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Malaysia's shoreline is dynamic and constantly changing. Increased coastal population, 
rapid urbanization, oil and gas production, tourism development, large rainfall throughout 
the year and various economic activities have created numerous environmental and 
ecological problems in Malaysia's coastal areas. Malaysia's severe coastal erosion caused 
by a variety of natural and human-made processes has been a subject of major national 
concern. As the boundary between land and water surfaces the shoreline is one of the 
most basic and common features represented on maps. It can, however, be difficult to 
map accurately, particularly if the coast is dynamic. Remote sensing has been used widely 
to map the shoreline and offers the potential to update maps frequently. The shoreline 
could be mapped accurately from fine spatial resolution satellite sensor imagery. Utilizing 
fine spatial resolution satellite sensor imagery a shoreline prediction with an RMSE of 
1.80 m was achieved. But this is an impractical approach for use over large areas. 
Alternative approaches using coarse spatial resolution satellite sensor imagery were 
examined. 

A pilot study was conducted to examine the potential of these methods on a linear 
stretch of shoreline. Using a simulated 20 m spatial resolution imagery, a conventional 
hard classification yielded a shoreline prediction with an RMSE of 6.48 m. To increase 
the positional accuracy, methods of fitting a shoreline boundary at a sub-pixel scale were 
examined. Initially a soft classification was applied to predict the class composition of 
image pixels which were located geographically using sub-pixel mapping techniques. 
Several sup-pixel mapping methods were applied; contouring, wavelet interpolation and 
two-point histogram. In the pilot study, the two-point histogram method obtained the 
most accurate prediction with an RMSE of 2.25 m followed by wavelet interpolation and 
contouring with an RMSE of 2.82 m and 3.20 m, respectively. This work was extended 
by analysing effects of shoreline orientation on the prediction. Using a 16 m spatial 
resolution imagery as a basis for analysis the accuracy of the shoreline prediction varied 
with orientation. For example, result from the two-point histogram method varied from 
the RMSE from 1.20 m to 2.08 depending on the shoreline orientation. 

To further increase the accuracy of the shoreline prediction, the method was 
revised by using localised training statistics in the derivation of the soft classification. 
Using the two-point histogram method, the use of the revised approach yielded shoreline 
prediction with RMSE ranging from 0.97 to 1.10 m. The result indicates that the accuracy 
of the shoreline prediction was positively related to the accuracy of the soft classification. 
This approach of shoreline mapping satisfied the requirement for mapping at a 1: 1,500 
scale. 
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Chapter 1: Introduction 

1 Introduction 

Coastal zones are the transition area between the terrestrial and marine environment. 

They provide various services and have become an important region of human 

activities. The large extent of human activities at these areas have caused various 

environmental problems. These problems include beach erosion, resource depletion, 

environmental degradation, and destruction of natural habitats (Cicin-Sain and Robert, 

1998; Adams and Minor, 2002; Byrnes et al, 2003; Bowman and Pranzini, 2003). 

Malaysia, being largely surrounded by sea, is not immune to these problems and to 

attempt to reduce them has made the management of coastal areas a priority. 

Coastal erosion has been a major concern and during 1984-1985, the Malaysian 

government launched the National Coastal Erosion Study to quantify the effect of 

coastal erosion to the Malaysian shoreline. According to this, out of 4,800 km of the 

shoreline in Malaysia about 1,400 km were subjected to critical erosion. The severity 

of shoreline erosion was defined by several factors including its geomorphological 

properties and land use (Stanley consultants Inc. et al., 1985). To help coastal 

managers make informed and responsible decisions, accurate shoreline maps are 

required. 

To monitor shoreline changes, the Malaysian government has allocated a large 

amount of funds to survey coastal areas using conventional methods such as aerial 

photography and ground surveys. Due to the large extent of the Malaysian shoreline 

and limited resources the shoreline has only been mapped every 5 years. Aerial 

photography and ground survey techniques are expensive and require trained staff and 
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expensive equipment (Bohnestiehl, 2001). The time required for the post-processing of 

aerial photographs and ground surveys are also long resulting in outdated maps when 

completed (Zuzek et al., 2003; McKenna et al., 2003). Due to the time requirement 

needed to produce these maps aerial photography and ground surveys techniques are 

inadequate to efficiently monitor dynamic areas such as coastal areas. Therefore, there 

is a need to develop new techniques of shoreline mapping that are capable of 

producing shoreline maps quickly and cost effectively. 

Remote sensing satellite sensor imagery has been used widely to monitor 

coastal areas and offer the potential of updating maps frequently (Clark, 1983; 

Balopoulos et al., 1986; Dekker et al., 1992; Elraey et al, 1995; Cendrero and Fischer, 

1997; LaValle and Lakhan, 2000; Lemmens, 2001; Stauble, 2003). Early research in 

the application of satellite sensor images for shoreline mapping relied on coarse spatial 

resolution satellite sensor images (Blodget and Taylor, 1990; Dwivedi, 1997; Frihy et 

al., 1998; Byrnes et al., 2003). Despite the coarse spatial resolution, satellite sensor 

imagery has assisted in understanding small cartographic scale coastal erosion in areas 

such as the Nile Delta (Blodget et al, 1991; El Asmar, 2002). To observe more local 

scale changes, finer spatial resolution satellite sensor imagery are required. The new 

generation of fine spatial resolution sensors such as 1 m spatial resolution IKONOS 

panchromatic imagery provide the capability to resolve small changes (Li et al., 2001). 

But to process fine spatial resolution satellite sensor imagery requires, among other 

things, computers with large hard disk capacity and processing power limiting the 

application of fine spatial resolution imagery to mapping small areas. Fine spatial 

resolution satellite sensor images are often inappropriate and expensive, particularly 

when mapping the shoreline of a whole country such as Malaysia. For practical 

reasons, therefore, mapping large stretches of shoreline can rarely make use of very 
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fine spatial resolution data. Approaches to map the small shoreline changes from 

coarse spatial resolution sensor data are required. 

Mapping from satellite sensor imagery is commonly achieved through hard 

classification methods, where pixels are classified on the basis of their spectral 

similarity to a certain pre-defined class. However, this technique is unsuitable when 

using coarse spatial resolution imagery to monitor small (< 5 m) shoreline changes 

because the hard allocation process assigns a pixel to only one class thus forcing the 

shoreline boundary to lie between pixels (Richards, 1993; Mather and Tso, 2001). In 

reality, the shoreline should be positioned within pixels as pixels may have a mixed 

class composition (Foody, 1998). 

Mixed pixels result when the area represented by a pixel contains two or more 

classes, which is common in coarse spatial resolution imagery. For these mixed pixels, 

soft-classifiers have been developed to allow a pixel to have multiple and partial class 

membership (Foody, 2002a). The conventional output of a soft classification is a set of 

fraction images which indicate the relative coverage of the class in the area represented 

by each pixel (Kanellopoulos et al, 1992; Foody and Cox, 1994). These approaches, 

however, do not provide any indication of where the class proportions are located 

spatially within a pixel. But knowing these fraction values opens the possibility of 

positioning the shoreline within a pixel or at a sub-pixel scale. Several methods have 

been proposed to address mapping at a sub-pixel scale (Atkinson, 1997; Gavin and 

Jennison, 1997; Atkinson a/., 1997; Tatem e? o/., 2001; Aplin and Atkinson, 2001; 

Tatem et al, 2003) 

This thesis introduces techniques for accurately mapping the shoreline from 

satellite sensor imagery. For short stretches of shoreline (< 10 km) a method of 

mapping the shoreline using fine spatial resolution satellite sensor imagery was 

3 
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evaluated. The method used topographic and bathymetric data generated from fine 

spatial resolution satellite sensor imagery to construct a 3-D terrain model of the 

coastal area. A shoreline was later delineated from this 3-D terrain by positioning the 

water level at a selected tide elevation by using the intersection of land and water as 

the shoreline position (Li et al, 2001; Ruggiero et al, 2003). But to map large areas, 

this method was impractical. Therefore this thesis evaluates techniques of mapping the 

shoreline from coarse spatial resolution satellite sensor image. Initially, a soft 

classification was applied to a coarse spatial resolution imagery producing an imagery 

of fraction values representing the thematic composition of image pixels. After 

assessing the accuracy of the soft classification, methods of mapping at a finer scale 

than the pixel's spatial resolution or sub-pixel/super-resolution mapping techniques 

were applied to the imagery to predict the actual shoreline position. In this way, the 

shoreline was mapped at a sub-pixel resolution. 

The ability to map the shoreline accurately from satellite sensor imagery 

enables the continual monitoring of the shoreline at regular intervals. With this 

capability it is hoped coastal managers would be able to ensure better management of 

coastal areas. 



Chapter 2: Background 

2 Background 

2.1 Introduction 

Malaysia, located in Southeast Asia consists of two geographical regions: Peninsular 

Malaysia, which is part of mainland Asia, and the states of Sabah and Sarawak on the 

island of Borneo. A map of Malaysia is shown in Figure 2.1. The eastern coast of 

Peninsular Malaysia and the western coast of Sabah and Sarawak are characterized by 

sandy beaches with clay-composed soils and mudflats. Mangrove forest are found 

along the west coast of Peninsular Malaysia and are generally associated with mudflats 

and clay swamps (Harakunarak, 2000). 
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2.1.1 Environmental impact of coastal zone development 

Increased coastal population, rapid urbanization, oil and gas production, tourism 

development, severe rainfalls throughout the year, and various economic activities 

have created numerous environmental and ecological problems in Malaysia's coastal 

areas. These problems include beach erosion, resource depletion, environmental 

degradation, and destruction of natural habitats (Cicin-Sain and Robert, 1998). 

Malaysia's severe coastal erosion caused by a variety of natural and human-made 

processes has been a subject of major national concern. During 1984-1985, the 

Malaysian government launched the National Coastal Erosion Study. According to this 

study completed in 1986, out of 4,800 km of shoreline in Malaysia about 1,400 km (47 

sites) was subjected to critical erosion. This has since increased to 2,327 km totalling 

74 sites in 2000 (Saw, 2000). An example is the Seberang Takir area illustrated by 

Figure 2.2. 

Figure 2.2: Image shows destruction to properties at a critical erosion site in Seberang 

Takir, Terengganu, Malaysia 
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2.1.2 Measures taken by Malaysian government to reduce coastal erosion. 

2.1.2.1 Short and long term measures. 

In accordance with the National Environmental policy, the Malaysian government has 

since 1987 adopted a two-pronged strategy (short-term and long-term) to control 

coastal erosion. The short-term strategy is construction-focused and reactive in nature. 

This involves measures that require structural solutions such as the construction of 

revetments, breakwaters, sea walls and beach nourishment to protect existing facilities 

and properties in coastal areas (Ministry of Agriculture, 1997). These measures are 

illustrated by Figure 2.2 and Figure 2.3. The long-term strategy involves monitoring 

and management of coastal development by taking into account its consequences 

towards coastal erosion. This was achieved through an integrated and coordinated 

development plan and strategy. 

T 

^ k ! g \ 

• \ V -

Figure 2.3; Among measures to address coastal erosion are to build a concrete seawall 

(Kuala Terengganu). 
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Figure 2.4; Rock sea walls were build to address coastal erosion in Kuala Terenganu. 

2.1.2.2 Establishment of government institutions 

Following the recommendations of the coastal erosion study, two important 

institutions related to coastal zone management were established in 1987: the Coastal 

Engineering Technical Centre (CETC) and the National Coastal Erosion Control 

Council (NCECC) (Cicin-Sain and Robert, 1998). The CETC is presently known as 

the Coastal Engineering Division (CED), under the Department of Irrigation and 

Drainage (DID) in the Ministry of Agriculture. The DID's CED is responsible for 

implementing coastal erosion control, engineering works for critical erosion areas, 

providing technical support to the NCECC, providing technical advisory services to 

other government agencies, and collecting coastal engineering data. 



2.1.2.3 Financial allocation for coastal programs 

Under the CED, an erosion control program was implemented in 1987 with a budget 

allocation of £ 1.78 million' to protect the 47 critical erosion sites. This allocation was 

further increased to £ 22.6 million ' in the Sixth Malaysian Plan (1991-1995) reflecting 

the growing concern of the Malaysian government towards coastal erosion. In the 

Seventh Malaysian Plan (1996-2000) a similar budget of £ 21.66 million ' was 

allocated. With the coastal zone being subjected to increasing development, DID as the 

implementing agency has put forth a budget allocation of £ 113.83 million ' for the 

Eighth Malaysian Plan (2001-2005). This amount would be used to continue previous 

programs, upgrade and restore coastal structures and implement new projects such as 

restoration and nourishment of tourist beaches (Saw, 2000). 

2.1.2.4 Regulatory measures 

Among the regulatory measures instituted by the Malaysian Government are the 

General Administrative Circular No. 5 of 1987 issued by the Prime Minister's 

Department, the Environmental Quality Act 1974, Environment Quality (Prescribed 

Activities) (Environmental Impact Assessment) Order 1987, and the Natural Resources 

and Environment Ordinance (Sarawak) 1949 (As Amended 1994). Circular No. 5 of 

1987 requires all proposed development projects in the coastal zone to be referred to 

the CED of the DID for comments. The Environmental Impact Assessment (EIA) 

Order 1987 sets out a list of development activities, which require mandatory 

submission of EIA reports for prior approval of the Department of Environment 

' Based on exchange rate of £ 1 pound sterling. = RM 5.29 Ringgit Malaysia (1®' July 2001) 



(DOE). The CED reviews and comments on EIA submissions for the DOE in relation 

to projects that affect the coastline (Ministry of Agriculture, 1997). 

2.2 Shoreline mapping 

Among the major tasks of the CED is the collection of coastal engineering data. These 

data include hydro-graphic profiles, wind information, wave dynamics and shoreline 

maps. Shoreline maps are important, as maps are a record of the coastal position at a 

certain moment of time. In 1998, DID established a memorandum of understanding 

with the Malaysian Centre for Remote Sensing (MACRES) to apply remote sensing 

and related technologies to its operation. One of the areas identified for this purpose 

was the production of satellite sensor based shoreline maps. 

2.2.1 Definition of shoreline 

The shoreline can be defined as the intersection of the land with the water surface at a 

selected tidal elevation level (Camfield and Morang, 1996; Parker, 2003). In Malaysia 

the tidal elevation chosen for shoreline maps is the mean high water springs (MHWS). 

MHWS is the average height of the high waters of the spring tides. Tide levels occur 

as a result of the moon's gravitational force based on a semi-monthly cycle (new or 

full moon). The spring range of tide is the average range occurring at the time of 

spring tides and is most conveniently computed from the harmonic constants (Ministry 

of Agriculture, 1997). 
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2.3 Conventional method of shoreline mapping 

2.3.1 Line survey 

Line survey is performed by taking regular measurements of the beach surface level 

relative to a reference datum along a line normal to the local shoreline. These 

measurements are repeated at regular intervals along the shoreline. Levelling and 

triangulation are later applied to obtain accurate values. Levelling is the operation of 

determining differences in elevation by measuring vertical distance directly on a 

graduated rod with the use of a levelling instrument such as transit or theodolite 

(Morton et al, 1993; Simons and Hollingham, 2001; Gibsob and Dorothy, 2003; 

Langley et al., 2003). To obtain accurate elevation, use of benchmarks is very 

important. Benchmarks are permanent objects of known elevation located where there 

is least likelihood of disturbance (Gibsob and Dorothy, 2003). By relating 

measurements to the benchmarks sub-metre positional accuracy are possible. 

To obtain horizontal accuracy, the triangulation method is applied. Basically, 

triangulation consists of the measurement of the angles of a series of triangles. The 

principle of triangulation is based on simple trigonometry. If the distance along one 

side of a triangle and the angles at each end of the side are accurately measured, the 

other two sides adjacent to the remaining angle can be computed. Normally, all of the 

angles of every triangle are measured to minimize error and to furnish data for use in 

computing the precision of the measurements (Ruggiero et al., 2003). Depending on 

the scale and accuracy requirement of the shoreline maps a large number of ground 

control points (GCPs) and line surveys may be needed. These line surveys are later 

interpolated to produce a 3-Dimensional model of the area. Shoreline position is then 

determined based on a selected tide elevation (Anon, 1984). Using conventional 

11 



Chapter 2: Background 

surveying instruments, it is possible to achieve a fine precision; however the overall 

usefulness depends on the spatial density requirement of point measurements (Simons 

and Hollingham, 2001). Despite the possibility of increased accuracy, line surveying is 

a labour intensive and time-consuming process. 

2.3.2 Photogrammetry 

The conventional method of generating shoreline maps from aerial photography is 

through photogrammetry (Cromwell et al., 1991; Shoshany and Degani, 1992; Cetin et 

al., 1999; Adams and Minor, 2002; Norcross et al, 2002; Friedman et al, 2002; 

Leatherman, 2003; Fletcher et al., 2003; Honeycutt and Krantz, 2003). 

Photogrammetry has been used in Malaysia since the 1950s and has provided shoreline 

maps up to 1: 10,000 scale. Aerial photographs are acquired with a 60% overlap along 

a strip, which allows coverage to be viewed in stereo. These stereo images allow 

precise photogrammetric measurements to be made in order to locate features 

accurately. In photogrammetry, acquisition date and time are crucial as water level and 

therefore, shoreline position can show great variation (Lane et al., 2000). Ideally 

photographs need to be collected during a selected tide elevation. By capturing a scene 

at two different vantage points an object with height will appear to have moved 

relative to the background. This effect is called stereoscopic parallax. This is a normal 

characteristic of aerial photography and is the basis of 3-D stereoscopic viewing. The 

difference in parallax in various objects of interest are analysed using a stereo plotter 

or digital photogrammetry application to remove photographic distortions and 

determine height. The shoreline is later extracted from the orthophoto produced. The 

planimetric accuracy obtained through orthophotos provides accurate shoreline maps. 

But the photogrammetic procedures involving data acquisition and processing are 

12 
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costly and time consuming (Anon, 1993; Jensen, 2000). Due to this restriction DID 

have been able to map Malaysia's shoreline only every five years. 

2.4 Potential of satellite remote sensing in coastal studies. 

With the launch of satellite remote sensing systems a wide range of applications in 

coastal studies have been realised and several advantages have been discovered. 

Among the major advantages of remote sensing are that it provides the ability to 

monitor large areas without physically being there. Remote and inaccessible areas can 

be monitored from space. Remote sensing through passive sensors also provide the 

ability to unobtrusively monitor the environment with better general availability and a 

large ground coverage (Chevrel et al, 1981; Jensen, 2000). 

Under controlled conditions remote sensing can provide biogeophysical data 

such as, location X, Y, elevation or depth Z, biomass, temperature, etc. However 

unlike conventional methods, remote sensing data are collected systematically over a 

large geographical area rather than a single point observation. This systematic data 

collection can remove the sampling bias introduced in some in situ investigations 

(Jensen, 2000). Digital satellite sensor data are also easily manipulated through digital 

image analysis procedures to extract relevant features (Richards, 1993; Mather and 

Tso, 2001). 

Remote sensing sensors cover a large spectral region that commonly ranges 

from the 0.3 \im to Im. Covering a large spectral region, more geographical 

information can be extracted. Figure 2.5 depicts the electromagnetic spectrum used by 

common remote sensing sensors. 

13 
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Figure 2.5; Spectrum range of common remote sensing systems (Jensen, 1996). 

Research in shoreline mapping has been conducted using a variety of sensors 

such as Landsat Thematic Mapper (TM), Landsat Multi Spectral scanner (MSS) and 

SPOT HRV (Blodget and Taylor, 1990; Dwivedi, 1997; Cetin et al, 1999; Dewidar 

and Frihy, 2003). Until recently the spatial resolution of these satellite sensors have 

been too coarse for shoreline mapping. But newer satellite sensors providing finer 

spatial resolution has increased remote sensing capability in shoreline mapping (Li, 

1998; Malthus and Mumby, 2003). Table 2.1 summarizes commonly used remote 

sensing satellites and their sensors. 

2.5 Electromagnetic interaction in remote sensing 

When energy is recorded by a passive remote sensing sensor it undergoes fundamental 

interaction with different mediums. These mediums include the atmosphere and 

Earth's surface (water or land). To properly interpret remote sensing data an 

understanding of each interaction undergone by electromagnetic energy need to be 

understood. 

As electromagnetic energy from the Sun propagates through the Earths 

atmosphere it encounters a difference in density when coming across air or water. 
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These differences will cause the electromagnetic energy to move at different speed and 

refracts. Refraction refers to the bending of light or energy when passing through one 

medium to the other. Another effect of atmosphere is the scattering of energy by 

atmospheric particles. Scattering differs from refraction as the direction of scattering is 

unpredictable. The effects of scattering depends on the relative size of wavelength of 

the incident energy, the diameter of gases, water vapor, water, and dust with which the 

energy interacts. Essentially there are three types of scattering: Raleigh, Mie and non-

selective scattering. 

Another interaction that occurs in the atmosphere is absorption. Absorption is 

the process by which energy is absorbed and converted into another form of energy. 

Absorption occurs at several range of wavelengths or frequency corresponding to 

various atmospheric gasses such as carbon dioxide, ozone, oxygen, water vapor and 

nitrous oxide. Absorption occurs when incident energy of the same frequency as the 

resonance frequency of an atom or molecule is absorbed, producing an excited state. If 

instead of reradiating a photon of the same wavelength, the energy is transformed into 

heat motion and is subsequently reradiated at a longer wavelength, absorption occurs 

(Jensen, 2000). When the energy from the Sun bounces of an object such as clouds 

and terrestrial Earth this process is called reflectance. When radiation is reflected from 

an object the incident radiation, the reflected radiation, and a vertical to a surface from 

the angle of incidence and reflection are measured all lie in the same plane. The angle 

of incidence and the angle of reflection are also approximately equal (Jensen 2001). 

Depending on the reflecting surface, reflectance occurs in many different ways and 

sometimes is diffused. 
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Table 2.1: Remote sensing satellites characteristics. 

Platform Owner Launch Date 
Revisit 
(days) 

Sensor 
Swath 
(km) 

Total FOR 
(km) 

Number of Bands / Pixel size (m) 

Bits/ pixel Platform Owner Launch Date 
Revisit 
(days) 

Sensor 
Swath 
(km) 

Total FOR 
(km) PAN 

( - 0 . 4 -
O.Spm) 

VIS 
( - 0.4 -
.7pm) 

NIR 
( - 0.7 -
l.Sjim) 

SWIR 
(~ 1.5 -
3(xm) 

MWIR 
(^ 3 -
8 pm) 

LWIR 
(~ 8 - 15nm) 

Bits/ pixel 

ERS-1 ESA Jul-91 3 ASTR/IRR 500 500 I /1000 1/1000 2 / 1 0 0 0 
ERS-2 ESA Apr-95 3 ASTR-2 500 500 2 / 1 0 0 0 1 /1000 1 /1000 1 /1000 2 / 1 0 0 0 

IKONOS USA Oct-99 1 .5 -3 13 13 1 / 1 3 / 4 1 / 4 11 

IRS-IB India Aug-91 24 LISS-1 148 148 3 / 7 3 1 / 7 3 IRS-IB India Aug-91 
24 LISS-2 131 131 3/36 .5 1/36.5 

IRS-IC India Dec-95 
24 LISS-3 142 142 2 /23 .5 1/23.5 1/70.5 7 

IRS-IC India Dec-95 24 PAN 70 800 1 /5 .8 7 IRS-IC India Dec-95 
5 WiFS 804 804 1 / 1 8 8 1 /188 7 

IRS-ID India Sep.97 
24 LISS-3 142 142 2 /23 .5 1 /23.5 1 /70.5 7 

IRS-ID India Sep.97 24 PAN 70 800 1 /5 .8 7 IRS-ID India Sep.97 
5 WiFS 804 804 1 / 1 8 8 1 /188 7 

IRS-P2 India Oct-94 24 LISS-2 131 131 3 /36 .5 1 /36.5 7 

IRS-P3 India Mar-96 MOS 200 200 8 / 5 2 0 9 / 5 2 0 1 /520 16 IRS-P3 India Mar-96 
5 WiFS 770 770 1 /188 1 /188 1 /188 7 

IRS-P4 India May-99 2 OCS 1420 1420 5 / 2 5 0 3 / 2 5 0 12 
JERS-1 Japan Feb-92 44 OPS 75 75 2 / 2 0 1 / 2 0 4 / 2 0 8 

Landsat 4 USA Jul-82 
16 MSS 185 185 2 / 7 8 2 / 7 8 8 Landsat 4 USA Jul-82 
16 TM 185 185 3 / 3 0 1 / 3 0 2 / 3 0 1 / 1 2 0 8 

Landsat 5 USA Mar-84 
16 MSS 185 185 2 / 7 8 2 / 7 8 8 Landsat 5 USA Mar-84 
16 TM 185 185 3 / 3 0 1 / 3 0 2 / 3 0 1 / 1 2 0 8 

Landsat 7 USA Apr-99 16 ETM+ 185 185 1 / 1 5 3 / 3 0 1 / 3 0 2 / 3 0 1 / 6 0 8 

SPOT-2 France Jan-90 26 HRV 60 850 2 / 2 0 1 / 2 0 8 SPOT-2 France Jan-90 
26 Pan 60 850 1 / 1 0 8 

SPOT-4 France Mar-98 

26 HRVIR 60 850 2 / 2 0 1 / 2 0 1 / 2 0 8 

SPOT-4 France Mar-98 26 Pan 60 850 1 / 1 0 8 SPOT-4 France Mar-98 

I Vegetation 2,200 2,200 1 /1150 3 /1150 I / 1 1 5 0 1 /1150 10 
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2.5.1 Water penetration of electromagnetic energy. 

When conducting remote sensing studies on water bodies one of the most important 

characteristics which needs to be determined is the wavelength with the least amount 

of absorption and scattering of light in the water column. Bakuta et al, (1995) 

determined that these characteristics are found in the blue wavelength region from 

approximately 400-400nm, with the minimum located at approximately 460-480nm. 

Table 2.2 shows the optical properties of pure water. 

Table 2.2: Optical Properties of Pure water (derived from various sources from Bukata 

et. a/., 1995) 

Wavelength (nm) Absorption (m"') Scattering (m"') Total Attenuation (m"') 
250 0.19 0.032 0.220 
300 0.040 0.015 0.0550 
320 0.020 0.012 0.320 
350 0.012 0.0082 0.0202 
400 0.006 0.0048 0.0108 
420 0.005 0.0040 0.0090 
440 0.004 0.0032 0.0072 
460 0.002 0.0027 0.0047 
480 0.003 0.0022 0.0052 
500 0.006 0.0019 0.0079 
520 0.014 0.0016 0.0156 
540 0.029 0.0014 0.0304 
560 0.039 0.0012 0.0402 
580 0.074 0.0011 0.0751 
600 0.200 0.00093 0.2009 
620 0.240 0.0082 0.2408 
640 0.270 0.00072 0.2707 
660 0.310 0.0064 0.3106 
680 0.380 0.00056 0.3806 
700 0.600 0.0005 0.6005 
740 2.250 0.0004 2.2504 
760 2.560 0.00035 2.5604 
800 2.020 0.00029 2.0203 
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Figure 2.6: Components of radiance recorded by remote sensing over water (Source: 

Bukata et. al, 1995) 

For the best penetration, water bodies need to be free from organic and 

inorganic substance as these would cause scattering and absorption thus obscuring 

bottom topography. When conducting bathymetry studies using remote sensing data it 

is important to understand the interaction encountered by the energy or radiance 

recorded by the sensor. Figure 2.6 depicts the interaction between down-welling light 

with the atmosphere and aquatic media. Down welling solar and sky irradiance are 

labelled .Esun and ^ sky respectively. Radiance recorded by a remote sensing sensor can 

compromise of four main components (Bukata et al, 1995): 

La: radiance that never reaches the air-water interface thus returning to 

the atmosphere. 

Ls: radiance that reaches but does not penetrate the air-water interface. 

It, therefore, represents a reflection from the water surface. 
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Ly: radiance that penetrates the air-water interface and re-emerges 

from the water without reaching the bottom topography. It, therefore, 

represents a return from the volume of water. 

Lb: radiance that penetrates the air-water interface and re-emerges 

from the water reaching the bottom topography. It, therefore, represents 

a return from the bed of water body. 

These interactions need to be carefully studied in order to extract bathymetry 

data. To obtain bathymetry it is important to be able to extract Lb from all other 

radiance component. It has been determined that the total radiance observed by the 

sensor can be represented as the sum of the four radiance above: 

L Lq L^ Ly; Lb 2 I 

Thus the basic starting point for extracting bathymetry information can be 

achieved by obtaining Lb. This can be represented by: -

Lb — L (La + Xi + Ly) 
2-2 

2.5.2 Obtaining elevation information. 

The ability to measure height (elevation) using remote sensing sensor have evolve 

from the use of stereo aerial photographs. Similar concepts of photogrammetry have 

been applied to remote sensing imagery for this purpose. To understand the process of 

obtaining elevation from stereo satellite sensor images it is important to understand the 

fundamental principle of stereoscopy. Stereoscopy is the science of perceiving depth 

using two eyes (or view point). When both eyes are focused on a certain point, the 
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optical axes of the eye converge on that point forming a parallactic angle (0) 

(Baltsavias, 1999). This angle will increase when the object is nearer and vice versa. 

By associating the responding parallactic angle with distance the depth of different 

objects could be differentiated. If both objects were exactly the same distance away, 

then the parallactic angle will be the same thus appear to be the same distance away. 

Figure 2.7 illustrates the concept of parallactic angles and its association with the 

perception of depth in various objects. When an object A is viewed from two points L 

and R it will produce a parallactic angle Oa, similarly angle Oy will be produced when 

an object B is viewed. By associating these angles with a known distance Da, distance 

Db could be determined. 

Eye Base 
M 1>-

inicmupitiary dsstancc 

Figure 2.7: Parralactic angles and its association with the perception of depth in 

various objects (Jensen, 1996) 
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By applying the same concept to remote sensing imagery elevation of different 

objects are distinguishable. Stereo parallax is introduced to remotely sensed images 

when the same object is viewed from two different vantage points along a flight line. 

These overlapping satellite sensor images can be analysed to produce digital elevation 

models (Brokelbank and Tam, 1991; Giles and Franklin, 1996; Baldwin et al, 1998; 

Vassilopoulou et al., 2002). To extract elevation information from a satellite 

stereoscopic pair, a mathematical relationship needs to be developed to describe the 

geometric relationship between stereo satellite sensor images to object spaces. Other 

factors have to also be considered such as type of sensor and sensor motion during 

acquisition. 

2.6 Remote sensing application in shoreline monitoring and 

bathymetry 

Satellite sensors have been used for coastal studies in a variety of applications. A 

summary of satellite systems currently available are displayed in Table 2.1. Among the 

major satellite sensor used in coastal application are the Landsat MSS, Landsat TM 

and SPOT HRV. The Landsat series of satellites have carried a variety of sensors, 

among them are the MSS and TM. The MSS and TM sensors provides user with 79 

m and 30 m spatial resolution satellite images respectively. 

By pioneering the linear array push-broom technology the Centre National 

d'Etudes Spatiales (CNES) were able to provide satellite sensor images at 10 metres 

(PAN) and 20m (Multi spectral) for the SPOT HRV sensor. This provides increased 

spatial resolution over the Landsat series. The Linear Array Push-broom system 

acquires imagery with no mechanical scanning. Breaking tradition (in relation to 

Landsat sensors) the push-broom system allows accurate detection of spectral radiant 
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flux from the Earth. At 10 m and 20 m spatial resolution, SPOT HRV imagery 

provides increased capability in resolving objects than Landsat TM. since than, newer 

satellite sensors such as IRS-ID panchromatic, Landsat ETM+ and IKONOS have 

been operational providing spatial resolution up to 5.8 m, 15 m and 1 m respectively. 

On December 6* 2000, Space Imaging was awarded a license by the National 

Aeronautical and Space Administration (NASA) to operate a commercial remote 

sensing satellite capable of providing 0.5 m (panchromatic) and 2 m (multi-spectral) 

spatial resolution imagery. This new satellite is schedule for launch in 2004 (Space 

Imaging, 2001). 

This review will examine how previous researchers have approached shoreline 

mapping and bathymetry from remotely sensed data. 

2.6.1 Application of remote sensing in shoreline mapping 

Researchers have used remotely sensed imagery to monitor the shoreline as an 

alternative to aerial photography and ground surveying (Bhat and Subrahmanya, 1993; 

Fanos, 1995; Chen and Rau, 1998; Pajak and Leatherman, 2002; Byrnes et al, 2003; 

Shaghude et al., 2003; Frihy and Dewidar, 2003; Frihy et al, 2003; Dewidar and 

Frihy, 2003). Early research in the application of satellite sensor images for shoreline 

mapping relied on coarse spatial resolution satellite sensor images. The Landsat series 

of satellites have supplied satellite sensor imagery continuously since 1972 (Gibson, 

2000). Landsat 1 through 3 were equipped with the MSS sensor providing a spatial 

resolution of 79 m. EL-Raey (1999) evaluated Landsat MSS data from 1978, 1983, 

1990 to detect erosion and accretion patterns along Damietta-Port Said shoreline, 

Egypt. Due to the coarse spatial resolution of Landsat MSS it could only be applied for 
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regional and small scale mapping exercises. Precise aerial photogrammetry were still 

required in areas where critical measurements were need (Blodget and Taylor, 1990). 

In 1982 the Earth Observation Satellite Company (EOSAT) launched Landsat 4, its 

first satellite carrying the TM sensor. Landsat TM collects multi-spectral imagery that 

had finer spatial, temporal, spectral, and radiometric resolution than Landsat MSS 

(Jensen, 2000). With these capabilities the Landsat TM sensor was capable of deriving 

various geomorphologic features and efficiently monitor human activities such as land 

reclamation, building and aquaculture (Blodget et al, 1991). 

Initial studies in shoreline mapping have focused on methods to differentiate 

between land and water bodies. Basic remote sensing image analysis was applied to 

satellite sensor imagery for this purpose. Image processing systems are capable of 

analysing digital multi-band satellite sensor imagery in various ways to extract 

relevant information (Richards, 1993). Among methods applied to obtain coastal 

information are image differencing, image ratioing, principal component analysis 

(PCA), and change vector analysis (CVA) (Ceballos and Bottino, 1997; El Raey et al, 

1999). Image differencing is the process of subtracting values between 2 co-registered 

images of different dates. Its primary usage is for change detection. Another widely 

used technique is image ratioing. Image ratioing is an enhancement technique 

accomplished by dividing digital number (DN) values of one spectral band by 

corresponding DN of another band. One reason for this is to resolve differences in 

scene illumination due to cloud or topographic shadow. Ratio images also bring out 

spectral variation in different target materials. 

Spectrally adjacent bands in a multi-spectral remotely sensed image are often 

highly correlated. The correlation among the bands of a multi-spectral image implies 

that there is redundancy in the data. The PCA technique aims to remove this 
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redundancy. PCA is related to another statistical technique called factor analysis and 

can be used to transform a set of image bands such that the new bands (called principal 

components) are uncorrected with one another and are ordered in terms of the amount 

of image variation they explain. The components are thus a statistical abstraction of the 

variability inherent in the original band set. 

False colour composite of various bands provide more detail and information in 

comparison with single band imagery. Frihy et al. 1998 used bands 4, 5, 3 of the 

Landsat TM to represent red, green, blue in a false colour composite to study coastal 

changes. This composition provided details and accurate visualization of land use or 

land cover (Frihy et al., 1998). Satellite sensor images either colour composition or a 

single band can also be classified to separate different features and reduce redundancy 

(Richards, 1993). Frihy et al., (1998) utilised unsupervised classification and applied 

clustering and minimum distance rule to Landsat TM and Landsat MSS images to 

detect shoreline. 

Other approaches in satellite sensor imagery analysis have also been explored 

to increase positional accuracy. Among the method includes using sub-pixel methods 

to analyse coarse spatial resolution satellite sensor imagery, which includes 

interpolation and sub-pixel classification techniques (Mather and Tso, 2001). Several 

researchers have addressed this sub-pixel classification problem and developed 

methods to estimate class proportions within a pixel (Kanellopoulos et al., 1992; 

Foody and Cox, 1994; Zhang and Foody, 1998). These approaches, however, do not 

provide any indication of where the class proportions are located within a pixel. To 

address this issue several approaches have been developed. Foody (1998) evaluated a 

fuzzy sharpening approach to predict boundaries with sub-pixel geometric accuracy. 

Atkinson (1997) proposed a sub-pixel mapping approach, which divides pixels into 
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sub-pixels and allocates the different class proportion into these sub-pixels. Gavin and 

Jennison (1997) adopted a Bayesian approach and incorporated prior knowledge about 

a reference image in a stochastic model that attaches higher probability to images with 

shorter total edge length. Mertens et. al. (2003) applied genetic algorithms combined 

with the assumption of spatial dependences to assign a location for each sub-pixel. 

Aplin and Atkinson (2001) segmented pixels using vector boundaries to achieve a sub-

pixel land cover mapping, while Tatem et al. (2001; 2003) introduced a Hopfield 

neural network optimisation algorithm to obtain a sharpened image. 

Methods of image interpolation includes kriging and Thiessen interpolation 

(Doucette and Beard, 2000). Another method of image interpolation is the usage of 

wavelet transforms, wavelets are mathematical functions that cut up data into different 

frequency components and then study each component with a resolution matched to its 

scale (Donoho, 1992). 

In mapping the shoreline most early researchers took a 2 dimensional approach 

concentrating only in differences in position (X, Y). Elevation and variations in sea 

water height were neglected (Frihy and Dewidar 1998, El Raey, El Din et al., 1999). 

These approaches resulted in positional error in the shoreline up to 10 m. But as spatial 

resolution of Landsat MSS and TM sensors were 79 m and 30 m respectively, the 

positional error of the shoreline due to variation to sea water height were acceptable. 

To predict the shoreline position the spectral characteristics of coastal areas were 

analysed statistically and used to train classification algorithm. This algorithm was 

then used to analyse the whole image and classify land and water bodies. 
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2.6.2 Three-dimensional approach to shoreline mapping. 

2.6.2.1 Satellite stereo images for deriving DEM of coastal areas 

Tidal variation plays a significant role in estimating shoreline change over a long 

period of time as tidal elevation between different acquisition dates are rarely the same 

(Chen and Rau, 1998). As it is unlikely any satellite sensor data acquisition could be 

programmed to place during a specific tidal elevation, shoreline derived from these 

images need to be corrected. To do so a 3-D model of the inter-tidal zone is necessary. 

Photogrammetry has been the main method of producing DEM (Hancock and 

Willgoose, 2001; Judge and Overton, 2001). The evolution of photogrammetry can be 

categorized into 4 main development cycles that are plane table photogrammetry 

(1850-1900), analogue photogrammetry (1900-1960), analytical photogrammetry 

(1960-present) and softcopy photogrammetry (late 1980's- present) (Bohnestiehl, 

2001). With the availability of digital sensor data input from airborne and satellite 

platforms, softcopy photogrammetry has become a significant process for generating 

DEM. The availability of satellite sensors with stereo capabilities such as SPOT HRV, 

RADARSAT SAR and IKONOS sensor has been a major step in mapping science as it 

is possible to map large areas with very few images. On the other hand, 

photogrammetry requires a large number of photographs, which need to be processed 

individually. 

With its stereo imaging capability and 10 m (PAN) spatial resolution, SPOT 

HRV provides the ability to incorporate elevation and tidal variation in modelling or 

detecting shoreline position (Chen and Rau, 1998). At this 10 m spatial resolution tidal 

elevation effects are more prominent thus changes in tidal height during acquisition 

can be modelled to increase positional accuracy of the shoreline position. 
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The SPOT HRV sensors are capable of acquiring cross-track stereoscopic pair 

images on successive days. Around the equator the ratio between the observation base 

(distance between the two satellite positions) and satellite height is approximate 0.75. 

This base to height ratio has been found to be sufficient for topographic mapping up to 

1: 50,000 scale (Jensen, 2000). When detecting shoreline, a DEM of the area has to be 

established. The DEM, tidal height information and shoreline position during satellite 

sensor image acquisition will be used to correct the shoreline to a selected tidal 

elevation. Ideally DEM of the inter-tidal zone need to be established from SPOT HRV 

images taken during the lowest possible tide elevation. Only then can the shoreline 

position can be corrected to other tidal elevation {i.e Mean Low water Spring (MLWS) 

and Mean high water spring (MHWS)). By acquiring and processing satellite images 

from several dates, changes between each shoreline position can be accurately 

determine as they have been normalise to a common tidal elevation (Chen and Rau, 

1998). 

2,6,2,2 Water line method for creating DEM of coastal areas 

Another approach to establish a DEM of the tidal zone is the water line method. The 

water!ine is defined as the position of land water boundary at the time of satellite data 

acquisition also known as an instantaneous shoreline. The method regards the sea as an 

altimeter, the height of which is determined using a hydrodynamic tidal model (Lohani 

and Mason, 1999). In this method satellite sensor images are acquired during different 

stages of tide elevation and processed to delineate the position of the shoreline. The 

geometrically corrected shorelines would then be assigned elevation values determined 

by a hydrodynamic model. A model commonly used is the simplified harmonic 

method (SHM). These shorelines were then interpolated to produce a DEM of the area. 

An advantage of this method over generation of DEM using stereoscopic satellite 
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sensor imagery is that it is sensor independent. Chen (1998) applied this method to 

SPOT HRV images to study shoreline change for tideland areas in Taiwan. Similar 

research was conducted in Sumatra utilizing SPOT HRV and ERS sensor data (Leow 

et al, 2000). This method has also been used with Airborne Thematic Mapper data 

(Lohani and Mason, 1999). One major disadvantage of this method is it requires 

several images at different tide elevation and this is not easily available. Acquisition of 

the satellite sensor images also needs to be temporally close to ensure elevation of tidal 

areas has not changed 

2.6.3 Application of remote sensing in bathymetry studies 

Several methods can be used to derive data of bathymetry. These include conventional 

sounding techniques and application of remotely sensed data. 

2.6.3.1 Sounding techniques for obtaining bathymetry 

Sounding techniques can generally be divided into 4 categories, which are single beam 

echo sounding, Multi-beam forming sonar, multi-beam interferometric sonar and side 

scan sonar (Atanu and Saxena, 1999). Deriving bathymetry data for shallow water 

areas by conventional shipboard sounding techniques can be slow, hazardous and 

expensive especially for large areas (Lyzenga, 1985). As a result development in the 

application of remote sensing techniques to solve this problem has been explored. 

2.6.3.2 Application of remote sensing for bathymetry 

The use of passive remote sensing data was first demonstrated in the late 1960. The 

blue region of the electromagnetic spectrum (0.45-0.52 p.m) provides minimum 

absorption thus maximum penetration of water. In this region water is penetrable up to 

30 m depending on the water quality (Bierwirth et al., 1993; Jensen, 2000). 
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Essentially the water depth calculation technique depends on finding a relationship 

between water depth and the reflected radiance of a wavelength band. Bathymetry can 

be obtained indirectly from its relationship to the electromagnetic radiation reflected 

from the water medium. The interaction between downwelling light with the 

atmosphere and aquatic media has been explained previously. 

2.6.3.3 Difficulties in using remotely sensed data in water research. 

When measuring detailed information from remotely sensed measurements in water 

there are three main problems. First the atmospheric path between the object and the 

sensor affects the characteristics of the radiation signal received by the sensor. The 

amount of energy transmitted into the sea versus that reflected off the surface also 

depends on the sea surface state, wind speed and Sun angle, which create inconsistent 

light interactions at the air-sea interface. Shallow water substrates also create difficulty 

in separating the water column signal from that of the substrate. These problems are 

addressed to some degree using a simple radiative transfer model for optically shallow 

water in the general form (Philpot, 1989): 

+ Iw' 2-3 

Where : 

Lci = radiance observed at remote detector (mwcm-^ )Li-' sr-') 

Lb = radiance term which is sensitive to bottom reflectance (mwcm-^ jj.-' sr-') 

g = effective attenuation coefficient of water (m"^) 

z = Depth of water column (m) 

= remotely observed radiance over optically deep water (mwcm-^ p-' sr-') 
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Under ideal conditions both depth and effective attenuation coefficient of water 

over several bottom types can be obtained from passive satellite sensor imagery 

(Philpot, 1989). These conditions apply that the water quality and atmospheric 

conditions are similar throughout the imagery. Thus, the simplest method of extracting 

water depth information from multi-spectral sensor data is to invert equation 2-3 for a 

single wavelength (Lyzenga, 1978). As these conditions are not easily met, researchers 

have expanded equation 2-3 to take the atmospheric and water conditions into account. 

An expansion to the first method assumes that a pair of wavelength bands can be found 

such that the ratio of the bottom reflectance in the two bands is the same in the 

imagery. If these assumptions are correct an equation can be derived so that the depths 

calculated are not affected by changes in bottom composition (Lyzenga, 1978). Several 

other methods have also been proposed to deal with less than ideal conditions such as 

changes in water type and variables atmospheric conditions. These methods are based 

on three case scenarios that are 1) variable depth, all other parameters constant 2) 

Variable depth, and bottom reflectance, 3) Variable depth, bottom type and water type 

(Philpot, 1989). 

2.6.4 Modelling Shoreline data and GIS analysis 

Geographical Information Systems (GIS) have become an important tool in resource 

management. Factors affecting shoreline position such as wave dynamics, 

geomorphology, littoral transport and sand supply can be incorporated into a GIS for 

analysis. Incorporating historical shoreline maps, recession rate data and time series 

data into a GIS, shoreline position and its movement can be predicted (Li et al, 2001). 

To predict shoreline movement and beach loss as a function of time several approaches 
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have been explored. Among the most commonly used is the End Point Rate (EPR). It 

is an omphatioally technique where no knowledge of sand transport system is required. 

Instead, the cumulative effect of all underlying process is assumed to be captured in 

the position history (Li et al, 2001). Prediction of erosion hazard areas can also be 

preformed using predicted shoreline model and relevant GIS layers. The integration of 

modelling capability in GIS has been determined to be an integral part of shoreline 

modelling. 

2.7 Limitations of remote sensing 

Although many researchers have explored the potential of remote sensing in coastal 

application numerous limitations still exist. One of the primary limitations of remote 

sensing is the spatial resolution (Malthus and Mumby, 2003). The spatial resolutions of 

SPOT HRV and Landsat TM have not been sufficient for shoreline mapping. Currently 

the finest spatial resolution available commercially is 1 m (IKONOS satellite sensor), 

this would increase the capability of remote sensing to match the use of aerial 

photograph for shoreline mapping (Clark et al., 1997; Mumby and Edwards, 2002; 

Malthus and Mumby, 2003). 

Another limitation is the availability of data. Passive remote sensing sensors 

are very susceptible to atmospheric conditions such as cloud cover, haze and rain. As 

Landsat and SPOT satellites only have a revisit time of 16 and 26 days respectively, 

selection of cloud free days for data acquisition would be limited. Due to problems 

with these atmospheric conditions several researchers have also explored the use of 

radar or active sensors in shoreline mapping. But success has been limited and results 

were not as good as using passive sensors (Lyzenga and Tanis , 1981). 
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Radiometric resolution determines the amount of tonal variation a sensor can 

capture. Most satellite sensors collect data in 8 bit providing a total of 256 tonal 

variations. Although this radiometric resolution might be sufficient in medium scale 

application, a finer radiometric resolution is required in order to discriminate between 

features in small-scale mapping (small areas). With finer radiometric resolution 

continuous tone satellite sensor images are produced making it easier to detect 

different types of features. 

2.8 Potential of IKONOS for shoreline mapping 

2.8.1 IKONOS sensor system 

Space Imaging Corporation launched the IKONOS satellite from Vandenburg Air 

Force Base, California, USA on the 24th September 1999 (Space Imaging, 1999). 

IKONOS was built with an agile, body-scanning configuration allowing for short 

revisit times and flexibility in data collection. A rigid satellite platform was built to 

reduce the vibration of platform and to contribute to the integrity of the line-of-sight 

determination (Lillesand and Kiefer, 2000). The system is based on a new optical 

system: a push-broom camera with a 10 m focal length, which has been folded into 

two through the use of a mirror. The IKONOS push broom sensor includes a 

panchromatic band (450-900 nm) at a nominal spatial resolution of 1 m, and a four-

band multi-spectral with a spatial resolution of 4 m (Jensen, 2000). Image data are 

quantised to a radiometric resolution of 11-bits/pixel (0-2,047), thus providing an 

increment by a factor of 8 in the range of grey levels to represent target brightness, 

when compared to 8- bits/pixel systems (Space Imaging, 1999). This enhanced 

radiometric resolution can increase target discrimination and classification ability. 
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particularly for low light conditions that are typical of underwater environments (Jill, 

2001). 

The entire satellite is able to pivot in orbit to collect cross-track imagery 

covering a distance of 725 km at either side of the ground track. Due to the satellite's 

680 km altitude, imagery will maintain at least a 1 m ground sample distance (GSD) 

for 350 km to either side of nadir, or a 700 km swath of at least one-metre imagery 

(Space Imaging, 1999). The system is designed to carry three GPS antennas and three 

digital star trackers to maintain precisely camera station's position and attitude. The 

satellite is rotating around the Earth in a Sun synchronous polar orbit, which allows it 

to traverse the planet every 98 minutes, crossing the equator at the same time (10.30 

am) in every orbit (Zhou and Li, 2000). 

2.8.2 Geometric accuracy of IKONOS sensor imagery 

2.8.2.1 Mapping standards 

Geometric accuracy is very importance if satellite sensor imagery is to be used to 

produce topographic map for shoreline monitoring. According to the United States 

National Map Accuracy Standards, horizontal accuracy for maps on publication scales 

larger than 1: 20,000, not more than 10 percent of the points tested shall be in error by 

more than 1/30 inch (0.8466667 cm), measured on the publication scale; for maps on 

publication scales of 1: 20,000 or smaller, 1/50 inch (0.0508 cm) (U.S.Geological 

Survey, 1999). These limits of accuracy shall apply to positions of well-defined points 

only for other points any error is possible. Well-defined points are those that are easily 

visible or recoverable on the ground (U.S.Geological Survey, 1999). 

33 



Chapter 2: Background 

2.8.2.2 Application of satellite imagery for mapping 

Aerial photography is still the primary technique for large-scale mapping. But in spite 

of its advantages, the need of special flight planning and scheduling limits its 

application (Mikhail, 1999; Jensen, 2000). Due to these limitations several countries 

have used satellite sensor imagery for national mapping projects. SPOT HRV images 

have been used to produce national mapping products in Saudi Arabia, France, 

Ethiopia and Yemen. Despite its advantage over aerial photography, SPOT HRV 

imagery can only meet the requirement for small scale mapping at 1:50,000 and 1; 

100,000 scale (Al-Rousan et al, 1997). It is expected that fine spatial resolution 

satellite sensors such as IKONOS have the potential to acquire geographic information 

at a medium to large scale (1:24,000 and 1:10,000) (Li, 1998). 

2.8.2.3 IKONOS stereo mapping capabilities 

The CCD linear array of IKONOS is capable of imaging the same ground profile at 

three angles, which are fore, nadir and aft. This is illustrated in Figure 2.8. In attaining 

stereo pairs three types of combination can be obtained. They are fore-nadir (F-N), 

nadir-aft (N-A) and fore-aft (F-A). The base to ratio is a critical factor in 3-D mapping. 

For 1: 24,000 scale topographic maps aerial photography with a base-height ratio of 

0.63 have been used. This base-height ratio could be obtained through IKONOS by 

forming a stereo pair using F-A or N-A combination (Li, 1998). At this scale DEM 

accuracy need to be less than 15 m and this is also attainable from IKONOS even 

without GCPs. Although GCPs are not required, it is recommended that GCPs be used 

to increase accuracy. 
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Figure 2.8: Fore-, Nadir-, and Aft-looking CCD liner array and their look angle (Li, 

1998) 

Li et al, (2000) evaluated the attainable accuracy of GCPs derived from 

integrated global positioning system (GPS) and fine-resolution stereo IKONOS data. 

Simulated IKONOS imagery was generated from aerial photograph based on the 

principle of "projection" and "back-projection". Projection is the processing of the data 

from aerial images to the surface of the DEM, and back-projection is the same 

processing from the surface of the DEM to a satellite sensor image at a fore, nadir, or 

aft-look. Using these simulated satellite sensor images several accuracy test such as 

geometric accuracy versus the number and distribution of GCP, accuracy versus image 

measurement errors of GCP and checkpoints were conducted. It was concluded that 

accuracy can reach 3 m horizontally and 2 m in height with 4 GCP. Therefore, they 

suggested that only 4 GCP be used to maintain accuracy and minimize cost. An 

increased number of GCP but poorly distributed would be less beneficial than a few 

GCP well spread. They also determined that the 1 m spatial resolution satellite sensor 

imagery would meet mapping accuracy for medium scale maps from 1 : 24,000 to 1 : 

10,000 scales. So, the fine-resolution imagery has potential for shoreline mapping and 
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erosion monitoring. This thesis would examine the accuracy attainable by fine spatial 

resolution satellite sensor imagery to monitor the shoreline. 

2.8.3 Application of IKONOS sensor imagery for shoreline mapping 

The spatial resolution of 30 m and 10 m of Landsat TM sensor and SPOT HRV sensor 

respectively are insufficient for 1; 24,000 and 1: 10,000 scale mapping using standard 

method of image processing. This has been the primary impediment for the application 

of remote sensing in shoreline mapping. With the availability of fine spatial resolution 

satellite sensors researchers have achieved increased capabilities for surface and 

subsurface feature delineation. The IKONOS sensor with a spatial resolution of 1 m 

provides a feasible alternative to aerial photogrammetry. IKONOS multi spectral is 

also capable of extracting a range of geographical features as its sensors spectral range 

is larger in comparison to aerial photography. 

A shoreline is the intersection between the DEM and near-shore bathymetry. 

This intersection changes as the water surfaces increase and decrease due to tide 

elevation. Therefore, a tide-coordinated shoreline should be based on a certain water 

datum. The DID produces shoreline map based on the MHWS (Ministry of 

Agriculture, 1997; Li et al, 1998). Because satellites have a prescribed orbit, it is not 

possible to image an area at the required water level (MHWS). To correct the captured 

shoreline to a MHWS shoreline, an accurate elevation model of the inter-tidal zone 

need to be constructed. Inter-tidal zone can be defined as the coastal transition region 

between the permanently exposed land surface on one side and the submerged region 

on the other side (Leow et al., 2000). The elevation model of the Inter-tidal zone 

could be constructed by combining the DEM and near-shore bathymetry. 
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2,8.3.1 Deriving DEM from IKONOS sensor imagery. 

SPOT HRV has been the most widely used stereo sensor. Using SPOT HRV imagery 

DEM and ortho-images can be produced with accuracy up to 10m horizontally and 

vertically (Krupnik, 2000). But even at this spatial resolution its utilization in coastal 

mapping is limited (Cracknel!, 1999). 

The IKONOS sensor and SPOT HRV are similar as both are push-broom 

sensors. In the case of IKONOS and most other satellite sensors, the perspective centre 

is constantly changing, as the satellite is moving. This is in contrast to vertical aerial 

photography as the perspective centre is constant in each photograph (Anon, 1993). A 

number of researchers have examined methods of determining elevation from stereo 

SPOT HRV imagery. Early research utilized SPOT HRV imagery and analytical 

plotters in conjunction with film transparency and operator controlled measurements 

(Al-Rousan et al, 1997). Recently remote sensing image processing systems have 

incorporated programs for digital or softcopy photogrammetry. To extract elevation 

information from satellite sensor stereoscopic pairs, mathematical models need to be 

developed to describe the geometric relationship between stereo satellite sensor images 

to object spaces through the perspective centre of the imaging sensor. Beside this 

relationship it is also necessary to take into account the dynamic motion of the satellite 

and sensor over the time period of image acquisition. Several researchers have 

developed models to explain this relationship including Brokelbank and Tam (1991), 

Al-Rousan er a/., (1997), Kim (2000) and Kim a/., (2001). 

IKONOS has a very complex sensor model. To generate ortho-rectified images 

from IKONOS imagery Space Imaging has developed a Rational Polynomial Camera 

(RPC) model, which is a header file that expresses the camera model as a ratio of two 

cubic polynomials. It is derived from the physical camera model during on orbit 
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calibration of the sensor (Bohnestiehl, 2001). Space Imaging has kept this information 

secretive and only releases them to selected customers. In lieu of the RFC model three 

methods can be used to geo-rectify these images, which are the simple polynomial 

method, rational polynomial method and the rigorous (or parametric) model method 

(Toutin, 2004). The simple polynomial method only corrects planimetric (X and Y) 

distortion of GCPs and does not take elevation into consideration. The rational 

polynomial method is similar to the simple polynomial method but it also takes into 

account the ratio of polynomial transformation and elevation of GCPs. This method is 

useful for areas with gentle terrain. As both method do not require satellite and sensor 

information they require many GCPs and distortion between GCPs are not eliminated 

(Toutin and Cheng, 2000). Rigorous model reflects the physical reality of the complete 

viewing geometry and correct distortion due to sensor. Earth and deformation due to 

cartographic projection. It then takes into consideration the satellite sensor information 

(Toutin and Cheng, 2000). Despite not having detailed sensor information, Toutin et 

al, (2001) had successfully developed a rigorous IKONOS model using basic 

information of metadata and image files. Using this model the exterior orientation 

parameter of each image and the interior orientation parameters can be determined. 

Using these, DEM can be generated using pixel matching between adjacent stereo 

pairs (Bohnestiehl, 2001). In this process an elevation will be calculated from the 

stereoscopic parallax between the same pixel between two stereo pairs. This allows for 

the creation of very dense points clouds reflecting minute variations in terrain. 

To produce an accurate DEM accurate GCPs are required. These points must 

be precisely surveyed features that are visible in the satellite sensor imagery. Non-

natural and natural features would be carefully selected in a well-distributed grid. The 

GCPs would be surveyed using differential global positioning system (DGPS) for 
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accurate measurements. Several companies offer wide-area differential GPS service, 

using satellite broadcast techniques. Using DGPS resultant GCP will have sub-metre 

accuracy in the X and Y direction. Accuracy in the Z direction will be less than 2 m 

(Omnistar, 2001). 

2.8.3.2 Deriving bathymetry from IKONOS sensor imagery. 

As previously discussed researchers have used passive remote sensing sensor 

imagery to obtain bathymetry data (Lyzenga, 1985; Clark et al, 1987; Cracknell and 

Ibrahim, 1988; Ji et al, 1992; Sandidge and Holyer, 1998; Bagheri et al, 1998; 

Roberts and Anderson, 1999; Stumpf et al., 2003). Studies have concentrated on the 

blue region of the electromagnetic spectrum (0.45-0.52 fxm) due to its ability to 

penetrate of water. Landsat TM has been used extensively for this purpose and several 

researchers have extensively developed models to extract bathymetry information 

(Lyzenga, 1979; Philpot, 1989). As the IKONOS multi-spectral bands are spectrally 

similar to bands 1-4 of the Landsat TM (Table 2.4) they could be applied in 

bathymetric applications. 

IKONOS with its spatial resolution of 4 m (MS) and radiometric resolution of 11 

bit provides the capability to extract accurate bathymetry information better than 

Landsat TM. 

Table 2.3: IKONOS multi-spectral sensor bandwidth specifications 
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Band Wavelength 
1 445-516 nm 
2 506-595 nm 
3 632-698 nm 
4 757-853 nm 

Table 2.4: Landsat TM multi-spectral sensor bandwidth specifications 

Band Wavelength 

1 445- 520 nm 

2 520 - 600 nm 

3 630 - 690 nm 

4 760 - 900 nm 

5 1550-1750 nm 

6 10400- 12500 nm 

7 2080 - 2350 nm 

2.9 Aim of study 

The aim of this thesis is to develop methods to accurately map the shoreline from 

satellite sensor imagery. Methods of mapping the shoreline from fine and coarse 

spatial resolution satellite sensor imagery would be explained. 

In this thesis a method of generating a 3-D terrain model of coastal areas using 

fine spatial resolution satellite sensor imagery would be examined. Using the 3-D 

terrain model of the coastal area the shoreline could be determined by the water land 

boundary. 

Methods of mapping the shoreline from coarse spatial resolution satellite sensor 

imagery would also be explored. Sub-pixel mapping methods would be examined and 

compared with method such as hard classification. This thesis would examine sub-
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pixel mapping methods to accurately predict the shoreline position at a sub-pixel scale 

based on coarse spatial resolution satellite sensor imagery. 

2.10 Conclusion 

Coastal Information is valuable for the management and future planning of coastal 

areas. Coastal areas are dynamic environments, constantly changing in response to 

human and natural forces. As a result coastal maps rapidly become outdated, resulting 

in a need for quicker method of producing coastal map (Dorota and Charles, 1999). 

Remotely sensed imagery provides a means of promptly extracting geographical 

features and coastal maps. 

By processing multi temporal satellite sensor images and extracting 3-D model of 

the coastal zone, the data would be useful to effectively quantify accretion and erosion 

patterns, predict shoreline positions, sand transport patterns and other useful 

geographical information. With this information, it is hoped the coastal areas would be 

managed and monitored accordingly. 
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3 Study Area and Data 

3.1 Study Area 

The study area for this research is located in the state of Terengganu, Malaysia. 

Terengganu is located in the east coast of peninsular Malaysia and its shoreline is 

generally categorised as white sandy beaches (Figure 2.1) (Gobbett and Hutchison, 

1973). The main economic activity of the population is fishing, tourism, and cottage 

industries. In the 1980s with the discovery of petroleum in the South China Sea off 

Terengganu, petroleum based industries have become an important contributor to the 

local economy. 

3.1.1 Climate 

The climate of Malaysia is generally characterized by the northeast monsoon and the 

southwest monsoon (Figure 3.1). The Northeast monsoon starts in November and lasts 

until March. It brings substantial rain and severe winds to the east coast of peninsular 

Malaysia. The Southwest monsoon, which starts in May and lasts to September causes 

substantial rainfall and severe winds along the west coast of peninsular Malaysia but 

the sheltering effects of Sumatra dampens the dynamics of the monsoon. The east 

coast of peninsular Malaysia is not drastically affected by the Southwest monsoon 

(Ooi, 1974). Figure 3.1 illustrates the monsoons effecting Malaysia. 
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Figure 3.1: The two monsoon affecting the climate of Malaysia. 

Air temperatures in peninsular Malaysia vary throughout the year. Monthly 

mean air temperature varies from 24.4 to 27.9 ° C along coastal areas. The warmest 

month is usually April along the northern part of west coast and May along the east 

coast and southern part of the west coast (Malaysian Meteorological Service, 2001). 

Relative humidity is high throughout Malaysia with a monthly mean ranging 

from 80 to 87 percent. The seasonal variation of relative humidity conforms to the 

rainfall pattern of the area. Typically, the highest occurs in November and lowest in 

February (Malaysian Meteorological Service, 2002). 

The average annual rainfall in peninsular Malaysia is about 2400 mm. The 

average monthly rainfall along the east coast of peninsular varies from about 120 mm 

in April to 615 mm in December. On the west coast, the minimum and maximum 

average monthly rainfall is approximately 80 mm in January and February and 260 

mm in October and November (Malaysian Meteorological Service, 2001). 
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3.1.2 Winds 

The wind from the Northeast monsoon blows mainly from the northeast and north 

direction. On the northern part of the east coast of peninsular Malaysia, the prevailing 

Northeastern monsoon winds are more north-eastern to east. Winds of 15 ms"' and 

more occur less than once a month in January and February and very seldom during 

the rest of the monsoon period. Gusts of up to 20 ms"' have been recorded. 

The Southwest monsoon winds rarely exceed 15 ms"'. Gusts of up to 30 ms"' 

have been recorded. Prevailing wind directions are south to west with an average speed 

of about 4 metres per second (Malaysian Meteorological Service, 2002). 

3.1.3 Tides, Water Elevation and Datums. 

Water levels along the coast of peninsular Malaysia are mainly influenced by 

astronomical tides. These tides are co-oscillating tides of the Indian and Pacific Ocean 

basins causing this region to have a variation of tide types. In Malaysia the common 

type of tide are diurnal, semi-diurnal and mixed. The east coast of peninsular Malaysia 

particularly the state of Terengganu is characterized by diurnal tides. The west coast of 

peninsular Malaysia is more characterized by mixed tides. Currently there are no long-

term records of water elevation along the coast. Due to this the Directorate of National 

Mapping has established a network of tide gauges along the coast for recording water 

elevation. 

Tidal ranges are in the order of 1.0 to 2.0 m along the east coast of peninsular 

Malaysia. The spring tidal range on the west is generally 2.0 to 2.5 m but spring range 

of 4.1 m has been recorded in Port Kelang, Selangor. Storm surges and wave setup can 

significantly affect the water surface elevation at the Malaysian shoreline. Storm 

surges are caused by the wind stress and the moving atmospheric pressure jumps 
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accompanying moving storm systems. Wind stress is responsible for the largest part of 

storm systems. The wind exerts a horizontal force on the water surface, which induces 

a surface current in the general direction of the wind. The current is impeded in the 

shallow water near the shore causing the water level to rise down wind (Ooi, 1974). 

Observations along the Malaysian coast indicate that there is generally little 

variation between the predicted tides and observed tides (Stanley consultants Inc. et 

ai, 1985). However, the tidal prediction tables indicate that the highest astronomical 

tides may be as much as 1 m above mean higher high water and mean high water 

spring. 

Datum's used in Malaysia are the admiralty chart datum (ACD) and the land 

Survey datum (LSD). Typically all published nautical chart and tide tables follow the 

ACD while all topographic and other land based survey follow the LSD. Relationships 

between the ACD and LSD have been established and at specific sites in Malaysia and 

have been published (Ministry of Agriculture, 1997). 

3.1.4 Waves 

The Northeast monsoon causes prominent wave along the east coast of peninsular 

Malaysia. The predominant wave approach direction offshore of Kelantan and the 

northern part of Terengganu is more easterly due to the limited fetch caused by the 

Vietnam and Cambodia peninsular (Figure 3.1). 

Wave height on the east coast of peninsular Malaysia during the Northeastern 

monsoon period are generally less than 1.8 m with a period of less than 6 s, but can 

vary greatly due to the periods of strong winds and calm. Hindcast predictions of 

significant deepwater characteristics for 18 severe storms between 1960 to 1976 were 

made by Oceanographic services. Inc. for the offshore of Terengganu (Angkasa-Ghd 
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Engineers Sdn Bhd., 1981). Waves of 2.7 and 4.8 m with an average period of 6 to 9 s 

were indicated offshore Terengganu during severe monsoons. A 5.33 m deepwater 

significant wave height was determined to have a 1 OO-recurrence interval in this area. 

The Southwest monsoon causes predominant wave condition on the southern 

part of the west coast of peninsular Malaysia. However, the island of Sumatra shelters 

the west coast from the Indian Ocean, limiting the fetch length to approximately 40 to 

130 km in the Malacca straits (Forbes, 1998). Wave height during the monsoon usually 

ranges from 0.5 to 1.0 m with a maximum height of 2.0 to 3.0 m. Wave periods are 

usually less than 3 s but may have a maximum of 6 to 9 s (Angkasa-Ghd Engineers 

Sdn Bhd., 1981). 

3.2 Map projection 

The application of a basic mapping projection is not suitable for a country such as 

Malaysia due to its orientation. Due to this, the Directorate of Colonial Surveys in 

Teddington, England prepared the rectified skew orthomorphic (RSO) Projection 

Tables for Malaya in 1947 (Hotine, 1947). Since then. Directorate of National 

Mapping of Malaysia has used it for the Malayan Revised Triangulation (MRT) and 

topographical surveys. The characteristic of RSO are a constant minimum scale error 

along a great circle passing obliquely through the area, with scale increasing with 

distance from this great circle (Hotine, 1947). A basic diagram displaying the 

projection is shown in Figure 3.2. Therefore, it is suitable for areas like Peninsular 

Malaysia and Italy. The maps used and produced in this thesis were geo-rectified to the 

RSO based on the Modified Everest reference ellipsoid. This projection is the standard 

mapping projection used in Malaysia and used primary for topographic mapping. 
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Figure 3.2: Diagram shows how the RSO projection projects the earth surface based on 

an obHque cylindrical surface. 

The geodetic information regarding the RSO projection is given below: 

Geodetic Data 

Spheroid 

Semi-major axis (a) 

Semi-minor axis (b) 

Ecentricity Squared (e2) 

Reciprocal of flattening (1/f) 

Modified Everest 1948 

6 377 304.063m 

6 356 103.039 

0.006 637 846 6302 

300.8017 

Origin of Meridian of reference 

Projection 

Longitude of Origin (CM) 

Latitude of Origin 

False Easting 

False Northing 

Scale Factor on CM 

Skew Azimuth 

Satellite Datum 

Spheroid 

Semi-major axis (a) 

Semi-minor axis (b) 

Eccentricity Squared (e2) 

Reciprocal of flattening (1/f) 

Malaysian RSO 

E 102° 15' 00.00" 

N 004° 00' 00.00" 

804671.30m 

0.00m 

0.99984 

323° 07'48.37" 

WGS-84 

6 378 137.000m 

6 356 752.314m 

0.006 694 380 023 

298.2572 
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Datum transformation parameters from WGS-84 TO Malaysia Revised 

Everest, Kertau are as follows: 

dx = + 379.78m 

dy = - 775.38m 

dz = + 86.61m 

Rx 0° 00' 02.60" 

Ry 0° 00' 02.10" 

Rx -0° 00' 12.11" 

Scale = 1.00000 

3.3 Data 

This section describes the main data used in this thesis. 

3.3.1 Satellite sensor data 

3.3.1.1 IKONOS Sensor Imagery 

This research utilizes Space Imaging IKONOS sensor imagery. Several data sets were 

acquired of the study area on the 1̂ ' July 2000, 10 April 2002 and 28 August 2002. The 

three data sets are described bellow: 

Table 3.1: IKONOS sensor data used in this thesis. 

Data I'^July 2000 10"" April 2002 28"" August 2002 
Product Type : 1 -metre 

Pan-Sharpened 
Multispectral 

Geo Im + 4m 
bundle 
(Multi Spectral + 
Pan) + IGM 

1 -metre 
Stereo Pan-
Sharpened 
Multispectral + 
IGM 

Acquisition 
Date/Time 

2000-07-01 03:14 
GMT 

2002-04-10 03:42 
GMT 

2002-08-28 03:45 
GMT 

Further details about the data including header information are given in Appendix 2 
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3.3.2 Bathymetric Ground data 

Two field trips to the study area were conducted to obtain bathymetric ground data. 

Ideally these field trips should coincide with the date of satellite sensor data 

acquisition but as Space Imaging does not inform customers of the data acquisition 

dates before hand this was unlikely. Therefore the field trips were conducted on dates 

within the data delivery period assigned by Space Imaging. These field trips were 

conducted on 15"̂  June 2000 and 6"̂  July 2002. These dates are still close to the image 

acquisition dates and no major changes to the bathymetry were expected due to the 

difference. 

To ensure the water depth obtained were accurate all depth values were made to 

an accuracy of 0.1 m and all echo-sounding equipment were calibrated before and after 

each day's sounding operations. In order to used these values for mapping purposes the 

water depth values were related to the latest published values of the Malaysian Land 

survey datum (LSD). This was done by establishing a Temporary Bench Mark (TBM), 

TBM are benchmark used to monitor water level variation during sounding operations. 

The TBM was setup at the Marine jetty located at Chendering harbour, Kuala 

Terengganu. The depth values were calibrated and standardise to a selected water level 

based on the TBM values. These values were later adjusted to the Malaysian LSD by a 

close levelling net to the government bench mark. This process ensures the data were 

corrected based on mapping standard setup by the Government. Data were collected at 

200 m intervals along the shoreline up to 8 m depth seawards. 

3.3.3 Shoreline survey 

A shoreline survey was conducted on 6"̂  of July 2002 to accurately map the shoreline 

at the Mean sea level tide elevation. The surveying work was contracted to the Sky-
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Shine Corporation. Sky-Shine Corporation is a multi-disciplinary geographic based 

company dealing in surveying and positioning system, sea and land environmental 

system, hydrography and other mapping related disciplines. The shoreline map was 

produced at sub-metre accuracy. 

3.3.4 Tide Table 

The establishment of the Tidal Observation Network (TON) in Malaysia commenced 

in 1983. This project was initialized and carried out by Jabatan Ukur dan Pemetaan 

Malaysia (JUPEM) with the cooperation of the Japan International Cooperation 

Agency (JICA). Twenty-one (21) tide stations were established by the end of 1995, in 

which twelve (12) were located in Peninsular Malaysia and the rest in Sarawak and 

Sabah (Department of Survey and Mapping Malaysia, 2001). The observed tidal data 

and other related values are published annually in two reports, namely The Tidal 

Observation Record and The Tidal Prediction Table. This research utilises the tidal 

prediction table specifically the tide station located at Chendering Kuala Terengganu, 

Terengganu. 

3.3.6 GPS Control Points 

A field trip was conducted in November 2001 to obtained ground control points 

(GCPs) within the study area. The GCPs were collected using the OmniStar DGPS 

system which was capable of collecting GCP at sub-metre accuracy (Omnistar, 2001). 

A total of 62 GCPs were collected based on points, which were distinguishable from 

IKONOS satellite imagery. Figure 3.3 shows a sample GPS report: 
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Sketch 

Station Id cpt1l 

Station Name Surau AI-Muhajirin.Kg Telaga Batin 

Station Description Cross Junction 

District Manir 

Map Sheet 4265 

RSO East 568502.2 RSO East 568502.2 

RSO North 694969,1 
Observer: 

6.6 
zumimi 

Height 6.6 
zumimi 

WGS East 103" 6' 32.2" Observation date: 

WGS North 5" 22' 49 3" ll-Mar-OI 

Image location 

(«) 
Photo 

Figure 3.3: Sample GPS report for a point in Kg. Telaga batin. The report includes 

details about the (a) GCP point, (b) a sketch of the GCP point, (c) Location of the GCP 

point on an IKONOS sensor imagery and (d) a photograph of the location. 

3.4 Conclusion 

This chapter has given details of the study area and data used throughout this thesis. 

Characteristics of the study area are explained to give an understanding of condition 

attributing to problems related to the coastal area. Data used throughout this thesis 

were also explained and all spatial data sets were standardised to a single mapping 

standard, the RSO. 
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4 Sub-Pixel Analysis to Determine 

Shoreline Position. 

Using coarse spatial resolution satellite sensor imagery for shoreline mapping is 

difficult. This is due to the fact that the actual shoreline could be located within the 

pixels. This chapter is a pilot study with the aims to examine shoreline positional 

errors due to different classification methods and increase its accuracy by mapping the 

shoreline at the sub-pixel level. 

4.1 Introduction 

The pilot study investigates the effects of utilizing coarse spatial resolution satellite 

sensor imagery to produce shoreline maps. Thematic mapping from remotely sensed 

data is commonly achieved through the application of a conventional hard image 

classification analysis. With hard classification, each pixel is allocated to the class with 

which it has the greatest similarity. The effect of this allocation process is to constrain 

the boundary between classes to lie between pixels. In reality, the boundary between 

classes will generally run through the area represented by a pixel, with the pixel having 

a mixed class composition. Since a hard classification can allocate a pixel to only one 

class its application will have the effect of mis-locating the boundary. Typically, the 

size of the mis-location error will increase with a coarsening of the spatial resolution of 

the data used. This pilot study analyses the shoreline positional accuracy achieved by a 

hard classification using coarse spatial resolution satellite sensor imagery similar to 

commonly used satellite sensor imagery such as Landsat TM, Landat ETM+ and 
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SPOT HRV. But these satellite sensor data sets are not suitable for mapping local 

changes in the shoreline as discussed in chapter 2. Therefore the potential of 

approaches to shoreline mapping based on sub-pixel level information derived from a 

soft classification is evaluated. 

Soft classification allows a pixel to have multiple and partial class membership 

and so can accommodate for the effects of mixed pixels. The conventional output of a 

soft classification is a set of fraction images which indicate the relative coverage of the 

class as in the area represented by the pixel. If the predicted class coverages could be 

located geographically within the area represented by the pixel it would allow the 

boundary between classes to be plotted at a sub-pixel scale. The main aim of this 

research is to investigate a series of approaches for fitting the shoreline to a soft 

classification derived from remotely sensed data. A flowchart of the whole pilot study 

is given in Figure 4.1. 

In this chapter a linear stretch of the beach measuring 500 m in length was used 

as the study area. The orientation of the particular shoreline is 45 degrees in the north-

east direction and located in Kg. Seberang Takir, Terengganu (Figure 4.2). This stretch 

of shoreline was chosen as its a simple pattern and avoids simple pixel mixing due to 

its orientation. Since the aim was to investigate the accuracy of sub-pixel scale 

mapping of the shoreline, the study used a fine spatial resolution image to locate the 

actual position of the boundary with the analysis undertaken on a spatially degraded 

version of this image. Although imperfect, this approach removes problems of mis-

registration between the image to be classified and the reference data on shoreline 

position. 
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Figure 4.1: Flow chart of pilot study showing the different methods used in the pilot 

study. 
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Kg. Seberang Takir 

\ Pilot Study Area 

Figure 4.2: A colour composite of Kg. Seberang Takir (study area). 

A 1 m spatial resolution IKONOS sensor image was acquired on 1 July 2000 

and was geo-referenced to the Rectified Skew Orthomorphic (RSO) projection (Figure 

4.2). The image was degraded spatially by aggregating pixels to 20 m spatial 

resolution. 

4.2 Methodology 

The methodology used in this chapter can be divided into several main sections. 

Initially a 20 m imagery was simulated from 1 m satellite sensor imagery. Several 

classification methods were used to analyze and effects on positional accuracy was 

determined. Methods to increase positional accuracy were explored and finally a 

positional error analysis was conducted to compare the different methods. 
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4.2.1 Simulation of 20m imagery 

To ensure the actual shoreline position is known and minimize mis-registration 

problems, coarse resolution satellite imagery was simulated from fine resolution 

satellite data. This approach has the advantage that positional errors normally 

introduced during image geo-rectification of satellite imagery are not evident. 

Therefore the positional errors obtained in this chapter are solely because of the spatial 

resolution differences between the images. The fine spatial resolution satellite imagery 

used was acquired on July 2000. To simulate coarse resolution satellite data the Im 

IKONOS sensor imagery was sampled down to 20m. This resolution simulates spatial 

resolution comparable to widely used civilian system such as SPOT HRV sensor. A 

problem with resampling the imagery to a coarse spatial resolution is that it reduces the 

noise levels within the imagery produced. This eliminates errors normally evident in 

satellite sensor imagery such as internal sensor errors and effects of atmospheric 

condition (Duggin et al, 1985). To properly simulate satellite imagery these errors 

need to be maintained. The noise in the original Im imagery was determined and 

reapplied to the coarse resolution image to make the noise level comparable. 

Several factors affecting the scene and the sensor were not considered when 

simulating the images. Of those affecting the scene, the adjacency effect is caused by 

complicated multiple scattering interactions, resulting in pixels with high DN values 

being lowered and pixels with low DN values being increased in a particular image. 

These pixel value changes largely depend on its contrast with neighbouring pixel 

values and are evident over large heterogeneous areas causing images to lack contrast 

and at edges, causing sharp lines to be blurred (Liang et al, 2001). The adjacency 

affect could be simulated by modelling the point spread function (PSF) of the 

IKONOS sensor and affects of the atmosphere (Borel and Gerstl, 1992). To address 
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these issues further information such as IKON OS sensor information and atmospheric 

condition during image acquisition are required. As these information were not readily 

available, the adjacency affect were not considered when simulating the coarse spatial 

resolution imagery. 

4.2.1.1 Satellite sensor noise 

In satellite sensor imagery noise can be divided into 2 types : coherent and random. 

Coherent or system noise in most cases can be removed as its source is known within a 

particular sensor system (Wrigley et al, 1984). Random noise on the other hand can 

not be removed easily as its source it not generally known (Smith and Curran, 1999). 

The 1 m satellite sensor imagery used in this study was already corrected for 

coherent or system noise thus random noise is the primary concern. Even though 

random noise can't be removed easily, it can be measured by repeated measurement of 

a particular area then the average of these measurements will be the estimate of the 

true measurement (Shanmugan and Breipohl, 1988). The variation of each individual 

measurement is therefore an estimate of the random noise (Duggin et al, 1985). 

Therefore, on a particular sensor system the signal strength could be used to estimate 

noise. Here noise will be defined as signal to noise ratio (SNR) (Smith and Curran, 

1999), given by the equation : 

S N R . ^ 4.1 
Noise 

SNR is proportional to data quality; therefore with a larger SNR it would be easier to 

distinguish useful information. The SNR of a satellite sensor is a function of the 
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spectral, spatial and radiometric resolution (Lillesand and Kiefer, 2000) and can be 

described as : 

= j AAI(A) 4.2 

where: 

SNR (a) is the SNR at wavelength X, D = detector quality, 

P = instantaneous field of view of the sensor, H' =height of sensor platform 

V = Plaform velocity a A =Sensor spectral resolution 

L = Radiance of target area. 

The SNR of the sensor is also related to the quality of the optics and electronics 

within the sensor and the attenuation of the atmosphere at acquisition time. 

4.2.1.2 Methods of estimating SNR of satellite sensor imagery 

Several methods have been developed to estimate SNR. The simplest method, the 

homogenous area uses small windows of pixels within large homogenous image areas 

(Smith and Curran, 1999). The signal at a certain point is estimated by averaging the 

pixel response in the window. The noise is then estimated by calculating the standard 

deviation of the pixel responses within the windows. Another method, the nearly 

homogenous method addresses the issue of finding large homogenous areas within 

satellite sensor images. This method proposed by Yuhas et al., (1993) allows for some 

natural variation within areas selected for analysis. As with the homogenous method, 

this method calculated the standard deviation of small groups of pixels. The pixels in 

the nearly homogenous area are then averaged in groups of increasing size and the 

standard deviation calculated against each group. The standard deviation is then 

plotted against the reciprocal of the square root of the number of pixels used in the 

group. This method assumed that as pixels are averaged in increasing larger group of 
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pixels the component of standard deviation due to sensor noise should decrease. The 

intercept from the vertical axis of this plot represents the standard deviation for an 

infinite number of sample. This value is assumed to be made up of only spatial 

variation. Therefore, the SNR can be estimated by dividing the average pixel values 

with the difference in standard deviation. 

Geostatistics has also been used to estimate noise. Curran and Dungan (1989) 

developed a method to estimate the within pixel variation attributable to noise. The 

method used pixels along a traverse. The method employed the variogram, a plot of the 

semivariances of the responses of the pixels pairs from the traverse against their 

separation of lag 0 )̂ (Curran and Atkinson, 1998). The semi-variance is estimated 

using: 

^ 1 ^ •''h 
+A)] 4.3 

(=1 

Where 

M= number of pixel pairs h = lag 

R = response of pixel. x. = location of the first pixel of the i th pair 

To determine the variance within a pixel that can be attributed to noise it is 

necessary to estimate the values of the semi-variance at lags less than one. This can be 

done by extrapolating the variogram model below one lag until it reaches lag zero. The 

semi-variance of the model when lag reaches zero is known as the nugget variance. 

The nugget variance is an unbiased estimate of the aspatial variation within each pixel. 

It has be shown that the square root of this nugget variance can be used as an estimate 

of the standard deviation and, therefore, the noise component of the pixel response 

within the traverse (Curran and Dungan, 1989). Therefore, the SNR can be estimated 
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by dividing the average pixel response along a traverse by the square root of the 

nugget variance. This method makes several assumptions. First it assumes that the 

spatial variation in the pixel response is related to the lag between pixels and not their 

location. It also assumes that the orientation of the traverse does not affect the 

variogram but dependant on the sensor operation. 

4.2.1.3 SNR estimation of 1 m IKONOS satellite imagery 

This chapter uses the geo-statistical method to estimate SNR value of the IKONOS 

sensor imagery. A traverse of 100 pixels was selected from the 1 m satellite imagery 

and a spherical model was used to fit the data. By extrapolating the semi variogram an 

intercept of 56.10 was determined. The square root of this value or the nugget variance 

was used as an estimate of the standard deviation along the traverse. Therefore the 

standard deviation was estimated as 7.48. To estimate the SNR the average the pixel 

response along a traverse (determined to be 233) was divided by the square root of the 

nugget variance. The resulting SNR for the 1 m IKONOS imagery was 31.14. Figure 

4.3 shows the variogram used. 

4.2.1.4 Generating Simulated 20 m IKONOS sensor imagery. 

To generate the 20 m simulated imagery, the 1 m IKONOS sensor imagery was 

resampled to a spatial resolution of 20 m by aggregating the pixels. To counter effect 

the reduction of noise within the imagery due to resampling, the SNR of the resulting 

imagery need to be similar to the initial 1 m imagery. This was done by adding 

random noise to the 20 m imagery so that the resulting imagery has a similar SNR. As 

SNR can only be estimated and it is impossible to exactly obtain the same SNR 

between both images, it was decided that the resulting imagery needs to have a SNR 
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value to within 90 % of the SNR in the 1 m imagery. The resulting image is shown in 

Figure 4.4. 
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Figure 4.3: Variogram used to model 1 m imagery. 

Figure 4.4; Simulated 20 m spatial resolution imagery 
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4.2.2 Generation of Ground Data from 1 m imagery. 

To analyse positional errors generated from coarse resolution satellite imagery a 

shoreline map needed to be generated to represent ground data. This shoreline map 

was generated from 1 m IKONOS satellite sensor imagery. To differentiate between 

land and water body a supervised hard classifier was applied. Hard classifiers can be 

defined as a classifier that evaluate pixels and assigns them to only one class, based on 

the class of which it has the highest similarity of being a member, such as maximum 

likelihood (Richards, 1993; Jensen, 1996). Five homogenous land and five 

homogenous water sites were chosen to define pure land and water classes (Figure 

4.5). These areas are determined from visual interpretation and field work and were 

used throughout this chapter in other classification methods to provide a consistency. 

571513 

\ 

• Water training sites 

Land training sites 

• 
• 

572313 

Figure 4.5; Training sites used in classification methods throughout this chapter. 
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Using these training sites to define pure land and water classes, the 1 m 

imagery was classified to 2 classes (land and water) using a maximum likelihood 

classifier. The resulting imagery was used to calculate the positional accuracy of the 

different classification method applied to the simulated 20 m imagery (Figure 4.6). 

Using the coarse 20 m simulated satellite sensor imagery several methods were used to 

map the shoreline. These include approaches based on hard and soft classifiers. 

Figure 4.6: 1 m spatial resolution classified imagery (used as ground data in analysis) 

4.2.3 Hard Classifier 

To differentiate between land and water body a hard classifier was applied to the 

simulated coarse spatial resolution satellite sensor imagery. The maximum likelihood 

hard classifier used to classify the coarse spatial resolution imagery was similar to the 

one used to classify the 1 m imagery. The same training sites used in classifying the 

fine spatial resolution image were used (Figure 4.5). Using these training sets the 20 m 

imagery was classified to 2 classes (land and water). The resulting image (Figure 4.7) 

would later be analysed to determine the positional error between the predicted 

shoreline location and the actual location based on the ground data. 
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Figure 4.7: Imagery generated from hard classifying the 20 m spatial resolution 

imagery. 

4.2.4 Soft Classification 

Hard classification techniques have been popular in remote sensing but they only 

assign one class to a certain pixel (Richards, 1993; Jensen, 1996). As shoreline pixels 

usually contain a mixture of land and water classes, information within a pixel is lost. 

A major problem for accurate interpretation of remote sensing data is related to the fact 

that pixels may contain more than 2 classes which would only be realised from ground 

activities (Foody, 1992). This is due to the complex relationship of land cover types 

and their spectral reflectance (Richards, 1993). To address this problem researchers 

have developed methods to derive estimates of the sub-pixel class composition through 

the use of techniques such as mixture modelling and soft or fuzzy classifications 

(Foody, 1996). Soft classifiers allow pixels to have variable degrees of membership to 
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multiple classes. Soft classifiers assign a membership grade between 0 and 1 to each 

class in a pixel. This allows a pixel to be associated to multiple classes rather than just 

to one class as in conventional hard classifiers. 

In this pilot study a sigmoidal function was chosen to classify between land and 

water. The function would classify pixels, based on a gradual transition between 

membership and non-membership to a class (Zadeh, 1965). The sigmoidal function 

was chosen because it models the gradual transition between land and water in coastal 

areas. For the function to be applied it requires that 2 pure classes be defined. These 

classes are pure land and water classes. The average DN value from the water and land 

training sites were used to define these classes (Figure 4.5). The soft classifier then 

classified each pixel in the study area to proportion values representing proportion of 

land within a pixel. For example if the value is 0.3 this means that the pixel contains 

30 % land and 70 % water. 

Since this soft classification was the basis of all the later analyses, its accuracy 

was evaluated. This evaluation was based on a comparison of the predicted coverage 

of a class with that derived from the ground data, the 1 m spatial resolution image. The 

correlation was calculated based on the Pearson correlation coefficient. The Pearson's 

correlation coefficient, denoted by r is a measure of linear association between two 

variables (Siegel and Castellan, 1988). The resulting classified imagery has a r value 

of 0.904 ip < 0.05). This result shows that the predicted and actual data are correlated 

significantly. Figure 4.8 shows the relationship between the predicted proportion of 

land and actual proportion of land. The output from the soft classification is shown in 

Figure 4.9. 
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Figure 4.8: The relationship between the predicted proportion of land and actual 

proportion of land. 
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Figure 4.9: Output of the soft classification. The grey level represents the proportion of 

land class in each pixel. 
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With a r value of 0.904 (P< 0.05) it was determined that the output of the soft 

classification accurately represented the actual proportion of classes within each pixel. 

This was important as further analysis in increasing spatial accuracy depends on the 

accuracy of the soft classification. Though the soft classifier accurately predicted the 

class proportion of each pixel it did not indicate where these proportions were located 

geographically within a pixel. This issue was undertaken in the next section. 

4.2.5 Methods of Increasing Positional Accuracy. 

Output from a soft classification produces images with pixels values representing the 

proportion of a certain class within pixels. But it does not indicate where within a pixel 

these classes are located. To address this problem, methods of distributing the 

proportion within each pixel to different classes were explored. This section explains 

the methods undertaken which were wavelet interpolation, contouring and two-point 

histogram. 

4.2.5.1 Wavelet interpolation 

Shoreline position maps would be more accurate with fine spatial resolution data. 

Wavelets are a relatively new tool for generating hierarchical or multi-scale 

representations of images and could be used to increase the spatial resolution of the 20 

m spatial resolution simulated imagery. This technique has been used for remote 

sensing applications such as digital change analysis (Carvalho et al, 2001), spectral 

fusion (Horgan, 1998), feature extraction (Simhadri et al., 1998). By increasing the 

spatial resolution of the simulated imagery and applying a hard classification the 

shoreline could be positioned within the pixel boundary thus increasing the positional 

accuracy of the shoreline prediction. 
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Wavelets are mathematical functions that cut up data into different frequency 

components and then study each component with a resolution matched to its scale 

(Donoho, 1992). This pilot study implements the 2-D wavelet refinement method 

based on average-interpolation method to increase the spatial resolution of the soft 

classified imagery (Donoho, 1993). The basic idea is to use data at coarser scales to 

predict data at finer scales, and to record the prediction errors as coefficients associated 

with the finer scales. Average interpolation can be described as the following. "Given 

a function/on an interval J defined by, flve(/|/) = |/| ' ^,f{t)dt for an average value 

/ ^ 3̂  •— 1 
of /over the interval 1. With a given triadic interval of ^ j of numbers 

representing the average o f f on the triadic intervals Iĵ k • Average-interpolation 

refinement uses the data at scale j to impute behaviour at the finer scale j+\, obtaining 

the (pseudo-) averages o f f on intervals Ij+ix " (Donoho, 1993). When a even interger 

D is defined, it runs as follow ; 

(Interpolation) for each interval Ij,k, find a polynomial % j_k of degree D = 2A satisfying 

the average -interpolation condition : 

yb/- < / < .4 4.4 

(Imputation) Obtain (pseudo-) cell averages at the finer scale by setting 

fbrl=0, 1,2 4.5 

for any degree D one can find coefficient for which 

_ A 

ay+i.3t+/ = , / = 0, 7, 2, 4.6 
h=~A 

Exhibiting the fine-scale imputed average 's as linear functional of the coarse-

scale average ay *. 
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The soft classified imagery was interpolated fi-om 20 m to 2.5 m based on the 

average-interpolation using a Haar wavelet fianction (Donoho, 1992). This resolution 

was chosen as at this resolution it provides a balance between computing time of the 

process and shoreline detection capability. The average-interpolating scheme was used 

to refine boxcar averages on a grid o f« x 77 points, imputing averages on a finer grid 

of 2^n X 2^n points. To obtain a finer resolution of 2.5 m from 20 m requires that a L 

value of 3 and D value of 2 were given. Further detail to the algorithm used can be 

referred to Donoho (1993). 

To determine the land/water boundary a supervised maximum likelihood hard 

classification was applied to the wavelet interpolated imagery. The method applied 

was similar to the one used in classifying the 1 m classified imagery (4.2.2) using the 

same training sites (Figure 4.5). The resulting wavelet interpolated imagery and its 

classified imagery is shown in Figure 4.10. 

(a) (b) 

Figure 4.10; (a) Wavelet interpolated imagery and (b) its classified imagery 
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4.2.5.2 Contouring soft classified imagery 

Contouring could be used to increase the shoreline positional accuracy prediction from 

the 20 m spatial resolution simulated imagery. The soft classified image was contoured 

at 0.5 interval to produce a shoreline. This value was chosen as it could be assumed 

that at this point a pixel contains 50 % water and 50% land, therefore, the position of 

the shoreline. This represents a first step in increasing the positional accuracy as the 

generated shoreline crosses within a pixel thus increasing its accuracy in comparison to 

hard classifiers that produces shoreline that follows the edges of pixels (Foody et al, 

2003). The shoreline generated from contouring the soft classification output is shown 

in Figure 4.11. 

Figure 4.11: Shoreline generated from contouring output of the soft classification. 

4.2.5.3 Two-point histogram 

Interpolation provides a method to infer the distribution of classes at a sub-pixel level 

but this is often too simplistic (Atkinson, 1997). Another method used to predict class 

boundary within each pixel is by using geostatistical methods such as simulated 

annealing (Kirkpatrick et al, 1983; Jeroen and Gerard, 2002). The concept of 
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annealing in combinatorial optimization was introduced by Kirkpatrick et al, (1983). 

The concept is based on the analogy between combinatorial optimization and the 

physical process of crystallization. Inspired by this the Metropolis algorithm proposes 

a numerical optimization procedure which works as follows (Metropolis et al., 1953). 

"Starting from an initial situation with energy level f(Q), a small perturbation in the 

state of the system is brought about. This brings the system in to a new state with 

energy level f(\). I f f ( l ) is smaller than f(0), then the state change is accepted. I f f ( \ ) is 

greater than f(0), then the change is accepted with a certain probability" (Metropolis et 

al., 1953). A movement to a state with a higher energy level is sometimes allowed to 

be able to escape from local minima (Jeroen and Gerard, 2002). The probability of 

acceptance is given by the metropolis criterion: 

p (accept changes) = exp 
^0 V 

4.7 

Where So is a control or freezing parameter. Next, the freezing parameter is 

decreased and a new perturbation is made. The energy levels are again compared and it 

is decided whether the state change is accepted. This iterative procedure is repeated 

until a maximum number of iteration is reached of until change occurrence have 

become very rare (Geman and Geman, 1984). Two important perturbation methods 

normally used are swapping two randomly selected pixels in the grid (Deutsch et al, 

1998) and generating a new pixel value from a local conditional distribution (Deutsch 

and Wen, 1998). Examples of studies that use simulated annealing for spatial 

optimization can be found in areas ecological research (Church et al, 1996), of spatial 

resource allocation (Jeroen and Gerard, 2002) and forestry research (Lockwood and 

Moore, 1993). 
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The spatial optimization used in this pilot study is based on a geostatistical 

method inspired by simulated annealing as defined and used in the program Anneal.f, 

apart of the GSLIB library (Deutsch et al, 1998). The method calculates a two-point 

histogram or grey level co-occurrence matrix (GLCM) statistics to analyse similarity 

between two images. A two-point histogram is a two-dimensional histogram of grey 

levels for a pair of pixels which are separated by a fixed spatial relationship (lag) 

(Haralick et al., 1973). The two-point histogram approximates the joint probability 

distribution of a pair of pixels within an imagery. A sample two-point histogram 

calculation is shown in Figure 4.12 . The calculation is based on a horizontal direction 

with a lag of 2. For example to calculate the two point histogram value for the 

relationship between grey level value 2 and 3 at a distance of 2 pixels, the total amount 

of relationship is added up and inserted into the table (calculated as 4). 

0 0 3 3 1 1 
0 1 1 3 
0 2 2 1 1 0 
1 0 
2 1 0 .1. 2%) 
1 3 0 0 3 1 

(a) 

.3 

G] e\ Ici el 
0 1 2 3 

2 6 2 4 
6 2 2 3 
2 2 0 4 
4 3 2 

( b ) 

Figure 4.12; Sample calculation of the two-point histogram for a horizontal direction 

with a lag of 2. (a) The relationships between grey level 2 and 3 at lag 2 and (b) the 

corresponding two-point histogram are shown. 

Details of the optimization method used are describes as follows. Given a 

random variable Z that can take one of k = I, ,K outcomes (i.e., categorical variable) 

72 



Chapter 4: Sub-pixel Analysis to Determine Shoreline Position. 

the two-point histogram for a particular lag (distance and direction of separation) h is 

the set of all bivariate transition probabilities; 

^ j z W e c a t e g o r y ^ , 1 

+ A) e category A:' J 

Independent of u, for all k, k' = 1, The objective function corresponding 

to the two-point histogram control statistic is as follow: 

O = S f 1 1 [ X T ' ( A ) - ri'?—" ( A ) ] ' 1 4 . 9 
h V / 

Where ih) are the target transition probabilities calculated from a 

training image and realization are the corresponding transition 

probabilities of the realization image. 

To increase spatial resolution the two point histogram alone was insufficient. A 

scheme must be devised to alter the sub-pixel values. This could be done by a change 

in attribute (as in Anneal.f) or via a swap in sub-pixel location. Here a swap in sub-

pixel location was used. This was chosen as in classifying land and water boundary 

(shoreline), the proportion of land and water within a pixel has to be maintained to 

correctly identify the division within it. The optimization goal also needs to be 

constrained so that the sub-pixels are swapped within pixels (Atkinson, 2003). 

The algorithm used in this study was developed for super resolution land cover 

classification (Atkinson, 2003). Two point histograms of the training and satellite 

sensor imagery were calculated and evaluated toward an objective function. If a pixel 

swap results in a smaller objective function, the swap is retained and updated on the 

other hand if it results in a larger objective function the swap is discarded. 
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To increase efficiency two checks were added to the algorithm (Atkinson, 

2003). First when pixels are found to contain only one cover class they are ignored. 

However, sub-pixels within these pixels may still be used in comparison between sub-

pixels within adjacent pixel because the two-point histograms are calculated for eight 

directions and at different lags. Second, sub-pixels were compared only if their classes 

were different. Initially the 20 m soft classified imagery was resampled to a sub-pixel 

spatial resolution of 2.5 m and the class proportion was redistributed randomly within 

the pixel. Two proportion images were created, one for land and one for water. 

Basically they are the inverse of each other (Figure 4.13). A training image of the 

training site was prepared using the 1 m hard classified satellite sensor imagery. The 

imagery was resampled down to a spatial resolution of 2.5 m to match the algorithm 

target spatial resolution (Figure 4.14). The soft classified imagery was processed with 

a lag of 5 m until 50 iteration. It was discovered that on this particular imagery no 

increase in positional accuracy was obtained if the algorithm was run for 50 iteration. 

The imagery before and after the 50 iteration are shown in Figure 4.15 and Figure 

4.16, respectively. 

TrTITV I I I I I I r I •! I I I I I M I I I I I I I J I I I 

40 

30 

2 0 -

1 0 -

Figure 4.13; (a) Water and (b) land proportional images. The X and Y axis represent 
the location in pixels while the grid represents the pixel size of 20 m. The grey scale 

(from white to black) indicates the class proportion within the pixels. 
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Figure 4.14; Training imagery used in the two-point histogram process. The X and Y 
axis represent the location in pixels (2.5 m) 
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Figure 4.15: Initial Two-point histogram imagery with randomly distributed sub-pixels 

(2.5 m spatial resolution). The grid represents the original pixel size (20 m) 
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Figure 4.16: Two-point histogram imagery after 50 iterations. The grid represents the 

original pixel size (20 m). 

4.2.6 Positional Error Analysis 

To compare the various methods used in obtaining shoreline position a positional error 

analysis was conducted. A standardized method was chosen to extract the shoreline 

position from the output of each method used. With the exception of output from 

contouring, which produces a vector representing the land water boundary, output 

from the other methods are classified imagery with water and land classes. Therefore, 

to generate a shoreline position from these images (output from wavelet interpolation 

and two-point histogram), the images were vectorised along the boundary between the 

land and water classes. The basic operation is to generate lines which outline the 

boundaries of these areas. 
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By comparing these shoreline positions to the actual/ground data (from 1 m 

imagery) the positional accuracy could be evaluated. Shoreline maps generated from 

these images are shown in Figure 4.17 to Figure 4.20 

Ground Data (1 m) 

Hard Classified 

1 1 PilotSludyArea 

Figure 4.17: Shoreline map generated from output of a hard classification. 

Ground Data (1 m) 

Fuzzy Conlour 

~] Pilot Study Are 

Figure 4.18: Shoreline map generated from contouring of the soft classification 

output. 
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Ground Data [1 m) 

Wavelet Inlerpolation 

! J Pilot Study Area 

Figure 4.19: Shoreline map generated from wavelet interpolation. 

Ground Data (1 m) 

Simulated Annealing 

, 0 20 « 80 120 

Figure 4.20: Shoreline map generated from the Two-point histogram output imagery 

(Only areas where comparison is conducted) 
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The shoreline maps contain detailed positional information, but when looking 

at the maps produced, this information was not clearly obvious. Even though the 

shoreline maps were created at a scale of 1: 3,000 this information seems lost and all 

the shorelines look similar with the exception of the shoreline generated from hard 

classification. Output from the hard classification method was the worst with the 

shoreline having jagged edges. To make the differences obvious the map of the 

shoreline needed to be at a finer scale but doing so limits the portion of shoreline that 

would be displayed. To address this issue a graphing method was used to display the 

shoreline positional information. Therefore, graphs were produces with the shoreline 

position on the X axis and the shoreline changes on the Y axis (Duffy and Dickson, 

1998). By adapting this methodology subtle changes in shoreline can be displayed by 

stretching the X axis. Shoreline errors between each classification method and ground 

data along each metre of the shoreline are graphed. Having these values quantitative 

analysis could be done. These values were graphed to analyse positional accuracy 

between the different classification methods. Due to the length, the shoreline was 

divided into two shoreline graphs based on 250 m of the shoreline. Areas for each 

graph are shown in Figure 4.21 and the two graph depicting the errors along the 

shoreline are shown in Figure 4.22 and Figure 4.23. 
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•• Ground Data (1 m) 

Figure 4.21: Shoreline position of the generated positional error graphs 

WAvekl Two-pouit 
IntcipoUtion kWonMn CUssiflc^tion 

Figure 4.22: The positional errors along the shoreline (Metre 1-250 ) 

Wavelet Two-point Contouhng 

Figure 4.23: The positional errors along the shoreline (Metre 251-500) 
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4.3 Results and analysis. 

4.3.1 Results 

Using this graphing method the positional error along the shoreline of each method 

could be seen more clearly in comparison to displaying conventional shoreline maps 

{i.e Figure 4.18). Using this method quantitative analysis was done as errors at each 

metre of the shoreline are displayed. From analysis the root mean square error (RMSE) 

of each classification method were calculated. The results are shown in Table 4.1. 

Another test to verify the result was to rank each method based on the lowest 

error at each metre of the shoreline. The sums of the ranks reaffirm the results obtained 

from RMSE (Table 4.1). The result shows that the two-point histogram method is 

again the most accurate with a sum of ranks value of 921.5, followed by wavelet 

interpolation, contouring and hard classification. 

Table 4.1: RMSE of the 4 classification methods used. 

Classification method RMSE 
Hard Classification 6.48 m 
Contouring Soft classification 3.20 m 
Wavelet interpolation 2.82 m 
Two-point histogram 2.25 m 

Table 4.2: Sum of Ranks of the 4 different methods 

Classification method Sum of ranks 
Hard Classification 1708.5 
Contouring Soft Classification 1298.5 
Wavelet Interpolation 1071.5 
Two-point histogram 921.5 

81 



Chapter 4: Sub-pixel Analysis to Determine Shoreline Position. 

Another statistical test applied to the data was the Friedman test. The Friedman 

test is a non-parametric test that compares three or more paired groups (Siegel and 

Castellan, 1988). The Friedman test first ranks the values in each matched set (each 

row) from low to high. Each row is ranked separately. It then sums the ranks in each 

group (column). If the sums are very different, the P value will be small. Results from 

the Friedman test the P value was determined to be 0 thus it could be assume that the 

output from the 4 methods used in this pilot study are not equal to each other. 

The statistical test shows that the two-point histogram method provided the 

most accurate representation of the shoreline followed by wavelet interpolating, 

contouring soft classification and lastly hard classifier. 

4.3.2 Analysis 

Analysis was done to evaluate the four methods used. The analyses were limited to 

shoreline position within the 500 m stretch as defined in Figure 4.2. 

4.3.2.1 Hard classifier 

The hard classifier was found to produce the least accurate representation of the 

shoreline with an RMSE of 6.48 m and sum of rank of 1708.5. Only 26 % of the 

shoreline was within 2 m of the actual shoreline and 42 % within 4 m. This poor 

representation of the shoreline was expected as the hard classification method was 

reliant on the pixel size as the shoreline was generated according to the edges of pixels 

and not through the pixels such as in the other methods. The hard classifier assigns 

pixels to only one class, based on the class of which it has the most similarity. 

Therefore, pixels with 49% land would still normally be classified as water. This 
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introduces errors to the shoreline position. Due to these restraints and the orientation 

of the shoreline, the shoreline produced was jagged and errors up to 15 m distance 

were observed in several areas (Figure 4.22 and Figure 4.23). Errors also tend to be in 

the negative direction (landwards), this was again due to the nature of the shoreline 

direction. 

4.3.2.2 Wavelet interpolation 

To increase the positional accuracy of the shoreline the soft classification output was 

interpolated using an average interpolator. This produces a shoreline with an RMSE of 

2.82 m. Although the shoreline was more accurate it was still affected by the 

orientation of the shoreline. The wavelet interpolator tries to smooth the peaks that 

were so evident in the hard classification output. The shoreline was still jagged at 

similar areas as the shoreline generated from the hard classification although the peaks 

were smoother. Although this method produces a jagged shoreline 35 % of the 

shoreline was within 2 m from the actual shoreline and 84 % within 4 m, producing 

less error than the smoother soft classified imagery. About 40 % of the shoreline was 

also within 1 m from the actual shoreline. Similarly to contouring, a drawback of this 

method was that it modified the pixel proportion of each pixel. As the wavelet 

interpolator did not maintain the proportion of each pixel it produced fewer errors at 

positions where the soft classification was not accurate. An example could be seen 

from metres 310 - 350 of the shoreline (Figure 4.23). Again as in the result from the 

hard classification the shoreline tend to be in the negative direction or landwards. 

4.3.2.3 Contouring soft classification output. 

Outputs from a soft classification are class proportion values representing the 

proportion of a class within a pixel. Using these proportion values a shoreline position 
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could be generated at the position where the proportion values are 0.5 thus, providing a 

method of positioning the shoreline location within a pixel. This increased the 

shoreline mapping accuracy and produces a shoreline with an RMSE of 3.2 m. Only 35 

% of the shoreline was within 2 m from the actual shoreline and 42.8 % within 4 m. 

The shoreline generated from this method was visually the smoothest among the 4 

methods used. The positional error from this method was within 2 to 5 m, 62.8 % of 

the time and very seldom (16 %) within 1 m to the actual shoreline position. This 

method does not suffer from the orientation of the shoreline as it does not reveal any 

jagged areas. A drawback of this method was that it modified the proportion values 

when fitting the contour. Again the results show that errors tend to be in the negative 

direction or landwards, this was again due to the nature of the shoreline direction. 

4.3.2,4 Two-point histogram 

Among the 4 methods used, the two-point histogram approach produced the most 

accurate result with an RMSE of 2.25 m with 57 % of the shoreline within 2 m from 

the actual shoreline and 84 % within 4 m. The output from this method was also more 

accurate than the output from the wavelet interpolation method with 46.6 % of the 

shoreline within 1 m of the actual shoreline. The two-point histogram approach was 

very dependant to the initial soft classification output as the proportion of each pixel 

was maintained. This explains why in certain portion of the shoreline sharps peaks are 

visible. These peaks can be seen at metre 335 and 380 of the shoreline (Figure 4.23). 

Although the shoreline was not as smooth as the contouring method it was consistently 

close to the actual shoreline despite the peaks. 
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4.4 Conclusion 

This chapter examined the effects of spatial resolution on generating shoreline position 

maps and methods of accurately predicting the shoreline accurately. For this purpose a 

20 m satellite sensor imagery was simulated from a 1 m satellite sensor imagery. 

Using a hard classifier the 20 m imagery was classified to produce 2 classes, land and 

water. The shoreline generated by the hard classifier had large positional errors as the 

shoreline was generated along pixel boundaries and not through the pixels. To increase 

accuracy of the shoreline prediction the 20 m imagery was soft classified and several 

methods were applied to position the shoreline within the pixels. These methods were 

contouring, wavelet interpolation and two-point histogram. 

Using a graphing method the accuracy of shoreline generated by these methods 

were compared. From the result it was determined that two-point histogram method 

produced the most accurate representation of a shoreline followed by wavelet 

interpolation and contouring. As these results were obtained from a linear shoreline, 

the results are only valid for linear shoreline characterized by a simple linear pattern. 

For shorelines that are more complicated with different orientations, it could be 

assume that the results will be different. 

This chapter provides a starting point on sub-pixel methods of generating accurate 

shoreline maps from coarse spatial resolution satellite sensor imagery. For linear 

shoreline it has been shown that two-point histogram and wavelet interpolation were 

able to produce shoreline maps with an RMSE of fewer than 3 m. This should satisfy 

the requirements for a 1 : 10,000 scaled map (U.S.Geological Survey, 1999). But 

shorelines are generally more complicatedly shaped and further research needs to be 

done to develop methodologies to map these shorelines. Chapter 6 will address these 
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issues and look into methods of producing accurate shoreline maps from shoreline with 

different orientations. 

This chapter has revealed the potential of using coarse spatial resolution satellite 

sensor imagery to map the shoreline, even so, fine spatial resolution imagery are still 

useful to produce local shoreline maps. The following chapter examines the 

application of using fine spatial resolution satellite sensor imagery to accurately 

position the shoreline. 
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5 Shoreline Mapping From Fine Spatial 

Resolution Satellite Sensor Imagery. 

5.1 Introduction 

The shoreline is defined as the intersection of land and water surfaces. Due to the 

dynamic nature of the water body, the shoreline is constantly changing in location 

(Davis et al., 2000; Fletcher et al, 2003). When a shoreline position is captured by 

satellite sensors the resulting shoreline position is categorised as an instantaneous 

shoreline. This instantaneous shoreline could not directly be used for mapping 

purposes, nor be employed for quantifying shoreline changes as it is not based on a 

reference datum (Li et al., 2002). For these purposes a reference shoreline is required. 

A reference shoreline is defined based on a stable vertical datum or is the linear 

intersection between water and land at a desired water level. These shorelines are also 

known as tide-coordinated shoreline such as, the shoreline normally shown on a 

topographic map of Malaysia. 

Conventionally shoreline maps are derived from aerial photography by 

acquiring the images during a selected tide elevation level (Camfield and Morang, 

1996; Gorman et al, 1998). This requires coordination between a tide gauge reading 

(to determine tide level) and aerial photography (to acquire images at a particular time) 

to ensure that the shoreline acquired was based on a selected tide level (Li et al., 2002; 

Parker, 2003). This type of tide coordinated shoreline is called a physical tide 

coordinated shoreline. 
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The spatial resolution of satellite sensors has increased so that the spatial 

resolutions are comparable to that of aerial photography. These sensors also have 

stereo mapping capabilities. However, to acquire a tide coordinated shoreline based on 

a satellite sensor image is unrealistic as the acquisition times of satellite sensor are not 

flexible and are based on the orbit of a particular satellites (Jensen, 2000). Therefore to 

establish a tide coordinated shoreline from satellite sensor imagery, a relationship 

needs to be established between the instantaneous shoreline and the tide coordinated 

shoreline. Knowing this relationship the requirement for field coordination between 

gauge reading and aerial photography/satellite sensor imagery would no longer be 

necessary. This provides a new method of digitally establishing a tide coordinated 

shoreline. 

The idea of digitally establishing a tide coordinated shoreline comes from the 

definition of a shoreline as the contact or intersection line between water and the land 

surfaces. This is intuitive to people's perception of a shoreline. A shoreline profile or 

side view explaining this concept is shown in Figure 5.1. To generate a digital tide-

coordinated shoreline the intersection between land and water surface needs to be 

established, by combining topographic and bathymetric information. The water surface 

could later be repositioned based on a selected tide elevation as a boundary condition. 

Therefore the shoreline position at a selected water level could be derived. 
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Figure 5.1: Profile showing the combination of topographic and bathymetric 

information. The figure gives an example of the shoreline position (a) during satellite 

sensor image acquisition and (b) a computed shoreline position based on a selected 

tide elevation 

Li et a/., (2002) digitally established a tide coordinated shoreline for a portion 

of Lake Eire, USA. A terrain model was used to define the elevation for areas above 

the water and bathymetric information to define the elevation below the water level. 

By combining these two data sets a 3-D model of the shoreline was established. The 

terrain model was derived from aerial photographs and integrated with bathymetric 

data acquired by the Ohio Department of Natural Resources to form a 3-D terrain 

model of the coastal area. By modelling the water surface to a selected tide elevation, a 

tide coordinated shoreline was generated with an overall accuracy ranging from 2.1 m 

to 13.4 m. Li et a/.,(2002) concluded that the major error source came from the 3-D 

terrain model and increased accuracy was achievable with accurate terrain information 

of the study area. 

In Malaysia, shoreline maps are generally derived from the intersection 

between land and water body at the Mean High Water Springs (MHWS) tide. MHWS 

is defined as the 19 year average height of high water mark occurring on spring tides. 

Spring tides are defines as the average tide during new and full moon days and the 2 
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days following each (John, 1983). As the MHWS information at the Kuala Terengganu 

tide station was not available to the author, the shoreline was mapped based on Mean 

Sea level (MSL). MSL is defines as the average height of the sea surface, based upon 

hourly observation of the tide height on the open coast or in adjacent waters that have 

free access to the sea (Clark, 1983). Even though MSL was used, the method 

employed in this research would work with any reference level. To digitally establish 

a tide coordinated shoreline based on the MSL a 3-D representation of the study area 

was required. By doing so the shoreline could be repositioned from its instantaneous 

location (satellite sensor imagery) to its reference position (MSL). Figure 5.2 shows 

the relationship between shoreline positions at different tide levels. 

This thesis proposes the use of IKONOS imagery to produce a 3-D elevation 

model of the area. The process was two fold involving the generation of elevation 

information for land and depth information for water areas. For land the elevation 

information was derived by utilizing stereo IKONOS sensor imagery, on the other 

hand, depth for water areas are derived from multi-spectral IKONOS sensor imagery 

based on spectral reflectance values. These two processes are explained in detail in the 

following sections. 

High Tide 
Mean Sea Level (MSL) 

Low Tide 

Figure 5.2: Shoreline positions at different tide levels 
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Li et al, (2002) establish a methodology for deriving a digital tide coordinated 

shoreline utilising a terrain model of an area by correcting the tide level to a selected 

datum to determine the shoreline position. Li et al., (2002) work utilizes aerial 

photographs and available bathymetry data to establish a terrain model of an area. But 

to map shorelines in Malaysia, similar data sets would not be suitable as the coastal 

area is dynamic and would change from year to year (Ministry of Agriculture, 1997). 

This research aimed to develop a method of producing shoreline maps quickly by 

utilizing mainly satellite sensor imagery to derive both topographic and bathymetric 

information. This not only provided a faster but also a cheaper alternative to mapping 

the shoreline (Rao et al., 1985). These two factors are very important to a country like 

Malaysia which has limited resources and requires the monitoring of long shorelines. 

A 3-D terrain model of the shoreline would also be useful in other coastal research 

studies such ecosystem management, coastal engineering, sediment movement and 

erosion studies (Clark, 1983; Balopoulos et al, 1986; Cromwell et al, 1991; Bhat and 

Subrahmanya, 1993; Cendrero and Fischer, 1997; Chauvaud et al., 1998; Lane et al., 

2000; Davis et al, 2000; Honeycutt et al., 2001; Adams and Minor, 2002; Friedman et 

al., 2002; Byrnes et al., 2003; Leatherman, 2003; Fletcher et al., 2003; Honeycutt and 

Krantz, 2003; Dewidar and Frihy, 2003). 

5.2 Coordinate system 

Before producing the DEM and bathymetry maps it was important to first select an 

established coordinate system (Kenward et al., 2000; Ruggiero et al., 2003). The use 

of a common coordinate system on a defined horizontal and vertical datum allowed 

data to be combined easily without the need for coordinate transformation. For this 

thesis, the horizontal and vertical datum used was based on the RSO projection. The 
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RSO projection is the mapping standard used in Malaysia. Details of the RSO 

projection could be found in section 2.2. 

5.3 Deriving bathymetry and DEM information utilizing IKONOS 

sensor data. 

Research in deriving DEM using satellite sensor imagery has grown enormously since 

the launch of stereo capable satellites such as SPOT HRV but its capability was limited 

due to its coarse spatial resolution (Giles and Franklin, 1996; Al-Rousan et al, 1997). 

Newly developed sensors such as IKONOS and Earlybird with a fine spatial resolution 

(under 1 m) have spawned new research in their capability to produce accurate and 

detailed elevation information (Zhou and Li, 2000; Ganas et al., 2002). Research 

conducted in topographic mapping and feature extractions has shown promise 

producing accuracy similar to aerial photography (Grodecki and Dial, 2001; McCarthy 

et al., 2001; Ganas et al., 2002; Eraser et al., 2002a; Malthus and Karpouzli, 2003). 

Satellite sensor imagery has been used to derive bathymetry information since 

the launch of Landsat MSS in the 1980s (Benny and Dawson, 1983; Lyzenga, 1985; 

Philpot, 1989; Ibrahim and Cracknel], 1990; Bierwirth et al., 1993; Roberts and 

Anderson, 1999). Even so, satellite sensor imagery has not been widely used as the 

spatial resolutions of these satellites were too coarse for practical marine surveying 

such as mapping bathymetry. IKONOS with a fine spatial resolution of 4 m (Multi-

spectral) provides a new avenue to utilize satellite sensors imagery to produce accurate 

bathymetric data. IKONOS sensor also has a larger radiometric resolution of 11-bit 

(2048 grey levels) in comparison to previous sensor such as SPOT HRV and Landsat 

TM which have a radiometric resolution of 8-bit (256 grey levels). 
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5.3.1 Bathymetry mapping 

Hydrographic surveying by conventional ship borne sounding techniques is slow, 

hazardous and expensive (Cracknell, 1999; Brock et al., 2002). As a result, interest has 

been generated in the application of remote sensing techniques for bathymetry 

mapping. Satellite sensor imagery provides an alternative to conventional 

hydrographical surveys for measuring water depth. The application of passive satellite 

sensor imagery to derive bathymetry maps have concentrated on the blue region of the 

electromagnetic spectrum (0.45-0.52 pm) due to its penetration of water (Bukata et al, 

1995; Jensen, 2000). Landsat TM has been used extensively for this purpose and 

several researchers have extensively developed models to extract bathymetry 

information (Lyzenga, 1985; Philpot, 1989). The IKONOS multi-spectral bands are 

spectrally similar to bands 1-4 of the Landsat TM, but provide data with a spatial 

resolution of 4 m (Multi-spectral) and radiometric resolution of 11 bit in comparison to 

Landsat TM 30 m spatial resolution and 8-bit radiometric resolution. The radiometric 

resolution of IKONOS of 11- bit with 2048 grey levels provides the ability to provide 

increased tonal and intensity variation in comparison to the Landsat TM (8-bit; 256 

grey levels). With these capabilities IKONOS is capable of producing accurate 

bathymetric predictions in comparison to Landsat TM. 
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5.3.1.1 Techniques for bathymetry extraction from remote sensing 

imagery 

This section reviews several techniques developed for the estimation of bathymetry 

from satellite sensor imagery. 

5.3.1.1.1 Single band method 

This is the simplest method of bathymetry extraction in which the water depth 

extraction techniques were developed on the basis of a simple water reflectance model 

which accounts for a major part of the signal received by a multi-spectral scanner but 

neglects the effects due to scattering in the water and internal reflection at the water 

surface. According to the single band method, the reflectance in a single wavelength 

band can be written as, 

Where represents the sum of the radiance from the atmosphere and the 

reflection at the sea surface and is therefore equal to the radiance observed over deep 

water; is a constant which includes solar irradiance, the transmittance of the 

atmosphere and the water surface; (A) is the bottom reflectance; a{X) is the 

effective attenuation coefficient (m"') of the water;/is a geometric factor to account 

for path length through the water and Z is the water depth (m) (Lyzenga, 1978). 

The single-band method assumes that the bottom reflectance is constant 

throughout the test site and that the water attenuation coefficient is constant and 

independent of water depth. It also assumes that the atmosphere and sea state are 

uniform and that the effects of multiple scattering between the water surface and the 
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bottom can be ignored or assumed constant throughout the image. Further, it assumes 

that the angular distribution of light does not change with depth and that there is no 

contribution to the upwelling radiance by the reflected sky radiance from the water 

surface. 

The simplest method of extracting water depth information from multi-spectral 

scanner data is to invert equation 5.1 for a single wavelength band. An extension of 

this method would be to calculate the depth from two or more bands and average the 

results. Despite the crudeness of the model, it accounts quite well for the signals 

recorded by a multi-spectral scanner over shallow water (Lyzenga, 1979). The 

difficulty with this method is that changes in the bottom reflectance or water 

attenuation will cause errors in the depth calculation. 

5.3.1.1.2 Ratio Method 

Commonly the attenuation coefficient of water and the bottom reflectance 

change from one location to another within the same scene. However, the difference 

between the attenuation coefficients in two appropriately chosen bands does not vary 

much from point to point and from time to time. The same is true of the ratio of the 

bottom reflectance in the two bands. The following algorithm developed by Polcyn et 

al. (1970) relies on the assumption that a pair of wavelength bands can be found such 

that the ratio of the bottom reflectance's in these two bands is the same for all the 

bottom types within a given scene, 

Z = fM + in\ — (i?, - ) >-m(^2 ~ ^di) 5.2 
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Where / r t j is the ratio of bottom reflectance in bands 1 and 2 and a , and 

a i are the attenuation coefficients in bands 1 and 2 respectively. Rj and R2 are the 

observed radiances, Rdi and Rd2 are the radiances observed over deep water and Rd 

and Rc2 are the constants which include solar irradiance, the transmittance of the 

atmosphere and the water surface in bands 1 and 2 respectively. Thus, if the 

assumption that the ratio of bottom reflectance in the two bands is constant within a 

given scene is correct, the depth calculated by this method is not affected by 

changes in bottom composition in the scene. The estimation of water depth is also 

insensitive to changes in water quality if the difference between the attenuation 

coefficients, remains constant (Gould and Arnone, 1997). In many cases, a pair of 

wavelengths can be found where an approximately constant value can be obtained 

for the ratio of the bottom reflectance and for which difference between the 

attenuation coefficients remains relatively constant. However, the wavelengths 

which satisfy one criterion are in general not the same as those which satisfy the 

other; moreover, if changes in bottom composition or water quality are too large, a 

pair of wavelengths may not exist which satisfies either criterion. 

5.3.1.2 Evaluation of methods 

The methods described in this section essentially depend upon finding a 

relationship between water depth and the reflected radiance in one or more 

wavelength bands. If the water's optical properties and the bottom reflectance are 

uniform and a large correlation exists between the water depth and the radiance in a 

single wavelength band then single-band method may give accurate results. If the 

optical properties and bottom reflectance are not uniform then more than one 

wavelength band must be used in the depth calculation. In deeper waters, using the 

band with maximum penetration will give increased accuracy when compared to 
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using multi-bands with insufficient depth penetration. Ratio methods give accurate 

results in areas of non uniform bottom reflectance and optical properties. The 

selection of method would, therefore, depend on the type of data available, the 

spectral channels available, the water and bottom characteristics and the range of 

depth in a particular area. 

5.3.1.3 Method of depth determination and algorithm used in this 

thesis. 

Knowledge of the study area played a vital part in deciding the method used to obtain 

water depth. By utilizing information such as bottom type and water quality of the 

study areas a suitable method could be selected. Since the study area was small (4 km 

length) and the area had a consistent bottom type of white carbonated sand, it was 

assumed that the albedo or reflective properties of the bottom type was constant. 

Water quality in this area was also consistent and hence the water attenuation 

coefficient, k did not vary within the imagery. Field visits to the study site validated 

this assumption. As these assumptions are implicit to the Benny and Dawson (1983) 

method, this method was chosen to estimate water depth. An in-depth explanation of 

the method is given below. 

The fundamental principle of using remote sensing imagery to estimate water 

depth information is that different wavelength of radiation will penetrate water at 

varying degrees. As radiation passes through water it is attenuated by the interaction 

with the water column, its intensity 7^,remaining after the passage length p through 

water, is given by : 
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Where = intensity of radiation and k is the attenuation coefficient, which 

varies with wavelength. If a vertical pathway of radiation from surface to bottom and 

back is assumed, p maybe substituted by the term 2d, where d = water depth. The 

Benny and Dawson (1983) method assumes that for a certain water depth d, the length 

of the path is equal to d + (/.cosec (E'), which can be rewritten as d(l^ cosecfE'). The 

cosec function corrects for the fact that the Sun is not vertically overhead at the time of 

image acquisition. Therefore, the amount of radiation remaining after passage through 

the water column to depth d and back upwards (Id) will be ; 

Id =R. lo-e -k.d(]+cosec(E')) 
5.4 

Where R is the proportion scattered upwards from seabed and /„ is the amount of 

incident light. Figure 5.3 displays the light path from the Sun to satellite sensor 

assumed by this method. 

To satellite sensor 
A 

Atmospheric scatter 

Specular 
reflectance 

Solar elevation angle L Sea Surface 

Water depth 

bottom 

Figure 5.3; The light paths from Sun to satellite sensor modified from Benny and 

Dawson (1983)) 
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Assuming that the radiation returned to the sensor by specular reflection and 

atmospheric scatter is the same for deep and shallow water, the total radiance (Z,) 

recorded by the sensor is ; 

Where = deep-water radiance. The ratio of the radiance from the two 

different depths, x and)/, is therefore: 

T _ T P T 'k.x(l+msec(E')) 
, 

As the albedo or reflective properties of the bottom type in this study area is 

constant, the equation simplifies to: 

L^— Lj e -A.A:(l+cosec(jF')) 
-A.}'(l+cosec(̂ ')) 5.7 

Hence : 

- I j ) 
x-y = 5.8 

- t O + CosecCE")) 

In very shallow water (< 1 cm), y = 0, and the equation reduces to: 

Depth 
-A:(l + Cosec(E')) 

Where Lo is the signal strength for shallow water. This formula was applied to the 

IKONOS multi-spectral sensor imagery to derive a bathymetry map. 

5.3,1.4 Data 

This section describes the data used to estimate bathymetry. 

5.3.1.4.1 Satellite sensor imagery 

This study utilizes multi-spectral IKONOS satellite sensor imagery with a spatial 

resolution of 4 m to estimate bathymetry. The data was acquired on the lO"̂  of April 
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2002 over Kuala Terengganu. Further details regarding the data can be obtained in 

section 3.3.1.1. The imagery was geo-rectified to the Malaysian Mapping standard 

based on the RSO map projection utilizing 20 carefully selected control points with an 

accuracy RMSE 5.4 m. 

The IKONOS sensor imagery acquired for this purpose was contaminated by 

sun-glint. This was evident especially in band 1 but was less apparent in band 2 and 3. 

This occurs as the satellite sensor was in the opposite direction of the Sun during 

imagery acquisition. It was expected that this phenomena would affect the ability to 

derive depth information as it interferes with the radiation water interaction essential in 

determining bathymetry. Details of this phenomenon will be given in the discussion 

section. 

5.3.1.4.2 Ground data 

The data used were obtained from a field trip conducted within 3 months of the date of 

satellite sensor data acquisition. The field trip was conducted from the 6"̂  July till 10^ 

July 2002 to obtain bathymetry information. The bathymetry was obtained by 

collecting X, Y and water depth along a several profiles starting from land towards the 

sea. Further details on the data can be found in section 3.3.2. From this field trip a 

selection of 115 points were selected as ground data. The points were selected based 

on their location to form an evenly distributed network of points. The points were also 

selected evenly between depth values of 0.5 m and 7.5 m. From these 115 points 90 

points were used as training data to estimate k, L^, £„ andE', while the remaining 25 as 

check points to access the accuracy of the estimated depth (Figure 5.5). 
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8 672613 

Figure 5.4: Colour composite of Band 1, 2 and 3 of IKONOS satellite sensor imagery 
of study area. 

Figure 5.5: Ground data and check point used to estimate bathymetry. Training data 
was used to estimate the parameter necessary to estimate bathymetry while check 

points were used to determine the accuracy of the derived bathymetry map. 
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5.3.1.5 Image processing 

5.3.1.5.1 Converting image DN to planetary reflectance 

In order to convert DN values from IKONOS satellite sensor imagery to Top of 

Atmosphere (TOA) or planetary reflectance the following formula was used (NASA, 

2003): 

Pp =-
nL^d 

5.10 

Where Pp is the planetary reflectance, 1% is the spectral radiance at sensor's aperture, 

ESUNx is the band average solar Spectral Irradiances, 9s is the solar zenith angle and d 

is the Earth-Sun distance, in astronomical units. 

To utilize this formula the IKONOS sensor spectral radiance at sensor's aperture 

need to be determined. This parameter could be determined by the equation (Space 

Imaging, 2003b) ; 

f x (mW cm'^ sr ' ) = D # / 5.11 

or 
5.12 

Zx (W sr -' ) = D # / 

Where the value of CalCoefx was be obtained from Table 5-1. 

Table 5.1: IKONOS satellite sensor calibration values (Source: Space Imaging 

Document Number SE-REF-016, Rev. A) 

Spectral Band 
CalCoefti 

DN*[mW cm'^-sr]'^ 
Full Scale Dynamic 

Range 
(mW cm"^-sr) 

values 
(Wm ^ ') 

MS-l (Blue) 728 2.98 1939.429 
MS-2 (Green) 727 3.32 1847.400 
MS-3 (Red) 949 2.87 1536.408 

MS-4 (VNIR) 843 3.75 1147.856 
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However, in order to use the values in Table 5.1 in the conversion formula, the 

values must be in units of W m'^ s r f i m " ' . This can be accomplished by dividing the 

wavelength dependent CalCoefx by 10 and dividing this number by the bandwidth for 

each band (Fleming, 2003). Thus, spectral radiance in units of W m"̂  s r p m ' ' now 

becomes: 

Zx (W sr ' urn ' )= DN/rrCa/Co^70)/Bandwidth) 5.13 

The final formula that incorporates the spectral radiance and band pass conversions for 

IKONOS DN values now becomes: 

_ / ( (Ca/Co^ ^ 

Equation 5.14 calculates the top of the atmosphere reflectance for IKONOS sensor 

imagery without considering atmospheric affects. Several radiative transfer codes 

(RTCs) based on radiative transfer theory have been developed to correct the 

atmospheric affect on satellite sensor images, among them 6S and Lowtran (Song et 

al., 2001). However, these RTCs require accurate atmospheric optical properties at the 

time of image acquisition to calculate the surface reflectance. As these measurements 

were not available, the planetary reflectance was used to derive bathymetry. Therefore, 

equation 5.14 was applied to band 1 and 2 of the IKONOS satellite sensor imagery to 

produce reflectance images. 
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5.3.1.5.2 Estimation of k, L^, and E' 

To utilize equation 5.9 and generate bathymetry, several parameters need be 

determined from the satellite sensor imagery. These values are k, Ld , Lo and E' 

To estimate k of the satellite sensor images, field data were required. Data of 90 

training sites (Figure 5.5) of known and varying depth with the same bottom type were 

used in estimating k. Based on the Benny and Dawson (1983) method the reflectance 

in each band were logarithmically transformed and regressed against depth. The 

regression line will have a negative gradient whose value is equal to k. From the 

analysis it was determined that a linear correlation could be. Figure 5.6 shows 

IKONOS satellite sensor band data regressed against logged depth (band 1 and 2). 

0 40 

Log Depth (m) 

30 0.20 0 40 0 6 0 0,80 

y".0.1548.0.2786x 
= 0,9128 

1,00 

(a) 
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Figure 5.6: Reflectance values from IKONOS sensor reflectance regressed against 

logged depth from 90 sites in Pantai Batu Buruk and Seberang Takir for (a) band 1 and 

(b) Band 2. 

From the relationship between reflectance and depth in Figure 5.6 it was 

determined that the negative gradient for bands 1 and 2 were -0.2786 and -0.1345 

respectively. Therefore, A: was estimated to be 0.2876 and 0.1345 for band 1 and 2 

respectively. As no data (from the 90 points) used in estimating these values were over 

7.5 m, these A: values could be assumed to be valid in estimating depth up to 7.5 m. 

An estimation of Ld and Lq, the pixel reflectance value for deep and shallow water for 

the two bands were calculated by producing a histogram of pixel values for the water 

area of the imagery, masking out land. The reflectance values for the lower part or the 

histogram is an approximate value for while the upper end is an approximate value 

for Lq. This is illustrated in Figure 5.7. 

The estimated values for Ld and Lo were verified by comparing them to location 

of known shallow and deep water in the satellite sensor imagery. By this means an 
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approximation were made for the of Ld and Lo for band 1 and 2 . Tliese values are 

given in Table 5.2. E' could be calculated from its relationship with solar elevation 

angle (£) and through knowledge of the refractive index of water. Figure 5.8 show this 

relationship. 

Table 5.2: Average deep-water (Ld) and shallow water (Lo) reflectance values 

calculated from IKONOS satellite sensor data of study area. 

Band Ld Lo 

1 1.513 0.431 

2 2.026 1.081 

i - d Reflectance values 

Figure 5.7; Histogram of reflectance values. 
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Figure 5.8: Relationship between Solar elevation angle {E} and E' 
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From Figure 5.8 it is apparent that E - 90 - Gw-sin 9w could be calculated from 

the following equation : 

^ = i 5,15 

Where is the refractive index of water and ria, the refractive index of air. 

Knowing the refractive index of air = 1 , the refractive index of sea water = 1.339 

(Bukata et al, 1995) and the Solar elevation angle of 68.13° (from header file), E ' was 

calculated to be 41.14 

5.3.1.5.3 Depth estimation 

The selection of the most appropriate band to predict water depth was very important. 

Several considerations were taken into account when choosing the band to use. These 

considerations were mainly based on the bottom type, purpose of bathymetry 

extraction and water penetration properties of the radiation (Nanu and Robertson, 

1993). Other factors such as Sun glint were also considered. 

The purpose of bathymetry extraction in this thesis was mainly to accurately 

extract depth values of shallow water close to the shoreline as outlined in section 5.1. 

These values would be combined with DEM values to form a 3-D terrain model of the 

area. Therefore, the selection of the appropriate band to use for the purpose of this 

thesis was based on these factors in mind. As radiation in band 1 is more penetrative in 

water than band 2, due to its spectral properties, it was expected that band 1 would be 

capable of estimating bathymetry more accurately. But as the study area mainly 

comprises of reflective sand and accurate bathymetry values close to the shoreline are 
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needed, band 2 was considered to be more appropriate. In band 1 the combination of 

its penetrative capability and reflective property of the substrate (white sand) in the 

study area causes the reflectance values in band 1 to be very saturated, resulting in less 

variation in L. Although band 2 was not as penetrative as band 1, resulting in an 

incapability to map deep water (more than 10 m) the results near the shoreline are 

better. As this thesis emphasis the mapping of coastal areas which are affected by tide 

levels depth more than 5 m were insignificant. As mention previously in section 

5.3.1.4.1 the satellite sensor imagery was affected by sun-glint. Here at certain angles 

the water reflects sunlight and causes reflections of waves and ripples in the sea to be 

visible. This effect could be seen in Figure 5.9 was more apparent in band 1 in 

comparison to band 2. 

Therefore band 2 was more suitable as reflectance values were less saturated 

while still capable of penetrating the water column. Utilizing the k, Ld, Lo and £" 

derived in section 4.2.6.2 and equation 5.9 a bathymetric map was derived from band 

2 of the IKONOS satellite sensor imagery. The resulting map is shown in Figure 5.10 

(a) (b) 

Figure 5.9: The effects of Sun-glint in (a) band 1 and (b) band 2 of the IKONOS 

sensor imagery. 
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Figure 5.10; Bathymetry map generated from IKONOS sensor imagery. 

5.3.1.6 Results 

The accuracy of the bathymetry map produced from the IKONOS sensor imagery was 

determined by comparing depth values estimated from IKONOS imagery and actual 

depth from the 25 well distributed independent check points. These points are shown 

in Figure 5.5. It was determined that there was a significant correlation between the 

estimated depth and actual depth with a r value of 0.92 and an RMSE of 0.87 m. A 

graph of the relationship between the predicted and actual depth in metres is shown in 

Figure 5.11 

5.3.1.7 Discussion 

The method applied in this research has been tested in the Kuala Terengganu area with 

an RMSE value of below 1 m. The linear correlation coefficient of 0.92, shows a 

significant linear correlation {p < 0.05) between actual depth and estimated water 

depth achieved by utilising this methodology. Although there was a significant 
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correlation, a perfect correlation was not achieved because in this method k was 

assume to be constant and determined by regressing known bathymetry data against 

IKONOS radiance but it actually decreases in deeper water (Jerlov, 1976). 
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Figure 5.11: Relationship between predicted depth (m) and actual depth (m). 

Utilizing IKONOS sensor imagery, the Benny and Dawson (1983) method was 

able to accurately estimate depth up to a depth of 7.5 m (section 5.3.1.5.2). But under 

optimum conditions, IKONOS sensor imagery should be able to predict water depth 

up to 21m, as in the case of Landsat TM imagery (Ibrahim and Cracknell, 1990). But 

this was expected as the IKONOS sensor imagery used was affected by sun glint 

which interferes with the reflectance values and limits its depth penetration. The sun-

glint problem could be minimized by making a special request to Space imaging to 

capture the satellite sensor imagery at certain angles but this requires a special 

agreement. Under optimal conditions it was expected that with IKONOS sensor 

imagery it would be possible to estimate depth more accurately than with Landsat TM 

data. However, for the purpose of this thesis a depth penetration of less than 5 m is 

sufficient as the main interest was to accurately derive bathymetry maps of areas 

affected by tide levels. 
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This thesis used the Benny and Dawson (1983) method to extract water depth 

utilizing IKONOS sensor imagery. Even though this method makes several assumption 

mainly that the bottom type and water quality of the area was constant, accurate results 

were still obtained. Other more complicated methods developed to tackle different 

bottom type and water quality depend on obtaining substantial information of the study 

area. This required substantially more field data making the methods less appealing. 

UBRAAY $ 
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5.3.2 DEM extraction from stereo satellite sensor imagery 

The process of DEM extraction is made possible by comparing two images acquired of 

the same area at different viewing angles. Ground point or interest points are then 

identified within the overlapped area of the two images. This process is termed digital 

image matching and is based on grey scale and contrast variations of points occurring 

on neighbouring images (Jensen, 2000). Automated DEM extraction can be achieved 

from stereo imagery, however sensor model information such as interior and exterior 

orientation associated with the imagery are required. Sensor models are a mathematical 

function explaining the relationship between the imagery acquired and their ground 

location. This sensor model information needs to be calculated through a process of 

aerial triangulation before it can be used. Once established the process of DEM 

extraction could begin (Toutin et al, 2002). 

The recent introduction of fine spatial resolution satellite sensor imagery has 

initiated a new era in Earth observation and digital mapping (Li et al., 1998; Tanaka 

and Sugimura, 2001; Mumby and Edwards, 2002). Satellite sensor imagery from 

IKONOS and Quickbird offer fine spatial resolution satellite sensor imagery, with 

spatial resolution of 1 m and less. These sensors provide multi-spectral and 

panchromatic satellite sensor imagery and the capability of providing stereo imaging. 

In particular, IKONOS is capable of acquiring stereo imagery in near real time due to a 

very flexible pointing mechanism. These characteristics makes IKONOS sensor 

imagery suitable for generating DEM (Lee et al., 2002; Eraser et al, 2002a; Chen et 

al., 2003). The aim of this section was to generate a DEM of the study area utilizing 

IKONOS 1 m pan sharpened geo stereo product. 

112 



Chapter 5: Shoreline Mapping From Fine Spatial Resolution Satellite Sensor Imagery. 

5.3.2.1 Image data 

The imagery comprised a stereo pair of Pan sharpened IKONOS satellite sensor 

imagery of Kuala Terengganu, Malaysia. Pan sharpened product was chosen as it 

provided a finer spatial resolution of 1 m in comparison to multi-spectral imagery used 

for bathymetry generation which was 4 m. For bathymetry generation spectral data 

was needed to relate the reflectance to water depth but for DEM generation a finer 

spatial resolution is important, to be able to resolve smaller objects in the imagery. 

When acquiring stereo imagery, two sets of data are acquired, one looking sideways to 

the left and the other to the right. Details of imagery are given in Table 5.3. In addition 

Figure 5.12 shows the left and right stereo images of the study area. 

The stereo imagery were supplied with Image Geometry Model (IGM) or 

generally known as Rational polynomial camera (RPC) which provide a mechanism 

for object to image space transformation and 3-D point determination (Grodecki, 

2001). The left imagery was collected at a low sensor elevation angle while the right 

imagery was taken at a higher sensor elevation angle providing a base to height ratio 

between 0.54 and 0.83 (according to IKONOS stereo imagery specification). These 

images have a horizontal accuracy of within 25 metres CE90 and a vertical accuracy of 

22 metres LE90 (Space Imaging, 2003a). 

Table 5.3: Acquisition parameters of IKONOS pan sharpen Images 

Left Right 

File name po_103939_rgb_0000000.tif po_l 03939_rgb_0020000.tif 

Date, Time (GMT) 2002-08-28 03:45 2002-08-28 03:44 

Sensor Azimuth (deg) 177.5195 52.4229 

Sensor elevation (deg) 65.66296 80.21711 

Sun azimuth (deg) 76.4012 76.5092 

Sun elevation (deg) 68.81210 68.60580 
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Figure 5.12: Left and right IKONOS satellite sensor image. 

5.3.2.2 Study area and GCP collection. 

The study area covers a 10 km by 7.5 km area with an elevation range less than 70 m. 

The area comprise Kuala Terengganu town in the south, adjacent to the Terengganu 

river mouth. Pulau Duyung a partly reclaimed island could also be found in this area. 

Several fishing villages could be located along the shoreline towards the north. The 

area is comprised of white sandy beaches facing the South China Sea to the east. The 

Sultan Mahmud airport is located in the north of this area. 

To accurately generate a DEM of this area, a compilation of 62 high precision 

GPS control point was surveyed by performing Differential Geo-positioning system 

(DGPS) measurement under normal weather condition over this area. The GCPs were 

collected using the Omni Star DGPS system, capable of collecting GCPs at sub-metre 

accuracy. OmniSTAR is a wide-area differential GPS service, using satellite broadcast 

techniques. Data from many widely-spaced reference stations was used in a multi-site 

solution to overcome the influence of errors and biases (Omnistar, 2001). These points 

were simultaneously converted and collected in the RSO projection. The control 
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points were collected based on points which were identifiable on the IKONOS satellite 

sensor imagery. 

5.3.2.3 Image Distortion and Correction Models. 

Fine spatial resolution satellite sensor imagery contains geometric distortions that need 

to be corrected for it to be used for the generation of maps. This geometric distortion 

could be modelled and applied to the satellite sensor imagery to produce accurate 

satellite sensor maps. The source of distortion in satellite sensor imagery could be 

related to two general categories: satellite sensor (observer) and Earth (observed). The 

distortion caused by the acquisition system includes calibration parameters such as the 

focal length and the instantaneous filed of view (IFOV) of the sensor imaging system. 

Distortion from the Earth includes the effect of the Earth curvature which creates 

variation in the image pixel spacing and topographic relief which generates a parallax 

in the sensor scanning azimuth (Toutin et al, 2002). To correct these geometric 

distortions requires models and mathematical functions. Several methods have been 

proposed to correct these distortions which include 3-D non-parametric models or 

rigorous parametric models, 3-D polynomial models and RFC models (Lee et al., 

1992; Clavet et al, 1993; Bolstad and Stowe, 1994; Giles and Franklin, 1996; Clarke 

and Fryer, 1998; Vassilopoulou et al, 2002; Ganas et al, 2002; Toutin, 2003a). 

To utilize the rigorous parametric model, it should mathematically model all 

distortions arising from the platform (position and velocity), the sensor (panoramic 

effect, viewing angles), the Earth (Ellipsoid and relief) and the cartographic projection. 

As most of these parameters (for IKONOS sensor) are not made available to the 

general public, utilization of the rigorous model has been limited. However, several 

researchers have been able to develop rigorous models that do not require the sensor 

model but utilize basic information of the meta-data and celestial mechanics laws 
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(Toutin et al, 2001). Even though these models approximate physical characteristics 

of the sensor, they have been shown to be robust and able to achieve consistent results 

over different study sites and environments (Davies and Wang, 2001; Hoffman et al., 

2001; McCarthy et al., 2001; Ganas et al., 2002; Toutin, 2003a; Toutin, 2003b). 

The 3-D polynomial model can be used when the parameters of the acquisition 

system or a rigorous 3-D physical model are not available. The 3-D polynomial model 

does not require any prior information on any component of the acquisition system and 

is based on polynomial function and are an extension of the 2D polynomial function by 

adding an elevation (Z) term relating to the third dimension of the terrain. However, 

this model requires a large number of GCPs that cover the whole planimetric and 

height range to produce accurate results. Results from this method are correct locally at 

GCPs and very sensitive to input error (Tao and Hu, 2002). Due to these limitations 

this method is suitable for small images where all systematic distortion except terrain 

were corrected. This method has been applied to geo-reference images, such as SPOT 

HRV (Pala and Pons, 1995) and IKONOS geo-products (Hanley and Fraser, 2001). 

The final approach, RPC model is a method used by satellite sensor imagery 

suppliers to provide a relationship between image space (line, sample) to object space 

(latitude, longitude, height) without disclosing the sensor model. This relationship is 

revealed as the ratio of two polynomials derived from sensor model and the 

corresponding terrain information. Space imaging provides IKONOS sensor Geo 

products which have been corrected for systematic distortion. This corrects distortion 

caused by the sensor and provides increased accuracy when processing the images. 

Test cases comparing the rigorous camera model approach to the resultant RPC 

method under a diverse set of acquisition condition yield a worse case scenario error of 
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0.04 pixels (Grodecki, 2001). Therefore, the RPC model provides an accurate 

alternative to rigorous camera model approach. 

Due to the unavailability of IKONOS satellite sensor model, this research 

utilizes the RPC method to obtain a DEM of the study area. The RPC method has also 

been shown as an accurate replacement for complex camera models providing 

information to establish the interior and exterior orientation parameters required to 

extract DEM (Grodecki, 2001). 

5.3.2.4 Rational polynomial camera (RPC) 

In order to relate image space coordinates on satellite sensor imagery to the object 

space coordinate on the Earth, a sensor model is required. Physical sensor models are 

based on the interior and the exterior geometry and physical properties of the sensor. 

When acquiring imagery, each IKONOS sensor image line is taken at a different 

instance of time and, therefore, from a different orbital position and satellite 

orientation. Owing to this dynamic nature, the physical IKONOS sensor model is 

extremely complex (Grodecki and Dial, 2001). The implementation of the RPC model 

provides a simplistic method of representing the relationship between the object-image 

relationship of the physical sensor model with near-perfect accuracy. Furthermore, it 

contains enough degrees of freedom to describe IKONOS physical sensor model with 

0.05 pixel accuracy (Grodecki and Dial, 2001). 

The RPC model relates the object space coordinates to image space coordinates 

and is of the form of a ratio of two cubic functions of object space coordinates (Figure 

5.13). Separate rational functions are used to express the object space to line, and the 

object space to sample coordinates relationship (Grodecki, 2001). The image 

coordinates (X,Y) and the ground coordinates (X,Y,Z) are normalized to the range 
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from -1.0 to 1.0 by their image size and geometric extent, respectively, for 

computational stability and to minimise computational errors. The line RPC model is 

given as (Madani, 1999; Grodecki, 2001): 

Polynomials P, (i=l,2,3 and 4) have the general form : 

m, 

P ( Z , l ' , Z ) = X I I ' > , . J f ' i " Z ' 5,17 
i=0 j=0 k=0 

In normal use, the order of the polynomials is limited to 0 < mi < 3, 0 < < 3, 0 < 

< 3 and mi + m2+ < 3. Each P (X,Y,Z) is then a third-order, 20 term polynomial: 

P (jr,Y,Z) = 6!j + ^2 • X + ct^ •¥ + ci. • Z + • X• Y + etc • X• Z + Oj - Y• Z + ci„ • X^ 

+0,' y +ci-^Q-Z + a^^Y • X • Z + a^2' X +a^^-X-Y +a^^-X-Z 

+flj5 • X^ • Y + • Y^ + flfjy • Y • Z^ + flfjg • X^ • Z + • Y'^ • Z + 020' 
5.18 

The RPC coefficient in IKONOS products are calculated based on virtual points 

generated from rigorous sensor model. These virtual points are created based on the 

full extent of the image and the range of elevation variation. RPC coefficients are 

supplied with the IKONOS satellite sensor imagery with the Geo-ortho kit (Space 

Imaging, 2003a). 
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Figure 5.13: Relationship between RPC, object space and image space. 

The RPC model of the IKONOS-2 satellite used in this research had 59 

coefficients and 10 parameter values for object and image space offset and scale 

factors. Therefore, there are a total of 118 coefficients for the stereo pair image, which 

has a left and right image. The RPC coefficients for both images used in this research 

are listed in Appendix 1. 

Even though RPC provides a translation between the space and image 

coordinates, positional biases may still exist. It has been shown that these positional 

errors are very systematic and could be reduced to sub-metre accuracy by post 

processing with few precise GCPs (Fraser et al, 2002a) or the original RPC 

coefficients could be refined with a linear equation requesting precise GCPs (Lee et 

al., 2002). Results from applying RPC model without any GCP refinement are not 

expected to be accurate with an accuracy of 6.2m CE90 horizontal and 10.1m LE90 

vertical (Grodecki and Dial, 2001). This research applies a 3-D polynomial correction 

to refine the mathematical solution of the RPC model. 
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5.3.2.5 Control point selection 

Control points used in this research are divided into 3 main categories: 

1. GCP: measurements taken at distinct locations that are used to correctly 

position and rectify satellite sensor imagery. 

2. Independent control points (ICP): measurements taken at distinct locations 

that are used to asses the accuracy of the rectification process which were 

independent from the rectification process. 

3. Tie points: A point whose ground coordinates is not known, but is visually 

recognizable in the overlap area between the two images. 

A survey of the study area was conducted in November 2001 to collect GPS 

ground coordinates of the study area. Details of the survey are given in section 3.3.6. 

The GPS coordinates were collected at an accuracy of less than 1 m according to RSO 

projection. The survey was successful in collecting 62 points but only 47 were located 

within both stereo images. Out of these 47 only 29 points were used in this study based 

on their location and the ability to accurately identify their position within the stereo 

IKONOS sensor Imagery. Out of the 29 points, 4 evenly distributed points were used 

as GCPs and the remaining 25 as ICP. In this research 25 additional tie-points between 

the left and right stereo imagery were collected to assist in the refinement of the RPC 

model. The corresponding image position coordinates of tie points appearing on the 

overlap areas of multiple images were identified and measured. Figure 5.14 shows the 

GCPs, ICP and tie-point used in this study. A main problem with this imagery is that 

on the north-east of the imagery 50 percent of the imagery is the sea thus no GCPs are 

available in this area. The effects of the distribution of control point would be analysed 

later. 
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Figure 5.14: Distribution of GCPs, TCP and tie points used in research. 

5.3.2.6 Derivation of DEM 

As Space imaging does not publish the IKONOS sensor model and ephemeris data 

related to a particular satellite sensor imagery, this research utilises RPC coefficient to 

generate the DEM. The RPC coefficient was provided concurrently with the stereo 

IKONOS satellite sensor data. It has been shown when applying the RPC model 

without GCPs it results in large systematic positional errors due to a large bias. These 

systematic errors could be reduced to sub-metre accuracy by employing GCPs 

(Baltsavias et al, 2001; Chen et al, 2003; Di et al, 2003). In this research the RPC 

model was refined using 4 evenly distributed GCPs and 25 tie points. Only 4 evenly 
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distributed GCPs were used as a larger number of GCPs would reduce the accuracy 

(Lee et al., 2002; Eraser et al., 2002b; Eraser and Hanley, 2003). The effect of refining 

the RFC model is described in the result and discussion sections. 

The process of automatic DEM generation is shown in Figure 5.15. The 

utilization of digital image correlation has been widely used in remote sensing and GIS 

applications to find similarities between two images that overlap or share a common 

geographical area. The correlation coefficient is used to represent the measure of 

similarity between a set of image pixels appearing within the overlapping portions of 

an image pair. A large correlation coefficient value (i.e., 0.80 -1.0) indicates that the 

set of image points are more similar than a set of image points which have a lower 

correlation coefficient value. 

The process starts with the selection of a point of interest which displays 

sufficient grey level variation and contrast to be ambiguously identified in the imagery. 

A corresponding point was later selected from the adjacent imagery based on 

similarities in ground features and the correlation coefficient was computed between 

the points. Several strategy parameters are set to influence the success and accuracy of 

the matching process. These include the search window size used to locate points 

specific to a topographic type and a correlation window size that establishes the 

accuracy of the correlation between matching points. 
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Figure 5.15; DEM generation overview. 

IKONOS stereo images provided by Space Imaging have been resampled so that 

a pixel in both imagery and the two imagery centres lies on the same plane. This 

means that given a pixel in one image, its correspondent must lie on a known line in 

the second image (Kim, 2000). Images with these characteristics are known as 

epipolar images. As the stereo images are epipolar, the apparent displacement of 

conjugate points/pixels between the two images in the Y direction (Y- parallax) are 

very small, with most values being 0 or 1 pixel (Wolf, 1983). Figure 5.16 illustrates an 

image point on an image being located along the epipolar line of an adjacent 

overlapping image. 
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Figure 5.16: The process of locating a matching image point on a reference image on 

an adjacent image for two images that area epipolar to each other. 

To make the process more accurate and efficient the search area used to establish 

a pair of matching image points was constrained. The search range in the Y direction 

was constrained to 3 pixels (as the images were epipolar) while in the X direction the 

matching windows size and search range were changed adaptively depending on the 

statistical analysis of an area. Initially a small window size and narrow search range 

were used. If the correlation coefficient of the point was lower than a selected 

threshold of 0.8 a larger window size was used. The approximate position of the 

conjugate point was estimated by the previous matched point in a neighbour. The 

correlation coefficient was calculated on each set of possible matching points along the 

epipolar line. 

After the correlation coefficient was calculated from each image point within a 

search window, the points with the largest correlation coefficient were recorded and its 

row and column coordinates associated with a ground point on the Earth's surface. 

These interest points are then assigned 3-D (X, Y, and Z) coordinates based on the 

refined RPC model. The technique used to calculate these 3-D ground points, 

otherwise known as mass points, is known as space forward intersection. Space 

forward intersection is a technique that is commonly used to determine the ground 

124 



Chapter 5: Shoreline Mapping, From Fine Spatial Resolution Satellite Sensor Imagery. 

coordinates X, Y, and Z of points that appear in the overlapping areas of two or more 

images based on known interior and exterior parameters (Chen et al, 2003). It is based 

on the collinearity condition, which states that the corresponding light rays from the 

sensors pass through the corresponding image points on the two images, and intersect 

at the same ground point. These ground points or mass points are discrete points 

located within the overlap portion of an image pair, and whose 3-D ground coordinates 

are known. These were automatically extracted and calculated mass points are then 

used as a basis for constructing a DEM. 

5.3.2.7 Results 

The accuracy of ground points computed from the RFC method was affected by 

systematic errors with a total RMSE of 5.23 m (X = 2.24 m, Y = 3.07 m and Z = 14.51 

m). By applying a 3-D polynomial transformation supported by 4 evenly distributed 

GCPs, the RMS errors at 25 ICPs were reduced to 0.921 m, 0.782 m and 1.349 m for 

X, Y and Z coordinates. Using the carefully selected ground point, stereo image pair 

and refined RPC model a DEM of the study area was generated. A subset of the 

resulting DEM and its corresponding imagery is shown in Figure 5.17. The DEM 

shows the Kuala Terengganu town with the South China Sea to the east. 
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Figure 5.17: (a) Subset DEM for Kuala Terengganu and (b) it corresponding satellite 

sensor imagery. 
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The DEM generated had a spatial resolution of 1 m vertically and horizontally, 

this area represents the area of overlap between the left and right image. The 

correlation coefficient calculated for each mass point in the DEM provides a means of 

quantifying the quality of a DEM. DEM mass quality were categorised into several 

categories as defined in Table 5.4. 

The general mass point quality describes the percentage of DEM mass point 

that could be categorised into the 4 categories given in Table 5.4 (Wolf, 1983). From 

the DEM generated 61.48 % was categories as excellent, 22.29 % as good, 16.21 % as 

suspicious and the remaining 0.0038% as isolated. 

Several indices have been used to describe the accuracy of a DEM. The 

simplest are standard statistical indices such as minimum, maximum and mean mass 

point errors (Wolf, 1983). A similar method used is the mean absolute error of the 

DEM. Unlike the mean error, mean absolute error takes into consideration the positive 

and negative value associated with an error, where all negative values were made 

positive. The mean absolute error is useful to determine the average accuracy of an 

extracted DEM. RMSE is another widely used accuracy indicator. RMSE indicates the 

magnitude of error associated with all the DEM based on 3-D reference points used. 

Table 5.4: Categories of mass points 

Category Definition 
Excellent Mass points with Correlation coefficient between 1 

and 0.85. 
Good Mass points with Correlation coefficient between 

0.85 and 0.70 
Suspicious Mass points where the standard deviation for it 

(within a 3 X 3 window) is three times of its 
neighbouring pixels 

Isolated Mass points with no immediate neighbour 
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Another index normally used to describe DEM errors is the Absolute LE90 

(Linear error 90%). LE90 is the error range which would include 90 % of the pixels 

within the DEM. Thus, an LE90 of 4 m indicates that 90 % of the pixels within the 

DEM vary from the actual DEM by 4 m or less. Absolute LE90 is defined herein as the 

LE90 calculation for the DEM with no corrections applied. The error thus includes the 

effects of positional and elevation inaccuracies. 

The National Imagery and Mapping Agency (NIMA) LE90 statistic is based on 

the assumption that a normal distribution of data exist with the set of observation. In 

this case the set of observation is the DEM errors computed using the 3-D reference 

points using the following equation (Department of Defense, 1990). : 

NIMALE90= +1.6460-

Where, 

G 

5-1 

n 

Where, 

a = standard deviation 

|e, | = absolute error of reference point /' 

|e, | = mean absolute error for the entire set of refefence points 

n = total number of 3D reference points used 

Therefore, for example, if a value of ±4.5 m was computed for NIMA LE90, it 

is safe to state that at a 90 % confidence level, the DEM accuracy is within ±4.5 m. 
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Table 5.5: Accuracy of DEM 

Global 
Accuracy 

(m) 

ICP 
Accuracy 

(m) 

GCP 
Accuracy 

(m) 
Number of 3-D Reference Points Used: 54 25 4 
Minimum Error: -L5102 -1.0398 -0.3049 
Maximum Error: 3.9192 3.9192 0.6570 
Mean Error: 0.6180 1.4731 0.0617 
Mean Absolute Error: 1.0821 1.8076 0.2667 
Root Mean Square Error (RMSE); 1.5675 2.2171 0.3654 
Absolute Linear Error 90 (LE90): 3.2076 3.5953 0.6570 
NIMA Absolute Linear Error 90: ± 1.8667 ±2.1131 ±0.4112 

As mentioned previously in section 5.3.2.5 the reference points used in this 

study were from 4 GCPs, 25 ICPs and 25 tie-points. Errors calculated at GCPs were 

typically smaller because they were employed in the refinement of the RFC model. A 

more objective assessment is provided by utilizing ICP, as they were not involved in 

refining the RFC model. Summaries of global (accuracy calculated based on all 54 

points - GCP, tie point and ICP), ICP and GCPs vertical accuracies are shown in Table 

5.5. 

5.3.2.8 Discussion 

The accuracy of the generated DEM computed by using the RPC method was affected 

by systematic errors; these errors were reduced by utilizing several GCPs. Even though 

the imagery had a large area of sea to the north east of the imagery the image was able 

to be positional corrected to within an RMSE of < 1.0 m for the X and Y coordinated 

and 1.5 m for the Z coordinates based on ICP (section 5.3.2.7). For the IKONOS 

sensor relative to other spaceborne satellite sensor, distribution of GCPs are less 

important due to the sensors small field of view (FOV), while GCPs positional 

accuracy becomes more important, due to the small pixel size (Lee et al., 2000; Fraser 

and Hanley, 2003). By applying the RFC method with a simple first level polynomial 
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transformation the accuracy was increased comparable to the more expensive 

IKONOS Precision product which has an RMSE of 1.9 m (Space Imaging, 2003a). 

Therefore the selection of accurate GCPs was very important irrespective of location 

or distribution. Several papers have also emphasized that utilizing more than 4 GCPs 

does not further increase accuracy but may in fact reduce accuracy by introducing 

more errors (Lee et al, 2002; Eraser et al, 2002a). 

Another factor that has to be considered was the accuracy of the GCP used and 

its position on the imagery. As IKONOS imagery has a spatial resolution of Im, 

positioning sub-metre accurate ground point within a pixel is difficult and subject to 

errors. This again introduces positional errors. Therefore it is advisable that the person 

responsible for collecting ground point location at the field is also responsible for 

identifying position on the ground point within the imagery. The equipment also needs 

to be standardized where only the same set of equipment is used for a particular area. 

To generate the DEM the vertical accuracy of a ground point was very important as the 

vertical accuracy produced by GPS are usually double the horizontal accuracy of a 

ground point; this again introduces errors in generating DEM (Omnistar, 2001). 

DEM extracted by utilizing the RPC model and stereo imagery has shown to be 

accurate with an RMSE of below 2.2 m at ICP. This was encouraging considering the 

terrain of the study area was quite flat. When visually comparing the DEM generated 

with satellite sensor imagery, high elevation values do correspond to high objects such 

as buildings (Figure 4.10 and 4.11). As the IKONOS stereo imagery was taken on the 

same orbital pass, one in forward and the other in backward direction, this was ideal 

for DEM generation as both images have similar reflectance values. The images are 

only a minute apart thus factors such as lighting condition and cloud cover are the 

same. The similarity between the images assist in the image matching process as the 
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spectral or grey scale variation between the left and right imagery are similar. This 

results in 83.77 % of the DEM mass points that have a correlation coefficient of 0.70 

or above. 

5.3.2.9 Conclusion 

Stereo IKONOS sensor imagery has been shown to be able to produce accurate DEM. 

By utilizing vendor provided RPC and a limited number of GCP, accuracy within 1 m 

in X and Y and 2.5 m in elevation was achievable. But this accuracy is directly 

dependant upon the quality of the GCPs used. With accurate GCPs, the DEM produced 

from IKONOS sensor imagery was capable of satisfying the requirement of the US 

National mapping standard at a scale of 1 ;4,800. The output DEM generated in this 

research would be combined with bathymetry generated from multi spectral IKONOS 

sensor data generated in section 5.3.1. This would provide a coastal elevation model 

that would assist in determining shoreline position based on mean sea level. 

5.4 Combination of DEM and bathymetry data 

The IKONOS sensor images used in deriving the DEM and bathymetry of the study 

areas were acquired at different dates. Ideally the images should have been captured on 

the same orbital pass. The requirement for both IKONOS sensor imagery to be 

captured simultaneously was put forth to Space Imaging but for unspecified reasons 

this was not fulfilled. The images used were acquired on 10^ April 2002 for 

bathymetry and 28^ August 2002 for DEM generation. Even though there is a 4 month 

difference between the two dates the changes in bathymetry and DEM are expected to 

be minimal as the Northeast monsoon which brings severe rain to this area only starts 

in November and end in March. Details of the climate and wind condition of this area 
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were given in section 3.1. During this period the sea was considered calm and the 

changes to shoreline position and bathymetry were expected to be minimal. 

After generating both the DEM and bathymetry of the study area, these two 

data sets were combined to form a 3-D terrain model representing the land and water 

areas. To ensure that both data sets were compatible geographically both were 

generated utilizing the same planimetric and vertical datum. The projection used was 

the RSO, details of the projection were explained in section 2.2. An overview of the 

process of combining DEM and bathymetry information to derive a shoreline map 

based on MSL is given in Figure 5.18 

Before combining both DEM and bathymetry a decision had to be made on the 

spatial resolution of the final imagery. This was because the spatial resolution of the 

DEM was 1 m and for bathymetry 4 m. If the spatial resolution of the DEM was 

reduced to 4 m to match the bathymetry important positional information would be 

lost. It was decided that the pixels spatial resolution in the bathymetry map be reduced 

to 1 m. This was done by dividing the 4 m pixels into four 1 m pixels. This process 

does not increase the spatial resolution of the bathymetry but only its pixel size to 

accommodate the combination process. 

To generate a 3-D representation of the shoreline, the bathymetry and DEM 

data need to be combined. But before doing so both data sets needed to be standardised 

as DEM was given in height and bathymetry was given depth. Therefore, both data 

sets were converted to elevation value where DEM values are positive and bathymetry 

values are negative. Both data were than combined at the position where the elevation 

value was 0. Ideally both data should fit nicely at the position where the elevation was 

zero but factors such as breaking of waves during satellite sensor acquisition causes 

several areas to have no data. These areas of no data are, for the DEM imagery areas 
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where the DEM was classified as isolated and suspicious (section 5.3.2.6) and for the 

bathymetry areas where land and breaking waves was masked out (section 5.3.1.5.2). 

Even so these areas of no data only represent less than 2 percent of the total imagery 

and less than 1 percent of the shoreline. The value for such area had to be interpolated 

from surrounding pixels. The resulting 3-D terrain model of the study area is shown in 

Figure 5.19. 
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Figure 5.18: Overview of generating Shoreline position map at MSL 
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Figure 5.19: 3-D terrain model of the study area. 
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To accurately position the shoreline based on the MSL, the water elevation 

level during satellite acquisition needed to be determined. This could be determined 

by analysing its position base on the time the imagery was acquired. Ideally this 

would have been the date the satellite sensor imagery used for bathymetry and DEM 

was captured, but in this study the two dates were different so a choice needed to be 

made between them. The date selected was 10**" April 2002, the date the bathymetry 

imagery was acquired. It was chosen as only bathymetry was affected by tide levels 

and not DEM, Another factor was that DEM are fairly constant and not as dynamic as 

bathymetry. 

To determine the water elevation level during satellite sensor acquisition the 

harmonic constituent at the Kuala Terengganu tide station needed to be analysed. 

Harmonic constituent are mathematical expressions for the tide-producing force and in 

corresponding formulas for the tide or tidal current. Each constituent represents a 

periodic change or variation in the relative positions of the Earth, Moon, and Sun. 

(National Ocean Service, 1982). Utilizing the harmonic constituent, a tide chart for the 

Kuala Terengganu station was prepared for the lO"̂  of April 2002 (Figure 5.20). A 

tide chart generally shows the tide elevation throughout a certain period. Zero 

elevation shown on the chart refers to the chart datum. The chart datum is a local 

variable, defined as 'a level so low that the tide will not frequently fall below it', and 

which is very close to the Lowest Astronomical Tide (LAT) (National Ocean Service, 

1982). 
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Figure 5.20: Tide chart of Kuala Terengganu station on 10*̂  April 2002. The tide 
elevation (0.5m) at the time of satellite sensor imagery acquisition (3.45 GMT, 11.45 

local solar time) is shown. The red lines represent the elevation of LAT and MSL. The 
tide level is shown as the black line running through the chart. 

Referring to the tide chart at the Kuala Terengganu tide station, the tide level 

during satellite acquisition (lO"^ April 2002 - 3.45 GMT, 11.45 local time) was at 0.5 

m above the lowest astronomical level. To properly map the shoreline the water level 

at MSL needed to be determined and the water level remodelled accordingly, utilizing 

the 3-D coastal terrain model. From the same chart MSL was determined to be 1.06 m 

above the chart datum thus the water level was increased by 0.56 m. By increasing the 

water level on the 3-D terrain model, the shoreline position during MSL could be 

identified as the position where land and water meet. 

The shoreline positions were later determined by classifying elevation values 

below 1.06 m into water class and 1.06 and above as land class. This imagery was later 

vectorised to produce a shoreline position map. During the conversation from raster to 

vector, errors occur resulting in lines along the shoreline which is not part of the 

shoreline (Dangles). These errors are a by-product of the automated raster to vector 

conversion and are not errors in shoreline position. These errors were removed through 
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visual inspection. Figure 5.21 and Figure 5.22 shows the shoreline position at satellite 

sensor acquisition time and MSL. 

Figure 5.21: Instantaneous shoreline position at satellite sensor acquisition time is 
shown in blue (3.45 GMT on the 10̂ ^ April 2002). The 3-D terrain model was overlaid 

with a RGB imagery of the study area 

Figure 5.22; Shoreline position based on MSL is shown in red. The 3-D terrain model 
was overlaid with a RGB imagery of the study area. 
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By modelling the water elevation level on a 3-D terrain model of the study 

area, a shoreline map based on MSL was produced. To asses the accuracy of the 

generated shoreline map a GPS survey was conducted at the study area to map the 

shoreline position at MSL. Details of the survey are given in section 3.3.3. A subset 

map of the study area displaying the instantaneous shoreline (shoreline at satellite 

sensor acquisition), shoreline at MSL and actual shoreline (based on GPS survey) is 

shown in Figure 5.23 
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Figure 5.23: Shoreline position map based on different water elevations and GPS 

survey. 
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5.5 Accuracy assessment of shoreline position 

The accuracy of the shoreline predicted by modelling the water level on a 3-D 

terrain model of the study area was determined by comparing its position to positions 

mapped by a DGPS survey of the shoreline at MSL. Details of the DGPS survey could 

be found in section 3.3.3. The length of the shoreline in the study area was 1.3 km. the 

positional errors for each metre of the shoreline determined and its RMSE was 

calculated. The results show that the shoreline predicted from modelling the water 

level on a 3-D terrain model of the study areas has an RMSE of 1.80 m with 90 % of 

the errors within 2.8 m. Figure 5.24 shows the shoreline positional error for each 

metre of the shoreline (a 500 m portion). 

The shoreline generated had a jagged (zigzag) pattern this could be attributed to 

the pixel size of the combined bathymetry (4 m) and DEM (1 m). The shoreline was 

delineated by threading it between pixels allocated to land and water classes 

determined by elevation value of 1.06 m. Therefore, the shoreline was constrained to 

lie between pixels and resulting in a jagged shape shoreline. 
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Figure 5.24: The positional accuracy of a 500m portion of the shoreline mapped 

against its location. 
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5.6 Discussion and conclusion 

The coastal areas are dynamic in nature; therefore any coastal related data such as 

shoreline maps need to be current and easily updateable. This chapter introduced a 

method of generating such information using fine spatial resolution satellite sensor 

imagery. The method introduced used satellite sensor imagery as the primary data, as 

satellite imagery are widely available at regular interval. 

The new generation of commercial satellites such as IKONOS and QuickBird 

offer users fine spatial resolution multi-spectral data as well as stereo imaging 

capabilities. Fine spatial resolution satellite imagery provides the potential to play a 

major role in coastal applications where currently mainly aerial photography is used. 

This chapter looked at utilizing IKONOS sensor imagery to generate the 3-D terrain of 

a coastal area. 3-D terrain information could be utilized in applications such as erosion 

studies, coastal management, sediment transport and shoreline mapping. 

The 3-D terrain was generated by combining accurate DEM and bathymetry maps 

produced from IKONOS sensor images. Utilizing the 3-D terrain model, accurate tide-

coordinated maps were produced by modelling the water level. The shoreline maps 

produced were accurate within an RMSE of 1.80 m. The accuracy of predicted 

shoreline could also be viewed from a perspective of mapping standards. According to 

the US national mapping standard for maps with a cartographic scale of 1:20,000 or 

larger, at least 90 % of a sample of well defined points plotted should lie within 1/30* 

inch of the correct position when plotted on a map. Taking the shoreline positions as 

such a sample, the shoreline prediction satisfies the requirement of a 1: 2,500 scale 

map. 
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The accuracy of the shoreline produced was affected by the pixel size of the 

bathymetry and DEM used resulting in a jagged shaped shoreline. Though these 

jagged shapes were small (1 m and 4 m) they still contribute to errors in the shoreline 

prediction. To address such issues, methods of prediction the shoreline within a pixel 

or at a sub-pixel level were explored in the following chapters. 
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6 Sub-Pixel Analysis in Shoreline Mapping. 

6.1 Introduction 

This chapter aims to further advance and revise the techniques applied in chapter 4 and 

analyse the effect of shoreline orientation on the accuracy of the prediction. The four 

methods of predicting the shoreline location used in chapter 4 were revisited and 

applied to 4 different portions of the shoreline representing different shoreline 

orientation. 

The methods examined in chapter 4 were hard classification, wavelet 

interpolation, contouring soft classification and two-point histogram. The hard 

classification (conventional remote sensing approach) and wavelet interpolation 

(interpolation approach) method were used as a benchmark for comparison with the 

approaches introduced in this thesis. 

A Space Imaging 1 m Pan-Sharpen multi-spectral IKONOS satellite sensor 

imagery acquired of the study area on the July 2000 was used (Figure 6.1). The 

imagery was geo-rectified to the Malaysian Mapping standard based on the RSO map 

projection with an accuracy RMSE 2.1 m. 
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Figure 6.1: A RGB colour composite imagery of the study area. 

6.2 Test sites 

The work focused on a 1 km stretch of coast in Kampung Seberang Takir, 

Terengganu, Malaysia. The shoreline was characterized by sandy beaches facing the 

South China Sea to the northeast and the Terengganu River to the southwest. This 

research intent to look at the effect of differently shaped coast on accuracy of the 

shoreline prediction. Therefore, attention was focused on four 125 m long extracts of 

shoreline, each differently shaped. These were (Figure 6.2): I. Linear (across pixel 

orientation), II. Linear (along pixel orientation). III. Slightly curved and IV. Sharply 

curved. 
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Figure 6.2: Location of the 4 shoreline extracts selected for analysis. 

6.3 Methodology 

The methodologies applied in this chapter are similar to the one applied in chapter 4. 

These methods are refined to produce accurate results. Here two set of simulated 

imagery was generated from the 1 m IKONOS sensor imagery. The imagery was 

generated at spatial resolutions of 16 m and 32 m to simulate commonly used satellite 

sensor imagery such as SPOT HRV and Landsat TM data. 

6.3.1 Simulation of satellite imagery 

The 1 m IKONOS sensor imagery was resampled to spatial resolutions of 16 m and 32 

m. This was achieved by aggregating the original 1 m pixel to the target sizes. Since a 

simulated coarse spatial resolution image was to be used to predict shoreline location 

using classification analyses which may be evaluated against that derived from the 

original image, the effect of noise reduction in the spatial degradation need to be 

addressed. To address the impact of noise on the classification process, the SNR was 
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determined from the 1 m spatial resolution imagery and added to the 16 and 32 m 

imagery. 

The SNR was estimated from a variogram derived from the imagery (Curran 

and Dungan, 1989); (Curran and Atkinson, 1998). The SNR for the 1 m imagery was 

already determined in section 4.2.1.3 and estimated to be 31.14. To counter effect of 

the reduction of noise, random noise was added to the resulting 16 and 32 m imagery 

so that the resulting imagery has a similar SNR to the 1 m imagery. As SNR can only 

be estimated and it was impossible to exactly obtain the same SNR between both 

images, it was decided that the resulting imagery needed to have a SNR of 90 % within 

the 1 m imagery. The resulting images are shown in Figure 6.3. Although issues such 

as the point spread function are not considered this provides a reasonable approach for 

the simulation of data with coarser spatial resolution. 

(a) (b) 

Figure 6.3: Simulated satellite sensor images with spatial resolutions of (a) 16 m and 

(b) 32 m. 
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6.3.2 Generation of Ground Data from 1 m imagery 

To analyse positional errors, an accuracy assessment needs to be done by comparing 

the shorelines generated from the coarse spatial resolution imagery with ground data. 

The ground data was generated from a 1 m fine spatial resolution imagery of the study 

area. To differentiate between land and water a supervised hard classifier was applied. 

Eight training sites were selected from the satellite sensor imagery, out of these 4 were 

defined as pure land and 4 as pure water (Figure 6.4). These sites were determined 

from visual interpretation and fieldwork of the study area. In all classification analysis 

undertaken in this chapter, these training sites were also used to provide consistency. 

571513 571913 572313 

571513 571913 572313 

Figure 6.4; Training sites used throughout this chapter. Areas in blue were defined as 

water while green as land. The black line represents the classified shoreline. 
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Using these training sites a supervised hard classification was applied to the 

imagery classifying the imagery into land and water classes. The process assigns pixels 

to either land or water based on similarities to the training sites. The boundary between 

these two classes was later vectorised to represent the shoreline position. The classified 

shoreline is also shown in Figure 6.4. 

6.3.3 Hard classification 

As a benchmark, a conventional hard classification was used to predict the shoreline 

from the coarse spatial resolution images. The coarse spatial resolution images were 

classified using a supervised maximum likelihood classification (Richards, 1993). 

Initially training sets are selected from imagery by selecting areas of known 

homogenous water and land cover types. These sites were defined in Figure 6.4 and 

were determined from visual interpretation and fieldwork. The shoreline was fitted to 

the derived output of this classification by threading it between pixels allocated to 

different classes. The classified images are given in Figure 6.5. 

(a) (b) 

Figure 6.5: Flard classified satellite sensor imagery showing land in white and water in 

black, (a) 16 m spatial resolution, (b) 32 m spatial resolution. 
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6.3.4 Wavelet interpolation 

Since mapping a feature such as the shoreline may generally be expected to become 

more accurate as the spatial resolution of the imagery used becomes finer, a wavelet 

approach was used to interpolate the simulated images (Zhu and Yang, 1998; Simhadri 

et al, 1998; Carvalho et al, 2001; Tebbens et al, 2002). 

The spatial resolution of the coarse imagery was increased by using a 2-D 

wavelet refinement method based on average-interpolation. Wavelets are 

mathematical functions that cut up data into different frequency component and then 

study each component with a resolution matched to its scale (Donoho, 1992). The 

basic approach is to use pixel values of coarse spatial resolution imagery to estimate 

the sub-pixel values based on a wavelet transform. An average-interpolation 

refinement scheme was used to increase the spatial resolution of both coarse spatial 

resolution simulated imagery to a target resolution of 1 m. Initially average 

interpolating filters were calculated from the simulated images, these filters form the 

basis in predicting fine resolution imagery. Using these filters a 2-D refinement 

function was applied to simulated images to refine boxcar averages, imputing averages 

on a finer grid. For the 16 m simulated imagery, 16 m pixels were refined to 1 m 

pixels. Similarly for 32m simulated imagery, 32 m pixels were refined to 1 m pixels. 

Further details on this method was already explained in section 4.2.5.1 

To map the shoreline a maximum likelihood classification using training sites 

defined in section 6.3.2 was applied to the interpolated images to derive an estimate of 

the shoreline location. The wavelet interpolated images and corresponding classified 

images are given shown in Figure 6.6. 
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(b) (d) 

Figure 6.6: Imagery derived from wavelet interpolation and associated hard classified 

imagery, (a) 16 m spatial resolution, (b) 32 m spatial resolution, (c) hard classification 

output of 16 m imagery and (d) hard classification output of 32 m imagery. Black areas 

representing water while white represents land. 

6.3.5 Soft classification 

This chapter utilises two classification techniques, hard classification and soft 

classification. The hard classification used represents the conventional method of 

classifying water and land areas in order to delineate the shoreline position. It has been 

shown previously in chapter 4 that it was unable to accurately predict the shoreline 

position (section 4.3.2.1). To analyse and position the shoreline within a pixel and 
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produce a more accurate representation of the shoreline a soft classification was 

applied. 

Soft classification provides a first step in analysing the content of a pixel 

allowing pixels to be classified as fraction values representing the proportion of a 

certain class. Both coarse spatial resolution images were soft classified using a 

sigmodial function with a Z score of 7. This function was selected as it models a 

profile of a typical shoreline (Figure 5.1). The sigmodial function used is shown in 

Figure 6.7. The resulting images gave the fraction prediction for land within a pixel. 

The resulting soft classification is shown in Figure 6.8. 

MO 340 
ON 

Figure 6.7: Sigmodial function used to soft classify the images. 
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Figure 6.8: The figures show the percentage of land class within the (a) 16 m imagery 
and (b) 32 m imagery as indicated by the colour scale. 

Since these soft classifications were the basis of all the later analyses, their 

accuracy was evaluated. This evaluation was based on a comparison of the predicted 

coverage of a class with that derived from the reference data, the 1 m spatial resolution 

image. The comparisons were done based on pixels located along the shoreline. 

Figure 6.9 and Figure 6.10 shows the actual class percentage of land in the 16 and 32 

m images respectively. Based on these values and the predicted coverage both coarse 

spatial resolution images was found to be significantly correlated (p < 0.05) to the 

actual, r = 0.958 (16 m Imagery) and r = 0.946 (32m imagery). Therefore, the soft 

classification results were taken to be an appropriate base for the work (Figure 6.8) as 

they accurately represent the sub-pixel level class composition. 
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Figure 6.9: The map shows the actual percentage of land class within 16 m pixels. The 
grids shown are 16m pixels, numbered by the percentage of land class within them. 
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Figure 6.10: The map shows the actual percentage of land class within 32 m pixels. 
The grids shown are 32 m pixels, numbered by the percentage of land class within 

them. 
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6.3.6 Methods for mapping the shoreline from the soft classification 

The output of the soft classification for each pixel was an estimate of the percentage 

cover of the component classes. This does not indicate where the sub-pixel component 

covers were located within the area represented by image pixel, information that is 

required in order to fit a class boundary at a sub-pixel scale. 

Initially the soft classification outputs were converted from percentage values 

to fraction or proportion values to facilitate the shoreline mapping prediction process. 

Here, two approaches for locating the sub-pixel components were investigated. Before 

applying these techniques the fraction images need to be filtered to remove fraction 

information attributed to noise. These were removed using a specially designed filter. 

6.3.6.1 Filtering the Soft classified imagery 

Previously the soft classification result was determined to be highly correlated to the 

actual proportion values (r= 0.95). But these correlations were based on fraction values 

located close to the shoreline (section 6.3.5). Fraction values at pure pixels (0 and 1) 

still contained noise and may affect the sub-pixel mapping process. Therefore, before 

utilizing the soft classified imagery a filter had to be applied to remove noise from the 

imagery. 

The aim of this process was to remove noise located in pure land and pure 

water classes while maintaining proportion information at pixels adjacent to the 

shoreline. Noise in the soft classified imagery causes pure classes (proportion 0 and 1) 

to be classified as pixels with small (near 0) or large (near 1) fraction values. This 

could be seen in Figure 6.8, where areas of pure land and water for both images still 

contains fraction values. Here pixels with estimated fraction values higher than 0.85 
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were classified as 1 and below 0.15 classified as 0. To ensure these fraction values 

were noise and not part of the shoreline the filter reclassifies these pixels only when 

summation of the surrounding pixels (within a 3 x 3 window) is smaller than 1.0. 

An example of how this filter works is given in Figure 6.11. The example 

shows how the fraction value 0.02 (located in the centre of the selected 3 x 3 window) 

was reclassified as 0, because the summation of the surrounding pixels amounts to 

only 0.14. Removing noise from the soft classification helps the sub-pixel / super-

resolution methods used in the following section produce accurate shoreline 

prediction. 
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Figure 6.11: Example of filtering the fraction imagery to remove fraction information 

attributed to noise. 
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6.3.6.2 Contouring soft classified imagery 

The filtering process removes noise that contaminates fraction values of the pure 

pixels. This allows the possibility of applying a contouring process to locate the 

shoreline with more accuracy. Since there was a simple geometrical arrangement of 

the two classes, the possibility of representing the shoreline by fitting a class 

membership contour through the soft classification was evaluated (Foody, 2002b). 

Specifically the shoreline was represented by fitting to the soft classification a contour 

of 0.5 membership to the land class, representing the 50% membership to land and 

50% membership to water. An example of the process in shown in Figure 6.12. Result 

from contouring the soft classification is shown in Figure 6.13. 

0.7 0.1 0 

1 0.6 0 

1 1 0.5 

(a) (b) 

Figure 6.12: The figure show the (a) initial fraction value and (b) contouring output 

(a) (b) 

Figure 6.13: Shoreline generated from contouring soft classification from the (a) 16 m 

spatial resolution imagery and (b) 32 m spatial resolution imagery. 
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6.3.6.3 Two-point histogram 

Contouring the soft classification provides a first step into mapping the shoreline 

within pixel boundaries. But this method does not maintain the proportion information 

of the soft classification when designating the shoreline. For example in Figure 6.12, 

the proportion values were modified to in order to fit the contour. That is, the contour 

fitted to the soft classification was guided by the proportion information conveyed by 

the soft classification but the proportion either side of the fitted shoreline may not 

match those depicted in the soft classification as a result of the generalisation process 

involved in fitting the contour (Foody et al., 2003). A refinement, therefore, was to use 

the contouring result to direct an approach in which the class proportion information 

contained in the soft classification is maintained. The final approach to estimating the 

shoreline was based on two-point histogram using a pixel swapping algorithm that was 

developed for super resolution land cover classification (Atkinson, 2003). The geo-

statistical technique adopted here was designed to post-process a soft classification 

imagery and position the classes geographically at a sub-pixel scale. 

The two-point histogram based approach was used to adjust iteratively the sub-

pixel class composition estimates in the soft classification output to provide a super-

resolution representation of the shoreline. This approach requires two sets of imagery, 

a soft classification output, to generate the representation of the shoreline and a 

training image (at a finer spatial resolution), as a target for the process. For this 

analysis the soft classified imagery was initially converted to hard classified sub-

pixels, with the number of sub-pixels per class determined in proportion to the class 

proportion, maintaining the relative proportion of the class. Here, the analysis was 

undertaken using sub-pixels with a spatial resolution of 1 m. Thus for the 32 m 

simulated imagery, 32 x 32 m sub-pixels were created. As an example for a land pixel 
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value 0.25, 256 of the 1024 pixel are hard classified as land. These sub-pixels were 

initially distributed randomly throughout the area of the pixel that they are associated 

with. The training images used were based on the contouring of the soft classification 

outputs which were generated in section 6.3.6.2. The spatial resolution of these 

training images were 1 m similar to the target spatial resolution. 

The optimization algorithm begins by comparing two-point histogram statistics 

between the initial imagery and its training image. A sub-pixel swap was then 

initialized, if the swap allocates the sub-pixel so that the initial imagery becomes closer 

to the training imagery it was maintained and the two-point histogram was updated. 

This process was repeated for every pixel and every sub-pixel until 70 iterations. An 

example of this process is shown in Figure 6.14. 
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Figure 6.14: Illustration of the operation of the two point histogram method. The 

training imagery was generated from the contouring output. 
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This method ensures that the proportions of land and water predicted by the soft 

classifier were maintained while geographically locating sub-pixel regions of the 

classes in the area represented by a pixel (Atkinson, 2003). The outputs were later 

vectorised to produce shoreline map of the area. Figure 6.15 - Figure 6.18 shows the 

images involved in processing the coarse spatial resolution images to predict the 

shoreline location. 
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Figure 6.15 ; (a) Soft classified imagery with proportion values, (b) imagery with 
randomly distributed 1 m sub-pixels, (c) Training Image. The grid represents the 

pixel spatial resolution of 16 m. 
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Figure 6.16: Shoreline prediction from the two-point histogram method based on the 
16 m imagery. The grid represents the pixel spatial resolution of 16 m. 
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Figure 6.17: (a) Soft classified imagery with proportion values, (b) imagery with 
randomly distributed 1 m sub-pixels, (c) Training Image. The grid represents the 

pixel spatial resolution of 32m. 
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Figure 6.18: Shoreline prediction from the two-point histogram method based on the 
32 m imagery. The grid represents the pixel spatial resolution of 32 m. 

6.4 Positional error analysis in shoreline prediction 

To analyse the positional accuracy at the 4 sites (Figure 6.2), the accuracy of the 4 

methods were determined by comparing their positional location to the actual location 

determined by hard classifying 1 m imagery of the areas. An overlay of the predicted 

shoreline over the actual shoreline and a graph representing the errors in position along 

the shoreline (for the 4 test sites) are given in Figure 6.19 to Figure 6.26. Information 
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regarding the graphing technique used to display errors along the shoreline were given 

in section 4.2.6. 

6.5 Results and analysis. 

This section shows the accuracy of shoreline prediction obtained by the 4 methods. 

The results are divided based on the 4 test sites defined in section 6.2. 

6.5.1 Results 

This research examined 4 different methods in predicting the shoreline location from 

coarse spatial resolution imagery. The 4 methods were applied at 4 portions of 

shoreline with 2 different spatial resolutions (16 and 32 m). Due to the amount of 

results generated a standardise method of calculation positional errors needed to be 

established. This was done but determining the positional errors along every metre of 

the shoreline and calculating the RMSE. The results for the 16 and 32 m images are 

shown in Table 6.1 and 6.2 respectively. 

Table 6.1: RMSE (m) in shoreline mapping from the four methods using 16 m spatial 

resolution simulated imagery. 

RMSE (m) 
Location Hard 

Contouring 
Two point Wavelet 

Classified 
Contouring 

Histogram Interpolation 
Area I 3.16 1.17 1.20 1.74 
Area II 4.25 4.72 1.34 2.53 
Area III 3.67 1.29 1.15 2.97 
Area IV 3.49 2.82 2.08 1.32 
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Table 6.2: RMSE (m) in shoreline mapping from the four methods using 32 m spatial 

resolution simulated imagery. 

RMSE (m) 
Location Hard 

Classified 
Contouring 

Two point 
Histogram 

Wavelet 
Interpolation 

Area I 6.71 m 0.98 m 1.71 m 5.72 m 
Area II 8.67 m 6.42 m 2.62 m 6.13 m 
Area III 8.13 m 4.83 m 2.46 m 6.15 m 
Area IV 5.73 m 6.75 m 5.11 m 4.32 m 
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Figure 6.19: Shorelines generated from 16 m imagery of Area 1. Actual land area is shown in orange with the pixel spatial resolution represented 
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown 

below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.20: Shorelines generated from 32 m imagery of Area I. Actual land area is shown in oarnge with the pixel spatial resolution represented 
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown 

below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.21; Shorelines generated from 16 m imagery of Area II. Actual land area is shown in orange with the pixel spatial resolution represented 
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown 

below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.22: Shorelines generated from 32 m imagery of Area II. Actual land area is shown in orange with the pixel spatial resolution represented 
by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown 

below the prediction 
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Figure 6.23: Shorelines generated from 16 m imagery of Area III. Actual land area is shown in orange with the pixel spatial resolution 
represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is 

shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.24: Shorelines generated from 32 m imagery of Area III. Actual land area is shown in orange with the pixel spatial resolution 
represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is 

shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.25: Shorelines generated from 16 m imagery of Area IV. Actual land area is shown in orange with the pixel spatial resolution 
represented by the square grid. Shorelines generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is 

shown below the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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Figure 6.26; Shoreline generated from 32 m imagery of Area IV. Actual land area is shown in orange with the pixel spatial resolution represented 
by the square grid. Shoreline generated by the 4 methods are shown in red. A graph showing positional errors along the shoreline is shown below 

the prediction. Positive errors represent error seawards while negative errors represent errors landwards. 
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6.5.2 Analysis 

This section analysed the effects of different types of shoreline orientation and spatial 

resolution on predicting the shoreline location. Generally, shoreline prediction from 

the 4 methods were the most accurate when predicting linear shoreline (Area I). While 

in other areas the results were mixed with the shoreline prediction derived from 

contouring and hard classification the least accurate in Area II and the prediction 

derived from wavelet interpolation were the least accurate in Area III. An analysis on 

the accuracy of the shoreline prediction derived from the 4 methods based on the 4 test 

sites are given in the following section. 

Results show that when the methods are ranked from the best to worst based on 

accuracy of their predictions there is a similar order for both the 16 and 32 m spatial 

resolution. For example in Area 1, the prediction derived from contouring method was 

the most accurate at both the 16 and 32 m spatial resolution. Therefore, these analyses 

emphasised the result from the 16 m spatial resolution imagery, taking into account 

that an analysis for the 32 m spatial resolution imagery would be similar. Analyses on 

the effects of spatial resolution (between 16 m and 32 m images) are explained in a 

later section. 

6.5.2.1 Area I (Linear across pixel orientation) 

For linear shorelines that are positioned across pixel orientation (Area I), all of the 

methods used were able to predict the shoreline position to within an RMSE of 3.16 m 

for the imagery simulated to a spatial resolution of 16 m and 6.71 m for the imagery 

simulated to a spatial resolution of 32 m. As expected, the largest errors were observed 

with the shoreline predicted from the hard classification method in which the shoreline 

was constrained to lie between pixels and had a jagged shaped. Moreover only, 54.4 % 
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of the shoreline predicted was within 2 m of the actual shoreline and the RMSE 

calculated along the 125 m test site was 3.16 m for the simulated 16 m spatial 

resolution imagery. The results indicated that shoreline prediction based on sub-pixel 

analyses produces smoother and more accurate shorelines than that derived from hard 

classification. 

The shorelines generated from the application of the contouring, wavelet 

interpolation and two-point histogram methods were accurate, but the contouring 

method produced the most visually realistic representation of the shoreline with 89.6% 

of the shoreline prediction positioned within 2 m of the actual shoreline. Although the 

estimated accuracy of the shoreline derived from contouring method was better than 

that derived from other methods, the proportion information from soft classification 

was not maintained. A method that maintains this information, the two-point histogram 

method, however was only able to predict the shoreline to within an RMSE of 1.20 m. 

This could be attributed to inaccuracies in the soft classification and the generalization 

process during contouring (for the contouring method) reposition the shoreline 

prediction closer to the actual shoreline in comparison to the prediction from the two-

point histogram method. The prediction generated from the wavelet interpolation 

method was not as accurate as two-point histogram and contouring method with an 

RMSE of 1.74 m and only 74.4 % of the shoreline prediction positioned within 2 m of 

the actual shoreline. 

6.5.2.2 Area II (Linear along pixel orientation) 

In Area II where the shoreline was linear but oriented nearly parallel with the column 

of the pixel grid, the accuracy varied greatly between the methods used. The shoreline 

prediction from the hard classification was again the least accurate and that derived 

from two-point histogram the most accurate. The two-point histogram method 
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produced shoreline position prediction with an RMSE of 1.34 m for the 16 m imagery 

with 89.0 % of the shoreline within 2 m of the actual shoreline. The shoreline 

prediction derived from contouring the soft classification method was not as accurate 

as in Area I. Although the shoreline from the contouring method was smooth and 

linear but it was positioned a few metres to the east of the actual shoreline. Here the 

generalization of proportion values required when fitting the contour (hence modifying 

pixel proportion values) introduces error when positioning the shoreline prediction, 

resulting in an RMSE of 4.72 m with only 32.8 % of the shoreline within 2 m of the 

actual shoreline. The accuracy of shoreline prediction derived with the wavelet 

interpolation method relies on the orientation of the shoreline and the wavelet function 

selected, in this case a Haar wavelet function (Donoho, 1992). From visual observation 

of the wavelet interpolation method shoreline prediction, it could be deduced that 

generally accuracy increases when the shoreline was aligned exact parallel to the 

column of the pixel grid and decreases even with a slight change in alignment. As 

shoreline in this area was not exactly aligned to the column of the pixel grid, accuracy 

of shoreline prediction from the wavelet interpolation method were not as accurate as 

two-point histogram method with only 52.0 % of the shoreline located within 2 m of 

the actual shoreline in comparison to 89.0 % for two-point histogram method. 

6.5.2.3 Area HI (Slightly curved). 

In Area III, two-point histogram again produced the most accurate prediction of the 

shoreline position, followed closely by contouring of the soft classification with RMSE 

of 1.15 m and 1.29 m respectively for 16 m imagery. These two methods rely on the 

accuracy of the soft classification to predict the shoreline location, however inaccurate 

proportion information affect the two-point histogram more as the proportion 

information was maintained. The contouring method modified these values to fit a 
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contour to the shoreline which could result in increased accuracy (such as in Area I) or 

decreased accuracy. With accurate proportion information the two-point histogram 

method was able to accurately predict the shoreline with 94.4 % of the shoreline 

positioned within 2 m of the actual shoreline. Contouring of the soft classification 

produced similar accuracy but as contouring linearly divides pixels in two at the 

predicted shoreline position the shoreline produced was visually unrealistic. An 

example of this process was shown in Figure 6.13. Moreover only 89.6 % lies within 

2 m of the actual shoreline which was lower than the accuracy achieved by two-point 

histogram method. In this area wavelet interpolation produces curved shoreline 

prediction similar to Area II. The method obtained an RMSE of 2.97 m with only 48.8 

% of the shoreline positioned within 2 m of the actual shoreline. The hard 

classification method produced the worst prediction with an RMSE of 3.67 m with 

only 42.2 % positioned within 2 m of the actual shoreline. 

6.5.2.4 Area IV (Sharply curved) 

In Area IV, shoreline predictions from the four methods were not as accurate as in the 

other areas. The shoreline prediction derived from the wavelet interpolation method 

was the most accurate followed closely by two-point histogram method. Prediction 

from two-point histogram was not as accurate as before because the proportion 

information for this particular area was not as accurate as in area I, II and III. The 

correlation coefficient derived for the relationship of predicted against actual land 

image in the soft classification differed between the areas (16 m imagery); Area 1 = 

0.986, Area II = 0.960 Area III = 0.980 and Area IV 0.940. Even though the 

difference is not large the shoreline prediction accuracy generally increases when the 

correlation between the actual and predicted coverage of a class from soft 

classification is accurate (Table 6.1 and 6.2). The two-point histogram method was, 
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however still within an RMSE of 2.08 m with 74.4 % located within 2 m of the actual 

shoreline. The wavelet interpolation method does not rely on results from soft 

classification when predicting the shoreline position, thus its shoreline prediction were 

the most accurate with an RMSE of 1.32 m and 90.4 % of the shoreline located within 

2 m of the actual shoreline. As with Area III the contouring method predictions were 

visually unrealistic and positioned a few metres to the west of the actual shoreline 

position. This could again be attributed to contouring modifying the proportion values 

when allocating shoreline position resulting in an RMSE of 2.82 m. 

6.5.2.5 Effects of spatial resolution. 

In all of the areas the effect of spatial resolution was very similar. The accuracy of the 

shoreline prediction decreased with a coarsening of spatial resolution. For the shoreline 

prediction derived from hard classification the errors generally doubled at the 4 

training sites when the spatial resolution was decreased. This was expected as the 

spatial resolution was decreased from 16 m to 32 m, increasing the pixel size. With an 

increase of pixel size, more pixels along the shoreline would have a mixed class 

composition (land and water). When these pixels are classified to either land or water, 

the shoreline prediction were derived along the pixels edges resulting in more errors in 

comparison to the prediction derived from the 16 m spatial resolution simulated 

imagery. 

In the wavelet interpolation method accuracy seems to be affected more by the 

shape of the shoreline mapped than spatial resolution. But generally accuracy does 

decrease with coarser spatial resolution. Similarly to wavelet interpolation, there was 

no general trend observed in the results of the contouring method. Although the 

accuracy of shoreline prediction generally did decrease at coarser spatial resolution the 

shape of shoreline and accuracy of the proportion information from soft classification 

173 



Chapter 6: Sub-pixel Analysis in Shoreline Mapping 

had a greater effect. In Area I where the correlation coefficient derived for the 

relationship of predicted against actual land image in the soft classification were better 

for 32 m imagery than 16 m imagery, contouring produced an accurate result at 32 m 

spatial resolution. 

In the two-point histogram method errors in shoreline prediction in Area I and 

Area III increased by approximately 40 % when the spatial resolution was changed 

from 16 to 32 m. In Area II and IV the error in the predicted shoreline positions nearly 

doubled. The differences in errors could be attributed to the accuracy of the proportion 

information derived from the soft classification as the correlation between the 

predicted proportion and actual proportion decreased when the spatial resolution was 

decreased to 32 m. 

6.6 Conclusions 

The shoreline cannot be represented appropriately in a conventional approach to 

thematic mapping based on a hard classification. However, by predicting the thematic 

composition of a pixel by applying a soft classification may help locate the shoreline 

position at a sub-pixel scale. This allows super-resolution mapping, mapping at scale 

finer than the spatial resolution of the data used, which can provide more accurate and 

realistic thematic representations. This was illustrated with the mapping of the 

shoreline from 16 and 32 m spatial resolution data. The conventional hard 

classification provided a visually poor and inaccurate representation of the shoreline. A 

superior representation, in terms of visual appearance and RMSE, was derived from 

each of the three super-resolution mapping approaches used. The two-point histogram 

approach generally gave the most accurate prediction of the shoreline with an RMSE 

of below 2.10 m for 16 m imagery and 5.11 for 32 m imagery. This method produce 
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accurate prediction of the shoreline irrespective of its shape but the accuracy decreased 

with increasing curvature of the shoreline. 

To further increase the accuracy of the shoreline prediction this research looks at 

methods of increasing the accuracy of the soft classification. To predict the class 

composition within a pixel this research used four land and four water training sites 

(Figure 6.4) which were selected throughout the image. The average (Global) statistics 

from these sites were later used to define the end point of the sigmodial function used 

in the soft classification process. To increase the accuracy of the soft classification 

further analysis was conducted, based on these training sites a localised approach for 

soft classification was explored. This approach is explained in chapter 7. 

These results indicate the considerable potential of super-resolution mapping 

techniques for accurate mapping of the shoreline from simulated coarse resolution 

satellite sensor imagery. However, to apply these methods to actual satellite sensor 

imagery such as images from Landsat TM and SPOT HRV several additional 

considerations need to be addressed. These considerations include the errors inherent 

in the transforming or geo-referencing the coarse spatial resolution data to the 

Malaysia RSO projection. Further research needs to be done to quantify the effect of 

image transformation on the accuracy of the predictions. This was not done in this 

thesis due to time limitations. 
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7 Localised soft-classification for Sub-pixel 

mapping 

7.1 Introduction 

In chapter 4 and 6 techniques for mapping the shoreline from coarse spatial resolution 

satellite sensor imagery were introduced. The results showed that by applying a soft 

classification to a coarse spatial resolution imagery to predict the class composition 

within a pixel and applying super-resolution techniques to position these classes 

geographically, an accurate prediction of the shoreline was possible. But the accuracy 

varied based on shoreline orientation and could be attributed to inaccuracies in the 

class composition prediction. Therefore, there is a need to increase the accuracy of the 

soft classification. 

This chapter introduces a soft classification approach based on localised training 

statistics to increase the class composition prediction and ultimately the accuracy of 

the shoreline predictions. Another super resolution approach was also introduced to 

complement the two-point histogram method. The simulated 16m spatial resolution 

imagery derived in chapter 5 was used as the base for this analysis. 

In chapter 6 the soft classification process used global statistics to define the 

sigmodial class membership function used to classify the data. These global statistics 

were derived by averaging the statistics obtained from 4 homogenous land and 4 

homogenously water sites (Figure 6.4). Here, the application of local training statistics 

was examined. Thus, for a specific portion of the shoreline only the closest land and 
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water training sites were used to define the sigmodial class membership function used 

to classify the data. 

7.2 Methods and analysis 

This section describes a soft classification approach based on local training statistics 

and a super-resolution mapping technique based on pixel swapping. Other methods 

such as contouring and two-point histogram were already discussed in chapter 4 and 6. 

The analysis would compare super-resolution shoreline prediction results 

obtained by using localised and global training statistics. 

7.2.1 Soft classification 

To increase the accuracy of the thematic class composition this work implements a soft 

classification that uses localised training statistics. It needs to be pointed out the soft 

classification function (sigmodial) and training sites used are the same as in chapter 6. 

The soft classification approach applied in chapter 6 used the conventional 

approach where all the training sites for a class were used to define a single global 

description of the class. The use of such global training statistics yielded an accurate 

soft classification, with a correlation coefficient between predicted and actual class 

cover of 0.95 {p < 0.05). For each class, it was apparent that the spectral response 

observed varied between the training sites (Table 7.1). Given this spectral variation, 

the global training statistics may provide an inappropriate description of each class 

locally. Therefore a soft classification approach based on localised training statistics 

were required. 

Here, a localised approach was assessed in which the training statistics from 

the four training areas for each class were used separately in soft classification. For 
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this, individual land and water training sites were used in classifying a specific pixel 

(Figure 7.1). Thus, for a specific portion of the shoreline only the closest land and 

water training sites were used to define the sigmodial class membership function used 

to classify the data. 

Table 7.1: Summary of average spectral response for each class at each training sites 
(Figure 7.1) 

Training sites 
Spectral response 

Training sites 
Land Water 

Land 1 / Water 1 193.44 33.00 
Land 2 / Water 2 184.33 37.78 
Land 3 / Water 3 160.33 42.89 
Land 4 / Water 4 147.33 16.22 
Average 171.36 32.47 
Std Dev. 21.25 11.56 
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Figure 7.1 Division of shoreline by training sites used for localised soft classification. 
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Using a sigmodial function the coarse spatial resolution imagery was soft classified 

based on the localised training sites. The fraction image (land) obtained from the local 

soft classification is shown in Figure 7.2. 

The accuracy of the soft classification was assessed through a comparison of 

the predicted coverage of a class with that derived from the ground data (Figure 6.5). 

The predicted coverage and ground data were correlated, with an r value of 0.98 (p< 

0.05). This was larger than the estimate derived from a classification derived with 

global training sites which had an r value of 0.95 {p < 0.05) (chapter 5). The 

relationship between the predicted and actual fraction of land from soft classification 

derived using local statistics is shown in Figure 7.3. 

Therefore, the soft classification derived with the use of local training statistics 

was more accurate than that derived from the use of global statistics. 

va uc 

Figure 7.2: Soft classification output obtained from the use of localised training 

statistics. The greyscale shows the fraction of land. 
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Figure 7.3: Relationship between the predicted and actual fraction of land from soft 

classification derived using local statistics. 

7.2.2 Sub-pixel mapping 

The outputs of the soft classification are fraction values representing the proportional 

cover of a class within each pixel. Since soft classification does not indicate where the 

sub-pixel components are located within each image pixel, sub-pixel scale approaches 

to locating the shoreline were investigated. In this analysis two methods of sub-pixel 

mapping were applied, the pixel swapping and two-point histogram methods. The two-

point histogram approach would only be briefly explained here as it was already 

introduced in chapter 4 and 6. Soft classification results by using localised training 

sites and global training sites (derived in chapter 6) were used for the analysis. 

7.2.2.1 Pixel-swapping 

To complement the two point histogram method this chapter introduces a pixel-

swapping algorithm (Atkinson, 2004). The objective of the algorithm is to vary the 

spatial arrangement of the sub-pixels in such a way that the spatial correlation between 

neighbouring sub-pixels is maximized given that the overall proportional composition 

within a pixel could not vary. The pixel-swapping algorithm comprised three basic 
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steps. First, for every sub-pixel the attractiveness At of the location is predicted as a 

distance weighted function of its neighbour: 

y=i 

7-1 

Where n is the number of neighbours, ) is the value of the class z at they'th pixel 

location Uj and is a distance-dependent weight predicted as : 

= exp ' ' ' 7-2 -h.. 

where is the distance between the pixel location i for which the attractiveness is 

desired w, and the location j of the neighbour uj , and a is the non-linear parameter of 

the exponential model. 

Second, once the attractiveness of each sub-pixel location has been predicted 

based on the current arrangement of sub-pixel classes the optimization algorithm ranks 

the scores on a pixel-by-pixel basis. For each pixel, the least attractive location 

currently allocated to a ' 1' (i.e., a ' 1' surrounded mainly by 'O's) is stored. Similarly, 

the most attractive location currently allocated to a '0' (i.e., a '0 ' surrounded mainly by 

' 1 's) is also stored. Third, sub-pixel classes are swapped if the attractiveness of the 

least attractive location is less than that of the most attractive location. If it is more 

attractive, no change is made. 

The pixel-swapping was used to locate the sub-pixel components within each 

pixel for both the global and local soft classifications. In this method, as for the two-

point histogram approach, the initial 16 m pixels were divided into 1 m sub-pixels and 

these randomly distributed throughout the pixels based on their fraction values. The 

three stage process described above was repeated such that a solution was approached 
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iteratively. This algorithm was applied for 40 iterations to both the global and local 

soft classified imagery to produce 1 m spatial resolution super-resolution images of the 

shoreline. A shoreline was later vectorised from both of the super-resolution images 

{i.e., resulting from global and local soft classification). 

7.2.2.2 Two-point histogram. 

The two-point histogram method described in section 6.3.6.3 was applied to the soft 

classification outputs from both the global (Figure 6.8a) and local soft classifications 

(Figure 7.2). The training imagery was generated by fitting a contour of 0.5 

membership of land to the soft classification proportions to represent the shoreline. 

For both soft classifications, the initial 16 m pixels were divided into 1 m sub-

pixels. Then each 1 m sub-pixel was allocated to a class based on the pixel-level soft 

proportions. The algorithm was run until there were no or minimal changes (70 

iteration) to the imagery. A shoreline was later vectorised from both of the super-

resolution images {i.e., resulting from global and local soft classification). 

7.3 Results 

This section explains the results obtained from both sub-pixel mapping method that 

were applied to the soft classification outputs derived from local and global statistics. 

7.3.1 Super-resolution mapping 

For comparative purposes the soft classification derived from both the global and local 

training statistics were used in sub-pixel mapping of the shoreline. The shorelines 

generated by the two-point histogram and pixel-swapping method are shown in Figure 

7.4 and Figure 7.5. 
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Figure 7.4: Shoreline prediction generated using the pixel swapping algorithm based on soft 
classification using global (a) statistics and (b) local statistics. The actual shoreline is shown 

in black while the grid shows the actual pixel spatial resolution of 16 m. 
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Figure 7.5: Shoreline prediction generated using the two-point histogram algorithm based 
on soft classification using (a) global statistics and (b) local statistics. The actual shoreline 

is shown in black while the grid shows the actual pixel spatial resolution of 16 m. 
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The accuracy of the shoreline maps generated from the two-point histogram 

and pixel-swapping methods were analysed at 4 areas in the imagery (Figure 6.2). The 

accuracy of the shoreline prediction was determined by comparing the predicted 

location to the actual location determined from the ground data for each shoreline 

extract from each method for every metre of the shoreline (Table 7.2). The positional 

accuracy along the 125 m length of the shoreline for the four areas are shown in Figure 

7.6 to Figure 7.9 

The accuracy of shoreline prediction when using global statistics varied with 

location and orientation. The most accurate prediction was achieved from the linear 

shoreline (across pixel orientation) with an RMSE of 1.38 m for the pixel-swapping 

algorithm and 1.2 m for the two-point histogram algorithm when global training 

statistics were used. The use of local training statistics, however, increased the 

accuracy of the soft classification and ultimately shoreline prediction with the pixel 

swapping and two-point histogram method obtaining an RMSE of 0.99 m and 0.97 m, 

respectively (Table 7.2). The accuracy of the predictions at the 4 areas is given in 

Table 7.2. 

Table 7.2: RMSE in shoreline prediction (m) from the 4 methods calculated at the 4 

areas. 

Global training statistics Local training statistics 

Pixel-swapping 
Two-point 
histogram 

Pixel-swapping 
Two-point 
histogram 

Area I 1.38 1.20 0.99 0.97 

Area II 2.13 1.34 1.51 1.10 

Area III 1.46 1.15 1.23 1.05 

Area IV 1.21 2.08 1.11 1.02 
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Pixel swapping (Global) Two-point histogram (Global) Pixel swapping (Local) Two-point histogram (Local) 

Position (m) 

— Pixel swapping (Global) — T w o - p o i n t histogram (Global) — P i x e l swapping (Local) — T w o - p o i n t histogram (Local) 

Figure 7.6: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area 1. The grid represents the spatial resolution of 16 m. 
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Pixel swapping (Global) Two-point histogram (Global) Pixel swapping (Local) Two-point histogram (Local) 

125 

Position (m) 

•Pixel swapping (Global) —Two-point histogram (Global) — Pixel swapping (Local) —Two-point histogram (Local) 

Figure 7.7: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area II. The grid represents the spatial resolution of 16 m. 
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Pixel swapping (Global) Two-point histogram (Global) Pixel swapping (Local) Two-poinl histogram (Local) 

Position (m) 

• Pixel swapping (Global) —Two-po in t histogram (Global) — P i x e l swapping (Local) — T w o - p o i n t histogram (Local) 

Figure 7.8: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area III. The grid represents the spatial resolution of 16 m. 
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Pixel swapping (Global) Two-poinl histogram (Global) Pixel swapping (Local) Two-point histogram (Local) 

Position (m) 

— Pixel swapping (Global) — Two-point histogram (Global) — Pixel swapping (Local) — Two-point histogram (Local) 

Figure 7.9: Positional accuracy for the 4 shorelines along a 125 m stretch of shoreline in Area IV. The grid represents the spatial resolution of 16 m. 
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7.4 Discussion 

Analysis of the spectral response derived from the training sites indicate marked intra-

class variation. This was expected, for example in water training sites, as the spectral 

response is a function of depth and quality of the water which are variable in space and 

time. Although the soft classification trained with global statistics produced an 

accurate prediction (r = 0.95) the global statistics did not represent local conditions 

accurately. To reduce error and produce a more accurate prediction of class proportion 

within a pixel, a soft classification approach based on utilising local training sites was 

proposed. Using the same training sites used in a global approach, local classification 

resulted in an increase in the r value from 0.95 to 0.98. The use of soft classification 

based on local training statistics would, therefore, be expected to yield a more accurate 

super-resolution prediction of shoreline position. 

Two sub-pixel mapping algorithms were used to predict shoreline location 

within a pixel. The two methods were based on the two-point histogram and pixel-

swapping algorithms. For all four areas and for both algorithms, the accuracy of 

shoreline prediction was larger when local rather than global training statistics were 

used. Results show that by using localised training sites the overall accuracy of 

shoreline prediction increased (RMSE of 1.51 m) relative to that achieved using global 

statistics (RMSE of 2.13 m). In addition, shoreline orientation had less effect on the 

prediction than when global statistics were used (Table 7.2). The result demonstrates 

that soft classification prediction provides a critical input to the super-resolution 

mapping process, with the accuracy of shoreline prediction related positively to the 

accuracy of the soft classification. 
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7.5 Conclusion 

This research has indicated the potential of super-resolution techniques for mapping 

the shoreline at a sub-pixel scale using simulated satellite sensor imagery. The use of 

local statistics resulted in increased accuracy in soft classification in comparison to 

using global statistics. With increased accuracy in the prediction of class proportion 

within a pixel, sub-pixel mapping techniques were able to increase the accuracy of the 

shoreline location predictions. 

Even though the results from this simulation study were encouraging, several 

additional factors need to be addressed before applying these methods to actual 

satellite sensor imagery. 
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8 Conclusion 

Coastal areas are dynamic environments and constantly changing. The need to 

constantly monitor these changes has compelled researchers to develop methods of 

efficiently monitoring the shoreline. This thesis introduced methods of mapping the 

shoreline from satellite sensor imagery. 

In chapter 2, the current status of Malaysia's shoreline was introduced with an 

overview of steps taken by the Malaysian government to address the issue of coastal 

erosion. These steps include the introduction of new government institution, financial 

allocation and regulatory measures. An overview of conventional and remote sensing 

methods for mapping the shoreline was provided to introduce how the shoreline has 

previously been mapped. The potential of remote sensing techniques to produce 

accurate maps was addressed leading to the aim of the study, the production of 

accurate shoreline maps from remote sensing satellite sensor imagery. This thesis 

examines the potential of using fine and coarse spatial resolution satellite sensor 

imagery in predicting the shoreline location. The data and study area for this thesis 

were described in chapter 3. 

A pilot study examining the potential of mapping the shoreline from coarse 

spatial resolution satellite sensor imagery on a linear stretch of shoreline was discussed 

in chapter 4. The shoreline predicted from a conventional hard classification method 

was compared with those from several sub-pixel mapping methods. The pilot study 

showed that by combining soft classification and sub-pixel mapping methods accurate 

shoreline prediction was possible (RMSE = 2.25 m for the two-point histogram 
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method). But this result was only valid for linear shorelines and further analysis was 

needed to address the effect of different shoreline orientation. This issue was addressed 

later in chapter 6. 

In chapter 5, fine spatial resolution satellite sensor imagery was used to map 

the shoreline. A shoreline prediction with an RMSE of 1.80 was obtained. But the use 

of fine spatial resolution imagery was impractical to map large stretches of shoreline at 

a national level. Therefore, methods of mapping the shoreline using coarse spatial 

resolution satellite sensor imagery were more practical. 

Chapter 6 expanded the work in chapter 4, with emphasis given to the effect of 

shoreline orientation and on increasing the accuracy of the shoreline prediction. The 

sub-pixel mapping methods used included wavelet interpolation, contouring the soft 

classification and two-point histogram method. The two-point histogram method 

obtained the most accurate prediction with an average RMSE of 1.44 m followed by 

wavelet interpolation and contouring with an average RMSE of 2.14 m and 2.50 m, 

respectively. But the accuracy of the shoreline prediction varied depending on the 

orientation of the shoreline. The accuracy of the shoreline prediction could be 

increased by using a soft classification approach based on the use of local training 

statistics. The class composition predictions derived when using local training 

statistics were more accurate than those from global training statistics, with an increase 

in r, from 0.95 to 0.98 {p < 0.05). With increased accuracy, the use of soft 

classification based on local training statistics would, therefore, be expected to yield a 

more accurate super-resolution prediction of shoreline position. For the two-point 

histogram method, there was an increase in accuracy for all the shorelines, with the 

RMSE ranging from 0.97 m to 1.10m when predicting from a 16 m spatial resolution 

image. Results show that shoreline orientation had less effect on the accuracy of the 
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prediction than when global statistics were used. The results demonstrated that soft 

classification prediction provides a critical input to the sub-pixel mapping process, 

with the accuracy of shoreline prediction related positively to the accuracy of the soft 

classification. 

The value of sub-pixel mapping was apparent from the perspective of 

conventional mapping standards. Using the results from the two-point histogram 

method (16 m spatial resolution imagery) as an indicator of the achievable accuracy, 

the prediction satisfied the requirement of mapping at a 1: 1,500 scale. Using 

conventional methods, SPOT HRV sensor with a spatial resolution of 20 m only 

satisfies the requirement of a 1: 50,000 scale maps (Al-Rousan et al, 1997). This 

research shows the potential of sub-pixel mapping method for mapping the shoreline at 

a sub-pixel scale using satellite sensor imagery such as Landsat TM, Landsat ETM+ 

and SPOT HRV. But when applying these methods to actual satellite sensor images, 

further research need to be done to address the affect of geo-referencing the images to 

the Malaysia RSO projection. The inaccuracies expected to be introduced and methods 

of addressing them would be addressed in future research. 

The sub-pixel mapping methods proposed in this thesis are not limited to 

mapping the shoreline but have the potential to be applied to other boundary-type 

classification problems such as land cover mapping. When mapping the shoreline, sub-

pixel mapping was relatively simple, as only two well-defined classes were being 

considered (water and land). Therefore, it remains to be seen how these methods 

would cope in more spatially complex landscapes, especially when more land cover 

classes occur at the sub-pixel scale. Further research addressing these issues needs to 

be conducted to be able to generalise these methods and make them applicable to other 

boundary-type classification problems. Obviously, other possibilities of improving the 
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algorithm exist. This includes automating the use of local training sites for soft 

classification by setting boundary conditions to enable the algorithm to select and 

utilise only sites fulfilling pre-determined conditions. Future research could also focus 

on generalising the methods to make them applicable to other boundary mapping 

applications. 
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Appendix 1 : Header information for the IKONOS sensor data used in this thesis 

Date 10"" April 2002 rUuly 2000 28^ August 2002 
Product Type : Geo Im + 4m 

bundle 
(Multi Spectral + 
Pan) + IGM 

1-metre 
Pan-Sharpened 
Multispectral 

1 -metre 
Stereo Pan-
Sharpened 
Multispectral + 
IGM 

Map Projection: Universal 
Transverse 
Mercator 

Universal 
Transverse 
Mercator 

Universal 
Transverse 
Mercator 

UTM 
Parameters 

Hemisphere; N 
Zone Number: 48 

Hemisphere: N 
Zone Number; 48 

Hemisphere; N 
Zone Number: 48 

Datum: WGS84 WGS84 WGS84 
Product Order 
Pixel Size: 

1.00 m (Pan) / 4.00 
m (Multi spectral) 

1.00 m 1.00 m 

Sun Angle 
Azimuth: 

81.4393 degrees 55.4660 degrees 76.4012 degrees 

Sun Angle 
Elevation 

68.13380 degrees 56.43733 degrees 68.81210 

Acquisition 
Date/Time 

2002-04-10 03:42 
GMT 

2000-07-01 03:14 
GMT 

2002-08-28 03:45 
GMT 

Product Map 
Coordinates 

UL Map X 
(Easting): 
286163.14 m 
UL Map Y 
(Northing); 
598099.43 m 

UL Map X 
(Easting); 
253401.26 m 
UL Map Y 
(Northing): 
620697.10 m 

UL Map X 
(Easting); 
286163.14 metres 
ULMap Y 
(Northing): 
598099.43 m 
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Appendix 2 : RFC coefficient for the (a) left stereo image and (b) right stereo image 

(») 
LINE_OFF' -H)08597.00 pixeb 
SAMP_OFF: 4005206.00 pixck 
LAT_OFF: +05.33020000 degtees 
LONG_OFF: +103.14950000 degree: 
HEIGHT_OFF: +OOS8.000 metre: 
L1NE_SCALE: +008616.00 pixek 
SAMP_SCALE: +006250.00 pixels 
LAT_SCALE: +00.07gg0000 degrees 
LONG_SCALE: +000.05640000 degree: 
HE1GHT_SCALE: +0243.000 metre: 
LINE_NUM_C0EFF_1: -8.0157904608797636-04 
L1NE_NUM_C0EFF_2: +2.178622682118108E-03 
LlNE_NUM_COEFF_3: -1.011769649980722E+00 
L1NE_NUM_C0EFF_4: .I.330I76889963654E-02 
L1NE_NUM_C0EFF__5: +1.219888840804130E-03 
L1NE_NUM_C0EFF_6: +1.168241362I65915E-05 
LlNE_NUM_COEFF_7: +6.193387652496905E-04 
LINE_NUM_C0EFF__8: -3.538944538391356E-05 
LINE_NUM_COEFF_9: -l,343697662169847E-03 
L1NE_NUM_COEFF_10. +8,943706763229476E-06 
LlNE_NUM__COEFF_ll: -1,9694615219402755-06 
L1NE_NUM_C0EFF_12: .4,352652342039300E.08 
L1NE_NUM_C0EFF_13: -3.425988224511912E.05 
L1NE_NUM_C0EFF_14: -2.117075512873797E.08 
L1NE_NUM_COEFF_15:+3.8I8164163172455E-05 
L1NE_NUM_C0EFF_16: -3.936778902318909E-05 
LINE_NUM_C0EFF_]7: -2.829015317996647E-07 
L1NE_NUM__C0EFF_18: +I.717311890757660E-06 
LINE_NUM_COEFF_19: -6.114053814015430E-06 
L1NE_NUM_COEFF_20:.3.144209550132082E4)9 
LINE_DEN_C0EFF_1: +1.000000000000000E+00 
LINE_DEN_C0EFF_2: -1.171297122436968E-03 
LINE_DEN_COEFF_3: +1.327890963611945E.03 
L1NE_DEN_C0EFF_4: -1.467246992524049503 
L1NE__DEN_C0EFF_5: +3.39846762293911IE-05 
L1NE_DEN_C0EFF_6: +2.807995202840281E-06 
UNE_DEN_C0EFF_7: +7.491362145804603E-06 
LINE_DEN_C0EFF_8:-3.823133434583129E-05 
LlNE_DEN_COEFF_9:+3.8903792840g3888E-05 
L1NE_DEN_COEFF_]0:+8.176329568243937E-07 
LINE_DEN_COEFF_ll: .1.41730I916062796E.08 
L1NE_DEN_COEFF_I2:-1.405394190498776E4)9 
LINE_DEN_C0EFF_13: +3.101331878058564EX)9 
LlNE_DEN_COEFF_l4: -9.01268116Q945601E-10 
LINE_DEN_COEFF_15:-2.532002959587352E-09 
L1NE_DEN__COEFF_16:+3.855470377029826E-09 
LINE_DEN_C0EFF_17: -3.325492335070448E-09 
L1NE_DEN_C0EFF_18: +1.274772201659852E-08 
UNE_DEN_C0EFF_19: -2.941534098206556E-08 
L1NE_DEN_COEFF_20:.1.777496362565859E-10 
SAMP_NUM_COEFF 1: .5.365250887172890E4)3 
SAMP_NUM_COEFF_2. +I.000484680928644E+00 
SAMP_NUM_COEFF_3: +4.219770098547513E-03 
SAMP_NUM_C0EFF_4: -6.177058545830304E-04 
SAMP_NUM_COEFF 5:+1.195719322853955E.03 
SAMP_NUM_COEFF 6: .1.0677759I4962594E.03 
S AMP_NUM_C0EFF_7: +1.213001779249267E.04 
SAMP_\UM_COEFF_8:.1.]87516214410253E-03 
SAMP_XUM_COEFF_9:+3.587305782641327E4)5 
SAMP_NUM_COEFF_10: +2.3504444I4402229E-06 
SAMP_NUM_C0EFF_11: +8.365749643280777E-06 
SAMP_NUM_C0EFFJ2: .3.807003122182368E-05 
SAMP_NUM_COEFF 13:+3.792129876125210E-05 
S AMP_NUM__C0EFF_14: +3.767512766913292E-07 
S AMP_NUM_C0EFF_15: +3.398009413464517E-05 
SAMP_NUM_C0EFF_16.' +2.028306018110233E-07 
SAMP_NUM_C0EFF_17: -6.748417751803567E-08 
SAW_NUM_C0EFF_]8: +2.007369120900146E-06 
SAMP_NUM_COEFF_19: -1.041086857938219E-06 
SAMP_NUM_COEFF_20: -9.942412354259979E-10 
SAMP_DEN_COEFF_l. +1.000000000000000E+00 
SAMP_DEN_C0EFF_2: -1.I71297122436968E-03 
SAMP_DEN_COEFF_3: +1.327890963611945E-03 
SAMP_DEN_C0EFF_4: -1.467246992524049E.03 
SAMP DEN COEFF 5i+3.398467622939111E4)5 

(b) 
L1NE_0FF: +009486.00 pixek 
SAMP_OFF. +005710.00 pixel: 
LAT_OFF: +05.32240000 degree: 
LONG_OFF: +103.14960000 degree: 
HE1GHT_0FF: +0088.000 metre: 
L1NE_SCALE: +009450.00 pixel: 
SAMP_SCALE: +005798.00 pixel: 
LAT_SCALE: +00.08580000 degrees 
LONG_SCALE: +000.05250000 degree: 
HE1GHT_SCALE: +0243.000 metits 
L1NE_NUM_C0EFF_1: +1.168330791267773E-03 
L1NE_NUM_C0EFF_2: +1.838686643800731E-03 
L1NE_NUM_C0EFF_3: .1.004473070864287E+00 
L1NE_NUM_C0EFF_4: +2.247313951471594E.03 
LINE_NUM_C0EFF_5: +7.I3860671266I865E-03 
L1NE_NUM_C0EFF_6: -1.I29856466I21717E-05 
LINE_NUM_C0EFF_7: -1.199754632965443E-03 
L1NE_NUM_C0EFF_8: -3.908986245344519E.05 
L1NE_NUM_C0EFF_9: +2.813701898460914E.02 
L1NE_NUM_COEFF_10: +2.439549121157181E-06 
L1NE_NUM_COEFF_11:+2.842682094I28792E-06 
L1NE_NUM_COEFF_12:+1.365951095823415E-07 
LINE_NUM_COEFF_l 3: -1.523222505873829E-04 
L1NE_NUM_C0EFF_14: -1.37362517922004IE-08 
HNE_NUM__C0EFF_15: +2.775423306408464E-05 
L1NE_NUM_C0EFF_16: -3.814462211696524E.04 
LINE_NUM_COEFF_l 7: +5.832369833462576E-07 
LINE_NUM_C0EFF_]8:+9.372093412195353E-07 
L1NE_NUM_C0EFF_19: -2.056769201469459E-06 
L1NE_NUM_COEFF_20: .1.367144597862590E-09 
L[NE_DEN_C0EFF_1: +I.O0OO00OOOOOOO00E+OO 
L1NE_DEN_C0EFF_2 :-7.1295478l 4970496E-03 
UNE_DEN_COEFF_3:-2.801379912935586E-02 
LINE_DEN_C0EFF_4. +2.367060941132691E4)4 
L1NE_DEN_C0EFF_5 :+1.515505106826301 E-04 
LINE_DEN_C0EFF_6 :+2.48188047619l763E-06 
L1NE_DEN_COEFF_7:+2.68790025473I482E4)5 
UNE_DEN_C0EFF_8: -2.725183863556567E-05 
LINE_DEN_C0EFF_9: +3.798438226324729E-04 
L1NE_DEN_C0EFF_10: -1.538265355482507E-06 
LINE_DEN_C0EFF_11: .6.36829B861627266E-08 
L1NE_DEN_C0EFF_12: -1.06471946I959987E-09 
LINE_DEN_COEFF_13:+I.581381770001589E-08 
L1NE_DEN_C0EFF_14:+5.60586817170861 IE-10 
LINE_DEN_C0EFF_15: +4.391419593884135E-09 
L1NE_DEN_COEFF_16:+8.606607346726961E-09 
L1NE_DEN_C0EFF_17: .6.770I26871700066E-09 
HNE_DEN_C0EFF_18: +6.654465706602339E-09 
L1NE_DEN_C0EFF_19: -1.713598510377442E-07 
L1NE_DEN_COEFF_20:+5.437359867098021E-10 
SAMP_NUM_C0EFF_1: 44.063490175503958E4)3 
SAMP_NUM_C0EFF_2: +1.003880523537400E+00 
SAMP_NUM_C0EFF_3. +4.849040778456582E-03 
SAMP_NUM_C0EFF_4: -5.652544098014657E-03 
SAMP_NUM_COEFF_5:.2.8297391529I3578E-02 
SAMP_NUM_COEFF_6: +6.743595539545685E-04 
SAMP_NUM_COEFF_7:+3.383980858242207E-04 
SAMP_NUM_COEFF_8:.7.172380385366849E-03 
SAMP_NUM_COEFF_9: -9.797087372270402E-05 
SAMP_NUM_COEFF_10: -3.755832700578262E-06 
SAMP_NUM__COEFF_l 1: +1.40245566960I033E-05 
SAMP_NUM_C0EFF_12: -2.711282360607431E.05 
SAMP_NUM_COEFF_13:+3.845837149531081E-04 
SAMP_NUM_C0EFF_14: -1.302851671759722E-06 
SAMP_NUM_COEFF_15: +1.534266775060973E-04 
SAMP_NUM_COEFF_I6:+7.5857I3745658501E-07 
SAMP_NUM_COEFF_17: +1.684047669914581E-07 
SAMP_NUM_COEFF_18: -6.304271485182397E-07 
SAMP_NUM_COEFF_19: -6.778791352307466E-06 
SAMP_NUM_COEFF_20: +6.927138825406827E-09 
SAMP_DEN_COEFF_l: +1.000000000000000E+00 
SAMP_DEN_C0EFF_2: .7.129547814970496E-03 
SAMP_DEN_C0EFF_3: -2.801379912935586E-02 
SAMP_DEN_C0EFF_4: +2.367060941132691E.04 
SAMP_DEN_C0EFF_5:+1.51550510682630IE-04 
SAMP DEN COEFF 6: +2.481880476191763E-06 
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SAMP_DEN_C0EFF_14: -9.0125gll60945601E.10 
SAMP_DEN_COEFF_15:-2.5320029595g7352E4)9 
SAMP_DEN_COEFF_16:+3.g55470377029g25E4)9 
SAMP_DEN_COEFF_l 7: -3.32549233507044gE.09 
SAMP_DEN_COEFF_lg:+1.274772201559g52E.0g 
SAMP_DEN_COEFF_19: -2.94153409g206556E-OS 
SAMP DEN COEFF 20:-1.777495362555g59E-10 

SAMP_DEN_COEFF_7: +2.587900254731482E-05 
SAMP_DEN_COEFF_8: -2.725 lg3853556567E-05 
SAMP_DEN_COEFF_9:+3.79g43g225324729E-04 
SAMP_DEN_COEFF_10i-1.5382653554g2507E-06 
SAMP_DEN_COEFP_l 1: .6.36g298861527265E-08 
SAMP_DEN_COEFF_12: -1.0647194619599875-09 
S AMP_DEN_COEFP_ 13:+l.5813gl770001589E-08 
S AMP_DEN_COEFF_l 4: +5.605g6gl 71708611E-10 
SAMP_DEN_COEFF_15:+4.3914195938g4135E-09 
SAMP_DEN_COEFF_16:+g.506507346726961E-09 
SAMP_DEN_COEFF_17: -6.7701268717000665-09 
SAMP_DEN_COEFF_lg: +6.654465705602339E4)9 
SAMP_DEN_COEFF_19:-].7I3598510377442E.07 
SAMP DEN COEFF 20:+5.437359g67098021E-10 
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