000 or smaller, 1/50 inch (0.0508 cm) (U.S.Geological
Survey, 1999). These limits of accuracy shall apply to positions of well-defined points
only for other points any error is possible. Well-defined points are those that are easily

visible or recoverable on the ground (U.S.Geological Survey, 1999).
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2.8.2.2 Application of satellite imagery for mapping

Aerial photography is still the primary technique for large-scale mapping. But in spite
of its advantages, the need of special flight planning and scheduling limits its
application (Mikhail, 1999; Jensen, 2000). Due to these limitations several countries
have used satellite sensor imagery for national mapping projects. SPOT HRV images
have been used to produce national mapping products in Saudi Arabia, France,
Ethiopia and Yemen. Despite its advantage over aerial photography, SPOT HRV
imagery can only meet the requirement for small scale mapping at 1:50,000 and 1:
100,000 scale (Al-Rousan et al., 1997). It is expected that fine spatial resolution
satellite sensors such as IKONOS have the potential to acquire geographic information

at a medium to large scale (1:24,000 and 1:10,000) (Li, 1998).

2.8.2.3 IKONOS stereo mapping capabilities

The CCD linear array of IKONOS is capable of imaging the same ground profile at
three angles, which are fore, nadir and aft. This is illustrated in Figure 2.8. In attaining
stereo pairs three types of combination can be obtained. They are fore-nadir (F-N),
nadir-aft (N-A) and fore-aft (F-A). The base to ratio is a critical factor in 3-D mapping.
For 1: 24,000 scale topographic maps aerial photography with a base-height ratio of
0.63 have been used. This base-height ratio could be obtained through IKONOS by
forming a stereo pair using F-A or N-A combination (Li, 1998). At this scale DEM
accuracy need to be less than 15 m and this is also attainable from IKONOS even
without GCPs. Although GCPs are not required, it is recommended that GCPs be used

to increase accuracy.
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Figure 2.8: Fore-, Nadir-, and Aft-looking CCD liner array and their look angle (Li,

1998)

Liet al., (2000) evaluated the attainable accuracy of GCPs derived from
integrated global positioning system (GPS) and fine-resolution stereo IKONOS data.
Simulated IKONOS imagery was generated from aerial photograph based on the
principle of “projection” and “back-projection”. Projection is the processing of the data
from aerial images to the surface of the DEM, and back-projection is the same
processing from the surface of the DEM to a satellite sensor image at a fore, nadir, or
aft-look. Using these simulated satellite sensor images several accuracy test such as
geometric accuracy versus the number and distribution of GCP, accuracy versus image
measurement errors of GCP and checkpoints were conducted. It was concluded that
accuracy can reach 3 m horizontally and 2 m in height with 4 GCP. Therefore, they
suggested that only 4 GCP be used to maintain accuracy and minimize cost. An
increased number of GCP but poorly distributed would be less beneficial than a few
GCP well spread. They also determined that the 1 m spatial resolution satellite sensor
imagery would meet mapping accuracy for medium scale maps from 1 :24,000to 1 :

10,000 scales. So, the fine-resolution imagery has potential for shoreline mapping and
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erosion monitoring. This thesis would examine the accuracy attainable by fine spatial

resolution satellite sensor imagery to monitor the shoreline.

2.8.3 Application of IKONOS sensor imagery for shoreline mapping

The spatial resolution of 30 m and 10 m of Landsat TM sensor and SPOT HRV sensor
respectively are insufficient for 1: 24,000 and 1: 10,000 scale mapping using standard
method of image processing. This has been the primary impediment for the application
of remote sensing in shoreline mapping. With the availability of fine spatial resolution
satellite sensors researchers have achieved increased capabilities for surface and
subsurface feature delineation. The IKONOS sensor with a spatial resolution of I m
provides a feasible alternative to aerial photogrammetry. IKONOS multi spectral is
also capable of extracting a range of geographical features as its sensors spectral range

is larger in comparison to aerial photography.

A shoreline is the intersection between the DEM and near-shore bathymetry.
This intersection changes as the water surfaces increase and decrease due to tide
elevation. Therefore, a tide-coordinated shoreline should be based on a certain water
datum. The DID produces shoreline map based on the MHWS (Ministry of
Agriculture, 1997; Li et al., 1998). Because satellites have a prescribed orbit, it is not
possible to image an area at the required water level (MHWS). To correct the captured
shoreline to a MHWS shoreline, an accurate elevation model of the inter-tidal zone
need to be constructed. Inter-tidal zone can be defined as the coastal transition region
between the permanently exposed land surface on one side and the submerged region
on the other side (Leow et al., 2000). The elevation model of the Inter-tidal zone

could be constructed by combining the DEM and near-shore bathymetry.

36



Chapter 2: Background

2.8.3.1 Deriving DEM from IKONOS sensor imagery.

SPOT HRYV has been the most widely used stereo sensor. Using SPOT HRV imagery
DEM and ortho-images can be produced with accuracy up to 10 m horizontally and
vertically (Krupnik, 2000). But even at this spatial resolution its utilization in coastal

mapping is limited (Cracknell, 1999).

The IKONOS sensor and SPOT HRYV are similar as both are push-broom
sensors. In the case of IKONOS and most other satellite sensors, the perspective centre
is constantly changing, as the satellite is moving. This is in contrast to vertical aerial
photography as the perspective centre is constant in each photograph (Anon, 1993). A
number of researchers have examined methods of determining elevation from stereo
SPOT HRYV imagery. Early research utilized SPOT HRV imagery and analytical
plotters in conjunction with film transparency and operator controlled measurements
(Al-Rousan ef al., 1997). Recently remote sensing image processing systems have
incorporated programs for digital or softcopy photogrammetry. To extract elevation
information from satellite sensor stereoscopic pairs, mathematical models need to be
developed to describe the geometric relationship between stereo satellite sensor images
to object spaces through the perspective centre of the imaging sensor. Beside this
relationship it is also necessary to take into account the dynamic motion of the satellite
and sensor over the time period of image acquisition. Several researchers have
developed models to explain this relationship including Brokelbank and Tam (1991),

Al-Rousan et al., (1997), Kim (2000) and Kim et al,, (2001).

IKONOS has a very complex sensor model. To generate ortho-rectified images
from IKONOS imagery Space Imaging has developed a Rational Polynomial Camera
(RPC) model, which is a header file that expresses the camera model as a ratio of two
cubic polynomials. It is derived from the physical camera model during on orbit
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calibration of the sensor (Bohnestiehl, 2001). Space Imaging has kept this information
secretive and only releases them to selected customers. In lieu of the RPC model three
methods can be used to geo-rectify these images, which are the simple polynomial
method, rational polynomial method and the rigorous (or parametric) model method
(Toutin, 2004). The simple polynomial method only corrects planimetric (X and Y)
distortion of GCPs and does not take elevation into consideration. The rational
polynomial method is similar to the simple polynomial method but it also takes into
account the ratio of polynomial transformation and elevation of GCPs. This method is
useful for areas with gentle terrain. As both method do not require satellite and sensor
information they require many GCPs and distortion between GCPs are not eliminated
(Toutin and Cheng, 2000). Rigorous model reflects the physical reality of the complete
viewing geometry and correct distortion due to sensor, Earth and deformation due to
cartographic projection. It then takes into consideration the satellite sensor information
(Toutin and Cheng, 2000). Despite not having detailed sensor information, Toutin e?
al., (2001) had successfully developed a rigorous IKONOS model using basic
information of metadata and image files. Using this model the exterior orientation
parameter of each image and the interior orientation parameters can be determined.
Using these, DEM can be generated using pixel matching between adjacent stereo
pairs (Bohnestiehl, 2001). In this process an elevation will be calculated from the
stereoscopic parallax between the same pixel between two stereo pairs. This allows for

the creation of very dense points clouds reflecting minute variations in terrain.

To produce an accurate DEM accurate GCPs are required. These points must
be precisely surveyed features that are visible in the satellite sensor imagery. Non-
natural and natural features would be carefully selected in a well-distributed grid. The

GCPs would be surveyed using differential global positioning system (DGPS) for
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accurate measurements. Several companies offer wide-area differential GPS service,
using satellite broadcast techniques. Using DGPS resultant GCP will have sub-metre
accuracy in the X and Y direction. Accuracy in the Z direction will be less than 2 m

(Omnistar, 2001).

2.8.3.2 Deriving bathymetry from IKONOS sensor imagery.

As previously discussed researchers have used passive remote sensing sensor
imagery to obtain bathymetry data (Lyzenga, 1985; Clark et al., 1987; Cracknell and
Ibrahim, 1988; Ji ef al., 1992; Sandidge and Holyer, 1998; Bagheri ef al., 1998;
Roberts and Anderson, 1999; Stumpf et al., 2003). Studies have concentrated on the
blue region of the electromagnetic spectrum (0.45-0.52 pm) due to its ability to
penetrate of water. Landsat TM has been used extensively for this purpose and several
researchers have extensively developed models to extract bathymetry information
(Lyzenga, 1979; Philpot, 1989). As the IKONOS multi-spectral bands are spectrally
similar to bands 1-4 of the Landsat TM (Table 2.4) they could be applied in

bathymetric applications.

IKONOS with its spatial resolution of 4 m (MS) and radiometric resolution of 11
bit provides the capability to extract accurate bathymetry information better than

Landsat TM.

Table 2.3: IKONOS multi-spectral sensor bandwidth specifications
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Band Wavelength
1 445-516 nm
2 506-595 nm
3 632-698 nm
4 757-853 nm

Table 2.4: Landsat TM multi-spectral sensor bandwidth specifications

Band Wavelength

1 445- 520 nm

2 520 — 600 nm

3 630 — 690 nm

4 760 — 900 nm

5 1550 - 1750 nm
6 10400 — 12500 nm
7 2080 — 2350 nm

2.9 Aim of study

The aim of this thesis is to develop methods to accurately map the shoreline from

satellite sensor imagery. Methods of mapping the shoreline from fine and coarse

spatial resolution satellite sensor imagery would be explained.

In this thesis a method of generating a 3-D terrain model of coastal areas using

fine spatial resolution satellite sensor imagery would be examined. Using the 3-D

terrain model of the coastal area the shoreline could be determined by the water land

boundary.

Methods of mapping the shoreline from coarse spatial resolution satellite sensor

imagery would also be explored. Sub-pixel mapping methods would be examined and

compared with method such as hard classification. This thesis would examine sub-
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pixel mapping methods to accurately predict the shoreline position at a sub-pixel scale

based on coarse spatial resolution satellite sensor imagery.

2.10 Conclusion

Coastal Information is valuable for the management and future planning of coastal
areas. Coastal areas are dynamic environments, constantly changing in response to
human and natural forces. As a result coastal maps rapidly become outdated, resulting
in a need for quicker method of producing coastal map (Dorota and Charles, 1999).
Remotely sensed imagery provides a means of promptly extracting geographical

features and coastal maps.

By processing multi temporal satellite sensor images and extracting 3-D model of
the coastal zone, the data would be useful to effectively quantify accretion and erosion
patterns, predict shoreline positions, sand transport patterns and other useful
geographical information. With this information, it is hoped the coastal areas would be

managed and monitored accordingly.
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3 Study Area and Data

3.1 Study Area

The study area for this research is located in the state of Terengganu, Malaysia.
Terengganu is located in the east coast of peninsular Malaysia and its shoreline is
generally categorised as white sandy beaches (Figure 2.1) (Gobbett and Hutchison,
1973). The main economic activity of the population is fishing, tourism, and cottage
industries. In the 1980s with the discovery of petroleum in the South China Sea off
Terengganu, petroleum based industries have become an important contributor to the

local economy.

3.1.1 Climate

The climate of Malaysia is generally characterized by the northeast monsoon and the
southwest monsoon (Figure 3.1). The Northeast monsoon starts in November and lasts
until March. It brings substantial rain and severe winds to the east coast of peninsular
Malaysia. The Southwest monsoon, which starts in May and lasts to September causes
substantial rainfall and severe winds along the west coast of peninsular Malaysia but
the sheltering effects of Sumatra dampens the dynamics of the monsoon. The east
coast of peninsular Malaysia is not drastically affected by the Southwest monsoon

(Ooi, 1974). Figure 3.1 illustrates the monsoons effecting Malaysia.

42



Chapter 3: Study Area and Data

Thadand {(A
‘lemal Northeast Monsoon
/m‘“b,x -Ma %

tan South C'hana Sea ﬁ\
erengganu

Penmsula %

Malaysia

Boimeo

Indian Ocean

Southwest Monsoon

(May - September} le\L

Figure 3.1: The two monsoon affecting the climate of Malaysia.

Air temperatures in peninsular Malaysia vary throughout the year. Monthly
mean air temperature varies from 24.4 to 27.9 ° C along coastal areas. The warmest
month is usually April along the northern part of west coast and May along the east

coast and southern part of the west coast (Malaysian Meteorological Service, 2001).

Relative humidity is high throughout Malaysia with a monthly mean ranging
from 80 to 87 percent. The seasonal variation of relative humidity conforms to the
rainfall pattern of the area. Typically, the highest occurs in November and lowest in

February (Malaysian Meteorological Service, 2002).

The average annual rainfall in peninsular Malaysia is about 2400 mm. The
average monthly rainfall along the east coast of peninsular varies from about 120 mm
in April to 615 mm in December. On the west coast, the minimum and maximum
average monthly rainfall is approximately 80 mm in January and February and 260

mm in October and November (Malaysian Meteorological Service, 2001).
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3.1.2 Winds

The wind from the Northeast monsoon blows mainly from the northeast and north
direction. On the northern part of the east coast of peninsular Malaysia, the prevailing
Northeastern monsoon winds are more north-eastern to east. Winds of 15 ms™ and
more occur less than once a month in January and February and very seldom during

the rest of the monsoon period. Gusts of up to 20 ms™ have been recorded.

The Southwest monsoon winds rarely exceed 15 ms™ . Gusts of up to 30 ms’’
have been recorded. Prevailing wind directions are south to west with an average speed

of about 4 metres per second (Malaysian Meteorological Service, 2002).

3.1.3 Tides, Water Elevation and Datums.

Water levels along the coast of peninsular Malaysia are mainly influenced by
astronomical tides. These tides are co-oscillating tides of the Indian and Pacific Ocean
basins causing this region to have a variation of tide types. In Malaysia the common
type of tide are diurnal, semi-diurnal and mixed. The east coast of peninsular Malaysia
particularly the state of Terengganu is characterized by diurnal tides. The west coast of
peninsular Malaysia is more characterized by mixed tides. Currently there are no long-
term records of water elevation along the coast. Due to this the Directorate of National
Mapping has established a network of tide gauges along the coast for recording water

elevation.

Tidal ranges are in the order of 1.0 to 2.0 m along the east coast of peninsular
Malaysia. The spring tidal range on the west is generally 2.0 to 2.5 m but spring range
of 4.1 m has been recorded in Port Kelang, Selangor. Storm surges and wave setup can
significantly affect the water surface elevation at the Malaysian shoreline. Storm

surges are caused by the wind stress and the moving atmospheric pressure jumps
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accompanying moving storm systems. Wind stress is responsible for the largest part of
storm systems. The wind exerts a horizontal force on the water surface, which induces
a surface current in the general direction of the wind. The current is impeded in the

shallow water near the shore causing the water level to rise down wind (Ooi, 1974).

Observations along the Malaysian coast indicate that there is generally little
variation between the predicted tides and observed tides (Stanley consultants Inc. et
al., 1985). However, the tidal prediction tables indicate that the highest astronomical
tides may be as much as 1 m above mean higher high water and mean high water
spring.

Datum’s used in Malaysia are the admiralty chart datum (ACD) and the land
Survey datum (LSD). Typically all published nautical chart and tide tables follow the
ACD while all topographic and other land based survey follow the LSD. Relationships
between the ACD and LSD have been established and at specific sites in Malaysia and

have been published (Ministry of Agriculture, 1997).

3.1.4 Waves

The Northeast monsoon causes prominent wave along the east coast of peninsular
Malaysia. The predominant wave approach direction offshore of Kelantan and the
northern part of Terengganu is more easterly due to the limited fetch caused by the

Vietnam and Cambodia peninsular (Figure 3.1).

Wave height on the east coast of peninsular Malaysia during the Northeastern
monsoon period are generally less than 1.8 m with a period of less than 6 s, but can
vary greatly due to the periods of strong winds and calm. Hindcast predictions of
significant deepwater characteristics for 18 severe storms between 1960 to 1976 were

made by Oceanographic services, Inc. for the offshore of Terengganu (Angkasa-Ghd
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Engineers Sdn Bhd., 1981). Waves of 2.7 and 4.8 m with an average period of 6 to 9 s
were indicated offshore Terengganu during severe monsoons. A 5.33 m deepwater

significant wave height was determined to have a 100-recurrence interval in this area.

The Southwest monsoon causes predominant wave condition on the southern
part of the west coast of peninsular Malaysia. However, the island of Sumatra shelters
the west coast from the Indian Ocean, limiting the fetch length to approximately 40 to
130 km in the Malacca straits (Forbes, 1998). Wave height during the monsoon usually
ranges from 0.5 to 1.0 m with a maximum height of 2.0 to 3.0 m. Wave periods are

usually less than 3 s but may have a maximum of 6 to 9 s (Angkasa-Ghd Engineers

Sdn Bhd., 1981).

3.2 Map projection

The application of a basic mapping projection is not suitable for a country such as
Malaysia due to its orientation. Due to this, the Directorate of Colonial Surveys in
Teddington, England prepared the rectified skew orthomorphic (RSO) Projection
Tables for Malaya in 1947 (Hotine, 1947) . Since then, Directorate of National
Mapping of Malaysia has used it for the Malayan Revised Triangulation (MRT) and
topographical surveys. The characteristic of RSO are a constant minimum scale error
along a great circle passing obliquely through the area, with scale increasing with
distance from this great circle (Hotine, 1947). A basic diagram displaying the
projection is shown in Figure 3.2. Therefore, it is suitable for areas like Peninsular
Malaysia and Italy. The maps used and produced in this thesis were geo-rectified to the
RSO based on the Modified Everest reference ellipsoid. This projection is the standard

mapping projection used in Malaysia and used primary for topographic mapping.
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Figure 3.2: Diagram shows how the RSO projection projects the earth surface based on

an oblique cylindrical surface.

The geodetic information regarding the RSO projection is given below:

Geodetic Data

Spheroid

Semi-major axis (a)
Semi-minor axis (b)
Ecentricity Squared (e2)
Reciprocal of flattening (1/f)

Origin of Meridian of reference

Projection

Longitude of Origin (CM)
Latitude of Origin

False Easting

False Northing

Scale Factor on CM
Skew Azimuth

Satellite Datum

Spheroid

Semi-major axis (a)
Semi-minor axis (b)
Eccentricity Squared (e2)
Reciprocal of flattening (1/f)

Modified Everest 1948
6 377 304.063m

6 356 103.039

0.006 637 846 6302
300.8017

Malaysian RSO
E 102° 15' 00.00"
N 004° 00' 00.00"
804671.30m
0.00m

0.99984

323° 07’ 48.37”

WGS-84

6 378 137.000m
6356 752.314m
0.006 694 380 023
298.2572
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Datum transformation parameters from WGS-84 TO Malaysia Revised

Everest, Kertau are as follows:

3.3 Data

dx
dy
dz
Rx
Ry
Rx

f

Il

t

Scale

+ 379.78m

- 775.38m

+ 86.61m

0° 00* 02.60
0° 00* 02.10”
-0° 00 12.117
1.00000

This section describes the main data used in this thesis.

3.3.1 Satellite sensor data

3.3.1.1 IKONOS Sensor Imagery

This research utilizes Space Imaging IKONOS sensor imagery. Several data sets were

acquired of the study area on the 1% July 2000, 10 April 2002 and 28 August 2002. The

three data sets are described bellow:

Table 3.1: IKONOS sensor data used in this thesis.

Data 1* July 2000 10™ April 2002 28" August 2002
Product Type : | 1-metre Geo Im +4m 1-metre
Pan-Sharpened bundle Stereo Pan-
Multispectral ( Multi Spectral + | Sharpened
Pan) + IGM Multispectral +
IGM
Acquisition 2000-07-01 03:14 | 2002-04-10 03:42 | 2002-08-28 03:45
Date/Time GMT GMT GMT

Further details about the data including header information are given in Appendix 2
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3.3.2 Bathymetric Ground data

Two field trips to the study area were conducted to obtain bathymetric ground data.
Ideally these field trips should coincide with the date of satellite sensor data
acquisition but as Space Imaging does not inform customers of the data acquisition
dates before hand this was unlikely. Therefore the field trips were conducted on dates
within the data delivery period assigned by Space Imaging. These field trips were
conducted on 15" June 2000 and 6™ July 2002. These dates are still close to the image
acquisition dates and no major changes to the bathymetry were expected due to the

difference.

To ensure the water depth obtained were accurate all depth values were made to
an accuracy of 0.1 m and all echo-sounding equipment were calibrated before and after
each day’s sounding operations. In order to used these values for mapping purposes the
water depth values were related to the latest published values of the Malaysian Land
survey datum (LSD). This was done by establishing a Temporary Bench Mark (TBM),
TBM are benchmark used to monitor water level variation during sounding operations.
The TBM was setup at the Marine jetty located at Chendering harbour, Kuala
Terengganu. The depth values were calibrated and standardise to a selected water level
based on the TBM values. These values were later adjusted to the Malaysian LSD by a
close levelling net to the government bench mark. This process ensures the data were
corrected based on mapping standard setup by the Government. Data were collected at

200 m intervals along the shoreline up to 8 m depth seawards.

3.3.3 Shoreline survey

A shoreline survey was conducted on 6™ of July 2002 to accurately map the shoreline

at the Mean sea level tide elevation. The surveying work was contracted to the Sky-
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Shine Corporation. Sky-Shine Corporation is a multi-disciplinary geographic based
company dealing in surveying and positioning system, sea and land environmental
system, hydrography and other mapping related disciplines. The shoreline map was

produced at sub-metre accuracy.

3.3.4 Tide Table

The establishment of the Tidal Observation Network (TON) in Malaysia commenced
in 1983. This project was initialized and carried out by Jabatan Ukur dan Pemetaan
Malaysia (JUPEM) with the cooperation of the Japan International Cooperation
Agency (JICA). Twenty-one (21) tide stations were established by the end of 1995, in
which twelve (12) were located in Peninsular Malaysia and the rest in Sarawak and
Sabah (Department of Survey and Mapping Malaysia, 2001). The observed tidal data
and other related values are published annually in two reports, namely The Tidal
Observation Record and The Tidal Prediction Table. This research utilises the tidal

prediction table specifically the tide station located at Chendering Kuala Terengganu,

Terengganu.

3.3.6 GPS Control Points

A field trip was conducted in November 2001 to obtained ground control points
(GCPs) within the study area. The GCPs were collected using the OmniStar DGPS
system which was capable of collecting GCP at sub-metre accuracy (Omnistar, 2001).
A total of 62 GCPs were collected based on points, which were distinguishable from

IKONOS satellite imagery. Figure 3.3 shows a sample GPS report:
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Sketch

Station Id cpttt
Station Name Surau Al-Muhajirin Kg Telaga Batin
Station Description Cross Junction

District Manir

Map Sheet 4265

RSO East 568502.2

RSO North 594969 1 ]

Height 6.6 2uraim;

WGS East 1037 6' 32.2" Observation date:
WGS North 5 22'49.3" 11-Mar-01

(a)

Image location

(¢) (d)

Figure 3.3: Sample GPS report for a point in Kg. Telaga batin. The report includes
details about the (a) GCP point, (b) a sketch of the GCP point, (¢) Location of the GCP
point on an IKONOS sensor imagery and (d) a photograph of the location.

3.4 Conclusion

This chapter has given details of the study area and data used throughout this thesis.
Characteristics of the study area are explained to give an understanding of condition
attributing to problems related to the coastal area. Data used throughout this thesis
were also explained and all spatial data sets were standardised to a single mapping

standard, the RSO.
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4 Sub-Pixel Analysis to Determine

Shoreline Position.

Using coarse spatial resolution satellite sensor imagery for shoreline mapping is
difficult. This is due to the fact that the actual shoreline could be located within the
pixels. This chapter is a pilot study with the aims to examine shoreline positional
errors due to different classification methods and increase its accuracy by mapping the

shoreline at the sub-pixel level.

4.1 Introduction

The pilot study investigates the effects of utilizing coarse spatial resolution satellite
sensor imagery to produce shoreline maps. Thematic mapping from remotely sensed
data is commonly achieved through the application of a conventional hard image
classification analysis. With hard classification, each pixel is allocated to the class with
which it has the greatest similarity. The effect of this allocation process is to constrain
the boundary between classes to lie between pixels. In reality, the boundary between
classes will generally run through the area represented by a pixel, with the pixel having
a mixed class composition. Since a hard classification can allocate a pixel to only one
class its application will have the effect of mis-locating the boundary. Typically, the
size of the mis-location error will increase with a coarsening of the spatial resolution of
the data used. This pilot study analyses the shoreline positional accuracy achieved by a
hard classification using coarse spatial resolution satellite sensor imagery similar to

commonly used satellite sensor imagery such as Landsat TM, Landat ETM+ and
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SPOT HRV. But these satellite sensor data sets are not suitable for mapping local
changes in the shoreline as discussed in chapter 2. Therefore the potential of
approaches to shoreline mapping based on sub-pixel level information derived from a

soft classification is evaluated.

Soft classification allows a pixel to have multiple and partial class membership
and so can accommodate for the effects of mixed pixels. The conventional output of a
soft classification is a set of fraction images which indicate the relative coverage of the
class as in the area represented by the pixel. If the predicted class coverages could be
located geographically within the area represented by the pixel it would allow the
boundary between classes to be plotted at a sub-pixel scale. The main aim of this
research is to investigate a series of approaches for fitting the shoreline to a soft

classification derived from remotely sensed data. A flowchart of the whole pilot study

is given in Figure 4.1.

In this chapter a linear stretch of the beach measuring 500 m in length was used
as the study area. The orientation of the particular shoreline is 45 degrees in the north-
east direction and located in Kg. Seberang Takir, Terengganu (Figure 4.2). This stretch
of shoreline was chosen as its a simple pattern and avoids simple pixel mixing due to
its orientation. Since the aim was to investigate the accuracy of sub-pixel scale
mapping of the shoreline, the study used a fine spatial resolution image to locate the
actual position of the boundary with the analysis undertaken on a spatially degraded
version of this image. Although imperfect, this approach removes problems of mis-
registration between the image to be classified and the reference data on shoreline

position.
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Figure 4.1: Flow chart of pilot study showing the different methods used in the pilot

study.
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Figure 4.2: A colour composite of Kg. Seberang Takir (study area).

A 1 m spatial resolution IKONOS sensor image was acquired on 1% July 2000
and was geo-referenced to the Rectified Skew Orthomorphic (RSO) projection (Figure
4.2). The image was degraded spatially by aggregating pixels to 20 m spatial

resolution.

4.2 Methodology

The methodology used in this chapter can be divided into several main sections.
Initially a 20 m imagery was simulated from 1 m satellite sensor imagery. Several
classification methods were used to analyze and effects on positional accuracy was
determined. Methods to increase positional accuracy were explored and finally a

positional error analysis was conducted to compare the different methods.
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4.2.1 Simulation of 20m imagery

To ensure the actual shoreline position is known and minimize mis-registration
problems, coarse resolution satellite imagery was simulated from fine resolution
satellite data. This approach has the advantage that positional errors normally
introduced during image geo-rectification of satellite imagery are not evident.
Therefore the positional errors obtained in this chapter are solely because of the spatial
resolution differences between the images. The fine spatial resolution satellite imagery
used was acquired on 1% July 2000. To simulate coarse resolution satellite data the Im
IKONOS sensor imagery was sampled down to 20m. This resolution simulates spatial
resolution comparable to widely used civilian system such as SPOT HRV sensor. A
problem with resampling the imagery to a coarse spatial resolution is that it reduces the
noise levels within the imagery produced. This eliminates errors normally evident in
satellite sensor imagery such as internal sensor errors and effects of atmospheric
condition (Duggin et al., 1985). To properly simulate satellite imagery these errors
need to be maintained. The noise in the original Im imagery was determined and

reapplied to the coarse resolution image to make the noise level comparable.

Several factors affecting the scene and the sensor were not considered when
simulating the images. Of those affecting the scene, the adjacency effect is caused by
complicated multiple scattering interactions, resulting in pixels with high DN values
being lowered and pixels with low DN values being increased in a particular image.
These pixel value changes largely depend on its contrast with neighbouring pixel
values and are evident over large heterogeneous areas causing images to lack contrast
and at edges, causing sharp lines to be blurred (Liang et a/., 2001). The adjacency
affect could be simulated by modelling the point spread function (PSF) of the
IKONOS sensor and affects of the atmosphere (Borel and Gerstl, 1992). To address
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these issues further information such as IKONOS sensor information and atmospheric
condition during image acquisition are required. As these information were not readily
available, the adjacency affect were not considered when simulating the coarse spatial

resolution imagery.

4.2.1.1 Satellite sensor noise

In satellite sensor imagery noise can be divided into 2 types : coherent and random.
Coherent or system noise in most cases can be removed as its source is known within a
particular sensor system (Wrigley et al., 1984). Random noise on the other hand can

not be removed easily as its source it not generally known (Smith and Curran, 1999).

The 1 m satellite sensor imagery used in this study was already corrected for
coherent or system noise thus random noise is the primary concern. Even though
random noise can’t be removed easily, it can be measured by repeated measurement of
a particular area then the average of these measurements will be the estimate of the
true measurement (Shanmugan and Breipohl, 1988). The variation of each individual
measurement is therefore an estimate of the random noise (Duggin et al., 1985).
Therefore, on a particular sensor system the signal strength could be used to estimate
noise. Here noise will be defined as signal to noise ratio (SNR) (Smith and Curran,

1999), given by the equation :

S1gf1a1 41
Noise

SNR =

SNR is proportional to data quality; therefore with a larger SNR it would be easier to

distinguish useful information. The SNR of a satellite sensor is a function of the
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spectral, spatial and radiometric resolution (Lillesand and Kiefer, 2000) and can be
described as :
0.5

SNR(2) =D(A)ﬁ2[%) ML(2) 4.2

where:

SNR (A) is the SNR at wavelength A, D = detector quality,

B = instantaneous field of view of the sensor, H’ =height of sensor platform
v = Plaform velocity aA=Sensor spectral resolution

L = Radiance of target area.

The SNR of the sensor is also related to the quality of the optics and electronics

within the sensor and the attenuation of the atmosphere at acquisition time.

4.2.1.2 Methods of estimating SNR of satellite sensor imagery

Several methods have been developed to estimate SNR. The simplest method, the
homogenous area uses small windows of pixels within large homogenous image areas
(Smith and Curran, 1999). The signal at a certain point is estimated by averaging the
pixel response in the window. The noise is then estimated by calculating the standard
deviation of the pixel responses within the windows. Another method, the nearly
homogenous method addresses the issue of finding large homogenous areas within
satellite sensor images. This method proposed by Yuhas ef al., (1993) allows for some
natural variation within areas selected for analysis. As with the homogenous method,
this method calculated the standard deviation of small groups of pixels. The pixels in
the nearly homogenous area are then averaged in groups of increasing size and the
standard deviation calculated against each group. The standard deviation is then
plotted against the reciprocal of the square root of the number of pixels used in the

group. This method assumed that as pixels are averaged in increasing larger group of
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pixels the component of standard deviation due to sensor noise should decrease. The
intercept from the vertical axis of this plot represents the standard deviation for an
infinite number of sample. This value is assumed to be made up of only spatial
variation. Therefore, the SNR can be estimated by dividing the average pixel values

with the difference in standard deviation.

Geostatistics has also been used to estimate noise. Curran and Dungan (1989)
developed a method to estimate the within pixel variation attributable to noise. The

method used pixels along a traverse. The method employed the variogram, a plot of the
semivariances S; of the responses of the pixels pairs from the traverse against their

separation of lag (%) (Curran and Atkinson, 1998). The semi-variance is estimated

using:

S = (_l_j S TR(x)-R(x +h)]2 43

2m, o
Where
M = number of pixel pairs  h=lag

R = response of pixel. x, = location of the first pixel of the i th pair

To determine the variance within a pixel that can be attributed to noise it is
necessary to estimate the values of the semi-variance at lags less than one. This can be
done by extrapolating the variogram model below one lag until it reaches lag zero. The
semi-variance of the model when lag reaches zero is known as the nugget variance.
The nugget variance is an unbiased estimate of the aspatial variation within each pixel.
It has be shown that the square root of this nugget variance can be used as an estimate
of the standard deviation and, therefore, the noise component of the pixel response

within the traverse (Curran and Dungan, 1989). Therefore, the SNR can be estimated
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by dividing the average pixel response along a traverse by the square root of the
nugget variance. This method makes several assumptions. First it assumes that the
spatial variation in the pixel response is related to the lag between pixels and not their
location. It also assumes that the orientation of the traverse does not affect the

variogram but dependant on the sensor operation.

4.2.1.3 SNR estimation of 1 m IKONOS satellite imagery

This chapter uses the geo-statistical method to estimate SNR value of the IKONOS
sensor imagery. A traverse of 100 pixels was selected from the 1 m satellite imagery
and a spherical model was used to fit the data. By extrapolating the semi variogram an
intercept of 56.10 was determined. The square root of this value or the nugget variance
was used as an estimate of the standard deviation along the traverse. Therefore the
standard deviation was estimated as 7.48. To estimate the SNR the average the pixel
response along a traverse (determined to be 233) was divided by the square root of the
nugget variance. The resulting SNR for the 1 m IKONOS imagery was 31.14. Figure

4.3 shows the variogram used.

4.2.1.4 Generating Simulated 20 m IKONOS sensor imagery.

To generate the 20 m simulated imagery, the 1 m IKONOS sensor imagery was
resampled to a spatial resolution of 20 m by aggregating the pixels. To counter effect
the reduction of noise within the imagery due to resampling, the SNR of the resulting
imagery need to be similar to the initial 1 m imagery. This was done by adding
random noise to the 20 m imagery so that the resulting imagery has a similar SNR. As
SNR can only be estimated and it is impossible to exactly obtain the same SNR

between both images, it was decided that the resulting imagery needs to have a SNR
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value to within 90 % of the SNR in the 1 m imagery. The resulting image is shown in

Figure 4.4.
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Figure 4.3: Variogram used to model 1 m imagery.

Figure 4.4: Simulated 20 m spatial resolution imagery
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4.2.2 Generation of Ground Data from 1 m imagery.

To analyse positional errors generated from coarse resolution satellite imagery a
shoreline map needed to be generated to represent ground data. This shoreline map
was generated from 1 m [IKONOS satellite sensor imagery. To differentiate between
land and water body a supervised hard classifier was applied. Hard classifiers can be
defined as a classifier that evaluate pixels and assigns them to only one class, based on
the class of which it has the highest similarity of being a member, such as maximum
likelihood (Richards, 1993; Jensen, 1996). Five homogenous land and five
homogenous water sites were chosen to define pure land and water classes (Figure
4.5). These areas are determined from visual interpretation and field work and were

used throughout this chapter in other classification methods to provide a consistency.
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Figure 4.5: Training sites used in classification methods throughout this chapter.
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Using these training sites to define pure land and water classes, the 1 m
imagery was classified to 2 classes (land and water) using a maximum likelihood
classifier. The resulting imagery was used to calculate the positional accuracy of the
different classification method applied to the simulated 20 m imagery (Figure 4.6).
Using the coarse 20 m simulated satellite sensor imagery several methods were used to

map the shoreline. These include approaches based on hard and soft classifiers.

Figure 4.6: 1 m spatial resolution classified imagery (used as ground data in analysis)

4.2.3 Hard Classifier

To differentiate between land and water body a hard classifier was applied to the
simulated coarse spatial resolution satellite sensor imagery. The maximum likelihood
hard classifier used to classify the coarse spatial resolution imagery was similar to the
one used to classify the 1 m imagery. The same training sites used in classifying the
fine spatial resolution image were used (Figure 4.5). Using these training sets the 20 m
imagery was classified to 2 classes (land and water). The resulting image (Figure 4.7)
would later be analysed to determine the positional error between the predicted

shoreline location and the actual location based on the ground data.
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Figure 4.7: Imagery generated from hard classifying the 20 m spatial resolution

imagery.

4.2.4 Soft Classification

Hard classification techniques have been popular in remote sensing but they only
assign one class to a certain pixel (Richards, 1993; Jensen, 1996). As shoreline pixels
usually contain a mixture of land and water classes, information within a pixel is lost.
A major problem for accurate interpretation of remote sensing data is related to the fact
that pixels may contain more than 2 classes which would only be realised from ground
activities (Foody, 1992). This is due to the complex relationship of land cover types
and their spectral reflectance (Richards, 1993). To address this problem researchers
have developed methods to derive estimates of the sub-pixel class composition through
the use of techniques such as mixture modelling and soft or fuzzy classifications

(Foody, 1996). Soft classifiers allow pixels to have variable degrees of membership to
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multiple classes. Soft classifiers assign a membership grade between 0 and 1 to each
class in a pixel. This allows a pixel to be associated to multiple classes rather than just

to one class as in conventional hard classifiers.

In this pilot study a sigmoidal function was chosen to classify between land and
water. The function would classify pixels, based on a gradual transition between
membership and non-membership to a class (Zadeh, 1965). The sigmoidal function
was chosen because it models the gradual transition between land and water in coastal
areas. For the function to be applied it requires that 2 pure classes be defined. These
classes are pure land and water classes. The average DN value from the water and land
training sites were used to define these classes (Figure 4.5). The soft classifier then
classified each pixel in the study area to proportion values representing proportion of
land within a pixel. For example if the value is 0.3 this means that the pixel contains

30 % land and 70 % water.

Since this soft classification was the basis of all the later analyses, its accuracy
was evaluated. This evaluation was based on a comparison of the predicted coverage
of a class with that derived from the ground data, the 1 m spatial resolution image. The
correlation was calculated based on the Pearson correlation coefficient. The Pearson’s
correlation coefficient, denoted by r is a measure of linear association between two
variables (Siegel and Castellan, 1988). The resulting classified imagery has a » value
0f 0.904 (p <0.05). This result shows that the predicted and actual data are correlated
significantly. Figure 4.8 shows the relationship between the predicted proportion of
land and actual proportion of land. The output from the soft classification is shown in

Figure 4.9.
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Figure 4.8: The relationship between the predicted proportion of land and actual
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Figure 4.9: Output of the soft classification. The grey level represents the proportion of

land class in each pixel.
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With a » value of 0.904 (P<0.05) it was determined that the output of the soft
classification accurately represented the actual proportion of classes within each pixel.
This was important as further analysis in increasing spatial accuracy depends on the
accuracy of the soft classification. Though the soft classifier accurately predicted the
class proportion of each pixel it did not indicate where these proportions were located

geographically within a pixel. This issue was undertaken in the next section.

4.2.5 Methods of Increasing Positional Accuracy.

Output from a soft classification produces images with pixels values representing the
proportion of a certain class within pixels. But it does not indicate where within a pixel
these classes are located. To address this problem, methods of distributing the
proportion within each pixel to different classes were explored. This section explains

the methods undertaken which were wavelet interpolation, contouring and two-point

histogram.

4.2.5.1 Wavelet interpolation

Shoreline position maps would be more accurate with fine spatial resolution data.
Wavelets are a relatively new tool for generating hierarchical or multi-scale
representations of images and could be used to increase the spatial resolution of the 20
m spatial resolution simulated imagery. This technique has been used for remote
sensing applications such as digital change analysis (Carvalho et al., 2001), spectral
fusion (Horgan, 1998), feature extraction (Simhadri et al., 1998). By increasing the
spatial resolution of the simulated imagery and applying a hard classification the
shoreline could be positioned within the pixel boundary thus increasing the positional

accuracy of the shoreline prediction.
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Wavelets are mathematical functions that cut up data into different frequency
components and then study each component with a resolution matched to its scale
(Donoho, 1992). This pilot study implements the 2-D wavelet refinement method
based on average—interpolation method to increase the spatial resolution of the soft
classified imagery (Donoho, 1993). The basic idea is to use data at coarser scales to
predict data at finer scales, and to record the prediction errors as coefficients associated

with the finer scales. Average interpolation can be described as the following. “Given

a function fon an interval J defined by, ave( I ) = f'l ‘[ ,f(t)dt for an average value

3/ 1
of fover the interval 7. With a given triadic interval of {a N k} of numbers

representing the average of f'on the triadic intervals J;; . Average-interpolation
refinement uses the data at scale j to impute behaviour at the finer scale j+1, obtaining
the (pseudo-) averages of fon intervals /., ” (Donoho, 1993). When a even interger

D is defined, it runs as follow ;
(Interpolation) for each interval / , find a polynomial 7 of degree D = 24 satisfying
the average —interpolation condition :

ave (ﬂj!k ]]j.,m)=aj’k+1 Jor —A<I<A4 4.4

(Imputation) Obtain (pseudo-) cell averages at the finer scale by setting

aj+13k-1 = Qve (nj,klljjk_l) for1=0,1,2 4.5
for any degree D one can find coefficient C ,S’f) for which

4
D =
A jr3k+l = Zc/(z,l)a]’,k-l»h =012 4.6
=4

Exhibiting the fine-scale imputed average a ez S as linear functionals of the coarse-

scale average a i
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The soft classified imagery was interpolated from 20 m to 2.5 m based on the
average-interpolation using a Haar wavelet function (Donoho, 1992). This resolution
was chosen as at this resolution it provides a balance between computing time of the
process and shoreline detection capability. The average-interpolating scheme was used
to refine boxcar averages on a grid of n x n points, imputing averages on a finer grid
of 2“n x 2"n points. To obtain a finer resolution of 2.5 m from 20 m requires that a L
value of 3 and D value of 2 were given. Further detail to the algorithm used can be

referred to Donoho (1993).

To determine the land/water boundary a supervised maximum likelihood hard
classification was applied to the wavelet interpolated imagery. The method applied
was similar to the one used in classifying the 1 m classified imagery (4.2.2) using the
same training sites (Figure 4.5). The resulting wavelet interpolated imagery and its

classified imagery is shown in Figure 4.10.

(a) (b)

Figure 4.10: (a) Wavelet interpolated imagery and (b) its classified imagery
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4.2.5.2 Contouring soft classified imagery

Contouring could be used to increase the shoreline positional accuracy prediction from
the 20 m spatial resolution simulated imagery. The soft classified image was contoured
at 0.5 interval to produce a shoreline. This value was chosen as it could be assumed
that at this point a pixel contains 50 % water and 50% land, therefore, the position of
the shoreline. This represents a first step in increasing the positional accuracy as the
generated shoreline crosses within a pixel thus increasing its accuracy in comparison to
hard classifiers that produces shoreline that follows the edges of pixels (Foody et al.,
2003). The shoreline generated from contouring the soft classification output is shown

in Figure 4.11.

Figure 4.11: Shoreline generated from contouring output of the soft classification.

4.2.5.3 Two-point histogram

Interpolation provides a method to infer the distribution of classes at a sub-pixel level
but this is often too simplistic (Atkinson, 1997). Another method used to predict class
boundary within each pixel is by using geostatistical methods such as simulated

annealing (Kirkpatrick et al., 1983; Jeroen and Gerard, 2002). The concept of
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annealing in combinatorial optimization was introduced by Kirkpatrick et al., (1983).
The concept is based on the analogy between combinatorial optimization and the
physical process of crystallization. Inspired by this the Metropolis algorithm proposes
a numerical optimization procedure which works as follows (Metropolis ef al., 1953).
“Starting from an initial situation with energy level f{0), a small perturbation in the
state of the system is brought about. This brings the system in to a new state with
energy level f{1). If f(1) is smaller than f{0), then the state change is accepted. If f{1) is
greater than f{0), then the change is accepted with a certain probability” (Metropolis ef
al., 1953). A movement to a state with a higher energy level is sometimes allowed to
be able to escape from local minima (Jeroen and Gerard, 2002). The probability of
acceptance is given by the metropolis criterion:

f(O)—F(l)] 47

p (accept changes) = exp( 3
0

Where S, is a control or freezing parameter. Next, the freezing parameter is
decreased and a new perturbation is made. The energy levels are again compared and it
is decided whether the state change is accepted. This iterative procedure is repeated
until a maximum number of iteration is reached of until change occurrence have
become very rare (Geman and Geman, 1984). Two important perturbation methods
normally used are swapping two randomly selected pixels in the grid (Deutsch et al.,
1998) and generating a new pixel value from a local conditional distribution (Deutsch
and Wen, 1998). Examples of studies that use simulated annealing for spatial
optimization can be found in areas ecological research (Church ez al., 1996), of spatial
resource allocation (Jeroen and Gerard, 2002) and forestry research (Lockwood and

Moore, 1993).
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The spatial optimization used in this pilot study is based on a geostatistical
method inspired by simulated annealing as defined and used in the program Anneal.f,
apart of the GSLIB library (Deutsch et al., 1998). The method calculates a two-point
histogram or grey level co-occurrence matrix (GLCM) statistics to analyse similarity
between two images. A two-point histogram is a two-dimensional histogram of grey
levels for a pair of pixels which are separated by a fixed spatial relationship (lag)
(Haralick et al., 1973). The two-point histogram approximates the joint probability
distribution of a pair of pixels within an imagery. A sample two-point histogram
calculation is shown in Figure 4.12 . The calculation is based on a horizontal direction
with a lag of 2. For example to calculate the two point histogram value for the
relationship between grey level value 2 and 3 at a distance of 2 pixels, the total amount

of relationship is added up and inserted into the table (calculated as 4).

Grey level
TTOTS TSI 0 1 2 3
02211 /1]0 5 1{6|2]2]3
/a-""_ . J“é‘:
i 2103 2 2 g xl2102 4
2 l (.} _\_'___’:.3 fi -y
1130 11 JEIEIOE

5
)P

(b)

o
S

Figure 4.12: Sample calculation of the two-point histogram for a horizontal direction
with a lag of 2. (a) The relationships between grey level 2 and 3 at lag 2 and (b) the

corresponding two-point histogram are shown.

Details of the optimization method used are describes as follows. Given a

random variable Z that can take one of £ = 1,.....,K outcomes (i.e., categorical variable)
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the two-point histogram for a particular lag (distance and direction of separation) /% is

the set of all bivariate transition probabilities:

z{(u) € category £,
(u) gory } is

Prwan =Pr {z(u +h) e category k'
Independent of u, for all £, £” = 1,....,K. The objective function corresponding
to the two-point histogram control statistic is as follow:
K K
0-3( S35 ates (0-piz )] | 49

k=1 k=1

Where p;/}"" (h) are the target transition probabilities calculated from a

training image and realization p7.*""*" () are the corresponding transition
probabilities of the realization image.

To increase spatial resolution the two point histogram alone was insufficient. A
scheme must be devised to alter the sub-pixel values. This could be done by a change
in attribute (as in Anneal.f) or via a swap in sub-pixel location. Here a swap in sub-
pixel location was used. This was chosen as in classifying land and water boundary
(shoreline), the proportion of land and water within a pixel has to be maintained to
correctly identify the division within it. The optimization goal also needs to be

constrained so that the sub-pixels are swapped within pixels (Atkinson, 2003).

The algorithm used in this study was developed for super resolution land cover
classification (Atkinson, 2003). Two point histograms of the training and satellite
sensor imagery were calculated and evaluated toward an objective function. If a pixel
swap results in a smaller objective function, the swap is retained and updated on the

other hand if it results in a larger objective function the swap is discarded.
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To increase efficiency two checks were added to the algorithm (Atkinson,
2003). First when pixels are found to contain only one cover class they are ignored.
However, sub-pixels within these pixels may still be used in comparison between sub-
pixels within adjacent pixel because the two-point histograms are calculated for eight
directions and at different lags. Second, sub-pixels were compared only if their classes
were different. Initially the 20 m soft classified imagery was resampled to a sub-pixel
spatial resolution of 2.5 m and the class proportion was redistributed randomly within
the pixel. Two proportion images were created, one for land and one for water.
Basically they are the inverse of each other (Figure 4.13). A training image of the
training site was prepared using the 1 m hard classified satellite sensor imagery. The
imagery was resampled down to a spatial resolution of 2.5 m to match the algorithm
target spatial resolution (Figure 4.14). The soft classified imagery was processed with
a lag of 5 m until 50 iteration. It was discovered that on this particular imagery no
increase in positional accuracy was obtained if the algorithm was run for 50 iteration.
The imagery before and after the 50 iteration are shown in Figure 4.15 and Figure

4.16, respectively.
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Figure 4.13: (a) Water and (b) land proportional images. The X and Y axis represent
the location in pixels while the grid represents the pixel size of 20 m. The grey scale
(from white to black) indicates the class proportion within the pixels.
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Figure 4.14: Training imagery used in the two-point histogram process. The X and Y
axis represent the location in pixels (2.5 m)
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Figure 4.15: Initial Two-point histogram imagery with randomly distributed sub-pixels

(2.5 m spatial resolution). The grid represents the original pixel size (20 m)

75



Chapter 4. Sub—pixel Analysis to Determine Shoreline Position.

:, ‘l== ====IIII.III==lllll=l=l...
300 1— b
250 -isunes
—i
|
200 +m
—a
—a
150 "EE
—a
—&
100 M
50 -
= "'IEEHII-------;
EEEEENEEENEEREEE
0 IIIIIIIIIIIIIIIIIIII-I
_HIIIIIIIHIIII[IIJIIIIIIIIIIIIII|Illll

0 50 100 150 200 250 300

Figure 4.16: Two-point histogram imagery after 50 iterations. The grid represents the

original pixel size (20 m).

4.2.6 Positional Error Analysis

To compare the various methods used in obtaining shoreline position a positional error
analysis was conducted. A standardized method was chosen to extract the shoreline
position from the output of each method used. With the exception of output from
contouring, which produces a vector representing the land water boundary, output
from the other methods are classified imagery with water and land classes. Therefore,
to generate a shoreline position from these images (output from wavelet interpolation
and two-point histogram), the images were vectorised along the boundary between the
land and water classes. The basic operation is to generate lines which outline the

boundaries of these areas.
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By comparing these shoreline positions to the actual/ground data (from 1 m

imagery) the positional accuracy could be evaluated. Shoreline maps generated from

these images are shown in Figure 4.17 to Figure 4.20
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4.17: Shoreline map generated from output of a hard classification.
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Figure 4.18: Shoreline map generated from contouring of the soft classification

output.
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Figure 4.19: Shoreline map generated from wavelet interpolation.
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The shoreline maps contain detailed positional information, but when looking
at the maps produced, this information was not clearly obvious. Even though the
shoreline maps were created at a scale of 1: 3,000 this information seems lost and all
the shorelines look similar with the exception ofithe shoreline generated from hard
classification. Output from the hard classification method was the worst with the
shoreline having jagged edges. To make the differences obvious the map of the
shoreline needed to be at a finer scale but doing so limits the portion of shoreline that
would be displayed. To address this issue a graphing method was used to display the
shoreline positional information. Therefore, graphs were produces with the shoreline
position on the X axis and the shoreline changes on the Y axis (Duffy and Dickson,
1998). By adapting this methodology subtle changes in shoreline can be displayed by
stretching the X axis. Shoreline errors between each classification method and ground
data along each metre of the shoreline are graphed. Having these values quantitative
analysis could be done. These values were graphed to analyse positional accuracy
between the different classification methods. Due to the length, the shoreline was
divided into two shoreline graphs based on 250 m of the shoreline. Areas for each
graph are shown in Figure 4.21 and the two graph depicting the errors along the

shoreline are shown in Figure 4.22 and Figure 4.23.
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Figure 4.21: Shoreline position of the generated positional error graphs
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Figure 4.23: The positional errors along the shoreline (Metre 251-500)
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4.3 Results and analysis.

4.3.1 Results

Using this graphing method the positional error along the shoreline of each method
could be seen more clearly in comparison to displaying conventional shoreline maps
(i.e Figure 4.18). Using this method quantitative analysis was done as errors at each
metre of the shoreline are displayed. From analysis the root mean square error (RMSE)

of each classification method were calculated. The results are shown in Table 4.1.

Another test to verify the result was to rank each method based on the lowest
error at each metre of the shoreline. The sums of the ranks reaffirm the results obtained
from RMSE (Table 4.1). The result shows that the two-point histogram method is
again the most accurate with a sum of ranks value of 921.5, followed by wavelet

interpolation, contouring and hard classification.

Table 4.1: RMSE of the 4 classification methods used.

Classification method RMSE
Hard Classification 6.48 m
Contouring Soft classification 3.20m
Wavelet interpolation 2.82m
Two-point histogram 225m

Table 4.2: Sum of Ranks of the 4 different methods

Classification method Sum of ranks
Hard Classification 1708.5
Contouring Soft Classification 1298.5
Wavelet Interpolation 1071.5
Two-point histogram 921.5
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Another statistical test applied to the data was the Friedman test. The Friedman
test is a non-parametric test that compares three or more paired groups (Siegel and
Castellan, 1988). The Friedman test first ranks the values in each matched set (each
row) from low to high. Each row is ranked separately. It then sums the ranks in each
group (column). If the sums are very different, the P value will be small. Results from
the Friedman test the P value was determined to be 0 thus it could be assume that the

output from the 4 methods used in this pilot study are not equal to each other.

The statistical test shows that the two-point histogram method provided the
most accurate representation of the shoreline followed by wavelet interpolating,

contouring soft classification and lastly hard classifier.

4.3.2 Analysis

Analysis was done to evaluate the four methods used. The analyses were limited to

shoreline position within the 500 m stretch as defined in Figure 4.2.

4.3.2.1 Hard classifier

The hard classifier was found to produce the least accurate representation of the
shoreline with an RMSE of 6.48 m and sum of rank of 1708.5. Only 26 % of the
shoreline was within 2 m of the actual shoreline and 42 % within 4 m. This poor
representation of the shoreline was expected as the hard classification method was
reliant on the pixel size as the shoreline was generated according to the edges of pixels
and not through the pixels such as in the other methods. The hard classifier assigns
pixels to only one class, based on the class of which it has the most similarity.

Therefore, pixels with 49% land would still normally be classified as water. This
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introduces errors to the shoreline position. Due to these restraints and the orientation
of the shoreline, the shoreline produced was jagged and errors up to 15 m distance
were observed in several areas (Figure 4.22 and Figure 4.23). Errors also tend to be in

the negative direction (landwards), this was again due to the nature of the shoreline

direction.

4.3.2.2 Wavelet interpolation

To increase the positional accuracy of the shoreline the soft classification output was
interpolated using an average interpolator. This produces a shoreline with an RMSE of
2.82 m. Although the shoreline was more accurate it was still affected by the
orientation of the shoreline. The wavelet interpolator tries to smooth the peaks that
were so evident in the hard classification output. The shoreline was still jagged at
similar areas as the shoreline generated from the hard classification although the peaks
were smoother. Although this method produces a jagged shoreline 35 % of the
shoreline was within 2 m from the actual shoreline and 84 % within 4 m, producing
less error than the smoother soft classified imagery. About 40 % of the shoreline was
also within 1 m from the actual shoreline. Similarly to contouring, a drawback of this
method was that it modified the pixel proportion of each pixel. As the wavelet
interpolator did not maintain the proportion of each pixel it produced fewer errors at
positions where the soft classification was not accurate. An example could be seen
from metres 310 — 350 of the shoreline (Figure 4.23). Again as in the result from the

hard classification the shoreline tend to be in the negative direction or landwards.

4.3.2.3 Contouring soft classification output.

Outputs from a soft classification are class proportion values representing the

proportion of a class within a pixel. Using these proportion values a shoreline position
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could be generated at the position where the proportion values are 0.5 thus, providing a
method of positioning the shoreline location within a pixel. This increased the
shoreline mapping accuracy and produces a shoreline with an RMSE of 3.2 m. Only 35
% of the shoreline was within 2 m from the actual shoreline and 42.8 % within 4 m.
The shoreline generated from this method was visually the smoothest among the 4
methods used. The positional error from this method was within 2 to 5 m, 62.8 % of
the time and very seldom (16 %) within 1 m to the actual shoreline position. This
method does not suffer from the orientation of the shoreline as it does not reveal any
jagged areas. A drawback of this method was that it modified the proportion values
when fitting the contour. Again the results show that errors tend to be in the negative

direction or landwards, this was again due to the nature of the shoreline direction.

4.3.2.4 Two-point histogram

Among the 4 methods used, the two-point histogram approach produced the most
accurate result with an RMSE of 2.25 m with 57 % of the shoreline within 2 m from
the actual shoreline and 84 % within 4 m. The output from this method was also more
accurate than the output from the wavelet interpolation method with 46.6 % of the
shoreline within 1 m of the actual shoreline. The two-point histogram approach was
very dependant to the initial soft classification output as the proportion of each pixel
was maintained. This explains why in certain portion of the shoreline sharps peaks are
visible. These peaks can be seen at metre 335 and 380 of the shoreline (Figure 4.23).
Although the shoreline was not as smooth as the contouring method it was consistently

close to the actual shoreline despite the peaks.
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4.4 Conclusion

This chapter examined the effects of spatial resolution on generating shoreline position
maps and methods of accurately predicting the shoreline accurately. For this purpose a
20 m satellite sensor imagery was simulated from a 1 m satellite sensor imagery.
Using a hard classifier the 20 m imagery was classified to produce 2 classes, land and
water. The shoreline generated by the hard classifier had large positional errors as the
shoreline was generated along pixel boundaries and not through the pixels. To increase
accuracy of the shoreline prediction the 20 m imagery was soft classified and several
methods were applied to position the shoreline within the pixels. These methods were

contouring, wavelet interpolation and two-point histogram.

Using a graphing method the accuracy of shoreline generated by these methods
were compared. From the result it was determined that two-point histogram method
produced the most accurate representation of a shoreline followed by wavelet
interpolation and contouring. As these results were obtained from a linear shoreline,
the results are only valid for linear shoreline characterized by a simple linear pattern.
For shorelines that are more complicated with different orientations, it could be

assume that the results will be different.

This chapter provides a starting point on sub-pixel methods of generating accurate
shoreline maps from coarse spatial resolution satellite sensor imagery. For linear
shoreline it has been shown that two-point histogram and wavelet interpolation were
able to produce shoreline maps with an RMSE of fewer than 3 m. This should satisfy
the requirements for a 1 : 10,000 scaled map (U.S.Geological Survey, 1999). But
shorelines are generally more complicatedly shaped and further research needs to be

done to develop methodologies to map these shorelines. Chapter 6 will address these

85



Chapter 4. Sub-pixel Analysis to Determine Shoreline Position.

issues and look into methods of producing accurate shoreline maps from shoreline with
different orientations.

This chapter has revealed the potential of using coarse spatial resolution satellite
sensor imagery to map the shoreline, even so, fine spatial resolution imagery are still
useful to produce local shoreline maps. The following chapter examines the
application of using fine spatial resolution satellite sensor imagery to accurately

position the shoreline.
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S Shoreline Mapping From Fine Spatial

Resolution Satellite Sensor Imagery.

5.1 Introduction

The shoreline is defined as the intersection of land and water surfaces. Due to the
dynamic nature of the water body, the shoreline is constantly changing in location
(Davis et al., 2000; Fletcher et al., 2003). When a shoreline position is captured by
satellite sensors the resulting shoreline position is categorised as an instantaneous
shoreline. This instantaneous shoreline could not directly be used for mapping
purposes, nor be employed for quantifying shoreline changes as it is not based on a
reference datum (Li ef al., 2002). For these purposes a reference shoreline is required.
A reference shoreline is defined based on a stable vertical datum or is the linear
intersection between water and land at a desired water level. These shorelines are also
known as tide-coordinated shoreline such as, the shoreline normally shown on a

topographic map of Malaysia.

Conventionally shoreline maps are derived from aerial photography by
acquiring the images during a selected tide elevation level (Camfield and Morang,
1996; Gorman et al., 1998). This requires coordination between a tide gauge reading
(to determine tide level) and aerial photography (to acquire images at a particular time)
to ensure that the shoreline acquired was based on a selected tide level (Li et al., 2002;
Parker, 2003). This type of tide coordinated shoreline is called a physical tide

coordinated shoreline.
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The spatial resolution of satellite sensors has increased so that the spatial
resolutions are comparable to that of aerial photography. These sensors also have
stereo mapping capabilities. However, to acquire a tide coordinated shoreline based on
a satellite sensor image is unrealistic as the acquisition times of satellite sensor are not
flexible and are based on the orbit of a particular satellites (Jensen, 2000). Therefore to
establish a tide coordinated shoreline from satellite sensor imagery, a relationship
needs to be established between the instantaneous shoreline and the tide coordinated
shoreline. Knowing this relationship the requirement for field coordination between
gauge reading and aerial photography/satellite sensor imagery would no longer be
necessary. This provides a new method of digitally establishing a tide coordinated

shoreline.

The idea of digitally establishing a tide coordinated shoreline comes from the
definition of a shoreline as the contact or intersection line between water and the land
surfaces. This is intuitive to people’s perception of a shoreline. A shoreline profile or
side view explaining this concept is shown in Figure 5.1. To generate a digital tide—
coordinated shoreline the intersection between land and water surface needs to be
established, by combining topographic and bathymetric information. The water surface
could later be repositioned based on a selected tide elevation as a boundary condition.

Therefore the shoreline position at a selected water level could be derived.
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Figure 5.1: Profile showing the combination of topographic and bathymetric
information. The figure gives an example of the shoreline position (a) during satellite
sensor image acquisition and (b) a computed shoreline position based on a selected

tide elevation

Li et al.,(2002) digitally established a tide coordinated shoreline for a portion
of Lake Eire, USA. A terrain model was used to define the elevation for areas above
the water and bathymetric information to define the elevation below the water level.
By combining these two data sets a 3-D model of the shoreline was established. The
terrain model was derived from aerial photographs and integrated with bathymetric
data acquired by the Ohio Department of Natural Resources to form a 3-D terrain
model of the coastal area. By modelling the water surface to a selected tide elevation, a
tide coordinated shoreline was generated with an overall accuracy ranging from 2.1 m
to 13.4 m. Li et al.,(2002) concluded that the major error source came from the 3-D
terrain model and increased accuracy was achievable with accurate terrain information
of the study area.

In Malaysia, shoreline maps are generally derived from the intersection
between land and water body at the Mean High Water Springs (MHWS) tide. MHWS
is defined as the 19 year average height of high water mark occurring on spring tides.

Spring tides are defines as the average tide during new and full moon days and the 2
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days following each (John, 1983). As the MHWS information at the Kuala Terengganu
tide station was not available to the author, the shoreline was mapped based on Mean
Sea level (MSL). MSL is defines as the average height of the sea surface, based upon
hourly observation of the tide height on the open coast or in adjacent waters that have
free access to the sea (Clark, 1983). Even though MSL was used, the method
employed in this research would work with any reference level. To digitally establish
a tide coordinated shoreline based on the MSL a 3-D representation of the study area
was required. By doing so the shoreline could be repositioned from its instantaneous
location (satellite sensor imagery) to its reference position (MSL). Figure 5.2 shows

the relationship between shoreline positions at different tide levels.

This thesis proposes the use of IKONOS imagery to produce a 3-D elevation
model of the area. The process was two fold involving the generation of elevation
information for land and depth information for water areas. For land the elevation
information was derived by utilizing stereo IKONOS sensor imagery, on the other
hand, depth for water areas are derived from multi-spectral IKONOS sensor imagery
based on spectral reflectance values. These two processes are explained in detail in the

following sections.

High Tide
Mean Sea Level (MSL)

\ Low Tide

Sea

Land

Figure 5.2: Shoreline positions at different tide levels
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Liet al, (2002) establish a methodology for deriving a digital tide coordinated
shoreline utilising a terrain model of an area by correcting the tide level to a selected
datum to determine the shoreline position. Li ez al., (2002) work utilizes aerial
photographs and available bathymetry data to establish a terrain model of an area. But
to map shorelines in Malaysia, similar data sets would not be suitable as the coastal
area is dynamic and would change from year to year (Ministry of Agriculture, 1997).
This research aimed to develop a method of producing shoreline maps quickly by
utilizing mainly satellite sensor imagery to derive both topographic and bathymetric
information. This not only provided a faster but also a cheaper alternative to mapping
the shoreline (Rao et al., 1985). These two factors are very important to a country like
Malaysia which has limited resources and requires the monitoring of long shorelines.
A 3-D terrain model of the shoreline would also be useful in other coastal research
studies such ecosystem management, coastal engineering, sediment movement and
erosion studies (Clark, 1983; Balopoulos et al., 1986; Cromwell ef al., 1991; Bhat and
Subrahmanya, 1993; Cendrero and Fischer, 1997; Chauvaud et al., 1998; Lane et al.,
2000; Davis ef al., 2000; Honeycutt ef al., 2001; Adams and Minor, 2002; Friedman ef
al., 2002; Byrnes et al., 2003; Leatherman, 2003; Fletcher ef al., 2003; Honeycutt and

Krantz, 2003; Dewidar and Frihy, 2003).

5.2 Coordinate system

Before producing the DEM and bathymetry maps it was important to first select an
established coordinate system (Kenward et al., 2000; Ruggiero et al., 2003). The use
of a common coordinate system on a defined horizontal and vertical datum allowed
data to be combined easily without the need for coordinate transformation. For this

thesis, the horizontal and vertical datum used was based on the RSO projection. The
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RSO projection is the mapping standard used in Malaysia. Details of the RSO

projection could be found in section 2.2.

5.3 Deriving bathymetry and DEM information utilizing IKONOS

sensor data.

Research in deriving DEM using satellite sensor imagery has grown enormously since
the launch of stereo capable satellites such as SPOT HRV but its capability was limited
due to its coarse spatial resolution (Giles and Franklin, 1996; Al-Rousan et al., 1997).
Newly developed sensors such as IKONOS and Earlybird with a fine spatial resolution
(under 1 m) have spawned new research in their capability to produce accurate and
detailed elevation information (Zhou and Li, 2000; Ganas et al., 2002). Research
conducted in topographic mapping and feature extractions has shown promise
producing accuracy similar to aerial photography (Grodecki and Dial, 2001; McCarthy

et al., 2001; Ganas et al., 2002; Fraser et al., 2002a; Malthus and Karpouzli, 2003).

Satellite sensor imagery has been used to derive bathymetry information since
the launch of Landsat MSS in the 1980s (Benny and Dawson, 1983; Lyzenga, 1985;
Philpot, 1989; Ibrahim and Cracknell, 1990; Bierwirth et al., 1993; Roberts and
Anderson, 1999). Even so, satellite sensor imagery has not been widely used as the
spatial resolutions of these satellites were too coarse for practical marine surveying
such as mapping bathymetry. IKONOS with a fine spatial resolution of 4 m (Multi-
spectral) provides a new avenue to utilize satellite sensors imagery to produce accurate
bathymetric data. IKONOS sensor also has a larger radiometric resolution of 11-bit
(2048 grey levels) in comparison to previous sensor such as SPOT HRV and Landsat

TM which have a radiometric resolution of 8-bit (256 grey levels).
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5.3.1 Bathymetry mapping

Hydrographic surveying by conventional ship borne sounding techniques is slow,
hazardous and expensive (Cracknell, 1999; Brock et al., 2002). As a result, interest has
been generated in the application of remote sensing techniques for bathymetry
mapping. Satellite sensor imagery provides an alternative to conventional
hydrographical surveys for measuring water depth. The application of passive satellite
sensor imagery to derive bathymetry maps have concentrated on the blue region of the
electromagnetic spectrum (0.45-0.52 pm) due to its penetration of water (Bukata et al.,
1995; Jensen, 2000). Landsat TM has been used extensively for this purpose and
several researchers have extensively developed models to extract bathymetry
information (Lyzenga, 1985; Philpot, 1989). The IKONOS multi-spectral bands are
spectrally similar to bands 1-4 of the Landsat TM, but provide data with a spatial
resolution of 4 m (Multi-spectral) and radiometric resolution of 11 bit in comparison to
Landsat TM 30 m spatial resolution and 8-bit radiometric resolution. The radiometric
resolution of IKONOS of 11- bit with 2048 grey levels provides the ability to provide
increased tonal and intensity variation in comparison to the Landsat TM (8-bit; 256
grey levels). With these capabilities IKONOS is capable of producing accurate

bathymetric predictions in comparison to Landsat TM.
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5.3.1.1 Techniques for bathymetry extraction from remote sensing

imagery

This section reviews several techniques developed for the estimation of bathymetry

from satellite sensor imagery.

5.3.1.1.1 Single band method

This is the simplest method of bathymetry extraction in which the water depth
extraction techniques were developed on the basis of a simple water reflectance model
which accounts for a major part of the signal received by a multi-spectral scanner but
neglects the effects due to scattering in the water and internal reflection at the water
surface. According to the single band method, the reflectance in a single wavelength

band can be written as,

R(2) = R (2)+ R (A)r, (M) exp /2 5.1

Where R,(A) represents the sum of the radiance from the atmosphere and the
reflection at the sea surface and is therefore equal to the radiance observed over deep
water; R (4) is a constant which includes solar irradiance, the transmittance of the
atmosphere and the water surface; 7, (1) is the bottom reflectance; a(A) is the

effective attenuation coefficient (m™') of the water; /is a geometric factor to account

for path length through the water and Z is the water depth (m) (Lyzenga, 1978).

The single-band method assumes that the bottom reflectance is constant
throughout the test site and that the water attenuation coefficient is constant and
independent of water depth. It also assumes that the atmosphere and sea state are

uniform and that the effects of multiple scattering between the water surface and the
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bottom can be ignored or assumed constant throughout the image. Further, it assumes
that the angular distribution of light does not change with depth and that there is no
contribution to the upwelling radiance by the reflected sky radiance from the water

surface.

The simplest method of extracting water depth information from multi-spectral
scanner data is to invert equation 5.1 for a single wavelength band. An extension of
this method would be to calculate the depth from two or more bands and average the
results. Despite the crudeness of the model, it accounts quite well for the signals
recorded by a multi-spectral scanner over shallow water (Lyzenga, 1979). The
difficulty with this method is that changes in the bottom reflectance or water

attenuation will cause errors in the depth calculation.

5.3.1.1.2 Ratio Method

Commonly the attenuation coefficient of water and the bottom reflectance
change from one location to another within the same scene. However, the difference
between the attenuation coefficients in two appropriately chosen bands does not vary
much from point to point and from time to time. The same is true of the ratio of the
bottom reflectance in the two bands. The following algorithm developed by Polcyn et
al. (1970) relies on the assumption that a pair of wavelength bands can be found such
that the ratio of the bottom reflectance’s in these two bands is the same for all the

bottom types within a given scene,

1 AR T e
Z—————-—(%_al)f[m(?{—d—]ﬂn{m (R, Rd,)} in(R, Rdz)} 5.2
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Where 145 / ¥, is the ratio of bottom reflectance in bands 1 and 2 and o; and

o, are the attenuation coefficients in bands 1 and 2 respectively. R; and R; are the
observed radiances, Ry; and Ry, are the radiances observed over deep water and R,
and R, are the constants which include solar irradiance, the transmittance of the
atmosphere and the water surface in bands 1 and 2 respectively. Thus, if the
assumption that the ratio of bottom reflectance in the two bands is constant within a
given scene is correct, the depth calculated by this method is not affected by
changes in bottom composition in the scene. The estimation of water depth is also
insensitive to changes in water quality if the difference between the attenuation
coefficients, remains constant (Gould and Arnone, 1997). In many cases, a pair of
wavelengths can be found where an approximately constant value can be obtained
for the ratio of the bottom reflectance and for which difference between the
attenuation coefficients remains relatively constant. However, the wavelengths
which satisfy one criterion are in general not the same as those which satisfy the
other; moreover, if changes in bottom composition or water quality are too large, a

pair of wavelengths may not exist which satisfies either criterion.

5.3.1.2 Evaluation of methods

The methods described in this section essentially depend upon finding a
relationship between water depth and the reflected radiance in one or more
wavelength bands. If the water's optical properties and the bottom reflectance are
uniform and a large correlation exists between the water depth and the radiance in a
single wavelength band then single-band method may give accurate results. If the
optical properties and bottom reflectance are not uniform then more than one
wavelength band must be used in the depth calculation. In deeper waters, using the
band with maximum penetration will give increased accuracy when compared to
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using multi-bands with insufficient depth penetration. Ratio methods give accurate
results in areas of non uniform bottom reflectance and optical properties. The
selection of method would, therefore, depend on the type of data available, the

spectral channels available, the water and bottom characteristics and the range of

depth in a particular area.

5.3.1.3 Method of depth determination and algorithm used in this

thesis.

Knowledge of the study area played a vital part in deciding the method used to obtain
water depth. By utilizing information such as bottom type and water quality of the
study areas a suitable method could be selected. Since the study area was small (4 km
length) and the area had a consistent bottom type of white carbonated sand, it was
assumed that the albedo or reflective properties of the bottom type was constant.
Water quality in this area was also consistent and hence the water attenuation
coefficient, k£ did not vary within the imagery. Field visits to the study site validated
this assumption. As these assumptions are implicit to the Benny and Dawson (1983)
method, this method was chosen to estimate water depth. An in-depth explanation of

the method is given below.

The fundamental principle of using remote sensing imagery to estimate water
depth information is that different wavelength of radiation will penetrate water at
varying degrees. As radiation passes through water it is attenuated by the interaction
with the water column, its intensity I ,remaining after the passage length p through

water, is given by :

Ii=1e"* 53
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Where I,= intensity of radiation and £ is the attenuation coefficient, which
varies with wavelength. If a vertical pathway of radiation from surface to bottom and
back is assumed, p maybe substituted by the term 2d, where d = water depth. The
Benny and Dawson (1983) method assumes that for a certain water depth d, the length
of the path is equal to d + d.cosec (E’), which can be rewritten as d(1+ cosec(E’). The
cosec function corrects for the fact that the Sun is not vertically overhead at the time of
image acquisition. Therefore, the amount of radiation remaining after passage through

the water column to depth d and back upwards (/) will be :
.[d :R [0-8 —k.d(]\‘COSﬁC(E)) 5 4

Where R is the proportion scattered upwards from seabed and 7, is the amount of
incident light. Figure 5.3 displays the light path from the Sun to satellite sensor

assumed by this method.

To satellite sensor
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Figure 5.3: The light paths from Sun to satellite sensor modified from Benny and
Dawson (1983))
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Assuming that the radiation returned to the sensor by specular reflection and
atmospheric scatter is the same for deep and shallow water, the total radiance (L)

recorded by the sensor is :
— —k.d(1+cosec(E’))
L=Ls+R Le 55

Where L; = deep-water radiance. The ratio of the radiance from the two

different depths, x and y, is therefore:

~k.x(1+cosec(£")
L-L, Rle

X

- —k.y(l+cosec( L")
[,-I, RIe

5.6

As the albedo or reflective properties of the bottom type in this study area is

constant, the equation simplifies to:

—k.x(I+cosec(E")
Lx _Ld 3 e X cosec
5.7

T —k.y(l+cosec(LY)
L-L, e

Hence :

In(L,~L)~In(L, - L))

- 5.8
—k(1+ Cosec(E")
In very shallow water (< 1 cm), y = 0, and the equation reduces to:
Depth x:ln(Lx-Ld)-ln(Lo_Ld) 59

—k(1+Cosec(E")
Where L, is the signal strength for shallow water. This formula was applied to the

IKONOS multi-spectral sensor imagery to derive a bathymetry map.

5.3.1.4 Data

This section describes the data used to estimate bathymetry.

5.3.1.4.1 Satellite sensor imagery

This study utilizes multi-spectral IKONOS satellite sensor imagery with a spatial

resolution of 4 m to estimate bathymetry. The data was acquired on the 10™ of April
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2002 over Kuala Terengganu. Further details regarding the data can be obtained in
section 3.3.1.1. The imagery was geo-rectified to the Malaysian Mapping standard
based on the RSO map projection utilizing 20 carefully selected control points with an

accuracy RMSE 5.4 m.

The IKONOS sensor imagery acquired for this purpose was contaminated by
sun-glint. This was evident especially in band 1 but was less apparent in band 2 and 3.
This occurs as the satellite sensor was in the opposite direction of the Sun during
imagery acquisition. It was expected that this phenomena would affect the ability to
derive depth information as it interferes with the radiation water interaction essential in
determining bathymetry. Details of this phenomenon will be given in the discussion

section.

5.3.1.4.2 Ground data

The data used were obtained from a field trip conducted within 3 months of the date of
satellite sensor data acquisition. The field trip was conducted from the 6™ July till 10®
July 2002 to obtain bathymetry information. The bathymetry was obtained by
collecting X, Y and water depth along a several profiles starting from land towards the
sea. Further details on the data can be found in section 3.3.2. From this field trip a
selection of 115 points were selected as ground data. The points were selected based
on their location to form an evenly distributed network of points. The points were also
selected evenly between depth values of 0.5 m and 7.5 m. From these 115 points 90
points were used as training data to estimate &, L, L, and E’, while the remaining 25 as

check points to access the accuracy of the estimated depth (Figure 5.5).
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Figure 5.4: Colour composite of Band 1, 2 and 3 of IKONOS satellite sensor imagery
of study area.
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Figure 5.5: Ground data and check point used to estimate bathymetry. Training data
was used to estimate the parameter necessary to estimate bathymetry while check
points were used to determine the accuracy of the derived bathymetry map.
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5.3.1.5 Image processing

5.3.1.5.1 Converting image DN to planetary reflectance

In order to convert DN values from IKONOS satellite sensor imagery to Top of
Atmosphere (TOA) or planetary reflectance the following formula was used (NASA,
2003):

3 nl,d’
" ESUN,Cos(,)

Py 5.10

Where p, is the planetary reflectance, L, is the spectral radiance at sensor’s aperture,
ESUN;, is the band average solar Spectral Irradiances, Os is the solar zenith angle and d
is the Earth-Sun distance, in astronomical units.

To utilize this formula the IKONOS sensor spectral radiance at sensor’s aperture
need to be determined. This parameter could be determined by the equation (Space

Imaging, 2003b) :

L. (mW em? sty = DN/ CalCoef, 5.11

or
5.12
L, (Wm? st )= DN/ (CalCoef;/10)

Where the value of CalCoef; was be obtained from Table 5-1.

Table 5.1: IKONOS satellite sensor calibration values (Source: Space Imaging

Document Number SE-REF-016, Rev. A)

CalCoefy, Full Scale Dynamic ESUN,,
Spectral Band DN*[mW cm'z-sr]'1 Range values
(mW em-sr) (Wm? pm™)
MS-1 (Blue) 728 2.98 1939.429
MS-2 (Green) 727 3.32 1847.400
MS-3 (Red) 949 2.87 1536.408
MS-4 (VNIR) 843 3.75 1147.856
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However, in order to use the values in Table 5.1 in the conversion formula, the
values must be in units of W m™ sr ™' pm™. This can be accomplished by dividing the
wavelength dependent CalCoef) by 10 and dividing this number by the bandwidth for
each band (Fleming, 2003). Thus, spectral radiance in units of W m™ sr pm'l now

becomes:

Ly(Wm? st pym™ )= DN/((CazCoef/J 0)/Bandwidth) 5.13

The final formula that incorporates the spectral radiance and band pass conversions for

IKONOS DN values now becomes:

_ wDN, /((CalCoef, /10)/ Bandwidth), d* 514
Po ESUN,cos(6,) '

Equation 5.14 calculates the top of the atmosphere reflectance for IKONOS sensor
imagery without considering atmospheric affects. Several radiative transfer codes
(RTCs) based on radiative transfer theory have been developed to correct the
atmospheric affect on satellite sensor images, among them 6S and Lowtran (Song et
al., 2001). However, these RTCs require accurate atmospheric optical properties at the
time of image acquisition to calculate the surface reflectance. As these measurements
were not available, the planetary reflectance was used to derive bathymetry. Therefore,
equation 5.14 was applied to band 1 and 2 of the IKONOS satellite sensor imagery to

produce reflectance images.
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5.3.1.5.2 Estimation of k, L;, L, and E’

To utilize equation 5.9 and generate bathymetry, several parameters need be

determined from the satellite sensor imagery. These values are k, L; , L, and E’

To estimate £ of the satellite sensor images, field data were required. Data of 90
training sites (Figure 5.5) of known and varying depth with the same bottom type were
used in estimating k. Based on the Benny and Dawson (1983) method the reflectance
in each band were logarithmically transformed and regressed against depth. The
regression line will have a negative gradient whose value is equal to k. From the
analysis it was determined that a linear correlation could be. Figure 5.6 shows

IKONOS satellite sensor band data regressed against logged depth (band 1 and 2).
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Figure 5.6: Reflectance values from IKONOS sensor reflectance regressed against
logged depth from 90 sites in Pantai Batu Buruk and Seberang Takir for (a) band land

(b) Band 2.

From the relationship between reflectance and depth in Figure 5.6 it was
determined that the negative gradient for bands 1 and 2 were -0.2786 and -0.1345
respectively. Therefore, k£ was estimated to be 0.2876 and 0.1345 for band 1 and 2
respectively. As no data (from the 90 points) used in estimating these values were over
7.5 m, these & values could be assumed to be valid in estimating depth up to 7.5 m.

An estimation of L and L, the pixel reflectance value for deep and shallow water for
the two bands were calculated by producing a histogram of pixel values for the water
area of the imagery, masking out land. The reflectance values for the lower part or the
histogram is an approximate value for L;while the upper end is an approximate value

for L,. This is illustrated in Figure 5.7.

The estimated values for Ly and L, were verified by comparing them to location

ofiknown shallow and deep water in the satellite sensor imagery. By this means an

105



Chapter 5: Shoreline Mapping From Fine Spatial Resolution Satellite Sensor Imagery.

approximation were made for the of L, and L, for band 1 and 2 . These values are
given in Table 5.2. E’ could be calculated from its relationship with solar elevation
angle (E) and through knowledge of the refractive index of water. Figure 5.8 show this

relationship.

Table 5.2: Average deep-water (L4) and shallow water (L) reflectance values

calculated from IKONOS satellite sensor data of study area.

Band Ld Lo
1 1.513 0.431
2 2.026 1.081

Pixel count

_L‘_

Ld Reflectance values Lo

Figure 5.7: Histogram of reflectance values.
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Figure 5.8: Relationship between Solar elevation angle (£) and £’
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From Figure 5.8 it is apparent that £ = 90 - 0,.sin 0y, could be calculated from

the following equation :

sinf, _n, 515
sinf, n '

a

Where n, is the refractive index of water and n,, the refractive index of air.
Knowing the refractive index of air = 1, the refractive index of sea water = 1.339
(Bukata et al., 1995) and the Solar elevation angle of 68.13° (from header file), £’ was

calculated to be 41.14 °.

5.3.1.5.3 Depth estimation

The selection of the most appropriate band to predict water depth was very important.
Several considerations were taken into account when choosing the band to use. These
considerations were mainly based on the bottom type, purpose of bathymetry
extraction and water penetration properties of the radiation (Nanu and Robertson,

1993). Other factors such as Sun glint were also considered.

The purpose of bathymetry extraction in this thesis was mainly to accurately
extract depth values of shallow water close to the shoreline as outlined in section 5.1.
These values would be combined with DEM values to form a 3-D terrain model of the
area. Therefore, the selection of the appropriate band to use for the purpose of this
thesis was based on these factors in mind. As radiation in band 1 is more penetrative in
water than band 2, due to its spectral properties, it was expected that band 1 would be
capable of estimating bathymetry more accurately. But as the study area mainly

comprises of reflective sand and accurate bathymetry values close to the shoreline are
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needed, band 2 was considered to be more appropriate. In band 1 the combination of
its penetrative capability and reflective property of the substrate (white sand) in the
study area causes the reflectance values in band 1 to be very saturated, resulting in less
variation in L. Although band 2 was not as penetrative as band 1, resulting in an
incapability to map deep water (more than 10 m) the results near the shoreline are
better. As this thesis emphasis the mapping of coastal areas which are affected by tide
levels depth more than 5 m were insignificant. As mention previously in section
5.3.1.4.1 the satellite sensor imagery was affected by sun-glint. Here at certain angles
the water reflects sunlight and causes reflections of waves and ripples in the sea to be
visible. This effect could be seen in Figure 5.9 was more apparent in band 1 in

comparison to band 2.

Therefore band 2 was more suitable as reflectance values were less saturated
while still capable of penetrating the water column. Utilizing the &, Ly, L, and E’
derived in section 4.2.6.2 and equation 5.9 a bathymetric map was derived from band

2 of the IKONOS satellite sensor imagery. The resulting map is shown in Figure 5.10

(@) (b)

Figure 5.9: The effects of Sun-glint in (a) band 1 and (b) band 2 of the IKONOS

sensor imagery.
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Figure 5.10: Bathymetry map generated from IKONOS sensor imagery.

5.3.1.6 Results

The accuracy of the bathymetry map produced from the IKONOS sensor imagery was
determined by comparing depth values estimated from IKONOS imagery and actual
depth from the 25 well distributed independent check points. These points are shown
in Figure 5.5. It was determined that there was a significant correlation between the
estimated depth and actual depth with a » value of 0.92 and an RMSE of 0.87 m. A

graph of the relationship between the predicted and actual depth in metres is shown in

Figure 5.11

5.3.1.7 Discussion

The method applied in this research has been tested in the Kuala Terengganu area with
an RMSE value of below 1 m. The linear correlation coefficient of 0.92, shows a
significant linear correlation (p < 0.05) between actual depth and estimated water

depth achieved by utilising this methodology. Although there was a significant
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correlation, a perfect correlation was not achieved because in this method % was
assume to be constant and determined by regressing known bathymetry data against
IKONOS radiance but it actually decreases in deeper water (Jerlov, 1976).
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Figure 5.11: Relationship between predicted depth (m) and actual depth (m).

Utilizing IKONOS sensor imagery, the Benny and Dawson (1983) method was
able to accurately estimate depth up to a depth of 7.5 m (section 5.3.1.5.2). But under
optimum conditions, IKONOS sensor imagery should be able to predict water depth
up to 21m, as in the case of Landsat TM imagery (Ibrahim and Cracknell, 1990). But
this was expected as the IKONOS sensor imagery used was affected by sun glint
which interferes with the reflectance values and limits its depth penetration. The sun-
glint problem could be minimized by making a special request to Space imaging to
capture the satellite sensor imagery at certain angles but this requires a special
agreement. Under optimal conditions it was expected that with IKONOS sensor
imagery it would be possible to estimate depth more accurately than with Landsat TM
data. However, for the purpose of this thesis a depth penetration of less than 5 m is
sufficient as the main interest was to accurately derive bathymetry maps of areas

affected by tide levels.
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This thesis used the Benny and Dawson (1983) method to extract water depth
utilizing IKONOS sensor imagery. Even though this method makes several assumption
mainly that the bottom type and water quality of the area was constant, accurate results
were still obtained. Other more complicated methods developed to tackle different
bottom type and water quality depend on obtaining substantial information of the study

area. This required substantially more field data making the methods less appealing.
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5.3.2 DEM extraction from stereo satellite sensor imagery

The process of DEM extraction is made possible by comparing two images acquired of
the same area at different viewing angles. Ground point or interest points are then
identified within the overlapped area of the two images. This process is termed digital
image matching and is based on grey scale and contrast variations of points occurring
on neighbouring images (Jensen, 2000). Automated DEM extraction can be achieved
from stereo imagery, however sensor model information such as interior and exterior
orientation associated with the imagery are required. Sensor models are a mathematical
function explaining the relationship between the imagery acquired and their ground
location. This sensor model information needs to be calculated through a process of
aerial triangulation before it can be used. Once established the process of DEM

extraction could begin (Toutin et al., 2002).

The recent introduction of fine spatial resolution satellite sensor imagery has
initiated a new era in Earth observation and digital mapping (Li et al., 1998; Tanaka
and Sugimura, 2001; Mumby and Edwards, 2002). Satellite sensor imagery from
IKONOS and Quickbird offer fine spatial resolution satellite sensor imagery, with
spatial resolution of 1 m and less. These sensors provide multi-spectral and
panchromatic satellite sensor imagery and the capability of providing stereo imaging.
In particular, IKONOS is capable of acquiring stereo imagery in near real time due to a
very flexible pointing mechanism. These characteristics makes IKONOS sensor
imagery suitable for generating DEM (Lee ef al., 2002; Fraser et al., 2002a; Chen et
al., 2003). The aim of this section was to generate a DEM of the study area utilizing

IKONOS 1 m pan sharpened geo stereo product.
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5.3.2.1 Image data

The imagery comprised a stereo pair of Pan sharpened IKONOS satellite sensor

imagery of Kuala Terengganu, Malaysia. Pan sharpened product was chosen as it

provided a finer spatial resolution of 1 m in comparison to multi-spectral imagery used

for bathymetry generation which was 4 m. For bathymetry generation spectral data

was needed to relate the reflectance to water depth but for DEM generation a finer

spatial resolution is important, to be able to resolve smaller objects in the imagery.

When acquiring stereo imagery, two sets of data are acquired, one looking sideways to

the left and the other to the right. Details of imagery are given in Table 5.3. In addition

Figure 5.12 shows the left and right stereo images of the study area.

The stereo imagery were supplied with Image Geometry Model (IGM) or

generally known as Rational polynomial camera (RPC) which provide a mechanism

for object to image space transformation and 3-D point determination (Grodecki,

2001). The left imagery was collected at a low sensor elevation angle while the right

imagery was taken at a higher sensor elevation angle providing a base to height ratio

between 0.54 and 0.83 (according to IKONOS stereo imagery specification). These

images have a horizontal accuracy of within 25 metres CE90 and a vertical accuracy of

22 metres LE90 (Space Imaging, 2003a).

Table 5.3: Acquisition parameters of IKONOS pan sharpen Images

Left Right
File name po_ 103939 rgb 0000000.tif | po_ 103939 rgb 0020000.tif
Date , Time (GMT) 2002-08-28 03:45 2002-08-28 03:44
Sensor Azimuth (deg) 177.5195 52.4229
Sensor elevation (deg) 65.66296 80.21711
Sun azimuth (deg) 76.4012 76.5092
Sun elevation (deg) 68.81210 68.60580
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E;_ala Tereng
L

Figure 5.12: Left and right IKONOS satellite sensor image.

5.3.2.2 Study area and GCP collection.

The study area covers a 10 km by 7.5 km area with an elevation range less than 70 m.
The area comprise Kuala Terengganu town in the south, adjacent to the Terengganu
river mouth. Pulau Duyung a partly reclaimed island could also be found in this area.
Several fishing villages could be located along the shoreline towards the north. The
area is comprised of white sandy beaches facing the South China Sea to the east. The

Sultan Mahmud airport is located in the north of this area.

To accurately generate a DEM of this area, a compilation of 62 high precision
GPS control point was surveyed by performing Differential Geo-positioning system
(DGPS) measurement under normal weather condition over this area. The GCPs were
collected using the OmniStar DGPS system, capable of collecting GCPs at sub-metre
accuracy. OmniSTAR is a wide-area differential GPS service, using satellite broadcast
techniques. Data from many widely-spaced reference stations was used in a multi-site
solution to overcome the influence of errors and biases (Omnistar, 2001). These points

were simultaneously converted and collected in the RSO projection. The control
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points were collected based on points which were identifiable on the IKONOS satellite

sensor imagery.

5.3.2.3 Image Distortion and Correction Models.

Fine spatial resolution satellite sensor imagery contains geometric distortions that need
to be corrected for it to be used for the generation of maps. This geometric distortion
could be modelled and applied to the satellite sensor imagery to produce accurate
satellite sensor maps. The source of distortion in satellite sensor imagery could be
related to two general categories: satellite sensor (observer) and Earth (observed). The
distortion caused by the acquisition system includes calibration parameters such as the
focal length and the instantaneous filed of view (IFOV) of the sensor imaging system.
Distortion from the Earth includes the effect of the Earth curvature which creates
variation in the image pixel spacing and topographic relief which generates a parallax
in the sensor scanning azimuth (Toutin ef al., 2002). To correct these geometric
distortions requires models and mathematical functions. Several methods have been
proposed to correct these distortions which include 3-D non-parametric models or
rigorous parametric models, 3-D polynomial models and RPC models (Lee et al.,
1992; Clavet ef al., 1993; Bolstad and Stowe, 1994; Giles and Franklin, 1996; Clarke

and Fryer, 1998; Vassilopoulou er al., 2002; Ganas et al., 2002; Toutin, 2003a).

To utilize the rigorous parametric model, it should mathematically model all
distortions arising from the platform (position and velocity), the sensor (panoramic
effect, viewing angles), the Earth (Ellipsoid and relief) and the cartographic projection.
As most of these parameters (for IKONOS sensor) are not made available to the
general public, utilization of the rigorous model has been limited. However, several
researchers have been able to develop rigorous models that do not require the sensor

model but utilize basic information of the meta-data and celestial mechanics laws
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(Toutin er al., 2001). Even though these models approximate physical characteristics
of the sensor, they have been shown to be robust and able to achieve consistent results
over different study sites and environments (Davies and Wang, 2001; Hoffman et al.,

2001; McCarthy et al., 2001; Ganas et al., 2002; Toutin, 2003a; Toutin, 2003b).

The 3-D polynomial model can be used when the parameters of the acquisition
system or a rigorous 3-D physical model are not available. The 3-D polynomial model
does not require any prior information on any component of the acquisition system and
is based on polynomial function and are an extension of the 2D polynomial function by
adding an elevation (Z) term relating to the third dimension of the terrain. However,
this model requires a large number of GCPs that cover the whole planimetric and
height range to produce accurate results. Results from this method are correct locally at
GCPs and very sensitive to input error (Tao and Hu, 2002). Due to these limitations
this method is suitable for small images where all systematic distortion except terrain
were corrected. This method has been applied to geo-reference images, such as SPOT

HRYV (Pala and Pons, 1995) and IKONOS geo-products (Hanley and Fraser, 2001).

The final approach, RPC model is a method used by satellite sensor imagery
suppliers to provide a relationship between image space (line, sample) to object space
(latitude, longitude, height) without disclosing the sensor model. This relationship is
revealed as the ratio of two polynomials derived from sensor model and the
corresponding terrain information. Space imaging provides IKONOS sensor Geo
products which have been corrected for systematic distortion. This corrects distortion
caused by the sensor and provides increased accuracy when processing the images.
Test cases comparing the rigorous camera model approach to the resultant RPC

method under a diverse set of acquisition condition yield a worse case scenario error of
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0.04 pixels (Grodecki, 2001). Therefore, the RPC model provides an accurate

alternative to rigorous camera model approach.

Due to the unavailability of IKONOS satellite sensor model, this research
utilizes the RPC method to obtain a DEM of the study area. The RPC method has also
been shown as an accurate replacement for complex camera models providing
information to establish the interior and exterior orientation parameters required to

extract DEM (Grodecki, 2001).

5.3.2.4 Rational polynomial camera (RPC)

In order to relate image space coordinates on satellite sensor imagery to the object
space coordinate on the Earth, a sensor model is required. Physical sensor models are
based on the interior and the exterior geometry and physical properties of the sensor.
When acquiring imagery, each IKONOS sensor image line is taken at a different
instance of time and, therefore, from a different orbital position and satellite
orientation. Owing to this dynamic nature, the physical IKONOS sensor model is
extremely complex (Grodecki and Dial, 2001). The implementation of the RPC model
provides a simplistic method of representing the relationship between the object-image
relationship of the physical sensor model with near-perfect accuracy. Furthermore, it
contains enough degrees of freedom to describe IKONOS physical sensor model with

0.05 pixel accuracy (Grodecki and Dial, 2001).

The RPC model relates the object space coordinates to image space coordinates
and is of the form of a ratio of two cubic functions of object space coordinates (Figure
5.13). Separate rational functions are used to express the object space to line, and the
object space to sample coordinates relationship (Grodecki, 2001). The image

coordinates (X,Y) and the ground coordinates (X,Y,Z) are normalized to the range
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from -1.0 to 1.0 by their image size and geometric extent, respectively, for
computational stability and to minimise computational errors. The line RPC model is

given as (Madani, 1999; Grodecki, 2001):

Y ROXY.Z) . R(XY.Z)

TR(Y.Z) T R(XLY.Z) 516
Polynomials P; (i=1,2,3 and 4) have the general form :
PX.Y.2)=> > a,XY'Z 5.17

i=0 j=0 k=0

In normal use, the order of the polynomials is limited to 0 <m2; <3, 0 <mp <3, 0 <m3
<3 and m; + my+ m3 <3. Each P (X Y,Z) is then a third-order, 20 term polynomial:
P(X,Y,Z)=a,+a,- X +a,-Y+a,-Z+a,-X-Y+a,-X-Z+a, Y- Z+a,- X’

ta,-Y’+a, Z’+a, Y- X -Z+a, - X +a, X Y +a, - X-Z° 518
ta - X Y+ay Y +a, Y- ZP+ag- X' Z+ay, Y Z+a, Z°

The RPC coefficient in IKONOS products are calculated based on virtual points
generated from rigorous sensor model. These virtual points are created based on the
full extent of the image and the range of elevation variation. RPC coefficients are
supplied with the IKONOS satellite sensor imagery with the Geo-ortho kit (Space

Imaging, 2003a).
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Figure 5.13: Relationship between RPC, object space and image space.

The RPC model of the IKONOS-2 satellite used in this research had 59
coefficients and 10 parameter values for object and image space offset and scale
factors. Therefore, there are a total of 118 coefficients for the stereo pair image, which

has a left and right image. The RPC coefficients for both images used in this research

are listed in Appendix 1.

Even though RPC provides a translation between the space and image
coordinates, positional biases may still exist. It has been shown that these positional
errors are very systematic and could be reduced to sub-metre accuracy by post
processing with few precise GCPs (Fraser ef al., 2002a) or the original RPC
coefficients could be refined with a linear equation requesting precise GCPs (Lee et
al., 2002). Results from applying RPC model without any GCP refinement are not
expected to be accurate with an accuracy of 6.2m CE90 horizontal and 10.1m LE90
vertical (Grodecki and Dial, 2001). This research applies a 3-D polynomial correction

to refine the mathematical solution of the RPC model.
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5.3.2.5 Control point selection
Control points used in this research are divided into 3 main categories:
1. GCP: measurements taken at distinct locations that are used to correctly

position and rectify satellite sensor imagery.

2. Independent control points (ICP): measurements taken at distinct locations
that are used to asses the accuracy of the rectification process which were

independent from the rectification process.

3. Tie points: A point whose ground coordinates is not known, but is visually

recognizable in the overlap area between the two images.

A survey of the study area was conducted in November 2001 to collect GPS
ground coordinates of the study area. Details of the survey are given in section 3.3.6.
The GPS coordinates were collected at an accuracy of less than 1 m according to RSO
projection. The survey was successful in collecting 62 points but only 47 were located
within both stereo images. Out of these 47 only 29 points were used in this study based
on their location and the ability to accurately identify their position within the stereo
IKONOS sensor Imagery. Out of the 29 points, 4 evenly distributed points were used
as GCPs and the remaining 25 as ICP. In this research 25 additional tie-points between
the left and right stereo imagery were collected to assist in the refinement of the RPC
model. The corresponding image position coordinates of tie points appearing on the
overlap areas of multiple images were identified and measured. Figure 5.14 shows the
GCPs, ICP and tie-point used in this study. A main problem with this imagery is that
on the north-east of the imagery 50 percent of the imagery is the sea thus no GCPs are

available in this area. The effects of the distribution of control point would be analysed

later.
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Figure 5.14: Distribution of GCPs, ICP and tie points used in research.

5.3.2.6 Derivation of DEM

As Space imaging does not publish the IKONOS sensor model and ephemeris data
related to a particular satellite sensor imagery, this research utilises RPC coefficient to
generate the DEM. The RPC coefficient was provided concurrently with the stereo
IKONOS satellite sensor data. It has been shown when applying the RPC model
without GCPs it results in large systematic positional errors due to a large bias. These
systematic errors could be reduced to sub-metre accuracy by employing GCPs
(Baltsavias et al., 2001; Chen et al., 2003; Di et al., 2003). In this research the RPC

model was refined using 4 evenly distributed GCPs and 25 tie points. Only 4 evenly
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distributed GCPs were used as a larger number of GCPs would reduce the accuracy
(Lee et al., 2002; Fraser et al., 2002b; Fraser and Hanley, 2003). The effect of refining

the RPC model is described in the result and discussion sections.

The process of automatic DEM generation is shown in Figure 5.15. The
utilization of digital image correlation has been widely used in remote sensing and GIS
applications to find similarities between two images that overlap or share a common
geographical area. The correlation coefficient is used to represent the measure of
similarity between a set of image pixels appearing within the overlapping portions of
an image pair. A large correlation coefficient value (i.e., 0.80 -1.0) indicates that the
set of image points are more similar than a set of image points which have a lower

correlation coefficient value.

The process starts with the selection of a point of interest which displays
sufficient grey level variation and contrast to be ambiguously identified in the imagery.
A corresponding point was later selected from the adjacent imagery based on
similarities in ground features and the correlation coefficient was computed between
the points. Several strategy parameters are set to influence the success and accuracy of
the matching process. These include the search window size used to locate points
specific to a topographic type and a correlation window size that establishes the

accuracy of the correlation between matching points.
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Figure 5.15: DEM generation overview.

IKONOS stereo images provided by Space Imaging have been resampled so that
a pixel in both imagery and the two imagery centres lies on the same plane. This
means that given a pixel in one image, its correspondent must lie on a known line in
the second image (Kim, 2000). Images with these characteristics are known as
epipolar images. As the stereo images are epipolar, the apparent displacement of
conjugate points/pixels between the two images in the Y direction (Y- parallax) are
very small, with most values being 0 or 1 pixel (Wolf, 1983). Figure 5.16 illustrates an
image point on an image being located along the epipolar line of an adjacent

overlapping image.
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Figure 5.16: The process of locating a matching image point on a reference image on

an adjacent image for two images that area epipolar to each other.

To make the process more accurate and efficient the search area used to establish
a pair of matching image points was constrained. The search range in the Y direction
was constrained to 3 pixels (as the images were epipolar) while in the X direction the
matching windows size and search range were changed adaptively depending on the
statistical analysis of an area. Initially a small window size and narrow search range
were used. If the correlation coefficient of the point was lower than a selected
threshold of 0.8 a larger window size was used. The approximate position of the
conjugate point was estimated by the previous matched point in a neighbour. The
correlation coefficient was calculated on each set of possible matching points along the

epipolar line.

After the correlation coefficient was calculated from each image point within a
search window, the points with the largest correlation coefficient were recorded and its
row and column coordinates associated with a ground point on the Earth’s surface.
These interest points are then assigned 3-D (X, Y, and Z) coordinates based on the
refined RPC model. The technique used to calculate these 3-D ground points,
otherwise known as mass points, is known as space forward intersection. Space

forward intersection is a technique that is commonly used to determine the ground
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coordinates X, Y, and Z of points that appear in the overlapping areas of two or more
images based on known interior and exterior parameters (Chen ef al., 2003). It is based
on the collinearity condition, which states that the corresponding light rays from the
sensors pass through the corresponding image points on the two images, and intersect
at the same ground point. These ground points or mass points are discrete points
located within the overlap portion of an image pair, and whose 3-D ground coordinates
are known. These were automatically extracted and calculated mass points are then

used as a basis for constructing a DEM.

5.3.2.7 Results

The accuracy of ground points computed from the RPC method was affected by
systematic errors with a total RMSE of 5.23 m (X =2.24 m, Y =3.07mand Z = 14.51
m). By applying a 3-D polynomial transformation supported by 4 evenly distributed
GCPs, the RMS errors at 25 ICPs were reduced to 0.921 m, 0.782 m and 1.349 m for
X, Y and Z coordinates. Using the carefully selected ground point, stereo image pair
and refined RPC model a DEM of the study area was generated. A subset of the
resulting DEM and its corresponding imagery is shown in Figure 5.17. The DEM

shows the Kuala Terengganu town with the South China Sea to the east.
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Figure 5.17: (a) Subset DEM for Kuala Terengganu and (b) it corresponding satellite

sensor imagery.
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The DEM generated had a spatial resolution of 1 m vertically and horizontally,
this area represents the area of overlap between the left and right image. The
correlation coefficient calculated for each mass point in the DEM provides a means of
quantifying the quality of a DEM. DEM mass quality were categorised into several

categories as defined in Table 5.4.

The general mass point quality describes the percentage of DEM mass point
that could be categorised into the 4 categories given in Table 5.4 (Wolf, 1983). From
the DEM generated 61.48 % was categories as excellent, 22.29 % as good, 16.21 % as

suspicious and the remaining 0.0038% as isolated.

Several indices have been used to describe the accuracy of a DEM. The
simplest are standard statistical indices such as minimum, maximum and mean mass
point errors (Wolf, 1983). A similar method used is the mean absolute error of the
DEM. Unlike the mean error, mean absolute error takes into consideration the positive
and negative value associated with an error, where all negative values were made
positive. The mean absolute error is useful to determine the average accuracy of an
extracted DEM. RMSE is another widely used accuracy indicator. RMSE indicates the

magnitude of error associated with all the DEM based on 3-D reference points used.

Table 5.4: Categories of mass points

Category Definition

Excellent Mass points with Correlation coefficient between 1
and 0.85.

Good Mass points with Correlation coefficient between
0.85 and 0.70

Suspicious Mass points where the standard deviation for it
(within a 3 x 3 window) is three times of its
neighbouring pixels

Isolated Mass points with no immediate neighbour
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Another index normally used to describe DEM errors is the Absolute LE90
(Linear error 90%). LE90 is the error range which would include 90 % of the pixels
within the DEM. Thus, an LE90 of 4 m indicates that 90 % of the pixels within the
DEM vary from the actual DEM by 4 m or less. Absolute LE9Q is defined herein as the
LE90 calculation for the DEM with no corrections applied. The error thus includes the

effects of positional and elevation inaccuracies.

The National Imagery and Mapping Agency (NIMA) LE90 statistic is based on
the assumption that a normal distribution of data exist with the set of observation. In
this case the set of observation is the DEM errors computed using the 3-D reference

points using the following equation (Department of Defense, 1990). :
NIMA LE90 = *1.6460

Where,

> (e ~Jel) 5!

n

O =

Where,

o = standard deviation

’e,’ = absolute error of reference point i

le,.} = mean absolute error for the entire set of refefence points

n = total number of 3D reference points used

Therefore, for example, if a value of £4.5 m was computed for NIMA LE90, it

is safe to state that at a 90 % confidence level, the DEM accuracy is within 4.5 m.
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Table 5.5: Accuracy of DEM

Global ICP GCP
Accuracy | Accuracy | Accuracy
(m) (m) (m)
Number of 3-D Reference Points Used: 54 25 4
Minimum Error: -1.5102 -1.0398 -0.3049
Maximum Error: 3.9192 3.9192 0.6570
Mean Error: 0.6180 1.4731 0.0617
Mean Absolute Error: 1.0821 1.8076 0.2667
Root Mean Square Error (RMSE): 1.5675 22171 0.3654
" Absolute Linear Error 90 (LE90): 3.2076 3.5953 0.6570
NIMA Absolute Linear Error 90: + 1.8667 +2.1131 | £0.4112

As mentioned previously in section 5.3.2.5 the reference points used in this
study were from 4 GCPs, 25 ICPs and 25 tie-points. Errors calculated at GCPs were
typically smaller because they were employed in the refinement of the RPC model. A
more objective assessment is provided by utilizing ICP, as they were not involved in
refining the RPC model. Summaries of global (accuracy calculated based on all 54

points - GCP, tie point and ICP), ICP and GCPs vertical accuracies are shown in Table

3.5.

5.3.2.8 Discussion
The accuracy of the generated DEM computed by using the RPC method was affected

by systematic errors; these errors were reduced by utilizing several GCPs. Even though
the imagery had a large area of sea to the north east of the imagery the image was able
to be positional corrected to within an RMSE of < 1.0 m for the X and Y coordinated
and 1.5 m for the Z coordinates based on ICP (section 5.3.2.7). For the IKONOS
sensor relative to other spaceborne satellite sensor, distribution of GCPs are less
important due to the sensors small field of view (FOV), while GCPs positional
accuracy becomes more important, due to the small pixel size (Lee et al., 2000; Fraser

and Hanley, 2003). By applying the RPC method with a simple first level polynomial
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transformation the accuracy was increased comparable to the more expensive
IKONOS Precision product which has an RMSE of 1.9 m (Space Imaging, 2003a).
Therefore the selection of accurate GCPs was very important irrespective of location
or distribution. Several papers have also emphasized that utilizing more than 4 GCPs
does not further increase accuracy but may in fact reduce accuracy by introducing

more errors (Lee et al., 2002; Fraser et al., 2002a).

Another factor that has to be considered was the accuracy of the GCP used and
its position on the imagery. As IKONOS imagery has a spatial resolution of 1m,
positioning sub-metre accurate ground point within a pixel is difficult and subject to
errors. This again introduces positional errors. Therefore it is advisable that the person
responsible for collecting ground point location at the field is also responsible for
identifying position on the ground point within the imagery. The equipment also needs
to be standardized where only the same set of equipment is used for a particular area.
To generate the DEM the vertical accuracy of a ground point was very important as the
vertical accuracy produced by GPS are usually double the horizontal accuracy of a

ground point; this again introduces errors in generating DEM (Omnistar, 2001).

DEM extracted by utilizing the RPC model and stereo imagery has shown to be
accurate with an RMSE of below 2.2 m at ICP. This was encouraging considering the
terrain of the study area was quite flat. When visually comparing the DEM generated
with satellite sensor imagery, high elevation values do correspond to high objects such
as buildings (Figure 4.10 and 4.11). As the IKONOS stereo imagery was taken on the
same orbital pass, one in forward and the other in backward direction, this was ideal
for DEM generation as both images have similar reflectance values. The images are
only a minute apart thus factors such as lighting condition and cloud cover are the

same. The similarity between the images assist in the image matching process as the
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spectral or grey scale variation between the left and right imagery are similar. This

results in 83.77 % of the DEM mass points that have a correlation coefficient of 0.70

or above.

5.3.2.9 Conclusion

Stereo IKONOS sensor imagery has been shown to be able to produce accurate DEM.
By utilizing vendor provided RPC and a limited number of GCP, accuracy within 1 m
in X and Y and 2.5 m in elevation was achievable. But this accuracy is directly
dependant upon the quality of the GCPs used. With accurate GCPs, the DEM produced
from IKONOS sensor imagery was capable of satisfying the requirement of the US
National mapping standard at a scale of 1:4,800. The output DEM generated in this
research would be combined with bathymetry generated from multi spectral IKONOS
sensor data generated in section 5.3.1. This would provide a coastal elevation model

that would assist in determining shoreline position based on mean sea level.

5.4 Combination of DEM and bathymetry data

The IKONOS sensor images used in deriving the DEM and bathymetry of the study
areas were acquired at different dates. Ideally the images should have been captured on
the same orbital pass. The requirement for both IKONOS sensor imagery to be
captured simultaneously was put forth to Space Imaging but for unspecified reasons
this was not fulfilled. The images used were acquired on 10™ April 2002 for
bathymetry and 28™ August 2002 for DEM generation. Even though there is a 4 month
difference between the two dates the changes in bathymetry and DEM are expected to
be minimal as the Northeast monsoon which brings severe rain to this area only starts

in November and end in March. Details of the climate and wind condition of this area
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were given in section 3.1. During this period the sea was considered calm and the

changes to shoreline position and bathymetry were expected to be minimal.

After generating both the DEM and bathymetry of the study area, these two
data sets were combined to form a 3-D terrain model representing the land and water
areas. To ensure that both data sets were compatible geographically both were
generated utilizing the same planimetric and vertical datum. The projection used was
the RSO, details of the projection were explained in section 2.2. An overview of the
process of combining DEM and bathymetry information to derive a shoreline map

based on MSL is given in Figure 5.18

Before combining both DEM and bathymetry a decision had to be made on the
spatial resolution of the final imagery. This was because the spatial resolution of the
DEM was | m and for bathymetry 4 m. If the spatial resolution of the DEM was
reduced to 4 m to match the bathymetry important positional information would be
lost. It was decided that the pixels spatial resolution in the bathymetry map be reduced
to 1 m. This was done by dividing the 4 m pixels into four 1 m pixels. This process
does not increase the spatial resolution of the bathymetry but only its pixel size to

accommodate the combination process.

To generate a 3-D representation of the shoreline, the bathymetry and DEM
data need to be combined. But before doing so both data sets needed to be standardised
as DEM was given in height and bathymetry was given depth. Therefore, both data
sets were converted to elevation value where DEM values are positive and bathymetry
values are negative. Both data were than combined at the position where the elevation
value was 0. Ideally both data should fit nicely at the position where the elevation was
zero but factors such as breaking of waves during satellite sensor acquisition causes

several areas to have no data. These areas of no data are, for the DEM imagery areas
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where the DEM was classified as isolated and suspicious (section 5.3.2.6) and for the
bathymetry areas where land and breaking waves was masked out (section 5.3.1.5.2).
Even so these areas of no data only represent less than 2 percent of the total imagery
and less than 1 percent of the shoreline. The value for such area had to be interpolated
from surrounding pixels. The resulting 3-D terrain model of the study area is shown in

Figure 5.19.
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Figure 5.18: Overview of generating Shoreline position map at MSL
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Figure 5.19: 3-D terrain model of the study area.
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To accurately position the shoreline based on the MSL, the water elevation
level during satellite acquisition needed to be determined. This could be determined
by analysing its position base on the time the imagery was acquired. Ideally this
would have been the date the satellite sensor imagery used for bathymetry and DEM
was captured, but in this study the two dates were different so a choice needed to be
made between them. The date selected was 10™ April 2002, the date the bathymetry
imagery was acquired. It was chosen as only bathymetry was affected by tide levels
and not DEM. Another factor was that DEM are fairly constant and not as dynamic as

bathymetry.

To determine the water elevation level during satellite sensor acquisition the
harmonic constituent at the Kuala Terengganu tide station needed to be analysed.
Harmonic constituent are mathematical expressions for the tide-producing force and in
corresponding formulas for the tide or tidal current. Each constituent represents a
periodic change or variation in the relative positions of the Earth, Moon, and Sun.
(National Ocean Service, 1982). Utilizing the harmonic constituent, a tide chart for the
Kuala Terengganu station was prepared for the 10" of April 2002 (Figure 5.20). A
tide chart generally shows the tide elevation throughout a certain period. Zero
elevation shown on the chart refers to the chart datum. The chart datum is a local
variable, defined as ‘a level so low that the tide will not frequently fall below it’, and

which is very close to the Lowest Astronomical Tide (LAT) (National Ocean Service,

1982).
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Figure 5.20: Tide chart of Kuala Terengganu station on 10™ April 2002. The tide
elevation (0.5m) at the time of satellite sensor imagery acquisition (3.45 GMT, 11.45
local solar time) is shown. The red lines represent the elevation of LAT and MSL. The
tide level is shown as the black line running through the chart.

Referring to the tide chart at the Kuala Terengganu tide station, the tide level
during satellite acquisition (1 0 April 2002 — 3.45 GMT, 11.45 local time) was at 0.5
m above the lowest astronomical level. To properly map the shoreline the water level
at MSL needed to be determined and the water level remodelled accordingly, utilizing
the 3-D coastal terrain model. From the same chart MSL was determined to be 1.06 m
above the chart datum thus the water level was increased by 0.56 m. By increasing the
water level on the 3-D terrain model, the shoreline position during MSL could be

identified as the position where land and water meet.

The shoreline positions were later determined by classifying elevation values
below 1.06 m into water class and 1.06 and above as land class. This imagery was later
vectorised to produce a shoreline position map. During the conversation from raster to
vector, errors occur resulting in lines along the shoreline which is not part of the
shoreline (Dangles). These errors are a by-product of the automated raster to vector

conversion and are not errors in shoreline position. These errors were removed through
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visual inspection. Figure 5.21 and Figure 5.22 shows the shoreline position at satellite

sensor acquisition time and MSL.

Figure 5.21: Instantaneous shoreline position at satellite sensor acquisition time is
shown in blue (3.45 GMT on the 10" April 2002). The 3-D terrain model was overlaid
with a RGB imagery of the study area

Figure 5.22: Shoreline position based on MSL is shown in red. The 3-D terrain model
was overlaid with a RGB imagery of the study area.
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By modelling the water elevation level on a 3-D terrain model of the study
area, a shoreline map based on MSL was produced. To asses the accuracy of the
generated shoreline map a GPS survey was conducted at the study area to map the
shoreline position at MSL. Details of the survey are given in section 3.3.3. A subset
map of the study area displaying the instantaneous shoreline (shoreline at satellite
sensor acquisition), shoreline at MSL and actual shoreline (based on GPS survey) is

shown in Figure 5.23

573123

589806

573123

~ Shorleme position at Nean Sea Level
—— Shorelme position at satellite sensor data aquisition
Shorehne position based on GPS swvey at MSL

Figure 5.23: Shoreline position map based on different water elevations and GPS

survey.
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5.5 Accuracy assessment of shoreline position

The accuracy of the shoreline predicted by modelling the water level on a 3-D
terrain model of the study area was determined by comparing its position to positions
mapped by a DGPS survey of the shoreline at MSL. Details of the DGPS survey could
be found in section 3.3.3. The length of the shoreline in the study area was 1.3 km. the
positional errors for each metre of the shoreline determined and its RMSE was
calculated. The results show that the shoreline predicted from modelling the water
level on a 3-D terrain model of the study areas has an RMSE of 1.80 m with 90 % of
the errors within 2.8 m. Figure 5.24 shows the shoreline positional error for each

metre of the shoreline (a 500 m portion).

The shoreline generated had a jagged (zigzag) pattern this could be attributed to
the pixel size of the combined bathymetry (4 m) and DEM (1 m). The shoreline was
delineated by threading it between pixels allocated to land and water classes
determined by elevation value of 1.06 m. Therefore, the shoreline was constrained to

lie between pixels and resulting in a jagged shape shoreline.
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Figure 5.24: The positional accuracy of a 500m portion of the shoreline mapped

against its location.
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5.6 Discussion and conclusion

The coastal areas are dynamic in nature; therefore any coastal related data such as
shoreline maps need to be current and easily updateable. This chapter introduced a
method of generating such information using fine spatial resolution satellite sensor
imagery. The method introduced used satellite sensor imagery as the primary data, as

satellite imagery are widely available at regular interval.

The new generation of commercial satellites such as IKONOS and QuickBird
offer users fine spatial resolution multi-spectral data as well as stereo imaging
capabilities. Fine spatial resolution satellite imagery provides the potential to play a
major role in coastal applications where currently mainly aerial photography is used.
This chapter looked at utilizing IKONOS sensor imagery to generate the 3-D terrain of
a coastal area. 3-D terrain information could be utilized in applications such as erosion

studies, coastal management, sediment transport and shoreline mapping.

The 3-D terrain was generated by combining accurate DEM and bathymetry maps
produced from IKONOS sensor images. Utilizing the 3-D terrain model, accurate tide-
coordinated maps were produced by modelling the water level. The shoreline maps
produced were accurate within an RMSE of 1.80 m. The accuracy of predicted
shoreline could also be viewed from a perspective of mapping standards. According to
the US national mapping standard for maps with a cartographic scale of 1:20,000 or
larger, at least 90 % of a sample of well defined points plotted should lie within 1/30™
inch of the correct position when plotted on a map. Taking the shoreline positions as
such a sample, the shoreline prediction satisfies the requirement of a 1: 2,500 scale

map.
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The accuracy of the shoreline produced was affected by the pixel size of the
bathymetry and DEM used resulting in a jagged shaped shoreline. Though these
jagged shapes were small (1 m and 4 m) they still contribute to errors in the shoreline
prediction. To address such issues, methods of prediction the shoreline within a pixel

or at a sub-pixel level were explored in the following chapters.
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6 Sub-Pixel Analysis in Shoreline Mapping.

6.1 Introduction

This chapter aims to further advance and revise the techniques applied in chapter 4 and
analyse the effect of shoreline orientation on the accuracy of the prediction. The four
methods of predicting the shoreline location used in chapter 4 were revisited and

applied to 4 different portions of the shoreline representing different shoreline

orientation.

The methods examined in chapter 4 were hard classification, wavelet
interpolation, contouring soft classification and two-point histogram. The hard
classification (conventional remote sensing approach) and wavelet interpolation
(interpolation approach) method were used as a benchmark for comparison with the

approaches introduced in this thesis.

A Space Imaging 1 m Pan-Sharpen multi-spectral IKONOS satellite sensor
imagery acquired of the study area on the 1* July 2000 was used (Figure 6.1). The
imagery was geo-rectified to the Malaysian Mapping standard based on the RSO map

projection with an accuracy RMSE 2.1 m.
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Figure 6.1: A RGB colour composite imagery of the study area.

6.2 Test sites

The work focused on a 1 km stretch of coast in Kampung Seberang Takir,
Terengganu, Malaysia. The shoreline was characterized by sandy beaches facing the
South China Sea to the northeast and the Terengganu River to the southwest. This
research intent to look at the effect of differently shaped coast on accuracy of the
shoreline prediction. Therefore, attention was focused on four 125 m long extracts of
shoreline, each differently shaped. These were (Figure 6.2): I. Linear (across pixel
orientation), II. Linear (along pixel orientation), III. Slightly curved and I'V. Sharply

curved.
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Figure 6.2: Location of the 4 shoreline extracts selected for analysis.

6.3 Methodology

The methodologies applied in this chapter are similar to the one applied in chapter 4.
These methods are refined to produce accurate results. Here two set of simulated
imagery was generated from the 1 m IKONOS sensor imagery. The imagery was
generated at spatial resolutions of 16 m and 32 m to simulate commonly used satellite

sensor imagery such as SPOT HRV and Landsat TM data.

6.3.1 Simulation of satellite imagery

The 1 m IKONOS sensor imagery was resampled to spatial resolutions of 16 m and 32
m. This was achieved by aggregating the original 1 m pixel to the target sizes. Since a
simulated coarse spatial resolution image was to be used to predict shoreline location
using classification analyses which may be evaluated against that derived from the
original image, the effect of noise reduction in the spatial degradation need to be
addressed. To address the impact of noise on the classification process, the SNR was
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determined from the 1 m spatial resolution imagery and added to the 16 and 32 m
imagery.

The SNR was estimated from a variogram derived from the imagery (Curran
and Dungan, 1989); (Curran and Atkinson, 1998). The SNR for the 1 m imagery was
already determined in section 4.2.1.3 and estimated to be 31.14. To counter effect of
the reduction of noise, random noise was added to the resulting 16 and 32 m imagery
so that the resulting imagery has a similar SNR to the 1 m imagery. As SNR can only
be estimated and it was impossible to exactly obtain the same SNR between both
images, it was decided that the resulting imagery needed to have a SNR of 90 % within
the I m imagery. The resulting images are shown in Figure 6.3. Although issues such
as the point spread function are not considered this provides a reasonable approach for

the simulation of data with coarser spatial resolution.

(b)

Figure 6.3: Simulated satellite sensor images with spatial resolutions of (a) 16 m and

(b) 32 m.
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6.3.2 Generation of Ground Data from 1 m imagery

To analyse positional errors, an accuracy assessment needs to be done by comparing
the shorelines generated from the coarse spatial resolution imagery with ground data.
The ground data was generated from a 1 m fine spatial resolution imagery of the study
area. To differentiate between land and water a supervised hard classifier was applied.
Eight training sites were selected from the satellite sensor imagery, out of these 4 were
defined as pure land and 4 as pure water (Figure 6.4). These sites were determined
from visual interpretation and fieldwork of the study area. In all classification analysis

undertaken in this chapter, these training sites were also used to provide consistency.
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Figure 6.4: Training sites used throughout this chapter. Areas in blue were defined as

water while green as land. The black line represents the classified shoreline.
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Using these training sites a supervised hard classification was applied to the
imagery classifying the imagery into land and water classes. The process assigns pixels
to either land or water based on similarities to the training sites. The boundary between
these two classes was later vectorised to represent the shoreline position. The classified

shoreline is also shown in Figure 6.4.

6.3.3 Hard classification

As a benchmark, a conventional hard classification was used to predict the shoreline
from the coarse spatial resolution images. The coarse spatial resolution images were
classified using a supervised maximum likelihood classification (Richards, 1993).
Initially training sets are selected from imagery by selecting areas of known
homogenous water and land cover types. These sites were defined in Figure 6.4 and
were determined from visual interpretation and fieldwork. The shoreline was fitted to
the derived output of this classification by threading it between pixels allocated to

different classes. The classified images are given in Figure 6.5.

(2) (b)

Figure 6.5: Hard classified satellite sensor imagery showing land in white and water in

black. (a) 16 m spatial resolution. (b) 32 m spatial resolution.
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6.3.4 Wavelet interpolation

Since mapping a feature such as the shoreline may generally be expected to become
more accurate as the spatial resolution of the imagery used becomes finer, a wavelet
approach was used to interpolate the simulated images (Zhu and Yang, 1998; Simhadri

et al., 1998; Carvalho et al., 2001; Tebbens et al., 2002).

The spatial resolution of the coarse imagery was increased by using a 2-D
wavelet refinement method based on average—interpolation. Wavelets are
mathematical functions that cut up data into different frequency component and then
study each component with a resolution matched to its scale (Donoho, 1992). The
basic approach is to use pixel values of coarse spatial resolution imagery to estimate
the sub-pixel values based on a wavelet transform. An average-interpolation
refinement scheme was used to increase the spatial resolution of both coarse spatial
resolution simulated imagery to a target resolution of 1 m. Initially average
interpolating filters were calculated from the simulated images, these filters form the
basis in predicting fine resolution imagery. Using these filters a 2-D refinement
function was applied to simulated images to refine boxcar averages, imputing averages
on a finer grid. For the 16 m simulated imagery, 16 m pixels were refined to 1 m
pixels. Similarly for 32m simulated imagery, 32 m pixels were refined to 1 m pixels.

Further details on this method was already explained in section 4.2.5.1

To map the shoreline a maximum likelihood classification using training sites
defined in section 6.3.2 was applied to the interpolated images to derive an estimate of
the shoreline location. The wavelet interpolated images and corresponding classified

images are given shown in Figure 6.6.
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(b)

(®) (d)

Figure 6.6: Imagery derived from wavelet interpolation and associated hard classified
imagery. (a) 16 m spatial resolution, (b) 32 m spatial resolution, (c) hard classification
output of 16 m imagery and (d) hard classification output of 32 m imagery. Black areas

representing water while white represents land.

6.3.5 Soft classification

This chapter utilises two classification techniques, hard classification and soft
classification. The hard classification used represents the conventional method of
classifying water and land areas in order to delineate the shoreline position. It has been
shown previously in chapter 4 that it was unable to accurately predict the shoreline

position (section 4.3.2.1). To analyse and position the shoreline within a pixel and
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produce a more accurate representation of the shoreline a soft classification was

applied.

Soft classification provides a first step in analysing the content of a pixel
allowing pixels to be classified as fraction values representing the proportion of a
certain class. Both coarse spatial resolution images were soft classified using a
sigmodial function with a Z score of 7. This function was selected as it models a
profile of a typical shoreline (Figure 5.1). The sigmodial function used is shown in
Figure 6.7. The resulting images gave the fraction prediction for land within a pixel.

The resulting soft classification is shown in Figure 6.8.
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Figure 6.7: Sigmodial function used to soft classify the images.
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(a) (b)

Figure 6.8: The figures show the percentage of land class within the (a) 16 m imagery
and (b) 32 m imagery as indicated by the colour scale.

Since these soft classifications were the basis of all the later analyses, their
accuracy was evaluated. This evaluation was based on a comparison of the predicted
coverage of a class with that derived from the reference data, the 1 m spatial resolution
image. The comparisons were done based on pixels located along the shoreline.

Figure 6.9 and Figure 6.10 shows the actual class percentage of land in the 16 and 32
m images respectively. Based on these values and the predicted coverage both coarse
spatial resolution images was found to be significantly correlated (p < 0.05) to the
actual, » = 0.958 (16 m Imagery) and » = 0.946 (32m imagery). Therefore, the soft
classification results were taken to be an appropriate base for the work (Figure 6.8) as

they accurately represent the sub-pixel level class composition.
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Figure 6.9: The map shows the actual percentage of land class within 16 m pixels. The
grids shown are 16 m pixels, numbered by the percentage of land class within them.
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Figure 6.10: The map shows the actual percentage of land class within 32 m pixels.
The grids shown are 32 m pixels, numbered by the percentage of land class within

them.
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6.3.6 Methods for mapping the shoreline from the soft classification
The output of the soft classification for each pixel was an estimate of the percentage
cover of the component classes. This does not indicate where the sub-pixel component
covers were located within the area represented by image pixel, information that is

required in order to fit a class boundary at a sub-pixel scale.

Initially the soft classification outputs were converted from percentage values
to fraction or proportion values to facilitate the shoreline mapping prediction process.
Here, two approaches for locating the sub-pixel components were investigated. Before
applying these techniques the fraction images need to be filtered to remove fraction

information attributed to noise. These were removed using a specially designed filter.

6.3.6.1 Filtering the Soft classified imagery

Previously the soft classification result was determined to be highly correlated to the
actual proportion values (r= 0.95). But these correlations were based on fraction values
located close to the shoreline (section 6.3.5). Fraction values at pure pixels (0 and 1)
still contained noise and may affect the sub-pixel mapping process. Therefore, before
utilizing the soft classified imagery a filter had to be applied to remove noise from the

imagery.

The aim of this process was to remove noise located in pure land and pure
water classes while maintaining proportion information at pixels adjacent to the
shoreline. Noise in the soft classified imagery causes pure classes (proportion 0 and 1)
to be classified as pixels with small (near 0) or large (near 1) fraction values. This
could be seen in Figure 6.8, where areas of pure land and water for both images still

contains fraction values. Here pixels with estimated fraction values higher than 0.85

152



Chapter 6. Sub-pixel Analysis in Shoreline Mapping

were classified as 1 and below 0.15 classified as 0. To ensure these fraction values
were noise and not part of the shoreline the filter reclassifies these pixels only when

summation of the surrounding pixels (within a 3 x 3 window) is smaller than 1.0.

An example of how this filter works is given in Figure 6.11. The example
shows how the fraction value 0.02 (located in the centre of the selected 3 x 3 window)
was reclassified as 0, because the summation of the surrounding pixels amounts to
only 0.14. Removing noise from the soft classification helps the sub-pixel / super-

resolution methods used in the following section produce accurate shoreline

prediction.
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Figure 6.11: Example of filtering the fraction imagery to remove fraction information

attributed to noise.
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6.3.6.2 Contouring soft classified imagery

The filtering process removes noise that contaminates fraction values of the pure
pixels. This allows the possibility of applying a contouring process to locate the
shoreline with more accuracy. Since there was a simple geometrical arrangement of
the two classes, the possibility of representing the shoreline by fitting a class
membership contour through the soft classification was evaluated (Foody, 2002b).
Specifically the shoreline was represented by fitting to the soft classification a contour
of 0.5 membership to the land class, representing the 50% membership to land and
50% membership to water. An example of the process in shown in Figure 6.12. Result

from contouring the soft classification is shown in Figure 6.13.

0.7 | 01 ] 0 Jo1 0
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() (b)

Figure 6.12: The figure show the (a) initial fraction value and (b) contouring output

(a) (b)
Figure 6.13: Shoreline generated from contouring soft classification from the (a) 16 m

spatial resolution imagery and (b) 32 m spatial resolution imagery.
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6.3.6.3 Two-point histogram

Contouring the soft classification provides a first step into mapping the shoreline
within pixel boundaries. But this method does not maintain the proportion information
of the soft classification when designating the shoreline. For example in Figure 6.12,
the proportion values were modified to in order to fit the contour. That is, the contour
fitted to the soft classification was guided by the proportion information conveyed by
the soft classification but the proportion either side of the fitted shoreline may not
match those depicted in the soft classification as a result of the generalisation process
involved in fitting the contour (Foody et al., 2003). A refinement, therefore, was to use
the contouring result to direct an approach in which the class proportion information
contained in the soft classification is maintained. The final approach to estimating the
shoreline was based on two-point histogram using a pixel swapping algorithm that was
developed for super resolution land cover classification (Atkinson, 2003). The geo-
statistical technique adopted here was designed to post-process a soft classification

imagery and position the classes geographically at a sub-pixel scale.

The two-point histogram based approach was used to adjust iteratively the sub-
pixel class composition estimates in the soft classification output to provide a super-
resolution representation of the shoreline. This approach requires two sets of imagery,
a soft classification output, to generate the representation of the shoreline and a
training image (at a finer spatial resolution), as a target for the process. For this
analysis the soft classified imagery was initially converted to hard classified sub-
pixels, with the number of sub-pixels per class determined in proportion to the class
proportion, maintaining the relative proportion of the class. Here, the analysis was
undertaken using sub-pixels with a spatial resolution of 1 m. Thus for the 32 m

simulated imagery, 32 x 32 m sub-pixels were created. As an example for a land pixel
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value 0.25, 256 of the 1024 pixel are hard classified as land. These sub-pixels were
initially distributed randomly throughout the area of the pixel that they are associated
with. The training images used were based on the contouring of the soft classification
outputs which were generated in section 6.3.6.2. The spatial resolution of these

training images were 1 m similar to the target spatial resolution.

The optimization algorithm begins by comparing two-point histogram statistics
between the initial imagery and its training image. A sub-pixel swap was then
initialized, if the swap allocates the sub-pixel so that the initial imagery becomes closer
to the training imagery it was maintained and the two-point histogram was updated.
This process was repeated for every pixel and every sub-pixel until 70 iterations. An

example of this process is shown in Figure 6.14.
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Figure 6.14: Tllustration of the operation of the two point histogram method. The

training imagery was generated from the contouring output.
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This method ensures that the proportions of land and water predicted by the soft
classifier were maintained while geographically locating sub-pixel regions of the
classes in the area represented by a pixel (Atkinson, 2003). The outputs were later
vectorised to produce shoreline map of the area. Figure 6.15 - Figure 6.18 shows the
images involved in processing the coarse spatial resolution images to predict the

shoreline location.
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Figure 6.15 : (a) Soft classified imagery with proportion values, (b) imagery with
randomly distributed 1 m sub-pixels, (¢) Training Image. The grid represents the
pixel spatial resolution of 16 m.
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Figure 6.16: Shoreline prediction from the two-point histogram method based on the
16 m imagery. The grid represents the pixel spatial resolution of 16 m.
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Figure 6.17: (a) Soft classified imagery with proportion values, (b) imagery with
randomly distributed 1 m sub-pixels, (c¢) Training Image. The grid represents the
pixel spatial resolution of 32m.
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Figure 6.18: Shoreline prediction from the two-point histogram method based on the
32 m imagery. The grid represents the pixel spatial resolution of 32 m.

6.4 Positional error analysis in shoreline prediction

To analyse the positional accuracy at the 4 sites (Figure 6.2), the accuracy of the 4
methods were determined by comparing their positional location to the actual location
determined by hard classifying 1 m imagery of the areas. An overlay of the predicted
shoreline over the actual shoreline and a graph representing the errors in position along

the shoreline (for the 4 test sites) are given in Figure 6.19 to Figure 6.26. Information
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regarding the graphing technique used to display errors along the shoreline were given

in section 4.2.6.

6.5 Results and analysis.

This section shows the accuracy of shoreline prediction obtained by the 4 methods.

The results are divided based on the 4 test sites defined in section 6.2.

6.5.1 Results

This research examined 4 different methods in predicting the shoreline location from
coarse spatial resolution imagery. The 4 methods were applied at 4 portions of
shoreline with 2 different spatial resolutions (16 and 32 m). Due to the amount of
results generated a standardise method of calculation positional errors needed to be
established. This was done but determining the positional errors along every metre of
the shoreline and calculating the RMSE. The results for the 16 and 32 m images are

shown in Table 6.1 and 6.2 respectively.

Table 6.1: RMSE (m) in shoreline mapping from the four methods using 16 m spatial

resolution simulated imagery.

RMSE (m)
Location Hard Contouring Two point Wavelet
Classified Histogram | Interpolation
Area | 3.16 1.17 1.20 1.74
Area II 4.25 4.72 1.34 2.53
Area III 3.67 1.29 1.15 2.97
Area IV 3.49 2.82 2.08 1.32
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Table 6.2: RMSE (m) in shoreline mapping from the four methods using 32 m spatial

resolution simulated imagery.

RMSE (m)
Location Hard Contouring Two point Wavelet
Classified Histogram | Interpolation
Area | 6.71 m 0.98 m 1.71 m 5.72m
Area 11 8.67m 6.42 m 2.62 m 6.13 m
Arealll | 8.13m 4.83 m 246 m 6.15m
ArealV | 573 m 6.75m 5.11m 432 m

160



B

Two-point histogram

N A OO @

Error (m)

o & & N o

= Two-pomt lustogram

Wavelet interpolation

Position (m)

—— Wavelet interpolation

Contouring

w— Contouing

Hard classification

e Hard clagsification

Figure 6.19: Shorelines generated from 16 m imagery of Area 1. Actual land area is shown in orange with the pixel spatial resolution represented
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown
below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.20: Shorelines generated from 32 m imagery of Area 1. Actual land area is shown in oarnge with the pixel spatial resolution represented
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown
below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.21: Shorelines generated from 16 m imagery of Area I1. Actual land area is shown in orange with the pixel spatial resolution represented
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown
below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.22: Shorelines generated from 32 m imagery of Area II. Actual land area is shown in orange with the pixel spatial resolution represented
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown

below the prediction
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Figure 6.23: Shorelines generated from 16 m imagery of Area III. Actual land area is shown in orange with the pixel spatial resolution
represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is
shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.24: Shorelines generated from 32 m imagery of Area 111. Actual land area is shown in orange with the pixel spatial resolution
represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is

shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.25: Shorelines generated from 16 m imagery of Area IV. Actual land area is shown in orange with the pixel spatial resolution
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represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is
shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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Figure 6.26: Shoreline generated from 32 m imagery of Area IV. Actual land area is shown in orange with the pixel spatial resolution represented
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by the square grid. Shoreline generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown below
the prediction. Positive errors represent error seawards while negative errors represent errors landwards.
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6.5.2 Analysis

This section analysed the effects of different types of shoreline orientation and spatial
resolution on predicting the shoreline location. Generally, shoreline prediction from
the 4 methods were the most accurate when predicting linear shoreline (Area I). While
in other areas the results were mixed with the shoreline prediction derived from
contouring and hard classification the least accurate in Area II and the prediction
derived from wavelet interpolation were the least accurate in Area III. An analysis on
the accuracy of the shoreline prediction derived from the 4 methods based on the 4 test

sites are given in the following section.

Results show that when the methods are ranked from the best to worst based on
accuracy ofitheir predictions there is a similar order for both the 16 and 32 m spatial
resolution. For example in Area 1, the prediction derived from contouring method was
the most accurate at both the 16 and 32 m spatial resolution. Therefore, these analyses
emphasised the result from the 16 m spatial resolution imagery, taking into account
that an analysis for the 32 m spatial resolution imagery would be similar. Analyses on
the effects of spatial resolution (between 16 m and 32 m images) are explained in a

later section.

6.5.2.1 Area I (Linear across pixel orientation)

For linear shorelines that are positioned across pixel orientation (Area I), all of the
methods used were able to predict the shoreline position to within an RMSE of 3.16 m
for the imagery simulated to a spatial resolution of 16 m and 6.71 m for the imagery
simulated to a spatial resolution of 32 m. As expected, the largest errors were observed
with the shoreline predicted from the hard classification method in which the shoreline

was constrained to lie between pixels and had a jagged shaped. Moreover only, 54.4 %
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of the shoreline predicted was within 2 m of the actual shoreline and the RMSE
calculated along the 125 m test site was 3.16 m for the simulated 16 m spatial
resolution imagery. The results indicated that shoreline prediction based on sub-pixel

analyses produces smoother and more accurate shorelines than that derived from hard

classification.

The shorelines generated from the application of the contouring, wavelet
interpolation and two-point histogram methods were accurate, but the contouring
method produced the most visually realistic representation of the shoreline with §9.6%
of the shoreline prediction positioned within 2 m of the actual shoreline. Although the
estimated accuracy of the shoreline derived from contouring method was better than
that derived from other methods, the proportion information from soft classification
was not maintained. A method that maintains this information, the two-point histogram
method, however was only able to predict the shoreline to within an RMSE of 1.20 m.
This could be attributed to inaccuracies in the soft classification and the generalization
process during contouring (for the contouring method) reposition the shoreline
prediction closer to the actual shoreline in comparison to the prediction from the two-
point histogram method. The prediction generated from the wavelet interpolation
method was not as accurate as two-point histogram and contouring method with an
RMSE of 1.74 m and only 74.4 % of the shoreline prediction positioned within 2 m of

the actual shoreline.

6.5.2.2 Area II (Linear along pixel orientation)

In Area I where the shoreline was linear but oriented nearly parallel with the column
of the pixel grid, the accuracy varied greatly between the methods used. The shoreline
prediction from the hard classification was again the least accurate and that derived

from two-point histogram the most accurate. The two-point histogram method
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produced shoreline position prediction with an RMSE of 1.34 m for the 16 m imagery
with 89.0 % of the shoreline within 2 m of the actual shoreline. The shoreline
prediction derived from contouring the soft classification method was not as accurate
as in Area . Although the shoreline from the contouring method was smooth and
linear but it was positioned a few metres to the east of the actual shoreline. Here the
generalization of proportion values required when fitting the contour (hence modifying
pixel proportion values) introduces error when positioning the shoreline prediction,
resulting in an RMSE of 4.72 m with only 32.8 % of the shoreline within 2 m of the
actual shoreline. The accuracy of shoreline prediction derived with the wavelet
interpolation method relies on the orientation of the shoreline and the wavelet function
selected, in this case a Haar wavelet function (Donoho, 1992). From visual observation
of the wavelet interpolation method shoreline prediction, it could be deduced that
generally accuracy increases when the shoreline was aligned exact parallel to the
column of the pixel grid and decreases even with a slight change in alignment. As
shoreline in this area was not exactly aligned to the column of the pixel grid, accuracy
of shoreline prediction from the wavelet interpolation method were not as accurate as
two-point histogram method with only 52.0 % of the shoreline located within 2 m of

the actual shoreline in comparison to 89.0 % for two-point histogram method.

6.5.2.3 Area III (Slightly curved).

In Area II1, two-point histogram again produced the most accurate prediction of the
shoreline position, followed closely by contouring of the soft classification with RMSE
of 1.15 m and 1.29 m respectively for 16 m imagery. These two methods rely on the
accuracy of the soft classification to predict the shoreline location, however inaccurate
proportion information affect the two-point histogram more as the proportion

information was maintained. The contouring method modified these values to fit a

171



Chapter 6. Sub-pixel Analysis in Shoreline Mapping

contour to the shoreline which could result in increased accuracy (such as in Area I) or
decreased accuracy. With accurate proportion information the two-point histogram
method was able to accurately predict the shoreline with 94.4 % of the shoreline
positioned within 2 m of the actual shoreline. Contouring of the soft classification
produced similar accuracy but as contouring linearly divides pixels in two at the
predicted shoreline position the shoreline produced was visually unrealistic. An
example of this process was shown in Figure 6.13. Moreover only 89.6 % lies within
2 m of the actual shoreline which was lower than the accuracy achieved by two-point
histogram method. In this area wavelet interpolation produces curved shoreline
prediction similar to Area II. The method obtained an RMSE of 2.97 m with only 48.8
% of the shoreline positioned within 2 m of the actual shoreline. The hard
classification method produced the worst prediction with an RMSE of 3.67 m with

only 42.2 % positioned within 2 m of the actual shoreline.

6.5.2.4 Area IV (Sharply curved)

In Area IV, shoreline predictions from the four methods were not as accurate as in the
other areas. The shoreline prediction derived from the wavelet interpolation method
was the most accurate followed closely by two-point histogram method. Prediction
from two-point histogram was not as accurate as before because the proportion
information for this particular area was not as accurate as in area I, I and III. The
correlation coefficient derived for the relationship of predicted against actual land
image in the soft classification differed between the areas (16 m imagery); Area 1 =
0.986, Area I = 0.960 Area II1 = 0.980 and Area IV 0.940. Even though the
difference is not large the shoreline prediction accuracy generally increases when the
correlation between the actual and predicted coverage of a class from soft

classification is accurate (Table 6.1 and 6.2). The two-point histogram method was,
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however still within an RMSE of 2.08 m with 74.4 % located within 2 m of the actual
shoreline. The wavelet interpolation method does not rely on results from soft
classification when predicting the shoreline position, thus its shoreline prediction were
the most accurate with an RMSE of 1.32 m and 90.4 % of the shoreline located within
2 m of the actual shoreline. As with Area III the contouring method predictions were
visually unrealistic and positioned a few metres to the west of the actual shoreline
position. This could again be attributed to contouring modifying the proportion values

when allocating shoreline position resulting in an RMSE of 2.82 m.

6.5.2.5 Effects of spatial resolution.

In all of the areas the effect of spatial resolution was very similar. The accuracy of the
shoreline prediction decreased with a coarsening of spatial resolution. For the shoreline
prediction derived from hard classification the errors generally doubled at the 4
training sites when the spatial resolution was decreased. This was expected as the
spatial resolution was decreased from 16 m to 32 m, increasing the pixel size. With an
increase of pixel size, more pixels along the shoreline would have a mixed class
composition (land and water). When these pixels are classified to either land or water,
the shoreline prediction were derived along the pixels edges resulting in more errors in
comparison to the prediction derived from the 16 m spatial resolution simulated
imagery.

In the wavelet interpolation method accuracy seems to be affected more by the
shape of the shoreline mapped than spatial resolution. But generally accuracy does
decrease with coarser spatial resolution. Similarly to wavelet interpolation, there was
no general trend observed in the results of the contouring method. Although the
accuracy of shoreline prediction generally did decrease at coarser spatial resolution the

shape of shoreline and accuracy of the proportion information from soft classification
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had a greater effect. In Area I where the correlation coefficient derived for the
relationship of predicted against actual land image in the soft classification were better
for 32 m imagery than 16 m imagery, contouring produced an accurate result at 32 m

spatial resolution.

In the two-point histogram method errors in shoreline prediction in Area [ and
Area I1I increased by approximately 40 % when the spatial resolution was changed
from 16 to 32 m. In Area II and IV the error in the predicted shoreline positions nearly
doubled. The differences in errors could be attributed to the accuracy of the proportion
information derived from the soft classification as the correlation between the
predicted proportion and actual proportion decreased when the spatial resolution was

decreased to 32 m.

6.6 Conclusions

The shoreline cannot be represented appropriately in a conventional approach to
thematic mapping based on a hard classification. However, by predicting the thematic
composition of a pixel by applying a soft classification may help locate the shoreline
position at a sub-pixel scale. This allows super-resolution mapping, mapping at scale
finer than the spatial resolution of the data used, which can provide more accurate and
realistic thematic representations. This was illustrated with the mapping of the
shoreline from 16 and 32 m spatial resolution data. The conventional hard
classification provided a visually poor and inaccurate representation of the shoreline. A
superior representation, in terms of visual appearance and RMSE, was derived from
each of the three super-resolution mapping approaches used. The two-point histogram
approach generally gave the most accurate prediction of the shoreline with an RMSE

of below 2.10 m for 16 m imagery and 5.11 for 32 m imagery. This method produce
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accurate prediction of the shoreline irrespective of its shape but the accuracy decreased

with increasing curvature of the shoreline.

To further increase the accuracy of the shoreline prediction this research looks at
methods of increasing the accuracy of the soft classification. To predict the class
composition within a pixel this research used four land and four water training sites
(Figure 6.4) which were selected throughout the image. The average (Global) statistics
from these sites were later used to define the end point of the sigmodial function used
in the soft classification process. To increase the accuracy of the soft classification
further analysis was conducted, based on these training sites a localised approach for

soft classification was explored. This approach is explained in chapter 7.

These results indicate the considerable potential of super-resolution mapping
techniques for accurate mapping of the shoreline from simulated coarse resolution
satellite sensor imagery. However, to apply these methods to actual satellite sensor
imagery such as images from Landsat TM and SPOT HRYV several additional
considerations need to be addressed. These considerations include the errors inherent
in the transforming or geo-referencing the coarse spatial resolution data to the
Malaysia RSO projection. Further research needs to be done to quantify the effect of
image transformation on the accuracy of the predictions. This was not done in this

thesis due to time limitations.
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7 Localised soft-classification for Sub-pixel

mapping

7.1 Introduction

In chapter 4 and 6 techniques for mapping the shoreline from coarse spatial resolution
satellite sensor imagery were introduced. The results showed that by applying a soft
classification to a coarse spatial resolution imagery to predict the class composition
within a pixel and applying super-resolution techniques to position these classes
geographically, an accurate prediction of the shoreline was possible. But the accuracy
varied based on shoreline orientation and could be attributed to inaccuracies in the

class composition prediction. Therefore, there is a need to increase the accuracy of the

soft classification.

This chapter introduces a soft classification approach based on localised training
statistics to increase the class composition prediction and ultimately the accuracy of
the shoreline predictions. Another super resolution approach was also introduced to
complement the two-point histogram method. The simulated 16 m spatial resolution

imagery derived in chapter 5 was used as the base for this analysis.

In chapter 6 the soft classification process used global statistics to define the
sigmodial class membership function used to classify the data. These global statistics
were derived by averaging the statistics obtained from 4 homogenous land and 4
homogenously water sites (Figure 6.4). Here, the application of local training statistics

was examined. Thus, for a specific portion of the shoreline only the closest land and
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water training sites were used to define the sigmodial class membership function used

to classify the data.

7.2 Methods and analysis
This section describes a soft classification approach based on local training statistics
and a super-resolution mapping technique based on pixel swapping. Other methods

such as contouring and two-point histogram were already discussed in chapter 4 and 6.

The analysis would compare super-resolution shoreline prediction results

obtained by using localised and global training statistics.

7.2.1 Soft classification

To increase the accuracy of the thematic class composition this work implements a soft
classification that uses localised training statistics. It needs to be pointed out the soft

classification function (sigmodial) and training sites used are the same as in chapter 6.

The soft classification approach applied in chapter 6 used the conventional
approach where all the training sites for a class were used to define a single global
description of the class. The use of such global training statistics yielded an accurate
soft classification, with a correlation coefficient between predicted and actual class
cover of 0.95 (p <0.05). For each class, it was apparent that the spectral response
observed varied between the training sites (Table 7.1). Given this spectral variation,
the global training statistics may provide an inappropriate description of each class
locally. Therefore a soft classification approach based on localised training statistics

were required.

Here, a localised approach was assessed in which the training statistics from

the four training areas for each class were used separately in soft classification. For
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this, individual land and water training sites were used in classifying a specific pixel
(Figure 7.1). Thus, for a specific portion of the shoreline only the closest land and
water training sites were used to define the sigmodial class membership function used

to classify the data.

Table 7.1: Summary of average spectral response for each class at each training sites
(Figure 7.1)

Ly s o Spectral response
T t
raining sites Tand Water
Land 1/ Water 1 193.44 33.00
Land 2 / Water 2 184.33 37.78
Land 3 / Water 3 160.33 42.89
Land 4 / Water 4 147.33 16.22
Average 171.36 32.47
Std Dev. 21.25 11.56
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Figure 7.1 Division of shoreline by training sites used for localised soft classification.
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Using a sigmodial function the coarse spatial resolution imagery was soft classified
based on the localised training sites. The fraction image (land) obtained from the local

soft classification is shown in Figure 7.2.

The accuracy of the soft classification was assessed through a comparison of
the predicted coverage of a class with that derived from the ground data (Figure 6.5).
The predicted coverage and ground data were correlated, with an » value of 0.98 (p <
0.05). This was larger than the estimate derived from a classification derived with
global training sites which had an r value of 0.95 (p < 0.05) (chapter 5). The

relationship between the predicted and actual fraction of land from soft classification

derived using local statistics is shown in Figure 7.3.

Therefore, the soft classification derived with the use of local training statistics

was more accurate than that derived from the use of global statistics.

Sracfion vaue
uu

- Aad

Figure 7.2: Soft classification output obtained from the use of localised training

statistics. The greyscale shows the fraction of land.
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Figure 7.3: Relationship between the predicted and actual fraction of land from soft

classification derived using local statistics.

7.2.2 Sub-pixel mapping

The outputs of the soft classification are fraction values representing the proportional
cover of a class within each pixel. Since soft classification does not indicate where the
sub-pixel components are located within each image pixel, sub-pixel scale approaches
to locating the shoreline were investigated. In this analysis two methods of sub-pixel
mapping were applied, the pixel swapping and two-point histogram methods. The two-
point histogram approach would only be briefly explained here as it was already
introduced in chapter 4 and 6. Soft classification results by using localised training

sites and global training sites (derived in chapter 6) were used for the analysis.

7.2.2.1 Pixel-swapping

To complement the two point histogram method this chapter introduces a pixel-
swapping algorithm (Atkinson, 2004). The objective of the algorithm is to vary the
spatial arrangement of the sub-pixels in such a way that the spatial correlation between
neighbouring sub-pixels is maximized given that the overall proportional composition

within a pixel could not vary. The pixel-swapping algorithm comprised three basic
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steps. First, for every sub-pixel the attractiveness 4; of the location is predicted as a

distance weighted function of its neighbour:
Ai=Z]/1,.jz(u/.) 7-1
=

Where # is the number of neighbours, z(u j) is the value of the class z at the jth pixel

location U; and 4, is a distance-dependent weight predicted as :

—h, P
;tij =exp (“’J'] 7
a

where /i, is the distance between the pixel location / for which the attractiveness is

desired u; and the location j of the neighbour u; , and a is the non-linear parameter of

the exponential model.

Second, once the attractiveness of each sub-pixel location has been predicted
based on the current arrangement of sub-pixel classes the optimization algorithm ranks
the scores on a pixel-by-pixel basis. For each pixel, the least attractive location
currently allocated to a ‘1’ (i.e., a ‘1’ surrounded mainly by “0°’s) is stored. Similarly,
the most attractive location currently allocated to a ‘0’ (i.e., a ‘0’ surrounded mainly by
‘1°s) is also stored. Third, sub-pixel classes are swapped if the attractiveness of the
least attractive location is less than that of the most attractive location. If it is more

attractive, no change is made.

The pixel-swapping was used to locate the sub-pixel components within each
pixel for both the global and local soft classifications. In this method, as for the two-
point histogram approach, the initial 16 m pixels were divided into 1 m sub-pixels and
these randomly distributed throughout the pixels based on their fraction values. The

three stage process described above was repeated such that a solution was approached
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iteratively. This algorithm was applied for 40 iterations to both the global and local
soft classified imagery to produce 1 m spatial resolution super-resolution images of the
shoreline. A shoreline was later vectorised from both of the super-resolution images

(i.e., resulting from global and local soft classification).

7.2.2.2 Two-point histogram.

The two-point histogram method described in section 6.3.6.3 was applied to the soft
classification outputs from both the global (Figure 6.8a) and local soft classifications
(Figure 7.2). The training imagery was generated by fitting a contour of 0.5

membership of land to the soft classification proportions to represent the shoreline.

For both soft classifications, the initial 16 m pixels were divided into 1 m sub-
pixels. Then each 1 m sub-pixel was allocated to a class based on the pixel-level soft
proportions. The algorithm was run until there were no or minimal changes (70
iteration) to the imagery. A shoreline was later vectorised from both of the super-

resolution images (i.e., resulting from global and local soft classification).

7.3 Results

This section explains the results obtained from both sub-pixel mapping method that

were applied to the soft classification outputs derived from local and global statistics.

7.3.1 Super-resolution mapping

For comparative purposes the soft classification derived from both the global and local
training statistics were used in sub-pixel mapping ofithe shoreline. The shorelines
generated by the two-point histogram and pixel-swapping method are shown in Figure

7.4 and Figure 7.5.
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Figure 7.4: Shoreline prediction generated using the pixel swapping algorithm based on soft
classification using global (a) statistics and (b) local statistics. The actual shoreline is shown

in black while the grid shows the actual pixel spatial resolution of 16 m.
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Figure 7.5: Shoreline prediction generated using the two-point histogram algorithm based
on soft classification using (a) global statistics and (b) local statistics. The actual shoreline
is shown in black while the grid shows the actual pixel spatial resolution of 16 m.
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The accuracy of the shoreline maps generated from the two-point histogram
and pixel-swapping methods were analysed at 4 areas in the imagery (Figure 6.2). The
accuracy of the shoreline prediction was determined by comparing the predicted
location to the actual location determined from the ground data for each shoreline
extract from each method for every metre of the shoreline (Table 7.2). The positional

accuracy along the 125 m length of the shoreline for the four areas are shown in Figure

7.6 to Figure 7.9

The accuracy of shoreline prediction when using global statistics varied with
location and orientation. The most accurate prediction was achieved from the linear
shoreline (across pixel orientation) with an RMSE of 1.38 m for the pixel-swapping
algorithm and 1.2 m for the two-point histogram algorithm when global training
statistics were used. The use of local training statistics, however, increased the
accuracy of the soft classification and ultimately shoreline prediction with the pixel
swapping and two-point histogram method obtaining an RMSE of 0.99 m and 0.97 m,

respectively (Table 7.2). The accuracy of the predictions at the 4 areas is given in

Table 7.2.

Table 7.2: RMSE in shoreline prediction (m) from the 4 methods calculated at the 4

areas.
Global training statistics Local training statistics
. . Two-point . . Two-point
Pixel-swapping histogram Pixel-swapping histogram
Area I 1.38 1.20 0.99 0.97
Area 11 2.13 1.34 1.51 1.10
Area 11 1.46 1.15 1.23 1.05
Area IV 1.21 2.08 1.11 1.02
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Figure 7.6: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area 1. The grid represents the spatial resolution of 16 m.
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Figure 7.7: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area I1. The grid represents the spatial resolution of 16 m.
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Figure 7.8: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area III. The grid represents the spatial resolution of 16 m.
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Figure 7.9: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area IV. The grid represents the spatial resolution of 16 m.
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7.4 Discussion

Analysis of the spectral response derived from the training sites indicate marked intra-
class variation. This was expected, for example in water training sites, as the spectral
response is a function of depth and quality of the water which are variable in space and
time. Although the soft classification trained with global statistics produced an
accurate prediction (» = 0.95) the global statistics did not represent local conditions
accurately. To reduce error and produce a more accurate prediction of class proportion
within a pixel, a soft classification approach based on utilising local training sites was
proposed. Using the same training sites used in a global approach, local classification
resulted in an increase in the » value from 0.95 to 0.98. The use of soft classification
based on local training statistics would, therefore, be expected to yield a more accurate

super-resolution prediction of shoreline position.

Two sub-pixel mapping algorithms were used to predict shoreline location
within a pixel. The two methods were based on the two-point histogram and pixel-
swapping algorithms. For all four areas and for both algorithms, the accuracy of
shoreline prediction was larger when local rather than global training statistics were
used. Results show that by using localised training sites the overall accuracy of
shoreline prediction increased (RMSE of 1.51 m) relative to that achieved using global
statistics (RMSE of 2.13 m). In addition, shoreline orientation had less effect on the
prediction than when global statistics were used (Table 7.2). The result demonstrates
that soft classification prediction provides a critical input to the super-resolution
mapping process, with the accuracy of shoreline prediction related positively to the

accuracy of the soft classification.
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7.5 Conclusion

This research has indicated the potential of super-resolution techniques for mapping
the shoreline at a sub-pixel scale using simulated satellite sensor imagery. The use of
local statistics resulted in increased accuracy in soft classification in comparison to
using global statistics. With increased accuracy in the prediction of class proportion
within a pixel, sub-pixel mapping techniques were able to increase the accuracy of the

shoreline location predictions.

Even though the results from this simulation study were encouraging, several
additional factors need to be addressed before applying these methods to actual

satellite sensor imagery.
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8 Conclusion

Coastal areas are dynamic environments and constantly changing. The need to
constantly monitor these changes has compelled researchers to develop methods of
efficiently monitoring the shoreline. This thesis introduced methods of mapping the

shoreline from satellite sensor imagery.

In chapter 2, the current status of Malaysia’s shoreline was introduced with an
overview of steps taken by the Malaysian government to address the issue of coastal
erosion. These steps include the introduction of new government institution, financial
allocation and regulatory measures. An overview of conventional and remote sensing
methods for mapping the shoreline was provided to introduce how the shoreline has
previously been mapped. The potential of remote sensing techniques to produce
accurate maps was addressed leading to the aim of the study, the production of
accurate shoreline maps from remote sensing satellite sensor imagery. This thesis
examines the potential of using fine and coarse spatial resolution satellite sensor
imagery in predicting the shoreline location. The data and study area for this thesis

were described in chapter 3.

A pilot study examining the potential of mapping the shoreline from coarse
spatial resolution satellite sensor imagery on a linear stretch of shoreline was discussed
in chapter 4. The shoreline predicted from a conventional hard classification method
was compared with those from several sub-pixel mapping methods. The pilot study
showed that by combining soft classification and sub-pixel mapping methods accurate
shoreline prediction was possible (RMSE = 2.25 m for the two-point histogram
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method). But this result was only valid for linear shorelines and further analysis was
needed to address the effect of different shoreline orientation. This issue was addressed

later in chapter 6.

In chapter 5, fine spatial resolution satellite sensor imagery was used to map
the shoreline. A shoreline prediction with an RMSE of 1.80 was obtained. But the use
of fine spatial resolution imagery was impractical to map large stretches of shoreline at
a national level. Therefore, methods of mapping the shoreline using coarse spatial

resolution satellite sensor imagery were more practical.

Chapter 6 expanded the work in chapter 4, with emphasis given to the effect of
shoreline orientation and on increasing the accuracy of the shoreline prediction. The
sub-pixel mapping methods used included wavelet interpolation, contouring the soft
classification and two-point histogram method. The two-point histogram method
obtained the most accurate prediction with an average RMSE of 1.44 m followed by
wavelet interpolation and contouring with an average RMSE of 2.14 m and 2.50 m,
respectively. But the accuracy of the shoreline prediction varied depending on the
orientation of the shoreline. The accuracy of the shoreline prediction could be
increased by using a soft classification approach based on the use of local training
statistics. The class composition predictions derived when using local training
statistics were more accurate than those from global training statistics, with an increase
in , from 0.95 to 0.98 (p < 0.05). With increased accuracy, the use of soft
classification based on local training statistics would, therefore, be expected to yield a
more accurate super-resolution prediction of shoreline position. For the two-point
histogram method, there was an increase in accuracy for all the shorelines, with the
RMSE ranging from 0.97 m to 1.10 m when predicting from a 16 m spatial resolution

image. Results show that shoreline orientation had less effect on the accuracy of the
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prediction than when global statistics were used. The results demonstrated that soft
classification prediction provides a critical input to the sub-pixel mapping process,
with the accuracy of shoreline prediction related positively to the accuracy of the soft

classification.

The value of sub-pixel mapping was apparent from the perspective of
conventional mapping standards. Using the results from the two-point histogram
method (16 m spatial resolution imagery) as an indicator of the achievable accuracy,
the prediction satisfied the requirement of mapping at a 1: 1,500 scale. Using
conventional methods, SPOT HRV sensor with a spatial resolution of 20 m only
satisfies the requirement of a 1: 50,000 scale maps (Al-Rousan et al., 1997). This
research shows the potential of sub-pixel mapping method for mapping the shoreline at
a sub-pixel scale using satellite sensor imagery such as Landsat TM, Landsat ETM+
and SPOT HRV. But when applying these methods to actual satellite sensor images,
further research need to be done to address the affect of geo-referencing the images to
the Malaysia RSO projection. The inaccuracies expected to be introduced and methods

of addressing them would be addressed in future research.

The sub-pixel mapping methods proposed in this thesis are not limited to
mapping the shoreline but have the potential to be applied to other boundary-type
classification problems such as land cover mapping. When mapping the shoreline, sub-
pixel mapping was relatively simple, as only two well-defined classes were being
considered (water and land). Therefore, it remains to be seen how these methods
would cope in more spatially complex landscapes, especially when more land cover
classes occur at the sub-pixel scale. Further research addressing these issues needs to
be conducted to be able to generalise these methods and make them applicable to other

boundary-type classification problems. Obviously, other possibilities of improving the

193



Chapter 8: Conclusion

algorithm exist. This includes automating the use of local training sites for soft
classification by setting boundary conditions to enable the algorithm to select and
utilise only sites fulfilling pre-determined conditions. Future research could also focus
on generalising the methods to make them applicable to other boundary mapping

applications.
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Appendix 1 : Header information for the IKONOS sensor data used in this thesis

Date 10™ April 2002 1% July 2000 28™ August 2002
Product Type : | Geo Im +4m 1-metre l-metre
bundle Pan-Sharpened Stereo Pan-
( Multi Spectral + | Multispectral Sharpened
Pan) + IGM Multispectral +
IGM
Map Projection: | Universal Universal Universal
Transverse Transverse Transverse
Mercator Mercator Mercator
UM Hemisphere: N Hemisphere: N Hemisphere: N
Parameters Zone Number: 48 | Zone Number: 48 | Zone Number: 48
Datum: WGS84 WGS84 WGS84
Product Order | 1.00 m (Pan)/4.00 | 1.00 m 1.00 m
Pixel Size: m (Multi spectral)
Sun Angle 81.4393 degrees 55.4660 degrees 76.4012 degrees
Azimuth:
Sun Angle 68.13380 degrees | 56.43733 degrees | 68.81210
Elevation
Acquisition 2002-04-10 03:42 | 2000-07-01 03:14 | 2002-08-28 03:45
Date/Time GMT GMT GMT
Product Map UL Map X UL Map X UL Map X
Coordinates (Easting): (Easting): (Easting):
286163.14 m 253401.26 m 286163.14 metres
ULMapY ULMap Y ULMapY
(Northing): (Northing): (Northing):
598099.43 m 620697.10 m 598099.43 m
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Appendix 2 : RPC coefficient for the (a) left stereo image and (b) right stereo image
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(a)
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LINE_NUM_COEFF_15:
LINE_NUM_COEFF_16:

LINE_NUM_COEFF_17;
LINE NUM_COEFF_18:
LINE_NUM_COEFF_19:
LINE_NUM_COEFF_20:

+1.168330791267773E-03
+1.838686643800731E-03
-1.004473070864287E+00
+2.247313951471594E-03
+7.138606712661865E-03
-1.129856466121717E-05
-1.199754632965443E-03
-3.908986245344519E-05
+2.813701898460914E-02
+2.439549121157181E-06
+2.842682094128792E-06
+1.365951095823415E-07
-1.523222505873829E-04
-1.373625179220041E-08
+2.775423306408464E-05
-3.814462211696524E-04
+5.832369833462576E-07
+9.372093412195353E-07
-2.056769201469459E-06
-1.367144597862590E-09

LINE DEN_COEFF_1: +1.000000000000000E+00

LINE_DEN_COEFF_2: -7.129547814970496E-03
LINE _DEN COEFF 3:-2.801379912935586E-02
LINE DEN_ COEFF 4: +2.367060941132691E-04
LINE_DEN COEFF 5:+1.515505106826301E-04
LINE_DEN_COEFF_6 +2.481880476191763E-06
LINE_DEN_COEFF_7: +2.687900254731482E-05
LINE_DEN COEFF 8:-2.725183863556567E-05
LINE DEN_COEFF 9 +3.798438226324729E-04
LINE_DEN_COEFF_10: -1.538265355482507E-06

SAMP_DEN_COEFF_I:
SAMP_DEN_COEFF 2:

SAMP_DEN_COEFF

SAMP DEN_COEFF_4:
SAMP_DEN_COEFF_5:

+1.000000000000000E+00
-1.171297122436968E-03
1 +1.327890963611945E-03
-1.467246992524049E-03
+3.398467622939111E-05

LINE_DEN_COEFF_11:
LINE_DEN_COEFF_12:
LINE_DEN_COEFF_13:
LINE_DEN_COEFF_14:
LINE_DEN_COEFF_15:
LINE_DEN_COEFF_16:
LINE_DEN_COEFF_I7:
LINE_DEN_COEFF_18;
LINE_DEN_COEFF_19:
LINE_DEN_COEFF_20:

SAMP_NUM_COEFF_1:
SAMP_NUM_COEFF_2:
SAMP_NUM_COEFF_3:
SAMP_NUM_COEFF_4:
SAMP_NUM_COEFF_5:
SAMP_NUM_COEFF_6:
SAMP_NUM_COEFF_7:
SAMP_NUM_COEFF_8:
SAMP_NUM_COEFF_9:

SAMP_NUM_COEFF_1

SAMP_NUM_COEFF_11:
SAMP_NUM_COEFF_12:
SAMP_NUM_COEFF_13:
SAMP_NUM_COEFF_14:
SAMP_NUM_COEFF_15:
SAMP_NUM_COEFF_16:
SAMP_NUM_COEFF_17:
SAMP_NUM_COEFF_18:
SAMP_NUM_COEFF_19:
SAMP NUM_COEFF_20:

SAMP_DEN_COEFF_1:
SAMP_DEN_COEFF 2:
SAMP_DEN_COEFF_3:
SAMP_DEN_COEFF_4:
SAMP_DEN_COEFF_5:
SAMP _DEN_COEFF_6:

-6.368298861627266E-08
-1.064719461959987E-09
+1.581381770001589E-08
+5.605868171708611E-10
+4.391419593884135E-09
+8.606607346726961E-09
-6.770126871700066E-09
+6.6544635706602339E-09
-1.713598510377442E-07
+5.437359867098021E-10
+4.063490175503958E-03
+1.003880523537400E+00
+4.849040778456582E-03
-5.652544098014657E-03
-2.829739152913578E-02
+6.743595539545685E-04
+3.383980858242207E-04
-7.172380385366849E-03
-9.797087372270402E-05
0: -3.755832700578262E-06
+1.402455669601033E-05
-2.711282360607431E-05
+3.845837149531081E-04
-1.302851671759722E-06
+1.534266775060973E-04
+7.585713745658501E-07
+1.684047669914581E-07
-6.304271485182397E-07
-6.778791352307466E-06
+6.927138825406827E-09
+1.000000000000000E-+00
-7.129547814970496E-03
-2.801379912935586E-02
+2.367060941132691E-04
+1.515505106826301E-04
+2.481880476191763E-06
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SAMP_DEN_COEFF_6: +2.807995202840281E-06
SAMP_DEN_COEFF_7: +7.491362145804603E-06
SAMP _DEN_COEFF_8:-3.823133434583129E-05
SAMP_DEN_COEFF_9: +3.890379284083888E-05

SAMP_DEN_COEFF_7: +2.687900254731482E-05
SAMP_DEN_COEFF_8: -2.725183863556567E-05

SAMP_DEN_COEFF_9: +3.798438226324729E-04
SAMP_DEN_COEFF_10: -1.538265355482507E-06

SAMP DEN_COEFF_10;
SAMP DEN_COEFF_11:
SAMP_DEN_COEFF_12:
SAMP_DEN_COEFF_13;
SAMP DEN_COEFF_l14:
SAMP_DEN_COEFF_15:
SAMP_DEN_COEFF_16:
SAMP_DEN_COEFF_17:
SAMP_DEN_COEFF_18:
SAMP_DEN_COEFF_19:
SAMP_DEN_COEFF_20:

+8.176329568243937E-07
-1.417301916062796E-08
-1.405394190498776E-09
+3.101331878058564E-09
-9.012681160945601E-10
-2.532002959587352E-09
+3.855470377029826E-09
-3.325492335070448E-09
+1.274772201659852E-08
-2.941534098206556E-08
-1.777496362565859E-10

SAMP_DEN_COEFF_11:
SAMP_DEN_COEFF_12:
SAMP_DEN_COEFF_13;
SAMP_DEN_COEFF_14;
SAMP_DEN_COEFF_15:
SAMP_DEN_COEFF_16:
SAMP_DEN_COEFF_17:
SAMP_DEN_COEFF_18:
SAMP_DEN_COEFF_19:
SAMP_DEN_COEFFE_20;

-6.368298861627266E-08
-1.064719461959987E-09
+1.581381770001589E-08
+5.605868171708611E-10
+4,391419593884135E-09
+8.606607346726961E-09
-6.770126871700066E-09
+6.654465706602339E-09
-1.713598510377442E-07
+5.437359867098021E-10
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